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Introduction 

In the last few decades the ideas, methods and results of the theory of Boolean 
algebras have played an ever increasing role in various branches of mathematics and 
cybernetics. The degree of this influence varies from field to field, but it reveals 
most distinctly in algebra itself and, if at first the constructions and ideas pertaining 
to Boolean algebras arose while developing theories of concrete classical algebraic 
systems: groups, rings, modules and lattices, lately they have obtained a certain 
universality and are being successfully used for studying algebras of various kinds, 
i.e., in the theory of universal algebras. At the same time, various restrictions on the 
application of Boolean constructions when investigating different classes of universal 
algebras have been elucidated. 

This monograph is devoted to studying the fundamentals of the theory of 
Boolean constructions in universal algebras, to the problems of presenting different 
varieties of universal algebras with these constructions (Chapter 2) and to the use of 
Boolean constructions for investigating the spectra and skeletons of varieties of 
universal algebras (Chapter 3). Chapter 1 is of an introductory character which 
presents the basic notions and formulates a number of results of the theory of 
Boolean and universal algebras to be used in the proofs of Chapters 2 and 3. When 
presenting this material, the author thought it possible to omit the proofs, as at 
present there is a whole series of monographs dedicated to presenting both the 
fundamentals of the theory of Boolean and universal algebras, and to various special 
problems of these theories. As far as Boolean algebras are concerned, we should 
mention first of all a three-volume edition "Handbook of Boolean Algebras". As for 
the basic notions of universal algebra, there is a perfect monograph by S.Burris and 
H.P.Sankappanavar, "A Course of Universal Algebra", as well as a monograph by 
RFreese and RMcKenzie, "Commutator Theory for Congruence Modular Varieties", 
and a monograph by the author "Congruence-Modular Varieties of Algebras", 
published in Russian. In the application section one can find some results pertaining 
to the elementary theory of skeletons of varieties, as well as proofs of some 
statements on Boolean algebras not to be found elsewhere in English literature. 
Besides, one can also find there fundamentals of the theory of better quasi-orders 
which is discussed in Chapter 3 and has not yet received a wide recognition in 
universal algebra. 

vii 



CHAPTER 1 

INTRODUCTION 

l.Basic Notions of the Theory of Boolean Algebras 

The aim of this section is to recall some basic notions, constructions and results 
associated with ordered sets and Boolean algebras of the type to be used below. The 
very definitions of partially, linearly, well-ordered sets and Boolean algebras, their 
basic properties, the definitions and properties of the algebraic operations on these 
sets and algebras can be found in practically any textbook on algebra or set theory. 
Therefore, in the present section these results will be either just mentioned or 
assumed to be known. 

A .. General notions on ordered sets and Boolean algebras 

Definition 1.1. 

(a) A set A characterized by a binary relation s is called partially ordered if 
for any elements a,b,c EA the following statements are valid: 

(1) a s a; 

(2) a s b and b s a - a = b; 

(3) as b and b s c - a s c. 

(b) A partially ordered set < A;s> is called a linearly ordered set (LOS) if for 
any a,b EA one has either as b or b s a. 

(c) A linearly ordered set < A;s> is well-ordered if for any nonempty subset 
pc;;, A there exists a least element, i.e., an a EP such that for any b EP one has 
as b. 

(d) A non-singleton ordered set < A;s> is said densely ordered if for any 

1 



2 BOOLEAN CONSTRUCTIONS 

a,b EA such that a s b and a ~ b there is a c EA such that a s c s band 
c ~ a, c ~ b. A linearly ordered set is said scattered if it contains no densely 
ordered subsets. 

It should be remarked that for any densely ordered set, there is an ordered set 
of rational numbers isomorphically embeddable into it and, hence, an ordered set is 
scattered iff there is no ordered set of rational numbers imbeddable into it. 

By the type of an isomorphism of a partially ordered set and, later, of an 
arbitrary algebraic system, we will mean either a class of all algebraic systems which 
are isomorphic to the given one, or a certain fixed representative of this class. 

All the considerations to follow, unless otherwise specified, will be within the 
framework of a ZFC set-theoretical system and, in particular, an ordinal will be 
viewed as a fixed representative of the type of an isomorphism of well-ordered sets, 
i.e., as a transitive set which is well-ordered by the relation of a set-theoretical 
inclusion ~. We will use standard notations 0,1,2, .. . ,n,... to denote finite ordinals, 

a + 1 to denote the ordinal following the ordinal a (it should be recalled that the 
family of all the ordinals, Ord, is well-ordered by the same relation of the set
theoretical inclusion), W is the least infinite ordinal, Wi is the least ordinal of the 

power ~i' A family {Xiii EOrd} of the powers in the system ZFC is also well
ordered by a standard relation of embedding on the sets of the powers considered. 
Henceforth ~i will be sometimes identified by Wi' which is the initial ordinal of the 

power ~i' The notions of the initial and of final intervals, as well as those of 

cofinal and coinitial subsets for partially ordered sets will be assumed known. The 
notions of a sum, as well as of a Cartesian and lexicographic product of partial 
orders are defined in a standard way. 

Definition 1.2. If < A;s>, < B;s> are partially ordered sets, then: 

(a) < A;s> + < B;s> (assuming An B = 0) will be understood as the set AU B 

partially ordered by the relation sl such that for a,b EA (B), a sl b iff as b in 
< A;s> (in < B;s» and for any a EA, b EB a sl b; 

(b) < A;s> ® < B;s> will be understood as the Cartesian product of the sets 
AxB partially ordered by the relation sl' which is a Cartesian product of the 
relations s in A and B, i.e., for any al,a2 EA and 11 ,b2 EB, < al,q >sl < a2~ > 

iff al s Oz in < A;s> and bi s~ in < B;s>; 

(c) < A;s> . < B;s> will be understood as a lexicographical product of < A;s> 

and < B;s>, i.e., a Cartesian product of the sets A xB partially ordered by the 
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relation :S:1 in such a way that for any al,a2 EA, ht ,b2 EB < aI' ht >:S:1 < az,b2 > iff 
ht <~ or b1 =b2 and al :S:0z· 

The sums and products of large families of partially ordered sets are defined in 
an analogous way. 

Definition 1.3. If for i EI, <" ;:S:j> are partially ordered sets and :s: is a 
partial order on the set 1, then: 

(a) ~ < ,,;:S:j> is understood as a set U <\ (assuming the sets " to be 
jE<I;s> iEl 

pairwise disjunct) which is partially ordered by the relation:S:l in such a way that 
for a,b E" (i EI), a:S:l b iff a:S:j b, and for a E", bEA.; (i ¢ j), a:S:l b iff i:s: j 

in < I;:s:>; 

(b) n < ,,;:S:j> will be understood as a direct product of the algebraic systems 
iEl 

(c) . L < Aj;:S:j> will be understood as a direct product of the sets n" 
iE<I;s> iEI 

partially ordered by the relation:S:l in such a way that for f, g En <\' f:S:l g iff 
iEI 

there is an i EI comparable to any other element of 1 in terms of :s: and such that 
for any j < i we get f(j) = g(j) and f(i) < g(i), or f = g. 

It is obvious that if <" ;:S:j> (i EI) and < 1;:s:> are linearly ordered, then 

~ < ,,;:S:j> is also linearly ordered. If, moreover, < I,:S:> is well-ordered, then the 
jE<I;s> 

set L < ,,;:S:j> is also linearly ordered. If both < ";:S:j>(iEI) and < 1;:s:> are 
iE<I;s> 

well-ordered, then ~ < ,,;:S:j> is also well-ordered. In the case when < A;:s:> and 
jE<I;s> 

< B;:s:> are well-ordered, then < A;:s:>' < B;:s:> is also well-ordered. Besides, for 
finite sums and lexicographical products these operations on ordinals coincide with 
common definitions of the addition and multiplication of ordinals. Let us now recall 
the definition of an ordinal power. An ordinal y is called a limit one provided that 
it has no last element, in which case y = sup /j in a well-ordered class Ord. Any 

6<r 

non-limit ordinal y can be represented as fJ + 1, where f3 < y. 

Definition 1.4. The ordinal afJ for any ordinals a,fJ is defined by induction 
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over f3: a 1 = a; a y+1 = a Y "a; if y is limit, then a Y = supa ll . 
ll<y 

It should be remarked that for any ordinal a and any nEw an .L aj when 

aj = a for every i < n, but aW;o< L aj at aj = a for i < w. 
i<(1) 

I<n 

By induction over a one can prove the well-known fact that for any ordinal a 

there exist uniquely defined nEw, ordinals Yl > Y2 > ... > Y n and natural numbers 

ml, ... ,mn such that a =wYl"111t+ ... +wYn "mn- A representation of this kind is called 

a normal form of the ordinal a. 
Any linearly ordered set < A;s> is either scattered or presentable as a sum 

~ < A; ;Sj>, where < I ;s> is a densely ordered LOS, while < A; ;Sj> are 
jE<I;:s> 

scattered. 

It is convenient to introduce the relation '" on A in the following way: a '" b 
iff the interval (a,b) of the LOS < A;s> is scattered. Obviously, '" IS an 
equivalence relation on A, each equivalence class over '" is a scattered interval of 
the LOS < A;s>, while the factor < A/~;s> (in the case when < A;s> is not 

scattered) is a densely LOS. In this case < A;s>= ~ < B;s>, where < B;s> are 
BE<AI-;:s.> 

scattered intervals which are equivalence classes on the LOS < A;s> in terms of "'. 
There is also an inductive process of constructing a class of all scattered LOS. 

Let Go be a class consisting of no empty and· singleton ordered sets. Let us 

determine a class G Y for any Y ;0< 0 in the following way: 

G y+l = {~< A; ;S>, 
Ell 

while for a limit Y 

2: < Aj;s>1 < A; ;s>EG y' {} EOrd}, 
Ell' 

Let G = U G d • The class G coincides with the class of all scattered LOS. 
dEOrd 

In order to prove that all scattered LOS are incorporated in the class G, let us 
introduce a sequence of equivalences "'j (i EOrd) on a scattered LOS. < A; s>:a "'0 b 

iff the interval (a,b) is finite. If the relation "'j is defined, then the relation "'j +1 is 

a complete preimage of the relation "'0 defined on the LOS < AI"'j ;s> under a 

natural homomorphism < A;s> on < A/"'j;s>. For a limit iEOrd the relation "'j is 

defined on < A; s> as the union of relations '" j at j < i. One can easily see that for 
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a certain i EOrd the factor AI ==j of a scattered LOS < A; s> will be a singleton set. 

The least i of this kind is called the rank of a scattered LOS < A;s>, while the 
induction over the rank proves the incorporation of any scattered LOS < A; s> into 

the class S . 

Definition 1.5. A set A with a binary relation s is called quasi-ordered if 
for any a,b,c EA the following statements are valid: 

(a) a s a; 

(b) if as b and b s c, then as c. 

A natural equivalence on the quasi -ordered set < A; s> will be a relation a ==,s b 

which is valid iff as band b sa. One can easily see that the relation "',s is indeed 
an equivalence relation over the set A, and for any a,b,c,d EA, 

as b, c "',s a, d "',s b entail c s d. [c] will denote an equivalence class in terms of 
==,s containing an element c, by AI "',s the family of all such classes. Let us 
introduce a relation s:[c]s[d] iff cs d over AI "',s. One can easily check that 

< AI "',s; s> will be a partially ordered set; let us call < AI "',s; s> a natural partial 
order related to a quasi -order < A; s> . 

* For any quasi-ordered set < A;s>, < A;s> will denote the dual of < A;s>, 

i.e., the quasi-ordered set < A;sl>' where the quasi-order sl is defined in the 
following way: a sl b iff b s a. 

An ideal (filter) of a Boolean algebra .B = < B; A, v, -. ,0,1> will be, as usual, a 

nonempty subset 3 (J) of the basic set B of this algebra with the following 
properties: 

(1) if a,bE3cJ)' then avbE3caAbEJ); 

(2) if aE3(J),bEB and b<a (a<b), then bE3 CbEJ). The ideal 
(filter) is proper if it is other than the whole of the Boolean algebra. The maximal 
among the proper ideals (filters) of a Boolean algebra of inclusion is called its 
maximal ideal (ultrafilter). It should be recalled that for any homomorphism cp of a 

Boolean algebra.B onto a Boolean algebraBl tp -\0)( cp -1(1» will be an ideal 

(filter) of the Boolean algebra .B, and, conversely, for any ideal 3 (filter J) of 

the Boolean algebra.B there exists a congruence 8 on the algebra .B: 

< a,b >E8 - (a \ b) v (b \ a) E3 « a,b >E8 - -.«a \ b) v (b \ a» EJ), 
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such that under a natural homomorphism ep:.B -.B / e the equalities J = ep-l(O) 

(J = ep-l(l» are valid. The Boolean algebra .B / e will in this case be denoted by 
.B / J or.B / J , respectively. It should also be recalled that there is a mutually 
unique correspondence between filters and ideals: for any ideal J of the Boolean 

algebra.B the set {-. bib E J} is a filter. 

Let us also recall the following well-known and easily verifiable result: if J is 

a proper filter of the Boolean algebra .B, then the following conditions are 
equivalent: 

(1) J is an ultrafilter; 

(2) if a,b EB and a vb EJ , then either a EJ , or b EJ ; 

(3) for any a E.B we have either a EJ or -.a EJ ; 

(4) .B / J ~ 2 (a two-element Boolean algebra). 

Definition 1.6. By St(B) we will mean a topological space formed by a 

family of all ultrafilters of the Boolean algebra.B with a topology, the basis of the 
open neighborhoods of which is a family of sets of the type 

l/J a = {J ES(B )Ia EJ} for a EB. The topological space St(B) is called a Stone 

space of the Boolean algebra .B . 

One can easily observe that for any a EB, we have l/J -a = SI(B) \ l/Ja and, 

therefore, the basis of the topology of St(D) consists of open-closed sets. One 
could also easily check the fact that the mapping ep:a - epa is an isomorphism from 

a Boolean algebra to the Boolean algebra of open-closed subsets of the topological 

space St(B). It can be checked that St(B) is a compact, totally disconnected 
topological space. The converse is also true: for any compact, totally disconnected 
space X. Let B(X) denote a Boolean algebra of open-closed subsets of X, in which 
case there is a homomorphism from the space X to a Stone space St(B(X» of the 
Boolean algebra B(X). This dualism of Boolean algebras and compact totally 
disconnected topological spaces (sometimes called Boolean spaces) is modified by the 
following statement. 

Theorem 1.1. Let ep be a certain homomorphism from a Boolean algebra .B 
to a Boolean algebra .Bl . Let us define a mapping Seep) from the Stone space 

StCBl) into the Stone space St(B) as S(ep)(p)={aEBlep(a)Ep} for any 
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p ESt(B 1)' Let f: X --+ Y be a continuous function between compact, totally 

disconnected spaces X, Y. Let us determine a mapping B(j) from the Boolean 

algebra B(Y) to B(X) as B(j)(B) = rl(B) for any BEB(Y). Let hand 'IjJ 

respectively denote the natural homomorphism of the spaces X(Y) and 

St(B(X))(St(B(Y))) and the natural isomorphism of the Boolean algebras .B(.B1) and 

B(S(B))(B(St(B1))), mentioned above. In this case the following statements are 
valid: 

(a) Seep) is a continuous function; 

(b) if ep is an isomorphic embedding, then seep) is a mapping from the space 

St(.B 1) onto the space SteB); if ep is a homomorphism from the algebra.B to the 

algebraB1 , then S( ep) is a homomorphic embedding of St(.B 1) into St(.B); if ep is 

an isomorphism of the algebras .B and .B1 , then S( ep) is a homomorphism of the 

spaces SteB) and SteB 1) ; 

(c) B(j) is a homomorphism; 

(d) if f is a homomorphic embedding of X into Y, then B(j) is a 

homomorphism from the Boolean algebra B(Y) to the algebra B(X); if f is a 

continuous mapping of the space X onto the space Y, then B(j) is an isomorphic 

embedding of the algebra B(Y) into the algebra B(X); if f is a homomorphism of 

the spaces X and Y, then B(j) is an isomorphism of the Boolean algebras B(X) 
and B(Y); 

(e) the following diagrams are commutative: 

';l. 'f"!fr 

\f 1 1 ~ 
B(St(~») - ........ B(%t(~)) 

B(S(~)) 

Fig. 1 
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(f) if, moreover, fJ is a homomorphism from the Boolean algebra .BI into the 
Boolean algebra .B2' and g is a continuous function between the compact, totally 
disconnected spaces Y and Z, then S( fJ • cp) = S( cp) • S( fJ) and B( g' I ) = BU)' B(g). 

Henceforth for any set I, P(I) will denote the set of all subsets of the set I 
considered as a Boolean algebra with respect to set-theoretical operations of union, 
intersection and complement formation. 

Let us now return to considering the properties of the sets mentioned above. 
Let A be a certain cardinal (it should be recalled that A is identified with an initial 
ordinal of the power A). A subset C k; A is closed if for any B k; C such that 
B < x for a certain x EA, supBEC. A subset C k; A is unlimited provided that for 
any -XEA there is a y EC such that y ~ x. 

Definition 1. 7. A subset S k; A is called stationary if the intersection of S 
with any closed unlimited subset A is nonempty. 

Let A be a regular uncountable cardinal. One can easily see that for any 
stationary S k; A, the power of S is equal to A, and the family of stationary subsets 
of the cardinal A forms a filter in the Boolean algebra peA). 

One of the most important properties of stationary sets are the following 
statements. 

Theorem 1.2. Let S be a stationary subset of an uncountable regular cardinal 

A, and let I: S-+ A be a regressive function (i.e., I(a) < a for any a ES \ {O}). 

Then there exists a stationary subset T k; S such that I is constant on T. 

Theorem 1.3. If A is a regular uncountable cardinal, and A is a stationary 
subset of A, then there are A subsets ~(i EA) of the set A which are pairwise 

disjunct and stationary in A. 

B. Interval and Superatomic Boolean Algebras 

The notion of a Boolean algebra with an ordered basis was first introduced by 
Mostowski and Tarski [143]. 

Definition 1.8. A Boolean algebra .B has an ordered basis provided that 

there is a chain of elements of the a1gebra.B generating it. 



CHAPTER 1 9 

This notion is equivalent to a more descriptive notion of an interval Boolean 
algebra. For any LOS < 1 ;s> B(I) will denote a Boolean algebra of the subsets of 

the set 1 generated by intervals of the kind (a,b], where a,b E/+. By 1+ we 
denote here a LOS < {-oo};s> EEl < I;s> EEl < {oo};s>. It is obvious that any element a 

of the Boolean algebra B(I) can be represented as U (aj,bJ for a certain n Ew and 
is.n 

some elements al,q, ... ,a n,bn E/+ such that -00 sal < q < ... < an < bn s 00. A 

representation of this kind will be called a canonical representation of an element a 
of the algebra B(I), by o(a) we will mean a set {al,b1, ... ,an,bn}, and by o(a) a 

tuple < al,q, ... an ,bn >. 

Definition 1.9. An interval Boolean algebra is any Boolean algebra of the type 

B(I), where < I;s> is a LOS . 

• By a for a EI we will mean an element of the Boolean algebra such that --.- . 
o(a )=<-oo,a >. A family of the elements a (aE/) is an ordered basis of the 

algebra B(I) and, on the other hand, if the Boolean algebra.R has an ordered basis 

J (under the assumption that 0,1 f/:,J), then .R is isomorphic to the interval Boolean 
algebra B(J). 

If < J;s> is a subset of the LOS < I;s> with an induced order, then there is 
a canonical embedding f of the Boolean algebra B(J) into B(I): for a EB(J) we 

set f(a)=b, where bEB(I) and o(a)=o(b). 

Since for any homomorphism f of the interval Boolean algebra B(I) on the 

Boolean algebra.B we have .R e! B(j(l», any homomorphic image of an interval 
Boolean algebra is interval. It is also obvious that there exists an embedding g of the 
LOS f(l) into the LOS 1 such that on f(l) a mapping fg is identical and, in 
particular, f (I) can be identified with a subset of the LOS I. Hence, according to 
the remarks made above, any homomorphic image of an interval Boolean algebra is 
isomorphic to a certain subalgebra of this algebra. 

On the other hand, subalgebras of interval Boolean algebras need not be 
interval: a Boolean algebra of finite and co-finite subsets of an ordinal Wj(i O!: 1) is a 

subalgebra of an interval algebra B(wj), not being itself, as can be easily seen, an 

interval Boolean algebra. 
The class of interval Boolean algebras is quite large and, in particular, it 

includes all not more than countable Boolean algebras. The fact that for any 

nEw \ {O} a 2 n -element Boolean algebra is isomorphic to B(n -1) is obvious. 

Theorem 1.4. Any countable Boolean algebra is interval. 
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At the same time, a large number of most important classes of Boolean algebras 

contain no interval ones. For instance, any infinite countably complete Boolean algebra 

is not interval. Let us assume the inverse statement: let .B = B(l) be countably 

complete and infinite, and, in particular, I is an infinite LOS. Therefore, in I one 

can find a subset J = {al,aZ''''} ordered either by the type ro or by the type ro*. 

Assume, for instance, that al < az < ... < On < ... , in which case it is obvious that no 

element of the algebra B(l) can be equal to an element U (a;i+ z \ a;i+ 1 ) E.B . 
iEw 

A free ~i - generated Boolean algebra is interval iff i = O. Indeed, since a free 

!'\O - generated Boolean algebra is countable, it is, by theorem 1.4, interval. In fact it 

is isomorphic to the algebra B( TJ), since B( TJ) is a countable atomless algebra, 

which, as is well known, implies the property of being an ~o - free Boolean algebra. 

Here TJ is an ordered type of an ordered set of rational numbers. On the other hand, 

as has been noted above, any homomorphic image of an interval Boolean algebra is 

interval, and we have seen an example of Boolean algebras of finite and co-finite 
subsets of the ordinal roi(i -o? 1), which are not interval and have a power !'\i' 

Therefore, a !'\i-free Boolean algebra cannot be interval for i -o? 1. 

An ideal of a LOS I is any J k I which has the following property: for any 

a EJ and b EI if b s a, then b EJ. A family of all nonempty proper ideals of the 
LOS I is linearly ordered by inclusion and is called a Dedekind completion of the 

LOS I. A Dedekind completion of the LOS I+ will be denoted by iI. A LOS of 
the type iI is complete for any LOS I, i.e., any subset J of the LOS iI has a 

least upper and a biggest lower bound in iI. The LOS I itself can be identified with 

a subset of the LOS iI by putting the ideal Ja = {x EI+lx s a}EiI into 

correspondence with an element a EI. One can also easily notice that the set iI, 
which has a topology the basis of the open sets of which consists of the intervals 

of the set iI of the type (a,b] for all a,b EI+, is homomorphic with a Stone space 

of the Boolean algebra B(l). For this purpose it is sufficient to show that for any 

J Eil the family BJ is an ultrafilter of the Boolean algebra B(l) and, conversely, 

any ultrafilter of the algebra B(l) has a form BJ for a certain J EiI (here 

BJ = {a EB(l~ and there exist ai,bi Eo(a) such that ai EJ, and either bi $.J or 
J = J b;). Henceforth a topological space defined on iI in the above-mentioned way 

will be denoted by (iI)t and, therefore, (i/)t is homomorphic with Sl(B(l» for any 

LOS I. 
The notion of a superatomic Boolean algebra was first introduced by Mostowski 

and Tarski [143] who also defined the primary basic properties of these algebras. 
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Definition 1.10. A Boolean algebra .B is called superatomic if any of its 
homomorphic images is atomic. 

