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Introduction

In the last few decades the ideas, methods and results of the theory of Boolean
algebras have played an ever increasing role in various branches of mathematics and
cybernetics. The degree of this influence varies from field to field, but it reveals
most distinctly in algebra itself and, if at first the constructions and ideas pertaining
to Boolean algebras arose while developing theories of concrete classical algebraic
systems: groups, rings, modules and lattices, lately they have obtained a certain
universality and are being successfully used for studying algebras of various kinds,
i.e., in the theory of universal algebras. At the same time, various restrictions on the
application of Boolean constructions when investigating different classes of universal
algebras have been elucidated.

This monograph is devoted to studying the fundamentals of the theory of
Boolean constructions in universal algebras, to the problems of presenting different
varieties of universal algebras with these constructions (Chapter 2) and to the use of
Boolean constructions for investigating the spectra and skeletons of varieties of
universal algebras (Chapter 3). Chapter 1 is of an introductory character which
presents the basic notions and formulates a number of results of the theory of
Boolean and universal algebras to be used in the proofs of Chapters 2 and 3. When
presenting this material, the author thought it possible to omit the proofs, as at
present there is a whole series of monographs dedicated to presenting both the
fundamentals of the theory of Boolean and universal algebras, and to various special
problems of these theories. As far as Boolean algebras are concerned, we should
mention first of all a three-volume edition "Handbook of Boolean Algebras". As for
the basic notions of universal algebra, there is a perfect monograph by S.Burris and
H.P.Sankappanavar, "A Course of Universal Algebra", as well as a monograph by
R.Freese and R.McKenzie, "Commutator Theory for Congruence Modular Varieties",
and a monograph by the author "Congruence-Modular Varieties of Algebras",
published in Russian. In the application section one can find some results pertaining
to the elementary theory of skeletons of varieties, as well as proofs of some
statements on Boolean algebras not to be found elsewhere in English literature.
Besides, one can also find there fundamentals of the theory of better quasi-orders
which is discussed in Chapter 3 and has not yet received a wide recognition in
universal algebra.

vii



CHAPTER 1
INTRODUCTION

1.Basic Notions of the Theory of Boolean Algebras

The aim of this section is to recall some basic notions, constructions and results
associated with ordered sets and Boolean algebras of the type to be used below. The
very definitions of partially, linearly, well-ordered sets and Boolean algebras, their
basic properties, the definitions and properties of the algebraic operations on these
sets and algebras can be found in practically any textbook on algebra or set theory.
Therefore, in the present section these results will be either just mentioned or
assumed to be known.

A.General notions on ordered sets and Boolean algebras

Definition 1.1

(a) A set A characterized by a binary relation =< is called partially ordered if
for any elements a,b,c €A the following statements are valid:

() as<a,
(2) asb and bsa—>a=">b;
B)asb and bsc—a=xc.

(b) A partially ordered set < A;<> is called a linearly ordered set (LOS) if for
any a,b €A one has either a<bd or b=a.

(c) A linearly ordered set < A;=> is well-ordered if for any nonempty subset
PC A there exists a least element, i.e., an a €P such that for any bEP one has

asb.

(d) A non-singleton ordered set < A;<> is said densely ordered if for any
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ab€A such that a<b and a=b there is a cEA such that a<csb and
c=a, c=b. A lincarly ordered set is said scattered if it contains no densely
ordered subsets.

It should be remarked that for any densely ordered set, there is an ordered set
of rational numbers isomorphically embeddable into it and, hence, an ordered set is
scattered iff there is no ordered set of rational numbers imbeddable into it.

By the type of an isomorphism of a partially ordered set and, later, of an
arbitrary algebraic system, we will mean either a class of all algebraic systems which
are isomorphic to the given one, or a certain fixed representative of this class.

All the considerations to follow, unless otherwise specified, will be within the
framework of a ZFC set-theoretical system and, in particular, an ordinal will be
viewed as a fixed representative of the type of an isomorphism of well-ordered sets,
l.e., as a transitive set which is well-ordered by the relation of a set-theoretical
inclusion L. We will use standard notations 0,1,2,...,n,.. to denote finite ordinals,
a+1 to denote the ordinal following the ordinal a (it should be recalled that the
family of all the ordinals, Ord, is well-ordered by the same relation of the set-
theoretical inclusion), w is the least infinite ordinal, w; is the least ordinal of the

power R;. A family {X;li€O0rd} of the powers in the system ZFC is also well-
ordered by a standard relation of embedding on the sets of the powers considered.
Henceforth X; will be sometimes identified by w;, which is the initial ordinal of the
power X;. The notions of the initial and of final intervals, as well as those of
cofinal and coinitial subsets for partially ordered sets will be assumed known. The
notions of a sum, as well as of a Cartesian and lexicographic product of partial
orders are defined in a standard way.

Definition 1.2. If < A;<>, < B;<> are partially ordered sets, then:

(a) < A;s>+< B;=> (assuming AN B =) will be understood as the set AU B
partially ordered by the relation <; such that for a,b EA(B), as; b iff asb in
< A;<> (in <B;=>) and for any a €A, bEB a=<b;

(b) < A;=>® < B;s> will be understood as the Cartesian product of the sets
AxB partially ordered by the relation =;, which is a Cartesian product of the
relations < in A and B, i.e., for any a;a, EA and b,b, €EB, <a,b >=<\<ab, >
iff @ say, in <A;=> and b, <b, in < B;=>;

(c) < A;s>-< B;=> will be understood as a lexicographical product of < A;=>
and <B;=>, i.e.,, a Cartesian product of the sets AxB partially ordered by the
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relation =; in such a way that for any aj.a, €A, b,b; EB <ay,b >=si<ay.by > iff
by<b, or by=b, and aq; s a,.

The sums and products of large families of partially ordered sets are defined in
an analogous way.

Definition 1.3. If for i€, < A;;<;> are partially ordered sets and =< is a

partial order on the set I, then:

(a) E<A,-;s,-> is understood as a set |JA; (assuming the sets A to be
i&l,=> =l

pairwise disjunct) which is partially ordered by the relation =<; in such a way that

for ab €A (i€I), a<; b iff as<; b, and for aEA,-,bEAj i=j), as b iff isj

in <I;=s>;

(b) H< A;<;> will be understood as a direct product of the algebraic systems
i€l
< A;=>;

(c) L <A;s;> will be understood as a direct product of the sets HA,-
ie<l;=> el

partially ordered by the relation <; in such a way that for f, gEHA,-, [=18 Mff
el

there is an { €I comparable to any other element of I in terms of < and such that
for any j<i we get f(j)=g(j) and f(i)<g(i), or f=g.

It is obvious that if < A;;<;>((€J) and <I;<> are linearly ordered, then
z< A;;=;> is also linearly ordered. If, moreover, <I,=> is well-ordered, then the
iel;s>

set If < A;;s;> is also linearly ordered. If both < A;<;>(i€I) and <I;s> are
c<ls>

well-ordered, then E< A;;s;> is also well-ordered. In the case when < A;<> and
ie<l;=<>
< B;=<> are well-ordered, then < A;<>-<B;s> is also well-ordered. Besides, for
finite sums and lexicographical products these operations on ordinals coincide with
common definitions of the addition and multiplication of ordinals. Let us now recall
the definition of an ordinal power. An ordinal y is called a limit one provided that
it has no last element, in which case y = %up 4 in a well-ordered class Ord. Any
<y

non-limit ordinal y can be represented as 8 +1, where B<y.

Definition 1.4. The ordinal o for any ordinals a,8 is defined by induction
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“a; if y is limit, then o =supa®.

o<y

Y+ 14

RS
over f: o =o' =a

It should be remarked that for any ordinal @ and any n€w a" = L a; when
i<n
a;=a for every i<n, but a” = L o; at a;=a for i< .
<o
By induction over a one can prove the well-known fact that for any ordinal o
there exist uniquely defined n Ew, ordinals y; > y, >..> vy, and natural numbers

my,...m, such that a =" -my+...+w"™ -m,. A representation of this kind is called
a normal form of the ordinal «.
Any linearly ordered set < A;<> is either scattered or presentable as a sum
2<A,-;s,->, where <I;<> is a densely ordered LOS, while < A;;<;> are
iel;s>
scattered.

It is convenient to introduce the relation ~ on A in the following way: a=~b
iff the interval (a,b) of the LOS < A;<> is scattered. Obviously, =~ is an
equivalence relation on A, each equivalence class over =~ is a scattered interval of
the LOS < A;=<>, while the factor < A/~;<> (in the case when < A;<> is not

scattered) is a densely LOS. In this case < A;=>= 2< B;s>, where < B;=<> are
B&A/ms>
scattered intervals which are equivalence classes on the LOS < A;<> in terms of =~.
There is also an inductive process of constructing a class of all scattered LOS.
Let &, be a class consisting of no empty and singleton ordered sets. Let us

determine a class & y for any y =0 in the following way:

@'y+1 ={2< A s>, E< Ap;s>] <A,-;s>€6y, é €0rd},
F=] =N

while for a limit y

6,-UG,.

o<y

Let @ = |J &, . The class & coincides with the class of all scattered LOS.

é€0rd
In order to prove that all scattered LOS are incorporated in the class & , let us
introduce a sequence of equivalences =; (i EO0rd) on a scattered LOS. < A;s>a=q b
iff the interval (a,b) is finite. If the relation =; is defined, then the relation =;,; is
a complete preimage of the relation =, defined on the LOS < Af=;;<> under a
natural homomorphism < A;<> on < Af=;;<>. For a limit i E0rd the relation =; is

defined on < A;<> as the union of relations =; at j<i. One can casily see that for

J
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a certain i €Ord the factor A/ =; of a scattered LOS < A;<> will be a singleton set.
The least i of this kind is called the rank of a scattered LOS < A;<>, while the
induction over the rank proves the incorporation of any scattered LOS < A;<> into
the class & .

Definition 1.5. A set A with a binary relation < is called quasi-ordered if
for any a,b,c €A the following statements are valid:

(@ asa;
(b) if asb and b=c, then asc.

A natural equivalence on the quasi-ordered set < A;s> will be a relation a=_b
which is valid iff a<b and b=a. One can easily see that the relation =_ is indeed
an equivalence relation over the set A, and for any abc,d€EA,
asb, c=_a,d=_b entail c<d. [c] will denote an equivalence class in terms of
=_ containing an element ¢, by A/ =_ the family of all such classes. Let us
introduce a relation =:[c]s[d] iff csd over A/=_,. One can easily check that
< A/ =_;=> will be a partially ordered set; let us call < A/ =_;<> a natural partial
order related to a quasi-order < A;<>.

For any quasi-ordered set < A;<>, < A',s>* will denote the dual of < A;<>,
i.e.,, the quasi-ordered set < A;s;>, where the quasi-order =; is defined in the
following way: a=<; b iff b<a.

An ideal (filter) of a Boolean algebra B =<BA,v,-,0,1> will be, as usual, a
nonempty subset J(¥) of the basic set B of this algebra with the following
properties:

(1) if a,b €F(F), then avbEI(arbEF);

(2) if a€3I(F),bEB and b<a (a<b), then bETF (HEF). The ideal
(filter) is proper if it is other than the whole of the Boolean algebra. The maximal
among the proper ideals (filters) of a Boolean algebra of inclusion is called its
maximal ideal (ultrafilter). It should be recalled that for any homomorphism ¢ of a

Boolean algebra B onto a Boolean algebra B, (p'l(O)(qo'l(l)) will be an ideal
(filter) of the Boolean algebra X, and, conversely, for any ideal ¥ (filter §) of
the Boolean algebra .F there exists a congruence 6 on the algebra % :

<ab>E0<@\bvb\a)EJ(<ab >EQ < = ((a\b)v(b\a)ET)
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such that under a natural homomorphism ¢:5F — B /0 the equalities I = (p_l(O)

& =(p—1(1)) are valid. The Boolean algebra B /6 will in this case be denoted by
B 13 or BI1JF, respectively. It should also be recalled that there is a mutually
unique correspondence between filters and ideals: for any ideal ¥ of the Boolean

algebra B the set {~blbE )} is a filter.

Let us also recall the following well-known and easily verifiable result: if § is
a proper filter of the Boolean algebra B, then the following conditions are
equivalent:

(1) ¥ is an ultrafilter;

@) if a,p €L and avbEF , then either aEF , or bEF ;

(3) for any a €L we have cither a€EF or ~a €F ;

4 B /¥ =2 (a two-element Boolean algebra).

Definition 1.6. By S7(B) we will mean a topological space formed by a

family of all ultrafilters of the Boolean algebra B with a topology, the basis of the
open  neighborhoods of which is a family of sets of the type

Y, ={F €S B)a€F} for acFB. The topological space St(F) is called a Stone
space of the Boolean algebra B .

One can easily observe that for any a €8, we have y_, =S((EF)\y, and,
therefore, the basis of the topology of S#(¥) consists of open-closed sets. One
could also easily check the fact that the mapping ¢:a — @, is an isomorphism from
a Boolean algebra to the Boolean algebra of open-closed subsets of the topological
space St(F). It can be checked that St(B) is a compact, totally disconnected
topological space. The converse is also true: for any compact, totally disconnected
space X. Let B(X) denote a Boolean algebra of open-closed subsets of X, in which
case there is a homomorphism from the space X to a Stone space Si(B(X)) of the
Boolean algebra B(X). This dualism of Boolean algebras and compact totally
disconnected topological spaces (sometimes called Boolean spaces) is modified by the
following statement.

Theorem 1.1. Let ¢ be a certain homomorphism from a Boolean algebra B
to a Boolean algebra .B,. Let us define a mapping S(¢) from the Stone space
S1(B,) into the Stone space SHEB) as S(p)p) ={a€EFlp(a)Ep} for any
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pESHEB)). Let f:X—Y be a continuous function between compact, totally
disconnected spaces X,Y. Let us determine a mapping B(f) from the Boolean
algebra B(Y) to B(X) as B(f)(B)=f_1(B) for any BEB(Y). Let A and vy
respectively denote the natural homomorphism of the spaces X(¥Y) and
SHB(X))(S(B(Y))) and the natural isomorphism of the Boolean algebras B (.Bl) and
B(SK.B ))(B(St(.Bl))), mentioned above. In this case the following statements are
valid:

(a) S(¢) is a continuous function;

(b) if ¢ is an isomorphic embedding, then S(¢) is a mapping from the space
St(B,) onto the space S{(F); if ¢ is a homomorphism from the algebra & to the
algebra B, then S(¢) is a homomorphic embedding of Si(F,) into Si(F); if ¢ is
an isomorphism of the algebras B and X, then S(p) is a homomorphism of the
spaces Si(F) and Su(.B));

(c) B(f) is a homomorphism;

(d) if f is a homomorphic embedding of X into Y, then B(f) is a
homomorphism from the Boolean algebra B(Y) to the algebra B(X); if f is a
continuous mapping of the space X onto the space Y, then B(f) is an isomorphic
embedding of the algebra B(Y) into the algebra B(X); if f is a homomorphism of

the spaces X and Y, then B(f) is an isomorphism of the Boolean algebras B(X)
and B(Y);
(e) the following diagrams are commutative:

¥
’56"“""""'%1 X-—s-——>y
Y Y h h

B(St (%)) ——= B(St(5,)) .
BE) ! SE(B(X)) S(B(i))St(B(y»

Fig. 1
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() if, moreover, 1 is a homomorphism from the Boolean algebra B, into the
Boolean algebra F,, and g is a continuous function between the compact, totally
disconnected spaces Y and Z, then S(7n-¢@)=S(¢)-S(n) and B(g-f)= B(f) Bg).

Henceforth for any set I, P(I) will denote the set of all subsets of the set [/
considered as a Boolean algebra with respect to set-theoretical operations of union,
intersection and complement formation.

Let us now return to considering the properties of the sets mentioned above.
Let A be a certain cardinal (it should be recalled that A is identified with an initial
ordinal of the power A). A subset CCA is closed if for any BC C such that
B<x for a certain xEA, supBEC. A subset CC A is unlimited provided that for
any x €A there is a yEC such that y=x.

Definition 1.7. A subset SC A is called stationary if the intersection of §
with any closed unlimited subset A is nonempty.

Let A be a regular uncountable cardinal. One can easily see that for any
stationary S © A, the power of § is equal to A, and the family of stationary subsets
of the cardinal A forms a filter in the Boolean algebra P(A).

One of the most important properties of stationary sets are the following
statements.

Theorem 1.2. Let S be a stationary subset of an uncountable regular cardinal
A, and let f:S§— A be a regressive function (i.e., f(a)<a for any a€S\{0}).
Then there exists a stationary subset 7C S such that f is constant on 7.

Theorem 1.3. If A is a regular uncountable cardinal, and A is a stationary

subset of A, then there are A subsets A(iEA) of the set A which are pairwise
disjunct and stationary in A.

B. Interval and Superatomic Boolean Algebras

The notion of a Boolean algebra with an ordered basis was first introduced by
Mostowski and Tarski [143].

Definition 1.8. A Boolean algebra F has an ordered basis provided that

there is a chain of elements of the algebra B generating it.
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This notion is equivalent to a more descriptive notion of an interval Boolean
algebra. For any LOS </I;=<> B(I) will denote a Boolean algebra of the subsets of
the set [ generated by intervals of the kind (a,b], where ab ert. By I" we
denote here a LOS < {~o};<>® < [;=>®D < {o};<>. It is obvious that any element a
of the Boolean algebra B(I) can be represented as .U(a,.,b,-] for a certain n €w and

isn

some elements a;,b,...a,b, EI" such that -osa<h<.<a,<b,s®. A
representation of this kind will be called a canonical representation of an element a
of the algebra B(I), by o(a) we will mean a set {a,by,...,a,,b,}, and by o(a) a
tuple < ay,b,...a,.b, >.

Definition 1.9. An interval Boolean algebra is any Boolean algebra of the type
B(I), where <I;<> is a LOS.

By a for a€l we will mean an element of the Boolean algebra such that

o(a*)=<—oo,a >. A family of the elements a*(a €I) is an ordered basis of the
algebra B(I) and, on the other hand, if the Boolean algebra B has an ordered basis
J (under the assumption that 0,1€J), then B isisomorphic to the interval Boolean
algebra B(J).

If <J;=> is a subset of the LOS <I;<> with an induced order, then there is
a canonical embedding f of the Boolean algebra B(J) into B(I): for a €EB(J) we
set f(a)=b, where b €B(I) and @-—'Tb)

Since for any homomorphism f of the interval Boolean algebra B(I) on the
Boolean algebra B we have B = B(f(I)), any homomorphic image of an interval
Boolean algebra is interval. It is also obvious that there exists an embedding g of the
LOS f({I) into the LOS I such that on f(I) a mapping fg isidentical and, in
particular, f(I) can be identified with a subset of the LOS I. Hence, according to
the remarks made above, any homomorphic image of an interval Boolean algebra is
isomorphic to a certain subalgebra of this algebra.

On the other hand, subalgebras of interval Boolean algebras need not be
interval: a Boolean algebra of finite and co-finite subsets of an ordinal w;(i=1) is a
subalgebra of an interval algebra B(w;), not being itself, as can be easily seen, an
interval Boolean algebra.

The class of interval Boolean algebras is quite large and, in particular, it
includes all not more than countable Boolean algebras. The fact that for any

nEw\{0} a 2" —element Boolean algebra is isomorphic to B(n—1) is obvious.

Theorem 1.4. Any countable Boolean algebra is interval.
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At the same time, a large number of most important classes of Boolean algebras
contain no interval ones. For instance, any infinite countably complete Boolean algebra
is not interval. Let us assume the inverse statement: let B = B(I) be countably
complete and infinite, and, in particular, / is an infinite LOS. Therefore, in I one
can find a subset J ={a,a,,...} ordered either by the type @ or by the type w .
Assume, for instance, that a;<a, <...<a, <..., in which case it is obvious that no

element of the algebra B(I) can be equal to an element U(a;,-+2 \a;,-H)E‘B.
i€w

A free X; — generated Boolean algebra is interval iff i =0. Indeed, since a free
No — generated Boolean algebra is countable, it is, by theorem 1.4, interval. In fact it
is isomorphic to the algebra B(7), since B(7) is a countable atomless algebra,
which, as is well known, implies the property of being an N, —free Boolean algebra.
Here 7 is an ordered type of an ordered set of rational numbers. On the other hand,
as has been noted above, any homomorphic image of an interval Boolean algebra is
interval, and we have seen an example of Boolean algebras of finite and co-finite
subsets of the ordinal w;(iz1), which are not interval and have a power X;.
Therefore, a X;-free Boolean algebra cannot be interval for i=1.

An ideal of a LOS I is any JC I which has the following property: for any
a€J and bE! if bsa, then bEJ. A family of all nonempty proper ideals of the
LOS I is linearly ordered by inclusion and is called a Dedekind completion of the

LOS I. A Dedekind completion of the LOS I* will be denoted by il. A LOS of
the type il is complete for any LOS I, i.e., any subset J of the LOS il has a
least upper and a biggest lower bound in i . The LOS I itself can be identified with
a subset of the LOS il by putting the ideal J, ={x€I'lxsa}Eil into
correspondence with an element a €I. One can also easily notice that the set il,
which has a topology the basis of the open sets of which consists of the intervals
of the set il of the type (a,b] for all a,b €I", is homomorphic with a Stone space
of the Boolean algebra B(I). For this purpose it is sufficient to show that for any
J €il the family B; is an ultrafilter of the Boolean algebra B(I) and, conversely,
any ultrafilter of the algebra B(I) has a form B; for a certain J&il (here
B;={a€B(I) and there exist a;,b; Ec(a) such that a;,EJ, and either b; &J or
J =Jp). Henceforth a topological space defined on il in the above-mentioned way
will be denoted by (iI)’ and, therefore, (iI)' is homomorphic with St#(B(I)) for any
LOS I.

The notion of a superatomic Boolean algebra was first introduced by Mostowski
and Tarski [143] who also defined the primary basic properties of these algebras.
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Definition 1.10. A Boolean algebra B is called superatomic if any of its
homomorphic images is atomic.

This property proves to be equivalent to a whole number of others. I(F) will
denote a Frechet ideal of an arbitrary Boolean algebra .B which can be represented
as finite unions of atoms. Let us determine a sequence of the ideals I{F) for any
ordinal i>0 in the following way: L(F)=I(B); (&)= DI;(F) if i is limit;

Jj<i
I,;(F) is a complete preimage of the ideal I(E;) under a natural homomorphism
from the algebra B to B, = B /I,(F). Obviously, I{F) is an increasing sequence
of the ideals of the Boolean algebra B and, hence, for a certain i we have
I{B)=1,,(F) and for all j greater than i we have I(ZF)=1I1;(B).

Definition 1.11. An atomic rank of an arbitrary Boolean algebra .B will be
the least ordinal i such that I{®)=1I,,(F). The atomic rank of the Boolean algebra
B will be denoted by at(F).

Obviously, for any Boolean algebra B the algebra B /I, (F) is either
singleton or atomless. By F,(F) we will mean a filter {xEEBI-x€I, (8 ).

Theorem 1.5. The following properties of Boolean algebras are equivalent:

(@ & is superatomic;

(al) no homomorphic image of .B is atomless;

(b) any subalgebra of the algebra B is atomic;
(b1) B contains no atomless subalgebras;

() B contains no infinite free subalgebras;

(d) B contains no chain of elements which is ordered by the type of
7 - rational numbers;

(e) I{B)=2F for a certain ordinal i;

(f) any nonempty subspace of a Stone space S{(8) of the Boolean algebra B
has at least one isolated point.

This theorem yields a corollary.
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Corollary 1.1. Homomorphic images and subalgebras of any superatomic
Boolean algebra are superatomic themselves.

It should be remarked that if B is a superatomic Boolean algebra, then
B /1,(B) is singleton, and for all i<a(B) we have 1¢I(XB). Therefore, at(X)
is a non-limit ordinal, i.e., it has the form a+1 for a certain ordinal «, in which
case B /1,(F) is a finite Boolean algebra. Let .B /I,(B) have exactly n atoms.

A pair < a,n> will be called a characteristic of the superatomic Boolean algebra .5 .

If the interval Boolean algebra B(I) is superatomic, then, by the equivalence of
conditions (a) and (d) of theorem 1.5, the LOS I contains no subsets of an ordered
type 1, i.e., it is a scattered LOS. The converse is also valid: for any scattered
LOS I the Boolean algebra B(I) is superatomic. Indeed, by theorem 1.5 it suffices
to remark that a Dedekind completion il of the scattered LOS I is scattered itself (it
is obvious from the counter-argument). The Stone space of the Boolean algebra B(I)
is homomorphic to the space of (il)’, but any subspace of the space (i)' for a
scattered LOS obviously contains isolated points and, hence, by the equivalence of (a)
<> (f) of theorem 1.5 of the algebra B(I) is superatomic.

For countable superatomic Boolean algebras this result allows a refinement.

Theorem 1.6. If B is a countable superatomic Boolean algebra with a

characteristic < a,n > and a>0, then B = B(w’ ' n).

Theorem 1.6 makes it possible to refine the formulation of theorem 1.4.. As
has been remarked earlier, any countable not scattered LOS can be represented as
zai, where o; are scattered LOS, while f is a countable densely ordered LOS. It
1ep
appears, however, that in the representation of non-superatomic countable Boolean
algebras as interval ones one can do (as was the case for superatomic algebras in
theorem 1.6) do with ordinals instead of arbitrary scattered LOS.

Theorem 1.7. For any countable non-superatomic Boolean algebra .B there
exist ordinals ¢;(i €En), where 1 are LOS ordered by the type of rational numbers

that B = B(Ea,-).

i€n

Let us now remark that if a<f, or a = and m <n, then a Boolean algebra
B(ou'g -n) obviously maps homomorphically to a Boolean algebra B(w®-m), and,
according to what has been remarked in the beginning of this section, B(w®-m)
will, in tum, be isomorphic to a certain subalgebra of the algebra B(wﬂ *n). On the
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other hand, since for any countable not scattered LOS I there exist isotonic
mappings of both a LOS of the ordered type 71+ on I* and a LOS I' onto a LOS
of the ordered type 1*, and, by theorem 1.4 and what has been said above, any

non-superatomic Boolean algebra is isomorphic to B(I) for a certain countable not
scattered LOS I, the following corollary is valid.

Corollary 1.2. Any set of countable non-singleton superatomic Boolean
algebras is comparable by the relations of embedding and epimorphism, these
relations coinciding in the class of countable non-singleton superatomic Boolean
algebras. Any countable Boolean algebra is embeddable into, and is a homomorphic
image of, any countable non-superatomic Boolean algebra.

By BABANO,BA',{O,SBA IBA we will henceforth mean the families of all,
respectively, not more than countable, non-singleton, superatomic and interval Boolean
algebras.

For any class of algebras £ by If# we will mean the families of the types
of the isomorphism of algebras of the class f£. Let us introduce the relations of the
quasi-orders < and « on IR in the following way: for all a,b € 3R we have
a < b(a «b), provided that a is a type of the isomorphism of a certain subalgebra of
the algebra of the type of the isomorphism of & (if a is a type of the isomorphism
of a certain homomorphic image of an algebra of the type of the homomorphism of b).

Definition 1.12. A skeleton of epimorphism of the class of algebras ff will
be called a quasi-ordered class < J f£;«>. A skeleton of embedding of the class £
will be a quasi-ordered class < 3 f:=>.

For the quasi-orders «,s on _J¥f let us introduce equivalence relations
naturally associated with it: for a,b ER a=_b(a=_b) iff a«b and b«a (when
a<b and b<a).

A subclass B of the quasi-ordered class < A;=> is called a semi-ideal if for
any a €EA, bEB from a<b, we have a €B.

By corollary 1.1 a family JSBA is a semi-ideal both in the skeleton of
epimorphism and in that of embedding of a variety of all Boolean algebras BA. As
has been noticed above, JIBA is a semi-ideal in the skeleton of epimorphism of BA
but not an ideal in the skeleton of embedding of BA. Besides, the quasi-order = is
an extension of the quasi-order <« on the class _JIBA, i.c., for any a,b € JIBA
from a«b we have a=<b. Corollary 1.2 implies the existence of the following

isomorphisms:< 3BA{<0; =>=< JBANO ;= @1, where the quasi-order w ®r
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is obtained from the ordinal w; by adding 2Ro mutually equivalent relative =, and

=_ clements as the last ones. These 2% elements form the types of the isomorphism
of countable non-superatomic Boolean algebras.

For uncountable superatomic, though even interval, Boolean algebras theorem
1.6 is no longer valid. One can easily see that a superatomic Boolean algebra
B(w+w;) is isomorphic to no Boolean algebra of the type B(y), where y is an
ordinal. Indeed, the only real candidate to play the part of y is obviously w;. But
B(w + wy) ¢ B(w,), as any countable set of atoms of the algebra B(w;) is contained
in a certain element of this algebra which belongs to an ideal I{B(w;)), for i< w;.
This statement is obviously false for the element (n,n +1] of the Boolean algebra
B(w +w; ), where n&€w. Nonetheless, for uncountable interval superatomic Boolean
algebras there also exists, to the accuracy of mutual embedding, their representation
in the form of the algebras B(I) for certain LOS I in the sense of a canonical
form.

g k, where k is an arbitrary cardinal, will denote a family of algebras of the

class £ of the power k. For any ordinal a, any natural m,n such that m+n=1,

B, jun will denote an  interval superatomic  Boolean algebra

Bo® -m+(w® +(@*) )n). For any cardinal k=X, N, will denote

{Bymnl lod=k; mn€w; m+n=1}. It should be remarked that the algebras
By mn have a characteristic < a,m +n>. By SIBA we will mean the family of all

interval superatomic Boolean algebras.
The theorem presented below describes the skeleton of embedding of the class
of superatomic interval Boolean algebras of an arbitrary fixed power.

Theorem 1.8.

(1) Let B be an interval superatomic Boolean algebra of a power k and a
characteristic < a,p >, in which case:

(@) if c¢f(w®)=w, then there is a unique algebra By o €N such that
B =_B, .0, in which case m = p;

(b) if c¢f(w®) = w, then there is a unique algebra B, mn ENp such that
B =_B,,, ., in which case m+n=p.

(2) Let algebras B, ,,, Bg,, belong to the family Ny, in which case

By jun = Bgpg fiff:

(@ a<p;

b) a=p, ¢f(w*)=w and m+n<p+q, in which case, if m+n=p+q,
then B, ,,,, Bypg> Bymino are isomorphic, or

© a=p, cf(wa)> w, m+nsp+q and m+2ns p+2q.
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3) <3SIB/(°/ =_;<>e< 3N,’c;s>, and they are distributive lattices, each of
their elements having only a finite number of elements incomparable with them. Here
Ny ={Ba,m,n|a EO0rdlal=kmnEw,;m+n=1 and, if ¢f(a)=w, then n=0}.

As an example, let us present the initial interval of the lattice < JN%;<> at

cf(w®)>w. In this case <mn> will denote the algebra Bam,n,Na=

={Bym »'m,n Ew}.

Fig. 2

It should be recalled that for countable non-singleton Boolean algebras the
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relations of embedding and epimorphism coincide. The problem of a complete
description of the skeletons of epimorphism of the classes of superatomic interval
Boolean algebras of a fixed uncountable power is still open to discussion. However,
as follows from the theorem presented below, for the skeletons of epimorphism of
these classes the situation is essentially different from that described in theorem 1.8.

Theorem 1.9. For any uncountable cardinal X; and for any ICw;, there
exists a superatomic interval Boolean algebra B, of a power X; such that for any
IJCw; B, is embeddable into B, and B, «&F; iff ICJ.

The proof of this theorem is given in §14 of Applications and employs theorem
1.3..

Corollary 1.3. For any uncountable cardinal X;:

(a) there are 28 of mutually embeddable superatomic interval Boolean algebras
of a power X;, none of which is a homomorphic image of the other;

(b) any partially ordered set of the power not greater than X; is isomorphically
embeddable into < 3SIB¢Q<i;<<>, in such a way that the images of the elements of
this set are mutually embeddable into each other.

The proof of this corollary results immediately from the statements of theorem
1.9 that for any cardinal X; there exist 2N mutually incomparable subsets of the
ordinal w;, and that any partially ordered set of the power not greater than X; is
isomorphically embeddable into the set of all subsets of the ordinal w,;.

Further on we will also need the following statement which results from the
proof of theorem 1.9.

Corollary 1.4. There is an infinite number of mutually embeddable interval
Boolean algebras &, of a power X;, none of which is a homomorphic image of any
of these algebras, in which case for every set of algebras &, the set A forms an
ultrafilter on & ;, where A={d €€ J ;Id contains a chain of elements of the ordinal

type 1-w}.

It should be recalled that a universal algebra &, is called a retract of the
algebra &, provided that there is a homomorphism f of the algebra ¥, on ¥,

and an embedding h of the algebra 311 into 3{2 such that fh is identical on 31.
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A universal algebra J is called retractive if any non-singleton homomorphic image
of ¥ is its retract. An equivalent definition: & is retractive if for any non-unit

congruence a of the algebra & there is a subalgebra &, of the algebra & such
that for any a€¥ la/anNdl=1.

As has been noted above, interval algebras are retractive. But in fact retractivity
is inherent to a much larger class of Boolean algebras.

Theorem 1.10. Any subalgebra of an interval Boolean algebra is retractive.
Rotman [203] put forward a hypothesis that subalgebras of interval algebras

exhaust the class of retractive Boolean algebras. Rubin [204] disproved this
hypothesis under various set-theoretical propositions (()NI,MA,CH).

Theorem 1.11. (Ox ,MACH). There exist retractive Boolean algebras not
Ry

embeddable in any interval ones.

In a more general situation of ZFC the problem of the existence of a retractive
Boolean algebra not embeddable into any interval algebra is still open to discussion.
The question whether a subalgebra of a retractive Boolean algebra is always retractive
also remains unsolved.

C. Rigid Boolean Algebras

A number of results of this section has been formulated under the assumption
of a continuum or a generalized continuum hypothesis. A factual proof of these
results often requires weaker but also less popular set-theoretical assumptions, while
the formulations presented here are due to the author's unwillingness to get deep in
the 'swamp' of set-theoretical assumptions in this monograph .

Definition 1.13. A LOS <[I;<> is said complete if any of its limited subsets
has a least upper and a biggest lower bound in </;=>. A LOS is said uniform if
for any a,b €I such that a < b, the equality I(a,b)l=l1l holds.

A uniform non-singleton LOS is obviously densely ordered.

Definition _1.14. A LOS <I;=> of a regular infinite power will be said
formally real if <I;=> is complete, uniform, and there is a dense subset I; in
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< I;=<> such that 2”II = /I, and for any interval (a,b) of the set I, there exists a

monotonous embedding of (a,b) into itself without fixed points.

An example of a formally real LOS is the LOS of all real numbers. “2 will
denote the lexicographically ordered LOS of all the sequences of the length w;,

consisting of 0 and 1 and such that they have no last zero. By (“12), we will
mean the subset of the LOS “*2 which consists of the sequences with the totality of

their units limited. It should be remarked that at i =0, “2 and (“2), can be
identified with the LOS of all real numbers and that of all rational numbers. One can

easily notice that under the assumption of GCH “2 will be a formally real LOS,

while (“2), will be a subset dense in “2, with (@i = 2™ 20! Therefore, under
the assumption of GCH, formally real LOSes do exist in any uncountable unlimit
power. Further on we will supply the formally real LOS <I;<> with an interval
topology with a basis of open sets of the type (a,b) for a,b €I. The following
lemma will play a major role in constructing interval rigid Boolean algebra.

Lemma 1.1. Let <I;<> be a formal real LOS, in which case there is a
subset PC I such that

(1) for any a<b from I we have IP N[a,b]l=l1l,

(2) for any P’ C P any strictly monotonous (increasing or decreasing) mapping
f from the LOS < P';=> to < P;<>, the inequality {x EP'I f(x)= x}I<l ]l is valid,

(3) I\ P is dense in I.

Definition 1.15.

(@) An algebra & is called rigid if it has no non-trivial automorphisms;

(b) the algebra ¥ is called strictly rigid if the only embedding into it is
identical;
(c) The Boolean algebra & is called Bonnet-rigid if for any Boolean algebra

311, any homomorphism f; of ¥ on lfl, and any embedding f, of 4 into 3{1
the equality f; =/, holds.
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Lemma 1.2. A Boolean algebra I s Bonnet-rigid iff for any Boolean

algebra 31'2, any embedding f; of 3{2 in 4, and any homomorphism f, of 33'2
on I, the equality f, = f, is valid.

Strictly rigid and Bonnet-rigid Boolean algebras are interrelated in the following
way.

Lemma 1.3. If a Boolean algebra is retractive and strictly rigid, it is also
Bonnet-rigid.

Before going over to the statements on the existence of rigid Boolean algebras,
let us consider in detail the situation with interval Boolean algebras of the type
B(P), where P is a subset of formally real LOS I of a power |1l.

Let us assume that both P and I\ P are dense in I. Let A be an arbitrary
set of elements of a Boolean algebra B(P) such that |Al=lIl. Let us number the
clements of /A& and let &={lj<wj}, where X;=lIl. Let us assume that

P
uj= ﬁ)(a,{,b,{] is a canonical presentation of the elements #; of the Boolean algebra

k=1
B(P). Then, since X; >R, and is regular, there is a natural m=1 and a subset
RC w; such that |IRI=I]l and for any jER I(j)=m. As I is dense in I, for any
JER there are r,{,q,{ €1 such that a,{ <r,{ <q,{ <b,{ for k<I(j)=m. Since |1l
and |fl is regular, then there is a Ry C R such that |R)l=Ill, and there are
n<q<ry<.<r,<q,€l such that for jER,; we have a,{ <TE< G <b{; at
k=<I(j)=m.

On R, let us now introduce an equivalence relation 6 in the following way:
<i,j>€0, iff a{=a{. If IRy/0)=ll, let us choose a certain set R of
representatives of equivalence classes over 6, of the set Ry and then IRI=Il and for

any i,jER ai#a{. If IR, /6<lD, then since ]l is regular, one of the equivalence

classes (let us denote it as R;) has the power |1, in which case for any i,jER, we
have aj=af. The equivalence 6, on R, will be defined analogously to the

equivalence 6,, stemming from elements bli instead of ali . Continuing this process,
we finally get a set Ry,, C w; such that IR, |=Ill, and for any ksm, or for any

i,jER,,, we have b,i = b, while for any i,jER,,, we have b,i = bkj. An analogous
property is also valid for a,i instead of b,i. It should be recalled that in the case
when for a given k for any i= jER,, we have b;.c# bl (a} = b)), then there is no
more than one i(k,+®) €ER,, such that bgk"'w) =+% (not more than one

i(k,~®) ER,,, such that af* ™ = —). Let us set R = Ry, \§(1,—®), i(m,+o).
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A set R(A) ={uil i ER'} will be called a subtraction of the set A of the
elements of the Boolean algebra B(P), the number m will be called a general

number for R(A), while a sequence I <qg,<I,<.<Ip<dy, will be called a

2
separating sequence for the elements of R(A). Let P;(ﬂ)(Pi(A)) be a set of
such kK = m, that a,i = a{c (b}'c » Iy{ ) for various i, j ER'. Let us also remark that
IR(A)I=1Il, and for any S & R(A) such that | SI=1Il, S is a subtraction
for A.

Lemma 1.4. Let I be a formally real LOS, a subset PCI obey the
conclusion of lemma 1.1, and let A be a chain of elements of a Boolean algebra

B(P), 1AI<lll and R(A)=A. In this case we have either Ip%e(A&)l=1 and
Pr(A) =D, or pp(A)=D and lpp(A)=1.

Let us denote the only k<m belonging to pfg(zﬂ)u p,%(zii) by k(A) and
j(&)=1, or by 2, depending on the fact if this k belongs to p}q(fi’;) or to
p%(f%). Therefore, under the conditions of lemma 1.4 for any w;u; €A, for
k= k(A) we have a,’;=a,’;, b'}c=b,f, while for k=k(A) we have a,i=a,’; and
by<¥ iff u;Cu;, if j(A)=2 and by = b/, while a; <a] iff u;2u; if j(A&)=1.

These statements result in the following lemma.

Lemma 1.5. Let P,I,A be such as in lemma 1.4 and let & be a strictly
increasing (strictly decreasing) function from A& in B(P). Therefore, h(A) is a

chain of the power 1l in B(P). Let G;= R(h(A)) and A = h-l(Gl), then A and
G, are chains, and j(&y)= j(G)(Jj(A;)= j(G)). Let us set
h
(44,6 = u €AY dya,) = Gy}
if j(&y)=j(G)=1;
S (84,6 = @ EAY b ay) = biie

if j(A)= (G =2;

E(ﬁh,Gl) ={u el aZ(AI) = b%?‘%)}
if J("@"l) =1, j(Gl) =2, and
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h
E(‘%,Gl) = {u EAiI b]L:(AI) * ak(('(‘;)l)}

if j(A&)=2, (G)=1

In this case | (&, G)l<IIl.

Now on the basis of lemmas 1.1-1.5 the following theorem is proved.

Theorem 1.12. Let I be a formally real LOS, PCI and obey the
conclusions of lemma 1.1. Let B be a subset of P such that for any
a<b€l l(ab)NBI=IIl and f is a strictly increasing mapping from B(E) into
B(P). In this case, f is identical and, in particular, the Boolean algebra B(P) is
strictly rigid.

Theorem 1.12, lemma 1.3, theorem 1.10 and the remark on the existence of
a formally real LOS after definition 1.14 together yield the following corollary.

Corollary 1.5. There are Bonnet-rigid interval Boolean algebras of a continual
power. Under the conditions of GCH there are Bonnet-rigid interval Boolean algebras
of any power.

By analogy with the proof of theorem 1.12 we can prove the following
theorem.

Theorem _ 1.12°. Let I be a formally real LOS, PCI and obey the
conclusion of lemma 1.1. Let B be a subset P of a power Il. Then there is a
subset [”1 C R such that

(1) IR\ BI< I,
(2) for any a<bEI  Ka,b)NBI=Ill or (a,b)NB = @;

3) if a<be&l and (a,b)ﬂf:i »= &, then (a,b)ﬁf’l has no first or last element,
in which case B(fi) is strictly rigid.

Besides proving the existence of separate rigid Boolean algebras, the above
construction makes it possible to construct large families of Bonnet-rigid Boolean
algebras possessing some properties pertaining to the relations of embedding and



22 BOOLEAN CONSTRUCTIONS

epimorphism.

Theorem 1.13. If [ is a certain formally real LOS, then

(a) there is a family {B,OIIEZl2l

algebras of the power I1;

} of mutually unembeddable Bonnet-rigid Boolean

(b) (GCH) there exists a family {B,lll 62'2]} of Bonnet-rigid Boolean algebras of
the power | Il, ordered linearly by the relation of embedding ;

(c) there is a family {Bfl jEw;, {B?I jEw;} of Bonnet-rigid Boolean algebra
such that B} s B), iff jsj,, and B} < B} iff j = j,. Here w; is the initial ordinal
of the power |1I.

It should be recalled that a family of subsets G of a certain infinite set R is
called almost disjunct iff for any A,BEG, |Al<lBl=IRl and AN BI<IRl. Then the
following statement is valid.

Lemma 1.6. Let I be a formally real LOS of a power X, PC I obey the
conclusions of lemma 1.1. Let P, P"CP IPI=lP"I=X and IP'NP"I<X, in which

case if B is a Boolean algebra isomorphic to subalgebras of the algebras B(P’) and
B(P"), then |BI<X.

Using this lemma and the fact that under the assumption of GCH, as is well
known, for any infinite set of a power k there is a family of its almost disjunct

subsets of a power 2% the following theorem is proved.

Theorem 1.14 (GCH) For any unlimited cardinal X there is a family
G ={Bli€L} of strictly rigid Boolean algebras of a power X such that.

(@) 10=2%:

(b) for any Boolean algebra E  embeddable into any pair of different algebras
of the family G, the power of B is less than N;

(c) for any Boolean algebra L which is a homomorphic image of a pair of

different algebras of the family G, the power of B is less than X.
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Definition 1.16. A chain B in a quasi-ordered set < A;<> is called
noncompactable iff for any a EA, a belongs to the chain B if for some c¢j,c, EB
we have ¢;sasc, and a is comparable with any element of the chain B .

It follows from clause (b) that in the skeleton of epimorphism of a variety of
Boolean algebras, a family of countable Boolean algebras is an ideal and form a
noncompactable chain of a scattered quasi-order w1®1*. In the same way a family
of Boolean algebras of the type B(a), where a€0rd , is an ideal in < JBA;«>,
and forms a noncompactable chain isomorphic to an ordered class of all ordinals. The
natural question arises whether in < JBA«> there exist noncompactable chains of
dense order types, i.e., noncompactable chains BC IBA such that < Bf=«> is a
densely ordered set.

Let R be an ordered set of real numbers, QC R be a set of rational numbers,
and let PC R obey the conclusion of lemma 1.1. For any a €ER let us define F,
as {xEPlx<a).

Lemma 1.7,
(a) Boolean algebras B(F,) are Bonnet-rigid;

(b) for a<b&ER, B(E)«B(l},), and for any non-singleton Boolean algebra
B, B(P)x B <¢B(P);

(c) for any a and any Boolean algebra E | it follows from B = «B(F,) that
B = B(P);

(d) (CH) for aER and any Boolean algebra -B, if for all pER such that

b>a, B(E,)(«B «B(F,), then there exists a countable set DC{xEPx=a} such
that B = B(P,UD);

(e) for aER and any Boolean algebra B, if for all bER such that b<a,
B(B,)« .8 «B(R,), then we have B = B(P,)).

This lemma can be used to prove the following theorem.

Theorem 1.15. (CH) In the skeleton of epimorphism of a variety of Boolean
algebras there is a noncompactable chain B of a dense ordered type, i.e.,
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< Bf=_«>, has the order type of a set of real numbers.

Let us give an example of constructing rigid Boolean algebras. The roots of
this construction originate from S.Shelah [207], who constructed large families of
mutually unembeddable models of not superstable theories, which are based on
constructing corresponding families of trees. It should be recalled that a tree is a
partially ordered set < C;s> which has the following property: for any set
a€C, {bEClb=<a} is a well-ordered subset of < C;=>.

Henceforth if & is a certain sequence of < day.a,....4q4,...la <>, then (&)
will denote its length, i.e., the ordinal B. For any a < f, Ela will denote the initial
segment of this sequence, of length oc<a0,a1,...ay,...ly<a>, while &[a] will
denote an element a,. For any sequences &,&,, &5, denotes a sequence obtained
by putting the sequence &, in the end of & with a corresponding reindexation of
the elements of the sequence &,. For any ordinals A,u, AS*(A*") will denote a
family of all the sequences of length not greater than u (strictly less than u)
consisting of the elements of the ordinal A.

Definition 1.17. Let £ be an arbitrary class of models of a fixed signature

and let the models & ,(a€J) belong to the class f . A discrete sum of the

models & ,(a €J) is a model E‘ya with a basis set of the type [Ho}x,
a€/ aE]

such that for any signature predicate R(xy,...,x,), any ajy,....a,EJ and any
q €, .lsn on E«?fa , R(<ay,a; >,.,<a,.a,>) is true iff o) =a, =...= a, and
a€l

4, |- Ray,..a,).
Let L be the language of a countable functional signature which consist of X,
of different n-unary functional symbols for any n<w.

Definition 1.18. For any model X €f, M(J ) will denote an algebraic
system of the signature comprising the signature of the language L, the signature of

the class £ and one more unary predicate P. In this case the reduction of M(¥ )
to the signature of the language L is an absolutely free L —algebra generated by the
basic set of the model ¥ ; the predicate P singles out the basic set of the model 4
in M(J ), the reduction of M(& ) to the language of the class £ on the set &
coincides with the model & , and for any a,...a, EMH ), any predicate
R(xy,...,x,) of the signature of the class £, if for a certain isn a, €F)\I,
then M(¥ )= -R(ay,..a,).

Definition 1.19. By £, we will mean the following class of the models & :
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(a) a basic set of the model & is a certain family of sequences of ordinals
whisch are either finite or of a length w such that all initial segments of this

sequence enter 4 with every such sequence belonging to ¥ ;

(b) the predicates F(i<w),<;,<,Eq;(i€Ew) and a constant <> are defined on
4 in the following way: PB={E€dI(E)=ixE<y iff &=ylU(E) <=
={<.§A < a>,§A <p >>I§A < a>,§A <ﬁ>€3j,a <B}
Eq,={< &, v>lg vEXH Eli = vi}; the constant <> coincides with an empty sequence.

Therefore, the models J €f,’ are refined trees: the basic set of the model

with the predicate <;, and the discrete sum of the £, -models (with obvious
additional definitions related to the addition of an empty sequence to the discrete
sum) is againa model of the class £, .

By % (xp,x,¥») we will mean the following formula of calculus L, , of the

Ko

signature of the class £, :

P (X9, %, Yo,¥1) = i+1"<m[Pi+1(xo)& Fa(yo)&
By (x)& Eq;(x0,¥0)& xg = Yo & Xy = y1& X5 <3 3 &Yo < %]

Definition 1.20. The model ¥ €£,’ is said 9 — unembeddable into a model
€ e if for any mapping f of the model & into M(€ ), for any finite subset
ACE there can be found elements ag,a,,b0.b; EH  such that ¥ | y(ag.a;,bo.b,),
and for some terms r,-(xl,...,xni) (i=0,) of the language L, for some

0 0 1

1 40 0 1 ,
€1 35y $Cloe+5Cpy s B sev sl s ) ooy, &€ at i=0,1

fa) =T, (ci,...,c,i,i), f(b;) = Ti(d{""’drii ),

o 1 1

. 0 .
while the tuples < Qs s CaveesCpy >5< dlo,...,d,l,o,dll,...,d;l > implement the same

quantifierless type over A in & .

Definition _1.21. A class £, will be called (¥,A)-wide (where N,A are
arbitrary cardinals), if there is a family &;(i <R) of the £, -models such that
Wi ;l=A, and for any i= j<X, ¥, is y-unembeddable into & ;. The class R,

tr

will be called (X,A)-superwide if there is a family & ;(i <X) of the £,”-models such
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that I/;1= A, and for any i <X, ¥; is ¢ -unembeddable into Y &, .
J<N, j=i

Lemma 1.8. If £, is an (X,A)-superwide class, then £, is an (X',A)-wide
class, where R’ = min{2x,2}”}.

Theorem _1.16.

(@ If A is a regular cardinal, A >X, and A* = A, then the class of models
) is (A,A*)—superwide;

(b) if A is a singular cardinal, 2% <A and AN = A, then R',? is a (A,A)-
superwide class;

(© if AN =24, then R is (2*,A*)-superwide.
The above theorem and lemma 1.8 give rise to the following corollary.

Corollary 1.6. For any regular uncountable A, the class £° is (2*1)-
wide.

The constructed £, -models will be now used for constructing rigid Boolean
algebras and families of Boolean algebras which are not mutually interrelated with
relations of embedding and epimorphism.

Definition 1.22. An ordinal tree is an arbitrary family of sequences with the
relation <. If & is a certain ordinal tree, then B(&) will denote a Boolean algebra
freely generated by a set of elements {xyIm €} modulo the following defining

relations:

(1) for a=p if n"<a>,n"<p>EH , then Xt cas VEpncps =05

<a>

(2) if n<wv, then Xy S Xy

(3) if m has a finite number of extensions of the type n"<a> in ¥, and
71A< a; >(l <k), where k <w are all these extensions, then Xy = Ux,,,\w”> ;

<k

(4) if m<v and for any p such that n<p< v there is the only extension of
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the type p"<a> in &, then x, = x,. One can also remark that B(J) will be an

n
interval Boolean algebra.

Definition  1.23.

(@ Let ¥ €RY and let I,k be tuples formed of the elements of M(J ). Then
if {=~h(mod M@ )) (()=I(h)), then there is a tuple T(x,...,x,) of the terms of
the language L, and there are tuples ,d of the elements of the model J such that
I(c)= 1(3) =n T@) =1, 1?(c7)= h, while the tuples c.d implement the same
quantifierless type in the model & .

(b) Anarbitrary model & is representable in M(H ) if there is a function f
mapping the model & in M ) such that for any Ay, @y, by, b, €€ | it follows
from < f(ay),....f(a,) >=~< f(b),.... f(b,) >(modM(¥H)) that <a,,.,a,> and

n
<¥b,...,b, > implement the same quantifierless type in the model € .

Evidently, if for a certain & €f,” either € itself or a Boolean algebra B(&)
is representable in M(J ) for a certain J €8, then the model € cannot be y -
unembeddable into J .

Lemma 1.9. If for a certain ordinal tree & a Boolean algebra B, = B(d) is
representable in M(J ') for a certain & '€R,’, then for any Boolean algebra X
which is a homomorphic image of the algebra B, there is an ordinal tree € such

that B = B ), and B is also representable in M(J ).

Definition 1.24. Let a family & ,(i<A) of £, -models implement the
(A,A)-superwideness of the class £, for a certain cardinal A. Let us construct an
increasing (by inclusion) continuous sequence of Boolean algebras B;(i<A) in the
following way: B, is a two-element Boolean algebra, B, = B,1-a; x B(d ;), where
the sequence <ali<A > is a certain sequence of all the atoms of the algebras

Bii<2), in which case a;€F;. Let us denote by R a sequence

<< ;,a;>li <A > taking part in the construction of a sequence of Boolean algebras

F,, and define a Boolean algebra By as |}5,;.
i<A

Lemma_1.10. In the notations of definition 1.24 the following are valid:
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() a Boolean algebra B, is representable in M( 23! PE

J<i

(b) a Boolean algebra .BJ(1\ a;) is representable in M( EZ",) for any j<i.
I<ilj

By choosing suitable algebras of the type B, and using lemma 1.10, we can
prove the following theorem.

Theorem _1.17. If the class £, is (A,A)-superwide, then the following
statements are valid:

(1) there is a Boolean algebra B of the power A such that for any
ab B \{0}, if aNb=0, then there is no embedding of the algebra Bla into any
homomorphic image of the Boolean algebra Blb.

A

(2) there are Boolean algebras B;(i<2 ) of the power A such that for any
i=j<2", any a€B,\{0},bEB - \{0}, there is no embedding of the algebra Bjla
into any homomorphic image of the algebra B jlb.

Theorems 1,16 and 1.17 yield, in particular, the following corollary.

Corollary 1.7. For any regular cardinal A greater than X;, there is a family

B EZA) of Boolean algebras of the power A which are mutually unembeddable
and are not homomorphic images of each other.

Theorems 1.16 and 1.17 yield, for example, the validity of the statement of
corollary 1.7 for singular A such that 2N <2, and AN =2,

It should be recalled that the Boolean algebra B obeying clause (1) of theorem
1.17 is Bonnet-rigid and, in particular, has no injective endomorphism onto itself.
Indeed, let us assume that f, is a certain homomorphism from B to an arbitrary
algebra B, and f, is an embedding of B into B, such that fi=f. If f; is not
injective, then there is an a€XF such that a=0 and f(a)=0. For any
bel, fi(b\a)=fi(b) and, hence, B, is a homomorphic image of the algebra
Bl(1\a). On the other hand, Fla is embeddable into JF,. The thus obtained
contradiction proves the impossibility of a similar situation. If f; is injective, then f

is an isomorphism from £ to .Bl and, hence, fl_l f:8 — F is not an identical
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embedding of B into itself. Therefore, for a ceraiina €L, an f2'1 J2(a)=0, but in
this case the elements @ and b= ji'l Jf>(a) contradict the statement (1) of theorem
1.17. It is this fact that proves that any Boolean algebra obeying this statement is
Bonnet-rigid.

It should be remarked in this context that S.Shelah [208] proved the existence
of rigid Boolean algebras of any uncountable power.

D. Invariants of Countable Boolean Algebras and their Monoid

A system of invariants for countable Boolean algebras was first suggested by
J.Ketonen [104]. Y.L.Ershov [57] extended this system to the class of distributive
lattices with a relative complement, in which case, unlike J.Ketonen who used Stone
spaces of Boolean algebras , Y.L.Ershov's proofs are purely algebraic.

Definition 1.25. A distributive lattice < A;U,N, 0> with the least element O
is a lattice with relative complements, if for any of its elements a,b, the inequality

a< b yields that there exists an element cEA such that aUc=»6 and aNc=0.
This element ¢ is called the complement of a relative to b. From now on, a
distributive lattice with relative complements will be called a DILARC.

It should be remarked that for any DILARC & and any asb&¥ , the
complement of a relative to b is unique. This makes it possible to introduce an
operation \ on the DILARC & , setting for c,d €¥ c\d equal to the complement
of the element ¢ Nd relative to c¢. It should be remarked that any homomorphism
from the DILARC & to the DILARC B in the signature < UN,0> will also be a
homomorphism in the signature < U,N,\,0>. A DILARC is a Boolean algebra iff it
has a biggest element. Any ideal of a Boolean algebra is a DILARC. On the other
hand, any DILARC can be represented as an ideal, and even as a maximal ideal of
a Boolean algebra. If a DILARC is a Boolean algebra itself, this is obvious. Now
let & =<A;U,N,0 > be a DILARC with no biggest element. Let A denote a family
AU{-alaE€A}, where {—~ala €A} is a set disjunct from A which is in a one-to-one
correspondence a — —a with A. The operations U,Nare naturally extended from A
to A, owing to the fact that the element ~a must play the role of a complement of
the element a EA in a Boolean algebra < A:UN,-0,1==-0>. In this case, 4 is
obviously a maximal ideal of the constructed Boolean algebra. The notions of an
ideal and of a filter of a DILARC are introduced in the same way as for Boolean
algebras, and any congruence of a DILARC is uniquely defined by an ideal, i.e., by
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a class of congruence containing 0. Let @ be the principal ideal of the DILARC &
generated by an element a.

Definition 1.26. An embedding ¢ of a DILARC &, into a Boolean algebra
& will be called an extension of the DILARC &, using a Boolean algebra &
provided that @( ) is an ideal in & and ¥ /@H ()=H,, where the latter
isomorphism is fixed (its composition with a natural homomorphism J — & / @& ()
will be denoted as ¢).

The next aim will be a description of all the extensions of the DILARC &
using the Boolean algebra & ;. Two extensions, ¢"H,—=& ' and @" A, =X ",
will be said equivalent if there exists an isomorphism % of the DILARC &' with
the DILARC & " such that y¢' =¢@" and ¢"y=¢'. Ext(¥ ;) will denote a
family of all extensions of the DILARC ¥, using the Boolean algebra &, to the
accuracy of the equivalence introduced.

Definition 1.27. Let & be an ideal of a DILARC T Let A be an ideal
complement of the DILARC & , if for any embedding ¢ of the DILARC & there
exists, as an ideal into any DILARC J;, and the only one, a homomorphism 3 of

the DILARC &, into the DILARC ¥ such that 9@ is identical on & .

The definition of an ideal complement T for any DILARC & obviously yields
its uniqueness as an extension of the DILARC & . Let us show the existence of an
ideal complement for any DILARC & . J(J) will denote a family of all ideals of
an arbitrary DILARC J with the lattice operations introduced in a standard way on
J&): for J,J,€JH), JyNJ, is the intersection of J; and J, as sets, J;UJ,
is the least ideal of the DILARC & containing J; and J,. J'(& ) will denote a
subfamily of the family J(& ), consisting of the so-called locally principal ideals; an
ideal J €JH ) is called locally principal if the intersection of J with any principal
ideal of the lattice of &4 is also a principal ideal. A family J'(& ) is a sublattice of
the lattice of J(& ). Any principal ideal is locally principal, and a mapping & -4
will be an embedding of the lattice of & into the lattice of J'(& ). In this case the
principal ideals of the lattice of & form an ideal (henceforth it will be identified
with the lattice of 4 itself) in the lattice of locally principal ideals of the DILARC
. It should be also remarked that for Boolean algebras & the notion of a locally
principal ideal coincides with that of a principal ideal and, hence, J'(J )= .
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Lemma 1.11. The lattice of locally principal ideals of any DILARC & is an
ideal complement of the DILARC & .

For any DILARC X by ¥’ we will define a factor J'(J )/ . The
following result describes all the extensions of the DILARC using Boolean algebras.

Theorem 1.18. For any DILARC &, and a Boolean algebra &, there exists
a one-to-one correspondence between all the extensions Exl(‘?f 0’:” 1) of the DILARC
2 using ¥, (to the accuracy of the equivalence introduced above) and all the
homomorphisms Hom(¥ ;¥ §).

It should be remarked that either directly or using theorem 1.18 and the fact
that J'(& o) =& o for any Boolean algebra & ,, any extension of a Boolean algebra
&, using the Boolean algebra & has the form ¥ xJ ;.

As 1s the case for Boolean algebras, we can introduce the notion of an atom
for a DILARC as well: an clement a of the DILARC & is called an atom if for
any cEd, aNc=0 or aNc=a. The DILARC & is called atomless if it has no
atoms, or atomic if for any cEJ there is an atom a such that asc. The
DILARC & is called superatomic if any of its homomorphic images is atomic. By
reproducing the definitions from section (b) we can introduce the notion of a Frechet
ideal I(& ) for an arbitrary DILARC J and, iterating this notion, obtain a sequence
of ideals Ia(:!f), where o is an arbitrary ordinal. As is the case for Boolean
algebras, an atomic rank a () for the DILARC J will be the least ordinal i such
that 7;,,( )= I,(& ). However, unlike Boolean algebras, as can be casily scen, the
atomic rank of a DILARC can, generally speaking, be a limit ordinal.

Definition 1.28. The atomic type of a superatomic DILARC # will be a

triple ©(& ) =< a*,al,n >, where a*,oc1 are ordinals, and n is a natural number
such that o is the least ordinal of B, for which & / Iﬂ(ﬂ ) has a biggest element
(i.e., is a Boolean algebra). We, obviously, have o;sa @& ). If o =a(d ), then
& =a@) and n=0. If a;<a(d), thenone can easily sce that at(d ) is not
limiting, and then o is such that at(J )= a +1, and » is a number of atoms of
the Boolean algebra & /I « @ ).

It should be remarked that for any superatomic Boolean algebra & of type
< a,n >, its atomic type will be < a,0,n >. An atomic type T(a) of an element a of
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a superatomic DILARC J will be an atomic type of the DILARC 4.

Definition 1.29. For any limit ordinal a, £(a) will denote a DILARC
(which is not a Boolean algebra) of subsets of the ordinal a generated in the
signature < U,N,\,0> by intervals of the type (a,b] for a<sbEa. In this case the
following analog of theorem 1.6 is valid.

Lemma 1.12. For any countable ordinal o, if a DILARC J is such that
1 )=<a,a,0 >, then I =D(w?%).

Theorem 1.19. For any countable ordinals < a, natural number n, and
DILARC & such that ©(d ) =<a,B,n >, we have:

(@) if B=0, then ¥ =B(w® n);

() if B=a,n=0, then & =« D(0%);

() if a=p>0,n>0, then ¥ =Bw® -n) «D(0f).
This theorem immediately yields the following corollary.

Corollary 1.8. Any countable superatomic DILARCs of identical atomic types
are isomorphic.

Definition 1.30. The atomic type of an arbitrary DILARC J will be a triple
o )=r(Iat( 2,)(‘71 )), and the atomic type of an element a€d will be a triple
(@) =twanl a,(g,)(lf )). 8(H )(8(a)) will denote the second component of the triple

v )(t(a)) which will be called a special rank of the DILARC J  (of the element
a).

Definition 1.31. A function f of a DILARC J in a certain ordinal will be
called additive if f obeys the condition: for any a,b €¥ f(aU b) = max{f(a), f(b)}
and f(0) =0.

Lemma 1.13. For any DILARC J , the function of a special rank &(a) is
additive.

Definition 1.32. A countable superatomic DILARC J will be called special
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if its atomic type has the form < 8 ),8(d),0 >.

Definition 1.33. For any set of DILARCs in(iEI), 22{,- will denote a
el

sublattice of the direct product Hé’f ; of a DILARC ¥, with a basic set
i€l

(€[ [H W €D f() = OH< Ro}-
=1

From lemma 1.11 one can easily deduce the following corollary.

Corollary 1.9. An ideal complement of the DILARC 231,- is isomorphic to
el

the direct product of the ideal complements of the DILARC ;.
Lemma 1.14. Let & be a special DILARC.

(@) if 8(F )=a+1, then & is representable as ¥ = Elf,,, where &, is a
ncw

superatomic Boolean algebra of the atomic type < ¢.,0,1>;

(b) if 8(H ) is limiting and &(H )= lim,, where o, is an increasing
n<w
sequence of ordinals, then & is representable as J = EQI n» where J, are
=
superatomic Boolean algebras of the atomic type < «,,,0,1>.
According to corollary 1.9 and to the above, an ideal complement of a Boolean

algebra is isomorphic to it, an ideal complement J'(& ) of a special DILARC J has
the form Hé’f »» Where &, are Boolean algebras used in the statements (a) and (b)
=w

of lemma 1.14. In J'(& ) = HQ!,, let us determine a chain of ideals Ig(8 < 8¢ ),
nom
setting Ig = {f EHQJ A f(n) EIg(I )}. Therefore, for any locally principal ideal J of
ncw
a special DILARC ¥ = zﬂn JEI iff JCIg(A), where B is an arbitrary
ncw

ordinal. This fact implies, in particular, that the definition of ideals iﬁ on an ideal

extension J'(& ) of a special DILARC & is independent of the choice of its
decomposition EZJ',,.
=
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Definition 1.34. For a special DILARC ¥, 9, (B-ordinal <6 )) will

denote the image of an ideal I_ﬂ under a natural homomorphism

1%
JAUY=||H, =& =rH ) I =rc ,
,.l;(l,, &) 37,

ncw
where I = 23{ » Is a decomposition discussed in lemma 1.14. The function
ncw

p:dl "= 6(d)+1 will be defined in the following way: for a €Y' we have
p(a)=min{ﬂ|a€1pﬂ}.

Lemma 1.15. For any special DILARC ¥ , any ideal JEJ'( ), if d is an
image of J at a natural homomorphism J'(& )—& ', then p(d) = 6(J).

Lemma 1.16. For any special DILARC &, the mapping pdl '— 6(& ) +1
has the following properties:

(1) pd; Udy) = max{p(d,),p(dy)},p(d) =0« d =0;
(2) for any B< () there is a d €X' such that p(d) =

(3) if B=p(d), then there is a dy &X' such that dy <d, p(dy)=p and
pd \dy) =p(d). ‘

For the special DILARC &, the pair <& ",p> is, as can be seen in the
following statement, universal.

Lemma 1.17. Let & be a special DILARC, a =6 ), &, be not more
than a countable Boolean algebra, r:d —>a+1 be an additive function, and
r(ly ) =a. Then there is a homomorphism vl o —d "' such that r(d) = p(y (d)

for any d €¥ .

Since all countable atomless Boolean algebras are isomorphic, and any Boolean
algebra & / Iat(y)(&' ) is atomless, any countable Boolean algebra & is either
superatomic or is an extension of the superatomic DILARC Iat@,)(z{ ) by a

countable atomless Boolean algebra B(m). It should be recalled that by theorem 1.6
a complete system of invariants for countable superatomic Boolean algebras will be
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their types.

Definition 1.35. A countable Boolean algebra & is called normalized
provided that Iat(‘y)(:ﬂ) is special and & ! Ly )(31' )= B(n).

Lemma 1.18. Any countable non-superatomic Boolean algebra I can be
represented as & o xf;, where:

(1) ¥, is a normalized Boolean algebra;

(2) ¥, is ecither a singleton or a superatomic Boolean algebra of type < a,n >,
in which case a= 8(H ).

Let us now consider the types of the isomorphism of normalized Boolean
algebras.

Definition 1.36. Let 4, be a special DILARC of a special rank o, and 4
be an extension of & o by an atomless countable Boolean algebra B(7) (we assume

H,Cd ). Let gy be a natural homomorphism from & to B(n) arising when &
is factorized over & ;. By lemma 1.13, the function &:F — a+1 is additive. As
for any supcratomic element d €4, 6(d)=0, the epimorphism @y induces a
mapping 7y :B(n)—> a+1 such that ry (@y (d)) = 6(d) for any ded . Obviously,
ry is an additive function on B(m). The pair < B(n),ry > will be called an atomic

approximation of the extension of .

Lemma 1.19. If ¥, are two extensions of a special DILARC ¥, by a
countable atomless Boolean algebra B(7), then the Boolean algebras of &, and &,
are isomorphic iff the pairs <B(71);r311 > and <B(71);r‘;,12 > are isomorphic, i.e.,

when there is an automorphism p of the algebra B(1) such that ry = ry, B
1

Lemma 1.20. Let & be a special DILARC, 8(& )= a. Then for any
additive function r:B(n) = a+1 such that r(lgay) =, there is a Boolean algebra

J , that isan extension of the DILARC 4 with a Boolean algebra B(m), and such
that the atomic approximation of & < B(n); ry > is equal to < B(n),r>.

Lemma 1.21. A decomposition of countable non-superatomic Boolean algebras
& into a product of normalized and superatomic (or singleton) ones, discussed in
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lemma 1.18 is unique, ie., if ¥ «Xoxd =¥ oxd, are two such
representations, then ¥ =&, ¥, =¥, .

Definition 1.37. We will call a system of invariants for a countable Boolean
algebra & :

(a) the type < a,n > of the algebra J if J is superatomic;

(b) the set << B(n)',r‘-',,0 >, ©(H,)>, where ¥ ,x&, is a representation of the
algebra 4 as a product of a normalized algebra &, by a superatomic algebra &,
and where &(H 0) srl(lf 1) (here 7, 1) is the first component of the triple (¥ ;)
when & is not superatomic).

A system of invariants of the algebras & ,& = will be called isomorphic if they
coincide in the case of superatomic algebras A and & *, or if
<B(n);r‘~!,0 > B(n);rzl; >, 1:(3)'1) =1:(211*) for the corresponding decompositions
A =dyxd,, U = oxdU, for the case of non-superatomic algebras & and
I’

The statements of lemmas 1.18-1.21 and theorem 1.6 imply the following
theorem.

Theorem_ 1.20.

(a) Countable Boolean algebras are isomorphic iff they have isomorphic systems
of invariants;

(b) for any cardinal o< w;, and any natural number n> 0 there exists a
countable superatomic algebra with a system of invariants equal to < a,n >. For any
ordinals as=f <w;, any natural number n>0 and any additive function
r:B(n)— o +1 such that r(lpy) =, there is a non-superatomic countable Boolean
algebra with a system of invariants << B(%),7>,< 8,0,n >>.

Employing the obtained system of invariants of countable Boolean algebras,
J.Ketonen obtained the most important property of the so-called Cartesian skeleton of
the class of countable Boolean algebras, answering a number of known problems.

Definition 1.38. For any class of algebras £, closed relative to finite
Cartesian products (if ¥, 4,€ER, then H,xH,ER ), the Cartesian (countable
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Cartesian) skeleton of the class ® is < 35?;x>(39xo;x >), Wwhere
Ry, =& ER1U =Ry}, and the operation x is defined on the elements
JRIR No) in the following way: if a,b,c € 382 and abc are the types of the
isomorphism of the algebras & ,B &€ , respectively, then axb=c iff X x5 =& .

It is obvious that the class JR (IR x,) modified by the operation x satisfies
the axioms of a commutative semigroup, while if £ contains a singleton algebra,
then < I8 .x>(<J3 f?xo;x >) obeys the axioms of a monoid, where the role of 1
is played by the singleton algebra.

The basic result obtained by JKetonen with a system of invariants for
countable Boolean algebras in the course of a rather lengthy proof is as follows.

Theorem 1.21. Any countable commutative semigroup is isomorphically
embeddable into < 3BA.<0;x>, which is a countable Cartesian skeleton of a variety

of Boolean algebras.

For an algebraic description of a countable Cartesian skeleton of a variety of
Boolean algebras a number of definitions will be required.

Definition__1.39.

(a) A commutative monoid < M;:1> is called canonical if the equality xy=1
yields the equalities x =y=1.

(b) A general refinement of the sequences <xlisn><yjljsm> of the

elements of a commutative monoid with the property l—[xi =Hyj is a sequence
isn Jjsm
<rjisn,jsm> such that for any isnjsm

X = Hz,-,-,y,- = Hzi,--

Jjsm isn

(c) The monoid < M;,1> is called a refinement monoid if it is canonical and
any sequences of the clements of M <xlisn>, <y;lj<sm> with the property
nx,- = Hy ; have a general refinement.

isn Jjsm

(dy If m =< M 1> and N =<N:;+,1> are two monoids, then the relation
RC NxM is called a left V-relation, provided that;
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(1) <Ly >R implies the equality y=1;

(2) if <x,y>ER and x=x1x,, then there are y;,y, EM such that y=yy,
and < x;,y >.< X,,¥), >ER.

(e) The relation RCNx M is called a right V-relation if R is a left V-
relation. If R is both a left and right V-relation, we will call R simply a V -relation;

if in this case J1 = M1, then R will be called a V -relation on 77 .

(H) A monoid M is called a V-monoid if M is a refinement monoid, and on
DT the V-criteria is fulfilled: if R is a V-relation on M and <x,y>ER, then
x=y, ie, the only V-relation on M is the equality relation.

Let us recall a known Vaught criterion of the isomorphism of countable Boolean
algebras.

Theorem_1.22. Two at most countably infinite Boolean algebras 4,4, will
be isomorphic iff there is a correspondence between &, and & ,, i.e., when there is
aset CCH,xI, such that:

(D) <lb>cCeb=1 <al>Cea=1;
2) <a,b>EC =<-a,~b>EC;

(3) if <ab>EC and c€EH,, then there is a d&X, such that
<aNc,bNd>,<a\c,b\d>EC;

(4) if <ab>eC,d€d,, then there is a c&JH,; such that
<afNe,bNd >, <a\c,b\d>€C.

A countable Cartesian skeleton of a variety of Boolean algebras < 3B4<0',X>,
refined with a singleton Boolean algebra as a constant 1 will obviously be a

refinement monoid, and by virtue of the aforementioned Vaught criterion, it will also
be a V-monoid.

Definition __1.40.

() A submonoid 1 of a monoid M is said hereditary if for any



CHAPTER 1 39

x€M,y,z€M the equality x =yz yields y,zEH . Obvious is the fact that any
hereditary submonoid of a monoid of refinement (a V-monoid) is a refinement
monoid itself (a V-monoid).

(b) The rank of summation of the monoid M is the least upper boundary of
the powers of the sets {yEW | there is a zEM yz=x} for x€ll .

(¢) A V-monoid #7 is called a universal V-monoid of the summation rank k
(k is an arbitrary infinite cardinal), if M has a rank of summation k, and any V-
monoid J7 of the rank of summation not greater than k is isomorphic to a certain
hereditary submonoid of the monoid M .

Theorem _1.23.

(a) For any infinite cardinal k£ there is a unique universal V-monoid of the
rank of summation k.

(b) If f is an isomorphism from a V-monoid J1 to a hereditary submonoid of
a V-monoid M , then f is uniquely defined.

The following result gives an algebraic characterization of a countable Cartesian
skeleton of a variety of Boolean algebras, using the notions introduced above.

Theorem 1.24. A countable Cartesian skeleton of a variety of Boolean
algebras <3B4<0;x,lBA>, refined with a constant which is a type of the

isomorphism of a singleton Boolean algebra, is a universal V-monoid of the rank of
summation X.

E. Mad-Families and Boolean Algebras

Here we will consider one more way of constructing Boolean algebras, which
enables one to construct a family of these algebras which have different properties
and are interrelated by, in particular, relations of embedding and epimorphism. The
method is based on the so-called almost disjunct families of sets. It should be
remarked that the notion of almost-disjunctness defined below is other than that
introduced in section C.
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Definition 1.41.

(a) A family X of infinite subsets of a set A is said (pairwise) almost-disjunct
if for any R,R, €X we have IR N Ryl<N,.

(b) An almost disjunct family X of subsets of a set A is said an ad -family, if
for any finite X' C X, the set A\UX' is infinite, and an ad -family X is called a
mad -family, if it is maximal in terms of the inclusion of the subsets of the set A
among ad -families.

(c) A family X of subsets of the set A has the property of a finite intersection
(the fip property ), provided that we have INX'l=X, for any finite X' CX.

The relation "P\ R is finite" between subsets of the set A will be denoted by
PG R, P=«R if (P\RYU(R\P) is finite.

For any ad-family X of subsets of the set A, F(X) will denote
{BC Al{s€XIsC. B}l=2'4}.

By P(2”) we will mean the following set-theoretical proposition introduced by
Rothberger [202]: if FC P(w) has the fip property, and |Fl< 2x°, then there is an
infinite PC w such that P\R is finite for any REF . It has been proved [114] that
the statement P(2”) follows from the Martin hypothesis and, hence, moreover from
the continuum-hypothesis. Indeed, for the case when CH,IFI=R, we set
F={Ali <w}, and then we construct P in an inductive way, choosing x; Ew in the
following way: x, €A; if we have constructed xg,...,x; for k<w, then let
X1 EANNAL N {xg,...x}. Setting P ={x;li < w}, we obviously get |P\ RI<®, for
any ReF .

Lemma 1.22. Under the assumption P(2“) for any non-principal ultrafilter P,
on w there is a mad -family X of subsets w such that F(X)=P.

For any family 7 of subsets of the set A, B(A,T') will denote a subalgebra of
the Boolean algebra of all subsets of the set A, generated by the elements included
in T and elements of the type {a}, where a€A. If X is a mad -family of the
subsets of A, then B(A,X) is, as can be seen easily, a superatomic Boolean algebra
of type <2,1>.

Definition 1.42. By BA we will mean the family of all ultrafilters on the set
A. The Rudin-Keisler quasi-order =; on different ultrafilters is defined in the
following way: for p €BA, gEPB, the relation p=; g holds iff there is a mapping f
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of a certain set XEq in A such that for any YC A, YEp iff for a certain Z€Egq,
f(Z)C Y. The finite Rudin-Keisler quasi-order < is defined in an analogous way,

but there is an additional requirement on f: for any a €A, | f'l(a)l< Ro.

X
Theorem_1.25. There is 2"° (22 ° under CH) of non-principal ultrafilters on
w, which are mutually incomparable relative to the Rudin-Keisler quasi-order.

Let p be an arbitrary non-principal ultrafilter on @, and let X, be a mad -
family of the subsets @ constructed in lemma 1.22 such that F(X,)=p. By B »
we will mean a Boolean algebra B(w,X,). It should be remarked that the existence
of the algebra B(w,X,) has been proved under the assumption of the set-theoretical

hypothesis P(2“), or a stronger one, CH.

Lemma 1.23. For any non-principal ultrafilters p,g on w, if a Boolean
algebra B p 1s isomorphically embeddable into the Boolean algebra B ¢ then p=gq.

The statement of lemma 1.23 obviously remains true for any ultrafilters p,q
defined on arbitrarily countable sets A and B.
From theorem 1.25 and lemma 1.23 one can deduce, as a corollary,

(assuming P(2”)) the existence of 2N (22K0 under CH) of mutually unembeddable
Boolean algebras of the powers 2% It should be recalled that in section (c) we
obtained a stronger result with no additional set-theoretical assumptions: for any
X >Ny there are 2 of mutually unembeddable Boolean algebras of the power X. The
construction discussed above, however, will be used for constructing families of

mutually unembeddable Boolean algebras with an additional property: they will be
homomorphic images of each other, i.e., equivalent in terms of =__.

Theorem 1.26. Under the assumption P(2”) (or under a stronger one, CH)
for any n€w there are Boolean algebras B,...B, | such that B, are mutually
unembeddable, and for any i,j <n, we have .B,- << B -

The latter statement, combined with theorem 1.9, makes it possible to prove the
following theorem, which is of primary importance in this section.

Theorem 1.27. Under the assumption P(2%), for any finite set
B={by.....b,_;} modified by two arbitrary quasi-orders =,,<,, there are mutually

non-isomorphic Boolean algebras &,...&,_; (of the power 2N°) such that for i,j<s
@lscj iff bl = b.l’ and €i<<€j iff bl <<2%.



42 BOOLEAN CONSTRUCTIONS

The proof of this theorem is given in section 14 of Applications.

By way of concluding this section it should be remarked that not all the basic
problems of the theory of Boolean algebras have been discussed here, my choice
being governed by the applicability of the material presented in Chapters 2 and 3. A
detailed and basically complete presentation of the modem theory of Boolean algebras
can be found in "Handbook of Boolean Algebras" mentioned earlier. In section 14
of Applications in this monograph one can find proofs of the theorems of the present
section not to be found in "Handbook of Boolean Algebras" and in other
monographs on Boolean algebras.

Priorities. Theorem 1.1 is by M.N.Stone [220], and its proof can be found
in any sufficiently complete textbook on topology and theory of Boolean algebras.
Theorem 1.2 belongs to G.Fodor [63], the statement of theorem 1.3 to
R.M.Solavay [216], the proof of these theorems can be found, for instance, in a
monograph by A.Levy [124]. Theorem 1.4 was proved by S.Mazurkiewicz and
W.Sierpinski [133], theorem 1.5 by A.Mostowsli and A.Tarski, theorem 1.6 is to
be found in a paper by G.Day [49]. Theorem 1.7 belongs to R.S.Pierce [159],
theorem 1.8 to R.Bonnet [20]. The statement of theorem 1.9 for the case

hy i= Nl is a variation of lemma 1 from a paper by A.G.Pinus [178], and in a

general form this statement can be found in a paper by R.Bonnet and H.Si-Kaddour
[19] (the proof is given in section 14 of Applications of the present monograph).

It should be remarked that part of the material pertaining to interval and
superatomic Boolean algebras can be found in "Handbook of Boolean Algebras"
mentioned earlier and also, for instance, in monographs by Yu.L.Ershov [59] and
S.S.Goncharov [78]. The proof of theorem 1.9, theorems 1.10 and 1.11 are by
M.Rubin [204].

Lemma 1.1 for the case of an ordered set of real numbers stems from a paper
by W.Sierpinski [211] and has been repeatedly generalized for other LOSs by various
authors. The form of lemma 1.1 presented here is closest to that presented by
R.Bonnet [21]. Lemmas 1.2-1.6 and theorems 1.12-1.14 also belong to R.Bonnet
[21]. Lemma 1.7 and theorem 1.15 can be found in a paper by A.G.Pinus [169],
the proofs of these statements are given in section 14 of Applications.

The constructions pertaining to definitions 1.17-1.24, as well as the statements
of lemmas 1.8-1.10, of theorems 1.16-1.17 and corollaries 1.6-1.7 are by
S.Shelah [207].

As has been mentioned earlier, the system of invariants for countable Boolean
algebras was borrowed from J.Ketonen [104], a purely algebraic construction of this
system of invariants and a generalized result for the class of countable DILARCs was
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borrowed from Yu.L.Ershov [56]. The contents of section (d) of this section, up to
and including theorem 1.20 is after Yu.L.Ershov [56].

Theorem 1.21 that has accounted for a number of known problems was proved
by J.Ketonen [104]. Theorem 1.22 is the classical Vaught criterion of the
isomorphism of countable Boolean algebras [233]. The results pertaining to the notion
of V -monoids, i.e. theorems 1.23-1.24, belong to H.Dobbertin [53].

The statement of lemma 1.22 is by M.Weese [235], who also remarks in his
work that Boolean algebras .B p,.B g are non-isomorphic when the ultrafilters p,g are
incomparable relative to the Rudin-Keisler order. Theorem 1.25 was proved by
K. Kunen [116], and its proof, as well as more details on the Rudin-Keisler order on
ultrafilters, can be found in a monograph by W.W.Comfort and S.Negrepontis [41].
Lemma 1.23 and theorems 1.26 and 1.27 are to be found in a paper by
A.G.Pinus [178] (their proofs are presented in section 14 in Applications).

2. Basic Notions of Universal Algebra

The purpose of this section is to recall the basic facts of the theory of
universal algebras to be used later in this monograph. Some standard notations and
definitions of the theory of universal algebras, which can be found in monographs
by A.l.Mal'tzev [128], A.G.Pinus [161], G.Gritzer [84], P.M.Cohn [37], S.Burris,
H.P.Sankappanavar [28] and others, will be made use of. Let us recall some of
them.

For any class of algebras £, I(f) will denote the class of all algebras
isomorphic to the algebras of the class £ . Let S(f£) be a class of all subalgebras
of the algebras of the class £ . H(f) will be a class of all homomorphic images
of the algebras of the class £, P(R), B(f) the classes of all direct and subdirect
products of £ -algebras, Pp(f?) the class of all ultraproducts of £ -algebras, and
P-(f) the class of all filtered products of & -algebras.

The class of algebras £ is called a variety (a quasi-variety) if it consists of all
the algebras of a given fixed signature which obeys a certain system of identities
(quasi-identities). For an arbitrary class of algebras £ , M (£) @ (®)) will denote
the least variety (quasi-variety) containing the class £ . The following statements are
the corner-stones of the theory of varieties (quasi-varieties) of universal algebras (for
simplicity, an at most countably infinite signature is assumed throughout).

Theorem 2.1. The class of algebras £ is a variety iff S(R)C R,
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HR)CR and PARA)ICHK. For any class of algebras £  we have
MRy=HSAR).

£ will denote an extension of the class £ by adding a one-clement algebra
to it.

Theorem 2.2. The class of algebras £ is a quasi-variety iff S(£)C R,
P(R)CR and KYCHR. The class of algebras £ is a quasi-variety iff
SEYCR, PR)CR, PR)CRK and R'CH . For any class of algebras £
we have &(R)=SPR").

A variety MM is called finitely generated if there exists a finite class £ of
finite algebras such that 7 = M (£ ), or, which is equivalent, f1 is generated by a
certain finite algebra. By 5117 (X) we will mean an X-generated free 2 -algebra. For
any variety M1 M = HSP(¥ 5 (Ry)).

mx; will denote a projection of a direct product H.Bi and its subalgebras on

il

the algebra B;. The algebra & is called subdirectly non-decomposable if for any
algebras B,(i €I) the fact that & is a subdirect product of the algebras. B;(i €I)
implies that for a certain iy €I, &; is an isomorphism of & on .B,b.

