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PREFACE 

 

Quantitative geography is something of a minefield. No one is exactly sure how large it 
is, and no pathway through it is entirely safe. Yet many geographers find themselves 
having to venture into it, either because, as students, it is a compulsory part of their 
degree studies, or as graduate researchers, because it may provide techniques to help 
process data. The purpose of quantitative geography is the development of numeracy, 
and, in particular, with equipping geographers with the skills needed to collect, process 
and interpret geographical data sets. Without a sense of numeracy, many geographers are 
liable to be overwhelmed by the sheer volume of numbers which they may collect in the 
field. 

Thirty years of technical developments have expanded the horizons of quantitative 
geography and have made it a difficult area to assimilate. Teachers and users alike find it 
difficult to keep track of the new techniques and styles of working which have been 
suggested. Furthermore, the proliferation of techniques has made it harder to encourage 
numeracy as the learning tasks have got more extensive and complex. These difficulties 
are particularly apparent in the statistical areas of quantitative geography where new 
fields of study have been developed and added to the armoury of geographical 
techniques. Categorical data analysis is an obvious example. Since the 1960s there have 
been major developments in analysing categorical data collected by survey, questionnaire 
and behavioural experiment. Accommodating these developments has been difficult 
because the new techniques fit uneasily into traditional course designs. 

The purpose of this book is to show how some of these difficulties may be minimised. 
It presents a selection of statistical techniques which may be considered ‘first cousins’, 
and which can be shown to be natural extensions of the simple descriptive statistics 
taught to most geography undergraduates. Such techniques are members of the family of 
‘generalised linear models’, and include many of the techniques usually associated with 
continuous data analysis, as well as many of the new categorical techniques. As with 
human families, it is often easier to remember shared characteristics than individual 
foibles, and so it is hoped that this approach will make learning easier. 

This book began life several jobs ago somewhere between Bristol, Cardiff and 
Cheltenham. Its development has also taken in Durham, Oxford and Newcastle. Many 
people have helped me with it, often indirectly. My largest debt is to Neil Wrigley who, 
as supervisor of my doctorate, got me started in the first place. Nick Chrisman, Mike 
Blakemore and Ewan Anderson have also been major sources of help and enthusiasm. 



The following have provided more specific help: Janet Townsend and Barbara Harrell-
Bond for useful tips on intensive research; Pion Ltd for permission to reproduce Figure 2 
of Guy (1983b) as Figure 2.1; Peter Dodds for help with GIMMS; Kath Lund, Eileen 
Beattie and Lynne Martindale for typing; the Cartography staff in Durham and 
Newcastle; Mike Bradford for lots of advice on how to write a textbook; and Tristan 
Palmer, Alan Jarvis and Peter Sowden at Routledge for their patience. Mark McFetridge 
deserves special thanks for his expert handling of incompatible computers. The usual 
limits on responsibility apply. 

This book could not have been written without the help of my wife, Ottilia, a 
microbiologist who has graciously put up with my dabblings in geography. Matthew 
arrived when the book was almost finished, which is just as well. It is dedicated to them 
both. 



1 
INTRODUCTION 

1.1 OVERVIEW 

Over the last thirty years there has been a major growth in the use of quantitative methods 
in geography. Most branches of the discipline have investigated their value as research 
aids, and some have been transformed by the experience. New subdisciplines devoted to 
the development of quantitative geography and spatial analysis have also been 
established. These have reinforced the value of quantification by creating new research 
opportunities for the discipline as a whole; opportunities which are increasingly being 
exploited in the form of applied research contracts between geography, commercial 
agencies and governments (Wrigley and Bennett 1981; Department of the Environment 
1987). 

This trend in geographical research has been reflected in teaching. Today, most 
geography courses available in UK or US universities and colleges include the teaching 
of quantitative methods in their design, frequently as compulsory or core units in their 
first or second year programmes. The content of such units varies, but, in general, 
statistical topics tend to predominate. Such a teaching programme might aim to cover the 
following topics from first principles: 

1 the use of summary numerical measures to describe central tendency and dispersion in 
data; 

2 the use of graphs, plots and other ‘pictures’ to look for patterns and relationships in 
data; 

3 the use of inferential techniques to relate observed ‘sample’ data to an unobserved 
‘population’; 

4 the specification and testing of statistical hypotheses; 
5 the use of an algebraic equation (a ‘model’) to account for the form of the patterns and 

relationships identified. 

In the majority of cases, quantitative methods teachers are likely to assume that their 
students will have little or no previous statistical knowledge. 

In designing quantitative methods courses for undergraduate geographers, the 
tendency has been to teach the ‘basics’ of statistical analysis by beginning with an outline 
of some of the terminology to be used and culminating with a consideration of the merits 
and potential uses of techniques such as correlation, the least squares linear regression 
model and the analysis of variance. These techniques are part of the intellectual 
inheritance of quantitative geography and reflect the strong links between geography and 
econometrics that have existed since the 1960s. However, statistical theory has not 
remained stationary over this thirty-year period. Many changes and refinements have 



taken place, and a considerable number of new analytical techniques have been 
developed. Some of these are directly relevant to statistical work in geography. 

The developments in the methods available to analyse categorical data (alternatively 
termed ‘discrete’ or ‘qualitative’ data) illustrate these changes particularly well. Thirty 
years ago the techniques available for use with such data were extremely rudimentary and 
rather intractable, consisting of little more than a series of descriptive summary measures, 
ad hoc devices and ‘rules of thumb’ (Duncan 1974). The chi-square statistic was one of 
the more useful of these measures but it too was not without its difficulties. As Mosteller 
(1968:1) noted towards the end of the 1960s: ‘sometimes this approach is enlightening, 
sometimes wasteful, but sometimes it does not go quite far enough’. The essence of this 
comment, which many other commentators appear to have shared, is that these measures 
were often insufficiently powerful to analyse categorical data adequately. Today, the 
situation has changed and in addition to these measures, researchers are now able to 
employ a range of powerful statistical models which are similar in certain respects to 
least squares linear regression. These include the logit and probit models for proportions, 
and the hierarchical log-linear models for contingency table counts. 

The development of these techniques and their incorporation in published 
geographical research poses a major problem for geographers. Many geographical data 
sets include categorical data, or data which have to be presented as categorical in order to 
meet the requirements of a legal, statutory or ethical obligation (e.g., the preservation of 
confidentiality). As a result, today’s geographers need to be aware of techniques and 
models which may be useful for the analysis of such data. At the very least, a basic 
knowledge of the new developments is required in order to understand the increasing 
number of research papers which use them. However, in spite of this need, it seems that 
very few quantitative methods courses currently provide such training. Worse still, it 
seems that categorical developments are often only presented as specialities which are 
peculiar to specific branches of the subject (e.g., logit regression in urban geography). 

Two factors would seem to account for this. First, it is the generally-agreed experience 
of quantitative methods teachers that statistics units are difficult to teach given the 
quantity and type of information to be presented. Anything which seems to make the job 
harder by extending the content is likely to be resisted. Second, many teachers believe 
that the level of expertise required to present these developments is high. The justification 
for this view seems to be that the categorical developments look and feel quite different 
from the traditional techniques. Not only are the notation schemes different, but so too 
are the rather more complex areas of estimation and inference. Because of these, many 
teachers see the learning curve for categorical data analysis as being particularly steep, 
and so have been deterred from making more than a superficial effort to tackle it. In the 
absence of an integrated approach to teaching quantitative techniques these objections 
would be insurmountable. But integrated approaches do exist, and these may allow 
programmes to be developed which can incorporate categorical developments whilst 
simultaneously covering linear regression and the other traditional topics. 

This book presents such an integrated approach. It contains information on a 
programme of teaching which treats linear regression and the categorical models as 
special cases of a common family: the class of generalised linear models. This class has a 
number of attractive properties which make it valuable as an organising framework: 
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1 All members of the class may be written in a common, consistent notation which can 
replace the more distinctive, idiosyncratic notations normally associated with 
individual models. 

2 The components of the model which reflect the associations within the data—the 
‘parameters’—may all be estimated using a common procedure: maximum likelihood. 

3 The members of the generalised class are all developments of simple statistical 
relationships usually taught in introductory statistics courses. 

By emphasising ‘family features’, quantitative methods teachers can obtain considerable 
economies of effort in their teaching. Furthermore, those approaching the subject for the 
first time should also experience considerable economies of effort in their learning. This 
is made all the more pertinent by the availability of the GLIM computer system which 
has been designed specifically to fit generalised linear models and is widely available. 

1.2 WHAT ARE GENERALISED LINEAR MODELS? 

The term ‘generalised linear models’ refers to a class of linear statistical models which 
share some important mathematical characteristics. Some of the class members which are 
in regular use in geography are illustrated in Figure 1.1. 

 

Figure 1.1 Some generalised linear 
models used in geography 

From a teaching perspective, these models share three important characteristics. First, 
they may all be reduced to a common mathematical form and notation: 

yi=µi+εi   

where, 
y represents a ‘response’ component 

µ represents a systematic component which can be estimated from data and 
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ε represents a random error component 

Second, in each model the behaviour of the response is investigated by linking it to 
‘explanatory information’ based on data collected by survey or experiment using some 
form of linear, additive structure. Third, the error component in each of these models is 
drawn from a common family of probability distributions known as the ‘exponential 
family’. These three features distinguish the models in Figure 1.1 from the many other 
statistical models in common use, some of which are inherently non-linear in form, 
possess more than one error component, or have errors which are not from the 
exponential family. 

The theory of generalised linear modelling was originally presented by statisticians 
J.A.Nelder and R.W.M.Wedderburn; their principal ideas being published in Nelder and 
Wedderburn (1972), Nelder (1974, 1977, 1984) and Wedderburn (1974a, 1974b, 1976). 
Other generalised frameworks have also been proposed by, among others, Scheffé 
(1959), Grizzle et al. (1969), Haberman (1970, 1974a), Horton (1978), Andersen (1980), 
Wrigley (1979, 1985). These contributions, though different in many important respects, 
lend further support to the idea that a generalised, integrated framework is particularly 
useful as a means of organising statistical material. 

1.3 ORGANISATION OF THE BOOK 

This book is organised into two parts, one introductory, the other rather more advanced. 
Part I (Chapters 2 to 6) is essentially an introduction to data analysis and covers the 
following topics: 

1 A description of some of the sources and characteristics of geographical data. 
2 The measurement of geographical information. 
3 The description of this information using graphical and numerical summary measures. 
4 The use of descriptive models to summarise geographical data which are distributed 

irregularly. 
5 The use of statistical inference in geography. 

The reason for including this is to provide a basis for the introduction of generalised 
linear modelling in Part II, by linking together the three important areas of data 
description, descriptive modelling and inferential modelling. These aspects are all 
features of numeracy and so should be emphasised in a data analysis text. 

Part II (Chapters 7 to 11) is more advanced and illustrates the class of generalised 
linear models in more detail. Chapter 7 presents the background to the class and 
introduces notation, model specification and fitting conventions, and the maximum 
likelihood estimation strategy. Chapter 8 illustrates generalised linear models which may 
be applied to continuously distributed data—linear regression and the analyses of 
variance and covariance. Chapter 9 illustrates generalised linear models suitable for 
analysing categorical data—log-linear, logit and probit models. Chapter 10 presents some 
additional types of generalised linear models which may be particularly valuable in 
geographical research, namely, Poisson regression models, log-linear re-expressions of 

Introducing quantitative geography      4



spatial interaction models, linear experimental design models, capture-recapture models, 
and discrete choice models. Finally, Chapter 11 presents some conclusions and discusses 
possible limitations which restrict the usefulness of the class. Three appendices complete 
the book and cover some technical material on computer software, the probability 
background of the class, and the GLIM command language (versions 3.12 and 3.77), 
which is not presented in the text. 

All of the examples presented in the book were tested using the mainframe version of 
GLIM (version 3.12) on Newcastle University’s Amdahl computer, and on a 
microcomputer version of GLIM 3.77 running on an IBM-PC. Though GLIM has been 
emphasised, access to it is not a prerequisite as packages such as MINITAB, SPSSx, 
BMDP, SAS, GENSTAT, and GENCAT could be used instead, at least in part. These 
vary considerably in the demands they make of users, and in the character of their 
command languages. Some details of these packages are given in Appendix B. 

Introduction         5



 



Part I  
PRELIMINARIES: 

GEOGRAPHICAL DATA 
AND DATA HANDLING 

 



 

2  
DESCRIBING GEOGRAPHICAL DATA 

2.1 INTRODUCTION 

A concern for numeracy is relevant to geography because the discipline is heavily 
dependent on data. A great deal of geographical research is based on the collection, 
analysis and interpretation of data, arising from sources as diverse as personal surveys 
and questionnaires, government publications, field measurements, laboratory experiments 
and satellite images. By ‘data’, geographers usually mean collections of facts and figures 
which refer to geographical ‘individuals’. These ‘individuals’ may be distinct persons, 
and the data, observations on their ages, sexes, occupations or ethnic origins. 
Alternatively, the ‘individuals’ may be features in the landscape such as rivers, glaciers 
or peat bogs, and the data may be a series of observations on their dimensions, sinuosity, 
area or organic composition. However, just to add a little confusion, the term ‘individual’ 
may also be used to refer to social or physical aggregates such as zones, mountain ranges, 
drainage basins or travel-to-work areas. The data collected for these ‘individuals’ are 
actually aggregates of data gathered from sampling points within them. Thus 
unemployment in the geographical individual ‘County Durham’ is the total number of 
eligible unemployed claimants who are registered with Job Centres within the county. 

The collection of geographical data can be extremely productive, with many thousands 
(even millions) of data items being involved in a single exercise. To process these 
quantities of data is practically impossible without suitable analytical tools. Computer 
processing is potentially helpful, especially in sorting and sifting the data. However, more 
valuable even than this is quantification, where the information contained in data is 
expressed in summary form by numerical techniques. Such techniques can be extremely 
rudimentary (means and variances—see Chapter 4) or rather more elaborate (regression 
models—see Chapter 8), with the choice of techniques reflecting the types of data being 
processed and the needs of the research. 

The information content of geographical data varies with the type of data, how they 
were measured and collected, and how they were recorded in the field. Similarly, the 
quality of the information reflects the assumptions of the collectors and the survey 
options open to them. These are important considerations because the definitions used in 
data collection ‘depend on assumptions about the nature of meaning’ (Sayer 1984a:279), 
where ‘meaning’ reflects ‘how we identify and differentiate the world’ (ibid.: 280). In 
data sets collected by geographers for their own use, the quality of the data reflects the 
assumptions and preconditions which were thought most appropriate to meet the needs of 
the research. Because the users of the data set are also its collectors, they are in a good 
position to recognise its deficiencies and limitations. However, many geographers do not 
themselves collect the data they use for research, relying instead on the efforts of other 



researchers, government agencies or commerce to provide the data for their work. In 
these circumstances, the quality of the data is almost certainly less, as it is unlikely that 
the assumptions and world views of the collectors entirely match those of the users. Any 
analysis based on such data must recognise this basic fact, as no amount of clever 
numerical manipulation will add information to data where none already exists. 

The purpose of this chapter is to review some of the characteristics of the data used in 
geography as a precursor to the more numerical material which follows. Five sets of 
contrasting terms are used to provide a method of organisation. These distinguish 
between: 

1 primary and secondary data; 
2 cross-sectional and time-series data; 
3 ‘hard’ and ‘soft’ data; 
4 spatial and aspatial data; 
5 categorical and continuous data. 

These are not intended to be a rank ordering of geographical data types, nor are they 
meant to be exhaustive or mutually exclusive. Indeed, as the examples in this book will 
show, most geographical data sets consist of mixtures of data types, e.g., primary time-
series, cross-sectional categorical data, ‘soft’ aspatial data and so on. However, they 
provide a recognisable summary of many of the major data types used in the discipline, 
and allow comments relevant to data quality to be advanced in a reasonably systematic 
way. 

2.2 PRIMARY AND SECONDARY DATA 

Collecting data is one of the more basic tasks of geographical enquiry. It is also one of 
the more arduous. Before any piece of research can commence, the researchers must 
decide what information is to be collected, and which sources and methods are to be 
used. As far as sources are concerned, a choice is often available. For example, they may 
be able to use existing data, even if collected for a different purpose, so long as they are 
sufficiently detailed, up-to-date, and can be adapted to the needs of the project. 
Alternatively, they may decide they have to collect new data. 

The term ‘primary data collection’ is generally used to refer to the latter strategy, in 
which researchers collect information for a specific purpose ‘in the field’. This may 
involve setting up an environmental monitoring system to collect information on daily 
temperature, rainfall or river flow. Alternatively, it may involve the use of a 
questionnaire, or other form of social survey, to obtain economic, social or attitudinal 
data directly from households or individual consumers (Marsh 1982; Bateson 1984). The 
main advantage of this approach is that the quality of the data is known and better 
understood, i.e., the researchers are better able to assess the effects of potential sources of 
error in the data because they have been intimately involved in their collection and 
recording. 

Its main disadvantages are that it is often slow, arduous, labour intensive, and 
frequently expensive. It may take months, if not longer, to collect enough data of the type 
required for the study. Anderson and Cox (1986), for example, describe a study designed 
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to assess the magnitude and velocity of soil creep at four sites in County Durham. Their 
data set, consisting of a series of daily readings, took nearly a year to collect. Similarly, 
Guy et al. (1983) and Wrigley et al. (1985) describe a study (known as the Cardiff 
Consumer Panel Survey) using self-completion shopping diaries which was designed to 
collect data on repetitive retailing behaviour and travel activity from a panel of several 
hundred households in Cardiff. This data set consists of many thousands of observations 
covering every shop visited, and grocery item purchased by the households, over a period 
of six months. Given its size, and the length of the survey, the data collection process was 
contracted out to a team of interviewers, specially recruited and trained by a professional 
market research company. 

The delays and expense of primary data collection may be avoided entirely if a 
suitable existing data set can be adapted to meet the needs of the project. The obvious 
advantage of this approach (secondary data collection) is that the researchers can 
generally produce results more rapidly than if they have to collect the data for 
themselves. This may make their lives easier, but there is a risk involved, as the data are 
second-hand, and may therefore be of inferior or unknown quality. To be more specific, 
because the researchers may not have played any part in collecting the data, they may 
know very little about their quality, or about the effects of corrupting influences or errors 
in the data. An additional problem is that the information may be organised in 
unsatisfactory ways or refer to geographical areas which are not entirely appropriate for 
the research in hand. The suitability of the data to provide answers to the research 
questions being posed depends, in large part, on the seriousness of these inadequacies. 

Some of the problems of secondary data analysis may be noted by inspecting the data 
in Table 2.1. This contains an extract of the migration flows into and out of Birmingham 
for both sexes and all ages for the period March 1987 to March 1988. The table shows a 
net loss of approximately 4,000 people from Birmingham over this period, with the  

Table 2.1 Migration (all ages) into and out of 
Birmingham to West Midlands (March 1987–
March 1988) 

  Male Female 

Area In Out Gain In Out Gain 

Coventry 286 293 −7 339 312 27 

Dudley 408 766 −358 461 847 −386 

Sandwell 1,417 1,617 −200 1,632 1,812 −180 

Solihull 1,887 3,023 −1,136 2,160 3,242 −1,082 

Walsall 685 −1.234 −385 897 1,235 −338 

Wolverhampton 238 276 −38 257 313 −56 

Totals 4,921 7,045 −2,124 5,746 7,761 −2,015 

Source: NHSCR records (NOMIS) 
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largest outflow going to Solihull. The source of this migration data is the medical re-
registration records of the National Health Service Central Register (NHSCR). This 
contains a record of all patient re-registrations with general practitioners in areas covered 
by Family Practitioner Committees. For the most part, these are shire counties or 
metropolitan districts. In London, however, they comprise combinations of boroughs.  

The NHSCR is widely considered to be the best source of data for migration studies 
below the level of regions (Devis 1984). However, there are several problems which have 
to be recognised if these data are to be used for migration research. These are: 

1 NHSCR data are not collected for migration purposes but for administering general 
practice medicine; 

2 migration can occur without a re-registration taking place, especially if the patient is 
not a member of a ‘high risk’ medical category; 

3 the speed of re-registration varies according to age and sex; 
4 the areas used as spatial reporting units may not necessarily correspond to anything 

which is meaningful in socio-economic terms. 

A number of studies (for example, Devis and Mills 1986; Boden et al. 1987) have shown 
that considerable discrepancies exist between the ‘migration’ patterns suggested by 
NHSCR data compared with Census of Population data. These are particularly noticeable 
for the migration patterns of adult males aged 20–29, potentially the most mobile group, 
who tend to be poorly represented by the NHSCR. This is because this group generally 
comprises healthy people whose medical requirements are minimal and so who may not 
re-register as they move around the country. In the Birmingham example, only 345 out of 
the 4,000 or so movers were in this category. Other important mobility discrepancies are 
associated with the movement patterns of teenagers aged 15–19, pre-school children, and 
the elderly. For these groups, medical attention is probably quite important and so re-
registration after each move is likely to be a high priority. In the Birmingham example, 
nearly half of the re-registrations were associated with children and elderly patients. 

Apart from the National Health Service, other major sources of secondary data in the 
UK are government agencies such as the Office of Population Censuses and Surveys 
(OPCS), which collects and publishes the decennial Census of Population, and the 
Department of Employment which publishes unemployment statistics on a monthly basis 
as well as the triennial Census of Employment. Researchers may obtain this information 
in the form of printed records or, much more efficiently, using computerised information 
systems such as NOMIS (Townsend et al. 1987) or SASPAC (LAMSAC 1979, 1982; 
Rhind 1983). Local authorities are also useful sources of secondary data, providing 
considerable quantities of information specific to local areas. For example, the Electoral 
Roll, which they administer and maintain to determine who is eligible to vote in 
elections, may be used as a proxy list of the households living in specific streets or 
selected wards (see Guy et al. 1983 or Hoinville and Jowell 1978 for details). Similarly, 
libraries and other archives, such as County Records Offices, business directories and 
Trade Associations, may also be able to provide many types of secondary data which are 
valuable to the geographer. (For useful reviews of secondary statistical data, see Hakim 
1982; Jacob 1984; Kiecolt and Nathan 1985; Durbin 1987; Openshaw and Goddard 1987; 
Department of the Environment 1987; Marsh 1989.) 
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2.3 CROSS-SECTIONAL AND TIME-SERIES DATA 

One of the principal motivations for collecting data on geographical individuals is to 
highlight the properties and processes associated with them. These properties and 
processes may be related to each other in some systematic or organised way, operating 
independently or in conjunction to influence the characteristics of the individual. With 
time, they may also change their form, magnitude and relative influence. For example, 
the processes associated with landscape weathering may change over many thousands of 
years as a result of climatic changes. Similarly, trends in economic activity may change 
seasonally, or over the lifetime of a government, or over decades, as a result of new ways 
of working, technology and changes in the characteristics of international trade. At any 
one time, therefore, geographers may be interested in both the ‘state’ of a particular 
individual, and in how that state may change. 

Table 2.2 County Durham: number of residents 
aged 16 or over present on Census night 

Males Females Economic position Total persons 

SWD M SWD M 

All persons 16+ 464,777 72,026 152,276 87,513 152,962 

Econ. active 275,664 49,932 120,363 34,770 70,599 

Working 239,815 38,461 104,894 29,935 66,525 

Seeking work 31,733 10,611 13,296 4,339 3,487 

Sick (T) 4,116 860 2,173 496 587 

Econ. inactive 189,113 22,094 31,913 52,743 82,363 

Sick (P) 15,396 3,393 7,091 3,231 1,681 

Retired 48,871 10,275 23,751 10,110 4,735 

Student 16,121 7,621 531 7,695 274 

Other inactive 108,725 805 540 31,707 75,673 

Key: SWD=single, widowed, divorced; M=married; 
Sick (T)=temporarily sick; Sick (P)=permanently sick. 

Source: 1981 Population Census (via NOMIS) (see Townsend et al. 1987) 

Geography frequently makes use of data which measure the state of a geographical 
individual at specific points in time. Such data are termed ‘cross-sectional’. The Census 
of Population data displayed in Table 2.2 are an example of cross-sectional data. It shows 
the ‘economic position’ of all residents aged 16 or over in County Durham by sex and 
marital status on a single night in 1981. This information is specific to a single date—
Census night (5 April 1981)—and may be found to differ from information on the same 
topics for the day before or after Census night. The main advantage of this type of ‘frozen 
snapshot’ is that considerable quantities of information are usually available for the 

Introducing quantitative geography      12



chosen period. Thatcher (1984) notes that twenty-one questions were posed in the 1981 
Census asking for data on household characteristics (e.g., on the size of each household, 
its age and sex composition, and on the dates of birth, marital status and countries of birth 
of each of its members), occupations and employment, journeys to work, qualifications 
attained, potential mobility, and on dwellings (e.g., on tenure, on the number of rooms, 
and on shared and exclusive amenities available to the household). Because this 
information was collected from almost every household in the country (approximately 
eighteen million in 1981) it represents the most detailed database available on the state of 
the British population in the early 1980s, containing excellent cross-sectional information 
for small areas (e.g., wards, parliamentary constituencies, parts of local authority areas). 

Time-series, in comparison, are generally much less detailed. Instead, they usually 
consist of a series of observations made on a geographical individual over a period of 
time (Chatfield 1980). The measurement of unemployment is an obvious example, 
consisting of a series of observations which are collected each month (Table 2.3). The 
main analytical use of time-series is in investigating the changes which occur through 
time in the state of the individual. The frequency with which observations are collected 
allows them to detect short-term, cyclical, periodic or seasonal changes in the state of the 
individual which cannot be detected by a cross-section. For example, information from 
monthly time-series of unemployment and vacancies in a seaside resort may be used to 
detect the seasonal patterns of employment change associated with the yearly holiday 
trade. In contrast, small area Census data will only be able to observe the employment 
and occupational structure of the town in 1971 and 1981, completely failing to detect 
patterns of change in the interim. Unfortunately, the cost and effort of collecting time-
series data sets generally results in their lacking contextual cross-sectional information. 
This means that it is difficult to interpret why observed changes may have occurred. 

There is, however, a hybrid form of data which possesses some of the advantages of 
both: ‘panel’ or ‘longitudinal’ data. Such data are usually collected by a special type of 
social survey—‘panel’ or ‘longitudinal’ surveys—and are widely used in marketing, 
medical research, and in electoral opinion polling, to collect a detailed mix of cross-
sectional contextual data  

Table 2.3 Total number of unemployed claimants in 
County Durham 

Date Male Female All 

Jan. 1985 30,719 12,215 42,934 

Feb. 1985 30,062 11,973 42,035 

Mar. 1985 29,608 11,818 41,426 

Apr. 1985 29,948 12,017 41,965 

May 1985 29,734 12,262 41,996 

Jun. 1985 29,314 12,394 41,708 

Jul. 1985 30,065 12,741 42,806 

Aug. 1985 29,808 12,568 42,376 
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Sep. 1985 30,230 13,137 43,367 

Oct. 1985 29,634 12,279 41,913 

Nov. 1985 29,726 12,161 41,887 

Dec. 1985 30,003 12,064 42,067 

Jan. 1986 31,481 12,616 44,097 

Feb. 1986 30,938 12,412 43,350 

Mar. 1986 30,489 12,014 42,503 

Apr. 1986 30,423 12,567 42,990 

May 1986 29,678 12,384 42,062 

Jun. 1986 28,810 12,200 41,010 

Jul. 1986 28,812 12,362 41,174 

Aug. 1986 28,584 12,169 40,753 

Sep. 1986 28,889 12,683 41,572 

Oct. 1986 27,690 11,865 39,555 

Nov. 1986 27,658 11,436 39,094 

Dec. 1986 27,522 11,314 38,836 

Source: Unemployment statistics held on NOMIS 

(e.g., on the socio-economic and former political allegiences of electors) and time-series 
behavioural data (see Ehrenberg 1972; Wrigley 1980; Wrigley et al. 1985; Davie et al. 
1972; and Hamnett and Randolph 1987). The Cardiff Consumer Survey, which was 
introduced in section 2.2, is a recent geographical example of the type. An extract of its 
data is presented in Table 2.4 in the form of a number of computerised data ‘records’ 
coded up from the individual survey pages. 

Table 2.4 Extract of Cardiff Panel data 

Panellist Time Travel Purchases 

A01 31 14444115452 33, 36 

A01 32 24494114252 62, 67 

A01 33 34433114252 10, 51 

A01 34 44494114252 67 

A01 34 54444115222 3, 36, 62 

A01 35 60620215424 21, 57 

A01 35 60000000000 63, 67 

A01 35 77854115444 48, 50 
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A01 35 84833115444 27, 30, 35 

A01 35 94841115442 33, 36, 39 

A04 32 14433111224 12, 44, 52 

Source: Cardiff Consumer Panel Survey (Guy et al. 1983) 

One of these was completed each time a household visited a shop to buy foodstuffs or 
other grocery items. Each record contains the following types of information: 

1 General information on the household and where it is located in the city—digits 1–3 
under ‘panellist’ (i.e., A01 is a household index). 

2 Information on the timing of the shopping trip—digits 1 and 2 under ‘time’ (e.g., the 
first digit of ‘time’ refers to week 3 of the survey, the second digit refers to the day of 
that week, etc.). 

3 Information on the shopping trip—digits 1–11 under ‘travel’, for example, which shops 
were visited, in what order and by what mode of transport. 

4 Information on purchases made by the household, written as a variable number of digits 
under ‘purchases’. 

The value of the trip and timing information is its ability to place the shop visit in 
context. The record may be linked with preceding and subsequent records to describe 
daily shopping (e.g., household A01 made two separate shopping trips on day 4 but only 
one on day 1), shopping journeys (e.g., ‘home-shop-home’ and ‘work-shop-work’, see 
Guy 1983a), or aggregated over periods of one or more weeks to describe routine patterns 
of shopping behaviour. The household information allows the panel to be organised 
systematically into market types, allowing cross-sectional or time-series analyses to be 
performed on representative aggregates of consumers. In turn, this allows the socio-
economic composition of consumers in specified areas to be described in detail. Other 
possible analyses which could be based on this are the delimitation of market areas and 
spheres of influence, and a detailed examination of the dynamics of retail purchasing 
behaviour in the city or specified suburbs (see, for example, Wrigley and Dunn 1984a, b, 
c; 1985). 

2.4 ‘HARD’ AND ‘SOFT’ DATA 

Given the variety of types of data and data collection processes available, it is natural to 
question which of these is most applicable for any given piece of research. The principal 
consideration here, should alternatives exist, is to ensure that data of an acceptable 
quality are collected. 

The quality of geographical data is determined by a number of factors, some of which 
are essentially technical (reflecting the accuracy and precision of the measurements), 
while others are more subjective. A typical technical consideration is the ability to 
determine the likely margins of error associated with the data collection process. This is 
ably illustrated in socio-political research by opinion poll data which are collected to 
assess political preferences in a pre-election period. The usual practice is for a number of 
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polls to be taken among ‘representative’ voters in different parts of the country, and the 
information they provide used to gauge the national feeling. However, because opinions 
are based on only a small number of voters in a limited number of areas, the political 
picture of the country as a whole is likely to be somewhat different from that recorded in 
any individual poll. This problem may be overcome to some extent by examining the 
margins of error around each poll (approximately 3 per cent in the polls conducted for 
both the latest General Election in Britain and the Presidential Election in the USA) to try 
to determine upper and lower levels of support for each party. This information provides 
a means of comparing the conclusions from each of the separate polls and estimating the 
levels of national support. Without this information, the individual results would 
probably be uninterpretable. 

A similar problem also affects measurements made in physical research using 
monitoring stations or recording instruments. Such instrumentation must be appropriately 
calibrated for the environmental conditions in which it is operating, otherwise the results 
may be little more than rounding errors. Furthermore, though an instrument may be able 
to record numbers to many significant digits, the accuracy of these digits may be limited. 
Anderson (1988) notes that the Speedy Moisture Tester used in arid and semi-arid 
environments to record dewfall incidence is accurate to within 0.2 per cent. Figures from 
such a machine which purport to be more accurate than this are unlikely to be of very 
high quality. 

Subjective influences such as religious convictions are also of importance in 
determining data quality. These manifest themselves at all stages in the data collection 
process, in the selection of study objectives, in the research design, and in the 
classification schemes and terminology used to describe the raw data. Terms such as 
‘class’, ‘poverty’, and ‘disability’ illustrate the problem. Most social scientists regularly 
use terms such as these to refer to some state or characteristic of the world. However, it is 
unlikely that there is a single consistent meaning which may be applied universally to any 
of them. Many definitions may suggest themselves, and some are likely to be 
incompatible or mutually antagonistic. 

To illustrate this point, consider the meaning of the term ‘disability’. Blaxter (1976) 
suggests that two partially-incompatible definitions are paramount in British studies of 
the disabled. First, there is the approach which sees the disabled as ‘innocent victims’ 
requiring assistance, either from the state or charity. Such a view appears to have 
predominated in the social welfare studies in the nineteenth and early twentieth centuries 
when many of the associations for the blind and deaf were established. Second, there is 
the view that the disabled person is one who is: 

substantially handicapped in obtaining or keeping employment, or in 
undertaking work on his (sic) own account, of a kind which apart from his 
infirmity, disease or deformity, would be suited to his age, experience and 
qualifications. 

(Disabled Persons (Employment) Acts 1944–58) 

The former characterises the disabled as persons whose bodies do not work correctly. The 
latter characterises them as persons who cannot work. Friedson (1965) goes further, by 
noting that disability is frequently seen as a form of social deviance. In this context, a 

Introducing quantitative geography      16



person is disabled because he or she is seen to be a member of a stigmatised or deviant 
category; a category whose very existence reflects the commonly held, but rarely stated, 
perceptions of society about what is or is not ‘normal’. 

In recognition of this inherent problem of meaning (Sayer 1984a), one distinction 
which is sometimes used to describe the quality of geographical data is to note whether 
the information is ‘hard’ or ‘soft’. In this context, ‘hard’ is used to refer to factual 
information which can be checked or verified in some way, whereas ‘soft’ refers to 
contextual or interpretative information such as opinions and attitudes. According to this 
distinction, population statistics are ‘hard’ because they are official ‘facts’ collected 
under statute. Unemployment statistics are also considered to be ‘hard’ for similar 
reasons. However, this does not mean that the ‘facts’ cannot change or be made to 
change. In the last few years the substance of these unemployment statistics has changed 
considerably. First, the data collection procedure used to measure unemployment has 
been altered from a monthly count of persons registering at job centres to a count of those 
persons claiming unemployment benefit. Second, the types of claimant to be incorporated 
in the monthly count have also changed. Third, in early 1986, the date of the monthly 
count was switched from the second week in the month to the third. The cumulative 
effect of these changes has been to reduce the unemployment totals being published each 
month, and to generate considerable scepticism in some quarters about the quality of the 
published figures. 

A second sense of the term ‘hard’ data is used to refer to data collection procedures 
which make use of the ‘scientific’ method developed for use in the pure and natural 
sciences. The primary purpose of this approach is to ensure that subjective bias (i.e., the 
bias introduced by the prejudices or idiosyncracies of the specific researchers) and other 
types of misinformation are minimised in research, allowing the results obtained to stand 
critical scrutiny by others. A major test of this is the ability to reproduce the results under 
similar experimental conditions. The same researchers, or more commonly, others 
located elsewhere, should be able to reproduce the stated results within a reasonable 
margin of error, merely by following the same procedures. If they can, the results assume 
the status of facts which are accepted by the research community. If they cannot, they 
will be regarded as doubtful by the profession, or ignored entirely as being of no interest. 

In contrast to all this, the term ‘soft’ refers to data which are composed of non-
verifiable or repeatable facts and figures. These may include opinions and beliefs, 
attitudes and prejudices, superstitions and fashions; indeed, anything which reflects 
people’s perceptions of their own lives. It is often important to obtain contextual 
information on how people see their lives because behavioural actions are not pre-
programmed but respond to perceived opportunities and threats. These may be impossible 
to quantify or verify with any reasonable accuracy, but may help to explain why two 
groups of people who appear to be identical according to hard data may behave very 
differently in response to a stimulus. The fact that hard figures cannot easily 
accommodate this type of behaviour indicates how poor they frequently are at 
representing the human environment. 

Soft data abound in social research in, among others, questionnaire and preference 
surveys, ethnographic analyses, life-histories, geosophies and case studies (see Agar 
1986, and Kirk and Miller 1986). They are frequently used in geography to study 
problems in which the definitions to be used are fuzzy—disability, part-time 
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employment, ‘second’ jobs, urban—and objective, repeatable data are unlikely to be 
obtained. For further details on these and other fuzzy problems, see Williams (1973), 
Alden (1977), Harre (1979), Denham (1984), Pahl (1984), Sayer (1984a,b), Harrell-Bond 
(1986), Townsend (1986) and Gregory and Altman (1989). (A rather different use of the 
term ‘soft’ is considered in section 2.6.) 

2.5 SPATIAL AND ASPATIAL DATA 

The three types of data which have been described already are not exclusive to 
geography; many other subjects regularly make use of them to aid their research work. 
Geographers usually refer to these types as ‘aspatial’, because an explicit spatial or 
locational reference is not an integral part of the information they contain. In contrast, 
there is a data type which may be exclusively geographical: spatial data. Such data 
consist of observations on geographical individuals which may only be interpreted 
satisfactorily when their locations have been taken into consideration. This may involve a 
consideration of their absolute locations (site characteristics), or their relative locations as 
measured with respect to some benchmark such as the National Grid or sea level. Spatial 
data are often collected using maps, plans or charts (Unwin 1981; Mather 1991), but 
increasingly, they are to be found as the basic data type of computerised information 
systems, in which location provides an obvious and generally tractible method of 
organisation (Burrough 1986; Department of the Environment 1987). 

By ‘spatial’, geographers usually mean data which are gathered in the form of points 
or dots, lines, areas or surfaces. However, the simplicity of this classification hides the 
fact that there are few generally accepted ways of describing, analysing and interpreting 
them. Haggett et al. (1977) suggest an approach involving the study of: 

1 the distribution of points or ‘nodes’ in space and their relative positions with respect to 
each other; 

2 the links or ‘interactions’ which appear to exist between them; 
3 the man-made and natural ‘networks’ which funnel the interactions from node to node; 
4 the ‘hierarchies’ which form within networks and between nodes which suggest the 

existence of some form of systematic human or physical organisation which may 
account for the form of the data; 

5 the differing characteristics of the ‘spheres of influence’ which emanate from these 
hierarchies and which influence the spaces surrounding them. 

This grammar is based on the locational analysis paradigm which is probably well known 
to most students of geography. 

The information source for this type of analysis is often a dot map such as Figure 2.1, 
in which the retail provision in the eastern part of Reading is reduced to dots on a map. 
Each dot corresponds to an individual shop. By comparing the relative positions of the 
dots, it is possible for geographers to develop some appreciation of the spatial structure of 
retailing in the area, including, for example, the probable locations of shopping centres 
serving large market areas (the clusters) and isolated shops, or small groups of shops, 
serving local areas. It is also possible to detect the  
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Figure 2.1 Retail provision in eastern 
Reading, UK Reproduced from 
Environment cd Planning B; Planning 
cd Design, volume 10, 1983, p. 224, by 
permission of Piou, London 

presence of ribbon shopping developments along transport routes. By incorporating this 
type of information with infrastructural and socio-economic information on, among 
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others, the extent and state of the road network, car-parking provision, car-ownership 
rates, occupational profiles and family composition, researchers are able to assess the 
effectiveness of the provision and whether it meets the demands placed on it. Such 
‘accessibility’ studies are of great interest to geographers and physical planners (see, for 
example, Massam 1975; Guy 1983b). 

In such studies, accessibility is typically defined geometrically as representing the 
‘relative opportunity of interaction and contact’ (Gregory 1981:3). The effect of this 
definition has been to emphasise the importance of physical distance in spatial studies, 
and the costs of overcoming it. However, Harvey (1973:57) notes that the costs of 
overcoming distance, and hence being accessible, are difficult to calculate, and include 
far more than geometric considerations. For example, he notes that the cost: 

can vary from the simple direct cost involved in transport to the emotional 
and psychological price imposed upon an individual who has an intense 
resistance to doing something (the kind of price which may be extorted, 
for example, from someone who has to take a means test to qualify for 
welfare). 

This alternative perspective places the study of spatial structure within the wider study of 
social structure, and re-examines the meanings attached to terms such as ‘distance’ and 
‘proximity’. 

A second form of spatial analysis is associated with zonal data. These are data sources 
in which disaggregate information from individual persons or landscape features has been 
aggregated and is displayed graphically by a system of geographical zones. Such data are 
frequently used to present the results of primary data collections, but they are also used in 
secondary data collections as spatial units of reference. Because the information in these 
reference units is an aggregation from the original sources, considerable care must be 
applied in interpreting it or using it in analysis.  

Table 2.5 Zoning systems for use with GB 
population data 

Zonal name Number in GB 

Individual wards 10,519 

Local Authority Districts 459 

Local Education Authority areas 116 

Counties 66 

MSC Training Division areas 58 

Parliamentary constituencies 633 

1984 travel-to-work areas 322 

MSC/statistical regions 10/11 

Source: NOMIS Users Manual, vol. 3 (O’Brien et al. 1987) 
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Figure 2.2 Distribution of the elderly 
by region 

To illustrate the basic idea, consider an analysis of the spatial pattern of the elderly in 
Britain. In 1981, the Population Census recorded that nearly one person in every six of 
the British population was elderly (approximately nine million out of fifty-four million). 
This information was collected from individual households located throughout the 
country and so may be displayed graphically as a map containing nine million dots. 
Though this idea is feasible, it is clearly impractical because the finished product would 
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probably be unreadable. An alternative solution is to map the numbers of elderly persons 
by geographical zone. (Table 2.5 lists some of the zones available.) 

 

Figure 2.3 Distribution of the elderly 
by county 

Figures 2.2 to 2.4 present some maps of the elderly based on different zoning systems. 
The data being mapped are the porportions of elderly people in each zone. Each map 
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gives rise to some very different spatial patterns. In Figure 2.2, for example, the zones 
with the highest proportions—the largest concentrations of elderly persons—are the 
statistical regions of the South-West and East Anglia. In general, the lowest areas are in 
the north and Midlands, the highest areas are all in the south. However, in Figure 2.3, 
which maps the elderly to county zones, the pattern is different. Instead of the whole of 
East Anglia, only the coastal counties  

 

Figure 2.4 Distribution of the elderly 
in East Sussex by ward 

have particularly high proportions of elderly residents. Similarly, East Sussex and the 
other counties on the south coast exhibit very high proportions, even though, at region 
level, the South-East has a more moderate level. Moreover, as the ward map of East 
Sussex shows (Figure 2.4), the main pockets of the elderly appear to be located in coastal 
wards, rather than throughout the whole county. 

These maps illustrate a key problem of zone-based spatial data analysis. Namely, that 
the maps are only able to ‘measure the relationship between the variates for the specified 
units chosen for the work. They have no absolute validity independently of those units, 
but are relative to them’ (Yule and Kendall 1950:312). In other words, the dependency 
relationships being presented by the maps are not unambiguous facts; they are byproducts 
of the zones which have been selected for the graphics. The reason for the apparent 
differences in the maps merely reflects the fact that the ratio of elderly to total population 
is not constant across the country but varies. In particular, its value reflects the choice of 
boundary for each zone. Though the pattern of this variability is suggested by the three 
maps, it should be noted that these are only three alternative perspectives. Given that 
there are nine million elderly persons located in the country, it follows that there may be 
as many maps. Which of these is the best? 

The choice of a ‘best’ map is difficult to determine and depends on the needs of the 
research. Clearly, as one moves from the 11-zone region map of Figure 2.2 to the 66-zone 
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county map of Figure 2.3, the complexity of the pattern increases as more boundaries are 
added. By supplying more boundaries, the number of ratios to be created increases. As 
these boundaries are irregular and the new zones differ in shape and size, this process is 
likely to increase the variability within the data and so generate an even more complex 
series of patterns. 

In these figures the areas being used are Census zones defined for use with the 1981 
Population Census. These are general-purpose spatial systems which are widely used to 
classify and present government statistics. However, there is no reason why any of these 
should be used to represent the spatial structure of the elderly or, for that matter, any 
other spatially-varying phenomenon. ‘Off-the-peg’ spatial systems can easily introduce 
distortions which make the interpretation of spatial data difficult and hazardous. Ideally, 
graphics should be based on classification procedures which have been devised 
specifically for the data being studied. This being the case, the question of suitability 
changes from one merely concerning the number of zones, to one concerning the number 
and type of zones. 

This problem of measured relationships changing with the type and number of zones 
used is frequently termed the ‘modifiable areal unit problem’. Its implications have been 
recognised for many years (see, for example, Yule and Kendall 1950; Openshaw and 
Taylor 1979; Openshaw 1983), and have led researchers to suggest a number of novel 
solutions which might minimise its effects. Two of these are the use of areal weighting or 
regular hexagons. The latter is an attempt to produce a recording unit in which the 
relationships being presented are invariant to the zone used. As such, it represents one 
attempt to identify a ‘basic spatial unit’ which can stand as a fundamental level of 
geographical investigation (Department of the Environment 1987). It is not surprising to 
find that there is no general agreement on what such a unit should be. 

One of the main problems associated with the lack of a basic spatial unit is that zonal 
data can be distinctly misleading. Because the information recorded in the zone reflects 
both the disaggregated data gathered from persons within it and the denominator effects 
associated with the imposition of boundaries, it is possible to make wholly unjustified 
claims about the area and its inhabitants. For example, the ward data in Figure 2.4 
suggest that the wards with the most elderly are coastal. This interpretation arises because 
the proportions calculated for those areas are relatively high. However, it is quite wrong 
to go on to state that all such areas are therefore inhabited exclusively, or even 
predominantly, by the elderly.  

Table 2.6 Total number of unemployed persons in 
the northern region by travel-to-work area (1984 
definition) 

Zone name Total 

Newcastle upon Tyne 48,891 

Sunderland 28,818 

Middlesbrough 21,582 

South Tyneside 11,246 
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Stockton-on-Tees 10,880 

Hartlepool 7,185 

Morpeth and Ashington 7,062 

Durham 6,821 

Bishop Auckland 5,746 

Darlington 5,429 

Carlisle 4,092 

Barrow-in-Furness 3,439 

Workington 3,346 

Whitehaven 2,893 

Alnwick and Amble 1,816 

Hexham 1,037 

Kendal 971 

Berwick-upon-Tweed 746 

Penrith 731 

Windermere 244 

Keswick 199 

Column totals 173,174 

Source: NOMIS (Department of Employment data) 

Such an assertion would be an example of an ‘ecological fallacy’, as even in these wards, 
the non-elderly population make up between one-third and two-thirds of the population. 
The figures are thus representing a characteristic which is almost certainly a minority 
feature in most places. 

In addition to the interpretational problems posed by modifiable areal units and the 
ecological fallacy, researchers need to be aware of how the data are represented in the 
map. To illustrate this consider the data in Table 2.6, which are the total number of 
unemployed persons in the travel-to-work areas in the northern statistical region in 
August 1988. The figures are listed in descending order, with Newcastle upon Tyne 
having the highest unemployment level and Keswick the least. Assuming that the zones 
to be used have already been chosen, the next choice to be made is the method of 
assigning the raw data to the shading levels used in the map. Table 2.7 lists twelve 
different ‘default’ procedures available in two popular computer mapping packages, 
GIMMS (Carruthers and Waugh 1988) and MAPICS (MAPICS 1986). 
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Table 2.7 Twelve methods of automatic 
classification used in GIMMS and MAPICS 

METHOD  MAPICS  GIMMS  

Equal arithmetic 1 EQUAL 

Equal rounded arithmetic 2 ROUNDED 

Curvilinear progression 3 CURVE 

Geometric progression from zero 4 GEOZERO 

Geometric progression of class widths 5 GEOWIDTH 

Arithmetic progression of class widths 6 ARITH 

Equal intervals on reciprocal scale 7 RECIP 

Equal intervals on trigonometric scale 8 TRIG 

Normal percentile 9 PERCENT 

Proportional to standard deviates 10 STD 

Quantile-based intervals 11 QUANTILE 

Nested means intervals 12 NESTED 

Note: To select a method of classification, use the CLASS command in MAPICS, or the 
TYPE=option in the GIMMS *INTERVALS command 

These methods vary in the way they treat the raw data, and consequently, in the way they 
portray its information. The procedure of equal arithmetic, for example, calculates the 
largest and smallest figures in the data and subdivides the difference between them by the 
number of shading levels to be used. In this case, the largest figure is 48,891, the lowest 
is 199, and the number of levels is 5. Each level thus corresponds to 20 per cent of the 
data values. The ‘equal levels’ map of these data is displayed in Figure 2.5. Apart from 
five zones in the east, all areas are allocated to the bottom level in the map, indicating 
that their unemployment levels are within the bottom 20 per cent of values in the data set. 
The five areas  
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Figure 2.5 ‘Equal levels’ map of data 
in Table 2.6 

allocated to the other levels include the main population centres of Newcastle, 
Sunderland and Middlesbrough, and are traditional unemployment blackspots. 

In contrast, the quantile procedure (method 11), calculates the data values for each 
level in such a way that approximately 20 per cent of the zones are allocated to each class 
(Figure 2.6). Thus the lowest level may be interpreted as corresponding to the 20 per cent 
of the zones in which unemployment is lowest, the top quantile to the 20 per cent in 
which unemployment is highest. This map breaks up the homogeneity of Figure 2.5. In 
particular, it distinguishes between the central Lake District zones, which have low 
unemployment, and the industrial zones along the Cumbrian coast which have higher 
unemployment. The map also discriminates between the more populated, industrial 
travel-to-work areas in  
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Figure 2.6 ‘Quantile’ map of data in 
Table 2.6 

Cumbria and the east, and the mainly agricultural and tourist areas in the Lake District, 
Hexham, and Northumberland (Berwick). 

As a third example of this representational problem, consider Figure 2.7 which 
classifies the raw data using an arithmetic progression of class widths (method 6). The 
classification procedure is rather more complex than those used in the other maps and 
involves dividing the range of the data values by 15 (the arithmetic progression based on 
five levels, in which the second interval is twice as wide as the first, the third is three 
times as wide, etc.). This map divides the northern region into two distinct parts. To the 
west and north, the mainly agricultural and tourist areas are picked out as having 
relatively low levels of unemployment. The only exception here is the Carlisle area. To 
the east, all the more traditionally industrial areas are picked out. Most of these, however, 
are allocated to the second lowest level, indicating the dominance of the traditional 
population centres in determining the major patterns in the map. 
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2.6 CATEGORICAL AND CONTINUOUS DATA 

The final distinction listed in section 2.1 contrasts data which are said to be categorical 
with those which are continuous. This is an important distinction in statistical analysis as 
many of the techniques which will be presented in the remainder of this book are based 
on it. The key difference between the two types is that continuous data are divisible, and 
categorical data are not. 

Sex is an important categorical variable which is used to subdivide a population on the 
basis of chromosomal differences. The distinction into  

 

Figure 2.7 ‘Arithmetic progression’ 
map of data in Table 2.6 

male and female is straightforward, and provides a way of investigating whether features 
in the data are related to sex-group. A variable recording this would thus have two 
mutually exclusive levels: 1 (or M) for males, and 2 (or F) for females. Rainfall, on the 
other hand, can be measured to parts of centimetres, for example 1 centimetre, 0.2 
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centimetres, 1.45 centimetres. This ability to record information as real numbers rather 
than as whole, indivisible units characterises continuous measurements. 

As will be shown in the next chapter, it is normally possible to measure all types of 
geographical variable as categorical, but only some as continuous. To illustrate this idea, 
consider the measurement of a physical variable such as dewfall in an arid environment. 
A simple way of gaining an impression of the temporal variability of dewfall incidence is 
to define an incidence variable (INC) and use it to record those days on which dewfall 
occurs and fails to occur. To distinguish these two states, days without dewfall could be 
coded 0, and those with could be coded 1. The sequence: 

0 1 1 1 0 0 1 1 0 1 0 

thus shows that dewfall occurred on six days, and failed to occur on five other days. In 
this example, the numbers 0 and 1 are merely codes distinguishing between the two states 
of INC. They have no mathematical significance apart from this. Letters (Y, N), words 
(YES, NO) or symbols (*, %) could have easily been used instead to record exactly the 
same information, namely: 
N Y Y Y N N Y Y N Y N 

* % % % * * % % * % * 

However, if the research requires it, it is possible to record dewfall more accurately. 
Wherever INC equals 0 (or N or *), dewfall will be 0 millimetres. However, on days 
where INC is 1 (or Y or %), dewfall will be any non-negative real number, for example 1 
millimetre, 0.245 millimetres, 3.4 millimetres. Sex, however, cannot be treated in this 
way as it makes no sense to record an individual as being 0.75 male or 1.34 female. Sex 
can only be measured in categories; its information is interpretable only in terms of 
categories. However, the dewfall incidence variable, INC, is a ‘user-defined’ categorical 
variable. The term ‘user-defined’ is used here to reflect the fact that the classifications are 
not natural or necessarily obvious, but are created by researchers to meet specific 
research needs. 

In describing geographical data it is valuable to be aware of these three distinct types 
of measurement—fundamental categories, user-defined categories and continuous 
measurements—as their information content varies. Some of the implications of these 
distinctions will be taken up in Chapter 3, and in Part II in connection with the analysis of 
data tables. However, it is also likely to be of importance in mapping when the areal units 
are actually fundamental rather than user-defined categorisations (unlike the examples in 
the previous section). Chrisman (1981) refers to such maps as ‘categorical coverages’. 

2.7 SUMMARY 

The variety of data types used in geography reflects the interests and concerns of 
geographical research. The quality of geographical information is similarly variable and 
reflects what the data are, and how they are measured, recorded and collected. Each of 
these stages is prone to error, not just in the measurement of the data (for example, using 
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cross-sectional data as surrogate time-series), but also in their definition. As definitions 
reflect the predilections of the researchers, no data can be wholly objective. Indeed, one 
of the most productive avenues of geographical research is concerned with investigating 
how knowledge of the world is created and shared. A particular concern for the value of 
categorical measurements has been generated out of this interest. 

Quantitative procedures provide one way of describing the information in 
geographical data sets which are of particular value if the number of items to be 
processed is large. However, the methods which are used must be appropriate to the data 
to avoid misrepresentation. Whilst it is possible to record all geographical variables as 
categories, only some of these may be re-expressed as continuous variables. As many of 
the more important numerical techniques developed for use in geography assume 
continuous data, it is likely that they will only be of occasional use. Techniques for 
categorical data have been developed since the late 1960s which allow geographers to 
perform sophisticated numerical analyses on this important data type. As the structure of 
Part II is based on the categorical-continuous distinction, it is important to consider what 
these measurement types mean in more detail. This is the objective of Chapter 3. 
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3  
MEASURING GEOGRAPHICAL DATA 

3.1 INTRODUCTION 

The final distinction made in Chapter 2 to describe some of the types of data used in 
geography may also be used to describe their measurement. By ‘measurement’ 
geographers usually mean two things: first, the description of what the data represent 
(i.e., a ‘naming’ function), and second, the calculation of their quantity (i.e., a ‘counting’ 
function). Measurement thus includes the assignment of names to features on the ground, 
and the calculation of complex relationships using them, e.g., the assessment of the 
density of land use in a given area. The motivation for this is to provide a mechanism 
which may be used to describe geographical individuals and to communicate this 
description to others. Both aspects are most readily achieved using a ‘language’ which is 
at once unambiguous, flexible, plausible and generally accepted by researchers. 

Numbers, and systems of numbers, offer a possible language which would seem to 
satisfy these requirements. According to Skemp (1971), numbers possess the following 
desirable properties: 

1 they are intimately linked to the concept of counting, which is a pre-mathematical skill 
possessed by most people and which is a commonly-used method of evaluating the 
properties of a collection of objects (see also Piaget 1952); 

2 they provide a precise mechanism for comparing objects on the basis of these 
properties, which may be either tangible, abstract, or both; 

3 they allow objects to be grouped into classes or sets which share similar (or identical) 
characteristics. Such categorisation is often the basis of measurement; 

4 they may be used to create new objects from the originals. 

In other words, the measurement of the environment involves the categorisation of the 
observed data into distinct groupings which may be named (e.g., areas of the earth’s 
surface may be labelled ‘deserts’ on the basis of annual rainfall), manipulated to create 
new objects (e.g., population density from population size and area), and new categories 
(e.g., areas of high, medium and low population density). 

Measurements based on the use of numbers are said to be ‘derived’ measurements 
(Ellis 1966). This is because the structure of the data is inferred from patterns and 
relationships observed between the numbers. The assumed relationship between these 
patterns and the environment is a matter of some controversy. The so-called 
‘representational school’ (e.g., Campbell 1928; Stevens 1946, 1951, 1959) appear to 
believe that there is a one-to-one correspondence between them. This implies that the 
structure in the numbers exactly mirrors that in the environment. As a result of this, they 
urge caution in the choice of numbers used in description, as an inappropriate choice will 
lead to confusion and misinformation (i.e., the patterns in the numbers will not 



correspond to anything which exists in the environment). In comparison, the 
‘pragmatists’ (e.g., Adams 1966; Baird 1970) argue that no such correspondence exists, 
and that numbers merely provide a shorthand method of encapsulating information. As a 
result, different sorts of numbers should be used to ‘mine’ the data, without a particular 
type being chosen beforehand. 

In spite of the gulf between these two ‘schools’, and the clear difference in their 
conceptions of the use of numbers, aspects of both are generally accepted in quantitative 
geography. The main support for the representational school lies in the use of ‘scales of 
measurement’. In practice, geographers readily recognise four such scales—the nominal, 
ordinal, interval and ratio—which are assumed to govern the quality of the information 
which can be recorded from the environment. At the same time though, geographers 
frequently ‘break the rules’ associated with these scales (e.g., treating ordinal as interval) 
in an effort to search for deeper meaning in the data.  

Table 3.1 Scales of measurement 

Scale Defining relationships Permissible techniques Geographical examples 

Equivalence Non-parametric Areal names Nominal 

    Land use categories 

Equivalence Non-parametric Urban hierarchies Ordinal 

Magnitude   Social class 

Equivalence Non-parametric Centigrade or 

Magnitude Parametric Fahrenheit 

Interval 

Ratio of two intervals     

Equivalence Non-parametric Population size 

Magnitude Parametric Population density 

Ratio of two intervals   Distance 

Ratio 

Ratio of two observation   Precipitation 

Source: Adapted from Siegal (1956) and Unwin (1981) 

Each scale is defined by Stevens (1946, 1951, 1959) using a series of defining 
relationships (see Table 3.1). These are assumed to correspond to (unstated) laws of 
nature, and are organised hierarchically. This means that only the ratio scale (the most 
advanced) exhibits all the defining operations while those further down the hierarchy 
possess fewer. Thus a ratio scale may be re-expressed as an interval, ordinal or nominal 
scale. The reverse (re-expressing a nominal as a ratio) is not possible. These scales may 
be related back to the data types used in geography in a direct way: the nominal and 
ordinal scales are usually used to measure categorical data; the others to measure 
continuous data. 

Measuring geographical data         33



3.2 CATEGORICAL SCALES OF MEASUREMENT 

3.2.1 The nominal 

The nominal scale is the simplest of the four scales recognised in Stevens’s hierarchy. It 
is used principally to classify raw data into mutually exclusive sets or levels on the basis 
of characteristics which the researchers think relevant. The names used to describe land 
use provide a ready example of this type of measurement. For example, the First Land 
Utilization Survey in England and Wales (Stamp 1948) used six sets to represent the land 
surface. These were areas of built-up land, horticulture, cropland, grassland, woodland, 
and heath and unimproved land. Parcels of land were allocated to one of these six sets on 
the basis of their physical appearance. If a field appeared to the surveyors (many of 
whom were schoolchildren) to be mainly used for arable agriculture, it would be 
allocated to set 3 (cropland), this set being the land use category thought most appropriate 
of the six to represent the field. 

The number and choice of sets depends on the purpose of the research. Stamp’s study 
was mainly concerned with enumerating rural activities at a fairly general level. More 
recent studies have been concerned with urban activities, and have used a larger and more 
sophisticated choice of sets, based both on physical appearance and on functional 
characteristics, e.g., patterns of commuting (Coleman 1961; CURDS 1983; see also 
Rhind and Hudson 1980). However, regardless of the purpose of the research, two 
objectives motivate the definition of sets in nominal measurement. First, they should 
provide the researchers with an ability to classify every observation in the data set, 
leaving none unclassified. Second, they should be mutually exclusive. This means that 
none of the observations may be allocated to more than one set, e.g., land which is 
‘cropland’ cannot simultaneously be classified as ‘horticulture’. The property which 
allows observations to be handled in this way is the logical property of ‘equivalence’. In 
terms of Stamp’s study, two parcels of land are said to be equivalent if their principal 
land use is the same, e.g., both woodland areas. 

The notion that observations are equivalent does not, however, imply that they are 
identical. The fields in the ‘woodland’ set may all be different sizes and the number of 
trees, or the percentage tree cover, in each may also be different. Other examples of 
observations which are equivalent but not identical are Dover and Southampton in the set 
‘English ports’, and Durham and Canterbury in the set ‘English towns with Anglican 
Cathedrals’. 

Because nominal measurements only allow equivalence comparisons to be made they 
have tended to be ignored, or overlooked, in quantitative research in geography. The 
main attitude to them seems to have been that their information is impossible to 
manipulate mathematically. For example, the sets may be identified by names or a 
numerical key may be used: 

1 to refer to towns containing cathedrals but not castles; 
2 to refer to towns containing castles but not cathedrals; 
3 to refer to towns containing both; 
4 to refer to towns containing neither. 
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These numbers are for identification only and do not imply that the sets may be used in 
mathematical operations. It makes no sense to subtract set 2 from 4, or to add set 1 to 3. 
Similarly, the placing of a town in a specific set does not mean that it possesses only one 
of the distinguishing characteristics. For example, Durham and London would both be 
classified in set 3, without further account being taken of the fact that Durham only 
contains one cathedral whereas London contains several. However, even though the 
numerical keys cannot be manipulated mathematically, it is possible to count the number 
of observations allocated to each set and identify which of them is the most frequently 
occurring in the data. This provides very basic numerical information, but since the mid-
1960s, numerical techniques have been available which can manipulate it 
mathematically, often in ways which offer a deeper insight into its structure. 

3.2.2 The ordinal 

The second of Stevens’s four scales, and the second categorical scale in the hierarchy, is 
the ordinal. This provides a slightly more sophisticated form of measurement than the 
nominal because, in addition to equivalence, it allows the sets to be placed into some 
form of rank order (the logical property of magnitude). To illustrate this, consider the 
classification of topography into ‘highlands’ and ‘lowlands’. The definition of these two 
classes incorporates information on height above sea level so that it is possible to state 
that ‘highlands’ are at higher altitudes than ‘lowlands’. In terms of the defining 
property—height above sea level—‘highlands’ exhibit more of it than ‘lowlands’. They 
are thus qualitatively ordered. 

There are many examples of ordinal classifications in geographical research. For 
example, ‘development’ can be used to classify countries according to their perceived 
economic health into categories labelled ‘developed’, ‘developing’ and ‘underdeveloped’. 
Similarly, precipitation may be used to classify climate into groupings such as the 
equatorial westerly zone, which is constantly wet, the extratropical westerly zone, which 
has precipitation throughout the year, and the high polar zone, which has meagre 
precipitation (Flohn 1950). Third, Haggett et al. (1977) note that the road network of a 
country can also be organised in a rank order, with unclassified roads at one end, and 
motorways at the other. In each of these examples, some form of ranking has been used 
to arrange the classifications into a qualitative order. 

The analysis of ordinal data is particularly important in survey research in which 
personal behaviour or opinions are being assessed. By asking shoppers to respond to a 
wide range of questions on shopping habits and trends, consumers can be targeted for 
advertising campaigns and promotions which are likely to interest only a proportion of 
the population (Harris and O’Brien 1988). The questions listed in Table 3.2 typify those 
used in these surveys. They are a subset of the 28 questions asked in the attitude 
questionnaire part of the Cardiff Consumer Survey (Guy et al. 1983). The responses to 
these questions were classified using a five-level coding—agree strongly, agree, neither 
agree nor disagree, disagree, disagree strongly—where each code is assumed to lie along 
an underlying agreement continuum.  
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Table 3.2 Example of Cardiff Panel Survey attitude 
questionnaire response categories 

  Response 
categories 

Questions 1 2 3 4 5 

Going grocery shopping gives you the chance to meet friends 15 175 47 183 30 

Given a choice between good shops and good parking, I would choose to 
shop where there is better parking 

21 131 95 171 22 

I would prefer to do all my shopping just once a week 37 188 23 186 15 

I like to buy all my groceries at one shop rather than shopping around 38 169 24 194 25 

Getting shopping done quickly is very important to me 54 197 39 153 7 

Key: 1. Strongly Agree 2. Agree 3. Neither agree nor disagree 
4. Disagree 5. Strongly disagree 

Source: Extracted from Table 5.16 of Cardiff Consumer Panel Survey (Guy et al. 1983) 

These five sets differ from those used in the First Land Utilization Survey in that they 
are qualitatively related. Each represents a different level of agreement. Consumers 
prompted by the attitudinal questions are thus able to record the strength of their 
agreement with the prompt by selecting a set which most closely matches their feelings. 
It is thus possible to say that set 1 represents a larger (or stronger) degree of agreement 
with the prompt than set 2, which, in turn, represents a larger degree of agreement than 
set 3, and so on. 

As before, the equivalence of these responses does not imply that they are identical. 
Consumers who allocate their responses to the same set may do so for completely 
different reasons, and, indeed, may interpret the question from a wholly different 
perspective. In other words, the knowledge that panellists in general agree with prompt 1 
tells us nothing about why any particular panellist is in agreement. Similarly, magnitude 
does not imply that the differences in the level of agreement between the sets are equal, 
or that the scale is symmetric around the middle set. Indeed, ordinal scales provide no 
information at all on the relative ‘distances’ between the sets. They may, for example, be 
equally spaced along some continuum of agreement (Figure 3.1a), or they may be 
markedly skew with most of the sets gathered to one end (Figure 3.1b). Some 
consequences of this for the design and manipulation of preference questionnaires are 
described in Payne (1951), McKennall (1977), Presser and Schuman (1980) and Kalton et 
al. (1980).  
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Figure 3.1 Examples of an ordinal 
scale 

3.3 CONTINUOUS SCALES OF MEASUREMENT 

Lying immediately above the two categorical (or qualitative) scales in Stevens’s 
hierarchy are the two continuous (or quantitative) scales: the interval and ratio. 

3.3.1 The interval 

The interval is the cruder of the two continuous scales. It lies just above the ordinal in the 
hierarchy, and differs from it in that the distances between the sets are known. This extra 
piece of information is particularly valuable and allows researchers to be more precise in 
their reporting of the characteristics of the data. 

Interval measures are characterised by their ability to class data items into sets (the 
equivalence property), place them in some form of rank order (the magnitude property), 
and describe the precise distances (the ‘intervals’) between them. These properties allow 
interval measures to overcome the problem illustrated in Figure 3.1 where the exact, 
quantitative relationships between sets is not known. Because these distances are known 
in interval measurement, it is possible to calculate how much one set differs from 
another. Thus if the interval between sets A and B equals that between sets B and C, it 
follows that the interval between A and C is twice that between A and B. Similarly, if A–
B is half the interval between B–C, then A–C is three times A–B. This sort of processing 
allows the ratio of any two intervals to be calculated, a feature which is required if the 
sets are to be used mathematically. However, such ratios are restricted to the sets and do 
not apply to the observations within them (except in the special case where each set only 
contains a single observation). In other words, though A–C is three times A–B, it does 
not follow that an observation classified in set C has a value three times that of an 
observation in set A. 
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Interval scales are frequently used to record attitudinal and opinion information. A 
typical example of their use is in medical self-assessment surveys, where patients are 
asked to record their impressions of their medical condition before, during and after 
treatment. This is often done using a survey form such as Figure 3.2, in which patients 
are presented with a series of lines drawn horizontally across the form (representing an 
assessment continuum) which correspond to two or three time periods in the treatment of 
their condition. The patient records his/her feelings by marking a series of vertical lines 
somewhere along the horizontal lines. The distance separating these vertical lines from 
the origins of each horizontal line represents the strength of their assessments. These 
assessments may be compared by noting the relative position of these vertical lines (i.e., 
an improvement due to treatment should be detected by the gradual movement of the 
vertical lines towards the right-hand end of the  

 

Figure 3.2 Example of an interval 
scale 

scale). However, additional mathematical processing of the responses is limited because 
the origins are arbitrary rather than real, i.e., the zero point does not mean that the patient 
does not have an opinion on his/her medical condition. 

A geographical modification of this approach is given in O’Brien (1982). This study 
attempted to measure the strength of residential preferences of a selection of council 
tenants who had recently moved to the council housing estates of Horfield, Lockleaze and 
Manor Farm in north-east Bristol. Movement within this housing market is heavily 
managed but, in spite of this, tenants (including prospective tenants) are given an 
opportunity to make known any preferences they may have for locality and house type. 
The sophistication of these preferences among the tenants in the study varied from: 

1 an articulate locational preference in which the tenants identified a specific dwelling, to 
2 a situation where no locational preferences were made, either because the tenants did 

not answer the preference question on the housing application, or because they stated 
that anywhere in the city would do. 
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Between these extremes the motivation for the requests varied, and included requests to 
live in specific areas irrespective of accommodation type (i.e., the primary motivation 
was for the area), as well as requests for specific types of dwelling irrespective of area 
(dwelling motivation). To display this information as an interval scale, each area which 
could be mentioned on the application needs to be given an index number to distinguish it 
from others. By combining these into sets (e.g., all applications with specific dwellings 
stated, all applications with specific housing estate mentioned, all applications with areas 
north of the river mentioned etc.), it is possible to measure the strength of the stated 
preferences and also check how frequently they were satisfied. The origin in this linear 
scale corresponds to the second of the two extreme types of preference; the upper end to 
the first. Though the origin is recorded as 0 in Table 3.3 this does not mean that the 
tenants did not have residential preferences in spite of none being mentioned. The origin 
is therefore arbitrary rather than real, a feature which characterises interval measurement. 

Table 3.3 Codes for creating a geographical interval 
preference variable 

Code Interpretation 

0 No preference made 

1 Preference for any form of accommodation or location 

2 Preference for north of the River Avon 

3 Preference for housing management areas in same part of city 

4 Preference for contiguous housing management areas 

5 Preference for specific housing management area 

6 Preference for contiguous estates 

7 Preference for specific estate 

8 Preference for specific part of estate 

9 Preference for specific road 

10 Preference for specific property 

Source: Adapted from O’Brien (1982) 

3.3.2 The ratio 

The second of the two continuous scales, and the most sophisticated scale in the 
hierarchy, is the ratio. This scale differs from the interval in that ratios may be made 
between individual observations in the data set and not just between the sets. A second 
difference is that the origin of the scale (the zero point) is real and not arbitrary. This 
means that a measured value of zero really implies the absence of the phenomenon being 
studied. For example, zero distance means no distance travelled and zero precipitation 
means that none has been recorded. As a result of this, ratios may be formed between any 
two individual values which possess the important property that they remain invariant 
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under transformation (i.e., when re-expressed in different units of measurement). This 
may be illustrated by calculating the ratio of 10 inches of rain to 5 inches. This ratio (i.e., 
2) remains constant if the levels of precipitation are re-measured in millimetres (e.g., 
10″=250 mm, 5″=125 mm, therefore 250/125=2). This invariance contrasts with the 
interval measure, temperature, in which transformations from one unit of measurement to 
another alter any ratios which may be formed. 