This property proves to be equivalent to a whole number of others. I(.B) will 

denote a Frechet ideal of an arbitrary Boolean algebra.B which can be represented 

as finite unions of atoms. Let us determine a sequence of the ideals Iz<.B) for any 

ordinal i> 0 in the following way: 11 (.B) = I(.B); Ij(.B ) = U Il.B) if i is limit; 
j<j 

I j+1(.B) is a complete preimage of the ideal I(.B j ) under a natural homomorphism 

from the algebra.B to .Bj =.B Ilj(.B). Obviously, Iz<.B) is an increasing sequence 

of the ideals of the Boolean algebra.B and, hence, for a certain i we have 

Iz<.B) = I j+1(.B) and for all j greater than i we have IlB) = Il.B). 

Definition 1.11. An atomic rank of an arbitrary Boolean algebra .B will be 

the least ordinal i such that IkB) = Ij+l (.B ). The atomic rank of the Boolean algebra 

.B will be denoted by at (.B ) . 

Obviously, for any Boolean algebra .B the algebra .B I lat (.B) is either 

singleton or atomless. By Fa (.B) we will mean a filter {xE.B l .... xE/a(.B )}. 

Theorem 1.5. The following properties of Boolean algebras are equivalent: 

(a) .B is superatomic; 

(aI) no homomorphic image of.B is atomless; 

(b) any subalgebra of the algebra .B is atomic; 

(bI) .B contains no atomless subalgebras; 

(c) .B contains no infinite free subalgebras; 

(d) .B contains no chain of elements which is ordered by the type of 
'YJ - rational numbers; 

(e) IkB) =.B for a certain ordinal i; 

(f) any nonempty subspace of a Stone space St(.B) of the Boolean algebra .B 
has at least one isolated point. 

This theorem yields a corollary. 
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Corollary 1.1. Homomorphic images and subalgebras of any superatomic 
Boolean algebra are superatomic themselves. 

It should be remarked that if oB is a superatomic Boolean algebra, then 

oB /lat(.B) is singleton, and for all i<al(.B) we have IftI{B). Therefore, aleB) 
is a non-limit ordinal, i.e., it has the form a + 1 for a certain ordinal a, in which 

case oB / Ia (.B) is a finite Boolean algebra. Let oB / Ia (.B) have exactly n atoms. 

A pair < a,n > will be called a characteristic of the superatomic Boolean algebra oB . 
If the interval Boolean algebra B(l) is superatomic, then, by the equivalence of 

conditions (a) and (d) of theorem 1.5, the LOS I contains no subsets of an ordered 

type 1], i.e., it is a scattered LOS. The converse is also valid: for any scattered 

LOS I the Boolean algebra B(l) is superatomic. Indeed, by theorem 1.5 it suffices 

to remark that a Dedekind completion iI of the scattered LOS I is scattered itself (it 

is obvious from the counter-argument). The Stone space of the Boolean algebra B(l) 

is homomorphic to the space of (iI)t, but any subspace of the space (iI)t for a 

scattered LOS obviously contains isolated points and, hence, by the equivalence of (a) 
++ (f) of theorem 1.5 of the algebra B(l) is superatomic. 

For countable superatomic Boolean algebras this result allows a refinement. 

Theorem 1.6. If oB is a countable superatomic Boolean algebra with a 

characteristic < a,n > and a> 0, then oB ~ B(w a ·n). 

Theorem 1.6 makes it possible to refine the formulation of theorem 1.4 .. As 
has been remarked earlier, any countable not scattered LOS can be represented as 

~ ai' where ai are scattered LOS, while f3 is a countable densely ordered LOS. It 
iEfJ 

appears, however, that in the representation of non-superatomic countable Boolean 

algebras as interval ones one can do (as was the case for superatomic algebras in 
theorem 1.6) do with ordinals instead of arbitrary scattered LOS. 

Theorem 1.7. For any countable non-superatomic Boolean algebra oB there 
exist ordinals ai(iE1]), where 1] are LOS ordered by the type of rational numbers 

that oB ~ B(~ai)' 
iE1] 

Let us now remark that if a < f3, or a = f3 and m < n, then a Boolean algebra 

B(wfJ'n) obviously maps homomorphically to a Boolean algebra B(wa'm), and, 

according to what has been remarked in the beginning of this section, B( w a . m) 

will, in tum, be isomorphic to a certain subalgebra of the algebra B(w fJ . n). On the 
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other hand, since for any countable not scattered LOS I there exist isotonic 

mappings of both a LOS of the ordered type f'/ + on 1+ and a LOS 1+ onto a LOS 

of the ordered type f'/ +, and, by theorem 1.4 and what has been said above, any 
non-superatomic Boolean algebra is isomorphic to B(l) for a certain countable not 
scattered LOS I, the following corollary is valid. 

Corollary 1.2. Any set of countable non-singleton superatomic Boolean 
algebras is comparable by the relations of embedding and epimorphism, these 
relations coinciding in the class of countable non-singleton superatomic Boolean 
algebras. Any countable Boolean algebra is embeddable into, and is a homomorphic 
image of, any countable non-superatomic Boolean algebra. 

By BA, Bl\(o' BA'No' SBA, IBA we will henceforth mean the families of all, 

respectively, not more than countable, non-singleton, superatomic and interval Boolean 
algebras. 

For any class of algebras R by JR we will mean the families of the types 

of the isomorphism of algebras of the class R. Let us introduce the relations of the 

quasi-orders :s and « on JR in the following way: for all a,b EJR we have 
a:s b(a «b), provided that a is a type of the isomorphism of a certain subalgebra of 
the algebra of the type of the isomorphism of b (if a is a type of the isomorphism 
of a certain homomorphic image of an algebra of the type of the homomorphism of b). 

Definition 1.12. A skeleton of epimorphism of the class of algebras R will 

be called a quasi-ordered class < J R; «>. A skeleton of embedding of the class R 
will be a quasi-ordered class < J R ;:s> . 

For the quasi-orders «,:s on JR let us introduce equivalence relations 

naturally associated with it: for a,b ER a e«b (a e~ b) iff a «b and b «a (when 
a:s b and b:s a). 

A subclass B of the quasi-ordered class < A;:s> is called a semi-ideal if for 
any a EA, bEB from a:s b, we have a EB. 

By corollary 1.1 a family JSBA is a semi-ideal both in the skeleton of 
epimorphism and in that of embedding of a variety of all Boolean algebras BA. As 

has been noticed above, JIBA is a semi-ideal in the skeleton of epimorphism of BA 

but not an ideal in the skeleton of embedding of BA. Besides, the quasi-order :s is 

an extension of the quasi-order « on the class JIBA, i.e., for any a,b EJIBA 
from a «b we have a:s b. Corollary 1.2 implies the existence of the following 

isomorphisms:< JBAKo; :s> 5!!< JB~; «>E!! WI ® 1", where the quasi-order WI ® I" 
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is obtained from the ordinal wI by adding 21<0 mutually equivalent relative =« and 

=s elements as the last ones. These 21<0 elements form the types of the isomorphism 
of countable non-superatomic Boolean algebras. 

For uncountable superatomic, though even interval, Boolean algebras theorem 
1.6 is no longer valid. One can easily see that a superatomic Boolean algebra 

* B( W + wt) is isomorphic to no Boolean algebra of the type B( y), where y is an 
ordinal. Indeed, the only real candidate to play the part of y is obviously wI' But 
B( W + wI) r/l B( WI)' as any countable set of atoms of the algebra B( wI) is contained 
in a certain element of this algebra which belongs to an ideal ItB(wI» ' for i < WI' 

This statement is obviously false for the element (n,n + 1] of the Boolean algebra 
* B(w + wI)' where nEw. Nonetheless, for uncountable interval superatomic Boolean 

algebras there also exists, to the accuracy of mutual embedding, their representation 
in the form of the algebras B(l) for certain LOS I in the sense of a canonical 
form. 

R k, where k is an arbitrary cardinal, will denote a family of algebras of the 

class R of the power k. For any ordinal a, any natural m,n such that m + n ;J!: 1 , 
Ba,m,n will denote an interval superatomic Boolean algebra 

a a a * B(w 'm+(w +(w ) )·n). For any cardinal k;J!:~l Nk will denote 
{Ba ,m,nl I aI = k; m,n Ew; m + n ;J!: I}. It should be remarked that the algebras 

Ba,m,n have a characteristic < a,m + n >. By SIBA we will mean the family of all 
interval superatomic Boolean algebras. 

The theorem presented below describes the skeleton of embedding of the class 
of superatomic interval Boolean algebras of an arbitrary fixed power. 

Theorem 1.8. 

(1) Let.B be an interval superatomic Boolean algebra of a power k and a 
characteristic < a,p >, in which case: 

(a) if c/(w a ) = w, then there IS a unique algebra Ba,m,o ENk such that 

.B =s Ba,m,o, in which case m = p; 

(b) if c/(w a ) ... w, then there is a unique algebra Ba,m,n ENk such that 

.B =s Ba,m,n' in which case m + n = p. 

(2) Let algebras Ba,m,n' BfJ,p,q belong to the family Nk> in which case 

Ba,m,n :S BfJ,p,q iff: 
(a) a < {3; 

(b) a={3, c/(wa)=w and m+n:sp+q, in which case, if m+n=p+q, 

then Ba,m,TI' Ba,p,q' Ba,m+n.o are isomorphic, or 
(c) a={3, c/(wa»w, m+n:sp+q and m+2n:sp+2q. 
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(3) < JSIB.l / =,; ;S>5!!< JNk; S>, and they are distributive lattices, each of 
their elements having only a finite number of elements incomparable with them. Here 
Nk ={BIl,m,niaEOrd;iai=k,m,nEw;m+nO!:I and, if cj(a)=w, then n=O}. 

As an example, let us present the initial interval of the lattice < JNIl ;s> at 

cj(WIl»W. In this case <m,n> will denote the algebra Ba,m,n,Na = 

= {Ba,m,nim,n Ew}. 

<~5'> 

<7,0) 

<.2.,0> 

Fig. 2 

It should be recalled that for countable non-singleton Boolean algebras the 
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relations of embedding and epimorphism coincide. The problem of a complete 
description of the skeletons of epimorphism of the classes of superatomic interval 
Boolean algebras of a fixed uncountable power is still open to discussion. However, 
as follows from the theorem presented below, for the skeletons of epimorphism of 
these classes the situation is essentially different from that described in theorem 1.8. 

Theorem 1.9. For any uncountable cardinal Xi and for any J ~ Wi' there 

exists a superatomic interval Boolean algebra .BI of a power Xi such that for any 

J, J ~ Wi .B I is embeddable into .B J, and .B I «.B J iff J ~ J. 

The proof of this theorem is given in §14 of Applications and employs theorem 
1.3 .. 

Corollary 1.3. For any uncountable cardinal Xi: 

(a) there are 2Xj of mutually embeddable superatomic interval Boolean algebras 
of a power Xi' none of which is a homomorphic image of the other; 

(b) any partially ordered set of the power not greater than Xi is isomorphically 

embeddable into < JSJB~ ; «>, in such a way that the images of the elements of 
I 

this set are mutually embeddable into each other. 

The proof of this corollary results immediately from the statements of theorem 

1.9 that for any cardinal Xi there exist 2Xj mutually incomparable subsets of the 

ordinal wi' and that any partially ordered set of the power not greater than Xi is 

isomorphically embeddable into the set of all subsets of the ordinal Wi' 

Further on we will also need the following statement which results from the 
proof of theorem 1.9. 

Corollary 1.4. There is an infinite number of mutually embeddable interval 
Boolean algebras € i of a power Xl' none of which is a homomorphic image of any 
of these algebras, in which case for every set of algebras € i the set A forms an 
ultrafilter on € i, where A={d E€ IJ(C i1d contains a chain of elements of the ordinal 

type 1]' WI}' 

It should be recalled that a universal algebra Jl1 is called a retract of the 

algebra JI 2 provided that there is a homomorphism f of the algebra JI 2 on Jl I , 

and an embedding h of the algebra JlI into Jl2 such that fh is identical on Jl1 · 
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A universal algebra J/ is called retractive if any non-singleton homomorphic image 

of J/ is its retract. An equivalent definition: J/ is retractive if for any non-unit 

congruence a of the algebra J/ there is a subalgebra J/ 1 of the algebra J/ such 

that for any aEJ/ lat a nJ/ 11= 1. 
As has been noted above, interval algebras are retractive. But in fact retractivity 

is inherent to a much larger class of Boolean algebras. 

Theorem 1.10. Any subalgebra of an interval Boolean algebra is retractive. 

Rotman [203] put forward a hypothesis that subalgebras of interval algebras 
exhaust the class of retractive Boolean algebras. Rubin [204] disproved this 

hypothesis under various set-theoretical propositions (Ox! ,MA,CH). 

Theorem 1.11. (Ox! ,MA,CH). There exist retractive Boolean algebras not 

embeddable in any interval ones. 

In a more general situation of ZFC the problem of the existence of a retractive 
Boolean algebra not embeddable into any interval algebra is still open to discussion. 
The question whether a subalgebra of a retractive Boolean algebra is always retractive 
also remains unsolved. 

C. Rigid Boolean Algebras 

A number of results of this section has been formulated under the assumption 
of a continuum or a generalized continuum hypothesis. A factual proof of these 
results often requires weaker but also less popular set-theoretical assumptions, while 
the formulations presented here are due to the author's unwillingness to get deep in 
the 'swamp' of set-theoretical assumptions in this monograph. 

Definition 1.13. A LOS < I;s> is said complete if any of its limited subsets 
has a least upper and a biggest lower bound in < I;s>. A LOS is said uniform if 
for any a,b EI such that a < b, the equality l(a,b)I=1/1 holds. 

A uniform non-singleton LOS is obviously densely ordered. 

Definition 1.14. A LOS < I;s> of a regular infinite power will be said 
formally real if < I ;s> is complete, uniform, and there is a dense subset II in 
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< I; s> such that 21111 =111, and for any interval (a,b) of the set I, there exists a 
monotonous embedding of (a,b) into itself without fixed points. 

An example of a formally real LOS is the LOS of all real numbers. Wi 2 will 
denote the lexicographically ordered LOS of all the sequences of the length Wi' 

consisting of 0 and 1 and such that they have no last zero. By (Wi 2)0 we will 

mean the subset of the LOS Wi 2 which consists of the sequences with the totality of 

their units limited. It should be remarked that at i = 0, Wi 2 and (Wi 2)0 can be 
identified with the LOS of all real numbers and that of all rational numbers. One can 

easily notice that under the assumption of GCH wi2 will be a formally real LOS, 

while (Wi 2)0 will be a subset dense in Wi 2, with IWi 21 = 21(Clli 2)01• Therefore, under 

the assumption of GCH, formally real LOSes do exist in any uncountable unlimit 
power. Further on we will supply the formally real LOS < I;s> with an interval 
topology with a basis of open sets of the type (a,b) for a,b EI. The following 
lemma will play a major role in constructing interval rigid Boolean algebra. 

Lemma 1.1. Let < I;s> be a formal real LOS, in which case there is a 
subset P ~ I such that 

(1) for any a < b from I we have IP n [a,b]I=III, 

(2) for any P' ~ P any strictly monotonous (increasing or decreasing) mapping 
I from the LOS < P';s> to < P;s>, the inequality I{x EP'I/(x)" x}I<llI is valid, 

(3) I \ P is dense in I. 

Definition 1.15. 

(a) An algebra 11 is called rigid if it has no non-trivial automorphisms; 

(b) the algebra 11 is called strictly rigid if the only embedding into it is 
identical; 

(c) The Boolean algebra 11 is called Bonnet-rigid if for any Boolean algebra 

111, any homomorphism II of 11 on 111, and any embedding fz of 11 into 111 
the equality II = fz holds. 
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Lemma 1.2. A Boolean algebra 11 is Bonnet-rigid iff for any Boolean 

algebra J/2' any embedding II of J/2 in J/ , and any homomorphism fz of J/2 
on J/ , the equality 11 = fz is valid. 

Strictly rigid and Bonnet-rigid Boolean algebras are interrelated in the following 
way. 

Lemma 1.3. If a Boolean algebra is retractive and strictly rigid, it is also 
Bonnet-rigid. 

Before going over to the statements on the existence of rigid Boolean algebras, 
let us consider in detail the situation with interval Boolean algebras of the type 
B(P), where P is a subset of formally real LOS I of a power III. 

Let us assume that both P and I \ P are dense in I. Let A be an arbitrary 
set of elements of a Boolean algebra B(P) such that IAI=III. Let us number the 
elements of A and let A = {u j I j < wi}' where ~i =1 II. Let us assume that 

IV) . . 
U j == U (ai, bfc] is a canonical presentation of the elements U j of the Boolean algebra 

k-1 
B(P). Then, since ~i >~o and is regular, there is a natural m:2: 1 and a subset 

R!: Wi such that I RI=I II and for any j ER l(j) = m. As II is dense in I, for any 

jER there are ,i,qiEll such that ai <,i <qi <bi for k-sl(j)=m. Since 1111<111 

and I II is regular, then there is a ~!: R such that I ~ 1=1 II, and there are 

'I < q1 < '2 < ... < 'm < qm Ell such that for j ERa we have ai <'k < lJk < bi at 
k-sl(j)=m. 

On ~ let us now introduce an equivalence relation () in the following way: 

<i,j>E(}l iff a~=af. If 1~/(}ll=III, let us choose a certain set R1 0f 

representatives of equivalence classes over (}1 of the set ~ and then I ~ I =1 II and for 

any i,jERl a~ ;o4a{. If I~ I (}lI<III, then since III is regular, one of the equivalence 

classes (let us denote it as R1) has the power III, in which case for any i,jERl we 

have af = af. The equivalence (}2 on R1 will be defined analogously to the 

equivalence (}2' stemming from elements bt instead of at. Continuing this process, 
we finally get a set ~m!: Wi such that l~ml=III, and for any k -s m, or for any 

i,jER2m we have bi .. bi, while for any i,jER2m we have bi = bi- An analogous 

property is also valid for ai instead of bi- It should be recalled that in the case 

when for a given k for any i .. jER2m we have b~ .. b/.. (a~;04 hi). then there is no 

more than one i(k,+oo) ER2m such that b~k,+IXl) == +00 (not more than one 

i(k,-oo) ER2m such that ai(k,-IXl) == -00). Let us set J( = ~m \ {i(1,-00), i(m,+oo)}. 
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A set R (A\.) = {u il i E R'} will be called a subtraction of the set A\. of the 

elements of the Boolean algebra B (P), the number m will be called a general 

number for R (A\.), while a sequence r 1 < ql < r 2 < ... < r m < qm will be called a 

1 2 
separating sequence for the elements of R (A\.). Let P R (A\.)( P R (A\.» be a set of 

such k s m, that ak .. at (b~ .. "') for various i, j E R '. Let us also remark that 

I R (A\.) I = I II, and for any 8 ~ R(A\.) such that 181 = I II, 8 is a subtraction 

for A\.. 

Lemma 1.4. Let / be a formally real LOS, a subset P ~ / obey the 
conclusion of lemma 1.1, and let A\. be a chain of elements of a Boolean algebra 

B(P) , I A\. I =1/1 and R(A\.)=A\.. In this case we have either Ipk(A\.~=1 and 
2 Al 1 2 PR(ra) =0, or PR(A\.) =0 and IpR(A\.)I=l. 

Let us denote the only k s m belonging to pk(A\.) U p~(A\.) by k(A\.) and 

j(A\.) = 1, or by 2, depending on the fact if this k belongs to p1(A\.) or to 

p~(A\.). Therefore, under the conditions of lemma 1.4 for any Uj,U j EA\., for 

k .. k(A\.) we have ak = ai, b~ = b£, while for k = k(A\.) we have ak = a{ and 

b~<'" iff Uj~Uj' if j(A\.) =2 and bi=bl, while ak<ai iff Uj;).Uj if j(A\.) =1. 

These statements result in the following lemma. 

Lemma 1.5. Let P,l,A\. be such as in lemma 1.4 and let h be a strictly 
increasing (strictly decreasing) function from A\. in B(P). Therefore, h(A\.) is a 

chain of the power III in B(P). Let G1 = R(h(A\.» and A\.1 = h-1(Gr) , then At and 
G1 are chains, and j(At) = j( Gr)(j(A\.I)" j(G1». Let us set 

if j(A\.d= j(G1) = 1; 

2: (At,G1) = {u EA\.11 a~Al)" b~~)} 
if j(A\. 1) = 1, j(G1) = 2, and 
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if j(A\)-2, j(Gt)=1. 

In this case I }:(A l' G1)1 < I II. 

Now on the basis of lemmas 1.1-1.5 the following theorem is proved. 

Theorem 1.12. Let I be a formally real LOS, pr;, I and obey the 
conclusions of lemma 1.1. Let l1. be a subset of P such that for any 
a<bEI I(a,b)nlll-ill and f is a strictly increasing mapping from B(l1.) into 
B(P). In this case, f is identical and, in particular, the Boolean algebra B(P) is 
strictly rigid. 

Theorem 1.12, lemma 1.3, theorem 1.10 and the remark on the existence of 
a formally real LOS after definition 1.14 together yield the following corollary. 

Corollary 1.5. There are Bonnet-rigid interval Boolean algebras of a continual 
power. Under the conditions of GCH there are Bonnet-rigid interval Boolean algebras 
of any power. 

By analogy with the proof of theorem 1.12 we can prove the following 
theorem. 

Theorem 1.12'. Let I be a formally real LOS, pr;, I and obey the 
conclusion of lemma 1.1. Let l1. be a subset P of a power 111. Then there is a 

subset l1. r;, l1. such that 

(1) III \ it 1<1 11 ; 

(2) for any a< bEl l(a,b)nlll=llI or (a,b)nit- 0; 

(3) if a < bEl and (a,b) nit .. 0, then (a,b) n it has no first or last element, 

in which case B(lD is strictly rigid. 

Besides proving the existence of separate rigid Boolean algebras, the above 
construction makes it possible to construct large families of Bonnet-rigid Boolean 
algebras possessing some properties pertaining to the relations of embedding and 
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epimorphism. 

Theorem 1.13. If I is a certain formally real LOS, then 

(a) there is a family {If/Il E2121} of mutually unembeddable Bonnet-rigid Boolean 
algebras of the power I II ; 

(b) (GCH) there exists a family {Blll E212l} of Bonnet-rigid Boolean algebras of 

the power I I I, ordered linearly by the relation of embedding ; 

(c) there is a family {IiJlj EwJ, {Ii]ljEWj} of Bonnet-rigid Boolean algebra 

such that IiJl ~ IiJz iff .it ~ h, and Ii]1 ~ Ii]z iff jl O!: h. Here Wj is the initial ordinal 

of the power I II . 

It should be recalled that a family of subsets G of a certain infinite set R is 
called almost disjunct iff for any A,BEG, IAI=IBI=IRI and IAnBl<IRI. Then the 
following statement is valid. 

Lemma 1.6. Let I be a formally real LOS of a power~, P k I obey the 
conclusions of lemma 1.1. Let P' ,P" k P I P'I =1 P"I= ~ and IP' n P"I < ~, in which 

case if .B is a Boolean algebra isomorphic to subalgebras of the algebras B(P') and 

B( P"), then I.B I< X. 

Using this lemma and the fact that under the assumption of GCH, as IS well 
known, for any infinite set of a power k there is a family of its almost disjunct 

subsets of a power 2k, the following theorem is proved. 

Theorem 1.14 (OCH) For any unlimited cardinal ~ there is a family 
G = {B;li El} of strictly rigid Boolean algebras of a power ~ such that: 

(a) 111= 21(; 

(b) for any Boolean algebra .B embeddable into any pair of different algebras 

of the family G, the power of .B is less than ~; 

(c) for any Boolean algebra .B which is a homomorphic image of a pair of 

different algebras of the family G, the power of .B is less than X. 
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Definition 1.16. A chain B in a quasi-ordered set < A;:s> is called 
noncompactable iff for any a EA, a belongs to the chain B if for some cl,c2 EB 
we have cl:S a :S c2 and a is comparable with any element of the chain B. 