Theorem 2.3. Any algebra & is isomorphic to a subdirect product of
subdirectly non-decomposable algebras.

Since the subdirectly non-decomposable algebras in the above statement belong
to any variety to which the algebra & belongs, any variety is uniquely definable by
its subdirectly non-decomposable algebras. In particular, for any class f, the
equality 7 ()= HPy(£) [108] holds.

By f5; we will mean a class of subdirectly non-decomposable f -algebras.
For any algebra & , Condf is a lattice of congruences of the algebra & ; v,n are
the corresponding lattice operations on Condl , Vy ., Ay are the biggest and the
least, or unit and zero, congruences on J . An element a of an arbitrary lattice L
is said compact if for any subset ACL, vA=a implies the existence of a finite
BC A such that vB=a. A lattice is called algebraic if it is complete and any of its
element is the upper bound of a certain family of compact elements. For any algebra

J and any ab €, 6,, will denote the least congruence on 4 containing a pair

<a,b > (such congruences are said principal). Conp:!f stands for the family of
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principal congruences partially ordered in terms of the inclusion on 4 . For any
algebra J , the compact clements of Condl , and only them, are finite unions of

principal congruences. The lattice Condl is algebraic for any algebra. The converse
is also valid.

Theorem 2.4. Any algebraic lattice is isomorphic to the congruence lattice of
a certain algebra. In this case, if the biggest element of the lattice is compact, then
the algebra of a finite signature can be chosen.

If f is a certain homomorphism of the algebra & on 2 and 6 €Con B, then

v
fO6 will denote a congruence on 4 which is equal to
{<ab>cd %< f(a), f(b) >£6}. The kemel of f, ker f, is, by the definition, equal

to }AB .
If X (_:l_[‘?!,-, then we will write [f =g]l for {ENfG@) =g} f.g€H , and
&l

I[f=g] for INi[f=g]l. If 6,ECond (i€I), and .:é\zei=A‘7]’ then & s

isomorphic to a subdirect product of algebras & /6,(i€I). Conversely, if
v Qn.Bi has a subdirect product (the latter will be denoted by ¥ <, H.B ;). then
il i€l

Akeram; =Ay.
el ! ¥

Therefore, & is subdirectly non-decomposable iff there exists a least non-trivial
congruence on J , which is called a monolith of & and denoted by B(& ). Since

any congruence is a union of principal ones, (& ) is always principal. An element
a of the lattice L will be called non-decomposable at an intersection in L if for any
b, EL(iE€I), the equality a=ié\lb,- implies the existence of an iy €l such that
a="b; For any 6 €Condl , A 16 is a subdirectly non-decomposable algebra iff 6 is
non-decomposable at an intersection in Condl . For any 0ECond a natural
homomorphism of & on J /6 generates a natural isomorphism of the lattice
Condl /16 with a sublattice [6;Vy] of the lattice Cond , where
[osBl={yELa=<y sp} for the latice L and any a<p EL.

Let @, be arbitrary binary relations on 4 , @-vy denote their composition,
oy ={<a,b>€¥? I : <ac >E@,<c,b>Ey}. For 6,.0,ECond , the

following conditions are equivalent:

(1) 61'62 =02 '61;

(2) 6,-0,C 6, -6;;
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(3) 91'02 = 02 v 01.

In this case the congruences 6,6, are said commutable. If 6,,6, ECondl ,
6A6,=A, 6,v6,=V, and 6,,6, are commutable, then & = /6, x¥H /6,. The
converse is also valid: if & =« xJ,, then there are 6,,0, ECondf such that

;=4 /6; and 6,,6, have the above properties.
A variety of algebras whose congruences are commutable, is said congruence-

commutable.

Theorem 2.5. For a variety 1, the following conditions are equivalent:

(1) M is congruence-commutable;
@) 3?71 (3) is congruence-commutable;

(3) there is a term p of three variables such that on J the following

identities hold:

p(x,2,2)=x, p(x,x2)=2Z.

A lattice is called distributive if it satisfies either of the following equivalent

equations:

XA(YVD =(xAYV(XAZ),
xv(yAd =(xvy)a(xv2).

A lattice L is called modular if it satisfies the following equality:
xANVAD)=yr((xay)V2),
or a quasi-equality equivalent to it:
XAYy=x—=2>xV(YAD)=yA(xVZ).
Any distributive lattice is modular.

Theorem 2.6. A lattice L is non-modular iff a lattice N5 is isomorphically
imbeddable in L (Fig. 3).
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Theorem 2.7. A lattice L is non-distributive iff a lattice M; or Ns is
isomorphically imbeddable into L (Fig. 3).

Fig. 3

A variety of algebras such that Condl is distributive (modular) for all its
algebras & is called a congruence-distributive (congruence-modular) variety. A variety
which is both congruence-commutable and congruence-distributive is said arithmetic.

Theorem 2.8. For a variety {7, the following conditions are equivalent:

(1) MM is congruence-modular;

@) Sm (4) is congruence-modular;

(3) for any ¥ €M and any a,bc,d X,

< a,b >€9b,c \") (( Oa,d v Hb,c) A (Ha,b \' Bc,d )) N

(4) for a certain natural number n=z1, there are terms pg,...,p, of four
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variables such that for i =0,...,n -1, the following equalities are valid on m.

Po(Xy,Z2.u) =x, p(x,y,Z1)=u, pLX,y,y,X)=X;
Di(%,y,y,4) = pi1(x,y,y,u) for even i;
pi(x,xuu)= p;(xxuu) for odd i.

Theorem 2.9. For a variety Jf, the following conditions are equivalent:
(1) MM is congruence-distributive;
2 31)2 (3) is congruence-distributive;
(3) for any & €M and any a,bc €H ,
<a,c>€E0,p A6, ) V(6o AO,.0);

(4) for a certain natural number n=1, there are terms pg,...,p, of three

variables such that for i =0,...,n -1, the following equalities are valid on 7 :

Po(%Y,2) =%, p(x,%2) =2, pi(xY,X)=x;
pi(x,x,2) = pa(x,x,2) for even i;
Pi(X,2,2) = Puy(x,2,2) for odd i.

Theorem 2.10. For a variety M, the following conditions are equivalent:
(1) .M is arithmetic;

(2) there is a term p of three variables such that M satisfies the following
equations:

p(x,y,%) = p(x,5,¥) = p(¥, 5, %) = X.

It should be noted, for example, that any variety of groups, rings and quasi-
groups is congruence-commutable. Either directly, or using theorems 2.5 and 2.8,
one can also observe that any congruence-commutable variety is congruence-modular,
and any variety of lattices is congruence-distributive. Another source of examples of
congruence-distributive varieties are the discriminator varieties to be introduced below.

The algebra Jl s called simple if its lattice of congruences is two-element, i.e.,
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any of its factors over a nonzero congruence is a one-clement algebra. Of major
importance in the theory of varieties of algebras is the following result.

Theorem 2.11. Any nontrivial variety contains a simple algebra.

In the proof of all preceding statements use has been made of the following
fundamental statement about the structure of congruences generated by a given set of
pairs of elements of a universal algebra.

Theorem 2.12. For any universal algebra 4 , any set T of non-ordered pairs
of elements of & , and for any a,b €J , a pair <a,b > belongs to a congruence on
& generated by the set T iff there are terms p;(x,y,,...,Y,,) of the signature of the
algebra & (1<i=<l), elements €.ty € , and pairs {5;,}}ET (1=<i=<l) such
that:

a=pi(s.er,Cm),

for 1si<l p{tieq,...l)=Pi1(50.80-€,), and

Dite1, ) =b.

This theorem obviously entails the following corollary.

Corollary 2.1. For any subalgebra J, of an algebra & and any set T of
non-ordered pairs of elements of &, if a congruence a€Condl is generated by the
set T, then:

(a) the existence of a homomorphism f of the algebra & on 4, (leaving the
clements of 4, fixed) yields that o restricted on &, is equal to the congruence
generated by the set 7 on the algebra ¥ ;;

(b) for any cE€H,,d &€l , if there is a homomorphism g of the algebra & on
2 fixing the elements of &, and such that g(d) =c, then the restriction of the
congruence a v 6,, on # is equal to that of the congruence & on ¥ ;.

R, will denote the family of all simple algebras from a class £ . It should be
noted that for any non-trivial quasi-variety of algebras, there is a simple algebra
relative to this quasi-variety, i.e. such that any factor of this algebra over a
congruence other than zero and unity, does not belong to the given quasi-variety (fot
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the proof see [79])..

The algebra & is called congruence-uniform if for any 6 ECondl , all the
equivalence classes over 8 on 4 are of the same power. A variety is congruence-
uniform if its all algebras are congruence-uniform.

The class of algebras £ is called locally finite if any finitely generated f -
algebra is finite. The variety 1 is locally finite iff the algebras 3"m (n) are finite
for any nE€w. For any finite class £ of finite algebras, a variety M (£) is locally
finite.

The finite algebra & is called primal if for any n Ew and any n-ary function
Sf(x,...,x,) defined on & , there is a term #(xy,...,x,) of the algebra & such that
for any ay,...a, ed f(ay.....a,)=1ay,...a,), iec, any n-unary function on s
defined by the term.

Theorem 2.13. For a finite algebra &, the following conditions are
equivalent:

(1) & is primal;

2 M) is arithmetic, & is simple, has no proper subalgebras and is rigid,
i.e., has no non-trivial automorphisms.

A discriminator on algebra & is a function d(x,y,z) such that for any
abc €H , d(a,bc)=a if a=b and d(a,bc) =c if a=b. The algebra F is called
a discriminator algebra if the discriminator on & is defined by a term of the algebra
& . A finite discriminator algebra is called a quasi-primal algebra.

Theorem 2.14. For a finite algebra v , the following conditions are
equivalent:

(1) & is quasi-primal;
(2) M) is arithmetic, & and its all subalgebras are simple;

(3) any function f:Ak-—>A, where A is a basic set of the algebra I,
preserving all subalgebras of the algebra 4 and all isomorphisms among these

subalgebras, is defined by a certain term of the algebra & .
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A variety M is a discriminator variety if there is a class £ C#T such that

MR)Y=1, and on all ¥ €R the discriminators are determined by a general
term. In this case it appears that £ C Mg = M.

Theorem 2.15. For any variety M, the following conditions are equivalent:

(1) MM is a discriminator variety;

(2) there is a term p of three variables such that the following equations are
satisfied on M7 :

p(x,z2,20)=x, px,yx)=x, p(x,x,2)=2,
p(x,p(x,9,2),y)=Y,

and for any signature function f, the following identity holds on M7 :
(XY, [ (210 2g) = POEY, (PO Y5 200 s PAE Y, 21)))-

A set M1 is said to be semisimple if any of its subdirectly non-decomposable
algebras is simple. As has been remarked earlier, for discriminator varieties the
equality Mg =M, is true, i.e, any discriminator variety is semisimple. By
theorems 2.10 and 2.15, any discriminator variety is arithmetic.

The following statement is of great importance for the study of congruence-
distributive varieties of algebras.

Theorem 2.16. (Jonsson lemma). If for a certain class of algebras £,
M(R) is congruence-distributive, then MM (R ), C HSPA(R).

Let us now recall the basic notions and results of the theory of commutators of
congruence-modular varieties of algebras, the theory which was a major breakthrough
in the theory of varieties of algebras in recent years.

The cornerstone of this theory was laid in a monograph by J.D.H.Smith [213]
on congruence-commutable varieties and later developed for congruence-modular
varieties by J.Hagemann, C.Herrmann and H.P.Gumm ([89], [92], [86], [87]). A
systematic presentation of the theory of commutators can be found elsewhere ([88],
[721, [161]). Let henceforth f? stand for an arbitrary congruence-modular variety.

For any algebra & €M, any congruences o,8ECond , J * will denote a
subalgebra of the algebra J with a basis set equal to a, and we will define the
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congruence Aﬁ on J% as a congruence generated by the set
{<<x,x><yy>>l<x,y>EB}. A commutator of the congruences a,f will be a
relation [a,B] on the algebra & such that < x,y>E€[a,B] iff <<x,x>,< x,y >>EA’;.
For any a,BECondl , [a,B]1ECond .

In the following theorem one can find an abstract definition of a commutator.

Theorem 2.17. A commutator of congruences on algebras ¥ of a
congruence-modular variety 1 is said to be the biggest binary operation f(x,Y)
(relative to the order on Condf ) defined on Condl I €¥) and having the
following properties for all a,8,y ECondl :

1) f(a.B)sanB;
(2) f(a’ﬁ v Y) = f(a’ﬁ)v f(a:}’),
3) flavp,y)= fla.p)v f(By),

(4) for any homomorphism ¢ of an algebra B €M on the algebra & we
v v v
have ¢ f(a.B) = f(¢ .9 B) v ker ¢.

For our further proofs we will need more properties for the commutator
resulting from theorem 2.17, i.e.,

A\ v v
5 if ¥ =Hx..x¥,, a,p;ECondl;, then [ Amia;, v aifl= Amfc;,B;],
isn isn isn

where x; are projections of d on ;.

The following statement is another definition of a commutator, different from
that in theorem 2.17.

Theorem 2.18. If a,BECond , then [a,B] is the least congruence y on
4  with the following properties: for any a,bed” pge&d, if
< ma, n,-l; >Ea(isn),< p,g >EP, then for any term #(xy,...,x,,y) of the algebra .
the fact that < #@,p),?(a,q) >Ey implies that < b, P 1(b,q)>Ey.

The center of the algebra & is said to be the biggest congruence aECondf
such that [V,a]=A. The congruence ﬂEConJ is called Abelian, if [B8,5] =A2].
The algebra & is Abelian if Vy is also Abelian. A variety is Abelian if all its
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algebras are Abelian. It should be noted that in the case when M is a variety of
groups, & €M, a,BECond and correspond to normal subgroups 4.4, of the
algebra & , then [a,B] corresponds to a group-theoretical commutator [, 5] of
the subgroups &,,%,. Any group is Abelian in the sense of the theory of
commutators iff it is Abelian (i.e., commutative) in the group-theoretical sense. A
ring is Abelian iff it is a ring with a zero multiplication.

Theorem 2.19. If M is a congruence-modular variety, then there is a term
p(x,y,z) such that for any algebra & €M, any Abelian @ ECond and any d €Y
on the congruence-class d / a, the operations of an Abelian group + are definable,
so that for ab,c €d/a, plabc)=a-b+c, and for any signature operation

f(H,--x) , for any ay,..a;,b,,...by, ¢ ,...c;, €A such that for isk a;b.c; are a-
equivalent, the following equality is valid:

flag-b +¢,0y = by + )= f(@y,....ap) = f(by,...bg) + fCp,....0p)-

Corollary 2.2,

(1) If ¥ is an Abelian algebra, then M (& ) is an Abelian variety. A class of

all Abelian algebras of a congruence-modular variety M7 is a variety, the term p of
theorem 2.19 determining the operation x-y+z of an Abelian group on all Abelian

M -algebras simultaneously.

(2) If a€Condl is such that & /o is an Abelian algebra, then for any
y ECondf , we have ay =y-a.

It should be recalled that polynomials on the algebra 4 are said to be
functions of the type f(x,...Xg) = 1(X1,... % ,0p41---- ), Where #(x,...,x,) is a term
of ¥, agq,a,Ed . Two algebras with the same basic set are polynomially
equivalent, provided that the families of polynomials on them coincide. The varieties
M, and P, of the signatures 8,,8,, respectively, are polynomially equivalent if
there exist:

(1) bijective mappings (y,) M, ,) on M,(M));

(2) the mappings @;(¢,) of the functions of the signature 8;(6,) into the terms
of the signature 6,(0;);
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(3) the mappings s (w,) of the products M, x 6,(M, x8,) such that for
A el (M, re66,) ;A ,f)(my@H , f) there is a certain tuple of elements of
the algebra & in which case the algebras F €M, (M,) and
Yy H)EM, w(H)eM) have the same basic set A, and for
S, x,) €6,(65) the function S(xq,..x,) and the term

QLN s X 1 L 1)) (@ Ny Xy, T (H L)) coincide on this set A.

Theorem 2.20 If X1 is an Abelian variety of algebras, then M s
polynomially equivalent to a variety of the left unitary Ry -modules over a certain

ring Ry with unit.
The proof of this theorem yields the following corollary.
Corollary 2.3. Any locally finite Abelian variety is finitely generated.

Some general properties pertaining to polynomial equivalence should be pointed
out here. Since a family of congruences of any algebra is uniquely determined by a
set of their polynomials, the polynomial equivalence of the two algebras implies a
coincidence of their congruences. Therefore, the properties of the algebra which can
be formulated in the language of congruences are transferred from the algebra itself
onto any algebra polynomially equivalent to it. Such properties are, for instance,
congruence-commutability, congruence-distributivity, congruence-modularity, simplicity,
subdirect irreducibility and others. Thus, the following theorem holds.

Theorem 2.21.

(a) If a variety M, is congruence-commutable (congruence-distributive,
congruence-modular, semisimple), then the varieties polynomially equivalent to it have
the same property.

(b) If the algebra & is simple (subdirectly non-decomposable, directly non-
decomposable), then the algebras polynomially equivalent to it have the same

property.

(c) If the algebra & is a direct (subdirect) product of certain algebras &, then
any algebra polynomially equivalent to the algebra & can be represented as a direct
(subdirect) product of the algebras which are polynomially equivalent to the algebras
;.

1
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The algebra ¥ is called congruence-regular if for any a,BE€Cond , a
coincidence of any classes of congruence over both a and B yields the equality
o =p. A variety is congruence-regular if its all algebras are congruence-regular.

Since any module is congruence-commutable, congruence-regular and congruence
uniform, theorems 2.20 and 2.21 yield the following corollary.

Corollary 2.4, Any Abelian variety is congruence-commutable, congruence-
regular and congruence-uniform.

An algebra & is called neutral if for any a,BECond [a,fl=arf. A
variety is said neutral if all its algebras are neutral.

Theorem 2.22.

(a) A subdirect product of two neutral algebras is neutral.

(b) A congruence-modular variety M7 is neutral iff it is congruence-distributive.
An element a of a lattice L is said neutral if for any b,c €L, a sublattice

generated by the elements a,b,c in L is distributive. The element a of a modular
lattice is known to be neutral iff for any b,c €EL av(bac)=(avb)a(avc).

Theorem 2.23. If a€Cond and & /a is congruence-distributive, then «

is a neutral clement of Condl .

A variety M1 is called residually small (residually finite) if the powers of its
subdirectly non-decomposable algebras are bounded (finite). The variety M is k-
residual for a certain cardinal k if for any subdirectly non-decomposable 7 -algebra
F, H<k.

The following statements are known as regards residual smallness.

. . L. 0
Theorem 2.24. If a variety mois residually small, then it is 2 )+-
residual.

Theorem 2.25. For any finite algebra J such that M (& ) is congruence-
modular, the following conditions are equivalent:

() M) is residually small;
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2 M &) is n-residual, where n=(l+1)!m+l,l=mmm+1 and m =1 |;

(3) for any u,v €Con&, &€ €S ) the inequality vs[u,u] implies the
equality v=_[v,u].

Let us now dwell on some known facts of the theory of modules and rings we
will need for further proofs. A variety of all modules over a ring R will be denoted
by Mpg. A finite ring R is called a ring with a finite type of representations iff in
Mp there is only a finite number (to the accuracy of an isomorphism) of directly
non-decomposable finite modules.

Theorem _2.26.

(a) Any module over a ring with a finite type of representations is isomorphic
to a direct sum of finite directly non-decomposable modules.

(b) If R is a ring with a finite type of representations, and for a finite R-

module M we have M =@M, A = (-BNJ-, where NI,.,Nj are nonzero
el =

directly non-decomposable modules, then there is a bijective mapping f of a set I
on a set J such that for any i€l M, =N,

Theorem 2.27. Any finite simple ring is isomorphic to a ring of all n xn-
matrices over a finite field of a certain natural number »n.

By way of concluding this section, let us formulate a known theorem on
Cartesian powers of finite algebras.

Theorem _ 2.28. If 4 ,B are finite algebras, and for a certain n€w

H"=B" then I = 8.

It should be noted that the choice of definitions and theorems of the present
section was prompted not by the desire to make a complete survey of the theory of
universal algebras, but by the requirements of the material to be further discussed in
this work. For instance, the theory of clones and many other interesting and
developing fields of the theory of universal algebras have not been discussed here.

Priorities. As has been pointed out earlier in this section, the proofs of the
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cited results can be found in the monographs listed there. Let us again emphasize the
value of the monograph by S.Burris and H.P.Sankappanavar [28] as an introduction
to the modern theory of universal algebras, and that by R.Freese and R.McKenzie
[71] as an introduction to the theory of commutators.

Theorem 2.1 is by G.Birkhoff [15], theorem 2.2 by A.l.Mal'tzev [130].
Theorem 2.3 can be found in a paper by G.Birkhoff [16]. The first statement in
theorem 2.4 belongs to G.Grdtzer and E.T.Smidt [82]. The refinement on the
finiteness of a signature belongs to W.A.Lampe [120]. Theorem 2.5 is a pioneer
work by A.l.Mal'tzev [131], which initiated the study of congruence-classes of
varietiecs. Theorem 2.6 was proved by R.Dedekind [50], theorem 2.7 by
G.Birkhoff. Theorem 2.8 can be found in a paper by A.Day [48], theorem 2.9 in
a work by B.Jonsson [98], theorem 2.10 in that by A.F.Pixley [182]. Theorem
2.11 belongs to R.Magari [127]. One of the cornerstone results in the theory of
universal algebras are theorem 2.12 and corollary 2.1 resulting from it, which were
obtained by A..Mal'tzev [131]. Theorem 2.13 is by A.L.Foster and A.F.Pixley
[65], theorem 2.15 was proved by R.McKenzie [137], theorem 2.16 by B.Jonsson
[98], theorem 2.17 by C.Hermann ([88], theorem 2.18 by H.P.Gumm [71].
Theorems 2.19 and 2.10, as well as corollaries 2.2 and 2.3 belong to C.Hermann
[92]. Theorems 2.22 and 2.23 can be found in a paper by J.Hagemann and
C.Herrmann [89], theorem 2.24 in that by W.Taylor [226], theorem 2.25 in a
paper by R.Freese and R.McKenzie [72]). The statement of theorem 2.26 is by
W.Baur {11] and S.Garavaglia [75]. Theorem 2.27 belongs to J.H.M.Wedderburn,
theorem 2.28 can be found in a paper by Lovasz [126].



CHAPTER 2
BOOLEAN CONSTRUCTIONS IN UNIVERSAL ALGEBRAS

3. Boolean Powers

One of the basic ways the theory of Boolean algebras has been affecting the
theory of universal algebras on the whole during the last decades, has been the
introduction and wide use of the construction of Boolean powers and their various
modifications in universal algebra.

By C(X,Y) we will henceforth mean a set of continuous mappings of a
topological space X to a space Y. If not otherwise stated, universal algebras with a
discrete topology will be considered.

Definition 3.1. If 4 is an arbitrary algebra, B is a Boolean algebra, and

B is a Stone space of the Boolean algebra .B, then a Boolean power & B of the
algebra & over the Boolean algebra J is said to be a subalgebra of the direct

power & 7 of the algebra J with a basic set C(8 ).

*

are contained in C(B &), ¥ B win
be a subdirect power of the algebra & . As B T s compact, and the topology on

Since the constant functions of 3 5

J is discrete, the domain of values of any element f contained in & $ will be
finite, and for any element a in this domain f'l(a) is open-closed in B " e, it
is identical with a certain element of the Boolean algebra B . The converse is also
valid: for any partition 1 of the Boolean algebra B into a finite number of elements
by,....,b,, for any sequence of elements ay,..a, of the algebra & there is an element
fed B such that for every i< n, any clement x of the space .B Y of XEB (ie.,

to an open-closed subset of the space F ; corresponding to an element b;), then
f(x)=a;. Therefore, the eclements of a Boolean power can be set as tuples

<b,...by;a1,..a, >, Where by,..b, is the partition 1 in the Boolean algebra 2,
while a;,..a, are pairwise different elements of the algebra 4 . Such setting of

elements of 4 B will be termed canonical, while that without the condition of
pairwise difference of a,,...,a, will be called quasi-canonical. Obviously, for any

58
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quasi-canonical setting < §,...,b,; 4;,..,a, >, there exists a canonical setting such that

the same element of the Boolean algebra & & corresponds to them, for which
purpose it would be sufficient to join together those b; which correspond to the
same values of a;.

The definition of a Boolean power obviously entails that any class of algebras
are closed relative to direct powers and subalgebras will be closed relative to the
Boolean powers as well, and, in particular, so will be arbitrary varieties and quasi-
varieties of algebras.

Let us recall without proof a number of obvious properties of the operation of
a Boolean degree. By 2 we will henceforth denote a two-element Boolean algebra,
by P(A) a Boolean algebra of all subsets of an arbitrary set A.

Lemma 3.1. For any algebras & ,&,;, any Boolean algebras B,..B,, any
set C the following statements are true:

@ ¥ 3.
(b) x .le...x,sngy .lemxar .B,,;

© %‘Bl =k,
(@ if ¥ is finite, then & 7= €,

(e) if B, is a subalgebra of the algebra B,, then & Fiis isomorphically
embeddable in ¥ P2 ;

(f) if ¥, is a subalgebra of the algebra & , then ¥ P! is also a subalgebra of
the algebra B,

(g) if B, is a homomorphic image of the algebra B,, then the algebra X 3
is a homomorphic image of the algebra Jf 'Bz;

(h) if ¥ is a homomorphic image of ¥ , then ¥, %1 is a homomorphic image
of ¥ %1

Below we will obtain, under certain conditions, the converses of classes (e) and
(8)-

If F is a filter on a Boolean algebra B, then the relation 6y on the Boolean
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power 3 will be defined in the following way: < f.g >E6 iff [f=g]|EF. One

can immediately check if 6y is a congruence on & 5

Lemma 3.2,

(@) If & is not a singleton algebra, then the mapping F— 65 is an embedding
(preserving all sup and inf) of the lattice of filters of the Boolean algebra B in the

lattice Con(H ) of congruences of the algebra 4 5.

w FPre <4 T,

Proof. Statement (a) can be directly checked. f/6p will denote an equivalence

class 6y containing an element f of the algebra I 5 , and b/ F an equivalence
class relative to the filter F containing an element b of the Boolean algebra B . One

can ecasily see that the mapping @:& B O > BF defined as
O(f10p)=<b | Fronb, ! Fray,.a,>,

where < ¥4,...,b,;ay,..,a, > is a canonical representation of the element f, is an

isomorphism of the algebras Jf B/BF and ¥ 27 m
Lemma 3.3. If ¥ is arbitrary, and .31,.32 are Boolean algebras, then
o .81)3252 (3, 32)531 Bl*.Bz’
where B, * B, is a free product of the Boolean algebras B, and .B,.
Proof. It suffices to show that:

(1) for any Boolean algebras B, B, there is an isomorphism B, '325.31*.32;

@ A PyPiag B,

To prove statement (1), it is sufficient to directly check if the mapping

n
@(<by,...by; Ay, >) = v (b Aa;), wWhere <b,..b,;ay....,a4 >, is a canonical
i=1
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representation of an element of the algebra B 5, is an isomorphism of the algebra

B, %2 on the algebra B,* B,
Statement (2) is proved by the same direct checking. Indeed, if

<b,.bydy...d, >@ TnF2,

,cinl_;a{,...,aim >cdf ‘Bl, then we will consider the elements

nj =<bl,...,b,,;a{j,...,a,fj>E.Bl‘Bz, where i< n;jsm;, while a;;j=c; at k=i, and
a}?=0 at k=i. Obviously, the elements r(i<n,j<m;) perform the partition of

in which case d; =<cj,...

unity in the Boolean algebra B 'Bz, and we can easily check that the mapping

@o(<b,...b,; dy,...d, >)=< r,-j(isn,js my); aji-(i =n,jsm)>

)
is an isomorphism of the algebra (J Eydr on B n

The following statement contains a sufficient condition for subdirect powers of

the algebra & to be isomorphic to Boolean powers of this algebra.

Lemma 3.4. Let a subalgebra € of a direct power & ' of the algebra &
have the following properties:

(1) all constant functions from & I are in € :
(2) the range of any function f €& is finite;

@3) for any f.h.ffi€€, it g€H T is such that for i€f[f; = f]
g()) = f3(i), and for iE[fl ==f2]| g()) = fy(§), in which case g €€ , then there is a

Boolean algebra B such that € =Jf 5

Proof. Let @ be a function from & ' assuming a constant value a €4 . Let
us consider a family § of subsets of the set I that consists of sets of the type
[f=g] where f,gE€ . It should be remarked that S is a subalgebra B of the
Boolean algebra of subsets of the set I. Indeed, if, for instance,
A=|f=gl, B=|lh=k] for f,g,hk €L , then, by property (3), there are functions
pq €L such that [p=fll=llg=fl=|f=¢l and [p=rl=lf=gl. lg=Kl=
[f=g]l. In this case, obviously, AUB=|[p=g]l. In an analogous way we can
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prove that AN B and -A also belong to S.
Let fEC and xEB ™. As Rf (the range of f) is finite, x is an ultrafilter on

&, and I_If_l(a)=I€x; as f'l(a)=[f=&']|6.3, and fa) (@a€Rf) are
a&ERf

disjunct, f"l(a)Ex to the accuracy of a single a ERf. Let us denote this a by
o(f,x). Let us define a mapping o of the algebra € into a direct power B of
the algebra J , assuming a(f)(x)= o(f,x). Obviously, in this case the elements of

the algebra & of the type@ lead to constant functions from & 5 and assume the
same a value (the latter denoted by d). For any f, f, €€

[a(f) =a(p)]=-€BT A =1]ED.

Indeed, we have

[a(fl) = a(fz)]l =xel *la(fl)(X)= a(fp)(x)}=
€8 lo(f, 0= ol fp.x)} ={xEB 1 a)Ex fa)EX

for some a €H}={x€B " |If = hlEx.

It is obvious that for f; = f, €€, a(f) = a(f,). a is an isomorphism of &
on a subalgebra of the algebra J B'. By virtue of the equalities a(@) =4 and
[a(f) =a@]= {x€B 1 |If=al€x, the set [a(f)=a] is open-closed in the
space B * Moreover, by the definition of the mapping o, for any f €€ , the range
of the function a(f) is equal to Rf. Therefore, if Rf={a;...a,}, then of
coincides with an element of the Boolean power & 5 with a canonical setting
<ta(j) =&1]|,...,ta(f)=&n]|;a1,...a,, >. Hence, the algebra a(f ) is a subalgebra of
the algebra & =

Let now h E€X $ and <[f1 =g11,...,|[fn =g,,]|; a,..,a, > be its canonical setting.
Property (3) implies the existence of an element g €€ such that [g = E,-]|= t fi= g,-]l
for i< n. In this case a(g)=h and, hence, a is an isomorphism of the algebra &€

on the Boolean power & ’ m

Let us recall that if & is a certain finite group or a module, then an arbitrary
direct sum of & is isomorphic to a certain Boolean power of the algebra .
Indeed, let &€ = ®H;, where N is a cardinal and ;=& . Let us construct a

X

sequence f;(iEN) of isomorphic embeddings of the algebras & ;= o j into an

Jj<i

algebra €' =" such that for i<jEX f; is an extension of fi- Let us set
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Si(a)(@) = a for any ac€, =4 and any i€NX. For limiting i, f;= Uf,-, and for
< i

any i E€R, f,, is an extension of f; from the algebra &€, = %ﬂ j i)n an algebra

€in =(®_3] j)@)zf , defined by the following condition: for jany a€d (the last

addent) Jf:ll(a)(j)=0 if j<i, and f; (a)(j)=a if j=i. One can casily check the

fact that such an isomorphic embedding f,; exists. One can also make a direct

remark that if f =}/, then fF@)CH " obeys the conditions of lemma 3.4.
i

Therefore, both f(& ) and € are isomorphic to some Boolean power of the algebra

I

Definition 3.2. An algebra & is called Boolean-separated, if for any

Boolean algebras B, and B, the isomorphism of the Boolean powers & 21 and

¥ 2> implies that of the Boolean algebras B, and B,.

Theorem 3.1. If & is a non-Abelian subdirectly non-decomposable algebra,

and M (H ) is congruence-modular, then & is Boolean-separated.

Proof. Let J obey the conditions of the theorem. Let us construct an Ly o
interpretation of any Boolean algebra B in a Boolean power & 'E. It should be
recalled that the notion of the center of the algebra of a congruence-modular variety
of algebras, of a commutator of congruences of such a variety, as well as the basic
properties of these notions are given in section 2. Let Zy be the center of the

algebra 4 , i.e., Zy is the biggest congruence y on 4 such that [V,y]=A. Let

B be a monolith of & . The relation <x,y>E6,, on & is definable with the
L, » —formula (see theorem 2.12). Let

I/Zgll = = €8 "I< f(x),8(x) >EZy }.
According to theorem 2.18, for any algebra € :<a,b >EZy iff

€ 1= AYEF((E,a)= 1(5,a) < UEb) = 1(5,b),

where the conjunction ranges over all the terms of the algebra € and X,y-tuples of
the variables of the length n, if ¢ has n+1 variables. Therefore, it is obvious that

{i/Zglhf.e€H 'B}=.B . Let us consider the following L, ,, -formulas:
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(1) red'(a,b,c,d)=vIF,5[{a,b} ={(F.c)t(5,0)}A
t
Atr,d) =t(5,d)]v[{ab}={tF.d)tE.d)}at(Fc) =t(5,c)).

The disjunction is taken here over all the terms of the signature of a variety
MM and the length of the tuples 7,5, a unity smaller than the number of the
variables of the term ¢. It is obvious that for a,b,c . d € ,

Hl=red'(ab,c.d)&<cd >EZy —a=b.
(2) red(ab,c.d)=3x,y(<ab >E6, , A red'(x,y,.c,d)).
One can easily observe that:

d|=red(ab,cd)&<cd>EZy = a=b,
A Biored (f, .00 — U 1= red( £(i).g() i), k(D)

for all i€B ", Therefore, if ¥ %= red( f.8.h,k), then [AZK)|C[f = gl.

) L(a,b,c,d)=Nx,yred(x,y,a,b) ared(x,y,c,d)—>x=y).
Let us show that for f,f;, /. /s € 3 the property

b ETETG WWW)

holds iff

® fzflulisze]-38".

In one direction this equivalence results immediately from the property of the
relation red mentioned before the relation L was introduced. Let us now assume that

* 3
X% EBT, < fi(xo) f(x)EZy , and < fo(%o), f5(¥o) EZy . Let U=ir=70(j§-_1(f,(x0))),

then UEXB . By theorem 2.18, there are terms ¢ and tuples of the elements of
the algebra &

FO 0

0 =0
< ro ,...,rk_l > 8

0 0
=< 50, > k-1 >
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such that

L FO fox0)) = 2 GO, foxo L F O fi(x0)) = ° G, fixo)),
2 FL (o) = £ A ENLF f(x0)) =1 G (%))

Let us fix a certain element e € , and for £ =0,1 we will define F¥(x) =F°,
if x€U and 7°=<e,..e>, if x&U. Analogously, §°(x)=5%, if x€U, and

5% =<e,....e > if x&U. Therefore, 7°,5° is a tuple of the elements of the algebra

I% La
y = %7 £),8°=1°G% ).y '= 17 £). 8= ).

In this case ¥ %= red'(y°,8 O,ji,,fl) A red’(yl,é l,f2,j§). The equality
ty0=60]|=|[y1=61]|=.3*\U is valid, and y%y'6°%6" are constants on U. Let
us, finally, show that % B 1 forfirfoof5) . Indeed, let us choose a=b&H so that

<ab>Ep. Let y,0 €H P, y(=a for all x€B", and 8(x)=a if x&U and
6x)=0b if x€U.

Let us show that <y, >6070 goNo in which case y = 6. This property,

‘)/16 1,
combined with the one cited above, i.e.,

U Bl red' 1000 fo f) A red (VL8 1 ),

implies that on I B the formula red (y,d, fo, /1) Ared(y,0,f,.5)Ay =6 is true, ie.,
it implies the required statement, J/ ) Lo . /.12 55)-

Let & l? be a subalgebra of the algebra & 5, consisting of elements & 5
which are constants on U. Let us show that <vy,d >€6y0,60 in the subalgebra ¥ 5"

and, moreover, < y,0 >EBY060 in the algebra & B et

m=fkmv>e@EY wB\Uu-uB\Uy

n=1{< uv €@ £ uix) = vzl
8= 6,0 40

in the subalgebra 4 [f . Obviously, 11x n1=A and nlz 0y, since yo,éo coincide on
BO\U. Let B={<pv >E(Qf§ Y l< u(xo), v(%) >EB}. In this case 24'5" Ined
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and, hence, >, and B covers 1 in Cond L? . Therefore, nv 6, = . Moreover,

n'=8, and, hence, since Condl f is modular, we get:

E/\ nls(nv Bo)Anl=(nAn1)v00=90.

<v,0 >EB-A nl, theirfore, <y,0 >€6,, ie., <y,0 >E Byoﬁo in the algebra
i 'B. In an analogous way one can deduce that <y, >€6y‘,51 in ¥7%. As has
been noted earlier, this fact implies 33l= 1(fy.A..3), and, therefore, the
equivalence in (*) is proved.

The equivalence (*) and the equality discussed above ({{[/Zgllf.gEH 5h_r)
imply L,, ,,-definability of & in I ® . Elements b of the Boolean algebra & are

interpretable by pairs of elements < f,g > of the algebra & 3 such that [/Zgl = b,
in which case [fZgl|C [hZK| iff

A Vx, y(L(f.g.x,y)— Lh,kxy). B

In the case of a congruence-distributive variety, a Boolean degree in the
Boolean power for algebras of the given variety can be singled out in a more direct
and algebraic way, which, in particular, enables one to transfer the results on
relations of embedding and epimorphism from Boolean algebras to algebras of
congruence-distributive varieties. The results of theorems 3.2 and 3.3 are essential in
this respect.

Theorem 3.2. If M is a congruence-distributive variety, & €, B is a
B
Boolean algebra, and f,g.hk € 'B, then < f.g >E(9i’k iff for any x€B" we
have Bﬁ(x)’g(x) - Bﬁx)k(x). In  particular, it entails the equality
Con (I 'B) =(Con )‘B.

Proof. Let U be an ultrafilter on B and 6, ECond , then 6;(U) will denote

a congruence on <& 5 defined in the following way: for f,gEH 3 . f.g >€6,(U)
iff < f(U),g(U)>€E0,.
Let us first of all prove the following variation of the Jonsson lemma:

(*) any congruence on & 5 is an intersection of congruences of the type
6,(U), where 8, ECond ,UEE .
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Let us note that, for any 6 €ECon(d 'B) that is non-decomposable at the
intersection, there is a UEXB "~ such that A(U)<6. Let V={bEXFIA, < 6}. Here

Ap=1<f.8>€@ DY |- gl28}.

Obviously, if by C b, and b €V, then by EV. Assume now that b v b, EV. Then
Ap b, =Ap A Ay, and, since Ay, <0,

6=06v Ay viy =0v(Ala AAb2)=(0v Abl)A(B vaz)

(as MM is congruence-distributive). Since 6 is non-decomposable at the intersection
of congruences, we have either 8=0v Ab1 (i.e., b EV), or 0=0va2 (i.e.,
b, €V). It should be remarked that V=28 iff 8=V. As the statement (*) is
obvious for 6 = V, we will assume V=8 .

Let now £ be a maximal filter among the filters contained in V. Let us show
that © is an ultrafilter. Assume to the contrary that bEX and b¢D,-b¢D . If
for any d €D we had bNdEV, then D and b would generate a filter contained
in V and strictly greater than . Therefore, we can find a by €P such that
bN by V. Analogously, there is a b €D such that ~bNh EV. Let by = by A by.
In this case, b, ED CV, by Ab&V and by, A~b&V, which contradicts the above-
mentioned property of V and the fact that b, = (b, vB) A (b, v =b)EV. Thus, D is
indeed an ultrafilter, ie., DEB”.

If f.ged £ and < f.g>EA(D), then there is a bED such that
< f.§ >EA, and, therefore, < f.g >€6. Hence, AD)<0, ie., indeed, for any

congruence 6 €Con(J L) non-decomposable at the intersection, there is a UEXR "
such that A(U)<8#6.

Assume that 6 €Con(J 'B), that 6 is non-decomposable at the intersection, and
that UER" is such that AU)s6. Let 0, ={<ab>cd 2| for some f.e€H 5
< [,g>€0 and f(U)=a,gU)=b}.

Let us show that 6;(U)y=6. 6=0,(U) being obvious, let us prove the
converse. Assume that < f.g >€6,(U), then < f(U), g(U)>€06,. By the definition of
6,, there are hk €¥ ® such that <hk>€6 and WU)= fU),KU) =gU). As
0=AU), < fh>€E0,<k,g>E0, and all this implies that < f,g >€6. Therefore,
6,(U) <0 and, as a result, 8 = 6,(U), and the statement (*) is proved.

5 :
Assume now that f,g€d ©. Since < /fg >EU€r}*0f(U)g(U)(U),
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6y,

g sU QB . Gf(U) ,g(U)(U). Let us prove the converse. By the statement (*), there are

0; €Condl and U; e’ (JEJ) such that 6y, =210j(Uj). Since < f,.g >€6;,,

< f(U;), g(U;)>€H; and, hence, for any jEJ, szej(uj),g(uj)- This implies the
lnequallty GJ(UJ)Z ef(Uj),g(Uj)(Uj)’ i.e.,

Ors = 0,0/Up = 08 1wpewpWp= [} .0 1w sn)-

Together with the above-mentioned inequality, the latter one implies the equality
O;,= N6 U).
7.8 = ydp+ Orane)U)

One can easily notice that a similar representation of 6, is one-to-one. As
f.e€H B there is a finite partition of B~ by the elements b;,...b, of B such

that the functions f,g on b; are constant, 8y, are also constant on &;.

Therefore, putting into correspondence to the congruence 6=6;, an element

@) E HConp:‘i' such that @(O)(U) = 6 yy ), We get (p(B)G(ConPJJ')'B. It is
vel’

quite obvious that the mapping @ is from Conp(‘?f B) to (Conpﬁf )‘B and preserves

the order. Since the presentation of 6y, is injective, and, hence, so is the mapping

@, @ is an isomorphism from Conp(:!f‘s) to (Con Y. m

Corollary 3.1. If M is a congruence-distributive variety and 4 is a simple
MM -algebra, then:

(a) for any Boolean algebra B and for f,ghk€d 5 <fg >€0£k3 iff
xEBTIf(x)=g®)}2{x €8 TIh(x) = k(x)}; Con (I 5 Y= B

(b) for any Boolean algebras B, &, the relations Biecd P2 and B << B,
are equivalent;

(c) for any Boolean algebra B and 6 ECondl 3 there is a ¥ €EConE such
that ¥ o= BV,

Proof. Statement (a) directly follows from theorem 3.2. In order to prove
statement (b), let us recall that, by lemma 3.1 (g), B, << B, entails ¥ Py b
Assume now that ¥ Fi<c d F2, Then, obviously, Conp(gl 'B‘) << Conp(‘?l 37—) but,

as A is simple, Conp‘?! =2 (a two-element Boolean algebra) and, by theorem 3.2,
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Conp(:’] 'B‘)zg ‘Bi. At the same time, the algebras Z‘Bi are isomorphic with the

Boolean algebras B, (by lemma 3.1 (c)). Therefore, indeed, & Biec I %2 entails
'Bl << .Bz. .

The validity of clause (c) is readily deduced from clause (a).

As to clause (a), it should be remarked that a complete description of the
structure of finite Boolean-separated algebras in congruence-distributive varieties by
D.Bigelow and S.Burris [13] are in full accord with the description of finite
Boolean-separated groups by A.B.Apps [4].

Definition 3.3. A variety M has extendable congruences if for any algebra

4 €M, its any subalgebra &, and any congruence 6, ECondl, there is a
congruence § ECondl (an extension of 6 onto the algebra &) such that
6!1’1 1= 61.

Many properties of the relation << on congruence-distributive varieties can be
transferred to relations of embedding < if we require in addition that the variety
should have the property of congruence extension and, in particular, that there should
be a corollary analogous to 3.1 for the relation of embedding.

Theorem 3.3. Let M be a congruence-distributive variety with extendable

congruences and 4 a simple %7 -algebra. Then for any non-singleton Boolean

algebras B, and ¥, the relations ¥ Z1< ¥ #2 and B, < B, are equivalent.

Proof. The entailment B, < B, =¥ B129 P2 requires no extra assumptions,
as been mentioned in lemma 3.1 (f). Let us now prove the converse. Let f be an

embedding of Z"‘B‘ in 31"32. If ac€H and b is an element of the Boolean
algebra & , then @,%lb will denote the elements of the algebra & B with the

2
canonical representations < l;a >, <b,-b;c,a >, respectively. By corollary 3.1, for

B 5.
any hy.h,.8,.8, EF we have < g;.8, >Et9;‘f",h2 iff [hl = hz]l(_:l[gl =gl

Let us fix a pair of elements a=c of the algebra J and construct a mapping
y of the algebra B, to B, in the following way: for bEF; let

1p(b)=|[f(¢7)¢ f(-g-lb)]l. Since W has extendable congruences, the mapping

B

o¥ By _ ¥ B : L : ¥
@q( a,q;lb)= (@) feaiv) will be an injective mapping from Conp( to

iy

Conp((lf which preserves the order. Let us consider the mappings
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5
Po(b) = Bi]q_'b (@0, as has been noted above, is an isomorphism between 2, and

Conp(é'f 5 )) and
¥ 5 _ .
9204 f(@ib)) = [f@=f @)

(9, is an order-preserving injective mapping from <p1(Conp(2f 'Bl)) to B,). As
Y =@, @@y, ¥ is an injective, order-preserving mapping from B, to F,. Let us
now show that ¢ is an isomorphic embedding of B, in a Boolean algebra
Bl f(@ = f(@©)], ie, in a Boolean algebra with a basic set
{(bEB,bC|f(@) = f(©)} and the operations induced from B,. The latter fact,
obviously, implies the isomorphic embedding that we have been looking for, i.e.,
that of the Boolean algebra F| in B,.

In order to prove that % is an isomorphic embedding of B, in
Bllf@ = f@©)]), it suffices to show that 1p(b)U1/J(—-b)=1/J(l‘Bl) and
1/)(0_31) = 0.32. The latter equality is obvious:

vO3)=[1@ = 5&i05)] -1 r@ = r@l- 03,
Let us prove the first equality. Since @ preserves the order,

L@ = f&0)) =9 @), [f@ = fE1-b)]=p(-b)C
clr@= reng y=tr@= @i,

Now we have to show that 1/)(1.31)_(; P(b) Uy (—b). Let us assume that, to the
contrary, iew(ll;l )\ (yp(b)U yp(-b)). Since

3 5 5 4 23 3 B
_o¥ _o

95,%|b"65,§|~b’ ea-,%hb“ &, b’

02,32 02]32 15 03,32

F@)f@b)~ 7 (@), f(4 by Hf(ﬁ),f(%l-b)= F(@).f(4by

[r@ = f&iv|=r@ = f&i-n,
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[£@ = f21-b)] = |LF(® = f&iby)}

Therefore,

i€[f @) = f@I\ (/@) = f&-B| U@ = f&b)] =
=/ @ = FOUNLf@) = f &= N @) = f(EIb)],

FEI-b)E) = fEID) = f@)D).
On the other hand, since

i€Yp I\ (YO P(=b) =[f@ = fF@\.
@) = fe1-p)|uff@ = f4b))| =
-/ @ = fOINLf@ = & 1-bYN|If@ = f(&ibyy),

FEI=b)i) = fEIB)E) = f@)().

The obtained contradiction proves that the set 1,1;(1_31)\ (WB)Uy(-b)) is

empty, which fact, combined with what has been proved above, proves the theorem.
|

It should be remarked that the condition of extension of the congruences in the
formulation of the latter theorem is necessary. Let Part(A) be a lattice of partitions
of the set A. It is well-known from O.Ore [152] (see, for instance, {83]), that
Part (A) is a simple lattice. It is also known that any variety of lattices is
congruence-distributive. Let B, be a four-element Boolean algebra. Then £, £2 but,

on the other hand, for any infinite set A the following obvious relations are valid:

Part (a)%+ = Part (A) x Part (A) < Part (AU A) = Part (A) = Part (A)2.

Let us now go over to the interrelation of Boolean powers of algebras and the
properties expressible in the language of the first-order predicate calculus. Let B be
an arbitrary Boolean algebra and F be a filter on 2. Let F(*) be a representation
of the Boolean algebra B by the open-closed subsets of a Stone space B " with a
predicate § which singles out the elements of B(*) corresponding to the filter F in
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this presentation.
There is a variation of the Feferman-Vaught theorem on generalized powers,
which is as follows. Let us establish a correspondence between any elementary

formula o(x,,...,x,) with free variables x,,...x, of the signature of the algebra J
and a tuple T(0)=<@;0,....6,, > of the elementary formulas, where @ are
signatures of the algebra B (*) with free variables Xj,...X,,, 6; are signatures of the

algebra 4 with free variables Xy,...%,. The tuple T(o) is defined by induction over
the construction of o in the following way (the only logical connection of the
formula is assumed to be the Sheffer sign, 1).

(1) o is an atomic formula of the type p(x,,...x,)=4q(x,,...,x,), where p,q are

terms of the algebra & , in which case T(0)=<F (0);p=¢q>;
() o=0jlo, and T(0;) =< Py (X, X ): 01,...,0 1, >, then
T(0) =< Py (X} o0, Xy N Py (X Xy )3 01,000, 07,1, 00, >

(3) o=3Ixo;, and T(0) =< D(X;,....X;n): 01 0ps - Let m' =2" and
A,..., A,y be all subsets of the set {l,..;,n}, and let S, ={i=sm'1l€EA} at [sm. Let

D' (X s X)) = (U X0, UX)
=S, =S,

and for ism’ 6= & 0; & & -6,
A FEA;
By Part (Y,..Y,) we will mean

(& (5NY;=0)& v Y=1).
i<jsm ism

In this case we set

T(8) =< 3Y,.... Y, (Part (X,.... X, )&( & ¥, C X)&
=m
&D'(Y,..Y,); Ax0',...,3x,6 >.

Let f/F be a class of 6 containing an element fed 'B, in which case for

any formula o(x,,...,x;) and any f,..., fy €& 'B, the following lemma is valid.
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Lemma 3.5. ¥ % /16.1=0(f/F...f,IF) iff B(*)= &U®O))...K8,),

where

T(o)=< @;6,,...,0, > and
18)=§EB 1 ¥ 1= ,(f(i).. il D}

Proof. The proof will be carried out by induction over the complexity of the
construction of the formula o. The proofs of the statements corresponding to the
basis of the induction, i.e., the case of an atomic formula and the induction step
corresponding to the case when o= gjlo,, do not differ from the proofs of the
corresponding cases in the proper formulation of the Feferman-Vaught theorem (see,
for instance, [57], [35]). Let us consider an induction step corresponding to the case
when o =3x,0,. Let us assume that

U P 1601, (0,04 fy ] Fove £, | F)

and let g€¥ P be such that ¥%/0,1=0,(g/ F,fIF,..f,]F). Let T(c))=
=< P(X,....,X,);0;,-...6, >. Then, by the induction proposition, we have

B*)= ®1(86,),...,1(6,,)). Tt is also obvious that if for any i< m’,

L= NI, ARCAY(CF
1 jEAi ( ‘I)AﬁAi( ( 1))7

then {fli<m'} is the partition of B *. Morcover, I, C I(3x, ;). Therefore,

B®)i= Part (L., 1y )&( & I; CHI0))& D'(Ly,....1y),

i.e., by the definition of T(o), B(*)l= Ww(I(6,)....1(6,,)), where
T(o)=<y(X,....X,); 60.,..0, >

Let us now try to prove the converse statement. Let T(op) =
< D(Xp,..Xp); 015,60, > and B®I=3Y,,..Y, [Pat (¥ ...,V )&
& Y, CI(A0)& P'(Y .....Y,, )] Let C,...,C; be a partition of B~ by elements of
ism
the Boolean algebra B(*) such that the elements f,...f, of the Boolean power

I are constant functions on Ci».nG. Let Dy,....D,, be a partition of B~ by
elements of the algebra B (*) such that D, CI1(3x,6)) and B(¥)= &' (D,...,D,,).



74 BOOLEAN CONSTRUCTIONS

For any i< !l,j<m' there are elements a{j,...,ailje:’l such that for any p€D;NC;
we have fi(p)=af,....f,(p) = a,. Since DC I(Ix;H;), there is an element b €F
such that ¥ |= 0](b;, af...,a%. Let an element g €Y ? be such that for any
i<l,j=sm and any PED;NC; , we have g(p)=b;. Then, obviously, we get
B*)l= DU(B))....K0,)), where 18,) ={pEB 1U 1=0;(&p), f( D) fu (PN} By
the induction supposition, ¥ 'B/ Opl=oy(@g/F, 1/ F,., [, |F), i.e.,

WY Opl=o(fy I F,...,f,| F). Therefore, the induction step corresponding to the case
when o=13x.0, is proved and, hence, the lemma is proved. B

ww> O the

Considering F={ly}, we confirm the statement that the formulas I,

Boolean powers &f ? are true.

Corollary 3.2. For any algebras ¥, ; any Boolean algebras B, B, the
following statements hold:

(@ if Ho=d, and By =25, then ?1081 5311'31;
) if ¥o<H, and By <B,, then o <¥ P,

(c) if R is a class of Boolean algebras with a solvable elementary theory
TH ) and ThH ) is also solvable, then Th({H (')B‘ 1B ERY) is solvable;

(d) for any set I and a filter F on I the algebra & ((ng ') s isomorphic to an
elementary subalgebra of a filtered power Jf é I'F,

(e) any Boolean power of the algebra 4, is elementary equivalent to a certain
filtered power of the algebra & and, conversely, any filtered power of the algebra
4 is elementary equivalent to a certain Boolean power of this algebra.

The proof of statements (a), (b) and (c) immediately results from lemma 3.5.

The isomorphism of the algebra & (OgllF ) and of an elementary subalgebra 0[ / F in
statement (d) is constructed in the following way. Assume

2lF
d=<b |F,.. b, I F a.a,>45 ",

where b, / F are equivalence classes over the filter F, containing clements b; eg’.
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Since b / F,...b,/ F form the partition of unity in the Boolean algebra gl/F,
by,....b, can be chosen to perform the partition of the set I. Let us establish a
correspondence between an element d and an element ¢(d)=[f]1E€H 6/ F, where [f]
is the equivalence class over the filter F of the algebra & é, which contains an
clement feEX é such that f(i)=a; for any i€b;(j<n). One can easily see that the
definition of the mapping ¢ is independent of the choice of representatives by...., b,

in the equivalence classes b /F,..b,/F, that @ is an isomorphism between

v (()Z'I/F) and some subalgebra of the algebra 4 1/ F, and this subalgebra is an
elementary subalgebra of the algebra & 6/ F.

To prove statement (e), a well-known result by Yu.L.Ershov [61] should be
recalled: any Boolean algebra B is elementary equivalent to a certain Boolean algebra
of the type 2” / F for a suitable filter F. By statement (a) of the corollary under
discussion, for any algebra y,BEy(g“'/F)’ but, by statement (d),

J E'DoJ I F, ie., the arbitrary Boolean power ¥ 2 s elementary equivalent to
a certain filtered power of the algebra & . The converse is proved in an analogous
manner. Il

Theorem 3.4.

(@) A formula of the first-order predicate calculus is preserved relative to
Boolean powers iff it is equivalent to a disjunction of Hom formulas.

(b) The axiomatazible class £ is closed relative to Boolean powers iff £ is
axiomatizable by the formulas which are disjunct Hom formulas.

The proof of the theorem results immediately from statement (e) of corollary
3.2 and well-known facts (see, for instance, [34]):

(a) a formula of the first-order predicate calculus is preserved relative to filtered
powers iff it is equivalent to a disjunction of Hom formulas;

(b) the axiomatizible class £ is closed relative to filtered powers iff g is
axiomatizable by formulas which are disjunctions of Horn formulas.

Corollary 3.3. For any algebra & and any non-singleton Boolean algebras
By, B, there exists a set I and a filter F on I such that

F P @ Py F.
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Proof. Let © be a filter of co-finite subsets w. In this case, since B ol D

and B /D are atomless, B /D =B/ D. According to a well-known Keisler-
Shelah theorem [204], there is a set” J and an ultrafilter U such that

(BYID)YIU=(BP1D) 1U. But, as is well known (see, for instance, [34]), for
a suitable filter E on the set w xJ we have (B ,f"/fD)J/ U«ZE f”XJ/E and, hence,
B IE«BPIE. By clause (d) of corollary 3.2, B®*/E=8 @71 Ay
the same time, by clauses (a) and (d) of the same corollary, we get

©xJ @@x/ |E) wx
31.3,- /EE.ZJ('BI' )2(3,3,-)(2 J/E)E(Qf .Bi)wxE/E

(for i=0,1). This fact, combined with the isomorphism B &*//E«B ¥/ E
mentioned above, implies that the algebras (& BO)“’XJ/E and (& Bl)w’d/ E are
elementary equivalent. Now, again by the Keisler-Shelah theorem, we can find a set

A and an  ultrafilter B on A such that ((& 30)“”‘J/E)‘l,‘/Bs

B .
«(@ “*y°Y/E)4 B. But, in this case, for a suitable filter F on the set
I=wxJxA we have

@y Byt =@ T H)F,

and, therefore,

FAPY I PPy F. m

By way of concluding this section, let us recall the following obvious property
pertaining to theorem 2.21: if an algebra & is isomorphic to a Boolean power

I IB of the algebra &, then any algebra & ' polynomially equivalent to the algebra
& is isomorphic to the Boolean power (J 1‘)‘3 , where J| is an algebra
polynomially equivalent to the algebra .

Priorities. Particular cases of considering the notion of a Boolean power stem
from the works by M.H.Stone [218], I.M.Gelfand [76], R.F.Arens and J.Kaplansky
[5] and others. The notion of a generalized Boolean power (or simply a Boolean
power) was introduced in a general form by A.L.Foster [67], and the notion of a
Boolean power (a boundered Boolean power) also belongs to him [66]. The first
attempt to systematize the results on Boolean powers supplied with a detailed historic
review is by S.Burris [30], who later modified it [24]. Theorem 3.1 was first
proved by J.T.Baldwin and R.McKenzie [7]. Lemma 3.3 belongs to S.Burris [30],
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while the result B 1B = B * B, was borrowed by him from R.W.Quackenbush
[194]. Lemma 3.4 stems from a paper by A.L.Foster [66] and M.Gould-G.Gritzer
[80]. Theorem 3.1, suggested by S.Burris [30], was developed and obtained in the
present formulation by A.G.Pinus [178]. Corollaries 3.1 and theorem 3.3 are
proved by A.G.Pinus [178]. Lemma 3.5, corollaries 3.2, 3.3 and theorem 3.4
were proved by S.Burris [30].

4. Other Boolean Constructions

The purpose of the present section is the definition and presentation of the basic
properties of the construction of a Boolean product, a filtered and congruence-Boolean
power, as well as other modifications of the Boolean power construction studied in
the previous section.

Definition 4.1. For an algebra 4 , any Boolean algebra .J, the subalgebra

& l of a Boolean power & 5 is called a sub-Boolean power, provided that for any
f.g€€ and any open-closed subset N of a space B *, the element
fINUgIB\' N also belongs to €. Here fINUgIB "\ N denotes an element
ned ? such that h(i) = f(i) for iEN, and h(i)=g(i) for iEB \N.

A family of all sub-Boolean powers of the class & will be denoted by
Pp(R).

Definition 4.2. A subdirect product O C H:&'f . of algebras & ., where
»B’

B is a Stone space of a Boolean algebra B is called a Boolean product if the
following conditions are met:

(a) for any f,g€D [f=g] is openclosed in B :

(b) for any f,g€ED and any open-closed NC.B~ the element
FINUgLB ™\ N also belongs to D.

In this case, B will be called the degree of this Boolean product. A family of
all Boolean products of algebras of the class £ will be denoted by I' “(f). For
any class of the algebras f, the following inclusions obviously hold:



78 BOOLEAN CONSTRUCTIONS

By (R) S Bp(R)S T (S(R)).
Let us recall the simplest properties of a Boolean product.

Lemma 4.1. Let & be a Boolean product of algebras J;(i€8 ") with a
degree &, in which case:

(@) if N is an open-closed subset of the space .B *, and F=N=2F *, then
A=A INxH1B\N, where ¥ IM= {fl MIfEH} for MCB". In this case,
JIN, H1B\Ner«s;

() if jEB”, 31- is a finite algebra, and |-71j|=n, then there are f,..., [, €F
and an open-closed neighborhood N of a point jE€F * such that for iEN there are
one-to-one mappings A ;; of the algebra I j in algebras H;, defined by the equalities
A i) = f1G);

() if & j is a finite algebra, and if the signature of the algebra 4 is finite, or

if there is a finite algebra € and a neighborhood M of a point j such that for any
i€M, J; are isomorphically imbeddable in the algebra & , then the neighborhood
N in property (b) can be chosen in such a way that the mappings A jiGEN) will
be isomorphic imbeddings of the algebra & ;j in algebras "/

The proof of the lemma results immediately from the definition of a Boolean
product of algebras. l

By Pﬁn(f? ) we will mean the family of all algebras representable as the

Cartesian product of a finite number of algebras of the class £ .
Lemma 4.2. For any class of algebras £ :
@ P TR NCTR);

(b) if an algebra & is a Boolean product of # -algebras and it is finite, then

(¢) for any finite algebra &, II'*H)=1Py);

(d) if the algebras H;,&, contain one-element subalgebras, then
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Pop(d ) x Pop(d 5) C Popdly xd ).

Proof. Statement (a) which is, in a certain sense, the converse of statement
(@) of lemma 4.1, is proved directly, in which case, if 211,...,3" are Boolean
products of algebras of the class £ with the corresponding degrees .B,,...,&,, then
& x..xd, will be a Boolean product of f -algebras with a degree B, x..x2,.

Let us prove statement (b). Let J be a subdirect product of algebras
F. el =“) which is a Boolean product with a degree equal to a Boolean algebra
B . Let ¥ be finite. Let us define an equivalence relation on B : i~j iff for any
f.8€d , i€[f =g]| is equivalent to jE[f=g]. It is obvious that for any i the
class [i]~ of ~-equivalence containing an element i is an open-closed subset of the
space B " Let Y be a fixed family of representatives of the classes of ~-equivalence
on B°. As ¥ is a finite algebra, by the definition of ~-equivalence, Y is finite.
Let "= Y Qny ;- The definition of ~-equivalence implies an isomorphism

EY

between & ' and & . Property (b) of definition 4.2 immediately guarantees that &’
and I—[Qf ; coincide. Therefore, & = HJJ ; and, hence, statement (b) is proved.
=4 £y

Let us now prove statement (c). Assume that D €r*(d) and D CH 3 for

a Boolean algebra B, and let D, as a subalgebra of the algebra & s obey
conditions (a) and (b) of definition 4.2 of a Boolean product. By statements (b) and

(c) of lemma 4.1, for any i€F * we choose an open-closed neighborhood N; and
elements f,....fi€D (where n=l1) such that ¥ ={f (i),....f ()}, and for
JEN; the mappings A;;, such that A;;( f,i @) = f,i (j) are isomorphic embeddings of
the algebra & in & . As A is finite, A,; are automorphisms of & . Since B s

compact, one can find i,...iy €B , k< such that B = UN,. We can, evidently,
Isk

assume that N, (/s k) is a partition of the space B, Let us define the mapping
ol ¥y ? setting n(f)(j)=/1;';,j(f(j)) at jEN,. We can directly check that
& boundered on D is an isomorphism of D on ¥ 'B. Therefore, indeed,

Ir*AHYCIP & ). By virtue of the validity of the converse statement, (c) is
proved.

Statement (d) is obvious. H

Definition 4.3. For any algebra & and a Boolean algebra £, a subalgebra

D of the Boolean power & © s called a filtered Boolean power of the algebra J
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if for a family &;(i€I) of subalgebras of the algebra & there is a family

X,(i€I) of closed sets of a space B such that D ={f&d B for any
i€l f(X)CH}.

A family of all filtered Boolean powers of algebras of the class £ will be
denoted by PFyg(f). Obviously, for any class of the algebras £, the following
inclusions are valid: By (f )C Prp(R ) C Bp(R).

Lemma 4.3. For any finite algebra &, Bg(f)= B ).

Proof. Let .., be all subalgebras of a finite algebra & , and let
DC¥? be a sub-Boolean power of the algebra & . For i€B ", D, will denote
the i-th projection of the algebra D, ie., D, ={f()IfED}. X;(j=<k) will denote
i€l 1D, CH ;. since ¥ is finite, and for any fED and any a € , the set
G E€B "1f(i) = a} is open-closed, any set U ={i eB’ Il ; CD;} is an open subset
of the space B . Then for jsk, Xj=2’r£2] (.3*\U,) will be closed in B .

! J
Then it is obvious that for fED and j=<k ,f(Xj)Qij. Assume now that

fed 5 and for any jsk we have f(X;)Cd ;. Then for any ieB”, ey,
and, hence, we can find a £ €D such that f(i)=/ (). Therefore,
[f=f,-]l=.3*. Since B" is compact, one can find f',..f"E€D such that

U,
el
B Utf=f]]l. One can consider N;=[f=f’] to be a partition of the space

isn
B and f=fUNU..Uf"IN,. As f/ED, by the definition of a sub-Boolean
power, fED . Therefore, D ={f€d ‘Blf(Xj)Qlfj for j<k}, ie., any algebra

D ePgp ) is a filtered Boolean power of the algebra J . W

Definition 4.4. A congruence o on the algebra J is said complementable if

there exists a congruence B(=-a) on the algebra J  such that
aAB=Ay, avB=Vy, and a,f arc commutable, i.e., if Fd=dlaxd IB.

Theorem 4.1. If complementable congruences on an algebra A form a
Boolean algebra B C Condl , and for any a,b €¥ there is an inf{y €F |9fbg v},

then the algebra & is isomorphic to a Boolean product of some direct non-

decomposable algebras of degree B .
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Proof. For a €8~ ' will denote the maximal ideal {BEEF|-BEa} in the
Boolean algebra £ . By f(a) we will mean pU B. For any congruence BEF, /_3
&’ .

will denote an open-closed subset of the space .B * which corresponds to an element
B={c€l *Iﬁ €a}. The equality Er} . J(a) =A obviously holds and, therefore, a
a

homomorphism ¢ from the algebra & to the product H?f ! f(a), defined as
ael”

@(a)( =al f(a), is an isomorphic embedding, i.e., the algebra Z is isomorphic
to a subdirect product @(& ) of the algebras & / f(o) (¢ €B 7). In order to prove
the theorem, we have to check if conditions (a) and (b) of definition 4.2 hold for

o). If ap €Y , and for some a €B" @(a)(0) = (b)) then, by the definition
of ¢, we get al f(a)=>b/ f(a) and, hence, eﬁ’bg f(a)=ﬂU p. Since the
. o

congruence O‘Zb is compact, there is a finite set Bi,..0,Ea’ such that
Oibgﬁlv,..vﬁn. Since B,€X, Bv..vB, EER . Let us write B for Bv..vB,.
Thus, a/B =b/p and BE€a’'. Therefore, a/ f(y)=>b/ f(y) for any yE.B* such
that BE€y’, i.e., such that yE:—B. Hence, for any a€[@(a) = @b)]| there is a
neighborhood ~f of a point & which entirely belongs to the set [g(a) = (d)], i.e.,

a set of the type [gXa) = @(b)]| for any ab €H is open in B . Moreover, this
means that

[p(a) = p(®)]|= K-BIBEE, alB=b/p}=
-U=pIpeB, 0 .cpr--infpeBiol,cp

By the condition of the theorem, inf {8 E8 Iﬂi{bgﬁ}=ﬁ1 for some B, X .
Therefore, [g(a) = p(B)]|= =B, ie., [@{a) = @b)]| is an open-closed subset of the
space .B*, and condition (a) of definition 4.2 for the algebra

o) C HQ] ! f(a) is checked.
=

Assume now a.b €, a€F . Since H =& /axd /-a, there is an element
cEH such that c/a=a/a and ¢/ -a =b/~a. One can also directly check that
(o) =gp(a)la v m(b)l.B*\E, i.e., condition (b) of definition 4.2 for the algebra
@) also holds. Therefore, the algebra & is indeed isomorphic to the Boolean

product @(F ) of the algebras & /f(a), which are evidently directly non-
decomposable. Il

For congruence-distributive varieties a simple and transparent description of
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principal congruences on Boolean product can be given. Namely, by repeating the
proof of theorem 3.2 word per word, we get the following statement.

Theorem 4.2. If M is a congruence-distributive variety, then for any
Boolean product &€ C HJJ ; of MM -algebras relative to a Boolean algebra B, for
IS

any f.ghk€C < [fg>E0F, iff < f(i), g(i) >EO b for any iEB .

The statement of theorem 4.2 immediately yields, in particular, the following
statement:

if &, U, are algebras from a congruence-distributive variety, then for any
6 ECon(d | xH,) there are 6,ECond; such  that 6=6,x60,, where for
f.8€H  xA, <f.g>€0,x0, iff < f(i)gi)>6; (i=12).

Definition 4.5. For any algebra J , any congruence @ on & , any Boolean

algebra B and its subalgebra B, a double Boolean power of the algebra & with
respect to a pair <2 ,B; > and congruences @ will be said to be a subalgebra

/i <'B"Bp(oc) of the algebra % such that ¥ <'B"B‘>(a)={f€y Bl for any
acd f'l(a /o) EXR}. Here al/a is a class of a-congruence containing an element

a. When B,={0,} the double Boolean power & <®#1(a) will be called a
congruence-Boolean power and denoted by & (a)'B.
Therefore, ¥ ()2 ={f€X P for any i,j €™ <f(i), f(j)>Ea)}.

Theorem 4.3. If M is a congruence-distributive variety, & €M, a ECondf

and B is a Boolean algebra, then on & (@)? there is a congruence @ such that

Conp(&'(a)'B)l <0 =(Con,d | sa)B, and
Cony(¥ (%) >60=Cond| >a.

Proof. By a® we will denote the following congruence on Jf(a)'sz
a‘B={<f,g >l feed (a)B, and for any iE.B*<f(z), g()>Ea}. It is this

congruence, oc'l9 , that will play the role of 6 in the statement of the theorem.
Repeating nearly word per word the proof of theorem 3.2, we should note that for

f.8€H (o) 'B, if the principal congruence 6, generated by the pair < f,g > on the
algebra & (a)'B is contained in a?® , then
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. . * ¥ ¥
Bf,g ={< h,g > | h,g E‘Z’ (a) % , and for all lEB , 7] h(i),g(i)-(; Bf(i),g(i)}'
Therefore, indeed,
Con (I (o) 'B)I <a?s (Con, '} = a)'B .

One can also easily see that Qf(a)‘B/a'BEJJ' /o, and this isomorphism

implies the isomorphisms Conp(:!f () B L a? and Conp‘y b >a. B
Definition 4.6. A congruence o on the algebra 4 will be called overlapping

if Condl = Condf| sa®Condl| > a, where @ is the lexicographical addition of
ordered sets.

Corollary 4.1. If o is an overlapping congruence on the algebra &

belonging to a congruence-distributive variety, then
B B
Con, (¥ (a)®)=(Cond| =a)’@®Condl| >a.

In particular, if 4 is subdirectly non-decomposable and o is a monolith of
J . then

Con (¥ (@) 'B) =B ®Con,d| >a.

The statement of the corollary results from theorem 4.3 and from the fact that,
by the definition of Ql(a)’B, if for f,g€d (@) % and a certain i€B”, we have
> . * vl
6 %i) gy < @ » then for any jEF ~, we have 0%, ,,sa. W

Lemma 4.4. For any Boolean algebras F,,F, and partially ordered sets
< A;s>, if there is a mapping f from B,@<A;=> to B;®< A;s> that preservs
finite inf and sup and is such that f(B 2)={0p }. then there is a homomorphism

of the Boolean algebra B, on the algebra 5.

Proof. Let 1y be the unit element of a Boolean algebra B . Then either
f(1.32)=1.b'1’ or O.Bl<f(1.b‘2)<1.l91’ or f(1.32)>131. In the first case f is a
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mapping from B, to B, preserving finite inf and sup and is, obviously, a
homomorphism of the Boolean algebra B, on the algebra B,. If
O.Bl <f(1_32)<1_31, then let @ be a complement of f(l.Bz) in B,. Then for any

cef —l(a), we have ¢>1 B, which contradicts the fact that f is isotonic, and the
fact that f(c)=a and f(l_Bz) are incomparable. Therefore, the second case is
impossible. Let now f(lb‘z) >131. Setting h(a) = f(a) for aE.BZ if f(a)€X®,, and
Wa)=1p if f(a) &B,, we get a mapping of B, on B, preserving finite inf and
sup and, therefore, a homomorphism of the Boolean algebra B, on the algebra .B,.
n

Corollary 4.2. If X is a subdirectly non-decomposable algebra of a
congruence-distributive variety, and 6 is its monolith, then:

(a) for any Boolean algebras 5,,%,, 3!(0)19‘<<31 (6)‘32 iff B, <<XB, or

H(0)Pr<<¥ /6. In particular, if W 12<4B), then ¥ (8)P1<<¥ 0)P2 iff
Bl <<,Bz.

(b) For any Boolean algebra .B and o ECondl (6) F Such that <672, there
is a y EConB such that 3{(0)'3/ 0534'(9)'8’7.

Proof. If B <<B, or H@®%<<¥ /0 then, obviously,
I 0)P1<<¥ 8)P*. Let us now assume that g is a homomorphism of O

on & (6)'31. Then the mapping f:

Con i ()%« B, @Con d1 >0
on

Conpl’(())'b‘ls.Bl ®@Con, A1 >0
will be defined in the following way:

VG R ¥@)h
10252 ) =05 k-

The mapping f preserves the finite inf and sup, since there is an isomorphism
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of h Conp‘?f(())sl on Conpl{'(ﬂ)'B’I za, where a is the kernel of the
homomorphisms g:

Ioh a6
MO aygoy= Bap VO
and in this case the variety containing & is congruence-distributive. Therefore, by

lemma 4.5, we have either f(.32)=A2,(9)‘51, ie., 3(6)'Bl<<31'/0, or

B, <<.B,. For the case when IX <8, since |Con,d 1> 61<1d P<1Bl and f is a
mapping "on", we get f(B,)= AJ](g)Bl , and, therefore, B, << B,.

Statement (b) is proved in an analogous way (see also corollary 3.1).

Corollary 4.3. If directly non-decomposable algebras of a congruence-

distributive variety 1 are limited in power, then ¥ is semi-simple.

Proof. Let us assume the converse to be valid, and let & be a subdirectly
non-decomposable not simple M -algebra and & be a monolith of &, then
Condf|>0=@. By corollary 4.2, Condl @2 =conB@®Cond1>0 for any
Boolean algebra B . This formula entails that for any «,8€Cond @)%, the
equalities aAafB=A, avBf=V imply ecither a=V, =4 or a=A4, B=V.
Therefore, the algebras (0)'3 are directly non-decomposable for any Boolean
algebra B, and the statement of the corollary results from the fact that

T (o) F =51 m

In §3, a variant of the Feferman-Vaught theorem pertaining to the elementary
properties of Boolean algebras was proved. An analogous statement is valid for a
more general construction, i.e., filtered Boolean powers. Let & be an arbitrary
algebra, and let ¥,,...&, be a finite family of its subalgebras. By T we will
denote an extension of the algebra J with new unary predicates which select
subalgebras & ;(i =1,...,n) in the algebra 4 . Let &’ be a filtered Boolean power of
the algebra & , in which case ¥ '={f€d B for i=1,..n fXH)CH} for a

certain Boolean algebra B and closed subsets X; of a Stone space B " E will

denote filters {N€XB| X,C N} of the Boolean algebra B, and B an extension of
£ with new unary predicates which select filters F(i=1,..n) in the Boolean algebra

B . As was the case in lemma 3.5, for any elementary formula ¥ of the signature
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of the algebra 4 we can define a tuple T(g)=< ¢;6;.....0,, > in a natural way,
where ¢ is the formula of the signature of the algebra B and 0; are the formulas

of the signature of the algebra I . In this case, the following lemma holds.

Lemma 4.5. Qf'l=(p(f1,...,f,,) iff .—B—I=¢(B1,...,Bm), where for j=1,..m,
B, =G €B™1 U 1= 0,((i)..... [,())}.

The proof of this statement is absolutely analogous to that of lemma 3.5 and
is left to the reader as an exercise.
By way of concluding the list of principal Boolean constructions in universal

algebra, let us briefly dwell on the following. Let & be an arbitrary algebra and
Z an arbitrary Boolean algebra. Let G be an arbitrary finite group, @ a certain

homomorphism of the group G into a group of all automorphisms of the algebra &
and 1 a homomorphism of the group G into the group of all automorphisms of the

Boolean algebra B . For any g E€G, the automorphism (g) of the algebra B
naturally induces, using the Stone duality, a homomorphism w*(g) of a Stone space

B g will denote a subalgebra of the Boolean power & © with a basic set

el (@@ -9 @(f() for any i€B* and any g €G).

The algebra g will be called a G -power of the algebra & , with the family
of all Boolean G-powers of the algebra & under a fixed action ¢ of the group G
on 4 denoted as P;( ). Any algebra of the class P;(H ) has been proved [25] to
be elementary equivalent to a certain filtered Boolean power of the algebra & if G
is Abelian, or if the restriction of any G -automorphism of the algebra & on any
subalgebra of the algebra & is an automorphism of this subalgebra. The same
authors have shown any filtered Boolean power of the algebra & to be isomorphic
to some algebra of the class P;(¥ ) for a suitable group G, if the subalgebras ¥
participating in the definition of a filtered power have the form {a €J | f@=a
for fEH;}, where H; are some subgroups of the group Autd .

To conclude this section, let us consider the notion of the direct product of
varicties of algebras.

Definition 4.7. Subvarieties M0, of a variety of algebras W are called
independent if there is a term f(x,y) such that M l= f(x,y)=x, B,l= f(x,y) =y.

The intersection of independent varieties obviously contains a one-clement algebra
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only.

Lemma 4.6. If M, M, are independent subvarieties of a variety 2, then

for any d €M (M, UM,) there are H, €M, ¥ , €M, such that ¥ =« x I ,.

Proof. Since M (F,U.M,)=HSP(T UM,), then it suffices to show that
for any ¥, €M, the following statements are valid:

) if BCH xA,, then B =, (B)xn,(B);

(2) if @ is a homomorphism of ¥ ,xJ, on the algebra B, then
B =e@)x@,(d,), where @; are homomorphisms defined on & ;.

Let us assume B CJ; x ¥, and that 7, are kemels of a; projections on the
algebra B . We have, obviously, m; Am, =A and v, = V. Therefore, in order
to prove that B = m(F)xm,(B), it suffices to prove that 7 and 1, are
permutable on B . Assume that <a,b >€n,° 1, le., there is a c€F such that
<ac>€n; and <c,b>EmM,, and assume that a;.b;.c; el ; (=12) such that
a=<apa,>, b=<b,b, >, c=<cy,cy>, in which case a;=¢, ¢; =b,. Let f(x,)
be a term occurring in the definition of the independence of M7, and M,, then

J(<byby >, <aj,ay>) = f(b,ay), f(by,a5) >=<b,a, >, ie., <b,a, > 8. But we
have

<a,< b,a; >>€n,, <<bj,a, >,b> 1,

and, hence, < a,b >€En,-n;. Therefore, n,- n <7,°m. We can prove the converse

and, thus, the permutability of #; and 7,, in an analogous way.
To prove property (2), let us assume that ¢ is a homomorphism of the algebra
dyxd, on B, and a is the kemnel of @. Let us define congruences ; on

%, in the following way:
<< @y,a9 >,< b ,by >>EYP,
iff there exist a3,b; €4, such that <<aya3 >, <b,b; >>Ea;

<< Q4,85 >,< b ,by >>E,
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iff there are a,,by €¥, such that << aya, > <byb, >>Ea.
Let us prove that ¢, vy, =V, YAy =a, yP;zn and P> 9P, =9,° Y.

In this case,

Bead xd,loae@ xTylp)xF xT 5! p,) =
Fixd ol m @yl m)x @ xT 5 1m) [ (Yol M) =
1l m)y x> 51 (py I mp),

where for 6, C 6, ECondl , 6,/86, stands for a congruence corresponding to that of
6, on the algebra & /6, under a canonical homomorphism of & on & /6,. It is
the homomorphism B =& |/ (y, / ) x& 5/ (,/ 1) that completely proves, as has
been noted above, the statement of the lemma.

The inequalities ;=m; follow from the definition of #,, and, since
mVvn =V, vy, =V. Moreover, by virtue of permutability of 7 and n, we
have m,-m, =m v, Therefore, 9,- 93 =959, =V and 9,9, arc permutable.
By the definition, ¥, 2a. Now we have to show that ¥;A 9y, <a. Let
<<aya, >, <b,b, >>E Y, A P,, ie., there are az,b; =H,, ay.b, EH, such that

<< ap,az > <b by >>Ea, <<a,,ay) >,< by,b, >>Ea.
In this case,

< f(< ay,a3 >, < a4,a5 >), [(b,b3), f(bs,b;)>Ea
and
< f< apas >, < aga, >) =< f(a,a,), f(a3,4y) >=< a,,a, >

Analogously, f(<by,by >, <byb, >)=<b,by >, ie., <<ayay > <b by >Ea,
which was to be proven. B

In a congruence-modular case lemma 4.6 assumes an inversion.

Lemma 4.7. If M NM, contains a one-element algebra only,
MM, uM,) is congruence-modular, and for any ¥ €M (M, UM ,) there are
d,elm, A, €M, such that ¥ =& xd,, then MM, and M, are independent.

Proof. Let & €M, B €lll, such that 3,m(‘m1u.m2>(2)=5’ =4 xB. Let
x,y be free generators of ¥, and let 0,,0, be the least congruences on ¥ such

that § /6, €M, §/60,€M,. In this case, 6;<m;, where 7,m, are the kernels
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of ¥ projections on & and B, respectively. As §F /6, vo,€M NM,, and
MM, N MM, contains a one-element algebra only, then 6, v 6, = V. By the choice of
#;, any mapping from x,y to the generators of the algebra x IE..ml(.B =)
induces the homomorphism ¥ /6, A 6, in ¥ ,(B,) and, hence, in &, x.B, as well
As, be the lemma condition, any M (M, v M,)-algebra has the form
H < ByH, €l B, €M,), then §F /6,7 6, will be a frec two-generated algebra
in MM, vM,), ie, F/6,A0,=F . Therefore, we can assume 6, A 6,=A.

Since Con¥ is modular, the equalites 6,v 6, =V, G A0,=V, mvn,=V,
mAT,=A and 1,26, imply the equalities 6;=7;. Thus, ¥ «F/6,x6,, and
5 / 0, is a free two-generated Jf1;-algebra, and let its generators be xi,yi.

In this case, the discussed isomorphism of § and J/ 6, x¥ /02 transforms
X,y in <xl,x2 >, <y1,y2>, respectively. Since }/Glx:j"’/ﬂz is generated be the
clements <x'x* >, <y1,y2>, there is a term f such that f< xl,x2 >,
< yly2 >=< xl,y2 >. Thus,

Fr6i- fxhyh=x Frel- falyh -yt
Since ¥ /6, are free in B, the identities f(x,y)=x f(xy)=y will be
fulfilled on M1, and M1,, respectively, which implies that M1, and M, are

independent. W

Theorem 4.4. If W, is an Abelian and M, a congruence-distributive

subvariety of a congruence-modular varicty M7, then M, and M, are independent.

Proof. It should be remarked that M, N2, consists of a one-clement algebra
only, as M I=[V,V]=A, and M,I=[V,V]=V. Therefore, by lemma 4.7, it
suffices to show that any (M, U.M,)-algebra is presentable as a direct product of
algebras from M, and M7,.

If Del M uM,), then there is a & which is a subdirect product of the
algebras & €M, and B €MM,, and there are § ECon€ such that D =& /6. Let
1.1, be the kernels of the € projections on & and B, respectively. Then
C/imvnp €M NP, and, hence, n v 1, = V. By corollary 2.2, 7, and 7, are
permutable and, therefore, € =J4f x5 .

By theorem 2.23, 71, is a neutral element of Con€ and, hence,
O=0v(mAam)=(Ovm)ABvn), ic, D =€ /0 is a subdirect product of the
algebras D, D, from the varieties M1,/ ,, respectively. As was the case in the
preceding section, the algebra £ must be a direct product of these algebras 2.0,
|
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Definition 4.8. If X1,,%, are independent varieties of the same signature,
then the variety (MM, UM,) is called a direct product of the varieties M, and
M,, and is denoted by M, ® M ,.

Therefore, by lemma 4.6, any algebra 4 €, ® MM, can be represented as
U xd,, where ¥, €M, and, by theorem 4.4, the union of an Abelian and a
congruence-distributive varieties of the same signature is their direct product.

Lemma 4.8. Let the equality 1 =M, ® M, hold for the varicties of
algebras 1, 1,0, and let the algebra D and the class of algebras £ belong to
M. In this case,

@ if D=-F7% and DD xD,, ¥ =AU, x¥,, where D, H,€M;, then
0,-a7,

(b) if £ is a sub-Boolean power of the algebra & with a degree B,
DD, xD,, A =U, xd,, where ¥,,D,€M,, then D, are sub-Boolean powers
of the algebras &; of degree B ;

(¢) if D is a Boolean product of the algebras ¥,(EXB ) of degree B,
D xD, and A, =¥ xU }, where D, 4 JeM;, then D; are Boolean products
of the algebras & /(i€B ") with a power B ;

(d) M =@ ift M, =1r*R@ nM,) for i=12.