3.4 SCALES AND ANALYSIS 

To the purists in the representational school of measurement, the relationships which 
define each scale influence how it may be used mathematically. Table 3.1 describes some 
of the statistical procedures considered appropriate. The clear message presented here is 
that non-parametric (also termed distribution-free) techniques may be used regardless of 
scale, but that parametric techniques may only be used with continuous scales. This is a 
traditional and well-established view which influences a great deal of quantitative work 
in geography. However, it is not universally accepted, and is frequently violated, often 
for pragmatic reasons. What costs and benefits are involved in this? 

3.4.1 Treating categorical measures as continuous 

Categorical data have traditionally tended to be ignored as worthy of quantitative 
analysis. The following quote illustrates a common reaction. Focusing their attention on 
nominal measurements, Rhind and Hudson note that: 

little can be done in any statistical analysis of such data apart from 
counting the frequency of each class, unless the observations are grouped 
into larger units in which a number of geographical individuals exist. 

(Rhind and Hudson 1980:29–30) 

The motivation for this view seems to be that nominal measurements are actually 
undermeasured continuities—continuous measurements which have been recorded too 
crudely to illustrate their normal defining relationships. As a result, researchers may 
argue that they are justified in attempting to analyse them using continuous measurement 
techniques. Labovitz (1967, 1972), addressing the same sort of problem in sociology, 
provides similar advice. In this work, it is argued that if the measurements in the data are 
nominal they ought to be reconceived at least as ordinal, and analysed with continuous 
data statistics. In particular: 

assumptions, measurement scales, robustness and power efficiency should 
be thoroughly scrutinised by the researcher before selecting a statistical 
technique. The evaluation of these factors provides the basis for 
considering the possibility of balancing the problem of having techniques 
not quite permitted by the data with the advantages of using a well-
developed and clearly interpretable [technique]. 

(Labovitz 1967:160) 
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The logic behind this argument is that continuous measurements provide much greater 
information on the environmental properties of the data than categorical measurements. 
Because of this, mathematical and statistical techniques which are developed for 
continuous measurements are generally more ‘powerful’ (Blalock 1979). This means that 
they make better use of the data and can provide more precise information about their 
structure. The main cost, however, is that by re-expressing categorical measurements as 
continuous, the researchers may impose a structure on the data which does not actually 
exist on the ground (see the discussion on the recording of spatial information in Chapter 
2, section 2.5). The problem, therefore, is in achieving a balance between statistical ease 
and an acceptable analysis of the geographical individual. 

3.4.2 Treating continuous measures as categorical 

The reverse problem may also arise in which continuous measurements may be treated as 
though they were categorical. For example, the ratio measure ‘distance’ may be reduced 
to a nominal measure by aggregating detailed information into generalised sets such as 
‘near places’ and ‘faraway places’. Though this seems to be illogical given the time and 
effort needed to collect the data in the first place, there may be situations where 
categorising continuous data is essential to preserve their integrity or the confidentiality 
of the sources. 

Official data released for analysis may undergo categorisation into arbitrary groupings 
if the recording instrument used to collect them has limited precision and rounds the 
figures internally, or if geographical ‘individuals’ can be identified from the collected 
data. The latter problem occurs frequently, particularly in secondary data collected by 
government. The triennial Census of Employment illustrates the problem particularly 
well. The purpose of this Census is to collect information on the occupational and 
industrial structure of the country. The data are provided by individual firms and are 
subject to confidentiality restrictions set out in the Statistics of Trade Act (1947). These 
prohibit the use and dissemination of research results if they allow individual firms to be 
identified. From the point of view of the firm, these restrictions are vital if strategic 
information is not to be given away to competitors. The application of the confidentiality 
rules can apply either to the firms themselves or to the data. Either could be aggregated to 
a higher level so that the information is presented by industrial classification rather than 
by firm, or by statistical region rather than by establishment. In either case, the process of 
classification makes detailed locational studies difficult. 

A second reason for categorising continuous measures is to provide a standardised 
way of recording behavioural information in social surveys or stimulus-response 
experiments (Miller 1956; Luce et al. 1976). Such standardisation is needed because 
there are likely to be as many types of behavioural response to a survey question as 
respondents. Without a structure such as the response sets displayed in Table 3.2, it might 
prove to be impossible to process, let alone interpret, the results of the survey. The choice 
of sets, and their number, may be determined from a pilot survey, from existing work or 
from theory. As with the choice of areal sets used to record and display spatial data, these 
decisions may confound any interpretations which may be drawn. 
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3.5 SUMMARY 

The Stevens classification is widely used to describe measurement issues in the social 
and physical worlds. The basis of this approach is the belief in the correspondence 
between these worlds and the characteristics of number systems. In the forty years since 
it was first published several modifications have been suggested for it, either by 
identifying ‘ordered metrics’ which lie somewhere between the ordinal and the interval 
(see, for example, Coombs 1950; Thrall et al. 1954), or by defining multidimensional 
classification procedures using more than one dimension simultaneously (Kruskal and 
Wish 1978). In spite of these developments, and the debates between the purists and the 
pragmatists, the notion of a series of scales remains popular. 

Though few geographers would argue forcefully from the purists’ viewpoint, urging 
instead a degree of experimentation and exploration, much research has been aimed at 
incorporating procedures and techniques which are scale-related. Thus, there is now 
considerable agreement that categorical data are best described by techniques developed 
specifically for them, rather than by assuming that categories are actually under-measured 
continuities. This acceptance has implications for the sorts of descriptive and analytical 
procedures which are popularised in class teaching and in research. Some of these are 
outlined in the next chapter.  
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4  
SUMMARISING GEOGRAPHICAL DATA 

4.1 INTRODUCTION 

Collecting information is one thing, making use of it is another. Because geographical 
data sets may be very large, some form of numerical summary is usually required if the 
key features of the data are to be identified and communicated to other researchers. An 
effective summary usually involves the description of the following five characteristics of 
the data: 

1 the size of the data set (patterns emerging from small data sets are more likely to be 
idiosyncratic than those emerging in larger data sets); 

2 the ‘shape’ of the data (to identify ‘typical’ and extreme values); 
3 the central tendency of the data (the tendency for observations to cluster around a 

typical value or values); 
4 the scatter of the observations about this central, typical value; 
5 irregular aspects of the data which cannot be accommodated by characteristics 2 to 4. 

Such information may provide detailed clues to the underlying form of the full data set, 
removing the need for an observation-by-observation description. However, before this 
summary can be provided, the researchers need to ensure that their data are meaningful in 
their own terms. Essentially this involves some form of quality control to check that zero 
figures and the letter ‘o’ have not been confused, that survey responses are recorded in 
the given range, and that decimal points are in the correct place. These are relatively 
simple matters which are often overlooked as the researchers rush to compute. (For 
details of the quality control checks performed in the Cardiff Consumer Survey, see Guy 
et al. 1983.) 

This chapter describes some of the measures which can help the geographer 
summarise a data set. It begins by introducing some of the key ideas of Andrew 
Ehrenberg’s approach to data reduction, introduces numerical and graphical measures to 
assess central tendency and dispersion, and finishes with a consideration of some of the 
methods available for assessing association among several variables simultaneously.  

4.2 PRELIMINARY DATA ANALYSIS 

The five steps described above form the core of a preliminary analysis of a geographical 
data set. Such analysis should always be performed when data are collected in order to 
gain some impression of their structure. Frequently, such analysis will yield sufficient 
information to make more sophisticated, model-based analyses unnecessary. It may also 
identify facets of the data which violate assumptions of these more sophisticated models, 



a factor which many of the more popular commercial packages still fail to assess 
adequately (for further details, see Ehrenberg 1975, 1982; Chatfield 1982, 1983; 
Chatfield and Collins 1980: Chapter 3; Wetherill and Curram 1984). 

There are no hard and fast rules governing preliminary data analysis but useful 
guidelines have been provided by Andrew Ehrenberg in an approach he terms ‘data 
reduction’. This involves simplifying and rearranging the format of the raw data prior to 
formal analysis in order to make it easier to detect points of similarity and contrast 
between the observations. The main reason for doing this is to identify key features of the 
data which must be described and interpreted if the analysis is to be considered 
satisfactory. It also provides a useful check on the quality of this analysis by highlighting 
features of the data which may cause problems if ignored. 

The following steps provide some indication of how data reduction may be applied in 
practice. First, the data presentation should be simplified if possible by rounding digits so 
that quick mental calculations may be made. Second, the simplified raw data should be 
rewritten so that figures which are to be compared are close together. Third, the order of 
the variables in the data set should be rewritten to highlight the major differences 
between the variables. The purpose of these steps is to obtain a quick impression of the 
character of the data, providing a baseline against which more sophisticated and detailed 
analyses may be compared. 

The practical value of these steps can be illustrated using the data in Table 4.1, which 
show the absolute (unadjusted) monthly unemployment figures for January to December 
1986 in eleven regions of Great Britain. At first glance this table looks complex, 
appearing to represent a count of regional unemployment down to the last individual. The 
table contains 132 separate entries (11 rows by 12 columns) and is organised with each 
month’s figures presented as columns, and the regions presented as rows. The rows are 
arranged in the order used to reference them in NOMIS (i.e., South-East is region 1, East 
Anglia is region 2, etc.); it does not imply a rank ordering. 

The results of applying Ehrenberg’s first step to Table 4.1 are displayed in Table 4.2, 
in which the raw figures have been rounded to the nearest 1,000. The choice of nearest 
thousand is not arbitrary but corresponds to Ehrenberg’s ‘two-variable digit rule’. This is 
a device which simplifies apparently complex figures by excluding all but two variable 
digits in each  

Table 4.1 Raw unemployment data for 1986 by 
region 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

SE 398,
705

396, 
757 

391,
158

385,
364

375,
717

367,
488

374, 
441 

376,
338

376,
718

366,
782

363,
941

365, 
647 

EA 87,
599

87, 
888 

86,
712

85,
637

84,
144

81,
345

82, 
113 

81,
792

82,
222

80,
138

81,
039

81, 
925 

LD 413,
938

412, 
897 

406,
196

409,
376

404,
297

404,
913

411, 
365 

415,
149

415,
141

403,
606

397,
104

398, 
905 

SW 220,
013

218, 
002 

211,
783

208,
312

202,
958

195,
959

199, 
602 

200,
811

204,
605

201,
970

203,
800

205, 
247 
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WM 356,
316

353, 
955 

348,
920

349,
000

344,
233

341,
745

346, 
690 

347,
844

356,
121

343,
453

338,
437

336, 
464 

EM 209,
643

208, 
207 

205,
944

205,
847

201,
945

199,
324

202, 
568 

202,
508

204,
596

198,
687

197,
737

198, 
542 

YH 324,
301

321 
312 

316,
217

320,
476

316,
773

311,
916

315, 
964 

314,
343

322,
810

311,
415

308,
805

309, 
771 

NW 463,
793

458, 
228 

449,
969

454,
069

449,
166

443,
801

450, 
218 

448,
038

455,
932

438,
893

435,
638

436, 
784 

N 246,
231

242, 
740 

238,
909

240,
255

236,
145

231,
926

233, 
027 

230,
709

236,
357

228,
234

228,
395

228, 
319 

WL 190,
368

188, 
405 

184,
247

183,
857

179,
225

173,
708

175, 
186 

173,
986

180,
370

174,
105

173,
342

173, 
546 

SC 371,
117

367, 
198 

359,
318

356,
676

351,
572

351,
359

358, 
988 

358,
570

363,
037

359,
236

360,
125

365, 
217 

Codes: SE=South-East; EA=East Anglia; LD=London; SW=South-West; WM=West Midlands; 
EM=East Midlands; YH=Yorkshire and Humberside; NW=North-West; N=North; WL=Wales; 
SC=Scotland 

Source: NOMIS 

reported figure. To see its relevance here, consider the figures in row 1 of Table 4.1, 
which correspond to unemployment in the South-East region. The first thing to note is 
that each of these figures contains six digits. By scanning across this row, beginning from 
the left, it is clear that all the figures begin with the digit 3—a constant. The second digit 
of each figure varies a little, ranging from 6 to 9 (4 and 3 occurrences respectively). The 
third digit varies much more widely—8, 6, 1, 5, 5, 7, 4, 6, 6, 6, 3, 5—as do the remaining 
digits. This same pattern of variability (a constant followed by five variable digits) also 
applies to the remaining regions with the sole exception of East Anglia, whose 
unemployment figures contain five rather than six digits. These may be rounded to the 
nearest hundred if desired. 

Table 4.2 Rounded unemployment data for 1986 by 
region (in thousands) 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

SE 399 397 391 385 376 367 374 376 377 367 364 366 

EA 88 88 87 86 84 81 82 82 82 80 81 82 

LD 414 413 406 409 404 405 411 415 415 404 397 399 

SW 220 218 212 208 203 196 200 201 205 202 204 205 

WM 356 354 349 349 344 342 347 348 356 343 338 336 

EM 210 208 206 206 202 199 203 203 205 199 198 199 

YH 324 321 316 320 317 312 316 314 323 311 309 310 

Summarising geographical data         45



NW 464 458 450 454 449 444 450 448 456 439 436 437 

N 246 243 239 240 236 231 233 231 236 228 228 228 

WL 190 188 184 184 179 174 175 174 180 174 173 174 

SC 371 367 359 357 352 351 359 359 363 359 360 365 

Source: Table 4.1 

Rounding figures in accordance with this rule provides researchers with a way of 
identifying points of similarity and contrast in the data which may need to be described in 
detail at a later stage. In this case, by allowing rounding to the nearest hundred rather than 
thousand, it has highlighted the relative lowness of East Anglian unemployment. Some 
researchers may, however, be loathe to do such rounding on the grounds that this throws 
away information and, of necessity, standardises the raw data. Several arguments may be 
raised against such a view. First, this is a preliminary analysis designed to see general 
trends and departures from trends; it is not the final analysis. Second, so long as a record 
is kept of the raw figures no information is actually lost from subsequent analysis. Third, 
the range of the raw figures—80,138 (East Anglia, October) to 463,793 (North-West, 
January)—is affected by less than 1 per cent if they are rounded to the nearest thousand. 
Most researchers would be hard pressed to interpret this residual information which 
accounts for so little of the data. Fourth, the precision of the raw figures is artificial in the 
first place given the nature of the measurement system used (based on a count of monthly 
unemployment claimants) and the uncertain influence of government job creation 
schemes which have been applied unevenly throughout the country. In effect, there are 
sound practical reasons for rounding raw figures in a preliminary analysis, not least of 
these being the removal of attention from artificially precise raw data. 

The second and third of Ehrenberg’s steps may now be applied. These involve 
rewriting the rounded data table to pick out figures which are similar and those which are 
markedly different (Table 4.3). A useful strategy is to place figures which are roughly 
similar in columns and arrange the columns in size order, smallest numbers to the left. 
This further reduces the information which the researchers have to absorb and makes 
what remains somewhat easier to assimilate. 

Having done this, the following features of the data now begin to emerge. First, there 
is a systematic pattern in the severity of regional unemployment as measured absolutely, 
with East Anglia being consistently best placed in the regional rankings of Table 4.3 and 
the North-West worst. Second, the relative position of the regions is constant except for 
the change in rank order between the East Midlands and the South-West for June, July 
and August, when unemployment fell faster in the South-West. Third, the pattern of 
variability within each region over the year is relatively small compared with the absolute 
levels of unemployment. Only the figure for the South-West varies by more than 10 per 
cent of the upper limit. Fourth, the pattern of change in absolute unemployment is also 
similar between the regions (Table 4.4) declining in most regions compared with the 
preceding month in February to June, rising in July to September, falling in October and 
November and rising again in December. There are, however, exceptions, and these 
would need to be accommodated in a subsequent analysis.  
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Table 4.3 Regional rankings of unemployment data 
for 1986 

  EA WL EM SW N YH WM SC SE LD NW 

Jan. 88 190 210 220 246 324 356 371 399 414 464 

Feb. 88 188 208 218 243 321 354 367 397 413 458 

Mar. 87 184 206 212 239 316 349 359 391 406 450 

Apr. 86 184 206 208 240 320 349 357 385 409 454 

May 84 179 202 203 236 317 344 352 376 404 449 

Jun. 81 174 199 196 231 312 342 351 367 405 444 

Jul. 82 175 203 200 233 316 347 359 374 411 450 

Aug. 82 174 203 201 231 314 348 359 376 415 448 

Sep. 82 180 205 205 236 323 356 363 377 415 456 

Oct. 80 174 199 202 228 311 343 359 367 404 439 

Nov. 81 173 198 204 228 309 338 360 364 397 436 

Dec. 82 174 199 205 228 310 336 365 366 399 437 

Source: Table 4.2 

Table 4.4 Pattern of change in unemployment data 
for 1986 

  EA WL EM SW N YH WM SC SE LD NW 

Feb. 0 −2 −2 −2 −3 −3 −2 −4 −2 −1 −6 

Mar. −1 −4 −2 −6 −4 −5 −5 −8 −6 −7 −8 

Apr. −1 0 0 −4 +1 +4 0 −2 −6 +3 +4 

May −2 −1 −4 −5 −4 −3 −5 −5 −9 −5 −5 

Jun. −3 −5 −3 −7 −5 −5 −3 −1 −9 +1 −5 

Jul. +1 +1 +4 +4 +2 +4 +5 +8 +7 +6 +6 

Aug. 0 −1 0 +1 −2 −2 +1 0 +2 +4 −2 

Sep. 0 +6 +2 +4 +5 +9 +8 +4 +1 0 +8 

Oct. −2 −6 −6 −3 −8 −12 −13 −4 −10 −11 −17 

Nov. +1 −1 −1 −1 0 −2 −7 +1 −3 −7 −3 

Dec. +1 +1 +1 +1 0 +1 −2 +5 +2 +2 +1 

Source: Table 4.3 
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4.3 DESCRIBING THE SHAPE OF DATA 

The term ‘shape’ refers to the patterns which are formed when the observations are 
displayed graphically. These patterns highlight typical values within the given range of 
observations, and also make it easier to detect observations which are relatively extreme. 
Both of these aspects need to be considered if the summary is to be adequate. 

Graphics provide an ideal medium for describing shape. A variety of graphical devices 
exists which may be used with different types of data. The following subsections 
introduce a number of the more commonly used variants. 

4.3.1 Time-series plots 

One of the most useful types of graph for describing shape in continuous time-series data, 
such as presented in Table 4.1, is the time-series plot. This consists of a two-dimensional 
graph in which observations on a single variable are plotted against time. The time units 
are plotted on the horizontal axis, and the observations are plotted on the vertical axis. 
The main use of such a graph is to see if the observations form a discernible pattern over 
time. Three typical patterns which might be seen are: 

1 Trends—a general tendency for the values of the observations to rise (or fall) 
consistently over the time period being plotted. 

2 Cyclical fluctuations—sequences of rising and falling values which may form a regular 
pattern. 

3 Irregular fluctuations—sequences which do not form a clearly defined pattern. 

Figure 4.1 illustrates this type of plot using the data in Table 4.1. The vertical axis is 
scaled in blocks of 50,000 persons to accommodate the range of the readings in Table 
4.1. 

The most obvious patterns to emerge from these plots are the stability of the rank 
ordering of the regions and the relatively minor fluctuations in regional monthly 
unemployment throughout the year, findings which support the tentative conclusions 
given previously. A degree of clustering also appears to be occurring with East Anglia 
and the North-West standing out as extreme regions. Four regions (North, South-West, 
East Midlands and Wales) appear to cluster around a monthly unemployment figure of 
200,000–250,000, three more (Yorkshire/Humberside, Scotland and the West Midlands) 
cluster around 320,000–370,000, and London and the South-East cluster around 400,000–
420,000, at least in the early part of the year. The plots appear to trend downwards with 
monthly unemployment towards the end of the year being generally lower than at the 
beginning. There is also some evidence for a cyclical pattern as most regions appear to 
have experienced periods of relatively low unemployment in June and relatively high 
unemployment in September. 

This latter inference cannot be established with certainty from the graph because of the 
difficulty of reading accurately any of the monthly unemployment figures. This is a 
problem which affects all types of graphical display and not just time-series plots. It 
illustrates a major shortcoming with the use of graphs in data analysis which is that 
graphs are excellent as summary devices only if the intention is to communicate general 
features of the data, notably qualitative differences. In contrast, they are poor, and 
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frequently useless, for communicating quantitative information. Indeed, if quantitative 
information is required it is generally more appropriate to use the original data table 
rather than rely on a graph. 

It is also important to remember that the shapes displayed in a graph depend on how it 
has been drawn. In Figure 4.1, all eleven regions have been included in a single graph. To 
facilitate this, the vertical axis has been standardised to accommodate the range of 
unemployment figures within and between the regions. At this scale a clear enough 
picture emerges of the differences in absolute unemployment between the eleven regions. 
However, the same scale does not adequately describe the variability of monthly 
unemployment within specific regions. If attention were to be focused on a specific 
region, a scale more appropriate to its variability in unemployment should be chosen. 

This approach, focusing on East Anglia and the North-West, is illustrated in Figure 
4.2. This figure makes it easier to interpret the generalised lines in Figure 4.1 associated 
with these ‘extreme’ regions. Both show that unemployment declines over the periods 
January to March and May to June (by about 7,000 in East Anglia and 20,000 in the 
North-West), rises in July (1,000 compared with 6,000), falls in August (a few hundred 
compared with a few thousand), rises in September (a few hundred compared with nearly 
10,000), falls in October (2,000 compared with nearly 20,000) and rises in December 
(about a thousand in both regions).  

 

Figure 4.1 Time-series plots of 
monthly regional unemployment in 
1986 

The direction of unemployment change diverges in February, April and November. The 
different scales used in these plots provide better information on the quantitative changes 
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which occurred within each region. They are not, however, most suitable for comparing 
the magnitude of the changes between the two regions, because similarly-sized 
oscillations in the two plots represent different absolute levels of change. 

This raises an important difficulty: the wish to search for patterns between regions 
makes it more difficult to search for patterns within regions, and vice versa. This is a 
major practical problem in analysis because the assessment of the relationship of patterns 
within a series of observations to those between different series is a fundamental issue in 
describing many geographical data sets. The preliminary analysis and time-series plots of 
the data in Table 4.1 have thrown the issue into clear relief. 

4.3.2 Histograms 

A second graphical device which is useful for describing the shape of continuous data is 
the histogram. This graph makes use of the fact that consistent patterns in data often only 
emerge when observations are grouped together into exhaustive, mutually-exclusive 
categories. It is thus of value if the continuous data may be grouped together into a series 
of  

 

Figure 4.2 Time-series plots of East 
Anglian and North-Western 
unemployment in 1986 

Introducing quantitative geography      50



discrete sets (a user-defined categorisation similar to those described in Chapter 2, 
section 2.6). If this is possible, the histogram provides information on the frequency of 
each of the sets in the raw data (i.e., on how often each of them occurs). This information 
is useful because it provides some insight into typical values (i.e., values which occur 
frequently) and scatter (i.e., the dispersion of the observations around these typical 
values). 

Histograms of the regional unemployment data in Table 4.1 are presented in Figure 
4.3. Each was produced as follows. First, calculate the range of the observations (i.e., the 
difference in value between the smallest and largest observation in each region). Second, 
subdivide this range into a small number of equally-sized sets which do not overlap yet 
cover the whole range. Third, allocate the observations to these sets (alternatively termed 
‘class intervals’). Fourth, draw rectangles centred on the midpoint of each class interval 
which are proportional in area to the number of observations contained in it. 

The procedure may be illustrated using the East Anglian data. The figures range from 
80,138 to 87,888 (or from 80,000 to 88,000 if the figures  
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  1 2 3 4 5 6 7 8 9 10 11 

SE 365 370 375 380 385 390 395 400     

EA 80 81 82 83 84 85 86 87 88    

LD 398 400 402 404 406 408 410 412 414 416   

SW 196 200 204 208 212 216 220      

WM 336 338 340 342 344 346 348 350 352 354 356 

EM 198 200 202 204 206 208 210      

YH 308 310 312 314 316 318 320 322 324    

NW 435 440 445 450 455 460 465      

N 228 230 232 234 236 238 240 242 244 246   

WL 174 176 178 180 182 184 186 188 190    

SC 352 354 356 358 360 362 364 366 368 370 372 

Note: Histograms produced using MINITAB. 

Figure 4.3 Histograms of regional 
unemployment in 1986  

are rounded to the nearest thousand). This range may be subdivided into nine sets, each 
corresponding to 1,000 persons, beginning at 79,500 and finishing at 88,499. Thus set 1 
is used to represent the number of months in which the unemployment figure was 
between 79,500 and 80,499, set 2 those months in which it was between 80,500 and 
81,499, and so on. Note that in doing this the time-series information is being ignored. 
The frequency distribution for East Anglia using these sets is given in Table 4.5. When 
this information is plotted for display, the frequencies are centred on the midpoints of 
each set (namely, 80,000, 81,000 etc.). 

Table 4.5 Frequency distribution of East Anglian 
monthly unemployment data for 1986 

Set Range Frequency 

1 79,500–80,499 1 month 

2 80,500–81,499 2 months 

3 81,500–82,499 4 months 

4 82,500–83,499 none 

5 83,500–84,499 1 month 

6 84,500–85,499 none 
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7 85,500–86,499 1 month 

8 86,500–87,499 1 month 

9 87,500–88,499 2 months 

Before creating a histogram the researchers need to decide the number and size of the 
class intervals to be used. These are interrelated decisions as the choice of size clearly 
influences the number of equally-sized sets which may be obtained within the available 
range. Many standard computer packages such as GLIM 3.77 and MINITAB produce 
histograms in response to a given set of commands. These automatically calculate the 
range of the data and generate the histograms using default configurations programmed 
into the packages. As a result the graphs produced may not be entirely satisfactory (their 
defaults can, however, be changed by the user). 

To illustrate this, consider the effect on shape of reducing the number of sets to be 
used with the East Anglian data from nine to three. The resulting histogram is presented 
in Figure 4.4 along with the original nine-set version. In this modification, each set 
corresponds to a class interval of 3,000, e.g., set 1 to 79,500–82,499 (midpoint 81,000), 
set 2 to 82,500–85,499 (midpoint 84,000), and set 3 to 85,500–88,499 (midpoint 87,000). 
The pattern of the observed frequencies is changed radically as a result even though the 
numbers being classified and the logic of histogram construction remain the same. In the 
original version, the shape tends to be skewed to the left (i.e., there are relatively more 
months with lower unemployment than months with higher unemployment in the data 
set), though there is evidence for a ‘U’ shape with the raised frequency of the 87,500–
88,499 set. In the modified version, the predominant shape to appear is the ‘U’ shape 
rather than the skew. 

The reason for this change in shape and interpretation is simply the change in the 
definition of the sets. It is not possible to state dogmatically that one histogram is better 
than the other as this decision depends on other factors. However, it should be noted that 
these histograms are only two out of a large number of possible histograms which could 
have been drawn. At one extreme, each observation could have been allocated to a unique 
class to give a histogram with 7,750 sets, most of which would be empty. At the other 
extreme, all the observations could have been allocated to a single set in which the shape 
produced would be a single vertical rectangle with no dispersion around it. Neither would 
be of any descriptive value. The choice of an appropriate histogram is thus a 
classification problem, identical in form to those described in Chapter 3, and requiring 
the same sort of approach. 
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Figure 4.4 Alternative histogram of 
East Anglian unemployment in 1986 

4.3.3 Stem-and-leaf plots 

One of the biggest drawbacks with histograms is that they obscure the value of the 
individual observations. It is simply impossible to determine the individual values of 
observations in a histogram set because the rectangle used to summarise its frequency is 
drawn at the midpoint. A graphical device which overcomes this problem but which 
retains some of the visual advantages of the histogram is the ‘stem-and-leaf plot (Figure 
4.5), which is rather like a histogram turned on its side. This is constructed in a similar 
way to the histogram by calculating the range of the data and subdividing it into intervals 
of fixed length. Chatfield (1983:360) notes that these class intervals should be either 0.5, 
1 or 2 times a power of 10, a fact which can sometimes be restrictive. 
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Figure 4.5 Stem-and-leaf plots of 
monthly unemployment (selected 
regions) in 1986 

At first sight, stem-and-leaf plots look like a jumble of numbers and digits which are 
merely separated by a vertical line. However, this ‘jumble’ is actually organised 
systematically. Five pieces of information are generally displayed in a stem-and-leaf plot: 

1 the number of observations which are to be represented in the plot (this is signified by 
the letter N, and equals 12 in the examples presented in Figure 4.5); 

2 the value of each leaf unit (i.e., the value each number presented on a leaf represents); 
3 the value of the stem classes, arranged in increasing order (note, these represent the 

lower boundaries of the class intervals, not the midpoints as in a histogram); 
4 the leaf values, arranged in increasing numerical value away from the stem;  
5 a range of cumulative frequencies which sum the number of observations in each class 

interval from either end of the distribution. The middle of the distribution (i.e., the 
point in the plot where half the numbers of observations are below and half are above) 
is marked by the bracketed figure. 

As before, this type of graph may be illustrated using the East Anglian unemployment 
data. The stem-and-leaf plot of these data shows that there are twelve items of data 
classified in the graph (N=12), and that the leaf units are to be interpreted as hundreds. To 
clarify this interpretation, consider the first three lines of the graph. The column headed 
‘Number’ displays the cumulative number of observations being classified in each row 
and in earlier rows, i.e., one observation only in row 1 and five in rows 1 and 2. The 
value of the observation in row 1 is given as 801 (80 from the stem, plus 1 from the leaf). 
To change this into the absolute units of the raw data, all one needs to do is multiply the 
801 by the leaf unit (in this case, 100): 801×100=80,100. Each row corresponds to a set. 
Thus row 1 corresponds to months when unemployment was between 80,000 and 80,999, 
set 2 months between 81,000 and 81,999, and so on. In the second row, the leaf part 
displays four observations which, when combined with the stem, are seen to be 810, 813, 
817 and 819. By multiplication as before, these become 81,000, 81,300, 81,700 and 
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81,900. Row 3 is interpreted in the same way: two observations being classified which 
are 82,100 and 82,200. The only difference between this row and the others is that the 
number column does not contain the cumulative count. Instead, within brackets, it 
presents the number of observations classified in the row. The reason for the brackets is 
to inform the researchers that the midpoint of the data distribution has been reached. Half 
of the observations in the data are classified between the two end stems and this row. To 
see this, add 1 to the cumulative counts in rows 2 and 4. This produces the value 6, which 
is exactly half of the number of observations to be plotted. This information is provided 
to allow an estimate of the central tendency of the data to be determined directly from the 
graph (see the discussion on the median in section 4.4). 

As far as shape is concerned, stem-and-leaf plots offer essentially the same 
information as histograms, except that some (rounded) figures may be read off and used 
in calculations. They are similarly affected by classification problems, which means that 
care should be exercised in interpreting any patterns they display. 

4.3.4 Boxplots 

A graph which provides a clearer visual impression of scatter in continuous data is the 
boxplot, or box-whisker plot (Figure 4.6). This consists of a rectangular box and two 
‘whiskers’ which protrude from either end. To interpret this graph, consider the boxplot 
of East Anglian unemployment. The ends of the whiskers correspond to the minimum 
and maximum values in the data. Thus the end of the left-most whisker corresponds to 
80,138 (the unemployment figure for October), while the end of the right-most whisker 
corresponds to 87,888 (the unemployment figure for February). The linear scale printed 
beneath the plot gives some impression of the magnitude of the observations. The vertical 
edges of the rectangle correspond to the lower and upper quartiles of the data. The lower 
quartile is the value below which 25 per cent of the observations lie. The upper quartile is 
the value above which 25 per cent of the observations lie. The length of the rectangle 
corresponds to the inter-quartile range, the distance which includes the middle 50 per cent 
of the observations in the data. Finally, the cross marked in the rectangle corresponds to 
the median, the measure of central tendency which corresponds to the midpoint of the 
distribution. However, it is not clear from the graph what numerical values are associated 
with these measures. 
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Figure 4.6 Boxplot of monthly 
unemployment (selected regions) in 
1986 

One of the most helpful features of boxplots is that they provide an efficient way of 
comparing dispersion in a series of data sets. To do this, however, the data need to be 
measured in the same units and be of the same order of magnitude. This means that the 
boxplots in Figure 4.6 cannot easily be compared without adjustments being made to 
compensate for their different scales. An adjusted scale is provided in Figure 4.7, the 
immediate effect of which is to reduce greatly the clarity of the numerical information in 
each plot. However, comparisons between regions may be made. Dispersion appears to 
be smallest in East Anglia, the East Midlands  

 

Figure 4.7 Adjusted boxplots of 
monthly unemployment in 1986 
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and Scotland, and greatest in the South-East and North-West. Most regions exhibit an 
extended right whisker indicating that about 25 per cent of their monthly readings are 
relatively high. In contrast, only London and the West Midlands appear to exhibit the 
opposite tendency. The scatter pattern for Scotland suggests that it has a roughly equal 
number of relatively high and low months. It is also interesting to note that the regions 
appear to form a rough line rising from the bottom left of the plot. If this is a real effect 
rather than an artefact then a simple linear relationship may be all that is needed to 
describe the unemployment data. The role of such relationships is discussed in section 4.5 
and throughout the remainder of this book. 

4.3.5 Cumulative frequency graphs 

Boxplots provide some information on scatter, but this is limited to a comparison of 
medians and the inter-quartile ranges of a series of observations. Frequently, it is more 
useful to know how many of the observations lie within other ranges, or below or above a 
given threshold. This information may be calculated from a stem-and-leaf plot if the data 
set is small, but a more effective graph for larger data sets is the cumulative frequency 
graph. Figure 4.8 shows cumulative frequency graphs for some tenure data collected from 
259 Bristol council tenants as part of a study of the Bristol public housing market 
(O’Brien 1982). The figure contains two plots, one for cumulative frequencies, the other 
for cumulative percentages. The data being plotted are in columns 3 and 5 of Table 4.6. 

Cumulative frequencies are calculated directly from the observed frequencies (i.e., the 
second column of data). The figure in row 2 is added to the figure in row 1 to give the 
total number of tenants who have lived for less than two years in their current tenancy, 
and so on. These  

Table 4.6 Cumulative frequency data: duration of 
previous tenancy among Bristol council tenants 

Tenancy in 
years Number

Cumulative 
frequency 

Relative 
frequency 

Cumulative 
percentage 

<1 13 13 5 5 

1–2 27 40 10 15 

2–3 48 88 19 34 

3–4 37 125 14 48 

4–5 22 147 9 57 

5–6 14 161 5 62 

6–7 24 185 9 71 

7–8 19 204 8 79 

8–9 0 204 0 79 

>9 55 259 21 100 

Source: O’Brien (1982) 
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totals are cumulative frequencies and are displayed in column 3 of the table. 
A second way of expressing the raw frequencies, without actually altering the shape of 

the frequency curve, is to convert them into relative frequencies. This is done by dividing 
each observed frequency by 259, the number of tenants in the data set. This information 
gives the proportion of the total associated with each row category. As percentages tend 
to be easier to understand than proportions, it is usual to express the relative frequencies 
as percentages. The first row of column 4 in Table 4.6 thus shows that 5 per cent of 
tenants had lived in their previous dwelling less than one year, whereas 10 per cent had 
lived there for between one and two years. Column 5 displays these relative frequencies 
as cumulative percentages. 

A quick visual inspection of the two plots reveals that the graphs and horizontal axes 
are identical, the only difference is the units of measurement used on the vertical axes. 
This suggests that either measure could be used to convey information about the 
cumulative structure of the data. Though this is true, the cumulative frequency graphs are 
to be preferred  

 

Figure 4.8 Cumulative frequency plots 
of tenure data 

because the real data are being graphed, rather than a transformed surrogate for them (the 
cumulative percentages are essentially cumulative rates per hundred tenants). Moreover, 
there is sufficient information in the cumulative frequency graphs to produce cumulative 
percentages if this were desired. Without knowledge of the size of the data set, which 
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may not always be available if the data are secondary, the reverse process cannot be 
performed. 

4.3.6 Barcharts 

The graphs presented so far are valuable for displaying the shape of continuously 
distributed information by categorising it to produce histograms and stem-and-leaf plots. 
However, graphics designed specifically for discrete data are also available. 

Figure 4.9 displays the absolute levels of ethnic unemployment in Great Britain in 
August 1982, taken from a count of unemployed registrants at job centres. This 
information is presented for persons born abroad, and persons whose parents were born 
abroad. The summary graph is termed a barchart. This shows that Asian unemployment 
was most severe (at about 70,000 persons nationally), followed by West Indian 
unemployment, African unemployment and ‘other’ ethnic unemployment. The order of 
the ethnic categories is arbitrary because they are not sets in a continuum. However, they 
could be arranged in ascending or descending numerical order, or alphabetical order, if 
that was considered desirable.  

 

Figure 4.9 Barchart of ethnic 
unemployment in Great Britain in 
August 1982 
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4.3.7 Pie-charts 

An alternative graphical display which may be used effectively with discrete data is the 
pie-chart (Figure 4.10). Each segment of the ple corresponds to the absolute level of 
unemployment associated with each ethnic group. The size of these segments is 
determined by dividing the group sizes by 131, 701 (the overall total), and then 
multiplying by 360. This produces a result in degrees. These are: Africans 49, West 
Indians 108, Asians 189 and others 14. Unfortunately, though the quantitative 
information is needed to calculate the size of the segments, it is invariably lost when the 
pie-chart is displayed. A quick look at Figure 4.10 shows that Asian unemployment is 
larger than African unemployment in terms of segment size, but it is not at all clear by 
how much. 

 

Figure 4.10 Pie-chart of ethnic 
unemployment in Great Britain in 
August 1982 

4.3.8 Summary 

This section has described some of the graphical methods which may be used with 
different types of geographical data. There is a considerable variety available and they are 
usually included as standard options in commercial computer packages. However, as we 
have seen, ‘shape’ is not an unambiguous concept, but reflects the classification decisions 
made by the researchers or by the default options programmed into packages. The latter 
may not be entirely suitable and so should not be accepted at face value. While graphics 
are useful tools for portraying qualitative information (for example, highlighting the 
higher unemployment in the beginning of 1986 which was actually measured using a 
different system from the remainder of the year), they are usually quite poor at conveying 
quantitative information, for example, on central tendency and scatter. The next section 
considers this issue. 
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4.4 SUMMARISING CENTRAL TENDENCY 

One piece of quantitative information which is essential to a summary of geographical 
data is the central tendency of the observations, i.e., the tendency of the observations to 
group around one or more typical (or representative) values. There are several ways of 
calculating these values. Three measures which are particularly important are: the mode 
or modal class, the median or midpoint, and the mean or average value. Versions of these 
measures are available to describe central tendency in categorised (grouped) and 
continuous (ungrouped) data. 

4.4.1 The mode 

The mode, or modal class, corresponds to the most frequently occurring value, or class, in 
the data set. If calculated on ungrouped data, it refers to the most common individual 
value in the data set. However, if applied to grouped data, it refers to the most common 
category. To calculate it in the former case, the data need to be arranged in numerical 
order and the frequency distribution of each value calculated. This is easily done if the 
data set is small. For example, in the following sequence of observations (the rounded 
East Anglian data from Table 4.3)—80 81 81 82 82 82 82 84 86 87 88 88—the value 82 
(representing a monthly unemployment of 82,000) occurs more than any other. It is 
therefore the modal value for the sequence. Clearly, if the data set were larger, this 
procedure might prove to be very tedious. 

The calculation is made significantly easier for larger data sets if the data are grouped 
and displayed graphically in a histogram, barchart or stem-and-leaf plot, because it is 
obvious from these which class occurs most frequently. The modal classes for the 
monthly unemployment data may be seen at a glance from Table 4.7. In nine of the 
eleven regions the modal class corresponds to a single class interval. However, in the 
South-East and East Midlands there are ties. In the East Midlands, the two classes 
197,000–199,999 and 201,000–202,999 occur equally frequently, and in the South-East 
there is a similar tie between class 362,500–367,499 and class 372,500–377,499. Such 
distributions are termed bimodal, because there are two modal classes in the data. (The 
term ‘multi-modal’ is used to refer to distributions which possess more than two modal 
classes.) 

It is important to note that the precise value of a modal class depends on the size and 
number of classes used to group the data. The significance of this factor is clearly 
illustrated by Figures 4.3, 4.4 and 4.5, in which the data are displayed differently. In these 
figures, the use of different  

Table 4.7 Modal classes 

Region Modal class Number 

South-East Bimodal   

East Anglia 81,500–82,499 4 

London 403,000–404,999 3 

South-West 202,000–205,999 4 
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West Midlands 347,000–348,999 3 

East Midlands Bimodal   

Yorks/Humberside 315,000–316,999 3 

North-West 447,500–452,499 4 

North 227,000–228,999 3 

Wales 173,000–174,999 5 

Scotland 359,000–360,999 3 

category definitions means that the modal classes which may be observed are different. 
Such extreme dependence on the data classification means that the mode is of very little 
value as a summary measure other than as a quick ‘rule of thumb’. 

4.4.2 The median 

The second measure used to summarise central tendency is the median. This describes the 
midpoint of the data distribution: the point at which 50 per cent of the observations lie 
below it in value, and 50 per cent lie above it. This measure has already been introduced 
in the preceding discussions on stem-and-leaf plots and boxplots which include it as part 
of their graphical display. To calculate the median the observations must be counted to 
determine their number, arranged in numerical order (tedious if the data set is large), and 
counted off from one end until half the observations have been reached. To illustrate the 
calculation of the median, consider the data in Table 4.8 which are the unemployment 
figures for East Anglia for 1986 arranged in ascending numerical order. 

Because there is an even number of observations in both sequences, the median cannot 
be observed directly. Instead, it has to be estimated (the term usually used for this process 
is ‘interpolated’). Logically, because the median represents a half-way point in the data, it 
should lie somewhere between the sixth and seventh observations in the sequences. A 
reasonable guess suggests it should be at an hypothetical observation 6.5. To calculate it 
therefore, the difference between observations 6 and 7 should be divided and half added 
to the value of observation 6, or half subtracted from observation 7, i.e., 82,168. The 
medians for the remaining regions are calculated in a similar manner. 

The calculation of the median is relatively easy once the middle values have been 
identified, but is slightly more tricky if these middle values are identical, as is the case 
with the rounded data for East Anglia. One  

Table 4.8 East Anglian unemployment data for 
1986 arranged in ascending order 

Raw figures Rounded figures 

80,138 80 

81,039 81 

81,345 81 
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81,792 82 

81,925 82 

82,113 82 

82,222 82 

84,144 84 

85,637 86 

86,712 87 

87,599 88 

87,888 88 

solution to this problem is to treat the median as 82, as in the table, because 50 per cent of 
the observations have value 82 or less, and 50 per cent have value 82 or more. An 
alternative, described by Cohen and Holliday (1982:27), makes use of the so-called 
‘limits of numbers’. These ‘limits’ reflect the ranges used to round continuous values to 
whole numbers. 

The number 3, for example, may be used to represent values in the range 2.5 to 3.49, 
as values between 2.5 and 3 may be rounded up and values between 3 and 3.49 rounded 
down. To apply this to the calculation of the median the four values of 82 need to be 
replaced by values within the limits of numbers covered by 82, which are 81.5 to 82.49. 
As there are four observations of value 82, this limit must be divided into quarters to 
produce a new sequence of numbers which may be used instead. In other words, 
replacing the four values of 82 by four ranges: 81.5–81.74 for the first 82, 81.75–81.99 
for the second, 82–82.24 for the third, and 82.25–82.49 for the fourth. The modified 
sequence for East Anglia now becomes: 80, 81, 81, 81.5, 81.75, 82, 82.25, 82.49, 84, 86, 
87, 88, and 88. The median is easily calculated as the modified list now contains an odd 
number of observations. The median is at position 7, i.e., 82.25. As these rounded figures 
actually represent thousands, the value of the median is really 82,250. This is similar to 
the figure calculated from the raw data. 

The median may also be calculated for grouped data such as the histogram classes in 
Table 4.5. The procedure used here is as follows. First, divide the number of observations 
by two to find the 50 per cent point in the distribution (i.e., the number corresponding to 
the median). Second, starting from the lower end of the frequency distribution sum the 
number of observations until the set containing the 50 per cent point is reached. Third, 
subtract the number of observations calculated at stage 2 from the number corresponding 
to the median (this is used to calculate a scaling factor). Fourth, multiply the scaling 
factor by the class interval and add to the upper limit of the set immediately below that 
containing the median. This value is the best estimate of the median from grouped data. 

As before, this procedure may be illustrated using the data for East Anglia (Table 4.5). 
The median point is estimated for the data as follows: the median observation is 
calculated from step 1 as observation 6, which lies in the third lowest class in the 
frequency distribution. The number of observations in classes below that containing the 
median is 3 (1+2, in classes 79,500–80,499 and 80,500–81,499). This gives the value for 

Introducing quantitative geography      64



step 2. The scaling factor in step 3 is calculated by subtracting the figure at step 2 from 
that at step 1, dividing the result by the frequency of the median class, and multiplying 
the ratio by the size of the class interval. That is: 

1 subtract 3 (step 2) from 6 (step 1) to give 3, 
2 divide by 4, the frequency of the class containing the median, to produce a ratio of 3/4, 
3 multiply 3/4 by the class interval (1,000) to give 750. 

This value is then added to the upper limit of the class below that containing the median, 
providing an estimate of the median of 81,499+ 750=82,249. This compares with the 
figure estimated from the ungrouped data of 82,167 and the rounded data of 82,250. 

4.4.3 The mean 

The third and final measure of central tendency to be presented here is the mean or 
arithmetic average. This measure is defined as the sum of the individual observations 
divided by the number of observations in the data set. As before, this may be illustrated 
using the twelve monthly unemployment figures for East Anglia. The sum of these 
twelve observations is  

Table 4.9 Mean monthly unemployment (1986) 

Region Mean 

South-East 378,255 

East Anglia 83,546 

London 407,740 

South-West 206,088 

West Midlands 346,931 

East Midlands 202,962 

Yorks/Humberside 316,175 

North-West 448,711 

North 235,104 

Wales 179,195 

Scotland 360,201 

1,002,554. Dividing this figure by 12 produces the mean value of 83,546. The mean 
values for the remaining regions are listed in Table 4.9. 

The procedure for grouped data is rather more complicated. It is calculated by 
multiplying the number of observations in each set or group by a typical value for that 
group (usually the midpoint), summing these values together, and dividing the total by 
the total number of observations. For the East Anglian data in Table 4.5 this involves 
multiplying the midpoint of set 1 (80,000) by 1,81,000 by 2,82,000 by 4 and so on, and 

Summarising geographical data         65



adding the products to form a grand total (1,003,000). This is then divided by 12 to 
produce an estimate of the mean of 83,583. 

Unlike the other measures of central tendency, the mean makes use of all the 
information contained in the data rather than just the most frequent value or class, or the 
50 per cent value. This makes it generally more useful as a method of summarising the 
characteristics of data sets than either the median or the mode. It also possesses other 
advantages. First, the data do not need to be arranged in numerical order as any order 
may be processed. This makes its calculation easier if the data set is large. Second, the 
mean provides an effective method of summarising a data set by focusing attention on the 
individual data values, allowing those which are similar and dissimilar to be observed 
directly. Third, there is a clear relationship between the mean value, the total for the data 
set and the number of observations, which does not exist for the mode or the median. So 
long as any two of these are known, it is possible to calculate the third. This is because: 
N×the mean =the total 

the total/the mean =N 

the total/N =the mean 

These relationships can be particularly helpful if observations from different data sets are 
to be combined or if the data are to be used in subsequent analyses. 

Consider the following two sequences of data which are of different size, one 
containing six observations, the other nine. Sequence 1:68, 24, 43, 61, 23 and 16; 
sequence 2:10, 15, 19, 26, 11, 14, 21, 28 and 32. The mean of the first sequence is 39.17, 
and the second sequence, 19.56. If the two sequences were to be combined a new mean 
would have to be calculated. One way of calculating it is to add the two means together 
and divide by 2, producing a rough mean of 29.37. This, however, is different from the 
correct mean for the data (27.4) which would be produced if all the observations were 
added together and their total divided by 15. The reason for the inaccuracy is that no 
attempt is made in the rough calculation to account for the different numbers of 
observations in the two sequences. A better approach, which yields the correct mean but 
which does not involve the researchers having to add the original observations, is to 
calculate a ‘weighted mean’. 

The steps to be used in calculating this are as follows. First, calculate the total number 
of observations in the combined sequence (in this case fifteen). Second, divide the 
number of observations in both sequences by the combined total to produce two scaling 
factors (e.g., 6/15=0.4 and 9/ 15=0.6). Third, multiply the two sequence means by the 
appropriate scaling factor and add together, i.e., (39.17×0.4)+(19.56×0.6). This produces 
the correct mean value of 27.4 for the combined data. This flexibility is of great value to 
geographers who frequently collect data in distinct sequences which then need to be 
combined. 

4.4.4 Robust measures 

The fact that the mean accommodates all the observations in a data set is considered by 
some authors to be a disadvantage of the measure. This is because the mean is sensitive 
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to extreme values and can provide a measure of central tendency which is not typical of 
the bulk of the observations. 

To illustrate this consider the following five numbers: 1, 2, 3, 4, and 5. The total of 
these is 15 and the mean is 3. This value lies exactly half-way in the data distribution, i.e., 
it is equivalent to the median value. Two observations lie below the mean, 1 and 2, and 
two lie above it, 4 and 5. The differences in value between the mean and the upper and 
lower outlying values are also equivalent. For this sort of data distribution therefore, the 
mean appears to be an adequate description of central tendency. However, if just one of 
the figures were changed, for example if the value 5 were mis-typed as 15, or if it 
corresponded to some freak phenomenon, the total and mean would change dramatically. 
The total would rise to 25 and the mean to 5. Four observations would lie below the mean 
with a range of 4 units, whereas only one value would lie above it, with a range of 20. 
The mean would no longer be typical of any of the individual observations whereas the 
median would have been unaffected. 

Given this tendency for the mean to be pulled towards extreme values and away from 
the main body of observations (as is very likely in geographical hazard studies) some 
researchers argue that a less sensitive, more robust measure, such as the median, should 
be calculated in preference. This is one of the key arguments put forward in ‘exploratory 
data analysis’, an approach to data analysis proposed by Tukey (1977), and illustrated in 
geography by Cox and Anderson (1978), Cox and Jones (1981), Jones (1981, 1984) and 
Burn and Fox (1986). 

Robust measures are measures which are resistant to extreme values. The median is 
resistant in the sense that it ignores data values altogether, except in so far as they are 
used to rank the data in size order. This means that the effect of extreme values on the 
measure of central tendency is reduced. However, for many research purposes the median 
is a cumbersome device to use (see the previous discussion), so a number of modified 
strategies have been devised to make the mean more robust. One strategy is to order the 
data by size and exclude a small number of observations from either end. Having done 
this, the usual formula for the mean is applied to the remaining data. To illustrate this 
process, which is termed ‘trimming’, consider the second sequence of five numbers. If 
one observation were removed from either end the sequence would be: 2, 3, and 4, which 
has a median of 3 and a trimmed mean of 3 (i.e., 9/3=3). If two observations were 
removed from either end, the sequence would contain only a single value, 3. In so far as it 
makes sense to calculate medians and means for a single number, the median and 
trimmed mean are 3. 

A second strategy again involves ordering the data by size. Having done this, the two 
most extreme values are replaced by the next most extreme pair in the sequence. Thus, 
the sequence: 1, 2, 3, 4, and 15, would be replaced by 2, 2, 3, 4 and 4. The median of this 
reformed sequence is once again 3, as is the mean. The process may be repeated a second 
time, replacing the extreme pair of values by the second most extreme pair. In this case 
this means replacing the 1 and 15 by the 3. The reformed sequence is now: 3, 3, 3, 3 and 
3, of which the median and mean values are 3. This process is known as Winsorising. 
Clearly, given this contrived example, the median and the two robust means give more 
appropriate information about the underlying data than the unmodified mean. 

Does this provide an improved description of central tendency for the data? In the 
example given above the answer is clearly ‘yes’ because the median and robust means 
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stabilise at a constant value which can be regarded as reasonably typical of the individual 
observations. To see if this is a general rule consider the following skew data: 0, 0, 0, 0, 
0, 2, 2, 3, 15 and 40. The summary statistics appropriate to this sequence are: standard 
mean-6.2; trimmed mean-1.0; Winsorised mean-1.0, and median- 

Table 4.10 Robust measures of mean monthly 
unemployment for 1986 

Region Mean Trimmed mean 

South-East 378,255 377,641 

East Anglia 83,546 83,453 

London 407,740 408,063 

South-West 206,088 205,709 

West Midlands 346,931 347,040 

East Midlands 202,962 202,817 

Yorks/Humbs 316,175 316,100 

North-West 448,711 448,510 

North 235,104 234,678 

Wales 179,195 178,663 

Scotland 360,201 359,994 

1.0. Once again, there is agreement between the robust measures and considerable 
disagreement with the standard mean, which has been drawn towards the upper end of the 
distribution by two extreme values. 

These examples using fictitious data show that the robust measures can give a 
substantially different impression of central tendency than the standard mean. However, 
Table 4.10 shows that there is very little real difference in value between the various 
measures when applied to the data in Tables 4.1 and 4.3. Indeed, most of the measures 
differ by less than 0.2 per cent, a trifling figure compared with the 620 per cent reduction 
achieved in the contrived example given above. 

4.4.5 Which to use? 

The choice of which measure to use to represent central tendency depends on why such a 
measure is required. The mode, for example, is most useful whenever the research 
requires a quick, and relatively informal, indication of a typical data value. The median is 
most useful if a measure of the midpoint of the data distribution is required. The mean is 
most useful if knowledge of the exact values of the observations is important. In each of 
these situations, the information needs of the research differ, ranging from a qualitative 
impression to detailed quantitative information. If the latter is not required, then the mode 
or median might provide sufficient information on central tendency. However, if the data 
are to be used in comparative analyses where data sets are being compared or used for 
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inference (see Chapter 6), then more detailed quantitative information is a requirement. 
Because of its tractability, the mean is generally preferred to the median in these 
situations. 

As was shown in the previous examples, the perceived advantages of the robust means 
over the standard mean depend on the data set. However, there are two major deficiencies 
with their use. First, they emphasise central tendency to the detriment of extreme values, 
when detailed knowledge of the latter may be crucial. Second, they obscure the 
calculation of the summary measure, thus making it rather more difficult to relate the 
measure to the raw data values. 

The first of these is particularly important in studies of ‘hazards’—such as famine, 
extreme floods, high tides, global changes in sea level—where knowledge of the 
frequency and size of the extreme points is crucial. In such contexts, the mode and 
median do not provide any information on the extremities of the data, while the robust 
measures are actually designed to reduce their affect on the revised mean. Whilst the 
resulting number is more typical of the data, it excludes a key aspect of the dynamism of 
the processes generating the data in the first place, and may lead to insufficient attention 
being paid to the frequency and magnitude of the extreme points. The second deficiency 
arises because the calculations involved in generating robust measures make it difficult to 
relate the measure back to the raw data. The most significant problem is that the measure 
is not immediately interpretable in terms of the raw data. This can lead to confusion, and 
make additional use of the raw data in comparative analyses difficult. 

Whilst it is clear that the standard mean is sensitive to extreme data values and so can 
give a misleading impression of central tendency, it can be argued that this is actually an 
advantage, as it requires researchers to relate the measure to the raw data. Such a process 
is crucial if the data are to be described properly. Because of its sensitivity, the mean can 
identify both the number and magnitude of the extreme points and provide researchers 
with suitable analytical prompts. For example, if a data point is extreme, the researchers 
must consider why this is the case and develop some appropriate strategy to handle it. 
This might involve removing it from the raw data and assigning it to a second data set 
which is analysed separately. By focusing on the single measure which ‘accommodates’ 
extreme points, it is potentially possible for these questions to be disregarded or 
undervalued. 

4.5 SUMMARISING SCATTER 

Measures of central tendency provide a way of obtaining useful quantitative information 
on typical and atypical values in a data set, but on their own, they do not provide 
sufficient information to describe it fully. In addition, some quantitative measure of the 
scatter or dispersion of the data is required. Much of this information is already provided 
graphically in histograms, stem-and-leaf plots, barcharts and boxplots, but rarely in an 
easily digestible form, and hardly ever in a form which may be used in subsequent 
analysis. This is only to be expected: graphs are poor at communicating quantitative 
information. To provide this sort of information, a variety of numerical summary 
measures should be used instead. These include: the range; the inter-quartile range; 
percentile ranges; the mean absolute deviation; the variance and standard deviation; and 
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the coefficient of variation. Some of these have already been introduced in the discussion 
of graphical displays. 

4.5.1 The range 

One of the simplest measures of scatter available is the range. This describes the 
difference in value between the largest and smallest observations in the data set. For the 
East Anglian unemployment data the range is 7,750, the difference between 87,888 and 
80,138. The main point in calculating the range is that it allows the finite nature of the 
data set to be displayed explicitly. This reflects the fact that the observations are 
restricted to a limited range of numerical values, and any patterns or relationships which 
are identified may be partly by-products of this restriction. It is therefore not sensible for 
researchers to attempt to generalise these patterns or relationships beyond the numerical 
limits of the observed data, as both may alter significantly in a different numerical 
context. 

However, in spite of this advantage, the range possesses several disadvantages. First, it 
only makes use of information on the extreme values in the data set. No account is taken 
of the size of the data set, or of other observations. These are potentially major 
disadvantages as there is a general tendency for the range to increase as the number of 
observations gets larger. Second, the value of the range is sensitive to the corrupting 
influences of outliers. This means that if there are unusually large or small observations 
at the extremes of the data the range will be over-extended by them. Third, it is often 
laborious to calculate as the data have to be ordered or otherwise compared observation 
by observation. This is an expensive operation even if done on a computer, given that the 
vast majority of the information being processed is subsequently ignored. Finally, 
knowledge of the range provides little information which may be used in subsequent 
analyses. 

4.5.2 The inter-quartile range 

A second numerical measure of scatter is the inter-quartile range. This has been discussed 
previously in connection with boxplots, which graph it explicitly. The inter-quartile range 
describes the scatter of the central 50 per cent of the observations. Its lower boundary is 
described by the lower quartile, the value below which 25 per cent of the observations 
occur. Similarly, its upper boundary is described by the upper quartile, the value above 
which 25 per cent of the observations occur. To calculate this, the data need to be 
organised in ascending numerical order and counted off until 25 per cent and 75 per cent 
of the observations have been identified. This procedure is similar to that used to 
calculate the median. 

Because of its similarity to the median (each quartile is essentially the median of the 
bottom and top half of the distribution) it is usual to report quartiles as measures of 
dispersion when medians are used to measure central tendency. A derived measure, 
termed the quartile deviation (Q), may also be calculated to summarise dispersion around 
the median. Its usefulness is, however, mainly limited to summarising scatter in data 
which are distributed according to the so-called Normal probability distribution, the 
importance of which will be discussed in Chapter 5. 
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4.5.3 Percentile ranges 

A natural extension of the inter-quartile range is provided by percentile ranges. These 
have also been illustrated previously in connection with the cumulative frequency curves. 
Percentiles are measures which represent the data distribution in terms of percentage 
units (see the column headed ‘cumulative percentages’ in Table 4.6). The range 
corresponds to the difference between the 100th and 100th percentiles, and the inter-
quartile range to the difference between the 25th and 75th percentiles. Clearly, any range 
between two percentiles may be reported. While this provides more information than 
either the range or inter-quartile range, it is still limited to a comparison of two values at a 
time. Percentiles are also more complicated to calculate as the data need to be arranged as 
cumulative frequencies and then transformed into cumulative percentages. As before, if 
there is a lot of data to process, this preliminary data handling may be tedious and time-
consuming. 

4.5.4 The mean absolute deviation 

The three measures described so far provide useful indicators of scatter between pairs of 
extreme points. None of them refers explicitly to central tendency or to the remaining 
data items, though the quartiles may be used in this way. The fourth measure to be 
described overcomes these drawbacks. The mean absolute deviation measure (MAD for 
short) is a summary of the absolute differences in value between the mean of the data and 
the individual data items. The term ‘absolute’ means that all negative signs are ignored 
and are treated as though they were positive. It is calculated by subtracting the standard 
mean from each data item to produce an absolute deviation, summing these values 
together to produce a total absolute deviation, and dividing this total by the number of 
observations in the data set. 

The mean deviation of the East Anglian data is calculated as follows. First, the mean 
value (83,546 or 83.58) is subtracted from each individual data value to produce 
deviations from the mean. Second, the twelve deviations are summed together ignoring 
the negative signs to produce a total absolute deviation. Third, this total is divided by the 
number of observations in the data set (12) to produce the mean absolute deviation value. 
These steps are summarised in Table 4.11. From this table, the MAD is calculated by 
dividing the total absolute deviations by the number of observations: 
28,498/12=2,374.83. 

The interpretation of this measure is quite straightforward: it states that the observed 
readings of monthly unemployment in East Anglia lie on average within 2,375 units of 
their mean of 83,546 (2.51 units of 83.58 if the rounded data are used instead). By 
referring back to the raw data in Table 4.1, it is clear that five of the monthly readings lie 
between 81,171 (the lower limit) and 83,546, and two other readings lie between 83,546 
and 85,921 (the upper limit). The figures for January to March are conspicuously high 
compared with the average, the figures for October  
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Table 4.11 Calculation of the mean absolute 
deviation for the East Anglian data for 1986 

Raw data Difference 

87,599 4,053 

87,888 4,342 

86,712 3,166 

85,637 2,091 

84,144 598 

81,345 2,201 

82,113 1,433 

81,792 1,754 

82,222 1,324 

80,138 3,408 

81,039 2,507 

81,925 1,621 

Total 28,498 

and November conspicuously low. These months may be outliers, i.e., months in which 
the figures for unemployment are extreme when compared with the remainder of the 
year. One of the main uses of a measure of scatter is to identify these extreme values. 

4.5.5 The variance and standard deviation 

The variance and standard deviation are calculated in a similar way to the mean absolute 
deviation. The variance is defined as the average of the squared deviations from the 
mean, the standard deviation as the square root of the variance. To calculate the variance 
the mean is first subtracted from each of the data items to produce deviations. These are 
then squared to remove the effect of the negative deviations, summed together to produce 
the total sum of squared deviations in the data, and then this total is divided by the 
number of observations in the data set (Table 4.12). 

Like the MAD statistic, both of these measures summarise the scatter of the individual 
readings in the data about their mean value. They differ in that the variance expresses this 
scatter in terms of squared units, whereas the standard deviation expresses this in terms of 
the original units of measurement. For the East Anglian data, the variance indicates that, 
on average, the monthly unemployment values are 6,857,313 squared deviation units 
from their mean. The standard deviation suggests that on average monthly unemployment 
values are about 2,619 persons from the mean. 
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There is a slight complication to note in the calculation of the variance and standard 
deviation. The standard method of calculating them involves dividing the sum of squared 
deviations by the number of observations in  

Table 4.12 Calculation of variance and standard 
deviation for East Anglia for 1986 

Raw data Difference Squared difference 

87,599 4,053 16,426,809 

87,888 4,342 18,852,964 

86,712 3,166 10,023,556 

85,637 2,091 4,372,281 

84,144 598 357,604 

81,345 −2,201 4,844,401 

82, 113 −1,433 2,053,489 

81,792 −1,754 3,076,516 

82,222 −1,324 1,752,976 

80,138 −3,408 11,614,464 

81,039 −2,507 6,285,049 

81,925 −1,621 2,627,641 

Notes: 
Total squared difference=82,287,750 
Variance=82,287,750/12=6,857,313 
or 82,287,750/11=7,480,705 
SD=Square root of 6,857,313=2,619 
or Square root of 7,480,705=2,735 
‘Difference’ refers to the difference between the individual raw data value and the mean value. 

Table 4.13 Calculation of variance and standard 
deviation from grouped data for 1986 

Raw data N D D2 ND2 

80,000 1 −3,583 12,837,889 12,837,889 

81,000 2 −2,583 6,671,889 13,343,778 

82,000 4 −1,583 2,505,889 10,023,556 

83,000 0 0    

84,000 1 417 173,889 173,889 

85,000 0 0    

86,000 1 2,417 5,841,889 5,841,889 
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87,000 1 3,417 11,675,889 11,675,889 

88,000 2 4,417 19,509,889 39,019,778 

Notes: N frequency of each class in data set, 
D difference between raw data and mean, 
D2 squared difference, 
ND2 product of squared difference and frequency. 
Mean=83,583 
Sum (ND2)=92,916,668 
Variance=Total/11=8,446,970 
SD=square root of (total/11)=2,906 

the data set. However, for theoretical reasons which are to do with sampling theory, and 
which will not be considered until Chapter 6, it is preferable to divide the sum of squared 
deviations by one less than the total number of observations (i.e., by N−1 instead of N). 
This makes little or no difference in data sets which contain 20 or more observations, but 
may become progressively more important as the data set becomes smaller. It is standard 
practice for most commercial computer packages to report these modified variances and 
standard deviations. 

Both measures may be calculated for grouped data. The procedure is similar to that 
described earlier to calculate the mean from grouped data. First, the mean value of the 
grouped data is calculated. Second, this value is subtracted from the midpoint (or other 
typical value) of the group, and the difference squared. Third, these squared differences 
are multiplied by the group frequency and summed to produce an overall total. Fourth, 
this total is divided by the number of observations in the data set (or N−1) to yield an 
estimate of the variance. The square root of this estimate is the standard deviation. The 
calculations required are set out in Table 4.13. 

4.5.6 The coefficient of variation 

The last measure of scatter to be presented here is the coefficient of variation (CV). This 
measure offers an alternative way of describing the information contained in the standard 
deviation. It does this by expressing the standard deviation as a percentage of its mean. 
First, calculate both the mean and standard deviation. Second, divide the standard 
deviation by the mean value. Third, multiply the quotient by 100. This value is the 
coefficient of variation. For the rounded East Anglian data, the CV is 3.5 per cent (Table 
4.14), which means that the monthly readings are on average within 3.5 per cent of the 
rounded mean value of 84,000. 

The value of the CV measure is that it allows comparisons to be made between data 
sets whose scatter is measured in different units or, like the regional data, have different 
orders of magnitude. The CVs of the remaining regions are also displayed in Table 4.14. 
These show that the average scatter of readings around the eleven means is relatively 
small, ranging from about 1.5 per cent to 3.5 per cent—a very similar level of 
performance in spite of the major differences between the regions. 

The final column in Table 4.14 lists those months which lie outside limits suggested 
by the coefficient of variation. A distinct pattern seems to be visible here as the months 
January–March appear to have had relatively high levels of unemployment in most 
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regions, and October and November relatively low levels. These may be outliers or 
months in which unemployment in most regions was relatively extreme, and so need 
further investigation. Such an investigation would show that the measurement system 
used for January and February was different from the rest of the year and tended to inflate 
the unemployment figures for all regions during those months. 

Table 4.14 CVs for the regional unemployment data 
for 1986 

  CV Lower Upper Months outside limits 

South-East 3.2 366 390 Jan.–Mar., Nov., Dec 

East Anglia 3.5 81 87 Jan.–Mar., Oct. 

London 1.5 402 414 Jan. Feb., Aug., Sep. 

South-West 3.5 199 231 Jan. Feb., Jun. 

W. Midlands 1.9 340 354 Jan. Feb., Sep., Nov., Dec. 

E. Midlands 1.9 199 207 Jan. Feb., Jun., Oct.–Dec. 

Yorks/Humbs 1.6 311 321 Jan. Feb., Sep., Nov., Dec. 

North-West 1.9 440 457 Jan. Feb., Oct.–Dec. 

North 2.6 229 241 Jan. Feb., Oct.–Dec. 

Wales 3.4 173 185 Jan. Feb. 

Scotland 1.6 354 366 Jan. Feb., May, Jun. 

4.6 SUMMARISING RELATIONSHIPS 

The graphs and summary measures presented so far are of value if one is interested in 
describing patterns in single variables. However, as the patterns found in one variable 
may correspond to those found in other variables, a natural development of the 
procedures outlined above is to search for patterns between variables. Such patterns may 
suggest relationships between the variables concerned which provide for a more effective 
understanding. Similarly, in searching for relationships, it may be possible to identify 
variables whose behaviour is particularly idiosyncratic, possibly indicating that their 
causal structures are independent of those found elsewhere. 

4.6.1 Scattergrams 

There are a number of different ways of describing and summarising relationships 
between variables using graphics and summary measures. The simplest graphical device 
available to describe relationships between continuous variables is the scattergram. This 
uses a two-dimensional graph to plot the observations of two variables with respect to 
each other. Figure 4.11(a)–(c) illustrates some of the types of bi-variate relationship 
which might be found in geographical data sets. In Figure 4.11(a) as the values of 
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variable Y increase, so too do those of variable X. This indicates a positive relationship 
between the two variables. Figure 4.11(b) indicates a negative relationship because the 
values of X decrease as those of Y increase. In Figure 4.11(c), there is no easily 
discernible pattern. In such circumstances the two variables may be poorly related or not 
related at all. 

Scattergrams are particularly valuable for displaying the ways in which the continuous 
variables vary with respect to each other. However, they may also be used to display 
scatter when one of the variables is categorical. Figure 4.11(d), for example, illustrates 
the differences in the level of  

 

Figure 4.11 Typical scattergrams 

shopping expenditure at an edge-of-town hypermarket between two groups of shoppers, 
one group which came to the centre by car (group 2), and the other which did not (group 
1). The most obvious features of the information being portrayed here are the generally 
higher levels of expenditure among the car-borne group, and the wider scatter of 
shopping expenditure among the car-borne group. 

4.6.2 Summary measures of relationships 

A wide variety of summary measures have been devised to assess the presence and/or the 
strength of relationships between variables. Table 4.15 lists a selection of the more 
important of these, classified by the measurement scales of the two variables. As the two 
variables in Figure 4.11(a)– (c) are continuous, a suitable measure of their correlation is 
provided by the Pearson product moment correlation coefficient. Conversely, for Figure 
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4.11(d), where one variable is continuous and the other is categorical (nominal), their 
association might be assessed using the point biserial correlation coefficient or the  

Table 4.15 Measures of correlation and association 

Variable 1 Variable 2 Appropriate measures/tests 

Difference of proportions 

Chi-square 

Fisher’s exact test 

Yule’s Q 

Kendall’s tau 

Binary Binary 

Tetrachoric correlation* 

Chi-square 

Cramer’s V 

Pearson’s contingency 

Multi-way Binary or 
Multi-way 

Kendall’s tau 

Wilcoxon/Mann Whitney test 

Wald-Wolfowitz runs test 

Ordinal Binary 

Wilcoxon matched pairs test 

Ordinal Multi-way ranked ANOVA 

rank order correlation 

Kendall’s tau 

Somer’s D 

Ordinal Ordinal 

Wilson’s E 

Difference of means test Continuous Binary 

Point biserial correlation 

ANOVA 

Intra-class correlation 

Kruskal-Wallis 1-way ANOVA 

Continuous Multi-way 

Friedman 2-way ANOVA 

Continuous Continuous Pearson’s product moment 

    Linear regression 

Note: * Useful if the underlying variables are categorised continua 
 
Source: Adapted from Blalock (1979), Reynolds (1977), Cohen and Holliday (1982) 
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difference of means test. Some of these procedures are used to assess hypotheses about 
the presence and/or strength of relationships between the variables. This approach will be 
considered in more detail in Chapter 6 and in Part II.  

Before these measures are used to describe relationships it is important that some attempt 
is made to check that the data meet the assumptions associated with them. Assumptions 
are made to ensure that the hypotheses being tested can be assessed for significance 
against effects arising purely by chance. Without this check, it would not be possible to 
attach much reliability to the summary measures or the hypotheses they test. There are 
several different types of assumption, depending on which test is to be used. Most require 
that the variables are essentially random; others require that the variables come from a 
particular type of probability distribution. (Both aspects of these assumptions are taken 
up in Chapter 5.) 

For an extended treatment of the use of these summary measures, see the classic series 
of papers by Goodman and Kruskal (1954, 1959, 1963, 1972), or the books by, among 
others, Siegal (1956), Reynolds (1977), Blalock (1979) and Cohen and Holliday (1982). 
The following subsections illustrate some of the characteristics of four of these measures.  