It follows from clause (b) that in the skeleton of epimorphism of a variety of 
Boolean algebras, a family of countable Boolean algebras is an ideal and form a 

• noncompactable chain of a scattered quasi-order WI Ef> 1 . In the same way a family 

of Boolean algebras of the type B( a), where a EOrd, is an ideal in < JBA;« >, 

and forms a noncompactable chain isomorphic to an ordered class of all ordinals. The 

natural question arises whether in < JBA:,«> there exist noncompactable chains of 

dense order types, i.e., noncompactable chains B k: JBA such that < B/=«;«> is a 
densely ordered set. 

Let R be an ordered set of real numbers, Q k: R be a set of rational numbers, 
and let P k: R obey the conclusion of lemma 1.1. For any a ER let us define Fa 

as {xEPlx< a}. 

Lemma 1.7. 

(a) Boolean algebras B(Fa) are Bonnet-rigid; 

(b) for a < bER, B(Fa)«B(Ib). and for any non-singleton Boolean algebra 

.B , B(Fa) x .B </. B(Pa) ; 

(c) for any a and any Boolean algebra .B , it follows from .B = «B(Fa) that 

.B 51! B(Fa); 

(d) (CH) for a ER and any Boolean algebra .B, if for all b ER such that 

b > a, B( Fa) «.B «B( Ib), then there exists a countable set D k: {x E PI x ~ a} such 

that .B 5!! B(Fa U D) ; 

(e) for a ER and any Boolean algebra .B, if for all b ER such that b < a, 

B(Ib)«·R «B(Fa). then we have .R 51! B(Fa). 

This lemma can be used to prove the following theorem. 

Theorem 1.15. (CH) In the skeleton of epimorphism of a variety of Boolean 
algebras there is a noncompactable chain B of a dense ordered type, i.e., 
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< Bfa,,; «>, has the order type of a set of real numbers. 

Let us give an example of constructing rigid Boolean algebras. The roots of 
this construction originate from S.Shelah [207], who constructed large families of 
mutually unembeddable models of not supers table theories, which are based on 
constructing corresponding families of trees. It should be recalled that a tree is a 
partially ordered set < C;s> which has the following property: for any set 
a EC, {b EClb s a} is a well-ordered subset of < C;s>. 

Henceforth if ~ is a certain sequence of <ao,a1, ... ,aa, ... la <{3>, then l(~) 

will denote its length, i.e., the ordinal {3. For any a < {3, 51 a will denote the initial 
segment of this sequence, of length a:<ao,a1, ... a y , ••• ly <a >, while ~[a] will 

denote an element aa. For any sequences 51,52' 51 A 52 denotes a sequence obtained 

by putting the sequence 52 in the end of 51 with a corresponding reindexation of 

the elements of the sequence 52. For any ordinals J...,It, J...S/l(J...</l) will denote a 
family of all the sequences of length not greater than It (strictly less than It) 

consisting of the elements of the ordinal J.... 

Definition 1.17. Let H. be an arbitrary class of models of a fixed signature 

and let the models 11 a (a EJ) belong to the class n. A discrete sum of the 

models 11 a (a EJ) is a model ~ 11 a with a basis set of the type U{ a} x 11 a 
a8 a8 

such that for any signature predicate R(x1' ... ,xn), any a1, ... ,a n EJ and any 

atE1Ia/,lsn on L1Ia, R«a1,a1>, ... ,<an ,an » is true iff al=a2= ... =an and 
a8 

11 all= R(al,···an )· 

Let L be the language of a countable functional signature which consist of Xo 

of different n-unary functional symbols for any n < w. 

Definition 1.18. For any model 11 ER., M(1I) will denote an algebraic 
system of the signature comprising the signature of the language L, the signature of 

the class R. and one more unary predicate P. In this case the reduction of M( 11 ) 
to the signature of the language L is an absolutely free L - algebra generated by the 

basic set of the model 11 ; the predicate P singles out the basic set of the model 11 
in M( 11 ), the reduction of M( 11) to the language of the class R on the set 11 
coincides with the model 11, and for any al, ... ,an EM(1I), any predicate 

R( xl, ... , xn) of the signature of the class n, if for a certain i s n ai E( 11 ) \ 11 , 
then M(1I )1= ~R(al,···an)· 

Definition 1.19. By nt~ we will mean the following class of the models 11 : 
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(a) a basic set of the model 11 is a certain family of sequences of ordinals 
whisch are either finite or of a length w such that all initial segments of this 

sequence enter JI with every such sequence belonging to 11 ; 

(b) the predicates lW:S. w)'<I,<,Eqj(iEw) and a constant <> are defined on 

11 in the following way: ~ = {s E11 I/(S) = i}; s < y iff s = yl/(S); <1 = 

={<Sll < a>,SIl <f3 »Ie < a>,SIl <f3>E11,a <f3}; 
Eqj= {< S, V >IS, vE11 ,Sli = vii}; the constant <> coincides with an empty sequence. 

Therefore, the models 11 ER:: are refined trees: the basic set of the model 

with the predicate <1' and the discrete sum of the R:: -models (with obvious 
additional definitions related to the addition of an empty sequence to the discrete 

sum) is again a model of the class R::. 
By 1jJ(xO,xI'YOY!) we will mean the following formula of calculus Lwt •w of the 

signature of the class R::: 

1jJ(Xo,XI'YO'YI) = v [~+I(Xo)&~+I(YO)& 
j+I<w 

Pw(xI)&Eqj(xo,Yo)&Xo ;oOYO&xI =YI&XO <1 Y!&Yo <XO]· 

Definition 1.20. The model 11 E R:: is said 1jJ - unembeddable into a model 

€ ER: if for any mapping f of the model 11 into M(€), for any finite subset 

A k € there can be found elements ao ,aI,bo ,bI E11 such that 11 1= 1jJ( aO,aI ,bo,b 1), 

and for some terms 't"j(Xl'" .,Xn.) (i = 0,1) of the language L, for some 
I 

0011 0111 
while the tuples < CI '''''Cno ' Cl'''''Cnl >, < d1 , ... , dno ,dI , ... ,dnl > implement the same 

quantifierless type over A in € . 

Definition 1.21. A class R t~ will be called (X,A) -wide (where ~,A are 

arbitrary cardinals), if there is a family 11j(i <X) of the Rt~-models such that 

IJI j 1 = A, and for any i;oO j < X, 11 j is 1jJ -unembeddable into 11 j' The class R t~ 
will be called (X,A)-superwide if there is a family 11j(i <X) of the R:-models such 
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that IJJ il= A, and for any i < X, JJ i is 1JI-unembeddable into .z JJ i . 

j<'X.j .. i 

Lemma 1.8. If n.:: is an (X,;.,) -superwide class, then n.:: is an (X',A) -wide 

class, where X' = min{2'X,2 A}. 

Theorem 1.16. 

" (a) If A is a regular cardinal, ;., > Xo and A ~ A, then the class of models 

Rt~ is (A,;"" )-superwide; 

(b) if ;., is a singular cardinal, 2'Xo <A and ;.,'Xo =;." then n.t~ is a (A,;")

superwide class; 

(c) if A'Xo = A, then Rt~ is (2A ,;,,+)-superwide. 

The above theorem and lemma 1.8 give rise to the following corollary. 

Corollary 1.6. For any regular uncountable A, the class R t~ is (2\;")
wide. 

The constructed n. t~ -models will be now used for constructing rigid Boolean 
algebras and families of Boolean algebras which are not mutually interrelated with 
relations of embedding and epimorphism. 

Definition 1.22. An ordinal tree is an arbitrary family of sequences with the 

relation <. If JJ is a certain ordinal tree, then B( JJ) will denote a Boolean algebra 

freely generated by a set of elements {x1/I1]EJJ} modulo the following defining 

relations: 

(1) for a ... fJ if 1] A < a >, 1] A < fJ >EJJ , then x A n x A fJ = 0 ; 
1/ <a> 1/ < > 

(2) if 1] < v, then Xv:S X1/; 

(3) if 1] has a finite number of extensions of the type 1] A < a > in JJ, and 

1] A < at > (I < k), where k < ware all these extensions, then x" = UX"A ; 
'r "' <a 1> 

l<k 

(4) if 1] < V and for any p such that 1] < p < v there is the only extension of 
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the type p A < a > in JI , then x 1'/ = xv' One can also remark that B( JI) will be an 

interval Boolean algebra. 

Definition 1.23. 

(a) Let JI ER:: and let I,k be tuples formed of the elements of M(JI). Then 

if I ... k(mod M(JI» (1(1) = l(k», then there is a tuple i"(xl'''''xn) of the terms of 

the language L, and there are tuples c,d of the elements of the model JI such that 

l(c) = l(d) = n; T(C) -= i, i"(d).k, while the tuples c,d implement the same 

quantifierless type in the model JI . 

(b) Anarbitrary model C is representable in M(JI) if there is a function f 

mapping the model C in M(JI) such that for any al, ... ,an, b1, ... ,bn EC , it follows 

from < f( al)'" .,f(an) > ... < f(b1), ... ,f(bn) > (modM(Jl» that < al ~'" an > and 

< q, ... ,bn > implement the same quantifierless type in the model C. 

Evidently, if for a certain C En.:: either C itself or a Boolean algebra B(C) 

is representable in M(Jl) for a certain JI En.::, then the model C cannot be 'IjJ

unembeddable into Jl . 

Lemma 1.9. If for a certain ordinal tree Jl a Boolean algebra .Bo = B(JI) is 

representable in M(Jl') for a certain Jl' ER::, then for any Boolean algebra .B 

which is a homomorphic image of the algebra .Bo, there is an ordinal tree C such 

that .B Eo! B(C ), and .B is also representable in M( Jl '). 

Definition 1.24. Let a family JI j(i < A) of R:: -models implement the 

(A,A )-superwideness of the class n.:: for a certain cardinal A. Let us construct an 

increasing (by inclusion) continuous sequence of Boolean algebras .Bj(i < A) in the 

following way: .Bo is a two-element Boolean algebra, .Bj+1 = .Bjl ..... aj xB(JI j), where 
the sequence < a;li < A > is a certain sequence of all the atoms of the algebras 

.Bj(i<A), in which case ajE.Bj . Let us denote by R a sequence 

« Jl j. aj >Ii < A > taking part in the construction of a sequence of Boolean algebras 

.Bi' and define a Boolean algebra .B R as UBi' 
j<J.. 

Lemma 1.10. In the notations of definition 1.24 the following are valid: 
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(a) a Boolean algebra .B i is representable in M( L 11 }); 
}<i 

(b) a Boolean algebra .B ,1 (l \ a}) is representable in M( L 11 I ) for any j < i. 
l<i,I .. } 

By choosing suitable algebras of the type .B R, and using lemma 1.10, we can 
prove the following theorem. 

Theorem 1.17. If the class ftt~ is (A,A )-superwide, then the following 
statements are valid: 

(1) there is a Boolean algebra .B of the power A such that for any 

a,b EB \ {O}, if a n b = 0, then there is no embedding of the algebra .B I a into any 

homomorphic image of the Boolean algebra .Blb. 

).. 

(2) there are Boolean algebras .Bj(i < 2 ) of the power A such that for any 

i". j < 2A, any a EBi \ {O}, b EB} \ {O}, there is no embedding of the algebra .B,l a 

into any homomorphic image of the algebraB}lb. 

Theorems 1,16 and 1.17 yield, in particular, the following corollary. 

Corollary 1.7. For any regular cardinal A greater than ~o, there is a family 

.Bi(i E2A) of Boolean algebras of the power A which are mutually unembeddable 
and are not homomorphic images of each other. 

Theorems 1.16 and 1.17 yield, for example, the validity of the statement of 

corollary 1.7 for singular A such that 2~o < A, and A ~o = A. 

It should be recalled that the Boolean algebra .B obeying clause (1) of theorem 
1.17 is Bonnet-rigid and, in particular, has no injective endomorphism onto itself. 

Indeed, let us assume that 11 is a certain homomorphism from .B to an arbitrary 

algebraB1 , and 12 is an embedding of .R into .B1 such that 11 ". fz. If It is not 

injective, then there is an a EB such that a". 0 and 11(a) = O. For any 

b E.B, 11(b \ a) = Jl(b) and, hence, .B1 is a homomorphic image of the algebra 

.R1(1 \ a). On the other hand, .Bla is embeddable into .R1 . The thus obtained 
contradiction proves the impossibility of a similar situation. If 11 is injective, then It 
is an isomorphism from .B to .B1 and, hence, 11-1fz:.B -.B is not an identical 



CHAFfER 1 29 

embedding of .B into itself. Therefore, for a certain a E.B, an /2-1 fz( a) = 0, but in 

this case the elements a and b = /i-lfz (a) contradict the statement (1) of theorem 
1.17. It is this fact that proves that any Boolean algebra obeying this statement is 

Bonnet-rigid. 
It should be remarked in this context that S.Shelah [208] proved the existence 

of rigid Boolean algebras of any uncountable power. 

D. Invariants of Countable Boolean Algebras and their Monoid 

A system of invariants for countable Boolean algebras was first suggested by 
J.Ketonen [104]. Y.L.Ershov [57] extended this system to the class of distributive 
lattices with a relative complement, in which case, unlike J.Ketonen who used Stone 
spaces of Boolean algebras, Y.L.Ershov's proofs are purely algebraic. 

Definition 1.25. A distributive lattice < A;U,n,O> with the least element 0 
is a lattice with relative complements, if for any of its elements a,b, the inequality 

a:s b yields that there exists an element c EA such that a U c = b and a n c = O. 
This element c is called the complement of a relative to b. From now on, a 
distributive lattice with relative complements will be called a DILARC. 

It should be remarked that for any DILARC 11 and any a:s bElI, the 
complement of a relative to b is unique. This makes it possible to introduce an 

operation \ on the DILARC 11 , setting for c, d ElI c \ d equal to the complement 
of the element end relative to c. It should be remarked that any homomorphism 

from the DILARC 11 to the DILARC .B in the signature < U,n ,0 > will also be a 
homomorphism in the signature < U,n,\,o>. A DILARC is a Boolean algebra iff it 
has a biggest element. Any ideal of a Boolean algebra is a DILARC. On the other 
hand, any DILARC can be represented as an ideal, and even as a maximal ideal of 
a Boolean algebra. If a DILARC is a Boolean algebra itself, this is obvious. Now 

let 11 =< A;U,n,O > be a DILARC with no biggest element. Let A denote a family 
AU { .... alaEA}, where { .... alaEA} is a set disjunct from A which is in a one-to-one 
correspondence a - .... a with A. The operations u,n are naturally extended from A 

to A, owing to the fact that the element .... a must play the role of a complement of 

the element aEA in a Boolean algebra < A;U,n, .... ,O,l- .... 0>. In this case, 11 is 
obviously a maximal ideal of the constructed Boolean algebra. The notions of an 
ideal and of a filter of a DILARC are introduced in the same way as for Boolean 
algebras, and any congruence of a DILARC is uniquely defined by an ideal, i.e., by 



30 BOOLEAN CONSTRUCTIONS 

a class of congruence containing O. Let a be the principal ideal of the DILARC 1/ 
generated by an element a. 

Definition 1.26. An embedding cp of a DILARC 1/0 into a Boolean algebra 

1/ will be called an extension of the DILARC 1/ 0 using a Boolean algebra 1/1 
provided that cp(1/ 0) is an ideal in 1/ and 2/ I cp(2/ 0) 51! 2/1' where the latter 
isomorphism is fixed (its composition with a natural homomorphism 2/ -1/ I cp(1/ 0) 

will be denoted as q;). 

The next aim will be a description of all the extensions of the DILARC 2/ 0 

using the Boolean algebra 2/1' Two extensions, cp':2/ 0 - 2/' and cp":1/ 0 - 2/" , 
will be said equivalent if there exists an isomorphism 1jJ of the DILARC 1/' with 

the DILARC 1/" such that 1jJcp' = cp" and q;"1jJ = ~'. Ext(1/ 0,1/1) will denote a 

family of all extensions of the DILARC 2/ 0 using the Boolean algebra 2/1 to the 
accuracy of the equivalence introduced. 

Definition 1.27. Let 2/ be an ideal of a DILARC 2/ .Let if be an ideal 

complement of the DILARC 2/ , if for any embedding cp of the DILARC 2/ there 

exists, as an ideal into any DILARC 2/ 1, and the only one, a homomorphism 1jJ of 

the DILARC 2/1 into the DILARC 2/ such that 1jJcp is identical on 2/ . 

The definition of an ideal complement 2/ for any DILARC 2/ obviously yields 

its uniqueness as an extension of the DILARC 2/ . Let us show the existence of an 

ideal complement for any DILARC 2/. J(2/) will denote a family of all ideals of 

an arbitrary DILARC 2/ with the lattice operations introduced in a standard way on 
J(1/): for J1,]2 EJ(1/), J1 n J2 is the intersection of J1 and J2 as sets, J1 U J2 

is the least ideal of the DILARC 2/ containing J1 and J2 • J'(1/) will denote a 

subfamily of the family J(2/), consisting of the so-called locally principal ideals; an 

ideal J EJ(2/) is called locally principal if the intersection of J with any principal 

ideal of the lattice of 2/ is also a principal ideal. A family J'(2/) is a sublattice of 

the lattice of J(2/). Any principal ideal is locally principal, and a mapping a --+ ct 
will be an embedding of the lattice of 2/ into the lattice of J'(2/). In this case the 

principal ideals of the lattice of 2/ form an ideal (henceforth it will be identified 

with the lattice of 2/ itself) in the lattice of locally principal ideals of the DILARC 

2/ . It should be also remarked that for Boolean algebras 1/ the notion of a locally 

principal ideal coincides with that of a principal ideal and, hence, J'(1/) 5I!1/ . 
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Lemma 1.11. The lattice of locally principal ideals of any DlLARC 1/ is an 

ideal complement of the DILARC 1/ . 

For any DILARC 1/ by 1/' we will define a factor J'(1/) / 1/. The 
following result describes all the extensions of the DILARC using Boolean algebras. 

Theorem 1.18. For any DlLARC 1/ 0 and a Boolean algebra 1/1 there exists 

a one-to-one correspondence between all the extensions Ext(1/ 0,1/1) of the DlLARC 

1/ 0 using 1/1 (to the accuracy of the equivalence introduced above) and all the 

homomorphisms HOrr(1/1,1/ 0)' 

It should be remarked that either directly or using theorem 1.18 and the fact 

that J'(1/ 0) = 1/ 0 for any Boolean algebra 1/0' any extension of a Boolean algebra 

1/ 0 using the Boolean algebra 1/1 has the form 1/0 x1/1' 
As is the case for Boolean algebras, we can introduce the notion of an atom 

for a DILARC as well: an element a of the DILARC 1/ is called an atom if for 

any c E1/ , a n c = 0 or a n c = a. The DlLARC 1/ is called atomless if it has no 

atoms, or atomic if for any c E1/ there is an atom a such that a:s: c. The 

DILARC 1/ is called superatomic if any of its homomorphic images is atomic. By 
reproducing the definitions from section (b) we can introduce the notion of a Frechet 

ideal 1(1/) for an arbitrary DlLARC 1/ and, iterating this notion, obtain a sequence 

of ideals la(1/), where a is an arbitrary ordinal. As is the case for Boolean 

algebras, an atomic rank at(1/) for the DlLARC 1/ will be the least ordinal i such 

that li+l( 1/ ) = li(1/ ). However, unlike Boolean algebras, as can be easily seen, the 
atomic rank of a DILARC can, generally speaking, be a limit ordinal. 

Definition 1.28. The atomic type of a superatomic DILARC 1/ will be a ,. . 
triple -r(a ) =< a ,al,n >, where a ,al are ordinals, and n is a natural number 

such that al is the least ordinal of f3, for which 1/ / 1{J(1/) has a biggest element 

(Le., is a Boolean algebra). We, obviously, have al:S: at(1/). If al = at (1/ ), then 

a' - at (1/ ) and n = O. If al < at (1/ ), then one can easily see that at(1/) is not 
limiting, and then a * is such that at(1/) = a* + 1, and n is a number of atoms of 
the Boolean algebra 1/ / 1 • (1/ ). 

a 

It should be remarked that for any superatomic Boolean algebra 1/ of type 
< a,n >, its atomic type will be < a,O,n >. An atomic type -r(a) of an element a of 
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a superatomic DILARC J/ will be an atomic type of the DILARC a. 

Definition 1.29. For any limit ordinal a, D (a) will denote a DILARC 
(which is not a Boolean algebra) of subsets of the ordinal a generated in the 
signature <U,n,\,O> by intervals of the type (a,b] for a~bEa. In this case the 
following analog of theorem 1.6 is valid. 

Lemma 1.12. For any countable ordinal a, if a DILARC 21 is such that 

T(J/ ) =< a,a,O >, then 21 E!! D(w a ). 

Theorem 1.19. For any countable ordinals fJ ~ a, natural number n, and 

DILARC 21 such that T(J/) =< a,p,n >, we have: 

(a) if P=O, then J/ eB(wa'n); 

(b) if fJ= a,n=O, then J/ eD(wa); 

This theorem immediately yields the following corollary. 

Corollary 1.S. Any countable superatomic DILARCs of identical atomic types 
are isomorphic. 

Definition 1.30. The atomic type of an arbitrary DILARC 21 will be a triple 

T(J/ ) = T(/at(}/)(2I », and the atomic type of an element a EJ/ will be a triple 

T(a) = T(a n I at(}/ )(21 ». fJ(J/ )(fJ(a» will denote the second component of the triple 

T(2I )(T(a» which will be called a special rank of the DlLARC J/ (of the element 
a). 

Definition 1.31. A function I of a DILARC J/ in a certain ordinal will be 

called additive if I obeys the condition: for any a,b EJ/ l(aU b) = max{/(a),f(b)} 

and 1(0) = o. 

Lemma 1.13. For any DILARC J/ , the function of a special rank fJ(a) is 
additive. 

Definition 1.32. A countable superatomic DILARC 21 will be called special 
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if its atomic type has the form < {j(JI ),{j (JI ),0 >. 

Definition 1.33. For any set of DILARCs 21 i(i EI), ~ 21 i will denote a 
iEI 

sublattice of the direct product IT 21 j of a DILARC 21 i with a basic set 
iEJ 

{f E ITJI ill{j Ellf(j);o! O}I< Xo}· 
iEI 

From lemma 1.11 one can easily deduce the following corollary. 

Corollary 1.9. An ideal complement of the DILARC ~ JI i is isomorphic to 
iEJ 

the direct product of the ideal complements of the DILARC 21 i . 

Lemma 1.14. Let JI be a special DILARC. 

(a) if {j(JI) = a + 1, then JI is representable as JI = ~21 n' where JI n is a 
nEro 

superatomic Boolean algebra of the atomic type < a,O, 1 > ; 

(b) if {j(JI) is limiting and {j(21) = lim an' where an is an increasing 
nEro 

sequence of ordinals, then JI is representable as JI ~ ~ 21 n ' where JI n are 
1Em 

superatomic Boolean algebras of the atomic type < an' 0,1 > . 

According to corollary 1.9 and to the above, an ideal complement of a Boolean 

algebra is isomorphic to it, an ideal complement l'(JI) of a special DILARC JI has 

the form IT JI n' where JI n are Boolean algebras used in the statements (a) and (b) 
nEro 

of lemma 1.14. In l'(JI) = IT 21 n let us determine a chain of ideals IfJ(f3 s {j(21 )), 
nEro 

setting 113 = {f E IT JI nl fen) ElfJ(JI)}. Therefore, for any locally principal ideal 1 of 
nEro 

a special DILARC 21 = ~21 n 1 ElfJ iff 1 C;; I{J(21), where f3 is an arbitrary 
nEro 

ordinal. This fact implies, in particular, that the definition of ideals 1{J on an ideal 

extension l'(JI) of a special DILARC 21 is independent of the choice of its 

decomposition ~ 21 n . 
nEro 
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Definition 1.34. For a special DILARC Jf, 'ljJJ3 (p-ordinal :S {j(Jf» will 

denote the image of an ideal IJ3 under a natural homomorphism 

where Jf = 2:Jf n is a decomposition discussed in lemma 1.14. The function 
nEw 

p:Jf ' - {j(Jf) + 1 will be defined in the following way: for a EJf' we have 
p(a) = min {jl a E 'ljJJ3}. 