Statements (a) - (¢) of the lemma under discussion can be directly checked.
Statement (d) follows from statement (a) of lemma 4.2, and statement (c) of the
present lemma. W

As was the case in the end of section 3, one can easily observe that if the
algebra & can be represented as a Boolean product & C HJJ’ ; of the algebras ¥,
€3’

(as a congruence-Boolean power & l(a)‘B of a certain algebra &), then any algebra

?f ' polynomially equivalent to 4 can be represented as a Boolean product

d'C H?f | of algebras &, polynomially equivalent to the algebras ¥; (as a
i€B "
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congruence-Boolean power 4 {(a)'B of some algebra 4| polynomially equivalent to
the algebra &;).

And, finally, let us briefly dwell on the relation between the notions of a
Boolean product and an algebra of global sections of a sheaf of algebras. It should
be recalled that a triple < S,X,w > is called a sheaf of algebras if:

(1) § and X are topological spaces,
(2) w:8§— X is a local homomorphism of § on X,
3) S, = n:_l(x) are algebras of the same signature o for all x€X,

(4) if f is a functional symbol of the signature o, and S, is a subspace

(1—[ S " of the space (S X)", then under a natural definition of the mapping
xEX

8, = sx, [ is continuous.

A global section of the sheaf <S§,X,m> is any continuous mapping g:X— §
such that m-g is identical on X. The algebra of global sections of the sheaf
< 8,X,mw > is called a subalgebra of the direct product st’ the basic set of which

X

consists of global sections of the sheaf < §,X,m>. Let us denote this algebra with
y(S,X,x). The sheaf <S,X,m > is called a Hausdorff sheaf, if the space § is a
Hausdorff space.

One can also directly check the following statement.

Theorem 4.5.

(@ If <8,8 x> is a Hausdorff sheaf and B~ is a Stone space of a

Boolean algebra B, then y(S,8 *,n) is a Boolean product of the algebras S, of
degree B .

(b) Let & be a Boolean product of algebras &, of degree X. Let
S = UX{x}xﬂ x> and let us define a topology on § with a basis of open
xE

neighborhoods of the type {<x,f(x)>x EN}, where fEH and N is an open-
closed subset of X. Let us define the mapping x:8S~>X with the equalities
w(<x,a >)=x. Then < §,X,x > is a Hausdorff sheaf of algebras, and y(S,X,x) is
isomorphic to & under a homomorphism « defined by the equalities a(g)x) =a if
g(x) =< xa >.
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Priorities. The notion of a Boolean product was introduced by S.Burris and
H.Werner [29] as a reformulation of the construction of a Boolean sheaf, which has
been studied in detail starting from a paper by J.Dauns and K.H.Hofman [45]. The
construction of a filtered Boolean power for a variety of rings stems from a work
by R.F.Arens and J.Kaplansky [5]. The statements of lemma 4.1 belong to
S.D.Comer [39]. Lemmas 4.2, 4.3 and 4.7 are by S.B.Burris and R.McKenzie
[27], theorem 4.1 is by S.D.Comer [40]. The construction of a double Boolean
power belongs to S.Burris and has been effectively used in [27]. The construction of
a congruence-Boolean power was introduced by A.G.Pinus [168] and used by him to
study skeletons of epimorphism of congruence-distributive varieties [168, 169].

In its implicit form theorem 4.2 can be found in a number of papers. It
should be remarked that its simplest variant for the case of congruences on a
Cartesian product of two algebras from a congruence-distributive variety is, in
essence, the statement of a known Fraser-Horn theorem [70]. Theorem 4.3 and
corollary 4.1 are by A.G.Pinus [168], lemma 4.4 and corollary 4.2 also belong to
him [169]. Lemma 4.5 was proved by S.Burris and D.Clark [25]. The definitions
of independence and of a direct product of varieties, as well as lemmas 4.6 and
4.7 stem from a paper by G.Gritzer, H.Lakser and J.Plonka [81]. Theorem 4.4
belongs to C.Herrmann [92].As regards theorem 4.5, seec [29]. Some details on
algebras of global sections can be found, for instance, in [112].

5. Discriminator Varieties And Their Specific Algebras

In many cases studies of varieties representable by Boolean constructions is
reduced to those of Abelian and discriminator varieties. By theorem 2.20, the former
are polynomially equivalent varieties of unitary modules over some ring with unity
which have been quite thoroughly studied in the literature [see, for instance, [97],
[191], [239]). The present section will be devoted to the description of the structure
of discriminator varieties using constructions of a Boolean product, followed by the
demonstration of the resulting possibilities of reducing descriptions of various special
algebras in discriminator varieties to considering the corresponding Boolean algebras.
Namely, we will describe the construction of injective, equationally compact,
topologically compact, algebraically closed and other algebras of discriminator
varieties, starting with a number of examples of discriminator varieties and their
various characterizations.

Here are some examples of discriminator varieties:

(1) +-Heyting algebras. These are varieties consisting of algebras
§ =< H;A,v,—~,+,0,1> such that
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(a) <H;A,v,0,1> is a bounded distributive lattice;

(b) xay—=y=1; (the operation —>
€ xA(x—=y)=xAY; is here a relative
d) xA(xAay—=2)=xA(—>2); pseudocomplement)
(e) 1* =0; (the operation + is
f) xvx'=1; here a dual

(g xv(xvy) e xv y+; pseudocomplement)

(h) x*ax**=0.

Subdirectly non-decomposable algebras of this variety are < H;A,v,—>,+,0,1>,
where < H;A,v,0,1> is an arbitrary bounded distributive lattice with v -non-
decomposable unity, and

e 1, if x=1
0, if x=1

The discriminator for such algebras on H is the term #(x,yz2) =
ZA(x= N AG=>0)"Ivixa((x=y) A (y—=2)"—=0)].

(2) Boolean algebra. The only subdirectly non-decomposable algebra of this
variety is the two-element Boolean algebra < {0,1};A,v,-,0,1>. The discriminator on

it is defined by the term #(x,y,2) =((x AZ)V =) A(xV Z).

(3) Lukasiewicz algebras of the order n. The variety consists of
algebras of the form B =< Liav,—,1},....D, ,0,1> such that:

(@) <L;a,v,0,1> is a bounded distributive lattice;
(b) 3?-=x, XAYy=XVYy;

© D(xAay=D;(x)AD;(y), lsi<n,
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D(xvy)=D;(x)vDi(y), 1=<i<n;
(d) D,-(x)sz, l<i<j<n,;

€ D(xvD(x)=1, lsi<n,
D((x)AD(x)=0, 1=<i<n;

() D(X)AD, ;(x), 1si<n,

(® D(Dj(x) =D;(x), 1si,j<n;

(h) D, () =x<D;

(i) XA D,_(x)=0, TvD(x)=1;

@ D(0)=0, D()=1 1si<n;

(®) ysxvD;(x)vD;(y), lsisn-2.

The operation x—y=yv A (Di(x)vD(y)) has been shown [236] to be a
1si<n

relative pseudocomplement in the lattice < L;A,v,0,1>. The operation xt= Di(X) is a
dual pseudocomplement on < L;A,v,0,1>. Therefore, <L;a,v,—,+0,1> is a *-
Heyting algebra, and a variety of Lukasiewicz algebra of the order n is
discriminatory. Subdirectly non-decomposable algebras of this variety are subalgebras
of an algebra of the type <{0,..n-1}; A,v,-Dy,....D,;,0,n -1>, where
X=n-1-x, Dj(x)=n-1, if i=sx and is equal to 0, if
i>x, xAy=min{x,y}, ,xv y=max{x,y}. The discriminator on them is defined by
the term which determines a discriminator on subdirectly non-decomposable +-Heyting
algebras under the above-mentioned representation of the functions — + in the

signature of Lukaciewicz algebras.

(4) Cylindric algebras of dimension n. The variety consists of algebras
of the type € =<C;A,v,-,0,1,¢,....c, > such that:

(a) <C;A,v,-,0,1> is a Boolean algebra;
(b) c4(0)=0 ]
(€) x scp(x)

(@) cr(x Acy(y) = cp(x) A c(y)
(€) cxe (%) = ¢;x(%)

1<k, j=n.
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Subdirectly non-decomposable algebras of this variety are algebras of the type
& =< Cya,v,0,0,1,¢,..,¢, >, Where < C;A,v,—,0,1> is an arbitrary Boolean algebra,
and ¢,¢y,...c,(x) =1 if x =1 and is equal to zero if x=1. The discriminator on this

algebras is defined by the same term as that on *-Heyting algebras if we assume

Xy =-xVYy, X =, .Ch(X) .

(5) Relation algebras. The variety consists of algebras of the type
R =<Rav,~0,1,+A > such that

(a) <RyA,v,~,0,1> is a Boolean algebra;

() x-(y-2) =(x-y)-2,xA;

© x*=x, (x-pT=y*xt, xvy=xtvy

@ (xvyz=(xvz)(yvz);

© x-~(x"y) s-y.

Subdirectly non-decomposable algebras of this variety are algebras of the type
R =<Ra,v,~0,1,+,A > such that for any x€R 1-x-1=1if x=0 and is zero if
x=0. The discriminator on these algebras is defined by the same term as that on
+-Heyting algebras, if we set x—>y=-xvy, x"*=-(1-x-1).

(6) Rings. Since the lattice of the congruence of any ring is isomorphic with
that of its ideals, and the lattice of the congruence of an algebra of a discriminator

variety is distributive, then any discriminator variety of rings must consist of rings
with a distributive lattice of ideals, i.e., of arithmetic rings.

Theorem 5.1. For an arbitrary variety M, the following conditions are
equivalent:

(a) M1 is generated by a finite set of finite fields;
(b) M is a discriminator variety;
c) all MM -rings are arithmetic;

(d) there is a polynomial #(x) with integer coefficients and with no free term
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such that on any ring R €M, the identity x-#(x) = x holds;

(e) there is an integer n=2 such that on any ring ® €M, the identity x"=x
is true.

Proof. The implication (1) — (2) is fulfilled because for any field GF(q) for
any nE€w such that n-1=0(mod g-1), the discriminator #(x,y,z) on GF(q) is set
by the term z+(x-zXy-x)".

The implication (2) — (3) has been discussed earlier, the implications (5) = (4)
and (1) — (5) are obvious. Let us prove that the implication (3) = (4) holds. If the
variety of rings M is arithmetic then, by theorem 2.10, there is a term p(x,y,z)
(i.e., a polynomial with integer coefficients) such that the following identities are true
on M : p(x,x,y) =x=p(x,y,x) =p(y,x,x). These identities imply that the polynomial

s(x,y.2) = p(x,y,2) - p(0,0,z)- p(0,y,0) -
P(x,0,0)+2p(0,0,0)

has integer coefficients. Besides, the free term of the polynomial s(x,y,z) and its
coefficients at x,y,z are zero. Direct checking shows that for s(x,y,z) the same
identities are valid as those mentioned above for p(x,y,z). Putting x beyond the
brackets in the polynomial s(x,x,x) we get a polynomial #(x) such that
x-t(x) =s(x,x,x). But s(x,x,x)=x is an identity on MM and, hence, the implication
3) = (4) is true.

Concluding the proof of this theorem, let us prove the implication (4) — (1).
First of all, since #(x) is a polynomial with no free term, i.e., #(x)=x'q(x) for a
certain polynomial g(x), the equality x2=0 implies that x-#(x)=0 as well and,
hence, according to (4), x =0. It should be noticed now that if e is an idempotent
of the ring R, then e is central, i.e., for any elements e,xER e’=e imply
ex = xe. Indeed,

2
(ex —exe)“ = exex — exexe — exeex + exeexe =0

and, due to the above, ex=exe. In an analogous way it should be observed that
xe = exe, i.e., ex=xe. Since x-#(x)=x and Hx)=x-q(x)=q(x)x,
1(x)-t(x) =t(x) . The same equality x-#(x)=x implies that if #(a) =0, then a=0 for
any element a €R . If R is a directly non-decomposable ring, then the only non-
zero central idempotent of the ring & is unity. Therefore, a directly non-
decomposable ® must have unity, and for any a €R we have t(a)=1 if a=0,
and #(a) =0 if a=0. As #(x)=x-q(x), then for any a=0 a-q(a)=1, ie., R is
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a sfield obeying the identity x-#(x)-x=0. Hence, ® has not more elements than
the power of the polynomial x-#(x)-x. By the Wedderburn theorem (see, for
instance, [96]), every finite sfield is a field. Thus, R will be a finite ficld with a
bounded number (the power of the polynomial x:#(x)-x) of eclements, ie., (1)
follows from (4). W

(7). Rings with operators. Let us consider a variety of X ,-algebras
obtained by adding one unary operation g(x) into the ring signature and consisting
of algebras R =< R;+,-,0,-.g > such that

(a) < R;+,-,0,"> is an associative ring;
(b) (%) -y=y-8(x), g(x) 8(x)=g(x),
(©) g(x) x=x;

(d) g(x-g(y) = g(x) gy,
g(x —x-g(y) = g(x) —g(x)-g(¥).

The subdirectly non-decomposable algebras of this variety are algebras of the
type <R;+,-,0,;8>, where g(x)=1 if x=0, and g(x)=0 if x=0. The
discriminator on these algebras is defined by the term #(x,y,z) =z+(x-2)g(y - x).

The ring ® is biregular if for any xER there is a central idempotent x*
which generates the same principal ideal in ® that x does. It is evident that x* is
uniquely defined by x and, by modifying the biregular ring with the operation
g(x) = x*, we see that every biregular ring modified in this way is an algebra from
the variety ®,.

A ring is called a Baer*-ring if for any x&€X , the ideal of annihilators of x is
generated by a certain central idempotent x (x* is uniquely obtained by x). The
ring R is called strictly regular if for any xE® there is an element x'€® such
that x%-x '=x (Jr_1 is uniquely defined except for the case x=0 when we set
07\= 0). Extension of Baer™- and strictly regular rings, respectively, with unary
operations x — x*,x——> x7! converts these families of rings into discriminator
varieties.

By way of concluding this series of examples of discriminator varieties, it
should be remarked that despite the fact that the above-mentioned varicties are not of
prime importance in modern algebra, their investigation is worth undertaking not only
in view of the examples listed above (the list, incidentally, can be extended), but in
view of the following result as well. Let us first recall the definition of quasi-
primarity discussed in Section 2.
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Definition S5.1. A finite algebra & is called quasi-primal if it is subdirectly

non-decomposable, and M (& ) is a discriminator variety. In other words, J is
quasi-primal if the discriminator on it is defined by some term.

Theorem S5.2. If G(n) is a number of mutually non-isomorphic groupoids of
the power n, and Q(n) is a number of mutually non-isomorphic quasi-primal

groupoids of the power n, then lim %E—n—;=1, 1.e., 'nearly all' finite groupoids of
n— n
greater power are quasi-primal.

The following characteristics of quasi-primal algebras are known.

Theorem 5.3. A finite algebra & is quasi-primal iff & and its all
subalgebras are simple, and 1 (J ) is arithmetic.

Theorem 5.4. A finite algebra J is quasi-primal iff for any n-ary function
f set on ¥ and such that any subalgebra of the algebra & * which is a graph of
the isomorphism between any subalgebras of the algebra & is closed relative to f,
then for f there is a term of the algebra & defining f on & .

The class of discriminator varieties among the class of all arithmetic ones is
singled out with the help of a certain property of congruence determinability.

Definition 5.2. The principal congruences on a variety M1 are definable by
bounded identities if there is a finite set of pairs of terms of four variables
<h,q4y >».< b,,4,> such that for any algebra J €% and any ab,c.dEH
<ab>€0,, iff

n
g _&11,- (a,b,c.d)=q;(abc.d).
Iz

Theorem 5.5. A variety M is a discriminator variety iff 7 is arithmetic
and the principal congruences on 21 are definable by bounded identities.

This, in particular, entails the properties of extensibility of congruences for
discriminator varieties.

Without proof let us recall the following description of principal congruences on
subalgebras of direct products of simple algebras of discriminator varieties to be used
below.

Theorem 5.6. If 4, are simple algebras belonging to a discriminator variety
(congruence-distributive, with extensible congruences, and such that Mg s
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approximated and the principal congruences on MM are clementary definable), and &€
is a subalgebra of a direct product H‘?f ;» then for any f,ghk€EL
el
< f.g >69‘ik iff JE€IF3I)=gD}2LED h(i) =k(i)}.

The proof of this theorem can be compared with the description of principal
congruences of Boolean powers of simple algebras in congruence-distributive varieties
given in theorem 3.2 (see also theorem 4.2).

As has been mentioned in the beginning of this section, discriminator varieties
allow a simple description using the construction of a Boolean product. By

I 5, 5) we will mean a class Mg (M) with a singleton algebra added to it.
Theorem 5.7. If M is a discriminator variety, then M = Ir* (MM 3)).

Proof. Let a term #(x,y,z) define the function of a discriminator on subdirectly
non-decomposable [ -algebras. S, & will denote a set {6 ECond | for any
a€Condl , 6C a implies either = a or a =V} for any algebra F of M, ie,
N pQI is a family of all maximal congruences on & plus the congruence V. For any
elements x,y €d , E(x,y) will denote the set {6 ESPQJI< x,y >0}, while D(x,y)
will denote the set {6 ESPX l<x,y >#6}. Let us define on Sp:!f the topology the
subbasis of open sets of which is a family & of all subsets SPZI' of the type
E(x,y), IXx,y) for any x,yEH . Let us first of all note that this family forms a
Boolean algebra and is the basis of the given- topology, which consists of open-
closed subsets of the space SPJJ . Since D{(x, y)=Sp3’ \ E(x,y), it suffices to show
that the family {E(x,y), D(x,y)lx,yEH } is closed relative to intersections. Let 8 be
a maximal congruence on & , i.., GESPE \{V}, in which case for any x,y,zEH
we have, by the definition of #(x,y,2):

<x,y>E0 =<1t(x,y,2),2 >E0
and
<X, y>E0 =><t(x,y,2),x >E0

Therefore, for any r.su,v €3,
<r,s>€0 and <u,v>€0 <<1t(rsu),t(sr,y) >0,
<r,s>€0 and <u,v>&0 << t(rs,u),l(sr,v) >£0,

<7,>€E0 and <u,v>&0 <><t(rir,su)u), t(r, t (s;r,Vv>&0.

The above equivalences together with the fact that VEE(x,y), V&D(x,y) for
any x,y EH imply the required equalities:
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E(r,s) N E(u,v) = E(t(r,su), ((s,r,v)),
E(r,s) N D(u,v) = D@(r,s,u),1(r,s,y)),
E(r.s) N IDX(u,v) = D@(r t(r,s,u),t(r,s,v)) t(rt(r,sv),v)).

Therefore, the family & of subsets of the space szf indeed forms a Boolean
algebra, consists of open-closed subsets of this space and forms its basis.

Let now C be a closed subset of the space SPJ and VEC. Then, since &
is the basis of the space S,4 consisting of open-closed sets, C={AEZT ICC A}.
Since for any r,s €¥ VE&D(r,s), C={Ers)ET ICC E@r,s)}.

Turning to the complement of C, we get the following statement: for any open
subset C; of the space SPZI such that 3V, the equality
C, =U{D(r,s) E(TICl & E(r,s)} holds. Let now a be an arbitrary congruence on the
algebra J, and let us establish a correspondence between « and the set
U(a) ={6 ESPJI la T 6} of the space SPQJ' . Evidently, U(a) is an open subset, and
V@&U(a). Using the above-mentioned representation of similar open sets C;, one can
directly check that U is an isomorphism between the lattice Cond and the lattice of
open subsets of the space Splf containing no element V.

Let us now show that szl is a Boolean space, and a Boolean algebra of all
open-closed subsets of the space §,& coincides with the family & . Since & is a
basis of S, consisting of open-closed subsets of the space S, & , S, & is a O-
dimensional space, and in order to prove that Sp‘?! is Boolean, one has to show
that it is compact and is a Hausdorff space. If 6,c ESPJJ' and 6 L a, then there
are x,yEH such that <x,y>E0,< x,y>¢a and, hence, E(x'y), D(x,y) are disjunct
neighborhoods of the points 8,a, which proves that SPJT is a Hausdorff space. Let
now {U;li €I} be an open covering of the space Sp‘?f . There is an iy €1 such that
VEU,-0 and, therefore, since & is a basis and VE&D(x,y), there are r,s &df  such
that VEE(r,s) CU, . Let V,=U;ND(r;s) for i€Il, then {V,li€I} is an open
covering of the set IXr,s). Let us choose an o €Condl such that U(e;) =V,
where U is the above constructed isomorphism Condl and the lattice of open
subsets of §,4 containing no V. Then

U@, )= D(r,s)= UV, = UU(a;) =U(U ;) .

Therefore, as U is an isomorphism, 6, ;= U a; and, since 6, are compact,
el

there are i,...,i, €I such that 6, ; =a; v..va; . But in this case
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U6, ;) = D(r,s)=U(e; )U..UU(e; )=V, U..UV,
and, hence, Sp‘?] =U, UU, U..UV; . This is the proof that the space Sp:!f is
compact and, at the same time, Boolean. The family T is the basis of SPZI which
consists of open-closed subsets of Splf and is a Boolean algebra, but then, as is
known, & is the family of all open-closed subsets of S, .

Let mg (0 ESPQJ ) be a canonical homomorphism from the algebra & to
J /6 and f a mapping from J to 1_]2(24' /8 such that for xEHX , 0ES,H we

s,

get f(x)(0) = mg(x) .

It should be remarked that for BESP:"J , ¥ 10 is ecither simple or singleton,
i.e., in particular, f is a mapping of & on a subdirect product of M ,-algebras.
If x=y&d , then there is a BESPX such that mg(x) = mg(y). Indeed, let
a=U{y ECondl |< x,y>&y}. Then ¥ /a &M, and, since M is a discriminator
variety, .mS,=..mS (see section 2) and, hence, aESP(Jf) and &, (x) = &L (y).
Therefore, f(x)= f(y), i.e., f is an isomorphism.

Let us prove that f(& ) is a Boolean product of the algebras & /6, 0 ES,d ,
which will require the validity of the following conditions:

(a) for any x,yE€H [f(x)=f(»] is open-closed in S, ;

(b) for any x,yEH and any open-closed subset AQSP:H there is a zEH
such that f(z) = f(x)! AUf(y)lSPJf \A.

Condition (a) is obviously fulfilled, since by the definition of f and the set
Ex,y) we have [f(x) = f(D]= E(x.y).

Assume now X, yEZf and AET . For the sake of definiteness, let us assume
that A= E(r,s), in which case Spﬂ \ A= D(r,s) .One can directly check that
Z=1t(t(r,s,x), {(r,5,y),y) indeed has the properties of condition (b). Therefore, indeed,
fEHer* g), ie., the arbitrary algebra & €M is isomorphic with a Boolean
product of M g;-algebras. M

The proof of theorem 5.7 makes it also possible to establish a relationship
between algebras of an arbitrary discriminator variety and a variety of distributive
lattices with relative complements. Let D (&) denote the lattice of open-closed
subsets of the space Sp(?I ) containing no V for an algebra & which belongs to a
discriminator variety M1 . £ (J )is a distributive lattice with relative complements. Let

us fix an arbitrary element @ from 4, and define the operations xAy,xvy, x\y



102 BOOLEAN CONSTRUCTIONS

on ¥ in the following way:

xAay=HKal(ax,y),y),xvy==8xa,y),x\y=1ay,x).

One can also directly check that a mapping d:d — D (J) defined as

d(r) = D(a,r) for r €X , is a homomorphism from the basic set of the algebra &
with polynomial operations v,a,\ to the distributive lattice with relative complements
D).

The proofs of theorem 5.7 and the statement of theorem 5.6 obviously yield
the following statements.

Corollary 5.1. For any algebra J from a discriminator variety M7, Con,J
is a Boolean algebra if Vy €Con,d .

Corollary 5.2. For any quasi-primal algebra & , for any Boolean algebra B
and subalgebra &, of the algebra & 5 , if &, contains all constant elements of the
algebra & 5 , then there is a subalgebra B, of the Boolean algebra £ such that
Uy =¥ P Indeed, B, ={f=gll f.5€H

Let us now turn to the description of the construction of various special
algebras in discriminator varieties. Let M be a discriminator variety, and let
., €M . In this case, by theorem 5.7, the algebras &, are representable as
Boolean products of simple and singleton M7 -algebras. Let us use the notations of
the proof of this theorem, while the algebras J; proper will be identified with the

corresponding subalgebras of the algebras & ,-/ 0. Let g be a homomorphism
03,

from the algebra &, to the algebra & ,. Since subalgebras of simple J7 -algebras are
simple, for any 6 €S,4 ,, when @y is a canonical projection of &, on ¥,/6, we
get ker(mg- g) ESPQY 1~ Let us refer to ker(mg-g) as g*(8) and we can easily check

that g* is a continuous mapping from the space S, &, to the space S, 4. As S,
are Stone spaces of Boolean algebras

"7:311, ={Dy, (%)), Ey (x.y)Ixy ed 3,

a mapping g* from the Boolean algebra & ¥, to the Boolean algebra '@'2,2 (a dual

of g*) will be a homomorphism, in which case for any x,y e, we get
g (Dyl(x,y)) =D3,2(g(x),g( y)). Let Spogfi =SP37,~ \{V")Ji}, and let us notice that the
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mapping g preserves the points of Vyi, ie., g+(V2,2)=V2,1.Let Py, be an
ultrafilter on Eﬂi equal to {E(x,y)lx,y EH }, in which case g preserves this filter,
ie, (g *) _1((p2]2) =9y, - The ideal in of the Boolean algebra Eﬂi is also the dual
of the subspace S, Iy, =Ty \ oy =D(x.)Ixy €d;} and, although g may

not be a mapping from S, &, to S, &, g is a homomorphism from a lattice
with relative complements of JJJI to JJ’:'

Before we start studying the structure of special embeddings and special
algebras in discriminator varieties, let us cite some necessary results related to the
truth of elementary formulas about the algebras of similar varieties.

Lemma_5.1.

(a) For any algebra & €M, any a;=a, €I , for any formula ¢ of the type
p(a) =qg(@) where p,g are terms and @ is a tuple of elements of the algebra

U, A= p@) =q@ iff
I = 1(p@), q(@)a;) = (p(@),(T), ay).

(b) For any algebra J €M, any formula ¢ of the type VIIy
n
(_&i P(%,y)=q;(X,y)), where p,q; are terms and X,y are tuples of variables, Hl=¢
i=
iff for any @ €S, d we have ¥ / di=g.

Proof. Statement (a) can be checked directly, owing to the fact that the term
H(x,y,z) defines the discriminators on m ¢ algebras. In order to prove statement (b),
one should notice that, since & l=¢@, ¢ is true on & /@ for any ¢ ESpd
because the formula of ¢ is positive. Let us prove the converse case, so let
I | ®l=¢ for any ®ES,H and, therefore, ¥ /Pl=¢ for any DPESH .

Assume that @ €4 , and let m4(@) (P ESP‘?J) stand for a tuple consisting of g-

images of the clements of the tuple @. Then for a certain tuple I;q, el /D we
have

I 101= & p(ra(@,55) =4, (70(@), bp).

Assume that b®EH so that me(b®)=by. Then Agy={y €S, |
F 1ypl= .&1p,-(n,p(®, 7T, b q))) = q;(7,(a), . (l;d’))} is open-closed in Sp?J , and
i=
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contains a point ¢ of the space Splf . Choosing a finite subcovering Agp - Ag,
from the covering {Aq,ld?ESpl' } of the space Sp-?f , one can consider the latter a
subdivision of the space Sp‘?f . Since & is a Boolean product of the algebras
A 1@ for DESH , there is a b €Y such that for i=n, any 3 EAp, we have
th(-b—) = nw(B“"‘)_ Therefore, for any @ESP‘?{' ,

A 101=& p(ag@, 366 =410 (@, 765

n — -
and, hence, 4 I= & p{(@,b)= q;(@,b), which means that there is an ¥ I= ¢. B
i=1

Lemma S5.2. For any set of V3-formulas X there exists a set 3’ of formulas
of the kind Vx3y(p(x,¥) = x;), where p is a term and X,y are tuples of variables

such that for any algebra & €M J |=3" iff for any ¢ ESp,d H /yl=3.

Proof. Let us assume that all the negations occurring in the X -formulas refer
only to atomic subformulas, i.e., occur as inequalities p(¥)=g(X). Let us replace
every occurrence of a similar inequality o in the X -formula with a corresponding
positive V-formula o’ of the type Vx, y(t(p(%).q(X),x)=1(p(X),q(X),y). Then for the
algebras B €llly, Bl-=o iff Bl=0’. Let =" be a result of the substitution of the
inequalities o in X -formulas with subformulas of the type o'. X" is a family of
positive V3-formulas and, obviously, for ¥ €y, H €3 « HI=3.

Let us now consider a certain standard transformation of positive quantifierless
formulas in discriminator varieties. Let us, first of all, take into consideration the
following terms:

n(x,y.z.u) = (i(x,y,2),t(x,y,u)u) and
$(x,y,2) = n(x,y,2,0x,2,y)).

One can observe directly that for J €My, for any abc.dEH,
n(abcd)=c if a=>b, is equal to d if a=b, s(a,bc) =a, if a= b, is equal to
b if a=c, is equal to ¢ if a=b. By way of induction, let us establish a
correspondence between any positive quantifierless formula ¢ with variables xi,...,x,
and a certain term 7(@) according to the following rules:

(@) if @ is an equality of terms p(¥X)=q(X), then T(¢) = s(p(X),q(%),x);

) if p=avp, then T(avp)=n(T(x),x;,%,T(B));
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© if o=aap, then T(a A p) =t(T(a),x,T(B)).

One can also directly check that for any algebra & €M, and a,...a,EX ,
T = ¢(ay,....a,) = T 1=T(p)a,...a,)=a,.

For any formula o =Vx3F ¢(x,7)EX", we will construct a formula
1/)*= Vx3y (T(p)X,¥) = x;) and let Z’={1})*|IIJ €2"}. By lemma 5.1 we see that
for any algebra & €, X 1=3' iff for any y €Sp , I /yi=3". Since for
any J €M,

H=3 ol =" «dI-Z,

the family of the X'-formulas is the one we were loking for. ll

Definition 5.3.
(@) A subalgebra J, is called an essential subalgebra of the algebra & if for

any homomorphism f from the algebra & to the algebra B, f is an isomorphism
iff f1&, is an isomorphic embedding of &, in B. An embedding g of the algebra
&, to the algebra ¥ is said essential if the algebra g(&,) is an essential
subalgebra of the algebra Jf .

(b) The algebra ¥ is called a pure extension of its subalgebra &, if for any
fimte set of equalities {t,-l(f,ﬁ)=ti2(?c,5)li61}, where til,t,2 are terms, @ is a tuple
of elements of &, and X=x,.,x,, the fulfilment of the conjunction

%t}(f,&f)=t,-2(7r,&') in & implies the fulfilment of this conjunction in &,. The
14

embedding g of the algebra &, in the algebra & is called pure if & is a pure
extension of the algebra g(& ,).

(c) The algebra J is called an existential extension of its subalgebra ) 1» if for
any finite set of equalities and inequalities

{4 (X,a) =1 Fa); (3,b) = 1] (X,b) iELjEN,

where til,t?,t?,t? are terms, 5,17 are tuples of the elements from 2.’1 and

X = Xy,...,X,, the fulfilment of the conjunction

1o oy 2, 3.7 A=
igti (x,a)=1 (x,cT)&ngJ 1;(X,b) = 1;(X,b)
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in J implies that in 4. The embedding g of the algebra &, in the algebra & is
called existential if & is an existential extension of the algebra g( ,).

Lemma 5.3. If XCSp,J , then the following conditions are equivalent:

(a) a family of canonical projections {mgl6 €X} implies a subdirect

decomposition of the algebra & ;
(b) NOIGEX=A:
(c) the set XU{V} is dense in the space Sp¥ .

Proof. N{AI6EX}= A iff for any x,yEH , when x=y, there is a § EX
such that <x,y>&6. The latter statement is equivalent to the fact that for any
X,y ey, x=y if for all 6 EX <x,y>EH, which is, in turn, equivalent to the fact

that for any x,y €H , the inclusion X C E(x,y) implies the equality x =y. W

Lemma 5.4. The following conditions are equivalent for the embedding

f[H €
(1) f is essential;

(2) for any CC Sp€ such that VEC, C is dense in Sp& iff f¥(C) is
dense in Spd ;

(3) if C is a closed subset in Sp& , then Sp& C f¥(C) iff Sp€ C C;

(4) the embedding f *:Jy — Jg is essential in the class of distributive lattices
with relative complements.

Proof. In the definition of the essentiality of an embedding of the algebra &
in the algebra € it is obviously sufficient to consider only the principal congruences
of the algebra € and, in this case, the implication (1) —(2) directly results from
the criterion (b) of density of the subset of the space Sp(& )(Sp(& )) of lemma 5.3.
The implication (2) —>(3) is obvious. The implication (3) —> (1) can be also directly
proved using lemma 5.3. At the same time, the equivalence of conditions (3) and
(4) results from the fact that any congruence on the lattice of Jy is uniquely
determined by a certain ideal of this lattice, while the latter is uniquely determined by
a certain open subset of the space Spd containing no element V. W
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Lemma_5.5. If f is an embedding of the algebra & in the algebra & , and
there is an X CSp€ such that f+(X)=SR)131', and for any @ &€X the induced
embedding fg:& | f{(®)—> & | @ is pure, then the embedding f is pure itself.

Proof. Let

m
@Y r@y) = axl,...,xn(ﬁclz}(f,y) = 2(%.5)

and ay,...,a; €X . In this case, if €= o(f(ay).....f(a;)), then, since ¢ is a
positive formula, for any @ €Sp& |

€ | D= g(f(@)] P..... f(a)] D).

As fp are pure embeddings of the algebras ¥ / f*(®) in € /P, for any
PEX,

T 1 fH (@)= p(ay! fH(D),....a, ] fH(D)).

Andsince f*(X) = SpH \{V}, forany y ESp,dl wehave ¥ / pl=qa; / p,....a,! ¥).
By lemma 5.1 (b), we get from here that & |= ¢(ay,..a;). i

Lemma 5.6. Let f be an embedding of the algebra & in the algebra &,
and let the space Spd have no other isolated points but V. If there is a subset X
dense in Spy€ such that f*(X)=Sp¥ , and for any & EX the induced embedding
fp:ll | fF(®)—=€ /D is existential, then the embedding f is existential itself.

Proof. Let the formula

m
(p(ylv' ’y]) = axla' "xn(igcltil(f’y) =

k
= [ (T))& &15(%.5) = [}(%.3)).
j=
@; will denote the formulas

% R, B 3 - 4,- <
Hxl,...,xn(l&lt,-(x,y) =5 (X Y)&G(X,Y) = 1;(X,5)),
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for j<k, and ¢’ the formula
ol oy 2
axl""’xn(l&iti(x’y) =4 (x.y).

Let al,...,ale‘?{ and &€= (p(f(al),...,f(a,)). The task is to show that
A 1= ¢(ay,....a)).

Since € is a subdirect product of algebras € / @, where @ ESp€ | it is
obvious that for any @ ESp€ ,

1 D=¢'(f(a) ! D,...,fa)] D)
and there are @,...,P; ESp& such that
& /(DJ|= (pj(f(al) / <Pj,...,f(al)/ (Pj

for all jsk.

It is obvious that, since € / V is singleton, P,,...,P, are different from V.

It is also obvious (see proof of lemma 5.1 (b)) that for any existential
formula, the definition of a Boolean product entails that the truth of this formula for
a certain position of the projection zx; of this Boolean product implies that of this
formula for any projection occurring in a certain neighborhood of the projection ;.
By virtue of this remark and since X is dense in Spy , there are &j,..,P; EX
such that

€1 @)= g,(f(a)/! Pj,....f(a))] ®}) for jsk.

Since the embeddings fp of the algebras & / f(®) in the algebras € / @ are
existential for any @ €EX,

CRPACHTTHCVNMCHREIVIACH)

for any j<k, and for any ®€X H/fT(D)=¢' (a)/ D,....a;/ P). But
FHX)=Spdl and, therefore, & / @I= ¢'(a;/ D,....a; | P) for any P ESpH . As
in the case considered above, the validity of @;(a;,/ f +(<P}),...,a, I f +(<1>}~)) for the
algebra & /f+(€D}-) implies that of the formula ¢;(a;/ D,....a;/ ®) for the algebra
d /@ for any @ from a certain neighborhood S§; of the point f +(<1>j’-) of the
space Spdl . But Spd has no other isolated points but V and, obviously,
f +(451'-) = V. This enables us to choose points (D}'ESj in such a way that they are
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mutually different at j<k and, therefore, for pairwise different @}’ (at j<k), we
have
A 1 @)= i(a)] Df,...a;l D).

From this fact, and since J / ®l= ¢'(a / D,....a;/ D) for any ®ESHY , one
can deduce in a standard way (see, for instance, the proof of lemma 5.1.(b)) the
truth of the formula @(a,,..,q;) for the algebra J ., which is a Boolean product of
algebras & / ®(® ESpd ) over the Boolean space Sp& . W

Definition 5.4.

(a) The algebra J is called injective in the class £ iff for any embedding
h:B =& of the algebras B, € €/ and any homomorphism f of the algebra B
in the algebra & , there is a homomorphism g from the algebra € to the algebra
J such that f =g.h.

(b) The algebra & is weakly injective in the class £ iff for any embedding
h:B - & of algebras B,& €f , and for any homomorphism f from the algebra
B to the algebra ¥, there is a homomorphism g from the algebra € to the
algebra & such that f =g oh.

(c) The algebra J is an absolute subretract in £ if for any embedding
hdl =& € there is a homomorphism g from the algebra & to ¥ such that

g-h is identical on ¥ .

(d) The algebra J has no proper essential extension in the class £ if any
essential embedding h:d — &€ €8  is an isomorphism.

(e) The algebra & is algebraically closed in the class £ if any embedding
h:é’f - Ef? is pure.

() The algebra & is existentially closed in the class £ if any embedding
hdl - & €R is existential.

(g8) The algebra F is called equationally compact if any set
2

{t,-l()?i,['i,-)=t?(5c',-,c7,-)l i €I}, where til,t,- are terms, X;,a; are tuples of variables and

J -elements, respectively, each of the finite subsets of which is fulfilled in & , is
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self-fulfilled in & .

One can now easily prove the following lemma.

Lemma 5.7. If a variety /1 has the property of extensibility of congruences,
then the following conditions on the algebra & €M are equivalent:

(@) & is weakly injective in J7 ;
(b) & is an absolute subretract in 7 ;
(c) & has no proper essential extension in 7 .

Let then 1 be a discriminator variety. Mg, as earlier, will stand for the class
of algebras M g; = M ¢ modified with a one-element algebra.

Lemma_5.8.
(a) For any & ,B €M, any embedding f: ¥ — B

(1) is essential but for the case when I |=1 18> 1;
(2) if & is finite, then f is pure iff f is an isomorphism, or I I=1;
@3) if A is finite, then f is existential iff f is an isomorphism.

(b) For B €M ¢, the following conditions are equivalent:

(1) B is injective in M g ;
(2) B is finite, and any isomorphism between non-singleton subalgebras of the
algebra J is extendable up to the automorphism of the algebra B, and for any

H ey, either # is imbeddable in &, or B and F have no non-singleton
isomorphic subalgebras;

(3) & is injective in 17 .

(c) For a non-singleton B €M ¢, the following conditions are equivalent:

(1) B is weakly injective in 27 §;
(2) B has no proper extensions in M7 §;
(3) B is finite and algebraically closed in M7 §;
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(4) B is finite and existentially closed in M7 §;
(5) B is weakly injective in M7 .

(d) B el is equationally compact iff B is finite.

Proof. Statement (a)(1) is obvious.

Statements (a)(2), (a)(3) are obvious for the case when I I=1. Let I 1>1,
¥ ={ay,..a,} and a =a, For any algebra € such that fH)CE€ C B, the

n
formula &(a;,¥,ap) =1(a;,%.a5) is fulfilled on an element bEC iff bEfl).

Therefore, if f is pure and existential, then f is certainly an isomorphism between

the algebras & and F . Hence, statements (a)(2) and (a)(3) are completely proved.
Let us show that (b)(1) and (b)(2) are equivalent. Let us first of all prove that

an algebra J that is weakly injective in the class M S+ must be finite. Let us
assume that the opposite holds, i.e., let 4 be infinite, & ={g;| IEI}, and let an
element b&Jd , then the family of the statements {a;= bl i€l}U{t(x,y,z)-
discriminator} U {diagram of the algebra & } is locally compactable, and, hence,
according to the compactness theorem, itis compactable. The model of B of this
family of statements will be a proper extension of the algebra & in the class Mg,
i.e., in particular, a simple algebra. And again, since the algebra & is weakly
injective, the algebra B must homomorphically map on 4 . The obtained

contradiction proves the finiteness of any weakly injective in {7 s+ algebra.

Let now h be an embedding of the algebra € in the algebra P, and
C.Dely. Let f be a homomorphism from & to the algebra B, in which case
(b)(1) states the existence of a homomorphism g from the algebra £ to the algebra
B such that f=h:g, while (b)(2) states the existence of such a homomorphism g
only in the case when |f(€ )>1. In the case when |f(& )=1, it suffices to choose
g in such a way that g(D)=f(&).

Let us show that (b)(1) —> (b)(3). Let 2 be an embedding X —+& , where
F L e, and f be a homomorphism from the algebra & to the algebra .
Since f(J ) is a simple subalgebra of the algebra B and since the congruences on
MM are extendable, there exists a congruence % maximal in Con€ and a
congruence ¢ maximal in Condl such that the following diagram is commutative:
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Fig. 4

The injectivity of the algebra B in the class Mg implies the existence of a
homomorphism #:€ /9 —.F such that g=x-k. But in this case, @#-¢ is a
homomorphism from the algebra € to the algebra B and, obviously, is the one to
prove the injectivity of the algebra B in the variety M7 .

Statement (b)(3) — (b)(1) is obvious.

Statements (c)(5) = (¢)(1), (c)(1) =>(c)(2), (c)(4) = (c)(3) are also obvious.
Implication (c)(3) —>(c)(2) results from statement (a)(2). The proof of statement
©)(2) = (c)(4) results from the considerations of the proof of statements
(b)(1) <> (b)(2) and (a)(2). The statement (c)(2) — (c)(5) is proved analogously to the
implication (b)(1) — (b)(3).

Statement (d) results from the fact that for an infinite algebra & €M, if F
is not the principal ultrafilter on @ , then & “/ ¥ is a proper extension of & , and
since the term #(x,y,z) will define the discriminator on & “/ ¥ , as well as on &,
H ©?1¥ is simple. On the other hand, taking a positive diagram of & “/§ in a
standard way and replacing the constant elements in J “/§ with the corresponding
constants from 4 , and the rest of the elements with various variables, we obtain a
system of equations finitely fulfillable in & , with its fulfillability in & implying that
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J is a retract of & “/ ¥ . The contradiction obtained proves statement (d). Ml
p

Lemma_5.9. Any non-singleton algebra 4 algebraically closed in J1J is
existentially closed in M1 .

Proof. It suffices to notice that for any M -algebra & containing elements
a; = a,, the solvability of any inequality f(¥,a)=g(¥,@) in & , where f,g are
terms, X is a tuple of variables and @ is a tuple of the elements of the algebra a,
is equivalent to the solvability of the equation

t(f(iaa)ig(f’ a)’ al) = t(f(faa’)’g( f’ Zi)’ az),
where ¢ is a term determining the discriminator on 4 . M

Theorem 5.8. Let B be a discriminator variety and 4 €M such that for
any ¢ €Spyd , the algebra ¥ /¢ is algebraically closed in M. Then:

(@) & is algebraically closed in 7 ;

(b) ¥ is existentially closed in M provided that one of the following
conditions are met:

(1) the non-singleton M -algebra has no one-element subalgebras, and the
space Spd has no isolated points other than, possibly, V;

(2) a certain non-singleton M -algebra has a one-element subalgebra, while the
space Spd has no isolated points.

Proof.

(a) Let f be an embedding of the algebra & in the algebra B €Ml . As
4 /¢ are algebraically closed in My for any ¢ ESpdl , for any y ESp€ such
that f*(yp)ESpdl , the embedding f, of the algebra & /f*(y) in the algebra

& /v is pure. Therefore, by lemma 5.5, the embedding f is pure and statement
(a) is proved.

bl). It should be first of all noticed that, since non-singleton g —algebras
contain no singleton subalgebras, for any embedding f:d — & , where € €M, for
yp €Sp& , the equality f*(y)=V yields the equality i =V . Therefore, for any
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P ESpy€ , the algebra is a non-singleton algebra algebraically closed in

¥
W)
m s+ . According to lemma 5.9, the algebra %+ W) is existentially closed and,

hence, the embeddin :“"V into the algebra < is existential for an
P ESp . The embedding f is, hence, existential by lemma 5.6.

b2). If V is not an isolated point in Spd , then for any embedding
f:d =&, the set {1/) ESp@lf"(gb)#V} is dense in thc subspace Spy€ , since

the mapping f* is a continuous mapping from the space Sp& to the space Spd .
Now the statement b(2) follows, like the statement b(1), from lemma 5.6. H

Let us now assume that 7 is a finitely generated discriminator variety. By the
Jonsson lemma and by the fact that Mg = Mg, the class of Mg, -algebras is finite,
as all Mg -algebras are. By M .. we will mean the g -algebras which are
maximal in Mg, relative to the embedding. As M is congruence-distributive and, by
the Baker theorem [6], ([161]) M is finitely generated, (in fact, by the
Padmanabhan-Quackenbush theorem [153], ([161]), M is even one-based). Let
£1(X e, Xy )sees€ p(Xp,...,X,) be the basis of identities for M . In this case, the class

of Mg -algebras is axiomatizable by the universal positive formula
m
a =5, X (&€ (X X, )&(X) = X V 1(Xy, X, X3) = X)) &E(Xy,X), X3) = X3),
=l

where the term #(x,y,z) defines the determinators on M, -algebras.
For any algebra 4 €My let @y (x,...,x,) be a positive diagram of the

algebra & . If & ={a,,...a,}, then the positive ¥3I-formula

Oy =Vx,ydn,...x,(¢y (xl,...,xm)&kcjgscmt(x,-,xj,x) = U(x;,X}.y)

is true only for a one-element algebra or for those [, -algebras which contain
subalgebras isomorphic to & . Let {¥1,... ¥ ¢} =M ., then a positive VI formula

Q=o0& ‘vké‘z,_ is a system of axioms for a class which consists of M,  and a
Is i

one-element algebra. Now we evidently can, depending on whether ¥,  contains a
one-element algebra or not, write a VI-formula ¢, as a system of axioms for

m

Ut maxe
Let us now take into consideration the following V3- formulas:

Eo =Vx,ydz(x = y) = t(x,y,2) = x&t(x,2,y) = x& x = 2),
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E=Vx,yduv({(x = y—>t(x,yu)=x&Hx,u,y) =
# x& x = )& ((x,v,y) = x& t(x,y,v) = X)).

Since any J -algebra is representable as a Boolean product of M7 S+ -algebras,
i.e. such that the term #(x,y,z) defines the discriminator on it, and, as for the
clements f,g,h from this Boolean representation of the 7 -algebra Of ¢ SOpy iff
If =2 2|lf = gll. then the inclusion 6,,C6,, for any elements x,y,z of an
arbitrary JT -algebra is equivalent to the fact that the formula #(x,y,z) = x is true on
this algebra. Therefore, one can easily conclude that for an arbitrary algebra,

A CM:J|-5 iff Spd has no other isolated point than, possibly, V.

Lemma 5.10.. Let M be a finitely-generated discriminator variety. The
formulas ¢;,55,€ have been constructed above and are such that

{lf em Pl = (pl} =M {‘1’ em PJ = &0} =Xen Isp‘?f has no isolated points

besides, possibly, the point V}, {?f E..m|2”=§}={3[ em lYp:lf has no isolated
points}.

Let ¢ be the formula constructed by ¢; according to lemma 5.2.. In this
case, we have:

(a) the M -algebra & is algebraically closed iff Jf |= ®1;

(b) when non-singleton /7 -algebras have one-element subalgebras, the 7 -
algebra 4 is existentially closed iff ¥ |- ¢{&&y;

(c) if a certain Mg -algebra has a one-element subalgebra, then the J7 -algebra
I is existentially closed iff ¥ |- @i &E.

Proof. Since any M -algebra is embeddable into an [

H hax-algebra, an

arbitrary M -algebra & can be embedded into an % -algebra J ' so that for any
Yy ESpd ', we have XXP €M ax, i€ so that & '|= ¢f In this case, depending on

whether the non-singleton 7, -algebra with a one-element subalgebra exists or not,
4’ can be chosen in such a way that either the formula & or the formula &o>
respectively, is valid on 3. The latter requirements are, in other words, reduced to
the fact that the Boolean algebra corresponding to the space Spd be atomless (this
can be achieved as any Boolean algebra is embeddable into an atomless one), as well
as to the fact that for the case when a one-element algebra is contained as a
subalgebra in a certain non-singleton 1, -algebra, the congruence V on 4’ be not
principal. The latter can be achieved, for instance, in the following way: if
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'2!1 E"mmax’
H,CH ' <A, and 32={<b,f >|b€3’,f€2flw, and there is a kK €Ew such that
for all n=k, f(n)=a}. Then J'CH,, and A’ E.

Thus, let &' obey the requirements formulated above, and let & C¥ '. If &
is algebraically closed, then the embedding of & into ' is pure and, since the

a€¥,, and {a} is a subalgebra of &, then assume that

formula ¢ has the form Vi3¥(p(X,7) = x,), the truth of @ for &' results in that
of ¢f for & . Conversely, if for a certain algebra B €Ml the formula ¢ holds,

then B is algebraically closed in #1 by theorem 5.8. The statements of the
lemma related to existentially closed algebras are proved in an analogous way. Bl

Lemma 5.10 results in the following statement.

Theorem 5.9.. Let M be a finitely-generated discriminator variety. In this
case, we have:

(a). an arbitrary M -algebra J is algebraically closed iff its any non-singleton
simple factor-algebra lies in M ,.;

b) an arbitrary M -algebra & is existentially closed iff any of its non-singleton
simple factor-algebras lies in M, ,,, the Boolean algebra Conpﬂ is atomless, and
V¢Conpy in the case when a certain M

! max-algebra contains a one-element

subalgebra.

Before we describe the construction of injective, weakly injective, equationally
compact and topologically compact algebras in finitely-generated discriminator varieties,
we will require another subsidiary result.

Definition 5.5. The algebra 4 is called a subdirect retract of the algebras
;€D if there exists an embedding f of the algebra & into 1_[3{,-, and a
&l

homomorphism g from the algebra HZI ; to J such that g-f is identical on &,
el

and for any i€I, m;f is a homomorphism of 4 onto &;.

Lemma 5.11. Let J be a subdirect retract of the algebras I, €My (€I
and for any iEIPJ i|¢1, in which case we have:

(@) if £ is a certain class of simple . -algebras elementary in M, then
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{d) espd I"j/d’ Ef?} is open-closed in Sp ;

() Ty(F ) the Boolean algebra of open-closed subsets of the space Spod s
complete;

(o) if all ‘71/ are isomorphic with a certain finite algebra &;, then
7235

Proof.

(a) Let the mappings f and g be the same as in Definition 5.5, and let
& =H31' ;- It should be remarked that Spy€ is exactly the space of all the
el

ultrafilters over the set I, and the Boolean algebra of open-closed subsets of the

space Sp is the Boolean algebra 2’ of all the subsets of the set I It should be
also remarked that as VECon,£ , V is an isolated point of the space Sp€ .

Let us consider dual mappings f*:Sp€ — SpXH and g*:Spd — Sp& . In this
case, fr-g* =(g- ) = (idy )" =idsPJJ , idy being here an identical mapping on the

set C. In particular, f* is a mapping “onto”, and g* is an embedding. Since g is
the homomorphism “onto”, for any @ ESpd in the following commutative diagram

5 —2 . 0
e T

L/, LWL
S ke

Fig. 5

the canonical homomorphism kg will be a mapping “onto”, and, since %+ (D) is
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simple, kg is an isomorphism for @ €Spdl . Therefore,

6 (|oespe €/ er})- loespa ¥/, ).

But, according to the above remark on the space Sp , for any @ ESp€ we
have

e%pgg""/q)*,

where @* is an ultrafilter on I corresponding to @. Since # is an elementary,
i.e., a finitely axiomatizable class, by the Los’s theorem on ultraproducts [35],

€/PQI.€_[2{A* eR iff iend,eRjea".

Therefore, {@ESpOCIG:A)EQ} is open-closed in Sp& . As has been
remarked above, V is an isolated point of the space Sp& and, hence, the set

{CDESp@I@/q)E}?} is also open-closed in Sp&€ . But in this case,

{@espd IJA) €R'}, as a preimage of the latter under a continuous mapping g,
will also be open-closed in the space Sp# , which is the proof of the statement (a).

(b) From the diagram in the proof of the statement (a) given above, and from
the fact that the mapping k4 is an isomorphism, one can readily deduce that
(g+)'1(V¢-)=V31. Since idSpJI =f+-g+ for the continuous mappings
fr:Sp€ — Spd  and g*:Spd — Sp€ , all the open-closed subsets of the space
Spdl  have the form (gJ')'l(J‘tnT ), where N is open-closed in Sp& . If we take
into account that V.,V are isolated points in Sp& , Spdl , respectively, as well as
the above-mentioned equality (g+)_1(V£)=V21 for the Boolean algebras
T &), T (&), which are open-closed subsets of the spaces Spyd ,Sp& , then for
the mappings f*=(fH g =", f* maps TyF) into Ty ), while g*
maps (&) into Ty ). In this case, T (& ) proves to be a retract of the
Boolean algebra (€ ) as f*-g* =idstl- As we have noted in the proof of the
statement (a) above, & (&€ ) is isomorphic to the Boolean algebra of all the subsets
of the set I which, in particular, implies that it is complete. In this case, (& )
is, as a retract of a complete Boolean algebra, also complete.
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(c) Let &, =, for any i€l, where ¥, is a certain finite algebra. In this

case, one can assume & =J ;. Since for any ® ESpe

/i

% . . . i
where @ is an ultrafilter on I corresponding to &, and %p.sé’f 1, for any
@ ESHE , we have €/ =H . The proof of the statement (a) entails that for any
& eSpd , we have V= |.

The algebra & is isomorphic to the Boolean product of algebras
ol ®ESpH y={I,, a one-clement algebra} by the Boolean space Spd . Besides,
‘”/p is singleton iff @ =V, in which case V is an isolated point in Spyd .
Therefore, the algebra & is the Boolean product of the algebra 4, by the Boolean
space Spdl . One can easily check that the conditions of lemma 3.4 are satisfied

and, hence, we have & =Jf 1'3 for some algebra B . The fact that B =T (J ) can
also be checked easily. B

Theorem 5.10. Let M7 be a finitely generated discriminator variety. In this
case,

(@) 4 €M is equationally compact iff & =Jf ile...x?f ,‘,B", where H, €M
and B,,...,8, are complete Boolean algebras;

(by €M is weakly injective in M iff & 6311'31 x...x«?f,‘,B", where
¥, eM .. and B, EB, are complete Boolean algebras;

() ¥ €M is topologically compact iff we have ¥ =& 'x..x¥ " for some
sets I,...,I, and some algebras &, €l g;

@) ¥ €M is injective in F iff ¥ €¥ P x.x¥ Br, where ¥, €M,
any isomorphism between non-singleton subalgebras of the algebras &; can be
extended to the automorphisms of J;, any of the algebras &; has no non-singleton
subalgebras isomorphic to the subalgebras of any #_, -algebras other than J; and
the Boolean algebras JB,,.. 8, are complete.

Proof.
(a) Let & be equationally compact. By lemma 5.5, the embedding of the

algebra & into the algebra H""/d, induced by the representation of the algebra &
PESpI



120 BOOLEAN CONSTRUCTIONS

as a Boolean product of the algebras g/,,;(@ €Spd ) is pure. Therefore, the algebra
& is a retract of the algebra

[I 0= 17

dESpH DESpdl

Indeed, the algebra & is a subdirect retract of the algebras ¥/5(® €Spd ). In
this case, for any algebra ; €M, since ¥, is finite, {3)’ ,-} is an elementary class,
and, by lemma 5.11(a), {© ESpH | ¥/, =} is open-closed in Spd . Since Mg
is a finite set, there can be found various &,....& ,EMg such that the family
{D ESPJI"}/‘D =X} (isn) is an open-closed division of the space Sp .
Therefore, since 4 is isomorphic to the Boolean product of the algebras ‘71/1, by the
Boolean space Spd , we observe that & = H@ , where € is the Boolean product

isn

of the algebras ¥/, by the Boolean space T; ={®ESp¥ 1%/, =¥ ;}. By lemma

5.11(c), @izyia—"@‘). Besides, since by lemma 5.11(b), (¥ ) is a complete
Boolean algebra, & (Z;) will also be complete. Thus, & EWFO(E)x...xﬂfo(T"),
and the Boolean algebras & o(Z}) are complete. Therefore, the statement (a) has been

proved in one direction, while in the other direction it can be checked directly.

(b) Let & be weakly-injective. As & is equationally compact in this case, it
follows that, according to (a), & = JJ'B‘X P By for certain H, €My and
complete Boolean algebras B;. Let us assume that, for instance, & (&M .. and
Ho€M o, HoDH,. In this case, one can easily see that the algebra & is not a
retract of the algebra ¥ i1 'Bzx xd 'B", which contradicts the weak injectivity
of J . Therefore, all the algebras J; are to lie in MM ,,. One can directly check
the converse statement, i.e., the one that if & =& IBIX...XJA' ,‘,B F,em ... an
B, are complete Boolean algebras, then & is weakly-injective in M7 .

(c) Since a homomorphic image of an algebra injective in M is injective, it
follows that, by lemma 5.8(b), for any @ €Spd where & is an algebra injective
in M, %/, satisfies the condition b(2) of the same lemma, i.e., ¥/, €M ., any
isomorphism between non-singleton subalgebras of the algebra JA, can be extended
to the automorphism of the algebra J’/p, and 3’/¢ has no non-singleton subalgebras
isomorphic with subalgebras of some M, -algebras other than ‘71/4,. On the other
hand, since & is weakly injective in M , it follws that, according to the statement

), I EQ{ile...x&',‘IB", where 3i=%i for some ®,€Spd , and B, are
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complete Boolean algebras. As with the above proof related to the algebras ‘Z’/I,i, the

statement (d) is proved in one direction, and its proof in the other direction is easily
obtained.

(c) Let the algebra & €M possess a compact Hausdorff topology which agrees
with the algebraic structure of &, ie., let J be topologically compact. Since,
obviously, # will also be existentially compact in this case, it follws that, according
to the statement (a), & «J I'B‘x...x&' ,‘,B", where J; €M and B; are complete
Boolean algebras. The topological compactness of 4 implies that of each of the

algebras of the type & ,-’Bi. Let us fix a certain element h in the algebra & ,-'B", and
let us define the following arbitrary operations on & ,JB"for any f,g€d ,18":

f Ag= t(h’t(haf’g )’g),
fvg=utf.hg

and
f\g=1thgt).

Let (F ,-'B" )" be an algebra given on the basic set of the algebra ,-'Ei, its
signature consisting of the functions a,v,\ defined in a similar way. One can easily
check that the mapping d:(Qf,-'B" Y =T &), defined as
d(f) ={®ESpd < f,h D} is a homomorphism from the algebra (3{,-'3" Y to the
Boolean algebra & ((& ). The topological compactness of the algebra & ,-'B" implies
that of the algebra (& ,-‘B")* and, hence, that of the homomorphic image of the
algebra & (A )= B, But, as is well known (see, for instance, [39]), the only
topologically compact Boolean algebras are those of the type 2! of all the subsets of

a set. Therefore, for any i< n there is a set I; such that .Bi 521*, in which case

3],-‘8" «J] (as U, is finite). Thus, ¥ =F['x.xF ", and the statement (c) is
proved in one direction. The converse statement is obvious: it suffices to choose a
Tikhonov’s topology of the product on the algebra 111 x..x & ,{" when choosing a

discrete topology on every & ; €l s-

By way of concluding this section, let us obtain one more characteristic feature
of discriminator varieties in addition to theorems 2.15 and 5.5 which will be
required below in section 7. But first let us prove a lemma.

Lemma 5.12. For any algebra 4 of a congruence-distributive variety which

is a Boolean product of simple algebras, for any principal congruence ng'ﬁ there is
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a complement to Gﬁl’b in the lattice Condl .

Proof. Assume that & C HZ’ ; is a Boolean product of simple algebras &

with a Boolean power B .Let a,b€H and i€[a=b]. Using the conditions of
defining a Boolean product in a standard way, one can find an element ¢; €& such
that la=c,- JIQI[a# b]] and iEI_a#c,-JI. But in this case, by virtue of the description
of the principal congruences on Boolean products in congruence-distributive varieties

from theorem 4.2, the congruence l[v : Ga‘yci will be an addition to the congruence
iEfla=b]

6:}{ p in the lattice Condl . W

Theorem_5.11. The variety M is a discriminator variety iff it is arithmetic,
and for any M7 -algebra & any principal congruence 9 .» on the algebra J has a

complement in Condl .

Proof. The fact that a discriminator variety is arithmetic has been noted in
section 2, and it can also be proved easily using theorem 2.10.. The existence of
complements of the principal congruences of discriminator varieties results from
lemma $.12.. Therefore, the theorem is proved in one direction.

Let now M be arithmetic, and let the principal congruences have complements
in Condl for any & €M . Let us prove that I is a discriminator variety. Let X
be an arbitrary infinite set, and x,y,z,u be various elements not incorporated into X.
Let us set X; = XU {x,y,z,u}. As, by the condition, jm (X;) is arithmetic, we get:

¥ X, X, X, ¥ (X
65n ) _ gSn ), NT Snoto 5,,,( D) _ (65,,1( )y 5O,
Fo XD (X)) (X) 5 Xp Xy & (XD
(0" ay ’” )= (O3 o5 V) (63, om0y m )
X, . X)) . ~
where yx;”( Vs the complement of 0"'"(‘ in Con§p(X)). As

<Z,u >E(9z’um( 1), it follows that, according to the equality given above, there is a
term g(x,y,Z,u,Xy,...x,,) such that

X o (X

< 2,8(X,y,2,1,%,... )>€93’"( A fy"”( v

and

Fnx) T
< 8.2, U X e Xy )l SEO T Ay L
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Let g(x,y.z,u) = g(x,y,z2,U,x,...,x), i.e., g(x,y,z,u) is a homomorphic image of
the element g(x,y,z,u,Xy,...,X,,) Ej“lm(Xl) under the homomorphism 37,1 (X)) on
3‘[71 (x,v,zu)=<d which is an induced mapping of X in x and identical on
{x,y,z,u}. Then, by corollary 2.1.,

<z,8(x,y,z,u) > Bfu A ny,<g(x,y,z,u),u >EB‘::; A ygy.

Considering the homomorphism §p (x,y,zu)=d on Fg (x,yu) induced by
the mapping {x,y} in x and identical on {z,u}, we again get, by corollary 2.1., the
equality z= g(x,x,z,u). Therefore, the identity z= g(x,x,z,u) is true on mn.

Let us now show that for any Mg —algebra € and a,b.c.d €€,
glabc,d)y=d if a=b. Let us, first of all, notice that the condition of the existence
of a complement for any principal congruence in the lattices of the congruences of
the M7 -algebras evidently implies the simplicity of any subdirectly non-decomposable
algebra in M1 . If 1XI=€ , then let ¢ be a homomorphism of ¥ (X)) induced by
the mapping XU{x} ina, y in b, z inc, u in d, and ¢ =ketp. In this case,
since € is simple, ¥ is a maximal congruence in Con:ju'_m (Xp). As M s
arithmetic, we have the equality

v - q;v(ex’”(l) Jm(X) . ny_,,,(xl) N 3,,,(0).
Since a=b " ) 4 Y, e, Pv HSM(X N and, hence
’ ’ Fpxp 4, ’
Sm (%) <. But <g(x,y.zu)u >€y"m( ¥ and, hence <g(x,yzu)u >y, ie.
xy ’ X, > > WYl ), > >
glabc,dy=d.

Assume now that

Fy = (%, 9,2,8,0 ..., Xy )EF g (X))

,,,(X) g5 m X0

< Zh(xy, 2.5, . Xy > 0, 0%y

and

X, X,
< h(x,y,2,U, X ,..., m(h)) u >603m( ) A Bjym( 1)}

It is obvious that the inclusion F,C Fy is valid for XCY and, since Fy=0
for any X, there is a g(x,y.z,u, ¥y,...%,) EFy for arbitrarily large sets X. As has
been proved above, the identity z= g(x,x,z,u) is true for such a g(x,yz,u) on M,

and for any Mg, -algebra of € and a.b,c;d €€ , if a=b, then glabc,d)=d.
Therefore, the term h(x,y,z)=g(x,y,z,z) is a discriminator on Mg, -algebras, i..,
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MM is a discriminator variety. H

Priorities. Sufficient information on discriminator varieties can be found in the
H.Werner’s monograph specially devoted to this class of varieties [236], which also
considers some examples of discriminator varieties, both the ones cited in the present
section and a number of others. Theorem 5.1. is by G. Michler and R.Wille [139],
theorem 15.2 belongs to G.L.Mursky [144]. Theorems 5.3 and 5.4 are contained
in the work by A.F.Pixley[188] (see also [161], [238]). Theorem 5.5 can be found
in a work by W.LBlok and D.Pigozzi [18], theorem 5.6 in a paper by E.Fried,
G.Gritzer and R.Quackenbush [73]. Theorem 5.7 for finitely generated varieties has
been proved by K.Keimel and H.Werner [102], while in the total completion it was
achieved by S. Bulman-Fleming and by H. Wemer [22]. The statement of corollary
§.2 belongs to R.W. Quackernbush [196]. The remaining material of the section,
except lemma 5.12 and theorem 5.11 is from the material of the H. Werner's
monograph [236]. Theorem 5.11 is by E. Fried and E.W.Kiss [74].

6. Direct Presentation of a Variety and Algebras with a Minimal
Spectrum

The present section is devoted to the description of the so-called directly
presentable varieties and algebras with a minimal spectrum. Though the description of
these varieties has interest of its own, in the context of the present chapter these
results play an auxiliary role for the description of varieties representable with
Boolean constructions.

Definition 6.1. A variety is termed directly presentable iff it is finitely
generated and contains (to the accuracy of isomorphism) only a finite set of finite
directly non-decomposable algebras.

Therefore, according to the definitions given in the end of section 2, a finite
ring R has a finite type of representations iff the variety of R-modules is directly

preseniable. On the other hand, a finitely generated variety 7 is directly presentable
iff any finite M7 -algebra is representable as a Boolean product (see lemma 4.2) of

the algebras of a certain fixed finite set of directly non-decomposable M -algebras.
Theorem 6.3 given below describes directly presentable congruence-modular varieties
relative to the module of directly representable Abelian varieties, i.e., by theorem
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2.20, relative to the module of the varicties which are polynomially equivalent to
those of R-modules, where R is a finite ring with a finite type of representations.

Let us consider some auxiliary lemmas and theorems before we start proving
this theorem.

Definition 6.2. If £ is a certain class of algebras, then Pr(f) will denote
a set of simple divisors of the powers of finite f -algebras. The class £ is called
narrow if Pr(f) is finite.

Lemma 6.1. If for a certain finite algebra & the class SP@ ) is narrow,

then & is congruence-homogenous.

Proof. Let § €ECondl and a...,a; be the powers of all @-classes on & . Let

us prove that a;=..=a;,. For any n=1 let s,(&) =aj+.+ay, where
a=<ap,.a;>. Let

A, =A"&={s€d" forall i,j < fG).[(j)>E6.

Then we have &, €SP ), and it is obvious that PJ ,,|=sn(6). Therefore, any
simple divisor of the number s,(a@) belongs to Pr(SP(¥ )). To complete the proof it
suffices to demonstrate that if Pr({& ,/nEw}) is finite for any positive natural
numbers a,,...,ay, then a;=...= a;. This theoretico-numerical result belongs to Polya,
and for the sake of completeness of representation let us give its proof here.

Let Pr({ﬂnInEw})={pl,...,p,}. Let us divide all a; by GCD(a;li <k) (GCD
stands for greatest common divisor), and one can obviously assume, with the

generality preserved, that GCD(ali <k)=1. Let m=(p- l)pk and b, =a;" for any

ket 1 divides none of sn(l7) at nz 1. Indeed, by the Fermat theorem

af™=0, or =1(modp), so a =0, or =1(mod p*'), respectively,. Let a be a
number of different i<k such that p does not divide ¢;. In this case, l<a <k,

since GCD(ali <k)=1. For n=1 we have

simple p. Then p

k
su(B) = Yai"™ = a(mod p™'),
i=1

1

and, since l=sa <k < pk+ , indeed, pk+l does not divide sn(l;).

I3
Let now m——-l_[(p,-—l)p,k. For any n=1, p,-k+1

i=1

does not divide s,,,(a).
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Therefore, since {pl,...,pt} are all simple divisors of the numbers of the type s;(@),
k

3

for all n=1 we have smn(a)s(npi) . Hence, the sequence <s,,(@)n€w> is
i=1

bounded, which is possible only when a,....a; =1. B

Lemma 6.2. If S(J 2) is a class of congruence-uniform algebras, then & is
a congruence-permutable algebra.

Proof. Let y,0 €Cond . It suffices to demonstrate that 8-y Cy-6. The
relation y -6 can be obviously viewed as a certain subalgebra B of the algebra

J?2. Let us define the congruence 6 on B in the following way:
< xy><uy>>€0" iff <xu>€0 and <y,v>EH. Since, as a diagonal algebra,

X €IS ?), then both ® on F and 8’ on B are uniform. Let r be the power
of the @-classes on & , and s be that of the 6'-classes on B. For any a € we

have (%Jx(%)glz', and, hence, s=|< a.a %rl=r2. Therefore, for all
<ab>cB we have (%)x(%)Q.B, or, otherwise, |<a,b >A/|< 7> The inclusion
(%) x(%)C B implies the inclusion 6y -6-0sy-6, or 8-y <y, which is the
required proof. Il

Theorem 6.1. If £ is a finite set of finite algebras and M () is a
directly representable variety, M1 (f) is congruence-permutable.

Proof. Being directly representable, the variety M (#) is narrow. Besides,
since for any finite algebra & €SP(R) we have SPH )CSP(R), the class SPH )
will also be narrow for any finite & €SP(£). By lemma 6.1, any finite
J €SP(R) is congruence-uniform. As for any finite algebra B €f(#) there
exists a finite algebra & €SPAR) such that B €H(H ), and since the property of
congruence-uniformity is preserved under homomorphisms, any finite M (& )-algebra
is congruence-uniform. Therefore, for any finite ¥ € () any algebra .B €8S(J %)
is congruence-uniform. By lemma 6.2, any finite J €M (f) is congruence-
permutable. As M (R') is finitely generated, 3!’7 (Q)(3) is a finite algebra and hence,

in particular, Sm #)(3) is congruence-permutable. By theorem 2.5, this means that

the whole variety M7 (f) is congruence-permutable. Il

Lemma 6.3, If B is a finite algebra and if any finitely generated subalgebra

of a certain algebra € is contained in the class PSHS(B ), then &€ itself is
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contained in this class.

Proof. Since any finitely generated subalgebra of the algebra € is embeddable

into a locally finite class BHSB), € itself is locally finite. Let D ={D1D is a

finite subalgebra of the algebra & }, then <D ;&> is a directed set. By the

condition of the lemma, for any Ded there is a D'erHIE) such that

DD Let D'CTJ¥P. where ¥ €HSB). As HSE) is finite, and
Elp

<P ,C> is directed, choosing in the opposite case the co-final subset < £ ;C>, one

can assume that {3 ,-I)IiEI:D} is the same for all Ded , and let it be equal to

{Jfl,...,é'fn}. It is also obvious that we can assume that Ig =1 for all 33’65,
and that for any jsn { iEID,JH? =J ;} is not changeable for all D eD.

Let {ili Elg, 2:‘,-9 = ;}=1;, and k; be a certain fixed element of I;. T(D)
will denote the family of all the isomorphisms from the algebra £ to D’'. The set
7(D) is finite. For D;,D,€D’ and D,CD,, ¢§12 will denote the mapping from

T(D,) to T(D,) such that for fET(D,), hglz (wgf(f)) is the restriction of f to

the algebra D, (here hglz is an embedding of P into £, fixed for the pair
D, CDh,. _

Let us consider the inverse spectrum ¢ of the finite sets {T(D).D €D} and
the mappings between them {'ngl'@ .D,ed D, C.D,}. By a well-known theorem

(see, for instance, [59]), there is a non-empty inverse limit lim ¢ of this spectrum.

Let g€lim ¢, ie, g€ H_T(i’), in which case for £,CD, we have
e Ded

(p%f(g(i’)z)) = g(D). Let us define the mapping & of the algebra € in rL@'(_:
Ded

I—L(H‘y{@), where -Zfi"D EHS(B), in the following way. For any c€€ and
bep &

any DeD | if ceD, then h()(D)=g(D)(c). Since {h(c)(i))(kj)ll‘) ed ¢ ej}}
is finite for j=n, let bi(c) be such that for the co-final subset A; of the set
<D:C>, we have R D) (k) = b;(c)  for DEACED. In the case when
cED D ED, let us set M)(D)(@) = b;(c) for any i€1;. By the definition of &

we can directly check that & is an isomorphic embedding of & into l_L(HQI ,-‘D),
bed &
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and that all the projections A(€ ) on the co-factors of the type & ,-D coincide with
U2 Therefore, we get € EPHSE). B

Theorem 6.2. If for a certain algebra & the variety M (£) is locally finite,
and in JI(f) there exists (to the accuracy of isomorphism) only a finite number of
finite subdirectly non-decomposable algebras, then M () is n-residual for a certain
n<w.

Proof. Let ¥,,...,. &, be all (to the accuracy of isomorphism) subdirectly non-
decomposable finite algebras of the variety (& ). Then for any finite algebra
Femd), Perd,. . . d,)C RHXH x..x¥ ).

Since M is locally finite, for any algebra B &Ml () we have
FernHsd,,. . ¥,), ie, MIA)=PRHSA,,....X,), by lemma 6.3. But we
have HS@H x.xd VC P ,,....%,), then MA)=RH,...,&,) and, hence,
..., are all subdirectly non-decomposable algebras of the variety /7. W

Lemma 6.4. For a congruence-modular variety M1 and an algebra ¥ €,
the following conditions are equivalent:

(1) for any u,v ECondl we have |u,ulrv=lu,v];

(2) for any u,v €Condl the inequality vs|u,u) results in the equality
lv.ul=v.

Proof. Let condition (2) be valid. Then, since for any u,v €ECond we have
lu, ula v slu,ul, the equality [p, uJa v=|lu.ulavu] is true. As u,ulavsy, it
follows that, since the commutator is monotonous, |lu.u]A v,u|s|v,u]=u.v].
Therefore, we get |u, u]a v s|u,v] and, hence, statement (1) is valid.

Let us now suppose that statement (1) is valid. Let us show that if 6 is non-
decomposable in the intersection in Condl , and vy is the only covering of 6 from
Condl , if u€Condl and u=0,luyls0, then |u,ul<6. Indeed, by virtue of
(1), we have |u,ula ¢ <|u, 9] <6. Therefore, 8=0v (uulrp)=ypa(@v _uul)
(by modularity). As 6 is non-decomposable in the intersection, 8 = Oviunul, ie.,
indeed, |u,ul<6.

Let us now prove that statement (2) is valid. Assume to the contrary that
u,v €ECondl and vs|u,ul|u,v]<v. The latter inequality implies the existence of a
6 ECondl , non-decomposable in the intersection and such that 6 =|u,v|, but 6% v.
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Let 9 be the only congruence covering 6 in Condl . Since P <6Ovyv,
lOv u,pl<Ovu,0vvlluv|veso. But then, by virtue of what proved above,
we get [8v u,0 vuls@. The latter fact implies v< u,ul<|0vu,8v ul<8, which
contradicts the choice of 6. Therefore, the assumption that lu,vl< v is contradictory,
i.e., v=[u,u] results in the equality |v,u]=v, and statement (1) results from
statement (2). W

Lemma 6.5. Any subdirectly non-decomposable algebra of a directly
representable variety M is either simple or Abelian.

Proof. Let & €M, B is the monolith of &, MM is directly representable,
and {V,V]=pB, which means that & is not Abelian. Let us assume that & here is
not simple, i.e., B<V. By theorem 6.2, directly presentable 1 should be
residually small. Since m s, by theorem 6.1, congruence-permutable and, hence,
also congruence-modular, for any algebra B € the identity xaly,y/slx,y] is
valid on ConB by theorem 2.25 and lemma 6.4. Therefore, the equality |V,8]=p8

holds on Condf . For any n>1 let us define the subalgebra B, of the algebra I "
in such a way that ‘

B, =A"PB)={f&d" for li,j<n<f(i),[f(j)>EPL}.

Let us prove that B, are directly non-decomposable, and, since the powers of
such B, strictly increase with n growing, we arrive at a contradiction to the direct
presentability of M. It is this contradiction that proves the simplicity of any non-
Abelian subdirectly non-decomposable H7 -algebra.

For 6€Cond  and i<n let us define 6,EConB, as
{< f.g >l< f(i),g(i)>E0B}. Tt is obvious that By =P =...=B,_,. Let us denote this
congruence on B, by B_ . The congruences A; are kernels of i-the projections of
B, on & . Let us define A} = j;\iA ;- Obviously, the following equalities hold:

AiVA;'=AiV‘Aj= VA;=E.

=i i<n

Let us now assume that B, is directly decomposable, to arrive at a
contradiction. As B, is directly decomposable, then there are ¢, E€Conk, such
that y ve=A, Yparp=A, ¢>A and ¥ >A.

For any i<n we have either
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(AL@]=A; and [A}p]=A)
or
(AL w]=A}; and [AL@]=A).

Indeed, according to the commutator properties (see theorem 2.17), since
IB.V]=B and B = v(B), we get
T

B =lﬁ_’VJV kerm =A;v A vALY v @l=A;v LA§’¢J v [Az""PJ'

As B covers A in Cond , B =p; covers A; in ConB, (the interval |B,A,;]

of the lattice Con.B, is mapped to the interval |8,A] of the lattice Condl while x,
is being projected. By virtue of the inequalities

AL wl<Ainy, [Alg]<Aing,

and the fact that ¢ A9 = A, we come to the conclusion that |A’,yp] and |[A',@] are
disjunct. As we have already noticed, B = A; V| A}, ¢|v|Al@| and, since B = A;,
[A;-,ipj and [A},qu could not be simultancously equal to A. But B covers
ALB =A; vA;, while A; covers A, and hence we get the required statement, i.e.,

for any i <n we have either

(A7.@]= A} and |A}, y]=A)
or
(AjLw]=A; and [ALp]=A).

Let now
Sy ={ilALe1=Arh 8, ={illALy]= A}

According to what has been pproved above, we have §,US, =1{0,1,...n -1},
and S,N S, =@. Let us show that if S, =@, then @=<pB, and if S, =, then
¥ < B. Indeed, if i€S, and @B, then p#£A! and, hence, A;v =8 =p;. As

v A s e, ConB, is modular, and v A< entails ( v A))Ap=A, we get
jss, J n iss, J JES, J

/3=EA(A,-vcp)=A,-v(/?A<p)=A,~v((EvSwA;vkgg¢A;c)Acp)=
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A A v v A=A v v AL =A,.
IV((jEYS‘,I, j)/\(P) ks, & iV e k i

P

The obtained contradiction is the required proof, i.e., if Sw =, then (psB_ ,
and if S, =, then y <B. By the supposition, B <V and, since pvy =V, we
have either §, =& and S, =1{0,L,....n - 1}, or Sy =2 and S, = {0,L,...n =1}. If we
assume the former, then, as has been noted above, p<f but, by the definition of
Sy, we have Al =|ALy|sy for all i<n. Therefore, f = VA sy, ie, sy,

n
which contradicts the choice of ¢, . Hence, @, EConE, such that
vy =V, pAyPp=A,¢>A,9p >A does not exist. According to what has been
proved above, this is the proof of the lemma. H

Lemma 6.6. If M is a directly presentable variety and & €M, then the
identity {x,y/=xAya _V,V] is valid on Condl .

Proof. Let us assume, to the contrary, that & em, 0,y €Condf , and
[8,9]<6 Ay alV,V]. Let us choose an a€Cond such that 2]4 is subdirectly

non-decomposable, |8, J<a, and 6 Ay A V.V]£a. By lemma 6.5, QJA is either
Abelian, or simple. If Zl/a is Abelian then, by theorem 2.17 (4),

v \4 \4
[V 7V ] = [ V N V vo,
o( 3% 3%) o( 3%)(79( J]A)]
where @ is a canonical homomorphism of J on Z[A . However,
v
(Vy )=V, V4,V =Ay,,
7 A/

\"
(as :’YA is Abelian), and ¢(A3,/)=a. Therefore, a =|V,V}v a, ie., |VV]=<a,
[41

which contradicts the choice of «. Thus, Zfé must be a simple algebra, ie., V

must cover o in Condl . Since,by the choice of a, ¥,04a, V=0va=9 v a.
Hence, we get

IVVI=l0va,pval=l0yplv 8,alv]ie,yplv]iaalsa,
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which again contradicts the choice of «. It is the obtained contradiction that proves
that the inequality [6,9]<8 A ¢ A|V,V] is not possible. W

Lemma 6.7. If on a modular Condl the identity xaly,y|slx,y] is valid,
then |V,V] is a neutral element of Cond , and for any 6€ECond we have
[v,0]=|V,v]nr6.

Proof. According to the identity given in the formulation, for any 6 €ECondf

we have
lV.V]a0<|V,0]<|VV]r6.

Therefore, we get |V,0]=|V,V]A6. To prove that |V,V] is neutral in a
modular Condl , it suffices, as has been shown in section 2, to show that for any

0,9 ECondl , the following equality holds:
(V.VIa(6v 9)(V.VIA8)v (V.V]A ).
But the left-hand side of this equality is as follows:
IV,ovyl=Vv.0lviVy|=(VV]r0)v(VV]Iry) R

Lemma 6.8. Let M be a directly representable variety, & € , and &
finite, then:

(@) |V.V] and Z; are neutral elements of Condl complementary to each other.
v
Therefore, 4 «d (v.v Jx%z/ , this isomorphism inducing that of the lattice

Cond] and the lattice [V;LV,VJJX\_V;ZJJ are isomorphic;

(b) [V,V],Zy is the only pair of the elements < a,8 > from Condl such that

a.B are complements to each other, and

3%|= V.,V ]=A, JJAF V.V |=V;

(c) %y = B,x..xB,, where B, are simple, non-Abelian algebras, and this

decomposition is the only one.
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m
Proof. Let & obey the conditions of the lemma, A=A 0;, where
i=1

0, €Condl , and such that % are subdirectly non-decomposable, and for any
12

SCA{lL...m} we have A+ A 6, By lemma 6.5, one can assume that for a certain
ES

0<k=sm we have

(1) for 1si sk we have 6;v|V,V|=V, and V covers 8, in Cond (in other
words, ‘% (1=i=sk) are simple non-Abelian algebras);
1

(2) for k+1sism we have |V,V]<6; (ie., %.(k+lsism) are Abelian).
I

k m
Let u=aA06;, A= A 6;. Since 6, is maximal in Condl and the congruences
=1 =kt 1
are permutable on 4 (by theorem 6.1), J/H is isomorphic to the product
k
iI;Il‘y g, - The conditions 6; v|V,V]=V (for 1si=sk), as well as the properties of

commutators (theorem 2.17) impl I =|V,V]=V. And again, by property (4) of
ply 4/, g

theorem 2.17 we get uv|V,V|=V in Condl . The definition of A entails
|[V.VI<A, AAu=A. Hence, we get |VV]au=A. As Cond is modular, we
have

A=AAV=AA(VVIvu)=VVIv(A ap)=VV].

To sum up, we see that |[V,V]au=4, |VVIvu=V, and [VV]u are
permutable, i.e.,

= %V,VJ X %1 x...x‘yAk,

Let us now recall that u =Zy (the center of ). Indeed, by virtue of lemma
6.6, we have |V,u|=|V,V]au=A. Let us prove that 4 is a maximal congruence

on & possessing this very property. Indeed, if y > u, since Condl is modular, we
get:

Y=y a(VVIvu)=(yalV.V]vpu),
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iie., yAalVV]+A, and, since by lemma 6.6, y A[VV]=[y.V], ly.V]>A.
Therefore, |V,u)J=A, and y is maximal in Cond relative to this property, i.e., by
the definition, u = Zy .

By lemma 6.7, |V,V] is a neutral element of Cond and, therefore, its
complement in Condl is unique and neutral. One can easily see that <|V,V]|Zy >
is the only pair <af> of elements in Cond such  that
|[VV]sa, |VV]vB=V, aaB=A, iec., statement (b) is valid.

To prove statement (c) it suffices to note that [ZJJ;VJ -2%. The latter results
from the isomorphism of lattices lZZI ;Vj and |A;]V,V]|, and from the fact that
|A}lV,V]] is a distributive lattice according to the identity [x,y]=xAYyA[V,V],
which is true on Condl by lemma 6.6. W

Lemma 6.9. Let Condl be modular, and & =X x..x2,, where B, are
simple non-Abelian algebras. In this case, the following statements are valid:

(a) for any @, ECondl , [ ]=@Ap;
(b) Cond =2".