4.6.3 Measuring correlation: two continuous variables 

The Pearson product moment correlation coefficient (r) is a scaled index which measures 
the effect of paired variation between two continuous variables. It is written algebraically 
as: 

 
(4.1) 

where the symbols refer to: 
x the individual observation on variable x 

y those for variable y 

 the average value of x 

 the average value of y 

r the correlation coefficient 

 the square root 

∑ summation symbol 

The numerator (termed the covariance of the two variables) summarises the observed 
patterns of association between them. It reflects the fact that as values of one variable 
change those of the other may also change: both may rise together, fall together, or move 
in opposite directions. It is calculated as follows. First, re-express the individual 
observations of the two variables as deviations from their respective means. Second, 
multiply each pair of deviations together to form a product. Third, sum these products 
together to form a total. Fourth, divide this total by N–1. If most of the products 
calculated at step 2 are positive (negative), the overall covariance will be positive 
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(negative). If, however, there is an equal number of both types the covariance will be 
roughly zero. 

Covariance measures the bi-variate relationship in terms of the original units of 
measurement of the raw data. This means that it may be susceptible to change if the units 
are changed (see the discussion on interval and ratio measures in Chapter 3). In contrast, 
correlation measures the relationship in standardised units. This is achieved through the 
denominator in equation 4.1 which restricts the range of values obtained from the formula 
to the range −1 to 1. Values of −1 indicate a perfect negative relationship and 1 a perfect 
positive relationship. A value of 0 indicates that the two variables are not linearly 
associated. (This does not mean that they are not associated on any other scale.) 

To illustrate the calculation of the correlation coefficient consider the data in Table 
4.16 which come from the familiar six-times table. The figures labelled as variable Y are 
all six times larger than those in variable X (except when X and Y are both zero). The 
scattergram of this relationship is displayed in Figure 4.12. A number of features about 
this plot should be noted. First, if a line were to be drawn through all the  

 

Figure 4.12 Scattergram of data in 
Table 4.16 

crosses it would be completely straight. Second, this straight line would pass through the 
origin of the plot and the point representing the two means of X and Y (6.5 and 39). Third, 
the relationship between X and Y is constant along the whole length of the line, i.e., Y is 
six times larger than X both for small values of X (X=1) and for larger values (X=9). 
Fourth, the correlation coefficient for this relationship is 1.0. 

The type of relationship being described by the correlation coefficient may now be set 
out in more detail. A correlation of 1.0 reflects that fact  
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Table 4.16 Six-times table 

X Y 

0 0 

1 6 

2 12 

3 18 

4 24 

5 30 

6 36 

7 42 

8 48 

9 54 

10 60 

11 66 

12 72 

that, when plotted, all the observations lie along a straight line and there is no scatter 
about the line. A correlation of 0.8 means that there is some scatter about the line but that 
this is small compared with the variation in the X and Y observations. The overall 
relationship of X and Y is thus nearly, but not quite, constant. A correlation of 0.3 
indicates that the variation in the values of the X and Y observations is less than that in the 
scatter of points around the line. This means that the variation between X and Y is greater 
than that within either of them. 

4.6.4 Measuring association: two nominal variables 

Relationships between nominal variables may be summarised using the chi-square 
statistic. The main use of this measure is to describe relationships in contingency tables, 
i.e., tables created by the cross-classification of two or more categorical variables. Table 
4.17 presents a simple illustration of this type of data. It contains the cross-classification 
of two categorical variables gathered as part of the Cardiff Consumer Panel Survey (Guy 
et al. 1983; Wrigley et al. 1985). Both refer to the use of superstores in Cardiff during the 
first six months in 1983. The column variable displays the pattern of patronage within the 
panel (coded as three sets—‘non-users’, ‘light’ users, ‘heavy’ users). The row variable 
displays the pattern of car usage in grocery shopping within the panel (again coded as 
three sets—‘non’-users, ‘infrequent’ users, ‘frequent’ users). The table thus shows that 66 
of the 451 panellists classified in the table as not using a car for shopping did not 
patronise superstores during the survey period. Similarly, 48 panellists who were heavy 
users of superstores frequently used a car for grocery shopping. 
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Table 4.17 Contingency table data 

    SUPERSTORE PATRONAGE 

    Nu Lu Hu Total 

  Non-users 66 71 29 166 

CAR USE Infrequent users 29 80 42 151 

  Frequent users 25 61 48 134 

  Total 120 212 119 451 

Note: Nu—Non-users; Lu—Light users; Hu—Heavy users 
Source: Adapted from Guy (1984) 

The most obvious relationship to assess when dealing with contingency table data is the 
independence of the two classifying variables. For the data in Table 4.17, independence 
means that there is no difference in superstore patronage over the survey period between 
the three groups of car users. In other words, superstore patronage does not depend on 
consumers having access to cars. In order to assess this, a second contingency table needs 
to be generated in which the 451 shoppers are reallocated within the table to reveal the 
patterns which would be expected if the two variables actually were independent (Table 
4.18). 

Table 4.18 Expected values for the data in Table 
4.17 

    SUPERSTORE PATRONAGE 

    Nu Lu Hu Total 
  Non-users 44.2 78.0 43.8 166 

CAR USE Infrequent users 40.2 71.0 39.8 151 

  Frequent users 35.6 63.0 35.4 134 

  Total 120.0 212.0 119.0 451 

Note: Nu—Non-users; Lu—Light users; Hu—Heavy users 

In the absence of other information the most likely number of frequent car users for the 
data in Table 4.17 is 134/451 or approximately 30 per cent. This means that for each class 
of superstore users, we would expect approximately 30 per cent to be frequent car users. 
The expected pattern of patronage would therefore be about 36 for non-users of 
superstores (i.e., 30 per cent of 120), 63 for light users (30 per cent of 212), and about 35 
for heavy users (30 per cent of 119). Expected patterns for infrequent and non-users of 
cars may be generated in exactly the same way. 

Having generated a contingency table of expected values, it is necessary to compare it 
with the observed patterns in Table 4.17. If the two classifying variables are indeed 
independent, then the observed and expected patterns should be similar. If they are not, 
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then the two variables are either not independent or the data set is too small to make a fair 
assessment. This latter observation involves a statement of statistical inference: the 
subject matter of Chapter 6. The chi-square statistic allows this comparison to be made 
by calculating a measure based on the differences between the observed values and 
expected values at every point in the table. It is written algebraically as: 

 
(4.2) 

where 
χ2 is the calculated value of chi-square 

o refers to the observed data values 

e refers to their expected values under the hypothesis of independence 

∑ is symbol for summation 

Three steps are involved in its calculation. First, the difference between every observed 
and expected value in the table is calculated and the result squared. Second, these squared 
differences are divided by the expected values for each point in the table. Third, the nine 
resulting values are added to form an overall total. 

If the two variables are independent the chi-square measure, generated as in equation 
4.2, behaves in a way which is fully documented mathematically. As a result it is possible 
to distinguish with reasonable certainty between variables which are really independent 
and those which appear to be related but which, in reality, are not. For the data in Table 
4.17, the chi-square measure is calculated as 28.57, which indicates that the two variables 
are not independent but are related, i.e., that superstore patronage does indeed depend on 
car usage. (The justification for this will be presented in Chapter 6.) 

A variant of the inferential chi-square measure may also be used with the regional 
unemployment data of Table 4.1 to provide a consistent description of the performance of 
each region over the year. The motivation for this is that regional comparisons based only 
on the raw figures ignore the significance of unemployment within each region. As 
unemployment is likely to be larger in big labour markets such as the South-East and 
London, and smaller in areas such as East Anglia and the South-West, a comparison 
based solely on the raw data may be misleading. The ‘signed’ chi-square measure, so-
called because the sign of the difference between the observed and expected values is 
reported, allows consistent comparisons to be made (Table 4.19). 

The figures in Table 4.19 are calculated by comparing the observed figures for 
unemployment change in each region with an unemployment figure expected if the 
region mirrored the national change over the period. Negative figures are associated with 
regions which are performing better than the nation as a whole, and vice versa. Values 
outside the range plus  
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Table 4.19 Values of signed chi-square for regional 
unemployment change during 1986 

Total Change % Change Chi-square change 

South-East −33,058 −8.3 −320.7 

East Anglia −5,674 −6.5 −8.2 

London −15,033 −3.6 158.7 

South-West −14,766 −6.7 −32.2 

W. Midlands −19,852 −5.6 −0.1 

E. Midlands −11,101 −5.3 1.3 

Yorks/Humbs −14,530 −4.5 38.2 

North-West −27,009 −5.8 −4.1 

North −17,912 −7.3 −78.9 

Wales −16,822 −8.8 −219.7 

Scotland −5,900 −1.6 611.4 

Note: Total change is the difference in unemployment as measured between January and December 
1986 

or minus 3.84 are considered to be significant differences. This means that the East and 
West Midlands both appear to be mirroring the national pattern of change, the North-
West and East Anglia are performing slightly better than expected, and Wales and the 
South-East are performing very much better. Conversely, Yorkshire/Humberside, London 
and Scotland appear to be performing rather worse than that expected given the national 
picture. 

4.6.5 Measuring rank correlation: ordinal variables 

Relationships between two ordinal variables can be described using a form of correlation 
measure which recognises the ordinal or ranked structure of the variables. Two measures 
which may be appropriate are Spearman’s rank order correlation: 

 
(4.3) 

where, 
d is the difference in rank between the items in a pair 

n represents the number of items 

∑ represents the sum of the differences 
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and Kendall’s tau: 

 
(4.4)  

where, 
s corresponds to P–Q 

P is the sum of the number of ranks which are larger 

Q is the sum of the number of ranks which are smaller 

Both measures require correction procedures to deal with ties—ranks on both variables 
which are equal (Cohen and Holliday 1982:154–6 and 158–60). 

The effect of ranking continuous data and then calculating a correlation coefficient can 
be illustrated using the data in Table 4.20, which is an extract of some precipitation data 
gathered for California (Taylor 1980). Columns 1 and 3 contain continuous 
measurements on precipitation (column 1) and altitude (column 3). The Pearson product 
correlation coefficient between these two variables is 0.592, indicating a moderately 
positive correlation between precipitation and increasing height. Columns 2 and 4 contain 
the ranks of the measurements in columns 1 and 3, with the largest readings being ranked 
1 and the smallest 10. (The order of the rankings from top to bottom or vice versa does 
not affect the Spearman measure but is important for Kendall.) The Spearman rank 
correlation between these two variables is calculated as 1−(612/990) or 0.382. The  

Table 4.20 Extract of Californian rainfall data 

PPT RP ALT RA 

39.57 3 43 9 

23.27 5 341 4 

18.20 7 4,152 3 

37.48 4 73 7 

49.26 1 6,752 1 

21.82 6 52 8 

18.07 8 25 10 

14.17 9 95 5 

42.63 2 6,360 2 

13.85 10 74 6 

Note: RA and RP are the ranks of the ALT and PPT variables respectively 
PPT=Precipitation 
ALT=Altitude 

Source: Taylor (1980) 
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direction of the association is as given before but its strength has been reduced by the 
process of classification. 

4.6.6 Measuring association between mixtures of variables 

The three previous examples described relationships between variables measured on the 
same scale. Social surveys invariably generate information at many scales and it is 
therefore important to know about measures which might help to describe relationships 
when the measurement scales are different. In Figure 4.11(d) the distribution of 
purchasing (a continuous variable) was related to the ownership of a car (a binary 
variable). To see if there is a relationship between these two variables, it is possible to use 
the point biserial correlation coefficient (rpb): 

 
(4.5) 

where, 
Mp is the mean purchasing of car owners 

Mq is the mean purchasing of others 

SD is the standard deviation of total purchasing 

p is the proportion of car owners to shoppers 

q is the proportion of non-car owners to shoppers 

Table 4.21 contains some hypothetical shopping data in which expenditure has been 
categorised by car-ownership. The five components of the measure are: 
Mp =(24+14+36+41+25)/5=28 

Mq =(13+17+21+24+7)/5=16.4 

SD =10.38 

p =0.5 

q =0.5 

which produce a value of 0.558. This suggests that the association between expenditure 
and car-ownership is positive and moderately strong. One characteristic of this measure is 
that it may not reach either of its extreme limits (−1 and 1), especially if p and q are not 
equal. A test of significance is required to assess what it means. Once again, the 
justification for such a test is deferred until Chapter 6, but it can be shown that, at certain 
levels of significance, car-ownership does indeed exert a significant influence over 
shopping expenditures in this data set. 
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Table 4.21 Hypothetical shopping data 

Customer Spending Car ownership 

1 24 Y 

2 14 Y 

3 36 Y 

4 41 Y 

5 25 Y 

6 13 N 

7 17 N 

8 21 N 

9 24 N 

10 7 N 

Note: Y=Yes 
N=No 

4.7 SOME FURTHER CONSIDERATIONS 

The purpose of section 4.6 was to illustrate some of the summary measures which are 
available to search for and quantify associations or correlations between variables. Some 
of the measures presented are restricted in the number of variables they may handle, 
some are restricted to specific measurement scales, and some are restricted to both. 
Underlying measures such as the Pearson correlation coefficient and chi-square are 
assumptions that the variables being related are essentially random and independent. The 
importance of these will become clearer in Chapter 6, but for the moment it is sufficient 
to note that many geographical variables violate these assumptions. The effect of this is 
that the summary measures may be misleading and difficult to interpret correctly. 

To illustrate the problem consider Table 4.22 which presents the Pearson product 
moment correlation matrix of the regional unemployment series in Table 4.1. The pattern 
of correlation between any two regions is symmetric so only half the table is printed. A 
brief inspection of this shows that the correlation values are positive and that: 

1 Scotland correlates relatively lowly with every region, except perhaps the South-West. 
2 London correlates relatively lowly with the exception of the South-West, Wales and 

East Anglia. 
3 The patterns of correlations tend to reflect the spatial and structural positions of the 

regions concerned. 

The latter implies that the unemployment values are probably not independent of each 
other spatially and, as we have already seen, there is considerable similarity in their 
values in successive months. When data of this sort exhibit structural relationships of any 
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sort over space, time or both, the descriptive measures presented previously, and any 
models based on them, need to be modified to accommodate this. 

Table 4.22 Correlation values for the regional 
unemployment data 

  SE EA LD SW WM EM YH NW AT WL 

SE 1.0            

EA .96 1.0          

LD .63 .41 1.0         

SW .88 .89 .34 1.0        

WM .82 .64 .89 .61 1.0       

EM .97 .88 .76 .81 .91 1.0       

YH .82 .71 .79 .64 .93 .91 1.0       

NW .88 .77 .84 .66 .94 .95 .97 1.0     

N .96 .93 .61 .81 .82 .95 .89 .93 1.0   

WL .96 .95 .52 .91 .78 .93 .85 .86 .97 1.0 

SC .52 .45 .34 .76 .45 .54 .43 .42 .41 .53 

The need to accommodate interrelationships between space and time (more commonly 
termed spatial autocorrelation) has been recognised by statisticians and geographers for 
many years. Initial efforts were aimed at devising measures for ‘statistical maps’ and 
essentially involved classifying the raw data into discrete categories and then counting 
the number of boundaries between zones in similar and dissimilar classes. Later work has 
been aimed at assessing autocorrelation through analyses of regression model residuals 
(see, for example, Cliff and Ord 1973, 1981) or correlograms (Cliff 1975). None of this 
work is particularly basic and much of it tends to be presented to students as a speciality 
for the more capable quantitative student. For a useful introduction to these issues, see 
Haggett et al. (1977: Chapter 11), Unwin (1981) or Upton and Fingleton (1989). The 
works by Ripley (1981), Besag (1986) and Raining (1987) typify the sorts of research 
currently being produced by spatial statisticians. 

4.8 SOME WORKED EXAMPLES 

Most of the techniques presented in this chapter may be calculated using many standard 
computer packages. The MINITAB and GLIM 3.77 packages contain a reasonably 
comprehensive series of facilities for data description and analysis. As MINITAB is 
perhaps the most popular package used with introductory quantitative methods courses in 
geography, certainly in the UK, its use will be presented first. Data description facilities 
have been added to GLIM 3.77 as standard commands. Users with access to earlier 
versions of the package will not be able to use these. 
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4.8.1 MINITAB examples 

The MINITAB package is particularly suitable for summarising and describing relatively 
simple data sets. It is command-driven and anticipates data entry in a case-by-variable 
data structure. This means that the rows in the data set correspond to geographical 
individuals (regions, rivers, people) and the columns to measurements made on them 
(unemployment, sinuosity, age). The data are entered into a worksheet and are then 
manipulated by applying commands to the columns. (It is possible to reverse this process 
and apply the commands to the rows, or to invert the rows and columns.) 

The following command sequence might be used to analyse the East Anglian data in 
Table 4.1. (Lines 1 and 2 are operating system commands to set up a temporary external 
file to log the MINITAB session and activate the package.)  
$empty -a   

$run *minitab   

outfile ‘-a’ set up a MINITAB log 

read ‘ea’ c1 read data from file ea into column 1 

print c1 print the contents of column 1 

describe c1 generate summary statistics for column 1 

histogram c1 produce a histogram for column 1 

boxplot c1 produce a boxplot for column 1 

stem-and-leaf c1 produce a stem-and-leaf plot for column 1 

tsplot c1 produce a time-series plot for column 1 

read ‘sw’ c2 read data for South-West into column 2 

plot c1 c2 produce a scattergram from data in columns 1 and 2 

correlation c1 c2 calculate the correlation coefficient 

stop terminate MINITAB run 

The contents of file -a may now be inspected, copied to a permanent file for future 
reference, or routed to a printer. 

The rounding associated with Ehrenberg’s two-variable digit rule can easily be 
performed within MINITAB by dividing the contents of a variable by the required 
amount and rounding the observations to the nearest integer. The commands needed are: 
divide c1 1000 c1 divide c1 by 1000 and restore in c1 

round c1 c1 round c1 to nearest integer 

describe c1 produce summary statistics on c1 

4.8.2 GLIM 3.77 examples 

The most recent release of GLIM, version 3.77, contains a limited amount of simple data 
description facilities to help users in a preliminary analysis of data. A useful introduction 
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is provided in Swan (1986). Data may be entered from within the program or from 
external data files. All GLIM commands are prefixed by a system command which here 
is a dollar sign. Unlike MINITAB, the GLIM system allows greater flexibility over the 
form of the data which does not need to be in a case-by-variable format at entry. Indeed, 
the flexibility provided by GLIM arises because data structures can be created 
automatically within the package by sensitive use of the command language. 

To process the data for East Anglia, it is first necessary to assign the twelve numbers 
for monthly unemployment to a GLIM variable. This can be done in a number of ways. 
One possibility is to create a variable EA and assign the values to it within GLIM: 
$ASSIGN EA=(data values)$. Alternatively, EA can be declared in a DATA command: 
$DATA EA$, and the numbers associated to it using $READ or $DINPUT. The former is 
used if the data are to be typed in at a keyboard, the latter if they already exist on a data 
file. In both cases, GLIM needs to be told how many items of data are to be input. This is 
done using the $UNITS command: $UNITS 12$. Once read in, the data may be displayed 
in a column by typing $LOOK EA$, or as a row by typing $PRINT EA$. Histograms are 
produced by typing $HISTOGRAM EA$, and manipulations, such as sorting into rank 
order, by $SORT REA EA$. In this case, the ranked values for the monthly 
unemployment have been sorted in ascending order and stored in variable REA. 

Measures of central tendency and scatter can be produced using the $TABULATE 
command. This has a number of uses, so the specific function required is determined by a 
keyword. The following are some examples: $TAB EA MEAN$—produces the mean 
value; $TAB EA FIFTY$—produces the median; $TAB EA VAR$—produces the 
variance, and $TAB EA DEVIATION$—produces the standard deviation. Swan (1986) 
shows how these may be used in conjunction with $CALCULATE commands to create 
cumulative frequency curves which are displayed using the $PLOT command. 

4.9 SUMMARY 

This chapter has outlined some of the steps required in providing a summary of a set of 
data. The key steps are: 

1 Make a preliminary assessment of the data by data reduction or rounding to discern 
general patterns. 

2 Calculate summary measures for central tendency and scatter. 
3 Generate graphical displays for both central tendency and scatter to search for 

peculiarities in the data distribution. 
4 Attempt to account for any irregularities which might be found. 

These steps form a consistent core of procedures; they may need to be amended or 
extended depending on the nature of the analysis or the data type. 

The reason for encouraging these steps in any data analysis is to minimise a poor 
interpretation of the data. There is now considerable evidence that a successful analysis 
cannot take place if only one or two of these steps are performed and the others excluded. 
This is because summary measures such as the mean and variance are affected by the 
shape of the data and may be drawn in value towards extreme data points. Conversely, 
the Pearson correlation coefficient can produce an identical summary value given 
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radically different types of data distribution. The idea that a correlation value of 0.8 
always means a straight line rising as the values of the variables get larger is not correct. 

Whilst most of this chapter has been devoted to illustrating statistical procedures, it is 
important to realise that in many geographical data sets assumptions such as randomness 
may well be violated simply because of the structural nature of the information. The 
simple statistical procedures may on occasion be modified to account for some of the 
possible violations caused by geography, but the development of exclusively 
geographical measures is still a research issue. Until there is more general agreement 
about what constitutes geographical measures, and the software has been made available 
to implement them, most geography students will still rely on standard measures, 
modified wherever appropriate to geographical conditions. Underlying these measures 
are assertions about probability distributions and assumptions of randomness, 
independence and constant variance. These, and some of their variants, will be 
considered in subsequent chapters. 
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5  
DESCRIPTIVE MODELS AND 

GEOGRAPHICAL DATA 

5.1 INTRODUCTION 

The measures and graphics presented in the previous chapter are particularly useful if the 
information in a data set is relatively simple to describe. Unfortunately, many 
geographical data sets are complex and require rather more sophisticated summary 
measures. This chapter describes some of the measures—so-called descriptive models—
which may be helpful. 

5.2 ALGEBRAIC EXPRESSIONS AS MODELS 

Before presenting these models it is important to clarify what a ‘model’ means in this 
context, as it is a term which is frequently over-used. It is used here to refer to algebraic 
expressions which allow patterns or relationships in geographical phenomena to be 
exhibited, described and summarised. In this sense, ‘models’ should be viewed as 
extensions of the simple descriptive summary measures which were presented in the last 
chapter. 

The central idea of a descriptive model may be illustrated by the data which make up 
the six-times table (columns X and Y in Table 5.1). From this, it is clear that Y is always 
six times larger than X for all values other than X=0. The scattergram of the relationship 
(Figure 5.1) shows that the crosses align perfectly. Similarly, their correlation coefficient 
of 1.0 indicates a perfect positive linear association. In summarising this information 
verbally, most researchers would be able to report without difficulty, that Y is six times 
greater than X for all values of Mother than zero. Given this simplicity, it should not be 
difficult to see that the expression: 

Y=6X 
(5.1)  

conveys exactly the same information. This expression is thus a descriptive model of the 
relationship between X and Y in the observed data table. 

A modification of this simple idea is provided by the relationships between X, Y, W 
and Z in Table 5.1. The scattergrams of the relationships  



Table 5.1 Some linear relationships 

X Y Z W 

0 0 15 15.0 

1 6 21 19.75 

2 12 27 24.5 

3 18 33 29.25 

4 24 39 34.0 

5 30 45 38.75 

6 36 51 43.5 

7 42 57 48.25 

8 48 63 53.0 

9 54 69 57.75 

10 60 75 62.5 

11 66 81 67.25 

12 72 87 72.0 

 

Figure 5.1 Scattergram of six-times 
table data 
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between X and the three other variables (Figure 5.2) show that though all three 
relationships are linear, they are subtly different. The relationship between X and Y is as 
given by equation 5.1; that between X and Z is similar, but the line cuts the vertical axis at 
15 rather than 0. This produces a parallel line to XY which is 15 units farther up the Y 
axis. If the effect of this were removed, for example by subtracting 15 from every Z 
value, the new relationship would be identical to that between X and Y. As a  

 

Figure 5.2 Scattergrams of some other 
linear relationships 

result, equation 5.1 would apply. However, to indicate that when X=0, Z=15, a 
modification needs to be made to it: 

Z=15+6X 
(5.2) 

where the 15 represents the fact that the XZ line lies 15 units higher up the vertical axis of 
the scattergram than XY. This new component of the model is frequently termed a 
constant, or an intercept, to reflect that it adds a constant value to Z for different values of 
X, and also, because it marks the point where the line ‘intercepts’, or crosses, the vertical 
axis. 
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The third line illustrated in Figure 5.2 (relating X and W) represents a relationship 
which seems similar to that between XZ for low values of X, but becomes more like that 
between XY for higher values of X. This line is parallel to neither of the others and so its 
equation cannot be deduced immediately merely from a quick visual inspection of the 
raw data. The equation for this line (W=15+4.75X) has to be ‘estimated’ from the raw 
data. Some procedures of use for this task are introduced in Chapter 6. 

Linear relationships, such as the three illustrated in Figure 5.2, can be described 
algebraically by a general equation for a line. This takes the form: 

Y=a+βX 
(5.3) 

where, 
Y represents a ‘dependent’ variable, that is, a variable whose value depends on the model 

X represents an ‘independent’ variable, that is, a variable whose value is fixed outside the model 

a represents the value of the intercept 

β represents the value of the slope coefficient 

The exact relationship between X and Y depends on the values of the two unknown 
‘parameters’, the intercept and the slope coefficient. 

Equation 5.3 is of greatest use for describing relationships which are linear and 
additive and in which all the data points align exactly. However, this does not mean that 
the general model described above cannot also be used if some of the X and Y points 
deviate from a straight line, as illustrated in Figure 5.3. The effect of this situation is that 
no single linear equation will completely describe the data, as some deviation will always 
remain. However, it may be that one linear equation is considerably better than all the 
others and so could be used as a ‘best fit’ for the data. The level of inaccuracy arising 
from such a model may be so small as to make little difference to the eventual summary 
and interpretation of the data. (This important issue is considered in more detail in 
Chapter 6.)  
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Figure 5.3 Scattergram of non-
deterministic data 

5.3 OBSERVED AND THEORETICAL FREQUENCY 
DISTRIBUTIONS 

In a small and special data set such as Table 5.1, the descriptive model summarising the 
pattern between X and Y is relatively easy to see. However, in more complex examples 
some method of simplification may be needed. As with the histogram examples in 
Chapter 4, classification to exhaustive, mutually exclusive sets provides a way of 
simplifying the complexities of data without trivialising them. Here, such sets are termed 
‘observed frequencies’, because they correspond to the frequencies with which members 
of the chosen sets are observed in the surveyed data. 

Several different types of observed frequency distribution are likely to arise in 
histograms and stem-and-leaf plots of geographical data. The following are some 
common examples: 

1 A (roughly) symmetrical distribution which peaks in the middle (Figure 5.4(a)). 
2 A peaked distribution which may be skew towards one end (Figure 5.4(b)). 
3 A J- or reverse-J-shaped distribution (Figure 5.4(c)). 
4 A U-shaped distribution (Figure 5.4(d)). 
5 A uniform distribution with equal frequencies for each observed value (Figure 5.4(e)). 

It is possible to summarise the information in data sets distributed according to each of 
these shapes using standard summary measures. However, because of their sensitivity to 
extreme values, measures such as the mean and standard deviation are most effective 
when calculated on data which form symmetric curves (Figure 5.4(a)). 
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This does not imply that mean and standard deviation measures cannot be used with 
the other shapes. They may, so long as the frequencies being compared have the same 
shape and have similar amounts of scatter. This may be illustrated using the data in 
Figure 5.5, which show the number of times coffee was purchased by groups of 100 
Cardiff households in four stores (a Leo’s superstore, and supermarkets operated by 
Tesco, Kwiksave and Presto) over a 24-week period. The observed frequencies are 
roughly U-shaped, skew to the left, have mean levels of purchasing of approximately 3, 
and standard deviations of approximately 4. Thus, though the curves are not symmetric, it 
is still possible to indicate their similarities. 

Knowledge that the observed values of a variable or data set form a particular shape 
can be helpful because it allows their possible description using ‘theoretical’ frequency 
distributions. Many observed frequency distributions can be simulated using data which 
have been generated artificially. The processes which are involved here are described in 
more  

 

Figure 5.4 Observed frequency 
distributions 
Note: Vertical axis: observed 
frequencies Horizontal axis: histogram 
classes 
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detail in section 5.5. However, it is useful to note that many of the properties of data 
generated by these processes are known in great detail. As a result, if an observed 
frequency distribution can be approximated by an equivalent theoretical frequency 
distribution, its description may be considerably simplified. 

Many different types of theoretical frequency distribution exist (Ord 1972; Johnson 
and Kotz 1969, 1970a, b, 1972), some of which are of value to the geographer. Those 
which are likely to be of most immediate value are: the Normal, the Poisson, the binomial 
and the multinomial. Each of these may be used to approximate observed frequency 
distributions, allowing more detailed descriptive information to be obtained from the 
observed data. 

 

Figure 5.5 Observed purchasing of 
coffee 
Note: 1–4 Each line represents 
individual stores 

5.4 THE NORMAL DISTRIBUTION 

Figure 5.6 illustrates the classic shape of the Normal theoretical frequency distribution. 
This distribution, which is also termed the Gaussian, is useful for describing the 
properties of continuously-distributed data. It has been particularly important in the 
history of statistics because it exhibits a number of attractive and powerful distributional 
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properties. Moreover, it can be shown that under certain circumstances, many social and 
environmental phenomena tend to describe a Normal type of curve. However, symmetry 
and the characteristic bell-shape are only two of several properties which are exhibited by 
the Normal distribution. Other factors are also involved and, in practice, are rather more 
important. It is thus possible for symmetric, bell-shaped curves to be other than Normal. 

5.4.1 Characteristics of a Normal distribution 

A Normal distribution is described by an observed frequency distribution which 
possesses the following properties: symmetry about its mean; a peaked or ‘bell’ shape; 
identical values for measures of central tendency, and an identical pattern of scatter 
irrespective of the values of the mean or variance. This fourth property is particularly 
interesting because it  

 

Figure 5.6 The Normal distribution 

implies that the pattern of scatter under a Normal distribution will be the same 
irrespective of the summary measures. Specifically, 68 per cent (95 per cent and 99.7 per 
cent) of its observations will be distributed between the mean value and values located 1 
(2 and 3) standard deviation unit(s) either side of it. These patterns are summarised 
graphically in Figure 5.6. 

It is possible to show these patterns under different situations using data generated 
randomly from a variety of Normal distributions. Random numbers tables or computer 
packages such as MINITAB can be used for this task, though it should be noted that 
many random numbers generators are not totally random. This means that the patterns 
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they display will be approximately Normal rather than fully Normal. To illustrate the idea 
consider the data generated in MINITAB using the following commands: 
for variable 1: RANDOM 100 c1. 

for variable 2: RANDOM 1000 c2; 

  NORMAL 10 2. 

The former generates a series of 100 random numbers from a Normal distribution with 
mean of 0 and standard deviation of 1, and stores them in variable cl. (This type of 
distribution is the default in MINITAB and will always be used unless overruled by sub-
commands.) The latter generates a series of 1,000 random observations from a Normal 
distribution with mean 10 and standard deviation 2 and stores them in variable c2. 
(Notice the use of the semi-colon after c2, and the sub-command to override the default.) 

The observed frequency distributions of both variables are displayed in Figure 5.7. As 
both are generated from (approximately) Normal distributions, they should exhibit 
approximately Normal patterns of scatter, irrespective of the fact that the number of 
observations involved, and the summary measures, are different. Table 5.2 compares the 
expected number of observations within 1, 2 and 3 standard deviation units of the two 
means with the numbers observed for the two variables. The similarity between the 
observed and expected figures for both variables is striking, even allowing for sampling 
variability. This leads to the general conclusion that the key factors in distinguishing 
between Normal distributions are the values of their respective means and standard 
deviations (or variances). 

Table 5.2 Observed and expected numbers of 
observations 

Var 1(n=100) Var 2(n=1,000) Within distance 

obs exp obs exp 

1 SD 70 68 680 680 

2 SD 96 95 950 950 

3 SD 100 100 997 997 

 

Figure 5.7 Different Normal 
distributions 
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5.4.2 Standard Normal variates 

The random numbers generated by the default option in MINITAB (those with a mean of 
0 and a standard deviation of 1 are frequently termed standard Normal variates or Z 
scores. They are of interest because they may be used to transform a Normal variate with 
given mean and variance into a second Normal variate with different mean and variance, 
and to assess simple relationships between observations arising from a Normal 
distribution. Z scores are calculated by subtracting the observed mean from each raw 
observation and dividing the result by the observed standard deviation. 

5.4.3 Manipulating Normal variables 

The ability to transform one Normal variable into the units of a second is frequently 
valuable if the research design requires that the observations from different data sets be 
expressed in common units. This may arise in a variety of contexts and for a variety of 
reasons as, for example, in examination marking, where a bench-mark linked to age or 
ability range is required. The steps required to make this transformation are set out in 
Table 5.3 using the data for variable A. First, remove the effect of the original mean by 
subtracting it from each of the observations listed for variable A. This produces a series of 
‘differences’ which have a mean of zero. These are listed in Table 5.3 under the heading 
‘Step 1’. Second, divide the figures listed under ‘Step 1’ by the standard deviation of the 
original observations for variable A. This removes the effect of their original scatter. The 
new values are z scores and are listed in Table 5.3 under the heading ‘Step 2’. Third, 
multiply the z scores by the standard deviation required for the new variable, for example, 
2. These are listed in Table 5.3 under the heading ‘Step 3’. Fourth, add the mean value 
for the new variable, for example, 10, to the figures under ‘Step 3’. These new figures are 
the raw observations for variable B, a Normal variable with mean 10 and standard 
deviation 2. 

The ability to transform one Normal variable into a second suggests that the area 
under a Normal curve is organised systematically, linking together values of z and 
proportions of the data set. Thus, once we know that a variable is Normally distributed, 
we can automatically assume that 68 per 

Table 5.3 Transforming one normal variable into 
another 

  Var A Step 1 Step 2 Step 3 Step 4 

  13.4693 −0.41269 −0.28981 −0.57962 9.4204 

  13.9130 0.03098 0.02176 0.04352 10.0435 

  13.7557 −0.12625 −0.08866 −0.17732 9.8227 

  13.7356 −0.14635 −0.10278 −0.20555 9.7944 

  13.1781 −0.70389 −0.49431 −0.98861 9.0114 

  14.3512 0.46921 0.32950 0.65901 10.6590 

  13.7713 −0.11065 −0.07771 −0.15541 9.8446 

Introducing quantitative geography      100



  13.9860 0.10396 0.07301 0.14602 10.1460 

  13.0440 −0.83796 −0.58846 −1.17691 8.8231 

  13.1666 −0.71540 −0.50239 −1.00478 8.9952 

  12.4173 −1.46474 −1.02861 −2.05721 7.9428 

  11.1937 −2.68834 −1.88788 −3.77576 6.2242 

  13.9080 0.02597 0.01823 0.03647 10.0365 

  15.6039 1.72190 1.20920 2.41840 12.4184 

  13.1030 −0.77904 −0.54708 −1.09416 8.9058 

  16.4989 2.61689 1.83770 3.67540 13.6754 

  12.1754 −1.70656 −1.19843 −2.39686 7.6031 

  17.4954 3.61339 2.53749 5.07499 15.0750 

  14.4350 0.55300 0.38834 0.77669 10.7767 

  14.4410 0.55902 0.39257 0.78514 10.7851 

Mean: 14.1560 0.0 0.0 0.0 10.0 

SD: 1.5 1.5 0.0 2.0 2.0 

cent of its observations will lie in a range 1 standard deviation unit either side of the 
mean. By extension, it is possible to calculate z for any given proportion and, conversely, 
any proportion for any given value of z. Table 5.4 lists the area under the Normal curve. 

Table 5.4 Percentage areas under the Normal curve 
between mean value and given values of z 

Z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 0.0 4.0 7.9 11.8 15.5 19.2 22.6 25.8 28.8 31.6 

1 34.1 36.4 38.5 40.3 41.9 43.3 44.5 45.5 46.4 47.1 

2 47.7 48.2 48.6 48.9 49.2 49.4 49.5 49.7 49.7 49.8 

3 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 

Note: For z=1.3, the area between the mean and z is 40.3%. To calculate the value either side of the 
mean, double the values in the table. For example, for z=1 either side of the mean, the area under 
the Normal curve is 68.2% for different values of z and for different proportions. 

The information in Table 5.4 applies to any Normal distribution and, consequently, is 
helpful in answering some simple questions about relationships between observed data. 
For example, if a Normal distribution has mean 100 and standard deviation 15, we know 
automatically that 68 per cent of the observations will lie between 85 and 115, 95 per 
cent will lie between 70 and 130, and 99.7 per cent will lie between 55 and 145. Values 
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less than 55 and greater than 145 are generated very rarely from this Normal distribution, 
suggesting a way of checking for odd values in the data. 

5.4.4 Non-linear transformations 

Because of the simplicity of the Normal distribution many researchers tend to regard it as 
the key tool in describing data. Consequently, distributions which are non-Normal in 
shape are often transformed from their original units of measurement into alternative 
units, in the hope that these will be more Normal and consequently easier to describe. 
This approach is illustrated by the data in Figure 5.8 which are skew to the left, that is, 
most of the observations are smaller than the mean. Transformations which may be used 
with this sort of distribution are the square root and the natural logarithmic. These may be 
organised according to the strength of their influence on the original observations into a 
so-called ‘ladder of powers’ (Jones 1984). These, starting with the weakest, are: raw 
observations; square root; logarithmic; reciprocal root; reciprocal, and reciprocal square 
root. (Transformations for right skew are also available: square, cube etc.) The influences 
of some of these transformations on the skew data are summarised in Figure 5.9. 

It is important to realise that not all skew distributions may be handled  

 

Figure 5.8 skew data 

 

Figure 5.9 Effect of transformations on 
skew data 
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in this way. Frequently, the nature of the data, and the scale used in measurement, mean 
that a transformation is not appropriate. This is particularly so if the process of 
transformation produces a set of readings which are uninterpretable in terms of the 
physical or social processes being represented. Furthermore, it is rarely helpful if the data 
are categorical, for example, sex or mode of transport. The limited numerical structure of 
such data makes transformations impractical. 

5.5 THE POISSON DISTRIBUTION 

Many geographical variables are measured as nominal classifications or ordinal lists. As 
complex numerical operations are restricted with data measured on either of these scales 
(see the discussion in Chapter 2), it is often impractical to use the Normal curve to 
approximate such data. A more satisfactory approach is to use the Poisson, which 
Plackett (1974:1) suggests ‘stands in much the same relation to the analysis of categorical 
data as the Normal distribution does in relation to the analysis of measurements made on 
a continuous scale’. The Poisson is of particular use whenever the observations forming 
the data set have the following characteristics: they are counts; they are not restricted in 
their range of values (that is, they may range from zero to positive infinity); they occur 
independently of each other so that the occurrence of one observation does not affect the 
occurrence of any other; they occur irregularly without exhibiting a predetermined 
pattern; they occur at a constant average frequency; and they are not restricted to a given 
number prior to analysis. 

To illustrate its use, consider the following observed frequency distributions which 
show the classification patterns of two different types of count: the distribution of serious 
accidents over a thirty-week period (Table 5.5), and the distribution of flooding on a river 
over a period of fifty years (Table 5.6). Each table also lists a series of expected counts. 
These are the number of events expected in each measurement category assuming that the 
variables are from a Poisson distribution. Each of these has been generated from the 
following formula: 

 
(5.4) 

where, 
r represents the classes of accidents and floods 

pr represents the proportion of the data which takes the value r 

µ represents the mean value of the observations 

r! is a term used to represent the product of r factorials (described in section 5.8.3) 

e is a mathematical constant (2.718) 

This is the characteristic formula for any Poisson distribution. 
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Table 5.5 Poisson distribution: distribution of 
serious accidents over a 30-week period 

Accidents per week (r) Observed Theoretical 

0 6 7.6 

1 12 10.4 

2 8 7.2 

3 3 3.3 

4 1 1.2 

A simple inspection of the observed and expected values in Tables 5.5 and 5.6 shows that 
there is considerable agreement between them. This suggests that the Poisson distribution 
provides a reasonable description of the two series of observations. However, the Poisson 
distribution associated with Table 5.5 is not the same as that associated with Table 5.6. 
They differ because the values of the means of the two observed distributions are 
different (1.37 for Table 5.5 and 0.34 for Table 5.6). 

Unlike the Normal distribution, which is fully described from knowledge of its mean 
and variance, the Poisson is described entirely from its mean.  

Table 5.6 Poisson distribution: flooding events over 
50 years 

Events per year (r) Observed Theoretical 

0 35 37 

1 10 10 

2 4 2 

3 1 1 

This does not imply that variances cannot be calculated, they can. However, the Poisson 
possesses the special property that its mean is always numerically equal to its variance. 
The data in Tables 5.5 and 5.6 do not display this property exactly because of sampling 
variability. Consequently, both Poisson distributions will only provide approximate 
descriptions of their observed patterns. 

Since the shape of a Poisson distribution depends entirely on the value of its mean, it 
is possible to generate a variety of Poisson distributions each based on a different mean 
value. However, a number of general results for Poisson distributions should be noted 
(these are based on data sets containing fifty observations): 

1 If the mean value is less than 1, the Poisson will describe a reverse-J shape similar to 
Figure 5.4(c). 

2 If the mean is between 1 and 4, the Poisson will be hump-backed in shape, but skew to 
the left (Figure 5.4(b)). 
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3 If the mean is greater than 4, the Poisson will be roughly symmetrical and hump-backed 
(Figure 5.4(a)). Poisson distributions which are shaped in this way are very similar to 
Normal distributions. It is thus possible to describe their structure as a special case of 
the Normal distribution in which the summary variance measure is equal to the mean. 

These results are summarised graphically in Figure 5.10. 
The traditional role of the Poisson is to describe patterns among so-called rare events, 

for example, natural hazards, strikes, or accidents. In geography, considerable attention 
has been paid to using the Poisson to describe patterns among point data (see Chapter 2). 
A typical example is in settlement studies and locational analysis where a quadrat or grid 
is placed over a map, and the number of settlements (or some other phenomenon) is 
counted. Modifications of the basic Poisson model allow different types of settlement 
process to be investigated. For further details, see King (1969), Cliff and Ord (1973), or 
Haggett et al. (1977). 

 

Figure 5.10 Various Poisson 
distributions 

5.6 THE BINOMIAL AND MULTINOMIAL DISTRIBUTIONS 

The Poisson distribution provides a powerful descriptive tool for analysing counted data. 
However, two conditions may make its use unreasonable. First, the researchers may 
decide that the selection of observations has to be limited to a fixed number, perhaps to 
meet cost or labour constraints. Second, the research design chosen may require the 
simultaneous measurement of the frequency distributions of more than one type of event. 

The first condition is frequently met as resources are nearly always limited in research 
and operational decisions have to be made about how much data may be collected and 
analysed. By fixing the size of the measurement sequence to a specific length, the 
researchers violate one of the key assumptions of the Poisson. The second problem 
generalises the research interests, but again violates the Poisson, which is concerned with 
the frequency distribution of one variable only. In order to accommodate these new 
requirements, some alternative discrete distributions should be used instead. The two 
which are of most immediate value for these problems are the binomial, which is 
appropriate when two distinct types of observation are to be considered, and the 
multinomial, for problems involving more than two types of observation. (For details of 
the multinomial, see Dobson 1983.) 
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In order to make use of both distributions, the data set must exhibit the following 
features. First, it must be made up of a number of sets or subgroups of observations 
which are of fixed length. Second, the observations in each group must occur 
independently of each other, be irregular in value, and occur at a constant average rate. 
Third, they must be classified into two (binomial) or more (multinomial) exhaustive and 
mutually exclusive categories (for example, measurements recorded as 1 represent the 
presence of the event, whereas those recorded as 0 represent its absence). 

The distribution of the observed proportions of events is displayed in Figure 5.11. To 
describe this using the binomial or multinomial theoretical distributions, an equivalent 
series of expected proportions needs to be generated. For a two-event problem, this may 
be done using the characteristic equation for the binomial: 

 
(5.5) 

where, 
p refers to the average proportion of events of type r in the data set 

1−p refers to the average proportion of events of type n−r in the data set 

pr refers to the proportion of groups in the data set which would be expected to contain r events 
if they were binomially distributed 

 

Figure 5.11 Distribution of observed 
proportions 

To illustrate the basic idea, consider the data in Table 5.7 which reflect the observed 
results of an hypothetical survey conducted to gauge public opinion on the future 
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building of nuclear power stations in Britain. Assume that the data set was collected from 
across the country by a series of interviewers, each collecting twenty interviews. The 
table shows the observed proportion of responses in favour of future building across all 
the fixed length groups of interviews. The observed data show that 18 per cent of the 
groups contain no favourable responses, 26 per cent contain one favourable response, 24 
per cent contain two, and so on. The average proportion of favourable responses from all 
groups (p) is approximately 0.1 (corresponding to 97 positive replies out of 1,000 
interviews). 

Table 5.7 Binomial distribution: proportion in 
favour of nuclear power stations 

Proportion Observed % Theoretical % 

0 18 12 

1 26 28 

2 24 30 

3 20 20 

4 6 6 

5 6 4 

The equivalent proportions which would be expected were the observed proportions to 
follow a binomial distribution are also listed in Table 5.7. These are calculated as 
follows: for groups of twenty interviews containing five positive responses the expected 
binomial proportion is calculated by substituting 20 for n, 5 for r, 0.1 for p and 0.9 for 
1−p in the binomial equation. Thus, in a binomial distribution, 4 per cent of the groups 
containing twenty observations would have five favourable responses and fifteen 
unfavourable responses. This seems to be very close to the observed proportions. The fit 
of the binomial to the other groups also appears to be reasonable, which suggests that a 
suitable way of describing the observed data is to say that they are binomial in form with 
an overall proportion in favour of nuclear power of one in ten (p=0.1). 

Unlike the Poisson, the mean and variance of a binomial variable are not assumed to 
be equal. Both may be calculated directly from the data using modifications of the 
formulae for grouped data which were presented in Chapter 4. However, a theoretical 
short cut is also available. Using this, the mean may be calculated directly from the 
expression: 

mean=np   

and the variance and standard deviation from the expression: 

 
  

(where q=1−p). Thus for the data in Table 5.7, the mean is calculated as 20×0.1=2, the 
variance is 20×0.1×0.9=1.8, and the standard deviation is 1.34. 
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The binomial distribution is fully described once the size of the fixed length groups 
and the overall proportion in favour are known. Its shape, however, depends on their 
actual values. Figure 5.12 presents a number of different binomial distributions based on 
fifty randomly-generated samples whose shapes reflect the relative sizes of n and p.  

 

Figure 5.12 Various binomial 
distributions 

5.7 RELAXING SOME ASSUMPTIONS AND GENERALISING 

The theoretical frequency distributions presented in the previous sections may be 
considered a ‘basic set’, that is, a small group of powerful, general distributions. Whilst 
they are of considerable value in approximating many types of data, it is quite likely that 
there will be situations where their assumptions will be too restrictive. A variety of 
modified theoretical distributions can be produced by relaxing some of these 
assumptions. These include the negative binomial which, in spite of its name, is a 
modification of the Poisson, and the beta-binomial, which is a modification of the 
binomial. 

In addition to these modified distributions, a variety of generalised distributions also 
exists which can be shown to be related to members of the basic set. The value of these 
will become clearer in the context of hypothesis testing, which is introduced in Chapter 6, 
and in Part II. These include the chi-square distribution, the t-distribution, and the F 
distribution. This section presents some outline information on these and the two 
modified distributions listed above. 

5.7.1 The negative binomial distribution 

The negative binomial distribution is generated by modifying one of the assumptions of 
the Poisson distribution. In a Poisson distribution, the mean value at which events occur 
is assumed to be a constant. Each element in the data set is thus assumed to have been 
generated at this constant mean rate. However, in the negative binomial, this assumption 
is relaxed by assuming that parts of the data set may have been generated at different 
mean rates of occurrence. 

One important use of this sort of distribution occurs in market research where retailers 
are interested in describing the purchasing patterns of households over time. It can be 
shown that the purchasing behaviour of an individual household through time will follow 
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a Poisson distribution (Ehrenberg 1972; Sichel 1982), but that different households will 
purchase products at different mean rates. To describe a group of households using the 
same Poisson distribution will thus result in a poor fit between observed and expected 
values and consequently a poor description of the data. A negative binomial distribution 
offers the possibility of a much better description and fit simply because it can make 
allowance for the different mean rates of purchasing. 

A good example of the use of the negative binomial in a geographical context is 
provided by Dunn et al. (1983) and Wrigley and Dunn (1984a) who used it to describe 
the patterns of shop visits in the Cardiff Consumer Survey. They found that the negative 
binomial applied to household purchasing and travel data provided reasonably acceptable 
descriptions of repetitive brand purchasing and store patronage. And in addition, the 
descriptive model was able to differentiate between purchasing behaviour at central 
stores with city-wide market areas, and stores located in peripheral sub-areas of the city. 

The negative binomial has also been widely used by geographers and other locational 
analysts to study assumed contagious processes, for example, the spread of a disease, or 
the growth of a settlement pattern over virgin territory. Haggett et al. (1977) discuss at 
length some of the problems encountered in applying this sort of distribution to grid-
square data gathered in Japan (see also Cliff and Ord 1973). They show that a family of 
Poisson-based models, including the negative binomial, may be used to approximate the 
settlement changes and proximity relationships represented in the grid squares, and can 
be developed to accommodate different mean rates of change within the spatial system. 

5.7.2 The beta-binomial distribution 

The beta-binomial distribution is generated by modifying one of the assumptions of the 
binomial distribution. Once again the assumption which is relaxed concerns the average 
rate of occurrence of the event being studied. The binomial assumes that the events occur 
independently, irregularly and with constant mean rate within groups of observations of 
fixed length. The beta-binomial relaxes this to allow variable mean rates of occurrence to 
be described. A geographical example of its use is given in Dunn and Wrigley (1985), in 
which an attempt is made to describe the patterns of patronage of a series of competing 
shopping centres in Cardiff. The extension of this distribution to handle variable rates of 
patronage in heterogeneous data sets (that is, data sets in which consumers with identical 
attributes such as age or mobility behave differently) and multiway choices is currently a 
major research topic. Some of the issues are reviewed in Uncles (1988). 

5.7.3 The chi-square distribution 

The z score, or standard Normal variate, was presented in section 5.4 to illustrate some of 
the attractive properties of the Normal distribution. It may also be used to describe a 
second distribution based on a series of independently distributed standard Normal 
variables. This distribution is termed the chi-square distribution; a skew, continuous 
distribution whose values range from zero to positive infinity, and whose shape depends 
on the number of independent standard Normal variates ‘degrees of freedom’ involved 
(Figure 5.13). The value of this distribution for assessing ideas about relationships in data 
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sets will become clearer in Part II, where it provides the bench-mark against which 
models for categorical and continuous data may be compared. 

 

Figure 5.13 Various chi-square 
distributions 

5.7.4 The t-distribution 

The t-distribution is a continuous distribution which, like chi-square, is primarily used in 
the assessment of hypotheses. It is formed by the mixture of Normal and chi-square 
distributions, and is most valuable when the number of observations in the data set is 
considered to be small. The shape of the t-distribution becomes increasingly more 
Normal as the number of degrees of freedom increases. This relationship has meant that t 
is most frequently used to assess hypotheses about Normal variables whose variance is 
not known (see Chapter 6). 

5.7.5 The F distribution 

Like chi-square and t, the F distribution is a continuous distribution most frequently 
associated with assessing hypotheses. It is defined as the ratio of two chi-square 
variables, each divided by the number of independent terms associated with them. It is 
most widely used in studies where the variability in a data set can be decomposed into 
distinct subsets attributable to clearly-defined sources. The purpose of this is to assess the 
relative influence of each of these sources on the overall information in the data set. This 
distribution will be considered in more detail in Part II, in particular in connection with 
the analysis of variance and regression. 

5.7.6 Interrelated distributions 

The fact that so many of the theoretical distributions appear to describe similar shapes 
under suitable conditions suggests that they may substitute for each other. The t and chi-
square distributions provide useful alternatives to the Normal and can be suitable ways of 
assessing if a variable is indeed Normally distributed. However, it can also be shown that 
the Poisson, binomial and Normal distributions mirror each other. If the value of p in a 
binomial distribution is so small that 1−p is approximately 1, then the binomial mean and 
variance will be almost identical. As this is a property of the Poisson, it follows that the 
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Poisson may be used to represent binomially-distributed data of this form. Similarly, if 
the binomial is symmetric in shape, it can prove acceptable to use the characteristics of 
the Normal distribution to describe binomial data. The approximation of the two 
distributions improves with the size of the data set. 

This leads to a major problem. As competing descriptions of the raw data using 
different distributions are possible, it is frequently difficult to determine which 
description is correct. To tackle this problem it is necessary to investigate the potential 
processes underlying the data. 

5.8 PROBABILITY DISTRIBUTIONS 

5.8.1 Probability and theoretical frequency distributions 

The previous three sections have introduced the idea that it is possible to describe 
observed frequency distributions using a variety of theoretical frequency distributions. 
These were shown to vary in shape and form, and to be appropriate for a variety of types 
of data and ranges of numbers. As these theoretical distributions are interrelated, it is 
reasonable to assume that they may share some common basis, that is, that they may all 
arise in a similar, if not identical, way. 

In order to understand the basis of these theoretical frequency distributions it is 
necessary to consider the idea of probability and how it may refer to a single observation 
in a data set. Probabilities are used to provide measures of the chances of occurrence of 
particular random, or approximately random, events. The term ‘approximately random’ is 
used to reflect the fact that ‘true randomness is only an abstract concept’ (Ehrenberg 
1982:75), and that it is not possible to be absolutely certain that a specific observation is 
random. This aside, the main use of probabilities is to calculate the chances of a 
particular type of event occurring if it were essentially random. This measure will depend 
on the nature of the data, the type of study being conducted, and the number of 
observations in the data set. It will also depend on the particular probability process 
which is being considered. 

Each of the theoretical frequency distributions presented previously depends on the 
existence of an underlying probability process. The Poisson is generated by a Poisson 
probability process; the binomial, by a binomial probability process, and so on. Each 
theoretical distribution summarises the shape that a set of data would exhibit if it were 
generated by a particular process. It is thus possible to use the idea of a probability 
process to provide a possible explanation for the form of any observed data which may be 
described by a theoretical frequency distribution. 

To illustrate the relationship between a theoretical distribution and a probability 
process consider the case of the Normal distribution. This exhibits some particularly 
simple descriptive properties, for example, that 95 per cent of all observed items lie 
within 2 standard deviations of the mean. If the theoretical frequency distribution 
represents the shape of any series of n independent Normal events, then it can be argued 
that the probability of any individual observation being within 2 standard deviations of its 
mean value, whatever that happens to be, is p=0.95. In effect, the theoretical distribution 

Descriptive models and geographical data         111



summarises the effect of the process in aggregate; the probability process summarises the 
relative probabilities of any event generated by that process actually occurring. 

5.8.2 The Normal process: Central Limit Theorem 

The characteristics of a Normal distribution are automatically produced whenever 
observations in a data set are independent of each of other, produce additive effects, are 
irregular in numerical value and can range from minus infinity to plus infinity. It can be 
shown that in aggregate, these conditions always lead to the classical Normal shape. The 
process which ensures that this occurs whenever the generating conditions are correct is 
termed the Central Limit Theorem. This provides a potential mechanism for explaining 
the structure of many different types of process, including those which are themselves 
non-Normal (see section 5.7.6). Probabilities are generated from a Normal process 
according to the following characteristic formula: 

 (5.6) 

where, 
e represents the base of natural logarithms (2.718) 

x represents each observation 

µ represents the mean value of the data 

σ2 represents the variance 

The two terms µ and σ2 characterise each Normal distribution, a feature which was 
emphasised in section 5.4. Such terms will be referred to in Part II as canonical 
parameters. 

5.8.3 Some other processes 

Other probability processes are produced if the conditions underlying the Central Limit 
Theorem are not met. For example, the conditions required for the generation of a 
Poisson process are as follows. First, the observations must be counts which are 
independent and random. Whereas the Normal process expects data to range from 
negative to positive infinity, Poisson data are generally restricted to values of zero or 
greater. Second, the size of the data set must not be fixed in advance. Third, the 
observations must occur with constant probability. Similarly, the binomial process 
applies if the observations can only take on two distinct values (A and B). It is generated 
if each outcome can be shown to occur irregularly, and is an independent event which is 
based on a stable probability of occurrence. 
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5.9 SUMMARY 

The ability to describe patterns and relationships between geographical phenomena 
algebraically offers researchers a considerably more powerful descriptive tool than the 
simple summary measures of Chapter 4. Two types of descriptive model were presented 
here. First, models based on linear additive relationships. Second, models based on 
theoretical frequency distributions. Both of these provide ways of summarising patterns 
in terms of simplified algebra, allowing similarities to be emphasised, and oddities to be 
illustrated. Apart from the trivial cases where the relationship is exactly linear, or where 
the data are generated by a specific probability process, all models approximate the 
observed data, that is, they account for as much of the variability as is possible without 
necessarily accounting for it all. 

The problem with this is that the variability omitted may actually be important, 
leading to potentially serious misinterpretation if ignored. As a result, some mechanism 
needs to be developed which can accommodate model inaccuracy explicitly, that is, 
without relegating the departures from the model to the status of by-products. The 
handling of this problem varies greatly, depending on which type of model is being used. 
However, because many probability processes and theoretical frequency distributions are 
interrelated, a consistent approach may be developed which accommodates most of the 
problems likely to be encountered, at least in common analyses. 

This argument is taken up in more detail in Part II. However, before proceeding to 
this, it is necessary to review one final component of data analysis: generalising the 
results from the confines of the specific study to the wider world. Two approaches offer 
help here. One develops the data reduction procedures suggested by Ehrenberg and 
introduced in Chapter 4. The other makes use of statistical inference, and the somewhat 
amazing finding that there is frequently sufficient information in a single observed data 
set both to describe its relationships and indicate its relevance to the wider world. 

5.10 SOME FURTHER NOTES ON PROBABILITY 

The value of probability-based descriptive models is that they provide a particularly 
useful link between the simple summary measures considered in Chapter 4 and the 
inferential statistical procedures which follow in Chapters 6–10. There is a clear parallel 
between probability and statistical inference. In any situation where one is concerned 
with investigating the structure of collected data, attention can be focused on either the 
possibility that the structure in the data set arises by chance (a probability question), or 
assessing the chances that a specific type of data could arise when their probabilities are 
not known (a statistical inference question). Chatfield (1983:37–8) attempts to summarise 
this as follows: 

The duality between probability and statistics can be expressed in the 
following way. In both subjects the first step in solving the problem is to 
set up a mathematical model for the physical situation which may involve 
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one or more [terms]…If the [terms] of the model are known, given or 
established from past history then we have a probability problem and can 
deduce the…[structure of the data]…from the model. However if the 
[terms] are unknown and have to be estimated from the available data then 
we have a statistical problem. 

Inferential statistics, especially classical theory, is based on the properties of 
probabilities. Many of the most important results which were used to develop the 
generalised family of linear models were based on probability theory. 

The classic description of probability theory is based on the so-called frequentist 
argument (see, for example, Silvey 1975). This postulates that if an event is true its 
probability will stabilise in value if sufficient information is collected. For example, if 
sufficient throws are made of an unbiased coin, the proportion of heads and tails observed 
will be roughly equal. The logic of frequentism is based on three general rules: 

1 the number of possible outcomes (heads or tails) is clearly defined and limited in 
number; 

2 the coin is not ‘loaded’, for example by not having two heads or tails, or an inbuilt 
tendency to favour one outcome; 

3 each throw of the coin is independent of any other throw. This means that the outcome 
of one throw does not affect the outcome of any other throw. 

If these hold, then in the long run, the percentage of heads and tails will be approximately 
50 per cent and the respective probabilities approximately 0.5. 

The coin-tossing example characterises the principal ideas in a simple probability 
problem. First, there is a variety of possible outcomes, but which will occur on a given 
occasion is not known. Second, the range of possible outcomes is known with freak 
events such as the coin landing on its edge being discounted. Third, the mechanism used 
with each toss of the coin is assumed to be the same. In the language of statistics, a single 
toss is called an ‘experiment’, the two possible outcomes, ‘sample points’, and the set of 
possible outcomes, the ‘sample space’. In order to apply this form of logic to an 
alternative problem therefore, researchers need to clarify all three of these features. 

5.10.1 Permutations and combinations 

The mathematics of permutations and combinations may be used to assess the structure 
of the sample space and the character of each of the sample points. The number of ways 
in which specific types of event, r, can be selected from a given number of items, n, can 
be expressed algebraically as: 

 (5.7) 

where 
r represents the number of events of given type 

n represents the overall number of events 
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! is a symbol representing a factorial structure (n!=n (n−1) (n− 2)…) 

To illustrate this let n=5, r=3 and the object is to see how many combinations of r=3 can 
occur in sequences of n=5 items: 

 (5.8) 

In this equation no attempt is made to assess the order of the selection of the r=3 items. If 
the r items of n were the letters a–e, then the ten combinations of any three letters would 
be: abc, abd, abe, acd, ace, ade, bcd, bce, bde and cde. If order is important, we need to 
calculate the number of permutations of size r available in any sequence of size n. The 
algebra for permutations is: 

 
(5.9) 

which, for n=5, r=3 is: 

 
(5.10) 

yielding the following: 
abc bac cab dab eab abd bad cad dac eac abe 

bae cae dae ead acb bca cba dba eba acd bcd 

cdb dbc ebc ace bce cbe dbe ebd adb bda cda 

dca eca adc bdc cdb dcb ecb ade bde cde dce 

ecd aeb bea cea dea eda aec bec ceb deb edb 

aed bed ced dec edc.             

Combinations such as abc, bca, and cab are identical, consisting of different 
arrangements of the same letters. However, they are different permutations. Each 
permutation or combination represents a single sample point; collectively all 
permutations or combinations represent the sample space. As a result, the probabilities 
associated with obtaining any single combination or permutation of size r=3 when n=5 
are 0.1 (combinations) and 0.016 (permutations). In other words, these probabilities 
measure the relative chances of any particular event, or type of event, occurring 
compared with the total number which could occur. 

5.10.2 Types of event 

Two types of event may be considered: mutually exclusive events, and non-mutually 
exclusive events. In the former, if A and B are two possible outcomes, mutual exclusivity 
implies that if A occurs then B cannot, and vice versa. The latter case covers a wider 
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range of types of event. For example, A and B occurring together, A and B being 
independent of each other, and A and B being dependent on each other in some way. 

Models of independence and dependence represent two types of conditional 
probability, that is, probability statements which presume that certain things happen. 
Thus if one is interested in knowing the numbers of combinations between any two letters 
once the letter A has been selected, the problem focuses on only those events in the 
sample space containing A. In other words, the probability is conditional on A having 
been selected. This amounts to restricting the sample space from ten events to six in the 
example given previously. If two events are independent, it follows that the fact that A is 
selected does not influence the selection of B. 

5.10.3 Other bases for inference 

The frequentist approach to probability is particularly important in developing a basis for 
inferential statistics but it is not the only such basis available. An alternative probability 
approach, termed Bayesian analysis, makes use of so-called subjective probabilities. In 
this, prior information or existing knowledge is used to estimate a series of so-called prior 
probabilities; probabilities which represent what the researchers think might happen. 
After the experiment, these priors are modified by experience into posterior probabilities; 
probabilities based on what actually happened. The purpose of the approach is to 
capitalise on accumulated knowledge. However, though mathematically unflawed, there 
is considerable argument about how to calibrate the prior terms in the first place. The 
dispute is currently unresolved. 

An entirely different inferential system also exists. This is termed likelihood inference 
and is discussed in detail in, among others, Edwards (1972), Sprott (1973), Silvey (1975) 
and Pickles (1986). The purpose of this procedure is to base inference firmly on the 
information contained in the observed data without appealing to any hypothetical long 
run. As the possible sources which could have generated these data are limited, it is 
argued that by maximising, in some way, the information in the data, the characteristics 
of the source become more evident. This type of inference is used extensively in Part II, 
and is introduced in Chapter 6. 
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6  
STATISTICAL INFERENCE 

6.1 INTRODUCTION 

The aim of the previous chapters has been to describe and summarise patterns in single 
sets of data. Until now, we have assumed that these patterns are specific to those data 
sets. However, it is possible that certain aspects may be more general and might emerge 
again if other data sets were collected from the same geographical individual. This 
tendency for data to possess both common and idiosyncratic patterns is important in 
statistics because it provides a means of studying large and complex ‘populations’ 
without enumerating all of their characteristics. This process is termed ‘statistical 
inference’, and is the focus of this chapter. 

6.2 STATISTICAL TERMINOLOGY 

The terms ‘population’, ‘parameter’, ‘sample’, ‘statistic’, and ‘inference’ have specific 
meanings when applied statistically. The following are some typical definitions of each 
term: 

1 Population: a well-defined collection of observations, objects or events which have one 
or more characteristic properties in common. 

2 Parameter: a numerical measure which describes some of the properties of the 
population. 

3 Sample: a representative subset of a population which is often used in analysis as a 
proxy or substitute for it. 

4 Statistic: a numerical measure which describes some of the properties of a sample. 
5 Inference: the process of estimating the properties of population parameters from 

sample statistics to within predictable levels of accuracy. 

The following subsections expand on these definitions in greater detail. 

6.2.1 Population and parameters 

In data analysis, the term ‘population’ is used to refer to any collection of objects, 
observations or events which share some common, measurable characteristic(s), and 
which is to be used as the focus of study. For example, in an investigation of the UK 
higher education system the total number of students enrolled on courses could be used to 
define the population for the study. Similarly, market researchers may define a population 
using location and the socio-economic status of consumers in order to target an 
advertising campaign designed to sell specialised services. This population would 



exclude consumers living outside the chosen areas as well as those within the areas who 
were in different socio-economic groupings from those required. The identification of a 
population is therefore a classification problem similar in nature to those introduced 
earlier in Chapter 3. 

As a result, each member of a population exhibits the same defining characteristic(s); 
that is, all members are students or are residents in the target area. However, this does not 
mean that these members are identical. In the educational population presented above the 
defining characteristic for membership is enrolment on a course of higher education. 
Though all members possess this characteristic, they may differ in many key ways. For 
example, they may differ in age and sex, be taking different types of course (first degrees, 
higher degrees, diplomas etc.) in a variety of different subjects, and be following different 
types of study (full time, part-time, sandwich courses). These differences may be 
measured and recorded numerically as ‘variables’, i.e., a selection of measurements 
which illustrate the range or the variability of a specific characteristic (e.g., age) within 
the population. 

Many populations are numerically large. For example, the national population of Great 
Britain as measured by the 1981 Census is about 54 million people. Similarly, the 
population of persons unemployed during 1986 defined by official sources is about 3 
million. As a result of this, it is impractical to attempt to describe the variables present in 
such populations person by person. A more useful approach is to calculate a set of 
summary measures such as the mean and variance (or any of the other measures 
described in Chapter 4) and use these instead as proxies for the population. When 
calculated on population variables, such summary measures are termed ‘parameters’. 

6.2.2 Samples and statistics 

The magnitude of a population often raises a second difficulty: it is frequently too large 
to be studied in its entirety. This is true even for the calculation of parameters, most of 
which tend to be based on the manipulation of considerable quantities of data. 
Accordingly, unless the project requires information relevant to each specific member of 
the population, a more tractable strategy is to select a representative subset of it which 
may be analysed instead. Such a subset is termed a ‘sample’. 

Samples are widely used in social and environmental research to provide the data 
needed to study social or environmental populations. For example, the voting behaviour 
of the British electorate is frequently gauged using opinion polls of the voters in a small 
number of constituencies located around the country. These may be chosen to include 
urban and rural constituencies, northern and southern locations, Conservative and Labour 
areas, and so on. Similarly, the short-term variability in grocery prices is frequently 
gauged by pricing a selection of groceries in a hypothetical, ‘typical’ shopping basket on 
the same day each week in a number of different stores within a city or around the 
country (Guy and O’Brien 1983; O’Brien and Guy 1985). The same idea also applies to 
research problems in physical geography. For example, Anderson (1977) and Anderson 
and Cox (1986) show that the pattern of movement on a hillside may be gauged over time 
by comparing changes in the relative positions of a small number of pegs which have 
been hammered into it to act as indicators of movement. Collectively, the pegs act as a 
representative sample of sites on the hillside which could have been chosen for the study. 
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By focusing on them, information on movement across the whole hillside may be 
obtained without the need for more detailed monitoring. 

As with population variables, the defining characteristics associated with sample 
members will not be identical but will vary. This means that some attempt must be made 
to describe their variability. This may be done in exactly the same way as for populations 
by the calculation of summary measures such as the sample mean and variance. To 
distinguish these summary measures from population parameters, sample summary 
measures are termed ‘statistics’. 

6.2.3 Inference, estimation and confidence 

The purpose of obtaining a sample and describing it in detail is to extrapolate the patterns 
or relationships which are found in the sample on to the population. This process is 
termed ‘inference’. Menges (1973:3) suggests the following rather more formal 
definition: ‘inference is the reduction of uncertainty by means of statistical experiment 
and observation’. The uncertainty arises because we do not know about the population in 
any detail, our only information being about the sample. By applying a series of statistical 
procedures, this uncertainty may be reduced, but not eliminated. A typical example is the 
calculation of the population mean. As this is generally not known, it is common to 
‘estimate’ it using sample data. The use of the term ‘estimate’ implies that the sample 
value may not be accurate, indeed, it may be wildly inaccurate. Unfortunately, without a 
full enumeration of the population it is not possible to be certain that the estimate is 
accurate. However, this does not mean that it is impossible to assess its accuracy. So long 
as the sample has been drawn in an appropriate way researchers are usually able to assess 
the accuracy of the estimate to within certain levels of confidence. The justification for 
this being that, under certain circumstances, it can be shown that sample information will 
behave in consistent, reproducible ways with respect to the population; ways which allow 
general assessments of accuracy to be made. 

The quality of inference depends on how adequately the sample represents the 
population. If the sample is some sort of microcosm, a population in miniature, inference 
is likely to be reasonably accurate. If, however, the sample is wholly arbitrary, or has 
been gathered together without respect for known features of the population, inference is 
likely to be of limited value. However, having said this, it is important to realise that the 
sample cannot fully reproduce the characteristics of the population. This is not altogether 
surprising given the difference in size between the two, the limitation of the sample to 
chosen locations, and the possibility that the sample will possess wholly idiosyncratic 
information. At best, all that the researchers may hope for is that the inferences are as 
good as may be obtained under the circumstances. What factors help the researchers to 
assess the accuracy of these inferences? 

6.3 OBTAINING SAMPLES AND ASSESSING ACCURACY 
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6.3.1 Defining the population to be sampled 

The first factor which helps with this task is to ensure that the sample is as representative 
of the population as is possible. This means it should exhibit the key features of the 
population which are already known to the researchers. However, in order to assess this, 
the researchers clearly need to have access to some information on the population, for 
example, on its overall magnitude and the characteristics of its members. Unfortunately, 
this sort of information is rarely available as populations are usually too large and 
extensive to document in their entirety. The task of creating a full list of population 
members, if one does not exist already, is also rarely feasible, as the effort and expense 
involved can be considerable. For example, the 1981 Census required five years of 
detailed planning, an administrative staff in excess of 100,000 people and a budget of 
nearly £50 million in order to generate the full listing of the national population. This sort 
of expenditure and effort limits the frequency of the exercise to once every decade, 
suggesting that for any given time other than Census night, the characteristics of the 
population are unlikely to be understood in full detail. The practical issue is clear: 
inference operates in the face of uncertainty, both over the state of the sample, and of the 
population it is hopefully going to represent. 