Lemma 1.15. For any special DILARC 1I , any ideal J EJ'(lI), if d IS an 

image of J at a natural homomorphism J' (li ) -li " then p( d) = {j( J) . 

Lemma 1.16. For any special DILARC 1I, the mapping p:lI' - {j(1I) + 1 
has the following properties: 

(1) p(dl Ud2 ) = max{p(dl ),p(d2 )},p(d) = 0 <r:>d =0; 

(2) for any p:s {j(1I) there is a dEli' such that P(d) = 13 ; 

(3) if p:Sp(d), then there is a do Ell' such that do :sd, p(do) =13 and 
p(d \ do) = P(d) . 

For the special DILARC 1I, the pair < Jf ',p > is, as can be seen in the 
following statement, universal. 

Lemma 1.17. Let 1I be a special DILARC, a = {j(1I), 1I 0 be not more 

than a countable Boolean algebra, r:lI 0 - a + 1 be an additive function, and 

r( 1 JI ) = a. Then there is a homomorphism 'ljJ:1I 0 -1I' such that r( d) = p( 'ljJ (d» 
o 

for any dEli o. 

Since all countable atomless Boolean algebras are isomorphic, and any Boolean 

algebra 1I I Iat(JI /1I) is atomless, any countable Boolean algebra 1I is either 

superatomic or is an extension of the superatomic DILARC Iat(JI) (li ) by a 

countable atomless Boolean algebra B( 1]). It should be recalled that by theorem 1.6 
a complete system of invariants for countable superatomic Boolean algebras will be 
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their types. 

Definition 1.35. A countable Boolean algebra JI is called nonnalized 

provided that Iat(}J)(JI) is special and JI /Iat(}J)(JI)sB(lJ). 

Lemma 1.18. Any countable non-superatomic Boolean algebra JI can be 

represented as JI 0 xJI 1, where: 

(1) JI 0 is a nonnalized Boolean algebra; 

(2) JI 1 is either a singleton or a superatomic Boolean algebra of type < a,n >, 

in which case a:2!: 6(JI 0). 

Let us now consider the types of the isomorphism of normalized Boolean 
algebras. 

Definition 1.36. Let JI 0 be a special DILARC of a special rank a, and JI 

be an extension of JI 0 by an atomless countable Boolean algebra B( lJ) (we assume 

JI 0 ~ JI ). Let CfJ}J be a natural homomorphism from JI to B( lJ) arising when JI 

is factorized over }f o. By lemma 1.13, the function {j:JI -+ a + 1 is additive. As 

for any superatomic element d EJI, (j (d) = 0, the epimorphism CfJ}J induces a 

mapping r}J :B(lJ) -+ a + 1 such that r}J (cp}J (d» = (jed) for any d EJI. Obviously, 

r}J is an additive function on B( lJ). The pair < B( lJ); r}J > will be called an atomic 

approximation of the extension of JI . 

Lemma 1.19. If JI 1,JI 2 are two extensions of a special DILARC JI 0 by a 

countable atomless Boolean algebra B( lJ), then the Boolean algebras of JI 1 and JI 2 

are isomorphic iff the pairs <B(lJ);r}J > and <B(lJ);r}J > are isomorphic, i.e., 
I 2 

when there is an automorphism "" of the algebra B( lJ) such that r}J = r}J . "" . 
I 2 

Lemma 1.20. Let JI be a special DILARC, (j(JI) = a. Then for any 
additive function r: B(lJ) -+ a + 1 such that r(lB('!) = a, there is a Boolean algebra 

JI r that is an extension of the DILARC JI with a Boolean algebra B( lJ), and such 

that the atomic approximation of JI < B( lJ); r}J > is equal to < B( lJ); r >. 

Lemma 1.21. A decomposition of countable non-superatomic Boolean algebras 

JI into a product of normalized and superatomic (or singleton) ones, discussed in 
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lemma 1.18 is unique, i.e., if 21 9! 21 0 X2l1 9!2I ~ x2I; are two such 

representations, then 21 0 9! 21 ; , 211 9! 211* . 

Definition 1.37. We will caII a system of invariants for a countable Boolean 

algebra 21 : 

(a) the type < a,n > of the algebra 21 if 21 is superatomic; 

(b) the set «B( lJ);rJl >, 'r(2I 1) >, where 21 0 x2l1 is a representation of the 
o 

algebra 21 as a product of a normalized algebra 21 0 by a superatomic algebra 21 1, 

and where O(2I O)S7:1(2I1) (here 7:1(21 1) is the first component of the triple 7:(21 1) 

when 21 is not superatomic). 

A system of invariants of the algebras 21 ,21 * will be called isomorphic if they 

coincide in the case of superatomic algebras 21 and 21 * , or if 

<B(lJ);rJl >9!<B(lJ);r~r.>, 7:(21 1)=7:(211*) for the corresponding decompositions 
o ao 

21 9! 21 0 x21 1, 21 * 9!2I ~ x21 r" for the case of non-superatomic algebras 21 and 

21 *. 
The statements of lemmas 1.18-1.21 and theorem 1.6 imply the foIIowing 

theorem. 

Theorem 1.20. 

(a) Countable Boolean algebras are isomorphic iff they have isomorphic systems 
of invariants; 

(b) for any cardinal a < wI' and any natural number n> 0 there exists a 
countable superatomic algebra with a system of invariants equal to < a,n >. For any 
ordinals as (3 < WI' any natural number n> 0 and any additive function 
r:B(lJ) - a + 1 such that r(18(1/) = a, there is a non-superatomic countable Boolean 
algebra with a system of invariants «B( lJ), r >,< {3,O,n ». 

Employing the obtained system of invariants of countable Boolean algebras, 
J.Ketonen obtained the most important property of the so-called Cartesian skeleton of 
the class of countable Boolean algebras, answering a number of known problems. 

Definition 1.38. For any class of algebras R, closed relative to finite 

Cartesian products (if 211,21 2 En., then 211 x 212 En.), the Cartesian (countable 
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Cartesian) skeleton of the class R is < J R ; x> (J R xo;x », where 

RXo - {1I ER 1111 I~Xo}, and the operation x is defined on the elements 

JR(JRXo ) in the following way: if a,h,c EJR and a,h,c are the types of the 

isomorphism of the algebras 11 ,.B ,tt , respectively, then a x h = c iff 11 x.B 51! tt . 
It is obvious that the class J R (J R Xo) modified by the operation x satisfies 

the axioms of a commutative semi group, while if R contains a singleton algebra, 

then <JR,x>«JRxo;x» obeys the axioms of a monoid, where the role of 1 

is played by the singleton algebra. 
The basic result obtained by J.Ketonen with a system of invariants for 

countable Boolean algebras in the course of a rather lengthy proof is as follows. 

Theorem 1.21. Any countable commutative semigroup is isomorphically 

embeddable into < JBtko; x>, which is a countable Cartesian skeleton of a variety 

of Boolean algebras. 

For an algebraic description of a countable Cartesian skeleton of a variety of 
Boolean algebras a number of definitions will be required. 

Definition 1.39. 

(a) A commutative monoid < M; ',1> is called canonical if the equality xy = 1 
yields the equalities x = Y = 1. 

(b) A general refinement of the sequences < xi,l i ~ n >< Yjlj ~ m> of the 

elements of a commutative monoid with the property n Xi = n Yj is a sequence 
isn jsm 

< r;}i ~ n,j ~ m> such that for any i ~ n,j ~ m 

(c) The monoid < M;;l > is called a refinement monoid if it is canonical and 
any sequences of the elements of M < Xiii ~ n >, < Yjlj :s m> with the property n Xi = IT Y j have a general refinement. 
i:sn jsm 

(d) If .m =< M;',l > and .n =< N;+,l> are two monoids, then the relation 
R ~ N x M is called a left V -relation, provided that: 



38 BOOLEAN CONSTRUCTIONS 

(1) < l,y >ER implies the equality y = l; 

(2) if < x, Y >ER and x ... x1x2, then there are Y1,Y2 Em such that Y = Y1Y2 
and < xl'Yt >,< x2,Y2 >ER. 

(e) The relation R c;;, N x M is called a right V -relation if R-1 is a left V
relation. If R is both a left and right V -relation, we will call R simply a V -relation; 

if in this case .'II. ... m , then R will be called a V -relation on .m . 

(0 A monoid m is called a V -monoid if.m is a refinement monoid, and on 

.m the V -criteria is fulfilled: if R is a V -relation on.om and < x,Y >ER, then 

x = y, i.e., the only V -relation on m is the equality relation. 

Let us recall a known Vaught criterion of the isomorphism of countable Boolean 
algebras. 

Theorem 1.22. Two at most countably infinite Boolean algebras 1I 1,Jl 2 will 

be isomorphic iff there is a correspondence between 111 and 11 2' i.e., when there is 
a set C c;;, Jl 1 x 11 2 such that 

(1) < l,b >EC_b= 1, <a,l>EC_ a= 1; 

(2) < a,b >EC _< .... a, .... b >EC; 

(3) if < a,b >EC and c E1I1, then there is a d ElI 2 such that 
< an c,b n d >, < a \ c, b \ d >EC; 

(4) if < a,b >EC, d EJI 2' then there is a c E1I1 such that 
< an c, b n d >, < a \ c, b \ d >EC . 

A countable Cartesian skeleton of a variety of Boolean algebras < .JBtko; x>, 

refined with a singleton Boolean algebra as a constant 1 will obviously be a 
refinement monoid, and by virtue of the aforementioned Vaught criterion, it will also 
be a V -monoid. 

Definition 1.40. 

(a) A submonoid .'11 of a monoid .om is said hereditary if for any 
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xE .. n,y,zEfTl the equality x=yz yields y,zE11.. Obvious is the fact that any 

hereditary submonoid of a monoid of refinement (a V -monoid) is a refinement 
monoid itself (a V -monoid). 

(b) The mnk of summation of the monoid.m is the least upper boundary of 

the powers of the sets {y Ern I there is a z Ern yz = x} for x Ern . 

(c) A V -monoid.m is called a universal V -monoid of the summation rank k 

(k is an arbitrary infinite cardinal), if .. m has a rank of summation k, and any V

monoid .. n of the rank of summation not greater than k is isomorphic to a certain 

hereditary submonoid of the monoid .m . 

Theorem 1.23. 

(a) For any infinite cardinal k there is a unique universal V -monoid of the 
mnk of summation k. 

(b) If f is an isomorphism from a V -monoid .11. to a hereditary submonoid of 

a V -monoid .m , then f is uniquely defined. 

The following result gives an algebraic characterization of a countable Cartesian 
skeleton of a variety of Boolean algebras, using the notions introduced above. 

Theorem 1.24. A countable Cartesian skeleton of a variety of Boolean 

algebras < JB4o;x,lBA >, refined with a constant which is a type of the 

isomorphism of a singleton Boolean algebra, is a universal V -monoid of the rank of 
summation ~o. 

E. Mad-Families and Boolean Algebras 

Here we will consider one more way of constructing Boolean algebras, which 
enables one to construct a family of these algebras which have different properties 
and are interrelated by, in particular, relations of embedding and epimorphism. The 
method is based on the so-called almost disjunct families of sets. It should be 
remarked that the notion of almost-disjunctness defined below is other than that 
introduced in section C. 
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Definition 1.41. 

(a) A family X of infinite subsets of a set A is said (pairwise) almost-disjunct 
if for any R1,R2 EX we have I~ n ~I< No. 

(b) An almost disjunct family X of subsets of a set A is said an ad -family, if 
for any finite X'!: X, the set A \ UX' is infinite, and an ad -family X is called a 

mad -family, if it is maximal in terms of the inclusion of the subsets of the set A 
among ad -families. 

(c) A family X of subsets of the set A has the property of a finite intersection 
(the fip property ), provided that we have I nX'I:i!: ~o for any finite X'!: X. 

The relation "P \ R is finite" between subsets of the set A will be denoted by 
P!:* R, P=* R if (P\R)U(R\P) is finite. 

For any ad -family X of subsets of the set A, F(X) will denote 

{B!: AI I{s EXls!:* B}I= 21A1}. 

By P(2 w) we will mean the following set-theoretical proposition introduced by 

Rothberger [202]: if F!: p(w) has the fip property, and IFI< 2xo, then there is an 
infinite P!: w such that P \ R is finite for any REF. It has been proved [114] that 

the statement P(2w) follows from the Martin hypothesis and, hence, moreover from 
the continuum-hypothesis. Indeed, for the case when eH,IFI= ~o we set 
F= {A)i < w}, and then we construct P in an inductive way, choosing Xi Ew in the 

following way: Xo EA; if we have constructed xo, ... ,xk for k < w, then let 

xk+l E1\J n ... nAk \ {xO,···xk}· Setting p .. {xiii < w}, we obviously get IP \ RI< ~o for 
any REF. 

Lemma 1.22. Under the assumption P(2w) for any non-principal ultrafilter P, 

on w there is a mad -family X of subsets w such that F( X) = P. 
For any family T of subsets of the set A, B(A,T) will denote a subalgebra of 

the Boolean algebra of all subsets of the set A, generated by the elements included 
in T and elements of the type {a}, where a EA. If X is a mad -family of the 
subsets of A, then B(A,X) is, as can be seen easily, a superatomic Boolean algebra 
of type < 2,1 >. 

Definition 1.42. By {3A we will mean the family of all ultrafilters on the set 

A. The Rudin-Keisler quasi-order sl on different ultrafilters is defined in the 
following way: for p E{3A, q EfJB, the relation p sl q holds iff there is a mapping f 
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of a certain set X Eq in A such that for any Y~ A, YEp iff for a certain Z Eq, 
feZ) ~ Y. The finite Rudin-Keisler quasi-order :s is defined in an analogous way, 

but there is an additional requirement on f: for any a EA, If-\a~< Xo. 

Theorem 1.25. There is 2Ko (221<0 under CH) of non-principal ultrafilters on 
OJ, which are mutually incomparable relative to the Rudin-Keisler quasi-order. 

Let p be an arbitrary non-principal ultrafilter on OJ, and let Xp be a mad

family of the subsets OJ constructed in lemma 1.22 such that F( Xp) = p. By .B p 

we will mean a Boolean algebra B(OJ,Xp )' It should be remarked that the existence 

of the algebra B(OJ,Xp ) has been proved under the assumption of the set-theoretical 

hypothesis p(2(J), or a stronger one, CH. 

Lemma 1.23. For any non-principal ultrafilters p,q on OJ, if a Boolean 

algebra .B p is isomorphically embeddable into the Boolean algebra .B q' then p:s q. 

The statement of lemma 1.23 obviously remains true for any ultrafilters p,q 
defined on arbitrarily countable sets A and B. 

From theorem 1.25 and lemma 1.23 one can deduce, as a corollary, 

(assuming P(2(J)) the existence of 2Ko (221<0 under CH) of mutually unembeddable 

Boolean algebras of the powers 2Ko. It should be recalled that in section (c) we 
obtained a stronger result with no additional set-theoretical assumptions: for any 

X > Xo there are 2K of mutually unembeddable Boolean algebras of the power X. The 

construction discussed above, however, will be used for constructing families of 
mutually unembeddable Boolean algebras with an additional property: they will be 
homomorphic images of each other, i.e., equivalent in terms of =«' 

Theorem 1.26. Under the assumption P(2(J) (or under a stronger one, CH) 

for any n EOJ there are Boolean algebras .Bo, .... B n-l such that .Bi are mutually 

unembeddable, and for any i,j < n, we have Bj«.B j' 

The latter statement, combined with theorem 1.9, makes it possible to prove the 
following theorem, which is of primary importance in this section. 

Theorem 1.27. Under the assumption P(2(J), for any finite set 
B = {bo, ... ,bs- 1} modified by two arbitrary quasi-orders :S1,:S2, there are mutually 

non-isomorphic Boolean algebras €o,".€s-1 (of the power 2KO) such that for i,j <s 

€ i :S € j iff ht :S1 bj , and € j « € j iff ht «2 ~ . 
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The proof of this theorem is given in section 14 of Applications. 
By way of concluding this section it should be remarked that not all the basic 

problems of the theory of Boolean algebras have been discussed here, my choice 
being governed by the applicability of the material presented in Chapters 2 and 3. A 
detailed and basically complete presentation of the modern theory of Boolean algebras 
can be found in "Handbook of Boolean Algebras" mentioned earlier. In section 14 
of Applications in this monograph one can find proofs of the theorems of the present 
section not to be found in "Handbook of Boolean Algebras" and in other 
monographs on Boolean algebras. 

Priorities. Theorem 1.1 is by M.N.Stone [220], and its proof can be found 
in any sufficiently complete textbook on topology and theory of Boolean algebras. 
Theorem 1.2 belongs to G.Fodor [63], the statement of theorem 1.3 to 
RM.Solavay [216], the proof of these theorems can be found, for instance, in a 
monograph by A.Levy [124]. Theorem 1.4 was proved by S.Mazurkiewicz and 
W.Sierpinski [133], theorem 1.5 by A.Mostowsli and A.Tarski, theorem 1.6 is to 
be found in a paper by G.Day [49]. Theorem 1.7 belongs to RS.Pierce [159], 
theorem 1.8 to RBonnet [20]. The statement of theorem 1.9 for the case 

~ i = ~ 1 is a variation of lemma 1 from a paper by A.G.Pinus [178], and in a 

general form this statement can be found in a paper by RBonnet and H.Si-Kaddour 
[19] (the proof is given in section 14 of Applications of the present monograph). 

It should be remarked that part of the material pertaining to interval and 
superatomic Boolean algebras can be found in "Handbook of Boolean Algebras" 
mentioned earlier and also, for instance, in monographs by YU.L.Ershov [59] and 
S.S.Goncharov [78]. The proof of theorem 1.9, theorems 1.10 and 1.11 are by 
M.Rubin [204]. 

Lemma 1.1 for the case of an ordered set of real numbers stems from a paper 
by W.Sierpinski [211] and has been repeatedly generalized for other LOSs by various 
authors. The form of lemma 1.1 presented here is closest to that presented by 
RBonnet [21]. Lemmas 1.2-1.6 and theorems 1.12-1.14 also belong to RBonnet 
[21]. Lemma 1.7 and theorem 1.15 can be found in a paper by A.G.Pinus [169], 
the proofs of these statements are given in section 14 of Applications. 

The constructions pertaining to definitions 1.17-1.24, as well as the statements 
of lemmas 1.8-1.10, of theorems 1.16-1.17 and corollaries 1.6-1.7 are by 
S.Shelah [207]. 

As has been mentioned earlier, the system of invariants for countable Boolean 
algebras was borrowed from J.Ketonen [104], a purely algebraic construction of this 
system of invariants and a generalized result for the class of countable DlLARCs was 
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borrowed from Yu.L.Ershov [56]. The contents of section (d) of this section, up to 
and including theorem 1.20 is after YU.L.Ershov [56]. 

Theorem 1.21 that has accounted for a number of known problems was proved 
by J.Ketonen [104]. Theorem 1.22 is the classical Vaught criterion of the 
isomorphism of countable Boolean algebras [233]. The results pertaining to the notion 

of V -monoids, i.e. theorems 1.23-1.24, belong to H.Dobbertin [53]. 
The statement of lemma 1.22 is by M.Weese [235], who also remarks in his 

work that Boolean algebras .B p,.B q are non-isomorphic when the ultrafilters p,q are 

incomparable relative to the Rudin-Keisler order. Theorem 1.25 was proved by 
K.Kunen [116], and its proof, as well as more details on the Rudin-Keisler order on 
ultrafilters, can be found in a monograph by W.W.Comfort and S.Negrepontis [41]. 
Lemma 1.23 and theorems 1.26 and 1.27 are to be found in a paper by 
A.G.Pinus [178] (their proofs are presented in section 14 in Applications). 

2. Basic Notions of Universal Algebra 

The purpose of this section is to recall the basic facts of the theory of 
universal algebras to be used later in this monograph. Some standard notations and 
definitions of the theory of universal algebras, which can be found in monographs 
by A.I.Mal'tzev [128], A.G.Pinus [161], G.Griitzer [84], P.M.Cohn [37], S.Burris, 
H.P.Sankappanavar [28] and others, will be made use of. Let us recall some of 
them. 

For any class of algebras R, I(R) will denote the class of all algebras 

isomorphic to the algebras of the class R . Let S(R) be a class of all subalgebras 

of the algebras of the class R. H(R) will be a class of all homomorphic images 

of the algebras of the class R, P( R ), Ps (R) the classes of all direct and subdirect 

products of R -algebras, p/R) the class of all ultraproducts of R -algebras, and 

PF(R) the class of all filtered products of H -algebras. 

The class of algebras R is called a variety (a quasi-variety) if it consists of all 
the algebras of a given fixed signature which obeys a certain system of identities 

(quasi-identities). For an arbitrary class of algebras R, .. 'lTl (Jl) (rD (R.» will denote 

the least variety (quasi-variety) containing the class R. The following statements are 
the corner-stones of the theory of varieties (quasi-varieties) of universal algebras (for 
simplicity, an at most countably infinite signature is assumed throughout). 

Theorem 2.1. The class of algebras R is a variety iff S(R) k R , 
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H(R) c;;;;, Rand p(R) c;;;;, H. For any class of algebras H we have 
.m (H) = HSR}l). 

R + will denote an extension of the class R by adding a one-element algebra 
to it. 

Theorem 2.2. The class of algebras ft is a quasi-variety iff S(R) ~ ft. , 
PF(H)~H and H+ ~R. The class of algebras ft is a quasi-variety iff 

S(ft) c;;;;, R, P(R) c;;;;, H, PiR) ~ft and ft +c;;;;, ft. For any class of algebras ft 

we have f!) (ft) = SPF(R +) . 

A variety.m is called finitely generated if there exists a finite class R of 

finite algebras such thatm =.m (R), or, which is equivalent, "m is generated by a 

certain finite algebra. By Sm (X) we will mean an X -generated free .. m -algebra. For 

any variety .. m .. m = HSP(J.m('Xo»' 
Ki will denote a projection of a direct product fl.Bi and its subalgebras on 

iEl 

the algebraB i . The algebra JI is called subdirectly non-decomposable if for any 

algebras .Bi(i EI) the fact that JI is a subdirect product of the algebras . .Bi(i El) 

implies that for a certain io EI, Kio is an isomorphism of JI on.Bio . 

Theorem 2.3. Any algebra JI is isomorphic to a subdirect product of 
subdirectly non-decomposable algebras. 

Since the subdirectly non-decomposable algebras in the above statement belong 

to any variety to which the algebra JI belongs, any variety is uniquely definable by 

its subdirectly non-decomposable algebras. In particular, for any class R, the 

equality .m (ft) = HPs(ft) [108] holds. 

By ftSI we will mean a class of subdirectly non-decomposable R -algebras. 

For any algebra JI , ConJl is a lattice of congruences of the algebra JI; V,A are 

the corresponding lattice operations on ConJl, V 11' All are the biggest and the 

least, or unit and zero, congruences on JI . An element a of an arbitrary lattice L 

is said compact if for any subset A ~ L, v A:?: a implies the existence of a finite 
B ~ A such that vB:?: a. A lattice is called algebraic if it is complete and any of its 
element is the upper bound of a certain family of compact elements. For any algebra 

JI and any a,b EJI , fJa,b will denote the least congruence on JI containing a pair 

< a,b > (such congruences are said principal). ConpJl stands for the family of 
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principal congruences partially ordered in terms of the inclusion on 11. For any 

algebra 11 , the compact elements of Conll , and only them, are finite unions of 

principal congruences. The lattice Conl1 is algebraic for any algebra. The converse 
is also valid. 