Proof. Since in every B;, true [V,V]|=V is true, by theorem 2.17 (5), for
the congruences ¢,1 on & representable as intersections of the kernels A; of the
projections &; of the algebra & onto algebras B,, the equality g,y |=@ayp is
valid. In particular, |V,V|=V on Condl . To complete the proof of the lemma, let
us show that for any 8 €Condfl we have 6=A;, where J={jl95Aj}, and for
KCAL,...,n} AK=jéKAj. Let us notice that for a,f such that Ova=0vp=V,

we have 6 v(a A B)=V. Indeed:
V=|VV]|=10va,bvBlsOvilaplstvianrp).

Therefore, since all A; are maximal, we have OvAy .3y =V. As Cond is

modular, we get:
Ay=A;n(0vay g )-0v(asndy aps)-0. 1

Let us cite without proof a well-known and easily provable statement contained
in the following lemma.
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Lemma _6.10. If X,,...d, are simple algebras and M (H,...&,) is
congruence-permutable, then for any algebra £ such that P CH x.x¥, as a
subdirect product of these algebras, there exists an IC{l,..,n} such that

D EHJI 1, and, at the same time, this isomorphism is a projection of £ over the
il
subset .

Theorem 6.3. Let £ be an arbitrary finite set of finite algebras. The
conglomeration of the following conditions is necessary and sufficient for m@E)
be directly representable:

() M(R) is congruence-permutable;

(2) any algebra from S is isomorphic to a direct product of simple algebras
and Abelian algebras;

(3) a variety generated by Abelian direct cofactors from direct decompositions of
S§ -algebras is directly representable.

Proof. Let £ be an arbitrary set of finite algebras, and 1 (f) be a directly
representable variety. Then, by theorem 6.1, (#) is congruence-permutable, and
by lemma 6.5, any finite ¥ (f)-algebra is isomorphic to a direct product of simple
algebras and Abelian algebras.

It is also obvious that a variety generated by a set of Abelian direct cofactors in
direct decompositions of S(f )-algebras is directly representable.

Let us now prove the opposite case. Let conditions (1), (2) and (3) from the
formulation of the theorem be valid for the variety M1(#). Let & be a class of
simple non-Abelian cofactors in direct decompositions of S(f)-algebras, and A& be a
variety generated by Abelian cofactors in direct decompositions of S(f )-algebras. The
class & is finite to the accuracy of isomorphism, the variety A& is directly
representable by condition (3). To prove that M (f) is directly representable, it
suffices to show that any finite 17 (f)-algebra lies in P(E U A).

Let us first consider a finite algebra § from SP(R ). In line with condition
(2), & is isomorphic to a subdirect product D CH x Bx.xB,, where
Jes B ,EEG . Let A be the kernel of D projection on &, and u= _;\kO,-,

13

where 6, are the kernels of £ projection on B;. In this case, ’%Qp Bix.xB;
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and, since JB; are simple and ‘% is congruence-permutable, *% = B x.xB,, by
lemma 6.10. As ¥, p. are simple Abelian algebras at i<k, 6;v|VV]=-V. By
1

virtue of the properties of a commutator (theorem 2.17), we get y/ﬂ Elvv]=V,
and, again by theorem 2.17, uv VV|=V. The definition of A results in the
inequality |V V]sA. Since Condf is modular, we have
A=AA(V.VIvu)=lVVIv(uad) and, as Aap=A, A=[V,V]. All these facts
imply & =¥ xEBx.xFB,, iec, S(PR)CPE UA)).

Let now € €M (R)=HSPR) and & be finite. Then for a certain finite

algebra D €SP(R) and a certain 6 EConD we have € s—:"eDA . Let us assume that
D= xByx.xB,, where H €A, FB,€6 . Let u, as above, be equal to A 6;.

isn

By lemma 6.9 (a) we get

[V/M’Mveu]=%"(uveu)=uv%‘

By theorem 1.17 (g), this formula yields |[Vuv @lvu=(uvO@)vu=puvé,
but

IVuvelvu=Vulvlvelvu=V.0lvu,
i.e., uv6=|V,0]vu. Hence, because of modularity, we get:
VYA (uv 6)=|VVIA(V.0]v u)=V,0]v(VV]au)= V.6l
as |[V,V]a u = A. Therefore,
0=0v(V,0l=0v(V.VIa(uve))=(V.VIve)aluve).

The latter equality, combined with the equality |V,V]v u =V and permutability
of the congruences on D, demonstrates that i)/ gn@/{V,V Jv BX%VG' But

"?%V,VJV HEH("?VV,VJ)’ ie., j:%V,VJV g EA and Du v o EH(B x..xB,). By
lemma 6.9 (b), %v 9= H.Bi, where IC{l,..,n} and, therefore, as A& is
F]

directly representable, we have proved the decomposition of & = ’:Dé into a direct

product of algebras from & and A. Hence, the finite M (f)-algebras lie in
P(AUG). W
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Definition _6.3.

(a) The spectrum of an arbitrary class of algebras £ is a family of the powers
of £ -algebras;

(b) the finite spectrum of an arbitrary class of f -algebras is a set of the
powers of finite £ -algebras.

The compactness theorem for the calculus of first-order predicates yields, as is
well-known, that for any variety of M -algebras the finite spectrum of the variety
MM is either finite, or it is infinite, in which case the spectrum of M consists of
the finite spectrum of M and all infinite cardinals. Spec# and FSpecf® will
denote the spectrum and the finite spectrum of the class £ , respectively.

Definition 6.4. The finite algebra J has a minimal spectrum provided that

FSpecM (U )= {4 "| n€Ew}.

The remaining part of the present section will be devoted to algebras with a
minimal spectrum.

Lemma 6.11. Let a finite algebra & be simple, and (& ) be congruence-
permutable, 8§ ECond " for a certain nEw and A <0< V. In this case, the algebra
(I ™)%(8) (the congruence-Boolean power of the algebra ¥ ") is isomorphic to the
algebra ¥ ™* for a certain k such that 1=k=n-1, the congruence 6 having in

this case IJJ "'kl classes, each of which consists of Plkl clements.

Proof. As M1 (¥ ) is congruence-permutable, (31 ")2(9), as a subdirect product
of algebras isomorphic to the algebra & , will, by lemma 6.10, be isomorphic to a
direct product of algebras isomorphic to the algebra & in a number smaller than 2n,
this isomorphism being implemented by way of projecting the algebra (?1 "]2(6)

relative to a certain subset § C{0,1,....,n —1,0",1',....(n —=1)'} (here i’ denotes the index
of the i-th cofactor in the second co-ordinate of the elements of the algebra

2
(31 ”) (6) when presenting these elements as pairs <a,b >, where ab €J"). For

any aj,....a, €4 we have
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2
<< Ay Oy >, < Q) sy >>€(:!f ") ().

On the other hand, the choice of co-ordinates of this element in correspondence
with the indices contained in S determines all the other co-ordinates of this element
uniquely. But, obviously, if the co-ordinates with the indices i and i’ are fixed for

l<i<n, then the co-ordinates with the indices O and O’ will not be uniquely
determined by the choice of fixed co-ordinates, i.e., $Z1{l,...n-11",..(n-1)}.
Analogously, for any other i<n the set § contains either i or i'. Therefore,

e
indices we can assume § ={O,l,...,n -1, il’,...,i,’_n}.

Let C....,C, be all equivalence classes of the algebra 4 " over 6, and |Cj|=kj

2
(0)=d ', where n<l<2n. Moreover, I>n, as 0>A. By retaining the

- n
at j<t. Let us show that kjsl-?lr . Indeed, let

2
b=<<ly,..b, | > <dgy,..d, >>€(31 n) (6)

also for such is that i,i' €S b, =d; (note that there are (I-n) of such is). The
clement

b' =<<by,...b,_| >, < by,..b,_| >>

2
also belongs to the algebra (3 ") (6), but the elements b and b’ have the same co-

ordinates for the indices incorporated in the set S. Hence, b=0" and b, =d; for all
i<n.

Let now < agy,....a,_; >EC]~. It should be noticed that kj =|CJ'~|, where
C;= {<< Qs rly_g > < Ahseeer Oy >>E(ﬂ ")(BJ}.

Let us consider the mapping :C; — I defined as follows:
(<< ag,..s8 _p >,< AQ,e..nlpy_y >>)=< a;-l ,...,ai’l_n >.

Notice that & is an embedding. Let us assume that

<< g, ) >,< by,b,_ >>,<< ag,.,8,_1,< dg,ed g >>€Cj'~
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so that their x-images coincide, i.e., d,-1 = bix""’dfz_n = biz_,.' In this case, since 8 is
2

a congruence, << by,...,b,_; >< dg,....d, | >>E(3f ") (@), but, as has been noted

above, this implies the equality b, =d; for all i<n. Therefore, indeed, @ is an

. t
embedding and, hence, kjs|31| n. And, finally, let us note that Ekj = |2/ |n and
j=1

tEkiz - ”)2(0)|=|21|’. As k<[ |, these equalities are satisfied iff |c;|- |
j=1

for all j<t. A

-n

Theorem 6.4. A finite non-singleton algebra & has a minimal spectrum iff it
is simple, has no non-singleton proper subalgebras, and M (J ) is congruence-
permutable.

Proof. Let & have a minimal spectrum, in which case & is obviously simple
and has no non-singleton proper subalgebras. Since the spectrum of the algebra &
is minimal, SP(€ ) is a narrow class of algebras, in the sense of the definition 6.2,
for any finite € €M (). By lemmas 6.1 and 6.2, any finite algebra & €% (J)
will be congruence-permutable. The variety M(& ) is finitely generated, hence,
locally finite and, therefore, according to what has been proved above, a finite
algebra 37;7 (2,)(3) is congruence-permutable, which implies congruence-permutability
of the whole variety ().

Let us now assume that the opposite case is true, i.e., & is a simple algebra
with no non-singleton proper subalgebras, and (& ) is congruence-permutable. By
these conditions and lemma 6.10, any finite algebra & €M (&) has the form

,’»}'% for certain n Ew and 8 ECond ". By lemma 6.11, & %I=I3] ¥ for some

k<n, ie., & has a minimal spectrum. M

Before we formulate the next theorem, let us recall some facts related to
modular lattices which can be found in a book by G. Birkhoff {14]. In a modular
lattice of a finite length, all maximal chains are of the same length. A modular lattice
is termed geometric if it is of a finite length and is a lattice with complements or,
which is equivalent, if it is of a finite length and a unit is a family of atoms in it.
Modular geometric lattices are self-dual. Each modular geometric lattice is
representable as a product of Boolean lattices and projective geometries, i.e., lattices
of the subspaces of finite-dimensional vector spaces. The filters of modular geometric
lattices are modular geometric lattices themselves.
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Theorem 6.5. If a finite algebra & has a minimal spectrum, then either of
the following two cases is possible:

(a) & is quasi-primal, has no non-singleton subalgebras and in this case any
finite algebra € €M (F ) has the form F " for a certain n Ew;

(b) & is a simple Abelian algebra with no non-singleton proper subalgebras. In
this case, if & has a one-clement subalgebra, then any finite algebra &€ €M1 (&)
has the form ¥ " for some nE€w, while if & has no proper subalgebras, then
there is an algebra & €M X ) such that F¥ &« 1 F V141, A" has a one-
element subalgebra, and any finite (& )-algebra has either the form J " or the

form (J V)" for some n€w.

Proof. As the & spectrum is minimal, the algebra & 2 s congruence-uniform
by lemma 6.1. Let us consider a congruence on & 2 generated by a set of pairs

B={<< X,x><y,y>>l< x,y>€3f 2}, i.e.,, in terms of the commutator theory, the

congruence Ag, (see section 2).
Since ¥ % is congruence-uniform, all the classes of the congruence Ag on the

algebra 2 are of the same power, and, since one of these classes contains the set

B = {< x,x>|x&d } }JJZ\Y

cither we have Ag =V or the Az— class containing the set B, coincides with this
set. By the definition of a commutator, we have

sPJ' As the spectrum of the algebra is minimal,

[V,VJ={< x,y>l<<x,x>,<x,y >>EA¥}. Therefore, in the former case the equality
AY =V implies the equality |V,V]=V, while in the latter case, i.e., when B, is a
A%-class on & 2, we obtain the equality |[V.V]I=A, ie., that the algebra A is
Abelian.

Let us now prove that in the former case the variety M7 (J )is congruence-
distributive. Indeed, for the simple algebra & the equality |V,V]=V implies its
neutrality. By theorem 2.22, the neutrality of & implies that of any algebra of the

type 4", where nEw. The neutrality of an algebra evidently implies (see, for
instance, theorem 2.17), its congruence-distributivity. As has been remarked in the

proofs of theorem 2.4, for certain n€w and 6ECond " we have
3_m(3)(3)5‘y% and, therefore, " as well as :3"'?”(3,)(3) prove to be

congruence-distributive algebras. By theorem 2.9, the whole variety (¥ ) will also
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be congruence-distributive. Therefore, J is a simple finite algebra, having no non-
singleton proper subalgebras, generating a congruence-distributive and congruence-

permutable variety M1 (& ). By theorem 5.3, & is quasi-primal.
Let us now consider the latter case, when & is Abelian. Since B, is a

subalgebra of the algebra X? and a Az-class in the case under consideration, the

2 2
algebra “ /AV has a one-element subalgebra. Let us refer to I /AV as 4 V. Since
v v

the spectrum of the algebra & is minimal, we get the equality PJ V|= PJ I
As has been noted earlier, any finite M7 (J )-algebra € is isomorphic to an
nm . m ,
algebra of the type /x for certain m€w and aECond ™. 1If 6,(i<m) are

kernels of the corresponding projections z; of the algebra I ™, A = A 6, and, since
<m

Condl ™ is a modular lattice (M (&) is congruence-permutable and, hence,

congruence-modular), then Cond ™ is a modular geometric lattice. As a filter of the

modular geometric lattice Condl ™, Con& will also be, according to the the facts
remarked before proving of this theorem, a modular geometric lattice. In particular, a
non-zero element in Con& will be the intersection of a finite number of co-atoms:

A= .AkHi.. It means that the algebra € can be represented as a subdirect product of
i<

simple algebras %i. By lemma 6.10, we get an isomorphism &€ en%i, where
]

I is a certain subset of the set {0,1,...k—1}. Therefore, any finite {7 (H )-algebra is
representable as a direct product of simple algebras.

Let B be a simple Y1 (¥ )-algebra , and for some nEw and 8 ECond " we
have B -4 % Let us first of all note that if n=3, then there is a ¥ eCond ?
such that 3%53%). Indeed, let n=3, and let us consider subalgebras of the
algebra I ":

a’l = {< al,az,...,an_l,an_l >I a, Ey }
and

¥,=|<ay.azas...a, 5 q; €U I

In this case H NH,=F, and H,UX, generates X": since

-1 -2
PJI U312|= 2-|-7J|n —-P/r , and the & spectrum is minimal, the subalgebra
generated by the set &, U¥, in J” must have the power PJ r , i.e., coincide with



142 BOOLEAN CONSTRUCTIONS

A", If we had ,‘y%Hﬂ%
1

e

m<n. Since 8 is a co-atom in Condl ", vl %I=|3]I. However, ‘Z{%Qy%

and, hence, ﬂ%=3{%' But ¥, =J"". If we continue our considerations by

=1, then Fl%|= 1, but 6 is a co-atom in Cond ".

>1. As 4 has a minimal spectrum, we get IJJ%HIJ{ I for some

2
induction, we can find a wEConﬂz such that ‘?{%s‘}r/p. Therefore, any

2
simple finite M (J )-algebra has the form ‘y/'l’ for a certain ¥ ECond ?,

A<y <V.
It should be recalled that B, is a diagonal subalgebra of the algebra

U 2B ={<aa>la€d}. Since the spectrum of the algebra & is minimal,

Iy%l=llf| and wezhave cither I%I=I3f|, or I%I-—-l. As I%lgy% and
B =2 , we have J/IJ:% =J for the case when I%I=I:’YI and B, is not a

L J2 . . .
9 -class. If :)j/p ¢ , then I%I=1 and, since & is congruence-uniform and

2
Iy/pl=l:ﬂl, B, is a 9 class.
2 2
Let @,3 be two co-atoms in Condl 2 such that I /(p and A /p are not
isomorphic to the algebra & . As has been just noted, the set B, will be
simultaneously both a @- and a 9 -class. By corollary 2.4, M1 (J ) is congruence-
regular and, hence, the coincidence of two @- and 7 -classes on & 2 implies that of

the congruences @ and . Therefore, for any ¢-co-atom of Condl 2 such that

2‘(% =«J we get

d/ A/ _yv
Jo® /Ag"?’-

This means that the only simple algebras of the considered variety M (¥ ) are
the algebras & and ¥V and, since any finite 7 (¥ )-algebra is a direct product of
simple algebras, in order to complete proof of statement (b) it remains to show that

1
for any nonzero numbers /,n Ew we have ‘?le(lfv) «d ™" To this end it

suffices to show that the algebras & x ¥ ¥ and ¥ 2 are isomorphic.

Let 7; be the kernel of a projection of the algebra & 2 on the first cofactor, in
which case /\Ag = A (since ¥ 2 s congruence-regular and B, is a Ag -class).
Therefore, since m A Ag =A and M (¥ ) is congruence-permutable, we get:
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2 2 ¥/ A v
AT /hx Ag_lfxzf.l

Priorities. The material presented in this section and devoted to the direct
presentability of varieties mostly originates from R. McKenzie [136] (lemmas 6.1,
6.2, 6.4-6.9, theorems 6.1-6.3. Lemma 6.3 is by A.F.Pixley [188]. The
information on modular geometric lattices, as has been remarked in the text, can be
found in a book by G.Birkhoff [14]. The data on algebras with a minimal spectrum
are from R.W.Quackenbush [194] (lemma 6.11, theorems 6.4 and 6.5). Lemma
6.10 is by A.L.Foster and A.F.Pixley [65]. All the results presented in this section
can be found in a monograph [161].

7. Representation of Varieties with Boolean Constructions

The basic aim of the present section is to clarifify of the possibilities of
generation of varieties using Boolean products, Boolean powers and other Boolean
constructions. In this respect, the result of theorem 7.2, which limits the class of
similar finitely generated varieties by direct products of Abelian and discriminator
varieties is essential. We have already shown above (section 5) that any algebra of a

discriminator variety # is isomorphic to a Boolean product of #g;-algebras. For
the class of congruence-distributive varieties this statement allows an inversion, i.e.,
the following theorem is valid.

Theorem 7.1. If M is a congruence-distributive variety, then 7 = II" “(‘m ;1)

iff M is discriminator.

Proof. By theorem 5.7, it suffices to show that the equality M = IT “(5'?? ;1)

implies that if M is congruence-distributive, then it is also a discriminator variety.
Let us first of all demonstrate that M is semi-simple, i.e., any subdirectly non-

decomposable algebra is simple. Let us assume the opposite and let & , thus, be a
subdirectly non-decomposable algebra with a monolith f, and not simple. Let us

consider a congruence-Boolean power Jf 5 (B), where B is a four-element Boolean

algebra. By corollary 4.1, there is a congruence on the algebra & 5 () (ﬁ'B in the
notation of the proof of theorem 4.2) other than V and A, and comparable with

any other congruence on 4 5 (B). On the other hand, the same corollary 4.2 yields
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that 3«"3 (B) will not be subdirectly non-decomposable:

Con, A ® ()= B @Con A Z B)>pP . According to the formula 1 = IF°(M 3,

we have Jf 5 p)< HJ)’ ;» where B, is a more than two-element Boolean algebra,
el

and & % (B) is a Boolean product of W, -algebras J; with respect to the Boolean

algebra B, .

Let bEF|, b=0,1 and a;,a, the kemels of the projections wt,, 7., of the
algebra & 3([3) relative the open-closed subsets b, -b Q.Bl*. One can assume
a;,a,# A in which case, by lemma 4.1, a;,a, obey the following conditions:
a0 = V,A; ajaay=A; o;vay=V. But these conditions contradict the fact that
the congruence ﬁ'B, which is different from A,V, is comparable with a;,a,. It is
this contradiction that proves that any subdirectly non-decomposable M -algebra is
simple, i.e., # is semi-simple, and, hence, we get M = IT*(MM ). By theorem
4.2, for any algebra 4 which is included in a congruence-distributive variety, the

following statement is valid: if & is a Boolean product of Mg -algebras ¥, relative

to the Boolean algebra B (¥ C HJ[,-), then for any f,ghk€H , we have
SN

<hk >€07 iff
€8 ) =k | 2{i € B} 1 1) = 80}

Starting from the above description of the principal congruences of the algebra
&, one can directly prove that the principal congruences of the algebra & are

permutable. Since any congruence on & is a union of principal congruences, the
permutability of the principal congruences implies that of any congruence on an

arbitrary algebra & €M1 . By theorem 5.10, in order to prove that the variety
is a discriminator variety it suffices to show that for any congruence Gﬁb in the

lattice Cond there is a complement to 93’,,,, but this conclusion follows from the
formula M = IN(M$) by lemma 5.12. W

As for finitely generated varieties, only those presentable as Boolean products of
algebras of a certain finite class can be described completely.

Lemma 7.1. If for a certain finite set £ of finite algebras () =II'*(R),
mary=m,,v1m,, whee M, (M, is a certain Abelian (congruence-

distributive) subvariety of the variety M7 .
Proof. As, by lemma 4.2, any finite algebra which is a Boolean product of
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some algebras & f@€I) is a direct product of these algebras, the equality
M@A)=1r*R) implies that the variety () is directly presentable for a certain
finite set # of finite algebras. Since MI(#) is finitely generated, we get
MR)=MFpp,®) for a certain s Ew. As, by lemma 6.8, HI(R) is directly
presentable, there is an Abelian algebra JeM@B) and simple non-Abelian mn@eH-
algebras JB,,...8, such that Fma,®) =¥ xBix..x8,. Let
My,=ma, My, =MBx.xEB,), in which case we have
ma@y=m,vm,, By corllary 2.2, the variety M, generated by an Abelian
algebra is Abelian itself, and for the lemma to be proved it would suffice to prove
that the variety MM, is congruence-distributive.

Let us first show that any non-singleton subalgebra of the algebra B;(i s n), as
well as B, itself, is a simple non-Abelian algebra.

Let us introduce the following notations: a subalgebra 4 of the algebra B will
be called well-skew in B provided that for any direct decomposition B =D, x.D,
of the algebra B, i.e., for any permutable congruences 8, €ConE such that
6-9p=Vy, OA1p=Ap, the inequality (& )-(ypI¥)<Vy holds.

It should be recalled that, by theorem 6.1, the directly presentable variety
MR) is congruence-permutable.

Let us assume that a certain non-singleton subalgebra &, of the algebra B,
one of &B,..,&8,, is either not simple or Abelian. Let us prove that in this case
there are subalgebras ¥ ,, well-skew in .302 ™ of an arbitrary large finite power in
algebras of the type BZ™(mEw). Indeed, if ¥,C.B, is not simple, and
9ECondl g, ¢=Vy Ay, let A, ={fed for any ij<m < fG).[()) >Eg}.
As p= AJIO’ Iﬂmlz 2™ and since ¢ = VJ’o’ and all the congruences of the algebra

B are, by lemma 6.9, projections relative to the subsets of the set {0,..m -1},
one can easily observe that & ,, is well-skew in B{". In the case when & is not a
one-element Abelian algebra, let & ,,, C .Bg‘ " and

Ao ={f €UZ™ f(O) 4ot fm=1) = fm)+..ct fCm-1)},

where + is a certain fixed operation of addition of an Abelian group polynomially

determinable in the Abelian algebra &, and correlated with all the operations of the

algebra &, according to the theorem 2.20. Let, in particular, & ,,, be a subalgebra
-1

of the algebra BJ™. In this case we get |.1[2m|=|310|2m , and again, as all the

congruences of the algebra .BOZ ™ are exhausted by the projections relative to the
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subsets of the set {0,...,m - 1},, considering pairs of the kernels of these projections
0,y ECon‘Bozm such that 0'¢=V.Bgm, 0A1/)=Al33,,,, we can easily see that

(BlJIZm)'(¢I312m)<V2]2m, ie, H,, is wellskew in BZ™ for any mEw.

Therefore, indeed, if #,C.B, is either a non-singleton Abelian or non-simple
algebra, in algebras of the type ,302"' there exist well-skew subalgebras of an
arbitrary large finite power.

Let now &€ be a certain subdirect product of simple non-Abelian algebras
€ (i €I) from the variety under consideration (M (£)), and let 6,9 ECon€ be
such that -9 =V, 6 A=A, , in which case 6(y) is the kernel of projecting
the algebra € relative to the subset A(J\ A) of the set I for a certain ACI.
Indeed, let @; =kerm; for iE€I. For any i €I we have either ¢; 2 60 or ¢; =z y. In
the opposite case, as €; is simple, i.e., ¢; is maximal in Con€ , the equalities
Ove, =y vy, =V hold

By lemma 2.17, the equality [V,V]=V is also true on the algebra & | like the
equalities |[V,V]=V on simple non-Abelian algebras & (i €I). In this case we get

Ve =[V€’V€J=|.9V‘PM/’ V‘PiJS(PiV].ﬂ,#’JS pv(OAay)=g,..

It is the obtained contradiction that shows that for any i&I we have either
;=0 or @=zy. Let now A={i€1!(p,-20}. Obviously, we have
{iEII @ = 1p}= ANI. 0,9, will denote A @;, A @;, respectively. The inequalities

EA €A

6, =06,y =1 are also obvious and, in addition, 6; A 1, =A. As has been noted
above, M is directly presentable and, hence, congruence-modular. Since Coné& s
modular and we have 6,260, Yy, 29, 6,AP;=A and B vy =V, the equalities
0=0,,9 =9y, hold, i, the mutually complementary congruences on the subdirect
products of simple non-Abelian algebras of the variety under consideration have the
form of projections relative to the mutually complementary sets of indices of
cofactors.

Let us consider the following M (f)-algebra: &€, ={f E(.B()zm)wl for some

a€dl ,, i €wlf(i) = afl< Xy}, where m is an arbitrary number. For any f€&,, }
will denote a € ,,, such that i Ewl f(i)= afl<X,, while for a€H,,, let ae€
such that for any i€Ew we have a(i)=a.

Let us first notice that if &, =D, xD,, either D, or P, is finite, and if
a,=a, €¥,,,, the images of the elements a,a, are different when projecting &,
into the infinite cofactor from £,,D,. Indeed, by the definition, &, is a subdirect

power of a simple non-Abelian algebra By:€,, C, H@,, and &, =&, for any
E2mxw
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I€2mxw. Let £€,=D xD,, and 6, ECon€,, correspond to this direct
decomposition of the algebra &,,. As has been noted earlier, we can find an
AC2mxw such that 8, are the kernels of projection of the algebra

< mC H(E ; relative to the subsets A,2mxw\ A of the set 2mx w, respectively.
E2mx o
In order to prove that one of the algebras D, P, is finite, it suffices to prove that

either one of the sets A or 2mx w \ A is finite. For any i©w of the projections of

the algebra XBZ™ relative to the subsets A ={jE2mi<ji>EA} and
B ={j€2ml< j,i>E2mxw \A} of the set {0,..2m-1} result in a direct

decomposition Bg™ =D, xD,,. It should be remarked that these direct
decompositions of the algebra BZ™ are trivial finite numbers i €w, ie., we get
either lf)l’n|=1 or l@z’n|=l. Indeed, otherwise there exists an infinite /S w such
that for any i,j €1 we have A = A;, B =B; and A,B =J.

Let 6,9’ be the kernels of projections of the algebra B@™ relative to the
subsets A" = A, (i€I) and B = B(i€I) of the set {0,...2m~-1}, respectively. It is
obvious that 6"¢’=V_33"" 0’ ¢'=A.B§,,, and, as the subalgebra ¥ ,,, is well-

skew in  BF™,  there are elements apa,E€¥d,, such that
<ay,ay >E01¥ 5,,) (91 ¥ 5,). On the other hand, since <,,>EVy =6-9,
there is an element u €€, such that <@ ,u>E0, <u,a,>Ey. As I is infinite, we
get <a,u>€0", <i,ay>€y’'. As far as u#&dl,,, we have come to a
contradiction which proves that for all but a certain finite number of elements i Cw
we have either lDl_,-|=l or lDZ,iI= 1, in other words, either 4 =& orB; =O.

Let us now assume that both the equalities A, = and B, = are valid for an
infinite set of elements i€Ew. Let a,=a, be elements of ¥ ,,. As 6y =V¢m,
there is a u €€, such that < a;,u>E0, <u,a, >y . But in this case at a certain
kE€w for all p>k we have u(p) =i €& ,,,. In this case if Ay, =D, A, =D and
pLP2>k, aj=a(p)=u(p)=1i and a, =ay(p,) =u(p,) =i, i.e., a;=a, contradicts
the choice of aja,. Therefore, either A =1{0,....2m -1} is valid for all but the finite
numbers i Ew, or this statement is valid for B;,. Thus, either A or B is finite, i.e.,
one of the algebras in the decomposition & ,, =8 x £, must be finite. In this case
it is obvious that for different aja, €¥,,,, the projections of the elements &,a,
onto the infinite cofactor from P, and D, are also different.

Since £ is a finite set of finite algebras, let s Ew be such that s>|DI for
any D ER. According to the equality M (f)=Ir*R), the algebra &€ s
representable as a Boolean product of £ -algebras: &€ Cop H.’R,-, where R, €R,

]

and B is a Boolean algebra. For i€l the inequalities I"J2s|> |.‘R,| imply covering
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of the space B * with open-closed sets ||@ =a@,||, where @, =a, are clements of
¥ ;. Since B is infinite, at least one of the sets |1 =] la;=a, €¥ ;) will be
infinite.  But in this case €, =D;xD,, where D =€z =3,
D,=€,11a =a)], in which case D, =€ l[1a =a,| is infinite, and the images of
the elements @,d, coincide when projecting €; on D, =&€l|lG =a,l], which
contradicts the statement proved above. It is this contradiction that shows that all
non-singleton subalgebras of the algebras F1....,B, are indeed simple and non-
Abelian.

As long as M, is generated by a finite set {.31,...,.3,,} of finite algebras,
3‘ﬁmdm(3) is finite and, hence, jmdm@) €HSF;,(B,....8,). By theorem 2.9, in
order to prove that the variety M, is congruence-distributive, it suffices to show
that Conflmdist(?,) is distributive, while by the inclusion
‘?-mdiszo)EHS}}“"(‘B“'""B”)’ it is enough to show that the lattice Condl is
distributive for any algebra J €SP, (2,,...B,). But if X €sP,(F,,.. B, I
is a subdirect product of some finite family of the subalgebras of the algebras
.Bl,...,.B n- As has been shown above, these subalgebras are simple and, hence, as
M 45, is congruence-permutable, J will be isomorphic to some finite direct product
of these subalgebras by lemma 6.10, i.e., & is a direct product of simple non-
Abelian algebras from the variety . By lemma 6.9, Cond is distributive, which

fact implies, as has been mentioned above, that M, is congruence-distributive.
Therefore, indeed, under the conditions of the lemma under discussion we have
m-m,vm,,, where M, is Abelian, and M, is congruence-distributive. l

It should be recalled that, in line with theorem 2.20, any Abelian variety .17
is polynomially equivalent to the variety of left unitary R-modules over some ring R
with unity. Let us denote this ring R by R(M). It should be also noted that for a
finitely generated M , the ring R(M) is finite (for more details on the structure of
the ring R(MM) see, for instance [32], [166)).

Theorem 7.2. For any variety M, the following conditions are equivalent:

(a) for a certain finite set £ of finite M7 -algebras, the equalityM = IT*(R)
holds;

by M =0, ®M,, where M, is a finitely generated discriminator variety,
M, is a finitely generated Abelian variety, and the ring R(#,) has a finite type of
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Proof. Let us show that (b) follows from (a).

Let 1 = IFT*(R) for a certain finite set £ of finite algebras. According to
lemma 7.1, for some Abelian M ,, and congruence-distributive M, subvarieties of
the variety M, we have M-=-M,vWM,, By theorem 4.4,
mH=-m,0M,, while by lemma 4.8, for the finite sets
f,=2nM,, ,=-2nM,, of finite algebras we have
M, =R, My, =1r*(R,). As has been remarked in the conclusion of
section 4, if the Abelian algebra J €M ,, is representable as a Boolean product of
the algebras ; €f,, the module polynomially equivalent to the algebra J will be
representable as a Boolean product of the modules polynomially equivalent to the
algebras Jf,-. In particular, any finite R({,)-module will be isomorphic to a
Boolean product (to a direct product, i.e., to a direct sum, by lemma 4.2) of the
modules of polynomially equivalent to the f,-algebras. Therefore, R(f,,) has a
finite type of presentations.

Let us now demonstrate that M, , is a discriminator variety. Let us first notice
that the formula M, , = IT*(#,) implies the direct presentability and, hence, the
congruence-permutability of M ;. Let us also notice, exactly as we did in the
beginning of the proof of theorem 7.1, that the formula M, , = IT*(#,) implies
the semi-simplicity of the variety M ;. Therefore, any 8#,-algebra, since it is finite,
is representable as a subdirect product of simple 1 ;,-algebras. Lemma 6.10 makes
it possible to state, as MM, , is permutable, that any f£,-algebra is isomorphic to a
direct product of (M ;;,),-algebras.

Let now £, ={€,,...€,}, and ¥ an arbitrary M, -algebra. Let also
FC l_[.&' ; be a representation of & as a Boolean product of f,-algebras, i.e., in

=
particular, ¥, €{€....,€,} for any i€B". By lemma 4.1, for any i€XB " there is
an open-closed neighborhood N; of the point i such that for any jEN, the algebra
¥, is isomorphically embeddable into the algebra & j- Taking into account this fact

as the well compactness of B *, one can obtain an open-closed partition Nj,...,N, of

the space B such that for jJEN] we get d;=&, (at Isn). Let, then, F ()

denote the projection of the algebra 4 relative to the subset Nj; then J (!) is the

Boolean product of the algebras &, and & zl_[.?f (). Let €, = H@,k (Isn) be
kn

ks my

the above-mentioned representation of the algebras &; as a direct product of
(M ;)5 -algebras. If
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Tocep® ~(Jleh?

ksml

is the representation of the algebra & (I) as a Boolean product of the algebras
isomorphic to the algebra &€, let py(d (I)) be a natural projection of the algebra
7

J () in this representation onto the algebra (@,k " The algebras pk(;l/ (l)) are

obviously Boolean products of the algebras & lk with the degrees .B,* . It is also
obvious that J (!) is isomorphic to a subdirect product of the algebras
o1 (D), c.pp, (& (D). As the congruences on M, are permutable, ¥ (/) will be
isomorphic to the direct product Hpk(y (I)). Therefore, the initial algebra & is
ksmy

representable as a direct product of a finite number of Boolean products of ()~
algebras, and, hence, & itself is isomorphic to a Boolean product of (I ,),-
algebras. By theorem 7.1, M, is a discriminator variety, the implication (a) —
(b) of the theorem is thus completely proved.

Let us now show that (a) follows from (b). Let the varicties #; and M1,
obey statement (b) of the theorem. According to theorem 2.26 (a), any R(..mz)-
module is representable as a direct sum of finite directly non-decomposable modules,
the number of the latter being finite (to the accuracy of isomorphism). Let & be a
finite family of finite directly non-decomposable R(M,)-modules. Therefore, for
R(M,) -module, M= g M;, where M;ED for iEI. One can assume that we have

|M,~0'=1 for some iy €I. Let us convert the set I into a Boolean space by

considering the Boolean algebra of finite and co-finite subsets of the set I \{io}, and
by identifying i, with the Frechet filter of this Boolean algebra. We obviously get an
isomorphism from the module M with the Boolean product of the modules M; with
respect to the Boolean Frechet algebra over the set I\ {io}. As has been remarked in
the conclusion of section 4, the X7,-algebra polynomially equivalent to the module
M will be in this case representable as a Boolean product of .[,-algebras
polynomially equivalent to the modules M; ED*. Therefore, in the case under
discussion, any .I,-algebra is isomorphic to a Boolean product of a finite number
of finite M,-algebras, i.c., MM, =Ir*(R,), where £, is finite, and R,-algebras
are finite. By theorem 2.16, for a finitely generated discriminator variety f;, the
set (MM,)¢; is a finite set of finite algebras, while by theorem 7.1 we have
= (M.

Therefore, any M -algebra is a Cartesian product of two Boolean products of
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£,- and (A.ml);-algebras, respectively. By lemma 4.2, this Cartesian product will be

+ .
isomorphic to a  Boolean product of (f,U (..ml)SI)-algebras, 1e.,
+
m=-mreR,u(d) ). w

Corollary 7.1.

(a) For the variety of rings M, the equality M = Ir'*(f£) holds for a certain

final family ® of finite rings iff %1 is generated by some set of finite rings with
zero multiplication and a set of finite fields.

(b) For the variety of groups M, the equality ¥ = IT%(f) holds for a
certain finite family £ of finite groups iff M1 is a variety of Abelian groups of a
finite exponent.

Proof. (a) Let f be a variety of rings, and let M = IT*(®) for a certain
finite family # of finite rings. Then, by theorem 7.2, M =M ()M (K ,),
where M (#)) is Abelian, while M (#,) are discriminator varieties of rings
gencrated by the finite sets of finite rings f,,f,, respectively. As has been
observed before the proof of theorem 2.19, M (£, will be a variety of rings with
zero multiplication, while according to theorem 5.1, M (f,) is generated by a finite
set of finite fields. Therefore, the statement (a) has been proved in one direction.
The proof of this statement in the opposite direction is reduced to the following:

(1) by theorem 5.1, the varicty M, generated by a finite set of finite fields is
a discriminator variety and, hence, by theorem 5.7, M = II'*(#), and it is the set

({M))5, that is a finite family of finite fields generating M7, ;

(2) by the Priifer, theorem a variety generated by a finite family of finite
Abelian groups (finite rings with zero multiplication) consists of direct sums (this
being, obviously, a particular case for Boolean products) of finite cyclic groups
(finite cyclic rings with zero multiplication);

(3) a Cartesian product of two algebras isomorphic to certain Boolean products
of f -algebras will be, by lemma 4.2, itself isomorphic to a Boolean product of
R -algebras for any class of £ .

The statement (b) results from the remark before the proof of theorem 2.19
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concerning the equality of the notions of an Abelian group in the group-theoretical
sense and in that of commutator theory, as well as from the fact that a non-singleton
group cannot be a discriminator algebra. M

Making use of theorem 7.2 one can obtain a complete description of finite
algebras & generating varieties which consist only of Boolean powers of the algebra

Z and isomorphic to these powers of algebras, i.c., the varieties having the same,
to a certain extent, structure as those of Boolean algebras.

Theorem _ 7.3. For an arbitrary finite algebra &, the equality

MA)=1P, ) is valid iff either & is a quasi-primal algebra without proper
subalgebras, or & is a simple Abelian algebra having no non-singleton proper
subalgebras but having a one-element subalgebra.

Proof. Let for a finite algebra & the equality MM (& )=1P; ) hold. This
equality yields the following equality: M2 (& )=1Ir*J ). Therefore, by theorem 7.2,
we get M(HA)=M,®M,, where M, is a discriminator variety and 1, is an
Abelian one. Since & is the only subdirectly non-decomposable algebra of the
variety M1 (& ), we have either M (A =M, or M )=1M,.

In the former case, as 4 is a finite subdirectly non-decomposable algebra
generating discriminator varieties, it is quasi-primal. Since any non-singleton M7 (& )-
algebra has the form 'B, i.e., the power cannot be less than lﬂ l, '  has no non-
singleton subalgebras. Let us show that & can have no one-element subalgebras,
either. Let us assume, to the contrary, that a€d and {a} is a subalgebra of the
algebra 4 . Let us consider a subalgebra &€ of the algebra 4 “ such that

€ ={7€d “Hi€olf() = afi< Ry }.

Since the equality M (& )=1IP;(& ) holds, we have the isomorphism & = 3 for
some Boolean algebra B . By theorem 5.6, unit congruences on Boolean powers of
simple algebras in discriminator varieties are principal, i.e., according to the
isomorphism & «¥? we get Vg EConl . Let Vg =9ﬁg for some f,g€€,
and let n €w be such that for i=zn we have f(i)=g(i)=a. Let a be the kernel of
& vprojecting relative to the first n co-ordinates . By theorem 5.6, we get
B?‘g Ca=Vg. It is the contradiction obtained that proves that & cannot have one-

clement subalgebras, i.e., that in the case under discussion A s quasi-primal with
no proper subalgebras.
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In the latter case & is a subdirectly non-decomposable Abelian algebra.
Moreover, it is an simple Abelian algebra, since by the Magari theorem the variety

D1(J ) must have a simple algebra, and it is only the algebra & that can be such
according to the equality # (¥ )=Ir"(H ). The same equality implies that & has
no non-singleton subalgebras, as well as that there is an isomorphism & Val ,

where ¥ ¥ is the algebra described theorem 6.5 and has a one-element subalgebra.
Thus, we have proved the statement of the theorem in one direction.
Let us now prove the converse statement considering again both cases

separately. Let & be a quasi-primal algebra with no proper subalgebras. As &

contains no proper subalgebras, 4 is the only subdirectly non-decomposable
M (H )-algebra by theorem 2.16. Therefore, by theorem 5.7, any M (& )-algebra is
representable as a Boolean product of a one-element algebra and the algebra & . In
line with lemma 4.2, any finite algebra will in this case have the form ¥ " for
some nEw and, as M (J ) is locally finite, any finitely generated algebra will have
the same form. This, in particular, implies that any non-singleton M (& )-algebra
contains a subalgebra isomorphic to the algebra F .

Let € €M) and kC|>1. As we have already noted, € =&, C l_l:?fl-,

5]
where & is the Boolean product of the algebras J; with the index J, and for
i€B" we have either ¥, =¥ or P] ,-|=1. Let &, be a subalgebra of the algebra

&, isomorphic to the algebra ¥ . It should be remarked that as & has no proper
subalgebras, we have m (¥ )=d for any i€B" provided that a(€)=A . Let

f =g be elements of the algebra & . Since ¥, is simple, 0%’ =Vy, - By theorem
5.6 we get

HEB 1) = g} =i €8 1n (U o)1= 1}
Since, as has been noticed earlier, we have
€8 1m @ y=1f ={i € B (€ i1},
we get the following equality:
€81 1) = g} = {i €B In(€)) =1},

As €, is a Boolean product, {i eB 113 #g(i)} is open-closed in B ; let this
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set correspond to an element b of the algebra B . According to the equality
{i EB’1(i) = g(i)} = {i E.B*In,(€1)|¢1}, the projection of the algebra €, relative to
the element »EF is isomorphic to the algebra &, and, moreover, this projection is
isomorphic to the Boolean product of the algebra # relative to the Boolean algebra
Zl1b. Any non-singleton algebra €, €M (F ) can therefore be considered a Boolean
product of the algebra & with respect to a certain algebra B, while €, can be
considered to contain a subalgebra ¥ o= such that for any i€B  we have
a(d )= .

Let us fix an iy €F and let f, stand for an element of the algebra &, such
that f,(ip) =a for any a€d . Let g; (i el {io})we will denote the mapping of
the algebra & to the algebra & such that g;(a)= f,(i) for any a€d . It is
obvious that g; is a homomorphism from ¥ to &, and, since & is finite and
simple, g; is an automorphism of & for any 163 \{lo} Let us determine the
mapping /& from the algebra @1 to the algebra y? setting, for any i€XB" \Hio
and any f€&€,, KNG =g (f(lo)) and A(f)(ig) = f(iy). By the definition of the
mappings g;, h(f(a)) is a constant function on )2 taking the value a for any
a€d . Since €, is a Boolean product of the algebras w(&€,)=4 with the index
&, in line with properties 1, 2 of the definition 4.1 of a Boolean product, we see
that for ¢ E(E,) @ Y(a) is open-closed in B~ for any a ¥ . Therefore, W(&;)
is contained in the Boolean power J 5 of the algebra . It is directly obvious
from the definition of & that it is an isomorphism between €, and & 5 Any non-
singleton 1 (& )-algebra is thus isomorphic to an algebra of the type & ‘B, i.e.,
M )=1P,F ) in the case when F is quasi-primal and has no proper
subalgebras.

Let now & be a simple finite Abelian algebra with no non-singleton proper
subalgebras, but containing a one-element subalgebra. By theorem 6.15, any finite

M1 (2 y-algebra will have the form & "(nEw). By theorem 2.21, the only directly
non-decomposable module in the variety Mp na of Ry (Z)-modules polynomially

equivalent to the Abelian variety f(J ) will be the module My , which is
polynomially equivalent to the algebra & . Therefore, the ring Ry @) will be a ring
with a finite type of representations and, by theorem 2.26, any Ry @ )-module will
be isomorphic to a direct sum of modules My . As has already been noted (see

section 3), the direct sum @(My );, where (MJJ ),=M3,, is isomorphic to some
el i

Boolean degree M; By theorem 2.21, this implies an isomorphism from an
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arbitrary M7 (J )-algebra with a certain Boolean power of the algebra & , i.e., in the
case under consideration, the equality W (J ) =1P;(& ) again holds. W

By way of concluding this section, let us consider the problem of the
representation of a variety generated by a given finite algebra using subBoolean
powers of this algebra.

Theorem 7.4. For a finite algebra &, the equality M (J,) =IPy(d ) is
equivalent to the validity of the following conditions:

() ¥ =H,xH,, where H, is an Abelian algebra and M (H,) is a
discriminator variety;

(2) if both algebras &, and 4, are not singleton, they both contain singleton
subalgebras;

3) MH )= 1Pp¥ ) and T ,) = IPpA ).

Proof. As the equality M (J)=IPpH) yields the equality
M@AH)=1r*S@)), according to theorem 7.2, we have M )=M,0M,,
where M, is an Abelian variety, while M, is a discriminator variety. Therefore,
there are algebras ¥, €, such that & =, xH,, in which case &, is an Abelian
algebra, while the variety M (& ,), as it is contained in M,, is a discriminator
variety. By lemma 4.8, any sub-Boolean power £ of the algebra & with the
index B is presentable as a direct product £, x D, of the sub-Boolean powers D
and D, of the algebras &, and X, with the same index .B. Therefore, as
MAHC M, and, hence, MH )N M (A ,) consists of only a one-element algebra,
we get (¥ )= 1P ) and M (A ) = IPp(X 5).

Let us now assume that both algebras, & 1 and /i 5, are non-singleton, in
which case J, is isomorphic to a certain sub-Boolean power of the algebra & with
a non-singleton index .F. As has been noted earlier, &/, will be isomorphic to the
direct product D, x D,, where D,
&, with the same index B . As M (I )N (¥ ,) consists of a single one-element
algebra, £, must also be non-singleton, but since D, is a sub-Boolean power of

are certain sub-Boolean powers of the algebras

the algebra &, with the one-element index B, this is possible only when &,
contains a one-element subalgebra. The existence of a one-clement subalgebra in the
algebra &, is proved in an analogous way.

Let us now prove that the conditions (1) — (3) of the theorem result in the
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equality M1 (d ) =1IPp(d ). The conditions (2)-(3) obviously yield the following
equality:

B9, x DD, €M )} = Py | ¥ 5),

i.e., taking into account the condition (1), }.D, x D10, €M A )} = Pz )

It also follows from the condition (1) that M (F)=M MM A HuMI,)),
but, by theorem 4.4, M(¥,) and M(H,) are independent and, hence,
mA)=-MmApeMmd,), iec, MI)=1PxI). K

By virtue of the theorem just proved, the problem of the description of finite

algebras & for which the equality M (J )=1IPp(d ) is valid falls into the problems
of describing similar Abelian algebras and those generating discriminator varieties with

this property. For Abelian algebras & , this problem can be formulated in terms of
the language of modules over the rings with a finite type of representation which are

polynomially equivalent to the variety M (& ), while for quasi-primal & it is
possible to obtain a complete description of such & with the property
M@ )=1Pp(d ). Let us first prove a number of auxiliary lemmas.

Lemma 7.2. Let & be a quasi-primal algebra, in which case any (& )-
algebra is isomorphically embeddable into some Boolean power of the algebra .

Proof. As ¥ is quasi-primal, the class of subdirectly non-decomposable
I (U y-algebras coincides with the class S ) by theorem 2.16. Therefore, any
M (2 )-algebra is isomorphically embeddable into some direct power AX of the
algebra ¥ . But since the algebra J is finite, the algebra & * is obviously
isomorphic to a Boolean power & 3, where B is the Boolean algebra of all the

subsets of the set X. Therefore, & is embeddable into & 'B, thus the lemma is
proved. W

Let € be a subalgebra of the algebra X a direct power of the quasi-primal
algebra & . Let us introduce the following notations:

E&)={lf=gllf.gEC |,
DE)={lif=gdlif.ge€}
and

ND)Y=EEL))UDK).
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By analogy with the proof of the theorem 5.7, one can easily prove the
validity of the following statement.

Lemma_7.3. If € is a subalgebra of the Boolean power J 5 of the quasi-
primal algebra & :

(a) E& ), D) are closed relative to families and intersections, and N(& ) is
a subfield of the open-closed subsets of the space .F *;

(b) for f,g€€ and NENE), the element fINUgl.B*\N also belongs to
<,

(c) for NEN(f) such that N#@,‘B*, there is an isomorphism
€ =€ INxE1B \N, where €1X is the projection of the algebra &€ relative to the
set XC.B". Moreover, if € is a sub-Boolean power of the algebra &, £IN is
also a sub-Boolean power of the algebra & .

For any algebra &€ CJ F et € stand for the subalgebra of the algebra 5
generated by the algebra € and all constant functions from & 'B. Let us introduce
the following equivalence on the space .B’: i~g j iff the kernels of projections x;
and 7; on the algebra € coincide. Nj(€) will denote a Boolean algebra of the
subsets of the space ,B‘ generated by the set N(&€ ). It should be noticed that there
is a natural one-to-one correspondence of the set B ; /~€ and the Stone space
(N(E )", which for any ieB’ puts the element {NENl(Q)IiEN} of the Stone
space (N, (€ ))* in correspondence with the equivalence class if~, . Henceforth, we
will identify .B*/~€ with (N (&€ ))*. At the same time, the inclusions
NEHC Nl(é )C 2 imply, due to Stone duality, the existence of canonical
continuous mappings of the space .B * onto (Nl(é ))* and (Nl(t‘f ))* onto (N, (&€ ))*.

Lemma_ 7.4.. If € is a subalgebra of the Boolean power & P of a quasi-
primal algebra & , the following statements. are valid:

(@ NEE)= {iE.B * EACH )I=1} is either empty or is a ~, -equivalence class
on B
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(b) all maximal congruences on € have the form of the kernels of projections
a; for iENEE);

() € is a sub-Boolean power of the algebra 4 iff any ~¢ -€quivalence class

on B *, except for, possibly, class NE ), is one-element;

(d) Vg ECon £ iff NEW) is open-closed in B

Proof. The statement (a) is obvious. The statement (b) follows from that of
theorem 5.6. Let now &€ be a sub-Boolean power of the algebra & , i= j, and
l7;(€)>1. Let us choose elements f,gEE such that f(i)=g(i), and an open-
closed subset N of the space B * such that iEN and JE&N. In this case we get
h=fINUGB \NEC , h)=g(i) and h(j) = g(j), ie., i+¢ j.

Let us now prove the statement (b) in the other direction. Let f,g€E€ and N
an open-closed subset of B *. Let the relation ~¢ coincide with the equality on the
set B°\NEE). In order to prove the fact that € is a sub-Boolean power of the
algebra & , we have to show that the element /INUglB~ \ N belongs to € . With
the generality preserved, we can assume NC |f = gl]. In this case for any i EN and
JEN there is a set N;EN(E) such that iEN,, j&N,, (as itg j). Since B is
compact, N is equal to a finite family of sets from N ) and, hence, by lemma
7.3 (a), N also belongs to N(& ). By virtue of the statement (b) of the same

lemma, this means that the element fIN U glB \N belongs to €, which completes
the proof of the statement (b).
The statement (d) is reduced, using theorem 5.6, to the proof of the following

equivalence: NE( ) is open-closed in B iff there are f,g€& such that

Il f = gIJ=.B* \NEK ). In one direction this statement is obvious. To prove it in
the another direction, let us choose, making use of lemma 7.3 (a) and the

compactness of the space B, a finite decomposition Nj,...,N, of the set
B \NEW&) such that N,=|If,=g]| for isk and some f.g,E€ . Let us also
construct, using lemma 7.3 (b), elements f,gEE€ coinciding with f; and g,
respectively, on N;. W

Let now & be an M1 (J )-algebra, where & is quasi-primal. By lemma 7.2,
one can assume that € CJ 3 for a certain Boolean algebra B . In this case, the
mapping B on (NI(C))*, following the statement of lemma 7.3, yields an
isomorphic image € ' of the algebra € such that €' is a subalgebra of the direct
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power & (M€’ which obeys the property proved in the statement (c¢) of lemma
7.4, i.e., the algebra €’ is such that any class of ~g¢-€quivalence on
(WACH ) \NEW’) is non-clement. If in this case €' is a subalgebra of the
Boolean power & M€ €’ proves to be a sub-Boolean power of the algebra ¥ .
AME) e that the

. . * . .
elements of €’ will be continuous functions from (N;(€)) into a discrete .
Therefore, more sophisticated constructions are required for the desired representation

But no one can guarantee that £’ will be contained in

of the algebra &€ as a sub-Boolean power of the algebra & .
The following statement is obvious.

Lemma_7.5. If € CJ £ , the following statements are valid:
(a) for i,jE‘B*, i~éj iff f@)= f(j) for any fEEL ;

(b) every class of ~, -equivalence is a family of a finite number (the greatest

possible 1 11) ~ é -equivalence classes.

A

For any algebra & CJ 'B, y will denote a mapping from the algebra € to
the algebra Jf M@ guch that for any i€B” we have y( N ~é) = f(i). In this
case the algebra y(&£ ) will be called a collapse of & .

Lemma 7.6. If &€ CJJ 'B, the following statements are true:

A S A o
(@ y is an isomorphism from € to ¥ M€Y and y(&)=F M€V apq,
hence, ~ i is the relation of the equality on (Ny(&€ ))*;
re)

(b) every ~y(¢)—equivalence class is finite;

(¢) if € is a sub-Boolean power of & , the collapse of &€ is also a sub-
Boolean power of J .

Proof. The statement (a) of the preceding lemma obviously implies that y is

~

an embedding of the algebra &€ into the algebra & N‘“’:))’. Let A be the

. . * . . . * .
factorization of the space .B relative to ~ £ taking into account that B /~ & s
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identified with the space (Nl(é ))*. For any f E(‘f and a€d we have
ANy () W) =l f=al], where @ is a constant function taking the value a.
Therefore, we get A‘l(y(f)'l(a))EN(@ ) and, hence, y( f)_l(a) is an open-closed

subset of (N (€ ))*. Hence, y(f) is a continuous mapping from the space (Nl(é ))*
to a discrete & , ie., y(f)EH N‘(é). It is obvious that y((‘f)=y(&:) contains all
constant functions belonging to QfN‘(é). As by lemma 7.3 (b), for any f,gEé
and NEN(éf) we have

fINUg B \NeC ,
then for any h.k Ey(é) and NENI(f:) we get
RN U g(N(E )N \NEY(E)

Owing to the fact that any element of the algebra 4 M©) s obtained by a
finite number of such constructions from constant functions included in & M) and
that, according to the inclusion discussed above, y(é YC I Nl(é), we get
y(é)=-21 Nl(é), i.c., y is an isomorphism from ¢ 1 QIN‘@).

The statement (b) of the lemma under consideration follows from the statement

(b) of lemma 7.5, while the statement (c) is obviously obtained from the statement
(c) of lemma 7.4. B

The subalgebra € of the algebra Jf B will be called reduced provided that:
o €=-3%,

(2) for i,jENEX ) and i= j there is no automorphism o of the algebra &
such that a(m;(€)) = 7 ;(€).

For any open-close subset N of the space .B *, and for any automorphism o«
of the algebra &, py, will denote the following automorphism of the algebra & 5,

for fed 5 ieB” we have PN ()@ =f0@) if iEN, and py . ())E) = a(f(D) if
- iEN. The following equalities are obvious:
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EE )= E(pyq(€)),
NE) = Npw o (€),
~€=~pya ©)-

In line with the statement (c) of lemma 7.4, the last equality implies that
PN (&) is a sub-Boolean power of the algebra 4 iff the algebra &€ itself is a
sub-Boolean power of & .

Lemma 7.7. If & is a quasi-primal algebra, there is a reduced representation
of the algebra € , and if in this case € is a sub-Boolean power of the algebra & ,
the reduced presentation of € will also be a sub-Boolean power of ¥ .

Proof. By virtue of the preceding lemmas, onc can assume that & CJf 5 ~ ¢

is an equality on B (ie., that &-y% ). Besides, NE@) is, as a ~¢ -
equivalence class on ,B*, a finite set. If for i,jEE(L),i=j there exists an
automorphism o of the algebra & such that a(mE€)=xn j((": ), let us choose an
open-close neighborhood N of the point i such that j&N, and letp=py, . In this

case i~ > j and, hence, for the collapse y(p(€ )) =&, the set NEW ') contains
pE)

less elements then the set E(& ), &' still obeying the condition (1) of the definition
of a reduced algebra. Therefore, we get a reduced representation of the algebra &
through a finite number of steps. H

Let us now consider two subalgebras of different Boolean powers of the

algebra I : €, CJ ‘B‘,(Cz C¥ P2, and let 4 be an isomorphism between €, and
€,. Let us determine the relation R, € B," xB," in the following way: <i,j>ER,
iff at the isomorphism A the kemel of projections s; of the algebra &, corresponds
to the kernel of projections 7x; of the algebra &, If <i,j>ER,, let A be a
canonical isomorphism from the algebra (&) to the algebra & j(€ ) corresponding
to the isomorphism A; then we get A (f@)=A(f)(j) for fEL,. For the case
when €, =€, and A -identical, we get R, =~;, and A;; is the isomorphism from
a{€) to 7, (&) at i~g J-

Lemma 7.8. Let &£,,&, and A be such as indicated above. Then the
following statements are valid:

(a) if iE.Bl* and |m;(€,)I> 1, there is an iE‘B; such that <i,j>ER, ;
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(b) if we have either NE& )= or NEK ;)= J, for any f,g€EL, we get

Il 7= gll= R A = Al

and

I f = gll = R AL = AlD).

Proof. Let i€X, and Im(€))>1. Since mf{&€,) is, as the subalgebra of a
quasi-primal algebra, simple, the kernel of projections x; is a maximal congruence on
the algebra €, and the A-image of this kernel is a maximal congruence on the
algebra €,. By lemma 7.4 (b), this A -image has the form of a kernel of a certain
projection s j of the algebra €, and, hence, we get <i,j>ER,.

Let now f,gEE&,. Then if <i,j>ER,, i €|l f =gl iff < f(i).g(i) > belongs to
the projection kernel s;, and this is the case iff < A(f)(j), A(g)(j)> belongs to the
A -image of the kernel x;, i.c., iff jEIA(f)=A(g)l. Therefore, now the statement
(b) obviously follows from the statement (a) proved above.

Lemma 7.9. Let 4 be a quasi-primal algebra, &, and &, its non-singleton
isomorphic subalgebras such that a certain isomorphism A of the algebra 4, onto
A, has no extensions up to isomorphism from the algebra & . In this case there is
a countable Y7 (J )-algebra isomorphic to no sub-Boolean power of the algebra & .

Proof. Let B be a countable atomless Boolean algebra. Let us fix some

fi=i, €B". Let also € ={ red iy ed,, fii) = o f(il))}. It is evident that

&€ is a subalgebra of a Boolean power ¥3, €)=, m,&)=A, for jes’
such that j=1i,i,, nj(€)=3f , and for k,l €XB” we have k~gl iff either k=1,
or k,lE{il,iz}. By lemma 7.4 (d), we get V, EConp€C .

Let us now assume that A is an isomorphism from the algebra &€ to the
algebra €, CH 81 Which is a sub-Boolean power of the algebra & . Then by
lemma 7.4 (d), N={i EB (€)= 1} is open-closed in B;. By lemma 7.3 (c),
&, E€IIN><€II.B* \' N and, hence, € eCII.B*\N, and the latter, as B \ N is
open-closed, is a sub-Boolean power of the algebra & . Therefore, without violating
generality, one can assume that for any iE.Bl* we have Iz;(€)l>1. By lemmas 7.4
(c) and 7.8 (a), there exists a unique i E.Bl* such that <iyig >, <iy,ig >ER; , in
which case we get &, =, =m (€). On the other hand, since all the factors of

the algebra &€ relative to the maximal congruences are, by lemma 7.4 (b),
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isomorphic to either the algebra &, or the algebra & , for any i€B, such that
i=iy, we have m{€,)=¥ by the same lemma.
Let us choose a finite set of elements { Jioeos fn} of the algebra € such that

w3, € 1) = A AXD). - AU X i)}

and let N be an open-closed neighborhood of the point iy such that all the functions
A(fi=n) are constant on N. Using lemma 7.3, one can in a standard way
choose such f,g€€ , that N=[A(f)=A(g)ll. Then, by lemma 7.8 (b),
M= RZI(N) ENK ) and i§,i, EM. Let us choose open-closed subsets N; of the set
M such that §j €EN;,i, EN,, and each of the functions f,...,f, is constant on N
and N,. Let jiEN\{ii}, hENy\{i} and k,k,EB; be such that
<Jiuk ><jyky>ER;. Since ~g coincides with the equality on Bl* and
k; ER, -RZI(N) then k; €N. Therefore, obviously, B=2A;, “A;; is an
automorphism of the algebra & extending o in contradiction to the choice of the

isomorphism «. The algebra & is thus isomorphic to no sub-Boolean power of the
algebra . M

Lemma_7.10. Let & be a quasi-algebra having a non-identical isomorphism
with fixed points. In this case, there is an MI(J )-algebra of the power X,
isomorphic to no sub-Boolean power of the algebra Jf .

Proof. By the condition of the lemma, one can easily choose a proper
subalgebra &, of the algebra & , and a subgroup G of all the automorphisms of
the algebra & such that ¥ is a family of points fixed relative to G. Let
y:G— Sym(n) be a canonical embedding of G into the group of permutations of the
set {0.,1,....n =1}, where n=IGl.

For any limiting ordinal u let F, = (uxn)U{u}f, and let us introduce a partial
order on F, defined in the following way: <wv,i><<V,j> iff i=j and v<+v/',
and the element u is greater than all the elements of the type < v, >, where
v<p,i<n. Let us consider a topology on F, with the basis of open sets of the
type {xEFLI< vis><x<<Vi >}, {xEFMIx << Vi >}, and {x€F,| for some i<n,
<v,i><Xx} at various < v,i>,<Vv,i> <vy,0>,..,<v,_,n-1 >EF,.

It is obvious that F, is a Boolean space, i.., that F, =.B;, where ,B# is a
family of open-closed subsets of the space F,. Let us define the action of the group

G on the space F, in the following way: for g&G we have



164 BOOLEAN CONSTRUCTIONS

g(<vi>)=<vy(g)i)> and g(p)=p. Let now X=F,xF, with a common
Tikhonov topology of the product, and let us define the action of G on X, setting
g(<x',x">) =< g(x"),g(x")>. Let B be a family of open-closed subsets of the
space X, in which case X =.58".

Let us show that X has no closed subsets Z such that Z contains exactly one
point of each orbit of G on X, i.e., Z contains one point of each set of the type
{g(»Ig(EG}, for all xEX. Let v<w,, and let i, <n be the only i such that
<w,< v,i >>EZ. For any i=i, there is an m(i) <w such that for all m =m(i) and
any j<n, we have <<m,j>< v,i>>EX \Z since, in the opposite case, as Z is
closed, we get <w,< v,i >>€Z. Therefore, there is an m, <w such that for all
mzm,, j<n and i<n,i=i, we get <<m,j>< v,i>>EX\Z. Hence, at any fixed
m=m, and j<n, the element <<m,j>< v,i, >> will be the only one in its G-
orbit belonging to the set Z. Let us choose an mi<w such that m=m, for an
uncountable number of elements v< w;. Since for any j<n any neighborhood of
the point <<, j>w;> of the space X contains a certain element
<<m,j>< v,i, >> such that m=m, and Z is closed, we get <<m,j>w;>EZ.
But this implies that Z wholly includes the G-orbit of the Kkind
{<< m,j>w>lj< n} It is the contradiction to the choice of Z that proves the
improbability of the existence of closed ZC X with the above-discussed condition
relative to G -orbits.

Let us consider an algebra € ={f € 5 lg(f@)) = f(gi)) for all g€G}. It
should be noticed that the constant functions @ €J 5 belong to € iff a€Hy, and
that n<m,wl>(€)=310 and (€)= for all other i€l =X. Morcover, i~g J
for i,jEX iff both i and j belong to the same G -orbit.

Let us show that € can be isomorphic to no sub-Boolean power of the
algebra 4 . Let us assume that the opposite is the case, and let A be an
isomorphism from € to &€, CJ 81 a sub-Boolean power of the algebra & . By

lemma 7.7, €, can be assumed to be reduced. Let us refer to an element < w,w; >
of the space X by iy, and consider two cases.

Case 1. o is non-singleton, and, hence, V, EConpf:. In this case, as in
the proof of the previous lemma, one can assume lx;(€)I>1 for all iE.BI*. And
again, one can find the only j, E.B; such that <iy,jo>ER,. Therefore, in
particular, we get @, (€)=d,, and for any jEXB| other than j, we get
M4 j((".:l) =3 . Let us choose a finite set of constant functions {fl,..., fk} from € so

that & 0={ FACI I fk(io)}. Let us choose an open-closed neighborhood N of the
element j, so that all the functions A(f),...,A(f;) are constant on N. In a standard
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way one can choose N in the form N =[A(g)= A(k)] for some g €L , in which
case, by lemma 7.8 (b), we get RXI(N) ENK). As iy is not an isolated point in
B, there can be found an i’ ERXI(N) \{ig}. Let j/EN be such that <i’,j' >ER,.
Therefore, we get an automorphism f = }L,-,j, of the algebra J which extends the
automorphism 4, of the algebra I ;. Without violating generality, one can assume
A"ojo to be an identical mapping on &, (in the opposite case considering
Pp: gt (€ )) instead of &€)).

Let us now choose an open-closed neighborhood M of the point i; such that
MC RXI(N), and such that M together with the action of the group G on it is
homomorphic to the space B : together with the action of the group G on it. For
i€EM let O; be the G-orbit of the point i, and let j; EBI* be such that
<i,j;>ER,. Then <i',j,>ER, iff i'E€0, since, as has been already noted,
O;=if~¢ . For iEM \{io} the automorphism A;; leaves all the elements of the
algebra .710 fixed and, hence, JL,-};, €G. For i,i' EM such that O;=0,, the equality
Aj; =Xy holds iff i=i' (indeed, if i’ = g(i)=i,g €G then, choosing fEE in such
a way that f(i)=a where g(a)=a, we get g(a)=f(i’)=)t;;-i'7t,j(a), i.e.,
Aiﬁ(a)atli'ji(a)). Therefore, for iEM\{iO} we get G={)Ll-,jili'€0,} and, in

particular, there exists a unique i €0; such that )Ll.:j‘ is identical on & . The same,
i

obviously, is also true for i =iy. Let now Z ={i*IiEM}. One can directly prove that

Z is closed in M. Hence, in the subspace M homomorphic to B * we have found
a closed subset Z intersecting exactly one element in any G-orbit lying in M. We
have already proved the improbability of the existence of such a Z. The contradiction
obtained here proves that case 1 is also impossible.

Case 2: & o 18 a one-element algebra. In this case, since Ve GECoan,
NE&,) is not empty, and as &; is reduced, NEW,) is finite. Let
NE®& ) ={y,---¥,}. Let f be the only constant function from € . Let us choose
pairwise non-intersecting open-closed sets Nl,...,N,Q,Bl* containing the points
.-y, » Tespectively, and such that A(f) is constant on each of them. In a standard
way one can find gh €€ such that [IA(g) = A(h)]=N;U..UN,. Preserving the
generality of the considerations, one can assume that none of y; is an isolated point
of the space B, (in the opposite case, B, \{y:;} is considered instead of B,). Let
Y EN;\ {yi}. Then for some x; €B" we have <x,y;>€ER, and, hence, 4,.,. is an
automorphism of the algebra 4 mapping &, onto Ty, (€,). Since €, is reduced,
the existence of such automorphisms implies the equality r =1, in which case the
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arguments in the proof of case 1 come into play. B

Theorem 7.5. Let & be a quasi-primal algebra. Then M (& )= IPp(d ) iff
any isomorphism between non-singleton subalgebras of the algebra & has a unique
extension to an automorphism of the algebra ¥, the only automorphism of the

algebra & with fixed points being the identical one.

Proof. The necessity of the conditions on & given in the formulation of the
theorem follows from lemmas 7.9 and 7.10. Let us prove that these conditions are
sufficient for the equality (& )= IPp(d ) to hold. Let € be an arbitrary algebra

from M ). By lemmas 7.2 and 7.7, € QJJ'B, and &€ is reduced. Let us
choose an arbitrary fEE , and let M,,...M; be a decomposition of B® with

open-closed subsets of the space B * of the type f_l(a), where a€d . Let i=j

for i,j<1! iff there is an isomorphism a; from the algebra J  such that

a;(f(M;)) = f(M;). Let us choose an automorphism p of the algebra T B, which
is a product of automorphisms of the type P, 3t i= j and such that for any
i=j, the function p(f) is constant on M;U M;.

Let us first of all prove that the equivalence ~ p(€) limited relative to the set

B \NE@(E)) is contained in the equivalence ~ , o Let i, JEB \NEWEE)) =
pE)

=5 \NEE ) and i~ & Jj. As has been noted after lemma 7.6, this implies
pE)

i~¢ j. Therefore, the subalgebras n(€) and x,&) of the algebra & are
isomorphic, this isomorphism being, by the condition of the theorem, extendable to
the automorphism a of the algebra J (since Iy (€)I>1). The uniqueness of this
extension implies the equality a(f(i))= f(j) and, hence, if iEM,, jEM,, k=n.
Therefore, p(f)(i) =p(f)(j). In this case the algebras m{p(£)) and Jrj(p(C)),
which are isomorphic to the algebras w(€ ) and Jrj(éf ), respectively, are pairwise
isomorphic, the element p(f)(i) remaining fixed at this isomorphism. By the
conditions of the theorem, @ is extendable to the automorphism of &, and, since
this extension will have a fixed point, the extension itself and ¢ will be identical

mappings. The latter consideration, obviously, implies the equivalence i~ 5 J-
PrE)

Therefore, indeed, the limitation ~p&)y On B NE((€)) is contained in ~ &
p

But in this case the collapse €' of the algebra p(¢€) obviously meets the condition
that the classes of ~g,-equivalence (other than NEE ')) are one-eclement and, hence,

by lemma 7.4, the collapse €' is a sub-Boolean power of the algebra Jf
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isomorphic to the algebra &£ . W
The theorem considered describes those quasi-primal algebras 4 which generate
varieties representable by sub-Boolean powers of the algebra 4 . With some minor

modifications we can describe the quasi-primal algebras 4 generating varieties the
countable algebras of which are isomorphic to sub-Boolean powers of the algebra

a.

Lemma 7.11. Let any isomorphism between non-singleton subalgebras of a
quasi-primal algebra 4 be extendable to an automorphism of & . Then any
countable J7 (¥ )-algebra is isomorphic to a Boolean product &€ of S(J )*-algebras

with the index B *, so that the following statements are true:

(a) there is no more than one i€X " with the property lo; (& )l=1;
(b) there is no more than a countably infinite family {N,Il EI} of pairwise

disjunct open-closed subsets of the space .B * such that {i eB’l (& )I>1} =
= lgN,, and 7y, (€ ) are sub-Boolean powers of the algebra & for all IE1.
1

Proof. Let €, be a [ (J )-algebra. By theorem 7.7, &€, is isomorphic to
some Boolean product of M (H )5 -algebras. Since & is quasi-primal,
M A )3 =S)* and, therefore, €, is a Boolean product of S(J )" -algebras with
some Boolean index B). As €, is countable, B, can also be considered countable.
The set A={i€31*llnl(€1)l=l} is closed in the space .B;. If A=(, the statement
(a) is fulfilled for the algebra €. If A=, let iy be a fixed point from A. The
subspace (Bl*\A)U{iO} of the space .Bl* is, being a continuous image of the
Boolean space .Bl* , Boolean itself. Let us identify (.B;\A)U{io} with the space
.Bl* for a certain Boolean algebra .%,. Then  the  algebra
C,=€ (B \AH Uiy} =€,1B, =€, is a Boolean product of S(J )*-algebras with
the index .B;, in which case the statement (a) is valid for &€,, ie.,
{iE.E;II EACH 2)I=1}= 1. We thus can consider the statement (a) to be fulfilled for
€, in any case.

Let us denote {iE.Bl*II pACH 1)I>1} with A;. Let us show that

(*) for any i€ A; there is an open-closed neighborhood N; of the
point i and an isomorphism ¥; of the algebra my, (€,) on a certain

sub-Boolean power of the algebra & with a Boolean index N;.
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The proof will be carried out by induction over the power ¥ \ x;(&,). Let
Wl \z{€ )=0, and let in this case HI=n and f,....f,EC, be such that
(A, [0 = m;(€)) . Since €, is a Boolean product, there is an open-closed
neighborhood N; of the point i such that at jEN; for any signature function ¢ of
the algebra & we have @(f, (). [y, ) = fi() iff @(fi,(Dherosfi, () = fi(j), and
[l = () iff fr(j) = fi(j), lLe., the subalgebras F; of & with the basic set
{f 1 (Dseees S j)} are isomorphic to the algebra m(&€,)=& , the isomorphism Ajj
being defined by the equality AL J(D) = f;(j). Let us define the mapping y; from
the algebra Ty, (€) to the algebra AN in the following way: for any jEN; we
get lp,(f(j))=)»,-_jl(f(j)). The 1p;-images of the elements f; are in this case
obviously constant elements of the algebra & N and, as my (€,) is a Boolean
product, [ Ty, (€,)) is a sub-Boolean power of the algebra 4 , the basis of
induction is thus proved.

Let iE,Bl* and let the statement (*) be valid for all jE,Bl* such that
O\, (EDI<T \ ;€D Let  also  f,..f[,€€,, m=AxE€)  and
{fl(i),...,fm(i)}=n,-(@l). By analogy with the case considered above for
a{€ )= , let N; be an open-closed neighborhood of the point i such that for
JEN; the mapping from the algebra x{€,) to the algebra x j(f 1), defined by the
equality A, f(1) = fi(j), is an isomorphic embedding of x(€,) into nj((Cl)QZf.
It is obvious that, if jEN; and A,; is not a mapping “onto”, there is an open
neighborhood 7 of the point j such that, for all ¢€T; A,, is not a mapping “on”.
Therefore, ¥ ={jEN;IA;; is a mapping “onto”} is closed. For any jEN;\Y we
have 1 \ & j(ﬁl)ldlf \ m;(&€ )l and, hence, by the induction supposition, there is an
open-closed neighborhood N i € N; of the point j and an isomorphism j of the
algebra 2% (€,) on the sub-Boolean power of the algebra 4 with the index N ;-
Moreover, since B, is countable, the number of open-closed subsets of the space
,Bl* is also countable, and one can consider the set {le JEN;\Y } to be countable
and disjunct. One can also obviously assume that j, coincides with o for j,j
belonging to the same set of the type N;(JEN;\Y), and that elements of the type
Y ;(fy) (I<m) are constant elements of the sub-Boolean power .

Let 7;; be a certain automorphism of the algebra & extending the isomorphic
embedding &;; from the algebra &(€;) to m (Y j(ay, (€))), where

E,-j( J@D)=vy ¢ (j). For jEY let Pij be a certain automorphism of the algebra &
extending the automorphism A;;. Let us then define the mapping ¢@; from the algebra
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Ty, (€)) to the algebra AN in the following way: for fE€€, and jEY, we have
QN (DY) =p; (f(j)), and for jEN;, (JEN,\Y) we have ¢,(my (DX))=
= n,-_jl( J(j)). The elements of the type @;(7y,(f;)) are obviously constant elements of
the algebra & M for 1<m. One can easily check that (p,-(nN,(f 1) is a sub-Boolean

power of the algebra & with an index equal to B such that .B ) = N;. Therefore,
the induction step in the proof of the statement (*) has been made, and this
statement is completely proved.

Now, in order to prove statement (b) of the lemma, one can use a countable
family of open-closed subsets N;(i€A;) covering A;, and construct a family of
pairwise disjunct similar subsets in an obvious way, which proves the statement in

(b). W

Theorem 7.6. Let J be a quasi-primal algebra. Then the condition that every
countable M ( )-algebra is isomorphic to a sub-Boolean power of the algebra & ,
ie, M R, QIPSB(:H ), is equivalent to the condition that any isomorphism
between non-singleton subalgebras of the algebra J is extendable to the
automorphism of & .

Proof. The necessity of the above condition on the subalgebras of the algebra
4 results from lemma 7.9. Let us now prove the sufficiency of this condition. Let
& be quasi-primal and let any isomorphism between its non-singleton subalgebras be
extendable o the automorphism of & . Let also & € (¥ )y, and let € obey the
conclusion of lemma 7.11. Let us now use the notations of the formulation of that
lemma, and let in this case iy €8 " be the only element of i (provided that it exists)
such that la;(€ )i=1. If such an i, either does not exist or is an isolated point in
B then, by its compactness, the set I is finite, i.e., there exists a finite number of
open-closed subsets Nj,...,N, B such that ay, € )EPHIA ) for I<k, and
€ =€ I(MU...UN,). Since the Cartesian product of Pyp(d )-algebras is also an
IPgp(l ) -algebra, the inclusion W1 (U )y CIPsp(¥) is proved.

Let us now consider i, to be a limiting point in B *. Let us choose a certain
fo €€ , and let M={iEB a( f,)} is a subalgebra of ¥ }. Obviously, M is open-
closed in B, As &€ is a Boolean product with the index B , we get
€ =CIMxEIB \M. Since 1'0¢.B* \M, one can assume & |8 \ MePRKI)
(representing B "\ M as a finite union of sets of the type N, ﬂ(.B* \M) and again
recalling that the Cartesian product of Pyg(d )-algebras is also an IPgy(H )-algebra).
Therefore, it is sufficient to show that &€ |M EPSB(J ), lLe., henceforth one can
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consider B" = M. Choosing, if required, a certain extension of the decomposition
{io}, Nyl EI) of the space B * one can view Jo as constant on every N,(IEI).

Let ay,...a, be values of the function f on .B* \{ip}. Let us set
NY _¢NlLEl, filN)) ={a;}}. Let us define the space .B; as B with the element
iy substituted with a new element y;- Let now Y; - UNY U{y} at jss.

It should be noticed that Y; is a closed subset in 3; and that at j=k we

ces
have Y,NY = . Let Y =jL=JII;- be a discrete family of the spaces Y;. Obviously, Y

is a Boolean space, i.e., Y =.Bl* for a certain Boolean algebra.Bl, in which case
B" is obtained from ¥ by identifying the points y,..y;. Let us define the
embedding o of the algebra & into the Cartesian degree & Y. for all fEEL let
a(ANY N, Y = S1IY N1, and for 1< j<s let a(f)(y;)=a;. It is obvious
that a(€ ) obeys the following condition: for any f,g€a(€), any open-closed
NCY we have fINUgIY\NEa() (as € €r’sid)).

Therefore, in order to prove the inclusion a(€ )EPy(H ), it suffices to show
that (€ ) is a subalgebra of a Boolean power & 51 je., that for any fEE the
function a(f) is a continuous mapping from the space Y to a discrete 4 . Let
YEY \{y,.....Ys}. Then we get yEN, for a certain N; which is, in particular, open-
closed in Y, and a(f)N; = fIN;. The function fIN; is continuous on N;, since
& IN; EPyp(d ). Therefore, f is continuous on a certain neighborhood of any point
YEY\{y1,.... ¥} If for a certain 1< j<s we have y=y;, a(f) is constant and,
hence, continuous on the open-closed neighborhood ([l f = fOI]ﬂUNm Uy} of the
point y; in the space Y. Therefore, for any fEE we get a(f)ed '31, which is
the required proof. B

It should be remarked in connection with theorems 7.4, 7.5 and 7.6 that,
taking into account the results of lemma 4.3 as well as the fact that the algebra Vi
is finite, the operation Fyp in the formulation of the theorems can be substituted with
the operation Prg, as the conditions of these theorems describe algebras 4 such that
any (countable) M (J )-algebras are presentable by filtered Boolean powers of the
algebra & . It is also of interest that countable algebras of a finitely generated
discriminator variety M1 are always representable by filtered Boolean powers of a

certain finite algebra which is not, in fact, necessarily in 17 .

Theorem 7.7. If M is a finitely generated discriminator variety, there is a
finite algebra §7 (not necessarily belonging to 1) such that any at most countably
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infinite .J -algebra is isomorphic to a certain filtered Boolean power of the algebra
.

Proof. As Ml is a finitely generated discriminator variety, Mg, consists of a
finite number of finite algebras & ,,...,& ,, and any I -algebra is isomorphic to a
certain Boolean product of the algebras J,,....& ,. Let o be a signature of the
variety 7, and let §, be a class of all finite algebras of the signature o. Since
§5 has the properties of mutual embedding and amalgamation, there are ¥ -algebras
2.8, and & such that

€)) 31,- is a subalgebra of the algebra ,0, at lsisn;

(2) if ¥ ; is isomorphically embeddable into &;, and a is an embedding of
J ; into £, there is an embedding B of the algebra £ into the algebra £ such
that B- o is identical on ¥ ;;

(3) every algebra £} is embeddable into §F ; this embedding will be referred to

as ¢;.

Let J be an arbitrary at most countably infinite 7 -algebra, in which case one
can assume that & is a Boolean product of the algebras &,,...& ;& C l;[lf .
xe *

where &, € ,,...¥,}, and B is a certain at most countably infinite Boolean
algebra. Let us prove that:

(*) for any xEF there exists an open-closed neighborhood N of the point
x and embeddings 7, of the algebras 4, into £ at yEN such that

for fEH ,hEH the set {(yEM n(f(y)) =k} is open-closed in B

The proof of the statement (*) is similar to that of lemma 7.11. By induction
over If \ @), where i<sn and ¥, =X, let us prove the statement obtained
from (*) by replacing the algebra § with the algebra £ , and the embedding 7y
with o, Let x be such that £ \q),-(lf ;} is minimal among the numbers
I\ ¥ ;) where jsn. Let wus choose f,...f, €I such that
(A s (D=, and m =¥ |. By analogy with what has been done for the
induction basis in the proof of lemma 7.11, we find an open-closed neighborhood
N of the point x such that for yEN there are isomorphisms A,y from the algebra
I, 1o the algebra &, defined by the equalities Ay y(f;(0)) = f;(3), where 1= j=<m.
In particular, A;}y is an embedding of the algebra &f y into the algebra £, where i

is such that &, = ;. Let us set ay=)»;?y. Let hEP; and fEH , we get
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ENALL(FON =M =NN[f=fil,

i.e., this set is open-closed in B ; provided h= f;(x). Therefore, the required
statement is proved for x€B " such that 1§} \ ¢,(¥ ) is minimal.

Let us assume that the required statement has been proved for all yEER * such
that 1§} \(pj(ny)I<I£I \ ¢;(d ), where i,j are such that ‘?Jx=31i,31y=21j. And
again, as has been the case in the induction step when proving lemma 7.11, we
find functions f,,...,f,, EH such that {f(x),...,[,(x)}=&,, where m=d, |, we
find an open-closed neighborhood N of the point x of the space B *, we find
embeddings A, , of the algebra &, in the algebras &, at yEN, and we also find
a closed subset YC N such that Y ={xEMA,, is an isomorphism from H, to

¥ y}- Since N\Y is an open subset of the space B and B is at most countably
infinite, by the induction supposition, there is at most countably infinite set ¥ and

open-closed pairwise-disjunct subsets N, (k €I) such that UNk =N\Y. At the same
kel

time, for every k €I, one can find embeddings a’y‘ (yEN,) such that the statements
(*) hold for Nk,o)’f with the corresponding substitution of the algebra § by
algebras fJ, , where nysn and ;= , is isomorphically embeddable into &, for
all k €1. ¢;(id) will denote an identical embedding of the algebra &, in F.(J ;).

Let us choose embeddings u, (y€N,;) (which do exist by the property (2) of
the algebras J;, P, noted in the beginning of the proof) such that the following
diagram is commutative:

Figure 6
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Let us define the embeddings o, of the algebra & , into £ as uy-a)lf for
YEN(k€EI) and for all yEY let us set o, '_'A;cfy' Therefore, oy, are defined for
all yE€Y and for yEN, and for jsm we have ay(fj(y)) = ax(fj(x)).

Let f€d and hEP,. If hEH,;, we get
{YENMoy(f=m=1f=fINN,
where f; is such that fi(x)=h. If he&dl; then

YEMo(f()) =h=
= JeNd mat(f) =13 = | ENY ok (f () = uj ()}
kel kel

is an open set.
Therefore, for hE,O,- the sets {yENIay( S(N)=~h} form an open finite disjunct

decomposition of the open-closed N and, hence, indeed, for any heP,.
{yEMo(f(y)=h} is open-closed.

Thus, the statement (¥) with the algebra £ substituted for the algebra & has
been proved with induction. To prove the statement (*) itself it now suffices to
replace the embeddings o, , — 0; with the embeddings 7, = ¢;- 0, of the algebra
J, into §F, where ¢; is an embedding of £ into £ mentioned in property (3)
in the beginning of the proof of the theorem.