There are a number of ways of partially rectifying the problem of knowing very little 
about the population which is to be sampled. The first involves the use of so-called 
‘biased populations’. These are clearly-defined subgroups of the population which have 
been enumerated already and described in some detail. For example, information 
collected for a study of students could be used as proxy data for a more general study of 
British youth; similarly, voters in Cheltenham could be used for a study of the British 
electorate. The advantage of a biased population is that it provides some information 
about the population, admittedly biased towards specific subgroups, when none is 
otherwise available. As a result, the researchers may be able to produce some form of 
inferential analysis by using the information from the biased population to calibrate the 
sample. The obvious disadvantage associated with this approach is that the degree of bias 
involved may be so great that few inferences of quality may be made between the sample 
and the real population. 

A second approach which may be of help if there is no list of the population is to 
adopt some form of multi-stage ‘area’ procedure in which the population is subdivided in 
successive stages into increasingly smaller groupings. The idea behind this approach is 
that detailed information need only be obtained for these groupings of the population 
rather than for the whole. Such an approach was adopted in the Cardiff Consumer Panel 
Survey (Guy et al. 1983; Wrigley et al. 1985) in order to identify study areas for panel 
recruitment. 

The population in this research project consisted of households located throughout the 
city of Cardiff, a population for which no complete enumeration of members already 
existed. The following steps were employed to select a suitable sample which could 
represent this population but which would not require the researchers to obtain 
information for households in the whole city. First, Cardiff was subdivided into 
convenient areal units (enumeration districts). Second, these were classified and grouped 
into eight sets according to the levels of three binary variables: 
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1 accessibility to local shops (divided into ‘good’ or ‘poor’ if there were more (less) than 
eight food shops within a quarter mile of the centroid of the enumeration district); 

2 accessibility to district centres (divided into ‘good’ (‘poor’) if a district shopping centre 
was located nearer (farther) than a half mile from the enumeration district centroid); 
and 

3 potential mobility (divided into ‘good’ (‘poor’) if the car-ownership rate in the 
enumeration district was above (below) 0.5 cars per household). 

These variables were used because it was known that they exert important influences on 
the patterns of retail behaviour. Third, having categorised and classified the enumeration 
districts, the next step in the search for a suitable sample was to select at random a single 
enumeration district from each of these groupings. Fourth, having identified these, lists of 
electors living in each area were identified from the appropriate electoral rolls for the 
city. These provided area populations of many hundreds of electors who were then 
sampled systematically to yield the areal samples. The main advantage of this type of 
approach which narrows the area for study from the whole of the city to eight 
enumeration districts, is that it greatly reduces the task of obtaining documentary 
information on the population. This is because such information was only required for the 
eight representative areas rather than for the city as a whole. Once this was available, it 
was relatively easy to select a subset of households from the lists of electors living in 
each area to form the final sample for the city-wide analysis. (For further details of the 
procedures involved, or to see how to convert electoral lists into household lists, see Guy 
et al. 1983:26–9.) 

6.3.2 Sampling procedures 

The second factor which helps in sample assessment concerns the selection of the sample 
from the population or biased population lists. A variety of different procedures exist, but 
only some of them allow researchers to assess the accuracy of estimates. A distinction 
may be drawn between non-statistical or ‘purposive’ approaches in which samples are 
selected on the basis of the professional experiences or intuition of the researchers, and 
statistical approaches which involve the use of some form of independent random 
selection. Detailed descriptions of both are given in, among others, Dixon and Leach 
(1977), Moser and Kalton (1971) and Blalock (1979). Only samples selected by the 
statistical route may be used in statistical inference. 

Within the statistical route there are a variety of different strategies available which 
may be used to great effect depending on the nature of the problem. These include: 

Simple random sampling: a procedure in which every observation is selected at 
random, possibly using a table of random numbers such as Table 6.1, in which every 
member of the population, and every combination of members, has a known chance of 
being selected. 

Systematic sampling: a sampling scheme in which every member of the population is 
numbered in sequence from 1 to n, and an observation selected at an equal interval down 
the sequence. The first observation is usually selected at random, thereafter every fifth, or 
tenth etc., is selected to complete the sample (this was the procedure used to obtain the 
samples of households in the Cardiff analysis). 
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Stratified sampling: a scheme in which the population is first divided into subgroups 
(strata) on the basis of some key characteristic before being subjected to random or 
systematic sampling within strata (e.g., as in the selection of areas in the Cardiff 
example). 

Cluster sampling: a scheme popular in geography in which an area is first subdivided 
into groups and then scanned to find the cluster of groups most like the population. 
Unlike stratified sampling, in which the strata are defined to be as similar as possible, the 
clusters are defined to be as different as possible. Once identified, every member of the 
cluster is included in the sample. 

Table 6.1 Table of random numbers 

41283 54853 59623 62864 71513 

38703 50707 23681 28749 69994 

76710 82734 97960 98693 69675 

94796 48944 21155 84956 73133 

22585 96329 29146 92020 14572 

61580 90412 54439 70275 47853 

13319 59719 29186 20897 18455 

12577 47894 69819 11090 92354 

68118 45138 13085 00483 24365 

95383 02393 18059 10309 82285 

42175 13422 30328 72270 42746 

50094 68148 69384 83397 71073 

15635 07476 53531 85104 34346 

82391 19052 06610 50066 86236 

77339 37824 82688 27795 94339 

73429 77942 70852 08563 12837 

87839 01573 87328 67317 07684 

55467 28497 60966 83378 26170 

71712 02955 43433 89843 46948 

85204 19917 52237 53272 11909 

95215 61662 13510 53802 51806 

41001 53137 58587 45837 23606 

90746 00066 04531 88028 22673 

29619 82885 73885 07067 23688 

11483 59903 11115 65396 82186 
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Each of these four major statistical sampling schemes provides researchers with a means 
of assessing the accuracy of sample statistics. However, they work in different ways and 
the costs and benefits of each vary. 

Simple random sampling, when applied correctly to an appropriate population, 
provides the most effective way of obtaining information on population characteristics. It 
is the most basic of the four schemes and is frequently assumed as the sampling scheme 
underlying the development of inferential methods (Kish and Frankel 1974). 
Unfortunately, it may also be an expensive and unduly tedious strategy to implement, and 
may yield samples which are impossible to employ. This latter problem arises because 
populations which are appropriate for processing by simple random sampling should 
generally be uniformly or evenly distributed in space or time. To illustrate this, consider 
the problem of applying simple random sampling to a geographical population which is 
patently not uniformly distributed: the settlement pattern in a country. Keyfitz (1945) 
illustrates the problem using Canadian data. In order to obtain a sample of areas which 
could be used to assess the size of the Canadian population, the country was divided into 
30,000 grid squares, each of which covered about 100 square miles on the ground. A 
series of 1 per cent samples of these was then selected using simple random sampling. 
The estimates of Canada’s population which were produced varied from less than one 
million to more than fifty million depending on which grid squares were selected for the 
samples. 

The main problem exhibited here is that simple random sampling does not provide 
sufficient control over the composition of the sample. Not only does it allow the sample 
to produce highly erroneous estimates of population parameters, it may also allow 
observations to be included which are distributed so far from each other as to be unusable 
in practice, for example, villages located across the width of a subcontinent. 

The alternative strategies differ from simple random sampling in that they attempt to 
improve both the efficiency of the data collection process and offer greater control over 
sample composition. The latter pair, stratified and cluster sampling, are particularly 
valuable when the population is not uniform as they can allow the researchers greater 
control over sample composition. Indeed, for many types of geographical problem, some 
form of stratification or cluster sampling should usually be sufficient to control sample 
composition. However, Kish (1967) notes that there are always situations in which the 
need to control which members enter the sample can outstrip the facilities provided by 
either stratification or clustering. Faced with this, many researchers tend to abandon 
statistical procedures altogether in favour of purposive sampling or sampling based on the 
use of some form of underlying model. This retreat from probability sampling may, 
however, be unnecessary, as a controlled form of simple random sampling does exist 
which goes beyond what is available from either stratification or clustering. This 
approach is based on the work of Avadhani and Sukhatme (1965, 1968, 1973), and makes 
use of results developed in the experimental design literatures. O’Brien (1987a) provides 
a geographical illustration of the approach using retailing data. 
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6.4 SAMPLING DISTRIBUTIONS 

Having obtained a sample using a statistical sampling strategy, researchers may begin to 
use it to infer the characteristics of the population. In practice it is usual to select only a 
single sample rather than several. Given that this single sample may be largely 
idiosyncratic, how then do the researchers know that the statistics generated from it are 
accurate of population parameters? Some important theoretical results obtained over 
many years by experiment and observation provide a possible clue. These concern the 
sampling distributions of each of the sample statistics. 

6.4.1 Sampling distribution of the mean 

The simplest sampling distribution to consider is the sampling distribution for the mean. 
Imagine that a collection of equally-sized samples has been selected from a table of 
random numbers using simple random sampling (Table 6.2). (It is possible to generate 
such a table in MINITAB using the RANDOM command with the UNIFORM 
subcommand.) As the random numbers table used is common to all samples, we can say 
that the samples are drawn from the same population. The means of each of these 
samples are different because they reflect different sequences of observations. However, 
as the means of the sixty samples of size 10 in Table 6.2 show, they may not differ from 
each other by very much. A graph of these sixty  

Table 6.2 Means from randomly-generated samples 

(a) 60 sample means (n=10) 

4.325 5.561 4.841 6.026 3.335 4.261 4.942 5.310 4.983 

3.607 5.719 4.052 3.740 5.532 4.841 5.188 5.718 3.367 

5.105 5.654 4.725 6.249 4.704 3.417 5.067 3.652 4.362 

2.977 5.345 5.792 5.590 5.010 3.007 5.635 2.938 5.255 

4.887 4.031 5.199 4.184 4.160 4.729 5.954 3.756 3.555 

4.177 4.555 4.751 4.630 4.341 3.557 5.396 4.980 3.213 

5.774 4.050 4.520 3.610 4.068 4.449     

(b) 60 sample means (n=100) 

4.255 4.518 4.367 3.907 4.375 4.640 4.619 4.505 4.454 

4.847 4.295 4.240 4.565 4.790 4.093 4.407 3.997 4.296 

4.492 4.238 4.622 4.502 4.197 4.521 5.000 4.602 5.007 

4.411 4.686 4.619 4.498 4.293 4.419 4.636 4.522 4.744 

4.373 4.776 4.575 4.749 4.441 4.157 4.567 4.598 4.146 

4.432 4.583 4.263 4.485 4.778 4.053 4.207 4.441 4.498 
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4.362 4.815 4.660 4.479 4.524 3.869     

(c) 60 sample means (n=200) 

4.106 4.553 4.594 4.568 4.642 4.320 4.213 4.507 4.400 

4.699 4.509 4.509 4.465 4.766 4.301 4.436 4.608 4.624 

4.367 4.558 4.364 4.711 4.377 4.243 4.798 4.331 4.527 

4.603 4.411 4.384 4.712 4.443 4.391 4.357 4.303 4.332 

4.558 4.821 4.580 4.270 4.429 4.496 4.309 4.543 4.534 

4.370 4.273 4.532 4.701 4.438 4.578 4.141 4.465 4.544 

4.312 4.271 4.506 4.451 4.604 4.806     

Notes: Overall means: sample (a)—4.6060 
sample (b)—4.4668 
sample (c)—4.4761 

 

Figure 6.1 Sampling distribution of the 
mean (n=10) 

means is given in Figure 6.1. This displays the sampling distribution of the mean based 
on the generated data. 

The similarity of the sixty means suggests that the population mean is likely to be 
somewhere within the range 3 to 6. This evidence is, however, only indirect and is based 
solely on the findings of sixty equally-sized random samples drawn using the same 
sampling strategy. As it stands, the evidence for the value of the parameter is not 
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particularly strong and it is not clear whether similar findings would have occurred if 
different samples were used, for example, a similar number of larger samples. The 
sampling distributions for sixty samples of size 100 and size 200 are given in Figures 6.2 
and 6.3. These indicate an important and interesting feature of the sampling distribution 
of the mean, namely, that it tends to become more Normally distributed as the size of the 
sample gets larger. This tendency is true even if the original sample readings are not 
Normally distributed, as can be seen from the raw observations in Table 6.2. Moreover, it 
can be shown that the mean of the sampling distribution of means will equal the 
population mean if the sample size is sufficiently large. 

This latter comment is the key factor in assessing the accuracy of a sample mean. 
What it actually states is that the sample mean will on average give the correct value for 
the population mean and that the shape of the sampling distribution of the mean will 
always be approximately Normal. These characteristics are based on the Central Limit 
Theorem properties which were outlined in Chapter 5, and allow researchers therefore to 
limit their sampling to a single sample, because they know  

 

Figure 6.2 Sampling distribution of the 
mean (n=100) 
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Figure 6.3 Sampling distribution of the 
mean (n=200) 

that on average the sample mean and the population mean will be equal. However, this is 
not a universal property, it only applies if the conditions underlying the Central Limit 
Theorem are met by the sample data. These are: 

1 the original observations must be irregularly distributed; 
2 the sample must be ‘sufficiently large’; 
3 the observations must be independent (that is, the presence of a specific observation in 

the sample does not prejudice the chances of any other observation being selected). 

These conditions are vital: if they do not apply then the tendency for the sampling 
distribution of the mean to approach Normality as suggested by the Central Limit 
Theorem will not be exhibited. 

This may be illustrated using the data in Table 6.3 which were collected for a study of 
dewfall in Oman (Anderson and O’Brien 1988). The observations used in the sampling 
(dewfall measurements) were collected sequentially over eleven days at a number of 
different sampling sites in six locations. The sampling distribution of the mean for 
samples of size 10 are shown in Figure 6.4 and for samples of size 65 in Figure 6.5. In 
spite of the larger sample size the tendency to approach Normality is not exhibited, 
principally because the observations are correlated with each other both spatially and 
temporally and were not randomly and independently selected. Thus, though it is possible 
to add them together to produce a mean value, and to see that they are irregularly 
distributed, a key condition of the property (random, independent selection) has not been 
met. 
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Table 6.3 Dewfall data from Oman (extract) 

Sample days 

Sensor 1 2 3 4 5 6 7 8 

1 0.573 0.893 0.000 0.253 0.947 1.598 0.000 0.069 

2 1.318 1.241 0.609 0.000 0.871 2.105 0.016 0.005 

3 0.224 0.676 0.215 0.074 0.408 0.930 0.000 0.019 

4 1.030 1.141 0.572 0.372 1.140 1.505 0.068 0.127 

5 0.000 0.898 0.061 0.210 1.164 1.707 0.000 0.020 

6 0.318 0.364 0.097 0.017 0.242 0.353 0.009 0.002 

7 0.759 0.777 0.629 0.400 1.210 2.015 0.127 0.085 

8 0.890 0.022 0.534 0.523 1.065 1.577 0.428 0.127 

9 0.971 1.303 0.670 0.126 1.107 2.115 0.000 0.029 

10 0.889 1.118 0.096 0.233 1.134 1.724 0.065 0.055 

Random sampling is assumed by the property because it ensures that the observations are 
selected independently, that they can be added together (as they are to produce the mean), 
and that they can range widely and irregularly in value. If these conditions can be met, 
the tendency will emerge empirically even for samples drawn from non-Normal 
populations. However, the number of observations required in the sample before the 
tendency emerges depends on the underlying shape of the population. In general, samples 
drawn from non-Normal populations need to be considerably larger than those drawn 
from Normal populations. Ehrenberg (1982) suggests that at least one hundred 
observations need to be included in samples drawn from non-Normal populations 
whereas samples of thirty  
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Figure 6.4 Omani data (n=10) 

 

Figure 6.5 Omani data (n=65) 
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or more drawn from Normal populations are usually sufficiently large. However, he also 
notes that the tendency begins to be apparent in samples drawn from Normal populations 
which include only ten observations. 

Whilst the shape of the sampling distribution of the mean relies on established 
theories, it may be useful to illustrate the link between the average sample mean and the 
population mean with an example. Consider the following small population consisting of 
three numbers: 

1 2 3 

The mean of these (the population mean µ) is 2. Nine separate samples containing two 
observations may be drawn from this population. These, with their respective sample 
means, are: 
Combination of observations Sample mean 

11 1 

12 1.5 

13 2 

21 1.5 

22 2 

23 2.5 

31 2 

32 2.5 

33 3 

Total 18 

The mean of these nine samples is 18/9=2, which is identical on average to the population 
mean. The histogram of this sampling distribution is given in Figure 6.6. 

In the above example it is possible to extract nine different samples of size 2 from the 
small population if sampling takes place with replacement. This means that each 
observation is available for inclusion more than once in each sample. The idea of 
replacement can be illustrated if  
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Figure 6.6 Replacement sampling 
(n=9) 

one considers the small population as consisting of three coloured balls in a bag, for 
example 1=white, 2=blue, 3=red. A single ball is selected from the bag and its colour 
noted. It is then replaced in the bag and a second ball drawn out. As the first ball has now 
been replaced it is perfectly possible for it to be drawn a second time to produce the 
second half of each two-ball sample. This is how it is possible to include combinations 
such as 11, 22 and 33 in the nine samples listed above. However, sampling may also take 
place without replacement. In this case once a ball has been drawn from the bag it is not 
replaced and so cannot be selected a second time: combinations such as 11, 22 and 33 are 
thus impossible. The main effect of this is that only three samples may be drawn from the 
small population if non-replacement sampling is used: 

1 2 
2 3 
1 3 

However, if the means of these samples are calculated (1.5, 2.5 and 2), and thereafter the 
mean of the means (2), it is immediately clear that the restricted sampling has not 
affected the tendency of the mean of the sampling distribution to equal the population 
mean on average. Because of this property, sampling without replacement is frequently 
used in social survey work. The need to process fewer observations may, in turn, make 
the process of sampling faster without introducing any serious errors. This does not, 
however, mean that non-replacement sampling can always be used. Systematic errors 
may be introduced into the analysis by a non-replacement strategy if the size of the 
sample relative to the population is large. The main effect of this may be noticed in the 
calculation of the variance and standard deviation measures, rather than in the calculation 
of the mean. 
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6.4.2 The standard error 

The fact that the sampling distribution of the mean will on average be identical to the 
population mean is an important and interesting empirical finding (that is, established by 
observation or experiment). However, it does not tell us how far, or different, any single 
sample mean will be from the population mean. In order to assess this, it is necessary to 
calculate a summary measure describing the distribution of the sample means around 
their average value. This measure represents the same sort of information as the standard 
deviation described earlier, except that in this case, it refers to the distribution of sample 
means rather than individual observations in a single sample. The term used to refer to 
this measure is the standard error (or alternatively, the standard error of the mean). It is 
interpreted as showing the average error of an observed sample mean from the population 
mean. 

The standard error may be calculated in a number of different ways, either empirically, 
by researchers generating all possible samples of size n from the population, calculating 
the mean of their sampling distribution, then calculating the distribution of the individual 
sample means around this, or by a theoretical short cut. The former, if adopted, would be 
tedious and require the researchers to undertake a task for which they do not have any 
information: data from all possible samples of size n. As, in practice, only one sample is 
obtained, the alternative strategy is usually adopted. This procedure makes use of the fact 
that the standard error may be shown theoretically to be equal to the ratio of the 
population standard deviation to the square root of the sample size: 

 (6.1) 

In other words, it is possible to use the scatter of the individual readings in the population 
to calculate the standard error rather than use the sample means from all possible 
samples. However, there is still a major problem: the population standard deviation is 
itself usually unknown. Because of this, it is usual to replace equation 6.1, which 
provides an accurate calculation of the standard error, by an alternative formula (equation 
6.2) which estimates it: 

 (6.2) 

In this refined version, the population standard deviation is replaced by the sample 
standard deviation. This may seem a little curious because it means that the assessment of 
the accuracy of the single sample mean from the unknown population mean is provided 
by calculating a measure based solely on the sample data, that is, on the ratio of the 
observed standard deviation from the single sample of data to the square root of the 
number of observations in it. This may seem rather strange and arbitrary. Why does it 
work? 

The mechanism which allows this procedure to work is based on the distributional 
properties of the sampling distribution of the mean. As we have seen, if certain conditions 
hold, the distribution of the sample means tends towards normality and the mean of the 
sampling distribution equals the population mean on average. Because of this tendency, it 
is possible to use the attractive distributional properties of the Normal distribution to 
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describe the relationship of a single sample mean with the population mean. The main 
characteristics of the Normal distribution were set out in Chapter 5 but may be repeated 
here. If the distribution of sample means is roughly Normal then: 

1 68 per cent of all possible sample means will lie within plus or minus 1 standard error 
of the population mean. 

2 95 per cent of all possible sample means will lie within plus or minus 2 standard errors 
of the population mean. 

Whenever the sample is large enough (greater than about 10 for samples drawn from 
Normal populations, or 100 for samples drawn from non-Normal populations) the same 
distributional properties will emerge for the estimated standard error. In other words: 

1 About 68 per cent of all possible sample means will lie within plus or minus 1 
estimated standard error of the population mean. 

2 About 95 per cent of all possible sample means will lie within plus or minus 2 
estimated standard errors of the population mean. 

This means that the fact that the observed sample data are being used to provide the link 
between the sample and the population does not make the assessment invalid as the 
distributional properties under σ and s are similar (i.e., the differences between them are 
comparatively trivial). 

6.4.3 Small samples 

There is a slight complication to this relationship which becomes evident in small 
samples. In this context, ‘small’ refers to any sample from a Normal (non-Normal) 
population which contains less than about 10 (100) observations. Below this threshold, 
the Normal distribution does not provide an adequate description of the distribution of the 
sample means, and so should not be used. Instead, the t-statistic (alternatively termed the 
t-ratio or t-variable) provides a viable alternative. This is described algebraically as: 

 (6.3) 

where: 
 is the observed sample mean 

µ is the unobserved population mean 

s is the calculated sample standard deviation 

 is the square root of the sample size 

(Note: the denominator of equation 6.3 is the formula for the estimated standard error.) 
This statistic is valuable because its theoretical distribution is known to follow the t-
distribution (see Chapter 5). This distribution gives the proportion of times different 
values of the t-statistic are likely to occur for all possible samples of a given size from a 
Normal or near-Normal population. Its shape depends on two things: 
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1 the size of the sample (n), and 
2 the number of degrees of freedom available. 

The latter condition reflects the number of independent pieces of information existing in 
a data set. 

To illustrate the idea of independence, consider the following example in which five 
observations are added, their average calculated, and the difference in value between each 
observation and the average displayed: 
Observations: 1 2 3 4 5 

Sum: 15      

Average: 3      

Differences: −2 −1 0 1 2 

The sum of the differences equals 0. This should always be the case when differences 
between individual observations and their mean are calculated and summed. Because of 
this fact, once the mean and four of the differences are known it is possible to calculate 
the fifth automatically. The sum of the first four differences is −2, therefore, to satisfy the 
condition that the sum of the differences must equal 0, the fifth difference must equal 2, 
as indeed it does. The value of this difference is therefore dependent on the other values 
rather than independent once the mean has been calculated. This leads to a general 
condition which is that the calculation of each statistic (mean, variance, etc.) reduces the 
number of independent items of information available within the data by one. Readers 
should note that independence and dependence refer to the information content of the 
data and not to specific observations. It therefore is not correct to assume that 
observations 1 to 4 are independent and observation 5 is dependent. If a data set contains 
five observations, and a mean value has been calculated, there are four independent 
pieces of information left, because one is lost in the calculation of the mean. 

The shape of the t-distribution depends on the number of degrees of freedom in the 
data (Figure 6.7). This shape may also be summarised numerically as in Table 6.4. The 
figures in the table show the limits either side of the population mean which contain 
varying percentages of the t-statistic. Notice that the value of these limits depends on the 
degrees of S Dfreedom involved. The figures in the table may be interpreted either in 
terms of t or the sample mean. In the former, for 90 per cent (95 per cent, 99 per cent) of 
all possible random samples containing 21 observations (20 degrees of freedom) the 
value of the t-statistic will lie within plus or minus 1.7 (2.1, 3.9). In the latter, it implies 
that 90 per cent (95 per cent, 99 per cent) of all possible sample means lie between plus 
or minus 1.7 (2.1, 2.9) estimated standard errors of the population mean. By extension, it 
follows that 10 per cent (5 per cent, 0.1 per cent) of all possible sample means lie outside 
plus or minus 1.7 (2.1, 2.9) estimated standard errors of the population mean. The t-
distribution thus provides a mechanism for investigating the extremities of the 
distribution of sample means. 
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Table 6.4 Values of t 

  Significance 

.2 .1 .05 .02 .01 .002 (2TT) Degrees of freedom 

.1 .05 .025 .01 .005 .001 (1TT) 
1 3.08 6.31 12.71 31.82 63.66 318.31 

2 1.89 2.90 4.30 6.96 9.93 22.33 

3 1.64 2.35 3.18 4.54 5.84 10.22 

4 1.53 2.13 2.78 3.75 4.60 7.17 

5 1.47 2.02 2.57 3.37 4.03 5.89 

10 1.37 1.81 2.23 2.76 3.17 4.14 

20 1.33 1.73 2.09 2.53 2.85 3.55 

60 1.30 1.67 2.00 2.39 2.66 3.23 

120 1.29 1.66 1.98 2.36 2.62 3.16 

infinity 1.28 1.65 1.96 2.33 2.58 3.09 

Note: 1TT=one tailed test 
2TT=two tailed test 

 

Figure 6.7 Various t-distributions 

As the distributions in Figure 6.7 show, the values of t are greatest when the degrees of 
freedom are small and decrease to a limit as they get larger. Above 30 the values of t 
hardly change. In fact, the figures in the final row are identical to those produced by the 
Normal distribution. This confirms the fact that as the sample size increases the t-
distribution approximates a Normal distribution. 
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6.4.4 Summary 

It may be useful at this point to state the main findings of the last three subsections as 
they are of considerable practical significance for what follows. The main point being 
made is that it is possible to use summary information from a single observed sample to 
describe characteristics of an unobserved population to within calculable levels of 
accuracy. Because of the tendency for the sampling distribution of the mean to 
approximate a Normal distribution, it is possible to use the Normal curve to describe the 
relationship of a single sample mean to the unobserved population mean. This tendency 
works for samples which have been obtained from both Normal and non-Normal 
populations but, in the latter case, the sample needs to be considerably larger. However, it 
rests on the applicability of a series of underlying conditions, particularly the need for the 
independent selection of observations. If these do not hold, it will not emerge, and the 
most straightforward and easily adaptable inferential results cannot be applied. 

The behaviour of the sampling distribution of the mean is unusual in that it may be 
described with relative ease using the Normal curve. This is not the case with the 
sampling distributions of other summary measures (for example, the variance), or with 
sampling strategies other than simple random sampling. Though Ehrenberg (1982:118) 
notes that most sampling distributions, including those of the variance and other 
measures, tend to be approximately Normal if the sample size is sufficiently large, for 
some this means that samples might need to contain at least 1,000 observations. This is a 
larger number of observations than is frequently collected for geographical samples, 
suggesting that the Normal curve will not be able to assess their ability to stand as 
representatives of the population. As a result, other theoretical distributions (t, F and chi-
square) may have to be used instead of the Normal. Chatfield (1983), for example, notes 
that a chi-square distribution may be used to describe the sampling distribution of the 
variance. 

6.5 ESTIMATION AND CONFIDENCE 

6.5.1 Estimates and estimators 

The preceding section has shown that it is possible under certain circumstances to use the 
information in a single sample of observed data to represent some of the characteristics of 
an unseen population. The results presented so far show how it is possible to relate 
sample measures such as the mean to their population counterparts using empirically-
derived relationships from sampling distributions. However, the fact that one can say that 
95 per cent of all possible sample means, generated by simple random sampling, will be 
within plus or minus two estimated standard errors of the population mean, does not state 
what that population mean actually is. To do this, one has to provide an estimate of the 
population mean from the sample data. 

This section presents some information on the processes of estimating population 
parameters from sample statistics. The main points to be covered are: 
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1 Estimation is a two-stage process involving, first, the calculation of a numerical value 
for the parameter (a ‘point’ estimate), and thereafter, assessing its accuracy by 
establishing a level of confidence in it (an ‘interval’ estimate). 

2 There are a variety of alternative ways of calculating an estimate. As a result, it is usual 
to talk of different types of estimator of the parameter, to reflect the fact that different 
formulae and logic may be used in its calculation. 

3 The estimation of parameters under simple random sampling is usually assumed in the 
literature. This does not preclude the use of alternative forms of statistical sampling, 
but the formulae required to describe these are generally more complex (for a detailed 
discussion of this issue, see Kish and Frankel 1974). 

The simplest parameter to estimate, regardless of which estimation procedure is to be 
used, is the population mean. In the absence of other information, or information to the 
contrary, it is usually advisable to make use of sample statistics as estimators of 
parameters. Thus, the most widelyused estimator of the population mean is the sample 
mean; the justification being that, on average, the sample mean and the population mean 
are identical. (Though this is generally taken to be the case, Chatfield and Collins 
(1980:103) point out the existence of so-called James-Stein estimators which, when 
applied to artificially-constructed or otherwise ‘special’ data, appear to be even more 
appropriate.) 

The estimation of other summary parameters is rather less straightforward. The 
standard formula for the variance: 

 

  

or 

 
(6.4) 

cannot be used as it stands because its average value across all possible samples is 
smaller than the population variance. This may be illustrated using the small population 
of three numbers presented in the previous section. In this population, the members are: 

1 2 3 

and the mean and variance are 2 and 0.67 respectively. The estimates of the variance 
derived from the nine samples using replacement sampling are:  
Combinations: 11 12 13 21 22 23 31 32 33 

Variance: 0 .25 1 .25 0 .25 1 .25 0 

Average variance: 0.34          

The average variance produced by sampling is thus lower than that calculated for the 
population. However, if a modified formula is used: 
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or 

 
(6.5) 

then revised estimates of the population value are produced: 
Combinations: 11 12 13 21 22 23 31 32 33 

Variance: 0 .5 2 .5 0 .5 2 .5 0 

Average variance: 0.67          

The average of these is identical to the population value. (Readers might like to estimate 
the variance under non-replacement sampling to see if it, too, produces a value identical 
to that calculated for the population.) 

The sample estimator of the population standard deviation can be used in a similar 
way. However, the formula: 

 

  

yields an incorrect answer for the population measure. The reason for this lies in the fact 
that the average of the square root of a set of numbers is not equal to the square root of 
the average. This can be seen from the example. The variance estimates under the 
modified estimator are: 

0.0 0.5 2.0 0.5 0.0 0.5 2.0 0.5 0.0 

which yield an average variance of 0.67. The equivalent standard deviations (square roots 
of the variance) are: 

0.0 0.7 1.4 0.7 0.0 0.7 1.4 0.7 0.0 

which yield an average of 0.62. This value is different from either the population value or 
the square root of the average variance. In spite of this, the formula for the sample 
standard deviation still tends to be used as the estimator of the population standard 
deviation. Ehrenberg (1982:124) lists three reasons for this: 

1 The degree of error introduced by the use of the standard formula is usually small 
(especially if the sample size is small relative to the population). 

2 The requirement that the estimator be error-free is not absolutely essential. 
3 There is no unambiguously better alternative. 
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The third of these reasons amply illustrates the fact that the choice of an estimator tends 
to be a matter of some experimentation and compromise rather than a cast-iron 
procedure. 

6.5.2 ‘Best’ estimators 

For any parameter there are likely to be several alternative estimators available. For 
example, in assessing central tendency, the researchers could use the arithmetic mean, 
geometric mean, median or the average of the range. The question which arises, 
therefore, is which of the alternatives to use. It seems reasonable to assume that the 
estimator which is best should be used. However, ‘best’ is a subjective term and requires 
a rather more formal specification before it may be applied operationally. 

The following are generally considered desirable properties in an acceptable estimator 
(after Silvey 1975; Hanuschek and Jackson 1977; Chatfield 1983): 

1 Lack of bias—the estimator should give the correct value for the parameter on average 
across all possible samples. 

2 Efficiency—the variance associated with the estimator should be as small as is possible. 
3 Consistency—the estimator should approach the value of the population parameter as 

the sample size increases (more formally, approaches in probability the true value of 
the parameter). 

As was seen previously, the sample mean and variance satisfy requirements 1 and 2, and 
it may be shown from theory that 3 also applies to them. Unfortunately, however, as 
Menges (1973:11) notes, ‘these criteria, taken individually, are incomplete, and, to a 
certain extent, contradictory’. They are contradictory in the sense that, on occasion, it 
may prove to be impossible to satisfy all three properties simultaneously. 

Two problems are frequently met. First, an estimator which appears to be satisfactory 
according to one criterion may not be so according to others. Second, an estimator which 
appears to be acceptable when applied to large samples may fail to be so in small samples 
(McFadden 1976; Shenton and Bowman 1977). This is a problem of considerable 
importance and is a topic of current statistical research. However, in spite of this potential 
dilemma, it seems to be generally accepted that an estimator must exhibit minimum 
variance and unbiasedness to be considered ‘best’. 

6.5.3 Moments estimators 

There is a variety of procedures available which may be used to produce acceptable 
estimates. The two most widely used are based on general estimation strategies: 

1 The method of moments. 
2 The method of maximum likelihood estimation. 

The moments are essentially functions of the sampling distributions of a random variable. 
They may be defined with respect to the origin or to the mean. Hanuschek and Jackson 
(1977:328) note that the following general formulae may be used to calculate the 
moments about the origin of discrete and continuous random variables. For discrete 
variable, X, this is: 
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where 
xi is the ith outcome associated with the discrete variable, and 

f(xi) is its associated probability of occurrence 

The formula for continuous variable, X, is rather more complex: 

 

  

where 
∫ refers to an unbounded integral, that is, allowing integration over the range negative to positive 

infinity 

x, 
f 

are as for the discrete case 

For the discrete data in Table 6.5 the first moment is calculated to be 83.583 (or 83,583 
because the raw data are measured in thousands). Notice that this is equivalent to the 
mean value as calculated for grouped data  

Table 6.5 Illustration of moments estimation 
(discrete data) 

Midpoint Frequency Probability Product 

80 1 .08333 6.66666 

81 2 .16666 13.49999 

82 4 .33333 27.33333 

84 1 .08333 6.99999 

86 1 .08333 7.16666 

87 1 .08333 7.24999 

88 2 .16666 14.66666 

Sums 12 1.0 83.58328 

Notes: 
1 Data are taken from Table 4.5 (East Anglian unemployment) 
2 Midpoint refers to midpoint of class 
3 Probability values generated by dividing class frequency by 12 (the size of the data set) 
4 Product refers to the product of the midpoint values multiplied by their respective probabilities 
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(see Chapter 4, section 4.4.3). This suggests that the mean of a series of observations is 
equivalent to the first moment about the origin. Higher-order moments about the mean 
correspond to standard summary measures such as the variance, skewness and kurtosis. 

The basic idea of moments estimation may be extended to provide estimates for the 
terms in linear models which are unbiased and have minimum variance. In Chapter 5, 
Section 5.2, a selection of these simple models was presented and an estimate of the slope 
coefficient obtained directly from the data. To illustrate the process of moments 
estimation as applied to this problem, consider once again, the simple six-times table. 
From experience, we know that the slope coefficient relating X and Y is 6. However, how 
might this be estimated from the raw data? 

A procedure which may be used to estimate linear relationships is ordinary least 
squares estimation. This is a procedure based on the first two moments of a distribution, 
that is, on the use of mean and variance information. In order to apply this procedure, the 
basic equation (equation 6.6) may be modified slightly to incorporate a term which 
represents errors—items not incorporated explicitly in the model (equation 6.7): 

Y=a+βX 
(6.6) 

Y=a+βX+ε 
(6.7) 

In these equations, 
Y represents the response component 

X represents the explanatory or controller component 

a is the population intercept or constant parameter 

β is the population slope parameter 

ε represents the error component 

Equation 6.7 relates to the population model which, like most populations, is usually 
approximated by an appropriate sample. The equivalent sample model to equation 6.7 for 
i=1, n observations is: 

yi=a+bxi+ei 
(6.8) 

where, 
yi is the rth sample observation on Y 

Xi is the sample observation on X 

a is the sample intercept or constant term 

b is the sample slope term 

ei represents residuals 
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The residuals in the sample model are the differences in value between the observed 
values of −yi in the data, and the estimated values, −ŷi, given the model. That is: 

residuals=observed y−expected y   

or 
ei=yi−yi 

(6.9) 

(The difference between errors and residuals is discussed in more detail in Chapter 8.) 
In least squares estimation, ‘best’ estimators are produced when the sum of squared 

residuals from the sample model is minimised: 

 
(6.10) 

Minimisation is achieved by differentiating equation 6.8 with respect to a and b. This 
yields the so-called normal estimating equations (see Pindyck and Rubinfeld 1976 for 
more details) which, after some manipulation, yield the following two expressions for a 
and b: 

 

  

or 

 
(6.11) 

and 

   

The calculations associated with the estimation of the a and b terms for the six-times 
table data are given in Table 6.6. 

In this simple example, the line fits the observed scatter of data points exactly so that 
there are no residuals to minimise in the first place. Also, it is drawn through the origin 
(X=0, Y=0) so that the value of a is 0. If there had been scatter in the observed data and, 
by implication, in the population in general, this approach to estimation would still have 
been feasible so long as two assumptions relevant to the behaviour of the errors could be 
sustained. These are: 

1 The errors are independent of each other. 
2 The variance of the errors is constant for all values of X. 

If either or both of these assumptions are violated by the data, then the simple population 
model (equation 6.7) may be misspecified and so cannot yield estimators which are 
BLUE (best linear unbiased estimators). Instead, some modifications may need to be 
made, either to redefine X in some way, or to use some alternative system of estimation. 
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One alternative which is frequently helpful is generalised least squares (see Pindyck and 
Rubinfeld 1976 and Kennedy 1979 for brief descriptions of  

Table 6.6 Calculation of parameters using least 
squares: six-times table data 

x   y   
1 −5.5 30.25 6 −33 181.5 

2 −4.5 20.25 12 −27 121.5 

3 −3.5 12.25 18 −21 73.5 

4 −2.5 6.25 24 −15 37.5 

5 −1.5 2.25 30 −9 13.5 

6 −0.5 0.25 36 −3 1.5 

7 0.5 0.25 42 3 1.5 

8 1.5 2.25 48 9 13.5 

9 2.5 6.25 54 15 37.5 

10 3.5 12.25 60 21 73.5 

11 4.5 20.25 66 27 121.5 

12 5.5 30.25 72 33 181.5 

Sum(x)=78; Sum(y)=468; Sum= 143; Sum= 858; Mean (x)=6.5; Mean (y)=39 

  

 
a=mean(y)−b mean(x)=39−6(6.5)=39−39=0 

Final model: y=6x 

this procedure, and Wald 1943, Neyman 1949 and Bhapkar 1966 for more detailed 
treatments). 

6.5.4 Confidence 

Point estimates produce a numerical value for parameters which may or may not be true. 
The reason for the uncertainty arises because the estimate is based on a sample which 
may or may not be representative of the population. If it is, then one may expect the 
sample to produce reasonably accurate estimates of the parameters. However, if the 
sample is essentially idiosyncratic, the estimate may be very inaccurate. Because only 
one sample is usually obtained, it is not possible to be absolutely certain about the 
accuracy of the estimate. However, so long as the sample has been generated in an 
appropriate way, it is possible to assess its likely error by calculating a confidence 
interval for it. This provides a range of values within which the population parameter can 
be expected to be found. If the sample is very accurate of population characteristics, we 
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can expect this interval to be reasonably narrow (for example, we may be able to make 
statements such as the population mean is 10.5 plus or minus 0.5). However, if the 
sample is inaccurate, we cannot be so confident in making such statements, because the 
margin for error is potentially greater. 

A confidence interval is created by calculating interval estimates for the population 
parameter. These are probability statements and correspond to an upper and lower limit 
for the value of the parameter. The size of this interval reflects the level of confidence 
associated with the parameter. A 95 per cent confidence interval surrounding an estimate 
implies that, in the long run, a claim that the population parameter lies in the interval 
would be correct 95 times out of 100. A 99 per cent interval would increase this accuracy 
to 99 times out of 100. Thus for a single sample, the confidence level corresponds to the 
odds (or relative chances) of successfully containing the parameter in the interval. 

The interpretation of a confidence interval is complex, principally because it reflects 
sampling variability between samples rather than the unknown, but fixed, value of the 
parameter. If the observed mean were a random variable rather than a single value, then 
the estimation of specific limits would be true regardless of which sample were drawn. 
However, as this is not likely to be the case, some care needs to be taken to interpret the 
limits generated as these relate to the particular sample drawn. 

Ehrenberg (1982:125) notes that this complexity can be intolerable. However, because 
the means of random samples drawn from the population are generally similar, it is also 
likely that the confidence limits will be for any given level of confidence. To illustrate, 
consider a Normally-distributed data set with mean 10 and standard deviation 0.2. Using 
the theoretical proofs from the standard Normal curve, we can see that limits of 9.6 and 
10.4 correspond to an interval containing 95 per cent of the distribution. For an interval 
containing 99 per cent of the distribution, the limits would have to be extended to about 
9.4 and 10.6. These limits are specific to the sample. A second sample with mean 10.1 
and standard deviation 0.25 would generate different limits for any given level of 
confidence. Notice that in moving from the 95 per cent to the 99 per cent level the 
chances of correctly containing the population parameter increase disproportionately to 
the increase in the size of the interval, whatever it actually is. This suggests that if a 
population parameter lies outside a limit, it is likely to lie just outside. 

Because of the regular properties of the Normal curve, the confidence limits can be 
calculated directly from 

 (6.12) 

where 
z refers to the value of the z score associated with any specific value of the standard deviation 

This relationship will hold if the population variance is known or if the sample is 
sufficiently large to estimate it accurately. This normally requires the sample to be at 
least thirty observations, and merely involves replacing σ by its sample equivalent. If the 
sample is too small for this, the t-distribution provides an alternative mechanism. The 
relationship 
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 (6.13) 

provides estimates of the confidence limits for any given level of confidence. This rapidly 
approaches the values associated with the Normal curve as the sample size gets larger. 

6.6 HYPOTHESES: DEVELOPMENT AND TESTING 

6.6.1 Some examples of acceptable hypotheses 

If a sample may be used to describe the features of a population, it is perhaps not 
unrealistic to assume that it may also be used to test hypotheses about it. Hypotheses are 
statements of belief about characteristics of a population which are made in the face of 
uncertainty. A typical hypothesis might be ‘the population mean is 20’. Alternatively, an 
hypothesis might suggest a range of values: ‘the population mean lies between 20 and 
25’. In both examples, care has been taken to make the statements as precise as possible. 
Notice also that the statements apply to the population. The statement, ‘the sample mean 
is 20’, though precise, is not considered an hypothesis because it states nothing about the 
population. 

Precision is required so that tests of the hypothesis may be made. However, as the 
population is usually not observed, these tests are applied to the data gathered in the 
sample. As sample values will probably differ from those in the population by an amount 
which merely reflects sampling, it follows that an hypothesis which states ‘the population 
mean is 20’ may be supported by a sample whose observed mean is not 20. The 
hypothesis may be supported if it can be shown that the difference is less than can be 
expected by chance. If, however, the difference is greater than can be expected by 
chance, then the hypothesis must be rejected, or a less stringent test needs to be used. 

6.6.2 Null and alternative hypotheses 

Before introducing some possible tests to clarify this point, it is perhaps useful to set out 
the terminology and operations which are frequently met in hypothesis testing. The 
following terms refer to two distinct types of hypothesis: 

1 The null hypothesis—the hypothesis which is to be tested. 
2 The alternative hypothesis—one of a series of possible alternatives to the null 

hypothesis. 

If we take as a null hypothesis the statement ‘the population mean is 20’, then the 
following alternative hypotheses may be suggested: 

1 The population mean is not 20. 
2 The population mean is less than 20. 
3 The population mean is greater than 20. 

Algebraically, these may be written: 
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1 H0: µ=20 

2 H1: µ≠20 

3 H2: µ<20 

4 H3: µ>20. 

The notation H0 is typically used to refer to the null hypothesis, whereas H1, H2, and H3 
refer to specific alternative hypotheses. It is important to consider carefully what each of 
these alternatives implies. For H1, any difference which is greater than one likely to have 
arisen by chance will cause the null hypothesis to be rejected. For H2 and H3, this 
difference has to be in a specific direction. Because the direction of difference is 
specified, tests applied to H2 and H3 are termed one-tailed tests. In comparison, for H1, in 
which direction is not specified, tests are two-tailed. This terminology will be clarified by 
examples below and in Part II. 

6.6.3 Type 1 and Type 2 errors 

The object of hypothesis testing is to find conditions under which a null hypothesis may 
be rejected. If it can be rejected, it follows that the information it contains is wrong. 
However, if it cannot be rejected, it does not mean that its information is correct. This is 
because a more rigorous test may succeed in rejecting it. In general, the rigour of a test 
reflects the level of significance associated with it. This is a measure of probability 
associated with the test. A higher level indicates a more rigorous test as it implies that the 
probability of rejecting the null hypothesis is increased. For example, a value may exceed 
the 5 per cent level five times in any 100 merely by chance. However, it may only exceed 
the 1 per cent and 0.1 per cent levels by chance once in every 100, or once in every 
1,000, respectively. A null hypothesis value found to exceed these limits is thus very 
likely to be incorrect. 

Unfortunately, there is a dilemma. As the probability of rejecting the null hypothesis 
increases with the significance level, the chance of rejecting a correct statement increases. 
This is termed a Type 1 error (see Figure 6.8). However, if the level of significance is 
reduced to minimise this possibility, the probability of accepting an incorrect null 
hypothesis increases. This is termed a Type 2 error. The two errors are mirror images of 
each other, meaning that as one is minimised, the other is maximised. A compromise thus 
needs to be reached in testing any hypothesis, in which the probabilities associated with 
both types of error are kept as small as  
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Figure 6.8 Error table 

possible consistent with the needs of the analysis. This simply means that the nature of 
the null hypothesis tends to determine which type of error, if either, ought to be made. A 
failure to minimise a Type 1 error, for example, could have disastrous consequences for 
the users of medicines, engineering constructions (bridges, dams) and aircraft. 

Ehrenberg (1982:137) suggests a few rules of thumb which may help. If the sample 
result differs from the null hypothesis by less than 1.5 standard errors, then do not reject 
the null hypothesis as only one in ten samples would produce this difference by chance. 
However, if the difference is more than 2.5 standard errors, then reject the null 
hypothesis, as only one in one hundred samples would produce this difference just by 
chance. A value which lies in between these limits is in a twilight zone, for which no 
clear-cut decisions may be made without further analysis. 

6.6.4 Critical regions 

To illustrate these ideas, consider Figure 6.9 which displays the sampling distribution of 
some unspecified test statistic if the null hypothesis is correct. For simplicity, assume that 
this distribution is Normal. The areas under the curve correspond to 95 per cent and 99 
per cent confidence intervals. Two types of area should be noted: 

1 The central areas which lie within the confidence limits of the test. 
2 The areas between the confidence limits and the tails of the distribution. These are 

critical regions and are concerned with the rejection of the null hypothesis. 

As the confidence interval widens, the sizes of the critical regions contract. At a 5 per 
cent significance level, the area contained between the confidence limits corresponds to 
95 per cent of the values of the test statistic. Five per cent of the values lie outside this 
area in the critical regions. If the test is made more rigorous by testing at the 1 per cent 
level, the area contained between the limits expands to leave only 1 per cent of the values 
of the test statistic in the critical regions. In interpreting any test, researchers should 
remember that extreme values for a statistic can occur by chance. Thus at the 1 per cent 
level, the chances of rejecting the null hypothesis when it is in fact correct will be once in 
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every hundred tests. At the 5 per cent level, this chance will have risen to five in every 
hundred. 

 

Figure 6.9 Confidence intervals in a 
Normal test statistic 

The critical regions in Figure 6.9 have been drawn at both ends of the distribution. For a 
95 per cent confidence interval, this means that 2.5 per cent of the observations will be 
located in the critical regions at either end. However, if direction is specified in an 
alternative hypothesis, the critical regions will alter, even though the rigour of the test 
may be unchanged. Figure 6.10 displays the three critical regions associated with the 
three alternative hypotheses listed previously. 

Tests of null hypotheses may be developed for the following types of problem: 

1 Tests concerned with a single mean value. 
2 Tests concerned with two or more means, 
3 Tests concerned with proportions. 
4 Tests concerned with matched pairs (that is, observations made on the same subject at 

two different periods, for example before and after training). 
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Figure 6.10 Critical regions 

All four of these types of problem may be tested using formulae derived from the Normal 
curve or the t test. However, these tests explicitly assume that the population is a Normal 
shape, at least in large samples. If such an assumption is untenable, a series of non-
parametric or distribution-free tests may be applied instead (the latter term is misleading 
because distributions are involved, but are not stated explicitly). Further details may be 
found in, among others, Blalock (1979) and Chatfield (1983). 

6.7 LIKELIHOOD INFERENCE 

The estimation and inference procedures described so far are based on the so-called 
‘frequentist’ concept of probability (Chapter 5, section 5.10). This postulates that in a 
repeated series of experiments the probability of an event occurring will tend towards a 
common value. In practical terms, this means that if a series of different data sets were 
obtained from the same source, the probability associated with some specified 
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characteristic would be found to be relatively constant. Unfortunately, it is only rarely 
that researchers obtain more than one data set, and so, only rarely, that the frequentist 
assumptions can be demonstrated empirically (see Hacking 1965, 1975 for further 
details). Ideally, what is required is a mode of inference which allows acceptable 
estimators to be generated using the information contained in the single sample. This 
implies that the only information which is needed is already contained in the observed 
data. Such a possibility is provided by likelihood inference. 

The principal assumption underlying likelihood inference is the belief that different 
types of population generate different types of sample. Therefore, the information in a 
given sample automatically identifies its own population from among the alternatives 
available. By maximising the information content of the sample data, researchers are 
assumed to be able to describe characteristics of the population and assess hypotheses 
concerning it. In other words, the same sorts of descriptive and inferential procedures 
outlined previously may be applied, but based on a radically different conception on the 
role of the sample. 

6.7.1 Likelihood and log-likelihood functions 

In order to maximise this information some procedure for identifying it formally needs to 
be developed. In much the same way that probability information may be organised into a 
probability function, so it is possible to express sample information as a likelihood 
function (Sprott 1973; Pickles 1985). This depends on the observed data and on the 
unknown parameters associated with them. As the data are essentially fixed in value, 
given by the sampling process, the only components which may vary in order to 
maximise the information content available are the parameters. In likelihood inference it 
is thus assumed that the estimators which are most likely to have generated the observed 
data are those which maximise the likelihood function. 

In order to clarify the basic idea, consider the likelihood function for a binomial 
variable whose two ‘outcomes’ are r and n−r (similar examples based on this are 
presented in Sprott 1973, Chatfield 1983 and Pickles 1985). The likelihood function for 
this process may be written as follows: 

L(θ)=pr (1−p)n−r 
(6.14) 

with:  
p the probability of observing outcome r 

(1−p) the probability of observing outcome n−r 

n the total number of binomial trials 

r the number of trials where r is the outcome 

The equivalent probability function for this variable is: 
p(θ)=pr(1−p)n−rn!/r! (n−r)! 

(6.15) 
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Notice the similarity between the two equations, but also that the latter includes terms 
representing permutations of the data (see Chapter 5 for details of permutations). 

The likelihood function is somewhat simpler than its equivalent probability function, 
but further simplicity is provided, if the log-likelihood function is used instead: 

logL(θ)=r log p+(n−r)log(1−p) 
(6.16) 

For given values of r and n, a variety of different values may be generated for the 
likelihood and log-likelihood functions merely by altering the value of p. It is assumed 
that the value of the parameter which is the most likely to have generated the data is that 
which produces a maximum value for both functions. 

The values of both functions generated for a random sample of twenty binary 
observations in which r=l4 are given in Table 6.7. This summary information may also 
be presented graphically, as a graph of the likelihood function (Figure 6.11) and the log-
likelihood function (Figure 6.12). Notice that the values of the likelihood and log-
likelihood functions are convex, sharply-sided, and peak when the probability value is 
0.7. This maximum is equivalent to the proportion of observations in the sample of 
twenty which are classed as category r (i.e., r=14, p=14/20=0.7). This implies that the 
most likely value for r in the population is identical to that  

Table 6.7 Likelihood and log-likelihood values for 
given values of p 

p 1−p Likelihood Log-likelihood 

0.0 1.0 0 −∞ 

0.1 0.9 0.53E−14 −32.86835 

0.2 0.8 0.43E−10 −23.87097 

0.3 0.7 0.56E−08 −18.99565 

0.4 0.6 0.13E−06 −15.89303 

0.5 0.5 0.95E−06 −13.86294 

0.6 0.4 0.32E−05 −12.64930 

0.7 0.3 0.49E−05 −12.21729 

0.8 0.2 0.28E−05 −12.78063 

0.9 0.1 0.23E−06 −15.29056 

1.0 0.0 0 −∞ 

Note: Based on 20 observations in which 14 are in category 1 and 6 in category 2 
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Figure 6.11 Likelihood function 

 

Figure 6.12 Log-likelihood function 

observed in the sample. Given limited information, this seems only reasonable. 
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Both graphs show that many of the probability values (for example, p=0.2) could not 
possibly have generated the data because they lie far from the maximum. However, a 
number of probability values produce log-likelihood values which are very similar to the 
maximum. Mathematical calculus needs to be used in order to distinguish between these, 
and to provide a point estimate for the maximum value of the log-likelihood function. 
(This is not actually the case for a simple example such as this, but would certainly apply 
in more complex analyses.) 

6.7.2 Relative likelihood and relative log-likelihood 

The values of the likelihood and log-likelihood functions at their maxima depend on the 
data and not just on the parameter estimate. This may be shown by comparing the log-
likelihood values in Table 6.7 with those produced by Pickles (1988b) for a smaller 
sample of hypothetical holiday homes in West Wales (Table 6.8). This data set contained 
ten binary observations, seven of which were categorised as r. In other words, the only 
difference between the two sets of data is the size of n. Notice that the values of the log-
likelihood produced in the smaller sample are half those of the larger, subject only to 
rounding errors. However, in spite of these differences, the shapes of the two log-
likelihood functions are identical, so it is not possible to assess rival values of p solely 
from sample size. 

The assessment of alternatives near the maximum is made possible using two 
functions which have standardised maxima. These are the relative  

Table 6.8 Comparison of log-likelihood values 
from Table 6.7 and Table 2 of Pickles (1986) 

p 1−p Pickles’s data Table 6.7 data 

0.0 1.0 −∞ −∞ 

0.1 0.9 −16.43 −32.87 

0.2 0.8 −11.94 −23.87 

0.3 0.7 −9.50 −19.00 

0.4 0.6 −7.95 −15.89 

0.5 0.5 −6.93 −13.86 

0.6 0.4 −6.32 −12.65 

0.7 0.3 −6.11 −12.22 

0.8 0.2 −6.39 −12.78 

0.9 0.1 −7.64 −15.29 

1.0 0.0 −∞ −∞ 

Note: The values displayed in Table 6.7 are twice those in Pickles (1985), given rounding errors, 
reflecting the size difference between the two samples 
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likelihood and relative log-likelihood functions. Both are based on the ratios of their 
respective likelihood and log-likelihood functions at any given parameter value with the 
maximum values. Thus relative likelihood is defined as: 

R(θ)=L(θ)/L(θmax) 
(6.17) 

whereas relative log-likelihood is defined as: 
log R(θ)=log L(θ)−log L(θmax) 

(6.18) 

This latter function is particularly useful because it measures the departures of any 
particular value of p from the most likely value. Its maximum value is 0, and this is found 
at the point where p is greatest. 

The relative log-likelihood values for the data in Table 6.7 are given in Table 6.9. 
These are twice the values produced by Pickles (1986) for his smaller sample. However, 
though these values are related to sample size, the shapes of their distribution functions 
are different. Figure 6.13 illustrates three relative log-likelihood functions for r=0.7, 
based on samples of ten, twenty and one hundred. As the sample size increases the curves 
become distinctly more peaked, indicating the inadequacy of values of p thought 
plausible from the results of the smaller samples. 

The value of these relative log-likelihood graphs is that they allow researchers to place 
confidence intervals around the maximum value. Pickles notes that a horizontal line 
drawn across the relative log-likelihood functions at −2 distinguishes between the 
maximum value and those which are only 1/7 as probable. Notice that the values of the 
function which cross this hypothetical line are much nearer each other in larger samples 
than in smaller ones. This mirrors the finding given previously for the sampling 
distribution of the mean. 

Any line drawn across from the vertical axis corresponds to a confidence  

Table 6.9 Relative log-likelihood values 

p 1−p Pickles’s data Table 6.7 data 

0.0 1.0 −∞ −∞ 

0.1 0.9 −10.32 −20.65 

0.2 0.8 −5.83 −11.65 

0.3 0.7 −3.39 −6.78 

0.4 0.6 −1.84 −3.67 

0.5 0.5 −0.82 −1.64 

0.6 0.4 −0.21 −0.43 

0.7 0.3 0.0 0.0 

0.8 0.2 −0.28 −0.56 

0.9 0.1 −1.53 −3.07 
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1.0 0.0 −∞ −∞ 

 

Figure 6.13 Relative log-likelihood 

interval. More formally, it corresponds to the 100(1−α) per cent interval, where a is a 
value for which the relative log-likelihood value is equal to 

   

This expression corresponds to an area of rejection identified under the chi-square 
distribution. For a 95 per cent confidence interval, the expected value under the chi-
square distribution for one degree of freedom is 3.84 (see Chapter 5). The value of the 
relative log-likelihood associated with this is −1.92 and corresponds to the following 
values of p in the three samples: 
  lower limit upper limit 

n=10 0.39 0.92 

n=20 0.48 0.84 

n=100 0.61 0.78 

The ability to compare models using the chi-square distribution is particularly important 
for testing generalised linear models. Dobson (1983) shows that the following expression: 

−2RLLa=−2(LLa−LLmax) 
(6.19) 
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where 
RRLa is the relative log-likelihood value at point p=a 

LLa is the log-likelihood value at point p=a, and 

LLmax is the log-likelihood value at the maximum 

follows a chi-square distribution for given degrees of freedom. This expression is termed 
the likelihood ratio statistic. Its use will be described in more detail in Part II. (Barndorff-
Nielsen and Cox (1984) show that this statistic is robust under many circumstances but 
may need adjustment to accommodate censored data.) 

6.7.3 Maximum likelihood estimation 

In section 6.5.3 it was noted that maximum likelihood estimation may be used to provide 
acceptable estimators of population parameters. The maximum likelihood estimator is 
simply the value which maximises the information in the sample. It may be read off 
directly from the likelihood or log-likelihood functions given previously as the value of p 
at the peaks of the curves. 

The maximum likelihood estimator for the mean is identical to that for the moments 
method. There is thus no difference in the value of the estimate obtained using either 
alternative. However, there is a slight difference between the two formulae for the 
variance in that the maximum likelihood estimator divides through by n rather than n−1. 
This leads to a biased estimator. In spite of this, the estimator may be shown to be 
consistent in large samples under a variety of conditions allowing robust confidence 
intervals to be generated. However, Royall (1986) notes that there may be conditions 
when this does not hold, and an alternative procedure (the delta method) which is 
consistent in a wider set of circumstances may be chosen instead. 

The idea of likelihood estimation may be extended to descriptive and inferential 
models in exactly the same way as the moments procedure. However, before it may be 
applied to calculate the values of α and β in the equation for a line (equation 6.7), an 
additional assumption needs to be made to the two listed earlier. In addition to 
independent errors and constant error variance, it is necessary to assume that the errors 
are independent drawings from a Normal distribution (this assumption may also be 
applied to the y terms instead of the errors). This assumption is needed in order to form a 
likelihood function for the model. 

The probability function for yi in the equation for the line may be written as: 

 (6.20) 

where the values of the probabilities are functions of the data, the two parameters, and the 
variance of the errors. Using this, it is possible to calculate the probability that any given 
value of y will occur. However, as this can already be deduced from the data, a more 
interesting question concerns the behaviour of p given the observations. 

To assess this, it is useful to generate the equivalent likelihood function for the model: 

 (6.21) 
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where π represents the product of n independent factors. 
This expression is a function of the data, the parameters and the variance. It describes 

the relative odds of obtaining the observed data for all appropriate values of the 
parameters given that the model is correct. The value of the parameters which is 
considered ‘best’ is that which maximises the likelihood function. 

Pindyck and Rubinfeld (1976:52–3) show that this maximisation is obtained by 
differentiating the likelihood function with respect to α, β and the variance. As with the 
binomial example given previously, it is easier to work with log-likelihood functions. The 
following three equations may be produced: 

 

(6.22) 

The solutions to these three estimating equations (which are similar in concept to the 
normal equation associated with the moments procedure) are 

 

(6.23) 

For a and b, these are identical to the least squares estimators produced in section 6.5.3. 
Notice, however, the biased estimator for the variance. 

6.7.4 Quasi-likelihood 

The great advantage of the likelihood procedure is that it emphasises the most effective 
use of the observed sample data in generating estimates. It can be shown that likelihood 
and log-likelihood functions may be written down for all the theoretical frequency 
distributions presented in this chapter. From these functions, it is possible to generate 
statistics which contain all the information needed to produce acceptable estimates, 
socalled sufficient statistics. 

In order to generate a full likelihood function it is necessary to assume a theoretical 
probability process for the data. The likelihood functions of the Poisson and binomial 
vary because of the differences between the two distributions. Without knowledge of the 
full distribution therefore, it is not possible to generate maximum likelihood parameter 
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estimates for either distribution. However, Wedderburn (1974b) and Godambe and Heyde 
(1987) have shown that for generalised linear models, the estimation of model parameters 
depends on the mean and variance only, and not on a stated distributional shape. 
Parameters estimated under these conditions are termed quasi-likelihood estimators. 

It can be shown that maximum quasi-likelihood parameter estimates are identical to 
those produced using least squares. Indeed, Godambe and Heyde (1987:231) note: 

that the optimality of the least-squares estimate…depends on assumptions 
concerning the first two moments of the distribution but is otherwise 
independent of the distribution or distributional form. Similarly, it can be 
shown that maximum likelihood estimates and maximum quasi-likelihood 
estimates are identical. 

This does not, however, apply to variance estimators (see McCullagh and Nelder 1983: 
Chapter 8, for more details). 

6.8 SUMMARY 

This chapter has introduced a number of apparently complex ideas concerning the 
handling of survey or field data. The need to generalise results from the confines of one 
study to the broader situation compels researchers to strive for mechanisms which allow 
such generalisation. Statistical inference provides a possible mechanism which allows 
information in specially selected data sets (‘samples’) to be used to infer the parameters 
of unseen populations. The estimation of parameters such as the mean and variance 
provides a useful illustration of the inferential procedure. 

However, the ability to describe and infer relationships in populations using statistical 
models is potentially of even greater value. The types of models which may be written 
down to describe these relationships depend on the nature of the data, the variables and 
the relationships being considered. As might be expected, a large variety of models 
exists. In order to present these, and emphasise the points made here, some form of 
integrated treatment of statistical modelling is needed. The family of generalised linear 
models offers a suitable framework with which to proceed. 
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7  
TOWARDS INTEGRATION—

GENERALISED LINEAR MODELS 

7.1. INTRODUCTION 

In Part I, it was shown how a variety of numerical measures and descriptive models could 
be used to summarise relationships in geographical data sets. The potential value of 
inferential procedures was also stressed, in that data from a single survey may be used to 
illuminate, or expand on, findings relevant to an unseen population which have been 
established in other contexts. The advantage of this is that survey data may be generalised 
or used to expand knowledge beyond the limited confines of the specific survey. 

The techniques described in Chapter 6 are appropriate when the object is to infer the 
characteristics of population parameters from sample statistics. A series of relatively 
simple devices offer help here, and, moreover, may be developed into a system for 
assessing hypotheses about relationships in the population. However, many of these 
relationships may only be understood effectively in their multivariate context, that is, 
when attention is paid to the effects of two or more variables operating simultaneously. 
The simple procedures of Chapter 6 provide a key towards the description of multivariate 
relationships in populations in that they may be developed to estimate the parameters of 
statistical models of these relationships. Thus, inferential models of population 
relationships may be developed in much the same way as it is possible to describe 
patterns in data using descriptive models. 

There are many different types of inferential model in geographical use. Some of these 
are imports from economics, others owe their origins to developments in psychology, 
political science, public health and statistics. Coming to terms with this variety of models 
and their range of applications can be quite daunting. This chapter introduces a neat way 
of getting to grips with the key ideas which are common to most types of model. Indeed, 
these may be divorced from their historical roots and re-expressed in a common way 
using the family of generalised linear models. The purpose of this chapter is to introduce 
the basic format of generalised linear models and the GLIM computer package which is 
widely available for fitting them. Subsequent chapters introduce specific generalised 
linear models which are of use for particular types of analytical problem. 

7.2 TYPES OF INFERENTIAL PROBLEM 

The inferential models which may be written down vary in composition and character 
depending on the types of data involved and the sorts of hypotheses being posed. 



Essentially, three types of modelling problem may be envisaged, involving the 
assessment of relationships between: 

1 continuous measurements; 
2 categorical measurements; 
3 mixtures of continuous and categorical measurements. 

Given the variety of scales associated with these two classes of measurement (see 
Chapter 3), it is possible to expand these into fifteen distinct types of numerical problem 
involving the following combinations of measurements: 

1 all nominal 
2 all ordinal 
3 all interval 
4 all ratio 
5 nominal and ordinal 
6 nominal and interval 
7 nominal and ratio 
8 ordinal and interval 
9 ordinal and ratio 
10 interval and ratio 
11 nominal, ordinal and interval 
12 nominal, ordinal and ratio 
13 nominal, interval and ratio 
14 ordinal, interval and ratio 
15 all four measurement types. 

Some of these represent distinct types of modelling problem, for which specific solutions 
have to be sought. Table 7.1 illustrates some of the possibilities. However, some of the 
procedures listed, particularly those relevant to categorical measures, are rather dated. 

Since the late 1950s, new model-based techniques have been available for the analysis 
of categorical data. Many of the difficulties of analysing categorical data, either in 
combination with continuous measurements or on their own, have been resolved or 
greatly simplified. As a result, the fifteen distinct types of problem may be reduced to 
four areas of interest: 

1 classic linear regression analysis; 
2 dummy variable regression analysis;  

3 discrete (categorical) regression analysis; 
4 tabular data analysis. 

Introducing quantitative geography      162



 

Table 7.1 A variety of analytical modelling 
procedures 

Variable 1 Variable 2 Appropriate measures/tests 

Difference of proportions 

Chi-square 

Fisher’s exact test 

Yule’s Q 

Binary Binary 

Kendall’s tau 

Chi-square 

Cramer’s V 

Pearson’s contingency coefficient 

Tschuprow’s T 

Multi-way Binary or 
Multi-way 

Kendall’s tau 

Wilcoxon/Mann-Whitney test 

Wald-Wolfowitz runs test 

Kolmogorov-Smirnov test 

Ordinal Binary 

Wilcoxon matched pairs test 

Ordinal Multi-way ranked ANOVA 

rank order correlation 

Kendall’s tau 

Somer’s D 

Ordinal Ordinal 

Wilson’s E 

Continuous Binary Difference of means test 

ANOVA 

Intra-class correlation 

Kruskal-Wallis 1-way ANOVA 

Continuous Multi-way 

Friedman 2-way ANOVA 

Pearson’s product moment correlation Continuous Continuous 

Linear regression 

Source: Based on Table 4.15 
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A variety of distinct types of inferential model may be written down to represent these 
problems. These differ in a number of ways, for example in notation, in their reliance on 
different strategies to estimate parameters, and in their theoretical development. 

Most of these differences are the result of the separate development of the models in 
different disciplines, for example discrete regression in psychology, biology and 
economics; tabular analyses in statistics, political science and sociology; and regression 
in statistics, astronomy and agricultural science. It is, however, possible to avoid these 
differences by respecifying the models in a generalised, integrated framework. This 
approach has been tried on a number of occasions (for example, by among others, 
Scheffé 1959; Grizzle et al. 1969; Haberman 1974a). The approach to be presented here 
is based on the work of Nelder and Wedderburn (1972), whose family of generalised 
linear models provides a framework which is at once comprehensive and easy to 
compute. 

There are three reasons for preferring the generalised framework to the separate 
treatment of the models listed above: 

1 all members of the family of generalised linear models may be specified in a common 
notation; 

2 the probability processes used with the generalised family for inference are themselves 
interrelated. They form part of the exponential family of probability distributions (see 
Figure 7.1), and are distinguished from each other by the form of their canonical 
parameters (that is, the parameters which characterise or typify each distribution—see 
Chapter 6, section 6.7); 

3 these canonical parameters are easily estimated from the sufficient statistics (statistics 
containing all the information needed to estimate the parameters) of the sample data 
using a single computer algorithm. This means that only one program needs to be used 
to tackle all four analytical problem areas, and as a helpful spin-off for the researcher, 
only one command syntax needs to be learned. 
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Figure 7.1 Some members of the 
exponential family of probability 
distributions 

The main effect of these three layers of generalisation is that it is possible to use the 
generalised family as a practical tool for research and teaching (Aitkin et al. 1989). 
(Appendix A contains further details about the exponential family, canonical parameters 
and sufficient statistics.) 

7.3 COMPONENTS OF A GENERALISED LINEAR MODEL 

The family of generalised linear models is popular in statistics and applied research 
because it is ‘extremely simple, and can reflect a justified and widespread desire on the 
part of the [researchers] to describe the world in the simplest possible manner’ (Bibby 
1977:5). All members of the family may be described by a common notation regardless 
of data type or the purpose of the analysis. At the core of this notation is a simple 
relationship for an independent random variable, Y. The sample value of this, y, may be 
decomposed into two parts, one which is predictable, and the other, which is random: 

y=predictable component+error component 
(7.1) 
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These parts are related to each other by a mathematical function which is both linear and 
additive. Algebraically, this may be written as: 

y=µ+ε 
(7.2) 

where 
µ represents the part of y whose value is predictable, and 

ε represents the part which is a random error 

For a set of n random observations (that is, y1, y2, y3,…, yn), equation 7.2 is modified to 
identify the structure of each: 

y1=µ1+ε1 
y2=µ2+ε2 
y3=µ3+ε3 
yn=µn+εn 

  

As there is a clear pattern emerging here, some simplification is possible by representing 
each of the observations in the sample by a subscript, i, which runs in value from 1 to n. 
Thus the general equation for a sample of n random observations is: 

yi=µi+εi 
(7.3) 

In order to turn this general expression into an applicable model, it is necessary to make a 
series of assumptions about the data and the nature of the analysis to be performed. These 
involve: 

1 specifying y from among the many variables collected in the sample; 
2 organising the observed data into a form capable of predicting the value of µ; 
3 choosing a probability process to enable an assessment of hypotheses and model 

accuracy. 

For the first of these, the choice of y depends on the type of analysis to be performed. For 
questions 2 and 3, the researchers need to specify a linear predictor, a link function and 
an error distribution. 

7.3.1 Linear predictor 

The linear predictor is the term used by Nelder and Wedderburn to refer to the 
organisation of the observed data in a generalised linear model. For a single observation, 
it may be presented algebraically as: 
ηi=β0+β1xi1+β2xi2…βkxik 

(7.4) 

where 
β refers to k (usually) unknown parameters which have to be estimated, and 
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x refers to k items of observed data on a single observation (e.g., observation 1) which will be used 
to predict µ 

As an equation of this sort may be written down for each of the n observations in the data 
set, two simplifying expressions are usually presented instead: 
ηi=β0+β1xi1+β2xi2…βkxik   

where each observation is referenced by the i=1,n subscripts, or: 
η=Xß 

(7.5) 

Equation 7.5 uses matrix algebra to simplify the structure of the linear predictor. In this: 
η is a 1×n column vector, 

X is an n×k design matrix representing the linear structure of the observed data for each 
observation, 

β is a k×1 column vector of parameters requiring estimation. 