Theorem 2.4. Any algebraic lattice is isomorphic to the congruence lattice of 
a certain algebra. In this case, if the biggest element of the lattice is compact, then 
the algebra of a finite signature can be chosen. 

If f is a certain homomorphism of the algebra 11 on.B and () ECon.B, then 
v 
f () will denote a congruence on 11 which is equal to 

{< a,b >E11 21< f(a),J(b) >E()}. The kernel of f, kerf, is, by the definition, equal 
v 

to f !J.B . 

If 11 ~ITlIj, then we will write tf=d for {iEIIf(i)=g(l)} f,gElI, and 
EI 

1[/ pO g]1 for I\IU = g]1. If ()j ECon1i (i E/), and A ()j = !J}j' then 11 is 
EI 

isomorphic to a subdirect product of algebras 11 I ()j (i EI). Conversely, if 

11 ~ IT.B i has a subdirect product (the latter will be denoted by 11 ~p IT·B i)' then 
EI EI 

A ker.1t'i =!J.". 
iEl .,. 

Therefore, 11 is subdirectly non-decomposable iff there exists a least non-trivial 

congruence on 11 , which is called a monolith of 11 and denoted by p(lI). Since 

any congruence is a union of principal ones, p(lI) is always principal. An element 
a of the lattice L will be called non-decomposable at an intersection in L if for any 
bi EL (i EI), the equality a = A bj implies the existence of an in EI such that 

EI 

a = bio .For any () EConl1 ,11 I () is a subdirectly non-decomposable algebra iff () is 

non-decomposable at an intersection in Conll. For any () EConll a natural 

homomorphism of 11 on 11 I () generates a natural isomorphism of the lattice 
Conl1 I () with a sublattice [(); V}j] of the lattice Con 11 , where 

[a; fJ] = {y EIJ a :s: y :s: fJ} for the lattice L and any a:s: fJ EL. 

Let qJ, 'I/J be arbitrary binary relations on 11, qJ' 'I/J denote their composition, 

qJ''I/J - {< a, b >El1 21 3c El1: < a,c >EqJ, < c,b >E'I/J}. For ()1' ()2 E Conl1 , the 
following conditions are equivalent: 
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In this case the congruences (Jl, (Jz are said commutable. If (Jl' (Jz EConJl , 
(Jl II (Jz = L1, (Jl V (Jz = V, and (Jl' (Jz are commutable, then JI ee JI / (Jl x JI / (Jz. The 

converse is also valid: if JI ee Jl1 x JI Z ' then there are (Jl,(JZ EConJl such that 

JI i ee JI / (J i and (Jl' (Jz have the above properties. 
A variety of algebras whose congruences are commutable, is said congruence

commutable. 

Theorem 2.5. For a variety ,m, the following conditions are equivalent: 

(1) .. m is congruence-commutable; 

(2) J m (3) is congruence-commutable; 

(3) there is a term p of three variables such that on .. m the following 

identities hold: 

p(x,Z,Z) = x, p(x,x,z) = z. 

A lattice is called distributive if it satisfies either of the following equivalent 

equations: 

X II (Y v z) = (x II y) V (x II z), 

X V (y II z) = (x v y) II (x V z). 

A lattice L is called modular if it satisfies the following equality: 

(x II y) V (y II z) = Y II «x II y) v z), 

or a quasi-equality equivalent to it: 

X II Y = X - X V (y II z) = y II (x v z). 

Any distributive lattice is modular. 

Theorem 2.6. A lattice L is non-modular iff a lattice Ns is isomorphically 

imbeddable in L (Fig. 3). 
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Theorem 2.7. A lattice L is non-distributive iff a lattice M3 or Ns is 

isomorphically imbeddable into L (Fig. 3). 

<) 
Fig. 3 

A variety of algebras such that Con21 is distributive (modular) for all its 

algebras 21 is called a congruence-distributive (congruence-modular) variety. A variety 
which is both congruence-commutable and congruence-distributive is said arithmetic. 

Theorem 2.8. For a variety .m, the following conditions are equivalent: 

(1) .m is congruence-modular; 

(2) Sm (4) is congruence-modular; 

(3) for any 21 E.m and any a,h,c,d E2I , 

(4) for a certain natural number n C?! 1, there are terms PO, ... ,Pn of four 
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variables such that for i =O, ... ,n -1, the following equalities are valid on . .'Ul : 

Po(X,y,z,u) =x,Pn(x,y,z,u)= u, p,(X,y,y,X) = x; 

Pi(x,y,y,u) = Pi+l(x,y,y,u) for even i; 

Pi(x,x,u,u) = Pi+l(x,x,u,u) for odd i. 

Theorem 2.9. For a variety . .'Ul, the following conditions are equivalent: 

(1) . .'Ul is congruence-distributive; 

(2) J.m (3) is congruence-distributive; 

(3) for any Ji E..'Ul and any a,b,c EJi , 

(4) for a certain natural number n;;: 1, there are terms Po, ... , Pn of three 

variables such that for i = O, ... ,n -1, the following equalities are valid on . .'Ul : 

Po(X,y,z) = x, Pn(x,y,z) = Z, Pi(X,y,x) = x; 

Pi(X,X,Z) = Pi+l(x,x,Z) for even i; 

Pi(x,Z,Z) = Pi+l(x,Z,Z) for odd i. 

Theorem 2.10. For a variety . .'Ul , the following conditions are equivalent: 

(1) In is arithmetic; 

(2) there is a term P of three variables such that.'Ul satisfies the following 
equations: 

p(X,y,X) = p(x,y,y) = p(y,y,x) = x. 

It should be noted, for example, that any variety of groups, rings and quasi
groups is congruence-commutable. Either directly, or using theorems 2.5 and 2.8, 
one can also observe that any congruence-commutable variety is congruence-modular, 
and any variety of lattices is congruence-distributive. Another source of examples of 
congruence-distributive varieties are the discriminator varieties to be introduced below. 

The algebra Ji is called simple if its lattice of congruences is two-element, i.e., 
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any of its factors over a nonzero congruence is a one-element algebra. Of major 

importance in the theory of varieties of algebras is the following result. 

Theorem 2.11. Any nontrivial variety contains a simple algebra. 

In the proof of all preceding statements use has been made of the following 
fundamental statement about the structure of congruences generated by a given set of 
pairs of elements of a universal algebra 

Theorem 2.12. For any universal algebra JI , any set T of non-ordered pairs 

of elements of JI , and for any a,b EJI , a pair < a,b > belongs to a congruence on 

JI generated by the set T iff there are terms Pi(x,Yl, ... ,Ym) of the signature of the 

algebra JI (lsisl), elements el, ... ,em EJI, and pairs {sih}ET (lsisl) such 

that 

This theorem obviously entails the following corollary. 

Corollary 2.1. For any subalgebra Jl 1 of an algebra JI and any set T of 

non-ordered pairs of elements of Jl 1, if a congruence a EConJi is generated by the 
set T, then: 

(a) the existence of a homomorphism f of the algebra JI on Jl 1 (leaving the 

elements of Jl 1 fixed) yields that a restricted on Jl 1 is equal to the congruence 

generated by the set T on the algebra Jl 1; 

(b) for any c EJl 1, d EJI , if there is a homomorphism g of the algebra JI on 

Jl 1 fixing the elements of 211 and such that g( d) = c, then the restriction of the 

congruence a v () c,d on 211 is equal to that of the congruence a on 21 1, 

Its will denote the family of all simple algebras from a class It. It should be 
noted that for any non-trivial quasi-variety of algebras, there is a simple algebra 
relative to this quasi-variety, i.e. such that any factor of this algebra over a 

congruence other than zero and unity, does not belong to the given quasi-variety (fot 
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the proof see [79]) .. 

The algebra 11 is called congruence-uniform if for any 8 ECon1l , all the 

equivalence classes over 8 on 11 are of the same power. A variety is congruence
uniform if its all algebras are congruence-uniform. 

The class of algebras n. is called locally finite if any finitely generated n.
algebra is finite. The variety.m is locally finite iff the algebras S.m (n) are finite 

for any nEw. For any finite class n. of finite algebras, a variety .m (R) is locally 
finite. 

The finite algebra 11 is called primal if for any n Ew and any n -ary function 

!(xl' ... 'xn ) defined on 11 , there is a term t(Xl> ... ,xn ) of the algebra 11 such that 

for any al, ... ,an E1I !(al, ... ,a n )= t(al, ... ,a n ), i.e., any n-unary function on 11 is 

defined by the term. 

Theorem 2.13. For a finite algebra 11, the following conditions are 
equivalent 

(1) 11 is primal; 

(2) .. r.rl (11) is arithmetic, 11 is simple, has no proper subalgebras and is rigid, 
i.e., has no non-trivial automorphisms. 

A discriminator on algebra 11 is a function d(x,y,z) such that for any 

a,b,c E1I, d(a,b,c) =a if a'¢b and d(a,b,c) =c if a=b. The algebra 11 is called 

a discriminator algebra if the discriminator on 11 is defined by a term of the algebra 

11 . A finite discriminator algebra is called a quasi-primal algebra. 

Theorem 2.14. For a finite algebra 11, the following conditions are 
equivalent 

(1) 11 is quasi-primal; 

(2) .. r.rl (11) is arithmetic, 11 and its all subalgebras are simple; 

(3) any function !:Ak - A, where A is a basic set of the algebra 11, 
preserving all subalgebras of the algebra 11 and all isomorphisms among these 

subalgebras, is defined by a certain term of the algebra 11 . 
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A variety.m is a discriminator variety if there is a class R. ~ .. m such that 

.. m (R.) = .. m, and on all 11 ER. the discriminators are determined by a general 

term. In this case it appears that R ~ .. 'lfl 81 = .m 8 . 

Theorem 2.15. For any variety .m, the following conditions are equivalent: 

(1) .. 'lfl is a discriminator variety; 

(2) there is a term P of three variables such that the following equations are 

satisfied on .m : 

p(X,Z,Z) = x, p(x,y,x) = x, p(x,x,z) = z, 

p(X,p(X,y.z),y) = y, 

and for any signature function f, the following identity holds on .m: 

p(X,y,f(Zl"" ,Zk) = p(x,y,f(p(x,y,Zl)" .. ,p(x,y,Zk)))· 

A set.m is said to be semisimple if any of its subdirectly non-decomposable 
algebras is simple. As has been remarked earlier, for discriminator varieties the 

equality .. m 8 = .m SI is true, i.e., any discriminator variety is semisimple. By 
theorems 2.10 and 2.15, any discriminator variety is arithmetic. 

The following statement is of great importance for the study of congruence
distributive varieties of algebras. 

Theorem 2.16. (Jonsson lemma). If for a certain class of algebras R, 
.. 'fll (R) is congruence-distributive, then .m (It hI ~ HSPp(R). 

Let us now recall the basic notions and results of the theory of commutators of 
congruence-modular varieties of algebras, the theory which was a major breakthrough 
in the theory of varieties of algebras in recent years. 

The cornerstone of this theory was laid in a monograph by J.D.H.Smith [213] 
on congruence-commutable varieties and later developed for congruence-modular 
varieties by J.Hagemann, C.Herrmann and H.P.Gumm ([89], [92], [86], [87]). A 
systematic presentation of the theory of commutators can be found elsewhere ([88], 

[72], [161]). Let henceforth.m stand for an arbitrary congruence-modular variety. 

For any algebra 11 E .. 'lfl, any congruences a ,fJ E Con 11 , 11 a will denote a 

subalgebra of the algebra 11 with a basis set equal to a, and we will define the 
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congruence L1~ on 11 a as a congruence generated by the set 
{« x,x >,< y,y »1< x,y >EfJ}. A commutator of the congruences a,fJ will be a 

relation [a,fJ] on the algebra 11 such that <x,y>E[a,fJ] iff «X,X>,< x,y >>EL1!. 

For any a,fJ E Conll , [a,fJ] EConll . 

In the following theorem one can find an abstract definition of a commutator. 

Theorem 2.17. A commutator of congruences on algebras 11 of a 

congruence-modular variety.m is said to be the biggest binary operation f(x,y) 

(relative to the order on Conll) defined on Conll (11 E.m) and having the 

following properties for all a,fJ,y EConll : 

(1) f(a,fJ)saAfJ; 

(2) f(a,fJ v y) = f(a,fJ) v f(a,y); 

(3) f(a v fJ, y) "" f(a,fJ) v f(fJ,y), 

(4) for any homomorphism tp of an algebra .B E.m on the algebra 11 we 
v v v 

have tp f( a ,fJ) = f( tp a,tp fJ) v ker tp . 

For our further proofs we will need more properties for the commutator 
resulting from theorem 2.17, i.e., 

v v v 
(5) if 11 ... 1I1x ... xll n' aj,fJj EConll j , then [A1rjaj, v 1rifJj] = A 1rj[aj,fJj]' 

isn is n jsn 

where 1r j are projections of 11 on 11 j • 

The following statement is another definition of a commutator, different from 
that in theorem 2.17. 

Theorem 2.1S. If a ,fJ E Conll , then [a,fJ] is the least congruence y on 

11 with the following properties: for any a,b ElI n, p,q ElI, if 

< 1rja, 1rjb >Ea(i s n), < p,q >E{J, then for any term t(xI'" .,xn ,y) of the algebra 11 , 
the fact that <t(a,p),t(a,q) >Ey implies that <t(b,p),t(b,q»Ey. 

The center of the algebra 11 is said to be the biggest congruence a EConll 

such that [V,a] = L1. The congruence fJ EConll is called Abelian, if [fJ ,fJ] "" L1 JI . 

The algebra 11 is Abelian if VJI is also Abelian. A variety is Abelian if all its 
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algebras are Abelian. It should be noted that in the case when.m is a variety of 

groups, 21 Em, a,f3 E Con21 and correspond to normal subgroups 21 1,21 2 of the 

algebra 21, then [a,f3] corresponds to a group-theoretical commutator [2Il>2Izl of 

the subgroups 21 1,21 2 • Any group is Abelian in the sense of the theory of 
commutators iff it is Abelian (i.e., commutative) in the group-theoretical sense. A 
ring is Abelian iff it is a ring with a zero multiplication. 

Theorem 2.19. Ifm is a congruence-modular variety, then there is a term 

p(x,y,z) such that for any algebra 21 Em , any Abelian a ECon21 and any d E2I 
on the congruence-class d / a, the operations of an Abelian group + are definable, 
so that for a,b,c Ed / a, p(a,b,c) = a - b + c, and for any signature operation 

f(xl' ... x,), for any al, ... ak,bl, ... bk,cl, ... CkE2I such that for isk aj,bj,c j are a

equivalent, the following equality is valid: 

Corollary 2.2. 

(1) If 21 is an Abelian algebra, then .m (21) is an Abelian variety. A class of 

all Abelian algebras of a congruence-modular variety.m is a variety, the term p of 
theorem 2.19 determining the operation x - y + z of an Abelian group on all Abelian 

.m -algebras simultaneously. 

(2) If a ECon21 is such that 21 / a is an Abelian algebra, then for any 

yECon2l, we have a·y=y·a. 

It should be recalled that polynomials on the algebra 21 are said to be 
functions of the type f(Xl, ... xk) = t(xl, ... xbak+ly .. ,an), where t(xl, ... 'xn) is a term 

of 21, ak+l, ... ,a n E2I. Two algebras with the same basic set are polynomially 
equivalent, provided that the families of polynomials on them coincide. The varieties 

.ml and .m2 of the signatures ()1'()2' respectively, are polynomially equivalent if 
there exist: 

(2) the mappings C{Jl(C{J2) of the functions of the signature ()1«()2) into the terms 
of the signature ()2( ()1); 
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(3) the mappings Hl(H2) of the products .ml x 61 (.om 2 x ( 1) such that for 

1/ Em 1 (.·'lll2)' ! E61(6 2) HI (1/ ,J)(H2 (1/ • f) there is a certain tuple of elements of 
the algebra 1/ in which case the algebras 1/ Em1(.m 2) and 

1P1(1/)E.m 2 (1/J2(1/)Em1) have the same basic set A. and for 
!(xl.···.xn )E61(6z) the function !(xl .... xn) and the term 

'Pl(f)(xl ... ·.xn• Hl(1/ .f) ('P2(f)(xl ... ·.xn• H2(1/ .f)) coincide on this set A. 

Theorem 2.20 If.m is an Abelian variety of algebras. then .m is 
polynomially equivalent to a variety of the left unitary Rm -modules over a certain 

ring R.m with unit. 

The proof of this theorem yields the following corollary. 

Corollary 2.3. Any locally finite Abelian variety is finitely generated. 

Some general properties pertaining to polynomial equivalence should be pointed 
out here. Since a family of congruences of any algebra is uniquely determined by a 
set of their polynomials. the polynomial equivalence of the two algebras implies a 
coincidence of their congruences. Therefore. the properties of the algebra which can 
be formulated in the language of congruences are transferred from the algebra itself 
onto any algebra polynomially equivalent to it. Such properties are. for instance. 
congruence-commutabili ty. congruence-distri butivity. congruence-modulari ty. simplicity. 
subdirect irreducibility and others. Thus. the following theorem holds. 

Theorem 2.21. 

(a) If a variety .oml is congruence-commutable (congruence-distributive. 
congruence-modular. semisimple). then the varieties polynomially equivalent to it have 
the same property. 

(b) If the algebra 1/ is simple (subdirectly non-decomposable. directly non
decomposable). then the algebras polynomially equivalent to it have the same 
property. 

(c) If the algebra 1/ is a direct (subdirect) product of certain algebras 1/ j. then 

any algebra polynomially equivalent to the algebra 1/ can be represented as a direct 
(subdirect) product of the algebras which are polynomially equivalent to the algebras 
1/j. 
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The algebra JI is called congruence-regular if for any a,f3 EConJl, a 
coincidence of any classes of congruence over both a and f3 yields the equality 
a = f3. A variety is congruence-regular if its all algebras are congruence-regular. 

Since any module is congruence-commutable, congruence-regular and congruence 
uniform, theorems 2.20 and 2.21 yield the following corollary. 

Corollary 2.4. Any Abelian variety is congruence-commutable, congruence
regular and congruence-uniform. 

An algebra JI is called neutral if for any a,f3EConJl [a,f3]=aAf3. A 
variety is said neutral if all its algebras are neutral. 

Theorem 2.22. 

(a) A subdirect product of two neutral algebras is neutral. 

(b) A congruence-modular variety.m is neutral iff it is congruence-distributive. 

An element a of a lattice L is said neutral if for any b,c EL, a sublattice 
generated by the elements a,b,c in L is distributive. The element a of a modular 
lattice is known to be neutral iff for any b,cEL av(bAc)=(avb)A(avc). 

Theorem 2.23. If a EConJl and JI / a is congruence-distributive, then a 

is a neutral element of ConJl . 

A variety.m is called residually small (residually finite) if the powers of its 

subdirectly non-deco91posable algebras are bounded (finite). The variety .. m is k

residual for a certain cardinal k if for any subdirectly non-decomposable.m -algebra 

JI,IJlI<k. 
The following statements are known as regards residual smallness. 

x m (2 0)+_ Theorem 2.24. If a variety.... is residually small, then it is 
residual. 

Theorem 2.25. For any finite algebra JI such that .r.fl (JI) is congruence
modular, the following conditions are equivalent: 

(l).'m (JI) is residually small; 
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(2) .. 'm. (1/) is n -residual, where n = (l + I)! m + 1,1 = mm m+l and m =11/ I; 

(3) for any /J,Y ECon€, € ES(1/) the inequality Y~ [/J,/J] implies the 
equality Y= [Y,/J]. 

Let us now dwell on some known facts of the theory of modules and rings we 
will need for further proofs. A variety of all modules over a ring R will be denoted 
by MR. A finite ring R is called a ring with a finite type of representations iff in 
MR there is only a finite number (to the accuracy of an isomorphism) of directly 
non-decomposable finite modules. 

Theorem 2.26. 

(a) Any module over a ring with a finite type of representations is isomorphic 
to a direct sum of finite directly non-decomposable modules. 

(b) If R is a ring with a finite type of representations, and for a finite R

module frE we have frE a ~ frE j, frE a j~ N j' where frE j ,N j are nonzero 

directly non-decomposable modules, then there is a bijective mapping / of a set I 

on a set J such that for any i EI frEj aN f(i). 

Theorem 2.27. Any finite simple ring is isomorphic to a ring of all n x n

matrices over a finite field of a certain natural number n. 

By way of concluding this section, let us formulate a known theorem on 
Cartesian powers of finite algebras. 

Theorem 2.28. If 1/ ,.B are finite algebras, and for a certain n Em 

1/n a.B n, then 1/ a.B. 

It should be noted that the choice of definitions and theorems of the present 
section was prompted not by the desire to make a complete survey of the theory of 
universal algebras, but by the requirements of the material to be further discussed in 
this work. For instance, the theory of clones and many other interesting and 
developing fields of the theory of universal algebras have not been discussed here. 

Priorities. As has been pointed out earlier in this section, the proofs of the 
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cited results can be found in the monographs listed there. Let us again emphasize the 
value of the monograph by S.Burris and H.P.Sankappanavar [28] as an introduction 
to the modern theory of universal algebras, and that by RFreese and RMcKenzie 
[71] as an introduction to the theory of commutators. 

Theorem 2.1 is by G.Birkhoff [15], theorem 2.2 by A.I.Mal'tzev [130]. 
Theorem 2.3 can be found in a paper by G.Birkhoff [16]. The first statement in 
theorem 2.4 belongs to G.Gratzer and E.T.Smidt [82]. The refinement on the 
finiteness of a signature belongs to W.A.Lampe [120]. Theorem 2.5 is a pioneer 
work by A.I.Mal'tzev [131], which initiated the study of congruence-classes of 
varieties. Theorem 2.6 was proved by RDedekind [50], theorem 2.7 by 
G.Birkhoff. Theorem 2.8 can be found in a paper by A.Day [48], theorem 2.9 in 
a work by B.Jonsson [98], theorem 2.10 in that by A.F.Pixley [182]. Theorem 
2.11 belongs to RMagari [127]. One of the cornerstone results in the theory of 
universal algebras are theorem 2.12 and corollary 2.1 resulting from it, which were 
obtained by A.I.Mal'tzev [131]. Theorem 2.13 is by A.L.Foster and A.F.Pixley 
[65], theorem 2.15 was proved by R.McKenzie [137], theorem 2.16 by B.Jonsson 
[98], theorem 2.17 by C.Hermann [88], theorem 2.18 by H.P.Gumm [71]. 
Theorems 2.19 and 2.10, as well as corollaries 2.2 and 2.3 belong to C.Hermann 
[92]. Theorems 2.22 and 2.23 can be found in a paper by J.Hagemann and 
C.Herrmann [89], theorem 2.24 in that by W.Taylor [226], theorem 2.25 in a 
paper by RFreese and RMcKenzie [72]. The statement of theorem 2.26 is by 
W.Baur [11] and S.Garavaglia [75]. Theorem 2.27 belongs to J.H.M. Wedderburn, 
theorem 2.28 can be found in a paper by Lovasz [126]. 
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BOOLEAN CONSTRUCTIONS IN UNIVERSAL ALGEBRAS 

3. Boolean Powers 

One of the basic ways the theory of Boolean algebras has been affecting the 

theory of universal algebras on the whole during the last decades, has been the 

introduction and wide use of the construction of Boolean powers and their various 
modifications in universal algebra. 

By C( X,Y) we will henceforth mean a set of continuous mappings of a 

topological space X to a space Y. If not otherwise stated, universal algebras with a 

discrete topology will be considered. 