The validity of the statement (*) for the algebra 4 makes it possible, as B is
compact, to single out a finite number of pairwise-disjunct sets Mj,...,N; covering
B, as well as a system of embeddings n, of the algebras &, into £ obeying the

statement (*). Let us define the embedding n:¥ — ..-fFE in such a way that for any
xEB” we have n(f)() = 0 (f(1). Let

A DxEBY={F,...5,}.

Since for any f, gEJf and open-closed subset N Q.B*, the element
fINUglB AN also belongs to 4, an analogous property is also valid for the
algebra n(H)CH? . For FEH and hEFH we have

OEB NN == UDENI n(fO) = h}

Isjsk
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and, hence, by the statement (*), this set is open-closed in B Thus, we get
n) Qgﬁ‘s. Let X; ={x€B Ind Yx)C )} for 1< j=n.
The sets X; are obviously closed in B To conclude the proof of the theorem,

we now have to notice that n(lf)=ﬂ‘3 (Xpse s Xp; 1,87 ,). In one direction the

inclusion is valid by the definition of the sets X;. Let now

fESH 5 (X, Xy ; ,....8% ). Standard considerations implying that for any h E§ ,
[l f(x) =hl] is open-closed in .B*, n&HixeB *}= {gﬁl,...,'ﬂn} and nd) is
closed relative to the formation of the elements fINUgl® \N , prove that

S EN ). Therefore, indeed, any at most countably infinite 7 -algebra proves to be
isomorphic to a certain filtered Boolean power of the algebra & . W

And finally let us formulate without proof some results concerning the
representability of varieties with Boolean G -powers.

Theorem 7.8. For a finite algebra & with a group of automorphisms G, the
equality MM (¥ )= IP;(J ) is equivalent to the following conditions:

(1) ¥ =, xd,, where H| is an Abelian algebra, M (H,) is a discriminator
variety;

(2) if both algebras &, and & ,, are non-singleton, they both contain one-
clement subalgebras which are families of fixed points relative to the automorphisms
for each of them;

3) .{W(&'l)=IPGII(:Hl),M(JZ)=IPG32(212), where Gy are groups of

automorphisms of the algebras ;.

Theorem 7.9. Let 4 be a quasi-primal algebra and G be its group of
automorphisms. Then we get M (H )=IP;@& ) iff:

(1) any isomorphism between non-singleton subalgebras of the algebra & is
extendable to the automorphism of & ;

(2) any subalgebra of the algebra & is a family of fixed points of 4 relative
to a certain subgroup of the group G.
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By way of concluding this section let us recall one more result concerning
Boolean representability. Theorem 4.1 is a generalization of a result obtained by
R.S.Pierce [157]: any commutative ring with unity is representable as a Boolean
product of directly non-decomposable rings. In a paper by W.D.Burgess and
W.Stephenson [23], the authors proved that any ring R with unity is representable as
a Boolean product of directly non-decomposable rings iff any idempotent of the ring
R is central.

Priorities. Among the first results concerning the representability of varieties
using Boolean constructions were those obtained by R.F.Arens and J.Kaplanski [5]
on varieties of algebras over a finite field, A.L.Foster [67] on varieties generated by
primal algebras, J.Dauns and K.H.Hofmann [45] on biregular rings, etc.. Theorem
7.1 of the present section is by to D.M.Clarkand and P.H.Krauss [36]. Lemma 7.1
as well as theorem 7.2 resulting from it were proved by S.Burris and R.McKenzie
[31], using description of finitely generated congruence-modular varieties with a
solvable elementary theory. The proof of these lemmas and the theorem cited here
and employing no results on solvability is by E.W.Kiss [106]. The statement of
theorem 7.3 is due to R.W.Quackenbush [195]. Theorems 7.4, 7.5, 7.6 and
lemmas 7.2-7.11 pertaining to them were proved by S.Burris and R.McKenzie [31],
theorem 7.7 is by S.Burris and H.-Werner [33]. The proof of theorems 7.8 and 7.9
can be found in a paper by S.Burris and D.Clark [29].



CHAPTER 3

VARIETIES: SPECTRA, SKELETONS, CATEGORIES

The aim of the present chapter is to apply the methods, results and
constructions considered in the first two chapters to “external” studies of universal
algebra varieties. “External” studies of varieties imply consideration and description of
not the algebras incorporated into a given variety but of the variety as a whole, i.c.,
studies of the variety as a single object the elements of which are the algebras of the
variety with basic algebraic relations and operations among them such as
isomorphisms, epimorphisms, embeddings, Cartesian products, etc.. Studies of the
“external” structure of a variety imply, first of all, those of the categories of the
algebras belonging to the variety in the case when the morphisms of the category are
all homomorphisms between algebras of the given variety. Indeed, the overwhelming
part of the notions related to an algebra can be formulated in terms of these
categories and, therefore, the varieties with “the same” categories must be “almost the
same” themselves, as we will see in the first theorems proved in section 8. Another,
rougher “external” characteristic of a variety is its spectrum and its fine spectrum. We
have already discussed in section 6 some results for algebras with a minimal
spectrum, these impose very rigid limitations and allow only three variants for the
varieties generated by such algebras. Below, in section 8, we will present a result
describing to the accuracy of “the same category” all the varieties with a minimal fine
spectrum of a certain quite definite type, as well as a number of other results on
spectra and fine spectra. Well-known descriptions of category transformations also
pertain to the results characterizing varieties with a fine spectrum. On the other hand,
in the case when the fine spectrum of a variety is big, i.e., when the number of the
types of the isomorphisms of the algebras of a given variety is big, it is interesting
to study various relations and operations between the types of the isomorphism
induced by algebraically important relations and operations between the algebras of the
variety themselves. This results in the definition of the notion of the skeleton of a
variety, and the greater part of the present chapter is devoted to studying skeletons
of congruence-distributive varieties for which the application of Boolean constructions
is most efficient. In particular, a number of results on countable skeletons of
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congruence-distributive varieties make it possible, using the language of “external”
description of varieties, to express such facts as the degeneration of a variety with a
quasi-primal algebra with no proper subalgebras, finite generation of discriminator
varieties, etc.

8. Spectra and Categories
The present section is devoted to the problems of characterizing varieties by
categories and spectra associated with them. The basic notions of the theory of

categories can be found elsewhere [138].

Definition 8.1.

(a) For any variety of the algebras M, 7;7 will denote the category the objects
of which are all M7 -algebras, and the morphisms of which are homomorphisms
between M -algebras.

(b) The categories £, and f, are isomorphic if they are isomorphic as partial
semigroups or, which is equivalent, if there is a bijective mapping ¢ from the set of
objects Ob(f;) of the category £, o ob(f,), and if for any ab EO0b(R)), the
bijective mapping ¢,;, from the set Hom{ab) of £, -morphisms from a to b to the
set Hom(p(a),p(b)), for any a,b,c EOb(Ql) and o €Hom(a,b),  EHom(b,c), we
have @gc(af)= @ap(a) @y B)-

In the case of an isomorphism of the categories ’{ﬁl and ?7}2 for some algebra
varicties ./, and M,, we will speak about a weak equivalence of the varieties 7,
and MM, denoted by M, =M,.

(c) By the erasing functor Sy from the category of m -algebras of the variety
MM 10 the category of the sets Set we will mean a correlation between any M -
algebra and its basic set, any homomorphism between M -algebras being considered
in this case as a mapping between the basic sets of the algebras. The varieties M,
and M, are called equivalent provided that there is an isomorphism F of the

categories M, and MM, such that S‘sz =S_m1; the equivalence of the varieties will
be denoted by M, = 1,.
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(d) The varieties of the algebras M; of the signature o; and those of the
algebras M, of the signature o, are rationally equivalent, provided that there are
mappings F{(F,) from the operations of the signature o,(o;) into the set of terms
of the signature oj(0,) such that an n-ary operation transforms into an n-ary term,
in which case:

(1) for any M, -algebra & =<A;0,> we have F(H )=<A;0,>EM,, where
the o,-operations on the algebra F(J ) are defined using F(o,) terms of the
algebra & ;

(2) for any Ml,-algebra & =< A;0, > we have B (&)=< A;0,>€M,;
(3) for any M,-algebra I =< A;0, > we have F(Fp(H ))=¥;

(4) for any M, -algebra I =< A;0,> we have B(EW )= .
The rational equivalence of the varieties M, and M, is denoted by

(e) Let us say that the algebras &, and &, of the signatures o, and 0Oy,
respectively, are rationally equivalent provided that the conditions given in the
definition (d) for the varieties f; and M, are valid for these algebras. When the
algebras ¥, and &, are rationally equivalent, we will write &, =, & 5.

Definition _8.2. A clone of the variety M is a multi-basis algebra
<A, A, . A6, Chllsisn<wm<w>, where each A, is a family of terms of

the signature of the variety M1 from the variables xy,...,x, having been factorized

with respect to the module of their equivalence on the variety M ; e are the
constants incorporated into A,, i.e., they are the term-projections correlating the

variable x; to the set of variables x,,...,x,; and, finally, c,, are operations such that
the terms 1€ A,,1,...,.t, EA, are correlated to the term cp(Lly,...olp) = H(f,eorly) -

Such a clone of the variety will henceforth be denoted by Clondll .
The following theorem will reveal the interrelations among the notions introduced
above.

Theorem 8.1. For any varieties Ml; and M, the following conditions are
equivalent:

@ ?ﬁl = ..iiflz;



CHAPTER 3 179

®) Fm Ro)=: Fm, Ro);

(c) there are algebras &; €M, such that M, = WI(J,) and ¥, =, ¥ ,;
(d M = M,;

(e) ClonM, = Clonl ,.

Proof. The implication (b) — (c) is obvious. Let now M, =M (H;) and
¥, =¥, Since M, =HSPI,), there is a set I,, a subalgebra €, CH ] and a
homomorphism % from the algebra &; to the algebra ;. for any algebra B, &M,
The equivalence ¥, =, J, implies the existence of mappings F; from the operations
of the signature o;(j=i) of the algebra ¥ j to the terms of the signature o; such
that F( ;)= 3 ;(j=i) provided that the operations of the signature o; are defined

. J
on the basic set of the algebra &, using the E-corresponding terms of the signature

o;. Obviously, a similar construction of F;-algebras can be extended to direct powers
of the algebra J;, subalgebras and homomorphic images of these direct powers,
with all the conditions (1) - (4) of the definition 8.1 (d) fulfilled. But at the same
time this implies that M, =, f1,. Therefore, the statement (c) of the present theorem
yields the statement (d).

Let now M, =, M, and F,E be the mappings from the definition 8.1 (d). In
this case, extending K(JF,) in a natural way to a family of all o,(0;) terms, we get
an isomorphism of the multi-basis algebras Clon, and Clond,. Therefore, (d)
yields (e).

Let M, =M, and f(x,...,x,) one of the operations of the signature o;. Let

us consider 3ml(m)g 3"__1711(&)). Since free algebras of varieties are defined in

category terms, the isomorphism M, = M, can be implemented by a certain functor
F such that S_sz = Sml implies the equalities

F(Ep m)=Fm, m). FEp Ro))= Ty, (Ro).

Therefore, the element f(x,...,x,) of the algebra 37‘-"-”1(”1) is equal to a certain
element ¢(x,...,x,,) of the algebra sz (m), where ¢ is a term of the signature o,
of the variety #,. For any a,..,a,, E.S'.ml(j‘vml(xo))=5'_m2(3_m2 (X)), by defining

the mappings #(x;,)=a; (i=12 and j<m), we can find, bearing in mind that the
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algebras :iml(m) and 31”2 (m) are free and unique, pairwise coinciding extensions
h; of the mappings #; to all the algebras Smi(m), which are homomorphisms from
the algebras 3_mi(m) to the algebras ¥ m, (Ro), respectively. In this case, as
f(x, %) = @(x,...,X,), we get

F(a1ses@ ) = Iy (f (R %)) = By (@(X1 e es X)) = @1 ., @) -

Setting A (f) = ¢(xq,...,%,), we get a certain mapping F from the operations
of the signature o; to oO,-terms. The mapping K from the operations of the
signature o, to o;-terms is defined analogously. The above properties of these
mappings obviously imply the fulfillment of requirements (1) - (4) in definition 8.1
(e). Therefore, we get 3"2711()(0)5 ,3‘_2"2 (Rp), i.e., condition (a) of the theorem under
consideration implies condition (b).

To complete the proof of the theorem, we now have to prove that the
isomorphism of multi-basis algebras Clonf, = ClonMf1, implies the isomorphism F

of the categories fm and mz such that Sy F=Sp . So, let Clon, = Clonll ,.
By the definitions, this obviously implies the rational equivalence of the algebras
‘T‘_ml(n) and :,‘F_mz (n) which is, at n <w, implemented by the same mappings F(F)
of 0y( 0y -operations into o,(0;)-terms for any n. In this case the basic sets of the
algebras :f’.ml(n) and smz (n), respectively, can be identified. The rational
equivalence of 3-1”1(”) and 31”2 (n) implies the coincidence of the lattices
Con"j-‘m1 (n) and Con&m2 (n). The latter condition allows us to construct a functor

F mapping finitely generated I, -algebras to finitely generated [,-algebras, a set of
morphisms from :j"ml(n) to an n-generated M7, -algebra &, to a set of morphisms

from 3..‘[222(") to an n-generated algebra F(f,) so that S_m2F= Sm, -

Any morphism of an n-generated {l,-algebra &, on an n-generated m, -
algebra B, is uniquely defined by certain morphisms from the algebra 3ml(n) in
&, and JB,. This makes it possible to extend the functor F, with the required
condition on full subcategories of the categories 3';?, generated by families of finitely
generated J1;-algebras fulfilled. On the other hand, any homomorphism from an
arbitrary M7, -algebra & to an algebra B is uniquely defined by its limitations up to
finitely generated subalgebras of the algebra & . This enables one to extend the

functor F to the isomorphism of F of the whole category fml on the category m2
such that Sﬂsz = Sml , which is the required proof for the implication (¢) —> (a). l
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The condition on weak equivalence of varieties is essentially weaker than that
on the equivalence of varieties, as will be shown below in the description of all
varieties weakly equivalent to the variety of Boolean algebras.

Theorem 8.2. A variety of algebras M1 is weakly equivalent to a variety of
the Boolean algebras BA iff M is generated by a primal algebra.

~ v
Proof. Let J be a primal algebra, and let us show that M (& )= BA.
Indeed, by theorem 7.3, M () =IPB(31) and, therefore, for any M (J )-algebra

| there is a Boolean algebra B such that & y= 'B. By virtue of congruence-
distributivity of MI(& ) and theorem 3.2, we get Conpzf leConpéV 5 _B , ie.,
Con,d | EBA. Let us define the mapping

@:0b( (I )) = M (H ) — Ob(BA) - BA

as () = Con, .
For any ¥, 4, €M) and h€Hom A |, ¥ ), let us define

Px.2, (h) EHom(Conpéb'l, Conpﬂz)

bf vl
as @y, 6 5) = Oy ne)-

To prove that M (J ) and BA are weakly equivalent, it now suffices to notice
that any homomorphism from the algebra J 51 o the algebra B s uniquely
defined by a certain homomorphism Conpy 5, into Conp&' 'Bz. To this end, let us

note that at any homomorphism % from ¥ %1 o ¥ %2, a subalgebra ¥, C & 5
such that 30={ﬁllaey and for any iE,Bl* a'()=a} obeys the condition

h@')=a?, where a2€dl ’BZ, and for any iE.B;, @) =a. Indeed, this directly
results from the fact that & is simple, has no subalgebras and its only

automorphism is identical. Hence, the h-image of any element d € B i uniquely
defined by the rule

v ud
h(< ay,...,ad ™ ed,zlll seeey? Gd,al" >) =

v v
=< al,...,an,(pyl'yz(—-ﬂd,‘}l )"""p«’ll,llz(-'ed,aln) >,
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where {al,...an}=‘?f , and <a1,...a,,,ﬂ03{;1,...,0,}?{;n > is a quasi-canonical setting of
the clement d of the Boolean power & 5 defined in section 3.
~ v
Let us now assume that the variety M1 is such that 2 = BA, and the

~ \4
isomorphism of the categories M and BA is implemented with the mappings

@:0b(M )= M — Ob(BA = BA
and

@y, Homd A 5) — Hom( o \).9 1))

Let H €M be such that (& )=2 is a two-element Boolean algebra, and let
us show that & is primal and M =M (d ). Let us first remark that since
Hom(1,2) =&, where 1 is a one-element Boolean algebra, Hom((p'l(l),lf )= and,
hence, & is not a one-element 7 -algebra.

Let us show that for any algebra &, €M , the lattices of congruences of &,
and @(&,) are isomorphic. Let f:d;— %, be a certain epimorphism from the
algebra &, to J, in the sense of the theory of categories. Let us define a
surjective homeomorphism f; from ¥, to f(&,) by the equalities f(a)= f(a) for
all a€d, and let us consider the embedding i of the algebra f(J ;) into the
algebra &, to be identical. The equality f =i-f; shows that i is an epimorphism of

the category M7 , and, since i is an embedding, i is also a monomorphism in M7 .
Therefore, P ) yz)(i) also is both an epi- and a monomorphism in the category

of Boolean algebras but, as is well-known and can be readily checked those

v -
morphisms in BA are isomorphisms. As a result, { is also an isomorphism in M7,

i.e., any epimorphism of the category M is a surjective homomorphism of M -
algebras. Hence, the lattice of the congruences of the algebra & is isomorphic to

the natural lattice ¢(& ) of the epimorphisms (in the category ) of the object
J,€0b(MM) arising when identifying such epimorphisms f, f, for which there is an
isomorphism i EHom( f;(¥,)), fo(F,) such that ifi = f,. But in this case the

isomorphism of the categories M and BA implies that of the lattices ¢(&;), and
Cong(H |) = ¢(@(¥ |)). Therefore, indeed, for any algebra J, €M, we get
Condl | = Conp(d ).

Let us now prove that the algebra & is finite. Let us assume the opposite,
and let aj,..,.a,,.. be pairwise different elements of the algebra 4 . A free two-

generated Boolean algebra SpA2) is equal to 2% and, therefore, it has a finite lattice
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of congruences. Obviously, an isomorphism of the categories M and l;A implies
that an 7 -algebra (p'l(:j’BA(z)) is also a free two-generated M -algebra and, hence,
according to the isomorphism of Contp‘l(:f’BA(Z)) and Con¥ p4(2) proved above, the
congruence lattice of the algebra Sm (2) is finite. Therefore, any two-generated J7 -
algebra has a finite lattice of congruences.

Let us consider a subalgebra 4, of the algebra & “ generated by the elements
/i and h such that for any n€w we have fi(n)=a; and h(n)=a,. Since the
algebra & , as well as the algebra 2 EBA, has no proper subalgebras (by virtue of

the isomorphism of M and I;A ), J contains all the elements f, of the algebra
J? such that for any n€w, fn)=a,. Therefore, the kernels of projections
7(i Ew) are pairwise different congruences of the algebra J,. The contradiction
obtained proves that & is finite.

Let now A be the basic set of the algebra & , and let f be a mapping from
the set A" to J for some nE€w. As earlier, &; will denote the projection of the
set A" relative to the i-th coordinate. Let us consider afi =0,l,..,n-1) as elements
of ¥4, and let ¥ , be a subalgebra of the algebra J A" generated by the set
{my,.-.7,_1}. For any s €EA" there is a homomorphism /; from the algebra &, to
the algebra & defined by the equalities hy(m;) =m;(s). Let us define the

homomorphism & from the algebra 4, to the algebra & A" with the following

condition: h(a) =< h(a)lsEA" > for any a€d,. Let us prove that & is an
isomorphism.
From the definition one can directly notice that 4 is injective, i.e., A is a

v

monomorphism in the category M . The isomorphism of the categories ! and BA
v

implies that ¢@(#) is also a monomorphism in the category BA. Since

v
monomorphisms in BA are injective homomorphisms of Boolean algebras,
I3 An)lzltp(é’f ). On the other hand, @(H An) must be a direct product of |A"|
copies of the Boolean algebras 2 = () (as & 4" is a direct product of A"l copies

of the algebra & in M ). Therefore, 1gp(& 4"y1= 2" and hence I(p(?fl)ls2W|.

Moreover, @y y maps Hom(¥ ) to Home@,),2) bijectively. Since all
homomorphisms hy(sEA") from the algebra &, to F are different,

| Hom( (¥ |),2)=1A"l. A finite Boolean algebra of the power 2™ has exactly m of
its various homomorphisms on the algebra 2 and, hence, by virtue of the inequalities

mentioned above, the Boolean algebras ¢(&;) and @& An) are isomorphic. This
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implies the existence of an isomorphism A of the M -algebras &, and & 4" The
mapping f €Y 4" and, hence, 17!(f) €J,, ie., there is a term £(xy,...,x,_;) of the
signature of the variety M such that A({my,...,w, 1)) = f, the latter fact implying
that the mapping f is defined on A" with the help of the term f. The algebra %
is, therefore, primal.

Let us, finally, show that (& )=M . Let us assume the opposite, and set
A, eM\MPI ). As ¥ is primal, the categories m (&) and BA are isomorphic,
as has been demonstrated in the beginning of the proof of the theorem. Let
@ 1 )—> BA be the mapping of the objects of these categories implementing their
isomorphism. Therefore, there is an algebra J,EBA such that @' ¥,) is
isomorphic to the Boolean algebra @(J&;). Since Condl| = Congp(d,) and
Condl 5 = Cong'(¥ ;), Condl| = Condl,. But in this case we get

Cong(dl ) = Condl | = Condl , = Cong(¥ ).

It is a well-known fact that if congruences of 'Boolean algebras are isomorphic,
the algebras are isomorphic as well. Therefore, there is an isomorphism i of the

Boolean algebras (p(ﬂl) and (p(ﬂz) and, hence, (pc_a(l‘?’l)m(‘?fz)(i) will be an
isomorphism of the algebras &, and & ,. Hence, X, €M A ), ie, M =M ). W

As a corollary to this theorem one should remark that weak equivalence of

varieties does not imply their equivalence. Indeed, if & is an arbitrary primal algebra

v v
of the power more than 2, according to theorem just proved, we have M (¥ )= BA

but, since all M (& )-algebras have the form & 'B, there is no two-element algebra
in M (J ) and, hence, the varieties M (4 ) and BA cannot be equivalent.
In relation with theorem 8.2 the problem of describing the categories

v
isomorphic to the categories BA arises. A number of various descriptions of the
kind can be found in a paper by K.Sokolnicki. Here we will dwell on one of them
in detail.

Definition 8.3. A category £ is called algebraic provided that there is a

variety of the algebras # such that  and 'ff? are isomorphic.

All the category notions given below without definitions can, for instance, be
found in a monograph by S.MclLane [138]. A Lauvere theorem describing algebraic
categories is also known.
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Theorem 8.3. The category £ is algebraic iff

(1) f contains co-equalizers and finite limits, and there is a separate object G
in £ such that:

u,
(2) for any set Z in £ there is a co-product (G— l—[z) and, in particular,
=7

there is an initial object /= ITy in £ .
(3) A morphism f is regular in £ iff (G, f) is a surjection.

(4) For any parallel pair f,g of morphisms from £, if £(G f/),R(Gg) is a
kemnel pair in Set, f,g is a kernel pair in & .
(5) For any set ZC # and any morphism h:G—> Hz, there is a finite subset
=
YCZ and a morphism k“.G—>Hy such that hA=1[-k, where l:ny—> Hz is a
yey =z

yev
canonical “inclusion” such that l'uy=u, for yey.

Now, taking into account the statement of theorem 8.3, let us prove the
following theorem.

v
Theorem 8.4. The category £ is isomorphic to the category BA iff £ is
algebraic, (i.e., the conditions (1) - (5) of theorem 8.3 are met) and, in addition, iff
the following conditions are valid in terms of the statement of theorem 8.3:

(6) |Hom(I*, I)l=2.

(7) For any £ -object P there is a cardinal A and a monomorphism a from
the object P to .

(8) For any f -object P, if |Hom(P,Il=n, where n€w, P and I" are
isomorphic in £ .

(9) For any set § and ultrafilter £ we have C:ioel%)m =1 on §.



186 BOOLEAN CONSTRUCTIONS

Here I for the cardinal A and I? for the set d denote the product in £ of

A and ldl, respectively, copies of the object I. Here is a more exact formulation of
the condition (9).

Let nf:ld—>1 (i€d) be morphisms corresponding to the fact that 1Y is a
product of Idl copies of the object I in £ . Let £ be a category corresponding to

the ultrafilter £ viewed as partially ordered in terms of the set inclusion, and let

D be the dual of category D. Let (D% =R be a functor defined in the
following way: for d €Ob(DP) =D, J(d)=1°, and if d,d €D are such that
dCd' and Hom(dd')={B}, J(B)EHom(I* 1), and n?-J(B)=a? for any iEd,
where <nfili€d >,<n7’Ij€d’> are families of the morphisms defining 117 as
products of the object 7 in £ . In this case the condition (9) of the statement of

theorem 8.4 claims that for any ultrafilter £ we have I= Colim J.
Let us now turn to the proof of theorem 8.4. Let us first directly recall that

v
all conditions (1) - (9) are met for the category BA when choosing I as an initial
object of this category, i.e., when I is a two-element Boolean algebra. Let us only

v
notice that the condition (9) is fulfilled on BA only under the following statement: if
D is a filter on the set &, I is a universal algebra and C‘?elbimll 4 is defined

relative to the category m (&) in the same way as C:;;el%)m 1% has been defined in

the category # , Coel%)m:lf 4 is isomorphic to a filtered power ¥ 5/D of the algebra
det

.

Let us now prove the converse statement. Let the conditions (1) - (9) hold for
the category # . By theorem 8.3, there is a variety of the algebras M containing

an & and an isomorphism of the category ¢: f& — M such that ¢(I) =& . As the
category notions of a monomorphism and a product are preserved under an

isomorphism of categories, and as the monomorphisms of categories of the type m
correspond to isomorphic embeddings between M -algebras, we get M CISAH ) in
line with the property (7). But M7 is a variety containing the algebra J  and,
hence, M =M ().

Let us show that & is primal. Indeed, since, by the property (6),
|Hom(¥ A =2, J is non-singleton. Let § be an infinite set and D be a non-
principal ultrafilter on §. As is well-known, & /D «J iff J is a finite algebra.
But, as we have already noted, Coziiénpﬂ 1297 %/D and, by the property (9),

Colim¥ ¢ =« . Therefore, ¥ is finite.
ded

Let now m =¥ "l and P ) be a family of all the terms of the variables
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Xy,.. X%, of the algebra J , considered as a subalgebra of the Cartesian power
FIV _F™ of the algebra & . Obviously, |Hom(P™@3 )3 Y=m and, if now
CE0b(f) is such that ¢(C) = P™ (), |Hom(C,I)l=m. By the property (8), C is
isomorphic to an f -object I” and, hence, there is an isomorphism from the algebra
PP@ ) to the algebra ¥ ™. Since & is finite and P F )T I ™, PAY =A™
and, thus, any function on the basic set of the algebra & of n variables coincides

with a certain term of this algebra. Therefore, & is primal, £ is isomorphic to
~ — v
T &) and, by theorem 8.2, M (d )=BA A

In the introduction to the present chapter, we have mentioned that one of the
“external” characteristics of varieties often essentially characterizing its internal structure

is the notion of a spectrum and its variations.

Definition 8.4.

(@) A spectrum Specf of a variety M1 is called a family of the powers of

the algebras of the given variety. A finite spectrum FSpecfl of a variety M is a
family of the powers of the finite algebras of the given variety.

(b) A fine spectrum of a variety 7 is a function Specqp (R) which puts the

power of a set of types of the isomorphism of I -algebras of the power X in
correspondence with an arbitrary cardinal R, i.e., Specym R)=IJH €MITI=R}. A

finite fine spectrum FSpecy (n) of a variety M is a limitation of the function
Specyp 0 .

Lemma 8.1.

(a) If the varieties M and M, are rationally equivalent, SpecMfl = Specill,,
FSpecll = FSpecf,, and the functions Specm,Spec_m1 and FSpecm,FSpecm1

coincide.

) If JAy=M&A €\¥ is finite}), FSpecWl = FSpecfM,, and for any
n€w, FSpecy (n)= FSpec_mo n).

The statements of the lemma are obvious. Therefore, we get, in particular, that
spectra and fine spectra can characterize varieties only to the accuracy of rational
equivalence. On the other hand, when trying to characterize varietics with a finite or
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a finite fine spectrum, it would be natural, as is shown by the statement (b), to limit
ourselves to the varieties generated by their finite algebras. Indeed, for any variety
MM, if M, is an arbitrary variety having no non-singleton finite algebras,
FSpecll = FSpecl @M, and for n€w we have FSpecy (n) = FSpecy om, ().

Choosing here different not rationally equivalent varieties as f;, we can get families
of not rationally equivalent varieties with the same fine finite spectrum.

It should be noticed that, since the varieties are closed with respect to direct
products, and by virtue of the Lowenheim-Skolem theorem for elementary classes of
algebras, if SpecMl = {1}, for any infinite cardinal X we have Speclll 5X.
Therefore, only the finite spectrum of a variety can impose essential limitations on

The description of the fine and, in particular, finite fine spectrum of a variety,
which is a trivial problem in a number of cases (varicties of Boolean algebras, of
vector spaces), can, on the other hand, be a problem of greater complexity (varieties
of groups, lattices, etc.).

In a work by W.Taylor [227] one can find a number of interesting digital
functions which are finite fine spectra of some varieties of algebras.

The finite spectrum of a variety is, evidently, a multiplicatively closed subset of
w, the inverse statement being also valid.

Theorem  8.5. Let f be a mapping from w to o such that
fO) =0, f() =1, and if f(@m),f(n)>0, f(m-n)>0. In this case there is a variety
M such that

() for any nEw we have f(n) < FSpecq (n) <Xy;
(b) f(n) =0= FSpecq (n)=0.

Proof. For nz2,0sm< f(n) let us define algebras
Jnm =<{l,..,n}; D.g.a; >i=,, where D is a discriminator on {l,...,n}, g is a certain
cyclic permutation on {l,...,n} fixed for a given n, and a; = min(n,max(Li -m)). Let
m-m,, n=20s=sm< f(n)}. By theorem 2.10, M is both congruence-
distributive and congruence-permutable. By theorem 2.16, any subdirectly non-
decomposable M -algebra belongs to the class HSW@ ), where & is a certain
ultraproduct of algebras of the type ¥ nm- But any subalgebra of a similar
ultraproduct is simple (the discriminator D belongs to the signature of the algebras
v/ nm and, hence, it is also a discriminator on the ultraproduct). Therefore, all

subdirectly non-decomposable I -algebras belong to S(& ), where & is a certain
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ultraproduct of algebras of the type & nm+ But since it belongs to the signature of
the functions g, any ultraproduct of algebras of the type & am contains no finite
subalgebras, except for the cases when either the ultrafilter is principal or all
cofactors, except a finite number of them, coincide with the same algebra, H nm:
Therefore, all finite subdirectly non-decomposable X7 -algebras are subalgebras of

some of the algebras & and hence, a family of finite subdirectly non-

nm:>
decomposable 7 -algebras coincides with the set {& amin=20=m< f(n)}. Hence,
any finite M -algebra is a subdirect product of a finite number of algebras from
“, mlnz20=m< f(m}. In particular, any finite MM -algebra belongs to a certain
variety M, = M (I , .12 s n<s50sm<f(n)}), where s€Ew. But M is a finitely
generated, semi-simple, congruence-permutable variety and, hence, by theorem 6.3,
any finite 7, and, therefore, any finite M7 -algebra is a direct product of algebras of
the type & nm- But this fact, since the set {nlf(n) >0} is multiplicatively closed,
implies the statement (b) of the theorem. The statement (a) follows from the
definition of constants a; on algebras of the type & ,,,. W

Bearing in mind the statement of the theorem and the remark made before its
formulation, we get the following corollary.

Corollary 8.1. A subset K of the set w is a finite spectrum of a certain
variety (which can be chosen to be adiscriminator variety) iff K31 and K is
multiplicatively closed.

We can prove the following theorem in an analogous way.

Theorem 8.6. If P is a certain set of simple numbers, there is a 2P of
pairwise rationally non-equivalent varieties J# generated by a family of their finite
algebras and such that for all n€w we get FSpecy (n)=1 if all simple divisors of
the number » lie in P, and FSpecy (n)=0 in the opposite case.

Proof. For any nEw let us define algebras Jn =<{l,....,n};D,g,1> and
B, =<{l,...n};Dg,1>, where D is a discriminator on {l,...,n}, g in B, is a cyclic
permutation on {2,..,n} and g in &, is a cyclic permutation on {l,...,n}. Let Q,0,
be a decomposition of the set P, and My, , =M (I ,. B, 1n€Q, mEQ)).

As was the case in the proof of the previous theorem, first we show that only
direct products of the algebras ¥ ,, B, (n €Q,,m €Q,) can be finite M 0,0, -algebras.
Now we have to remark that for different decompositions Q,,Q2, and Q,0; of the
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set P of the variety, M 0,0, and .mQ{,Qé are not rationally equivalent. Indeed, for

nEQ,\ 05, the algebras B, and ¥, are the only algebras of the power n
belonging to the varieties M, , and My, o, respectively. The algebra B,,

however, contains the one-element subalgebra {1}, while the algebra &4, has no one-
clement subalgebras. W

Using direct products and families of varieties one can easily prove the
following theorem.

Theorem 8.7. A class £ of functions which are finite fine spectra of
varieties is closed under the following operations:

(@) if f,gER, also fxgER , where f*g(n)=2f(d)-g(n/d);

din

) if fER  kEw, also f[k] €R, where f{k](n)=f(m) if n=m" for some
m, and f[k]( n) =0 in the opposite case;

(c) if f,gER, there is an hER such that for any nEw we get

f(n)g(n) s h(n) <n!f(n)g(n),

(assuming here 0-Xy=0). In particular, h(n) =0 iff either f(n)=0 or g(n) =0, and
h(n) is finite iff both f(n) and g(n) are finite.

It should be remarked that one cannot claim that £ is closed under the product
of functions. Indeed, let m-ma,x), where
¥ =<{0,1:+,0>,F, =<{0,1};+,1> and + is a binary addition on {0,1}. Then we
get

FSpecq (2) = FSpecy (16) = 2, FSpecqy (6) =0.

However, as will be shown in the theorem to follow, for any variety M, if
FSpecy (2)=3+m and FSpecy (6)=0, FSpec_ml(23+m”) >3 +m. Therefore, the

function f =FSpec§” cannot be a function of the finite fine spectrum for any

variety.

The following properties of the functions from £ can be easily deduced:
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N f(mk)zf(m) for any mk €Ew;
(2) for any ny,...,n; Ew we have

k

. J DI
([ Imy=Z—] [ rm).

i=l (un’)' i=1

More subtle properties of functions from £ will be discussed in the theorem to
follow. Since its proof is based on the lemmas from the proof of theorem 8.9, it
will be given after them.

Theorem 8.8. If fER,

(@ if f(2)=1, f(6)=0 and f(2)>1 we get f(2k+l

(by if £(2)=2, f(6)=0 and f(2% >2, we get f**)>

2;
©) if f@)=3+m, f6)=0, fF(2*"™)>3+m

(here k,m,s are arbitrary elements from w).

The properties of the functions of finite fine spectra of varieties considered
above leave, nonetheless, a whole number of problems open for discussion.

Problem 8.1. To find any description of the class of functions £ .

Problem 8.2. Is the set £ Nw® closed in the space w®? In other words, if
f is a function from @ to e that is finitely approximated by finite fine spectra of
varieties (for any NEm there is a varietyMy such that for ns<N
Sf(n) = I'Specm (n)), will f obligatory belong to £ (i.e., is there a variety M

such that f(n)= FSpecqy (n) for all n€w?) ?
The following problem is of interest in connection with theorem 8.6.

Problem 8.3. Let §={<myny,..mn > km,n;Ew, and for no variety
A, the equalities FSpecy (m;) =n; are simultancously valid for all 1<i<k}. Is § a
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recursive, or a recursively enumerable set ?

In section 6, when discussing algebras with a minimal spectrum, we have
shown, in particular, that the conditions imposed on the spectrum, the finite or the
fine spectrum of a variety impose quite strict limitations on the variety itself. In some
cases, varicties with one or another limitation on their fine spectrum can be described
even to the accuracy of rational equivalence, which will be demonstrated in the
theorems to follow.

From now on, in theorem 8.9 and the related lemmas, + and - will denote the
operations of addition and multiplication by the module 2 defined on the set {0,1}.
Obviously, in this case the operations xAy and xvy are defined on {0,1} by the
terms x-y and x+y+xy.

Let us introduce the following notations for certain two-element algebras:

i =<{O;x+y+z>,

A, =<{01xx+y>,

Hy =<{0,;x+y+z,xy+ yz+2x>,

314 =<{0,Ex+ L x+y+Z,xy+yz+zx>,

Hs=<{0,};x+y+z xy>,

He =<0} x+y,xy>,

F =<0, Lx+y, xy>,

2’(8 =<{0,l};x+L, x+y+z>,

Ho=<O,;Lx+y>.

In the Post classification, the varieties generated by these algebras are referred
to as follows:

M @F )= 1, is a variety of Boolean 3-groups,

M ,)=1; is a variety of Boolean groups,
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M ;)= D is a variety of Boolean 3-rings,

M A ,)=D; is a variety of Boolean 3-algebras,

M )= C, is a varety of Boolean lattices,

M) =C, is a variety of Boolean rings,

M A ;) =C, is a variety of Boolean algebras,

M g) = Ls is a variety of Boolean 3-groups with supplements,
M@ ) =1, is a variety of Boolean groups with supplements.

Theorem 8.9. Let a variety [ be generated by its finite algebras. Then the
following statements are valid.

(@) The fine spectrum of M obeys the condition FSpecy (n) =1 if n=2* for

some k Ew, and FSpecy (n) =0 for all other n€w iff MM is rationally equivalent
to one of the following varieties: I,,L3,D,15,C4,C,,C,.

(b) The fine spectrum of M obeys the condition FSpecgy(n)=1 if n=1,
FSpecy (n) =2 if n=2% for some 1sks w, and FSpecy (n)=0 for all other
n€w iff M is rationally equivalent to one of the varieties, Ls or L.

Proof. Let us first remark that the algebras ¥, ,4,....d ; are quasi-primal,
i.e., the term x+ z+ xy+ yz+zx definable in them is a discriminator on {0,&}. It is
also obvious that the algebras Jf 14 o are simple Abelian algebras with one-clement
subalgebras, while Jfg,y o are simple Abelian algebras without one-element
subalgebras. Now the statements of the present theorem on fine spectra of the
varieties (¥ ;)(i=1,....9) result directly from the statements of theorems 6.4 and
6.5. Therefore, it remains to be shown that the converse is valid, i.e., that any
variety generated by its finite algebras and having a fine spectrum of one of the
types listed in the theorem is rationally equivalent to one of the varieties M (J ),
where i =1,....7 or i =89, respectively.

Let us first analyse the terms definable on the algebras &,....& o.
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Lemma 8.2.

(@) Every term of the algebra 4, has the form Ex,-, where Kl is odd.
i€k

(b) Every term of the algebra &, has the form Ex,-, where |Kl is an
i€k

arbitrary natural number.

(c) The functions defined by the terms of the algebra &, are exactly those
among the functions F:{O,l}k—a{O,l} which obey the conditions F(O,..,0)=0 and
F(xy +1,..,x, +1) = F(xy,...,x) + 1. The equivalent condition is as follows: it must be
the set of functions F:{O,l}k——>{0,l} for which F(oy,...,0) is either x or y in the
case when ay,...,a; are contained in the set {x,y}.

(d) The functions defined by the terms of the algebra &, are exactly those

among the functions F:{O,l}k—>{0,1} which obey the condition
Fxy +1,...,x, +1) = F(xp,...x;)+1. And this is the equivalent condition: it is the set

of functions F:{0,1¥ = {0,1} for which F(c,...,at;) is either x or y, or 1+x or
1+y in the case when aj,...,a; are contained in the set {x,y}.

(e) The functions defined by the terms of the algebra & are exactly those
among the functions F:{O,l}k—>{0,1} which obey the conditions: F(O0,..,0)=0 and
K1,..,1)=1.

(f) The functions defined by the terms of the algebra &4 are exactly those
among the functions F:{O,l}k — {0,1} which obey the condition F(0....,0) =0.

(g) Any function F:{O,l}k — {0,1} defined by the terms of the algebra J ;.

(h) The functions defined by the terms of the algebra 4 have either the form
a or a+1, where o is one of the functions defined by the terms of the algebra

&rl.

(i) The functions defined by the terms of the algebra & o have either the form
a or a+1, where a is one of the functions defined by the terms of the algebra

P

Proof. The statements (a), (b), (h) and (i) are obvious. The remaining
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statements result from the fact mentioned earlier that J5,...4 , are quasi-primal
algebras and can be directly deduced from theorem 2.14. W

Lemma 8.3. For any algebra A =<{0,1}; f;, /5....>, the coincidence of a
family of ternary functions definable by the terms of this algebra with that of ternary
functions definable by the terms of one of the algebras J,,...# ¢ implies a similar
coincidence for families of all functions definable by their terms.

Proof. This statement readily follows from that of lemma 8.2. For instance, if
a family of ternary functions defined by the terms of the algebra & coincides with
that of ternary functions defined by the terms of the algebra &5, obviously, any
function defined by the terms of the algebra #5 is also definable by the terms of
the algebra & . If the converse statement was invalid, by lemma 8.2(c), for a
certain term #(Xy,...,x;) of the algebra J there could be found ay,...,a; E{x,¥} such
that 7(ey,...,ay) would be equal to neither x nor y on 4 . But ay,...ap) 1s a

binary term and, hence, by the supposition of the lemma, the function defined by
them does not coincide with a single function defined by the terms of the algebra

A 3. The latter statement contradicts that of lemma 8.2(c). Therefore, indeed, the
families of functions definable by the terms of & and 45 must coincide. W

A function f*(xl,...,xk) defined by the equality

f*(xl,...,xk) =1+ f(x+1,..,x +1)

will be termed dual to the function f(x,...,x;) defined on the set {0,1}.
For any set F of functions defined on {0,1}, F  will denote the set

{f*l S E€F}, where F is self-dual provided that F =F. Obviously, the mapping
@x)=x+1 is a homomorphism of the algebras <{0,1}/,/,..> and

<{OILF oS>

Lemma 8.4. For any algebra v =<{0,1}; ;> /2,,,>, a set of binary functions
on {0,1} definable by the terms of this algebra coincides with one of the following
sets or their dual sets (the sign * denotes the cases of self-dual sets):

* (@ xy;

®) x,y.0x +y;
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© x%yx+1Ly+1;

(d xy.xAyxVvy;

€) %,y.,0x +y,x),Xx+ X3 y+XRX+ Y+ XY,
(f) the family of all binary functions on {0,1};
@ xy0lx+yx+Ly+Lx+y+1;

(h) x,,0;

@ xy.1;

O xy.xy;

&) xy.xy0;

D xyxyl;

(m) x,y,xy0,1;

(n) xy,xAy,xvy0;

(0) x,y,xA y,xvy0,1;

P xy.x+1y+10,1;

@ x50xy,xy+x,xy+y.

The proof of this lemma is carried out by directly checking the following

statements:

(1) each of the above mentioned sets

superpositions;

(2) any binary function on {0,1} generates one of the given sels;

of functions

is

closed under

(3) a set of any two of the sets of functions given in the formulation of the
lemma is also contained in this list. H



CHAPTER 3 197

Lemma _8.5. For any algebra & =<{0,1};f, f5,...>, if SP@ ) contains no
six-element algebra, the set of binary functions on {0,1} definable by the terms of
this algebra coincides with either of the following sets or their dual sets (the sign *,
as above, denotes the cases of self-dual sets):

* @y,
(®) x,,0x +y;
* ©) rnyx+1Ly+1;
¥ D) xyxAayxvy;
€ %50 +y, X)X+ X} Y+ XNX+ Y+ XY;
* (f) the family of all binary functions on {0,1};
* (2 xy0lx+yx+lLy+Lx+y+1.

The proof is reduced to the fact that SP(J ) contains a six-element (or even a
three-element) algebra in the cases (h) - (q) in lemma 8.4. One can also notice that,
obviously, free two-generated algebras of the variety M (J ) will also be of the
same kind in the cases (h), (j), (0), (p) and (c¢). Therefore, only the cases (i), (k),
(1), (m) and (n) are left for consideration. Let us set XQBQ{O,I}2 such that
IXl<2,IBl=3, and let B be generated by the set X with the help of the binary

operations of the algebra & in each of the cases (i), (k), (I), (m) and (n).
Therefore, B will be a basic set of a three-element algebra in SP( ).

(i) X=4{0,15},B={<0,1>,<00>,<1,15};

kK X={(01><10>41B={<0,1>,<1,0>,<0,05};
B X={00><0,1>1B={<0,0><0,1><11>};
(m) X={<0,15},B={<0,1><00>,<11>};

n X={<11><0,1>3,B={<11><0,1><00>}. B

Lemma 8.6. For any algebra i =<{0,1; A, /,..>, if SPE ) contains no
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six-element algebra, either & is quasi-primal, or a set of ternary functions on {0,I}
definable by the terms of this algebra coincides with either one of the following sets
or their dual sets ( the sign * denotes the cases of self-dual sets):

@ apnnx+y+z;
® 0,x,,2,X+y,X+Z,y+2,X+yV+2;
* © oLy x+Ly+lz+Lx+y+zx+y+z+1;
* (d) functions of the type a and a+1, where a are functions from (b).

Proof. By lemma 8.5, for binary functions on {0,1} definable by the terms of

the algebra & one of the cases (a) - (g) considered in lemma 8.5 is valid. The
sets of binary functions in the cases (b) and (g) of this lemma obviously uniquely
correspond to the sets of ternary functions described in the cases (b) and (d),
respectively, of the present lemma. From the set of binary functions presented in the
cases (e) and (f) of lemma 8.5 one can, obviously, deduce that the discriminator is

definable on {0,I} by the terms of the algebra & and, hence, that & is quasi-
primal. Therefore, we have to consider only the situation when a family of binary

functions defined on {0,1} by the terms of & coincides with one of sets given in
the cases (a), (¢) and (d) of lemma 8.5.

(a) The only binary functions definable on {0,I} by the terms of & are x and
y. Since, by the condition of the lemma, & %2 has no three-element subalgebras,
there is a term F(x,y,z) such that we get F(<0,1>,<0,0><10>)=<11>, i.e,
F(0,0,) = F(1,0,0)=1 in Y2 But F(x,x,y), as well as F(y,x,x) must coincide
with either x or y, thus we see that the following identity is valid on & :
A= F(x,x,y) =y =F(y,y,x). However, since one of the identities F(x,y,x)=x or

F(x,y,x) =y is also valid on & , we will consider the following two subcases.

(a1): Hl=F(x,yx) =y and the identities discussed above obviously yield
F(x,y,2)= x+y+2z. Therefore, we see that, in the case under consideration, the
functions x,y,z,x +y+ z are defined on {0,1} by the ternary terms of the algebra >/
The alternative now is as follows: either this set exhausts all ternary functions
definable on {0,1} by the terms of the algebra & , and then we come to the case (a)
of the present lemma, or there is one more function G(x,y,z) definable on {0,1} by
the ternary terms of the algebra & which induces only x and y as binary
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functions. By lemma 8.2, since only the case (c) of the present lemma is plausible
due to the latter condition, G(x,y,z) must coincide with one of the functions of the
type Xy+ yz+2ZXx, X+ Y+ Xy+yZ+2IX, X+Z+xy+yz+zx and y+Z+Xy+yzi+zx.
Superposition of these functions to the function x+y+z implies that the
discriminator set by the function x+ z+ xy+yz+zx on {0,1} is definable by the

terms in & .

(ap) ¥ l=F(x,yx) =x. This equality, however, combined with the above-
mentioned identities F(x,x,y) = F(y,x,x) =y, means that F is a discriminator on
{0,1}, i.e., & is also quasi-primal in this case.

(c) The only binary functions definable on {0,1} by the terms of the algebra &
are x,y,1+x,1+y. Let B be a subalgebra of the algebra & 3 generated by the
elements <10,0>, <0,10> and <0,0,1>. Then, obviously, B contains the
elements <0,1,1>, <10,1> and <1,1,0>. Since B cannot be six-clement, B

contains also one of the elements <0,0,0 > or <1,1,1> and, in addition, as .FB is
closed under the operation x +1, it must contain both of these elements. Therefore,

there exists a ternary term F(x,y,z) such that in & 3 we get

F(<10,0 ><0,1,0><0,01>=<111>, ie.

F(1,0,0) = F(0,1,0)= F(0,0,1) = 1.

Therefore, each of the functions F(x,y,y), F(y,x,y) and F(y,y,x) must coincide
with one of the functions x, 1+y. At the same time, all three functions under
discussion must simultaneously coincide with one of the functions x, 1+y, since in
the opposite case we would get the equalities x = F(x,x,x)=1+x. Thus, the
alternative now is as follows: either

F(x,y,y) = F(y,x,y) = F(y,y,x) = x,
or

Flx,y,y) = F(y,xy) =F(y,y,x)=1+y.

Let us consider the following two cases.

(cp 1= F(xy,y) = F(y,x,5) = F(y,y,x) =1+y. One can easily check that this
is possible only when we have
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F(x,y,2)=1+xy+yz+ zx,

but in this case we get
1+F(x,y+1,2) =x+ 2+ Xy+ yzZ+2x

which is a discriminator on {0,I} and, hence & is quasi-primal.

(cp) = F(xy,y) = F(y,x,y) = F(y,y,x) =x. We can also directly notice that in

this case F(x,y,z)=x+y+z and, hence, the ternary functions of the algebra &
define all the operations definable on {0,1} by ternary terms of the algebra
<{0,1};x +Lx+y+z>. In this case, the alternative is as follows: either there are no

other ternary functions definable on {0,1} by the terms of the algebra & and, hence,

the ternary functions definable on {0,I} by the terms of the algebra & coincide with
those discussed in the case (d) of the present lemma, or alongside with the ternary
functions definable on {0,I} by ternary terms of the algebra <{0,1}x+1,x+y+z>,

there are ternary functions definable by the terms of the algebra & .
By virtue of the statement (d) of lemma 8.2, all ternary functions definable on

{0,1} by the terms of the algebra & are also definable by the terms of the algebra

& 4. Owing to the fact that in this case there are ternary terms of the algebra &
not definable by the terms of the operations x+1,x + y+z, we can remark that the

discriminator on & is definable by the terms, i.e., & is quasi-primal in this case

as well.
Let us now consider the remaining case, (d), when the binary functions

definable on {0,1} by the terms of & are & x,y,xvy,xay. Since F? must not
have a three-element subalgebra, there is a ternary term F(x,y,z) on & such that

F(<00><10><11>)=<0,1>
in 2, ie.,
F(0,0,1) =1, F(0,1,1) = 0.
Let G(x,y,2) = F(xAyAZxAy,x)vVF(xAyAZYAZZ). One can directly check
that G(x,y,2) = x +Z+ xy+ yz+2zx, i.e., it is a discriminator on {0,1} and, hence, in

this case & is also quasi-primal. H

Lemma 8.7. Any two-clement quasi-primal algebra is rationally equivalent to
one of the algebras 5, & ,, Hs, A, A
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Proof. By theorem 2.14, for any quasi-primal algebra & defined on {0.1}
any function preserving the subalgebras and partial isomorphisms of this algebra must

be defined by the terms of the algebra & . Enumerating all possible candidates to be
a family of basic sets of subalgebras of the algebra & , i.e.,

1 0.1,

0 {0.1:,{0},
3 {0.5.{1},
4 {0,1,{0:1},

and all possible candidates to be partial isomorphisms between the subalgebras of
these families, we come to the conclusion that the statement of the lemma is true. W

Let us now return to the proof of the theorem. If a variety f has the
spectrum given in the statement (a) of the theorem, there is a two-element M -
algebra & and, since M is categoric at any power of the type 2"(n€w), all finite
N -algebras are exhausted by algebras & ". As Il is generated by its finite
algebras, the equality M = M (¥ ) is valid. By lemma 8.6, either one of (a), (b),
(c) or (d) considered in its formulation must be the place, or 4 must be quasi-
primal. Since in the cases (c) and (d) & is a simple Abelian algebra without one-
element subalgebras,, according to theorem 6.5, M has algebras of any power 2"
which are not isomorphic to J ", where 1sn<w. For the cases (a) and (b), or
when J is quasi-primal, statement (a) of the theorem results directly from lemmas
8.7 and 8.3.

To prove statement (b) of the theorem, let us remark that, by virtue of lemma
8.6 and theorem 6.5, the fact that a finite ¥ spectrum has the form {2"1nEw}
and # is not categoric in finite powers implies that only the cases (c) and (d) out
of those enumerated in the conclusion of lemma 8.6 are possible, but then, by
virtue of lemmas 8.3 and 8.2, the two-element algebra & generating M s
rationally equivalent to either algebra Jg or algebra & 4. W

It should be remarked that all the varieties given in the formulation of theorem

8.9 are pairwise non-equivalent, which fact can be deduced from the equalities
following directly from lemma 8.2 for 1sn< w:

1§, (m=2"" 1§, (1= 2", l:fDl(n)l=22n_l_l,



202 BOOLEAN CONSTRUCTIONS

13, 1= 27", 15 (1= 272 15, (myl= 22

15, (mi=2%", 15, (1= 2", 15, (n)l= 2",

Now, let us return to the proof of theorem 8.8 employing the lemmas just
proved.

Proof of theorem 8.8.

(@ Let fER, ie, f=FSpecy for a certain variety M, and in this case we
have f(2)=1, f(6)=0. It suffices to show that the equality f(2k+l)=1 yields the
equality f(2%) =1. Let & be a two-element J7 -algebra, and let F ' € 1 1=2%.
Then, in accordance with the equality f(2k+1)= 1, the algebra & x &' is isomorphic
to the algebra ¥ ©*' and, hence, ¥ 'E€HPW@ ). By lemma 8.6, ¥ is either quasi-

primal or one of the algebras presented in the cases (a) - (d) of the lemma under
consideration. On the other hand, the condition f(2) =1 excludes the cases (c) and

(d). Therefore, & is either quasi-primal or has the form described in the cases (a)
and (b) of the present lemma. But then, by lemmas 8.7 and 8.3, & is rationally
equivalent to one of the algebras &, - ¥, and the equality f(2% =1 results now
from the statement (a) of theorem 8.9.

(b) Let fFER, [ =FSpecyy and f(6)=0, f(2)=f(2k+1) =2. Let us prove
that in this case we get f(2%=2. Let €€ and I1=2F. ¥ Bem,
I 1=1B1=2, and ¥ #F. It should be remarked that, in this case, by theorem
2.28, we have ¥ “*1¢ B*! Therefore, B*¥ «H ' or B*F =« B*! Let us
assume that the latter is valid, & €HP(B). And again, cither €8 = B! or
€8 =A™ and, hence, either € EHP(B) or € €EHP(H )C HP(B). By lemma
8.6 applied to the algebra B and theorem 6.5, the algebra .F must obey one of
the conclusions of lemma 8.6, (¢) or (d) and, hence, according to lemma 8.3, B
is rationally equivalent either to the algebra g or to the algebra ¥, and the
statement (b) of the lemma under discussion now results from the statement (b) of
theorem 8.9.

(c) Let now f = FSpecy , f(6)=0 and f(2) =f(23+m+s) =3+ m, and thus we

come to a contradiction. Let &€,,...&,, be non-isomorphic M7 -algebras of the
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power 2. Then the algebra & *' x&,x..x€s,,, is isomorphic to one of the
algebras @?J'm”(ls j=3+m) which are pairwise non-isomorphic, by theorem 2.28.
Let us assume EP A g% X, = &Y and, hence,

€...le3,, EHPE ). The variety MM (€,), however, cannot have more than two
non-isomorphic algebras of the power 2 by lemmas 8.6, 8.3 and theorem 8.9. H

So far we have been limiting ourselves with to fine spectra solely. Turning to
values of the function Specq (x) on infinite cardinals, let us first of all recall the

equality Spec gy (R) = 2 for any infinite cardinal X for the case when the variety
is an arbitrary non-Abelian and congruence-modular variety. Indeed, by corollary 2.2,
a non-Abelian variety $1 must contain a non-Abelian subdirectly non-decomposable

algebra J  which will be, according to theorem 3.1, Boolean-separated, i.e., for any

non-isomorphic Boolean algebras B,,%,, the algebras & 5 and & 5. are also non-
isomorphic. Therefore, the equality Specy (N)=2x will result from the equality
SpecBA(N)=2N known for infinite cardinals. For the case of congruence-modular
varieties, it is possible to completely describe, by the module X,, the values of the
functions of a fine spectrum on infinite X. Since we have considered the non-Abelian
case, it suffices to analyse the functions Spec gy (X) for Abelian varieties.

Theorem  8.10. If 1 is a congruence-modular variety and the function
Ry (R) = Specqy (R) +R,, on infinite cardinals ngy R) coincides with one of the
following functions:

(D m(Rg) =27

() my(Ry) = (dd+Rp)™;

(3) my(Ry) =l +27;

@) nyNy) =lad+Rq;

(5) ns(Ry) =2

(6) ng(Ry) =Ro.

The proof of this theorem is, by theorem 2.20, reduced to the analysis of the

functions ng (R) for varieties of left unitary modules over the rings with unities and
will thus be omitted. A full description of fine spectra of varieties has been given by
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E.A.Paljutin [153].

The case of category varieties also pertains to the cases when a variety is
described to the accuracy of rational equivalence employing fine spectra. Let us not
prove the corresponding results, which are of a specific model-theoretical character,
and give instead their formulation with some required definitions.

Definition 8.5.

(@) A variety M1 is called categoric if for any cardinal N Specqy R)=1 and

BN is not trivial (has non-singleton algebra).
(b) A variety M is categoric in the power X if Specy (R)= 1.

The following limitations are also valid on the function of a fine spectrum of a
variety pertaining to the notion of category.

Theorem 8.11.

(@) The equality Specgy (Rg)=1 implies that the variety M is categoric.

(b) The equalities Specq ;) =1 and Specy (n)>0 for any n obeying the
inequalities 2 < n<X, imply that the variety 1 is categoric.

Definition 8.6. For any algebra 4 and any n=1, let us define the

operations df’ and pfj on the algebra J " in such a way that
¥
dn (< X119 Xin Zr--s< Xpls s Xpn >) =< X1 Xqn>>

v
DPnj(S Xy Xy >) =< Xy, X >

For any variety M, 1, will denote & ,l# €M}, where JF, is an

enrichment of the algebra & " with the operations d,‘;"’ and pﬁ’,i (Isisn). If #(x) is
the term of the signature of the variety f,, by 7(f) we will denote the set
{r(xy, -x )r(xy,...,x,) is the term of the signature of the variety M, and
= Yxr(¢(x), ...t (0) =1(x)}. T, () will denote a class of algebras obtained on the
basic sets of M, -algebras by including the functions definable on them by the terms

of the set 7(¢), as well as the functions d,‘,y and p‘,‘f{i, into the signature.
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Theorem 8.12. A variety M1 is categoric iff it is rationally equivalent to a
variety of one of the following types:

(@) P,(1), where ¥ is the variety of vector spaces over a certain sfield O,
n=1, and #(x) is a certain term of the signature of the variety {*,;

(b) &

»» Where & s the variety of all sets (of an empty signature), and n = 1;
(c) €,, where € is the variety of all sets with an element singled out (the
signature consists of one constant), and n=1.

Priorities. Theorem 8.1 comprises the equivalences of various statements
proved by different authors at different times. In particular, the equivalence of the
conditions (a) and (d) was proved by A.l.Malzev, that of the conditions (d) and (e)
was proved by W.Taylor [225]. Theorem 8.2 is by T.K.Hu [94], theorem 8.4 by
K.Sokolnicki [214]. Theorems 8.5, 8.7, 8.8 and 8.9 and the related proof of the
lemmas are by W.Taylor [227]. The description of categoric varicties was obtained
by E.A.Paljutin and S.Givant [77] independently. The formulation of theorem 8.12
used here belongs to S.Givant. Theorem 8.11 was proved by E.A.Paljutin for
quasi-varieties [157] (see also [156]) when describing categoric quasi-varieties, the
description of categoric positive Horn theories are also by him. Theorem 8.10 is by
Y.T.Baldwin and R.McKenzie [7], the statement of corollary 8.1 is by G,Gritzer
[85]. Theorem 8.6 was proved by A.Ehrenfeucht and can be found in {[227].
Theorem 8.3, as has been pointed out in the text, belongs to F.W.Lauvere [123].

9. Epimorphism Skeletons, Minimal Elements,
the Problem of Cover, Universality

Let £ be an arbitrary class of universal algebras, and Jf denote a family of
the types of the isomorphism of £ -algebras. Studies of the relation of epimorphism
between f -algebras result in the following notion: for a,b € IR , the relation

a<<b is valid iff there is a homomorphism from an algebra of the type of the
isomorphism b on an algebra of the type of the isomorphism a. The relation <<

will be used in an analogous sense between the algebras from £ as well.
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Obviously, << is a quasi-order relation on Jf .

Definition 9.1. The skeleton of epimorphism of the class of algebras £ will
be called a quasi-ordered class < J R ;<<>.

The present section, as well as the following ones, will be devoted to studying
epimorphism skeletons of varieties of universal algebras (basically congruence-
distributive), as well as to studying the algebras the types of isomorphisms of which
occupy extreme positions in the epimorphism skeletons of the corresponding varieties
themselves.

32 will denote the isomorphism type of the algebra & . Let us first
investigate relations between the epimorphism skeletons of varieties and such
traditional objects of universal algebra as lattices of subvarieties and those of
congruences. It should be recalled that for an arbitrary cardinal X, M, denotes a
family of M7 -algebras whose power is not greater than X. Bounded epimorphism
skeletons of the variety M will be called quasi-ordered sets < JMy;<<>, a
countable epimorphism skeleton of M will be termed a quasi-ordered set
< 3..mx0;<<>. Obviously, the epimorphism skeleton of any variety contains a least
element (let us denote it with Oy ) which is the isomorphism type of a one-clement
algebra. Any bounded epimorphism skeletons of the variety M, < I ;<<>
(X=NX) contains a greatest element which is the isomorphism type of a free algebra
Fm®).

For any quasi-order < A;<>, let =_ denote the equivalence relation naturally
associated with this quasi-order: a=_b iff a<b and bsa.

If ~ is a certain equivalence relation on the quasi-ordered set < A;<> with
convex classes of equivalence, < A/~;<> will denote the quasi-order defined on the
factor-set A/~ in the following way: [al. <[b]. iff for some c€[a]., d €[b]l. we
have ¢ <d (here [a]. is a class of ~-equivalence containing the element a). A subset

B of the quasi-ordered set < A;<> is called a semi-ideal if for any a €A, bEB it
follows from a < b that a €B. Henceforth we will often consider lattices as partially

ordered sets without pointing it out especially, if it is clear from the context.

Let us define the relation <y on Con:j"__m (X) in the following way: <3 0
iff 3?77 (N)/() <<:§"*m (N)/tp. Obviously, ¥ =6 yields ¢ =53 6, the latter implying
that there is a 8" €EConF g (R) such that y <6’ and Fp ®)/0 =Fpy /6. For
0,0’ €Con¥ g (X), the existence of the isomorphism ¥ R)/0 =Ty (N[0 will be
expressed by 6= 6'. Let us introduce one more equivalence relation on Conjm X):

6=0"if 6<y 6" and 6'<y 6. Let us also define the relations <y,,=.,=. on the
lattice Con§ g (R):
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Y <y, 0 iff there is a ¢ = ¢ such that
< ConFpm (R)z 0;v,A >=<ConFp (N)=¢;v,A >;

6=.0"iff 0<5. 6" and 0'<~ 0;

< ConFpm (N2 0;v,a >e<ConFp (N)=0";v,n>.

The following relations between the equivalence relations =,= .= =, introduced

on Conj"_m (X) and the quasi-orders < 35S 3o are also obvious:

N

sgsjgsjc.

nC
N
nCH

It should be remarked the the equivalence classes on Con‘:‘i“‘m X)) will be
convex subsets relative to = and =,. One can also easily note, by correlating the
algebras Jgy X)/6 to congruences 6 EConF gy R), that < IMy<<> is an
antimonotonic image of a partial order <C0n‘3“_m (N);=> at X=z=NKj;. Moreover,
< 3My/[=_.;<<> is antiisomorphic to < ConFy (N)/E;sj>.

In its turn, < Con§p (N)/EC;SJC> is an antimonotonic image of < I M ;<<>

(by correlating the algebra J €M and congruence 6EFH®R) so that
Fp/o=3).

The lattice of subvaricties Ly of the variety M considered as a partially
ordered set is also a monotonic image of any limited epimorphism skeleton
< IW;<<> of the variety M1 at R=NR,: it suffices to correlate the variety
MAHYTWM to the algebra F €M . The discussed relations < Iy <<,
Con:f‘_m (X) and Ly are concluded in the following statement.

Statement 9.1. For any algebra variety M1 and any infinite cardinal X, the
following antimonotonic, f,g, and monotonic, A, mappings exist, in which case
Jf.gh are surjections:
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N —& »<Con¥ g (N)/!c s3>
< Con§y g (R);=> ANy 3.-mx;<<>

—><Lm >

Let us recall some more simple facts pertaining only to the epimorphism
skeletons of congruence-distributive varieties. As was the case in the preceding
discussion, let BA be a variety of Boolean algebras, IBA be a subclass in BA
consisting of only interval Boolean algebras. It should be recalled that B4 C IBA,
and, obviously, JIBA is a semi-ideal in < JBA<<>.

Let L be the family of all linearly ordered sets. Correlating the linearly ordered
set < A;<> and a corresponding interval Boolean algebra , we get a mapping f: 3L
on _JIBA. Obviously, f preserves the relation << and, moreover, if
f(< A;=>) << f(< B;s>), there is a < C;<>EL such that f(< A;=>) = f(< C;=>) and
< C;s><<<B;=s>. In other words, there is a strong homomorphism from the
epimorphism skeleton of the class of linearly ordered sets on the epimorphism
skeleton of interval Boolean algebras.

Let now M be an arbitrary nontrivial congruence-distributive variety and let Jf

be a simple M -algebra existing by theorem 2.11. Then, for any Boolean algebra
2, any homomorphic image of the algebra & b has, by corollary 3.1, the form
a 'Bl, where B, is a homomorphic image of the algebra B . Besides, by the same
corollary 3.1, for any Boolean algebras B, and B, the relation & By s
equivalent to the relation B, <<.B,, while P and the algebra % are

isomorphic iff B; and B, are isomorphic. Hence, the correlation of the M -algebra
¥?% 1o the Boolean algebra B is an isomorphic mapping from the epimorphism
skeleton < YBA<<>of a variety of Boolean algebras on a certain semi-ideal of the

epimorphic skeleton < JM;<<> of the variety M1. Taking all the facts just
discussed into account, we arrive at the following statement.

Statement 9.2. If 1 is a nontrivial congruence-distributive variety, then there
is a semi-ideal isomorphic to < JBA<<> in < M ;<<>, and there is a certain
strong homomorphism from the epimorphism skeleton of the class of linearly ordered

sets to a certain semi-ideal of M7 .

Definition 9.2. An element a of the epimorphism skeleton of the variety m
will be called minimal if a=0gp, and for any beim, Op <<b<<a yields
either b=0gp or b=__a.
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The type of isomorphism of any simple 1 -algebra is obviously minimal in the

epimorphism skeleton of X and, hence, by theorem 2.11, there is at least one
minimal element in the epimorphism skeleton of any nontrivial variety.

Definition 9.3. A non-singleton algebra is called pseudo-simple if any of its
homomorphic images is either one-element or isomorphic to it.

Simple algebras are often particular cases of pseudo-simple ones. Unlike simple
algebras the congruence lattices of which are two-element, the congruence lattices of
pseudo-simple algebras can be arbitrarily large.

Theorem 9.1. The congruence lattice of any pseudo-simple algebra is well-

ordered and has the form of a non-decomposable ordinal o? +1, where B is a

certain ordinal. For any ordinal B there is a pseudo-simple algebra with its

B

congruence lattice isomorphic to «w" +1.

Proof. Let & be a pseudo-simple algebra. Let us first remark that & has a

monolith. Indeed, let us choose a= b & , and let 6 be a maximal congruence on
A such that < a,b >&8. Then, obviously, 03%3,/9 is the least congruence on i /6
other than Ay sy, but H[0=d . Let us now show that Condl is linearly ordered.

Indeed, if the opposite is the case, if 6,,0, €Cond and are incomparable, A /B
isomorphic to & has no monolith, since

(011617 02)A(0,/6,70,)=Ay [6,16,.

Let us show that Cond is well-ordered: choosing an infinitely descending
chain of congruences 6; >0, >..> 6, >... on ¥, we arrive at a contradiction with

the fact that Jf / zé\ 0; must have a monolith. Therefore, Condf =y, where y is an
(4]

ordinal. But, on the other hand, since for any 6= Vy; we have & o=,
Condl [0 s<{6,ECondl 16, = 0);s>= Condl ,

i.e, for any o€y we get <{6Eyld=a)s>=y. The fact that such not limit

B

ordinals have the form " +1 for a certain ordinal § is well-known. Thus, the

theorem is thus proved in one direction.

Let us now construct a pseudo-simple algebra & such that Condl = wf +1 for

B B

an arbitrary ordinal @” +1. As the basic set of J let us choose an ordinal ",
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P in the following way: f(a,bc)=0 if

and let us define the function f on w
a>bc, and f(a,b,c)=c otherwise.

We can easily notice that for any congruence 8 on & =< w? ;f>, one of the
equivalence classes relative to 6 has the form of the initial interval in the ordinal
o?, while all the other classes are one-clement and conversely, any similar
equivalence on wP is a congruence of the algebra J . Therefore, indeed,

Condl =P +1. 1t is also obvious that & is pseudo-simple. M

Thus, the types of isomorphisms of pseudo-simple algebras, as well as those of
simple algebras, are obviously minimal in the epimorphism skeletons of the varieties
containing these algebras. In search of describing all algebras the types of
isomorphisms of which are minimal in the epimorphism skeletons of the varieties
containing them, we come to the following definition.

Definition 9.4. A one-clement algebra & is called quasi-simple if for any
congruence o on & other than the greatest, there is a congruence B on 4 such
that B= a and ¥ /B is isomorphic to ¥ .

In particular, simple and pseudo-simple algebras are quasi-simple as well.

Obviously, for any variety M, an element a€ 3% is minimal in
< 3M ;<<> iff a is an isomorphism type of a quasi-simple algebra. In this case, a
will be an isomorphism type of either a simple or a pseudo-simple algebra iff the
equivalence class =__ on M containing the element a (let us refer to this class
as [al.__) is one-element. Therefore, the power of [al,__ can serve as a measure of
distinction of a not simple and not pseudo-simple algebra from the latter.

It should be noticed that, since any algebra is decomposable in a subdirect
product of subdirectly non-decomposable algebras, for any quasi-simple algebra there
is a subdirectly non-decomposable algebra =__-equivalent to it. Therefore, the number
of quasi-simple algebras of the variety 1 which are pairwise non-equivalent in
terms of =__ (the number of minimal elements which are pairwise non-equivalent in
terms of =_. in the skeleton of < ¥ ;<<>) is not greater than the number of
non-isomorphic subdirectly non-decomposable algebras.

The following statement shows that well-ordered congruence lattices are not
characteristic of pseudo-simple algebras even in the class of quasi-simple ones and,
moreover, there are quasi-simple algebras with well-ordered congruence lattices and
any measure of distinction from pseudo-simple algebras. Let ¥4 denote this

isomorphism type of the algebra & .
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Theorem 9.2. For any ordinal >0 and cardinal X not greater than lo?|

(strictly less than X, for the case when B=1) there is a quasi-simple algebra &
such that Cond =wf +1 and 13 1._I=R.

Proof. Let ¥, =< w’3 ;J > be a pseudo-simple algebra constructed in the proof
B p p g

B

of theorem 9.1, i.e., Con?]ﬁ =w” +1, and let any congruence BEConJJﬂ be such

that the only non-singleton equivalence class relative to 8 has the form of the initial

B

interval on w", and let any initial interval on of be the equivalence class for a

certain congruence on ¥ g.

B B

Let g be a certain unary function on w" such that g(x)<x for all xEw

and, therefore, any congruence 0 ECond p remains a congruence in the extension

H} =< 4,g> of the algebra H 5 by adding the function g in the signature.
B 88 g [

Let us consider the two cases:(a) when X is infinite, and (b) when X is finite.

In the case (a), let X =w,;. Let us define the function g(x) on w, in the
following way: g(n)=0 for all n<w. If g(x) is already defined on all

J

i< wj(]'<ws), then let us set g(y)=y for y (szy<w +wj), and let us set

g(y)=g(6) for any y=(wj+wj)'n+6 O<n<w and 6<wj+wj). These
j+l

conditions define g on the ordinals less than w’" . Therefore, the function g is

defined on all y < w,. If wﬂ=ws, g is defined on the entire Qfﬁ, while if

w, <wP | g is periodically defined furthermore on & g = P

with the period w;.

Let now 191,(}/<w's ) be a congruence on & g uniquely defined by the
following condition: there is an equivalence class over 6, equal to {816 <y}
Obviously, at ji<j, <w,, we have H;[0 , #d;[6 , . Indeed, the identity
g(x) = x is fulfilled in Qfé/ewjl on the first w’ elements, while in Agzfo , in
the first w’2 elements (the natural order on the ordinal-elements & é is defined with
the function f obviously). Therefore, we get I[3H 1. 1=X.

B B

For any i< w” there is a y <w” and a finite set ©”" 2...2 @’* of ordinals less

than w, such that i=ws-y+wjl +.+w’* . In this case, by the definition of g and
dp, it is obvious for i =w;y+e! +@* that the mapping
h(j)= o,y + 0! + "' 4} is an isomorphism of 44 and 3];;/0,.1 . Therefore,
v/l é is quasi-simple and the statement of the theorem is proved for the case (a). The

construction of the function f for the case (b) can be carried out analogously. H
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Definition 9.5. A partially ordered set (lattice) L will be termed upper-non-
decomposable if for any not greatest element @ from L there is a b€L such that
bza and L is isomorphic to L, ={c ELIc = b}.

According to the theorem on homomorphisms, the congruence lattice of a quasi-
simple algebra is algebraic and upper-non-decomposable.

Let us show that, under certain additional conditions, for an algebraic upper-
non-decomposable lattice L, there is a quasi-simple algebra & such that Condl = L.
This, in particular, implies the statement on the existence of a greater number of
quasi-simple algebras of any infinite power.

& (L) will denote the upper semi-lattice of compact elements of the algebraic
lattice L, R(L) a partially ordered set of v-non-decomposable elements of the semi-
lattice & (L) (an element a is v-non-decomposable if for any b,c, from a=bvc
we have either a=b or a=c). A complete lattice L is called well-distributive if for

any sets [,J;(i€I) and any families of the elements ¢; (j EUJ,-) of the lattice L
il

the following equality is valid:

iél( jé] €)= feﬁJi (iélcf ®)-
J&l
The following characterization of algebraic well-distributive lattices is known
[44]: a lattice L is algebraic and well-distributive iff it is isomorphic to the lattice
I(< A;<>) of non-empty semi-ideals of a certain partially ordered set < A;<> with a
least element. In fact, one can choose the set R(L) as < A;<>.

Definition 9.6. The algebraic lattice L is called strongly upper-non-
decomposable if the partially ordered set R(L) is upper-non-decomposable, and the
biggest element of L is not compact.

By virtue of the characterization of algebraic well-distributive lattices given
above, it is obvious that if such lattices are strongly upper-non-decomposable, they
are upper-non-decomposable.

Theorem 9.3. For any algebraic well-distributive strongly upper-non-

decomposable lattice L there is a quasi-simple algebra & such that Cond =L.

Proof. Let the lattice L obey the conditions of the theorem. As has been
noted earlier, L=I(R(L)). The functions f,f, are defined on R(L) in the
following way: fi(a,b)=0 if a=b, fi(ab)=a if a=b (here 0 is a least element
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of L), fo(ab) =0 if a<b, f(ab)=a otherwise.

Let & L=< R(L); .,/ >, where R(L) is the basic set of the partially ordered
set R(L). Let us prove that Condl | = L.

For any 6 €Condl ; there is a non-empty semi-ideal I, of the set (L) such
that all the equivalence classes in terms of 8 are Ig.{a}, where a€R(L)\I,.
Indeed, let I, be a non-singleton equivalence class in terms of 8, a,b €Iy and
azb. Then a= fi(a,a)=y fi(ab) =0, ie, OE€I;. If c€I; and d<c, d=0,
0= fr(d.c)=¢4 /(d,0)=d, ie., any non-singleton equivalence class in terms of 6 is
a semi-ideal in R (L) and, since (L) contains the least element O, this class being
unique.

The validity of the converse statement can also be checked directly: for any
non-empty semi-ideal I in R(L), the equivalence with the classes I{a}, where
a€R(L)\1, is a congruence on & ;. Therefore, Condl ; = I(R(L)) = L.

To prove the theorem, one now has to notice that & ; is quasi-simple. Indeed,
for any 0 ECond ; if 0¢V31L,A2,L, there is a semi-ideal Iy = R(L) which is the
only non-singleton equivalence class in terms of 6. Let ¢ER(L)\Iy. As L is
strongly upper-non-decomposable in R(L), there is a d=c such that R(L) is
isomorphic to an interval {b ER(L}b=d}. Let J be a semi-ideal in R(L) equal to
RI)\PERDIb=d}y. Obviously, J2Ig and, hence, 6, 26, =0 (0, is a
congruence on & . with the classes J,{a}, where a€R(L)\J). Besides, the
isomorphism R(L) and { ER(L)b=d}, as well as the definition of ¥ 1 yield the
isomorphism ¥ ; /6, and ¥ 1- Therefore, indeed, &, is quasi-simple. B

The condition of well-distributivity is not necessary for congruence lattices of
quasi-simple algebras. Moreover, as can be seen from the next theorem, the
limitations on congruence lattices of quasi-simple algebras are not local (interval)
limitations, but algebraic ones.

Theorem 9.4. For any algebraic lattice L there is a quasi-simple algebra ¥
of a finite signature such that L is isomorphic to the ideal of the lattice Condl .

Proof. Let L be an arbitrary algebraic lattice and L; = L®1, ie., I is
obtained from L by adding a new greatest clement. Let of ‘' =< A;o0> be a certain
algebra (existing by theorem 2.4) such that Condf =I,. By the same theorem, as
V. is compact, 2’ can be chosen of a finite signature. Since Vi, is v-non-

decomposable, let it be principal in ¥ . Let g,,g, €' be such that Vy, = Bg \;2.

Let also e= ', and let us define the algebra & " =< A'U{e};0> in such a way
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that & "D ', and for any fEo, any chain @ of the elements of 4" we get
f(@) =e if at least one of the elements in @ is e. Obviously, I; is isomorphic to
the ideal of the lattice Condl ” generated by a congruence on & " with the
equivalence classes A',{e}. For i€w let J; =< A; 0> be pairwise disjunct algebras
isomorphic to & ”, the elements gli, gé,ei of the algebra &; corresponding to the
elements g;,g,.¢ of the algebra & " under these isomorphisms. Let us define the

algebra J =< A;0,g,h > in the following way: A= UA,-, I 2¥,; for all i€w,
Ew
and f(a@) =¢y for fE€o provided that the chain @ belongs to no A;. The ternary

function g will be defined on A in the following way:

g(abc)= gli" if a= gl'i’, b=c,bEA,,cEA, and i< max{i,i},

g(abc)= gé" if a= gé", the conditions on b,c being the same,

glab,c)= ed if a= ei", the conditions on b,c being the same,

gla,b,c)= et if b= cEA,-1 )

glabc)= ¢ otherwise.

The unary function 2 will be defined by the following condition:

h(a)=ei if a=g1i,

h(a) =€ if a=gi,

h(a) =¢" otherwise.

Let y €Condl . 1t is clear that, if for some b=cbEA ,c EA; i =i, and
<bc>€y, UAiU{ei‘} is contained in one and the same equivalence class in terms
of 9. Indeecl;,llfor any i<i we get

8k = 8(8b.c) =, € = g(gh.b. b),

e’ = g(e' b.c) =y €" = g(e' b.b)
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and, since Bj{"g,. = Vy , all the elements of the set UA,-U{ei‘} belong to one and
1-52 ! i<y
the same equivalence class in terms of o .
In an analogous way, using /i, we see that if <gi.gb>Ep, <é' '™ >Ep. On
the other hand, one can directly check that for any 8 €Condl ; such that 6= V‘yl,

the equivalence 1(6,i) with the equivalence classes: UAjU[ei]g, 0 -classes on I ;
Jj>i
containing no e’ and, finally, one-clement subsets of the set UA~, will be a
Jj>i
congruence on & . Therefore, we get

Condl =Condl y ®Condl |®..®Cond ;®..®1,

where i Ew. Now we have to prove that & is quasi-simple. Indeed, if ¥ €ECondl
and y =Vy, there are i€Ew and OECond; such that y =vy(6,). Then

Y1 =9(Vy i)z ¢. From the definition of Z and P(Vy ,i) one can directly see
that F [y, =¥ , ie, ¥ is quasi-simple. W

Now the following problem is open for discussion.

Problem 9.1. Is there a quasi-simple algebra 4 such that Condl =L for
any algebraic upper-non-decomposable lattice L?

By way of concluding the discussion of quasi-simple algebras let us recall some
more of its elementary properties.

Theorem 9.5. If J is a quasi-simple algebra which is not simple,:
(1) Vy is not compact;
(2) if the J signature is finite, & contains a one-element subalgebra;

3) if the J signature is finite, & is not finitely generated.
Proof.

(1) Let R be a certain chain in Condf \{Vy} maximal in terms of inclusion.
In this case, R has no greatest element, since if 8 were the greatest element in R
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then, as 4 is quasi-simple, there would be a congruence 6'=6 such that
H[0'=H . Let f be an isomorphism of & [6' on ¥ . Since ¥ is not simple,
there is a ¢ ECondl such that Ay <¢ <Vy, but in this case 0<f(¢)<Va,
which contradicts the maximality of the chain R. Hence, R has no greatest element.
On the other hand, it is obvious that, since R is maximal, G\éR6=V2,. As

RC Condf \{Vy}, and R is the chain without a greatest element, Vy cannot be a
finite family of elements from R, which proves the fact that Vy is not compact.

@) If o=<f", .,/ > is the signature of & , let a be an arbitrary element
k
of . Let b= f"(a,...a)isk and 6= v 65’1,1_. Since, according to (1), Vy is

im1
not compact, 8§ <Vy and, as & is quasi-simple, there is a 6'>6 such that
[0 = . However,

k
Jl/m = ile flaly-lalg) =[aly,

ie, & /0’ and, hence, & as well, have a one-element subalgebra. Obviously, we
can claim even more: for any positive formula @(x,,...,x,) fulfilled on & , there is a

one-element subalgebra {€} such that & I= g(e,....).

3) If A was generated by a finite set of its elements ap,....a,, and {e¢} was a
m

one-clement subalgebra of the algebra & ({e} exists by virtue of (2)), Vy = v1 s, ¢
=

was compact, which contradicts the statement (1). H

Corollary 9.1. In the epimorphism skeleton of any variety T of a finite
signature only one-elements =__-equivalence classes have minimal elements less than

5?77 (n),n <w.

The proof of the corollary results immediately from the statement (3) of the
previous theorem.

It should be noticed that, in line with what has been proved by G.Tardos [22],
for varieties of in infinite signature the corresponding statements are no longer valid:
there are finitely generated pseudo-simple not simple algebras of an infinite signature.

Definition 9.7. An element a is called the cover of an element 4 in a
quasi-ordered set < A;=> if asb,[al._ =[bl.__ and, for any c€A such that
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ascsb, we have either c<a or bsc. An algebra J is called the cover of the
algebra &' in the variety M provided that J& is the cover of ¥ ' in the
epimorphism skeleton of 7 .

Therefore, minimal elements of the epimorphism skeleton of any variety are the
covers of the least element (of a one-element algebra) and, as has been noted earlier,
there exists at least one cover of the least element. The problem arises whether there
exists a cover for any element in the epimorphism skeleton of an arbitrary variety. In
the general case, the answer remains obscure. In the considerations to follow, a
number of sufficient conditions for the existence of covers of various algebras will
be given, basically for congruence-distributive varieties.

Let k(& ) stand for the least number of generating elements for & for any
finitely generated algebra & .

Definition 9.8. A variety M has the basis property if for any finitely

generated algebra & €M and finitely generated proper subalgebra 4, of the algebra
& the equality k() < kH ) is valid.

Examples of varieties with the basis property are, obviously, the varieties of
vector spaces over any fixed field, and, generally speaking, the varieties of algebras
in which the sets of independently generating aigebras have the same number of
elements, and any set of independent elements is extendable to the set of
independently generating algebras.

Theorem 9.6. If a variety M has the basis property, any finitely generated

DT -algebra has a cover in the epimorphism skeleton of M7 .

Proof. The proof of this theorem basically follows the ideas used in proving
theorem 2.11. Let M7 be a variety with the basis property, 4 be a finitely
generated I -algebra and k = k(& ). By theorem 2.11, & can be considered non-
singleton. Let §) = Fpp (x,...%,1).F =Fp (x1,...x) and let 6EConF be such
that & =F /0. Let 6, denote a congruence on J, generated by the pairs
<a,b >€0. Considering the homomorphism from the algebra §; to § defined by
the conditions f(x;)=x; for i<k and f(xg,) =x, we see, by corollary 2.1, that
the bound 6, on F(6)F) is 6.