If the components of matrix X are continuous measurements, their associated parameters 
scale their effect on β, a simple example being the six-times table given previously, 
where β=6 magnifies the effect of a unit change in X six times in η. If, however, the 
components of X are categorical, their associated parameters represent the effect of each 
of their categories on η. (Matrix algebra simplifies the presentation of models, but is not 
in itself an essential component in the description of the generalised family. As a result, it 
will not be considered in detail here. A review of matrix techniques may be found in, 
among others, King 1969, Mather 1976, and Hanuschek and Jackson 1977.) 

7.3.2 Link function 

The linear predictor is related to y by a link function, g: 
ηi=gi(µi) 

(7.6) 

which associates the influences of the observed data with the predictable component of y. 
This relationship may also be re-expressed using an inverse link function, g−1: 
µi=gi

−1(ηi)   

As the link (and inverse link) is normally identical for each of the n observations, there is 
usually no need to distinguish individual links using subscripts. 

The link function and linear predictor may be combined to form a basic, or core, 
equation for the family of generalised linear models: 

yi=g−1(ηi)+εi 
(7.7) 

which is a simple modification of equation 7.2. This may also be written as: 
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(7.8) 

or 

   

where 
F refers to a member of the exponential family of probability distributions (Figure 7.1), and 

 indicates that the relationship between y and the linear predictor is an approximation 

Notice that in equation 7.8 the error component has been omitted. This implies that the 
assumptions affecting the behaviour of each of the models in the generalised family apply 
to y rather than the ε component (Collett 1979). 

The link functions which are most appropriate for geographical modelling can take a 
variety of forms. The models associated with the first area of analytical interest—classic 
regression—take what is termed an identity link. In such a link, g=1 so that: 
ηi=µi 

(7.9) 

Categorical models, on the other hand, are specified using different links, for example 
logit and logarithmic link functions. The logit link, which is used with discrete regression 
models, is expressed as: 

 
(7.10) 

and the logarithmic link, which is used with tabular analyses involving categorical data, 
as: 
ηi=log µi 

(7.11) 

Table 7.2 contains a list of some of the most widely-used links associated with 
generalised linear models. 

Table 7.2 Some common link functions in 
generalised linear models 

Link GLIM notation ($LINK=) Link function (η=) 

Identity I µ 

Logarithmic L log µ 

Logit G log (µ/n-µ) 

Probit P (µ/n) 
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Square root S  
Exponent E µ**{number} 

Reciprocal R 1/µ 

Notes: The following are default configurations set automatically by GLIM if $LINK is omitted: 

Error Implied SLINK 

Normal Identity 

Poisson Logarithmic 

Binomial Logit 

Gamma Reciprocal 

7.3.3 Error structure 

The link function and the linear predictor provide the mechanisms for relating the 
predictable part of y to the observed data. However, these components are not sufficient 
to turn the generalised family of models into a practical modelling system. A third 
component is needed which allows the estimated values of y, ŷ, generated from these 
models to be compared against theoretical norms or values arising by chance. (This is 
exactly the same process as applied in Chapters 5 and 6 on assessing hypotheses and the 
fit of a model.) 

The component of generalised linear models which allows this compari-son to be 
made is termed the error structure. In continuous data analysis, the observed predictions 
from the model may usually be compared for significance against expected values 
generated by the Normal distribution. For categorical data, the Poisson distribution 
provides a suitable starting point and is particularly useful for analysing tabular data. 
Generalisations of the Poisson lead to the binomial and multinomial probability 
distributions which are suited for analysing proportions. (These characteristics were 
briefly described in Chapter 5, and are considered again in more detail in Appendix A.) 

Table 7.3 lists some examples of generalised linear models derived from equation 7.8 
along with their appropriate error distributions and link functions. The seven models 
presented here are frequently used to analyse geographical problems, as will be shown in 
subsequent chapters. From this table it can be seen that different types of model may have 
identical links and errors (e.g., linear regression and the analysis of variance). This 
feature is fully explained by the components used in their respective linear predictors. For 
example, models which only include tabulated or dummy observed variables (variables 
which represent discrete states such as presence or absence of some phenomenon) in the 
linear predictor are analysed as so-called ‘factorial designs’ (e.g., analysis of variance and 
the log-linear model). In contrast, models which are not entirely composed of dummy 
variables can utilise any available quantitative information directly (e.g., linear 
regression, logit and probit regression) and there is no need to re-express the model in 
factorial terms. It is the presence of these tabular variables (frequently termed ‘factors’ in 
the statistics literature) which differentiates the two model types. For details of the 
geographical use of generalised linear models see, among others, Bowlby and Silk 
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(1982), Fingleton (1981, 1983, 1984), Flowerdew and Aitkin (1982), O’Brien (1983) and 
O’Brien and Wrigley (1984).  

Table 7.3 Examples of generalised linear models 

Model Link function Error distribution 

Linear regression Identity Normal 

ANOVA Identity Normal 

ANOVA (random effects) Identity Gamma 

Log-linear model:     

  symmetric Poisson Logarithmic 

  asymmetric Binomial or Multinomial Logit 

Logit regression Binomial or Multinomial Logit 

Probit regression Binomial or Multinomial Probit 

Source: After O’Brien (1983) and O’Brien and Wrigley (1984) 

7.4 GLIM 

7.4.1 Background 

The computer package GLIM (Generalised Linear Interactive Modelling) is widely 
available in British and US universities for fitting generalised linear models to statistical 
data. It has been developed over many years by the Working Party on Statistical 
Computing of the Royal Statistical Society and marketed by NAG (Numerical 
Algorithms Group Ltd, Oxford). It was first released in 1972 primarily for an audience in 
applied statistics, biostatistics and the natural sciences. Since then it has undergone 
significant modification and extension in order to widen its appeal, most recently to 
include a social science audience. The third release—GLIM 3 (Baker and Nelder 1978)—
has been installed at over 1,000 university, research institute and commercial sites around 
the world, and on a wide range of computing systems. 

During 1985/6 NAG released two modified versions of GLIM 3—GLIM 3A and 
GLIM 3.77 (O’Brien 1986, 1987b). Both of these include enhancements to the basic third 
release, to simplify its command language, and make it suitable for use with independent 
microcomputers. An additional feature of GLIM 3.77 is the incorporation of data-
handling and manipulation facilities. These allow users to create data tables within the 
package from external data files and produce a range of summary statistics and visual 
plots to describe the data prior to modelling. An extra routine allows GLIM 3.77 facilities 
to be called from outside the package using FORTRAN 77 subroutines supplied by the 
user. 

These enhancements were designed to widen the appeal of GLIM among users of 
statistical methods, particularly in social science, and to keep GLIM up to date with 
developments in computing styles and practices. In particular, the advent of powerful 
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microcomputers has allowed a distribution of computing power away from centralised 
computing departments and towards the users. (For further details on GLIM, see Baker 
and Nelder 1978, Payne 1986, Reese and Richardson 1984 and Baker et al. 1986.) 

7.4.2 Specifying generalised linear models in GLIM 3 

The core equation of the Nelder and Wedderburn family of models was presented in 
equation 7.8. The specification of individual generalised linear models, such as those 
illustrated in Table 7.3, requires modifying this core equation. This is essentially a four-
stage design problem involving: 

1 defining which of the variables in the data set is to be treated as the response variable 
(i.e., defining y); 

2 choosing a suitable probability distribution for y from among the members of the 
exponential family; 

3 specifying the form of the X matrix of independent (explanatory or controlling) 
variables; 

4 choosing a suitable link function which allows the linear predictor to be associated with 
the predictable component of y. 

A summary of the basic steps involved is presented in Table 7.4. 

Table 7.4 Summary of specification and fitting 
commands used in GLIM 

Command Abbreviation Interpretation 

$YVARIABLE $YVAR Declaration of the response variable 

$ERROR $ERR Declaration of the error (probability) component 

$FACTOR $FAC Declaration of a categorical variable 

$CALCULATE $CALC Allows internal calculations to be made, including the generation 
of factor levels 

$LINK   Declaration of the link function relating the linear predictor to µ 

$FIT   Command to fit a specified model to data 

$DISPLAY $D Command to display additional information about the fit of the 
current model 

Notes: A full list of GLIM commands is presented in Appendix C. 

The syntax needed to set these stages is relatively simple. Stage 1 is set using the 
$YVARIABLE ($YVAR for short) command, e.g., $YVAR PPT causes the variable PPT 
to be treated as the response variable within the package. Stage 2 is set using the 
$ERROR ($ERR) command. The term error is used to refer to the probability distribution 
which is to be used by GLIM to assess the performance of the fitted model. $ERR P tells 
GLIM to use a Poisson error process (as might be used when fitting log-linear models). 
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Stage 3 is rather more complicated. The structure of the explanatory variables can 
usually be in one of three states: 

1 fully continuous measurements; 
2 fully categorical measurements; 
3 mixtures of both types of measurement. 

It is therefore necessary to ensure that each type of measurement is correctly specified 
within the program. To simplify matters, GLIM has been programmed to assume all 
variables are continuous unless specified otherwise. If, however, categorical variables are 
to be used, GLIM needs to be told their names, how many levels each has, and which 
observations in the raw data are associated with each level. This information is set using 
$FACTOR ($FAC) and $CALCULATE ($CALC) commands: for example, $FAC SEX 
2 creates a binary categorical variable SEX, whereas $FAC OCC 4 creates an occupation 
variable with four levels. Note the use of the term factors here to specify categorical 
measurements. (Readers should not confuse this term with that used in multivariate 
procedures such as factor analysis, which are not considered in this book.) 

Finally, stage 4 is set using the $LINK command, for example, $LINK LOG is used to 
create the correct logarithmic link structure for fitting log-linear models within the 
package. (The symbol $ is a system prompt which is used to start and finish command 
lines in GLIM. The exact form of this prompt may vary on different computer 
installations.) 

7.4.3 Fitting models to observed data 

Once the model structure has been completed, the $FIT command may be used to fit the 
model to the observed data. GLIM produces maximum likelihood estimates for the 
parameters of this model using a technique known as iterative weighted least squares. 
The logic of this approach is summarised in the next section. 

In response to the $FIT command, GLIM generates the following items as output: 

1 cycle information 
2 (scaled) deviance 
3 degrees of freedom 
4 scale parameter 

Figures associated with these provide four items of information relevant to the fit of the 
model. Cycle refers to the number of iterations or successive approximations which were 
performed by GLIM to produce the maximum likelihood parameter estimates for the 
data. It works by producing an initial guess at the values of the estimates and then 
successively revising them until no major changes are detected. (Scaled) deviance 
indicates the degree of fit of the model using a computed measure whose exact 
interpretation depends on the model in question. (The difference between scaled deviance 
and deviance is discussed in section 7.4.5.) Degrees of freedom lists the number of 
independent items of information associated with the fitted model. The scale parameter is 
a term which is used in the calculation of the residual variance (the measure summarising 
the ‘unexplained’ part of the data). It may either be calculated from the data, or set to an 
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arbitrary value internally, depending on which error distribution has been selected. Taken 
together, the (scaled) deviance and degrees of freedom provide the information needed to 
assess the observed fit of the model with the fit which could be expected by chance. 
Should GLIM be unable to obtain maximum likelihood estimates for some reason, a 
message to that effect is printed instead. 

Further descriptive details associated with the fitted model may be displayed using the 
$DISPLAY command. A series of options may be selected using this which show, for 
example, the fitted values (the estimated values of each µ component given the model), 
the observed values, and the structure of the linear predictor. A fuller list of these options 
is given in Table 7.5. 

Table 7.5 $DISPLAY command options 

Option letter Displays 

E parameter estimates, standard errors, parameter names 

R data, fitted values, standardised residuals 

V covariance of estimates 

C correlation of estimates 

S standard errors of difference of estimates 

W as R, but restricted output 

L the linear predictor 

M current model 

A as E, but extended output 

U as E, but restricted output 

D scaled deviance or deviance and degrees of freedom 

T details of the working matrix 

Note: The syntax of this command is: $display options 

7.4.4 Estimating model parameters 

Maximum likelihood estimates are obtained for the parameters of generalised linear 
models fitted in GLIM using an iterative weighted least squares algorithm. This 
procedure is based on a variant of probit analysis, and also on the procedures used in log-
linear modelling (Plackett 1974:72). It is described in detail in Nelder and Wedderburn 
(1972), and short descriptive summaries are given in Baker and Nelder (1978, Part 1:1–
5), and Baker et al. (1986, Appendix A). 

It is not appropriate to describe the procedure in any detail here. However, the 
following points should be noted by the non-technical, non-specialist user of GLIM (a 
schematic summary is also presented in Figure 7.2): 
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1 The procedure used for estimating parameters in GLIM generally requires that the raw 
data observations be used as first approximations to µ, which is used to solve for , 
the estimates of the model parameters. 

2 In the majority of cases significant improvement may be made on these first 
approximations by recalculation. This is required because and are actually 
functions of each other. It is therefore not possible to obtain the most appropriate 
estimates for either of these simultaneously. 

3 To overcome this, an iterative sequence of successive approximations is applied until 
the differences in estimates between steps are too small to be significant. At this point, 
the algorithm used in GLIM is said to have converged and the estimates are presented. 

4 These estimates can be shown to be maximum likelihood estimates. Convergence is 
usually fairly rapid. As a result, GLIM has been programmed to allow ten iterations as 
default. When this number is reached, a message to the effect that convergence still 
has not been achieved is printed. Users can overrule this default using the CYCLE and 
RECYCLE commands (Appendix C.) 

5 On occasion, convergence will not occur. Indeed, divergence is potentially possible. 
Some of the reasons for this are presented in section 7.4.5. 

The procedures which are applied to estimate the parameters of fully continuous 
measurements are slightly different from those applied to categorical measurements. The 
reason for this is that most categorical data  
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Figure 7.2 A schematic description of 
the GLIM estimation algorithm 

matrices contain insufficient independent information to estimate a full set of parameters 
(see Payne 1977 for details). A matrix in this state is said to be of less than full rank. To 
estimate parameters for this sort of problem a series of constraints needs to be imposed. 
Unfortunately, the estimates which are obtained for these constrained parameters depend 
on the constraints applied (Holt 1979). The system applied in GLIM is termed aliasing. It 
is described by example in Chapters 8 and 9, and in theory in Appendix A. 

7.4.5 Assessing fit 

The goodness-of-fit of a generalised linear model requires the assessment of two distinct 
questions: 

1 model adequacy: is the model a suitable description of the population relationship? 
2 model accuracy: given (1), is the model as accurate as it could be in terms of reducing 

uncertainty? 
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The answer to the first part may depend on prior knowledge, a preliminary analysis of the 
data to search for relationships and simple descriptive models, or a combination of both. 
For example, it is worthwhile considering the appropriateness of a particular probability 
process to represent the surveyed data as the characteristics assumed by the distribution 
in question may only partially approximate them. Some evidence for this can be gathered 
from the raw data themselves; for example, if they range over both positive and negative 
values, then they would not be correctly approximated by the gamma distribution, which 
is constrained to positive numbers. Similarly, the use of the Poisson to approximate 
continuous measurements would be inappropriate if the mean and variance measures 
were not identical or proportional to each other. 

The moral is that although a variety of alternative probability processes may be 
applied to observed data, only those for which an effective justification is forthcoming 
should be used. This applies in particular if a probability process is used outside the 
confines of its traditional role, as in the Poisson example. Such an action may not be 
appropriate; it depends on the characteristics of the data (see Chapter 10 on Poisson 
regression for an example). 

A preliminary analysis of the data is also valuable in assessing the general adequacy of 
the model to be fitted. Such an analysis is capable of identifying features of the observed 
data which are odd or unusual in some way, for example, outliers. Some of the 
procedures relevant to a preliminary analysis were described in Chapter 4. However, in 
applying generalised linear models to data, two further features need consideration: 

1 Does the fitted model represent the mean-variance relationship correctly? 
2 Does the fitted model produce additive effects on the scale chosen for the link function? 

Both of these reflect the fact that estimates generated by GLIM depend primarily on 
mean and variance considerations rather than on a complete description of their 
distributions. If the mean-variance relationship is not modelled correctly (for example, if 
the data are not independent) then the model is essentially misspecified. The latter 
reflects the fact that the relationship being hypothesised is linear in a particular scale. 
This may be assessed graphically. If this shows a non-linear relationship, or some other 
peculiarity, then the model needs to be reconsidered. Suitable graphical displays for both 
of these issues are illustrated in Chapters 8 and 9, and described in more detail in Cox and 
Snell (1968), Belsley et al. (1980), Pregibon (1980), Nelder and Pregibon (1983), and 
Jones (1984). 

A further consideration expands on the concept of robust estimation, as illustrated in 
Chapter 4. It is possible that the estimates provided from the model once it has been fitted 
to the data are unduly influenced by a subset of the observations, including a single 
observation. Graphical techniques generally do not highlight this problem, but a number 
of alternative procedures may be able to detect it. For further information on this, see 
Hoaglin and Welsch (1978), Atkinson (1981) and Cook and Weisberg (1982). 

Assuming the adequacy of the model, the second aspect of goodness-of-fit concerns 
the accuracy of the components included in it. In general, the problem reduces to 
assessing which of the variables referenced in the design matrix should be included, and 
which excluded. This is a rather complex issue because as Seber (1977:350) points out: 
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since there are two possibilities…‘in’ or ‘out’ of the equation, there are 2k 
such (equations). For large k (eg, 210=1024) we are faced with comparing 
a large number of equations so that we need, first, an efficient algorithm 
for generating all the possibilities and, second, a readily computed 
measure for comparing the predictive usefulness of the different models. 

Seber suggests the following ways of generating all possible models: sweeping 
techniques, Hamiltonian walks (Efroymson 1960; Garside 1965), hierarchical trees 
(Furnival 1971; Furnival and Wilson 1974), and Householder and Givens 
transformations. Within GLIM, the nature of some of the models which may be fitted 
suggests the value of the hierarchical approach. 

The problem of accuracy essentially involves assessing which of the two models 
which could represent the data, actually should. To assist with this, Baker and Nelder 
(1978) suggest that researchers consider the following five types of model: 

1 A full model—a model containing as many linear independent parameters as 
observations and in which the maximum likelihood estimates generated are identical 
to the raw observations. 

2 A null model—a model in which the maximum likelihood estimates are equal for all n 
observations. 

3 A minimal model—a model containing parameters which theory or common sense 
suggests ought to be included. 

4 A maximal model—a model containing all but those terms theory or common sense 
suggests are inappropriate. 

5 The current model—the model associated with the last $FIT command. 

The first two of these are essentially redundant because they fail to simplify the 
information in the raw data. The full model merely reproduces it exactly as a series of 
parameters, the null model essentially ignores it. The current model therefore needs to be 
steered towards finding a parsimonious representation of the data which lies somewhere 
between the minimal and maximal models. A useful ‘rule of thumb’ in model assessment 
is to assess the effect of including (excluding) parameters to the (from the) minimal 
(maximal) model. If it can be shown that the included (excluded) parameters reduce 
(increase) uncertainty significantly then the evidence suggests that they should be 
included in the final model. In order to assess this, a measure of reasonableness is 
required. 

This measure of reasonableness can be developed by considering the effect on the 
random error component of a generalised linear model with varying numbers of terms in 
its linear predictor. A model with as many terms as observations, a full model in the 
context just described, will produce estimated values which are identical to those 
observed. In terms of the core equation for the generalised family this means that all the 
variability in the observations for the response is attributed to the systematic predictable 
component, that is, the influence of the error component is reduced to zero. 

This feature typifies the full model. Any other model will attribute only some of the 
variability in the y terms to the systematic part; some will also be attributed to ε. As a 
result, the expected values given the model will not be identical to the observed values. 
Discrepancies will be observable when the observed and expected values for each 
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observation in the sample are compared. As the null model represents a situation in which 
these discrepancies are maximised, it is clear that there is a direct and opposite 
relationship between maximising the likelihood and minimising the discrepancies. GLIM 
uses this relationship to suggest a measure of reasonableness termed deviance. 

The following relationship can be shown to provide a measure of fit based on the 
discrepancies of a model which also has the attractive property of being able to infer its 
appropriateness: 

 
(7.12) 

where 
lc is the likelihood associated with the current model 

lf is the likelihood associated with the full model 

A variant, based on log-likelihoods, is 
−2 log(lc−lf) 

(7.13) 

which can be shown to be distributed either exactly as chi-square, or as an asymmetric 
approximation, depending on the model being fitted (Dobson 1983). Two advantages 
may be offered for this measure over a number of alternatives which are available: 

1 it can be created directly as a result of maximum likelihood estimation; 
2 it can be partitioned into component parts so that different types of linear structure may 

be compared against a common baseline. 

Indeed, comparisons need not be made just with the full model, as a maximal model, or 
some suitable aggregate, may be used instead. (The advantages provided by this will 
become more readily apparent in the next chapters.) Other types of measure which could 
be used instead are: 

1 the generalised Pearson chi-square statistic; 
2 the Wald statistic; 
3 the Lagrange multiplier test. 

These are described in more detail in Buse (1982) and Pickles (1986). 
The interpretation of this deviance measure, which is generated in response to a $FIT 

command, depends on the model being fitted. In a regression model (to be described in 
Chapter 8), it essentially corresponds to the sum of squared residuals from the fitted 
model. It may be tested for significance using the Normal distribution or the chi-square 
distribution for which its distribution is exact if the model is true. However, in order to do 
the latter, attention must be paid to scale the deviance by a term representing the variance 
of the regression residuals. This summary measure is estimated automatically by GLIM 
and displayed as the scale parameter. 

In comparison, if a Poisson error function has been specified the deviance represents a 
measure termed G2 by, among others, Bishop et al. (1975). This is not the same as the 
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residual sum of squares associated with regression and so cannot be interpreted in the 
same way. Deviances generated from such an error model are only asymptotically 
distributed as chi-square. The scale parameter associated with this type of generalised 
linear model depends on only one unknown (see Chapter 5 and Appendix A). 
Consequently it does not need to be estimated as is the case with Normal errors. It is set 
within GLIM to a default value of 1. Notice that in this situation the deviance and scaled 
deviance measures will be identical because: 

 
(7.14) 

The procedure used within GLIM to estimate the scale parameter when it is not set to its 
default value is based on the mean deviance of the current model. That is, the scale 
parameter is equivalent to: 

 
(7.15) 

7.4.6 Summary 

The themes presented in the previous subsections may now be brought together in 
summary: 

1 The family of generalised linear models possesses common characteristics which may 
be developed into an integrated framework for studying a variety of linear models. 

2 The GLIM package provides for the specification, estimation and assessment of this 
variety of models using a single command language. 

3 The technique of iterative weighted least squares is used to generate maximum 
likelihood parameter estimates for any member of the generalised family. 

4 An iterative procedure is adopted because a direct solution is usually not feasible. 
5 GLIM returns information on the fit of a model in the form of a deviance measure and 

scale parameter. These can be used to generate a scaled deviance statistic which, 
depending on the model, is either exactly or approximately distributed as chi-square. 

6 The value of the deviance measure is that it can be used to assess the effects of different 
parameterisations of the model in a straightforward way. 

7 Other descriptive information may also be generated, for example, information on 
parameter estimates, residuals and elements of the working matrix. These may be used 
to investigate the behaviour of a fitted model in greater detail. 

The last point will be taken up by examples in the next two chapters. What is important to 
remember here is that though considerable simplicity is offered by generalised linear 
models, assumptions are being made. These tend to vary depending on the exact form of 
the model. Once again, some of these will be examined in the next two chapters. 
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7.5 CONCLUSIONS 

This chapter has shown how it is possible to specify a range of different linear models, 
suitable for different types of analytical problem, within the same statistical framework. 
The generalised framework offers considerable economies of effort in studying linear 
models, and is made all the more powerful by the popularity and availability of GLIM. In 
the remaining chapters some of the more important generalised linear models in 
geographical use are described and fitted using data from published research. 
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8  
GENERALISED LINEAR MODELS FOR 

CONTINUOUS DATA 

8.4  
THE ANALYSIS OF VARIANCE 

8.1 INTRODUCTION 

The analysis of continuous (interval or ratio) data is traditionally important in geography. 
This chapter considers two statistical techniques for continuous data analysis which may 
be presented in the form of generalised linear models. These are: 

1 The linear regression model. 
2 The analysis of variance (ANOVA). 

Both are widely used to model relationships between a so-called ‘response’ (dependent or 
endogeneous) variable and a series of ‘explanatory’ (independent, exogeneous, or 
controller) variables. These latter variables may vary both in number and in their 
measurement, including both continuous and categorical data. 

8.2 THE LINEAR REGRESSION MODEL 

8.2.1 A simple example 

The linear regression model is most valuable for modelling ‘dependency’ relationships 
between a continuous response variable and one or more explanatory variables. By 
dependency, we mean that the patterns observed in the response variable can be described 
by looking at how they relate to changes in the values of the explanatory variables. These 
changes may correspond to social or physical processes which influence or condition the 
behaviour of the response variable. However, it is not assumed that the behaviour of the 
explanatory variables causes the variability in the response variable. 

The basic form of this model has already been presented in Part I in connection with 
the equation for the line:  

Y=a+βX+ε 
(8.1) 



where 
Y represents the response variable 

X represents a single explanatory variable 

ε represents an error term 

a is a parameter representing the intercept or constant term, and 

β is a parameter representing the slope coefficient 

Both α and β parameters are generally unknown, and have to be estimated from the 
observed data using an acceptable estimation strategy. This equation was introduced in 
Chapter 5 to illustrate the descriptive model which underlies the data in the six-times 
table. It was also presented in Chapter 6 to illustrate the ordinary least squares estimation 
strategy. This latter presentation was concerned with the relationship between a 
population and a sample, and with using sample-based data to approximate population 
characteristics. 

Equation 8.1 corresponds to the population linear regression model. In other words, 
the model is concerned with describing relationships in the (usually unseen) population. 
In most cases it is preferable to re-express equation 8.1 as a sample linear regression 
model: 

yi=a+bxi+e 
(8.2) 

where 
yi is the ith sample observation on the response variable Y 

xi is the ith sample observation on explanatory variable X 

ei represents a residual: the difference in value between the observed value of yi in the data, and 
the value predicted for it, given the model 

a is the sample intercept term, and 

b is the sample slope coefficient 

An equation identical in form to equation 8.2 may be written down for each of the n 
observations in the data set. 

As was shown in Chapter 6, the estimation procedure known as ordinary least squares 
is frequently used to provide point estimates of the values of a and b (usually written as â 
and ) subject to the criterion that the sum of squared residuals from the model is 
minimised. s other words, in order to provide acceptable estimators of the population 
parameters, and so describe the relationship between Y and X in the population, a sample 
model (equation 8.2) is generated and estimates of the sample statistics (a and b) 
calculated so that the sum of squared residuals is a minimum. Algebraically, this may be 
written as: 

 
(8.3) 

Introducing quantitative geography      182



If the model is correct, it can be shown that the ordinary least squares procedure will 
yield estimators which are the best available from among the set of linear, unbiased 
estimators (see Silvey 1975 for more details). 

This type of model may be specified with ease in programs such as GLIM or 
MINITAB, though the logic of their estimation strategies differs. To illustrate this, 
consider the transcript of GLIM output presented in Printout 8.1. This shows the 
commands needed to specify a linear regression model using the six-times table data. The 
following commands are required to define the model (options specific to this data set are 
given in brackets): 

1 $UNITS—defines the number of observations on the response variable which will be 
read into GLIM (12 in this case). 

2 $DATA—defines the response and explanatory variables to be used in the analysis 
(EXP and RESP). 

3 $READ—allows data entry from the computer keyboard (an alternative command 
provides data entry from a secondary data file). 

4 $YVARIABLE (or $YVAR)—identifies which of the variables defined in the $DATA 
command is to be used as the response variable (RESP is selected here). 

5 $LINK—defines the form of the linear link between the predictable mean of the 
response variable and the linear predictor (an identity link is required with regression). 

6 $ERROR—defines the probability process for the model (a Normal probability 
distribution is required). 

Once defined, the regression of RESP on EXP may now be fitted. The transcript in 
Printout 8.1 shows that two FIT commands are issued. First, an estimate of the total 
variability in the response variable is made by fitting a ‘null’ or ‘grand mean effects’ 
model. This is achieved by the command: 

$FIT$ 

which generates the following information as output: 

1 CYCLE 1—which indicates that the maximum likelihood estimates of this model have 
been produced directly, that is, without requiring iteration. 

2 DEVIANCE 5,148—which indicates the total amount of unexplained variability in 
RESP (that is, in terms of ordinary least squares, the total sum of squares for the 
model). 

3 DF (degrees of freedom) 11—which indicates the number of independent effects 
remaining in the data after this model has been fitted. 

Further information on this fit can be obtained using the $D (for DISPLAY) command, 
and its E (for estimates) option. This generates the following items of summary 
information: 
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Printout 8.1 GLIM 3 commands to fit a linear 
regression equation to the six-times table data 

£run *glim 

  $UNITS 12$. 

  $DATA EXP RESP$ 

  $READ 

  1 6       

  2 12       

  3 18       

  4 24       

  5 30       

  6 36       

  7 42       

  8 48       

  9 54       

  10 60       

  11 66       

  12 72       

  $LOOK EXP RESP$ 

    1 1.000 6.000   

    2 2.000 12.00   

    3 3.000 18.00   

    4 4.000 24.00   

    5 5.000 30.00   

    6 6.000 36.00   

    7 7.000 42.00   

    8 8.000 48.00   

    9 9.000 54.00   

    10 10.00 60.00   

    11 11.00 66.00   

    12 12.00 72.00   

  $YVAR RESP$ 
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  $ERR N$ 

  $LINK I$ 

  $FIT$ 

    CYCLE DEVIANCE DF   

    1 5148. 11   

    $D E$       

      ESTIMATE S.E. PARAMETER 

    1 39.00 6.245 %GM 

    SCALE PARAMETER TAKEN AS 468.0 

  $FIT EXP$D E$ 

    CYCLE DEVIANCE DF   

    1 0.2261E−26 10   

      ESTIMATE S.E. PARAMETER 

    1 −0.1066E−13 0.9255E−14 %GM 

    2 6.000 0.1257E−14 EXP 

    SCALE PARAMETER TAKEN AS 0.2261E−27 

  $STOP 

Note: £ and $ are operating system and GLIM command prefixes respectively 

1 PARAMETER %GM—which indicates that a single parameter has been fitted to the 
data. This is the %GM parameter corresponding to the grand mean of RESP. 

2 ESTIMATE 39.0—which indicates the value of %GM estimated by the iterative 
weighted least squares algorithm used by GLIM. 

3 SE (standard error of the estimate) 6.245. 

The fourth item of summary information which is generated by GLIM in response to the 
$D command is the SCALE PARAMETER. This is estimated as 468.0 by dividing the 
deviance value by the number of degrees of freedom (that is, 5,148/11=468). This 
information represents the variance of the residuals from the model and is of use in 
assessing the overall value of the fitted model to represent the observed data (see next 
section). 

The second model to be specified, $FIT EXP$, includes the observed information on 
the explanatory variable, EXP, in the linear predictor. In response to this, deviance has 
fallen from 5,148 to 0 (actually, to 0.2261E– 27 but this is so small as to be effectively 0), 
and the number of degrees of freedom has fallen from 11 to 10. The second $D command 
shows that the estimated value of %GM, now interpreted as the intercept (or constant) of 
the linear regression model, is 0 (standard error 0), whilst the estimate of the slope 
coefficient is 6 (standard error 0). Thus the sample linear regression model for the six-
times table data is: 
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RESP=0+6EXP 
(8.4) 

which accords with our previous knowledge. 
The information supplied by the maximum likelihood analysis in GLIM may be 

compared with that supplied for the identical least squares analysis in MINITAB 
(Printout 8.2). In this, the data are read into two column variables, c1 and c2. The 
command, 

regress c2 1 c1 

is issued, which tells MINITAB to calculate a linear regression analysis using the data in 
c2 as the response variable (equivalent to RESP in Printout 8.1), and the single variable 
in cl as the explanatory variable (equivalent to EXP in Printout 8.1). The estimated model 
is identical to that produced by GLIM, in spite of the fact that the estimation strategy (and 
logic) is different. Notice also that the values listed in Printout 8.2 as COEF and 
STDEV—0 and 0 for the constant, and 6 and 0 for c1—are identical to those listed under 
the ESTIMATE and SE headings in the second fit in GLIM. Similarly, under the heading 
‘ANALYSIS OF VARIANCE’ in Printout 8.2, we can see that the value listed for the 
TOTAL (sum of squares) is 5,148 for 11 degrees of freedom, and for the ERROR (sum of 
squares) is 0 for 10 degrees of freedom. These correspond to the values of deviance and 
degrees of freedom produced in fits 1  

Printout 8.2 MINITAB commands to fit a linear 
regression equation to six-times table data 

£run *minitab 

-read c1 c2 

-data 

  1 6               

  2 12               

  3 18               

  4 24               

  5 30               

  6 36               

  7 42               

  8 48               

  9 54               

  10 60               

  11 66               
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  12 72               

-end 

-regress c2 1 c1 

The regression equation is 
C2=0.000000+6.00 C1 

Predictor Coef Stdev t-ratio     

Constant 0.00000000 0.00000000 *     

C1 6.00000 0.00000 *     

s=0 R-sq=100.0% R-sq(adj)=100.0%     

Analysis of Variance 

SOURCE DF SS MS       

Regression 1 5148.0 5148.0       

Error 10 0.0 0.0       

Total 11 5148.0         

-stop 

Notes: Commands beginning with a £ are system commands relevant to the Durham and Newcastle 
computers 
Commands beginning with a—are MINITAB commands 

and 2 of GLIM respectively, though it should be noted that the maximum likelihood 
strategy used in GLIM is not based on equation 8.3. 

8.2.2 Assessing global goodness-of-fit 

The object of linear regression is to find a suitable combination of explanatory variables 
and parameters which best describes the variability in the response variable. In the 
statistical literature describing regression, the maximum amount of variability to be 
modelled is frequently termed the total sum of squares (TSS). Algebraically, this term 
may be written as: 

   

where yi and are as before. The TSS may be rewritten to reveal two further sums of 
squares, one assumed to result from the explanatory power of the model—the regression 
sum of squares (RSS)—and the second to correspond to residual (unexplained) 
variability—the error sum of squares (ESS): 

TSS=RSS+ESS   

or 
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 (8.5) 

where 
yi  corresponds to the i=1, …, n sample observations on the Y response variable 

 corresponds to their observed sample mean 

 corresponds to the ‘expected’ value of yi given the model (that is, the value of yi predicted by 
the model for the given explanatory variables) 

Following equation 8.5, the estimates of the model are obtained by minimising the value 
associated with ESS using procedures such as ordinary least squares (MINITAB). The 
ratio of RSS to TSS provides a measure of the overall fit of the model. (This ratio may 
also be expressed as 1 minus the ratio of ESS to TSS.) This ratio is termed the coefficient 
of determination or r2. If 

RSS/TSS=1−(ESS/TSS)=1 
(8.6) 

the model is said to describe the observed response data exactly, as the sum of squared 
residuals has been achieved at ESS=0. If, however, 

RSS/TSS=1−(ESS/TSS)=0 
(8.7) 

the model is said to fail completely to describe the observed response data. When this 
occurs, ESS=TSS and RSS=0. Values between these two extreme points indicate the 
relative overall performance of the model. For the analysis of the data in Printout 8.2, the 
value of r2 is given as 100% (equivalent to 1). This is supported by the fact that the RSS 
and TSS values (corresponding to the values of SS associated with the Regression and 
Total entries in the Analysis of Variance table) are identical, and the value of ESS is 0. 

GLIM does not produce a value for r2 directly, though it can be calculated easily by 
forming the ratio of the value of deviance produced by the second fit command (which 
corresponds to the amount of unexplained variability in the data—ESS), to that produced 
by the first (TSS). This ratio is 0. It follows, therefore, that the change in deviance 
between the two fit commands (that is, between the null model and the linear regression 
model) corresponds to RSS. The ratio of this to TSS is 1, indicating that the linear 
regression model fits the observed data perfectly. This difference may also be used to 
generate a measure termed pseudo-r2, which is the difference between the two deviance 
values divided by the deviance of the null model. For regression this is equivalent to r2. 
This characteristic does not apply to other models. 

8.2.3 Assessing local goodness-of-fit using residuals 

The previous discussion has focused on measures such as deviance and r2 which provide 
an assessment of the overall or global fit of a linear regression model. While these may 
suggest that a model fits the data reasonably well, they tell the user nothing about the fit 
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for all combinations of response and explanatory variables. It is possible that a model 
which is thought to be reasonably good may in fact be quite poor for certain 
combinations of observed data. It is therefore necessary to supplement these global 
measures with some form of local assessment. This may be achieved by looking at the 
residuals from the model. 

Regression residuals are usually defined as the differences between the observed 
values of the response variable and their predicted or fitted values given explanatory 
information. Both the observed and fitted values are stored by GLIM in so-called ‘system 
variables’ (% YV for the observed data and %FV for the fitted data). These are created 
automatically by the program and so do not need to be specified in a $DATA command. 
For the six-times table data the values of %YV and %FV can be seen using a $LOOK 
command (Table 8.1). This shows that the values are identical and that therefore there are 
no residuals in this analysis. Once again, this accords with our previous knowledge. 

The six-times table data are special in that the values predicted by the linear regression 
model for the twelve observations on Y are identical to those observed in the survey data. 
This does not apply to the data in Table 8.2 which lists the unemployment rate (UN) and 
the percentage of economically active males (EA) within British counties in 1981. The 
regression of UN against EA yields the following model: 

 (8.8) 

The values in brackets are t-ratios. They are calculated by dividing the values of the  

Table 8.1 Comparing the fitted values with the 
observed values of the response 

$LOOK %YV %FV$ 

OBS %YV %FV 

1 6.000 6.000 

2 12.00 12.00 

3 18.00 18.00 

4 24.00 24.00 

5 30.00 30.00 

6 36.00 36.00 

7 42.00 42.00 

8 48.00 48.00 

9 54.00 54.00 

10 60.00 60.00 

11 66.00 66.00 

12 72.00 72.00 
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parameter estimates by their standard errors. As a general rule, values greater than 2 are 
significant at the 5 per cent significance level for a two-tailed test. The overall fit of this 
model is poor (r2=15.4%) indicating that the explanatory variable, percentage of 
economically active males per county, is not a particularly powerful descriptor of county 
unemployment rates. The residuals associated with this model are set out in Table 8.3 and 
in Figure 8.1. Before we can use these to interrogate the model listed above, we need to 
know something about the assumptions of linear regression modelling. 

8.2.4 Assumptions 

It is important to realise that there is a major conceptual difference between the use of 
linear regression on the six-times table data and the unemployment data. In the former 
analysis the relationship between RESP and EXP is a mathematical constant fixed by the 
nature of the data. The correspondence between the known relationships (a of 0 and β of 
6) and their estimates merely reflects the determinism of the example. However, in the 
unemployment example, there is no a priori knowledge of the values of a and β. 
Consequently, it is not entirely clear how far one should be prepared to go in accepting 
the fitted model as adequate. In applying regression (or any statistical model for that 
matter) to social and environmental data, attention must be paid to assessing the 
suitability of the model to represent the observed data. In particular, is the model a 
suitable tool to represent the social and physical properties assumed to underlie the 
observed data? 

Linear regression analysis is most useful when the social or physical situation being 
examined can be conceived in terms of a dependency relationship between a single 
response variable and one or more explanatory variables. In general, the response 
variable should be recorded as  

Table 8.2 Economic activity and unemployment 
rates for males by county (in 1981) 

EA UN County 

65.1 6.6 Bedfordshire 

66.0 4.1 Berkshire 

64.9 4.4 Buckinghamshire 

52.0 7.5 East Sussex 

61.0 7.7 Essex 

61.9 6.6 Hampshire 

64.8 4.4 Hertfordshire 

51.3 12.1 Isle of Wight 

59.2 8.1 Kent 

63.7 4.2 Oxfordshire 

61.7 0.0 Surrey 
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56.3 3.8 West Sussex 

62.1 5.7 Cambridgeshire 

57.4 9.1 Norfolk 

59.0 6.1 Suffolk 

63.7 8.3 Greater London 

60.5 8.1 Avon 

52.8 15.3 Cornwall and Isles of Scilly 

54.3 11.0 Devon 

53.6 7.8 Dorset 

60.7 6.6 Gloucestershire 

57.5 7.6 Somerset 

61.9 6.6 Wiltshire 

62.0 8.8 Hereford and Worcester 

60.3 10.7 Shropshire 

63.5 9.6 Staffordshire 

63.1 8.1 Warwickshire 

62.7 12.6 West Midlands 

60.6 10.8 Derbyshire 

64.1 7.1 Leicestershire 

58.7 11.0 Lincolnshire 

63.0 6.8 Northamptonshire 

61.4 11.1 Nottinghamshire 

59.6 13.4 Humberside 

59.0 8.5 North Yorkshire 

59.8 15.9 South Yorkshire 

61.3 10.6 West Yorkshire 

61.9 10.5 Cheshire 

62.2 12.5 Greater Manchester 

59.8 11.6 Lancashire 

60.5 18.6 Merseyside 

59.6 9.1 Cumbria 

61.6 18.2 Cleveland 
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59.3 15.0 Durham 

58.5 13.2 Northumberland 

60.2 15.8 Tyne and Wear 

55.8 13.5 Clywd 

54.7 15.5 Dyfed 

EA UN County 

58.2 13.7 Gwent 

53.0 16.8 Gwynedd 

57.1 15.9 Mid Glamorgan 

56.9 9.7 Powys 

59.6 11.1 South Glamorgan 

57.0 14.4 West Glamorgan 

60.5 8.7 Borders region 

62.2 14.7 Central region 

59.5 12.5 Dumfries and Galloway region 

61.0 14.6 Fife region 

62.3 8.6 Grampian region 

60.1 15.2 Highland region 

63.7 11.3 Lothian region 

61.7 16.8 Strathclyde region 

60.8 13.1 Tayside region 

57.8 12.6 Orkney Islands 

64.4 6.8 Shetland Islands 

53.9 20.7 Western Isles 

Note: EA=Economically active 
UN=Unemployment rate 

Table 8.3 Residuals from regression of economic 
activity and unemployment rates 

County Observed Fitted Residual 

1 6.600 8.061 −1.461 

2 4.100 7.626 −3.526 

3 4.400 8.158 −3.758 
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4 7.500 14.39 −6.890 

5 7.700 10.04 −2.342 

6 6.600 9.607 −3.007 

7 4.400 8.206 −3.806 

8 12.10 14.73 −2.628 

9 8.100 10.91 −2.811 

10 4.200 8.737 −4.537 

11 0.0 9.704 −9.704 

12 3.800 12.31 −8.512 

13 5.700 9.510 −3.810 

14 9.100 11.78 −2.681 

15 6.100 11.01 −4.908 

16 8.300 8.737 −0.4375 

17 8.100 10.28 −2.183 

18 15.30 14.00 1.297 

19 11.00 13.28 −2.279 

20 7.800 13.62 −5.817 

21 6.600 10.19 −3.587 

22 7.600 11.73 −4.133 

23 6.600 9.607 −3.007 

County Observed Fitted Residual 

24 8.800 9.559 −0.7588 

25 10.70 10.38 0.3200 

26 9.600 8.834 0.7659 

27 8.100 9.027 −0.9274 

28 12.60 9.221 3.379 

29 10.80 10.24 0.5649 

30 7.100 8.544 −1.444 

31 11.00 11.15 −0.1530 

32 6.800 9.076 −2.276 

33 11.10 9.849 1.251 

34 13.40 10.72 2.682 
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35 8.500 11.01 −2.508 

36 15.90 10.62 5.278 

37 10.60 9.897 0.7031 

38 10.50 9.607 0.8929 

39 12.50 9.462 3.038 

40 11.60 10.62 0.9784 

41 18.60 10.28 8.317 

42 9.100 10.72 −1.618 

43 18.20 9.752 8.448 

44 15.00 10.86 4.137 

45 13.20 11.25 1.950 

46 15.80 10.43 5.372 

47 13.50 12.55 0.9461 

48 15.50 13.09 2.415 

49 13.70 11.39 2.305 

50 16.80 13.91 2.893 

51 15.90 11.93 3.974 

52 9.700 12.02 −2.323 

53 11.10 10.72 0.3818 

54 14.40 11.97 2.426 

55 8.700 10.28 −1.583 

56 14.70 9.462 5.238 

57 12.50 10.77 1.734 

58 14.60 10.04 4.558 

59 8.600 9.414 −0.8138 

60 15.20 10.48 4.723 

61 11.30 8.737 2.563 

62 16.80 9.704 7.096 

63 13.10 10.14 2.962 

64 12.60 11.59 1.012 

65 6.800 8.399 −1.599 

66 20.70 13.47 7.228 
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either an interval or a ratio measurement (though it is possible, under limited 
circumstances, to use categorical measurements), and be linked to the explanatory 
variables by a mechanism which is linear and additive in its parameters. Both examples 
of regression presented so far possess this  

 

Figure 8.1 Scatterplot of residuals 

property. This does not mean that the individual variables need be linearly related, rather 
that their parameters must be. Thus, models 1 and 2 below could be used as linear 
regression models, but model 3 could not: 
1 Y=a+βX1+βX2+ε 

2 
 

 

3 Y=a+βX1+(1/β)X2+ε 

In applying regression to social or physical data whose functional form is not pre-
determined, as is the case in the six-times table example, it is important to realise that the 
model is based on assumptions. The number of these assumptions tends to depend on 
which author one reads, but the following seem to be reasonably common: 

1 The model is correctly specified—this is assumed as a matter of course, and implies (a) 
that variables which should be present are present, (b) that irrelevant variables are not 
present, and (c) that the error component in the population model is additive. 
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2 That there is sufficient information in the explanatory variables to allow estimates of 
their parameters to be made. 

3 That the errors possess the following properties: (a) they have an expected value of zero 
and a constant variance for each of the n observations (an assumption known as 
homoscedasticity), (b) that none are correlated (an assumption known as no 
autocorrelation), and (c) that they are Normally distributed. 

Significant departures from these assumptions tend to corrupt the statistical behaviour of 
the model and thus compromise its descriptive value. However, though the assumption of 
Normality is made, it can be shown that the important properties of least squares 
estimators do not depend on it (McCullagh and Nelder 1983). Of far greater importance 
are the assumptions of constant variance and lack of correlation. This also applies to 
quasi-likelihood estimators such as those generated for many of the models in the 
exponential family. Geographers should note straight away that independence is rarely 
satisfied by geographical data simply because measurements made in similar locations 
tend to be more similar than would be expected by chance. 

8.2.5 Some graphical checks of assumptions 

Graphics provide a useful way of checking that the assumptions of the regression model 
are not violated to a considerable degree. The most useful graphical techniques use the 
residuals to check for model inadequacies. Tukey (1977:125) notes: ‘residuals…are to the 
data analyst what powerful magnifying glasses, sensitive chemical tests for bloodstains 
and delicate listening devices are to a story-book detective’. In effect, they provide a most 
important clue to the appropriateness of the fitted model to describe the patterns and 
relationships in the observed data. 

A regression model which describes observed data adequately should generate a set of 
residuals which does not display an obvious pattern; in effect, it should be essentially 
random. By plotting the residuals against the estimated values of the response variable (as 
was done in Figure 8.1), considerable information about the fit may be obtained. A 
variety of patterns may emerge in these so-called ‘catch-all’ plots (Jones 1981, 1984). For 
example, an adequate model should produce a random pattern (Figure 8.2(a)). The 
remaining plots in Figure 8.2 illustrate potential assumption violations: 

1 An unsatisfactory link function depicted by the non-linear shape of the residuals 
(Figure 8.2(b)). 

2 A violation of the constant error variance assumption by the non-circular shape of the 
residuals (Figure 8.2(c)). This indicates that the variance of the errors may depend on 
the magnitude of the observed data. 

3 A violation of the no-autocorrelation assumption by the presence of the systematic 
patterning in the residuals, indicating that values which are similar in magnitude 
behave rather more like each other than values which are dissimilar (Figure 8.2(d)). 

4 A failure to fit the model adequately to all data points, thus ignoring values whose 
effect on the model may be extreme (Figure 8.2(e)). 

(Notice that the assumptions pertaining to the errors in the population model are assessed 
by examining the residuals from the sample model.)  
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Figure 8.2 Catch-all plots 

If these plots suggest that underlying assumptions are being violated it is important to 
modify the model as its summary measures and measures of fit will not be as good as 
they could be. For example, if the link appears to be incorrect the source of the violation 
should be identified and rectified. This may involve transforming the model from its 
original units of measurement to some alternative, for example natural logarithms, as is 
frequently done in distance-decay and density-decay models (Taylor 1977). However, as 
Haworth and Vincent (1979) show, this may create unexpected problems, especially if it 
alters the functional linkage of the error term (see Kennedy 1979 for a detailed discussion 
of this problem). Instead of a global transformation of the model, it may be possible to 
identify particular variables which are involved. This may be especially valuable in the 
case where there are several explanatory variables, only some of which are responsible 
for the inadequacy of the link. Jones (1984:222) notes: 

if…a non-linear relationship (exists) between Y and all explanatory 
variables, then it can be suggested that a transform of Y is required; a 
curved relationship with only one X suggests that the X variable should be 
transformed. 

The ‘ladder of powers’ introduced in Chapter 5 provides possible transformations which 
could be considered. Watts (1981:80) suggests a variety of other tests and modifications 
which may be used. 

Autocorrelation and heteroscedasticity also cause a regression model to be less than 
optimal. These problems can be tackled in a number of different ways. For example, if 
the residuals display a systematic pattern with clusters of positive and negative values in 
evidence, it may be possible to pinpoint a specific cause and so model it explicitly. In 
time-series data sets, this cause may reflect yearly, monthly or seasonal influences which 
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are not random and so should not be assigned to the residuals. Alternatively, the data may 
be divided into subsets each of which are studied individually. 

8.2.6 Residual analysis of Table 8.2 

Given these assumptions we are now in a position to examine the information contained 
in the residuals from the regression analyses of Table 8.2. The scatterplot in Figure 8.1 
illustrates the covariability of the residuals produced by GLIM (vertical axis) and the 
fitted values (horizontal axis), that is, the estimated values for the response variable 
produced by the model. For fitted values between about 8 and 12 the scatter seems 
reasonably random with no obvious pattern emerging. However, the scatter does seem to 
fragment somewhat for fitted values greater than 12. Viewed from the bottom right, the 
whole scatter appears rather like an arrow-head, narrowing towards the bottom right and 
indicating a potentially inverse relationship between the two variables. This may indicate 
the presence of heteroscedasticity, but it is important to note that the ‘shape’ is unduly 
affected by outlying points which are psychologically more prominent than other points. 
As a result it is important to check whether these outlying points are peculiar in some 
way, as their measured values may be unduly important. (An obvious reason why a point 
could appear peculiar is if it has been recorded incorrectly in the data. A preliminary 
analysis of the data set should pick this mistake up before analysis.) 

One way of assessing whether data points are extreme is to transform the raw residuals 
of Figure 8.1 and Table 8.3 into standardised residuals. These are defined to have a mean 
value of 0 and a standard deviation of 1. The advantage of this change in scale is that it 
provides a common basis for comparing residuals. The information in the standardised 
residuals is identical to that in the raw residuals, and indeed would form the same pattern. 
However, because the values of the raw residuals depend on the original units of 
measurement, large residuals may emerge solely because the original measured values 
were large. With a common scale, this source of confusion may be removed, as residuals 
lying outside plus or minus two standard deviation units from the mean can be considered 
potentially extreme. Four counties fall outside this range: Surrey, West Sussex, 
Merseyside and Cleveland. 

It is possible to generate standardised residuals in GLIM using the following code 
(after Gilchrist 1983): 

$CALC RES=(%YV−%FV)*%SQRT(1/%SC) 
(8.9) 

where 
%YV is the system vector containing the observed values of the response variable 

%FV is the system vector containing the fitted values given the model 

%SC contains the value of the scale parameter from the fitted model 

%SQRT is a system function to calculate square roots 

This expression is a special case of a more general formula which produces standardised 
residuals for any generalised linear model. This is: 
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$CALC RES=(%YV−%FV)*%SQRT(%PW/(%SC*VA)) 
(8.10) 

where 
%PW is a vector containing any prior weights used in the fitting of the model 

VA is defined as the variance function. For Normal errors, this is equal to 1, whereas for 
Poisson errors, it is equal to %FV. 

The presence of a spatial structure in these standardised residuals may also be examined 
by plotting them in a map (Figure 8.3). This shows that there is a distinct spatial pattern 
to the residuals which directly violates the no-autocorrelation assumption. Positive 
residuals are distributed throughout most of Scotland, Wales, the North and North-West, 
Humberside and Cornwall, while negative residuals are found throughout the South and 
East, East Anglia and the East Midlands. The only counties outside this contiguous area 
to have negative signs are North Yorkshire, Cumbria, Powys, Borders, Grampians and 
the Shetlands. As this distinction is quite clear cut, it follows that it ought to be 
incorporated explicitly within the model rather than be reduced to the residuals. A 
dummy variable with levels distinguishing between the North and South might prove 
useful (for further details of how to use dummies, see section 8.3.4). 

The initial inspection of the residuals from the regression models seems to suggest that 
autocorrelation is a problem, and that the data may well be heteroscedastic. A number of 
outlier observations appear to be present in the data. To overcome their effect, the 
extreme values might be removed and the analysis repeated on the remaining data values. 
For autocorrelation, some attempt should be made to model the spatial pattern explicitly, 
and for heteroscedasticity, some form of transformation or weighted regression analysis 
might be useful. In addition to these checks, it is also important to check that the link 
function specified for the model is adequate. 
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Figure 8.3 Map of standardised 
residuals 

In regression analysis, an identity link is specified in which the linear predictor is directly 
related to the predictable mean of the response variable. If the model is correctly 
specified, the residuals should be approximately linear when plotted against the order 
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statistics for a Normal distribution. It is possible to check for this using the data in Table 
8.2 either by plotting the standardised residuals, or by creating normalised residuals. The 
latter are produced from the expression: 

$CALC NR=UN**(1/3)−%FV**(1/3)/%FV**(1/3) 
(8.11) 

The order statistics are produced from: 
$CALC OR=%ND((%GL(66,1)−0.5)/66) 

(8.12) 

The plot of NR and OR is presented in Figure 8.4. The advantage of this type of plot is 
that it immediately shows if the relationship is sufficiently linear to continue using 
regression, and also which of the counties are extreme. This latter feature arises because 
the residuals are ordered before plotting, positioning the extreme values at either end of 
the plot. Apart from one observation, the remainder appear to be linearly related, 
indicating that the functional form is reasonable. The major discrepancy is Surrey. Its 
normalised residual is particularly extreme and is well away  

 

Figure 8.4 Normalised plot of data in 
Table 8.2 
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from the remainder. From Table 8.2 we see that its value for unemployment is zero. This 
is significantly different from the unemployment figures for other areas and suggests that 
the measurement and recording of the Surrey data may be peculiar. In fact, 
unemployment details for the county of Surrey were suppressed for the period in 
question, and so it should be excluded from the model. 

8.2.7 Influential observations 

Residual analysis is useful in identifying observations which are peculiar in some sense 
given the main body of the data. However, they are less suitable for identifying 
observations whose influence on the analysis is particularly strong. It is not sufficient to 
assume that observations which have large residuals are automatically influential. This is 
because observations which are typical of the data may indeed have large residuals, and 
the residuals associated with influential observations may be quite small. In order to 
identify influential observations a new measure is required which can assess the 
sensitivity of each of the observations in the data set. 

One such measure is termed ‘leverage’. This is defined to be the diagonal elements in 
the ‘projections matrix’: a matrix which compares the covariation in the observed 
response with its equivalent in the estimated response. This matrix is produced 
automatically by MINITAB, and the leverages may be stored in a column variable using 
a sub-option of the regression command: 
regress UN 1 EA, c3 c4; 

subc hi c5. 

UN and EA are the column variables containing the response and explanatory variables 
respectively. c3 and c4 are column variables which are used to store the standardised 
residuals (c3) and the fitted values (c4). The sub-option specifies that a variable hi 
(MINITAB terminology for leverages) is stored in c5. By plotting c5 against the row 
order of the data, an index plot of the leverages is produced (Figure 8.5). The leverages 
are measured against the vertical. Pregibon (1983) notes that observations whose 
coefficients exceed 3(p/n) are said to be influential (where p is the number of parameters 
fitted, including the intercept, and n is the number of observations). Thus for the data in 
Table 8.2, p equals 2 and n equals 66. The critical value for leverage is thus 0.09. There 
are thus three influential counties—East Sussex, the Isle of Wight and Cornwall/Isles of 
Scilly—all of which have particularly low values of EA. 

In addition to leverage, Pregibon (1982) suggests a coefficient of sensitivity based on 
a modification of the adjusted residuals from the model. These are calculated from the 
standardised residuals by dividing each item as follows: 
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Figure 8.5 Leverage values for Table 
8.2 

$CALC ADJ=RES/%SQRT(1−H) 
(8.13) 

where 
H is the variance of the linear predictor and is calculated from (%WT*%VL)/%SC. (%WT is a 

vector of iterative weights, and 

%VL is the variance of the link.) 

The coefficient of sensitivity (C) is calculated using ADJ and H: 
$CALC C=ADJ*H/(1−H) 

(8.14) 

These may be plotted for each observation using an index plot (Figure 8.6), in which the 
coefficients are plotted along the vertical and the county indices are plotted on the 
horizontal (for further details about this plot, see Belsley et al. 1980). These indices are 
easily generated in GLIM using: 

$CALC IND=%GL(%NU,1) 
(8.15) 

where 
%NU is the index number for each row of observed data. 
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8.2.8 Summing up 

In this section we have begun to introduce some of the features associated with the 
geographical use of the linear regression model. The key point to note is that all 
regression models need to be examined to assess whether  

 

Figure 8.6 Index plot of the coefficient 
of sensitivity for Table 8.2 

they fit the observed data both globally and locally. Global measures are insufficient on 
their own as they do not describe directly subsets of the data which seem to be peculiar in 
some way. Residual analysis is crucial in examining the fit of a regression model. 
Residuals provide a means of assessing whether the assumptions of the model are 
satisfied by the data or are seriously violated. 

As we saw in the determinist example of the six-times table, the values of the response 
variable predicted by the model are identical to those observed. As a result, there are no 
residuals to consider. However, geographical data sets rarely display this characteristic. 
In the unemployment example, we noted how the residuals suggested violations of the 
assumptions of no autocorrelation and homoscedasticity, and identified the possibilities 
of extreme data values and influential data values. These need to be considered explicitly 
if the model is to be improved adequately. Some of these issues are touched upon again 
in the next section which considers how a regression model might be developed to cater 
for several explanatory variables. 
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8.3 THE MULTIPLE REGRESSION MODEL 

The examples presented in the previous sections illustrate a simple linear additive model 
between two variables. In this, the behaviour of the response is assumed to be predictable 
given a linear additive function of fixed explanatory information. If the hypothesised 
model is correct, the model will yield a high value for r2 and generate an essentially 
random pattern of residuals. 

The ‘real world’ is rarely so neat. Most social and environmental systems display a 
more complex assortment of relationships. These may involve many different responses 
and explanatory variables, a variety of linear and non-linear functional arrangements, and 
be compounded by dynamic linkages which multiply or dampen the relationship 
depending on context. This array of complexity corresponds to the area of statistics 
known as multivariate analysis. Many of the procedures developed here are used in 
geography for classification, data management and screening, and the reduction of 
complex information to value-rich variables (a form of data puréeing). 

The multiple regression model is an extension of the simple linear regression model of 
section 8.2 which may be applied when the behaviour of a single response variable is 
linked to several explanatory variables. Taylor (1980) describes how this model may be 
implemented using rainfall data gathered in California. 

8.3.1 Fitting a multiple regression model in GLIM 

The data examined in Taylor (1980) consist of a series of observations collected at thirty 
Californian weather stations and include: 
1 PPT annual average precipitation (inches). 

2 ALT altitude of the weather station in feet above sea level. 

3 LAT latitude of the weather station in degrees. 

4 DIST straight-line distance from each weather station to the coast (miles). 

These stations were dispersed throughout the State and include coastal and inland sites, 
highland and lowland sites, and northerly and southerly sites (Figure 8.7(a)). For the 
purposes of his example, PPT was treated as the response variable, and the three others as 
explanatory variables. 

Regression is a plausible technique for describing the patterns in the observed data 
because all four variables are measured as continuities (though PPT, LAT and DIST 
cannot be less than 0), and it can be argued that the relationship between PPT and the 
others is likely to be additive. Given this, the following hypotheses are worth testing: 

1 PPT increases with altitude (due to the effect of topography). 
2 PPT increases towards the north of the State (as northerly weather stations are more 

likely to be affected by westerly weather systems). 
3 PPT decreases farther inland. 
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Figure 8.7 (a) Location of Californian 
weather stations; (b) Map of regression 
residuals; (c) Map of regression 
residuals from second analysis 

The GLIM commands needed to specify the multiple regression model for these data are 
set out in Printout 8.3, which is a logged transcription of the computing session. Notice 
that $UNITS has been set to 30 to accommodate the data for the thirty weather stations. 

The four variables are defined in the $DATA command, and are read into GLIM from 
a secondary data file. Instead of using $READ, which permits data entry directly from a 
terminal, the data values have already been typed into a file termed ‘taylor’. To read these 
into GLIM the $DINPUT command is used. This is followed by the channel number for 
data entry, which in this case is channel 1. (Notice that this channel number has been 
attached to data file ‘taylor’ as a parameter field on the first line of the transcript—the 
RUN command used by the computer operating system.) PPT is defined as the response 
using $YVAR, and the identity link and Normal error are defined as before. 

The total sum of squares associated with these data (8,012) is calculated from the first 
$FIT$ command which fits %GM to the model. The second fit, $FIT ALT+LAT+DIST, 
fits the three explanatory variables to the model, reducing deviance to 3,202 for the loss 
of three degrees of freedom (29–26). Two options are selected with the display 
command: E for regression parameter estimates, and R for regression residuals. The 
maximum likelihood estimates of this model are: 

(8.16) 

(estimated standard errors for the parameters are given in brackets). These suggest that if 
altitude increases by one unit, that is, one foot, PPT will increase by 0.004 inches. 
Similarly, a one degree move north suggests PPT should increase by 3.451 inches, and a 
move of one mile inland from the coast should decrease PPT by 0.143 inches. The 
intercept value of −102.4 appears to suggest that for values of ALT, LAT and DIST of 
0—corresponding to sea level, coastal sites situated on the equator—the value of PPT 
will be −104.2 inches. This is clearly peculiar, not only because negative precipitation is 
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not meaningful, but also because the absolute location of California on the globe renders 
such values for LAT impossible. This suggests that the intercept is not interpretable in 
this context. As a general rule, intercepts should not be interpreted in social or 
environmental regression models unless theory requires it, or unless there are observed 
values of the response variable associated with values of the explanatory variables which 
are near 0. 

The individual t statistics for these parameters (calculated by dividing the parameter 
estimate by its estimated standard error) are −3.51 (intercept), 3.36 (ALT), 4.34 (LAT), 
−3.93 (DIST), and all are significant at the 5 per cent significance level (two-tailed test). 
Thus the results of the analysis appear to confirm the hypotheses listed above. However, 
though  

Printout 8.3 GLIM analysis of Taylor’s Californian 
rainfall data 

£r *glim 1=taylor 

  $UNITS 30 

  $DATA PPT ALT LAT DIST 

  $DINPUT 1$ 

  $LOOK PPT ALT LAT DIST$ 

  1 39.57 43.00 40.80 1.000 

  2 23.27 341.0 40.20 97.00 

  3 18.20 4152. 33.80 70.00 

  4 37.48 74.00 39.40 1.000 

  5 49.26 6752. 39.30 150.0 

  6 21.82 52.00 37.80 5.000 

  7 18.07 25.00 38.50 80.00 

  8 14.17 95.00 37.40 28.00 

  9 42.63 6360. 36.60 145.0 

  10 13.85 74.00 36.70 12.00 

  11 9.440 331.0 36.70 114.0 

  12 19.33 57.00 35.70 1.000 

  13 15.67 740.0 35.70 31.00 

  14 6.000 489.0 35.40 75.00 

  15 5.730 4108. 37.30 198.0 

  16 47.82 4850. 40.40 142.0 

  17 17.95 120.0 34.40 1.000 
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  18 18.20 4152. 40.30 198.0 

  19 10.03 4036. 41.90 140.0 

  20 4.630 913.0 34.80 192.0 

  21 14.74 699.0 34.20 47.00 

  22 15.02 312.0 34.10 16.00 

  23 12.36 50.00 33.80 12.00 

  24 8.260 125.0 37.80 74.00 

  25 4.050 268.0 33.60 155.0 

  26 9.940 19.00 32.70 5.000 

  27 4.250 2105. 34.09 85.00 

  28 1.660 −178.0 36.50 194.0 

  29 74.87 35.00 41.70 1.000 

  30 15.95 60.00 39.20 91.00 

$YVAR PPT$ 

$ERR N$ 

$LINK I$ 

$FIT$ 

  CYCLE DEVIANCE DF       

  1 8012. 29       

$FIT ALT+LAT+DIST$ 

  CYCLE DEVIANCE DF       

  1 3202. 26       

$D ER$ 

    ESTIMATE S.E. PARAMETER   

  1 −102.4 29.20 %GM   

  2 0.4091 E-02 0.1218E-02 ALT   

3 3.451 0.7947 LAT 

4 −0.1429 0.3634E−01 DIST 

SCALE PARAMETER TAKEN AS 123.1 

UNIT OBSERVED FITTED RESIDUAL 

1 39.57 38.48 1.090 

2 23.27 23.91 −0.6439 
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3 18.20 21.28 −3.075 

4 37.48 33.78 3.704 

5 49.26 39.46 9.797 

6 21.82 27.59 −5.773 

7 18.07 19.18 −1.113 

8 14.17 23.10 −8.932 

9 42.63 29.26 13.37 

10 13.85 22.89 −9.037 

11 9.440 9.366 0.7381E−01 

12 19.33 20.94 −1.608 

13 15.67 19.45 −3.776 

14 6.000 11.10 −5.098 

15 5.730 14.89 −9.157 

16 47.82 36.62 11.20 

17 17.95 16.71 1.241 

18 18.20 25.42 −7.220 

19 10.03 38.75 −28.72 

20 4.630 −5.953 10.58 

21 14.74 11.82 2.924 

22 15.02 14.32 0.7036 

23 12.36 12.78 −0.4207 

24 8.260 18.03 −9.774 

25 4.050 −7.447 11.50 

26 9.940 9.858 0.8202E−01 

27 4.250 11.76 −7.509 

28 1.660 −4.835 6.495 

29 74.87 41.55 33.32 

30 15.95 20.17 −4.221 

$STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

these individual components appear to fit the data satisfactorily, the overall performance 
of the model is poor. The ratio of the deviance of fit 2 to fit 1 (3,202/8,012) is 0.4. This 
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corresponds to the error sum of squares in a model estimated using ordinary least squares. 
Consequently, the value of r2 for this model is 1−ESS=0.60, indicating that only 60 per 
cent of the variability in the observed values of PPT have been described by the model. 

8.3.2 Residual analysis in multiple regression 

The analysis of residuals is of great importance in assessing the fit of a multiple 
regression model. A number of different types of residual plot  

 

Figure 8.8 Graphical plots of multiple 
regression analysis of Californian 
rainfall data 
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are illustrated in Figure 8.8. Plots (a) and (b) are catch-all and leverage plots, created in 
exactly the same way as for the unemployment data in section 8.2. A quick inspection of 
plot (a) suggests that though the linear functional form is reasonable, some 
transformation might be useful. Two of the weather stations also appear to be outliers 
with standardised residuals exceeding 2 (stations 19 and 29). These are the two most 
northerly weather stations in the sample, and may be affected by weather systems which 
are somewhat different from the rest of California. The critical value for the leverage plot 
is 3×4/30=0.4. None of the leverage values exceed this critical value so we can assume 
that there are no particularly influential observations in the data set. 

Plots (c) to (e) are partial residual plots. These are created by multiplying each 
observed value of an independent variable by its parameter estimate and adding this to 
the ordinary least squares residuals from the model: 

 (8.17) 

for j=1,…, k independent variables. The purpose of these plots is to assess the 
relationship between the response variable and each of the independent variables whilst 
controlling for the effects of the other independent variables. This information is needed 
because the independent variables in a multiple regression model potentially affect the 
response in two distinct ways: (a) as a series of independent effects, (b) as a series of 
interactions which reflect the fact that the independent variables may be interrelated 
themselves. The latter feature is termed collinearity. If it is particularly severe, it may 
seriously affect the performance of the model, leading to misinterpretation of the 
estimates produced. (For details of multicollinearity—collinearity between many 
independent variables—see Hoerl and Kennard 1970, Brown and Zidek 1980 and 
Gherardini 1980.) 

The shape of the partial residual plots indicates whether there are model 
misspecifications associated with a specific independent variable. If the shape is 
essentially linear in form then the model would seem to be adequate. However, if the 
shape is curvilinear, diamond or wedge shaped, or if there are stray points, these suggest 
misspecifications due to a poor functional form, heteroscedasticity or outliers. In plot 
8.8(c) there are clearly two outlying values associated with partial residuals exceeding 
plus or minus 0.008. These are associated with the two most northerly weather stations 
and add extra weight to the suspicion that they behave differently from the rest of the 
sample. Apart from these, the remaining points are sufficiently linear in shape to support 
the analysis at this stage. The same story emerges from plots 8.8(d) and 8.8(e), where the 
peculiarity of weather stations 19 and 29 is again confirmed. 

8.3.3 Introducing binary dummy explanatory variables 

One of the possible reasons for the relatively poor fit of the Californian precipitation 
model may be due to omitted explanatory variables. The scattered distribution of the 
weather stations across the State has only been incorporated in the model in terms of the 
DIST and LAT variables. However, as some of these stations are situated in the lee of 
mountains whilst others are on the windward side, it seems reasonable that a rainshadow 
effect may be important. Further support may be obtained for this by dividing the weather 
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stations into two groups—windward and leeward sites—and comparing the signs of the 
residuals associated with each (Table 8.4). There is a clear difference between the two 
groups with windward sites mainly displaying positive residuals, whilst residuals to 
leeward are generally negative. This becomes even clearer when the residuals are 
displayed spatially (Figure 8.7(b)). 

This clear spatial structure to the residuals can be incorporated explicitly within the 
regression model by creating a binary dummy variable (RS) to represent the rain-shadow 
effect. The values associated with this categorical independent variable are 1, if the site of 
the weather station is leewards, and 0, if the site is windward. An hypothesis associated 
with this variable is that precipitation is less at weather stations which are leeward.  

Table 8.4 Residuals from Taylor’s Californian 
regression 

Station Site SR 

Eureka W 0.10778 

Red Bluff L −0.06175 

Thermal L −0.31255 

Fort Bragg W 0.35549 

Soda Springs W 1.03547 

San Francisco W −0.54242 

Sacramento L −0.10417 

San Jose L −0.82885 

Gian Forest W 1.39556 

Salinas L −0.84242 

Fresno L 0.00691 

Pt. Piedras W −0.15107 

Pasa Robles L −0.35022 

Bakersfield L −0.47163 

Bishop L −0.89127 

Mineral W 1.09891 

Santa Barbara W 0.11793 

Susanville L −0.71400 

Tule Lake L −2.85008 

Needles L 1.08086 

Burbank W 0.27401 

Los Angeles W 0.06664 
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Long Beach W −0.04008 

Los Banos L −0.90640 

Blythe L 1.15750 

San Diego W 0.00801 

Daggett L −0.70884 

Death Valley L 0.68843 

Crescent City W 3.38405 

Colusa L −0.39953 

Note: L: leeward sites; W: windward sites 

The effect of adding the four explanatory variables to the data is to reduce deviance 
from 8,012 for 29 degrees of freedom to 2,098 for 25 degrees of freedom. The difference, 
5,914 for 4 degrees of freedom, represents the overall effect of the extended model. In 
terms of r2 the new model accounts for 5,914/8,012=0.738, or about 74 per cent of the 
variability in PPT, a considerable improvement over the original model. 