Definition 3.1. If 2/ is an arbitrary algebra,.B is a Boolean algebra, and 

.R * is a Stone space of the Boolean algebra .B, then a Boolean power 2/1J of the 

algebra 2/ over the Boolean algebra.R is said to be a subalgebra of the direct 
lJ' ..' power 2/ . of the algebra 2/ wIth a baSIC set C(.B ,2/). 

Since the constant functions of 2/ .lJ· are contained in C(R ',2/), 2/.lJ will 

be a subdirect power of the algebra 2/. As .R· is compact, and the topology on 

2/ is discrete, the domain of values of any element I contained in 2/.lJ will be 

finite, and for any element a in this domain I-I(a) is open-closed in .B', i.e., it 

is identical with a certain element of the Boolean algebra .B. The converse is also 

valid: for any partition 1 of the Boolean algebra.B into a finite number of elements 

ht, ... , bn, for any sequence of elements al, ... an of the algebra 2/ there is an element 

I E2/.lJ such that for every is n, any element x of the space .B', if X EBi (i.e., 

to an open-closed subset of the space .R· corresponding to an element bi ), then 
I(x) = a i . Therefore, the elements of a Boolean power can be set as tuples 

< q, ... ,bn;al, ... a n >, where bl, ... bn is the partition 1 in the Boolean algebra .B, 
while al, ... an are pairwise different elements of the algebra 2/. Such setting of 

elements of 2/.lJ will be termed canonical, while that without the condition of 

pairwise difference of al, ... ,an will be called quasi-canonical. Obviously, for any 
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quasi-canonical setting < i1, ... ,bn;al~ .. ,an >, there exists a canonical setting such that 

the same element of the Boolean algebra }1.B corresponds to them, for which 
purpose it would be sufficient to join together those bi which correspond to the 

same values of ai' 

The definition of a Boolean power obviously entails that any class of algebras 
are closed relative to direct powers and subalgebras will be closed relative to the 
Boolean powers as well, and, in particular, so will be arbitrary varieties and quasi
varieties of algebras. 

Let us recall without proof a number of obvious properties of the operation of 
a Boolean degree. By Z. we will henceforth denote a two-element Boolean algebra, 
by P(A) a Boolean algebra of all subsets of an arbitrary set A. 

Lemma 3.1. For any algebras }1 ,}1 1, any Boolean algebras .B1' .... B n' any 
set C the following statements are true: 

(a) 1/ ~e! 1/ ; 

(b) '11 .B1x .. ,X,B n"" '11.BI '11 .Bn. 
d - d X ••• Xd , 

(d) if 1/ is finite, then }1 P(C)s}1 c; 

(e) if .B1 is a subalgebra of the algebra .B2' then }1.BI is isomorphically 

embeddable in }1B2 ; 

(f) if 1/1 is a subalgebra of the algebra }1 , then }1 l·BI is also a subalgebra of 

the algebra }1BI ; 

(g) if .B1 is a homomorphic image of the algebra .B2' then the algebra 1/ BI 

is a homomorphic image of the algebra }1 .B 2 ; 

(h) if 1/1 is a homomorphic image of }1 , then }1 l.BI is a homomorphic image 

of 1/ .B I • 

Below we will obtain, under certain conditions, the converses of classes (e) and 
(g). 

If F is a filter on a Boolean algebra .B , then the relation OF on the Boolean 
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power J/.B will be defined in the following way: < J,g >EOF iff ~J =g]IEF. One 

can immediately check if OF is a congruence on J/ 1J • 

Lemma 3.2. 

(a) If J/ is not a singleton algebra, then the mapping F --+ OF is an embedding 

(preserving all sup and inf) of the lattice of filters of the Boolean algebra.B in the 

lattice Con( J/ 1J) of congruences of the algebra J/ 1J : 

Proof. Statement (a) can be directly checked. J 10F will denote an equivalence 

class OF containing an element J of the algebra J/ 1J, and b I F an equivalence 

class relative to the filter F containing an element b of the Boolean algebra .B. One 

can easily see that the mapping cp:J/ .B I OF --+ J/ 1J IF defined as 

where < q, ... ,bn:aI" .. 'O-,z > is a canonical representation of the element J, is an 

isomorphism of the algebras J/ 1J I OF and J/ 1J IF. • 

Lemma 3.3. If J/ is arbitrary, and .BI ,.B2 are Boolean algebras, then 

where .BI *.B2 is a free product of the Boolean algebras .BI and .B2. 

Proof. It suffices to show that: 

(1) for any Boolean algebras .BI ,.B2 there is an isomorphism .BI .B1s .BI * .B2: 

To prove statement (1), it is sufficient to directly check if the mapping 
n 

cp«bI, ... ,bn; aI, ... ,a n » = V (bi 1\ aiL where < q, ... ,bn;aI" .. 'O-,z >, is a canonical 
i-I 
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representation of an element of the algebraBI .B2 is an isomorphism of the algebra 

.BI .B2 on the algebra .BI *B 2 . 

Statement (2) is proved by the same direct checking. Indeed, if 

. h· h d i i. i i E ,}1 .lJ 1 h ·ll·d hit 10 w IC case i =< cI,' .. ,C m;' aI, ... ,am; >.(.1 , t en we WI consl er tee emen s 

b b · ij jj EB lJ 2 h . .' h·1 ij i k' d rij=< 1'"'' n,al,···,an > ·1 ' were Isn,Jsmj, w Ie ak=cj at =1, an 

a~ = 0 at k;o! i. Obviously, the elements r;p s n,j s mj) perform the partition of 

unity in the Boolean algebra .BI lJ 2, and we can easily check that the mapping 

The following statement contains a sufficient condition for subdirect powers of 

the algebra Jl to be isomorphic to Boolean powers of this algebra. 

Lemma 3.4. Let a subalgebra t: of a direct power Jl I of the algebra Jl 

have the following properties: 

(1) all constant functions from Jll are in t: ; 

(2) the range of any function f Et: is finite; 

(3) for any fl' f2,13'/4 Et:, if g EJI I is such that for i E~fI = 1z11 
gel) = 13(i), and for i E~fI ;o! 1z11 gel) = k(i), in which case gEt: , then there is a 

Boolean algebra.B such that t: e! JI .B . 

Proof. Let a be a function from Jl I assuming a constant value a EJl . Let 
us consider a family S of subsets of the set I that consists of sets of the type 

U = g 11 where f, g Et: . It should be remarked that S is a subalgebra .B of the 

Boolean algebra of subsets of the set I. Indeed, if, for instance, 

A = 1[/ = gll, B = I[h = k11 for f,g,h,k Et: , then, by property (3), there are functions 

p,q Et: such that tp = fll= I[q = fll= 1[/ = g 1 and tp = h11 = I[/;o! gll. tq = k11 = 
[f;o! gl. In this case, obviously, AU B = I[p = q11. In an analogous way we can 
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prove that A n B and ...., A also belong to S. 

Let f E€ and x E.B '. As Rf (the range of f) is finite, x is an ultrafilter on 

.B, and Ur1(a)=IEX; as f- 1(a) =ti =allE.B, and r1(a) (aERj) are 
aERj 

disjunct, f- 1(a)Ex to the accuracy of a single aERj. Let us denote this a by 

a(f,x). Let us define a mapping a of the algebra € into a direct power J/ 11 * of 

the algebra J/ , assuming a(j)(x) = a(f,x). Obviously, in this case the elements of 
B* 

the algebra € of the type a lead to constant functions from J/. and assume the 
same a value (the latter denoted by a). For any iI, f2 E€ 

Indeed, we have 

ta (j1) = a(j2)11 = {x E.B *'a(j1)(x) = a(j2)(x)}= 
D * D * -1 -1 {XED 'a(Jl,x) = a(h,x)}={xEo 'f1 (a)Ex.h (a)Ex 

for some a EJ/} = {x EB *, lUI = f21! Ex}. 
It is obvious that for f1"h E€ , a(h)" a(j2). a is an isomorphism of € 

on a subalgebra of the algebra J/ 11 *. By virtue of the equalities a(a) = a and 

[a(j) = a (a)]1 = {xEB*' IU=i'lJIEx}, the set [a(j)=all is open-closed in the 

space .B *. Moreover, by the definition of the mapping a, for any f E€ , the range 
of the function a(j) is equal to Rf. Therefore, if Rf ={a1~ .. ,an}, then af 

coincides with an element of the Boolean power J/ 11 with a canonical setting 

<ta(j) = atll,···,ta(j) = anlj; a1,···an >. Hence, the algebra a(€) is a subalgebra of 

the algebra J/ .B . 

Let now hEJ/·B and <lit =&j, ... ,!Un =gn]l;al~ .. ,lln > be its canonical setting. 

Property (3) implies the existence of an element g E€ such that ~ = ail! = t.li = gil! 
for i:s n. In this case a(g) = h and, hence, a is an isomorphism of the algebra € 
on the Boolean power J/ .B. • 

Let us recall that if J/ is a certain finite group or a module, then an arbitrary 

direct sum of J/ is isomorphic to a certain Boolean power of the algebra J/ . 
Indeed, let € = EEl J/ i, where X is a cardinal and J/ i = J/ . Let us construct a 

lEX 

sequence .Ii(i EX) of isomorphic embeddings of the algebras € i = ®.J/ j into an 
J<l 

algebra € I = J/ l< sueh that for i < j EX f j is an extension of .Ii. Let us set 
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ft(a)(i) = a for any a EC1 = 11 and any i EK For limiting i, h = Uh, and for 
}<i 

any i E~, h +1 is an extension of h from the algebra C i = ~.11 j on an algebra 
)<1 

C i+1 = (~.11 j) f3:J11 , defined by the following condition: for any a E11 (the last 
)<1 

addent) h+1(a)(j) = 0 if j< i, and h+1(a){j) = a if j~ i. One can easily check the 

fact that such an isomorphic embedding h+l exists. One can also make a direct 

remark that if f = Uh, then f(C) ~ 11 x obeys the conditions of lemma 3.4. 
;EX 

Therefore, both f(C) and C are isomorphic to some Boolean power of the algebra 

11. 

Definition 3.2. An algebra 11 is called Boolean-separated, if for any 

Boolean algebras .Bl and .B2 the isomorphism of the Boolean powers 11 1J 1 and 

11 1Jz implies that of the Boolean algebras .Bl and .B2' 

Theorem 3.1. If 11 is a non-Abelian subdirectly non-decomposable algebra, 

and .rn (11) is congruence-modular, then 11 is Boolean-separated. 

Proof. Let 11 obey the conditions of the theorem. Let us construct an LWJ. ,w 

interpretation of any Boolean algebra.B in a Boolean power 11·B . It should be 
recalled that the notion of the center of the algebra of a congruence-modular variety 
of algebras, of a commutator of congruences of such a variety, as well as the basic 
properties of these notions are given in section 2. Let Z}/ be the center of the 

algebra 11 , i.e., Z}/ is the biggest congruence y on 11 such that [V, y] = L\. Let 

f3 be a monolith of 11. The relation < x,y >EOu v on 11 is definable with the 
LWJ. ,w - formula (see theorem 2.12). Let 

tfZg]1 = {x E.B *I<f(x),g(x) >EZ}/}. 

According to theorem 2.18, for any algebra C:<a,b >EZ}/ iff 

C 1= 1\ '</x,y(t(x,a) = t(y,a) - t(x,b) = t(y,b», 
t 

where the conjunction ranges over all the terms of the algebra C and X, y -tuples of 
the variables of the length n, if t has n + 1 variables. Therefore, it is obvious that 

~LfZdf,g E11B} =.B . Let us consider the following LWJ.,w -formulas: 
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(1) red'(a,b,c,d) = v3f,s([{a,b} = {t(r,c),t(s,c)},.. 
t 

I\t(f,d) = t(s,d)] v [{a,b} = {t(f,d),t(s,d)},.. t(f,c) = t(s,c)D. 

The disjunction is taken here over all the terms of the signature of a variety 

.. m and the length of the tuples ;,s, a unity smaller than the number of the 

variables of the term t. It is obvious that for a,b,c,d E1I , 

111= red'(a,b,c ,d)&< c,d >E.ZlJ - a = b. 

(2) red (a,b,c ,d) = 3x,y« a,b >E.fJx,y ,.. red'(x,y,c,d». 

One can easily observe that: 

111= red(a,b,c,d)&<c,d >EZlJ => a = b, 

11 .B 1= red(j,g,h,k) - 111= red(f(i),g(i),h(i),k(l) 

for all i E.B *. Therefore, if 1I.B 1= red (j, g,h,k) , then thZk] I k[j = g]. 

(3) 1.(a,b,c, d)= \fx,y(red(x,y,a,b) ued(x,y,c,d)- x = y). 

Let us show that for fo,A,f2,/3 E1IlJ , the property 

holds iff 

(*) lfoZ1]1 u lf2Zh j = .B '. 

In one direction this equivalence results immediately from the property of the 
relation red mentioned before the relation 1. was introduced. Let us now assume that 
.31 

Xo EB , < fo(xo),!i(xo)fE.ZlJ, and < !z(XQ),/3(xo)fE.ZlJ· Let U = .n(ji (J;(xo))), 
1-0 

then U EB . By theorem 2.18, there are terms to i and tuples of the elements of 

the algebra 11 

-0 0 0 -0 0 0 
r =<rO, ... ,rk-l>, S =<sO,,,,,sk-l>' 
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such that 

to (fO,/o(xO» = to ('IO,/o(xo», to (f°./1 (xo)) '" to ('I°./1 (Xo)), 

t1(;:1 ,/z(xo)) = t1(S1,/z(Xo)),t-( ;:1,13 (XO)) '" t1('II. h(Xo))· 

65 

Let us fix a certain element e E1/ , and for e = 0,1 we will define fE(X) = ;:E , 

if xEU and fE=<e, ... ,e>, if x$.U. Analogously, 'IE(X)=SE, if xEU, and 

'IE =< e, ... ,e > if x$.U. Therefore, fE,'IE is a tuple of the elements of the algebra 

1/.B. Let 

In this case 1/E 1=red'(yO,lJo'/0'/1)lIred'(yl,lJI./Z,h). The equality 

~ yO = lJ °]1 = I[y 1 = lJ 1]1 = .B *\ U is valid, and yO, Y l,lJ O,lJ 1 are constants on U. Let 

us, finally, show that 1/ E I", J.(jo,A,/Z,h). Indeed, let us choose a", b E1/ so that 

< a,b >E{3. Let y,lJ E1/·B, y(x) = a for all x E.B ., and lJ(x) = a if x $.U and 
lJ(;X) = b if xEU. 

Let us show that < y, lJ >E 8 0 .. 0 n 8 1"', in which case y '" lJ. This property, r .tt r .tt 

combined with the one cited above, i.e., 

implies that on 1/ E the formula red(y,lJ'/O./I) II red(y,lJ'/2,h) II y '" lJ is true, i.e., 

it implies the required statement, 1/.B '''' J.(fO,A'/2,h). 

Let 1/ # be a subalgebra of the algebra 1/ E , consisting of elements 1/ E 

which are constants on U. Let us show that < y,lJ >E 8 0 6 0 in the subalgebra 1/ # r . 

and, moreover, < y,lJ >E8 0 6 0 in the algebra 1/ .B . Let 
y • 

1h -= {< 1-', v >E(1/9)1 /-LI.B *\ U = vI.B *\ U}, 

"., - {< /-L, v >E( 1/ # )21 /-L(Xo) = v(Xo)}, 

80 = 8 060 r . 

in the subalgebra 1/#. Obviously, ".,x".,I=L1 and ".,12:8o, since yO,lJo coincide on 

B • -"1 E 2 E . \ U. Let P = {< /-L,V >E(.a u ) I< /-L(xo), V(Xo) >EP}. In this case 1/ u /"., el.1/ 
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and, hence, fJ > 1J, and p covers 1J in Conll #. Therefore, 1J v 00 = fJ. Moreover, 

1)1:'90 and, hence, since Con21 # is modular, we get: 

- 1 1 1 fJ 1\ 1J :s; (1J v ( 0 ) 1\ 1J = (1J 1\ 1J ) v 00 = 00, 

< y,15 >EjJ 1\ 1Jl, theirfore, < y,6 >EOo, i.e., < y,6 >E 0 06 0 in the algebra r , 

11 .B . In an analogous way one can deduce that < y,6 >EO 16 I in 1I.B. As has r, 

been noted earlier, this fact implies 1I.B 1= l.UO,Ji,/2 ,h) , and, therefore, the 
equivalence in (*) is proved. 

The equivalence (*) and the equality discussed above (~LjZg]llj,g ElI .B} =.R ) 
imply LWI ,w -definability of.R in 11 .B . Elements b of the Boolean algebra 11 are 

interpretable by pairs of elements < j,g > of the algebra lI·B such that tjZg]1 = b, 
in which case tjZg]1 ~ thZk]1 iff 

11 .B 1= Vx,y(l.(j ,g ,x,y) -+ l.(h,k,x,y)) .• 

In the case of a congruence-distributive variety, a Boolean degree in the 
Boolean power for algebras of the given variety can be singled out in a more direct 
and algebraic way, which, in particular, enables one to transfer the results on 
relations of embedding and epimorphism from Boolean algebras to algebras of 
congruence-distributive varieties. The results of theorems 3.2 and 3.3 are essential in 
this respect. 

Theorem 3.2. If .m is a congruence-distributive variety, 11 E..m, .R is a 
B )JB . 

Boolean algebra, and j,g,h,k ElI' , then < j,g >EOh,k Iff for any xE.R * we 
)J )J 

have 0 f(x),g(x) ~ Oh(x)k(x)' In particular, it entails the equality 

Con/lI .B) 51! (Conpll ).B . 

Proof. Let U be an ultrafilter on .R and 81 EConll , then 81 (U) will denote 

a congruence on lI·B defined in the following way: for j,gEJ/.B < j,g >E01(U) 

iff < j(U),g(U) >E81 . 

Let us first of all prove the following variation of the Jonsson lemma: 

(*) any congruence on 1I.B is an intersection of congruences of the type 

01 (U)' where 01 EConll , U E.R *. 
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Let us note that, for any (J ECon(lI lJ ) that is non-decomposable at the 

intersection, there is a U E.B * such that L1 (U) ~ (J. Let V = {b E.B 1L1b ~ 8}. Here 

Obviously, if ~ ~ b:J. and bl EV, then b2 EV. Assume now that ~ v b:J. EV. Then 
L1b,. vbz '" L1b! 1\ L1b2 and, since L1b,. vbz ~ 8, 

(as .. 'lTl is congruence-distributive). Since 8 is non-decomposable at the intersection 
of congruences, we have either 8 = 8 V L1b! (i.e., bl EV), or 8 = (J V L1b2 (i.e., 

b2 EV). It should be remarked that V = .B iff 8 = V. As the statement (*) is 

obvious for 8 = V, we will assume v;o!.B . 
Let now D be a maximal filter among the filters contained in V. Let us show 

that D is an ultrafilter. Assume to the contrary that b E.B and b $.D , -.b $.D. If 

for any d ED we had b n d EV, then D and b would generate a filter contained 

in V and strictly greater than D. Therefore, we can find a bo ED such that 

b n bo $.V. Analogously, there is a bl ED such that -. b n bt $.V. Let b2 = bo 1\ bl . 

In this case, b2 ED ~ V, b2 1\ b $.V and b2 1\ -. b $.V, which contradicts the above

mentioned property of V and the fact that b2 = (b:J. v b) 1\ (b:J. v -. b) EV. Thus, D is 

indeed an ultrafilter, i.e., D E.B * . 
If j,g ElIlJ and < j,g >EL1(D), then there is a b ED such that 

< j,g >EL1b and, therefore, < j,g >E(J. Hence, L1(D) ~ 8, i.e., indeed, for any 

congruence 8 ECon( lIlJ) non-decomposable at the intersection, there is a U E.B * 
such that L1(U) ~ 8. 

Assume that 8 ECon(lI lJ ), that 8 is non-decomposable at the intersection, and 

that UE.B* is such that L1(U)~8. Let 81 ={<a,b>E1I 21 for some j,gElI B 

< j,g >E8 and j(U) - a,g(U)= b}. 
Let us show that 81(U) = (J. 8 ~ 81(U) being obvious, let us prove the 

converse. Assume that < j,g >E(JI(U)' then < j(U), g(U) >E(JI' By the definition of 

(JI' there are h,k ElI·B such that < h,k >E(J and h(U) = j(U),k(U) = g(U). As 
(J <!: L1(U), < j,h >E(J, < k,g >E(J, and all this implies that < j,g >E(J. Therefore, 
(JI (U) ~ (J and, as a result, (J = (JI (U), and the statement (*) is proved. 

Assume now that j,gElI lJ . Since < j,g >Eu~' (Jj(U)8(U)(U), 
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(Jj.B S U~. (Jj (U),g(U) (U) . Let us prove the converse. By the statement (*), there are 

(Jj EConJl and Uj E.B * (jEJ) such that (Jj,g = n (J/Uj ). Since < I,g >E(Jj,g, 
JEJ 

</(Uj ), g(Uj»E(Jj and, hence, for any jEJ, (Jj'O!:.(Jj(Uj),g(u j ), This implies the 

inequality (J/Uj ) 'O!:. (Jj(Uj),g(uj)(Uj ), i.e., 

Together with the above-mentioned inequality, the latter one implies the equality 

(Jj.B = ua * (Jj(U),g(U)(U), 

One can easily notice that a similar representation of (J j,g is one-to-one. As 

I, g EJI .B , there is a finite partition of .B * by the elements ht, ... , bn of .B such 

that the functions I, g on bi are constant, (J j(U)g(U) are also constant on bi . 

Therefore, putting into correspondence to the congruence (J = (Jj,g an element 

cp«(J)E nconpJl such that cp«(J)(U) = (Jj(U).g(U) , we get CP«(J)E(ConpJl).B. It is 
uM* 

quite obvious that the mapping cp is from Conp(JI .B) to (ConpJl)B and preserves 

the order. Since the presentation of (J j.B is injective, and, hence, so is the mapping 

cp, cp is an isomorphism from Con;' JI.B) to (ConpJl ).B .• 

Corollary 3.1. If .m is a congruence-distributive variety and JI is a simple 

.m -algebra, then: 

B 1/:8 
(a) for any Boolean algebra.B and for I,g,h,k EJI' , < l,g >E(Jh,k iff 

{xEB *1/(x)=g(x)};;;2{xEB*lh(x)=k(x)}; Conp(JI·B)SiI..B; 

(b) for any Boolean algebras .Bl,.B2 the relations JlB,« JlBz and .Bl «.B2 

are equivalent; 

(c) for any Boolean algebra.B and (J EConJl.B there is a 1/J ECon.B such 

that JI.B I (J Sil.JI.B It/!. 

Proof. Statement (a) directly follows from theorem 3.2. In order to prove 

statement (b), let us recall that, by lemma 3.1 (g), .BI« .B2 entails JI .B '« JI .Bz. 

Assume now that JI.B'«JI.Bz. Then, obviously, conp(JI·B,) «Conp(JI.BZ) but, 

as JI is simple, ConpJl = ~ (a two-element Boolean algebra) and, by theorem 3.2, 
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Conp(2/ Bi) e?:..Bi . At the same time, the algebras ~Bi are isomorphic with the 

Boolean algebras ,Bj (by lemma 3.1 (c)). Therefore, indeed, 2/ B!« 2/ B2 entails 

,B1 «B2 · • 

The validity of clause (c) is readily deduced from clause (a). 
As to clause (a), it should be remarked that a complete description of the 

structure of finite Boolean-separated algebras in congruence-distributive varieties by 
D.Bigelow and S.Burris [13] are in full accord with the description of finite 
Boolean-separated groups by A.B.Apps [4]. 