It should be noticed that 6, £0, . . Ny X
Let us choose an A(Xj,...,x;) EF| such that < i(xy,...,x.),x >&6;. Such an & does
exist since 8|F =6 and F/6 is non-singleton. In this case, however, we get
OV Oy hZ0xx, V Oy, p =0, 5 On the other hand, by corollary 2.11, we have

Assume, conversely, that 6, =6
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the equality (6; v kaﬂ'h)lfj“ =0 (it suffices to consider the homomorphism f; from
the algebra §; to § defined by the conditions: f(x;)=x;, for i<k and
J(Xg41) = h). Therefore, we see that <x;,h >E6 contradicts the choice of & and,
hence, indeed, 6, ¥ 6

X1Xk+1 °

Let R={aEConFla=<6, vl and a0

Xkt }. One can easily see that

X Xg 41
R is inductive by inclusion and 6; ER. Therefore, there is a 0 €R, maximal in R
and such that 6) < 0. Let I =8 / 6" . It should be noticed that, by corollary 2.1,
the equality 6y v 6, ,, § =6 yields the isomorphism /6, v 6, =X .

1%k +1 1%k +1
. . * P
In accordance with the choice of 6, for any a€Cony; from

* . *
0 <as6; v, ,,  we geteither as or 0, ,

€ from ¥ <<€ << |, we get either € <<& or H, <<€ . In order to prove
that &, is the cover of &, we now have to show that &, ££J .

Let us first remark that the class of 0 -equivalence containing x,; does not

s a. Therefore, for any algebra

intersect with § . Conversely, if we had <h(x1,...,xk),xk+1>60* for a certain
h(xy,....%;), then, by the inequality 6'*<6; v6, , , we would have the inclusion

<h(Xy,e 0 %), Xy >EO VO,
ie.

< .xl,h(xl,...,.xk) >Eel \" gxl Xkt '3 .

I¥ =6 and, since 0=<86",

* * .. *
<xph(xy,...,x) >€0 . Thus, <x,x,; >€60 contradicts the definition of 6 . Hence,

However, as has been noted earlier, 6, v 6,
1%k +1

if @ is a natural homomorphism from §; to ¥, @(xi,;) does not belong to the
subalgebra generated by the elements @(x;),...,¢(x;). Since the minimum number of
clements generating the algebra & = @(JF) is &, the fact that the basis property is
valid for 1 yields that the minimum number of elements generating the algebra
is k+1. Therefore, &, ££¢ , ie, &, is the A cover. B

Let us now consider the problem of the existence of covers for congruence-
distributive varieties. Let I be a certain semi-ideal in < .M ;<<>. The algebra &
will be called I-extendable in the algebra &, if ¥, <<, and there is an H; €I
such that ¥ xH5=__&,.

Lemma 9.1. If M is a congruence-distributive variety, I is a semi-ideal in
< 3M ;<<> closed under direct products of a finite number of algebras, for any
DN -algebra & there is no more than one algebra (to the accuracy of =__) which is
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minimal relative to the quasi-order << among algebras I-extendable to & .

Proof. Let &, and &, be minimal among algebras I-extendable to & , i.e.,
there are algebras &', ¥ " €I such that ¥ =__ A xH ' A =__ A, xA ", and for
any J ", "" €1 and any algebras ¥;. ¥, we get F, <<d; from F;<< ¥, if
= A;xH", and we get H,<<H , from H <<, it A =__ A, xT"". Let
us show that in this case we have J; <<d, (by symmetrical consideration we then
get H,<<dl, ie, = ¥,, and the lemma is thus proved). By theorem 4.2,
as has been noted in section 4, in a congruence-distributive variety ff for any
algebras &£, €M and any 6 €ECon(€, x&€,) there are 6; ECon& (i =1,2) such
that &€, x&,/0=& [0, xE,[6,. Since H,xH " << xH "', A, << xH' and,
according to what we have just discussed, there are J <& * such that &5 <<,
A" <<l and H,=Asxd V. As I is a semi-ideal closed under finite direct
products, we get F ', ¥ "xH""€l. Therefore, H =__ A sx(H"xA")H 5<<H,
and, since J; is minimal among the algebras I-extendable to &, we get
A, << 5. However, ¥ 5 <<¥, and, hence, indeed, &, << ,. W

Lemma 9.2. If M is a non-trivial congruence-distributive variety, then there
is a well-ordered semi-ideal in < J M ;<<> closed under direct products of a finite
number of algebras and not a set itself.

Proof. Let Ord be the family of all ordinals. It should be recalled that for
any linear order < A;s> by B<A;s> we mean an interval Boolean algebra
constructed on the order < A;s> (see section 1). One can easily see that the family
{B(w” *n)la €EOrd ,n Ew} forms in < IBA<<> a semi-ideal of the type presented in
the formulation of the lemma. Let & be a simple M -algebra. Then, by corollary

3.1, we obviously get that (¥ *®“"la€0rd ,n Ew} is the semi-ideal in
< 3, <<> with the properties required. M

The semi-ideals with the properties presented in lemma 9.2 will be called Ord -
chains. The same notation will be also used for the semi-ideals in < .07 ;<<>
obeying the conditions of lemma 9.2 with the requirement of well-ordering replaced
with that of the factor of the semi-ideal relative to =__. It should be noticed that, by
choosing quasi-simple 7 -algebras incomparable relative to << as ¥ in the proof of
lemma 9.2, we get different Ord -chains in < J%T;<<> with the only common
element Oy - Therefore, the number of different Ord -chains in < 3M:<<> is not
less than the number of pairwise =__-non-equivalent minimal elements in

<3 <<>.
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Definition 9.9. The power of the maximal set of pairwise =__-non-equivalent
minimal elements in < Jf;<<> will be called the initial width of the epimorphism
skeleton of a variety M7 .

Theorem 9.7. If M is a congruence-distributive variety, & €%, and the
principal semi-ideal generated by an element J& in < 3 [=__;<<> is well-
founded, & has a cover in < MM ;<<>, and the number of such =__-equivalent
covers is not less then the initial width of < 3.7 ;<<>.

Proof. Let I be any of Ord -chains in < JM;<<> existing by lemma 9.2.
Let &, be minimal among the algebras I-extendable to 4 . The algebra &, does
exist since the principal semi-ideal generated by the element JI&  in
< 3M [=__;<<> is well-founded. Let ¥ =¥ ;xH A 'EI. Let A" be a minimal
algebra in terms of the order << in the Ord -chain among the & ' €I such that
& ##3 xIA " The existence of such F ' is prompted by power considerations
(I is a proper class, not a set), while the existence of a minimal A" follows from
the fact that I is well-ordered. Let us show that J,x& " is the cover of ¥ .
Indeed, ¥ '<<d” and, hence, & = xF '<<¥;xd". By definition,
H xH " £t . Let now € €M be such that F <<€ << ;xF ". By theorem
5.2, for some H,<<¥, and F'"<<d " we have &€ =&, xd "". Since
F'"e€l, and ¥, has been chosen minimal among I-extendable algebras, we get
Ho=_ ¥, It A'" is strictly <<-less than F ", € <<, while in the opposite
case H'"=__d" and, hence, € >>H | xH ". Therefore, ¥;xIH " is, indeed, the
cover of & . Obviously, choosing different Ord -chains we get different covers of
Z . The statement of the theorem on the number of covers follows now from the
remark on the number of different Ord -chains made after the proof of lemma 9.2.
|

Corollary 9.2, If M1 is a congruence-distributive variety, 4 € and

(Cond )" is well-founded, ¥ has a cover in < M ;<<>, and the number of such
=__-non-equivalent covers is not less than the initial width of < J#;<<>. Here

(Condl )" is a lattice dual to the lattice Condf .

The proof results from the statement of theorem 9.7 and the fact that the
principal semi-ideal generated by the element JJ in < I ;<<> will be, as a
monotonous image (see 9.1) of a well-founded lattice (Condl )*, well-founded itself.
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Theorem 9.8. If M is a congruence-distributive variety and & is a

subdirectly non-decomposable I -algebra, & has a cover in < J I ;<<>.

Proof. A family of Boolean algebras of the type B(w®-n) forms, as has been
noted earlier, an Ord -chain in < YBA<<>. Let B be a monolith of the algebra A
and B(w® -n;) be the least in the given Ord -chain among such B(w®-n) that

A (B)B(wa'") ¢4 J . The Boolean algebra B(w®! -n;) does exist since the Ord -chain
is well-ordered and by virtue of power considerations. Let us show that

“‘fl'(ﬁ)B(wm1 ™) covers & . Indeed, it is obvious that 2J'(/3)B(“’m1 ™ 5> and, by
the choice of B(w™ -n), Q‘Y(;ﬁ’)B(wm1 ™) 44H . Let now & be such that
U <<€ << (ﬁ)B(wal'"l) and let @€ECon(H (B)B(wal'"l)) be such that
€ <A ™]e.

By corollary 4.1, we get either 8 <™ ™) or 9=p%?" ™) In the former
case, by corollary 4.2, there is a y EB(w” -ny) such that

= (ﬂ)B(wal "ll)/g =X (ﬁ)B(wal )y )

However, B(w® -n)fy is either isomorphic to B(w® -m) and then
€ >>9 (ﬁ)ﬂ(wa1 ™ or Blw™ -nl)/y is strictly <<-less than B(w® -n;) and then,
by the choice of B(w™ 'n), we get & slf(ﬁ)B("’al'"l) << . In the latter case we

B(w®!n .
( % and, since

get 0>>P
I e [pHe"m L 31 [,
€ AP o /5

for some 6 €ECondl , ie., € <<J . Hence, Qf(ﬂ)B(wal'"l) indeed covers & . W

Let us consider one more algebra type having a cover in the epimorphism
skeletons of congruence-distributive varieties.

Lemma_9.3. If M is a congruence-distributive variety, X is an infinite
cardinal, the algebra §p (R) has a one-element algebra, Fy R) = x &, and Vy
1 m s

is compact then ¥ >>Fp(R).
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Proof. Let us assume that Fp R)=d x¥,. Let {e,Jla <N} be free-
generating elements of 3",-,, (X). By theorem 4.2, any congruence on 4;xJ, has
the form 6; x 6, where 6; ECond ;. This fact combined with the compactness of
VZJZ in Cond[, results in the compactness of the congruence Agle;yz in

ConFpm ). Let a€FpyR) be such that {a} is a subalgebra of Fpm ®). Then,
since

V‘Tm ®) =a\é¢6e"'a 2 Az]l XVJZ,
there is a finite set A ={a,,...,a,} ©X such that

0 =a\é,46€“’a z AQ’; XV'?’z'

Let {a;} be a one-element subalgebra of the algebra generated by the elements
{egla <R\ A} in Fgp R). Then we get

0" = veo zA%xVJJZ.

aé 4 Bea a4 a.a;

As has been noticed earlier, there are 6,0, belonging to Condl, Cond ,,
respectively such that 6" = 6, x 0,, in which case 6, = VJJZ. Then we get

Fpf0" =3, xHU ,[0,x6,=F,[0,.

Since X is infinite, Sm (N)/O"s:fm (N), i.e., 311/01 gj‘_m (X) and, hence,
¥, >>3Im(N). ||

Theorem 9.9. If M is a congruence-distributive variety with all its algebras
having one-element subalgebras, any [ -free algebra with an infinite number of
generating elements has a cover in < 3 ;<<>, and the number of such =__-non-
equivalent covers is not less than the initial width of < I/ ;<<>.

Proof. Let & be a simple 7 -algebra, X an infinite cardinal, N* the cardinal
succeeding X, and .BN+ a Boolean Frechet algebra over a family of atoms of the

power R*, ie., a Boolean algebra of subsets of a set of the power X* generated by

o~ B, o~
one-element subsets. Let us show that §gy ®)xH ¥ covers g ®). Indeed,
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owing to the power considerations, we get
T 'y B w+
S R) << Fgp R xI ,
P B xt -
IpR) =< #Fp .
Let now & be such that

- - 5.,
Fp®R) <<€ <<Fp R xd .
As has been repeatedly noted in the proofs of the previous theorems, there are
- 5.
6, EConJp (R), 6, ECondl " *" such that
-~ B .
€ =Fu®fo, < °x /02.

For any y EConB. we get either ,BR,,/y =B or 1B /yls X. By corollary

B, B, l6
3.1, there is a 6 EConB . such that J ¥ /92531 XA 1B [risR,

€145 5 (/6,4 7% fo,1%

+

-~ . B -
and, hence, € <<J g (R). Therefore, the case € =JFp (N)/ 6, xF ¥ >>Fp X
remains to be considered. And again, as above, there are 93€Con:)"_m X)), ;=6

B,
and 64 ECond * such that

B,
TR =Fpy®)/0;xF X /64.

However, V is compact and, hence, compact is V g .
a0 a5 o,

Therefore, by lemma 9.3, 3‘1;7 (N)/B3 >>3"_m R), Since 8, =065,
Fm®/0,>>F m (®) and, hence,

Fn /6,8 7 55 Fp 9 A O

. 5. - .
which completes the proof that ¥y R)xd ~* is a cover of Fg (R). By choosing
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& to be various pairwise =__-non-equivalent minimal elements from < 3.1 ;<<>,

<<’

obviously, we get pairwise =__-non-equivalent covers of the algebra 3'1;7 ®. N

Let us recall an obvious result establishing a relationship between covers in
epimorphism skeletons of congruence-distributive varieties and quasi-simple algebras: if
D is congruence-distributive, and there are quasi-simple algebras of any great power
in M, then any M -algebra & has a cover in the epimorphism skeleton of M7 .
Indeed, it suffices to choose an algebra & x &, as such a cover where &, is a
quasi-simple M7 -algebra of a power greater than W |. This, in particular, entails that
in any variety M of lattice-ordered groups any M# -group has a cover in
< M ;<<>. Indeed, by bringing to a linear antilexicographic order any group of the
type H*Gi where H*Gi is a direct sum of the groups G;, and G; are equal to

(S Ew®
Z xR for any i (here ZxR is a lexicographic product of linearly ordered groups of
integer and real numbers), we get quasi-simple linearly ordered groups lying in any
variety of lattice-ordered groups.

The following problem is now open for discussion.

Problem 9.2. Does any algebra of a congruence-distributive variety have a
cover in the epimorphism skeleton of this variety ?

The results discussed above make it possible to expect a positive answer. If,
however, we consider relative covers, i.e., those not in the whole skeleton of a
variety but in a prefixed interval within this skeleton such covers might not exist.
Before we prove this to be the case, let us obtain a number of statements on the
structure of epimorphism skeletons of arbitrary non-trivial congruence-distributive
varieties which are proved using the constructions of Boolean powers and
congruence-Boolean powers, and are analogous to the statements for Boolean algebras
in Chapter 1.

It should be recalled that the relation ;<& between algebraic systems & |, &

implies that &, is isomorphically embeddable into & . 2* will denote the set of all
subsets of the set A. For an arbitrary set of Boolean algebras B;(i €I), E‘Bi will
P

denote a subalgebra of the algebra H.B,- generated by those elements f from
&l

H.B,- for which f(i)=0 only for a finite number i from I.
&l

Lemma 9.4. If f1 is a congruence-distributive variety, J €%, and X is a
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regular cardinal, R >l IRy, there is an M7 -algebra J (X) such that IF ®R)=X and

<[ 33 34 (N)]/s«;<<>z< 2%.C>. If d is subdirectly non-decomposable, I (X)
meets an additional condition:

Op . IX ®)]=0p, I 1IX,IT X

Proof. According to the statement of theorem 1.17, there are Boolean algebras
FB, of the power R(i ER) with the following properties:

(a) for any iE€R, any a €8, \ {0} HbEFIbs a)=X;
(b) for any i= jER and any a EB,\{0}, bEE;\ {0} Blb 44 Bla.

By defining a Boolean algebra B, (ICR) as Z.B 7, we come to the obvious
E=)

conclusion that for I,I, R, the relation B; << B, is valid iff [ C1I,.
Let # be an arbitrary 7 -algebra, and ¥, an arbitrary simple M7 -algebra.

H (I) will denote the algebra ZIOBI xd . For any I, CI,CR, we obviously get
H << (1) and H () <<¥H () <<d (R). Let us show that H (L) << (L)
implies the inclusion I, CI,. The relation & (I) << (I,) implies the relation

B )
Hy " << (), and let a €Condl (I,) be such that ¥ (I)/a EJI'OB". Since M

. N B
is congruence-distributive, there can be found o; ECondl 2 a,ECondl such that

3(')312/a1x«y/a253(')3".

B
However, Con ¢ " =B, , and

Con ,[(I 0)-312 /oc1 xd [ay]= By [y xCon,d [a;,

where y is a congruence of the algebra B 1,- At the same time, as has been noticed
carlier, for any a €8} \{0} we have HbE B, Ibsa)=R, while for 8 ECon ¥ [a,

we get {y €ECondl [a,ly < 8}sId 1+X, < X. Therefore, the congruence @, must be
equal to Vy . Hence, we get

v/ (12)/a 5310'312 /al 530'811
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. B B . L
and, since Con " «B;, Con,do" =B, , and M is congruence-distributive,
.B,l << B ,- According to the remark we have made earlier, this implies the
inclusion I} € I,, which proves that

< 2x;_C_>s< (3.3 N = <<>.

If J is a subdirectly non-decomposable algebra and 8 is its monolith, for
ICX we define the algebras & (I) to be equal to 3(9)'31 . The inequality
< 2R Coec (I, IT R)]=_;<<> follows from the fact that I, CI,CX iff
.B,l << 5B I while the latter, by corollary 4.2, is valid iff

3, g
A=A 0)° <<d @2 A1y,

The equality [Og, I¥ ®R)]=[0g, IT)SLIH ,IF ®)] obviously results
from the fact that [Ogy, 3 (X)] is an antiisotonic image of the lattice Cond (R)

which, by corollary 4.1, equals Condl (R)< 93*‘®Con2fl> 6. 1

Lemma 9.4 prompts that the epimorphism skeletons of non-trivial congruence-
distributive varieties in the class of all quasi-ordered sets are universal.

Theorem_9.10. For any non-trivial congruence-distributive variety M , any
regular cardinal X >R, and any algebra 4 of a power less than R, an arbitrary
quasi-ordered set of a power not greater than X is isomorphically embeddable into
< 3M>> 3 A ;<<>. In particular, for a non-trivial congruence-distributive variety
M, any quasi-ordered set is isomorphically embeddable into < J.M;<<>.

Proof. Since any partially ordered set of the power =X is isomorphically
embeddable into < 2R;Q>, by lemma 9.4, any such set is isomorphically embeddable
into < IJMl>> I X ;<<>. For a<® let B =B((w®*” +n)-X) (here, as in
Chapter 1, 1 is the ordinal type of rational numbers). One can easily see that
Bra<X B®¢BP but B*=__FP and the powers of all Boolean algebras B “
are equal to X. One can also see that for any /CX we have B, xB* ¢X8,xBF,
but in this case KB, xB%=_%,xBP  Besides, for I,I,CN,
.311 xB* <<.Jf*'11 xBF iff LCL. Indeed, if .311 x5 <<.B,2 x B,
B <«<Z, x B8P If f is a homomorphism from B, xBf 1o B, and 7, is a
projection of .3,2 xBP 10 B then, for the case when ker f Dkermw,, we get the
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inequality .B L << B 1, which, by lemma 9.4, yields the inclusion ; C1,.

If ker f D ker 75, .3115.312/6x.3ﬂ/(p for some
dEConk, ,p EConB P \{V}. In the algebra BP[p there are always elements a
such that 1B # /q)ls als X, , while in the algebra B 1, there are no such elements, i.e.,
for any element aE‘B,l \{0}, HbELB,Ib=a)=X. Therefore the case ker f2ker 7,
is impossible and, indeed, the inequality B; xB% <<Z, x B? is equivalent to the

inclusion I; € 1,. Using algebras of the type B; x B*(ICNa <N) instead of the
algebras B, in the construction of lemma 9.4, we get an embedding into
< 3M>> JU ;<<> of a quasi-ordered set obtained from the partial order < 2%:C>
by “smearing” every element into the class consisting of N elements pairwise
equivalent in terms of the quasi-order. This implies not only that any partial order of
the power not greater than X is embeddable into < 2N;§>, but also that any quasi-
order of the power not greater than N is isomorphically embeddable into

< 3..mxl>> 34 <<>. 1

In connection with lemma 9.4 the problem arises whether there are intervals
= _.-equivalent to the partially ordered set < 2X.C> in the epimorphism skeletons of

congruence distributive varieties f1 . Though this problem remains open to discussion
in the general case, it appears possible to prove the existence of such intervals under
certain circumstances.

For a finite set of the algebras I 1,...,3[ » and their homomorphisms f,....f, to
the same fixed algebra & , let us define an algebra l—[<31' »fi> as the subdirect

isn

product of the algebras & ;(isn) with a basic set {g€||F;l for i,jsn
i i J
&l

f,-(g(i))=fj(g(j))}. Let 6; be kernels of the homomorphisms i If o ECon&'i,
then Hai will denote the following congruence on H<:ﬂi,f,- >: for
isn

isn
g.h EII<J:',-,f,-> we get <g,h >En‘71,- iff for any isn <g@),hi)>Ea;. One
isn isn
can directly check that for any g,k En<yi,fi > if < g(i),h(i)>€EH; for some i<n,
isn
then for any j=n we get < g(j),h(j)>€E0; and, thus, H<3!'i,f,~ >/1_[6,- =X . In
isn isn
the case when all the algebras J; belong to a certain congruence-distributive variety,
we get, analogously to the proof of theorem 4.2, that for any congruence
OEConH< a;, ;> less than l_[()i, there are 8, =< 0;-congruences of the algebras
isn isn
U such that 6 - []6;.

isn
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These remarks prove the following statement.

Lemma 9.5. If T is a congruence-distributive variety, I 1,...,21 ,,e..m and
fi(i=n) are homomorphisms from the algebras &; to a certain fixed algebra J ,

ConI_[<2{',-,fi >ISH0i eHCoanlls 0,

isn isn isn

and H<3 o fi> /H 0, = . If in this case all 6; are intercepting, we get

isn isn

Con[ [<¥,. >5HCon31,ls 6, ®(Condl \{A}).

isn isn

If, moreover, for any i= j<n and 0'<6;,0" <6, it follows from A, [0 ¢d

and ¥ /6" 3 that U [0 4 H ; /6", then

<[32”3H<3{i’fi >]/E«; <<>= H<[33],33]l-]/s«;<<>.

isn isn

An algebra &, that is a cover of the algebra & in the epimorphism skeleton
of the variety 1 will be called a strong cover of 4 provided that there is an
intercepting congruence 8 of the algebra &, such that & /0=J .

Theorem 9.11.

(a) If in the epimorphism skeleton of a variety 21 the algebra & has k <X
pairwise =__-non-equivalent covers, there is an algebra & '€ such that

<[3d .3 ,]/E<<;<<>E< 2k;g>.

(b) If for a countable algebra & in a congruence-distributive variety M there
are k<X, pairwise =__-non-equivalent subdirectly non-decomposable algebras

€ (i <k) with monoliths 6; such that €,;/0, =X , there is an algebra J ' €M such
that

<[3d, 3 ']/E<<;<<>s wix...xw; (k times).

The statement (a) of the lemma under consideration follows immediately from
the statement of lemma 9.5, since in this case <[J& ,JH 'If=..;<<>=2. To
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prove the statement (b) it suffices to replace the algebras &, in lemma 9.5 with the
algebras &€ 2(“1)(6,), since

<[Xd,3€ ,-B(wl)((?i)]/s<<;<<>g w,. A

The definition of a non-compactable chain has been given in section 1. The
following statement shows that in the epimorphism skeletons of non-trivial
congruence-distributive varieties there are non-compactable chains of both discrete and
dense ordinal types. It should be recalled that r denotes the ordinal type of real
numbers.

Theorem 9.12. Let M be a non-trivial congruence-distributive variety, & be

a subdirectly non-decomposable {7 -algebra. In this case the following statements are
valid:

(a) in the epimorphism skeleton of [ there is a non-compactable chain
isomorphic to an ordered class of ordinals such that its lower bound in < J.M;<<>
is equal to 3?] :

(b) (CH) in the epimorphism skeleton of M there is a non-compactable chain
B such that < Bf=__;<<> is isomorphic to an ordered set of real numbers.

Proof. Let & be a subdirectly non-decomposable M -algebra. By corollaries
4.1 and 4.2, a family of the types of isomorphism of M -algebras of the type
X (6)™ ), where a €0rd and 6 is the monolith of ¥ , forms a non-compactable
chain isomorphic to the ordered class Ord . On the other hand, according to the
same corollaries 4.1 and 4.2 and by theorem 1.15, a family of the types of
isomorphisms of algebras of the type & O(B)B , where B runs the non-compactable

chain in < ¥BA<<> considered in theorem 1.15, and & o 1S an arbitrary countable
subdirectly non-decomposable algebra, forms itself a similar chain isomorphic to a set

of real numbers in the epimorphism skeleton of i . W
Let us now show that in the epimorphism skeleton of any non-trivial

congruence-distributive variety there are algebras having no relative covers.

Theorem 9.13.(CH) If M is a non-trivial congruence-distributive variety,
there are M1 -algebras ¥ |, &, such that ¥, <<&,, ¥, ¢+¢%,, and the algebra &,
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has no covers lying in the interval [ 34,3 &,] of the epimorphism skeleton of M7 .

Proof. Let & be a countable subdirectly non-decomposable M -algebra with a
monolith 6. In the proof of theorem 14.2 (theorem 1.15) a set of real numbers P
and Boolean algebras B(F,) are constructed for any real number a. Let us fix a

certain pair of real numbers B, <f,, and let

B, =B(Pg )xB(n), B, = B(F3,) % B(1).

As H . d, let us consider algebras & (6)'31,33' (9)'32, respectively. From the
properties of the algebras B(F,) considered in the proof of theorem 1.15, it is

obvious that & <<&, and ¥, ¢¢ . Let us show that &, has no covers in the
interval [ .3, 3¥,]. Indeed, let 5 €M such that F, <<H ;<< ,, H;4¢+4,.
By corollary 4.2, the algebra 5 has the form & (0)°, where the Boolean algebra
€ is such that B(Fy)x B(n)<<€ <<B(F;,)xB(n) and € ££B(Fg)xB(n). As
long as € << B(Fg)x B(m), as is noted in the proof of theorem 14.2, we get
& =B(Ip ®1®D) for some DS PNB,p,)@n and, hence, & = B(Fp,) x B(D).
The set D cannot be countable, since otherwise we would have B(D)<< B(7) and
&€ << B, which contradicts the above deductions. By assuming CH, |Di= 280 and,
therefore, there is a 6 €(f;,6,) such that IDN(B,01=IDN(S,B,)l= 2% Let B
denote a Boolean algebra B(F;;1 D@1D(DN(B.6))) xB(n). Obviously,
B << B’ <<€ but, on the other hand, considerations analogous to those in the
proof of theorem 14.2 show that B’ #£FB, and € £4F'. In this case, by

corollary 4.2, we get 34'1<<34"B,<<3f3, A% 44, and U, +47% =

Definition 9.10. A pair of algebras 4,4, is said totally disjunct if for any
algebra & such that & << |, &, the power of the algebra & is strictly less that
the powers of the algebras &, and & ,.

Theorem 9.14. (GCH) Let M be a non-trivial congruence-distributive variety.
Then for any non-limit cardinal X there is a family of the power X consisting of

totally disjunct M7 -algebras of the power X.

Proof. In line with theorem 1.14, there is a similar family G consisting of
Boolean algebras. Let 4/ be a countable simple 7 -algebra. By corollary 3.1, the

family of M7 -algebras & 3 (B €G) has the required properties.
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Priorities. Studies of epimorphism skeletons of various classes of algebraic
systems with no special definition introduced have been carried out in a number of
papers by many authors. For instance, C.Landraitis [121] studied the epimorphism
skeleton of countable linearly ordered sets. The epimorphism skeleton of uncountable
linearly ordered sets was investigated by A.G.Pinus [162]. A number of results
pertaining to skeletons of the class of ordered sets belonging basically to the French
school were presented in a monograph by R.Friisse [69].

The notion of an epimorphism skeleton of algebras has been introduced by
A.G.Pinus [178]. Pseudo-simple algebras have been studied in papers by H.Andreka,
[.Németi [3], D.Monk [40], Szelpal [222]. Theorem 9.1 was, in particular, presented
in a paper by D.Monk [140]. The notion of a quasi-simple algebra has been
introduced in a paper by A.G.Pinus [171], where he also proved theorems 9.2,
9.3, 9.4 and 9.5. Theorems 9.6 - 9.9 also belong to A.G.Pinus [168], as well
as theorems 9.10 - 9.13 [169].

10. Countable Epimorphism Skeletons of Discriminator Varieties

According to theorem 9.11 of the preceding section, limited epimorphism
skeletons < I M y;<<> of any non-trivial variety M1 are, when X is uncountable,
universal in the class of all quasi-ordered sets of the power <N. The situation
changes when considering X =¥,. Indeed, as has been noted earlier in section 1, the
countable epimorphism skeleton of a variety of Boolean algebras is equal to wl@l*,
where the order of wl&)l* is obtained by adding to the set w; of all countable
ordinals (isomorphism types of countable superatomic Boolean algebras) a continuum
of elements pairwise equivalent in terms of the quasi-order as the latter (isomorphism
types of countable non-superatomic Boolean algebras). The factor-order of the quasi-

* . . . .
ordered set w; @1 is linear as regards the natural relation of equivalence.

Definition 10.1. A quasi-ordered set < A;<> is called linear-factor-ordered if
the factor of this set is a linear order as regards the natural equivalence relation =

<

Therefore, a countable epimorphism skeleton of a variety of Boolean algebras is
linear-factor-ordered. On the other hand, if 7 is an arbitrary non-trivial congruence-
distributive variety, and & is a simple [ -algebra existing by the Magari theorem,,
by corollary 3.1(b), for any Boolean algebras .B;,B, the relation 4 By ®
holds iff B, <<.B,. Moreover, since we have ecarlier agreed that only varieties ofat
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most countably infinite signature are considered, we can assume I I<X, and, hence,
they are at most countably infinite for at most countably infinite Boolean algebras .B

and the algebra & "B. All these facts imply that the countable epimorphism skeleton
of a variety of Boolean algebras is isomorphically embeddable into that of any non-
trivial congruence-distributive variety, i.e. the countable epimorphism skeleton of a
variety of Boolean algebras is minimal as regards embedding in the class of all
countable epimorphism skeletons in non-trivial congruence-distributive varieties.

The following theorem gives a complete description of congruence-distributive
varieties with minimal or, which proves equivalent, linear-factor-ordered countable
epimorphism skeletons.

Theorem 10.1. Let 1 be a non-trivial congruence-distributive variety, the
following conditions are equivalent:

(@) < 3.mxo;<<>s w; @l*;
(b) < 3y ;<<> is linear-factor-ordered;

(c) M =M ), where F is a quasi-primal algebra with no proper
subalgebras.

Proof. Let us show that (c) follows from (b). Let 2 be a non-trivial
congruence-distributive variety such that < 3y ;<<> is linear-factor-ordered, and let

I be a simple f -algebra. Since < JMMy ;<<> is lincar-factor-ordered, & is the
only simple algebra in My, .

Let By be a Boolean algebra of finite and co-finite subsets of a countable set.
As <3..5.WN0;<<> is linear-factor-ordered, for any finite n we get either
Spm) << Broor ABr < Fm . The latter inequality, however, would entail
that the algebra & Br is finitely gencratcd and, by the definition of a Boolean
power, the same would be true for the algebra B, as well, which is impossible.
Therefore, for any nE€w we have 327?(") <<31‘BF. By corollary 3.1(a), any
principal congruences on & Br are permutable and, hence, any congruences on
J %7 and its homomorphic images-algebras ¥ (n) are permutable. Since Fgy (3) is
congruence-permutable, the whole variety 1 is also congruence-permutable by
theorem 2.5. Therefore, M is arithmetic. On the other hand,

M= (Fymin€ad) and, hence, M = M I Ery-MI).



CHAPTER 3 233

Let us demonstrate that & contains no non-singleton proper subalgebras. Let
us, assume to the contrary that Jf; is a proper subalgebra of the algebra & , and
I |>1. One can also assume that &, is finitely generated. Since ¥; <<F g (n) for
some nE€w and, as has been shown above, §gp (1) << Br and Spmwed Br

we get Sy ()= 3 for some algebra B such that B << By and B ¢ B, by
corollary 3.1(b). All such JB's, however, have the form of finite Boolean algebras.
Therefore, for some m, Ew we get Fgp ()= F ™. All homomorphic images of the
algebra gy (n) =& ™ also have, by corollary 3.1(c), the form Y* for some
kE€w. In particular, the algebra &, is isomorphic to the algebra & ! for some I€w
and, hence, the algebra &, contains a subalgebra isomorphic to the algebra & . As a
result, if & contains a non-singleton proper subalgebra, 4 contains a proper
subalgebra isomorphic to itself. However, this implies the existence of a strictly
ascending chain of algebras &, C D, C..Cc D, C.., each of which is isomorphic to
the algebra & .

Let D=|JD,, DeM. Since all D; are simple, the algebra & will be

=

simple as well. Indeed, for any a,b,c.d €D there is an i€w such that
abc,dED;, and if a=b then, as D, is simple, <c,d >EH£,” and, since
Bf,; c Hfb, <cd >EB£. Therefore, for any ab,c,d €D, a=b implies
<cd >€0£,, i.e., B is a simple algebra. If we take into account the fact that
< 3 M ;<<> is linear-factor-ordered, & =D . Therefore, & is a family of strictly
ascending chain of proper subalgebras and, hence, it cannot be finitely generated. On
the other hand, as < 3..mx0;<<> is linear-factor-ordered, we get & <<F ¢ (2), i.e,
4 must be finitely generated. The contradiction obtained proves that & has no non-
singleton proper subalgebras.

Let us show that & has no one-element subalgebras, either. Let us assume to
the contrary, assume that that it has one-element subalgebras and let a €4 be such

that {a} is a subalgebra of the algebra J . By theorem 3.2, Con (4 Prya B 7. Let

J' denote a subalgebra of the algebra & 7 such that for fed Br we get
FEH ' iff fek ;I S = a} is finite. Repeating nearly word by word the proof of
theorem 3.2, we see that Conpél ' is isomorphic to the lattice & of all finite

subsets of w. Since <3..mxo;<<> is linear-factor-ordered, we get either

FEBr el or <<y ®r, But in this case it follows from the theorem on

homomorphisms that if Conp(Qf'BF)s,BF and Con,d '=® , we get either
Bp <<B or 8 << Bp. Obviously, neither of the cases is possible and, hence, the
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algebra & has neither one-element nor other proper subalgebras at all.

Let us now prove that J is finite. Let us assume, to the contrary, that A is
infinite and, as has been proved above, it is simple and has no proper subalgebras.

Let f be a bijective mapping of @ on & , g a certain mapping from @ to an
element (for instance, d) from & , and € a subalgebra of the algebra & ¢
generated by the functions f and g. In this case, € <<Fp (2)=F ™ and, as has
been noticed earlier, there is an / <m, such that =0 l. In particular, since all the
congruences of the algebra ¥’ are projections by corollary 3.1, Con& =Condl’
contains only ! different co-atoms. It should be noticed that as & is simple with no
proper subalgebras, € is a subdirect product of & into ¥ “, and for any i€Ew
the 6;-kernel of the i-th projection of € CH “ on ¥ is a co-atom in Con& . For
any jE€w let ri(x) be a term of the signature of the algebra 2 such that
ri(d) = f(j) (since & is generated by any of its elements, for any j€w, ri(x)
does exist). Therefore, rj(g)(j)=f(j), and, since for any kJ/Ew we have
ri(gXk) =ri(g)D), for n€w and n=j we get r;(gXn) = f(n). Therefore, for any
Jj=n€w we get <r(g),f>E0;and <ri(g),f>E0,, ie., all §;(jEw) are different
co-atoms of Con& , which contradicts the fact that the family of these co-atoms is
finite. The contradiction obtained proves that & is finite.

Thus, & is finite, simple, has no proper subalgebras, and M =M (&) is
arithmetic. By theorem 2.14, & is quasi-primal and, hence, the implication (b) —
(c) is proved.

The implication (a) —>(b) is obvious, while the implication (c¢) — (a) follows
from theorem 7.3 and the isomorphism <3BA<0;<<>E< J{ZIEI.B EBA;<<>
resulting from corollary 3.1. B

It should be remarked that, as the epimorphism skeleton of a congruence-
distributive variety is linearly ordered, the epimorphism relation << and the

embedding relation =< coincide on non-singleton countable algebras. Let M be a

family of non-singleton [/ -algebras.

Corollary _10.1. If a countable epimorphism skeleton of a congruence-
distributive variety M is linear-factor-ordered, the relations << and =< coincide on

3my, .

Proof. It follows from the proof of theorem 10.1 that in the case under
consideration the fact that < J,fmxo;<<> is linear-factor-ordered implies an
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isomorphism of < JMy ;<<> and < JBA ;<<> by way of putting into
correspondence B — X B for any at most countably infinite Boolean algebra B .
Since in this case M proves to be a discriminator variety, it has the property of
extending congruences and, by theorem 3.3, for any Boolean algebras B,,%,, the
embedding relation B, < B, holds iff 4 129 P2 On the other hand, as follows
from section 1 for countable non-singleton Boolean algebras .B,,%,, B, << X, iff
B, < B,, while B is one-element iff so is the algebra & ’ m

In the case when the variety M1 is a discriminator variety, it is possible to
make a complete analysis of the construction of countable epimorphism skeletons. The
definition of a betier quasi-order, as well as the proof of a number of theorems on
the properties of such quasi-orders are given in section 15 of the present
monograph.

Theorem  10.2. If M1 is a finitely generated discriminator variety, the

countable epimorphism skeleton of M1 is a better quasi-order. In particular,
< J.MNO;<<> contains neither infinite anti-chains nor infinite strictly descending
chains.

Proof. Let M1 be a finitely generated discriminator variety. By theorem 7.7,
there is a finite algebra & and a finite set of its subalgebras & ,...,& , such that
any at most countably infinite 2 -algebra has the form of a filtered Boolean product
x® H1,... ¥ i F,..,F,) for a certain at most countably infinite Boolean algebra %
and some closed subsets K,...,F, of the space B". The chain <X J9,- G F, > will
be denoted through 5.

Let ®” be a family of all sequences of natural numbers with a common
Tikhonov topology, let 2” be a subset of w® consisting of sequences of zeros and
ones, and let the topology on 2” be induced by w®. Therefore, 2” is
homomorphic and, hence, it can be identified with a Stone space .B:’ of a countable
atomless Boolean algebra 'Bn' Since for any at most countably infinite Boolean
algebra B we have B << B, the space B * can be identified with a certain closed
subspace of the space of 2” according to the Stone duality.

"2 will denote a set of sequences from 0,1 of the length n+1, ordered in a
trivial way: a< b iff a=>b. Therefore, "2 is, in particular, a better quasi-order. By

a;(i=0,..,n) we will mean the i-th clement of the sequence a for a €’ 2. For at
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most countably infinite Boolean algebra .F and any closed I{,...,E,Q.B*, IF will

denote the mapping from w® to "1y defined in the following way: if
(M =a€"2, a5 =1, if x€2% and ;=0 for all i=0,..n +1, if xEw®\27,
and moreover: a;=1 iff x€B", and a,, =1 iff x€E at i=1,.,n. For any

a€*'2 and any BF in the Borel hierarchy of sets we obviously have
T BF)(a)EEZ Let us arrange the set of all mappings IF into a quasi-order in the

following way: lm Sl'(‘jg'[:; iff there is a continuous self-embedding & of w® such
a0

that for any xEw” we get I— (x)s l— (A(x)). By theorem 15.8, the set of

(BF) (BF)
mappings IF (where B is an arbitrary at most countably infinite Boolean algebra
and K,...,F, is a chain of closed subsets of the space B *) will be a better quasi-
order. Let us now remark that if I — <l — |
(B ()
A2 ¥, U R Fy<<d P23, U R FD).

Indeed, let /=—— =<l=— , and & be a continuous self-embedding of w?
(&)~ (D)
((x)) ,

implementing this inequality. Since for any xEw®” we have l (x)
the restriction of 2 on .Bl* C2” will be a continuous embeddmg of the space .Bl
into the space ‘B; such that for any i=1,..n we get xEEl iff  h(x) EF,-Z.

Therefore, B, can be identified with a subspace of the space B, such that
=B NF? for i=1,...n. Let

( (Br)y

redt @y, A4, 8. F,

e., [ is a continuous mapping from .B; to a discrete & such that f(F;z) Cd,;
for i=n. In this case f1B, is obviously a continuous mapping from B, C B, to
I, in which case (f1.8, XF!)C¥,. The mapping ¢:f — flB, is also obviously a
homomorphism from the algebra QJ'BZ (ﬂl,...,yn;ﬁz,...,Fnz) to the algebra
21'31(3] peod i FL..E). Let us prove that ¢ is a mapping on
i '31(2.’ 1,...,-.7}',,;Fll,...,F,',l). Let g&d 'Bl(lfl,...,lfn;lﬁl,...,l'"nl); our task is to
construct a continuous extension g, of the mapping g to the space ,B; meeting the
condition g,(F?)C¥ ;.

As g is a continuous mapping from B, to a discrete ¥ , there is a partition
A,...,A; of the space .31* by open-closed subsets such that g is constant on A;.
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Since .31* is a subspace of .B;, due to the Stone duality, there is a homomorphism
@ from the Boolean algebra B, identified with the open-closed subsets of the space

.B; to the Boolean algebra B, (also viewed as a set of open-closed subsets of the
space B)). Let B,,...,B, be a partition of B, with the elements of B, such that
¥(B;)=A; for j=1,..k. In this case we get y(B;)=A; =B;N.B|. For any jsk
let Kj ={i=< nIAjﬁE2 = J}. Since Ez,Aj are closed in .B;, there is an open-closed
C;; scparating A; from Ez for i€K;.

Let Bj’-=Bjﬂi€(I} C;. The mapping g from the space B, w I wil be

i
defined in the following way: g(B}) = 8(4;), and let g coincide with any function
from 3['Bz(yl,...,‘yn;FIZ,...,F,,z) on B\ U B). In this case gE?I'BZ and the
jsk

conditions gl(sz)Qij are obviously fulfilled, since gfl(ﬂj)ﬂB,f = for j=1,..,n
iff ¢7\¥ N4 =D, Therefore, g ¥ 2@ . ¥ ;F . EY), and, since
g=gll.31*, @(g) =g, 1ie., @ is indeed a homomorphism from the algebra
A5, U B F}) to the algebra ¥ P @ ... :F....F). Thus, we

st
have shown that l ) <<l 3 implies the relation
2

AP AR B << Py, U R,
1 n 1

i.e., that < IMMy ;<<> is a homomorphic image of a better quasi-order. As is noted

in section 15, < 3_.mxo;<<> is thus also a better quasi-order. Il

The situation changes radically when considering countable epimorphism
skeletons of discriminator varieties which are not finitely generated.

Theorem __10.3. If M is a discriminator variety which is not finitely

generated, < I No><<> contains an uncountable number of pairwise incomparable
elements. If, moreover, either the signature of X is finite or all non-singleton 7 -

algebras contain a finite simple subalgebra, any countable quasi-order is
isomorphically embeddable into < J My ;<<>.

The proof of the theorem is reduced to that of a number of lemmas. Let us
first consider the simplest case, when M1 contains an infinite number of various

finite, subdirectly non-decomposable and, hence, (as J is a discriminator variety)
simple algebras.
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Lemma 10.1. If M7 is a discriminator variety containing an infinite number
of non-isomorphic simple finite algebras, M contains no infinite finitely generated
simple algebras, and either the M signature is finite or all non-singleton #7 -algebras
contain a finite simple subalgebra, any countable quasi-order is isomorphically
embeddable into < Iy ;<<>, and < J.mxo;<<> contains 280  pairwise

incomparable elements.

Proof. Let the MM signature be finite, and let /i 1,...,3;' ns--- be finite simple

non-isomorphic M -algebras. As the signature is finite, one can assume
W (<dH <. <l <. Let € = H-?f,, and § a non-principal ultrafilter on w. By
ncw

theorem 5.6, Conp(f: = P(w), i.e., a set of all the subsets of w and, hence, € /¥
is a simple #7 -algebra. As is well-known, € /¥ is infinite. Since M1 is a
discriminator variety, all subalgebras of the algebra € /¥ are simple and, since all
finitely generated simple M7 -algebras are finite, by the lemma condition one can

construct an ascending chain of finite simple M7 -algebras (&£ /¥ subalgebras):

£,c€,c.c€,C... Let ICw\{0} and €,_2€ (&)= {fenc} There is

an n €I such that for all m=n we get f(I) = f(m) ec,.

If g is a homomorphism from &€, to some algebra ﬂj,, since @1- is finite,
there is a finitely generated subalgebra D of the algebra €; such that g maps D
on & ;. One can easily note that €, is locally finite and, hence © is finite. Any
finite subalgebra of the algebra & lies in a subalgebra of the algebra €;, which is

isomorphic to an algebra of the type n@i for a certain finite subset I, C1.

A
Therefore, we get & <<l—[@i. By theorem 6.6, since all &; are simple, all
ich
simple factors of the algebra HC,- have the form &; for some i€l;. Thus, if
FSA

€, <<€, jEI. Hence, for any I,[, Cw\{0} we have £€; <<&; iff [ T,
which implies an isomorphic embedding of P(w \{0}) to < J My ;<<>. Since any
countable partial order is embeddable into P(w \{0}), any countable partial order is
isomorphically embeddable into < Iy ;<<> according to the lemma conditions.

Let n be, as was the case earlier, an ordered type of rational numbers. As has
been noted in section 1, for any /=m&Ew we have B(wl-n) =__B(w™ n) and
Bw' ) ¢ B(w™-n). Since €, is simple, for any Boolean algebras 5. B,,
{C(')B‘ << @(,B’ (@ds‘ sCOBZ) is equivalent to the relations B, << B, (5, =.B,) by
corollary 3.1. In addition, all the factors of the algebra € (‘)B ! have the form (‘:(')B
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for a certain Boolean algebra B << B,. As M is congruence-distributive, any factor
of the product & ' xJ " of the algebras & ',& " has the form of a factor product
of the algebras &' and J . This fact implies that for any Ij,I,Cw \{0}, any

Boolean algebras B, and B, we get €, ><€:(')B1 <<€, x@OBZ iff €I, and
Bl << Bz

Let now < C;C> be an arbitrary countable quasi-order and f be a certain
bijective mapping of C on . Let & be an embedding of a partial order < Cf=_;=>
into < I MMy ;<<> constructed above, in which case it is obvious that the mapping

).
g(c) = h([c])x(":f(w "), where [c] is a =_-class containing the element ¢, will be
an isomorphic embedding of the quasi-order < C;<> into <3..mx0;<<>. The
statement that there are 2"° pairwise incomparable elements in < Iy ;<<> holds

true because the number of the subsets w which do not contain each other is the
same, and since we have constructed the mapping ICw \{0} = €,. W

The case when ¥ is of an infinite signature, but the algebras
¥ ,,.... 4 ,,...contain a subalgebra isomorphic to a finite simple algebra &, is
considered in the same manner with the algebras J; substituted for the algebras & ;.
|

Lemma_ 10.2. If M is a discriminator variety, & €M, and 4 is an
infinite finitely generated simple algebra, there is an uncountable set of pairwise
incomparable elements in < JMy ;<<> and any countable quasi-order is

isomorphically embeddable into < J My ;<<>.

Proof. Let & ={a;,...a,,..}, and let a,,...a;, generate & . f will denote an

element & “ such that f(n)=a; for any n€w, and assume that g€H? and
g(n) =a, for any nEw. Let us also set J equal to a subalgebra of the algebra

4 generated by the elements f,,...,f;, and & equal to a subalgebra generated by
the elements f,,,, f;.g. By corollary 5.1, Conpé'f 1 is a Boolean algebra, so let us
consider two plausible cases: (1) Conp:lf 1 is not superatomic and (2) Conpy 118
superatomic.

Case (1). There is an uncountable number of various ultrafilters 3, on
Conpa" 1> each of them corresponding to pairwise different congruences o; on ¥,
which are co-atoms in Cond,, i.e., to o; such that &,/a; are simple. The number

of pairwise non-isomorphic #,/a; cannot be countable, i.e., each of the algebras of
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this type is countable (J; is countable) and J, is finitely generated. Indeed, if
|34 [a,li €271 Ry, let

I3 foylie2®oN=34&,,..&£,,...}.

The number of &, homomorphisms in &; (since €, are countable and ¥, is
finitely generated) is at most countably infinite and, hence, the number of various
congruences, which are kernels of &, homomorphisms on the algebras of the type
&€, is at most countably infinite, which contradicts the existence of 2% pairwise
different co-atoms a; ECondl|. Therefore, there is an uncountable number of those

a€Cond | for which ¥ [/a are simple and pairwise non-isomorphic. In particular,
this fact implies the existence of an uncountable family of pairwise incomparable
clements in < Iy ;<<>.

Let us choose a countable set aj,...a,,..among such a ECondl,. Therefore,
¥ ,/a, are simple, and we have ¥,/a, # ¥ /a, for n=m. Let us also assume
that ¥,/a, ¢¥,. For any jEw and n=mEw, we get Tl # fmfaj, since
otherwise, by theorem 5.6, &; would be a unit congruence on ;. Therefore, the
algebra & ; (isomorphic to & ) is a subalgebra of all simple algebras of the type
yl/an (n€w). As was the case in the proof of lemma 10.1, let us, for any

IC w, define an algebra &, =231/a,~(30)={f€H31/ai, and for some n€l,
i€l il
al Im=n, f()=f(@m)&d,}. If g is a homomorphism from the algebra &; to
the algebra J l/a-, either there are two elements hj,i, €¥; such that for some
nEw and all m=n we get h(m)= hy(m), in which case g(ly)=g(h), or , as
v 1/aj is simple, for any 7,7 €, the equality g(z;) = g(z,) holds provided that
for some /€w and all m=! we have z(m)=2z(@m). In the former -case,
Qfl/aj << H?f Jo; and, as was the case in the proof of lemma 10.1, we get
iclisn

JEI. In the latter case we obtain, as can be easily seen, ?11/0‘;52"0: which
contradicts the choice of the algebras &,/a,. Therefore, for any j€Ew and IC
we get j << ¥ ; iff jEI. Repeating the end of the proof of lemma 10.1, we see
that the statement of the present lemma for the case (1) is proved.

Case (2). Since Conp:/:/ 1 is here superatomic, we get Conp:/:/ L= B(w” -s) for
some countable ordinal o and some sEw. Any principal congruence 6,, on the
algebra 21] will be, by theorem 5.6, identified with a subset {i Ewla(i) = b(i)} of
the set w. For a d EConp?J 1 let d" denote a corresponding open-closed subset of
the Stone space (Conplfl)*. For & CH® and &€ D¥,, for dECondl,,
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Conp(C I-d will denote a naturally arising Boolean algebra with a basic set
{d, ECon,€ |d, < ~d}, while 9, will stand for a natural homomorphism Con & on
Conp(’.:l-ﬂd. Under the same conditions €1-d will denote a subalgebra of the

algebra Jf ~d (-~d is a subset of w) which is the projection of algebra & relative
to the subset —d. In this case Con,(€1-d)=Con€1-d.

It should be noticed that if kX is a homomorphism of a subalgebra & of the
algebra K “ containing the algebra &, on & I-d, where d is a certain element of
Conplfl, for any i= jEw and sE-dCw we get k(f,-)(s)#k(fj)(s). Indeed,
Bf,fj = Vg and, therefore, Bﬁ}g;,f(fj) =V211|-d’ i.e,, by theorem 5.6, for any
sE-~d we get k( f)(s) = k(f;)(s).

It should also be noticed that for any algebras B, B, , for any
homomorphism & from the algebra B to B,, the mapping ¢ from Con,2; to
Con,B, = Con, B> kerk, defined as (pk(()'fBJ}) = B,‘ﬁ‘}) ko equal to thl v kerk when
identifying Coan2 with Conp.Bllzker k, is, since M is congruence-distributive, a
homomorphism from the Boolean algebra Con,B; to Con,%,.

Let now R={r,...r.} be a subset of a Stone space (Conpyl)* of the Boolean
algebra Conp?J 1 composed of all the points of this space having the highest Cantor-
Bendixon rank. Let D={d,,...,d,,..} be elements of Conp‘?fl such that d: ar, for
some r, ER.

Let us enumerate: Kky,...,k,,... are the homomorphisms of the algebra &, in

algebras of the type &f,ld, where d is a certain element of the set D (let us refer
to this d corresponding to k, as d(n)), corresponding to the following conditions:

(1) for i= jEw and for s €d(n) k,(f;)s) ;ek,,(fj)(s);

(2 @, . a homomorphism from the Boolean algebra Conplf 1 to the Boolean

algebra Conpﬂ 1ld(n), is a homomorphism “onto”.
The number of such ks is at most countably infinite, since D is countable and

J, is finitely generated.
The homomorphisms ¢ induce dual continuous embeddings

(Con H \1d(n))" = (ConH 1) ld(n) = d(n)"

into (Conp"ﬂ 1)*. Let us refer to these embeddings as ,,.
Let R;=RN d ={r1d,...,r,‘,f(d)}. For any n€w we get Ry,, =J. It should be
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also noticed that:
(a) for any n€w, j=m(d(n)) we have wn(r;l("))ER;

(b) if ¢ is an isolated point of the set d(n)*, we get ¢, (1)€ER, as o, are
embeddings except, possibly, for a finite number of such ts. Hence, K,={t is an
isolated point of d(r) 1y, () ERy={1',...11...} is an infinite set. All isolated points
of the space (Condl lld(n))* have the form G%i,d(")

2{'1 Id(n)
fO(n, my8

for a certain j€Ew; let

O(n,m) Ew be such that 1, = 6

For any n€w let us choose a sequence t("l),...,t("m),...,Kn such that

lim £y, = 7"

m—»o0

denote the latter limit, i.e., lim 9, (%) =7(n).
m—»0o

and, hence, since y, is continuous, lim wn(t("m))ER. Let r(n)
m—>ow

Let ; be a bijective enumeration of pairs of numbers. By induction, let us

construct a sequence by,...,b,,... of disjunct elements of Conpzf 1, and a subsequence
t;l,, ""’tj"li‘ ... of the sequence 1y, such that if n(mgq)=n,

(*) b, > Ym(t}n) and b, NR=0.
q

Let b,....b,.; have ©been constructed, and let mn(mg)=n. Since

llim wm(tf'l'))=r(m) and (blv...vbn_l)* 3 r(m), there is a pEw such that

BV eV B,_) B3Pt Wt pan)) oeee -

Let b be an arbitrary element of ConPZf | containing a point wm(t(";,)), not
containing the points of the set R, and disjunct from bjv..vb, ;. Let us set

t;f,. =1, and b,=b. The condition (*) is now met. One can assume in addition
q

that the sequence b,...,b,,... results in a partition of the unit in Conp‘?l 1> i.e., that
any isolated point of (Conp.?f 1)* belongs to one of b:(n Ew). One should also
remark that the condition (¥) implies
* . A \d
(**) (@, (b)) 31;2,., ie., tpkm(b,,)ggfol m

(I;",'n),g



CHAPTER 3 243

Let wy,...,w,,... be an enumeration of all the elements of the algebra 3 1- Let
(X e s X, X, V) e 8 (X ey XX, Y),... be an enumeration of all (k +2)-ary terms of
the signature of the variety M, ie., for any h€H © the algebra <J;,h >, which

is a subalgebra of the algebra & “ generated by the elements of the algebra &, and
the element A, has {t;(fi,....f.g.h )i Ew} as its basic sel.

By induction over n€w we will define the value a, of the element i on

i€b, and, simultaneously, certain infinite subsets A 2D A, 2.2 A, D... of the set

{a,,...a ...} of the elements of algebra & .
Let A,_; have been constructed and let the function A have been defined for

i€bv..vb, ;. Let n=mn(m,q) and wq(O(j;”,m))=a,. By the condition (1),

kol 5 )(OCj ) = Ky (£, )(O(j 1)

for any s =5, Ew. Therefore, for all but possibly one values of a; €A, ; we get

km(F)(0(jg m)) = wo(O(ig', m)).

Let us refer to theset a; €A, ; as A,. We see that A} is infinite, and if
a; €A,

K [;)(OUjg s m)) = Wy (O(ig', m)).

Let us now construct a partition of the set A, into subsets A(s), where s runs
over the subsets of the set {{i,j}i,j <n}. In this case, if a, €A, a, EA'(s) iff

. (o s foo 8 1) =1i(f o8 S hijsm=s.

For some s, A(s) is infinite. Let us set A, equal to this A(s). Let a, be a
certain fixed value from A,.

By virtue of the construction of 2 and A,, the following statements are true:

(a) if m(mg)=n, then wq(O(j;",m))azkm(fp")(O(j;",m)). In this case,
wm(t;.'f,.)eb;, i.e, as has been noted in (**), ¢ (bn)gﬂ}y"d(") , with the latter
q m m

0", mg
congruence identified with O(jg",m) . Therefore, @y (b,) >0(jz'm). Moreover, for any
i€b, we get h(i) = an (i);
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(B) for any n€w and i,jsn, [t{f,..,[i.g.H) =tj(f1,...,ﬁc,g,h)l] either
contains w \ (b v..vh,) or does not intersect with w \ (pv..vb,).

Bearing in mind that Con, < .h >,Conp31 1 are Boolean algebras, and that

02 fises Jreo8B) =2i(froes o & W IN (B V...V b,) =
=V UG fio8:Sp) = G (oo i 82 W N By,

we get from (B) that the Boolean algebras Con, <31,k > and Cond, coincide.
Let now & 2=<.7” >, and we will show that there is no homomorphism
from the algebra &, to & ,/~d for any d ED. Assume to the contrary that d €D,
and k is an 4, homomorphism on 4 ,/-d. As has been noted in the beginning of
the proof of case (2), the homomorphism k meets condition (1) imposed on the
homomorphisms of the sequence k,(n€w). By virtue of the equality

Con ol , = Con,dl |, the condition (2) for the mapping Ppy, is also met. Therefore,
K2 =k, for some mEw. Let us assume in this case that k(h)= wq/-d=wad,

and let n(m,g) =n. By the definition of # we have 05{}[1 2b,. Hence, we get

vl I ([-d Y \d ,
Pk, (Onf, ) = Hk”,l(lil)kfn'?}pn) =6, Jd (%?km( o) = Pl (Bn) 3 0(jg - m),

i.e., 0(jg'm) €d and w,(0(j,',m) = k,(f, )O(jg,m)). According to (), however,
we have wq(O(j;",m))ae Ko £, )(OC j;",m)). The contradiction obtained proves the
impossibility of the existence of the homomorphism 4.

Iterating the construction of 4, relative to &, let us build a sequence of
finitely generated algebras & .4 ,,.... & ,,... with the property Con, ¥, =Con A for
any n€w and for any m >n, while for any d €D we have I ,, ## ¥ ) d.

It should be recalled that Conp:lfl =B(w”-s). Let B,...B,.... be a sequence
of Boolean algebras such that B, = Bw®*") for any n€w. Let §, (I<s) be
ultrafilters on Conp&' 1 corresponding to the points r,...,r; of the space (C‘&np&' 1)*,

n

¢ be the corresponding congruences of the algebra 4 ,. For any

and let af,...,a
jss, ¥,/ ) is a simple algebra, and let y; be a natural homomorphism of ¥,
on ¥,/ ajj. Let G, be an ultrafilter of a maximal Cantor-Bendixon rank on the
algebra B,. Let &, ; = (X n/ a;-')'B", and let B} be a natural homomorphism from
the algebra €, ; to &, / 8], where 6] €E€Con€, ; and 8] correspond to the

ultrafilter G,. In this case, &£, [/6 =¥ [a”, as € .[6" is simple and, as has
n njl 9 nf & njl9j
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been repeatedly noted, in a congruence-distributive variety any factor of a Boolean
power of the simple algebra & ,,/ a;f has the form of a Boolean power of this
algebra. Let us set the algebra P, equal to a subdirect product of the algebras
ﬂn,(ﬂn/af)'s" ,...,(Q],,/af)'s" with the basic set
{<ab,,..b, >H , x (&'n/a{')'p" x...x(?],,/asn)'s" | for any j=s y;(a) =p7b)}

Let us prove now that for any m.ng,...n,Ew such that m &ny,....n 0, we
have D, ££ D, x..xD, . Let us assume to the contrary that m &{m;....,;}, and let
& be a homomorphism from the algebra D, x..x®, (henceforth, D) to D,
Since the largest congruences of the algebras J; are principal ones, there is a
partition of the congruence Vg with the principal congruences f,,...,8; such that the
factors of the algebra O relative to the congruences —f;(i<k) are the algebras
D, Dy, - If gi<k) are natural homomorphisms of the algebra D into factor-
algebras of the algebra B, corresponding to the congruences u;=kerd v —=f; then,
since MM is congruence-distributive, g; are homomorphisms of the algebra £ on
some algebras DL .. D* such that D, =D.Lx.xDt (from now on, we will
identify D,, with D,ﬁx...x@,’f‘), in which case the congruences corresponding to the
D, projections on I),in (as well as the congruences —f;) are principal congruences
of the algebra D,,, ie., elements from Con,D,,.

Let us refer to these elements of Con,D, as u,..u. As H,<<D,,
(Con J ) is naturally identified with a subspace of the space (Conp,fDm)*, and let
d =u ﬂ(ConPme)*. Since 1 ,...,u; form a partition of (Conp,Dm)*, dy,..d; also
form a partition of (Conpy m)* and, hence, at least one of the clements d,....d;
belongs to the set D. Let it be a d;. Therefore, since kerg =kerd v -f8; and
D/ -6 =fD,,l , we get a homomorphism (we will denote it by g/) from the algebra
i)nl to the algebra I)m/—-ul. Extending, if required, the homomorphism g/ by
projecting the algebra ,Dm/ —-u;, one can assume that the element d; contains only
one point from R. Let it be a point 7.

y will denote a projection of the algebra D,,/-u; to the algebra &, /[-u,.
Since the algebra ¥ ,,/-d; (as well as ¥ ,,) is finitely generated, let fy,....h, be its
generating algebras, while v;,...,v, be arbitrary elements of the algebra Dnl such that
y(g(v;))=h; for i<p. In this case yg is a homomorphism from a subalgebra
<VieeaVp>p of the algebra i'),,l, generated by the elements vy,...,v,, to the
algebra m/ -~d;. Let xy,...,x, be generating elements of a finitely generated algebra

q
Vi n and  y,..y, arbitrary elements of the algebra I),,l of the type

o - 5
Yi =< X;,b{,....b; > for some b; (W, /a?l) " (j=s). The subalgebra of the algebra
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@nl generated by the elements vy,...,v,, ¥,...y, will be denoted by & and, since
<V,...,v,>p C& , the homomorphism yg; maps & on the algebra &, /-d,. Let
p ﬂnl P 1 g m 1

x be a projection of the algebra fDnI on the algebra

(:)11/04’1 )'3"1 x..x(d , /oc;'1 )'B"1 .

As & is finitely generated, the algebra #(&) is also finitely generated. But
(&) is a subalgebra of the algebra

(Qf'nl/alnl)'s"‘ x...x(;J.'Jr,,l/oc;")l?"1 .

Any finitely generated subalgebra of any Boolean power (& " / ocj'-'l)')g"1 is

contained in a subalgebra of the type (&, / aj Y29 where B( j) are finite

subalgebras of the algebra B, . Therefore, extending & in an obvious way, if

n e

required, to another finitely generated subalgebra of the algebra Dnl, one can assume

(&)=, [P Ox.xd, [P O

for some finite Boolean algebras B(1),...,B(s). If a;(i<s) is an FB(i) atom such
that a: €G,,, we get

E=d, x ¥, [PV xd, [amPe,
Let B'(i) denote FB(i)l~a; and § the algebra
(‘]{nl/aih ).B () %, ..% (“y nl/a.?l )3 '(s)‘

There is a principal congruence n€Con,D, such that &/na&l-n=F,, and
El-neFin=H . Let n,-n EConp(JJmldl) be the images of 1 and -7,
respectively, at the homomorphism ygj. Since (1) =.8'(1) U..UB'(s)" is a finite
space, (111)* contains only a finite number of the points of the space (Coanf mldl)*.
Therefore, (-111)*3r1 and, hence, - €D. Factorizing the algebra ¥ over the

congruence 17 and the algebra & ,ld, over the ygj-image of mn, i.e., over the
congruence 1, we get a homomorphism y; induced by the homomorphism ygj,
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from the algebra & [y« , to the algebra & ,ldi/m; = ) -n,, where ~ ED.
By the conditions that hold for the algebras A . i ns--» the existence of the

homomorphism y; implies the inequality m sm and, asm&{n,...n,} by the

assumption, m; <m. Therefore, there is now a homomorphism g; from the algebra

D

n
D,,, and for d; = u ﬂ(Conplfm)* we get d; N D=4r}. In this case, however, it
follows from the definition of D, that D, /-u is isomorphic to the algebra ¥,
which is a subdirect product of the algebras J ,ld; (it should be recalled that here
d, is viewed as a subset of ), (ym/ai")'s'"lll,...,(ym/asm)'s’"”’ , where
L,..l, €8, and, moreover, I,..l; €EG,,, where G, is, by the definition of the
algebra D,,,
.l €G, we have B, Il =.= B |l.« B,  and, therefore, if m is a projection of

to the algebra A‘Dm/—-ul, and n <m. Then -u; is a principal congruence on

an ultrafilter of a maximal Cantor-Bendixon rank on %,,. However, for

the algebra § on (¥ m/ a{")'B”'Ill, mg{ is a homomorphism from the algebra D, to

the algebra (&, / oz{”)'B”'"1 = ,,,/ o y2n . Therefore, mg] induces a homomorphism
1 from the Boolean algebra

B B
Con,®», CCon,dl, xCon, (¥, /a{") " x( /a}") K.

=B(w® - 5) x Blw®*™) = Blw®*™ -5)

to the Boolean algebra Con ( m/ o P m = B(w® ™) which, by virtue of the
inequality n; <m, is impossible. The contradiction obtained proves that for any
mny,...,n€w, the existence of a homomorphism from the algebra D, x..x®, to
the algebra D,, must imply m E{ny,...,n;}.

It should be noticed that all algebras of the type D, contain subalgebras
isomorphic to the algebra & . Indeed, for &, it is obviously a subalgebra
{fires Sy}, and for any o) at k=I1E€w, we have f,[a =f[a. Therefore, for
any kK €Cw, we get

* *
< ﬁpﬁ(/a{l,...,fk-/af P,

and

{= fk,fl:-/af,...,ﬁ:-/aj Slk€Ewy= I

(here [/l E(Zn/a,-")'s" is such that f./a(p)ES; [l for any pE(B,) . Let
us refer to this subalgebra of the algebra D, as X (D,), and to the element
<Jofildl o fifal> as f(D,). For any infinite ICw, D, will denote the
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algebra 233,,(27 (D)), which is a subalgebra of the algebra HI),, with a basic
n&l n=l

set {h EH@,,I there are m,k Ew such that for all p=m, h(p)= f(D )}
el

Let us show that for any infinitt /Cw and any n€w, we get P, <<.D; iff
n€l. If n€l then, obviously, D, <<.D;. Let now g be a homomorphism from
the algebra D; to D,. If h,...h is a finite set of generating algebras of the
algebra I ,, let v,..,v, €D, such that g(v;) =<h;,..>ED, for ist as well. Let
[€Ew be such that for all m=1I, for all i<t we have v,-(m)=fk(,-)(Dm) for some
k(i) Ew. It is obvious that for any nEw there is a homomorphism from the algebra
D, 1o the algebra & and, hence, to the algebras & (D,,) isomorphic to it (at any
mew).

Let us refer to some fixed homomorphisms of the algebras £, on the algebras
A (D,) as @, Let I={ij<..<i,<.} and iy <Isi,,. Let & be a subalgebra of
the algebra .2, with a basic set {h€Dl for all mELm =1, h(m)=f(D,), where
k is such that f(.D,,) =@, igu(h(ip))}. Obviously, we get < zi)ilx...xi)iq.
Moreover, if & is a projection of the algebra D; on the algebra D, x...x@iq, ker 7t
is a principal congruence.

Let B be the image of kerm under the homomorphism g (i.e., f= Hf?(g)ﬂ(b) if

ker 7 = Bfé); B is a principal congruence on P,. If &, is a projection of the

algebra D, on the algebra &, then, by the construction of & , which included

<V,...,V,>q , a subalgebra of the algebra fD, generated by elements vy,...,v,, we
1

get the equality mg(€ )= ,. On the other hand, kers limited to &€ is trivial
(zero) and, hence, B, limited to g(&€ ) is also trivial. Therefore, we found a
principal congruence B on the algebra D, such that for some subalgebra g(£ ) of
the algebra ©,, the B boundedness on this subalgebra is trivial, the projection of
this subalgebra on the algebra &, coinciding with the whole algebra & ,. By the
construction of the algebra D, the factor-algebra D,/ has the form
{<a,p,(b),...p (b)) >l<aby,..b,>D,, and ¢; are homomorphisms from the

algebras (& ,,/ al )'B" induced by the projections of the Boolean algebra F, to the
algebras B, |d; for some d; EG,}.
It should be recalled that G, is an ultrafilter of a maximal Cantor-Bendixon

rank on the algebra B, = B(w**"). Then B,)d;= B, and, hence, D,/p=D,. In
this case, since ,‘D,/kern =D, x...x@iq,@nlﬁ =D, and g induces a
homomorphism from D, /kerz to D, [, D,<<D, x..xD; . As has been proved
carlier, n €{j,...,i, }C I. Therefore, indeed, D, << D, for any nEw,ICw iff nE€I.
Hence, it is obvious that for any L,,Cw D; <<, iff 1 CL,.
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The latter conclusion implies the existence of 2No pairwise incomparable
elements in < JMy ;<<>, and an embedding of any countable partially ordered set
into < MMy ;<<>. As was the case in the proof of lemma 10.1, the embedding of
any countable partially ordered set into < 3..mxo;<<> is extended to that of any

countable quasi-order in it.

The statement of theorem 10.3 results directly from the statements of lemmas
10.1 and 10.2. N

Priorities. Theorems 10.1 [173], 10.2 [163] and 10.3 [172] are by
A.G.Pinus.

11. Embedding and Double Skeletons

Alongside with epimorphism relations, isomorphic embedding relations are
fundamental in algebras of an arbitrary variety. We will say that the relation a< b
holds between the isomorphism types a,b of certain algebras iff an algebra of the
isomorphism type a is isomorphically embeddable into an algebra of the isomorphism
type b. The relation =< will be used between algebras themselves in an analogous
sence. It is obvious that the relation < is a quasi-order relation on isomorphism

types.

Definition 11.1. A quasi-ordered class < Jf ;s> will be termed an

embedding skeleton of an algebra class £ .

The present section is devoted to embedding skeletons of congruence-distributive
varieties. Let me first remark that there is a relation between embedding skeletons of
congruence-distributive varieties and such traditional notions of universal algebra as
subvariety lattices and subalgebra lattices. It should be recalled that an algebra & of
a certain class of algebras £ is called R-universal in £ if ¥ <X, and any fx-
algebra is isomorphically embeddable into 4 . The following statement is directly

deduced by analogy with the statement on epimorphism skeletons proved in section
9.

Statement 11.1. For any variety of algebras there is an isotonic mapping
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from the embedding skeleton < JM ;<> to the lattice of subvarieties of the variety
BT If R is an infinite cardinal, and there is an algebra f{4(f1) N-universal in {7,
there is an isotonic mapping from the lattice of subalgebras of the algebra If4(H)
to the limited embedding skeleton of M, < I My;<>.

As was the case for epimorphism skeletons for arbitrary congruence-distributive
varieties, those with extendable congruences prove universal in the class of all quasi-
orders.

Theorem 11.1. If 7 is a non-trivial congruence-distributive variety with
extendable congruences, for any regular cardinal X >X,, any quasi-order of the power

not greater than X is embeddable into < JMy;<>.

Proof. Let & be a simple at most countably infinite J -algebra. By theorem
1.17, there are Boolean algebras B, of the power N(i€R) with the following
properties: for any i= jER and O=a€F, 0=bEX,; we get B;b4 Bla. By
defining a Boolean algebra B, as E.Bi for IC R (see the definition of this algebra

il

before lemma 9.4), we obviously get that for L,,[LCR B, =B, , iff [ CI,.
Therefore, the partially ordered set <2";g> is 1isomorphically embeddable into
< 3IMyis>.

Let now < A;<;> be an arbitrary quasi-ordered set of the power not greater
than XK. A partially ordered set < Af=_;<;> is isomorphically embeddable into
<2%.C>. Let us call this isomorphism f. It should also be noticed that among the

Boolean algebras just constructed, no Boolean algebras of the type B((wi+11)-N)
(where iEX and 7 is the ordinal type of rational numbers) have been chosen as

direct co-factors. Moreover, for i= jENX we have B((wi+n)-N) séB((wj+n)-N), but

B((wi +1M) ) =. B((wj+ n)'R). For any a€A, let h, be a certain bijective

mapping from the [a]._ equivalence class to the ordinal X. Then for any a €A let
=1

o fo
B, =8 jqar., ) x Bl " +m)).

From the earlier remarks it is obvious that for a,b €A B, <B, iff asb.

I [a€A) will denote an 7 -algebra ¥ %, in which case \¥ ,I1<lB =R for any
a€A, while by theorem 11.3, ¥ <&, iff B, <F,, ie, iff as;b. A

Corollary 11.1. If M is a non-trivial congruence-distributive variety with
extendable congruences, any quasi-ordered set is isomorphically embeddable into the
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M embeddable skeleton.

As follows from the proof of theorem 11.1, M -algebras implementing
embeddings of arbitrary quasi-orders in < 3. ;<> will be of uncountable power for
both embedding skeletons and epimorphism skeletons. Even “small” quasi-orders may
be not embeddable into countable embedding skeletons of certain non-trivial
congruence-distributive varieties with extendable congruences. For instance,

< 334(0;s> is obviously isomorphic to the quasi-ordered set (wl(-Bl*)Ul, whose
quasi-order wl®1* is described in section 10, and (wl&)l*)Ul is obtained by

adding to w1®1* an element comparable to nothing (of the type of a one-element
algebra isomorphism). Since it is often the case that a singleton algebra is not a

subalgebra of other algebras of a variety, using ' to denote a class of non-

singleton 7 -algebras, we introduce the following definition.

Definition 11.2. A quasi-ordered set < :fm% <> will be termed a countable

*embedding skeleton of a variety M7 .

Therefore, a countable *embedding skeleton of a variety of Boolean algebras is
linear-factor-ordered . On the other hand, theorem 3.3 entailss that a countable
*embedding skeleton of a variety of Boolean algebras is isomorphically embeddable
into a countable *embedding skeleton of any non-trivial congruence-distributive variety
with extendable congruences, i.e., the countable *embedding skeleton of a variety of
Boolean algebras wIG-)l* is minimal among countable *embedding skeletons of
varieties of the class under discussion. Then the following statement holds.

Theorem 11.2. If M is a congruence-distributive variety with extendable

congruences, in which case either M is semi-simple, Mg, is an approximatizable

class and the principal congruences are elementary definable on M1 or M, is locally
finite, then the following conditions are equivalent:

(a) the countable *embedding skeleton of M is linear-factor-ordered:

(b) the countable *embedding skeleton of # is minimal (i.e., isomorphic to
*
w®1);

(c) M=-M&), where & is a certain quasi-primal algebra with no non-
singleton subalgebras, and for any one-element subalgebras of the algebra & , there
are 4 automorphisms transferring these subalgebras into one another.
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Proof. Let us first prove some lemmas.

Lemma 11.1. If M is a congruence-distributive variety with extendable

congruences and <3‘m,§0;s> is linear-factor-ordered, for any simple at most
countably infinite 7 -algebras &, &, ¥, =_I,.

Proof. Assume that &, &, €My and they are simple. Since < JMy ;<> is
linear-factor-ordered, one can assume & 153)’ ,. For the same reason, we have either
A<, or H,<IH?2. As the congruences on 1 are extendable, any subalgebra
of a simple algebra is simple itself and, therefore, the case ¥ 7 <s¥ , is impossible.
However, since ¥, =< 12 is embeddable, as 4, is subdirectly non-decomposable,
4 , is embeddable into ¥ ;. Thus, ¥, <&, and X, < ,. W

Lemma _11.2. If M is a congruence-distributive variety with extendable

congruences, J is an infinite simple 77 -algebra and < Iy ;<> is linear-factor-

ordered, then there is an infinite simple finitely generated . -algebra.

Proof. Since, due to extendable congruences on M1, subalgebras of simple
algebras are simple, & can be considered countable. Let aj,a, be different elements

of &, and let &, be a subalgebra generated in 4 by the elements a;a,. &, is
simple and infinite since, if it were finite,, having by lemma 11.1 the relation

F,=.d, we would get a finite J, which contradicts the lemma conditions.
Therefore, 1 is countable, simple, and is generated by the elements a;a,. W

Lemma 11.3. If M is a congruence-distributive variety with extendable

congruences having an infinite simple finitely generated algebra, Mg is an
approximatizable class, and the principal congruences on T are clementary definable,
any countable partially ordered set is isomorphically embeddable into < JMy ;=>.

Proof. Let & be an infinite, simple, and finitely generated 7 -algebra. For
the sake of simplicity, & is assumed to be generated by two elements, a;,a,. &,
willh genote a diagonal subalgebra of a direct power & “ of the algebra & , ie., a
subalgebra of the algebra & ® formed by constant functions.

Let ¥ ={aay,..a,.-.}, and f will denote an element of the algebra I *
such that for any m Ew we get f,(m)=a;. Therefore, ¥ o ={f, > > fpn---}, and the
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elements f}, f, generate & ,. g will denote an element of the algebra & ® such that

for any m Ew we have g(m)=a,. Let J, be a subalgebra of the algebra J *
generated by the elements fj, ;.. For any set PCw, kp will denote an element of

the algebra 4 “ such that for m EP we have kp(m)=a;, and for mEw \ P we

have kp(m)=a,. Let J (P) be a subalgebra of the algebra J “ generated by the
elements f, 5.8 kp.

We now will have to use some notions associated with the hyperarithmetic
hierarchy of the subsets of the set w. All these notions can be found, for instance,
in a well-known monograph by H.Rogers [200]. For any set PCw, P will denote
the hyperpower of the set P, and < the relation of order (reducibility) in the
hyperarithmetic hierarchy. Let o be the signature of algebra & , and V the family of
the numbers of the identities of the signature oU <a;a,> true on the algebra
<% ,a;,a, > at a certain fixed numeration of the signature oU <aya,>. According
to C.Spector [218] (the remark following theorem 1), there is a family
{A.P,,...F,,..} of subsets of the set w such that for any ii,....i, E®w we have
F=V and, if i&{i, ..o}, BB v.vE .

For any IC w, ¥, will denote a subalgebra of the algebra HQJ (P) with a

il

basic set {fEHQf (P), there are n€w and aE€H, such that for any m>n
el

f@m)=a}. Let us prove that for any I,J Cw, the algebra J; is isomorphically
embeddable into the algebra & ; iff I1CJ .

Let ICJ, and let 9 be a certain fixed homomorphism from the algebra & ; to
the algebra J o= (its existence is obvious). Let us define a mapping ¢ from the
algebra J; to the algebra & ; in the following way: for fE€H,, let @(f) be such
that @(f)(m)= f(m) if m€&€I, and @(fHi(m)=yp(f) if mEJ\I. It is obvious that
@ is an isomorphic embedding of 4 ; into the algebra & ;.

Let us prove the opposite case. Let there be a certain embedding ¢ from the
algebra & ; to the algebra & ;. Let us prove that, in this case, /CJ. Let us
assume to the contrary, that [€I/\J. y will denote a fixed homomorphism from
the algebra 4 (B) to the algebra & ,. ¥, will denote a subalgebra of the algebra
¥, with a basic set {f€d,l, for any kEI\{} fk) = ¢(f()}. Obviously,
¥, =¥ (P). Since H (B) and, hence, ¥, are finitely generated, by the definition
of the algebra & ;, there is an n €J such that for any h€H; there is an a(h) E€H
such that for m&J obeying the inequality m>n we get @(h)(m)=a(h). The
mapping 4 — a(h) is, obviously, a homomorphism from the algebra @(J ;) to the
algebra & (, and the projection of the algebra (& ;)C l—[.?f (P)) relative to the set

&l

{IE€Jlisn} is an isomorphism from the algebra @(J ;) to a certain subalgebra of the
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algebra l—[&' (F). Therefore, there is an isomorphic embedding m of the algebra
i=nicJ
2!(17)53}, in the algebra & (B)x...xd (B,), where {i,....ii} ={i €Jli< n}.

Let now t{(xl,...,x,-),...,tji-(xl,...,xi),... (i€w) be an enumeration of all the terms
of the signature of the variety # from the variables xi,...,x;. Then, by the
definition, for any PCw we have J(P)={t;‘(fi,‘f2’,g,kp)lj<(U}. For any i€w,
however, by the definition of the element kp, we have

15 (fi o 8 Kp)G) =17 fi, o8, /) if i€P,
131 o 8 Kp)@) =] (fiu 2.8, H)() if i EP.

Let the recursive functions a(x),8(x) be such that

£ (fir Jor &) = L) fir f2r8) and
Ij!(fl’fz’&fz) =l§(j)(fl’fZ’g)-

The chain < 12(,),z§( j),P> will be called a canonical description of the element
. . 3 .3
t-‘;(fl,fz,g,kp) ed (P), and we will write tj!(fl,f2,g,kp) =< ta(j)’tﬂ(j)’P>-
The embedding 1 of the algebra & (B) into the algebra & (B)x...xd (B,) is
uniquely defined by the images of the elements f, /5,8 kp generating the algebra

T B). Let the following equalities be valid for some
My e e T e ST S 5 S EO

M) =<ty (s fos 8 ol (R o8k, ) >=

3 3 3 3
=<<Lam) g om) Ly > <lagme) B m) B >>>

D) =< by (R oo kip, Dol (B For8 kp, ) >=

3 3 3 3
=<<lam)Lpm) By >+< lau) B ) By >>>

18) =<1y (f1s Jos 8 Kp Dovoolry (s JooBkp, ) >=

3 3 3 3
=<<lan)tg) Py >r-<lagptpmr B >>

n(kp,) =<1y (i foo8okp, Yooy i Jos 85k, ) >=

3 3 3 3
=<< za(sl)’tﬁ(sl)’Pil >, < ta(sk)’tﬁ(sk)’gk >>.
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By virtue of the definition of the elements kp and theorem 5.6, the following

equivalence holds for any i€Ew:

. . ) ¥
IEP < kp(i)= fi() < 0, C o7 P,
As m is an embedding of the algebra ¥ (B) into
A= (P )x..xd (B,) and the congruences on J' are extendable,

I (R) a(7)
8 gefigl

a x
ke < Onen)n S Oncs)me -

the algebra

For hk&d ', [h=k] will denote {<i,joli<k,jEw and h@E)(j)=k(@)()),

where h(i).k(i)EH (P),h(i)(j).kG)j) X }.

In this case, by theorem 5.6, "f;laémmmﬁeg(b,n(g) is equivalent to

[n(kpl) =n(12[n(f)=n(g)]l, while the latter, by virtue of the canonical
descriptions of the elements n(f;)(j/).n( £)(7). n(g)X j),n(kpl)( j) introduced above, and

since f; = t,-2 (/i./5), is equivalent (for any j=<k) to the following relation:

WU amp o Fo®e () S F28)) =ty (o Jor O B U

UL B, i S8 Wi )y (s Foo8) =150y (i s ONIN =B ) €

C Mo, s Jo8) = Tagmy (o s OIN B U
U8G5,y (o S2:8) = Biomy s Joo TP

Therefore, for any i€w, iEF < for any j<k and uEw,

U EP, = (18 (tom )y (1,828 (1,8)) (13 (n (@182 (@, @) =
= ti(r,)(al,az,tf(al,az)) = lz(sj)(abaz’tuz(alﬂz)) =

- zi(mj)(al,az,t,f( a1.a))8&(u ER, =
=”t?(lg(mj)(al,azlf(al’02)),’;(;1,)(01,‘1213(‘11,(12))) -

= t[:;(rj)(al’aZ’tuz(al’a2)) = tz(s,)(“l’az,ti(“l’ @) =

= thom, (@102 03(a1,,)))

It should be recalled that we have already fixed a certain Godel numeration of
the terms and identities of the signature oU <a;,a, >, and that V is a family of the
numbers of the identities of the signature oU<a;a,> true on the algebra

< a4 >. y(iuw,pq) will denote the number of the identity
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2,3 2 3 2 3 2
ti (tw(a11a2 Ju (alyaz))Jp(al,aZatu (abaz))) =tq( a17a23tu (a17 az)) >

while 6(u,w,p) stands for the number of the identity

3 2 3 2
tw(al,az ,tu (al,az)) = tp (al,az ,tu (al,az)) .

It should be noticed that both y(i,u,w,p,q) and 6(w,w,p) are recursive
functions. In this case, as has been noted earlier, for any i€Ew we get

IER <« Vj<k Yu((u Ef}j = (y(@Q,n,a(m;),a(n;),a(r;)) EV =
= d(u,as))a(m) EVI& WER, = (y(;np(m;),B(n).B(1) EV =

Therefore, if the algebra J; is embeddable into the algebra &, and IEI\J,
there is a K €Ew and numbers §,...,i; €J such that

<+, Vsl=3my,...mpng, . ng a8, S [VIGER <

< Vj<kVu((u €F, = (yGu.a(m),an)).alr)) EV=

= 8 (ua(s)).a(m)) EV& (U ER, = (y(iu,p(m;)B(n,).B(r)) EV =
=0 (u,f( 5.8 (m;)EVN].