The parameter estimates and standard errors (in brackets) for this model are: 

(8.18) 

Once again the hypotheses suggested for ALT, LAT and DIST are supported by this 
model. However, some care needs to be taken in interpreting the parameter for RS. Given 
its values of 1 or 0, this parameter will only be included in the model for weather stations 
which are located leewards. Thus predicted values for leeward stations will be based on 
four explanatory variables whereas those for windward stations will be based on three. 
The dummy thus represents the difference in the predicted value of PPT of being a 
leeward rather than a windward weather station. The sign of the parameter suggests that 
being leeward reduces expected precipitation by 15.85 inches, compared with windward 
stations having identical values for ALT, LAT and DIST. 

As with the first analysis it is important to examine the residuals from this extended 
model to see if they form any type of pattern (Figure 8.7(c)). The partial residual plots 
show that the two extreme weather stations noted in the earlier analysis still remain 
relatively extreme. This suggests that the inclusion of the rain-shadow dummy has done 
little to help incorporate their information into the body of the model. 

There are a number of things which might be done to try to improve the fit of the 
model. The simplest is to eliminate the effects of weather stations 19 and 29 from the 
model either by removing them from the data set explicitly, for example by deleting their 
data values, or by weighting them so that their effect is nullified. By declaring that they 
have a weight of 0, and including in the model only those observations with a non-zero 
weight, the information collected for them may be eliminated from the fitted model. This 
may be set up with ease in GLIM using the $WEIGHT command. To do this, a variable 
(W) containing the weights of each of the observations is set up using $CALCULATE. 
Each observation is given the weight of 1. Having done this, the $EDIT command is used 
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to reset the weights of observations 19 and 29 to 0. In order to fit the model excluding 19 
and 29, W is declared as a weight, and a $FIT command is issued. GLIM fits the required 
effects subject to the conditions set by the weight. The full sequence is: 

$CALCULATE W=1 
$EDIT 19 W 0 
$EDIT 29 W 0 
$WEIGHT W 
$FIT ALT+LAT+DIST+RS$ 

The effect of this is to increase r2 for the twenty-eight weather stations to 89 per cent. 
(The equivalent manipulations in MINITAB make use of the OMIT command.) 

However, a comparison with the r2 value from the previous model is not entirely 
appropriate because the number of independent items of data being fitted is different. A 
modified r2 value which scales r2 by its degrees of freedom should be used instead. 
Instead of dividing the error sum of squares by n−1, the term n−p is used instead, where 
p refers to the number of parameters being fitted. This modification provides for a more 
effective comparison between models, and shows that the fit improves from an r2 of 70 
per cent for the model with the extreme values included, to 87 per cent with them 
excluded. 

8.3.4 Some further modifications 

The examination of the residuals from the fitted models provides an effective way of 
improving the description of the patterns in the observed response variable. Jones (1984) 
notes that an r2 of 90 per cent may be achieved for these data by further modification. By 
inspecting the partial residual plots from the model excluding the two most northerly 
sites, he notes that stations 15 and 18 are potential outliers from the modified model. 
These appear to be more extreme in the plots produced for distance and the rain shadow 
suggesting that these variables may interact in some way. A variety of different terms 
might be tried to reproduce the assumed interaction. The one suggested by Jones is to 
multiply the values of DIST by RS to create a new variable (INT) which is added to the 
model. 

In addition to creating this interaction, Jones notes that the partial residual plot 
between precipitation and altitude indicates that their relationship is not linear. As the 
relationship between precipitation and the remaining independent variables does appear 
to be linear, a transformation of the altitude variable seems called for. A logarithmic 
transformation is not possible because of the negative values associated with one of the 
weather stations, one located below sea level in Death Valley. However, this problem 
may be removed by adding a constant to each of the values of altitude so ‘raising’ Death 
Valley above sea level. Using a constant of 500 and logarithms (base 10) the final model 
proposed by Jones (1984) is: 

 
(standard errors in brackets). 

(8.19) 
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This model may be interpreted as follows. Precipitation is linearly related to latitude, 
distance from the coast and a modified measure of altitude. This modification uses a 
logarithmic transformation and a constant and suggests that precipitation initially 
increases rapidly with altitude, but that this effect becomes less marked at higher levels. 
The rain shadow is seen to be important but is more particularly relevant if the site 
concerned is also far inland. 

8.3.5 Introducing multi-way dummy explanatory variables 

The use of dummy variables to examine qualitative differences among continuous 
measurements is frequently a useful extension to a regression analysis. However, care 
must be taken in specifying and interpreting such dummies. In the previous section the 
effect of the rain-shadow dummy was introduced in two distinct ways. First, by including 
it as an additive parameter (RS). Second, by multiplying it with the distance variable to 
create the INT interaction. The final model included both RS and INT. It would have 
been perfectly reasonable to have eliminated the RS effect once INT was present, thus 
revealing a third possible way of incorporating the dummy. 

The three distinct ways of handling dummy variables need to be distinguished because 
they affect the model in different ways. The presence of RS may be gauged by noting that 
the effect of being leeward reduces the value of the intercept for the model by 
approximately 16 inches. The slope coefficients for leeward and windward sites are 
identical. If INT were present but RS were removed, the intercepts for leeward and 
windward models would be identical but the slope coefficients for distance would differ. 
In the third model in which both effects are present in the model, both the intercepts and 
slope coefficients of the model will differ between leeward and windward sites. (For 
further details about this topic, see Chatterjee and Price 1977, Pindyck and Rubinfeld 
1976: section 3.8, and Wrigley 1985:91–4.) 

It is perfectly reasonable to use dummy variables to incorporate qualitative 
independent variable effects which are multi-level rather than binary. However, the 
multi-level dummy variable has to be treated somewhat differently. The correct 
procedure for handling it is to re-express the information it contains as a series of binary 
dummies. Thus the three levels of the dummy variable HOUSING: 
0 corresponding to owner occupation, 

1 corresponding to private renting, 

2 corresponding to council renting, 

should be recoded into two binary dummies, H1 and H2, where for the former, 0 
represents owner occupation and 1 private renting, and for H2, 0 represents owner 
occupation and 1 council renting. (In general, if there are n levels in the multi-way 
dummy, a series of n−1 binary dummies will be needed to reproduce the observed data 
correctly.) When fitted in a regression model, H1 represents the effect on the response 
variable of being a private renter rather than an owner occupier, whereas H2 represents 
the effect on the response of being a council tenant rather than an owner occupier. The 
two terms could be included in the model as additive effects, interactions or both. 
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The analysis of variance is a statistical technique which is particularly useful if the data to 
be analysed are continuous but have been allocated to non-overlapping categories by 
some classification scheme. Such procedures are common in the social and 
environmental sciences, and are frequently developed into experimental designs of 
varying degrees of complexity. (A discussion of experimental designs is presented in 
Chapter 10.) The motivation for the analysis of variance, also sometimes termed 
ANOVA, is exactly the same as for regression in that the variability in a response is 
described using explanatory variables. Though regression and ANOVA look different, 
they are formally identical. The differences between them arise because of the way the 
variation in the response variable is partitioned into recognisable subsets of explanatory 
information. 

8.4.1 One-way ANOVA 

Table 8.5 is an example of a one-way analysis of variance table. This has been created by 
measuring male economic activity rates in three samples of wards in County Durham. 
The data come from the 1981 Population Census collections held in NOMIS. Three 
distinct types of ward have been identified based on the Office of Population Censuses 
and Surveys (OPCS) urban-rural classification. These are: 

1 wards which are wholly urban, 
2 wards which are wholly rural, 
3 wards which are ‘mixed’. 

Each classification contains twenty wards. Table 8.5 is said to be a oneway classification 
because only one categorical dimension has been used: the urban-rural continuum. 

The object of analysis of variance is to test whether the differences between the means 
of the different classifications are significant. In effect, this tests whether male economic 
activity rates depend on ward type. The technique involves: 

Table 8.5 Male economic activity rates in samples 
of wards in County Durham 

Ward Urban Rural Mixed 

1 80.26 76.54 80.00 

2 76.73 79.60 74.97 

3 72.15 58.65 78.67 

4 74.00 82.28 73.51 

5 80.32 77.48 78.22 

6 80.73 71.80 87.05 

7 85.98 74.77 89.40 

8 76.13 69.93 77.81 

9 77.93 74.31 79.57 
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10 75.87 80.37 80.76 

11 78.93 74.38 74.81 

12 73.81 80.81 76.92 

13 79.18 76.82 70.41 

14 78.04 75.29 72.88 

15 81.47 80.00 72.91 

16 82.57 78.26 72.42 

17 84.21 69.67 75.08 

18 73.78 73.90 75.08 

19 79.87 77.96 72.93 

20 79.23 76.85 69.53 

1 testing the null hypothesis that the samples have been drawn from the same population 
(or from different populations with equal means), and 

2 comparing the sample means. 

In its simplest form, analysis of variance involves partitioning the total amount of 
variability (total sum of squares) of a data set to allow two estimates of the overall 
variance of the data to be calculated. As was shown in Part I, the overall variance consists 
of a measure of the variability of all the observations in the data set around the overall 
mean. The first estimate of this may be produced by calculating the values of the 
variances in each of the classifications, that is, describing the variability of the wholly 
urban, wholly rural and mixed wards around their three respective means. The second 
estimate may be produced by calculating the variance of these three sample means 
around the overall mean. These two distinct estimates are termed: 

1 The within variance, referring to variability within each classification. 
2 The between variance, referring to the variability between the three classifications. 

If the null hypothesis is true, the ratio of the two should be unity. That is: 

 
(8.20) 

If the null hypothesis is not true, then it is likely that the between-classification estimate 
will be greater than the within-classification estimate, indicating that the three 
classifications refer to different populations with different mean parameters. 

Because the observed data are generated from a sample (or are to be treated as a 
sample), it is possible that a value for the ratio other than unity may occur even though 
the classifications come from the same population, or different populations with equal 
means. It is therefore necessary to compare the observed value for the ratio with a value 
which might be expected to have arisen purely by chance. The F distribution (see Chapter 
5) is used to provide the necessary bench-mark against which to make the assessment. 
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8.4.2 GLIM and MINITAB analyses of Table 8.5 

The basic idea behind analysis of variance can be illustrated by calculating the value of 
the variance-estimates ratio for the data in Table 8.5. Printout 8.4 presents the GLIM 
analysis of these data; Printout 8.5 the equivalent MINITAB analysis. 

The structure of these transcriptions is very similar to those associated with the linear 
regression models. In MINITAB, the data are read into three column vectors, C1−C3, 
where C1 contains the data for the wholly-urban wards, C2 the wholly-rural wards, and 
C3 the mixed wards. The command AOVONEWAY is used to produce the output. 
MINITAB produces tabular output in response to this command. This consists of an 
incomplete three-row, four-column matrix containing details on the number of degrees of 
freedom, sums of squares and mean squares associated with the model and the errors. 
Row 3 displays the total sum of squares in the data. This is 1,357.3 for 59 degrees of 
freedom. By regressing the observed economic activity rates against their ward 
classification, the total sum of squares is reduced to 1,260.8 for 57 degrees of freedom. 
Thus the model fitted to the data reduces total sum of squares by 96.5 for 2 degrees of 
freedom. Line 1 is thus the equivalent of the regression sum of squares, and line 2 the 
error sum of squares. 

Columns 3 and 4 of the matrix contain the information needed to test the null 
hypothesis. Column 3 contains mean square errors. These are produced by dividing the 
figures in column 2 by the degrees of freedom in column 1. The mean square error for 
line 1 represents the estimate of the variance produced from between the classifications. 
The within-classification estimate is the mean square error from line 2. The ratio of line 1 
to 2 is displayed in column 4. This is the calculated value of the F statistic for 2 and 57 
degrees of freedom. This may be checked for significance using tables of the F 
distribution, where the 2 subscript refers to the column of the table, and the 57 subscript 
to the row. The value in the table associated  

Printout 8.4 GLIM analysis of Table 8.5 data 

£r *glim 1 =−a 

  $UNIT 60 

  $DATA EA 

  $DINPUT 1$ 

  $FAC WT 3 

  $CALC WT=%GL(3, 20) 

  $YVAR EA$ 

  $FIT$ 

  CYCLE DEVIANCE DF     

  1 1357. 59     

  $D E$ 

    ESTIMATE S.E. PARAMETER 
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  1 76.90 0.6192 %GM 

    SCALE PARAMETER TAKEN AS 23.01 

  $FIT WT$ 

  CYCLE DEVIANCE DF     

  1 1261. 57     

  $D E$ 

    ESTIMATE S.E. PARAMETER 

  1 78.56 1.052 %GM 

  2 −3.076 1.487 WT(2) 

  3 −1.913 1.487 WT(3) 

    SCALE PARAMETER TAKEN AS 22.12 

  $STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

with these subscripts (3.15 at the 95 per cent level, 4.9 at the 99 per cent level) is the 
value of F which may be expected to occur by chance. As the calculated value is less than 
either of these tabulated values we cannot reject the null hypothesis of no difference. In 
other words, there is no evidence to suggest that male economic activity rates differ 
according to ward type. 

The GLIM analysis of these data confirm the MINITAB findings. However, there are 
a number of important distinctions which need to be noted in comparing the two 
transcriptions: 

1 Only one data item (EA) is read into GLIM. This gives the observed rate of male 
economic activity in the 60 wards (this will be used as the response variable). 

2 Information on ward-type (that is, wholly urban, wholly rural, or mixed) which is to be 
used as the explanatory information is generated internally by GLIM using the 
$FACTOR and $CALCULATE commands. 

In MINITAB the observed rates for the three types of ward are stored in  

Printout 8.5 MINITAB analysis of Table 8.5 data 

£R *MINITAB 

  -READ ‘URT1’ C1 

      20 ROWS READ 

  C1 

    80.26 76.73 72.15 74…         

  -READ ‘URT6’ C2 
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      20 ROWS READ 

  C2 

    76.54 79.60 58.65 82.28…         

  -READ ‘URT25’ C3 

      20 ROWS READ 

  C3 

    80.00 74.97 78.67 73.51…         

  -PRINT C1−C3 

  ROW C1 C2 C3       

  1 80.26 76.54 80.00       

  2 76.73 79.60 74.97       

  3 72.15 58.65 78.67       

  4 74.00 82.28 73.51       

  5 80.32 77.48 78.22       

  6 80.73 71.80 87.05       

  7 85.98 74.77 89.40       

  8 76.13 69.93 77.81       

  9 77.93 74.31 79.57       

  10 75.87 80.37 80.76       

  11 78.93 74.38 74.81       

  12 73.81 80.81 76.92       

  13 79.18 76.82 70.41       

  14 78.04 75.29 72.88       

  15 81.47 80.00 72.91       

  16 82.57 78.26 72.42       

  17 84.21 69.67 75.08       

  18 73.78 73.90 75.08       

  19 79.87 77.96 72.93       

  20 79.23 76.85 69.53       

  -DESCRIBE C1−C3 

      N MEAN MEDIAN TRMEAN STDEV SEMEAN 

C1 20 78.559 79.055 78.503 3.623 0.810 
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C2 20 75.48 76.68 76.04 5.26 1.18 

C3 20 76.65 75.08 76.33 5.06 1.13 

      MIN MAX 01 03     

C1 72.150 85.980 75.935 80.627     

C2 58.65 82.28 74.00 79.26     

C3 69.53 89.40 72.91 79.34     

AOVONEWAY C1−C3 
ANALYSIS OF VARIANCE 

 
Note: Commands prefixed by £ are operating system commands 
Commands prefixed by—are MINITAB commands 

three distinct external data files—URT1, URT6, URT25. These are read separately, 
copying their data in C1, C2 and C3. The analysis of variance is performed merely by 
identifying the columns concerned. In GLIM, all the data are read in from a single 
external file, -a. In order to reproduce the structure of the ward classification, a three-
level categorical variable, WT, is defined and observed economic activity rates in EA 
related to it using $CALCULATE. Level 1 of WT corresponds to column 1 of Table 8.5 
(wholly-urban wards), level 2 to wholly-rural wards, and level 3 to mixed urban-rural 
wards. The $CALCULATE command works by generating the levels of the dummy 
variable WT internally. A system function (%GL) is used to generate the levels 
associated with each observed value. Though the command looks rather complex, its 
syntax is fairly straight-forward. It works as follows. Within the brackets following the 
%GL terms are two numbers (3, 20). The first number represents the number of levels 
specified for WT in the $FACTOR command. The second figure represents the levels of 
WT which are associated with the observed items of data in EA. GLIM generates factor 
levels for WT which run from 1 to 3 in sequences of 20, that is: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2… 
This sequence continues until all 60 levels have been generated, this upper limit being 

set automatically to the value of the $UNITS command. Thus the first twenty observed 
values in EA are set at level 1 of WT, indicating that they are wholly-urban wards. The 
second set of twenty observed values is set at level 2, the third at level 3. (Notice this 
coding corresponds to reading the data from Table 8.5 a column at a time.) It is important 
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to note that the values given in the %GL command reflect the order in which the data are 
to be entered. If the observed data were to be entered a row at a time, the appropriate 
coding for %GL would be %GL(3, 1), generating sequences of 

1 2 3 1 2 3 1 2 3 1 2 3…  
The remaining GLIM commands are as for the regression examples, with $YVAR 

being defined as EA, and the $ERR and $LINK being Normal and Identity respectively. 
The first $FIT$ command fits the grand mean effect to the observed data. Its value of 
1,357 for 59 degrees of freedom is identical to the total sum of squares produced by 
MINITAB. The second $FIT command fits the main effects of the ward classification. 
The value of deviance associated with this is 1,261 for 57 degrees of freedom, a value 
which is equivalent to the error sum of squares in MINITAB. The difference is the effect 
of deviance of fitting the WT term to the first model. This is identical to the sum of 
squares associated with line 2 of the MINITAB analysis of variance table. The scale 
parameter contains the mean square errors associated with the two models, and so can be 
used to calculate the F ratio test. 

One important point of difference between the two programs should be noted. The 
values for the column means generated by MINITAB appear to differ from those 
produced by GLIM. In MINITAB, the mean rate for male economic activity in wholly-
urban wards is 78.6, in wholly-rural wards 75.5, and in mixed wards 76.7. The GLIM 
equivalents are produced in response to the $DISPLAY command. The estimate for 
%GM is 78.6, equivalent to that for the wholly-urban wards, but the estimates for wholly-
rural wards—WT(2)—and mixed wards—WT(3)—are small negative numbers. In fact, if 
WT(2) is added to %GM, the difference is identical to the value produced by MINITAB 
for wholly-rural wards. Similarly, the values for mixed wards are also identical if WT(3) 
is added to %GM. Both programs produce exactly the same information but record it 
differently. 

The detailed reason for this difference will be explained in Chapter 9 in connection 
with the constraints on log-linear models. Constraints are used in order to produce 
parameter estimates. They are not important in themselves and in no way affect the 
overall performance of the model. This is clear from the examples because the values of 
the sums of squares and mean squares are identical. However, they do affect the form of 
the parameter estimates, hence the differences between these. MINITAB uses a form of 
constraint termed the usual constraints, a form of centre-effect coding in which the sum 
of the effects in the single explanatory variable (WT) is assumed to equal zero. In 
contrast, GLIM uses a form of constraint in which the mean economic activity rate of 
wholly-urban wards is treated as a baseline. The mean rates for the other ward 
classifications are thus defined with respect to this rather than an overall mean. Once this 
is recognised it is possible to interpret the two procedures consistently. 

8.4.3 Assumptions and residuals 

Like the regression model there is a series of assumptions underlying the use of the 
analysis of variance. The two most important of these are:  

1 that the predictable mean of the response is the sum of a series of effects which are 
linear in their parameters, and 

2 that the error terms are uncorrelated and have constant variance. 
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These are equivalent to the assumptions used in regression. It is also frequently asserted 
that the errors must be derived from a Normal distribution, but as with other models in 
the exponential family, the assumption of a specific probability process is not a 
fundamental requirement (McCullagh and Nelder 1983). The three samples are also 
assumed to have been drawn by some form of independent selection process and have 
identical population standard deviations. This latter assumption is what allows us to draw 
two distinct estimates of the variance. 

The procedures used for assessing the acceptability of these assumptions are also 
similar to those used with regression. Standardised residuals may be produced within 
GLIM and plotted against fitted values to identify specific cells of the table which are 
extreme in some way. Similarly, the residuals may be plotted spatially to see if clusters 
are evident, indicative of spatial autocorrelation. Finally, leverage statistics may be 
produced to identify unusual cells, columns or rows whose influence is extreme. The 
latter check is particularly important in tabular analyses where the main sources of the 
variability may arise because of unusually important subsets of the table. 

8.4.4 Higher-order analysis of variance 

The general motivation for analysis of variance has been set out using the one-way 
design. However, it is more likely that observed data may be subject to categorisation by 
more than one type of classification. This leads to the need to consider higher-order, 
multi-way analyses of variance, such as frequently occur in the biological, medical and 
psychological sciences. 

Table 8.6 contains an extract from Table 16.6 of Blalock (1979) in which a series of 
murder rates have been cross-classified by a three-level city-type variable and a binary 
region variable. The cells of the table are measured as continuous variables, but the 
explanatory structure of the table is categorical. The analysis of this table is identical to 
that for Table 8.5 in that the observed murder rates are defined as the response variable 
and city type and region are defined as explanatory variables. 

Two features distinguish this table from Table 8.5. First, for each combination of the 
explanatory variables there are four replications—four distinct observations on the 
murder rate. Second, the total sum of squares can be partitioned into a wider range of 
possible sources. In addition to effects due to city type, region and errors, we may also 
define an interaction between them both. As with the interaction presented in connection 
with the precipitation data, this term is used to refer to the way  

Table 8.6 Two-way analysis of variance data 

      CITY TYPE 

    I T G 

  NE 4.3 5.9 5.1 3.6 3.1 3.8 

    2.8 7.7 1.8 3.3 1.6 1.9 

REGION 

  SE 12.3 9.1 6.2 4.1 6.2 11.4 
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    16.3 10.2 9.5 11.2 7.1 12.5 

Note: Region: NE=North-east, SE=South-east 
City type: I=Industrial, T=Trade, G=government 

Source: After Blalock (1979) 

murder rates may depend not just on city type or region, but on their combined effect. 
Thus murder rates may be higher in north-eastern industrial cities simply because of the 
special combination of effects operating there. These rates would be higher than those 
expected simply by looking at the north-east without distinguishing between cities, or by 
looking at industrial cities without distinguishing between regions.  

Blalock (1979:359) notes that this modification leads to three distinct types of 
hypothesis which need testing: 

1 the population column means are equal; 
2 the population row means are equal; 
3 the population is additive. 

The third of these is a test for the presence of the interaction effect. Printout 8.6 
summarises the analysis of these data. 

The total sum of squares for these data is estimated from the $FIT$ command as 373.5 
for 23 degrees of freedom. By fitting the term CT (city type) to the base model, the total 
sum of squares falls by 42.3 for 2 degrees of freedom. This corresponds to the between 
columns estimate. By fitting the term R (region) to the base model, the total sum of 
squares falls by 211.2 for 1 degree of freedom. This corresponds to the between rows 
estimate. Their combined effect is to reduce the deviance value by about 250 for 3 
degrees of freedom. The interaction effect may be fitted to the model containing the two 
effects using GLIM’s dot notation (CT.R). The addition of this reduces deviance by a 
further 8 for 2 degrees of freedom. The combined effect of the two main effects—the row 
and column effects—and the interaction is to reduce deviance by 260 for 5 degrees of 
freedom. This means that the variability attributable to the errors is 112 for 18 degrees of 
freedom. 

The mean square errors associated with these effects are: 
between columns—42.3/2=21.2 
between rows—211.2/1=211.2 

  

Printout 8.6 GLIM analysis of Table 8.6 data 

$UNITS 24 

$DATA N 

$DINPUT 1$ 

$FAC R 2 CT 3 

$CALC CT=%GL(3, 2): R=%GL(2, 2) 

$YVAR N 

$FIT$ 
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  CYCLE DEVIANCE DF 

  1 373.5 23 

$FIT R$ 

  CYCLE DEVIANCE DF 

  1 162.3 22 

$FIT CT$ 

  CYCLE DEVIANCE DF 

  1 331.2 21 

$FIT+R$ 

  CYCLE DEVIANCE DF 

  1 120.0 20 

$FIT+R.CT$ 

  CYCLE DEVIANCE DF 

  1 112.0 18 

$CALC 373.5−112$ 

  261.5 

$CALC 373.5−162.3$  

  211.2 

$CALC 373.5−331.2$  

  42.30 

$STOP  

Note Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands  

interaction—8/2=4 
errors—112/18=6.2 

  

The interaction effect is tested first by forming an F ratio using the interaction mean 
square error as the numerator and the error mean square error as the denominator. This 
gives a value of 0.644. As this is less than unity we can assume that there is no evidence 
for an interaction. The small reduction in deviance associated with the interaction effect 
may thus be assumed to be the result of sampling fluctuations rather than a real effect. 

Blalock shows that having eliminated the interaction as a real effect, its deviance value 
can be incorporated into the error component, and new F ratios calculated for the two 
main effects. The new error sum of squares rises from 112 for 18 degrees of freedom to 
120 for 20 degrees of freedom, producing a new error mean square of 6. The two F ratios 
using 6 as a denominator are: 

between columns—21.2/6=3.53   
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between rows—211.2/6=35.2 

Tests for these ratios may be made using F tables with 2 and 20 degrees of freedom for 
the between columns estimate, and 1 and 20 degrees of freedom for the between rows 
estimate. Both of these ratios are significant at the 55 per cent significance level. This 
means that there are clear relationships between both region and murder rates and city 
type and murder rates. Blalock (1979:362) suggests that 

when we control for region by letting this factor explain all it can of the 
variation in murder rates and then letting city type explain what it can of 
the remainder, we now get a significant relationship between city type and 
murder rates. 

This contrasts with results produced for an analysis of variance table in which region was 
not identified. This suggested that murder rate was not affected by city type. (For further 
details of this example or analysis of variance in general, see Blalock 1979.) 

8.4.5 ANOVA with random effects: components of variance 

The analyses presented in the previous sections assume that the classifications used are 
fixed in number and type. If instead we assume that they are themselves random 
drawings from a possible population of classifications, then the form of the analysis of 
variance may be altered to reflect this. Such an approach might be useful in attempting to 
assess the sensitivity of spatial data to the recording units used to measure them. Haggett 
et al. (1977: Chapter 12) illustrate how this approach may be used with data measured on 
different zonal levels. 

When the assumption of fixed levels is removed, it is necessary to modify the error 
process associated with the model to reflect this. Instead of specifying a Normal process, 
a gamma process is specified instead. The model thus fitted is a random effects analysis 
of variance model. This is also termed a components of variance model. For further 
details, see McCullagh and Nelder (1983). 

8.5 CONCLUSIONS 

The techniques presented in this chapter have covered a wide range of data analytic 
problems which are likely to be met in the social and environmental sciences. The 
techniques associated with linear regression are particularly well known and used in 
geography, though their formal equivalence with analysis of variance is less well 
understood. The fact that both techniques can be specified within a single computer 
package merely by adjusting one or two of the model designation commands provides 
evidence of this relationship. Similarly, these basic models may be extended to 
incorporate dummy variables leading either to dummy variable regression or the analysis 
of covariance. 

The requirement that the errors in the two principal models are drawn from a Normal 
distribution with given mean and constant variance is frequently asserted but is 
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unnecessary. The development of the theory of quasi-likelihood and its formal 
association with least squares parameter estimation has shown that the key properties of 
estimators of generalised linear models depend on the constancy of the mean to variance 
relationship and a lack of autocorrelation. However, though this generalises the quasi-
likelihood findings to cover a wider range of models than formerly, it does not remove 
many of the key difficulties of using these techniques with data which are inherently 
autocorrelated either in space, time or both. Procedures have been developed to help 
users of such data operate these models, but to date, these remain reasonably complex. 
Even so, before one embarks on their use it is important that students and researchers are 
familiar with the standard uses of the traditional models. GLIM and the generalised 
family provide a particularly effective way of learning about them. 

Generalised linear models         227



9  
GENERALISED LINEAR MODELS FOR 

CATEGORICAL DATA 

9.1 INTRODUCTION 

The concept of a generalised, integrated treatment of linear models may also be applied 
to the analysis of categorical data. During the last thirty years major changes have taken 
place in the procedures available for analysing categorical data in the social and 
environmental sciences. In the 1950s, most of the procedures available tended to be 
rudimentary and ad hoc, a collection of techniques which was difficult to apply or adapt 
to unusual types of problem. Since then, a number of developments have occurred which 
have revolutionalised the situation. 

First, a number of authors have shown that it is possible to express the information in 
categorical data sets in the form of linear models, similar in design to those more readily 
applied to the analysis of continuous data (Bishop et al. 1975; Haberman 1974a, 1979; 
Andersen 1980). (Indeed, this idea has a much longer pedigree, being suggested in papers 
as early as 1900.) Second, research into the theoretical properties of maximum likelihood 
estimators during the early 1960s has shown that it is possible to derive such estimators 
for models which describe information in categorical data tables: contingency tables 
(Birch 1963). Third, research into generalised linear models in the 1960s and 1970s has 
shown that regression-type models can be developed specifically for contingency table 
data and regression models involving categorical response variables, thus linking the 
traditional concerns of categorical analysis with standard regression analysis (Grizzle et 
al. 1969; Nelder 1974; Freeman 1987). 

As a result, three distinct types of linear model have become widely associated with 
the contemporary approach to the statistical analysis of categorical data: 

1 the hierarchical log-linear model, 
2 the logit regression model, and 
3 the probit regression model. 

All three are considered in this chapter. However, before doing so, it is necessary to 
consider some of the characteristics of contingency tables which need to be 
accommodated in a linear model if that model is to be of practical value. The main reason 
for doing this is that contingency table data present many general problems to the 
researcher. In attempting to solve these, useful advances may be made towards solving 
the problems associated with categorical regression. 

9.2 CONTINGENCY TABLES 



9.2.1 Some essential preliminaries 

A contingency table is a form of data presentation which is widely associated with social 
research, and in particular, with questionnaire surveys. The term contingency table 
applies to data sets which are created by the cross-classification of categorical variables. 
Thus, given that categorical data may include both nominal and ordinal measurements 
(see Chapter 3), the following types of data table may be created: 

1 fully-nominal contingency tables (Table 9.1); 
2 fully-ordinal contingency tables (Table 9.2); 
3 mixed nominal-ordinal contingency tables (Table 9.3). 

The three data tables presented in Tables 9.1 to 9.3 are created by cross-classifying two 
categorical variables: car usage and superstore patronage. As all three tables comprise 
only two categorical variables they are sometimes termed two-way tables. An alternative 
method of description is to refer to the number of levels or categories associated with 
each variable. Thus Table 9.1 is a 2×2 table because it has been created by the cross-
classification of two binary categorical variables. 

The information contained within a contingency table depends entirely on how the 
cross-classifying variables have been measured and categorised. This is a key issue and 
reflects the major problems of measurement described in Chapter 3 (section 3.4) 
concerning the representation of information in low-level measurement classes. For 
certain types of data, for example sex, there is little ambiguity concerning the number and 
types of level which should be used to represent the information being considered. 
However, for most categorical measurements, a degree of subjective judgement is 
involved. This is manifest in the number, composition and character of the levels which 
the researchers decide, for whatever reason, are needed in their study. To illustrate this, 
consider a categorical variable designed to represent types of employment within a 
country. One possible classification could be created using levels which correspond to 
broad industrial generalisations of the economy (for example, primary, secondary, 
tertiary, quaternary), a second could make use of a more detailed, but more numerous, 
selection of subdivisions. Table 9.4 presents some alternatives based on the standard 
industrial classification devised for use in the UK from 1980. Table 9.4(a) uses ten 
industrial ‘divisions’; Table 9.4(b) uses thirty-six ‘categories’ to provide for an even finer 
discrimination of industries. 

Table 9.1 A fully-nominal contingency table 

    Superstore patronage 

    No Yes 

No 66 100 
Car usage 

Yes 54 231 
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Table 9.2 A fully-ordinal contingency table 

    Superstore patronage 

   Non-user Light user Heavy user 

Never 66 71 29 

Sometimes 29 80 42 Car usage 

Always 25 61 48 

Table 9.3 A mixed nominal-ordinal contingency 
table 

    Superstore patronage 

    Non-user Light user Heavy user 

No 66 71 29 
Car usage 

Yes 54 141 90 

It is important to remember that the issue is not just one concerning the number of levels 
which should be used, it also concerns the quality or character of those levels. In 
particular, it reflects the meaning to be given to the levels. As a result, the primary 
problem in the analysis of categorical data is conception not measurement, and it is as 
well to remember that no amount of technical processing, or refined computer modelling, 
will rectify errors or ambiguities made at this stage. 

9.2.2 Table architecture 

To illustrate how the information contained in two binary categorical variables may be 
organised into a contingency table, consider Table 9.1. This shows the cross-
classification of car usage by store patronage. The information on car usage is presented 
as the rows of the table with the ‘No’ category corresponding to row 1, and the ‘Yes’ 
category to row 2.  

Table 9.4 Some alternative industrial classifications 
(1980 definition) 

(a) Division 

0 Agriculture, forestry and fishing 

1 Energy/water supply industries 

2 Extraction/manufacture: minerals/metals 

3 Metal goods/vehicle industries, etc. 

4 Other manufacturing industries 
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5 Construction 

6 Distribution, hotels/catering; repairs 

7 Transport/communication 

8 Banking, finance, insurance, leasing, etc. 

9 Other services 

(b) Categories 

01 Agriculture, forestry and fishing 

02 Coal extraction 

03 Mineral oil and natural gas extraction 

04 Mineral oil processing 

05 Nuclear fuel production 

06 Gas, electricity and water 

07 Extraction of other minerals and ores 

08 Metal manufacture 

09 Manufacture of non-metallic products 

10 Chemical industry 

11 Production of man-made fibres 

12 Manufacture of metal goods 

13 Mechanical engineering 

14 Manufacture: office machinery/DP equip. 

15 Electrical and electronic engineering 

16 Manufacture of motor vehicles 

17 Shipbuilding and repairing 

18 Manufacture: aerospace/transport equip. 

19 Instrument engineering 

20 Food, drink and tobacco 

21 Textiles 

22 Leather, footware and clothing 

23 Timber and furniture 

24 Paper, printing and publishing 

25 Other manufacturing 

26 Construction 
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27 Wholesale and distribution 

28 Retail distribution 

29 Hotels and catering 

30 Repair of consumer goods and vehicles 

31 Transport 

32 Telecommunications 

33 Insurance, banking, etc., business services 

34 Public administration and defence 

35 Medical and other health services 

36 Other services—NES 

Similarly, the information on superstore patronage is presented as the columns of the 
table, with the ‘No’ category corresponding to column 1 and the ‘Yes’ category to 
column 2. The cross-classification of two binary variables creates a two-way contingency 
table containing four cells (i.e., 2×2=4, hence the use of the arithmetic expression to 
define contingency tables). The numbers associated with these cells represent observed 
cell frequencies from the researcher’s survey. They describe the number of times in a 
sample of 451 households in Cardiff each of the four combinations of car usage and store 
patronage occur. 

By minor modification, Table 9.1 can be transformed into Table 9.5, by the addition of 
a third row and column to represent the totals associated with each. These totals are 
frequently termed marginals in the statistics literature, a term which will be used here. 
Because the sample size is constant in both Tables 9.1 and 9.5, there are a number of 
simple relationships which may be exhibited between the observed cell frequencies, the 
observed row and column marginals, and the observed grand total. These are: 

1 The sum of the four observed cell frequencies equals the observed grand total. 
2 The sum of the observed row and column frequencies equals the observed row and 

column marginals. 
3 The sum of the observed row or column marginals equals the observed grand total. 

Table 9.5 Marginal totals 

    Superstore patronage 

    No Yes Total 

No 66 100 166 

Yes 54 231 285 Car usage 

Total 120 331 451 

These are obvious from the observed table, but it is worth stating them rather pedantically 
here because models which may be applied to this table must respect and preserve some 
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or all of these observed relationships if they are to be considered adequate. Furthermore, 
they illustrate that once the grand total and some of the observed marginals and observed 
cell frequencies are known, any components of the table which are missing can be 
calculated directly merely by arithmetic. 

The latter point is particularly instructive because it means that several different 
combinations of observed cell frequencies and marginals will satisfy the conditions listed 
above (Table 9.6). If several solutions exist, then maybe some are more useful than 
others?  

Table 9.6 Some relationships between observed 
cells, marginals and the grand total 

(a) Total 

    83 83 166 

    37 248 285 

  Total 120 331 451 

(b) Total 

    60 106 166 

    60 225 285 

  Total 120 331 451 

(c) Total 

    0.5 165.5 166 

    119.5 165.5 285 

  Total 120 331 451 

9.2.3 Basic analysis 

The fact that the interrelationships between observed cells, marginals and grand total can 
be satisfied by a variety of different combinations of number suggests that it may be 
feasible both to describe the patterns between the observed frequencies in some 
consistent way, and assess rival hypotheses concerning these patterns. The latter point 
clearly implies that a series of rival hypotheses will generate different patterns of 
expected cell frequencies. 

The traditional approach to the analysis of this type of data is to calculate the chi-
square statistic for it. This statistic (previously presented in Chapter 4, section 4.7.3) 
assesses whether two cross-classifying variables, A and B, may be said to be independent 
of each other. This term is based on the following probability statements: 

p(A|B)=p(A)   

and 
p(B|A)=p(B)   
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The former states that the probability of A occurring given B is p(A); the latter, that the 
probability of B occurring given A is p(B). In both statements, the presence of the 
conditioning variable (B in the first statement and A in the second) does not affect the 
probability of the other variable. In practical terms this means that knowledge of A (B) 
does not provide knowledge of B (A). In terms of Table 9.1, this means that information 
on car usage tells us nothing about store patronage. 

In order to assess the hypothesis that car usage and store patronage are indeed 
independent, a table of cell frequencies which would be expected were they really 
independent must be generated. Then, the cell-by-cell differences between the 
expectations under independence and those observed from the survey have to be 
calculated. The procedure for calculating the expectations is quite simple. For cell 11 it 
involves multiplying together the marginals for row 1 and column 1 of the observed table 
and dividing the product by the grand total. That is: 

for cell 11: (166×120)/451 

For cell 12, the expectation is calculated by multiplying the marginals for row 1 and 
column 2, and dividing the product by the grand total. The four observed cell frequencies 
and the expectations under the hypothesis of independence are: 
cell observed 

frequency 
expected 
frequency 

difference 

11 66 44.2 21.8 

12 100 121.8 −21.8 

21 54 75.8 −21.8 

22 231 209.2 21.8 

The full table of expected cell frequencies under independence is presented in Table 9.7. 
Notice that the marginals and the grand total have been preserved, that is, they are the 
same as in the observed table. Notice also that the cell frequencies in the expected table  

Table 9.7 Expected cell frequencies under 
hypothesis of independence 

    Superstore patronage 

    No Yes Total 

No 44.2 121.8 166 

Yes 75.8 209.2 285 Car usage 

Total 120 331 451 

differ from those in the observed table. This provides more evidence to suggest that the 
patterns of association noticed earlier may be preserved by more than one solution. 
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In order to assess whether the cross-classifying variables in the observed table are indeed 
independent of each other, the differences between the observed cell frequencies and 
their associated expectations need to be calculated. These are used as input into the chi-
square test statistic, an empirically-derived statistic which has the important property that, 
for given degrees of freedom, it approximates the theoretical chi-square probability 
distribution (see the discussion in Chapter 5). It is thus possible to use this distribution, 
whose properties are well known, to provide the test for the independence hypothesis. 

The test statistic is given by the formula: 

 
(9.1) 

or 

 

  

and is calculated as 23.27 for the data under consideration. The number of degrees of 
freedom associated with this hypothesis is calculated from the expression: 

df=(rows−1) (columns−1)   

which, for a two-way table, yields a value of 1. The independence hypothesis may now 
be tested by comparing the calculated value of chi-square with the value expected by 
chance under the chi-square distribution for 1 degree of freedom. Table 9.8 presents some 
alternatives associated with different levels of probability. From this, it is possible to see 
that the value of chi-square calculated from the data exceeds the expected values in the 
table at the 0.1 significance level. As a value greater than this can only occur once in a 
thousand by chance, it is reasonable to suggest that the null hypothesis of independence is 
rejected: car usage and superstore patronage are thus related in some way. 

A summary of this analysis using MINITAB is presented in Printout 9.1. The data for 
the observed table are read into two column variables (C1 and C2) and the statistic 
calculated using the CHISQUARE command. As output, MINITAB produces expected 
counts under independence, the chi-square value calculated from the data and its 
associated degrees of freedom. This should be referred to for comparison when a series of 
alternative forms of analysis are applied to these data using GLIM. 

9.3 LOG-LINEAR RE-ANALYSIS 

A comparison of Table 9.6 with Table 9.7 shows that a variety of combinations of 
observed frequencies will satisfy the interrelationships between the marginals and the 
grand total. Only one of these corresponds to the hypothesis of independence. This 
suggests that other hypotheses might also be suggested for the interrelationships in the 
table. 

In the past, it was difficult to test alternative hypotheses to independence in a 
contingency table in a straightforward and efficient manner. This is no longer the case, as 
the development of a family of models known as  
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Table 9.8 Values of the chi-square analysis 

 Probability values 

Degrees of freedom 5% 1% 0.1% 

1 3.8 6.6 11.0 

2 6.0 9.2 14.0 

3 7.8 11.3 16.0 

4 9.5 13.3 18.0 

5 11.0 15.0 21.0 

10 18.0 23.0 30.0 

15 25.0 31.0 38.0 

20 31.0 38.0 43.0 

25 38.0 44.0 53.0 

30 44.0 51.0 60.0 

Printout 9.1 Chi-squared* analysis of Table 9.1 

£run *minitab 

-read c1 c2 

-data 

  66 100      

  54 231      

-end 

-print c1 c2 

ROW C1 C2     

1 66 100     

2 54 231     

-chisquared c1−c2 

Expected counts are printed below observed counts 

  C1 C2 Total 

1 66 100 166 

  44.2 121.8   

2 54 231 285 

  75.8 209.2   
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Total 120 331 451 

ChiSq=10.79+3.91+6.29+2.28=23.27 

df=1 

-stop 

Notes: Commands prefixed by £ are operating system commands 
Commands prefixed by—are MINITAB commands 

hierarchical log-linear models presents researchers with a much more effective mode of 
analysis. 

9.3.1 Fitting the log-linear model to Table 9.1 

A useful way of introducing this family of log-linear models, and illustrating the sort of 
information they may represent, is to use GLIM to fit a series of alternative models to the 
observed data in Table 9.1. At this stage it is not necessary to describe the models 
formally. This will be done in section 9.3.2, after the basic idea of their use has been 
illustrated. GLIM is used here because MINITAB does not provide facilities for the 
fitting of log-linear models. 

The GLIM commands associated with this analysis are set out in Printout 9.2. In 
essence, these fall into three general categories of command: 

1 commands to facilitate data entry and manipulation ($UNITS to $LOOK); 
2 commands to define a model ($YVAR to $ERR); and 
3 commands to estimate the selected model and display results from it ($FIT to $STOP). 

Printout 9.2 GLIM commands used with Table 9.1 

$UNITS 4 

$DATA N 

$READ 

66 100 54 231 

$FACTOR CAR 2 PAT 2 

$CALCULATE CAR=%GL(2, 2): PAT=%GL(2, 1) 

$LOOK N CAR PAT$ 

$YVAR N 

$LINK LOG 

$ERR P 

$FIT$ 

$DISPLAY ER$ 

$FIT CAR+PAT$ 
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$DISPLAY ER$ 

$FIT+CAR.PAT$ 

$DISPLAY ER$ 

$STOP$ 

The $UNIT command is presented first. This is used (as in the examples in Chapter 8) to 
declare the number of items of data to be handled in the analysis. For contingency table 
problems the value associated with this command is the number of cells of observed data 
in the table, hence $UNITS 4. This command also calibrates internal vectors within 
GLIM to be of length 4. The $DATA command is used next to prepare GLIM for the 
entry of data. This command creates a variable within the program, termed N, which will 
be used to store the raw data, that is, the four observed cell frequencies. GLIM does not 
need to be told that four items will be read into N as this has already been set by the 
$UNITS command. Having done this, the data are now read into the program from the 
computer keyboard using the $READ command. 

These three commands handle data entry. The next two ($FACTOR and 
$CALCULATE) handle data manipulation. The former is used to define the presence of 
the two categorical variables (termed ‘factors’ in GLIM terminology), CAR and PAT, 
each of which contains two levels. The latter makes use of the internal system facility 
(%GL—a facility which generates factor levels within GLIM) to reproduce the 
architectural structure of the observed contingency table within GLIM. As in the analysis 
of variance examples in Chapter 8, these are needed because no information on this 
crucial topic has been read into GLIM as data. As a result, GLIM cannot associate the 
four data items with the four cells of Table 9.1 unless their relative positions in the table 
are recreated within the program. The following specifications of %GL are used to 
recreate the structure of Table 9.1 within GLIM: 

1 %GL(2, 2), to generate a sequence which runs from 1 to 2 in bundles of 2, namely: 
1122, 

2 %GL(2, 1), to generate a sequence which runs from 1 to 2 in bundles of 1, namely: 
1212. 

Each level generated corresponds to a row or column index in the original data table. 
The specification of these levels requires researchers to master these commands. To 

check that everything has been correctly specified, the $LOOK command may be used to 
generate a printed list of N (the observed cell frequencies) and the factor levels associated 
with CAR and PAT. The following output should be produced: 
N CAR PAT 

66 1 1 

100 1 2 

54 2 1 

231 2 2 
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This shows that the observed frequency 66 is allocated to cell 11 (level 1 of CAR and 
level 1 of PAT), and 100 is allocated to cell 12 (level 1 of CAR and level 2 of PAT). If 
the factor structure printed at this point is not as perceived in the observed table (for 
example, if 66 appears to be at cell 12 rather than cell 11), then the factor levels have 
been generated incorrectly and revisions are required. (Notice that it is possible to 
combine more than one calculation on the same line, thus avoiding the need for separate 
CALCULATE commands.) 

These commands complete the section on data entry and manipulation. In comparison, 
the commands needed to specify a particular model are relatively trivial. As suggested in 
Chapter 7, and illustrated in Chapter 8, three commands are required here: 

1 a command to identify the ‘response’; 
2 a command to identify the probability process to be used in inference; 
3 a command to link the response to the linear predictor. 

The definition of the response in contingency table analysis differs from that encountered 
in the analysis of continuous data, at least for certain types of contingency table problem. 
Two separate forms of analysis need to be distinguished here: analyses in which one is 
interested in ‘interdependency’ in the table, and analyses in which one is interested in 
‘dependency’, that is, in assessing how the variability in one of the categorical factors is 
conditionally dependent on the variability in the other. The former is the more general 
analytical problem, frequently termed a symmetric problem, because the pattern of 
association to be described can vary from row to column and vice versa. The latter is a 
special-case—an asymmetric problem—in the sense that interest focuses on the pattern of 
variability in a response variable conditionally dependent on the variability in the 
explanatory variable (i.e., the ‘flow’ or direction of association is one way). 

For the purposes of this example the table will be treated as symmetric, in other words, 
ignoring any patterns of dependency which might exist or which might subsequently be 
highlighted. As neither of the categorising variables is to be treated as the response, it is 
usual to specify the observed cell frequency (N) instead. This is done using the 
$YVAR(IABLE) command. The linear predictor for the log-linear models which are to 
be fitted has already been created using $FACTOR and $CALCULATE. This is linked to 
the response component in the model using the $LINK command. The most appropriate 
link for use here is the logarithmic link ($LINK LOG). The final component needed to 
complete the specification of log-linear models in GLIM is to define a probability process 
for the estimation of model parameters. The process which is most suitable for log-linear 
models applied to symmetric tables is the Poisson process. This is specified in GLIM 
using the $ERROR command, $ERR(OR) P. 

Having set up the data in an appropriate form and specified the model structure 
correctly, the next step is to fit models to the observed data and assess their impact. This 
is done using the $FIT and $DISPLAY commands. Each $FIT command is followed by a 
different series of terms, for example, CAR, PAT, CAR+PAT, which correspond to 
different types of log-linear model. The performance of these is summarised in Printout 
9.3,  

Table 9.9 Analysis of deviance table for GLIM 
analysis of Table 9.1 
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Model Deviance df Change in deviance Change in df 

%GM 157.2 3     

+CAR+PAT 22.72 1 134.48 2 

+CAR.PAT 0.0 0 22.72 1 

Note: df=degrees of freedom 

Printout 9.3 Logged transcription of the GLIM 
analysis of Table 9.1 

£r *glim 

£Execution begins 

  GLIM 3.12 (C)1977 ROYAL STATISTICAL SOCIETY, LONDON 

  $UNITS 4 

  $DATA N 

  $READ 

  66 100 54 231 

  $FACTOR CAR 2 PAT 2 

  $CALCULATE CAR=%GL(2, 2): PAT=%GL(2, 1) 

  $LOOK N CAR PAT$ 

  1 66.00 1.000 1.000   

  2 100.0 1.000 2.000   

  3 54.00 2.000 1.000   

  4 231.0 2.000 2.000   

  $YVAR N$LINK LOG$ERROR P$ 

  $FIT$ 

  SCALED     

  CYCLE DEVIANCE DF     

  4 157.2 3     

  $D E R$ 

    ESTIMATE S.E. PARAMETER 

  1 4.725 0.4709E−01 %GM 

  SCALE PARAMETER TAKEN AS 1.000 

  UNIT OBSERVED FITTED RESIDUAL   

  1 66 112.7 −4.403   
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  2 100 112.7 −1.201   

  3 54 112.7 −5.533   

  4 231 112.7 11.14   

  $FIT CAR+PAT$ 

  SCALED     

  CYCLE DEVIANCE DF     

  4 22.72 1     

  $D E R$ 

    ESTIMATE S.E. PARAMETER 

  1 3.788  0.1102 %GM 

  2 0.5405 0.9764E−01 CAR(2) 

  3 1.015 0.1066 PAT(2) 

  SCALE PARAMETER TAKEN AS 1.000 

  UNIT OBSERVED FITTED RESIDUAL  

  1 66 44.17 3.285  

  2 100 121.8 −1.978  

  3 54 75.83 −2.507  

  4 231 209.2 1.510  

  $LOOK %×2$  

  1 23.27         

  $FIT+CAR.PAT$  

  SCALED      

  CYCLE DEVIANCE DF      

  2 0.4667E–09 0      

  $D E R$  

    ESTIMATE S.E. PARAMETER  

  1 4.190 0.1231 %GM  

  2 −0.2007 0.1835 CAR(2)  

  3 0.4155 0.1586 PAT(2)  

  4 1.038 0.2191 CAR(2).PAT(2)  

  SCALE PARAMETER TAKEN AS 1.000 

Generalised linear models for categoricals data         241



  UNIT OBSERVED FITTED RESIDUAL  

  1 66 66.00 0.7748E–05  

  2 100 100.0 0.9537E–05  

  3 54 54.00 0.0  

  4 231 231.0 0.1449E−04  

  $STOP$  

Note: £ prefixes are operating system commands 
$ prefixes are GLIM commands  

which is a transcript of the GLIM computing session, and in Table 9.9, which displays 
some of the output as a summary analysis of deviance table. As before, the term deviance 
is used to refer to variability within a data set which has not been accounted for by the 
model, that is, residual variability.  

The first of the $FIT commands fits a single parameter effect to the summary log-
linear model, a parameter effect which represents the grand mean of the observed data. 
This is the simplest form of log-linear model which can be specified. It calculates a value 
for each of the cells in the table of expected frequencies from the expression: 

expected cell frequencies=average of the observed total   

The table of expected cell frequencies produced as a result of this model is displayed in 
Table 9.10. Notice the grand total is identical to that in the observed table but that the row 
and column marginals are not the same. This has happened because no account has been 
taken of the marginal distributions of the observed table. As this is the simplest log-linear 
model available, its explanatory power is very low, not surprisingly given the fact  

Table 9.10 Expected frequencies under null model 

      Total 

  112.75 112.75 225.5 

  112.75 112.75 225.5 

Total 225.5 225.5 451 

Note: This model preserves the observed grand total 

that the expected frequencies merely reflect the sample size and the number of classifying 
cells. The amount of unexplained variability left after this has been fitted is listed as the 
first entry under the deviance heading (157.2 for 3 degrees of freedom). 

This figure is the log-linear model equivalent of the total sum of squares measure 
which is associated with the linear regression and analysis of variance models. It 
indicates the maximum amount of variability which needs to be accounted for by 
parameters in the model. (It is also frequently referred to as the maximum log-likelihood 
statistic, or as G2, two alternative presentations referring to the same idea.) The column 
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headed degrees of freedom indicates the number of independent items of information 
associated with the fitted model. Thus for the addition of the grand mean effect, a 
maximum value of 157.2 has been calculated for the unexplained variability in the data 
which is associated with three degrees of freedom. 

An improvement in the explanatory power of the fitted model may be made by adding 
further parameters. This is done using the second $FIT command ($FIT CAR+PAT). 
This model fits what are termed the main effects of the two cross-classifying factors on 
the cell frequencies. The expected cell frequencies under this model are presented in 
Table 9.11. Notice, this time, that the marginals and the grand total of the expected table 
have reproduced their counterparts in the observed table, and that the expected cell 
frequencies are identical to those in Table 9.7, the table of expected cell frequencies 
produced by the CHISQUARE command in MINITAB, that is, under the hypothesis of 
independence. This model is therefore assessing the same type of hypothesis as is tested 
using the chi-square statistic. 

Table 9.9 shows that under independence the deviance measure has been reduced from 
157.2 to 22.72 for the addition of two new parameters.  

Table 9.11 Expected frequencies under 
independence model 

      Total 

  44.17 121.83 166 

  75.83 209.17 285 

Total 120 331 451 

Note: This model preserves the observed grand total and row and column marginals 

As a result there is now only one degree of freedom remaining in the table. Notice that 
the deviance measure associated with the model is very similar to that produced for chi-
square in MINITAB. By typing the command, $LOOK %X2, we can tell GLIM to 
generate the chi-square statistic associated with this log-linear model (%X2 is a system 
vector within GLIM). This shows that the value is identical to that produced by 
MINITAB. 

The final log-linear model fitted to the data in Table 9.1 adds what is termed a two-
way interaction effect (+CAR.PAT) to the independence model. This is used to describe 
the fact that the classification of any specific row (or column) of the observed data may 
depend to some extent on their column (or row) classification. The effect of this new 
model on the expected cell frequencies is given in Table 9.12. Notice that this table is 
identical in every respect to the observed data table. Similarly, the effect of this on 
deviance is to reduce the measure to zero for zero degrees of freedom, indicating that 
there is now no residual variability within the table left to be explained. What in fact has 
happened is that a parameter has been fitted to represent every possible form of 
interdependency in the observed data. The model therefore represents the observed data 
exactly. Because of this, this saturated model corresponds to the most complex form of 
log-linear model which may be fitted to the table. 
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Table 9.12 Expected frequencies under saturation 

      Total 

  66 100 166 

  54 231 285 

Total 120 331 451 

Note: All table entries correspond to those in table of observed frequencies 

9.3.2 Some notation 

The grand mean effects model and saturated model represent the lower and upper ends of 
a range of possible log-linear models which may be fitted to a contingency table. In the 
former case, only one parameter effect is used to calculate the expected cell frequencies; 
in the latter case, every parameter effect which could be used is. Neither summarises the 
observed data in a parsimonious form, that is, in as few parameters as possible. A more 
effective description may exist by selecting a model which contains more parameters than 
the grand mean effects model, but fewer than the saturated model. In the two-way table 
independence is one possibility, but there are other possibilities, for example, models 
which include only one of the two main effects at any one time. 

In order to describe the full range of models some notation is needed. The following 
are three possible notation schemes (Table 9.13). The first is based on the notation 
scheme devised by Wilkinson and Rogers (1973) and which is widely used in the GLIM 
documentation. The second makes use of a scheme devised by Birch (1963) and 
popularised, in an amended form, by Bishop et al. (1975). The third makes use of the 
scheme based on Goodman (1970). It is of little consequence which of these is used as 
they have been designed to represent the same types of parametric effects in models. The 
full range of models available for a two-way table is summarised in Table 9.14, where 
model 1 is the grand mean effects model, 4 is independence, and 5 is saturation. Models 2 
and 3 correspond to the non-comprehensive main effects models in which only one main 
effect is included at one time. The effects of these on the expected cell frequencies are 
presented in Table 9.15. Notice that, in these, the grand total and one set of marginals are 
preserved. 

Table 9.13 Notation schemes for log-linear models 

Parameter effect GLIM Birch Goodman 

Grand mean %GM (1) U λ 

Main effect of       

CAR CAR U1(i)  
PAT PAT U2(j) 

 
Interaction between 
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PAT and CAR CAR*PAT U12(ij)  
Note: The notation CAR*PAT is shorthand for %GM+CAR+PAT+CAR.PAT. Similarly, U12(iJ) 

implies the presence of U+U1(i)+U2(j) and , the presence of λ1 , In GLIM 3.77, the 
%GM term is replaced by the number 1 in printed output 

Table 9.14 Log-linear models for a two-way 
contingency table 

Model GLIM Birch Goodman 

1 %GM U λ 

2 %GM+CAR U+U1(i)  
3 %GM+PAT U+U2(j) 

 
4 %GM+CAR+PAT U+U1(i)+U2(j)  
5 %GM CAR*PAT U+U1(i)+U2(j)+U12(ij)  

Note: The GLIM notation CAR*PAT corresponds to: 
%GM+CAR+PAT+CAR.PAT 

All the notation schemes presented in Table 9.13 develop from a core expression which is 
set out in model 1 of Table 9.14, the grand mean effects model. This development 
indicates that the log-linear models to be considered here are hierarchical, that is, the 
higher-order effects and  

Table 9.15 Expected frequencies under non-
comprehensive main effects models 

(a) $FIT CAR$ 

  Total 
  83 83 166 

  142.5 142.5 285 

Total 225.5 225.5 451 

Note: This model preserves the observed row marginals 

(b) $FIT PAT$ 

  Total 

  60 165.5 225.5 

  60 165.5 225.5 

Total 120 331 451 
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Note: This model preserves the observed column marginals 

interactions can only be fitted when their lower-order relatives are also present in the 
model. For this reason, it is not possible to include an interaction term in a non-
comprehensive main effects model; the interaction can only be fitted when the main 
effects from which it is based are also in the model. This hierarchical arrangement does 
not occur by chance but is a direct result of the definition of each set of effects. 

9.3.3 Defining and interpreting parameter effects 

Log-linear models illustrate what are termed over-parameterised models. This means that 
they contain more parameters than independent pieces of information to estimate them. 
Consequently, in order to define the parameter effects, that is the grand mean, main 
effects and interactions, it is necessary to apply some system of constraints to the models 
(see Searle 1971 for details of the general issue). These affect the definition of the 
parameter effects which may be applied. 

Two systems of constraints are frequently used with log-linear models. These are: 

1 corner-weighted constraints; and 
2 centre-weighted constraints. 

The former are used in GLIM to calculate estimates of any over-parameterised model, not 
just log-linear models. The latter, sometimes known as the usual constraints (Payne 
1977), are to be found in computer programs such as ECTA (Fay and Goodman 1975) 
and BMDP. However, they are also implicitly assumed to be used by many of the authors 
of standard textbooks on contingency table analysis (for example, Bishop et al. 1975). 
Corner-weighted constraints work by setting one parameter in each parameter effect to 
zero and defining the remaining parameters as contrasts with it. Centre-weighted 
constraints, on the other hand, assume that the sum of the parameters in each parameter 
effect is zero. Each parameter is thus defined as a contrast with the average for the 
parameter effect as a whole. 

Given this distinction, the following definitions may be made for the three types of 
parameter effect introduced previously: 

(a) corner-weighting 

1 grand mean: the expected frequency in cell 11 of the contingency table; 
2 main effects: the difference in the expected cell frequencies of being at level 2 of CAR 

rather than level 1, or at level 2 of PAT rather than level 1; 
3 interactions: the difference in the expected cell frequencies of being simultaneously at 

level 2 of CAR and PAT (that is, cell 22) rather than level 1. 

(b) centre-weighting 

1 grand mean: the average expected cell frequency in the contingency table; 
2 main effects: the difference in the expected cell frequencies of being at level i of CAR, 

or j of PAT, rather than the average; 
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3 interactions: the difference in the expected cell frequencies of being simultaneously at 
level i of CAR and j of PAT rather than the average. 

These differences in definition reflect the constraints used. For the models specified in 
GLIM the following constraints apply: 

 

  

(note that the use of the first parameter as the bench-mark is purely arbitrary), whereas 
using the centre-weighting, the following are used instead: 

 

  

The constraints themselves are a necessary evil. Their presence does not affect the 
calculation of the expected frequencies or the deviance measures under any of the 
hypotheses listed previously, but the estimates of the individual parameters are affected 
(Holt 1979). It follows therefore that considerable attention should be paid when using 
parameter estimates, though readers should note that few authors advocate their use, and 
Holt (1979) urges strongly against it. 

9.3.4 Deviance and degrees of freedom 

Having fitted a series of log-linear models it is important to determine which represents 
the observed data most effectively. This involves assessing the overall performance of the 
model against a theoretical norm. The procedure is very similar to that used with the chi-
square test in section 9.2, in that a measure of goodness-of-fit is compared against a value 
expected by chance for identical degrees of freedom. The observed effect of a model is 
determined by comparing the change in the deviance measure as parameter effects are 
added or removed. Similarly, as the number of effects changes, so too does the number of 
individual parameters which are fitted. Thus the deviance measures generated by GLIM 
for specific log-linear models reflect the number of degrees of freedom remaining in the 
data. 

As noted in Chapter 7 the deviance measure for given degrees of freedom is 
approximately distributed as chi-square. It is thus possible to obtain expected values of 
chi-square for given degrees of freedom which may be compared with those observed. 
Values observed which exceed those expected indicate that the model being fitted does 
not correspond to the data and that its associated null hypothesis is inappropriate. For 
Table 9.1, these tests of overall fit suggest the following (Table 9.16): 

1 rejection of the null hypotheses associated with the grand mean, non-comprehensive 
main effects and independence models; 

2 acceptance of the saturated model. 
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Though the degrees of freedom are produced as output, it is important to note how they 
are calculated. For a 2×2 table there is a maximum of 4 degrees of freedom. In fitting the 
grand mean effects model, a single parameter is fitted to the table, thus reducing the 
degrees of freedom by 1. Similarly, in fitting each main effect, a single parameter is fitted 
(the first parameter in each effect being constrained), each reducing the degrees of 
freedom by 1. (The independence model in which both main effects and  

Table 9.16 Critical values for Table 9.1 

Critical values 
Model 

Change in deviance Change in df 

5% 1% 0.1% 

%GM+CAR+PAT 134.48 2 6.0 9.2 14 

%GM+CAR+PAT+CAR.PAT 22.72 1 3.8 6.6 11 

Table 9.17 Calculation of degrees of freedom for 
two-way contingency tables 

Model 
Parameter effects 

added Degrees of freedom 

Grand mean %GM IJ−1=3 

+CAR IJ−{1+(I−1)}=2 

or   

Non-comprehensive main 
effects 

+PAT IJ−{1+(J−1)}=2 

Independence +CAR+PAT IJ−{1+(I−1)+(J−1)}=1 

Saturated +CAR.PAT IJ−{1+(I−1)+(J−1)+(I −1)(J−1)=0} 

Note: IJ is the product of the number of rows and columns. Degrees of freedom presented are for a 
2×2 table 

grand mean are present thus has 1 degree of freedom.) Finally, in fitting the single 
interaction term the last degree of freedom of the table is used up, resulting in a model 
with zero degrees of freedom (Table 9.17). 

9.3.5 Beyond summary measures 

Knowledge from the summary statistics that CAR and PAT are not independent is useful 
but further information may be obtained by looking at the odds of store patronage at both 
levels of car usage. For non-car users, the odds of patronage against non-patronage are: 

odds1=100/66   

Similarly, for car users, the odds of patronage against non-patronage are: 
odds2=231/54   
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The cross-product ratio—the odds of patronage against non-patronage for both levels of 
car usage—is defined as the ratio of odds1 to odds2: 

CPR=odds2/odds1 
=(231/54)/(100/66) 
=(231×66)/(54×100)=2.83 

  

This value states that the odds of using a superstore are 2.83 times higher for car users 
than for non-car users, reflecting the mobility differences between the two groups. This 
ratio of odds may also be presented as a ratio of log-odds. The logarithmic cross-product 
ratio for Table 9.1 is 1.04. 

Because the data in the table are obtained from a sample, it is useful to obtain 
confidence intervals for the odds and log-odds as an indication of the significance of the 
difference between car users and non-users. To calculate these we first need to calculate 
the estimated sample standard error for both measures. For the log-odds ratio this is given 
as (after Fleiss 1981):  

   

yielding a 100(1−.05) per cent confidence interval estimate of: 
1.04+1.96(0.219)   

The limits of this 95 per cent confidence interval correspond to 0.1815 and 1.898. For the 
odds ratio, the corresponding 95 per cent confidence intervals can be shown to be 1.2 and 
6.67. As independence between CAR and PAT corresponds to an odds ratio value of 1 
(or log-odds of 0), values which do not lie in either 95 per cent confidence interval, we 
can be even surer that the two variables are not independent. 

The use of the odds and log-odds ratios as an adjunct to log-linear models is a valuable 
check on the performance of the models. Both ratios are useful measures of cell-by-cell 
variability within a contingency table and possess a number of attractive properties: 

1 they are invariant to the multiplication of row or column values by a constant; 
2 they yield identical information if the orientation of the table is changed, that is if the 

rows and columns are swapped, or if the order of the cells in the rows or columns 
changes. 

It is also possible to rewrite them both in terms of log-linear models (see Bishop et al. 
(1975) and Payne (1977) for further details). 

The concept of odds ratios may be extended to accommodate interaction effects in 
contingency tables which are more complex than the two-way. In multi-way tables a third 
or may be even a fourth dimension is added to the design, significantly increasing the 
number and type of interactions present in the table. If these are to be modelled 
effectively, a consistent definition of higher-order interaction needs to be created. 

The simplest extension of the simple two-way table is the 2×2×2 table, created by the 
cross-classification of three binary variables. Bartlett (1935) showed that the hypothesis 
of no second-order interaction (that is, a hypothesis which tests for the presence of an 
interaction between the three variables) could be described by the following cross-
product ratios: 
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(9.2) 

where Fijk refers to the expected cell frequencies at levels i of the row variable, j of the 
column variable, and k of the third variable. If a three-way interaction does exist, then the 
two cross-product ratios will not be equal. Roy and Kastenbaum (1956) and Birch (1963) 
developed this idea to accommodate three-way interaction-effects in general I×J×K 
tables. For these, the Bartlett formula is rewritten as:  

 
(9.3) 

where 
1<i<r−1 
1<j<s−1 
1<k<t−1 

  

The main attraction of this approach is that it may be rewritten in the form of a linear-in-
parameters model which is additive in the natural logarithmic scale: 

 (9.4) 

in other words, a log-linear model. Birch also showed that it was possible to produce 
maximum likelihood parameter estimates for this form of model, and to develop it 
further, so that it might represent higher-order interactions in more complex contingency 
tables. (For a discussion of some contemporary studies into the nature of interaction in 
higher-order designs, see, among others, Darroch 1974, Whittemore 1978, Snee 1982, 
and Cox 1984.) 

9.4 MULTI-WAY CONTINGENCY TABLES 

9.4.1 Models for the three-way design 

In comparison with the chi-square statistic or other traditional measures of association, 
the log-linear family of models is a particularly flexible and instructive technique. The 
value of log-linear modelling is even more ably demonstrated when the table to be 
described is multi-way in design rather  

Table 9.18 A multi-way contingency table 

    TYPE 

    S M 

    ENV ENV 
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    D R N D R N 

Far 28 1 14 20 5 16 

Medium 97 9 33 41 6 27 LOCATION 

Near 75 8 37 22 1 19 

Source: Based on Table 1 of Brodsky and Hakkert (1985) 

Notes: TYPE: S=Single vehicle/pedestrian accidents 
M=Multiple vehicle accidents 

ENV(IRONMENT): D=Daytime accidents 
R=Daytime accidents on rainy days 
N=Night-time accidents 

LOCATION: Distance to nearest hospital 

than two-way. To illustrate this, consider the data in Table 9.18 which were collected as 
part of a study of paramedical services in Haifa, Israel (Brodsky and Hakkert 1985). 

The authors were particularly interested in the factors which led bystanders to 
summon emergency ambulance assistance to the scenes of road traffic accidents. Three 
variables were isolated from the log-books of the ambulance services and from police 
records: 

1 T—a binary variable representing accident type, and distinguishing between accidents 
involving single vehicles and/or pedestrians, and multiple vehicle accidents. 

2 L—a three-way variable representing the location of the accident with respect to the 
nearest hospital. The levels used in classification were ‘Near’, ‘Medium distance’, and 
‘Far’. 

3 E—a three-way variable representing the environmental conditions associated with the 
accident. The levels used correspond to accidents occurring during the day, during 
days on which it is raining, and during the night. 

In terms of the log-linear framework the following seven types of models may be fitted to 
this table: 

1 saturation, 
2 pairwise association, 
3 conditional independence, 
4 multiple independence, 
5 mutual independence, 
6 non-comprehensive models, and 
7 null-effects (grand mean) model. 

These are written out algebraically in Table 9.19. (Readers should note that effects such 
as LE and EL or LET and TEL are formally identical and achieve the same influence on 
deviance.) Models 1, 5, 7 and some of type 6 are common to the analysis of the two-way 
design. The others are, however, specific to testing interaction effects between two-
variables given the presence of the third. Table 9.20 illustrates the effects of some of 
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these models on the calculation of the expected cell frequencies, and summarises the 
hypotheses which are being tested by them. 

Though there are only seven model types, there are actually nineteen distinct models 
which may be fitted to the table. The reason for this difference is that the number of ways 
of forming two-way interactions increases rather more than proportionally to the increase 
in the number of dimensions. The difference widens even more greatly if a fourth or fifth 
dimension is added. 