Definition 3.3. A varietym has extendable congruences if for any algebra 

2/ Em, its any subalgebra 2/1' and any congruence 81 ECon2/1' there is a 

congruence 8 ECon2/ (an extension of 81 onto the algebra 2/) such that 

812/1 = 81, 

Many properties of the relation « on congruence-distributive varieties can be 
transferred to relations of embedding s if we require in addition that the variety 
should have the property of congruence extension and, in particular, that there should 
be a corollary analogous to 3.1 for the relation of embedding. 

Theorem 3.3. 

congruences and 2/ 

algebras ,B1 and 2/ 2 

Let ,,'[fl be a congruence-distributive variety with extendable 

a simple ,m -algebra. Then for any non-singleton Boolean 

the relations 2/ B!s2/ B2 and ,B1 sB2 are equivalent. 

Proof. The entailment ,B1 sB2 ~2/B!s 2/ B2 requires no extra assumptions, 
as been mentioned in lemma 3.1 (f). Let us now prove the converse. Let f be an 

embedding of 2/ B ! in 2/ B 2 • If a,c E2/ and b is an element of the Boolean 

algebra 2/ , then 'ii, ~Ib will denote the elements of the algebra 2/ ,B with the 

canonical representations < l;a >, < b, ~b; c,a >, respectively. By corollary 3.1, for 

any h1,h2,gl,g2 E2/ ,B we have < &,gz >E8{,~ iff th1 = hz]I~I[gl = gz]1. 

Let us fix a pair of elements a;o! C of the algebra 2/ and construct a mapping 
1jJ of the algebraBl to B z in the following way: for b E.Bl let 

1jJ(b) = l[f(a);o! f(~lb)]I. Since,'[fl has extendable congruences, the mapping 
lJ Br lJ B2 B 

CPl(8 11 ,';lb)=8j (1l),f(';lb) will be an injective mapping from Conp(2/'!) to 

Conp(2/B2 ) which preserves the order. Let us consider the mappings 
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2l~ 
1jJ o( b) = () /l' "-Ib (tpo, as has been noted above, is an isomorphism between .Bl and 

'c 

(tp2 is an order-preserving injective mapping from tpl (Conp(1/ B 1» to .B2), As 

1jJ = tp2 'tp( tpo, 1jJ is an injective, order-preserving mapping from .Bl to .B2' Let us 

now show that 1jJ is an isomorphic embedding of .Bl in a Boolean algebra 

.B21 tf(a);o! f(e)]I, i.e., in a Boolean algebra with a basic set 

{b EB21b ~ tf(a) ;o! f(e)]~ and the operations induced from .B2' The latter fact, 
obviously, implies the isomorphic embedding that we have been looking for, i.e., 

that of the Boolean algebraBl in .B2' 

In order to prove that 1jJ is an isomorphic embedding ofBl in 

.B21t/(a);o!f(e)]I, it suffices to show that 1jJ(b)U1jJ(~b)=1jJ(IB1) and 

1jJ(0 B ) = 0 B . The latter equality is obvious: 
. 1 z 

Let us prove the first equality. Since 1jJ preserves the order, 

~f(a) ;o! f( ~I b)]1 = 1jJ(b), ~f(a);o! f(~ I ~ b)]1 = 1jJ( ~b) ~ 

~ ~f(a);o! f(~ lIB, )]1 = ti(a);o! f(c)]I. 

Now we have to show that 1jJ(lB,) ~ 1jJ(b) U 1jJ( ~b). Let us assume that, to the 

contrary, i E 1jJ(lB, ) \ (1jJ(b) U 1jJ( ~ b». Since 

B BBI B 
1/ 1 1/ 1 2l 1/ 1 

(J - a I b = (J - a I b' (J a- !!.I ~ b= (J - !!.I b' a,c C,c~ 'c C,c 

2l Hz 2l Hz JJ Hz 2l Hz 

() f(/l')./(';Ib)= () f(7J)./(';I~b)' () f(7i)./(~I~b)= () f(7J)./(';lb), 

i.e., 

~f(a);o! f(~lb)]1 = V(e);o! f(~I~b)]I, 
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Therefore, 

i.e., 

~f(a);oO f(~I""b)~ = 1[f(C);o' f(~lb)]1 

i E(f(a);o' f(C)]1 \ (1[f(C) ;0' f( ~I"" b)]1 U 1[f(C) ;0' f( ~lb)]I) = 

= l[f(ll) ;0' f(c)]1 n V(c) = f(%I..., b)]1 n ~f(c) = f(%lb)]I, 

f(~ I...,b)(i) = f(~1 b)(i) ;0' f(ll)(i). 

On the other hand, since 

i E W(lB I ) \ (W(b) U w (..., b) = (I(a) ;0' f(c)]1 \. 

\~f(a);o' f(~I""b)]IU~f(ll);o' f(~lb)]I= 
= l[f(ll) ;0' f(c)]1 n V(a) = f(~ l...,b]1 nl[f(ll) = f( ~lb)]I, 

f(~ I...,b)(i) = f(~lb)(i) = f(ll)(i). 

71 

The obtained contradiction proves that the set W(lB1 ) \ (W(b) U W(...,b» is 

empty, which fact, combined with what has been proved above, proves the theorem . 

• 
It should be remarked that the condition of extension of the congruences in the 

formulation of the latter theorem is necessary. Let Part (A) be a lattice of partitions 
of the set A. It is well-known from o.Ore [152] (see, for instance, [83]), that 
Part (A) is a simple lattice. It is also known that any variety of lattices is 

congruence-distributive. Let ,$4 be a four-element Boolean algebra. Then ,$4 I;. ~ but, 

on the other hand, for any infinite set A the following obvious relations are valid: 

Part (ayB 4 !;;$ Part (A) x Part (A):s Part (A U A)!;;$ Part (A)!;;$ Part(A)'?:.. 

Let us now go over to the interrelation of Boolean powers of algebras and the 

properties expressible in the language of the first-order predicate calculus. Let ,$ be 

an arbitrary Boolean algebra and F be a filter on ,$. Let ,$(*) be a representation 

of the Boolean algebra.B by the open-closed subsets of a Stone space ,$' with a 

predicate J which singles out the elements of ,$(*) corresponding to the filter F in 
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this presentation. 
There is a variation of the Feferman-Vaught theorem on generalized powers, 

which is as follows. Let us establish a correspondence between any elementary 

formula a(xl'''''xn) with free variables Xl,,,,Xn of the signature of the algebra 11 
and a tuple T(a)=< 4>;81, ... 8m > of the elementary formulas, where <P are 

signatures of the algebra .B(*) with free variables X1, ... Xm , 8; are signatures of the 

algebra 11 with free variables xl,'''xn, The tuple T(a) is defined by induction over 

the construction of a in the following way (the only logical connection of the 
formula is assumed to be the Sheffer sign, I). 

(1) G is an atomic formula of the type P(xl""xn) = q(xl' .... xn), where p.q are 

terms of the algebra 11 • in which case T(a) =< S (x); p = q >; 

(3) G= 3xkal and T(al) =< 4>(Xl> .... Xm);81> .... 8m>. Let m' =2m and 

Al> .... Am' be all subsets of the set {1 .... ,m}. and let Sl = {i s mll Ei\} at 1 sm. Let 

4>'(X1•· .. ,Xm') = <P( U Xi ..... UXj ) 

iE;Sl ESm 

and for ism' 8~= & 8· & & .... 8·. 
I .lEA; J .#.4; J 

By Part (11 .... Ym,) we will mean 

( & (11 nyJ. =0)& v Ii = 1). 
i<jsm' ism' 

In this case we set 

T(lJ)=< 3lJ. ..... Ym'(Part(11 ... ·• Ym')&« & 11 ~Xi)& 
'i$m' 

&4>'(l1 ... ·Ym'); 3xk8'1.· ... 3xk8~, >. 

Let f / F be a class of 8F containing an element f E1I JJ. in which case for 

any formula a(xl .... ,xk) and any fl ..... ik E1I JJ • the following lemma is valid. 



CHAFfER 2 73 

Lemma 3.5. 1I.B IOFI=a(!IIF, ... ,kIF) iff .B(*)I= t1J(I(OI), ... ,l(On», 

where 

T(a)=< f1>;OI, ... ,On > and 

[(OJ) = {fE.B *1 11 1= OJ(h(i), ... !i'))}. 

Proof. The proof will be carried out by induction over the complexity of the 
construction of the formula a. The proofs of the statements corresponding to the 
basis of the induction, i.e., the case of an atomic formula and the induction step 

corresponding to the case when a = all a2, do not differ from the proofs of the 
corresponding cases in the proper formulation of the Feferman-Vaught theorem (see, 
for instance, [57], [35]). Let us consider an induction step corresponding to the case 
when a = 3xkal' Let us assume that 

and let g ElI .B be such that 1I.B 10F 1= q (g I F, It IF, ... ,fnl F). Let T( al) = 
=<f1>(Xl , ... ,Xm);Ol, ... ,Om>' Then, by the induction proposition, we have 

.B(*)I= f1>(l(Ol), ... ,I(Om»' It is also obvious that if for any ism', 

then {-4li s m'} is the partition of .B *. Moreover, Ii ~ [(3xk 0i). Therefore, 

i.e., by the definition of T(a), .B(*)I=1JJ(l(Ol), ... ,I(Om»; where 

Let us now try to prove the converse statement. Let T( al) = 

< f1>(Xl ,···Xm); 0l,···,Om> and .B(*)1=31J., ... Ym,[Part(1l , ... ,Ym,)& 

.& lj~[(3xkO[)&f1>'(l]"""Ym')]' Let Cl"",C1 be a partition of .B* by elements of 
,:sm' 

the Boolean algebra .B(*) such that the elements h, ... /n of the Boolean power 

1I.B are constant functions on Cl , ... , Cz. Let ~, . .. ,D:n, be a partition of .B * by 

elements of the algebra .B(*) such that 1), ~ [(3xk0i) and .B(*)I .. f1>'(~, ... ,Dm')' 
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For any is /,j s m' there are elements a¥, ... ,a ~ E}J such that for any p EDj n Ci 

we have ft(p) = aY, ... ,J,,(p) = a~. Since Dr;;, 1(3xkOj), there is an element bjj E}J 

such that }JI= O;(bij, ay, ... ,a~). Let an element gE}J B be such that for any 

is/, j s m' and any p EDj n C i ' we have g(p) = bi}' Then, obviously, we get 

.B(*)I= cfJ(/(Ol),' .. ,l(Om», where I(Oj) ={p EB "I}J 1 = OJ (g(p), Ji( p), ... ,fn (p»}. By 

the induction supposition, }J.B 10F 1= 0l(gl F,f11 F, ... ,J" I F), i.e., 

}J .B 10F 1= 0(/11 F, ... ,fn / F). Therefore, the induction step corresponding to the case 

when 0 = 3xko1 is proved and, hence, the lemma is proved .• 

Considering F = {IB}, we confirm the statement that the formulas Lw,w, on the 

Boolean powers }J.B are true. 

Corollary 3.2. For any algebras }J 0,}J 1 any Boolean algebras Bo,B1 the 
following statements hold: 

() 'f ')f ')f d D D th 'lfBI _ ')f.Bt. a 1 ~ 0 .. ~ 1 an ·.00" ·.01' en.a 0 =.a 1 ' 

(c) if R' is a class of Boolean algebras with a solvable elementary theory 

Th(R') and Th(}J 0) is also solvable, then Th({}J OBI I.B EH}) is solvable; 

(2/ IF) 
(d) for any set I and a filter F on I the algebra }J 0- is isomorphic to an 

elementary subalgebra of a filtered power }J 6 / F; 

(e) any Boolean power of the algebra }J 0 is elementary equivalent to a certain 

filtered power of the algebra }J 0 and, conversely, any filtered power of the algebra 

}J 0 is elementary equivalent to a certain Boolean power of this algebra. 

The proof of statements (a), (b) and (c) immediately results from lemma 3.5. 

The isomorphism of the algebra }J ~t I F) and of an elementary subalgebra }J 6 / F in 

statement (d) is constructed in the following way. Assume 

d =< q / F, ... ,bn / F; 

where bi / F are equivalence classes over the filter F, containing elements bi E ~ I . 



CHAPTER 2 75 

Since ht I F, ... bn I F form the partition of unity in the Boolean algebra ~ II F, 
q, ... , bn can be chosen to perform the partition of the set I. Let us establish a 

correspondence between an element d and an element ((i..d)= [j]E.1J ~I F, where [j] 

is the equivalence class over the filter F of the algebra .1J 6, which contains an 

element / E.1J 6 such that /(i) = aj for any i Ebj(j:!:. n). One can easily see that the 
definition of the mapping <p is independent of the choice of representatives q, ... , bn 

in the equiValence classes bi I F, ... ,bn IF, that <p is an isomorphism between 
~/n I . .1J {j and some subalgebra of the algebra .1J 01 F, and thiS subalgebra is an 

elementary subalgebra of the algebra .1J ~I F. 
To prove statement (e), a well-known result by Yu.L.Ershov [61] should be 

recalled: any Boolean a1gebra.B is elementary equivalent to a certain Boolean algebra 
of the type ~w I F for a suitable filter F. By statement (a) of the corollary under 

discussion, for any algebra .1J.B =.1J ('J,'IJ/F), but, by statement (d), 

.1J ('£:'" IF) E.1J wI F, i.e., the arbitrary Boolean power .1J.B is elementary equivalent to 

a certain filtered power of the algebra .1J . The converse is proved in an analogous 
manner .• 

Theorem 3.4. 

(a) A formula of the first-order predicate calculus is preserved relative to 
Boolean powers iff it is equivalent to a disjunction of Hom formulas. 

(b) The axiomatazible class R is closed relative to Boolean powers iff R is 
axiomatizable by the formulas which are disjunct Horn formulas. 

The proof of the theorem results immediately from statement (e) of corollary 
3.2 and well-known facts (see, for instance, [34]): 

(a) a formula of the first-order predicate calculus is preserved relative to filtered 
powers iff it is equivalent to a disjunction of Horn formulas; 

(b) the axiomatizible class R is closed relative to filtered powers iff R is 
axiomatizable by formulas which are disjunctions of Hom formulas. 

Corollary 3.3. For any algebra .1J and 

.Bo, .BI there exists a set I and a 

(.1J .B 0 ) I I F ~ (.1J .BI ) I IF. 

any non-singleton Boolean algebras 

filter F on I such that 
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Proof. Let D be a filter of co-finite subsets w. In this case, since .B ~ / D 
and .B f / Dare atomless, .B ~ / D ==.B f / D. According to a well-known Keisler
Shelah theorem [204], there is a set· J and an ultrafilter U such that 

CB ~ / D) J/ U'ii!l CB f / D)J / U. But, as is well known (see, for instance, [34]), for 

a suitable filter E on the set w x J we have (.B f / D/ / U 'ii!l.B f XJ / E and, hence, 

.B~xJ/E'ii!l.BfxJ/E. By clause (d) of corollary 3.2, .BfXJ/E==BFroXJ'E). At 

the same time, by clauses (a) and (d) of the same corollary, we get 

(for i = 0,1). This fact, combined with the isomorphism .B ~xJ/ E 'ii!l.B f XJ/ E 

mentioned above, implies that the algebras (JllJ O ) (JJxJ / E and (JIB!) (JJxJ/ E are 

elementary equivalent. Now, again by the Keisler-Shelah theorem, we can find a set 

A and an ultrafilter B on A such that «JIB 0) (JJxJ / E) A / B 'ii!l 

~«JllJ!)(JJXJ/E)A/B. But, in this case, for a suitable filter F on the set 

I = w x J x A we have 

and, therefore, 

By way of concluding this section, let us recall the following obvious property 

pertaining to theorem 2.21: if an algebra JI is isomorphic to a Boolean power 

Jlf of the algebra Jl1, then any algebra JlI polynomially equivalent to the algebra 

JI is isomorphic to the Boolean power (JI DB, where JI { is an algebra 

polynomially equivalent to the algebra Jl1. 

Priorities. Particular cases of considering the notion of a Boolean power stem 
from the works by M.H.Stone [218], I.M.Gelfand [76], R.F.Arens and J.Kaplansky 
[5] and others. The notion of a generalized Boolean power (or simply a Boolean 
power) was introduced in a general form by A.L.Foster [67], and the notion of a 
Boolean power (a boundered Boolean power) also belongs to him [66]. The first 
attempt to systematize the results on Boolean powers supplied with a detailed historic 
review is by S.Burris [30], who later modified it [24]. Theorem 3.1 was first 
proved by J.T.Baldwin and R.McKenzie [7]. Lemma 3.3 belongs to S.Burris [30], 
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while the result .B!Z ~ .Bl * .B2 was borrowed by him from R.W.Quackenbush 
[194]. Lemma 3.4 stems from a paper by A.L.Foster [66] and M.Gould-G.Gratzer 
[80]. Theorem 3.1, suggested by S.Burris [30], was developed and obtained in the 
present formulation by A.G.Pinus [178]. Corollaries 3.1 and theorem 3.3 are 
proved by A.G.Pinus [178]. Lemma 3.5, corollaries 3.2, 3.3 and theorem 3.4 
were proved by S.Burris [30]. 

4. Other Boolean Constructions 

The purpose of the present section is the definition and presentation of the basic 
properties of the construction of a Boolean product, a filtered and congruence-Boolean 
power, as well as other modifications of the Boolean power construction studied in 
the previous section. 

Definition 4.1. For an algebra 11 , any Boolean algebra .R, the subalgebra 

Il of a Boolean power lI]J is called a sub-Boolean power, provided that for any 
I * I, g Ell and any open-closed subset N of a space .R , the element 

liN U gl.B \ N also belongs to C. Here liN U gl.B *\ N denotes an element 

h ElI]J such that h(i) = I(i) for i EN, and h(i) = g(i) for i E.B \ N. 

A family of all sub-Boolean powers of the class Jl will be denoted by 

Ih(R). 

Definition 4.2. A subdirect product D k jJ~ x of algebras 11 x' where 

.B * B is a Stone space of a Boolean algebra. is called a Boolean product if the 
following conditions are met 

(a) for any l,gED l! = g]1 is open-closed in .R *; 

(b) for any l,gED and any open-closed Nk.R * the element 

liN U gl.B \ N also belongs to D. 

In this case, .B will be called the degree of this Boolean product. A family of 

all Boolean products of algebras of the class R will be denoted by r a(R). For 

any class of the algebras R , the following inclusions obviously hold: 
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Let us recall the simplest properties of a Boolean product. 

Lemma 4.1. Let 11 be a Boolean product of algebras 11 i (i E.B *) with a 

degree .B , in which case: 

(a) if N is an open-closed subset of the space .B *, and 0;0' N ;o'.B *, then 

11 ~11INx11IB\N, where 11IM= {II MI/E11} for Mr;;,.B*. In this case, 

11 IN, 11i.B*'NEra(R); 

(b) if jEll', 11 j is a finite algebra, and 111 jl = n, then there are 11' ... ,fn E11 
and an open-closed neighborhood N of a point j E.B· such that for i EN there are 

one-to-one mappings A ji of the algebra 11 j in algebras 11 i' defined by the equalities 

A ji(1t (j)) = It (i); 

(c) if 11 j is a finite algebra, and if the signature of the algebra 11 is finite, or 

if there is a finite algebra € and a neighborhood M of a point j such that for any 

i EM, 11 i are isomorphically imbeddable in the algebra €, then the neighborhood 
N in property (b) can be chosen in such a way that the mappings A ji(i EN) will 

be isomorphic imbeddings of the algebra 11 j in algebras 11 i . 
The proof of the lemma results immediately from the definition of a Boolean 

product of algebras. • 

By ljin(ft) we will mean the family of all algebras representable as the 

Cartesian product of a finite number of algebras of the class R . 

Lemma 4.2. For any class of algebras R: 

(b) if an algebra 11 is a Boolean product of R -algebras and it is finite, then 

11 EPjin(R); 

(c) for any finite algebra 11, Ir a(11) = IPB(11); 

(d) if the algebras 111,112 contain one-element subaJgebras, then 
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Proof. Statement (a) which is. in a certain sense. the converse of statement 

(a) of lemma 4.1. is proved directly. in which case. if 111 ..... 11 n are Boolean 

products of algebras of the class R with the corresponding degrees .Bl ...... B n. then 

11 1x ... xl1 n will be a Boolean product of R -algebras with a degree .B1 x ... x.Bn · 

Let us prove statement (b). Let 11 be a subdirect product of algebras 

11 i (i E.B *) which is a Boolean product with a degree equal to a Boolean algebra 

.B. Let 11 be finite. Let us define an equivalence relation on .B *: i - j iff for any 

f. g El1 . i Elf = g]1 is equivalent to j Elf = g]l. It is obvious that for any i the 
class [zl- of ,..,-equivalence containing an element i is an open-closed subset of the 

space .B *. Let Y be a fixed family of representatives of the classes of ~equivalence 
on .B *. As 11 is a finite algebra. by the definition of --equivalence. Y is finite. 

Let 11' = 11 IY ~ 011 i' The definition of --equivalence implies an isomorphism 
lEY 

between 11' and 11. Property (b) of definition 4.2 immediately guarantees that 11' 
and 011 i coincide. Therefore. 11 51! 011 i and. hence. statement (b) is proved. 

iEY lEY 
.B" Let us now prove statement (c). Assume that D Er a(l1) and D ~ 11 for 

B" 
a Boolean algebra .B. and let D. as a subalgebra of the algebra 11' . obey 
conditions (a) and (b) of definition 4.2 of a Boolean product. By statements (b) and 

(c) of lemma 4.1. for any i E.B * we choose an open-closed neighborhood Ni and 

elements ff .... ,f~ ED (where n =111 I) such that 11 = {ff (i) .... ,f: (i)). and for 

j ENj the mappings Aij. such that Ai/.tf (i)) = f/ (j) are isomorphic embeddings of 

the algebra 11 in 11 . As 11 is finite. Aij are automorphisms of 11. Since .B * is 

B * B* U compact, one can find i1 .... ik E. . k < w such that. = Nil' We can. evidently. 
ld 

assume that Nil (l s:. k) is a partition of the space .B *. Let us define the mapping 

H:l1 .B' -+ 11 .B· setting H(j)(j) = A~}.j(j(j)) at j ENil . We can directly check that 

H boundered on D is an isomorphism of D on l1·B . Therefore. indeed. 

Ir a (l1 )~IPB(l1). By virtue of the validity of the converse statement. (c) is 
proved. 

Statement (d) is obvious. • 

Definition 4.3. For any algebra 11 and a Boolean algebra .B. a subalgebra 

D of the Boolean power 11.B is called a filtered Boolean power of the algebra 2f 
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if for a family }J i (i EI) of subalgebras of the algebra }J there is a family 

Xi (i EI) of closed sets of a space .B· such that D = {j E}J BI for any 

iEI I(Xi)~}Ji}. 

A family of all filtered Boolean powers of algebras of the class ft will be 

denoted by PFB(R'). Obviously, for any class of the algebras R', the following 

inclusions are valid: PB (R' ) ~ PFB(R' ) ~ 1'sB(k ). 

Lemma 4.3. For any finite algebra }J , PFB(k) = FsB(}J ). 

Proof. Let }J 1' . .. }J k be all subalgebras of a finite algebra }J, and let 

D ~}J B be a sub-Boolean power of the algebra }J. For i EB ., Di will denote 

the i -th projection of the algebra D, i.e., Di = {f(i)1 I ED}. Xj Us k) will denote 

{i EB *IDi ~}J j}. Since}J is finite, and for any I ED and any a E}J , the set 

{i EB * I/( i) = a} is open-closed, any set Uj = {i EB • I}J j ~ D i} is an open subset 
• • * 

of the space .B . Then for j s k, Xj = n (B \ UI ) will be closed in .B . 
}Jlr;aJj 

Then it is obvious that for I ED and j s k , I(Xj ) ~}J j. Assume now that 

IE}J B, and for any js k we have I(Xj)c;;;.}Jj. Then for any iEB *, l(i)EDi 

and, hence, we can find a h ED such that h(i) = l(i). Therefore, 

U .1[/ = h]1 =.B *. Since .B * is compact, one can find l , ... I n ED such that 
iEB 

.B· = u ~f = I J ]1. One can consider Nj = [J = I j ] to be a partition of the space 
Isn 

B*, and f=f1IN1U ... U/nINn- As fjED, by the definition of a sub-Boolean 

power, fED. Therefore, D = if E}J .B If(Xj ) c;;;.}J j for j s k}, i.e., any algebra 

D EPSB(}J) is a filtered Boolean power of the algebra }J .• 

Definition 4.4. A congruence a on the algebra}J is said complementable if 

there exists a congruence /3(= ~a) on the algebra }J such that 

aA/3=A}J, aV/3= V}J, and a,/3 are commutable, i.e., if}J~}J lax}J 1/3. 