The latter relation implies the inequality B < P, v...vP, vV and, since V<P,
we get Fj<F v..vF,, which contradicts the choice of the sets F,. The obtained
contradiction proves that if ¥, is embeddable into & ;, the assumption IZJ is
impossible. Therefore, indeed, for any I,J Cw, the algebra ¥ ; is embeddable into
&, iff ICJ, ie., <2“;C> is isomorphically embeddable into < 3..mxo;s> and,
since any countable partially ordered set is isomorphically embeddable into < 2%;C>,
the lemma is proved. Hl

Lemma 11.4. Let J be a quasi-primal algebra without non-singleton proper
subalgebras. Let {a;},{a,} be the & algebra of subalgebras, and let the countable
*embedding skeleton M = W (F ) be linear-factor-ordered. In this case, there is an

automorphism ¢ of the algebra J such that @(a) = a,.

Proof. Let us choose subalgebras & ,,& , of the algebra & “ in such a way
that J; ={fEH “| there is an nEw such that for all j=n, f(j)=a;}. As
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< JMy ;s> is lincar-factor-ordered, we can assume #;<J,, and let ¢ be an
embedding from &; to & ,. By theorem 5.6, a factor of the algebra &; over any
of its principal congruences is isomorphic to J; itself. Therefore, if » is such that
for izn we get (p(a(l))(i)=a,l (here alp €dl,;, and for jEw alp(j)=a,~) then, by
factorizing 4 , and @(J,) relative to j\s/n kery o, we get an embedding y of the
algebra | into ¥, such that y(al) =a). Let now bEH,, b(0)=a; and b(i) = q
(i>0). Then, if J; is a subalgebra of the algebra | generated by the elements b
and a, ¥3 =H . Let i be such that b(i) = a,, in which case, since P(H ;) =F is
simple, &%) is an isomorphism from the algebra &5 to ¥, and n,(gb)(a?) =a,.
By virtue of the isomorphism <Jf3,a10 >=<¥ ,a; >, we obtain the statement
required. M

Let us now return to the proof of theorem 11.2. Since the implication (b) —
(a) is obvious, we have to prove the implications {a) — (c) and (c) —(b). Let us
start with the former, and let # be a non-trivial semi-simple congruence-distributive
variety with extendable congruences, and let < 3. §0;s> be linear-factor-ordered. Let
J be a simple M -algebra. By lemmas 11.1, 11.2 and 11.3, Z is finite. By
virtue of lemma 11.1, and since M is semi-simple, & is the only subdirectly non-
decomposable m -algebra. Therefore, as < 3.M§o;s> is linear-factor-ordered, for any
n€w we get Fgp(x,....x,)<d ©. Since J is finite and Fpy (x,,...,%,) is finitely
generated, there is an m €w such that Fg (x,...,x,) s& ™. Let 5, be the least of
such m, and let us identify §g (x,....x,) with a subalgebra of the algebra I °"
isomorphic to it.

Let us now choose a kK E€w such that 3“_m(x1,x2,x3)§3s3 Q:\“lm (%o Xp)
and let g be a mapping from {x,...,x.} to {x,x,x} such that g(x;,)=x; at is3,
and g(x;)=x3 at i>3. Let us extend g to a homomorphism from jm (x,..nxg) to
& (x.%2,x3). Then the limitation of g to & ™ is a homomorphism from ¥ * to
3‘177 (x%,%,,x3). By theorem 5.6, however, all homomorphic images of the algebra
X% have the form ' for I<s;. Therefore, there is an /[Ew such that
Sm (xl,xz,x3)s:ﬂl. And again, by theorem 5.6, all congruences on F' and,
hence, on §yp (%,%,%), are permutable. By theorem 2.5, this means that M is
congruence-permutable. By lemma 11.1, and since & is finite, & has no non-
singleton subalgebras. All these facts tofether imply that & is quasi-primal.
Moreover, as Fp (%,... %) CI ", Fp(x,....x,)EMF) for any n€w and,

hence, M = (¥ ), where & is a quasi-primal algebra without non-singleton
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proper subalgebras. By lemma 11.4, in this case, all one-clement subalgebras of the
algebra & must be transformed into each other by an automorphism on & , which
proves the implication (a) — (c) for the case when M is semi-simple. The case
when M1 is locally finite is considered in an analogous way but without using
lemma 11.3.

Let us now prove the implication (c) — (b). Let & be a quasi-primal algebra
without non-singleton proper subalgebras, with any of its one-element subalgebras

transformed one into another by automorphisms on & . Let us show that
< 3M )y, ;s>= 0;®@1*. By theorem 7.6 and lemma 4.3, any non-singleton
IR (2 )y, -algebra is representable as ¥%@,,.. ¥ ;F,..E) for some at most
countably infinite Boolean algebra B, closed E ,....J, and some I -subalgebras
A,,... 4 ,. Therefore, to prove that all non-singleton J(J )x, ~algebras are
comparable in terms of embedding, it suffices to show that under our conditions on
4, for at most countably infinite Boolean algebras B|,5,, B3, any closed subsets
11}1,...,F,il(1712,...,F,,2 ) of spaces ,Bl* (.B;) and any one-clement subalgebras
{all},...,{a,ln},{alz},...,{a%} of the algebra & , the algebras

I, =u% ¢y (a  FL.FL),
Ay =¥ Po(dly Aady R F D)

and ¥ %5 are comparable in terms of embedding. Let us first remark that since we
assume a,-k = ajl-C at i=j, Ek ﬂij =. As all closed I*}k,F}c are separable in .B,: by
open-closed subsets, i.e., elements of the algebra B, we get for appropriate

birin by €8 (C1roC  €EE )

A, = U ety Fyx. < Bn gl v FL)
and

U,y = ¥ P (@l B x . xd P (@l ED).

Therefore, in order to prove the statement (b), it suffices to prove the following
statements:

(1) all algebras of the type & 'B‘({al};Fl),Jt" 'Bz({az};Fz), J % where
5,,B, B, are countable, are comparable in terms of embedding;

(2) for any XB,B,a.a,KE there are Bsa3, B such that
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AP ey R x ¥ P ayB) = ¥ B3 (e ).

Let us first make the following remark. Let fi€F , and let us consider a
space (.Bl* \ ) U{fi} such that the system of open neighborhoods of the points

other than f; in it will be the same as that of the same points of the space .31* not
intersecting with F, while the system of open neighborhoods of the point f; in the
new space will be the same as that of open neighborhoods of the set K in the

space AB; , with the subset K \{fi} taken out of these neighborhoods. As can be
seen ecasily, this space is Boolean (let us call it .BZ), and we get
J'B‘({al};lf])sQf'B“({al};fl), i.e., in the statements (1) and (2), all closed sets E
can be considered one-element.

Since 2, is countable, it is either superatomic or contains an atomless
subalgebra. Let us consider only the case when B, and other Boolean algebras are
superatomic; the other case can be considered in an analogous way. Then we have
B, = B(y), where y is a certain ordinal, in which case for a certain 8 €y +1 we
get fi=fs ={EB(yN(a,6]C b for some a < b}

If & is not a limit ordinal then, obviously, 3‘34({a1},ﬁ)§&'3(7\{6}). If & is
a limit ordinal,

APiay )= A POap, ) x Y BO1D,

Let us now notice that for any ordinals 6;,6,,y the following comparisons are
obvious:

if 6,58y, ¥ W@ fy) <¥ *apfi);
if y= 06, ¥ "Wa) o) s¥ "V,
if y <8, A5 < Pay, £, ).

Moreover, since for any one-clement subalgebras {a;},{a,} of the algebra ¥
there is an & automorphism  transforming them into each other,

/| B('S)({al}, fé)sy B(é)({az}, Jfs}. Therefore, the statement (1) is proved, and the
statement (2) can be proved analogously. H

It follows from theorem 11.2 that all congruence-distributive varieties M1 with
extendable congruences such that [, is approximatizable and the principal

congruences on M are elementary definable, with minimal or, which is the same,
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linear-factor-ordered *embedding skeletons are discriminator varieties. One can also
obtain a number of further results on the structure of countable *embedding skeletons

of discriminator varieties.

Theorem 11.3. If M is a finitely generated discriminator variety with all its

algebras containing a one-element subalgebra, < 3..mx0;s> is a better quasi-order
and, in particular, < 3,mN0;5> contains neither infinite anti-chains nor infinitely

descending chains.

Proof. Let us make use of the notations in the proof of theorem 10.2 and
recall that _B—I; denotes a cortege <8 Ji,...F, >, where 8 is at most countably
infinite Boolean algebra and K,...,F, are close subsets of the space B . Let J be
a finite algebra such that any ..mxo -algebra is isomorphic to a certain filtered Boolean

power of the algebra J . As follows from the proof of theorem 18.2, it suffices to

show that the relation IZZ‘F—); = l@; implies the relation

I RSYS B Y  OS RLT6) S Y - %

As was the case in the proof of theorem 10.2, for I—— <, / the space

&, =1 '3h,

.Bl* can be identified with a certain subspace of the space .B; in such a way that

El =F,72 ﬂ.Bl*. Elements of Boolean algebras will be identified with open-closed

subsets of Stone spaces. Let us also assume that the families {Fil,...,E,l},{FlZ,...,F,,2 }

are closed under intersections. Let ay =1,ay,...,4,,... be an enumeration of all the

elements of the algebra .B,. Let us define by induction over n embeddings h, of a

Boolean algebra F(n), which is a subalgebra of the algebra B, generated by the
elements {ay,...,a,}, into a Boolean algebra .B,ld for some d €F,.

Let Ky ={isn F,?l =} and, hence, closed disjunct subsets of .Bl* and UEZ

i€k,
of the space B, are separated by an open-closed set d €8, such that B, Cd and

dng UE2=®. Let us set h0(131)=d,h0(0_31)=0v32, and assume that h, is
K
defined on a Boolean algebra F(m), and for any c€B(m), cCh,(c) and

cﬂIil#@ iff hm(c)ﬁF;-2 =, where i=1,...n. Let c,....c, be all atoms of the
algebra B(m). If either ¢jNayy =D or ¢;N=a,,; =, the value of h,,; on the
elements ¢; Na,,, ,c; N ~a,,; is assumed to be the same as the value of £,,.

Let now ¢;Nay, =D and ¢;N-a,, =J. K} will denote the set
{isKMF' Nc;Na,, =3}, while by K; the set {iskE Nc;N~a,, =3} The sets
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¢jNa,,; and c¢;N-a,,; are closed and disjunct in .B; and, hence, there is a
b; €8, (we can assume b;Ch,(c;)) such that ijc!- ﬁ'am+1 and
hn(€;) \ b; D¢ M =a,,,,. Analogously, there can be found elements ef e5 €8, such
that

e{,egg hm(cj),e{ 2¢; ﬂam+1,e{ N{ UI*;2 Nh,(c;) =D
ik}

(such elj can be found since ¢; Na,,; and Ezﬂhm(cj) are closed and do not
intersect; the latter is valid since the inequality c; ﬂam+lﬁl7i20}1,,,(cj)a=®, as
h,(c;) 2c¢; and Iff ﬂ.Bl* = F,fl, implies the inequality ¢; Nay,,; ﬁF,-1a= ),

m+l>

e N(UF Nhy(c;) =2.

2
iEK;

e3 2¢;N-a

If (~ef N=b;,Nh N UF -2,
kek!

J
(~¢f N =b; Nhy N UF =2,

then we set

Pos1(¢j N @yyy) = (b; N ef ) U (=€ O ~b; N By(c))),
Bpa1(€j N =@ppy) = (yp(c)) N =b; N )Y U(=¢f Nb; N hy(c;)),

in which case the induction condition for h,,,; is obviously met for elements of the
type ¢; Na,,; and ¢; N-a,,,. If, for instance, —-egﬁbjﬂh,n(cj)ﬂﬁczasz for

some k EKJI-, for the case when (ﬂeé'ﬂ—-bjﬂhm(cj)ﬂsz)ﬂ( UZF22)=®, one can
ecK?

“fix” e by adding to it a certain open-closed subset of the set -e£ N =b; Nh,(c;)

which contains all points of the set —-e{ N =b; ﬁh,,,(cj)ﬁFk2 and does not contain
points of |(JE’. The case when (~efN-b;Nh,(c)NFIN(UF)=D is

ek} K}
impossible, since otherwise there would be an eEKJ2 such  that
Fe2 ﬂszﬂh,,,(cj)#@, but F;Z ﬁFk2=F,2 for a certain r<n and, by the condition
on h,, there would be a pEcj such that pEF,‘cl . In this case, however, if



262 BOOLEAN CONSTRUCTIONS

PEC;Nay,;, pEciNa,, N Fl =@ and, hence, k €K}, while if p €c; N ~a,,1,
¢ Napy ﬂFel = (J and, hence, e¢K}. The obtained contradiction proves that the
inequality

(=ef N =b; Ny (c)NFOINCUE) =2
eEK}

is impossible.

By “fixing” elj in an analogous way, if required, we get a definition of the
mapping A,,,, on all elements of the type ¢; Na,,,, where j<k. On those elements
of the algebra B(m+1) which are not its atoms, we define #,,; by the additivity
condition. Therefore, h,,,;, being an extension of #,, isomorphically embeds the
Boolean algebra B(m+1) into the Boolean algebra ,led , in which case for any
i=1..n and c€EB(m+1), we get ¢cNE =@ iff h,(c)NE* =@. Thus,

h= Uhm will be an isomorphic embedding of the algebra B, into the algebra
m&w

B,ld, which obeys the same requirements on K and F°

The embedding @ of the algebra BT vl B FY) into the algebra
31‘32(211,...,3,,; F,...E?) will be defined in the following natural way: if
= ‘B‘(ﬂl,...,ﬂn; Fll,...,F,,l) and is such that for a partition cy,....,c; of the space
B by elements of the algebra B, f is constant on ¢;(i=1,.0) and f(c;)=b;,
where b; €dl , we set @(f) to be constant on the subsets h(c;) of the space .B;.
In this case @(f)(h(c;))=b{i=1,..,l) and (p(f)(l_l;2 \h(l_Bl))=e, where {¢} is a
certain fixed one-element subalgebra of thc algebra 4 . Obviously, ¢ is an
isomorphic embedding of the algebra 3]'31(31,...,21,,;111,...,F,1) into the algebra
3'32(311,.,.,31”; F2,....E*), which is the required proof. H

Indeed, in the condition of theorem 11.3, one can join together the statements
of theorems 10.2 and 11.3, i.e., it can be seen clearly from the proofs of these

theorems that the relation Fx— <; l-—— implies the existence of such homomorphism
By, =1,

from the algebra & 2(24'1, A Fi . 2) to the algebra
b '31(3’ ) n;I{l,...,F,i) and an embedding of the latter in the former such that
31‘Bl(ﬂl,...,lfn;lil,...,F,}) is a retract of the algebra Jf‘BZ(ZI1,...,2)',,',1712,...,15;,2).
Therefore, the following corollary is valid.

Corollary 11.2. If M is a finitely generated discriminator variety with all its
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algebras containing a one-element subalgebra, any infinite family of countable i -
algebras contains an infinite sequence of different algebras ... ¥ ... such that for
any i<j J; is a retract of & ;.

The statement of the corollary results from the remark made before its
formulation, by applying the Ramsey theorem in a standard way.
As has been shown in section 5, a variety of rings obeying a certain identity

of the type x™ = x is a finitely generated and discriminator variety and, hence, by
corollary 11.2, in any infinite family of rings obeying a certain identity x™ =x, an
infinite sequence of different rings 31,...,3’n,... can be found for which &, is a
retract of J ; for any i< j.

Problem 11.1. Is the condition of the existence of a one-clement subalgebra

for any M -algebra in the formulation of theorem 11.3 necessary ?
Any finitely generated variety is locally finite. The following theorem proves that

countable embedding skeletons of not locally finite discriminator varieties are universal
in the class of countable partial orders.

Theorem 11.4. If M1 is a discriminator variety of a finite signature which is

not locally finite, any countable partially ordered set is isomorphically embeddable in
the countable embedding skeleton of M. 1f, moreover, MM contains at least two
simple algebras, any countable quasi-ordered set is embeddable into < 3,.mx0;s>.

Proof. Let us first show that any not locally finite discriminator variety 7 of
a finite signature contains an infinite simple finitely generated algebra. Let & be a
certain finitely generated M -algebra. For the sake of simplicity, we assume it to be
generated by two elements, @ and b. By theorem 5.7, & can be considered the
Boolean product of some simple I -algebras J ,(x E,B*) over a certain Boolean
algebra B . Since the algebras & , are generated by the elements a(x),b(x), in order
to prove that there is an infinite finitely generated M7 -algebra, it suffices to show
that at least one of the algebras &, (x €8") is infinite. Let us assume that the
opposite case is true, i.c., all &, are finite. For any x€B", T, will denote the

finite family of the terms of the signature o of the variety M over two variables,
u,z so that

I = {e(alx),b( ) (u, ) ET}.
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Let R, be a finite system (since both T, and the signature o are finite) of all
equalities of the type A(#(u,z2),....t,(1,2)) =1;(u.2), where h €0, ol €T, and

U J = h(n(a(x), b(x)), ...t (a(x),b( ) =1,(a(x)),b( %)) .

Obviously, for any algebra & generated by some elements c,d, if €l=r(c,d)
for any r(u,z) ER,, € is a homomorphic image of the algebra &, and, as &, is
simple, we get either € =4, or € is one-element. By virtue of the definition of a
Boolean product, the set C, ={y€XB |1 J=r(a(y).b(y)) for any r(u,z)ER,} is an
open-closed subset in B : containing the element x. Therefore, {C,/xEF *} is an
open cover of the compact space P * and, hence, there is a finite set
..., x3C B" such that B" =C,,U..UC, . Therefore, for any yEB’, either a,
is one-element, or y = x, for some i<s, in which case the latter isomorphism ¢
is such that @(a(y)) = a(x;),@(b(y)) = b(x;). Therefore, the algebra 2 generated by
the elements a,b is finite. The contradiction obtained proves that there must be an
infinite algebra among the finitely generated simple algebras J,. The existence of an
infinite finitely generated M7 -algebra implies, by lemma 11.3, embedding any
countable partial order into < 3..mxo;s>.

Let now M1 have at least one more simple algebra & ;, and let < A;s> be an
arbitrary countable quasi-order. Let us assume that, for any a €A, [a]Es is infinite.
Let £ be an arbitrary countable family of non-superatomic countable Boolean
algebras and, therefore, for any B|,B,€f we get B <B, Let h, be for
[al€A[/=, a bijective mapping from the set [al,_ to £ . Then, obviously, if f is

an isomorphic embedding of < Af=_;=> into < I My :=>, @(a) = f([a],s)x?'flhl‘”(a)

will be the required isomorphic embedding of the quasi-order < A;<> into the
countable embedding skeleton of 7. M

Now the following problem is open for discussion.

Problem 11.2. Is the requirement on the finiteness of the signature necessary
in the formulation of theorem 11.4 ?

Moreover, the results obtained in theorems 11.3 and 11.4 leave the problem
of whether < I MMy ;<> is well-quasi-ordered open only for locally finite

discriminator varieties which are not finitely generated.
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The following problem, in particular, remains unsolved.

Problem 11.3. If < 3 (fMg)y ;=>, ie., a family of simple H7 -algebras of at
most countably infinite power, is well-quasi-ordered, does this imply that the

countable embedding skeleton of a locally finite discriminator variety f is also well
quasi-ordered ?

By way of concluding this section, let us turn to so-called double skeletons of

algebra varieties, i.e., to studying the problem of interaction between epimorphism
and embedding relations.

Definition 11.3. A double skeleton of a variety M is a family of the

isomorphism type of M -algebras IMM having the epimorphism relations << and
embedding relations =, i.e., a twice-quasi-ordered family < .M ;<<,=>.

Definition 11.4. Epimorphism and embedding relations are called finitely

independent on a variety 1 provided that any finite set < A;s;,<,> with two
arbitrary quasi-orders is isomorphically embeddable in < I ;<< <>.

Theorem 11.5. (CH). If M is a non-trivial congruence-distributive variety
with extendable congruences, the epimorphism and embedding relations are finitely

independent on M .

Proof. Let 4 be a simple M -algebra. Theorem 1.27, proved under an
assumption weaker than the continuum-hypothesis P(2“), claims finite independence
of << and = relations on a variety of Boolean algebras, i.e., for any finite set
< A;=),sp> there are Boolean algebras B (a €A) such that, for ab €A, B, <<B,
iff as<;b, and FB,<B, iff a<y,b. By corollary 3.1 and theorem 3.3, an

analogous statement is also valid for 7 -algebras & B, @a€A). 1
Problem 11.4. Is it possible to extend the result about finite independence of
<< and = on a congruence-distributive variety with extendable congruences to the

embedding any countable twice quasi-ordered set in < ¥M;<<,<> 2

Let us cite some other statements pertaining to double skeletons.

Theorem 11.6. If M is a non-trivial congruence-distributive variety with
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extendable congruences, the following statements are valid:

(a) for any R >N,, any twice-quasi-ordered set < A;<;,<,> of the power not
greater than X is such that for any a,b €A, as<, b is isomorphically embeddable in

< 3,mx;<<,s> ;

(b) for any regular cardinal K >N, any twice-quasi-ordered set < A;<;,<,> of a
power not greater than X and such that <; and =<, coincide on A is isomorphically
embeddable in < 3..mx;<<,s>. In < J,Mx;<<,s>, there also is a set of the power

28 of elements pairwise incomparable either by << or by =.

Proof. Let & be a simple M -algebra, in which case consideration of
Boolean powers of the algebra 4 using corollary 3.1 and theorem 3.3 reduces the
proof of this theorem to that of the corresponding statements for a variety of
Boolean algebras instead of the variety . The statement (a) for a variety of
Boolean algebras results from the statement of theorem 1.9 for the case when the
quasi-order =; is a partial order. For the embedding of an arbitrary twice-ordered set
< A;s;,s,> obeying the condition of the statement (a) in < 3..mx;<<,s>, it suffices
to “dilute” the embedding of the set < A/Esl§51’5 »> by additionally multiplying the
corresponding Boolean algebras (images of =_ -classes in this embedding) by
pairwise epimorphic and mutually embeddable Boolean algebras which would not
distort the relation << on the images of = -classes. As the latter, one can use
Boolean algebras of the type B((cx + 1)*N), where a runs over all the ordinals less
than N.

The statement (b) for Boolean algebras when =; and =<, are partial orders
results directly from theorem 1.17 and corollary 1.7. In the case when ===, is a
quasi- rather than a partial order, it suffices to “dilute” the embedding of the set
< Al=, ;s1;s,> in the same way as in the proof of the statement (a). B

And, finally, let us formulate one more set of results directly obtainable using
Boolean powers from the corresponding results on Boolean algebras: theorem 1.10
on the retractivity of interval Boolean algebras and theorem 1.8 on the relation < on
superatomic interval Boolean algebras.

Theorem 11.7. If M is a non-trivial congruence-distributive variety with
extendable congruences then

(a) there is an initial interval in the skeleton < J.BT \ {0y };<<>, which is a
proper class (not a set), on which the relation < is an extension of the relation <<;
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(b) there is a proper class (not a set) of elements in the skeleton < 3N <>,
which is a distributive lattice of a final width relative to the quasi-order =.

The problem of retractive Boolean algebras considered in section 1, in
particular, in terms of double skeletons of varieties results in the following problem.

Problem 11.5. For any congruence-distributive variety M1 with extendable
congruences, describe the algebras & €M such that for each algebra ¥, €M1, the
relation & ; << implies the relation &, <& .

Priorities. The notion of the embedding skeleton of a variety was introduced
by A.G.Pinus [178]. Theorems 11.1 and 11.2 [183], lemmas 11.3 and theorem
11.4 [167], theorem 11.3 [163], as well as theorems 11.5 and 11.6 (a) [178]
were proved by A.G.Pinus.

12. Cartesian Skeletons of Congruence-Distributive Varieties

Alongside with important embedding and epimorphism relations between algebras
of an arbitrary variety, the operation of a Cartesian product belongs to the basic
notions of the theory of universal algebra varieties. The same level of abstraction that
resulted in the notions of embedding and epimorphism skeletons also results in the
following definition. If M is an arbitrary variety and a,b € I8 , then axb will
denote the isomorphism type of a Cartesian product of algebras of the isomorphism
type @ and b. It is evident that I (IM, for any infinite cardinal R) is closed
under the operation x, the operation itself is commutative, and the 1y isomorphism
type of a one-clement 2 -algebra plays the role of a unit element in < 3% ;x>
(< 3Wy;x >). Therefore, for any infinite cardinal X, < JMy:x,1py > is a monoid,
while < 3.7 ;%,1gp > differs from a monoid only in having not a set but a proper
class as its basis. In this case, we will still speak about a monoid.

Definition 12.1. A Cartesian skeleton (countable Cartesian skeleton) of a

variety Ml is a monoid < IM;x 1y > (< J-MNO;X’IM >).
The following statement is derived directly from the results obtained in section 1.

Theorem 12.1. For any non-trivial congruence-distributive variety % , any
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countable commutative semigroup is isomorphically embeddable in < I Ro3X >

Proof. By theorem 1.21, it suffices to show that for any non-trivial
congruence-distributive variety M, the countable Cartesian skeleton of the Boolean
algebra variety < JBA; ;x,1p, > is isomorphically embeddable into < JMy ;x,1p >.
Let & be a simple My -algebra. Then, by theorem 3.2, we get Con 2 P aB for
any Boolean algebra B . On the other hand, for any algebras &, &,€M,
according to the remark after theorem 4.2, since M1 is congruence-distributive, we

get Con (¥ x¥ ) = Con,d | x Cond ,. Moreover, the isomorphism of ¥ ? and

¥ x¥, implies the relation ¥, << $ and, hence, by corollary 3.1, it implies
the existence of a Boolean algebra .B; such that &, = 31 These remarks together
prove that the correspondence of the isomorphism type of at most countably infinite
Boolean algebra B with the isomorphism type of an ..‘mxo -algebra % is an

isomorphic embedding of < 33“&0;"’13,4> in < 3..mxo;x,1_m >. M

Problem 12.1, Is an arbitrary commutative semigroup (of the power X;)
isomorphically embeddable into a Cartesian skeleton of any non-trivial congruence-
distributive variety ?

By theorem 4.1, the countable Cartesian skeleton of a variety of Boolean
algebras plays the part of a small object among countable Cartesian skeletons of non-
trivial congruence-distributive varieties. One should also recall a purely algebraic
characterization of the monoid < 3B4<0;x,IBA> as a universal V-monoid of the
summation rank Ng, obtained in section 1. All these remarks result in the problem of
describing all congruence-distributive varieties the countable Cartesian skeleton of
which is isomorphic to < JBA; ;%,1p4>.

Definition 12.2. The Cartesian (countable Cartesian) skeleton of a variety m
is of a Boolean type provided that

<3 ;x1p >=< IBAX, 154>
(< 3My ;%1 >=< IBA 5%1p4>).

Theorem 12.2. If M7 is a congruence-distributive variety, then the countable

Cartesian skeleton of the variety M is of a Boolean type iff M is generated by a
certain quasi-primal algebra with no proper subalgebras.
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Proof. Let M be a non-trivial congruence-distributive variety and
< 3..mxo;x,1m >ec 334(0§X,IBA>’ the corresponding isomorphism denoted by f.
Let & be a simple ‘mxo -algebra. In the proof of theorem 12.1, we established a
homomorphism & between < 3 {& B p €BA, }.x,1pp > and < IBA ;%1p,>, in
which case h(Jf 5 y=2 . In section 1, we defined the notion of a V-monoid, and
proved < JBA; ;% 1g4> to be a V-monoid. Therefore, < I My ;x,1p > will also
be, by virtue of the homomorphism f, a V-monoid. In this case, however, the
mapping k~!f is a self-embedding of <3.mx0;x,l'm >. Then, since, as has becn
noted in the proof of theorem 12.1, the isomorphism & 2.y . x < , implies the
existence of Boolean algebras B,,B, such that ¥, =¥ 3 and B =B xB,, a
submonoid h'l(f(:}’.mxo)) of the monoid < JMy ;x,1yy > will be hereditary.
Therefore, by theorem 1.23, the self-embedding ™'/ of < IMy %1y > must be

identical and, in particular, JMyx = I B\ p €BA }. Hence, 1 =M ().

Since the algebra ¥ 5 s finitely generated, a Boolean algebra B is also
finitely generated, hence, finite. In this case, for any nEw there is a k, Ew such
that § m m=d kn By corollary 3.1, all congruences of the algebra & 5 are
generated by corresponding congruences of the Boolean algebra K. Therefore, all
congruences of the algebra kn will be projections and, in particular, & ks egm 3)
will be congruence-permutable. By virtue of theorem 2.5, the variety J7 will also
be congruence-permutable. Let us show that & has no proper subalgebras. If &
contained a proper subalgebra &’ then, assuming &' is finitely gencrated, &
would contain a non-singleton homomorphic image of the algebra 3272 (my=H k1 for
some n€w. As has been noted earlier, by corollary 3.1, all these homomorphic
images have the form ¥ '(I€w) and, therefore, &', as well as & , would contain
a proper subalgebra isomorphic to & . Considering a strictly ascending chain

Hocd, c.cdl,C.. of simple algebras isomorphic to &, we get a simple
algebra | J&,. As IMy, -39 P €BA,}, 3Py, has a unique simple
nEw

algebra, the algebra & , ie., & = UJJ,,. However, Ué'f ., cannot be finitely
n=w ncw

generated, in which case all non-singleton .mNo -algebras, being isomorphic to

algebras of the type & B , also cannot be finitely generated. The contradiction
obtained proves the absence of non-singleton proper subalgebras in & .
If & has a one-element proper subalgebra with a basic set {a}, then let us
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choose an 2!1={feﬂ‘”l there is an nE€w such that for i=zn f(i)=a}. Let
S L €I, and let n be such that for k>n, fi(k)= f(k). In this case, however,

6‘}{‘]«2 is contained in some kernel other than VJII of the projection of the algebra
¥ over the set mEnm <n} Cw. Therefore, the family of principal congruences of

the algebra 4, has no greatest element and, at the same time, since &, =& 5 for a
certain Boolean algebra B, VJJI is principal. The contradiction obtained proves that

J  cannot have one-clement subalgebras, cither.
To finish the proof of the theorem in one direction, we have to show that 4
is finite. Let us assume to the contrary that the opposite is the case, and let f be a

bijective @ mapping on 4 . Let ¢ be a mapping from @ to one of the elements
(for instance, d) of the algebra & . Let € be a subalgebra of the algebra & ¢
generated by the elements f and g. In this case, € is a homomorphic image of the
algebra 33’?7 Q) = ks and, as has been remarked earlier, there is an m<k, Ew
such that € =J ™. In particular, since all # ™ congruences are projections, Con&
is finite. On the other hand, since & is simple with no proper subalgebras, there is
a term tj(x) for any element f(i) of the algebra & such that tj(d) =f()).

Let 6; be the kernel of the projections of the algebra € CA Y over the set
{nE€Ew)ln=j}Cw. Then, since for any n=mEw we have tj(g)(n) =tj(g)(m) = f(J)
and f(n)= f(m), for any n=j€w we get <1;(g),f>€E0O; and <1;(g),f>E0,.
Therefore, {6,ln Ew} is an infinite family of various configurations on & . The

contradiction obtained proves & to be finite. Thus, 1 =M (X ), and F is a
quasi-primal algebra with no proper subalgebras, and the theorem has been proved in
one direction.

Let now 4 be a quasi-primal algebra with no proper subalgebras. Then, by
theorem 7.3, any M (& )-algebra is isomorphic to a Boolean power of the algebra

4, and since, moreover, FEE Ly By B and the isomorphism

I B 27 % implies the isomorphism B, and B,,
< 3..mxo;x,1_m >ec 334«09‘,13/1 >. H
Let Py =3 {€| and there is a &, such that & =& =& }.
Definition 12.3. A variety ! obeys the Vaught isomorphism criterion if for

any Je_}..mxo, IPylsR, and <3..mxo;x,1vm> is a V-monoid, i.e., if

< Jﬂ?xo;x,l_m > is a refinement monoid, and for any at most countably infinite
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H.B el , we get J =B iff there is a relation RC Py x Py such that:

(1) R3¥ .38

(2) if R(a,lypy), then a=1g ; if R(ly,b), then b=1gp ;

) if a=a; xa, and R(ab), then there are b;,b, such that b=b xb, and
R(a;.b;); if b=Db xb, and R(a,b), then there are aja, such that a=a; xa, and

R(a;b;)).

Corollary 12.1. A congruence-distributive variety obeys the Vaught

isomorphism criterion iff it is generated by a quasi-primal algebra with no proper
subalgebras.

Proof. If M1 obeys the Vaught isomorphism criterion then, by the definition,
< J.MNO;x,l_m > is a V-monoid of a countable summation rank, while the universal

V-monoid of a countable summation rank < 331‘&0;",13,4> is isomorphic to the

hereditary submonoid < 3 {21 ‘BI,B EB/&O};x,l_m > of the monoid < 3..‘mx0;x,1_m >,

where & is a simple ..mxo -algebra. By theorem 1.23, this implies the coincidence
of the sets J B\ p EB&0}=3.MNO and, hence, the isomorphism between

< IBA,;%1p4 > and < J My ;x,1y > established by the mapping B -¥?. By
theorem 12.2, M = M (¥ ), where H, is a quasi-primal algebra with no proper
subalgebras. The converse is also true because the Vaught isomorphism criterion is
fulfilled for Boolean algebra varieties, and because of corollary 3.1 and theorem
7.3. N

By way of concluding this chapter, let us mention a counple of other general
problems pertaining to the notions of variety skeletons.

Problem 12.2. To describe quasi-ordered classes (sets) isomorphic to
epimorphism and embedding skeletons (countable skeletons) of arbitrary congruence-
distributive * discriminator’ varieties.

Problem 12.3. To describe monoids isomorphic to Cartesian skeletons
(countable Cartesian skeletons) of arbitrary congruence-distributive ‘discriminator’
varieties.

Priorities. The notion of a Cartesian skeleton of a variety was introduced by
A.G.Pinus [166, 176]. Cartesian skeletons of various concrete varieties have been
studied by a number of authors. In particular, Cartesian skeletons of a Boolean
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algebra variety and skeletons of Boolean topological spaces dual to them have been
studied by W.Hanf [90], J.Adamek, V.Koubek and V.Trnkova [1], as well as by
J.Ketonen [104]. S.Koppelberg [111] studied the Cartesian skeleton of complete
Boolean algebras. A.Tarski [224] and B.Jonsson [99] studied Cartesian skeletons of
varieties of Abelian groups and semigroups. Theorem 12.1 was proved by
A.G.Pinus [176]. The part of the section that follows this theorem also belongs to
A.G.Pinus [166].



APPENDIX

13. Elementary Theories of Congruence-Distributive Variety
Skeletons

In connection to the problems of the theory of congruence-distributive variety
skeletons undertaken in the preceding chapter, there are problems of estimating the
complexity of formalized fragments of this theory and, as prime and traditional
among them, problems of solvability of universal and elementary theories of
congruence-distributive variety skeletons.

Let us first notice that the results obtained in the previous sectionss yield the
following theorem.

Theorem 13.1. If M is an arbitrary congruence-distributive variety,:

(a) the universal theory of the M epimorphism skeleton is decidable;

(b) the universal theory of the M Cartesian skeleton is decidable;

(c) the universal theory of the M embedding skeleton is decidable under the
additional assumption that congruences on {1 are extendable.

Proof. Indeed, if MM is a trivial variety, all its skeletons are one-element, and
the statement of the theorem is obvious. If M is non-trivial, any quasi-ordered set,
any countable commutative semigroup is isomorphically embeddable in < JI;<<>
and in < M ;x> by virtue of theorems 8.11 and 11.1, respectively. Therefore,
the universal theories of < JM;<<> and < JM;x> coincide with, respectively,
universal theories of all quasi-ordered sets, and all commutative semigroups. The
decidability of the former of these universal theories is well-known, that of the
universal theory of commutative semigroups was proved by A.l.Malcev [129] (for
more details see the review [57] and a monograph by Y.L.Ershov [59]). Under the
assumpition on extending congruences on M1, by corollary 10.1, any quasi-ordered
set is isomorphically embeddable in the M1 embedding skeleton and, hence, in this

case the universal theory of < 3 ;<<> also coincides with that of all quasi-ordered
sets. W

273
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Turning now to elementary theories of congruence-distributive variety skeletons,
let us first prove the hereditary undecidability of elementary theories of skeletons of

the variety BA of all Boolean algebras. For any class £ of algebraic systems, and
any algebraic system & , Th(®), Th(J) will denote the elementary theory of the

class  and of the system J, respectively. The basic notions pertaining to
clementary theories and solvability problems can be found elsewhere [59].

Lemma 13.1. The elementary theory of the Cartesian skeleton of the variety
BA is hereditary undecidable.

Proof. Let us construct a relative to elementary interpretation of the elementary
theory of a class £, in the elementary theory of < JBAx>. Here £, is a class
of all finite models of the type <d{,....n};~,~,>, where n€w and ~,~, are
arbitrary equivalences on the set {l,...n} such that for i,j<n, i~;j and i~y j
entail the equality i = j. The hereditary undecidability of the elementary theory of the
class f is well-known (see, for instance, [S57], [59]). Therefore, the hereditary
undecidability of the elementary theory of < JBAx > results from the relative
elementary interpretation Th(f,) in Th(< IBAx >).

For any 4 €R,, let k;l;Ew such that i~y j(i~y j) iff k =k;(};=1;), and
k;<l; for all i,jsn. Ly will denote a LOS 2(((1}’(" +n+wl")-w). It should be

isn
recalled that i is the ordered type of the set of rational numbers. Let us consider
the formula

D(x,y)=Az(x = zy)&VuAy=uv—=>y=uv y=v&
&Vt,w,z(t =ywkVut =uv—>t=uvt=v&x =z —>1=y.

stating the “maximality” of the non-decomposable cofactor y of the element x. It is
clear that < IBAx >l =Q(B(Ly &) iff € =_=B((wk" + n+w"’)-w) for some i=<n.
Let §y ={€ €BA< IBAx>l= O(B(Ly).€ )}

Let us now consider formulas E(x), A(x), ['(x) of the signature < x>:

E(x) = Vy(yx=y),

A(x) = Yy, 2(x = yz& -E(y) = Jtu(y = u&-E@)& VYw,v
(t=wv—>t=w&E(W)vt=v&EW)))),

T(x) =Vy,z(x = yz2& -E(y) =
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— -~ Fu(y =& -E)&Vw,v (t = wv—1t = w&E(v) vi = v& E(W)))) .

It is obvious that < 3JBAx >|=E(€) iff € is a one-element Boolean algebra.
One can also easily check that < JBAx>= AL XT(€)) iff € is an atomic
(atomless, respectively) Boolean algebra. Let us set the formula W(x,y) equal to

—~AN&-T(N& y = x& T(x = 2y&Vuy(y=uv—=>y=uvy=v).
In this case,
< 3BAXx >I=1P1(B((wk" +n+ o) -w),€)

iff € =B +n).
Let W, (x,y) be obtained from the formula W;(x,y) by replacing the conjunctive
term - A(y)& -I'(y) with the formula

A& VHAN& Az(x = 2)& Vuy(t =uv—>t=uvit=v)
&Iw(t =yw—>t=1y)).

In this case,
< IBAx >I=‘P2(B((wk" +1+ ") ),€)

iff € «B(w’).

In < IBAX > the model <5y B(xy).Py(xy) >, where
P(x,y)=Vz,u(¥;(x,2)& ¥;(y,u) =z =u), is relatively clementary definable. In this
case, bearing in mind the remarks made earlier concerning formulas W (x,y),%,(x,y),
we obviously get <&y ;R(x,y),Py(x,y) >« . Therefore, indeed, the formulas
D(B(Ly ),x),Py(x,y), B(x,y) set a relatively elementary interpretation of Th(f?z) in
Thi< 3BAx>). B

It should be noticed that, since all Boolean algebras used in the proof of lemma
13.1 are countable, the proof also entails the undecidability of the elementary theory

< 3B4<0;x> of the countable Cartesian skeleton of a Boolean algebra variety.

Lemma 13.2. (CH) The elementary theory of the epimorphism skeleton of
the variety BA is hereditary undecidable.

Proof. Let us use the same notations as in the proof of lemma 13.1. As was
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the case in that proof, it is sufficient to construct a relative to elementary
interpretation of the elementary theory of the class £, in Th(< .JBA<<>). Let P be
a subset of the set of all real numbers constructed in lemma 1.1. It should be
recalled that P has the following properties:

(1) Mo g dense, i.e., for any a<bEP, we have IPﬂ(a,b)l=2R°;

(2) for any subset S of the set P and any isotonic or antiisotonic mapping f
from the set § to P, the equality I{x €SI f(x) = x}=< X, holds.

Let By, P, B 43,-.P) 12, B 42, i 42 De non-intersecting intervals of the set P.
Therefore, each of these sets has the above-mentioned properties (1) and (2) as well.
Moreover, they have one more property, namely:

(3) For any LOS &, if there are isotonic or antiisotonic mappings g;,g, from
some chains €,,&, consisting of elements of Boolean algebras B(P’) and B(P"),
respectively (where P',P" are some sets from I, R,B ,p,-Pp 42 Bgzses B 42) 10

&, IEIsR,.

Indeed, let us assume to the contrary, that € & ,,€,,2,,8,, P ,P" meet the
conditions of property (3), in which case K1=2% Using g;.8,, one can obviously
construct the isotonic and antiisotonic embeddings k;,h, of the set € in the chain
&€,,£, of the Boolean algebras B(P'), B(P"). Making now use of the notations used
in section 1, let us take a subtraction R(hl((": )) of the chain (&) of elements of
the Boolean algebra B(P'). Choosing i Epg(h (€ ))Up%(hy(€)) and establishing a
correspondence between the element a,fi (b,fi ) and the element d Eh{l(R(hl(i ), if

m
iEp,lg(hl(C ) Gf i Ep?g(hl(ﬁf ))), where U(a,-d ,b,fl ] is the canonical representation of
i=1
an element #;(d) in the Boolean algebra B(P'), we get an antiisotonic (isotonic)
embedding ¢ from the continual subset 1(R(hl(éf ))) to the LOS P'.

Let us identify A R(ly(€))) with its image relative to @. Repeating the same
considerations for “the linearly ordered set hl_l(R(hl(ﬂ ))) and the Boolean algebra
B(P"), we find a continual subset TC P’ which is either isotonically or
antiisotonically embeddable into P, which contradicts property (2) for the set P. It
is this contradiction that proves that the sets Ry, R, B, 425 P 42, B 420+ B 42 have
property (3).

Let <{l,....,n};~;,~2> be a fixed f?z—model, and let {a;,...ap={,+2,..0,+2}
and {b;,...b}={k +2,..k, +2}, where |, and k; are the numbers chosen in the
proof of lemma 13.1.
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Let us consider the following linearly ordered sets:

n
L=S(R+14P 2+ 0+[R+1++B p+10"),
]

L=Fy+1+F +.+Py + D) 0o+ (R +1+ P +..+ B +1)-w*,
Ly=(R+)-0+B+) o,
L =(RBh+1+F+.+F +)o+l+(Bh+1+n+Dh 0w+

+(Pl+1+n+1)-w* +1+(R+1+ B, +.+Pp +1)-w*.

Let us consider a formula ®(x) of the signature <<<> with parameters
B(Ly),B(1;),B(L),B(L’) defined in the following way:

®(x) = B(Ly) << x << B(L))&x << B(L)&x 44 B(L ).

Let B be a Boolean algebra such that B(Ly) <<P << B(L;), and let g be a

homomorphism from B(L;) to £ and & be a homomorphism from B to B(IL).
The Boolean algebra B(L;) has a linearly ordered basis § of the ordered type L
and, hence, g(S§), which is an isotonic image of L;, will be the ordered basis of the

algebra B .

8(S) = Y (g(Po) + 1+ (B, +..+ B + D+1)+
cw

+ > @EE)+1+g(B +.+B)+1),
=y

where %(l,aj,bk) is the i-th copy of the set Bora; 1) in the representation of the

linear order § = I; discussed above.

On the other hand, using h, one can construct in B R, disjunct elements
d;(iEw) and X, chains C{i Ew) consisting of elements of the Boolean algebra B,
which are less than the elements d;, and so that F) is an isotonic image of each of
the chains C;. Considerations similar to those used in the proof of property (3)
imply now the existence of X, disjunct intervals in g(S) containing subsets isotonic
or antiisotonic to some continual subsets of the set Ry. By property (3) such subsets
are possible only within the intervals of the set g(S§) which contain sets g(P(f) only
under the condition that the corresponding g(P(;) are isomorphic to K. The latter is
insured by the Bonnet-rigidity of the Boolean algebra B(R) (see section 1), or can
be obtained by considerations to the contrary, analogous to those used in the proof
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of property (3). Therefore, there is a function ¢; mapping the final intervals of the

set w to elements of w such that g( EP’) R for any m Ew, and E(pl(l) w.
Eor(m)
By analogy, one can find a function ¢, from @ into finite intervals of the set w

such that, for any mE€w g( EPJ) =P and 2(]12(1) =
JEpa(m)
Therefore, the linearly ordered basis g(S) of the algebra B has the form:

8= D (B +U)+ I (K +V),
iEw =

where U,-,Vj are linear orders which are isotonic images of finite sums of sets of the
type (R+1+F, +.+F, +1) and (R +1+ F, +..+F,_+1), respectively.

Let now B meet an additional condition: & << B(L). In this case there are
k;m <n such that for sufficiently large i,j, the sets U.V; in the representation of
the set g(S) given above are isotonic images of finite sums of sets of the type
(BR+1+ K ,,+m and (R +1+ B, + 1), respectively. Indeed, in the opposite case
(it should be recalled that any countable LOS is an isotonic image of 1) there are
n=r,=</ and infinite subsets R,R, Cew such that, for i€ER(K,), U; contain

continual subsets 7; which are isotonic images of the sets Pa’1 (P%). In the Boolean

algebra B(L) there is an element b such that the intervals of the LOS L comprising
the element b contain all the subchains of the ordered basis L of the algebra B(L)
of the ordinal type E,a , while the intervals of the set L comprising the element —b
contain all the subchains of the basis L of the ordinal type El’z. By property (3), if
@ is a B(L) homomorphism on 2, the intervals of the ordered basis g(S) of the
algebra £ comprising the element @(b) contain no continual subchains of isotonic
chain images of the type Pa’2 , while the intervals comprising the element - @(b)
contain no continual subchains of isotonic chain images of the type B’n' Therefore,

an element @(b) €F must separate the chains T(i€R)) from the chains Tj( JERy).
Since R, and R, are infinite, there is not such an element in the Boolean algebra

& = B(g(9)). The contradiction obtained shows that there are k,m <n such that, for
sufficiently large i,j€w, the sets U;.V; in the above presentation of g(S) are

isotonic images of finite sums of sets of the type (By+1+F ,,+m) and
(R +1+ R _,,+m), respectively.

Moreover, k=m. Indeed, if k=m, a set of the ordered type
(Bp+1+ B, 4 +1)w is separated from a set of the ordered type (B +1+ K .2 +1)w*
in the ordered basis L of the Boolean algebra B(L) by an element of this algebra.
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In this case, under a homomorphism from B(L) to B = B(g(S)), the subsets
1+2([g +U;) and E(Plj+Vj)+1 of the ordered basis g(S5) of the Boolean
cn j&w'

algebra B would prove to be separated in B by an element of the algebra B.
Obviously, the representation of g(S) given above makes such a separation
impossible. Thus, indeed, ¥ must equal m.

Therefore, indeed,

g8) = Y (B +UY+ I(FH +V),
w gEm'

and there are £k = n,pEw,plew* such that at iEw,jEw* and i> p,j<p, U; is an
isotonic image of finite sums of sets of the type (R +1+F, ,, +7), while V; is an
isotonic image of finite sums of sets of the type (R +1+ K ., +m). At i<p,jzp,
U; and V; are isotonic images of finite sums of sets of the type
(B+1+F, +.+F +1) and (K +1+ B, +.+ B, +1), respectively.

Let us now notice that each of the sets U; , V} is either continual or
countable, in the latter case being, as has been noted earlier, an isotonic image of
the set 7). Hence, if we add the condition B £+ B(L*) to the conditions imposed on
E earlier then, by virtue of this remark, for some infinite subsets W, Qw,Wzgw*,
we get (U} =1V;l=2% for any i €W, jEW,.

Therefore, if < JBA<<>l= ®(F), the algebra B has a linearly ordered basis
Q of the following type:

Q=B +Uy+ D(FH +V),
=w =3

in which case there are K(B)snp(B)Ew,p(B)Ew such that, at
i>p(B)j<p(B), U is an isotonic image of finite sums of sets of the type
(R +1+ B 5+ m), while V; is an isotonic image of finite sums of sets of the type
(B+1+ B, o +m). At i=sp(B),j=p(F), U; and V, are isotonic images of finite
sums of sets of the type (Fp+1+F, +..+F, +1) and (R +1+F, +.+F +1),
respectively. Moreover, there are infinite W(B)C ,W,(B)C w such that for
iEW,(B),jEWL(B), we get IU)=IV;|=2%0.
Let us now consider the following linearly ordered sets:

A= E[(R) +1+ P + Do +1],
SHay...ar}
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B= Y[B+1+E+Do +1].
aspy, ...}

Let us consider the following elementary formulas of the signature <<<> with
parameters B(L),B( L), B(L,), B(L), B(A), B(B):

X~y =Px)& P& Vx;,y;(x << x& x; << B(A)& y, << y&
y << B(A)— 2,7/ (P(2)& 7y << B(A)& 7; << 2& x; << 71 & y; << 77)) ,

X~y y=D(0)& P(y)&Vx,y (% << x& x; << B(B)&y; << y&
y<< B(B)— 2,21 (P(2)& 7; << B(B)& 7; << 2& x; << 71 &y << 71)).

Let < JBA<<>I=8,~ F,, and let Q,0, be linearly ordered bases of the
Boolean algebras B, and .B,, which have the above mentioned form (the formula
and condition for Q), in which case the sets U,-,Vj corresponding to a Boolean

algebra B,,(m =1,2) will be denoted by U™ ,ij, , respectively. Let us show that,
in this case, lk(.Bl) =lk(‘32).

Indeed, considerations analogous to those used above prove that the inequalities
B, << 2B, B, <<B(A)(m =12) imply, for the Boolean algebras B, the existence
of linearly ordered bases of the type:

Q' = YR+,
. S0]

where Rj(U;")’ are isotonic images of LOSes R,U!" from the corresponding
representations of Q;. The converse statement is also valid: any Boolean algebra with

an ordered basis Q, of such a type obeys the inequalities x << »,, and x << B(A).
Let now @, = 2(1% +U["). Then, according to the facts just proved,
Ew

B(Q,) <<.B,, and B(Q,) << B(A). Let € &£, be Boolean algebras playing the parts

of z,z; when the formula B, ~ B, is valid if x;= B(Q),y; = B(®). Since in this

case < JBA<<>l= O )&, <<B(A) and €, <<€ , €, has a linearly ordered basis

K such that K = E(PO’+G,-), in which case Ry, an isotonic image of Ry and G,
. =0]

are isotonic images of finite sums of sets of the type P0+1+P,KB)+2+11) for a
sufficiently large i. It should be recalled that for some infinite
W(BNC o W(B)Cw, we get WIAU=2" for i€W(E),jEW(B,).
Therefore, the inequality B <<€, B, <<&€ results, using the same repeatedly
employed considerations, in isotonic or antiisotonic embeddings of some continual
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subsets of ordered sets U,.l(iEW(.Bl)),Uﬁ( JEW(E,)) in the LOS G, at large ! and,

hence, finally, in embeddings of similar continual subsets in the LOS Plk(C)

well. However, since U,-I(UJ?) are embeddable in £, (B _ ,,), and by virtue
L @] KB 3)

2 as

of property (3), this 1is possible for the sets P, P only when

a "l g

lk(Bl) +2 =lk(¢-) +2 and lsz) +2 =lk(¢) +2. Therefore, indeed, if
< 3IBA<<>I= B~ By, then the equality [ » ) =lgp,) holds. The converse
statement is also obvious: if lk(B 1)=l’°(~32) and <3BA;<<>I=<I)(.31)&<I)(.32) on
< 3BA<<>, the formula B, ~ B, is valid.

In an analogous way one can prove that for B, F, such that
< IBA<<>l= (B )& D(F,), the formula B, ~, B, is true on < JBA<<> iff
ki 3,y = ki B,)-

Let us introduce a formula x ~y equal to x ~; y& x ~, y. Bearing in mind the
facts proved above, we see that a set § singled out by the formula ®(x) in
< JBA<<>, factorized with respect to the equivalence relation set by the formula
x~y and having two equivalence relations set by the formulas x~;y and x~, y,
respectively, is isomorphic to the initial model <{1,...,n};~1,~2>6.ﬂ‘2. Therefore, the

relative to elementary interpretation Th(f£,) in Th(< JBA<<>) has been constructed,
which fact implies that the latter is hereditary undecidable. H

Lemma 13.3.(CH) The eclementary theory of the embedding skeleton of a
variety BA is hereditary undecidable.

Proof. Preserving the notations from lemmas 13.1 and 13.2, it suffices, as
was the case in their proofs, to construct a relative to elementary interpretation of the
elementary theory of the class of models £, in Th(< JBA<<>).

Let us fix a model <{,..n}~;,~;> from the class f,, and let
lik(isn),a;(jsl),b,(rss) be the same as in the proofs of lemmas 13.1 and
13.2. The sets PR, R.F, ,...P,,F,,...P, are chosen in the same way as in the
proof of lemma 13.2.

Let us first notice that the following statement holds:

for any continual LOS L, if B(L) is isomorphically embeddable in B(P),
(*) then there is a continual subset S of the ordered set L which is
isotonically or antiisotonically embeddable in P.

Indeed (let us use the notations of section 1), if ¢ is an embedding of B(L)
in B(P), there is an isotonic embedding ¢ of the LOS L in B(P). In this case,
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if A=R(y(L)) is a subtract of (L) in the Boolean algebra B(P) and
iEp,lg(tp(L))(i Ep,zg(ip(L))), putting the element a,fi (bfi ) into correspondence to the

m
element d Ew_I(R(w(L))), where U(a,fi ,bfi ] is a canonical representation of the
j=1
element ¢ (d) in the Boolean algebr; B(P), is an antiisotonic (isotonic) embedding of
a continual S = w—l(R(‘I’( L))) into the ordered set P.
Choosing now suitable isomorphic copies of LOSes Ry, R, L, ..., By Ly P, »
let us assume that these LOSes are dense subsets of a set of all real numbers.
Let us show that in this case the sets BB, E, ... B, Py ,....Pp,  have, alongside
with the properties (1) - (3) of the proof of lemma 13.2, the following property:

(4) for any AC{0,a,,...a,;b,...b,} and cE{0,La,,....a;.b,....b}, if ¢ is an

embedding of a Boolean algebra B(F,) in B( UE,), CEA and ¢ is identical on
acA
P.CBE).

Indeed, by virtue of statement (*), there is an SC F, of the power 2% which

is isotonically or antiisotonically embeddable in UE,. It should be also noticed that
acA

if cgA, IP,NJPBJI<2", since otherwise we get a continual set RCP.N P,
acA a€A
isomorphic to two disjunct subsets of the set P (to a subset of the interval of the

set P which is isomorphic to P. and to a subset of the interval of the set P which
is isomorphic to one of PB,,a €A) which contradicts property (2) for P. Hence, if

CEA, IS\ ( UAPa)I= 2% and §\ U P, is isotonically or antiisotonically embeddable
aE acA
in U P,, which, again, contradicts property (2) for P. Thus, cEA. Analogously,
acA

using the 280 _densities of P, one can prove ¢ to be identical on F..
Let us now consider the following linearly ordered sets:

M= Y (BUB ) +(H +Bp).

i=]
n n
Mi=(B U0 B+ (B VOB,
o -
M2=P0+P,
n n
M5 =B U0 B ) +1+(B UUR o).
= i=

Here If ,Pé denote isomorphic copies of the LOSes B,R, supplied with indices
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i only for differentiating these sets from each other as subsets of the linearly ordered
set M.

Let us consider the following formula of the signature <<<> with parameters
B(M), B(M,), B(M,), B(M;):

®(x)= B(My) s x s BM)&x < BM)& Vy(B(M,) < y < BIM)& y < BIM)&
&x<sy—>ys<s D& -~F(x<7& -7 <x& 7< B(M)&z s B(M)). '

Let us assume that € €EBA and < JBA=>l=®E ). Let ¢ be an embedding
of the algebra B(M,) in the algebra B(M,;) induced by the embeddings implementing
the inequalities B(M,)<€ and &€ =< B(M,). By virtue of property (4), one can
easily notice that ¢ is identical on a LOS R+ B C B(M,). Therefore, € may be
considered a subalgebra of the algebra B(M,), the latter containing the chains Ry and
B of elements of the algebra B(M).

Let ¢ be a € embedding in B(M) implementing the inequality &£ < B(M).
Property (4) implies that 3 maps the elements of the chain B+ K C& into those

n
of the chain E(I{,' +Pl')QB(M), in which case if A is an interval of the chain
jm1
! n . n .
BB, p(AC IBWACYR), and if p(ASK@ACE) for some Isn,
i=1 i=1
the mapping % is identical when identifying R,l with E) (Hl with F). Hence, the
chain R+ R C&€ is subdivided into a finite number of intervals Aj- (where
l<n,j=0,1) such that AéQPO,AllC_;Pl,w(AJI-)Q le, and 7 is identical on Aj- when
identifying P/ with P,.
Let Ag‘ be a finite interval of the chain R), while Alk 2 be the initial interval of

R. Since € is maximal as regards embedding among algebras 4 such that
n

B(My)sd sB(M) and ¥ <B(M), obviously, &€ sB(E(B(’,+Bi)) where By (B))
=1

is an interval of the LOS P(',' UI’,i+2(I’1i U £ ,») cofinal and coinitial to the subset
V(AN P(A)).

Let us now notice that k; =k,. Indeed, if k; =k,, let > be a subalgebra of
the algebra B(M) gencrated by elements of the algebra &, (which is a subalgebra of
the algebra B(M) isomorphic to the algebra € at € < B(M)) and an element of the
type [-©,a), where a is any fixed element of the set Plkl. In this case,
€ <D D<BM and D s B(M;). And, finally, D £€ | since the elements
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w(Ag‘) and lp(Alb‘) are not separated in the algebra € and they are separated in

the algebra £ and, hence, the embedding of £ in € would imply (see the proof
of property (4)) embedding (without fixed points) of a certain continual subset of the

n
LOS 9(Ag)Up(A?) in the LOS Y (ByUB). Therefore, when kj =k, the
=1

Boolean algebra P plays the part of z, the absence of which is stated in the latter
part of the formula ®(x) and, hence, < JBAs>I= & ) entails the equality k; =k,.
Let k(€ ) denote k; as.

It should be noticed that, obviously, (since the sets
PLP\.Py y9.esPp v2, B sases B 42 are rigid), we get < JBAs>I= @B () for any
isn, where B(i) = B(P(; UR,, +Pf UFE, 7). In this case, KB @) =i.

Let My= R +1+F. Let us consider the formula

D;(x,2) = D& D(D&VH(t < x&t <z — u(t<u&
&B(M,) s u < BIMy)& u < B(M)).

Let us prove that < JBAs<>I= O, £,) iff k(€,)=k(£,). Indeed, let
< IBAs>I= D& D& DL ,). 9,9, will denote embeddings of the algebra &€&,
in the algebra .F implementing the inequalities €, <B(M) and €, <B(M), and let
us use the notations introduced when considering the formula ®(x), adding to their
left up comers indices 1 or 2, depending on whether they refer to the algebra &,

or €,. For instance, '4 instead of A; when considering &, instead of € . As was
the case earlier, let us assume &€ ,,&, < B(M;). If k(&) =k(&,), as the ¢ indicated
in the formula ®,(€,,€ ,) it suffices to consider such Boolean algebras € C B(M,)
which contain a subset

¢;1(1E%c(£1) R k((l:l)) A 1‘02-1(2 Ht)c(ez) L2 Blk(Cz))'

This subset has the form C+ D, where C is a finite interval of the LOS
POUP,k(tl)ﬂ, while D is the initial interval of the LOS I}UPkk(tl)ﬂ. If now D
was a Boolean algebra playing the part of the element # from the formula
®,(€,,€ ,), the inequality B(M,)<.D < B(M;) would imply in a standard way the
separation of the chains C and D contained in the algebra & CD by an element of

the algebra £ . This, in its turn, would contradict embedding of © in the algebra

B(M), since this becomes possible only under the identical embedding of the chains

C and D in the LOSes R UP;k(C J42> R UPkk(£)+2’ this contradiction arising since
1 1

these LOSes are not separated by elements of the algebra B(M), while C and D
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are separated by an element of the algebra . Therefore, the equality k(€)= k(£,)
indeed implies that the formula ®,(€,,£,) is not true on < JBAs<>. In an
analogous way one can prove that the equality k(€;)=k(€,) holds when
®,(€,,€,) is not true on < JBAs<>.

Let us now consider the following formulas:

P1(x,2) = P()& D(2)&Ixy, 7 (P(x))& D7) & ~ P (x,%)&
-®,(z,7)&Vi(t<s BMs) = (tsx < t=s7)),

Wo(x,2) = D(N)& D& Ttz (P(5)& P(2))& - Py (x, 3 )&
"(I)I(Z,ZI )&Vt(ts B(Alé) —-(=< X< 1= Zl))) .

n n
Here M, = UF, 5, Mg = UIP,‘HZ.
iml i=l "
Let < IBA<>= O )& D ) and lk(C) = lk(-?l)‘ Taking into account what has

been just proved, we get

< IBA<>I= DB (k€ )& OB (A ))&
-0, B KEM&-D,(H B (kP )))

Moreover, since

BE) =BRBUB, .2+ RUB,, ).
B ) =BBUE,, 2+ RUE,, ).

and lk(£)=l,(21) then, obviously, for any algebra £ embeddable in

B(M9=B(QQ+2), the embeddings of D in Bk&)) and in Bk )) are

equivalent. The converse statement can also be proved easily: if
< IBAs>I=- (L. X), ey = lay- Thus, < IBA=>= o (&) iff heey = bary
An analogous statement is also true for formulas i, with the numbers /; replaced
with ;.

Therefore, the set J{€ €EBA< IBA<>=® )} factorized over the formula
-®i(x,z) and supplied with a couple of relations set by the formulas
P1(x,2),¥ 5(x,2) is a model of the isomorphic model <{l....,n};~;,~,> chosen from
the class £ in the beginning of the proof of the lemma, i.e., the formulas
D(x),P1(x,2),9 1(x,2),45(x,z) set a relative to clementary (with the parameters
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B(M), B(M,), B(M,), B(My), B(M,),B(Ms), B(My)) interpretation of the hereditary
undecidable elementary theory of the class £ in the elementary theory of the
embedding skeleton of a Boolean algebras variety, and, hence, the latter is undecidable.

The lemmas just proved enable us to prove the following statement.

Theorem 13.2.(CH)

(@ If M is a non-trivial congruence-distributive variety, the elementary theories
of the epimorphism skeleton < ¥ ;<<> and the Cartesian skeleton < J& ;x> of

the varietyf? are undecidable.

(b) If M is a variety containing a certain quasi-primal algebra without one-
element subalgebras, the elementary theory of the embedding skeleton < ¥M ;<> of
the variety 2 is undecidable.

Proof.

(@) Let M be a non-trivial congruence-distributive variety, and & be a simple
MM -algebra which exists by virtue of theorem 2.11. According to corollary 3.1,
theorem 3.2 and the remark after theorem 4.2, for any Boolean algebra B, any
algebras &, , such that J L . x¥ 5, there are Boolean algebras B, B, such
that ¥ 15.2{-31,3 5 «¥?% and B = B, xB,. Together with the isomorphism

<3 BB EBA),x >=< JBAx >, these prove that the hereditary undecidability of
Th(< 3BAx >) established in lemma 13.1 implies the undecidability of
Thi< 3 x>).

Analogously, by theorem 13.1, < J{ 5 3 EBAY, <<>=< 3BA <<>, in which
case for any M -algebra &€ , if for some Boolean algebra & << 'B, there is a
Boolean algebra B <<.B such that &€ = By Therefore, < 3 { B p EBAY, <<>
is the initial interval in < M ;<<> and, since all the formulas participating in the

interpretation of Th(f®,) in Th(< IBA<<>) given in lemma 13.2 have quantifiers
limited relative to the quasi-order << incorporated in the formula parameters then, by

choosing the same formulas with parameters & B instead of the corresponding
parameters, i.e., Boolean algebras B, we obtain a relative to interpretation of
Th(R,) in Th(< 3M;<<>), which proves that Th(< J MM ;<<>) is undecidable.
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(b) Let now J1 be an arbitrary variety containing a quasi-primal algebra &
with no one-element proper subalgebras. Hence, I, is simple, and M (&) is a
discriminator variety. Let R be a linearly ordered set of all real numbers. It should

be noticed that for any M -algebra & such that Fy<d =¥ F®, the algebra ¥
has the form 4 (')B for some Boolean algebra B such that B < B(R).

Indeed, let FH o< <A PP, Let us identify ¥ with a corresponding
subalgebra of the algebra ¥ X%, and ¥, with a subalgebra J of the algebra & .
As ¥ is simple and finite, and since for any iEB(R)Y we have lm(H =1, we
get lm(H 0= . Since I is finite, there is a partition by,..., 5 (k Ew) of the unit
of the Boolean algebra B(R) such that elements of the algebra 4 are constant on
the elements b;(j=<k) as on subsets of the Stone space B(R)*. Moreover, as ¥ is
finite and since for any i €B(R) we have lm(F §)l=¥,, for any j,,j, <k there are
automorphisms ¥ ;| j, ©f the algebra & such that for j €b;, i €b;, and for any
a€d | we get P, (@) =m; (a).

Using the automorphisms #; , , let us define the automorphism 3 of the
algebra J X® in the following way: for a€d Z®  for any i€bi(j<h),
m{ p(a)) = Yo (m;(a)), where O is a certain fixed element of B(R)*. It is obviously
the 9 -image of the algebra & ( consisting of constant elements of the algebra
U P Then, since p(@ )2y ) and pH)CHEP, by corollary 5.2, both
Y(H) and the algebra & are isomorphic to an algebra of the type & (',B for some
Boolean algebra £ . In this case, obviously, B <B(R). Therefore, indeed, the
inequalities & o <¥ <H® result in representing the algebra & as & f for a
Boolean algebra B such that B < B(R).

Since M (¥ ) is a discriminator variety and, hence, congruence-distributive with
extendable congruences, by theorem 3.3, for any Boolean algebras B, F, the

inequality & (')B 1< (.)B, is equivalent to the inequality 2, <.B,. Hence,

<3 ed < s‘?fg(R);s} =
={J €BAE <B(R)|F|= 1};<}.

The relative to elementary interpretation of Th(f?z) in Th(< JBA=>)
constructed in the proof of lemma 13.3 is in fact limited by the skeleton
< J3{F €BAX < B(R);| Bl=1};s>. Therefore, both this interpretation and the
isomorphism mentioned above result in a relative to elementary interpretation of
Th(f,) in Th(< IM;<>), and, hence, the latter is undecidable. M
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According to the remark after the proof of lemma 13.1, under the conditions
of theorem 13.2 the elementary theory of the countable Cartesian skeleton
< 3..'mN0;x > of any nontrivial congruence-distributive variety is also undecidable. In
this case, the continuum hypothesis is not required to prove either this statement or
that on the Cartesian skeleton in theorem 13.2. The undecidability of elementary
theories of countable embedding and epimorphism skeletons under the conditions of
theorem 13.2, however, can prove not to take place, which fact can be traced from
the  repeatedly  presented  earlier  equalities < JMy ;<<>= 0w + T,
< 3BA,’<0;5>5 wy +1.

The following problem is now open for discussion.

Problem 13.1. Is the elementary theory of the embedding skeleton of any
non-trivial congruence-distributive variety with extendable congruences undecidable ?

By way of concluding this section, let us dwell on a problem pertaining to
elementary theories of variety skeletons. It is natural to assume that for large
cardinals k£, the bounded epimorphism, embedding and Cartesian skeletons of an
arbitrary variety M inherit the basic properties of the skeletons < XM ;<<>,
< J3M;<> and < I M ;x> and, in particular, their elementary properties. In this
case, the mere coincidence of the elementary theories of bounded and unbounded
skeletons is not of the greatest interest; what really matters is the existence of a set
of algebras ..., 4, (for any set of M -algebras ¥,,...,&,) from a bounded class
M _,, the elementary properties of which in terms of epimorphism, embedding and
direct expansions in the class M _; coincide with analogous properties of the algebras
/i 1,...,31' , Wwithin the whole variety M . In other words, here we speak about the
implementation of the elementary types of element corteges of unbounded skeletons in
bounded ones. The class B, is considered instead of the class M, since there is
a biggest element in the skeleton < 3., ;<<>, while in the skeleton < J.M;<<>
there is no such element.

Definition 13.1. The Lowenheim number for the epimorphism skeleton of a
variety M is the least cardinal k¥ such that for any M -algebras ¥ ..., (n€Ew)
there is a cardinal k'<k and M, -algebras J ..., , such that the elementary
theories of the models < IM ;<< ¥ ,... ¥ ,> and < IM_ ;<< H .. 0, >
coincide.

The notions of the Lowenheim number for embedding and Cartesian skeletons,

as well as for a complete skeleton of the variety 21 are introduced in an analogous
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way, the algebraic system < 3M:<<,<,x > considered as a complete skeleton.
Second-order complete logic is an extension of the first-order predicate calculus
using the formulas with existential and universal quantifiers over arbitrary predicates
allowed.
Let us recall the following definition.

Definition 13.2. The Lowenheim number of the second-order complete logic

is the least cardinal k such that for an arbitrary algebraic system & of a finite
signature there is an algebraic system & ' of the power not greater than k such that

the theories of the systems & and &' coincide in the second-order complete logic.

Localization of the Lowenheim number for the second-order complete logic
depends on set-theoretical assumptions (see, for instance, [231]).

Theorem 13.3. The Lowenheim number for the complete skeleton of an
arbitrary finitely approximatizable variety of a finite signature is not greater than that
of the second-order complete logic.

Proof. Let M be an arbitrary variety of a finite signature, and k the
Liswenheim number fof the second-order complete logic. Let ¥,...,.& , €M, and let
us, using induction over m Ew, build a sequence of cardinals ky <k <<..<k,,,.. in
the following way: ko >I l,... | IRy and, if k,, has already been constructed, let
us choose k,,; in such a way that for an arbitrary formula of the first-order
predicate calculus of the signature <<<,<,x >, which has the form
Py X p) = By VoYX X s ¥g), fOr any  cy,.cpy 63..m<km such that
< 3 <<= x >l= @(cy,-.-Cp) s true, there are elements bl,...,bsE,B’.?.’fifkm+1 such
that < 3 <<,<,x >l= zp(cl,...,cp,bl,...bs).

Let k' = lim k,. Standard model-theoretical considerations show that the skeleton

m—>
<3IWM;<<<x,H,,... ¥ ,> is eclementary equivalent to the skeleton
<3IM _i<cs A, >

For any formula ¢ of the first-order predicate calculus of the signature
<<<,%,x >, there is a formula ¢’ of the second-order complete logic of the signature
of the variety M such that for an arbitrary infinite cardinal X and any algebras
€L, em . we get < IM_i<<sx >l= P&1,....E ) iff
Sm ®)=9'(6,,....,0;), where for i<q we have 6, EConFpy(X) and
:fm (N)/B,-s(":,-. Indeed, without giving a formally inductive definition of the
formula @', let us note that any element a € 3 . is interpreted in Fp®R) as a
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congruence 0 EConF g (R) such that 1FpR)/00<F g (R); the equality of the
elements aj,a, € JM_y is interpreted as the existence of an isomorphism from the
algebra F g R)/6, to Fpy (R)/6,, where 6, interprets the elements a;; the relation
a,<<a, is interpreted as the existence of a homomorphism from the algebra
Em (N)/Bz to the algebra Fp (N)/Bl; the equality a;xa, =>b is interpreted as the
existence of congruences 83,8, EConJ g R) such that

03 A 04 =0 N
03004= 04083 =V3.’m(x),
Fm ®)/6;=F 5 ®)/6,,

Sm (N)/64 =5n (N)/ez

(here 6 is a congruence on Sm (R) interpreting the element b). All the properties of
the algebras :5'1” (N)/H enumerated above are, obviously, expressed by formulas of
second-order logic as properties of 6 relations on the algebra :fxm (X). Therefore, the
formula ¢’ does exist.

Let now T(H,....,4,) be the clementary theory of the complete skeleton
< 3IM;<<,sx, ¥ ... 0, > of the variety M1 with the types of isomorphism of the
algebras x 1,...,3( » chosen. According to the remarks made above, we have

< 3.m<k:‘,<<,s,x,zf 1,...,3],, >|= T(ﬂl,... ,3!',,).

T' will denote {¢'l¢p er 1,...,31 )} By virtue of the construction of formulas
@', on Fp (') the formula ¢'(6y,...6,) holds for any T ,,....4,) where
6, EConFp (k') and Fyp & )/Gi.a_‘lfi(isn). In an obvious way, due to the
definition of an algebra free in the variety M, and since the signature of m is
finite and H7 is finitely approximated, we can write a formula 3 of the second-
order complete logic such that for any infinite algebra & of the signature of the
variety J , we get ¥ l=v iff J «Fyp (X) for an infinite cardinal K. Therefore, we
get < ¥y (K');6,....,0, >1=T"U{y}.

By the definition of the Lowenheim number of the second-order complete logic,
there is an algebra & and congruences 6),...,8, on & such that I¥1<k and
<¥ :6....,0, 5= T'U{p}. In line with the remark made ecarlier, & =JF g (X), where

N =13 s k. At the same time, according to the definition of the formulas ¢’, we get

< 3IM s xH | A S=TEH,...H ) >,
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where ¥ /= Fp (N/6;, i,
<3IM os,xH A >ee IM s x, A H ) >,
which is the required proof. I
The statement of theorem 13.3 obviously results in the following corollary.
Corollary 13.1. The Lowenheim number for the epimorphism (embedding,

Cartesian skeleton) of an arbitrary finitely approximatizable variety is not greater than
that of second-order complete logic.

This corollary gives the upper bound of the Lowenheim numbers for skeletons
of arbitrary varieties. In particular cases, these Lowenheim numbers can be much less

than the upper bound. For instance, for any uncountable categoric variety M, we
get < IMi«>e< JM 4 ;«>@®0rd, where Ord is a well-ordered class of all
ordinals. Tact that <Ord ;<> is elementary equivalent to an ordinal < w?:<> is well-

known and, hence, for any a;.....a, €Ord , there are c,...,c, Eww+1 such that

w+l
<0rd;=,ay,....0,>=< @ 5,C1,..,Cy >.

@ +1

Therefore, for any & ,...,. % , €M , there are €,,....C, €M such that
< jm ;«,311,...,2)",, >=< 3m<x il ;«,@1,-..,@,, >,

i.c., the Lowenheim number for epimorphism skeletons of uncountable categoric
varicties is equal t0 X o.1. It can be noticed easily that the Lowenheim numbers for
embedding and Cartesian skeletons of similar varieties are also equal to R os. The

case is different for congruence-distributive varieties, for them the Lowenheim
numbers of the Cartesian skeletons and the second-order complete logic coincide.

Theorem 13.4. Let M be a non-trivial finitely approximatizable congruence-
distributive variety of a finite signature such that all 2 -algebras contain subalgebras
isomorphic to a certain fixed simple or one-clement algebra. In this case, the
Lowenheim number of the Cartesian skeleton of the variety coincides with that of
second-order complete logic.

Proof. By corollary 13.1, it suffices to show that the Lowenheim number for
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second-order complete logic is not greater than that of the Cartesian skeleton of the
variety M . To this end, it suffices to construct an exact relative to elementary
interpretation of the second-order theories of all algebraic systems of an arbitrary
finite signature in the class of all bounded Cartesian skeletons of the variety M7 . For
this purpose, it is sufficient to construct an exact relative to elementary interpretation
in the class of all bounded skeletons < I _;;x> of the class £ of algebraic
systems of the kind < P(w;);U, f.C.ay,....a, >, where P(w;) is a set of all subsets
of an arbitrary initial ordinal w;, U is a unary predicate on P(w;) selecting one-
clement subsets of the ordinal w; (henceforth identified with elements of the ordinal
w;), & is a set-theoretical relation of inclusion on P(w;), f is an arbitrary binary
function bijectively mapping w; xw; to w;, a;,...,a, are constants belonging to
P(w;).

In this case, the exact relative to elementary interpretation of the class £ in the
class {< JM _;;x >k is an arbitrary cardinal} denotes the existence of an elementary
property ¥ (@) for some set of parameters @, and the existence of a set S(¥) of
clementary formulas with the parameters @ so that in any skeleton < XM _,;x >,
under any choice of the parameters @ from JIM < Obeying the formula ¥ (@), the
given set of formulas S(¥) defined a certain algebraic system from f£, and for any
system & from £ there is such a choice of parameters @, that for cardinals k
such that 7 €J MM _, we get < IM_;;«>l= F (@), while the given set of formulas
S(X) determines systems isomorphic to &, in the skeletons < JM_;x >. In this
case the required inequality for Lowenheim numbers results from the fact that for the
exact relative to elementary interpretation of an £ -system < P(w;);U,fC.a,,....a, >

in < JM_;;x > constructed later, the inequality 22’ 2 2% holds.
<k
It should be recalled that 1 is the ordered type of rational numbers, r is the

ordered type of real numbers. Let ' be an ordinal type with neither initial nor final

Ry
elements, of the power 22" and with the following property: for any a,b €n’ the
interval (a,b) is isomorphic to n' if a<b. Let i be a fixed ordinal, and f be a
fixed bijective mapping of w; x @; on ;. Let my =n,m, =r,m3 =1'. Let L; ; denote
a LOS

1® 2((wj&)n®wk ®7® o’V @) 0)@1.
<jh> 0}

Let L; = 2((wj®rh)-w)®1. A Boolean algebra JFB is called non-
Jeo;
decomposable provided that for any bEE we get either B =Blb or B =Fi-b.
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In the proof of lemma 13.1, we introduced the formula ®(x,y) stating the
“maximality” of the non-decomposable cofactor y of the element x. It can be easily
noticed that < JBAx > = ®(B(L; ;)€ ) iff

& sB(l(-B(wj®n1(-Dwk®n2 @@ UP @D 1) 0 ®1)

for some j.kcw;.

In an analogous way, < IBAx >|= D(B(L),E) iff
€ =B1®D(0’ ®n) 0®1). F, will denote (€ EBA< IBAx>I= ®(BL,).L)}.

In the proof of lemma 13.1 we introduced the formulas F(x),A(x),I'(x)
selecting one-element, atomic and atomless Boolean algebras, respectively, in the
skeleton < JBAX >.

It should be noticed that analogous considerations are also valid for formulas
®(x,y), E(x), A(x),T' (x) not only on the skeleton < JBAx >, but also on bounded
skeletons < JBA; x>.

Let us consider the following formulas:

R(x,y,w) = (x = yD)&Vu Wy =uv—> y=uv y =& -A()&
“I'(N&-~H(y = x9)&3p(y = pW),

T(x,y) = VZ(A(2) = Qu(x = zu) < vy = z1))).
On < 3IBAx > the formula
RB1I® (0’ @@ o' ®n @0’ Y0 @) 0 @1),€ ,B1® 3, ®1)

holds iff € =« B1®w’ @ ®1) for s=1, or € EB(1®wk®n2®l) for s =2, or
< sB(l@wf("k)@m@l) for s=3. Moreover, for any s;,5, =123 and any
ordinals j,j, we get

T(B1® o' @ n, @1), Bl®w” @ n, @1)

iff ji = Jja-

The properties of the formulas constructed above remain valid when the skeleton
< 3BAx > is replaced with bounded skeletons < JBA,; x>. The required relative
elementary interpretation of the f -system < P(w;);U, f.C.ay,....a,> in < 3BA<k; X >
is constructed for k > w; in the following way: one-element subsets of the set w;,

i.e., elements of the f -system satisfying the predicate U, are interpreted in
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< _33A<k;x> by elements satisfying the formula ®(B(L;),x), i.e., a family of such
elements in < JBA,; x> is, as has been earlier noticed, equal to ;. The function

J from w; x w; to w; is interpreted by the following formula:

P(x,y,2) = D(B(L;)0)& P(B(L), )& P(B(L;), 2)&
3

Aty 1y uz (P (B(Li,f),t)& &1 R(tu,, B(1®n, ®1))&

T(xu))&T(y,uy)é& T(z,u3)) .

It is obvious that

< IBA; x>= P(BA® (0’ ®n)) 0 ®1),
BI® (@' ®n) 0®1), Bl®(w ®n)) 0 ®1)

iff f(jl)=r. Subsets of the ordinal w; are interpreted as subsets of §; with

arbitrary elements & € IBA; in the following way: an element B is interpreted

with a subset BC §; such that

B={€ €BA< IBA ;x >l= D(B(L),€ & P(B £ )}.

In this case, in order to interpret any subset AC w;, it suffices to choose the

algebra B(l(-BE( wi®m)-w®l) as .B. The equality relation on the elements w; is

FEA

interpreted by a common equality relation on §;,, the equality relation on P(w;) (on

subsets ¥;) is interpreted by the formula
D_(x,y) = Vo(P(B(L;),2) = (P(x,2) < ¥(,2))),

while the & relation is interpreted by the formula

Dc(x,y) = Vo(D(B(L;),2) = (P(x,2) = D(y,2)) ,

the interpretation of constants being obvious.
Therefore, indeed, for any cardinal k> w;, the

D(B(L;), x),p (x,¥,2), D (x,),Pc(x,y) define the
< P(w;);U,fC.ay,....a,> in the skeleton

< IBA xby = B(Ly)by = B(Ly 4), by = BA@ 1, @ 1),

formulas

£ -system



APPENDIX 295
by=B1l® 1, ®1),b, = BU®13®),c; =By ..., = B, >

(here ‘Ba,- are Boolean algebras from BA_; interpreting constants a;).

In an obvious way one can write an elementary formula § (xy,...,X5,Y1.....¥n)
such that for any cardinal k', for any by,...,bs,C1,....C, EIBAy:, if

< SB&k,;x >|=3’(b],...,b5,cl,...,cn >,

then the formulas ®,9,®_, P mentioned above define an algebraic system of the
type < AU, f.C.a4.....a, > where AC P(U) in the skeleton < JB&k,;x >, provided
that b;,b,,... are replaced by the parameters B(L;),B(L; f),..., . It should be noticed
that in this case A coincides with P(U), while the cardinal k' is such that
2 1 _ LUl
2 =22

i<k’

SCUC BA,, we now have to find a Boolean algebra € in BAg such that

. The latter inequality is obvious and, therefore, for any subset

< IBA i%,by b5 CppesCy >l = By, V& DB )

iff £ €S.

Let S={BJI€} CU and, therefore, all algebras B, are non-decomposable.
B¢ will denote a Boolean algebra such that: for any /€I in B there is an element
b, such that Byl = B;; for I=jEI byNb; =0 and By are generated by elements
of the algebras B¢lb, when [E€I. Hence, the factor of the algebra By relative to
the ideal generated by a set g{:&‘, is isomorphic to a Boolean Frechet algebra over

the set I. Here 5, is an ultrafilter of the algebra Blb,. Since the algebras B, €U,
i.e.,

< IBA %Dy 05,C10e e iCy o= DDy, B ),

for any b,jEI we get B =B, if B/ =B, xB for some Boolean algebra J.
This fact and the construction of the Boolean algebra By directly yield that on
< IBA%,by,e.0,bs,ChpeenC > the formula @by, € )&P(B &) holds iff € €S.
Therefore, in < :;’Bakr;x,bl,...,bs,cl,...,cn> the set SC U is really interpreted by
the Boolean algebra B s and, thus, an interpretation of the R class in bounded
Cartesian skeletons of a Boolean algebra variety has been constructed.

Let now M be a variety satisfying the conditions of the theorem, and & be

an at most countably infinite simple {7 -algebra existing by the Magari theorem. As
has been noted in the proof of theorem 13.2, the following statements follow from
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the results obtained in chapter 2:

(1) for any Boolean algebra .B, any M -algebras ¥, & ,, q® = xd, iff
there are Boolean algebras B8, such that for i=12, B=XF xB, and

¥, =%

(2) For any Boolean algebras .B,,%, RIW RN B =58,

It should also be noticed that the formulas of the signature < x> used to

construct an interpretation of the class £ in a class of bounded Cartesian skeletons
of a Boolean algebra variety, had quantifiers bounded by cofactors of the parameters
employed in these formulas. These remarks enable us to use the formulas in question

to obtain a relative to elementary interpretation of the class f in a class of bounded
Cartesian skeletons of the variety M with parameters # € substituted for the
parameters € €BA in these formulas. To complete the proof of the theorem, now

we have to notice that for any parameters by,...,bs,Cq,...,c, €3I . such that the
formulas @,p, P, . define at these parameters a system of the type
<AU fCay,...a,> in < IM_;:x>, where AC P(U), the equality A=PU) in
fact holds. In other words, we have to show that for any subset SCUC I _,,
there is an element DeFIM_, such that for €&IM_,,
< IM_;x>1=D(b, £ H)&D(D L) iff € ES.