Table 9.19 Log-linear models for the three-way 
design 

Model type Terms included Terms excluded 

1 Saturation %GM+L+T+E+LT+LE+TE+LET   

2 Pairwise association %GM+L+T+E+LT+LE+TE LET 

%GM+L+T+E+LT+LE TE+LET 

%GM+L+T+E+LT+TE LE+LET 

3 Conditional independence 

%GM+L+T+E+TE+LE LT+LET 

%GM+L+T+E+LT LE+LT+LET 

%GM+L+T+E+TE LT+LE+LET 

4 Multiple independence 

%GM+L+T+E+LE LT+TE+LET 

5 Mutual independence %GM+L+T+E LT+LE+TL+LET 

%GM+L+T+LT E+LE+ET+LET 

%GM+L+E+LE T+LT+ET+LET 

%GM+E+T+TE L+LT+LE+LET 

%GM+L+T E+LE+LT+TE+LET 

%GM+L+E T+LE+LT+TE+LET 

%GM+E+T L+LE+LT+TE+LET 

%GM+L E+T+LE+LT+TE+LET 

%GM+T L+E+LE+LT+TE+LET 

6 Non-comprehensive models 

%GM+E L+T+LE+LT+TE+LET 

7 null-effects model %GM L+E+T+LE+LT+TE+LET 

Note: L=main effect of location 
E=main effect of environment 
T=main effect of accident type 
LE, LT, TE=two-way interactions 
LET=three-way interaction 

Source: After O’Brien (1989) 
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Table 9.20 Expected cell frequencies under 
different log-linear models 

(a) Pairwise association model (%GM+L+T+E+LT+LE+TE) 

    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 27.5 2.8 12.8 20.5 3.3 17.2 

Medium 96.4 8.9 33.7 41.7 6.1 26.3 LOCATION 

Near 76.2 6.3 37.5 20.8 2.7 18.5 

Note: Each pair of variables is related, but is unaffected by the presence of the third variable 

(b) Conditional independence model (%GM+L+T+E+LT+TE) 

    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 28.5 2.6 12.0 21.7 3.1 16.2 

Medium 92.1 8.3 38.7 39.1 5.7 29.2 LOCATION 

Near 79.5 7.2 33.4 22.2 3.2 16.6 

Note: A pair of variables are independent given the presence of the third variable. In this case, L 
and E given T 

(c) Multiple independence model (%GM+L+T+E+LT) 
    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 26.5 2.8 13.7 25.3 2.7 13.1 

Medium 85.7 9.1 44.2 45.6 4.8 23.5 LOCATION 

Near 74.0 7.8 38.2 25.9 2.8 13.4 

Note: Two variables included as a joint variable are independent of the third 

(d) Mutual independence model (%GM+L+T+E) 
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    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 34.1 3.6 17.6 17.7 1.9 9.1 

Medium 86.4 9.1 44.6 44.9 4.8 23.2 LOCATION 

Near 65.7 7.0 33.9 34.2 3.6 17.6 

Note: All three variables are independent 

(e) Non-comprehensive model (%GM+L+T+LT) 

    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 14.3 14.3 14.3 13.7 13.7 13.7 

Medium 46.3 46.3 46.3 24.7 24.7 24.7 LOCATION 

Near 40.0 40.0 40.0 14.0 14.0 14.0 

Note: All environmental categories are equally likely given location and accident type 

(f) Non-comprehensive model (%GM+L+T) 

    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 18.4 18.4 18.4 9.6 9.6 9.6 

Medium 46.7 46.7 46.7 24.3 24.3 24.3 LOCATION 

Near 35.5 35.5 35.5 18.5 18.5 18.5 

Note: All categories of environment are equally likely given location and accident type. Location 
and accident type are independent 

(g) Non-comprehensive model (%GM+T) 

    TYPE   

    S M 

    ENV ENV 
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    D R N D R N 

Far 33.6 33.6 33.6 17.4 17.4 17.4 

Medium 33.6 33.6 33.6 17.4 17.4 17.4 LOCATION 

Near 33.6 33.6 33.6 17.4 17.4 17.4 

Note: Combinations of environment and accident type are equally likely given location 

(h) Null-effects model (%GM) 
    TYPE 

    S M 

    ENV ENV 

    D R N D R N 

Far 25.5 25.5 25.5 25.5 25.5 25.5 

Medium 25.5 25.5 25.5 25.5 25.5 25.5 LOCATION 

Near 25.5 25.5 25.5 25.5 25.5 25.5 

Note: All combinations of location, accident type and environmental type are equally likely 

9.4.2 Finding a parsimonious model 

Of the nineteen different models which may be fitted to Table 9.18, several may represent 
its general features perfectly adequately. As a result any of these could be used to 
describe the patterns in the table. However, this is rather crude and arbitrary. A more 
sensitive approach is to find the most parsimonious model for the table, that is, the model 
which represents the key features of the table in as few parameters as possible. 

In order to find this parsimonious model researchers are obliged to fit and compare a 
considerable number of alternative model forms. This can be time-consuming and 
expensive. Consequently, a number of selection strategies have been suggested which 
attempt to make the process more efficient, but which also identify the final model 
accurately. Most of these procedures are based on some form of stepwise process, 
involving either the addition of parameter effects to a simple model such as 
independence, or their deletion from a complex model such as saturation. However, any 
of the alternatives listed in Table 9.19 may be chosen as the base model instead of these, 
so long as there are reasonable grounds for justifying it. 

There are many different types of stepwise procedure which may be used. Two of the 
most useful techniques are Aitkin’s simultaneous testing procedure (STP), and Brown’s 
screening strategy. Both of these are relatively easy to understand and to implement using 
popular commercial computer packages. For example, the STP is particularly useful if the 
analysis has taken place using GLIM. Conversely, Brown’s approach has been 
incorporated as an option within the P4F module of BMDP (Dixon 1983), and can easily 
be extended for use with ECTA (Fay and Goodman 1975). Wrigley (1985) discusses the 
merits and demerits of a number of other procedures which also exist. 
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9.4.3 Simultaneous testing of interactions using STP 

The approach developed by Murray Aitkin (1978, 1979, 1980) is based upon the 
simultaneous testing of families of terms, for example, all two-way interactions. It 
incorporates the following four steps: 

1 The calculation of a Type 1 error rate for the hypothesis that all the interactions 
applicable to the table are insignificant. 

2 The calculation of Type 1 error rates for the hypothesis that specific families of 
interactions are insignificant. 

3 The calculation of expected levels of deviance reduction associated with specific 
families. 

4 The elimination of families whose observed effect on deviance reduction is less than 
that expected at stage 3. 

The idea behind this form of group testing is that, in general, families of effects such as 
two-way or three-way interactions are more likely to contribute to the reduction of 
deviance than single effects. Therefore, it is more efficient to test the family prior to 
testing specific effects. 

The overall influence of each of the families appropriate to Table 9.18 is summarised 
as an analysis of deviance table (Table 9.21). Each line of this deviance table describes 
how the value for deviance changes with the addition of specific families of effects. As 
more families are added, the value for deviance decreases until, with saturation, it equals 
0. At the same time, the value for the degrees of freedom also decreases. It too equals 0 
when the saturated model is fitted. 

The table of deviance represents the observed outcome of adding specific terms to the 
previous log-linear model. Thus adding the main effects  

Table 9.21 Analysis of deviance table for log-linear 
analysis of Table 9.18 

      Change 

Model Deviance DF Deviance DF 

%GM 369.80 17    

%GM+L+T+E 27.84 12 341.96 5 

%GM+L+T+E+LT+LE+ET 4.53 4 23.31 8 

%GM+L+T+E+LT+LE+ET+LET 0.0 0 4.53 4 

to the grand mean effects model reduces deviance by 341.96 but requires the addition of 
five extra parameters to the grand mean model. Similarly, the addition of the two-way 
effects to the model containing grand mean and main effects reduces deviance by 23.31 
for the addition of eight extra parameters. Finally, the addition of the three-way effects to 
the model containing grand mean, main effects and two-way interactions reduces 
deviance by 4.53 for the addition of four extra parameters. How many, if any, of these 
families of effects are actually reducing deviance significantly? 

Introducing quantitative geography      256



In order to assess this, the observed effects on deviance reduction need to be compared 
with amounts expected by chance from families of identical size to those actually fitted to 
the table. These expected values are calculated from tables of the chi-square distribution 
for given degrees of freedom. However, unlike the previous use of these tables in section 
9.2.3 to test the hypothesis of independence, the level of significance used in testing is 
not arbitrary, but reflects the global Type 1 error rate considered suitable for the table. 
For the hypothesis that all inter-actions are insignificant, this error rate may be calculated 
from the formula: 

 (9.5) 

where 
α represents a significance level (e.g., 5%, 10%), and 

r represents the number of dimensions in the table (in this case three, because it is created by the 
cross-classification of three categorical variables) 

In effect, this error rate is used to test the null hypothesis that the three two-way 
interactions—location and accident type (LT), location and environmental type (LE), and 
environmental type and accident type (ET)—and the single three-way interaction (LET), 
are all insignificant. For α =0.05 the Type 1 error rate is calculated as 0.185; for α=0.1, it 
is 0.34. Aitkin advises that a value between 0.25 and 0.5 will generally be sufficiently 
sensitive for this global error. Given this, the value of α=0.1 will be used here. 

Having established the global error rate, error rates for each family of effects may now 
be calculated, beginning with the three-way effects. The appropriate rate for this family is 
given from the formula: 

y3=1−(0.9)1=0.1 
(9.6) 

where the superscript corresponds to the single three-way effect which is being tested. At 
the global error rate suggested previously, a family error rate of 0.1 is established for the 
three-way effect. This is used in conjunction with tables of the chi-square distribution to 
estimate an expected level of deviance reduction of 7.78 for the three-way family. 
Algebraically, the chi-square measure used is: 

 
(9.7) 

where the first subscript refers to the degrees of freedom associated with the family, and 
the second to the family error rate. As the expected value is greater than that observed for 
this family, we can assume that the three-way effect is insignificant at this error rate. 

Having tested and eliminated the three-way effect, the next step in the strategy is to 
test the two-way effects. The same general procedure is adopted, except that the two-way 
and three-way families are pooled together to form a combined family which is tested as 
a whole. Aitkin’s reason for this modification is that it provides a stronger test than one 
applied solely to the two-way effects without increasing its overall size. The error rate for 
the combined family is: 
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y2,3=1−(0.9)4=0.34 
(9.8) 

which yields an expected level of deviance reduction of 14.2, calculated from the chi-
square distribution at the 0.34 error level for twelve degrees of freedom. By comparing 
this with the observed level of deviance reduction of 23.31, it is immediately clear that 
not all of the two-way effects may be eliminated from the final model. 

Having found a family of effects which appears to be significant, there is nothing 
further to be gained by testing lower-order families for significance en bloc. If every two-
way effect is to be retained in the final log-linear model, it follows from the hierarchy 
principle that all lower-order relatives must also be present. However, the fact that the 
two-way family has been shown to be significant does not mean that every two-way 
interaction in the family is significant. Indeed, it may be that the principal source of the 
family’s influence rests with only one or two interactions. If this can be shown to be the 
case, then it may be possible to eliminate some of these effects as well as the three-way 
interaction. 

An effective way of assessing the significance of the two-way effects is to refit them 
to the main effects model individually. This allows us to produce a more detailed analysis 
of deviance table (Table 9.22). Effects may be eliminated from this table from the bottom 
up until the critical level of deviance reduction is exceeded (the critical level being the 
level of deviance expected by chance from the pooled test). This suggests that the three-
way effect and the two-way effect between accident type and environment should be 
excluded, leaving the following log-linear model: 

%GM+L+T+E+LT+LE 
(deviance of 12.31 for six degrees of freedom) (9.9) 

One of the main reasons for assessing parameter effects in families rather than 
individually is to minimise so-called order-of-entry effects. These  

Table 9.22 Revised analysis of deviance table for 
log-linear analysis of Table 9.18 

Change 
Model Deviance DF Deviance DF 

%GM 369.80 17    

%GM+L+T+E 27.84 12 341.96 5 

Main effects 

  +LT 15.08 10 12.76 2 

  +LE 12.31 6 2.77 4 

  +ET 4.53 4 7.78 2 

Eliminated terms 0.0 0 4.53 4 
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reflect marginal and conditional relationships between terms which may exert an 
influence on deviance reduction over and above that unique to each effect. The main 
implication here is that the observed effect on deviance associated with a specific term 
may depend, to some extent, on its relationships with terms which have already been 
included in the model. As a result, the order in which terms are added to the base model 
may ultimately determine which terms are eliminated. Clearly, this is rather crude. 

A better procedure to adopt is as follows. As an initial step, fit the two-way effects in 
any order and calculate their standardised regression coefficients (srcs). These are the 
ratios of the parameter estimates to their estimated standard errors, and are produced by 
GLIM in response to the $DISPLAY E command. The terms may then be refitted to the 
main effects model in src order, beginning with the largest first. This leads to the 
production of a third analysis of deviance table (Table 9.23) in which the most important 
terms on the basis of their srcs are fitted first, and the least important fitted last. Table 
9.23 shows that the three-way interaction and two-way interaction between location and 
environment may be eliminated, producing a model with deviance of 7.29 for eight 
degrees of freedom. This is an improvement on the previous model.  

Table 9.23 Analysis of deviance table for log-linear 
analysis of Table 9.18 (second revision) 

Change 
Model Deviance DF Deviance DF 

%GM 369.80 17    

%GM+L+T+E 27.84 12 341.96 5 

Main effects 

  +LT 15.08 10 12.76 2 

  +ET 7.29 8 7.79 2 

  +LE 4.53 4 2.76 4 

Eliminated terms 0.0 0 4.53 4 

Ideally, this revised order of entry should result in deviance decreasing by decreasing 
amounts, indicating that the latter terms contribute less to deviance reduction than the 
former terms. Should this not be observed, some further refitting may be needed until the 
order is sufficiently stable. Once an acceptable order has been established, elimination 
may begin from the bottom up as before. As the order in Table 9.23 is stable, the best-
fitting model for Table 9.18 thus appears to be a conditional independence model with 
interactions included to represent the associations between location and accident type and 
environment and accident type. The omitted interaction (LE) indicates that location and 
environment are independent given accident type. 

Readers should note that no further reduction in parameter effects is possible from this 
model because the two interactions require the presence of all three main effects. In four- 
or other higher-order tables it may be possible to produce parsimonious models in which 
only a subset of the main effects or lower-order interactions is needed. For example, in a 
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four-way table composed of variables A, B, C and D, the main effect of D, and all the 
two-way interactions including D, should be tested as candidates for deletion if ABC is 
the only three-way effect found to be important. The procedures needed to implement this 
type of testing are set out in Aitkin (1980) and Wrigley (1985). 

9.4.5 Screening procedures for interactions 

An effective alternative procedure to STP which may be used to identify the 
parsimonious log-linear model is the screening strategy suggested by Brown (1976, 1981) 
and Benedetti and Brown (1978). Once again, a baseline model is used in a step wise 
testing of terms. However, unlike STP, these terms are not tested simultaneously in 
families, but are tested individually against two distinct tests of significance. These are: 

1 A test of partial association. 
2 A test of marginal association. 

Both may be applied to a single term using log-linear models which are quite different in 
form. To illustrate, consider the tests of the two-way interaction between accident type 
and weather type (ET). The test of partial association of ET involves comparing the 
effects on deviance reduction of fitting: 

%GM+L+T+E+LT+LE 
(9.10) 

rather than:  
%GM+L+T+E+LT+LE+ET 

(9.11) 

Partial association thus assesses the significance of ET by comparing the values for 
deviance associated with a model containing all two-way effects, and a model excluding 
ET. Conversely, the test of marginal association involves comparing the relative 
performances of: 

%GM+E+T+ET 
(9.12) 

and 
%GM+E+T 

(9.13) 

In this test, only the specific two-way effect and its lower-order relatives are used. 
Terms assessed by these two tests may be classified into one of the following three 

categories: 

1 Terms which are significant according to both tests and which must be included in the 
final log-linear model. 

2 Terms which are insignificant according to both tests and which must be excluded from 
the final log-linear model. 

3 Terms whose assessment differs on each test. 
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Terms which are allocated to category 3 fall into a grey area for which no clear-cut 
guidelines exist. They may be excluded, but then again, they may also be included. 
Researchers may have to appeal to theory or rely on intuition for further help. 

Table 9.24 contains the results of applying screening to the data in Table 9.18. The 
probability values listed in the table indicate the probability of rejecting each term from 
the model. Large values for these probabilities indicate terms which may be eliminated, 
small values, terms which should not be eliminated. From this table it seems clear that the 
three-way interaction (LET) and the two-way interaction between location and 
environment should be eliminated. The two-way interaction between environment and 
accident type has a small but measurably higher probability value and so is a potential 
candidate for exclusion. The decision to delete or include it is a matter of personal 
judgement. The final model suggested by screening is thus very similar to that produced 
by the simultaneous testing procedure. (Note that the figures for marginal and partial 
association for main effects and the higher-order interaction in the model are always the 
same. This is the reason for the partial printing of the figures in Table 9.24.) 

9.4.6 Residual analysis 

The main thrust of the analysis so far has been to find a log-linear model which may 
represent the key features of the observed data in as few parameters as possible. The 
guide to this has been the measure of  

Table 9.24 Partial association and marginal 
association screening tests 

  Partial association Marginal association 

Term df Chi-square Prob df Chi-square Prob 

E 2 236.67 0.0       

T 1 46.60 0.0       

L 2 58.73 0.0       

ET 2 7.78 0.0204 2 7.79 0.0204 

LE 4 2.76 0.5988 4 2.77 0.5974 

LT 2 12.76 0.0017 2 12.76 0.0017 

LET 4 4.53 0.3389       

Note: Both tests are identical when applied to main effects or the highest-order interaction 

deviance, a measure of the global or overall fit of the model to the observed data. 
However, as we saw in Chapter 8, it is not sufficient to rely on global measures. More 
detailed information on the local fit of a model may be obtained by looking at the 
residuals from the parsimonious model. As with regression residuals, these may highlight 
parts of the table where the model fits less well, indicating that further analysis may be 
required to understand the data better. 
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There are several different types of residual which may be defined for log-linear 
models. These differ in their complexity, their assumed distributional properties, and in 
the sorts of information they may be able to provide. As before, we may define simple 
residuals (RES) by subtracting the expected cell frequency from the observed cell 
frequency in each cell. Alternatively, standardised (SR) and adjusted (ADJ) residuals 
may be calculated. (McCullagh and Nelder 1983 describe a number of other types—
Anscombe residuals, deviance residuals and Freeman-Tukey residuals.) In terms of 
GLIM notation, the three types of residuals described in Chapter 8 may be calculated as 
follows: 

RES N−%FV 
SR (N−%FV)/%SQRT(%FV) 
ADJ (N−%FV)/%SQRT(%FV*(1−%FV*%VL)) 

  

where 
N refers to the observed cell frequency 
%FV refers to the expected cell frequency, and 
%VL refers to the estimated variances of the linear predictors 
Further information on their calculation may be found in Defize (1980) and Gilchrist 

(1981). (Note that the formulae for the standardised and adjusted residuals are slightly 
different from those outlined in Chapter 8. This is because the specification of Poisson 
rather than Normal errors requires a modification in the formulae.) Table 9.25 lists the 
three  

Table 9.25 Three types of log-linear residual 

N RES SR ADJ 

28.00 −0.4768 −0.8935E−01 −0.1660 

1.000 −1.563 −0.9763 −1.087 

14.00 2.040 0.5898 0.7496 

20.00 −1.675 −0.3598 −0.6096 

5.000 1.866 1.054 1.275 

16.00 −0.1911 −0.4748E−01 −0.7101E−01 

97.00 4.947 0.5156 1.208 

9.000 0.7152 0.2485 0.3487 

33.00 −5.662 −0.9106 −1.459 

41.00 1.879 0.3004 0.6017 

6.000 0.3439 0.1446 0.2064 

27.00 −2.223 −0.4112 −0.7270 

75.00 −4.470 −0.5014 −1.111 

8.000 0.8477 0.3170 0.4210 
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37.00 3.623 0.6270 0.9506 

22.00 −0.2038 −0.4325E−01 −0.7358E−01 

1.000 −2.210 −1.234 −1.498 

19.00 2.414 0.5928 0.8901 

Notes: N=observed cell frequency 
RES=simple residuals 
SR=standardised residuals 
ADJ=adjusted residuals 

types of residual associated with the best-fitting log-linear model found previously. The 
standardised residuals are all reasonably small with none exceeding plus or minus 2, the 
value used to indicate potentially extreme residuals. 

9.4.7 Influential observations and cells 

The use of residuals to guide analysis is an important component in the analysis of cross-
classified data, particularly if it helps to identify cells, or groups of cells, whose 
performance seems to be at odds with the rest of the table. In a similar way, it is also 
valuable to check a table to see if any cells or groups of cells appears to exert an undue 
influence on the overall measures of fit. Leverage statistics may be used in exactly the 
same way as for regression to identify influential cells. 

9.5 INCOMPLETE AND RESTRICTED CELLS 

All of the contingency tables described so far have been complete and fully-nominal in 
design. The term complete refers to the fact that none of the observed cell frequencies 
have been restricted to a fixed value by the researchers (or theory) prior to the analysis. In 
some circumstances, however, it is possible (and logically necessary) to apply some such 
restriction, the most usual being that the observed value in the specified cell be set at 
zero. Whenever there are zero or restricted cells the basic rules of modelling, and, in 
particular, the calculation of the degrees of freedom, may need to be amended. The 
procedures outlined in the previous section really apply to complete tables: tables in 
which every cell in the observed table contains a non-zero value. 

If a contingency table contains zero observed cell frequencies, it is important to find 
out why. Two distinct types of zero cell may be recognised: 

1 Sampling zeros: cells which exhibit zero frequencies merely because combinations of 
category levels were not observed in the sample data. 

2 Structural zeros: cells whose frequencies have been constrained at zero by design (that 
is, the cell values cannot be other than zero or a predetermined non-zero value). 

Constrained cells containing non-zero observed frequencies may also be met in practice. 
These are treated in exactly the same way as for structural zeros. 
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9.5.1 Sampling zeros 

A table containing sampling zeros is not restricted, but it is worth describing some of its 
characteristics because it may cause problems in analysis. Table 9.26 presents an extract 
of some data collected among Ugandan refugees in Sudan (Harrell-Bond 1986). It 
contains three zero entries for children who are not malnourished. These entries are zero 
because no incidences of these combinations were evident in the children surveyed. As 
there is no logical reason why these combinations should be zero, it is possible to argue 
that additional study in the field might have generated some non-zero values.  

Table 9.26 Example of an incomplete contingency 
table (sampling zero cells) 

Child’s health Guardian’s psychological state 

NM CM 

Acutely anxious and severely depressed 0 1 

Acutely anxious 0 1 

Severely depressed 0 7 

Mildly anxious and/or depressed 12 14 

Good mental health 17 3 

Note: NM: not malnourished 
CM: clinical malnourishment 

Source: Harrell-Bond (1986) 

Printout 9.4 Transcription of GLIM analysis of 
Table 9.26 

£r *glim 

  $UNITS 10 

  $DATA N 

  $READ 

  0 1 0 1 0 7 12 14 17 3 

  $FAC CH 2 PH 5 

  $CALC CH=%GL(2, 1): PH=%GL(5, 2) 

  $LOOK N CH PH$ 

  1 0.0 1.000 1.000 

  2 1.000 2.000 1.000 

  3 0.0 1.000 2.000 

  4 1.000 2.000 2.000 
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  5 0.0 1.000 3.000 

  6 7.000 2.000 3.000 

  7 12.00 1.000 4.000 

  8 14.00 2.000 4.000 

  9 17.00 1.000 5.000 

  10 3.000 2.000 5.000 

  $YVAR N 

  $ERR P$ 

  $LINK LOG$ 

  $FIT+CH.PH$ 

  SCALED   

  CYCLE DEVIANCE DF   

  10 0.1362E−03 0   

  ——NO CONVERGENCE BY CYCLE 10 

  $D ERM$ 

    ESTIMATE S.E. PARAMETER 

  1 −10.69 127.3 %GM 

  2 −0.3638E−06 180.0 PH(2) 

  3 −0.3639E−06 180.0 PH(3) 

  4 13.18 127.3 PH(4) 

  5 13.53 127.3 PH(5) 

  6 10.69 127.3 CH(2) 

  7 0.3638E−06 180.0 PH(2).CH(2) 

  8 1.946 180.0 PH(3).CH(2) 

  9 −10.54 127.3 PH(4).CH(2) 

  10 −12.43 127.3 PH(5).CH(2) 

  SCALE PARAMETER TAKEN AS 1.000 

  UNIT OBSERVED FITTED RESIDUAL 

  1 0 0.2270E−04 −0.4764E−02 

  2 1 1.000 0.3351E−13 

  3 0 0.2270E−04 −0.4764E−02 

  4 1 1.000 0.2371E−10 
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  5 0 0.2270E−04 −0.4764E−02 

  6 7 7.000 0.2523E−05 

  7 12 12.00 0.3304E−05 

  8 14 14.00 0.0 

  9 17 17.00 0.3932E−05 

  10 3 3.000 0.0 

  Y-VARIATE N 

  ERROR POISSON LINK LOG 

  LINEAR PREDICTOR 

  %GM PH CH PH.CH 

  $STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

The analysis of a table with zero observed frequencies mirrors that of the complete table. 
In the case of Table 9.26 the analysis is almost identical because the empty cells are a 
minority of the cells in the table, and they are not arranged in a distinctive pattern. As a 
result, it is possible to fit a full range of unsaturated log-linear models to the table, each 
of which produces non-zero estimates for every cell, including the three which have zero 
observed frequencies. For example, under independence, the expected values for cells 11 
and 21 are both 5.273, and for cell 31, 3.691. 

However, difficulties arise if researchers attempt to fit the saturated model. For this 
model, the presence of the zero cells prohibits the calculation of the expected cell 
frequencies because information on each observed frequency is used in their calculation. 
As the natural logarithm of zero is infinity estimates cannot be produced. Printout 9.4 
contains a transcription of the GLIM analysis of Table 9.26 which illustrates the basic 
problem. Notice that after ten iterations the program still had not converged. Though 
expected cell frequencies similar to those in the observed table have been produced, the 
estimation procedure has not been completed. 

One way of removing the problem of the sampling zero cells is simply to replace the 
expected cell frequencies by the observed cell frequencies and not to rely on an 
estimation algorithm. This is satisfactory in itself but there are alternative procedures 
which may be used. One popular approach is to replace the zero cells by a small positive 
value, for example, 0.5. Printout 9.5 illustrates what happens when 0.5 is added to the 
zero cells in Table 9.26. First, the algorithm has no difficulty fitting the saturated model. 
Second, the values for deviance are deflated in the modified analysis compared with the 
original analysis. This deflation is generally not sufficient to lead to fundamentally 
different interpretations of the patterns in the data. 

One of the main drawbacks to the addition of 0.5 is that it is a wholly arbitrary 
practice. Though Goodman (1970) argues that 0.5 should be added to every cell 
regardless of whether it is zero or not, this, in itself, is arbitrary. Moreover, it may be a 
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source of confusion if the cell frequencies being modified are naturally small as, for 
example, when representing the number of major floods over a period in particular areas. 
If a value is to be added, it only seems reasonable that this should be a value suggested  

Printout 9.5 Re-analysis of Table 9.26 

$r *glim 

  $UNITS 10 

  $DATA N 

  $READ 

  0 1 0 1 0 7 12 14 17 3 

  $FAC CH 2 PH 5 

  $CALC CH=%GL(2, 1): PH=%GL(5, 2) 

  $CALC N=N+0.5 

  $YVAR N 

  SLINK LOG 

  $ERR P 

  $FITS$ 

  SCALED   

  CYCLE DEVIANCE DF   

  4 65.21 9   

  $FIT CH+PH$  

  SCALED   

  CYCLE DEVIANCE DF   

  4 18.58 4   

  $FIT+CH.PH$ 

  SCALED   

  CYCLE DEVIANCE DF   

  4 0.2918E−10 0   

  $D ER$ 

    ESTIMATE S.E. PARAMETER 

  1 −0.6931 1.414 %GM 

  2 1.099 1.633 CH(2) 

  3 −0.4340E−07 2.000 PH(2) 

  4 −0.1878E−07 2.000 PH(3) 
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  5 3.219 1.442 PH(4) 

  6 3.555 1.434 PH(5) 

  7 0.4101E−06 2.309 CH(2).PH(2) 

  8 1.609 2.191 CH(2).PH(3) 

  9 −0.9502 1.678 CH(2).PH(4) 

  10  −2.708  1.735 CH(2).PH(5) 

  SCALE PARAMETER TAKEN AS 1.000 

  UNIT OBSERVED FITTED RESIDUAL 

  1 1 0.5000 −0.4215E−07 

  2 2 1.500 0.5110E−06 

  3 1 0.5000 0.0 

  4 2 1.500 0.0 

  5 1 0.5000 0.0 

  6 8 7.500 0.2612E−05 

  7 13 12.50 0.3372E−05 

  8 15 14.50 0.3631 E−05 

  9 18 17.50 0.3990E−05 

  10  4 3.500 0.0 

  $STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

by prior experience or some given theory. Such an approach is a form of pseudo- or 
empirical-Bayesian analysis, and has much to commend it in that information obtained in 
other situations may be incorporated directly into the analysis. However, unlike the data 
reduction procedures proposed by Ehrenberg (1982) and outlined in Part I, it is not 
immediately clear how these theoretical values may be obtained. As was mentioned in 
Chapter 5, the main problem with Bayesian analysis is the calculation of the prior 
probabilities (or observed values in this context). Bishop et al. (1975: Chapter 10) and 
Wrigley (1985) discuss the matter in more detail. 

9.5.2 Empty marginals 

Table 9.27 is a second example of a table containing sampling zero cells. This differs 
from Table 9.26 in that the empty cells are positioned in such a way that a marginal total 
of the table is also zero. In order to fit a full-set of log-linear models, all marginals of a 
contingency table must possess non-zero values so that their parameters may be 
estimated. 
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Table 9.27 Sampling incompleteness: empty 
marginal 

    TYPE 

    S M 

    ENV ENV 

  D R N D R N 

  Far 28 1 14 20 0 16 

LOCATION Medium 97 9 33 41 0 27 

  

  Near 75 8 37 22 0 19 

Note: TYPE: S=single vehicle/pedestrian accidents 
M=multiple vechicle accidents  

ENV(IRONMENT): D=Daytime accidents 
R=Daytime accidents on rainy days 
N=Night-time accidents 

 

LOCATION: Distance to nearest hospital  

The main complication encountered in analysing this type of incomplete table is that the 
expected cell frequencies associated with the incomplete marginal total must always 
equal zero. This restriction arises because the table does not contain the necessary 
information to provide non-zero expected cell frequencies for those cells. However, non-
zero expected frequencies may be generated for them by log-linear models which do not 
include the incomplete marginal in their calculations. If an attempt is made to fit the 
incomplete marginal, a loss of degrees of freedom occurs and the estimating algorithm 
cannot converge. Neither the $CYCLE nor $RECYCLE commands are of help here 
because the problem lies with a lack of information rather than convergence limits. 

This lack of information is reflected in the calculation of the degrees of freedom for 
the table. Because the empty cells do not contain independent information it is important 
to delete them from the calculation of the degrees of freedom for appropriate models. 
Bishop et al. (1975) and Fienberg (1977) show that the correct degrees of freedom for a 
model applied to a table containing zero marginals may be estimated from the following 
formula: 

DF=(TC−EC)−(TP−EP) 
(9.14) 

where 
TC refers to the total number of cells in the table 

EC refers to the total number of empty cells 

TP refers to the total number of parameters to be included in the model, and 

EP refers to the total number of parameters which cannot be fitted because of the empty marginal 
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This may be automated within GLIM using a macro (Payne 1979)—a subset of 
commands which may be activated as required from any point of the main program. The 
key feature of Payne’s approach is to use a weight vector to eliminate zero cells which 
form part of a zero marginal total. When activated, the macro checks the data for missing 
cells and estimates the correct degrees of freedom as required. If the data are satisfactory 
in the first place, the macro does not proceed beyond its initial checking. Printout 9.6 
illustrates the procedure. Notice that the macro (CDF) is called on several occasions but 
is only activated when the two-way interaction between environment and accident type is 
fitted to the mutual independence model. The degrees of freedom are reduced from ten to 
eight as a result though the deviance value remains unchanged. 

The macro illustrates a number of additional features of the GLIM language. First, the 
use of the dot operator in the $FIT command ($FIT .$). This causes GLIM to refit the 
previous model and removes the need to type the terms a second time. Second, the use of 
the %GT and %EQ operators to check for the equality or relative magnitude of two 
variables. Third, %CU is used to produce a cumulative total of the values in WTT. This 
operator is particularly useful in generating totals or calculating marginal values for data 
tables. Finally, the $EXIT command provides a mechanism to pass control back to the 
main program if adjusted degrees of freedom are identical to those produced in the main 
program. Printing from the macro only occurs if adjusted degrees of freedom have been 
calculated. 

9.5.3 Structural zeros 

A contingency table containing structural zero cells is illustrated in Table 9.28. This 
shows the number of corporate interlocks (closed networks of  

Printout 9.6 Use of a macro to calculate the correct 
degrees of freedom 

$R *GLIM 

  $MACRO CDF 

  $CALC WTT=%GT(%FV, 0.001)*WT 

  $CALC %T=%EQ(%CU(WTT), %NU) 

  $EXIT %T 

  SPRINT ‘*** CORRECT DF FOLLOWS ****’ 

  $WEIGHT WTT $FIT.$ 

  $WEIGHT WT 

$ENDMAC 

$UNITS 18 

$DATA N 

$READ 
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28 1 14 20 0 16 

97 9 33 41 0 27 

75 8 37 22 0 19 

$FACL 3 E 3 T 2 

$CALCL=%GL(3, 6): E=%GL(3, 1): T=%GL(2, 3) 

$CALC WT=1 

$WEIGHT WT 

$YVAR N 

$LINK LOG 

$ERR P 

$FIT$ 

  SCALED 

  CYCLE DEVIANCE DF  

  5 433.7 17  

$FIT L+E+T$  

  SCALED 

  CYCLE DEVIANCE DF  

  4 35.45 12  

$FIT+E.T$  

  SCALED 

  CYCLE DEVIANCE DF  

  9 13.65 10  

$USE CDF$  

  *** CORRECT DF FOLLOWS ****  

  ——CURRENT DISPLAY INHIBITED 

  SCALED 

  CYCLE DEVIANCE DF  

  3 13.65 8  

  ——CURRENT DISPLAY INHIBITED  

$STOP$  

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands  
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Table 9.28 A structurally incomplete contingency 
table 

  Number of interlocks 

Location 16+ 6−15 2–5 1 0 

Johannesburg 11 45 37 8 14 

Cape Town 0 0 16 37 62 

Durban 0 0 17 29 69 

Stellenbosh 0 0 10 9 96 

Pretoria 0 0 13 17 75 

Others 0 0 19 18 78 

Source: Based on Cox and Rogerson (1985) 

information and power) which exist in the South African business community. Because 
of the nature of corporate business, the number of interlocking directorships which can 
occur in a particular locality depends on the business concerned and the relative 
importance of the locality. From Table 9.28, it is clear that major information networks 
may only occur in Johannesburg. The zero cells are therefore restricted in that additional 
sampling will not reveal their presence outside Johannesburg. 

There are a number of ways of analysing a structurally-incomplete table. The simplest 
approach is to rewrite the table so that the non-restricted cells are gathered together into 
complete squares or rectangles. This may be done for Table 9.28 producing three distinct 
structures: 

1 The complete 6 row by 3 column table of small interlocks. 
2 The complete 2 column row vector associated with major interlocks in Johannesburg. 
3 The 5 row by 2 column block of zero cells. 

The ability to rewrite a table in this way arises because Table 9.28 is said to be separable, 
that is, capable of being decomposed into distinct complete subsets. The two subsets 
containing the non-restricted data may thus be analysed separately, and their degrees of 
freedom combined to produce the total for the full table. Under independence there are 
zero degrees of freedom associated with the row vector and ten degrees of freedom with 
the complete table for small interlocks. The total for the table as a whole is thus ten 
degrees of freedom. By extension, models other than independence may also be applied 
to two subsets. 

Unfortunately, contingency tables are rarely separable and so it is not always possible 
to re-express the data in these ways. Given inseparability, attention must focus on 
analysing the table as it is actually written. However, this requires the modification of our 
concepts of independence and interaction as these have been devised explicitly for 
complete tables. One important modification suggested by Goodman (1968) uses the 
concepts of quasi-independence and quasi-log-linear models. These are variants of the 
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procedures outlined earlier which apply to the cells in the non-restricted rows and 
columns of a structurally-incomplete table. 

The calculation of the degrees of freedom for quasi-log-linear models differs from the 
procedures outlined earlier for either the complete table or the incomplete table with zero 
marginals. Instead of using the standard formulae, the following expression should be 
used: 

DF=TC−RC−TP 
(9.15) 

where 

TC and TP are as before, and 
RC refers to the total number of restricted cells in the table 

For Table 9.28, TC=30, RC=10 and TP under quasi-independence equals 10. This means 
that the quasi-log-linear model for quasi-independence has ten degrees of freedom, 
identical to the number calculated by analysing the components of Table 9.28 separately. 
The concepts of quasi-independence and the quasi-log-linear model generalise in exactly 
the same way as their counterparts for the complete table, providing a powerful family of 
techniques which are suitable for the restricted design. 

9.5.4 Square tables 

Contingency tables which are square may frequently be created by, for example, 
measuring some characteristic of a sample of individuals at two points in time. The row 
classifications may thus correspond to the patterns observed in the former period and the 
column classifications to the latter period. For designs of this nature, a key form of 
analysis is the assessment of the stability of the classifications through time. In particular, 
researchers may be keen to know under what circumstances classifications may change 
through time rather than remain stable. 

The analysis of square tables is particularly important in research in public health, 
medicine, educational research and psychology, where subjects are frequently subjected 
to repeated measurements to assess their state of health, knowledge or reaction time. 
Similarly, in sociology, studies are frequently made to assess occupational and social 
mobility. These involve the measurement and comparison of the occupations of parents 
and children and may be used in studies of social cohesion. 

Square tables are rather more complex to analyse than the contingency tables 
presented previously because the diagonal elements frequently behave differently from 
the remainder of the table. These elements correspond to the number of observations in 
the sample which retain their original classification through time. A variety of different 
types of procedure based on odds-ratios may be used to compare these elements with the 
off-diagonal elements (Duncan 1979; Goodman 1979a). Many of these may be specified 
within GLIM using log-linear models. A typical mode of analysis is to treat the square 
table as a structurally incomplete table in which the elements on the principal diagonal 
are eliminated from the model. This may be done using a weight variable in which the 
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row and column classifications are compared, and if identical, eliminated. Thus if A 
refers to the row classification and B to the column, then: 

$CALC WT=%NE(A,B) 
$WEIGHT WT 

  

would eliminate all cells from the model fit if their row and column classification levels 
were equal, that is cells 11, 22, 33, etc. Jones and Pittelkow (1983) present a number of 
GLIM macros which may be of help in analysing square tables. Similarly, Weber (1981) 
contains a series of macros for assessing two hypotheses which are particularly relevant 
to the square table, marginal homogeneity and symmetry. (Further details of these and 
other features of the square design may be found in Bishop et al. 1975.) 

9.6 ASYMMETRIC TABLES 

In the previous sections the object has been to investigate interrelationships and 
interdependencies within a contingency table. We have seen that models suited to this 
form of analysis may be fitted in GLIM by (a) specifying the expected cell frequency 
under some hypothesis as the response or dependent variable, (b) declaring that the cell 
frequencies follow independent Poisson distributions, and (c) linking the predictable 
mean of the response variable to the linear predictor using a logarithmic link. The number 
of terms and parameters which may be included in this general symmetric analysis 
depends on the shape and structure of the table in question, in particular, on the number 
of cross-classifying dimensions present, and on restrictions applying to particular cells or 
marginals. 

An alternative type of contingency table analysis arises when the response variable is 
defined to be the expected cell frequencies in a given dimension of the table rather than 
the table as a whole. Attention then focuses on how these frequencies vary given the 
classifications of the remaining dimensions of the table. These dimensions play a similar 
role to the independent or explanatory variables in a regression model. Because interest is 
centred on dependency relationships in one dimension, this type of tabular analysis is 
frequently termed asymmetric. 

Two distinct approaches may be used to analyse asymmetric dependency relationships 
in contingency tables. The first is a generalisation of the standard log-linear approach 
using Poisson errors and logarithmic link. The second is appropriate if the table of 
observed frequencies is rewritten as a table of observed proportions. This may then be 
analysed using binomial errors and a logit link. The model which GLIM fits to this 
configuration of commands is termed a logit regression model. 

9.6.1 Asymmetric log-linear models 

The use of log-linear models to reproduce dependency relationships in contingency tables 
relies on the fact that the calculation of the expected cell frequencies under different 
hypotheses makes use of specific combinations of observed marginal totals. For example, 
the expected frequencies of a two-way table under independence are calculated directly 
from the observed row and column marginals which are preserved in the table of 
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expected cell frequencies. Under different hypotheses, only some of these observed 
marginals will be preserved. This preservation arises because of the definition of the 
terms being fitted to the log-linear model and is not the result of an explicit decision on 
the part of the researchers to fix the marginals in advance. However, it is perfectly 
possible for these marginal totals to be fixed in advance. If this is the case, then models 
fitted to the table which attempt to describe patterns in the data must reproduce both the 
grand total and the fixed marginals. If the log-linear model terms corresponding to these 
marginal totals are included in every model, including those which seem to be 
insignificant according to screening or STP, then the fixed marginals will always be 
reproduced. This feature underlies the use of log-linear models in analysing the 
asymmetric table. 

This approach may be illustrated using the multi-way data in Table 9.29 which 
extends the information in Table 9.18 into four dimensions by identifying the number of 
times an ambulance was called for each combination of location, environment and 
accident type. If we assume that the binary variable (RESP) is the response variable then 
the following log-linear model is the simplest which may be fitted which reproduces the 
observed marginal totals: 

%GM+LOC*TY*ENV   

The * notation is a shorthand used within GLIM to include all possible combinations of 
LOG, TY and ENV. Thus this model may be written out fully as: 

%GM+LOC+TY+ENV+LOC.TY+LOC.ENV+TY.ENV 
+LOC.TY.ENV (9.16) 

This model may be extended in stages to include the main effect of RESP (base 
model+RESP), all two-way interactions between the explanatory variables and RESP, all 
three-way interactions with RESP, and finally, the single four-way interaction for the 
table. The effect of these additions on deviance is summarised in Table 9.30 and Printout 
9.7. 

Table 9.29 An asymmetric contingency table 

        TYPE 

        S M 

        ENV ENV 

        D R N D R N 

    Far 9 0 7 11 3 10 

Yes LOC Medium 30 5 12 13 3 15 

    Near 13 3 12 2 1 8 

    Far 19 1 7 9 2 6 

No LOC Medium 67 4 21 28 3 12 

RESPONSE 

    Near 62 5 25 20 0 11 
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 Note: For a list of the abbreviations see Table 9.18 

Table 9.30 Analysis of deviance table for log-linear 
analysis of Table 9.29 

      Change 

Model Deviance DF Deviance DF 

%GM 458.2 35    

RESP+LOC*TY*ENV 41.8 17 416.4 18 

+2-way 9.8 12 32.0 5 

+3-way 4.4 4 5.4 8 

+4-way 0.0 0 4.4 4 

9.6.2 Logit models for contingency tables 

The second approach which may be used to analyse dependency in a contingency table is 
to fit logit models rather than log-linear models. Logit is a term used to refer to a 
particular type of analytic transformation which may be applied to a dependent variable 
consisting of proportions (see Cox 1970 for further details). Instead of using a 
logarithmic link to relate the frequency data to the linear predictor as in log-linear 
models, a logit link is used to relate the proportions data instead. These two distinct 
approaches may be written out algebraically as: 

log-linear models: η=ln (µ) 
logit models: η=ln (µ/(N−µ)) 

  

Table 9.31 presents the accident data in the form of proportions. 
Printout 9.8 summarises the logit analysis of these data. The following differences 

should be noted when comparing this with the log-linear approach: 

1 The $UNITS command is set to 18 rather than 36 to reflect the fact that a pair of figures 
is to be inserted for each observation. The first figure is the number of times an 
ambulance was called, the second, the total  

Printout 9.7 Asymmetric log-linear analysis of 
Table 9.29 

£r *glim 

  $UNITS 36 

  $DATA N 

  $READ 

  9 19 11 9 0 1 3 2 7 7 10 6 30 67 13 28 5 4 3 3 
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  12 21 15 12 13 62 2 20 3 5 1 0 12 25 8 11 

  $FAC RESP 2 LOG 3 ENV 3 TY 2 

  $CALC RESP=%GL(2, 1): LOC=%GL(3, 12): ENV=%GL(3, 4): TY=%GL(2, 2) 

  $LOOK N RESP LOG ENV TY$ (list truncated) 

  1 9.000 1.000 1.000 1.000 1.000 

  2 19.00 2.000 1.000 1.000 1.000 

  3 11.00 1.000 1.000 1.000 2.000 

  4 9.000 2.000 1.000 1.000 2.000 

  5 0.0 1.000 1.000 2.000 1.000 

  6 1.000 2.000 1.000 2.000 1.000 

  7 3.000 1.000 1.000 2.000 2.000 

  8 2.000 2.000 1.000 2.000 2.000 

  9 7.000 1.000 1.000 3.000 1.000 

  10 7.000 2.000 1.000 3.000 1.000 

  11 10.00 1.000 1.000 3.000 2.000 

  12 6.000 2.000 1.000 3.000 2.000 

  $YVAR N $LINK LOG$ERR P$ 

  $FIT$ 

  SCALED       

  CYCLE DEVIANCE DF       

  5 458.2 35       

  $FIT RESP+LOC*TY*ENV$ 

  SCALED       

  CYCLE DEVIANCE DF       

  4 41.81 17       

  $FIT+RESP*LOC+RESP*ENV+RESP*TY$ 

  SCALED       

  CYCLE DEVIANCE DF       

  4 9.757 12       

  $FIT+RESP*LOC*ENV+RESP*LOC*TY+RESP*ENV*TY$ 

  SCALED       

  CYCLE DEVIANCE DF       
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  4 4.400 4       

  $FIT+RESP*LOC*TY*ENV$ 

  SCALED       

  CYCLE DEVIANCE DF       

  2 0.9080E−04 0       

  $STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

Table 9.31 Observed proportions (logit analysis) 

        TYPE 

        S M 

        ENV ENV 

        D R N D R N 

      Far 9 0 7 11 3 10 

  Yes LOC Medium 30 5 12 13 3 15 

      Near 13 3 12 2 1 8 

RESPONSE                   

      Far 28 1 14 20 5 16 

  Total LOC Medium 97 9 33 41 6 27 

      Near 75 8 37 22 1 19 

Notes: For a list of the abbreviations see Table 9.18 

number of accidents in each cross-classification of the explanatory variables. 
2 Two variables are defined in the $READ command. The first corresponds to the 

numerator of the observed proportion, the second, to its denominator. 
3 The $YVAR command specifies that RESP is to be treated as the response rather than 

the N frequencies of Table 9.29. 
4 The Poisson error process of the symmetric analysis is replaced by a binomial process 

(B). Notice that TOT is included in the specification of the error process. This is 
needed to define the denominator term explicitly. 

5 A logit link ($LINK G) is used to relate the linear predictor to the predictable mean 
rather than the logarithmic link of the symmetric analysis. 

Table 9.32 displays the effect of this logit model on deviance. The simplest model is the 
grand mean effects model (%GM). This yields a deviance value of 41.8 for seventeen 
degrees of freedom. This is equivalent to an hypothesis of constant logit with each 
expected cell frequency being identical in value. Notice that this corresponds to the log-
linear model in which RESP has been added to the base model. The addition of the three 
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main effects reduces deviance to 9.8 for twelve degrees of freedom. This is equivalent to 
the log-linear model in which all two-way interactions including RESP have been added 
to the model. The addition of the logit two-way effects reduces deviance to 4.4 for four 
degrees of freedom. This is equivalent to the log-linear model in which all three-way 
effects including RESP have been added to the base model. Finally, the addition of the 
logit three-way effects produces the saturated logit model. This is equivalent to the log-
linear model which includes the four-way interaction between all RESP, ENV, TY and 
LOC. 

Printout 9.8 Asymmetric logit analysis of Table 
9.31 

£r *glim 

$UNIT 18 

$DATA RESP TOT 

$READ 

928 11 200 1 3 5 7 14 10 16 30 97 13 41 5 9 

3 6 12 33 15 27 13 75 2 22 3 8 1 1 12 37 8 19 

$FAC LOG 3 ENV 3 TY 2 

$CALC LOC=%GL(3, 6): ENV=%GL(3, 2): TY=%GL(2, 1) 

$LOOK RESP TOT LOG ENV TY$ 

1 9.000 28.00 1.000 1.000 1.000 

2 11.00 20.00 1.000 1.000 2.000 

3 0.0 1.000 1.000 2.000 1.000 

4 3.000 5.000 1.000 2.000 2.000 

5 7.000 14.00 1.000 3.000 1.000 

6 10.00 16.00 1.000 3.000 2.000 

7 30.00 97.00 2.000 1.000 1.000 

8 13.00 41.00 2.000 1.000 2.000 

9 5.000 9.000 2.000 2.000 1.000 

10 3.000 6.000 2.000 2.000 2.000 

11 12.00 33.00 2.000 3.000 1.000 

12 15.00 27.00 2.000 3.000 2.000 

13 13.00 75.00 3.000 1.000 1.000 

14 2.000 22.00 3.000 1.000 2.000 

15 3.000 8.000 3.000 2.000 1.000 
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16 1.000 1.000 3.000 2.000 2.000 

17 12.00 37.00 3.000 3.000 1.000 

18 8.000 19.00 3.000 3.000 2.000 

$YVAR RESP$ERR B TOT$LINK G$ 

$FIT$ 

SCALED       

CYCLE DEVIANCE DF       

3 41.81 17       

$FIT+LOC$ 

SCALED       

CYCLE DEVIANCE DF       

3 27.02 15       

$FIT+ENV$ 

SCALED       

CYCLE DEVIANCE DF       

3 11.97 13       

$FIT+TY$ 

SCALED       

CYCLE DEVIANCE DF       

3 9.757 12       

$D ER$ 

ESTIMATE S.E. PARAMETER       

1–0.5756 0.2590 %GM       

2–0.3711 0.2680 LOC(2)       

3–0.9962 0.2948 LOC(3)       

4 0.9308 0.3985 ENV(2) 

5 0.7142 0.2202 ENV(3) 

6 0.3204 0.2144 TY(2) 

SCALE PARAMETER TAKEN AS 1.000 

UNIT OBSERVED OUT OF FITTED RESIDUAL 

1 9 28 10.08 −0.4247 

2 11 20 8.731 1.023 
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3 0 1 0.5879 −1.194 

4 3 5 3.314 −0.2968 

5 7 14 7.484 −0.2595 

6 10 16 9.804 0.1004 

7 30 97 27.12 0.6523 

8 13 41 14.28 −0.4203 

9 5 9 4.464 0.3571 

10 3 6 3.453 −0.3744 

11 12 33 14.59 −0.9080 

12 15 27 14.09 0.3495 

13 13 75 12.90 0.3144E−01 

14 2 22 4.894 −1.484 

15 3 8 2.760 0.1783 

16 1 1 0.4205 1.174 

17 12 37 11.02 0.3523 

18 8 19 7.008 0.4718 

$FIT+ENV.TY+ENV.LOC+TY.LOC$ 

SCALED 

CYCLE DEVIANCE DF 

4 4.400 4 

$FIT+LOC.ENV.TY$ 

SCALED 

CYCLE DEVIANCE DF 

10 0.9132E−04 4 

$STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

9.6.3 Multi-way response variables 

Asymmetry problems involving a multi-level response variable are the natural extension 
of the binary problems outlined in the previous sections. The log-linear analysis of the 
multi-way table has already been presented and so should not prove to be problematic. As 
with the binary case, it is important to remember that the base model must include the 
main effects of the explanatory variables and any interactions between them. Extensions 
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to this then involve the addition of the main effect of the response, the two-way 
interactions between the response and the explanatory variables, and so on until 
saturation. Screening and STP may be used with  

Table 9.32 Analysis of deviance table for logit 
analysis of Table 9.30 

      Change 

Model Deviance DF Deviance DF 

%GM 41.8 17    

+main effects 9.8 12 32.0 5 

+2-way 4.4 4 5.4 8 

+3-way 0.0 0 4.4 4 

these models as with the symmetric analyses, except that the terms required to fix the 
observed marginals associated with the explanatory dimensions must always be included. 

The logit analysis of the multi-way table requires that the cell proportions follow a 
multinomial rather than a binomial distribution. This is currently not available within 
GLIM and so it is not entirely feasible to specify a multivariate logit model. However, 
Goldstein (1979) notes that it is possible to generalise the binomial distribution so that 
comparisons between levels in a multi-way response variable may be made. This 
amounts to the specification of a multivariate logit model. 

9.7 CATEGORICAL REGRESSION 

The notion of asymmetric analysis involving categorical data extends beyond the 
confines of data tables. Categorical measurements may frequently be used as the response 
variables in regression-type models. For a variety of technical reasons, the classic 
regression model as introduced in Chapter 8 cannot always be used when the response 
variable is categorical. Wrigley (1976, 1985) notes that categorical response variables in 
traditional regression models not only violate the assumption of constant error variance 
but may also generate predicted values for the response variable which are 
uninterpretable. However, Bartholomew (1981) shows that there are a number of specific 
types of situation in which neither of these difficulties arise and so the ordinary least 
squares procedures of classic regression may be applied. 

The solutions offered to remove the perceived difficulties of categorical responses 
involve transforming them so that new linear additive models are specified instead of 
classic regression. The family of folded root transformations provides a number of 
possibilities (Cox 1970), two of which lead to tractable models. These are the cumulative 
logistic transformation which leads to the logit model, and the cumulative Normal 
distribution which leads to the probit model. The logit regression model for non-tabular 
data is a generalisation of the model described previously. Both of these models may be 
specified with ease within GLIM for analyses involving binary response variables. To 
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illustrate their use, the precipitation data presented earlier are re-analysed. However, for 
the purpose of this example the precipitation values in variable PPT have been receded to 
two non-overlapping class levels: 

1 for values exceeding 20 inches 
0 for values less than 20 inches 

As with the logit analysis of the asymmetric contingency table, a denominator term is 
required in the specification of the error command. This was easily solved for the table 
problem merely by using the cross-classification totals. However, no such totals exist for 
a non-tabular data set. 

This problem may be solved quite easily because the estimated values from a 
categorical regression model are usually interpreted as predicted probabilities. The 
denominator may thus be set to 1, indicating the upper limit of probabilities, for each of 
the thirty binary measurements of PPT. In order to make use of this, a vector, DEN, needs 
to be created within GLIM to hold the denominator terms. This may be done using the 
$CALC command: 

$CALC DEN=%GL(1,30)   

Both the logit and probit models assume binomial errors. Consequently, the error 
component in both specifications is $ERR B DEN. However, they differ in the links they 
use. For logit, $LINK G is specified. However, for probit, $LINK P is used. This relates 
the predictable mean of the response to the linear predictor as follows: 

 (9.17) 

In spite of these differences, the two models behave almost identically, both in their 
estimation of deviance and in the probability values they estimate for each of the thirty 
weather stations. As with the classic regression model and the log-linear models, no 
categorical regression analysis is complete without an inspection of the residuals and 
leverage values. The procedures of use here are identical to those used previously. (For a 
detailed account of the use of diagnostic procedures with categorical regression models, 
see Dunn and Wrigley 1984.) 

The fact that the two models behave very similarly suggests that they may be 
substitutes for each other. This is frequently possible and the choice usually depends on 
which of the two is easier to compute. In general, logit is the simpler and more tractable. 
However, for many other types of problem their performances differ greatly and the 
choice may depend on theoretical requirements rather than expediency. 

There are many examples of the use of these models in the published applied statistics 
literature. Logit is particularly widely used in psychology as a means of assessing the 
reactions to stimulus-response experiments. Conversely, probit is much more widely used 
in the biostatistics literature. The main reason for this is that researchers claim the 
existence of a direct relationship between the cumulative Normal distribution which 
underlies probit and the theoretical tolerance distributions which underlie bioassay and 
toxicological research. (For a comparative review of the use of these models in biology, 
see Hewlett and Plackett 1978.) Geographical examples include, among others, Lewis 
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(1975), Odland and Balzar (1979), Wrigley (1980, 1981), Guy and Broom (1983), 
O’Farrell and Crouchley (1984) and Stapleton-Concord (1984). 

In Chapter 10 some mention will be made of an alternative use of these categorical 
regression models which may be of interest to some geographers. This is in connection 
with the use of so-called discrete choice models: theoretical models built upon the use of 
the logit and probit transformations which are widely used in transport research and in 
some branches of economics to study individual consumer choices and preferences. Both 
models offer alternative frameworks for describing some of the characteristics of 
individual decision-making, allowing hypotheses to be tested and planning alternatives 
assessed. 

9.8 ORDINAL DATA 

In the various types of categorical data problem described, attention has focused on 
nominal measurements. In these, the order of the levels in each classification is arbitrary. 
Thus it makes no difference to the interpretation of the information in a contingency table 
if the levels in the rows or columns are repositioned, for example, by renumbering 
column 2 as column 1. The cross-product ratio is particularly important in the 
interpretation of interactions between nominal categorical variables simply because it too 
is unaffected by such repositioning. However, there are many types of geographical data 
where such a modification might seriously change the fundamental patterns of 
association. For example, in a regional mobility table indexed by area and time, the time 
dimension cannot be repositioned at will without making a nonsense of the information 
contained within it. Similarly, any form of data analysis which involves the use of ordinal 
data is likely to be inadequate if the ordinal nature of the information is ignored. 

For many years the analysis of ordinal data either in contingency tables or categorical 
regression models has been largely untouched by researchers. Most of the methodological 
developments in the fields of categorical data analysis have been aimed towards nominal 
measurements. One of the reasons for this is that ordinal measurements lie in a 
methodological grey area. Some researchers are apt to consider them wholly arbitrary 
classifications similar to nominal measurements, whilst others argue that they are actually 
poorly-measured continuous variables (see the discussion in Chapter 3). As a result, their 
analysis has varied considerably depending on the tendencies of the researchers, with 
some suggesting the use of log-linear models, and others advocating regression or 
analysis-of-variance approaches. However, since the 1970s, and particularly since the late 
1970s, considerable improvements have been made to develop and popularise a class of 
techniques which are tailor-made for ordinal data, and in particular, ordinal contingency 
table data. 

The literature on the analysis of ordinal data is now quite extensive with many 
techniques being suggested in article or bookform (Haberman 1974b; Simon 1974; 
Agresti 1980, 1984; Goodman 1979b, 1981). The motivation for much of this work 
seems to be that: 

1 Ordinal techniques are more powerful than conventional log-linear-based procedures, 
and are better suited in testing null hypotheses about table structure. 
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2 Ordinal techniques are similar to those used in the analysis of continuous data, thus 
helping to link the grey area more closely with an established area of methodology. 

3 Ordinal techniques provide for a wider variety of alternative types of analysis than log-
linear procedures and so may help researchers generate more parsimonious models. 

Breen (1985) lists the following as examples of the range of model types currently 
available: 

1 A uniform association model (after Goodman 1979b). 
2 A ‘row’ effects model. 
3 A column ‘effects’ model. 
4 An additive ‘row+column’ effects model. 

He suggests that the uniform association model may be considered the most basic of the 
four. 

The key difference between the analysis of nominal tables and their ordinal 
counterparts is that the concept of interaction needs to be amended to incorporate the 
given order of the cells in the ordinal dimensions. One approach is to suggest that the 
cells lie along an underlying continuum and should therefore be given scores of some sort 
to reflect their relative positions. The patterns of association which are identified in the 
data reflect the assumptions made about this scoring, for example, whether it refers to 
global patterns of association between the variables at all classification levels, or is in 
some sense local, referring to associations between contiguous neighbours. 

At the moment the analysis of the ordinal table cannot be performed within GLIM 
merely by specifying default options as is possible with the nominal design. As a result, 
the models suggested by Breen, and a number of others—models based on continuation 
odds (Fienberg and Mason 1979), proportional odds and hazards, and a partial likelihood 
survival model (Cox 1975; Whitehead 1980)—may only be specified using macros. A 
number of authors have published macros which may be used to specify these models. 
(For further details, see Breen 1985; Hutchinson 1985.) 

9.9 CONCLUSIONS 

The aim of this chapter has been to illustrate some of the major categorical models which 
can be re-expressed as generalised linear models. The three models which today form the 
core approaches—the hierarchical log-linear model, the logit model, and the probit 
model—are all special cases of the generalised linear model. Five distinct types of 
analytical problem associated with their use are catered for as default options in GLIM. 
These are: 

1 The hierarchical log-linear model for symmetric tables. 
2 The hierarchical log-linear model for asymmetric tables. 
3 The logit model for asymmetric tables. 
4 The logit model for non-tabular categorical regression. 
5 The probit model for non-tabular categorical regression. 

Generalised linear models for categoricals data         285



Each is distinguished from the others by differences in the structure of their linear 
predictors, or by differences in the $YVARIABLE, $ERROR and $LINK commands. 
These are summarised in Table 9.33. 

From this table it is quite clear that different forms of categorical model can be fitted, 
where desirable, to the same data set. This is made exceedingly easy within GLIM, and is 
valuable because it offers the potential for making analysis more comprehensive. The 
didactic value  

Table 9.33 Summary of GLIM specifications for 
categorical generalised linear models 

Model $YVAR $ERROR $LINK Full factor 
structure 

Symmetric log-linear model Expected cell 
frequencies Poisson Log Yes 

Asymmetric log-linear 
model 

Specified dimension Poisson Log Yes 

Tabular logit Specified dimension Binomial Logit Yes 

Logit regression Specified variable Binomial Logit No 

Probit regression Specified variable Binomial Probit No 

offered by GLIM is also valuable because it permits students to fit a variety of model 
types to data without their having to wade through different computer packages and 
analytical treatments developed from more than one research tradition. 

The five models presented here are ‘basic’ in the sense that they are applicable to 
many analytical research problems and are not specific to any one discipline. However, it 
is possible to extend these models to accommodate slight variations of the basic 
analytical problems (for example, to cope with multiple logit models rather than binary 
models), and also to develop entirely new research specialities using them. Some of these 
developments are considered in the next chapter. These include the development of 
choice theory models based on logit and probit and the reconciliation of the mathematical 
approaches to spatial interaction based on a particular type of log-linear model: the 
Poisson regression model. 
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10  
SOME EXTENSIONS AND SPECIALISED 

TOPICS 

10.1 INTRODUCTION 

The two previous chapters have outlined some of the more commonly-used generalised 
linear models in geography. In this chapter a number of extensions of these common 
models, as well as some specialised topics based on them, are presented. Three areas are 
considered: 

1 Poisson regression models; 
2 models suited to the analysis of designed experiments; 
3 discrete choice models. 

10.2 POISSON REGRESSION 

10.2.1 A simple example 

Table 10.1 presents some data taken from Smith (1975), which shows the observed 
number of customers at a new shopping centre in Sydney related to the distance they 
have travelled to get there. Smith used this data set to illustrate the characteristics of the 
classical linear regression model using ordinary least squares estimation. Regression was 
considered to be suitable because both variables may be treated as continuous, and a 
dependency relationship linking one with the other is plausible. Using standard least 
squares procedures (as outlined in Chapters 6 and 8), the following relationship can be 
deduced for the regression of centre patronage (Y) on the natural logarithm of distance 
travelled (X): 

Y=201.7–83.52X 
(10.1) 

The standard errors associated with these parameters are 7.21 and 3.97 respectively, 
indicating that both are significant at the 5 per cent level, that the number of customers 
expected declines at the rate of 83.52 per mile from the Centre, and that 201.7 customers 
can be expected from within a mile of the Centre. (This may be a situation where it is 
feasible to give a physical interpretation to the value of the intercept term.)  



Table 10.1 Extract of distance-related shopping 
data 

Distance travelled in miles (X) Number of customers (Y) 

1 199 

2 161 

3 109 

4 75 

5 66 

6 46 

7 39 

8 12 

9 22 

10 5 

11 10 

12 7 

Source: Smith (1975) 

However, though it is perhaps reasonable to suggest that Y is essentially continuous, it is 
clear that its observed values are logically restricted to positive integers. In other words, 
negative values and positive real numbers are not likely to be observed in the survey data. 
This suggests that the classical regression approach is not appropriate. Indeed, if Y is 
treated as essentially categorical (in particular, a nominal variable), then classical 
regression is known to be inappropriate because of the violation of the constant error 
variance assumption (see Chapter 9). 

One of the alternatives to classical regression analysis for discrete dependency 
relationships is the logit regression model, which was presented in detail in Chapter 9. 
This assumes a binomial rather than a Normal error process for the model, and uses a 
logit rather than an identity link function to relate the predictable mean of Y to the 
observed explanatory data. However, to be applicable here, the observed data would have 
to be supplemented by information on the number of consumers at different distances 
from the new shopping centre who did not patronise it. This is needed to calibrate the 
observed values of Y as observed proportions. As this is missing, the binomial logit 
model is also inappropriate. 

Given the fact that the Y variable consists of simple counts rather than proportions, a 
second alternative model should be considered: the Poisson regression model. This model 
suggests that the probability of customers patronising the new shopping centre at any 
given distance may be calculated from the formula for the Poisson probability process 
(see Chapter 5): 
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(10.2) 

where 
m refers to the number of customers at given distances, and 

µ refers to the mean of a Poisson distribution of customers moving a given distance 

In this form, the Poisson regression model is identical to a log-linear model of the form 
described in Chapter 8, where the response component of the model is assumed to be the 
expected cell frequency. 

The commands needed to specify both the classical regression and Poisson regression 
analyses of the data in Table 10.1 are presented in Table 10.2. The results of both 
analyses are presented in Printout 10.1. From the observed data (Table 10.1) we can see 
that the number of customers generally declines with distance from the Centre, though 
the pattern is rather more complex after 9 miles. The predicted values associated with the 
linear regression model (Printout 10.1(a)) reproduce this pattern but suggest a negative 
value for 12 miles. This is not a meaningful figure in this context. In comparison, the 
Poisson regression model also predicts a general distance decay effect. Its standardised 
residuals are generally smaller than the regression residuals, but as this reflects a 
difference in their method of calculation a direct comparison is not easy (see Chapter 8). 
The same applies to the deviance measures which mean different things in the two 
analyses. However, by calculating chi-square for both sets of data it can be shown that 
the Poisson model is a considerably better description of the observed data than the linear 
regression model. 

10.2.2 Flow data: spatial interaction 

The example presented in the previous subsection illustrates the use of the Poisson 
regression model to handle relationships which involve measurements made over 
distance. Extensions of this simple Poisson model may  

Table 10.2 Commands to fit regression and Poisson 
regression models to Table 10.1 

$UNITS 12 Defines length of GLIM vectors 

$DATA DIST CUST Creates two variables, DIST and CUST 

$READ Enables data entry 

$YVAR CUST Defines the response variable 

$CALC 
D1=%LOG(DIST) 

Creates a new variable which is a natural logarithmic transformation of 
DIST 

$ERR N Specifies a Normal error process 

$ERR P Specifies a Poisson error process 
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$LINK I Specifies an identity link for regression 

$LINK LOG Specifies a logarithmic link for Poisson regression 

$FIT+D1 Command for regression analysis 

$FIT+DIST Command for Poisson regression analysis 

Printout 10.1 Comparison of regression and 
Poisson regression analysis of Table 10.1 

(a) Linear regression 

$CALC D1=%LOG(DIST) 

$YVAR CUST $ERR N $LINK 

$FIT D1$ 

  CYCLE DEVIANCE DF     

  1 990.1 10     

$D E$ 

    ESTIMATE S.E. PARAMETER 

  1 201.7 7.208 %GM 

  2 −83.52 3.969 D1 

  SCALE PARAMETER TAKEN AS 99.01 

$D R$ 

  UNIT OBSERVED FITTED RESIDUAL 

  1 199.0 201.7 −2.689 

  2 161.0 143.8 17.20 

  3 109.0 109.9 −0.9366 

  4 75.00 85.91 −10.91 

  5 66.00 67.27 −1.274 

  6 46.00 52.05 −6.047 

  7 39.00 39.17 −0.1727 

  8 12.00 28.02 −16.02 

  9 22.00 18.18 3.816 

  10 5.000 9.384 −4.384 

  11 10.00 1.424 8.576 

  12 7.000 −5.843 12.84 

(b) Poisson regression 

Introducing quantitative geography      290



$ERR P $LINK LOG$ 

$SIT+DIST$ 

  SCALED     

  CYCLE DEVIANCE DF     

  3 17.58 10     

$D E$ 

    ESTIMATE S.E. PARAMETER 

  1 5.654 0.6088E−01 %GM 

  2 −0.3158 0.1427E−01 DIST 

  SCALE PARAMETER TAKEN AS 1.000 

$D R$ 

  UNIT OBSERVED FITTED RESIDUAL 

  1 199 208.1 −0.6280 

  2 161 151.7 0.7533 

  3 109 110.6 −0.1558 

  4 75 80.68 −0.6323 

  5 66 58.83 0.9343 

  6 46 42.90 0.4729 

  7 39 31.29 1.379 

  8 12 22.81 −2.264 

  9 22 16.64 1.315 

  10 5 12.13 −2.048 

  11 10 8.847 0.3878 

  12 7 6.451 0.2161 

be made to accommodate data in the form of flows. The term ‘flow’ refers to measurable 
movements which occur in space, for example, commuter patterns within a city, or 
transatlantic movements over a year. More generally, the term may be used to refer to 
any form of transaction which takes place between an origin and a destination. In this 
sense, telephone traffic between exchanges may be considered as flows even though 
movement is not involved. 

The analysis of flow data is particularly important in geography, with many branches 
of the subject collecting such data. The traditional means of analysing them is to use 
spatial interaction models: mathematical, rather than statistical, models which are based 
on analytical strategies borrowed from mechanics. Excellent summaries of this form of 
modelling are to be found in, among others, Wilson (1974), Batty (1976), Senior (1979) 
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and Foot (1981). Extensive use of these models has been made in various branches of 
geography, for example, in retailing (Huff 1963; Lakshmanan and Hansen 1965), 
commuting behaviour (Jensen 1980) and facility location (Massam 1975; Batty et al. 
1985; Guy 1988). 

The following are generally considered to be a ‘basic set’ of spatial interaction 
models: 

1 unconstrained models (that is, models in which no assumptions are applied to either the 
origin or destinations); 

2 singly-constrained models (either origin constrained or destination constrained in 
form); 

3 doubly-constrained models (models in which assumptions are applied to both origins 
and destinations). 

The unconstrained model is the simplest of the three types. In the context of retail 
research, where it has been used extensively, it may be written algebraically as: 

 (10.3) 

where 
Tij refers to the number of flows between origin i and destination j 
Oi refers to some characteristic of origin i 
Dj refers to some characteristic of destination j 
f(cij) refers to a function of the travel cost between i and j 
β1…3 are constants whose values are derived by experiment 
The flows in this model may be measured in a variety of ways, for example, by 

calculating the number of consumers making shopping trips over a period, or by 
measuring the volume of expenditure. The origins and destinations may also be defined 
in various ways. For example, the origins may refer to a particular sub-area of a city, or to 
the consumers living there, whilst the destinations may refer to other sub-areas of the 
city, or to specified shops or shopping centres. 

Given the definition of these terms, the performance of the model is determined by 
calibrating the constant terms empirically. This approach involves fitting a series of trial 
models and comparing the expected patterns of flow suggested by the model with the 
patterns observed in the data. Unlike statistical models, no formal mechanism exists for 
estimating models and testing their accuracy against chance. This has led to the 
suggestion that spatial interaction models suffer from the problems of over-simplicity, 
parameter indeterminacy, and intrinsic non-linearity (Batty 1976; Guy 1987; Davies and 
Guy 1987). The first of these refers to the fact that most applications of spatial interaction 
models tend to incorporate only one origin and one destination variable. These are 
general, and purport to refer to characteristics measurable at all origins and destinations. 
However, it is perfectly plausible that certain flows may reflect features which are unique 
or context-specific, for example, measurable only at a specific destination or origin. 
Proposals to extend the basic models to incorporate such variables have been made by, 
among others, Haynes and Fotheringham (1984), but Davies and Guy (1987) suggest that 
few of these have ever been calibrated. In spite of this, Fotheringham and Webber (1980) 
and Fotheringham (1983, 1984, 1985) have suggested a variety of new spatial interaction 
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models in which extra parameters attempt to incorporate certain aspects of the spatial 
structure of the area concerned (for example, distance decay), or the pattern of 
competition between different destinations. 