Let S={H# i€} and J' be a simple algebra contained in all algebras ;. D
will denote a subalgebra of the algebra g&' ; such that for f EIQIJ{ » fED holds

iff for a certain a €’ and all i but the final number of elements from I, we have
f()=a. The algebra D is a Boolean product of the algebras {licn U '}
relative to a Boolean Frechet algebra over the set I. According to known descriptions
of congruences on Boolean products in congruence-distributive varieties (section 4),

any direct cofactor T of the algebra £ has either the form J A/ x.xd] or

the form & =¥ ax.xd ! xD' for some i,..i, €I and some direct
decompositions 3{ xJf P~ H x 3 ;i of the algebras a ,-1,...,31 i, » respectively,
where the algebra i)' is constructed of algebras & ;(i €I\ {i,...,i,,} in the same way
as the algebra £ of algebras &,;(iE€I). Owing to this fact, one can easily notice
that £ has the property discussed above, i.e., it interprets the subset § of the set

U. Therefore, the interpretation under discussion is an interpretation of the £ -
system, which completes the proof of the theorem. M
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The following problems still remain open for discussion.

Problem 13.2.

(a) Does the Lowenheim number of the epimorphism skeleton of any non-trivial
congruence-distributive variety coincide with that of second-order complete logic ?

(b) The same problem concerning embedding skeletons.

The following results should be mentioned in relation to the problems just
posed.

Theorem 13.5. The Lowenheim number for the skeleton < 3BA;«,*> of a
Boolean algebra variety coincides with that of second-order complete logic.

Theorem 13.6. The Lowenheim number for the skeleton < ¥BA<*> of a
Boolean algebra variety coincides with that of second-order complete logic.

Here for a,b,c € jBA such that a is the isomorphism type of J eBA, b is
that of B €BA and c¢ is that of € EBA, and the equality a*b=c implies that B
is isomorphic to & =%, which is a free product of the Boolean algebras 4 and B .

Priorities. All the results obtained in this section belong to A.G.Pinus.
Theorems on the decidability of the elementary theory of skeletons were published in
[164], [165] and [176]. Theorems 13.3 and 13.4 can be found in [185], theorem
13.5 in [170] and theorem 13.6 in [186].

14. Some Theorems on Boolean Algebras

In this section we will prove some statements on Boolean algebras formulated in
section 1 and used in proofs of a number of theorems of Chapter 3 but not
available in basic monographs on Boolean algebras.

It should be recalled that a subset § of the cardinal A is called closed and
unbounded if:

(1) for any a €A, there is a &S such that = «;
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(2) for any §; €8 such that for a certain a €A, S, C{BEAIB =< a}, supS, ES.
A subset D of the cardinal A is called stationary if its intersection with any
closed and unbounded subset of A is non-empty. Theorem 1.3 enables us to prove

the following result (theorem 1.9 in Chapter 1).

Theorem 14.1. For any uncountable cardinal X; and I/C w;, there is a

superatomic interval Boolean algebra J; of the power N; such that, for any
LJCw;, B, is embeddable in B, and B,;«F, iff ICJ.

Proof.

(1) Let X; be a regular uncountable cardinal. By theorem 1.3, there is a family
D={S,jEw;} of pairwise disjunct stationary subsets of the ordinal w;. For any §;

Sj * . S .
let B, =w; if a€S;, and B,° =1 if a &S;.

S.
as, will denote zﬁa’. Let us show that for /= j a Boolean algebra B(asj)
acw;
is not a homomorphic image of the algebra B(ag ). Let us assume to the contrary

that f is a homomorphism from the algebra B(ag) to Blag,). For any a€w;,

there is an a’' €w; such that

FCSBH2IBY.

cs=a’ csa

Indeed, if it was not the case, we would have that, for some bij,

FCBIHC SBY.

c>b c<a

But then we get

FCBH2 3B

csb c>a

i.e., in particular, there could be found a homomorphism from the Boolean algebra

BB to B(SB.). It should be noticed that KeE€Slcsbi<¥;, and
csb c>a
Hc €S;lc > a}=N;. Hence, there are X; pairwise disjunct elements of the atomic rank
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S.
w; in the Boolean algebra B(Eﬁc’), i.e.,, intervals (d,d;], where

cza
) S, .
di €Bc, . d; EPc, . kEw; and ¢y <cj<¢p < <..<Cp<cp<.. is a sequence of
elements w; such that cy &S, c; €S;. At the same time, the number of such disjunct
elements in the Boolean algebra B(E ﬁcs’) is strictly less than X; (each clement must
csb
contain some initial interval of the ordered set ﬁCS’ for some c€JS;). As has been
remarked in section 1, the homomorphism of an interval Boolean algebra, B(E ﬁcs H
csb

in the case under consideration, to the Boolean algebra B(Eﬁcsj ) implies that the

c>a

latter is isomorphically embeddable in B(E ﬁCS ). The remark made on the number of
csb
pairwise disjunct elements of the atomic rank w; in these algebras results in a

contradiction, which fact proves that the required element a'E€w; such that
5 . _
/ (Eﬁcs’);) Y B’ indeed exists.

csa’ csa
One can prove analogously that for any a Ew,; there is an a’'Ew; such that

S
f(zﬁcsl)g 2[30’. Therefore, for any a€w;, there is a  sequence

c=a csa’
ay=a<a <...<a,<... of elements of the ordinal w; such that forany § we get

) B CrSEHe 3B

csa csaﬂ csap +1

An element d Ew; will be said f-limiting provided that we have d —glm ag for
Ew,

an ascending sequence <aﬁlﬁ Ew; > with the property (*). A family of f-limiting
elements is, obviously, a closed unbounded subset of the set w;. Since Sj is
stationary, there is a b€w; such that bES; and b is f-limiting. As bES;, by the

definition of fB;”, there is no supremum of an ascending chain of elements

< Zﬂc'lﬁ Ew; > in the Boolean algebra B(ag,), where <aglﬁ Ew; > is a sequence
CSa
B

converging to b in the definition of the f-limitedness of the point b. On the other

hand, since $;NS; =, b €&S; and, by the definition of ,Bas’, there is a supremum

of an ascending chain of elements < Eﬁcs’lﬁ €w; > in the Boolean algebra B(ag,).

d
cs aﬁ

In this case, however, by virtue of the inclusion (*), the following equalities hold:
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S S S;
su B.Y) = su B:l)=su )
f(p Pl Za:sc ﬂag,f( Eg: ¢) h Pl Z:dﬂc

csa, cs aﬁ

. . S; . .
Le., in contrast to what has been remarked above, sup E B, must exist in the
rEw

csa,

algebra B(asj) at [=j.

Let now B;(jEw;) be a partition of w; into sets of the power R,. For any
AC w;, let us set y = Easj.

=g

In this case, for any A,C Cw;, the relation B(y4)«B(yc) holds iff ACC,
while the relation B(y4)= B(yc) holds for any non-empty A,C C w;. Indeed, for any
non-empty A,C Cw;, the LOS y, is isomorphically embeddable in y., which
implies the fact that the Boolean algebra B(y,) is embeddable in B(y;). At ACC a
homomorphism from B(y;) to B(y,) is obvious. Let now AZC and jEA\C. Let
us assume that there is a homomorphism f from B(y:) to B(y,). By analogy to
what has been proved earlier for algebras of the type B(ag ), we can show that
there is an /€C such that ag will have the form f(asj) to the accuracy of a finite
number of intervals bounded in ag. On the other hand, obviously, for any initial
and final intervals §; and §,, any ordered sets a 5,4, > respectively, the relations
B(aSq )«B(6, +62)«B(asq) hold. Thus, we get a homomorphism from the Boolean
algebra B(a S,-) to B(ag) at j=I, which contradicts the property of the Boolean
algebra B(ag,) proved earlier. Therefore, indeed, B(y,)«B(yc) iff ACC.

Setting B, = B(y;), we get the statement of the theorem for a regular X;.

(2) Let X; be a singular cardinal. We will give only a schematic presentation of
the proof for this case.

Lemma 14.1. If B, B, are atomic interval Boolean algebras, and if there is a
homomorphism from the Boolean algebra B to B,, there is a homomorphism g
from the Boolean algebraB, to B, with the following property: for any atom
a€X,, there exists a unique atom a’' €8, such that g(a')=a.

The proof is obvious and consists in choosing for any preimage of the atom
a€l, an atom a'EDFB, contained in this preimage. Setting then g(a’)=a and
g(b) = 0 for other atoms b EX,; contained in the preimage a, g is naturally extended
to the homomorphism of B, to £,. W
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Homomorphisms obeying the property considered in this lemma will be called *-
homomorphisms.

Lemma 14.2. For any singular X;, any regular X;N; such that X;X; <X;,
the homomorphism from a Boolean algebra B(wj+w:) to B(wk+w,-*) exists iff
k=j.

As has been remarked in section 1, the Stone spaces of the Boolean algebras
B(w; + w:) and B(wy + w:) are_homomorphic to LOSes w; +1+w,-* and w; +1+ w:
with a corresponding topology coinciding in the case under discussion with the
ordered one. If g is a *-homomorphism from the algebra B(w; +w:) to
B(wy, + w: ). the continuous embedding & dual to g of the space w, +1+w: in the
space w; +1+w,-* meets an additional condition: for any isolated point x of the space
wk+l+w:, h(x) is an isolated point of the space +1+w,-*. Such a continuous

embedding of wk+1+w: in w; +1+w: can be casily proved to exist only when
k=j. 1

Let now X; be a singular cardinal and R, =cf(X;). Let k;(j€Ew;) be an

ascending chain of cardinals such that Ekj =N;. For any subset ICw,;, let us set
JEw,

I()=1Nwj, for jEw;. As was the case in (1), let us choose a family

D; ={S,j ll€w;} of pairwise disjunct stationary subsets of the ordinal w;, with an

additional condition: all elements of the set Slj unlimiting in S,j have a cofinal equal
§ * : .
to ; in w;,;. Let us set B =w; if a€S/, and equal to 1 if a&S{. As was the
J
case in (1), ag; will denote a LOS 2 ﬁf I'. The LOS ¥y Ky 1s constructed from the
' agwjy,
LOS ag; also by analogy with the procedure used in (1). Therefore, y 1 Will be a
1
lexicographic wﬁl-sum of linear orders of the type 1 and w;, in which case, in

accordance with the condition imposed on the elements of the set S/, any interval w:

in the LOS y,,, provided that it corresponds to ﬂf’], where a is not a limiting
point in S,j , is contained in an interval of the type 5 +w: of the same LOS y X
And, again, as in (1), we prove that for any LJC w; B(yl(j))«B(yJ(j)) iff
1GYSJI()).
Let us set ; = Ey,(j) for ICw;. For any I,JCw;, B(d;) is obviously
Ew,
embeddable in B(6J),j§n(li for the case ICJ we get B(6;)«B(6;). To prove the
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converse statement, it suffices, according to the remark made earlier on the algebras
B(yy;) and B(y J())» to notice that the relation B(8;)«B(d;) implies the relation

B(y 1y )<B(¥ 5(;)) for any jEw.

Let B(6;)«B(6;). By lemma 14.1, there is a *-homomorphism g from the
Boolean algebra B(d;) to the algebra B(6;). In this case, by lemma 14.2, only
those elements of the algebra B(6;) can map to the intervals of the LOS 4; of the
ordered type w; +w:( J €w;) which contain intervals of the same type, w; +w:, (a
fixed j is meant). We have noticed earlier that the intervals of the LOS 6; of the
ordered type w; + w: correspond to all non-limiting elements in the sets S,j in the
representation of d;; as a wzﬂ—sum of the LOSes of the ordered types 1 and wr
Therefore, the g-preimage of the interval y; (as an element of the Boolean algebra
B(d;)) coincides with the interval y J¢j) (as an element of the Boolean algebra B(6;)
to the accuracy of the initial interval of the former. This fact, as can be seen easily,
implies the relations B(6;(;)«B(dy ;) for any jEw for the case when
B(d,)«B(d,).

Thus, we have also proved the statement of the theorem for the case of a
singular X;. W

Corollary 14.1. For any uncountable cardinal X;,

(a) there are 28X of mutually embeddable superatomic interval Boolean algebras
of the power X;, none of which is a homomorphic image of another;

(b) any partially ordered set of the power not greater than X; is isomorphically
embeddable in < 3SIB4{I,;«> in such a way that the images of the elements of this

set are pairwise embeddable into one another.

The statement of . the corollary results directly from that of theorem 15.2, i.e.,

that for any cardinal R; there are 2N mutually non-embeddable subsets of the ordinal
w;, and from the fact that any partially ordered set of the power not greater than N;
is isomorphically embeddable into a set of all subsets of the ordinal w;. W

Later on we will make use of a statement obtained by repeating word per word
the considerations of theorem 14.1 (1) for N; =¥, with the ordinal type 7

. . S;
substituted for w; when constructing B,”.

Corollary 14.2. There is an infinite number of pairwise embeddable interval
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Boolean algebras €; of the power ¥;, none of which is a homomorphic image of
the other, in which case for each of the algebras €, the set {d €€ J& ;|d contains a
chain of elements of the ordinal type 1-w,} forms an ultrafilter on & ;.

Let us now prove that there are noncompactable chains of the ordinal type of
real numbers in the epimorphism skeleton of a Boolean algebra variety. In section 1
we have given the notion of a formally real LOS and formulated a number of
statements on the existence of rigid subsets of these LOSes, and on the properties of
these rigid subsets.

Let R be an ordered set of real numbers, and PC R obey the conclusion of
lemma 1.1. For any a €R, let us define P, as {xEPlx<a}.

Lemma 14.3.
(a) Boolean algebras B(F,) are Bonnet-rigid;

(b) for a<bER, B(P)«B(B,), and for any non-singleton algebra 5
B(F,) x B ¢B(P,);

(c) for any a and any Boolean algebra B, from B =_B(P,) we get
B = BP);

(d) (CH) for a€R and any Boolean algebra B, if B(I;)«.B «B(F,) for all
bER such that b>a, there is a countable set DC{xEPx=a} such that
B =B UD);

(e) for aER and any Boolean algebra B, if B(I-';,)«ﬁ «B(E,)) for all bER
such that b<a, B = B(R).

Proof. Let 2 be an isomorphism of the LOS {xERlx<a} and LOS R.
Obviously, #(F,) S R obeys all the conclusions of lemma 1.1 and, hence, by lemma
1.3 and theorem 1.12, a Boolean algebra B(i(F,))= B(E,) is Bonnet-rigid. The
relation B(P,)«B(B,) is obvious for a<b. If B =, B(P,) then, since B «B(P,) and
B(F,) is retractive, we see that B is embeddable into the algebra B(P,). This
embedding and the relation B(P,)«® together imply, since the algebra B(F,) is
Bonnet-rigid, an isomorphism of the algebras B(P,) and JF. For any non-singleton
algebra & , the relation B(P,)x & «B(P,)implies B(E,)x& =_ B(F,) and, hence, an
isomorphism relation of B(P,)x& and B(F,). The latter fact implies the existence of
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a non-identical embedding of the algebra B(P,) into itself, which contradicts the
Bonnet-rigidity of B(P,). Therefore, the statements (a), (b) and (c) of the lemma have
been proved.

Let us show that the statement (d) is valid. Let us fix a by >a. Since there is
an isomorphism from the algebra B(F,) to 2, as has been repeatedly remarked,
B = B(D)) for a certain D C P, . Let us show that F,C D;. In the opposite case,
there is a yEP,\ D;. Let k be a homomorphism from B(D;,) oto B(E,), and let
cEB(D)) be such that A(c) =(-%,y]NP. From now on, we mean intervals of the
set R in the proof of the lemma by intervals. There are x; <x, €D; such that
h((x,x%]1ND) 2(z,y]NP for a zEPF, and, since x,=y, we can assume
(X %] N(zyl = D. As Iz, y] N BI=2% 1(x,x,]N D=2 as well.

In an obvious way, using h, a homomorphism from the Boolean algebra
B(DDl(x,x%]N Dy to the algebra B(B)I(z,y]NE, is constructed. Since
B(D)l(x,x]N Dy is retractive, we get an embedding g of the algebra
B(E)I(z,y]N B, into the algebra B(D))!(x,x,]N D,. Considering a subtraction of the
set {g((z,tDItEP, and z<t<y} and using standard considerations, we get a continual
subset S € (z,y]N B, which is either isotonically or antiisotonically mappable to the
set (x,x,] N Dy C P. Since, as has been remarked earlier, the intervals (x;,x,] and
(z,y] are disjunct, we obtain a contradiction to the properties of the set P.
Therefore, indeed, the inclusion P,C D, is valid.

Analogous considerations show that Dy N{bERb <a}=PF,. Let now D=D\ E,.

It should be noticed that IDI<2™ . Indeed, in the opposite case there are b;,b, ER
greater than a such that l(bl,bz)ﬂDI=2x". But if this was the case, the existence of
a homomorphism from the Boolean algebra B(B,) to the algebra .B would result in
that of an isotonic or antiisotonic mapping of a certain continual subset B, C P into a
set (b;,b,) N DC P disjunct from it, which contradicts the P properties. Therefore,
by virtue of the continuum hypothesis, IDis X, and B = B(P,UD).

Let us now assume that the conditions of the statement (e¢) are met. Since
B(P,)»& , as has been remarked earlier, B = B(D) for a certain DCP,. Let b be

any real number less than a. Considerations from the proof of the statement (d)
show that D2 B,. However, since szU B, D=P, and D=B(P,). &
<a

Theorem 14.2.(CH) In the epimorphism skeleton of a Boolean algebra
variety, there is a noncompactable chain B of a dense order type or, more precisely,
< Bf=,;«> has the order type of a set of real numbers.

Proof. Let us consider Boolean algebras of the type B(P,)x B(Q) for a€R,
where P,, R and Q are defined before formulating lemma 14.1. Let us first show
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that for any a,b €ER, B(F,)x B(Q)«B(F,)x B(Q) iff a=<b. It suffices to notice that
the relation B(E,)x B(Q)«B(F,)x B(Q) implies the inequality a<b. Let 2 be a
homomorphism from the algebra B(F,)x B(Q) to the algebra B(E,)x B(Q). In this
case, since B(Q) is countable and for any non-zero element of the algebra B(FP,),
there is a continuum of less eclements of the algebra B(E,), we get
h(< OpR)-lpg >) =< Op(p,):¢ > for some cEB(Q), and, hence,
h(<1pp).0pg >) =<lpp,),~c>. Therefore, there is a homomorphism from the
algebra B(F,) to the algebra B(F,). At the same time, the assumption b<a,
combined with a homomorphism of B(F,) on B(P,), contradicts the Bonnet-rigidity
of the algebra B(F,). Thus, indeed, the relations B(E,)x B(Q)«B(B,) x B(Q) and
a=<b are equivalent.

To complete the proof of the theorem, it suffices now to show that a family of
Boolean algebras =, -equivalent to algebras of the type B(FE,)x B(Q), where a€R,
forms a noncompactable chain in < J¥BA«>. Since a set of real numbers is a
complete linear order, it suffices to prove the following statements:

(1) for any algebra B and any a €R, if B «B(P,)xB(Q), as well as for any
bER such that b<a, B(B)xBQ)«&, B =_B(P,)xBQ);

(2) for any algebra B and any a €R, if B(P)) x B(Q)«B , as well as for any
bER such that a< b, B«B(P,)xB(Q), B =, BP,)xBQ).

Let B satisfy the condition of the statement (1). Then, according to the
inequality .8 «B(P,)x B(Q), there are Boolean algebras JB,«B(F,) and B,«B(Q)
such that 2 « B, x B,. Since in this case B, is countable, as has been noticed
earlier, the inequalities B(B,)x B(Q)«B, x.B, imply B(B,)«Z, for any b<a. In line
with the statement (¢) of lemma 14.3, this implies an isomorphism of the algebras
B, and B(P,). The algebra EB,, however, cannot be superatomic, since in that case
a homomorphism of B = B(E,)x 2, on the algebra B(P,)x B(Q) would amount to
the existence of a non-identical homomorphism of the algebra B(P,) on itself.
Therefore, B, =, B(Q), B =, B(P,)xB(Q), and statement (1) is proved.

Let now B satisfy the conditions of the statement (2). Let us fix a by > a,
and let the Boolean algebra B(F,)) xB(Q) be isomorphic to a Boolean algebra
B(F, +1+ Q) and, hence, the relation B «B(Pbo)x B(Q) implies an isomomorphism

of the algebras B and B(D,), where D, is a subset of the LOS B, +1+Q.
Considerations of the statement (d) of lemma 14.3 prove in this case also that
D =F,®D, where D is a countable LOS. Since B(E,)x B(Q)«® = B(E,®D), as



306 BOOLEAN CONSTRUCTIONS

was the case in the proof of (1), we notice that the Boolean algebra B(D) is not
superatomic. Therefore, to prove the relation .5 =.B(P,)xB(Q), it suffices to show
that D has a least element.

Let us assume to the contrary that if 9 is a homomorphism from the algebra
B(F, ®D) to the algebra B(F,)x B(Q) = B(P,®1® Q). Then, as was the case in the

proof of lemma 14.3, it should be noticed that for zE€PE, we get
P((-o,z]) =(-,z]. But in the algebra B(P, UD), there is no sup{(-%,z]lzEPL,},
while in the algebra B(P,)x B(Q), sup{(-»,z]lzER,}=sup{y((-»,z])lz EP,} exists,
which fact contradicts the existence of 1 . Therefore, indeed, D has a least element,
i.e., D=1®D, for some not scattered LOS and, hence, since B(D,)=_  B(Q),

B(P,®1® Dy) = B(P,)xB(I}) =, B(E,)x B(Q),
which completes the proof of the statement (2). M

By way of concluding this section let us present some proofs of independence
of the embedding and epimorphism relations on a Boolean algebra variety.

The definitions of almost disjunct, ad-, mad-families of subsets, as well as the
formulation of the set-theoretical assumption P(2“) are given in the end of section
1. The relation “P\R finite” will be denoted by PGk R, P =« R, provided that
(P\R)U(R\ P) is finite.

Lemma 14.4. Under the assumption P(2“), for any non-principal ultrafilter p
on o, there is a mad -family X of the subsets of «w such that F(X)=P.

Proof. Let p be a non-principal ultrafilter on w, and let {a,-li<2x"} be an
enumeration of the elements of the ultrafilter p such that every a €p is encountered

2% times in this enumeration. Let {bli< 2x°} be an enumeration of the elements of
the set {bC wlb&p and 1H=NRg}. Let us set A, ={@li<k}, B, ={pji<k} and
construct an ascending sequence {X,-Ii<2x°} of the ad-families of the subsets w, so
that:

(1) 1X,1<2% and X,NP=2;

(2) if i=1+k, where I is limiting, and k<w, there is a cEXj 441 \ X2k
such that cC q;;

(3) if i =l+k, where [ is limiting and k <, there is a d €X, 54, , such that
ld Nbl=X,.



APPENDIX 307

The sequence {Xili<2N°} is constructed by induction over i: X, =X, =&, and
we have X; _constructed for i<j=1+2n+1, where ! is limiting, n<w. Let

S = Atyns U0 \HDEB,, }U {0\ 1x EX,y ).

The family § has the property fip, as SCP and ISl 2% Under the
assumption P(2”), there is an infinite a_ w such that a\s is finite for any s E€S.
Let then a CaNa,, be such that a &p and Ia*I=N0. Let us set

Xy one1 = Xiyon U{a*}. If now there is an s €X; such that IsNby,,l=¥),, we set

Xj+1 =Xj, while if there is no such an SEXj, let

T = A 2n41 U{@ \ BB EBy, U {0 \ X x €Xpy 5,01}

And again, since TC p, T has the property fip, |71 <2™ and, according to
P(2?), there is an infinite ¢ w such that ¢\s is finite for any s€&T. Let
¢ Cec Na, , be such that c &p and |C*|=N0. Let us set

*
Xivone2 = Xpyony U{e Uby,,}.

For limiting / we get X, = .UIXi‘ The conditions (1) - (3) are obviously
1<

satisfied for the sequence {Xili<2x°} by construction considerations. The same

considerations show X = L{{o X; to be an almost disjunct family of subsets w. As
i<2

XNp= and p is a non-principal filter, a union of any finite number of elements

X has an infinite complement in w, i.e., X is an ad-family. At the same time, by

virtue of the conditions (2) and (3) on {X,—Ii<2x°}, X is a mad-family. Let us
show that F(X)=p. Let a€p, for the 2% ordinals i we get a =a; and, hence, by
condition (2), there are 280 different elements X contained in a, ie., pC F(X).
Assume now that aC w,a&p, and a is infinite. Then a=b; for some i. By
construction, {X;lj <2N°}, for all j>i+w, for any d €X;,;\ X; ldN(w )\ bl=KR,,

i.e., a®F(X). Therefore, indeed, we have F(X)=p for the mad-family X
constructed.

For any family T of subsets of a set A, B(A,T) will denote a subalgebra of
the Boolean algebra of all subsets of the set A, generated by elements incorporated
in T and by clements of the type {a} where a €EA. If X is a mad-family of the
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subsets of A, B(A,X) is a superatomic Boolean algebra of the characteristic <2,1>.

Definition  14.1. A will denote the family of all ultrafilters on the set A.
The Rudin-Keisler quasi-order < is defined on different ultrafilters in the following
way: for p EBA, qEPB the relation p <q is valid iff there is a mapping f of a
certain set X €q in A such that, for any YC A, YEp, iff for a certain Z€Eqg the
inclusion f(Z)CY holds. The Ridin-Keisler finite quasi-order =< is defined
analogously provided that there is an additional requirement on f: for any a €A,

If {@)< R,.

The following theorem will be given without any proof, as it would require a
lengthy digression into the theory of ultrafilters (see, for instance, theorem 10.4 in

[41]).

X,
Theorem 14.3. There are 2~° (22 ° under CH) of non-principal ultrafilters
on w which are pairwise incomparable relative to the Rudin-Keisler quasi-order.

Let p be an arbitrary non-principal ultrafilter on @, and X, a mad-family of
the subsets of @ constructed by lemma 14.4 such that F(X,)=p. B p Will denote
the Boolean algebra B(w,X,). It should be noticed that the existence of the algebra
B(w,X,) has been proved only under the assumption of the set-theoretical hypothesis

P(ZN") or, under a stronger one, CH.

Lemma 14.5. For any non-principal ultrafilters p,g on w, if the Boolean
algebra B, is isomorphically embeddable into a Boolean algebra B, p=q.

Proof. It should be noticed that, for any b€&XR PN there are no two infinite
subsets A, B of elements of .Bq such that all elements of A(B) are pairwise disjunct,
contain an infinite number of atoms each, and for any a€A,dEB we have
aC b,d C-b. From now on, the elements of A(B) will be identified with singleton
subsets of w. From the remark just made, we can deduce that if f is an
embedding of B, in B, then, for any n€w (s €X,), there are sy,....5; €EX, such
that either f(n) =« 5;U...Usi(f(8) =« 5;U...Us) or f(n) =« B(f(s) =« D).

Let f be a certain fixed embedding of B, in B

4> and let g map U Sf(m) to
m&w

w in such a way that n€f(g(n)) for any n€ U f(m). f* will denote the
mew

mapping of a set of all subsets of w to itself such that for any ACw, f*(A) is
the set-theoretical union of the sets f(n), where n €A. It should be noticed that, for

any A€l p» the inclusion fa)2 f*(A) holds, and for an A which is equal to a
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finite family of atoms of the algebra 'Bp (i.e., to a finite subset of w),
f(A)=f*(A). Let g(A)={g(n))n €A and g is defined on n} for ACw. Let us
show that g(q) = p. Assume to the contrary that d €q and g(d)&p. Since p is an
ultrafilter, w \ g(d)=bEp. Hence, 61 ={slsEXp,s Cx« b} has the power 2% For
sE€G | let us set u(s)=sNb, and let & , = {u(s)}s€EG }. In this case, K& =20,
For s €6, we will define #(s) = f(s)\ f (s). Let T = Y 1s).

2

For any s€62, the equalities f(s) =f*(s)Ut(s) =x 5,U...Us; hold for some
5;€X,. As w\dé¢q, I{lEXqIIQ*w\d}k Mo and, hence, there is a continual
&,CE&, such that f(s)Nd= D for sEE ;. But for s &6 ,, the inclusion s Cb is
valid and, hence, f*(s)gf*(b)gw\d, and if f(s)Nd= 3, t(s)= . Therefore,
there has been found a continual &5 such that f(s)NT = for sE& 5. On the
other hand, for s; =5, E& 5, the set 5;Ns, =m is a finite family of atoms and,
thus, f(:sl)ﬂf(s2)=f*(m)gf*(b), ie, f(sp)Nf(s,)NT =J. Therefore, we have
got a continual system of non-intersecting non-empty subsets {f(s) N T =#(s)s €& 3}
of the countable set T. The contradiction obtained proves that g(d)Ep for any
deq.

In an analogous way we can prove that the domain of the definition of the
function g lies within g. Thus, the fact that there is a embedding of B p In .Bq
entails p<gq.

Let us show that, in fact, the inequality p<gq holds. Let b€X, and
¥ ={n Ehl| f(n)l=Rp}. It should be noticed that b s finite. Indeed, in the opposite
case, assume A={f(n)|n€b*}g,3q and b,....b,,... are pairwise disjunct and b-
disjunct elements of .Bq, each containing an infinite number of atoms. For any
a€Ad €B={f(h)liEw}, the inequalities a C f(b) and d T -f(b) hold. As has
been remarked in the beginning of the proof, there are no such elements f(b) in the
algebra B, ie., b must be finite.

Let a={n€wll f(n)lzNy}. Let us show that a is finite, assuming that the
opposite is the case. The element a cannot belong to X,, as all X, elements are
infinite, a =a and, hence, a would be finite. On the other hand, if we had a¢Xp
and a was infinite,, as Xp is a maximal ad-family, there would be an aleXp such
that an @ Na; would be infinite. In this case, aI 2aNa;, and a: would be infinite
in contrast to the earlier remark. Therefore, indeed, a is finite.

Let D be the domain of g, and let Dy =D\ f(a). Then D, Egq, since in the
opposite case DN f(a)Eq, as DEq and, hence, there is an i€a such that
f@NDeEgq, ie, f(i()Eq. As has been remarked earlier, f(i)=+1,U...Un,,, where
u; €X, and, hence, there is an i such that #;Eq. It is obvious at the same time
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that none of the elements X, can belong to q. Therefore, indeed, D, Eq. In this
case, however, the restriction of g to D, makes it possible to state that p<sq. Wl

The statement of the theorem is, obviously, also valid for any ultrafilters p,q
defined on arbitrary countable sets A, B, respectively.

As a corollary, one can deduce from theorem 14.3 and lemma 14.5 the
existence of 2% (under the assumption P(2“)) or ZZNO (under CH) of mutually
non-embeddable Boolean algebras of the power 280 It should be recalled that in
section 1 a stronger result was presented without any additional set-theoretical
assumptions: for any X >N, there are 28 Boolean algebras of the power X mutually
non-embeddable into each other. The statements discussed earlier, however, will be
used to construct families of mutually non-embeddable Boolean algebras with an
additional property, i.e., they are homomorphic images of each other, which means
that they are equivalent in terms of =_.

Theorem 14.4. Under the assumption P(2“”) (or under a stronger one, CH),
for any nE€w there are Boolean algebras JB,...,», ; such that B, are mutually
non-embeddable, and for any i,j<n we have B;«F je

Proof. Let p be a non-principal ultrafilter on w, and let < Ali <28 5 be an
enumeration of all elements p, in which case for any AEp A is encountered 2No
times in the sequence < Ali <2M 5. Let X, be a mad-family of subsets w such
that F(X,)=p, as was the case earlier. Let us construct a partition of X, into
subfamilies X;,(i Ew) such that IX;,I=2N° and F(X;,)=p for all i€Ew.

A subfamily X'p will be constructed as a union of an ascending chain of ad-
subfamilies X, (j) (j<2"°) of the family X,.
X,(j) =kL<JjX;,(k). Let the subfamilies X, (k) have been constructed for k < j <280,

If j is limiting, we set

We set R,-={BEXPIB_Q* Aj}. Since A;€Ep=F(X)), IRJ-I=2N°. Let us now define
X;,(j+1) (at i€w), by adding one element (different for various i€w) from
Rj\igu X,(Jj) to X,(j). It is obvious that X;,=j<;JRO X,(j) has the properties
discussed earlier.

Let ¢ be a bijective mapping from w to itself such that lw\ @(w)=Ry. Let
Dg»+++»Pn-1 be non-principal ultrafilters on w \ @¢(w) pairwise incomparable in terms
of the order <, and for any s Ew, let r(s) be a subtraction of the number s over

P _ 9 P _ P
the module n. For p,g Ew let qu =@ (Xpr(q)) and qu pngpq. Let us choose
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g to be a bijective mapping from the set U X, to the set kU (X, \ng) such that
<hn

k<n

g(X‘f,r(i))=X;,,+1 for 1sisn and sEw. T will denote a maximal ad-subset of the

i-1
family {AC ! for all i<n lAﬂ((pl(w)\(p“l(w))k NRo}, and for I <n, let h; be a
bijective mapping from X, \ XI(’),- to T. Let us define the set X;,q in the following
way:
X, =X, UAU @™ (g9 (4)) U™ 2 (g% (974" (a))
U...Up%(g" (@ V(A U by (@™ ()IAEX, =13,

where @™ =(¢")™". One can directly check that X}, is a mad-family of subsets of
the set @?(w), and that {Bﬂ((pq(w)\(pq+1(w))IB€Xl’,q}=qu. It is also obvious
that F(X, ) is not a principal ultrafilter on the sct (), p? (@) \ o (w) EF (Xp,),
and for any YC ¢%(w), YEF(X], ) is equivalent to YN(p?(w) \ ¢?*(w)) in
KX, )= (pq(p,(q)). Therefore, we get F(X,’,q)<p,(q, and pyq) <F(X}, ).

Let now .Bi(i Ew) be a Boolean algebra of the subsets of the set ¢'(w)
generated by one-eclement subsets and subsets of XI’,i. For any k,n €Ew such that
k =m(modn), it follows from the construction of X,, that By =B, (the mapping
q)m_k is defined by an isomorphism). Since F(X, )< py; and p,;) <F(X,) for
i€w, and the ultrafilters py,...,p,_; are pairwise incomparable in terms of the
Rudin-Keisler quasi-order, we get from lemma 14.5 that the Boolean algebras
,BO,...,B n-1 are mutually non-embeddable into each other. On the other hand, for
any i<j, the homomorphism & from a Boolean algebra .B; to an algebra B is
defined by the following condition: h(a) =a for any aE(pj(a)), and h(a)=C for
a€g(w)\ ¢’(w). Therefore, By =B, «B, «.«BB, W

Remark. The Boolean algebras F,...,%,; constructed in the proof of
theorem 14.4 are not only mutually non-embeddable into each other, but also have a
stronger property, i.e., for any i€{0,...n-1} and AC{0,..n -1}, we get

B, :éjEHA.BJ- provided that i A,

Indeed, let us assume to the contrary that A = {j,...,j,}. The embedding of %,

in HA.B,- implies that there is a partition 1y of the elements Ci,...,G, such that
Jjea i

Bl <k j; for any I<m. Preserving the notations of the proof of theorem 14.5,

we get C;E€F(X,) for one of Ci,...,G,. This implies the inequalities ¢ = p;, and

p;sq for the ultrafilter q={BﬂClIBEF(X[’,i)} on the set C;. Therefore, g is
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incomparable with the ultrafilter F( X-;’fz) relative to the Rudin-Keisler order. On the

other hand, B} C, = B((pi(w) NCG;{XN C,IXEX;'_ hH and F{XNGIX EX;i}) =g. By
lemma 14.3, BJC cannot then be embedded into the Boolean algebra B;. The
contradiction obtained proves the statement.

Ji

Theorem _ 14.5. Under the assumption P(2%), for any finite set
B={ay,....a,_1} with two quasi-orders, =;,s,, there exist pairwise non-isomorphic

Boolean algebras €,,....&,_; (of the power 28°) such that for i,j<s, €, <€, iff
a;sya; and €,«&; iff a;=, a.
Proof. Let A={ay,....a,_1} be an arbitrary n-clement set (n Ew) with a partial

order <. One can assume < A;<> to be a subset of a finite Boolean algebra B
with n atoms dj,...,d,_;, and the order = to coincide with the order on the

clements of the Boolean algebra B . Let Ay,...,A,; be a subdivision of @ into n
infinite subsets. For a €A, if a=d; U...Ud;, let us set B, = U* B/, where
g ! €4, U..u4,

'Bi’ = B i

J
following theorem 14.4. Here ]J* B/ is a subalgebra of a direct product
€4, U..ua,

at i€A;, while B j(j<n) are Boolean algebras obeying the remark

B/ consisting of those of its elements the Cartesian projections of which
i€4 U...UA4,

all except a finite number of them either equal O or equal 1 in corresponding
Boolean algebras .B/. Since B, =, ,Bj at i,j<n and the sets A; are infinite then,
obviously, .B, = 8,, for any a,b EA.

Let us now show that B, <B, iff a<b. It suffices to notice that B, <B,
entailss a s b. Assuming that the opposite is the case, for some a,b €A, d;EE we
get a2d;,bD2d; and B, <ZF, The considerations of the construction of the
Boolean algebras B ,,B, show that the Boolean algebra J; is embeddable into a
certain Cartesian product of a finite number of Boolean algebras P.; jl,...,.B m from
the family {X,,...,8, 1} \{ZB,}, which contradicts the choice of JB,,...,8, ;. The
contradiction obtained proves that, indeed, B, =B, iff a<b.

Let §, be an ultrafilter of the Boolean algebra B, consisting of those its
elements the Cartesian projections of which, except for, possibly, a finite number, are
equal to 1 of the corresponding Boolean algebras B/. Let D, be a Boolean algebra
B(wk-n) for k<w, and let ®;, be an arbitrary non-principal ultrafilter of the
Boolean algebra D, consisting of non-superatomic elements. Let D be a Boolean
algebra of finite and co-finite subsets w,, and let ¢ be an ultrafilter of the algebra
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D consisting of co-finite subsets w,. .Ba,k will denote the subalgebra of a Cartesian
product B, x B, x D, consisting of elements <c,d;,d, > which obey the following
condition: ¢ €F, iff d; E®; and iff d, Ey.

Let R,; be an ultrafilter of the algebra .Ba,k consisting of elements < c¢,d;,d, >
such that c€F,,d €®; and d, Ey. Since the algebras B, are superatomic, any
element d, of the ultrafilter §; is non-superatomic, and {c EDlc<d;} is countable,
for any ab€Akr€Ew and any elements ¢ ERa,k, c) ERb’r we get
Bode s By,lc, iff asb, while B, ,le«By,lc;. B, =8, iff a=b and k=7.

Let now B={bg,....b,_;} be an arbitrary finite set, and =;,s, be two arbitrary
quasi-orders on B. For any b€B, [b];,[b,] will denote equivalence classes in terms
of the quasi-orders =;,<,, respectively, on the set B containing the element b. Let
@ be an arbitrary embedding of the equivalence class [b]; in w. In this case,
according to a remark made earlier, we see, choosing a set <B/Esl ;<> as the
partially ordered set < A;<>, that the correlation f:b_)"B[bh,w By ©) obeys the
condition f(a) = f(b) iff a;= b; f(a)= f(b) iff a=b; and f(a)«f(b) for any
a,b EB. The first and the latter conditions are also valid for any algebras
f(a)ldy, f(b)ldy, where dIER[a]b%]l @> %2 ER[bh.rp[b],(b)' It should be also noticed

that for d&f(b), the inequality |f(b)ld =X, is equivalent to the inclusion
a2 ERbY oy, ()

For [b], EB/ESZ, let A([b],) denote Boolean algebras in corollary 14.2, such
that for b;,b, EB  h([b])<h((B],) iff by <, b, and (D ],)s k(H,],) for any
b,b, €EB. Any Boolean algebra of the type h([b},) has the power ¥X; and,
moreover, A([b),) contains an ultrafilter Gy, such that, for d €A([b],), the algebra
h([b]x)ld contains a chain of elements of an ordered type n-w; iff d €Gyy,, in
which case for any b;,b, €B, d,E€Gy;, and d; €Gy,,, Mblld =; (k] 4,
while the inequality A([d],ld«h([B,]5d, is valid iff b =, b,. It should be also
remarked that none of the algebras of f(b}(bEB) contains chains of the ordered
type 7-w;.

For b&€B, @(b) will denote the Cartesian product of Boolean algebras
h([bL) x f(b). Bearing in mind all the facts discussed above, one can note that
(b)) = @(by) iff by =by, @(b)s@by) iff b = by, and @(b)«pBy) iff by =< b,.
Indeed, if the inequality b =, (<1)b, holds, the inequality (b )«(s)@(by) follows
directly from the inequalities (B )< =)i(b,) and f(b))«(=) f(b,) discussed earlier.

Let now @(b)«@(b), ie., h([bl, x f(B)«<h(b], x f(by). In this case,
h([b 1) «h((By)> x f(B,), and there is an element d€EA([H)L) such that
h([b ) d<h((b}), h([b1y) ~d«f(b,). Either h([b;1;)ld or h([b;],)—~d contains a
chain of elements of the ordered type 7' w;, however, since f(b,) contains no such
chains, an algebra of the type A([p],¥d must contain such a chain. Therefore,
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d €QGy,),, which, as has been noted earlier, implies b <, b,.

Let now @(h)s@(b), ie. Aibl)xf(B)sh(b)y) x f(b). Then
fB) = i([b]p) % f(by), and there is an element dEf(h) such that
f)ld < h((b],) and f(b) -d < f(b,). Either f(b)ld or f(b)l~d have the power
R, and, since IA([B],)<N;, If(H)-dl=X,. As has been established earlier,
~dE€Ry,y b, Xk and in this case the embedding f(b)l-d in f(by) implies the
inequality by =<, b,. Therefore, indeed, the mapping ¢ is an isomorphism from
<B;<;,s,> t0 < JBA<,«>. B

Priorities. The statement of theorem 14.1 for the case X; =X, is a variation
of lemma 1 from a paper by A.G.Pinus [178], while in a general form it can be
found in a work by Bonnet and Si-Kaddour [19]. Lemma 14.3 and theorem 14.2
belong to A.G.Pinus [169]. Lemma 14.4 was proved by Weese, theorem 14.3 is
by Kunen [116], while its proof, as well as more detailed information on the Rudin-
Keisler order on ultrafilters can be found in a monograph by Comfort and
Negrepontis [41]. Lemma 14.5 and theorems 14.4 and 14.5 are from a paper by
A.G.Pinus [178].

15. On Better Quasi-Orders

In the present section the basic notions of the theory of better quasi-orders are
presented, the proof of the Laver theorem on the quasi-order on trees is given,
followed by the Van Engelen, Miller and Steel result deduced from it, and used in
sections 10 and 11 to obtain statements on countable skeletons of finitely generated
discriminator varieties.

Definition 15.1. A quasi-ordered set < A;=> is said well quasi-ordered if it
contains no infinite strictly descending chains, and any family of its pairwise
incomparable elements is finite.

It obviously follows from the Ramsey theorem that the requirement on the set
< A;=> to be well-ordered is equivalent to the following statement: for any infinite
subset X C A, there is a sequence ay,...,a,,... of elements of X such that a;<a;
for any i< j€Ew.

The validity of the following statements can be noted directly:
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(1) any well-ordered set is well quasi-ordered;
(2) the union of two well quasi-ordered sets is also well quasi-ordered;

(e) the Cartesian product of a pair of well quasi-ordered sets is well quasi-
ordered;

(N if <I;=> is well quasi-ordered, and < A;<> are well quasi-ordered for any

iel, E< A;;=> is well quasi-ordered.
<l s>

<

For any quasi-ordered set < A;s>, A will denote a family of all finite

sequences of A elements. We will introduce a quasi-order relation on A™”:
<ay...8p, >s< b,....b, > iff there are k; <..<k,s<n such that a;<b . The

following result is one of the principal ones in the theory of well quasi-ordered sets.

Theorem 15.1. If < A;s> is well quasi-ordered, < A;s> is also well
quasi-ordered.

Proof. Let us assume to the conirary that a sequence <uli€w> of

A”elements is such that for any i<jEw we get u,-:éuj. Such sequences of
elements of a quasi-ordered set will be said poor. The poor sequence <u;li€w > is
said strictly minimal poor if for any iEw and any a €A™ such that a<u;, there
is no poor sequence starting with ugu,....%;_;, 0.

Any well-founded set with a poor sequence has a strictly minimal poor
sequence: it suffices to choose the least among the first elements of poor sequences
as Uy, the least among the second clements of poor sequences starting with u, as
1, etc.

Therefore, <u;liEw > can be assumed to be a strictly minimal poor sequence
of elements < A*”;s> (< A™”;<> obviously being well-founded). Let a; be the first
element of A in the finite sequence u;. Since < A;<> is well quasi-ordered, there is
a sequence < ay;li€w > where h(0) <h(l) <...<h(i) <... such that <appli€w> is
either constant or strictly increases. Let v;) be obtained from u,, by crossing out
the first element a,;y and, hence, vy is strictly less and u,, in < A*”;<>. Since
<uli€w > is strictly minimal poor, the sequence ug,H;,. .- Hp0)-1>Vh(0)>Vh(1)»++- 1S NOt
poor and, hence, it contains two elements b;,b, such that b sb, in < A™”;s> and
b, is encountered in this sequence earlier than b,. As <wli€Ew> is a poor
sequence, by,by cannot be both encountered among <uy,...,lHg)-1 >. They cannot be
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among Vy(o),Vaq).--- Cither, since in this case, if & =vy,), b=V, and n<m,
Unny =< Qiny>Vh(n) >S Unimy =<Apmy>Vam) >» Which  contradicts the fact that
<uli€w> 1is poor. Therefore, by =u; for some j<nm0), b;=v,4(k€w) and
Uj < Vpry S Upry, Where j=h(k), which again contradicts the choice of <u;li€w >.

Thus, there are no poor sequences in < A*;<>. W

The quasi-order relation on the set A“ of finite sequences of elements from A
can be extended to a set of infinite sequences. Let A” be the family of all w-
sequences of the elements from A, and let in this case < a,ln Ew >=<< b ln€w > iff
there is a monotonous embedding f from the set w to itself such that for any
nE€w, a, sbgy,.

It seems to be natural to try to transfer the statement of theorem 15.1 from
<A™;s> to < A”;=>. However, as is shown by an example belonging to Rado
[198], this is impossible.

Let A= wxw, and let the partial order <, be defined on A in the following
way: <a,b><g<a’,b'> iff either a=a’ and bs<bd', or a’za+b and b’ is
arbitrary. It is obvious that < A;<y,> is well-founded, i.e., < A;<y> contains no
infinite strictly descending chains. If <ab>EA, any element <cd >EA
incomparable with < a,b > must be such that c<a+b and, on the other hand, any
pair of incomparable elements from A must have different first coordinates.
Therefore, any family of pairwise incomparable elements of A 1is finite, i.e.,
< A;=g> is well quasi-ordered. On the other hand, a sequence <uli€w> of
elements of A in the form u; =<<i0><il>,...<i,k>...lkEw> is, obviously,
by virtue of the definition of the order on A such that for any i< jEw we have
u; éuj. Therefore, < A”:;<> is not well quasi-ordered.

Analysis of the Rado example and an attempt to find a sufficiently wide class
of quasi-orders < A;<> such that < A”;<> could remain a well quasi-ordered set,
resulted in the following definitions by Nash-Williams.

Definition 15.2.

(1) A family B of strictly increasing finite sequences of elements of a certain
infinite set SC w is called a barrier provided that no sequence from B is a
subsequence of any other sequence from B, and if for any strictly increasing infinite
sequence < 5;li Ew > of elements of §, there is an n Ew such that <s;li<n>EB.
0(B) will denote the family of all numbers incorporated in sequences from B.

(2)Let us introduce the relation < on B in the following way: #<u implies
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that for some natural numbers s3 < §; <...<s, and an r such that Os7r<n, we get
t=<slisr> and u=<sll<sjs<n>.

(3) A quasi-ordered set < ;<> is called a better quasi-order if for any barrier
B and any mapping f from the barrier B to @ there are t,u€B such that t1<u
and f(2) s f(u).

It is obvious that the Rado example discussed above, < A;<y>, is an example
of a well-quasi-ordered set which is not a better quasi-order. Indeed, choosing as a
barrier B a subset of the set A consisting of those pairs <a,b> in which a<b,
and identically mapping B to A, we immediately get from the definition of the
quasi-order =, that for any t,u €B such that t <u, we have t £ u.

On the other hand, any better quasi-order is a well-quasi-order. Indeed, if
< (;=> is a better quasi-order and < qlicw > is an arbitrary sequence of elements
of Q then, choosing as a barrier B the set of all natural numbers, and as f a
mapping from w to B such that f(i)=a;, we find, since < Q;<> is a better quasi-
order, i < j such that @;<a;. The relation i< j on w, however, is equivalent to the
relation i < j. Therefore, indeed, any better quasi-order is a well-quasi-order.

The following combinatory statement on barriers plays an essential role in
proving various properties of better quasi-orders.

Theorem 15.2. If B is a barrier, for any division B;,B, of the set B, there
is an infinite subset H C O(B) such that if B(H)={b&EBIb consists of the elements
of H}, we get either B(H)C B, or B(H)CB,, in which case B(H) is a barrier
and O(B(H)) = H.

The reader interested in the details of the proof can find it in either an original
work by Nash-Williams [146] or a monograph by Friisse [69]. Let us use this
theorem to prove a number of the simplest properties of better quasi-orders, having
introduced some additional notation and definitions.

Definition 15.3.

(a) For any barrier B, B* will denote the family of all sequences of the type
<slisn>, where for some tu&B, r<nrn such that t<u, t=<slisr>,

u=<s;l<j=<n}. Such a sequence < 5;li<n> will be denoted by tUu. It is evident
that B® is a barrier.

(b) A barrier V is called a barrier following the barrier U if O(V)C0O(U), and
any element of V contains an initial interval belonging to U.
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(c) Let < A;s> be an arbitrary partial order and 6 a mapping from A to the
ordinals. Let U and V be barriers, and f and g be the mappings from U and V,
respectively, to the set A. The function g is called a function following f, if V is
the barrier following U, and if for any t€V and any s, which is the initial interval
of the sequence ¢ belonging to U, we get either # =, in which case g(f) = f(s), or
s=1, in which case g(#)< f(s) and 8(g(?)) <6(f(s)).

(d) Let < A;<>, 6, U and f be the same as in (a). The mapping f is called
poor if for any fu €U such that t<u, we have f(t) £ f(u). The mapping f is
called minimal poor if f is poor and for any barrier V and any mapping g from
the barrier V to A such that g is poor and g is the function following f, the
inclusion VCU holds, and g is an restriction of f to V.

Theorem 15.3.

(@) If <Q;=> is a well-ordered set, < @;<> is a better quasi-order.

() If <Qu=>, <@;s,> are better quasi-orders, and QNG =J,
<QUQy=;Us,> is also a better quasi-order.

(c) A Cartesian product of better quasi-orders is a better quasi-order itself.
Proof.

(@) Let < O;<> be well-ordered, B an arbitrary barrier, and f a mapping from
B to Q. Let <s;li€Ew> be a sequence of B elements such that for any i€Ew we
have s; <s;,;. Since < Q;=<> is well-ordered, there is an i€w with the property
S(s;) s f(s;;1), which fact, however, implies that < ;<> is a better quasi-order.

(b) Let < Q;=1>, < (Qy;<,> obey the requirements of the statement (b), and let
s=(<yUs,). Let B be a barrier, f be a mapping from B to Q UG@G,, and
B = f_l(Ql),' B =f 1(Q2)- By theorem 15.2, there is a barrier B; such that either
ByC B or B;CB,. Let us assume B; C B;. In this case, since < Q;=<;> is a better
quasi-order, there are f,u €B; such that t<u and f() <; f(u), i.e., there are t,u €B
such that t<u and f(f) < f(u), which completes the proof of the statement (b).

(c) Let < @;;=1>, < (;s,> be better quasi-orders, and let the relation < be
defined on Q xQ, as the Cartesian product of the relations <; and <,. Let B be a
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barrier, f be a mapping from B to Q, xQ,, and m;,m, be projections of Q xQ,
along the first and second co-ordinates, respectively. Let us define BIQB2 as
B = {t Vulm,(f()) = 7 (f(u))}, and B, - B’ \B,. According to theorem 15.2, there
is a barrier C such that we get either CC B, or CC B,. We can casily notice that
B ={t&Bl for some #uEB such that t<u, tUu€C} is also a barrier, in which
case (B")ZQ_C. If we had CC B,, for any t,u €B’ such that t<u, we would get
7, (f(1)) & m(f(u)), which would contradict the assumption that < Qj;<;> is a better
quasi-order. Therefore, CC B, and, hence, for the barrier B', for any tu&€B’ such
that ¢ <u, the inequality m;(f(?)) sm f(#)) would hold. As < (B ;=<,> is a better
quasi-order, there are f,uy €EB' such that # <u; and a,(f(1) s, Ty f ().
Therefore, we found 7,u; €EB such that f;y <w; and f(4)=< f(u;), which completes
the proof of the statement (c). H

It is also obvious that any extensions of better quasi-orders will be better quasi-
orders themselves.

Theorem_15.4. Let < A;<> be a certain partial order, 4 a mapping from A
to the ordinals and f a poor mapping from a barrier U to A. Then there is a
minimal poor mapping g from a barrier V to A such that g follows f.

Proof. For any pair of barriers U,V such that V follows U and VZU,
p(U,V) will denote the least of the last elements of the sequences which belong to
U, consist of elements O(V) and are not elements of V. Let Wyu vy ={tEUI a set
of elements ¢ is not a subset of O(V), and those elements ¢ which do not belong to
O(V) are not greater than p(U,V)}.

We can directly check that V’=VUWP(U’V) is a barrier following U. If,
moreover, < A;s> is a partial order, 4 is a mapping from A to the ordinals, f,g
are poor mappings from the barriers U and V, respectively, to A, and g follows f
then, by defining g’ as a mapping from V' to A that coincides with f on W,y v,
and with ¢ on V, we get a poor mapping from V' to A following f. Such g’
will be called asupplement of ¢ in f, and the g following f will be called
complete provided that g’ = g.

Let now U and f meet the conditions of the theorem. Let us set V;=U,
Jo = f. Let us also assume that f is not minimal poor, in which case there is a
barrier ; following U, and a poor mapping f;, which is not a restriction of f to
Y, following f. One can assume that p; = p(U,V;) is the least of all possible
numbers p(U,V) for such V, and that f; is a complete mapping.

Iterating this process, for any natural i, we find a barrier V,; and a poor

¥
complete mapping f,; from the barrier V,; to A following f;, assuming
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Pi =p(V;,V;,1) to be the least of all possible numbers p(V,,V) for such V. The
iteration process can be interrupted only when some V,,f; are obtained so that f; is
a minimal poor mapping, in which case the theorem is proved. Let us, therefore,
assume that none of f;,; is a minimal poor mapping and, in particular, none of f;
is a restriction of the mapping f;.

It should be noticed that, for any iE€Ew, p;,, = p;. Indeed, in the opposite case,
if p;y <p;, for a barrier V., and its mapping f,, we get p(V,V,,)< p;, which
contradicts the choice of p; as minimal. Moreover, liiénwpi =00, as there is only a

finite number of increasing sequences with their maximum equal to p;, and every
element of this set can play its role for the equality p;(V,V,,;)=p; but once, when
going over from V; to V,,;. Since f, is complete, for every i€w, p,E0(V;) and
{me0(V))im=p;} at j=i.

A sequénce of sets < O(V))liEw > forms a chain decreasing by inclusion. Let

H= N0OY,), in which case H is infinite, since for any i€w, p,EH. For any
Ew

infinite X € H and a natural number i, there is a unique number s; such that the
initial interval X, of the set X, consisting of numbers not greater than s;, is a
sequence belonging to V.. As the barrier elements are pairwise incomparable, we get
the inequality s;,; = 5; for any i€w. Since f;,; is a function following f;, the strict
) < 8(/(X;))
where X, is a sequence of elements of the set X not greater than r. Therefore,
there is an iy €Ew such that for any j=iy we gets;=s, . Let sy denote this §;
and remark that V ={X, IX C N} is a barrier, and that O(V)=H. Indeed, for any
XC H, a certain initial interval X, of this X belongs to V. If ut €V, by the
definition of V and the numbers sy, there is an i€w such that ut €V, as well

and, since V; is a barrier, # and ¢ cannot be the initial intervals of each other.

inequality s;,; >s; results in a strict equality for ordinals 6( f,(Xj,

i+1

Hence, V is a barrier and, obviously, the one following any of the barriers V.

The mapping g from the barrier V to A will be defined in the following way:
for t€V we choose an i Ew such that tEV,, and we set g(f) = f;(z). Since at j=i
every f; follows f;, the definition is independent of the choice of i. If u,t EV then,
for a certain i€Ew, ut €V, and g(u) = fi(u), g(t) = f;(t) and, hence, when u<t and
J; is a poor mapping from V, to A, g(u)£g(t), ie., g is also a poor mapping
from V 1o A.

It is evident that g follows any of the mappings f; and, in particular, f = f.

Let us show that g is a minimal poor mapping following f. Let 2z be a poor
mapping from the barrier W to A following g and such that A is not a restriction
of g to W. If WV, there are tEW, and its initial interval # €V other than t.
Let us choose the least i€Ew such that p;>maxu and u€V,. Since g is a poor
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mapping following f;, and £ is the one following g, & is a poor mapping
following f;. Since u €V,\ W, by choosing at the i-th step of the construction of
the sequence «f;,,Vyy >li€w >, the barrier W and the mapping 2 insiead of
Vie1:fa1, we would get p(V,W) <smaxu< p;, which contradicts the choice of
minimal p;. Therefore, WCV and, by the definition of the mapping following
another mapping, 2 is a restriction of g to W. The contradiction obtained proves
that g is minimal. l

Using the statement of this theorem makes it already possible to show that for

better quasi-orders < A;s>, the set < A”;s> is well-quasi-ordered. Let A%? be the
family of all ordinal sequences the elements of A, and for

<ayla<y><bglf<d >EA”? let the inequality <agla <y >s<bglf< 6> hold iff
there is a strictly increasing embedding f of the ordinal y in the ordinal 8 such

that for any a<y, a, < bjg,.

Theorem 15.5. If h is a poor mapping from the barrier U to <A™ ;s>
there is a subbarrier U’ C U such that an A bounded on U’ is (when one-element

sequences are identified with the elements themselves) a poor mapping from U’ to

< A;=>. Therefore, if < A;<s> is a better quasi-order, < A% ;<> will be a better
quasi-order as well.

Proof. Let us define a function 6 mapping A% 10 the ordinals in the
following way: 6(<agla <y>)=y. Let us assume that for a barrier U there is a

poor mapping 2 from U to A% By theorem 15.4, there is a minimal poor
mapping following h. Let us assume £ to be a minimal poor mapping from the

barrier U to A? . Let us divide the elements of U into three classes: for tEU we
get t€U(U,,Uz) if 6(A(1)) =1, (6(h(@®)) is limiting, 8(A(?))>1 and not limiting).
By theorem 15.2, there is a barrier U'CU such that U'CU;, U CU,, or
U CUs;.

Let us assume that U' CU,, and let 5, €U’ be such that s <z, in which case
h(s) £ h(t). Since 6(h(s)) and &(h(?)) are limiting, standard considerations show that
there is a proper initial interval of the sequence h(s) which is not less than A(7) in
<A%< Let V= (U’)2 and for vEV let v; be the initial interval of v belonging
to U', and v, be v without the first element. Therefore, for vEV we get v, <v,.
Let us define g(v) as a minimal proper initial interval of the sequence h(v)) not
embeddable into i(v,). By the definition of g, 8(g(v)) <8(h(v,)). Hence, g is a
mapping following %, in which case VCU. It should be remarked that g is poor.
Indeed, let u,w €V such that w<w. Then u; <u, =w; and, hence, g(u)#£ h(w;).
However, g(w) is the initial interval of the sequence A(w) and, hence, g(u)<£ g(w).
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The existence of such a poor g following % contradicts the assumption that z is
minimal and, hence, the case U’ C U, is impossible.

Let us consider the case when U'CU;, i.c., the lengths of all h-images of
sequences belonging to the barrier U’ are not limiting and greater than unity. For
t€U’, let I(t) be the last element of the sequence h(f), and g(f) the sequence h(%)
without the last element, /(#). There is a barrier U”C U’ such that for any t,u €U",
t<u entails I(t) =l(u). Indeed, if we subdivide (U’)2 into two subsets, C; and C,,
then weEC] iff I(w;)sl(w,) and C2=(U’)2\C1. By theorem 14.2, there is an
infinite EC O(U’)2 such that (U’)Z(E)Q(U’)z, and we get either (U')Z(E)QCI or
(U’)2(E) C C,. The latter is impossible since in this case / will be a poor mapping
of the barrier (U’)Z(E) in the better quasi-order < A;<>. Therefore, indeed, we
found a barrier U"=(U’)2(E)Q(U’)2 with the required properties. In this case,
however, since h is a poor mapping on U’, g must be a poor mapping on U".
Let us define a mapping @(v)=g(v;) on (U”)Z. It should be noticed that
8(@(v)) = d(g(vy)) < 6(h(vy)). Therefore, ¢ follows &, in which case (U")2 CU'. As
g is a poor mapping, @ is a poor mapping as well.

Indeed, let s',t' E(U”)2 and s'<t', (s"),(#'); €U" and (s'); <(t');. Hence,
@(s") = g((s")) £ (") = g((t');) . The existence of such a @ contradicts the fact that
h is minimal. Thus, the case when U’ CU; is also impossible.

Hence, there is a barrier U’ C U, such that the values of the restriction of 2 to
U’ are one-element sequences, i.e., the restriction of 2 to U' can be identified with
a poor mapping from U’ to < A;=<>.

In the case, when < A;s> is a better quasi-order, there is no poor mapping in
< A;=> and, hence, in line with what has been proved above, there can be no poor

mappings in < A% ;<> i.e., in this case < A% ;<> is a better quasi-order. W

Let P(A) be the set of all subsets of the set A, and if < is a certain quasi-
order on A, the quasi-order <; on P(A) will be defined in the following way: for
B,C €P(A), B =, C iff there is an embedding & from the set B to the set C such
that for any bEB we get b= h(b). The following corollary naturally results from
theorem 15.5.

Corollary  15.1. If < A;=> is a better quasi-order, < P(A);<;> 1is also a
better quasi-order.

In fact, a formulation similar to that in the former part of theorem 15.5 is also
possible on the existence of a poor mapping in < A;<> corresponding to any poor
mapping in < P(A);=;>.
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Let us now recall some basic notions pertaining to the theory of trees. A tree
is a partially'ordered set < A;s> such that for any a €A, a set <{PpEAb<a)=s> is
well-ordered. By A,, where a is an ordinal, we will mean the family of a €A
such that <{b EAlb < a};s> has the ordinal type of a. Therefore, A= €%niAa,

a

where Ord is, as was the case earlier, the class of all ordinals. The height of a tree

is the least a such that A, =&J. A4, A, will denote the sets U Ag and U Ag,
Bsa B<a
respectively. A subset XC A is called a chain in the tree < A;<> provided that

< X;=> is linearly ordered. If xE€A, s(x) will denote the family of the covers of
the element x in < A;<>, while if X is a chain in A, S(X) is the family of
minimal elements of the set {yEAl for any x€X x <y}.

bry(x) will denote a branch of the tree < A;s> generated by the element x.
Henceforth, we will consider only trees with a certain least element, which is the
root of the tree such that for any chain X in a tree with no largest element we get
IS(X)l<1. A family of such trees will be denoted by T . If < A;s>e& and
a,b €EA, the set {yEAly sa,y=<Db} has a largest element, which is denoted by a A b.

If Q is an arbitrary quasi-order, a Q-tree < A;s,/, > is a mapping [, from the
tree < A;=<> to Q. If UCT |, then UQ will denote those Q-trees < A;s,l,> for
which < A;<>€U. The quasi-order = will be introduced on the family of Q-trees in
the following way: < A;=,/, >=< B;<lp > iff there is an embedding 2 of the set A
in the set B such that for any a,b €A we have h(aab)="n(a)A h(b) and
I (a) =lp(h(a)). The trees themselves will be identified with Q-trees, where Q is

one-element, by determining the quasi-order = on trees in a corresponding way. 2~
will denote a standard dual tree of length w, the basic set of which is a family of
finite sequences of zeros and unities, ordered according to the principle “to be the
initial interval”.

Definition 15.4. A tree < A;<> is called scattered if 2°° 4< A;<>. Let &
be a class of all scattered trees. 1 will denote a class of trees < A;<> such that

there is a sequence < A"In€w > of initial intervals of a partial order < A;s> such

that A= U A" and < A" ;<>€6 .
n=w

The tree < A;=> is obtained by extending the tree < A’;<> with the help of
trees < Ap;<>, where P are chains in < A;<> which either are maximal or have a
maximal eclement, if Ap are sets which are pairwise non-intersecting and not
intersecting with A’, while A is obtained by adding to A’ those branches of Ap
whose roots are elements ap which directly follow P in < A;<> and do not belong
to S(P) in < A’;s>. One can readily notice that if < A';=>&@ and all
< Ap;=>E6 , < A;s>EE  as well.
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Let <A;s>Z and P be a chain in < A;<>27EP, in which case
P(2) ={br(NlyES(2),y €EP}. If < A;sl, > is a Q-tree,

P4(z)={< A:sl, >IA"s>EP ().

The following lemma describes the inductive method of constructing the class of
all scattered trees.

Lemma 15.1. Let & consist of an empty and a one-element trees. For any
ordinal a, let &, =< A;s> and there is a maximal chain P in < A;<> such that
for all zEP, P(z)EE ,. If a is a limiting ordinal, &, = U 65, in which case

B<a
- U 6,

aS0ord

Proof. Let ® = U & «- BY induction on a, we can notice that, for any
aOrd

a€0rd , @, CE& and, hence, G C6 .

Let now < A;<>€EZ ,x EA and br(x) E"ZT . In this case, there are incomparable
¥,Z such that x< y,x <z and br(y),br(z)¢6'_ . Let us assume that the opposite is
the case. Let us choose a chain E) in br(x) such that br(z)¢6_ for all zER). Let
Ry be a maximal chain with this property, i.e., in particular, {br(2)!z ES(PO)}QG— .
By the assumption, for all zER), FO(Z)Q@'_, and the equality
br(x) =P0UZE§J(PO)(UR)(Z)) holds. Let us choose a zES(Py) if S(Py)= <, and let
P=RUP, where B is a maximal chain in br(z), bearing in mind that, by the
definition of B, br(z)€6 . If for any yEP, P(y)C6& ,, br(x) €8 ,,,, which

contradicts the assumption br(x) &® . Therefore, indeed, in the conditions under
discussion there can be found incomparable y,z such that x<y x<z and

br(y),br(2) €6 . B

Let us now consider the inclusion & C@& . Let us assume to the contrary that
< A;s>E@ \G . By induction on the length of the sequence, j€E2~“, let us define
an embedding & of the tree 2 in < A;s>: (D) is the root of < A;<>; if h(j)

has been defined and is such that br(h(j)) $6_'_ then, according to the facts just
proved, there can be found incomparable y,z such that y,z>h(j) and

br(y),br(z)QEG_. Let us set h(jA<0>)=y and A(jA<l>)=z. Let us now define
the function g on 2°“ in the following way: g(j) = (jA<0>)A h(jA<1>). One can
directly check that for any jj,j, €2, we get g(j;) A g(j») = g(ji A j») and, hence,
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2°” << A;<>. The contradiction obtained proves that & \& =. Alongside with the
inclusion @ C& mentioned in the beginning of the proof, we get the equality

G -6. 1

For any < A;<>E® , the rank of < A;<> is the least « such that
< A;s>€@ . The rank of the tree < A;s> will be denoted by 7g < A;<s>. One can
easily deduce, using induction on the rank, that if < A;=>=<< Bj=>,
rg <A;s>srg < B;s>.

Theorem 15.6. If < Q;<> is a better quasi-order, <6Q;s> is also a better
quasi-order.

Proof. Assume to the contrary that f is a poor mapping from the barrier B
to & o+ By theorem 15.4, there is a minimal poor mapping g from a certain
barrier B’ to 6Q, following f. Let for bEB', g(b) =<Ay;s,l,>. B, will denote
{b EB'I1A=1}. By theorem 15.2, there is a barrier C such that either CC B, or
CC B'\ B,. The former case is impossible, since in this case g, being bounded on
C, would induce a poor mapping of C on @, which would contradict the fact that
< ;s> is a better quasi-order. Hence, we have found a barrier C and a poor
mapping g:C =& o such that, for any bEC, 1Al>1. B, will denote a maximal
chain in < Ay ;s> for bEC such that for any xE€F, and any < D;s>EF,(x), the
rank of <D;<> is strictly less then that of < A,;<>. Such a F, can be found by
virtue of the definition of the class of trees & and the equality & -G proved in
lemma 15.1.

Let us define the mapping J, B, -—>QxP(GQ) in the following way:
Jp(%) =<lb(x),1_’blb(x)>. On a set Qx P(@Q) the quasi-order < is a Cartesian
product of the quasi-order on Q and the quasi-order =; defined on P& o) (which
is, in its turn, induced on P(& ;) by the quasi-order defined on & ). Using the
quasi-order <, we will define the relation s on {J,Ib E€C} in the following way:
J. = Jp if there is an embedding & of the chain < P,;<> in the chain < F,;<> such
that, for x< y€P,, h(x) <h(y) and J, (x)<J,(h(x)). It should be remarked that if
JosJy, <Assl ><s<Apsi; >,

Indeed, if & is the embedding discussed above from P, to FE; then, by
extending /# to the mapping from the set 75010 (x) (at x€F,) to I_’dl"’ (h(x)) using the
order s, defined earlier for P& 0)» we obviously get an embedding #; from A, to
A, which yields the inequality < A.;<,l, > << Ay;<,l; >. Since the mapping g from
the barrier C to GQ is poor, the mapping J:C—<{J/b&ECY:<> such that
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J(b) =J, must also be poor. However, J, &Q x P@ Q))Ord and, hence, by theorem
18.5, there is a barrier DC C such that the values of the restriction of J to barrier
D are one-element Q x P(& o) -sequences and, therefore, the restriction of J to the
barrier D can be identified with a poor mapping from D to Qx P(& o) following
J. By theorem 15.3, there is a barrier EC D such that either #;J or m,J/ will be
poor mappings from E to Q or to P& o). respectively. The former case is
impossible, since < Q;=> is a better quasi-order and, hence, @,/ is a poor mapping
from the barrier EC B’ to P(GQ). By corollary 15.1, there is a subbarrier FCE
such that the restriction of w,J to F is a poor mapping from F to a family of
one-clement subsets of the set & 0> i.e., the restriction of w,J to F can be
identified with a poor mapping from F to & 0-

Let us define a mapping ¢ from the barrier F> 10 & o in such a way that
(L UbL) =myJ () for any §.,l, EF such that 4 <l,. It is obvious that ¢ is poor.
Therefore, the barrier F> follows the barrier B, F>@B', and for L,l, EF such
that /j <, we get @(l; Ul,)=myJ(}), in which case J; is the only element of the
barrier B’ which is the initial interval of the sequence 4 U l,, and, by the definition
of F, the rank of the Q-tree mpJ(4) is strictly less than the rank of the Q-tree
g(4). Hence, the mapping ¢ is a mapping following the mapping g, and is not a
restriction of g to any subbarrier, which contradicts the assumption that g is
minimal. This contradiction proves that there can be no poor mappings on <& 5S>,

ie., that <& o;s> is a better quasi-order. M

Theorem _15.7. If < Q;<> is a better quasi-order, <‘.'mQ;s> is also a better

quasi-order.

Proof. It can be proved easily that for any tree < A;s>EX there is a

decomposition A= U A" such that A" are initial intervals in < A;=>, and for any
=w

nEw, < A"=>€6 , A°CA'C..CA"C... and, if A"=Q, A=A"UUr, () x
is a maximal element in A"}.

3’Q will denote the class of all Q-trees < A;<,/, > such that < A;<>e | and
there is no infinite sequence X, <X <...<X, <... of elements of A such that
<< br(x,),ly >lnEw > which is a strictly decreasing sequence in the quasi-order
<..‘mQ;s>. Let us show that <3"Q;s> is a better quasi-order. Let < A;<,l4 >€3’Q
and xE€A, and let us set a gy, (%) =<{br(y).l, >lyES(x) and <br(y)ds> is
strictly less than < A;<l, > in <,.mQ;s>}; Ky €S(x)l<br(y),l, > is equivalent, in
terms of the quasi-order on mQ to the Q-tree < A;s,/ 4 >)>.

Therefore, a.z.<y,> EP(j”’Q)xCard , where Card is the family of cardinals. For
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any n €Ew, let us define T<A;51A>(”) =< A<, >, where l_(z)=lA(z) for all z which

ar not maximal in A", while for z maximal in A", we get
U(z) =<l(2),a.4:5,>(D) >
Hence,  T.qy,»>(n) €b i, where R=QU(QxP(§p) x Card). Let

T(<Asly>)=<Tyqy,>MnE€Ew>, ie., T is a mapping from ,.mQ to (GR)Ord.

Let us first notice that the relation T(< A;s,l,>)<T(<B,s,lp>) implies the
relation < A;s,l4 ><< B,s,lp>. Indeed, let us construct the required embedding H of
the Q-tree < A;<,l,> in the Q-tree < B;<,lp > using a chain of w steps. Let H be
already defined within an initial interval ¥, D A" in such a way that:

(@) if t€A\Y,, there is a y<t which is maximal in ¥ ;

(b) if y is maximal in ¥, there is a bijective mapping J,: S(y)— S(H(y)) such
that if z&€S(y) and <br(z)l,> is strictly less then < A;sl,> in A.mQ,
<br(z)l, >=< br(Jy(z N>, while if <br()ly>=.<As,l, >,
<br(J(2)lp>=.<Bislp>.

If y is a maximal element in ¥,

and zE€S(y), let us now define H on br(z).
When < br(z)l,> 1is stricily less than < A;sl, >, let us extend H using the
embedding from br(z) to br(J(z)) which implements the inequality
<br(@)lp>s<br(J(z)lg>. If <br(@)l >=.<A;s,ly >,
<br(J(2)lp>=.<Bslg>. As T(<Asly) ><T(<B;<,lp>), there is a number
i€w and a mapping kT, ;.n)—> 1T g, (i) implementing the inequality
T<A;s,lA> ()= T<B;s,lB> ®.

Let # be an embedding from < B;s,lp > to < br(Jy(z)),lB >. Let us extend H
to br(z) N A™!, assuming H to be equal to a mapping i-k on br(z) NA™!. Since
k is, in particular, an embedding from the Q-tree < br(z)ﬂA"“,l 4> to the Q-trec
<B;s,lp >, h-k is an embedding of Q-trees. Let us assume to the contrary that y’
is maximal in br(z)ﬂA'”l. In this case a<A.vsJA>(y')s a<RslB>(k(y)). This
inequality and the embedding A together induce the existence of a bijective mapping
Jy from the set S(y') to the set S(h-k(y")) such that, for all z'€S(y’), we get
< br(z"),l, >=< br(Jy'(z’),lB > if <br(z)l, ><< Aisly >, and
< br(Jyr @NJIg >=c<Bis,lp> if <br(z'),l, >=, < A;s,l, >. Therefore, an induction
step in the construction of H has been made, and the existence of H proves that
the inequality T(<A;=,l,>)<T(<B;<lz>) results in the inequality
< Ajsl,>s< Bislp>.

Let us now define the relation <":< B;<,lp><'<A;<l,> on the class S’Q only
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for the case when, for a cerfain x€A <B;s,lp > is isomorphic to <br(x)l,>,
with the latter strictly less than < A;<,/4 > in ..'mQ. According to the definition of the
class 3’Q, the relation <’ is well-founded in the class .:Sw’Q, and 7(B;=,lp) will denote
the ordinal corresponding to the biggest chain going to < B;s,lp > from a minimal
element in < ¥,:<'>.

Let us now turn directly to proving that <3’Q;s> is a better quasi-order. Let,
to the contrary, g be a poor mapping of the barrier B on :}"Q. Let g be the
minimal poor mapping on S’Q existing by theorem 15.4. For bEB, let < A<, >
denote g(b), and let g(b) =T(< A;<,l, >). Taking into account the facts proved
above, g is a poor mapping from the barrier B to (6R)o’d. By theorem 15.5,
there is a barrier CC B such that g bounded on C is identifiable with a poor
mapping from C to &, ie., for any bEC, g(b) is a one-clement sequence
consisting of a QU(Qx P(Z,)xCard)-tree from & . In this case
Z, ={<br(x),l,>Ix€A, and <br(x)l,> is strictly less than < A;;<l, > in
<4.mQ;s>}.

The fact that Q and Card are better quasi-orders implies, by theorem 14.3,
that there is a barrier C'C C such that for bEC’' we get g'(b)EQ x P(Z,) x Card ,
and the mapping ®,-g is a poor mapping from C' to P(Z,) (here m, is a
projection of kaP(Zb)xCard to P(Z,)). By corollary 15.1, there is a subbarrier
D of the barrier C’ such that the restriction of m,-g to D is identifiable with a
poor mapping from D to 7, (i.e., for bED m, g are one-element subsets of the
set 7). Let us define a poor mapping j from a barrier D? 10 7, in the following
way: for b;,b, ED such that by <b,, we set j(bjUb,)=m, g(b). Hence, if bEB,
dE€D? and b is the initial interval of d, j(d) =<br(x),l, > for some xEA,, in
which case < br(x),l, > is strictly less than < A;;s/, > in WZQ Therefore, the
mapping j is poor, follows g and is not a restriction of g to a certain subbarrier of
the barrier B, i.e., g is not minimal. The contradiction to the choice of g proves
that there are no poor mappings in § o> 1., that <¥ ;s> is a better quasi-order.

In order to complete the proof of the theorem we have to show that
Fo=M,

Let us define b_y o). (%), R g5 (X)R(< A;s,l>) for < A;s,l >€<.mQ analogously
0 A e ms(X), Tec.ams(n) and T(< C;sm >), defined earlier for < Cis,m>EF,. If
XEA, then

b pcy5(x) =<{<br(y),l >y €S(x),< br(y),! >€37Q}, Ky €S(x)l < br(y).! >¢3’Q}I>.

Let Rg.cp (M) =< A";s,l~> for n <w, where l—(z) =1(7) for all z which are not
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maximal in A", while if z is maximal in A", I(2) =<U(2),b < (WINEW >.
Let us, finally, set R(< A;s >)=<R 4., (n)in€w>. Let us prove that

(*) if <Asl> <Usm>EM,\§, and R(< A<l >)sR(<br(w)m >) for any
u€U such that < br(u)m >&Fy, < Aisl>s<U;sm>.

To this end, let us construct, by induction on n€w, a certain embedding I of
the tree < A;<,/ > in the tree <U,<;m > in such a way that at a step n the mapping
I will be defined at the initial interval ¥, of the tree < A;s> such that ¥, D A", in
which case:

(a) if tEA\NY,, there is an element y maximal in ¥,

such that y<t;

(b) if y is an element maximal in ¥,, there is an embedding J, of the set
8(y) in the set S(I(y)) such that, for zE€S(y), we get < br(z),l >s<br(Jy(2)).m > if
<brz)l >EFy, and < br(J(2),m>EF, if <br2)l >EF,.

Let us assume that 7 has already been defined on Y,, let y be a certain
maximal element in ¥, and z=S(y). If <br(z)! >€:§"Q, we extend I to the
embedding of the Q-tree < br(z)l > in the Q-tree < br(J(z)),m>, which exists by
the condition (b). If <br(z)! >6E:5"Q then, according to the same condition,
<br(Jy(z)),m >¢:3"Q and, hence, by the condition on < A;sl><Us=m >,
R(< A;s,l >)s R(<br(J,(2))im >). Therefore, in this case there is a number i€w
and an embc_edding k from the QU(Qx P(:j"Q)xCard)—tree R pcp(n+l) to the
QU(QxP(f}"Q)xCaId)—tree R<b,(Jy(z»m>(i). In this case, the mapping I will be
extended to br(z) N A™, setting Nbr(z) N A™' equal to Kbr(z)N A", If now y’

is maximal in br(z)NA™!

, the relation br_y ;. (Y)=sbry e, (I(y)) makes it
possible to define a mapping J, from the set S(y') to the set S(I(y)) and,
therefore, the induction hypothesis is preserved. The embedding I constructed here
proves that, under the conditions specified on < A;s!l> and <U;sm >,
<Axgl><<U;sm>.

Let us now directly turn to the proof of the equality 3"Q = o- Let us assume
that there is a tree < A;sl >EM,\ § ;. One can obviously set (br(x)" = br(x) N A"
for any x€A and nE€ew. This entails that, for any t,u EA such that t=<u, the
inequality R(< br(u),l >) < R(<br(1),l >) holds, and that the mapping implementing
this inequality is identical. By the definition, for any < C;s,m>€mQ
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R(< C;s,m>)'E(GQU(QxP(§Q)xCWd))O'd and therefore, since < Q;s> is, by the

assumption, - a better quasi-order, by virtue of theorems 15.3, 15.6, and since
<3’Q;s> is, as has been proved earlier, also a better quasi-order,
<{R(< Ci;=,m >)I< C;s,m>E..mQ};s> is a better quasi-order and, in particular,
<{R(<br(t),l >)t EA};s> is well-founded. Therefore, there is a tEA such that
< br(1),l >¢3’Q, and for any €A such that t<u and <br(w),l >$3"Q,
R(< br(u),l >) is not strictly less than R(< br(?),l >). Hence, taking into account the
earlier remarks, we get R(< br(u),l >)=_ R(<br(1),l >).

According to the statement (*) proved earlier, we see that for any # €A such
that t <u and < br(u),l >$3Q, the inequality < br(?),l > << br(u),l > holds. On the
other hand, by the definition of the class of trees :‘;‘Q, the fact that < br(2),l >$3’Q
implies that there is a vEA such that t<v, <br(v),l> is strictly less than
<br(®),l> and <br(v),l >$3’Q. The contradiction obtained proves the equality
3‘Q=.m o- As we have proved already that <3’Q;s> is a better quasi-order,
<..mQ;s> is a better quasi-order as well. ll

Let us now deduce from the result of the theorem just proved the statement
used in sections 10, 11 to prove the fact that countable skeletons of finitely

generated discriminator varieties are better quasi-orders.

0= will denote a family of finite sequences of elements of @ ordered in

“ obviously, belongs to

w

terms of the relation “to be an initial interval”. The tree @~
the class 7 . Let us consider a Tikhonov topology on the family w® of all infinite
sequences of elements w, the basis of the neighborhoods of which is set by
elements from ™. 22 HS will denote the family of the subsets of the
topological space w® belonging to the classes ES, 2, respectively, in the Borel
hierarchy. If < Q;<> is a certain quasi-order, ES(Q) (HS(Q)) will denote the
family of all mappings ¢ f{rom the space 0w® to Q such that, for any ¢ E€EQ, we
get 97 (@EY, S (@ @EJ]D). On sets of the type > 2(@), [[uQ) the quasi-
order <; will be defined in the following way: for [,l, EE S(Q) (H S(Q)), h=< b
iff there is a continuous embedding o:w® — w® such that for any xEw®” we have
L(x) sL(o(x)) . Then the following statement is valid.

Theorem 15.8. If < Q;<> is a better quasi-order, <23(Q);sl> is also a
better quasi-order.

Proof. Let us first prove that <H?(Q);sl> is a better quasi-order. Let
l EH? , and let us set the range of l{qglp €a} well-ordered. Let us also define
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w

[:0°” = Q in the following way: for s Ew* i(s)=qﬁ, where B is the least

ordinal such that l'l(qﬂ)ﬂ{x Ew®lsCsy=D. Let us now notice that, since for any

qE0, l-l(q) is closed, I(x) =g iff for an infinite family of natural numbers n the
equality i(xln)=q holds, which is equivalent to the fact that for all but a finite
family, i(xln) =q n€ow.

Therefore, if 4,1, EH ?(Q), and there is an embedding o:w” — ©*” (where

w*? is considered as trees) such that for any s Ew*”, we get l](s)s l;( o(s)), for
any x€w®, U(x)s (hy(x), where h,:0” — »” is defined in the following way:

ho(x)= U o(dn). It is obvious that h, is a continuous embedding from «® to
ncw

itself. By theorem 14.7, <{illE“?};s> is a better quasi-order, which fact,

combined with the earlier remarks, implies that in this case < H?(Q)};sp is a
better quasi-order as well.

Let now 1€ %0Q). For any g0, let I'Y(g)= U X", where X" €[ [? and
>4Q) y 4€Q @= U X] . €[

{X;" Im Ew} is a family of pairwise disjunct sets. Let us define [(x)0” — Qx® in
the following way: [(x) =< I(x),m> if xEX,'?x). Let us consider a trivial order on
o in terms of which all elements of w are equivalent. Therefore, @ x @ is a better

quasi-order. Hence, bearing in mind the fact proved earlier, <H?(wa);sl> is
also a better quasi-order and, since the inequality } =, obviously implies the
inequality 4 =1 l,, < Eg(Q);sl> is a better quasi-order as well. Il

Priorities. The notion of a well-quasi-ordered set was introduced by
J.Kaplansky.- The first important results were obtained, with the theory of well-quasi-
ordered sets employed, by A.l.Malcev and B.Neuman: if K is a field and G is a
linearly ordered group, the group algebra K(G) is embeddable into a skew (for the
proof see G.Higman [93]). Theorem 15.1 belongs to G Higman {93]. The definition
of a better quasi-order is by Nash-Williams [147]. Theorem 15.2 can be found in
[146] (see also [69]). Theorem 15.3 is by Nash-Williams [146], while theorem
15.4 by R.Laver [122]. Both theorem 15.5 and corollary 15.1 can be found in a
work by Nash-Williams [146]. Lemma 15.1 and theorems 15.6, 15.7 belong to
R.Laver [122], while theorem 15.8 to F.Van Engelen, A.W.Miller and J.Steel [232].
More details pertaining to the theory of better quasi-orders can be found in a
monograph by R.Friisse [69].
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