The second and third criticisms reflect the fact that, traditionally, the parameters of 
spatial interaction models have been estimated using inefficient algorithms or numerical 
approximation procedures which do not ensure that the estimators are the best available. 
(The principal problem with any form of approximation procedure is that it provides 
estimates which occur at a localised maximum rather than the global maximum. The 
procedure within GLIM, allied to the deviance measure of fit, avoids this in most 
instances.) Even when apparently acceptable estimates have been produced, the lack of 
an explicit goodness-of-fit measure, which is also generally acceptable, has meant that it 
is very difficult to be sure the model is the best available. In principle, there is no reason 
why a model could not be developed to describe every flow correctly. However, if this is 
merely a saturated spatial interaction model, in the sense that it represents every flow by a 
corresponding parameter, then it is of little descriptive or prescriptive value. (See the 
discussion of saturation in log-linear modelling in Chapters 7 and 8.) 

Many of these problems can be avoided if the characteristic spatial interaction model 
can be reformulated as a statistical model. Stetzer (1976) and Baxter (1979) have 
suggested various possibilities based on the use of logit or generalised odds-ratio models. 
However, as with the simple examples given in section 10.2.1, such approaches cannot 
adequately handle the presence of binary events in which all the observations are in one 
category. For spatial interaction models this is particularly important because a 
considerable number of zero flows between origins and destinations are likely to be 
observed in the survey data. 

If the function term f(c) in equation 10.3 can be expressed as: 
f(cij)=cij−δ 

(10.4) 

where 
δ is a constant 
then equation 10.3 can be written in a linear model: 
ln Tij=lnK+β1lnOi+β2lnDj−δlncij 

(10.5) 

If ln K is expressed as β0, this re-modelling of the unconstrained spatial interaction model 
is equivalent to a classical regression model. However, as before, because the response 
represents a series of counts, rather than continuities or proportions, neither the classical 
regression model nor the logit model is entirely suitable. A Poisson regression model is, 
however, suitable if it can be shown that the probability of observing m flows is given by 
the formula for the Poisson process: 

 
(10.6) 

where 
m represents the number of flows 
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λij represents the mean of a Poisson distribution of individuals moving between i and j 

Flowerdew and Aitkin (1982) show that this mean value may be estimated directly from 
equation 10.5 in which the response is changed from ln Tij to ln λij. By relating equation 
10.6 with the characteristic expression for the Poisson distribution, the unconstrained 
spatial interaction model is transformed into a Poisson regression model for flows which 
can be specified and estimated within GLIM. 

The latter factor is particularly valuable because it allows the flexibilities of the 
statistical modelling procedures within GLIM to be extended to spatial interaction 
models. Two benefits become readily apparent: 

1 The criticisms levelled against spatial interaction models, which were mentioned 
previously, can be overcome, as GLIM provides a way of fitting a variety of different 
general, city-wide and context-specific variables to the same model. In addition, the 
estimation and fitting strategies are robust, producing estimators and goodness-of-fit 
measures which are generally accepted by practitioners. 

2 The gulf which has distinguished mathematical and statistical approaches in 
geographical teaching and research is narrowed, if not closed entirely. 

(For an illustration of the two distinct approaches, see Wrigley and Bennett 1981.) 

10.2.3 A retailing example of Poisson regression 

Some examples of the use of Poisson regression models for the analysis of shopping data 
are provided in the papers by Guy (1987, 1988), and Davies and Guy (1987). The data 
used were taken from the Cardiff Consumer Panel Survey (Guy et al. 1983; Wrigley et 
al. 1985), and consist of a series of flows between fifteen residential areas (Guy 1987), or 
fifty consumers (Guy 1988), and eighty-three shopping centres or groups of shops within 
Cardiff. For the purposes of their analyses, it was assumed that the first centre visited on 
multi-centre shopping trips was the destination for the trip. 

The commands used by Guy (1987) to fit a range of Poisson spatial interaction models 
are summarised in Table 10.3. The $UNITS command is set to 1,245 (15 origins by 83 
destinations) and data on three variables, FLOW, DIST and SIZE, are read in on input 
channel 1. These variables represent: 

1 FLOW: the observed flows between origins and destinations. 
2 DIST: the straight-line distance between the origins and the destinations. 
3 SIZE: the size of the shopping centre. 

Lines 4–6 specify the response variable for the model, the probability process for y, and 
the link function. The combination for a Poisson model is selected: Poisson errors and 
logarithmic link. Line 7 fits a null model to the data, that is, a model which does not 
contain any parameters other than the grand mean. This provides an upper limit to the 
value of the deviance measure (see Table 10.4, line 1). Lines 8 and 9 transform the DIST 
and SIZE variables in logarithmic equivalents, and store the results as LDIST and LSIZE. 
Line 10 defines an origin-specific categorical variable (AI) containing 15 levels. These 
are related to the observed data values using the CALCULATE command on line 11. 
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Lines 12, 13 and 14 fit three alternative forms of the Poisson spatial interaction model. 
Line 12 fits an unconstrained model by specifying main effects terms for LSIZE and 
LDIST. Line 13 fits a singly-constrained model by adding the origin-specific factor to the  

Table 10.3 Some GLIM commands to fit a range of 
Poisson regression models (after Guy 1987) 

Line number Command string 

1 $UNITS 1245 

2 $DATA FLOW DIST SIZE 

3 $DINPUT 1 

4 $YVAR FLOW 

5 $ERR P 

6 SLINK LOG 

7 $FIT $D E$ 

8 $CALC LDIST=%LOG(DIST) 

9 $CALC LSIZE=%LOG(SIZE) 

10 $FACTOR AI 15 

11 $CALC AI=%GL (15,83) 

12 $FIT LSIZE+LDIST $D E$ 

13 $FIT AI+LSIZE+LDIST $D E$ 

14 $FIT AI+LSIZE+AI.LDIST $D E$ 

15 $LOOK %YV %FV$ 

16 $STOP$ 

Table 10.4 Deviance measures for the models 
specified by Guy (1987) 

Model Deviance DF Change in deviance Change in DF Significance 

1 271,900 1,244      

2 75,590 1,242 193,610 2   

3 33,670 1,238 41,920 14   

4 27,780 1,214 5,890 14   

Notes: Model 1: null model 
Model 2: unconstrained model 
Model 3: origin-constrained model 
Model 4: origin-constrained, origin-specific model 
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unconstrained model. Line 14 fits an origin-specific model by fitting the main effects 
of the origin-specific variable, AI, and LSIZE, and the two-way interaction between AI 
and LDIST, representing a distance-decay effect. The results of all three models are 
displayed using the $D E command, and, on line 15, the observed and fitted values of the 
response from the final model are displayed. 

The effects of these alternative models on variance reduction is summarised in Table 
10.4. The null model yields a value for deviance of 271,900 for 1,244 degrees of 
freedom. The addition of the main effects of logged distance and logged size in the 
unconstrained model reduces this to 75,590 for the loss of two degrees of freedom. The 
addition of the production constraint, AI, reduces this still further to 33,670 for 1,238 
degrees of freedom. Finally, the origin-specific model reduces deviance to 27,780 for 
1,214 degrees of freedom. Parameter estimates for these models are summarised in Table 
10.5, as models 2–4. 

In aggregate, these singly-constrained models appear to describe the  

Table 10.5 Parameter estimates of the seven models 
fitted by Guy (1987) to the Cardiff shopping data 

Parameters Model number 

LDIST LSIZE MULT COOP BIG LVAR  

2 −1.6
(436)

1.2
(271)

      

3 −2.2
(352)

1.6
(249)

      

4 −2.4* 1.7
(231)

      

5 −1.7
(390)

0.7
(81)

0.9
(52)

0.7
(65)

0.9
(46)

0.2 
(9)  

6 −2.2
(330)

1.6
(127)

0.2
(8)

−0.1
(10)

0.3
(14)

−0.1 
(1.4)  

7 −2.4* 1.7
(121)

−0.1
(6)

−0.2
(13)

0.4
(16)

0.1 
(3)  

Notes: Model 2: unconstrained model 
Model 3: origin-constrained model 
Model 4: origin-constrained, origin-specific model 
Model 5: as model 2 but including four extra terms 
Model 6: as model 3 but including four extra terms 
Model 7: as model 4 but including four extra terms 

 

t values are show in brackets except for *. These parameters are estimated as the average of 
fifteen origin-specific estimates  

flow patterns far better than the null and unconstrained models. However, when Guy 
compared the observed flows with those predicted by the models it was clear that even 
the origin-specific model seriously misrepresented some of the flows. Guy notes in 
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particular that the model tended to overpredict trips made to the Cowbridge Road East 
district shopping centre, a centre lying alongside a major arterial routeway to the west of 
Cardiff city centre, whilst underpredicting flows to the city centre, a district centre in 
North Cardiff, and small centres located close to residential zones. 

In order to improve the description of more of these flows, Guy calibrated a further 
series of three models incorporating additional explanatory information on the facilities 
available in each shopping centre. The purpose of adding these variables was to improve 
the specification of the attractiveness terms in the model. These were: 

1 MULT: a binary dummy representing the presence or absence of a multiple grocery 
store (typically, one owned by a local or national chain). 

2 COOP: a binary dummy representing the presence or absence of a co-operative grocer. 
3 BIG: a binary dummy representing the presence or absence of a large grocery outlet 

(exceeding 1,500 square metres’ sales area). 
4 LVAR: a logged variable used to represent the number of different types of shop to be 

found in the centre. 

The effects of these on deviance reduction are summarised in Table 10.6. Guy notes that 
these models appear to reduce unexplained variation significantly in aggregate, whilst 
only providing a limited improvement in individual flow prediction. The flows to the city 
centre were described better using these extended production constrained models, but 
flows to small centres near residential areas were still erratic. 

Table 10.6 Deviance measures for the extended 
models specified by Guy (1987) 

Model Deviance DF Change in deviance Change in DF 

1 271,900 1,244    

5 66,280 1,238 205,620 6 

6 33,250 1,224 33,030 14 

7 26,850 1,210 6,400 14 

Notes: Model 1: null model 
Model 5: unconstrained model (model 2) plus four extra variables 
Model 6: origin-constrained model (model 3) plus four extra variables 
Model 7: origin-constrained, origin-specific model (model 4) plus four extra variables 

These examples illustrate the basic approach to spatial interaction modelling using 
generalised linear models. They have shown that it is relatively easy to specify and test a 
variety of different types of interaction model, yielding measures for aggregate fit which 
are significant. However, Guy notes that the prediction of individual flows tends to be 
poor. Indeed, even the incorporation of effects to represent competing destinations (as 
suggested in Fotheringham 1983, 1985) does not produce a marked improvement in 
performance. Ironically, Guy’s results are at variance with those obtained by 
Fotheringham, suggesting the need for further research in this area. 
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10.2.4 A historical example of Poisson regression 

A second example of the use of the Poisson regression model for analysing flow data 
comes from a paper on migration fields by Lovett et al. (1985). This paper is concerned 
with illustrating some of the conditions affecting in-migration to a pre-industrial city: 
Edinburgh in the seventeenth and eighteenth centuries. 

Historical research appears to indicate that in-migration was a major factor in 
maintaining the sizes of many pre-industrial towns and cities at times when levels of 
urban mortality were high (Patten 1976; Agnew and Cox 1980; Holm an 1980). 
However, in spite of this, Lovett et al. suggest that relatively little is known about the 
factors which generate and shape in-migration flows at this time. In particular, they note 
that many existing studies: 

1 appear only to focus on individual towns or cities for short periods of time, thus failing 
to capture the essentially dynamic nature of migration; 

2 have tended to examine the source areas for the migration streams at coarse or 
generalised spatial scales; 

3 have failed to model sufficiently the socio-economic and cultural factors which are 
known to be involved (for a detailed examination of these factors in the case of Gaelic 
speakers in Scotland, see Withers 1981, 1984). 

Indeed, many studies merely present the flows between areas as percentages of the total 
amount of movement in a specified period, thus ignoring their essentially nominal 
character. 

Poisson regression was considered to be a viable descriptive tool in this context 
because it provides a means of handling counts, many of which are likely to be very 
small or zero, whilst also linking the observed patterns of movement with possible 
explanatory variables. The data for the study came from four sources: 

1 The apprenticeship records for Edinburgh published by the Scottish Record Society 
provided the observed flows (they contain information on the name of the apprentice, 
his father’s name, his father’s occupation and domicile, the name and trade of the 
master, and the date of entry). 

2 Hearth tax returns for 1691 (population data for the late seventeenth century). 
3 Webster’s Census for 1755 based on parish clergy (population data for mid-eighteenth 

century). 
4 1801 Population Census (population information for late eighteenth century). 

By linking the information in these together, Lovett et al. were able to analyse 
movements out of thirty-three counties and eighty-four burghs for three temporal cross-
sections: 1675–99, 1725–49, 1775–99. (For further details, and a discussion of some of 
the problems of these data sets, see the ‘Data and Hypotheses’ section of their paper.) 

The initial analysis of the county-based data focused on regressing the number of 
flows against the natural logarithms of population size and distance from Edinburgh. The 
results of this are presented in Table 10.7. Though the overall fits of the model are good, 
the structure of the residuals indicated that further explanatory information could be 
included. After some experimentation, they included the following:  

1 A measure of urbanisation in each area of origin. 
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2 A categorical measure which they term a sectoral classification, to represent the 
orientation of each county with respect to Edinburgh. 

3 A series of three origin-specific variables which allow the effects of distance, 
urbanisation and population variables to be assessed by sector. 

Table 10.7 Deviance measures for the initial 
analyses of Edinburgh in-migration 

Model Deviance DF Change in deviance Change in DF 

1675–99 

null 1,154.0 17    

+LD+LP 201.6 15 952.4 2 

1125–49 

null 938.8 32    

+LD+LP 103.8 30 835.0 2 

1775–99 

null 1,350.0 32    

+LD+LP 159.2 30 1,190.8 2 

Notes: LD=natural logarithm of distance 
LP=natural logarithm of population  

The number of observations is reduced to 18 for the 1675–99 cross-section because of a lack of 
data for the Highlands and the south-west of Scotland 

The results of these extended models are presented in Table 10.8. The number of 
observations is reduced to eighteen for the 1675–99 cross-section because of a lack of 
data for the Highlands and the south-west of Scotland. 

Based on these findings, and supplemented by the analysis of burghs, Lovett et al. 
concluded that in each time cross-section, origins in the southern sector (that is, in the 
origins located near the English border) had the highest levels of apprenticeship out-
migration to Edinburgh relative to their population, distance and urbanisation conditions, 
whilst, in the west, the opposite held. They also noted that the migration field of the city 
contracted with time as alternative competing and intervening opportunities (for example, 
Glasgow, Tayside counties) developed. This contraction was not uniform either spatially 
or through time. They concluded: 

Distance from the capital and the population of centres of origin were 
important variables in explaining levels of migration but the city’s 
migration field contained clearly-defined flows from particular areas even 
after the effects of distance and population had been allowed for. 

(Lovett et al. 1985:330) 
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Table 10.8 Deviance measures for the extended 
analyses of Edinburgh inmigration 

Model Deviance DF Change in deviance Change in DF 

1675–99 

null 1,154.0 17    

+LD+LP 201.6 15 952.4 2 

+U 110.5 14 91.1 1 

+S 37.1 12 73.4 2 

+S.LP 28.3 10 8.8 2 

+S.U 23.3 8 5.0 2 

+S.LD 12.3 6 11.0 2 

1725–49 

null 938.8 32    

+LD+LP 103.8 30 835.0 2 

+U 91.9 29 11.9 1 

+S 59.4 27 37.0 2 

+S.LD 44.2 25 15.2 2 

+S.LP 35.9 23 8.3 2 

+S.U 22.6 21 13.3 2 

1775–99 

null 1,350.0 32     

+LD+LP 159.2 30 1,190.8 2 

+U 91.9 29 67.3 1 

+S 80.5 27 11.4 2 

+S.LD 51.8 25 28.7 2 

+S.LP 43.1 23 8.7 2 

+S.U 32.6 21 10.5 2 

Notes: LD=natural logarithm of distance 
LP=natural logarithm of population 
U=urbanisation variable 
S=sectoral variable 

The number of observations is reduced to 18 for the 1675–99 cross-section because of a lack of 
data for the Highlands and the south-west of Scotland 
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They also noted that many of these flows persisted through time, but were influenced by 
evolutional changes in the migration field as alternative destinations emerged, or as 
economic prospects in many former areas of origin made out-migration less necessary. 

10.2.5 Quasi-likelihood and pseudo-likelihood models 

The two examples given in the last two subsections show that a statistical treatment of 
flow data is possible, providing researchers with a flexible modelling and inferential 
strategy. However, before these inferences may be considered valid, it is necessary to 
ensure that the assumptions of the Poisson regression model are relevant to the social or 
environmental context being modelled (for an account of these assumptions, see Chapter 
5, section 5.5). One simple example illustrates the general point. In a Poisson distribution, 
the mean and variance values are identical. If, however, the flows in a model designed to 
describe shopping behaviour were measured as expenditures, then these are clearly: 

not counts of independent outcomes as would be appropriate for a Poisson 
model. Indeed, far from having an expected value of unity, the 
mean/variance ratio would depend upon the arbitrary decision of what 
monetary units to use in measuring expenditure. 

(Davies and Guy 1987) 

In their paper, Davies and Guy discuss various ways of generalising the Poisson 
distribution to account for anticipated departures from its underlying assumptions. Two 
departures are most likely: 

1 extra-variation: a departure which occurs because relevant explanatory variables have 
been omitted from the linear predictor (see also Kennedy 1979: Chapter 5); 

2 temporal dependence: a departure which arises because shopping trips in any given 
period are likely to be interrelated. 

The latter reflects consumer behaviour and will vary from product to product. However, 
it seems fair to assume that for many types of product, particularly those described by 
shopping models, consumption will decrease if stocks are already high. The numbers and 
types of shopping flows experienced at the end of a monitoring period will thus not be 
independent of those preceding them. Both may be accommodated by generalising the 
Poisson, producing via two alternative routes the negative binomial distribution (see 
Chapter 5, section 5.7.1). 

The specification and estimation of a negative binomial spatial interaction model is 
relatively easy in GLIM if the model being applied is unconstrained. Unfortunately, the 
application of constraints, either to the origin, destination, or both, considerably increases 
complexity if the model is not Poisson, because the constraints must be modelled 
explicitly. Davies and Guy note that this modification is too complex for specification 
within GLIM or other commercial packages, and would require researchers to resort to 
special-purpose software such as provided by the NAG or Harwell subroutine libraries. 
Moreover, as the negative binomial model does not ensure consistent parameter 
estimation if the data are not negative binomial in the first place, it is unlikely that even 
this procedure would resolve the problem satisfactorily. 
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The approaches they suggest as suitable alternatives are to estimate Poisson regression 
models under quasi-likelihood and pseudo-likelihood conditions. The quasi-likelihood 
approach was introduced in Chapter 6 to illustrate how robust estimators could be 
generated from the first two moments of a distribution. Thus, instead of assuming full 
knowledge of the shape of a sampling distribution (as is required in full likelihood 
estimation), the researchers can simply employ their more limited knowledge to yield 
estimators which are at least as good as those obtained under the full model. Indeed, as 
was described in Chapter 6, the maximum likelihood parameter estimates and the 
maximum quasi-likelihood parameter estimates are identical. However, the standard 
errors of parameters are different, though related. 

Pseudo-likelihood differs from conventional likelihood and quasi-likelihood in that it 
does not impose the restriction that the underlying model being specified is correct 
(White 1982; Gourieroux et al. 1984). This means that it can provide for the estimation of 
a wider range of misspecified Poisson regression models than either of the alternatives. 
The characteristics of this approach are still in development and there are comparatively 
few empirical examples of its use in geography. However, it can be shown from theory 
that the consistency of the parameters of a Poisson regression model only requires that 
the mean is correct. Nothing further is required in order to generate acceptable point 
estimates of population parameters. As a result, the parameter estimates from full 
likelihood, quasi-likelihood and pseudo-likelihood Poisson regression models will be the 
same. However, the standard errors of these parameters will be different because these 
are sensitive to misspecifications. Baxter (1983) and Davies (1987) suggest some ways of 
calculating robust estimates of these standard errors, and indicate that, in general, 
standard errors from misspecified full-likelihood and quasi-likelihood models will be 
potentially unreliable. 

10.2.6 Summary 

The advantages of the Poisson models of spatial interaction may be summarised as 
follows: 

1 They provide greater flexibility in model specification than is generally available using 
traditional models or percentage flows. 

2 They allow standard diagnostic tests for model specification and assessment to be 
applied. 

3 They provide a mechanism for extending the basic set of origin and destination 
variables allowing context-specific variables to be included in the model. 

4 By being specified in a form capable of estimation in GLIM, they benefit from the 
efficiency of the program’s maximum likelihood algorithm. 

These advantages significantly assist researchers interested in the analysis of flow data 
who previously were forced to use ad hoc, special-purpose software, which frequently 
failed to provide fully acceptable estimates of model parameters. In addition, by 
providing a statistical treatment of an area of quantitative research traditionally the 
preserve of mathematical models, the Poisson regression generalised linear model offers 
a method of integrating two areas of activity which have frequently been considered to be 
distinct, if not independent. 
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However, though a useful advance on previous experience, the computational 
complexity of estimating misspecified constrained spatial interaction models still remains 
a major obstacle. Research is still needed to investigate further the areas of pseudo-
likelihood estimation, robust estimation in the face of misspecification, and model 
generalisation. 

10.3 EXPERIMENTAL DESIGNS AND DESIGNED 
EXPERIMENTS 

Many of the most significant developments in the theory of statistics have been 
associated with work on designed experiments. The object of experimental designs is to 
provide a testing ground for complex hypotheses which is as controlled as possible. There 
are many such designs which differ in their complexity and the degree of control they 
aim to apply. Though their use is relatively uncommon in geography, particularly in 
human geography, interest does appear to be increasing as a result of their application to 
models of consumer choice. A number of recent articles have incorporated some form of 
experimental design in their analysis, for example, Timmermans (1980), Wrigley (1980), 
Longley and Wrigley (1984), Bates (1986) and O’Brien (1987a). 

10.3.1 Some terminology 

In any experimental design attention focuses on how some subject responds to a variety 
of alternative stimuli or treatments, one of which may be a control or placebo. The object 
of the design is to see if the response pattern is random or systematic, and if the latter, to 
identify possible reasons for it. By organising the nature of the experiment, researchers 
aim to eliminate, or otherwise standardise, the many factors other than the stimulus which 
may influence the response pattern. 

The simplest experimental design is the completely randomised design (Chatfield 
1983) in which subjects are allocated to experimental groups completely at random. An 
example of this is the double blind experiment used in clinical trials of a drug or a 
treatment, in which neither the subjects nor the experimenters who are in day-to-day 
charge of the experiment know who is receiving what. More complex designs can be 
produced by blocking the subjects into discrete, non-overlapping experimental blocks in 
which the treatments are allocated at random. Examples of this are the Latin Square, 
Graeco-Square and their variants. (For an illustration of the use of a Latin Square in 
assessing traffic flow at various sites in a city over a seven-day period, see Haggett 
1975.) 

Printout 10.2 Transcription of Cormack’s analysis 
of capture-recapture data 

£r *glim 

$UNITS 32 

$DATA N 
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$READ 

1 0 5 1 0 1 2 5 0 4 2 7 4 2 1 19 

1 1 0 3 0 2 0 9 9 4 1 13 10 13 21 100 

$CALC A=%GL(2, 1)−1: B=%GL(2, 2)−1: C=%GL(2, 4)−1 

$CALCD=%GL(2, 8)−1: E=%GL(2, 16)−1 

$CALC W=1 

$CALC AB=A*B: BC=B*C: CD=C*D: DE=D*E 

$CALC B3=AB*C: B4=B3*D: D2=DE*C: D1=D2*B 

$CALC PBD=B+C+D: PB=PBD+E: PD=PBD+A 

$EDIT 32 W 0 

$LOOK N A B C D E$ 

——LIST TRUNCATED 

  N A B C D E 

1 1.000 0.0 0.0 0.0 0.0 0.0 

2 0.0 1.000 0.0 0.0 0.0 0.0 

3 5.000 0.0 1.000 0.0 0.0 0.0 

4 1.000 1.000 1.000 0.0 0.0 0.0 

5 0.0 0.0 0.0 1.000 0.0 0.0 

6 1.000 1.000 0.0 1.000 0.0 0.0 

7 2.000 0.0 1.000 1.000 0.0 0.0 

8 5.000 1.000 1.000 1.000 0.0 0.0 

9 0.0 0.0 0.0 0.0 1.000 0.0 

10 4.000 1.000 0.0 0.0 1.000 0.0 

11 2.000 0.0 1.000 0.0 1.000 0.0 

12 7.000 1.000 1.000 0.0 1.000 0.0 

$YVAR N 

$ERR P 

$WEIGHT W 

$FITS 

SCALED         

CYCLE DEVIANCE DF         

5 181.5 30         
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$FIT A+B+C+D+E$ 

SCALED         

CYCLE DEVIANCE DF         

4 67.27 25         

$FIT+AB+B3+B4$ 

SCALED         

CYCLE DEVIANCE DF         

5 56.83 22         

$FIT+DE+D1+D2$ 

SCALED         

CYCLE DEVIANCE DF         

4 37.07 19         

$FIT+AB+BC+CD+DE$ 

SCALED         

CYCLE DEVIANCE DF         

4 36.88 17         

$D ER$ 

  ESTIMATE S.E. PARAMETER 

1 0.7109E−01 0.4111 %GM 

2 0.7696E−01 0.2775 A 

3 −0.1839 0.4411 B 

4 −0.2076 0.5843 C 

5 0.8060 0.4408 D 

6 0.6454E−01 0.3592 E 

7 1.022 0.4924 AB 

8 1.317 0.8284 B3 

9 −0.3109E−01 0.6831 B4 

10 0.6663 0.4927 DE 

11 1.008 0.7315 D1 

12 0.7464 0.5726 D2 

13 −0.1824 0.7860 BC 

14 0.2564 0.7088 CD 
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SCALE PARAMETER TAKEN AS 1.000         

UNIT OBSERVED FITTED RESIDUAL 

1 1 1.074 −0.7111E−01 

2 0 1.160 −1.077 

3 5 0.8933 4.345 

4 1 2.680 −1.026 

5 0 0.8724 −0.9340 

6 1 0.9422 0.5959E−01 

7 2 0.6048 1.794 

8 5 6.774 −0.6817 

9 0 2.404 −1.550 

10 4 2.596 0.8713 

11 2 2.000 −0.6651 E−04 

12 7 6.000 0.4082 

13 4 2.524 0.9290 

14 2 2.726 −0.4397 

15 1 1.750 −0.5669 

16 19 19:00 0.4157E−05 

17 1 1.145 −0.1357 

18 1 1.237 −0.2130 

19 0 0.9529 −0.9762 

20 3 2.859 0.8365E−01 

21 0 0.9305 −0.9646 

22 2 1.005 0.9926 

23 0 0.6452 −0.8032 

24 9 7.226 0.6600 

25 9 4.993 1.793 

26 4 5.392 −0.5995 

27 1 4.154 −1.548 

28 13 12.46 0.1525 

29 10 11.06 −0.3181 

30 13 11.94 0.3061 

31 21 21.00 0.4370E−05 
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32 100 228.0 0.0 

$STOP$ 

Note: Commands prefixed by £ are operating system commands 
Commands prefixed by $ are GLIM commands 

More complex than these blocked designs are factorial designs in which several different 
types of treatment, rather than alternatives of a single treatment, are analysed 
simultaneously. These designs may be either balanced or unbalanced, depending on 
whether every possible treatment type is applied to each subject. For a detailed account of 
the literature and methodology of experimental designs see, among others, Cochran and 
Cox (1957), Anderson and Bancroft (1952), John (1971) and Namboodiri et al. (1975). 

Many of the ideas present within the experimental design literature may be 
manipulated to accommodate research problems in the social and environmental sciences. 
Some of these procedures may be of value to the geographer. One design which is 
potentially valuable, particularly to biogeographers, accommodates the Jolly-Seber 
models of birth and death for capture-recapture experiments in environmental 
populations. 

10.3.2 Capture-recapture experiments 

Capture-recapture experiments are frequently used in studies of biological populations 
when an assessment of their size or characteristics is required. The methodology involves 
capturing samples of animals at two time periods and comparing their characteristics. The 
differences between the two samples may be used to assess characteristics in the whole 
population. Many of the procedures which are used in these experiments are based on 
generalised linear models and so may be fitted to experimental data using GLIM. For a 
discussion of the mathematics of capture-recapture experiments, see Bishop et al. (1975). 

Fienberg (1972) and Cormack (1981) show that it is possible to use log-linear models 
to analyse capture-recapture experiments applied to both open and closed populations, 
incorporating parameters to reflect the effects of births, deaths and migration. An 
example of how GLIM may be used for this type of analysis is given by Cormack (1980). 
The raw data are taken from a study by Manly and Parr (1968) and consist of the 
complete capture histories of all animals seen during a time interval, recorded as a 25 
factorial design. A transcript of part of Cormack’s analysis is presented in Printout 10.2. 

The models applied to the Manly-Parr data are set up in the standard way for log-
linear models, with $YVAR being set to the observed cell count, and a Poisson process-
logarithmic link function being selected for the expected cell frequencies. However, a 
number of differences exist because the biological nature of the experiment prohibits the 
fitting of hierarchical effects. The main effect of this is that the variables are not defined 
as factors, but instead are generated as a series of binary vectors. 

In analysing these data, a closed population is represented by a log-linear model 
containing only the main effects terms (%GM+A+B+C+D+E), whereas death and birth 
between two time periods are represented by appropriate two-way interactions. The 
models for a closed population, for birth and death, and for ‘trap dependence’ are 
summarised in Table 10.9. On the basis of the deviance statistics, Cormack suggests that 

Some extensions and specialised topics         307



birth and death effects are both significant, but that trap dependence between successive 
periods is not. By looking in more detail at the standardised residuals from this model, 
further reductions in deviance are obtained, encouraging Cormack to suggest that 
temporary emigration of one of the species in the study had taken place between the first 
and second sampling periods. 

Table 10.9 Analysis of deviance for Manly-Parr 
capture-recapture data 

Model Deviance DF Change in deviance Change in DF 

%GM 181.5 30    

Closed population 67.3 25 114.2 5 

Birth 56.8 22 10.5 3 

Death 37.1 19 19.7 3 

Trap dependence 36.9 17 0.2 2 

10.4 DISCRETE CHOICE MODELS 

10.4.1 Choice and preference 

The analysis of choice and preference behaviour is commonplace in several social 
science disciplines. In economics, for example, the notion of utility is used to determine 
why a rational consumer chooses one product rather than another. Psychology also makes 
use of a similar idea in its study of preference behaviour. An individual is assumed to 
gain a greater degree of preference or benefit by choosing one state rather than another. 
In biology and pharmacology, the notion of a tolerance distribution is used to interpret 
results in which objects tend towards one state rather than another. 

Utility, preference and tolerance are implied in each of these situations as being 
properties or characteristics which goods or other phenomena may possess. At no time is 
a measurable object or phenomenon described. This being the case, it is important to 
realise that the behaviour of the subject is interpreted as if utility (preference, tolerance) 
actually existed. There is a clear circularity here between the observed response and the 
assumed cause of that response: a numerical measure may describe some empirical 
happening, the unobserved, but assumed, utility (preference, tolerance distribution) 
provides for its explanation. 

10.4.2 Extensive and intensive margins 

The model of choice which underlies the development of discrete choice models 
distinguishes between choices which are made at the extensive margin and those at the 
intensive margin. The reason for this distinction is that many commodities can only be 
chosen if they are consumed in their entirety as discrete ‘bundles’. For example, in the 

Introducing quantitative geography      308



‘choice’ of a mode of transport to get to work (school, shops, etc.) the alternatives 
available to the subject may be: 

1 walk; 
2 take the bus; 
3 take a taxi; 
4 go by car as a driver; 
5 go by car as a passenger. 

Though it is perfectly possible to make use of more than one of these modes in the same 
journey (for example, walk to the station, take a train, change on to the underground, take 
a taxi), each stage is accomplished by a single mode to the complete exclusion of the 
other alternatives. This sort of choice problem corresponds to the extensive margin, and 
is seen to be different from that facing a shopper who might purchase 1/2 lb, 1lb, or more 
than 1lb of butter. In this case, the commodity being selected, butter, is divisible; it may 
be consumed in varying amounts and not just as an ‘all-or-nothing’ decision. Hensher and 
Johnson (1981:12–13) note that the definition of the extensive margin is rather more 
complex than this, in that an individual may only consume a divisible commodity in 
bundles, hence perceiving it as discrete rather than continuous. For many social science 
problems it is perhaps feasible and reasonable to consider behaviour in terms of these 
‘all-or-nothing’ decisions. 

10.4.3 Some algebraic models of discrete choice 

Theoretical frameworks of individual choice based on a concept of random utility 
maximisation have been developed by, among others, Arrow (1951), Luce (1959), 
Lancaster (1966, 1971) and Rosen (1974). Many of these may be expressed as categorical 
regression models using the logit transformation (see McFadden 1974; Richards and Ben-
Akiva 1975; Hensher and Johnson 1981; Ben-Akiva and Lerman 1985; Wrigley 1985; 
and Train 1986 for further details). In this format, the model imposes highly restrictive 
assumptions on decision processes and has been found to be quite inappropriate for many 
apparent choice problems. Computationally tractable models capable of representing less 
restrictive formulations of discrete choice may be based on the probit transformation 
(Daganzo et al. 1977; Hausman and Wise 1978; Daganzo 1979; Manski and McFadden 
1981), or alternatively, on a series of ‘half-way houses’ lying somewhere between logit 
and probit: 

1 nested (structured or hierarchical) logit (Sobel 1980); 
2 dogit (Gaudry and Degenais 1979; Gaudry 1980); 
3 generalised extreme value logit (Manski 1981); 
4 cross-correlated logit (Williams and Ortuzar 1982); 
5 weight-shifting models (Meyer and Eagle 1981). 

It is important to remember that when developed in the framework of random utility 
maximisation, these choice models represent particularly specialised versions of their 
statistical counterparts which were described in Chapter 9. 

GLIM may be used to fit a number of these discrete choice models. However, for the 
avid user, specialised packages such as BLOGIT and QUAIL are likely to be of more 
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value. This is because they can cope with multi-way choice problems, whereas GLIM is 
essentially limited to binary choice (except through its use of special macros), and are 
more amenable to the specification of complex decision rules. 

10.4.4 Some fundamental difficulties 

Apart from these computational difficulties, there are a number of major conceptual 
problems with the use of random utility maximisation discrete choice models. These may 
be divided neatly into areas of substantive difficulty within the accepted discrete choice 
methodology, and areas of conflict with this methodology. The former are in many ways 
technical issues which may be amenable to a technical solution, for example, the 
selection of the members of the choice set, classification, sampling and measurement 
problems. However, the latter strike at the heart of the current discrete choice 
methodology, in that they question the behavioural postulates underlying the use of the 
models. For further details of these issues, see Deaton and Muellbauer (1980) and 
Blundell (1988). 

10.5 CONCLUSIONS 

The aim of this chapter has been to show how some of the statistical models now 
available to assist geographers tackle numerical problems involving mixtures of 
categorical and continuous data may be extended or developed into highly specialised 
uses. It is not implied that all of these methods will be relevant to all geographers all of 
the time, but there may be situations where some geographers may find some of these 
methods helpful. 

Methods such as Poisson regression are simply extensions of common linear 
regression ideas, which are found to be useful under certain distributional conditions. The 
use of such models does not imply a major commitment to a particular style of modelling 
or view of the world. Specialist developments such as experimental design models and 
discrete choice models are very different. In both approaches a considerable body of 
philosophical and theoretical argument is invoked, even if the invocation is implicit. This 
is certainly the case in the context of the designed experiment which has fostered a 
particular view of scientific practice that is still widely and usefully held. Discrete choice 
models, on the other hand, represent an explicit attachment to a particular view of 
individual decision-making. This view, given appropriate modification to make naïve 
models more ‘realistic’, supports a variety of mathematical formulations of random utility 
maximisation. However, the very success of this view in certain areas of social research 
and engineering should not obscure the fact that views diametrically opposed to random 
utility maximisation are held by many practitioners interested in the study of decision-
making. 
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11 
SUMMARY AND CONCLUSIONS 

11.1 INTRODUCTION 

The need to reassess quantitative geography has become only too apparent in recent years 
as the range of techniques and strategies to be covered has grown. The days of courses 
consisting mainly of descriptive measures, graphical devices, a number of non-parametric 
techniques for under-measured data, and culminating in correlation and regression have 
long past. New avenues of work have been established which have significant bearing on 
quantitative teaching. One of these is the modification of existing statistical techniques 
and procedures to spatial data. A second is the incorporation of categorical models given 
that geography is overflowing with such data. A third is the need to introduce the idea of 
robustness so that students are sensitive to the fragility of many statistical techniques. A 
fourth is the need to computerise quantitative training so that students have the technical 
apparatus and experience to work with the large data holdings stored in geographical 
information systems and continent-wide data bases. 

In order to keep abreast of these developments quantitative geography needs to be 
organised so that stress is placed on the development of a consistent approach to data 
handling rather than the documentation of a diverse list of techniques. Given the nature of 
the material, the latent hostility of students towards numbers, and the shortages of time, 
technical assistance and teaching support, this is frequently not possible unless topics are 
left out or a framework can be developed to provide a clearer focus. Nelder and 
Wedderburn’s class of generalised linear models provides the latter. 

This book has attempted to provide an introduction to this approach by presenting 
some of the key techniques in current use in generalised form. It has also attempted to 
link quantitative modelling back to data description because models are merely one way 
of summarising numerical data rather than some sort of pinnacle of quantitative 
achievement. However, generalised linear models do not solve all quantitative problems 
for the geographer. They are presented here as a way of making life easier for all 
concerned with quantitative geography; they are not a panacea for geographical 
problems. 

This chapter tries to draw some of the main themes of the book together by looking at 
three types of integration provided by generalised linear models and three types of 
limitation. 

11.2 HORIZONTAL INTEGRATION 

The main theme to be presented throughout this book is that many of the most important 
linear statistical models in use in geography are members of a common class. In Part II an 
attempt was made to show how the class of generalised linear models could be used to 
specify five major linear statistical models: the linear regression model for Normally-
distributed continuous data; the analysis of variance model for Normally-distributed 



categorised data; the log-linear model for contingency table data; and the logit and probit 
models for proportions data. Each of these models has been described in the quantitative 
literature of different academic disciplines for many years, sometimes being reinvented 
afresh several times. This has resulted in the generation of a body of quantitative 
literature which is highly repetitive and sometimes conflicting in the advice it provides. 
The most significant drawback, however, is that versions of the same model appear in 
several disciplines but the fact that the models are identical is lost behind numerous 
differences in notation and terminology. In nearly all cases these differences are 
superficial and obscure the learning process. 

The problem for the geographer, student and quantitative methods teacher alike, is that 
an increasing number of geographical research papers have been published since the mid-
1970s which make use of all of these models. Some of the categorical models have also 
become core analytical tools in certain areas of geography, for example, in the study of 
transport and intra-urban mobility. In these areas, these are the normal tools of research 
rather than the exceptions. 

A popular approach which attempts to link all five models is the ‘didactic tableau’ 
(Figure 11.1). In this design the traditional models of quantitative geography courses—
linear regression, dummy variable linear regression and the analysis of variance—are 
displayed along the first row as cells (a), (b) and (c) respectively. These three models are 
distinguished by the form of their explanatory variables, i.e., though each of these models 
possesses a continuously-distributed response variable, they differ in the character of 
their explanatory variables. Cell (a) is described by continuous explanatory variables, cell 
(c) by categorical explanatory variables, and cell (b) by a mixture of both. This idea, 
applied to the second row, provides a way of linking the categorical models (generally 
unfamiliar to most geographers) with the traditional models. Thus the probit model is 
allocated to cells (d)  

 

Figure 11.1 Didactic tableau 
Source: Adapted from O’Brien and Wrigley (1980). 

and (e), the logit model to cells (d), (e) and (f), and the log-linear model to cells (f) and 
(g). Cell (f) represents a ‘zone of transition’ in that log-linear models, suitably re-
expressed, and logit models may both be used to tackle asymmetric contingency table 
problems. The reason for this is that the log-linear model may be reformulated to mirror 
the performance of the logit model (Haberman 1974a; Bishop et al. 1975). 

Introducing quantitative geography      312



The principal advantage of this type of display is that it builds on information on 
regression and the analysis of variance which many geographers should already have 
acquired from introductory quantitative methods courses. Second, the distinctions 
between response and explanatory variables and categorical and continuous scales of 
measurement seem simple and straightforward. Unfortunately, these ‘strengths’ are also 
potential weaknesses because: 

1 many geographers do not have a sufficient grasp of linear regression and the analysis of 
variance to use them as building blocks; 

2 the distinction between response and explanatory variables is often not easy to make 
and, indeed, may be artificial (Plackett 1974); 

3 no attempt is made in the tableau to find similarities between the five models other than 
at a surface level; and 

4 the models are still presented as five distinct and separate topics, each with its own 
notation, intellectual heritage, and modus operandi. 

In effect, the use of the tableau to present these five models may generate considerable 
additional work without any real increase in knowledge being acquired. Moreover, if the 
preparatory work on regression has not been established in an introductory course, the 
whole design becomes unintelligible. 

Nelder and Wedderburn’s class of generalised linear models offers an alternative 
framework which should make life easier for all concerned. Though not developed 
specifically to provide a framework for teaching, its very design makes it particularly 
suitable for this task. The core equation of the class:  

yi=g−1(∑βkXik)+εi 
(11.1) 

provides a structure which is simple to learn, and which can be considerably modified to 
represent many types of dependency and inter-dependency relationship, and many 
different types of measurement. In this equation the nature of the components are not 
determined prior to analysis. If the problem calls for it X may be treated as an 
independent variable matrix composed of fixed components and β as a vector of 
Normally-distributed random errors. Set like this, the equation represents the standard 
format of a least squares linear regression model. Alternatively, X may be treated as a 
design matrix composed of ones or zeros, producing a factorial structure typical of the 
log-linear model. In this context, ε is not defined explicitly, nor are distributional 
assumptions normally applied to it. Between these two formulations of X (essentially 
equivalent to specifying the problems of cells (a) and (g)) lies a range of alternatives 
which allow the remaining models in Figure 11.1 to be specified. 

The key advantage of this form of presentation is that categorical and continuous 
statistical models may be specified within the confines of a single equation. As a result 
historical differences in notation, derivation, mode of inference and estimation may be 
ignored as the generalised core relationship provides the necessary tools to specify each. 
The result therefore is a considerable horizontal integration of the five models which 
offers the geographer a better basis for handling the diversities of geographical data sets. 
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11.3 VERTICAL INTEGRATION 

In addition to horizontal integration, the class of generalised linear models may be 
integrated vertically. This means that the experience of modelling may be linked 
backwards towards the simple descriptive summary measures which are key components 
of introductory quantitative methods courses. One of the most frequent drawbacks to 
quantitative teaching in geography is that different people are responsible for the teaching 
of introductory courses and the more advanced modelling courses. As a result, there is 
often little direct overlap between the two experiences and geographers find themselves 
having to bridge an intellectual gap between description and modelling. 

The main theme of Part I was to show how models could be introduced as extensions 
of simple descriptive techniques. These were shown to be of value if the relationships in 
the data are extremely straightforward (e.g., the six-times table) or are difficult to 
describe. Skew and multimodal data are obvious examples of ‘difficult’ data types which 
are frequently met in geography. In analysing these, attention must be paid to the form of 
the data set, to its shape and the relative magnitude of its observations, as these may 
severely affect the performance of measures. Simple summary measures such as the 
mean, median, standard deviation and variance are all affected by such data. Robust 
measures provide some help, at least in identifying the severity of the confounding. 
However, they do not provide a fully complete answer. Models may be able to do better. 

Models and summary measures may thus be presented as merely two positions along 
the same dimension of data description. Knowledge of this fact may help geographers to 
see how the two topics fit together. Another feature which should be noted is that most of 
the models which are typically used by geographers are based on the comparison of 
mean-variance relationships. Attention is paid in particular to comparing variability 
within specific variables with that between variables. This idea was illustrated by all the 
examples in Part II, but was introduced originally in the extended examination of the data 
in Table 4.1. A preliminary analysis of data (not model-based) also brings out the need to 
look at variability between and within variables. 

There is a third and rather more technical sense in which generalised linear models 
and data description may be integrated vertically. This concerns the ability to produce 
estimates of the parameters of generalised models. In the traditional descriptions of these 
models assumptions are usually made about an underlying probability process (e.g., 
normality for the regression model, Poisson for log-linear models, etc.) in order to obtain 
acceptable estimates of their parameters. One of the main features of Nelder and 
Wedderburn’s work which allows the class to be developed is the fact that the key 
properties of its parameters depend less on the assumption of a specific underlying 
probability distribution than on the form of the mean-variance relationship and on a lack 
of correlation in the error component. Both of these topics are usually presented in 
introductory courses and it is not difficult to see that they may be used to bring the realms 
of simple description and modelling closer together. In other words, when students are 
being instructed in handling data particular attention is placed on mean-variance 
relationships through the use of numerical summaries and graphics. When attention 
moves on to consider models, the key features which still need to be studied are mean-
variance relationships and the character of the error component. The link between the two 
topics is thus very clear. 
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11.4 COMPUTATIONAL INTEGRATION 

The final point presented in the previous section is also relevant here because it provides 
the focus for the computational integration provided by generalised linear models. In a 
traditional quantitative geography course a major factor limiting what can be done is the 
availability of computer software. The choice is further complicated by the need to ensure 
that relatively little time will be spent learning to compute or, if the software is 
commercial, make the package work. A much more valuable experience is gained if the 
bulk of the computing time is spent applying models to data and assessing their 
performance. 

There are many commercial packages on the market which can support quantitative 
geography. Many of these are organised in modules, each of which corresponds to a 
specific technique. In this design the user calls up whichever module is required to 
perform a specific type of analysis. The advantage of this is that only those modules 
which are to be used need to be considered in detail. Problems can occur, however, if 
several modules are to be used which have different command languages, as the task of 
learning the idiosyncracies of individual modules is clearly inefficient. More seriously, if 
the data cannot easily be swapped between different modules, comparative analysis is 
made very difficult. The problem is compounded if the analytical module required for 
comparison is not part of the package and there are no facilities to interface home-made 
software. 

These problems are encountered with many of the popular social science packages in 
everyday use in the UK and USA. Packages such as MINITAB, SPSSx and BMDP 
provide a variable range of modelling options, but are very different in their ease of use. 
This leads to a common (and unhealthy) reaction: the tendency for many geographers to 
stick rigidly to a package they have ‘cracked’. Unfortunately, though this may minimise 
the problems mentioned previously, it means that they limit themselves only to 
conducting analyses which are supported by their favoured package. 

This reaction illustrates the tension which exists between the need to provide a 
computing environment which is easy to learn and one which is flexible, allowing 
geographers to experiment with standard analytical alternatives and ones they have 
devised for themselves. A user-friendly package containing standard techniques may be 
of teaching value but of limited research value. On the other hand, a flexible computing 
environment which allows geographers to do virtually what they like may be little better 
than using a high-level computer language. For many geographers this alternative is a 
step in the wrong direction. 

Generalised linear models offer a solution to this computing problem which provides 
flexibility and a common command language. They can do this because maximum 
likelihood estimates of the parameters of any generalised linear model may be obtained 
using a single algorithm. There is thus no need to organise a computer package into 
distinct, unrelated, modules, or to develop a complex menu-driven command language to 
specify options. GLIM represents the most comprehensive attempt to provide a 
computationally integrated package for fitting members of the class. In this, a series of 
simple commands need to be specified before the package may fit models to data. The 
combination of a small number of commands determines which model from the class is 
fitted. By developing the package in this way users are offered the greatest modelling 
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flexibility possible. Once the data have been read in, any suitable member of the class 
may be fitted merely by selecting a different combination of commands. 

Details of model fitting in GLIM are presented throughout Part II and in Appendices 
A and C. In addition, it is also worth knowing that modifications have been made to 
GLIM to allow it to handle data description, the theme of Part I. These are not as 
advanced as those in packages such as MINITAB, but the development suggests that 
NAG is attempting to extend the appeal of the package into the lucrative social science 
market. 

11.5 LIMITATIONS 

The advantages offered by generalised linear models should not persuade geographers 
that there are no problems or limitations in their use. Geographical problems are 
sometimes especially difficult to handle statistically and require tailor-made techniques. 
As generalised linear models were not designed with geography in mind it is not 
surprising that they are of limited value for certain types of geographical data handling. 

There are three main areas of limitation which should be recognised: 

1 they are not a substitute for informed thought; 
2 they are not a substitute for exploratory data analysis; 
3 they are not a solution for all types of statistical problem. 

11.5.1 Informed thought 

It is tempting for geographers faced with a large and complex data set to let the computer 
package do the processing for them unaided. This temptation may be somewhat greater 
for users of generalised linear models because their design, and ready computation using 
GLIM, makes it possible to specify any number of different types of analysis with 
relative ease. There is thus a degree of risk involved in encouraging students to 
experiment with alternative types of modelling because they may use the package solely 
as a black box, i.e., producing a range of models which they cannot interpret. 

The black box strategy can be valuable in situations where the potential number of 
alternative models is excessively large and a systematic step-by-step specification would 
be tedious and time-consuming. In this approach the computer may be set to fit a wide 
range of different types of model, including or excluding specific variables, transforming 
some, altering the functional form of the relationship etc., and merely reports a range of 
fitness values at the end. These could then be used to root out alternatives which are 
undesirable on the basis of the calculated measure, allowing more time to examine in 
depth the subset of desirable and semi-desirable models. 

The main drawback with this idea, which is popular in some geographical information 
system circles, is that the summary measure may be of little value for describing the 
patterns and relationships in the data. This is simply a restatement of the problem 
associated with correlation in which identical summary values may be generated by 
wholly different types of data. In other words, the subset chosen for further analysis may 
contain a widely diverse selection of models even though they appear to share a common 
summary measure for goodness-of-fit. Given that time will have to be spent investigating 
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these in depth, it is arguable that the strategy is more comprehensive or time saving than 
the development of a final model from the preliminary analysis of the data. 

What generalised linear models provide is a framework for relating different variables 
in an algebraic model. Ideally, the composition of this model should reflect what is 
already known from other studies about the relationships between the variables. This is 
because some attempt should be made to check that the data either conform to existing 
knowledge or differ in some specific ways. A research strategy based on such prior 
information can avoid the black box approach entirely as an informed reading of the 
existing literature may provide the necessary starting points for the modelling. 

11.5.2 Exploratory data analysis 

A second limitation of data handling using generalised linear models is that they do not 
accommodate difficult data without intervention by the geographer. This problem is 
common to all computer systems, not just GLIM, as they are rarely programmed to 
provide checks on the validity of the data. 

All statistical models based on probability processes are designed to operate under 
specified conditions. These conditions are the assumptions underlying the model. For 
example, the behaviour of the regression model depends on the general validity of several 
different assumptions affecting the specification of the model, the magnitude of the data, 
and the characteristics of the random error term. These assumptions are made so that 
acceptable estimates of its parameters may be generated. For inferential purposes, it is 
also usual to assume that the error term has been drawn from a Normal distribution. If 
these assumptions are violated the model will behave suboptimally and the estimates will 
not be as good as they could be. 

The only way of checking the general validity of these assumptions in any given data 
set is to carry out a preliminary analysis of the data beforehand to get a ‘feel’ for its 
structure. Then, having fitted the model, other summary measures and graphical devices 
(e.g., Goldfeld-Quandt test, partial residual plots, etc.) may be generated to investigate 
specific departures from these assumptions. Generalised linear models are as prone to 
assumption violations as the original models and so therefore need to be checked. 

11.5.3 Statistical limitations 

The third set of limitations concerns the fact that generalised linear models are not wholly 
appropriate for certain types of modelling problem. Three main areas of difficulty exist: 

1 situations where models include non-linear parameters; 
2 situations where there is more than one error component; 
3 situations where mean-variance relationships are not constant or the observations are 

correlated. 

This does not mean that generalised linear models cannot be devised for these types of 
problem. Usually, they can, but the analysis is generally more complex. 

To illustrate this, consider the concept of linearity which is central to the development 
of this class of models. The term ‘linearity’ refers to the organisation of the linear 
predictor, i.e., to the structural form of the independent variables, co-variates and factors 
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in the model. It is based on a generalisation of the idea used in regression in which the 
model is said to be ‘linear-in-parameters’. Non-linearity therefore occurs when 
parameters are not linearly related to the linear predictor. 

The introduction of non-linear parameters complicates the fitting algorithm used to 
obtain parameter estimates for generalised linear models and may, if their effect is 
sufficiently severe, cause it to fail to converge. These difficulties may, however, be 
overcome if the non-linear parameters can be transformed or linearised in some way. 
Alternatively, if the value of the non-linear parameter is known before analysis or can be 
fixed to a given level, the model may still be fitted as though it were linear. McCullagh 
and Nelder (1983, Chapter 10) gives further details. 

11.6 THE FUTURE 

Generalised linear models are now well established within the statistics and social science 
literature. Many have come to recognise the value of their integrated and flexible 
framework, as well as the possibilities they offer for powerful data analyses. Geography, 
with its feet set firmly in the econometrics tradition, has yet to make the breakthrough. It 
is to be hoped that by using generalised linear modelling many geographers will gain a 
wider and more catholic understanding of the problems of data analysis and modelling. 
Such an appreciation is absolutely vital for geography because of the range of data types 
used in our work and the vast quantities of data which are available. The need for a solid 
grounding in a wider model of statistics teaching than is usually practised becomes all the 
more important as geographers develop geographical information systems. These bring 
together extensive data collections with map-making facilities and query languages. 
Without an understanding of where the data come from and how they relate both 
statistically and spatially the great potentials of these systems will not be realised. Spatial 
analysis requires flexible statistical analysis. Generalised linear models provide that 
flexibility. 
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APPENDIX A 
THE EXPONENTIAL FAMILY OF 
PROBABILITY DISTRIBUTIONS 

 

A.1 MEMBERS OF THE EXPONENTIAL 
FAMILY 

The justification for the development and presentation of many linear models as 
generalised linear models depends on theoretical findings from distribution theory. Many 
of the most commonly-used theoretical frequency distributions which underlie these 
models rely on probability processes which are themselves inter-related. It can be shown 
that the probability processes presented in this book are all members of a common 
family: the exponential family of probability distributions. Findings relevant to this 
family provide the inferential integration needed to develop GLIM. 

The exponential family has been studied for fifty years or more, being discussed in the 
writings of, among others, Fisher (1935), Darmois (1935), Koopman (1936), Pitman 
(1936) and Lehmann (1959). However, many of the practical advantages had to await the 
development and wider use of powerful computers, capable of providing robust 
numerical approximations. More recent treatments of the exponential family can be found 
in Barndorff-Nielsen (1978) and Andersen (1980). 

A.2 CHARACTERISTICS OF THE 
EXPONENTIAL FAMILY 

The exponential family of probability distributions is characterised by the following 
equation (after Dobson 1983): 

f(y;θ)=s(y)t(θ)e
a(0) b(0) 

(A.1) 

where 
a, b, s, t are known functions 



In this form, the probability function associated with discrete distributions, and the 
probability density function associated with continuous distributions, depends on only 
one paramater, θ. This may be made clearer by rewriting equation A.1 as: 

f(y;θ)=exp[a(y)b(θ)+c(θ)+d(y)]  
(A.2) 

where 
s(y)=exp d(y) 
t(θ)=exp c(θ) 
a(y) is assumed to equal y, a random observation on response variable Y 
The component b(θ) reflects the typical, or canonical, parameter of the distribution 

which distinguishes it from other members of the family. The three other components are 
treated as known nuisance parameters.  

It is relatively easy to re-express the traditional formulae for commonly-used 
probability distributions in exponential family form. For example, the Poisson formula is 

 (A.3) 

which becomes 
f(y;λ)=exp [ylogλ−λ−logy!]  

(A.4) 

on modification. The canonical parameter for this distribution in log λ. Similarly, the 
binomial and the Normal distributions: 

 
(A.5) 

 
(A.6) 

become 

(A.7) 

 (A.8) 

on modification. The canonical parameters of these distributions are 
n log(1−π) 

(A.9) 

and 
−½µ2/σ2−½ log (2πσ2)   

respectively. 
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A.3 MAXIMUM LIKELIHOOD ESTIMATION 

The procedure which is applied to the data to generate maximum likelihood estimates for 
their parameters varies if there is insufficient independent information in the raw data. 
Two situations may be identified depending on the nature of the data matrices: 

1 Analyses based on full rank matrices—a situation in which sufficient information 
exists. 

2 Analyses based on matrices which are less than full rank—a situation in which 
insufficient independent information exists. 

For analyses based on the former, the following relationships may be specified to permit 
estimation. First, the likelihood function with respect to β is obtained. Second, 
maximising for β produces the following equation: 

 
(A.10) 

whose solution is given by: 

 
(A.11) 

where  
A=(XT V−1 X), 
r=XT V−1 Z 

  

The components of these equations are respectively: 
X a full rank design matrix 
V −1 a diagonal matrix of iterative weights 
Zi a random variable whose expectation is η and whose variance is V 
The algebraic form of Zi indicates how the algorithm improves the accuracy of the 

estimation: 

 (A.12) 

This is equivalent to the minimisation of a weighted difference function. 
From existing theory it can be shown that the estimates produced at convergence are 

maximum likelihood estimates. These are justified asymptotically, which implies that 

 
(A.13) 

A complication arises if X is of less than full rank because then there is no unique 
solution to equation A.3. Instead of A.4 the generalised solution: 
β*=A−* r 

(A.14) 
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is written. In this A−* is any generalised inverse matrix of A. This means that several 
different types of matrix will provide possible solutions to equation A.14 (Holt 1979). In 
order to solve this equation therefore, some constraints need to be applied to reduce the 
solution space to a single point. Searle (1971) notes that a variety of systems of 
constraints exist which yield values of β which would be acceptable, and that in practice 
it is not clear which is to be preferred. Baker and Nelder (1978, Part 1:2) note: 

for statistical purposes the particular…(system)…chosen is irrelevant 
since, for example, , and thus , can be shown to be unique whichever 
value of β* we choose. [The] choice of a particular β* does not change the 
model we are fitting but merely determines our manner of expressing the 
linear structure. 

This raises an important issue: for non-full-rank models it is inadvisable to interpret the 
individual parameters from the model as they reflect the constraints used. Consequently, 
they will vary in value even though the estimates of and will be unaffected. Holt 
(1979) provides a convincing illustration of the issue using a common data set but 
different systems of constraints. The issue is also considered at length in Wrigley (1985). 

A data set which is of less than full rank can arise for two distinct reasons. On the one 
hand, it may occur because the sample size is too small to estimate all the parameters 
which could be applied. On the other, it could arise because the specification of the linear 
structure of the population is redundant whatever sample is selected. The former problem 
is termed extrinsic aliasing, the latter intrinsic aliasing. An illustration of the former is 
provided by a design matrix consisting of three variables, X1, X2, X3, in which X3 is a 
linear combination of the other two. Once X1 and X2 are known, it follows that X3 is also 
known. Of the three parameters which could be used to represent these, only two are 
actually needed. This suggests how a possible system of constraints could be developed:  

1 Use two parameters, setting the third to zero (a form of corner-weighting). 
2 Use some form of summation criterion which ensures that the sum of the three 

parameters is zero (a form of centre-weighting). 

GLIM employs the former system but sets the first parameter in each parameter effect to 
zero. All parameters are interpreted, if required, with respect to this anchor or bench-
mark parameter. 

The latter system, one version of which is called the usual constraints (Payne 1977), is 
used in many other programs, and is most readily met in the published literature, as it is 
based on the procedures used in the analysis of variance. Using this, parameters are 
interpreted with reference to the overall average of the expected cell frequencies, rather 
than an anchor cell. Consequently, it is no surprise to find that parameter estimates will 
differ depending on which system has been used. However, estimable functions based on 
them, for example odds-ratios, cross-product ratios, fitted values, will remain unaffected. 
This is because any solution to the estimating equations will correspond to the same 
unique maximum. 

Appendix A         322



APPENDIX B 
OTHER SOFTWARE FOR MODELLING 

AND GEOGRAPHICAL DATA ANALYSIS 

 

Throughout this book considerable attention has been given to the GLIM computer 
system for generalised linear models. Of all the many computer packages on the market, 
GLIM is perhaps the most suitable for a course in statistical analysis designed around the 
Nelder and Wedderburn approach. The principal relationships of this family of models lie 
at the core of GLIM and the command language has been designed to reinforce them. 

However, there are many other packages available which can be used instead of 
GLIM. Some of these emphasise an alternative approach to modelling (for example, the 
GENCAT package is based on a framework of generalised chi-square analysis), while 
others merely provide a selection of independent and semi-independent modules 
associated with a particular technique or family of techniques. 

Comparative reviews of some of these alternatives are provided in O’Brien and 
Wrigley (1980), Francis (1981) and Wetherill and Curram (1984, 1985). O’Brien (1986) 
provides some general information on the statistical software available for use with 
microcomputers. 

B.1 MINITAB 

A powerful computing package which is most suited to teaching uses and small data sets. 
Facilities exist for preliminary data analysis and data manipulation. Regression, analysis 
of variance and time-series analysis facilities are available. Categorical data facilities are 
limited. 

B.2 BMDP 

A general purpose statistics package designed initially for biomedical applications. 
Principally a batch-mode program, but can be used interactively. It accommodates user-
supplied FORTRAN routines. Its facilities for data management are relatively primitive. 



B.3 GENSTAT 

A flexible general purpose package which has many features of a high-level 
programming language. Comprehensive range of options to suit the series analyst, but is 
hampered by a terse manual. 

B.4 SAS 

An extremely powerful and comprehensive system of modules and procedures which can 
accommodate virtually any type of data. Performs a wide variety of types of analysis. Is 
principally of use for data management, statistical analysis and report writing. 

B.5 SPSSx 

The successor to SPSS. This is a powerful series of procedures designed to facilitate 
‘production’ analyses of survey data, rather than model fitting or exploration. SPSSx is 
widely available, and can be used with microcomputers. 

B.6 GENCAT 

A package designed to fit a comprehensive system of linear models based on the work of 
Grizzle et al. (1969). The package can handle all of the major linear statistical models in 
current geographical use but requires the user to supply the design matrices. This can be 
complex, see Wrigley (1980). 
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APPENDIX C 
A SUMMARY OF THE GLIM 3 

COMMAND LANGUAGE 

 

C.1 INTRODUCTION 

The following is a brief description of the command language used in GLIM 3, that is, 
the third release of the GLIM system. GLIM 3 was released in 1978 (see Baker and 
Nelder 1978 for details) and has since been significantly enhanced. Over one thousand 
copies of GLIM 3.12 have been installed world-wide on university and commercial 
computer systems. In 1986, NAG released GLIM 3.77, a substantially modified version 
of the system written in FORTRAN 77. In this, the range of facilities available has been 
considerably extended, particularly by the addition of new commands to allow GLIM 
data structures to be accessed from external FORTRAN command files, to allow 
preparatory and descriptive statistical analysis to be performed prior to the fitting of 
models, and to simplify many features of the otherwise terse command language. In 
addition, control over generated output has been improved with the addition of various 
facilities to adjust its style. Full details of GLIM 3.77 may be obtained in a significantly 
enlarged and structured manual (Payne 1986). Details of the command language are 
given in Baker et al. (1986:151–65) and Baker (1986:39–80). Details of incompatibilities 
between GLIM 3.12 and GLIM 3.77 are given in Baker (1986:3–4). 

C.2 COMMANDS 

The following is a list of the commands available for use in GLIM 3 based on the list 
supplied in Baker and Nelder (1978) and Baker et al. (1986). Items starred with an 
asterisk are additions to the GLIM 3.12 commands which are only available for use in 
GLIM 3.77. Most of these new commands are designed to extend the range of graphical 
and data exploration facilities within the system. 
COMMAND DESCRIPTION 

ACCURACY Sets the number of significant figures to be used with printed output (default is 4). 

ALIAS Alters which parameters are to be intrinsically aliased from the default 
configuration (this influences the interpretation of the parameter estimates). 
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ARGUMENT Assigns arguments to a macro. 

*ASSIGN Assigns a list of values to a vector. 

CALCULATE Allows the calculation of arithmetic expressions using, for example, simple 
operators, functions, and monodic functions. 

COMMENT Allows the insertion of comments into the program to aid interpretation. 
Comment lines are ignored in processing. 

CYCLE Controls the performance of the GLIM algorithm for model fitting. 

DATA Defines the labels to be used to describe variables in the current GLIM run. 

DELETE Deletes the values of specified variables. If the variable name has appeared in a 
DATA command, DELETE causes it to become undefined. 

DINPUT Allows the reading of data values from an external file. 

DISPLAY Displays a variety of types of output from a fitted model, e.g., parameter 
estimates and their standard errors. Output is directed by twelve options which 
are selected by letter. 

DUMMY This is actually a symbol (usually $) which is used to indicate the end of a 
previous statement. 

DUMP Causes the current state of the run to be written to an external file for future 
reference or re-use. 

ECHO A dummy switch which reverses its current state. It is used to print lines typed 
at a VDU or read in from an external file allowing you to check for 
inaccuracies. If ‘on’, an ECHO command sets printing ‘off’ (and vice versa). 

EDIT Allows the altering of one or more values within a vector. 

END Identifies the end of the current job. Control remains in GLIM for further 
analysis of a new job or a return to the operating system using STOP. 

ENDMAC Signifies the end of a macro. Control returns to the main GLIM program for 
further processing. 

ENVIRONMENT Provides information on the current state of the program. Output is governed by 
a set of options. 

ERROR Sets the error (probability) distribution to be used in the next model fit. Default 
options are available, as is a facility to generate your own, subject to certain 
restrictions. 

EXIT Allows premature termination of a macro (i.e., skipping over commands to the 
end). 

EXTRACT Copies the variance-covariance matrix and parameter estimates from the 
working matrix to system vectors. 

FACTOR Defines categorical variables (termed FACTORS) and their associated levels to 
be used within GLIM. 

FINISH An end-of-file marker used on secondary subfiles. 

FIT Causes GLIM to fit a statistical model to data using existing definitions of
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ERROR, YVARIABLE, LINK (or OWN), WEIGHT, OFFSET and SCALE. 

FORMAT Allows data items to be read into GLIM using FORTRAN formatting (fixed 
and free format available). 

*GRAPH Is used to produce graphical output. The exact function of this command 
depends on the computer installation. 

*GROUP Is used to categorise a continuous variable into discrete groupings, for plotting, 
description or analysis. 

HELP A dummy switch which reverses the current state of help messages after faults 
have been encountered. The quality of information returned (including 
suggestions for possible remedies) depends on existing state. 

*HISTOGRAM Allows the production of a histogram of specified variables. The format of the 
plot may be altered by options. 

INPUT Allows data and command lines to be read from an external file. 

*LAYOUT Like GRAPH, the function and format of this command depends on the computer 
installation. Usually used to control format of graphical plots. 

LINK Declares the link between η and µ in subsequent models. Eight standard options 
are available. 

LOOK Displays the current values of variables stored within GLIM. 

LSEED Invokes the local pseudo-random number generator (if attached). 

MACRO Defines a macro: a subset of commonly used, general purpose commands which 
need only be written once and are called as necessary. 

*MANUAL The exact function of this command depends on the installation. Its implied 
function is to print subsets of the current GLIM 3.77 manual. 

*MAP Is used to recode a range of data values on to specified values, e.g., midpoints, 
theoretically-defined minima and maxima. 

OFFSET Fixes the value of a variable to a prior value before analysis. 

OUTPUT Is used to define the output channel for printing or storage on a secondary 
attached file. 

OWN Allows the definition of a user-generated, i.e., not a default, generalised linear 
model. 

*PAGE A dummy switch to reverse the current state of pagination (i.e., ‘on’ or ‘off’). 

*PASS Allows access to GLIM data structures from user-suppliedFORTRAN routines. 

PAUSE Produces a temporary return to the operating system, i.e., without destroying the 
current GLIM definitions and declarations. 

PLOT Is used to generate scatter plots. The form of these may be manipulated using five 
options. 

PRINT Generates printed output selected by an item list. 

READ Causes data for variables defined in a previous DATA command to be read into
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GLIM. 

RECYCLE (Like CYCLE) controls the performance of the GLIM algorithm for model fitting. 
Uses previous fitted values as new estimates in subsequent fits of standard 
models. 

REINPUT (As INPUT) except input begins from first record of file. 

RESTORE Restores existing GLIM program dumped to secondary file. 

RETURN Returns control from a secondary file back to GLIM. 

REWIND Rewinds an attached secondary file to its first record. Subsequent reads from this 
will begin at first record. 

SCALE Is used to calculate the scale parameter in modelling fitting. Defaults are set for 
certain models. 

*SET Is used to specify the mode of operation, i.e., batch mode or interactive. 

SKIP (Similar to EXIT) controls premature exiting from macros. It differs from EXIT 
in its mode of operation. 

SORT Permits ranking of vectors. 

SSEED Invokes the standard (i.e., non-local) pseudo-random number generator. 

STOP Terminates the current GLIM session and returns control to the operating system. 

SUBFILE A file containing distinct subsets of data and commands. Each subset is blocked 
by beginning and terminating commands which distinguish it from others. 

SUSPEND Returns control temporarily from a macro or secondary file to the main GLIM 
program. 

SWITCH A conditional switch which invokes one of a series of specified macros 
depending on the result. 

*TABULATE Produces tabulations of descriptive statistics or contingency tables. 

*TPRINT Produces tabular presentations of one or more vectors. 

*TRANSCRIPT Provides a log of the current run. Items logged may be varied by option list. 

UNITS Defines standard length for vectors to be used in subsequent analyses. 

USE Invokes the use of a macro. 

VARIATE Declares the name and length of variables explicitly. 

*VERIFY Dummy switch which reverses the current state of macro verifications. If ‘on’, 
each line read from a macro is written to current output channel before it is 
executed. 

WARN Dummy switch which reverses the current state of printing of warning messages. 

WEIGHT Defines prior weights for selected variables prior to fitting models. 

WHILE Allows repeated use of macro statements until a preset scalar attains zero. 

YVARIABLE Declares which variable is to be treated as the ‘response’ in subsequent models. 
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C.3 INCOMPATIBILITIES 

The following incompatibilities exist between GLIM 3.12 and GLIM 3.77: 

1 TERMS directive: this is no longer available in GLIM 3.77. 
2 The DUMMY directive is no longer restricted to a single symbol. This is designed to 

aid the portability of the system. 
3 The DUMP command has been reorganised. Files dumped from GLIM 3.12 may not be 

read by GLIM 3.77 unless reorganised into a suitable format. 
4 The scale limits on the PLOT directive are computed differently in GLIM 3.77 using 

only the non-zero data points rather than all the data points. 
5 The argument list associated with the USE command has been altered. 

C.4 OTHER CHANGES 

Three types of change have been made to the GLIM system with the introduction of 
GLIM 3.77. Most of these have been made to increase control over generated output and 
to simplify the more terse and inaccessible parts of the command language:  

1 Computational changes: Changes have been made to the ACCURACY, CYCLE and 
RECYCLE commands to alter the tolerance limits for convergence, to aid the 
detection of intrinsic aliasing, and to alter the number of significant figures produced 
as output. 

2 Modifications to output: Changes have been made to the DISPLAY, ENVIRONMENT, 
FIT, LOOK, PLOT and PRINT commands to improve the quality and readability of 
output. 

3 Removal of restrictions: Changes have been made to the INPUT, REINPUT, 
FORMAT, DATA and CALCULATE commands to remove unnecessary restrictions 
and to simplify them. CALCULATE in particular has been simplified by the 
development of a simple form of specification, the addition of new relational and 
logical operators, and the updating of the operator precedences. 
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