Theorem 4.1. If complementable congruences on an algebra }J form a 

Boolean algebra .B ~ Con}J , and for any a,b E}J there is an inf {y EB 18!:b c;;;. y}, 

then the algebra Jl is isomorphic to a Boolean product of some direct non

decomposable algebras of degree .B . 
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Proof. For a EB * a' will denote the maximal ideal {fJ EB hfJ Ea} in the 

Boolean algebra oB. By f (a) we will mean U fJ. For any congruence fJ EB, P 
{JEa.' 

will denote an open-closed subset of the space oB * which corresponds to an element 

P = {a EB * IfJ Ea}. The equality a~. f(a) = A obviously holds and, therefore, a 

homomorphism qJ from the algebra 11 to the product aD ~ I f (a), defined as 

qJ(a)(a) = al f(a), is an isomorphic embedding, i.e., the algebra 11 is isomorphic 

to a subdirect product qJ(lI) of the algebras 11 I f( a) (a EB">. In order to prove 
the theorem, we have to check if conditions (a) and (b) of definition 4.2 hold for 

qJ(lI). If a,bElI, and for some aEB* qJ(a)(a)=qJ(b)(a) then, by the definition 

of qJ, we get a I f(a) = b I f(a) and, hence, f)~br;; f(a) = U fJ. Since the 
• {JEa' 

congruence e~b is compact, there is a finite set fJl, ... ,fJ n Ea' such that 

e~,br;;fJl v ... vfJn· Since fJiEB, fJlv ... vfJn EB. Let us write fJ for fJlv ... vfJn' 

Thus, a I fJ = b I fJ and fJ Ea'. Therefore, a I f( y) = b I f(y) for any y EB * such 

that fJEy', i.e., such that yE-.fJ. Hence, for any aE[qJ(a) = q:(b)]1 there is a 

neighborhood -.fJ of a point a which entirely belongs to the set [q:(a) = qJ(b)]1. i.e., 

a set of the type [q:(a) = qJ(b)]1 for any a,b ElI is open in oB·. Moreover, this 
means that 

[qJ(a) = qJ(b)]1 = U{ -. fJlfJ EB, a I fJ = b I fJ}= 
-)J )J 

= U{ -. fJlfJ EB , f) a,br;; fJ} = -.inf {fJ E.B Ie a,br;; f3} 

By the condition of the theorem, inf{fJEBle~,br;;f3}=fJl for some PI EoB. 

Therefore, [q:(a)=qJ(b)]l= -.fJl' i.e., [q:(a)=qJ(b)]1 is an open-closed subset of the 

space oB * , and condition (a) of definition 4.2 for the algebra 

qJ( 11 ) r;; n 11 I f( a ) is checked. 
aElJ • 

Assume now a,b ElI, a EB. Since 11 51! 11 I a x 11 I -. a, there is an element 

C ElI such that C I a = a I a and c I -.a = bl -.a. One can also directly check that 

qJ(C) =qJ(a)la v qJ(b~oB *\ a, i.e., condition (b) of definition 4.2 for the algebra 

qJ(lI) also holds. Therefore, the algebra 11 is indeed isomorphic to the Boolean 
product qJ(lI) of the algebras 11 I f( a), which are evidently directly non
decomposable. • 

For congruence-distributive varieties a simple and transparent description of 
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principal congruences on Boolean product can be given. Namely, by repeating the 
proof of theorem 3.2 word per word, we get the following statement. 

Theorem 4.2. If .m is a congruence-distributive variety, then for any 

Boolean product € ~ n Ji i of .. m -algebras relative to a Boolean algebra .B, for 
iEB * 

any j,g,h,kE€ <j,g >E8f.k iff <j(i), g(t»E8~hk(i) for any iEB *. 

The statement of theorem 4.2 immediately yields, in particular, the following 
statement: 

if Ji I,Ji 2 are algebras from a congruence-distributive variety, then for any 

8 E Con (Ji 1 x Ji V there are 8i EConJi i such that 8 = 81 x 82 , where for 

j,gEJi 1 xJi 2 <j,g>E81 x82 iff <!(i),g(i»8i (i=I,2). 

Definition 4.5. For any algebra Ji , any congruence a on Ji , any Boolean 

algebra.B and its subalgebra .B1 , a double Boolean power of the algebra Ji with 

respect to a pair <.B ,.B 1 > and congruences a will be said to be a subalgebra 

Ji <B.B 1\a) of the algebra Ji B such that Ji <B,B 1>(a) ={jEJi BI for any 

a EJi j -1 (a / a) E.B I}' Here a / a is a class of a -congruence containing an element 

a. When .Bl = {O,l} the double Boolean power Ji <B ,B 1\a) will be called a 

congruence-Boolean power and denoted by Ji (ayB . 

Therefore, Ji (a)B ={jEJiBI for any i,jEB' <j(i), j(j»Ea}. 

Theorem 4.3. If .. m is a congruence-distributive variety, Ji E.m, a ECon2/ 

and.B is a Boolean algebra, then on Ji (a)B there is a congruence 8 such that 

Conp(Ji (a)B)1 s 8 S!.(ConpJi 1 

Conp(Ji (a) B ~ > 8 S!. ConpJi 1 

)B sa , 

>a. 

and 

Proof. By a B we will denote the following congruence on Ji (a)B : 

aB={<j,g>1 j,gEJi(a)B, and for any iEB*<j(l), g(i»Ea}. It is this 

congruence, a·B , that will play the role of 8 in the statement of the theorem. 
Repeating nearly word per word the proof of theorem 3.2, we should note that for 

j, g EJi (a) B , if the principal congruence 8 j,g generated by the pair < j,g > on the 

algebra Ji (a)·B is contained in a B , then 
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." .B B* JI JI 
8 f,g = {< h,g > I h,g E.a (a) ,and for all iE., 8 h(i),g(i)k 8 f(i),g(i)}' 

Therefore, indeed, 

One can also easily see that 11 (a)'B / a·B e& 11 I a, and this isomorphism 

implies the isomorphisms Conil1 (a).B1 >a.B and conpl1 I > a .• 

Definition 4.6. A congruence a on the algebra 11 will be called overlapping 

if ConJI = Con1l I :s: a ®ConJIl > a, where ® is the lexicographical addition of 
ordered sets. 

Corollary 4.1. If a is an overlapping congruence on the algebra 11 
belonging to a congruence-distributive variety, then 

In particular, if 11 is subdirectly non-decomposable and a is a monolith of 

11 , then 

The statement of the corollary results from theorem 4.3 and from the fact that, 

by the definition of 11 (a)·B , if for /, g El1 (a).B and a certain i E.B *, we have 
JI . B* JI 8 f(i),g(i):S: a, then for any J E. ,we have 8 f(j),g(j):S: a .• 

Lemma 4.4. For any Boolean algebras .BI,.B2 and partially ordered sets 

< A;:s:> , if there is a mapping / from .B2® < A;:s:> to .BI® < A;:s:> that preservs 

finite inf and sup and is such that / (.B 2) ... {OB J, then there is a homomorphism 

of the Boolean algebra .B2 on the algebra .BI' 

Proof. Let 1.B be the unit element of a Boolean algebra .B. Then either 

/(1.B 2 )=lB,' or 0.B </(1.B )<l.B' or /(1.B »1.B' In the first case / is a 
, 2' 2' 
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mapping from .B2 to .BI preserving finite inf and sup and is, obviously, a 

homomorphism of the Boolean algebra .B2 on the algebra .BI' I f 

0.B < 1(1.B ) <1 B ' then let a be a complement of 1(1.B ) in .BI' Then for any 
1 1· 1 1 

eEl -I( a), we have c> 1.B ' which contradicts the fact that I is isotonic, and the 
1 

fact that I(c) .. a and 1(1.B1) are incomparable. Therefore, the second case is 

impossible. Let now I(1B ) > 1.B . Setting h(a) .. I(a) for a E.B2 if I(a) EBI , and 
. 1 1 

l(a) = IBI if I(a) $..Bl> we get a mapping of .B2 on .BI preserving finite inf and 

sup and, therefore, a homomorphism of the Boolean algebra .B2 on the algebra .BI' 

• 
Corollary 4.2. If 1/ is a subdirectly non-decomposable algebra of a 

congruence-distributive variety, and 0 is its monolith, then: 

(a) for any Boolean algebras .BI ,.B2, 1/ (O).Bl«1/ (O)B1 iff .BI« .B2 or 

1/(O).Bl«1/ /0. In particular, if 11/1 2<I.BII, then 1/(O).B1«1/(O).B 1 iff 

.BI «.B2 · 

(b) For any Boolean algebra.B and aECon1/ (8).B such that a< O.B, there 

is a y EConB such that 1/ (O).B / a ~ 1/ (O).B /y • 

Proof. If .BI« .B2 or 1/ (O).B1«1/ / 0 then, obviously, 

1/ (O)·B1«1/ (O)"B1. Let us now assume that g is a homomorphism of 1/ (O).B1 

on 1/ (O).B1 • Then the mapping I: 

on 

will be defined in the following way: 

}j (8) 111 }j (6) B,. 
1(0 a,b ) = 0 g(a).g(b)· 

The mapping I preserves the finite inf and sup, since there is an isomorphism 
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of h Conpll (B).Bl on Conpll (B).Bl I :2: a, where a is the kernel of the 

homomorphisms g: 

]J (8) Bt ]J (8)Bl 
h(B g(a).g(b)= B a,b va 

and in this case the variety containing 11 is congruence-distributive. Therefore, by 

lemma 4.5, we have either f(.B 2 )-11]J(8)B1 , i.e., 1I(B)·B1«1I IB, or 

.B} «.B2 • For the case when 11I1<I.B}I, since IConplll> BI~1I12 <I.B}I and f is a 

mapping "on", we get f(.B 2 )¢ 11." B1 , and, therefore, .B} «.B2 • 
a (8) 

Statement (b) is proved in an analogous way (see also corollary 3.1). 

Corollary 4.3. If directly non-decomposable algebras of a congruence

distributive variety . .'m are limited in power, then . .'m is semi-simple. 

Proof. Let us assume the converse to be valid, and let 11 be a subdirectly 

non-decomposable not simple JJl -algebra and B be a monolith of 11, then 

Conlll>B¢0. By corollary 4.2, Conll(B)"B sCon.BtfJConlll>B for any 

Boolean algebra .B. This formula entails that for any a,p EConll (B).B, the 
equalities a A p = 11, a v fJ - V imply either a = V, fJ = 11 or a = 11, fJ = V. 

Therefore, the algebras 11 (B).B are directly non-decomposable for any Boolean 

algebra .B, and the statement of the corollary results from the fact that 

111 (B)·B 1:2:I.B I .• 

In §3, a variant of the Feferman-Vaught theorem pertaining to the elementary 
properties of Boolean algebras was proved. An analogous statement is valid for a 

more general construction, i.e., filtered Boolean powers. Let 11 be an arbitrary 

algebra, and let 1I}, ... ,1I n be a finite family of its subalgebras. By 11 we will 

denote an extension of the algebra 11 with new unary predicates which select 

subalgebras 11 i (i = 1, .. . ,n) in the algebra 11 . Let 11' be a filtered Boolean power of 

the algebra 11, in which case 11' = {f ElI .B I for i = 1, ... ,n f(Xi ) c;;, 11 i} for a 

certain Boolean algebra.B and closed subsets Xi of a Stone space .B·. Fi will 

denote filters {N E.BI Xi c;;, N} of the Boolean algebra .B, and .B an extension of 

.B with new unary predicates which select filters Fi (i = I, ... n) in the Boolean algebra 

.B. As was the case in lemma 3.5, for any elementary formula cP of the signature 
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of the algebra JJ we can define a tuple T(cp) =< ifJ;(}l'''''(}m > in a natural way, 

where ifJ is the fonnula of the signature of the algebra .B and (}i are the fonnulas 

of the signature of the algebra JJ . In this case, the following lemma holds. 

Lemma 4.5. JJ'I=cp(A, ... ,fn) iff .BI=ifJ(Bt, ... ,B"), where for j=l, ... ,m, 

Bj = {iEB *1 JJ 1 = (}/A(i), ... ,fn(i))}. 

The proof of this statement is absolutely analogous to that of lemma 3.5 and 
is left to the reader as an exercise. 

By way of concluding the list of principal Boolean constructions in universal 

algebra, let us briefly dwell on the following. Let JJ be an arbitrary algebra and 

.B an arbitrary Boolean algebra. Let G be an arbitrary finite group, cp a certain 

homomorphism of the group G into a group of all automorphisms of the algebra JJ 

and 1jJ a homomorphism of the group G into the group of all automorphisms of the 

Boolean algebra .B. For any g EG, the automorphism 1jJ(g) of the algebra .B 
* naturally induces, using the Stone duality, a homomorphism 1jJ (g) of a Stone space 

.B *. JJ g will denote a subalgebra of the Boolean power JJ.B with a basic set 

{jEJJBI 1(1jJ*(g)(i))=cp(g)(f(i)) for any iE.B" and any gEG}. 

The algebra JJ ~ will be called a G -power of the algebra JJ , with the family 

of all Boolean G -powers of the algebra JJ under a fixed action cp of the group G 

on JJ denoted as Pc(JJ). Any algebra of the class Pc(JJ) has been proved [25] to 

be elementary equivalent to a certain filtered Boolean power of the algebra JJ if G 

is Abelian, or if the restriction of any G -automorphism of the algebra JJ on any 

subalgebra of the algebra JJ is an automorphism of this subalgebra. The same 

authors have shown any filtered Boolean power of the algebra JJ to be isomorphic 

to some algebra of the class Pc(JJ) for a suitable group G, if the subalgebras JJ i 

participating in the definition of a filtered power have the form {a EJJ 1 I(a) = a 

for I EHi }, where ~ are some subgroups of the group AutJJ . 

To conclude this section, let us consider the notion of the direct product of 
varieties of algebras. 

Definition 4.7. Subvarieties .rfl1,.JJl 2 of a variety of algebras .. m are called 

independent if there is a tenn I (x, y) such thatJJl11 = I (x, y) = x ,.m 21 = I( x ,y) = y. 

The intersection of independent varieties obviously contains a one-element algebra 
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only. 

Lemma 4.6. If .r.n1, . .m z are independent subvarieties of a variety.m, then 

for any 2IE..m(..m1U . .m Z) there are 2I1E..m 1,2I z E.m z such that 21 Sl2l 1x2l Z' 

Proof. Since . .m (..m 1 U . .mz) = HSP( . .m 1 u..m z), then it suffices to show that 

for any 21 i E.m i the following statements are valid: 

(2) if CfJ is a homomorphism of 211 x 21 z on the algebra .B, then 

.R Sl CfJ1 (21 1) x CfJz (21 z), where CfJi are homomorphisms defined on 21 j . 

Let us assume .R ~ 211 x 2I z and that lJj are kernels of Xj projections on the 

algebra .R. We have, obviously, 171 A 11z = L1 and 171 v 11z = V. Therefore, in order 

to prove that .R = xl (.R) x Xz (.R), it suffices to prove that 111 and 11z are 

permutable on .R. Assume that < a,b >E111° lJz, i.e., there is a cE.R such that 

<a,c>E111 and <c,b>ElJz, and assume that aj ,bj ,c j E2I j (i=1,2) such that 
a = < a1,aZ >, b =< b1,bz >, C =<c1'cZ >, in which case a1 = c1, Cz = hz. Let f(x,y) 

be a term occurring in the definition of the independence of .. m1 and . .mz, then 

f«b1,bz >, <a1,aZ » = f(b1,a1),f(bz,az) >=< q,az >, i.e., < q,az >E.B. But we 
have 

and, hence, < a,b >ElJz ° 171' Therefore, 11z ° 111 S 11z ° 111. We can prove the converse 

and, thus, the permutability of 111 and 11z, in an analogous way. 
To prove property (2), let us assume that CfJ is a homomorphism of the algebra 

211 x 21 z on .R, and a is the kernel of CfJ. Let us define congruences 1jJ j on 

211 x 21 z in the following way: 
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iff there are a4,b4 E2I1 such that «a4,a2 >, < b4,b2 »Ea. 

Let us prove that 1/J1 v 1/J2 = V, 1/J1" 1/J2 = a, 1/Jj O!: "1j and 1/J1 ° 1/J2 = 1/J2° 1/J1' 

In this case, 

.B g 211 x2l2 / a g (21 1 x2l2 / 1/J1) x (21 1 x 212/ 1/J2) g 

(21 1 x 212 / "h / (1/Jl / "11) x (21 1 x21 2/ "12) / (1/J2 / "12) g 

211/ (1/Jl / "h) x21 2 / (1/J2 /1Jz)' 

where for (Jl ~ (J2 EConll , (J2 / (Jl stands for a congruence corresponding to that of 

(J2 on the algebra 11 / (Jl under a canonical homomorphism of 21 on 21 / (Jl' It is 

the homomorphism .B g 111/ (1/Jl / "h) x21 2 / (1/J2 / 1Jz) that completely proves, as has 
been noted above, the statement of the lemma. 

The inequalities 1/Jj O!: "1i follow from the definition of 1/Jj, and, since 

"h v "12 = V, 1/J1 V 1/J2 = V. Moreover, by virtue of permutability of "h and 1Jz we 
have "11 ° 1Jz = "h V "12' Therefore, 1/J1 ° 1/J2 = 1/J2°1/Jl = V and 1/Jl,1/J2 are permutable. 

By the definition, 1/Jl O!: a. Now we have to show that 1/Jl" 1/J2 :s a. ~et 

«alaz >, < ht, ~ »E1/J1 " 1/J2, i.e., there are UJ,b3 = 11 2, a4,b4 E2Il such that 

In this case, 

and 

Analogously, f« b1,b3 >, < b4,b2 » =< b1,b2 >, i.e., «al,a2 >, < b1,b2 >>Ea, 

which was to be proven. • 

In a congruence-modular case lemma 4.6 assumes an inversion. 

Lemma 4.7. If .. 'lfl1 n.rn 2 contains a one-element algebra only, 
.m (.m 1 U .. 'lfl2 ) is congruence-modular, and for any 21 Em (.m1 U .. 'lfl 2 ) there are 
211 Em l' 112 Em2 such that 11 g 111 X 11 2, then m1 and .m2 are independent. 

Proof. Let 21 Em l' .B E.m 2 such that J m (.m! U.m J2) = J g 21 x.B. Let 

x,y be free generators of J, and let (Jl,(J2 be the least congruences on J such 

that J / (J1 Em 1, J / (J2 Em2 . In this case, (Jj:S "1j, where "h,"12 are the kernels 
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of J projections on 11 and .B, respectively. As J I °1 V °2 E.ml n .. rIl 2 , and 

.. rIll n.m 2 contains a one-element algebra only, then °1 v °2 = V. By the choice of 
OJ, any mapping from x,y to the generators of the algebra 111 E .. rIll (.B I E.m 2) 

induces the homomorphism J 101 A °2 in 11 I(.BI) and, hence, in 111 X .BI as well. 
As, be the lemma condition, any .m(.ml v.m2)-algebra has the form 

11 I X .BI (11 I E.m I, .BI E.m 2), then J / °1 A Oz will be a free two-generated algebra 
in .m (.m I v .m2), i.e., J / 0l A °2 Si& J. Therefore, we can assume 0l A °2 = A. 

Since ConJ is modular, the equalities °1 v °2 '" V, °1 A °2 = V, 1JJ. V fJ2 = V , 
1JJ. A fJ2 = A and fJi ~ 0i imply the equalities 0i = fJi. Thus, J 50! J /Ol x °2 , and 

J 101 is a free two-generated .mralgebra, and let its generators be xi,/. 
In this case, the discussed isomorphism of J and J I °1 x J /02 transforms 

x,y in <x\x2 >, <l,l>, respectively. Since JlolxJ/o2 is generated bethe 

elements < xl,x2 >, < l,l >, there is a term f such that f < xl ,x2 >, 

< yll > =< xl, l >. Thus, 

Since J /Oi are free in .mi, the identities f(x,y) = x, f(x,y) = Y will be 

fulfilled on .ml and .m2, respectively, 'which implies that .ml and .m2 are 
independent. • 

Theorem 4.4. If .ml is an Abelian and .m2 a congruence-distributive 

subvariety of a congruence-modular varietym , then .ml and .m2 are independent. 

Proof. It should be remarked that .ml n.m 2 consists of a one-element algebra 

only, as .mll=[V,v]=A, and .. rIl21= [V,v] = V. Therefore, by lemma 4.7, it 

suffices to show that any .m (.m I U .m2)-algebra is presentable as a direct product of 

algebras from .ml and .m2. 
If D E.m (.ml U.m 2), then there is a € which is a subdirect product of the 

algebras 11 E.m 1 and .B E.m2 , and there are ° ECon€ such that D 50! € / 0. Let 

1JJ.,fJ2 be the kernels of the € projections on 11 and .B, respectively. Then 

€ / fJl V fJz E .. rIll n.m 2 and, hence, 1JJ. v fJ2 = V c. By corollary 2.2, 1JJ. and fJz are 

permutable and, therefore, € = 21 x.B. 
By theorem 2.23, fJ2 is a neutral element of Con€ and, hence, 

° = ° V (fJI A fJz) - (0 v 1JJ.) A (0 V fJz), i.e., D = € / ° is a subdirect product of the 
algebras DI ,D2 from the varieties .ml ,.m 2 , respectively. As was the case in the 

preceding section, the algebra D must be a direct product of these algebras Dl ,D2 . 

• 
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Definition 4.8. If .Wl1,Jfl 2 are independent vanetJes of the same signature, 

then the variety .Wl (.m 1 U .. m2 ) is called a direct product of the varietiesWll and 

.Wl2 , and is denoted by .. m1 <8l .. m 2' 

Therefore, by lemma 4.6, any algebra }J Em1 ®.Wl 2 can be represented as 

}J 1 X }J 2' where }J i Em i and, by theorem 4.4, the union of an Abelian and a 
congruence-distributive varieties of the same signature is their direct product. 

Lemma 4.8. Let the equality .Wl =.Wl 1 ® .. m 2 hold for the varieties of 

algebras.Wl , .Wl1, .. m 2 and let the algebra D and the class of algebras n belong to 

.Wl. In this case, 

(a) if D=}J.B and D=D1 xD2,}J =}J1X}J2, where Di,}JiEmi, then 

Di =}J ;S; 

(b) if D is a sub-Boolean power of the algebra}J with a degree .B, 
D=D1 xD2, }J =}Jlx}J2' where }Ji,DiEWli , then Di are sub-Boolean powers 

of the algebras }J i of degree .B; 

(c) if D is a Boolean product of the algebras }Ji(iE.B *) of degree .B, 
_ 1 2 j 

D1 X D2 and }Ji -}J ix}J i ' where Dj,}J iE..m j' then D j are Boolean products 

of the algebras }J { (i EB *) with a power .B ; 

Statements (a) - (c) of the lemma under discussion can be directly checked. 

Statement (d) follows from statement (a) of lemma 4.2, and statement (c) of the 

present lemma .• 

As was the case in the end of section 3, one can easily observe that if the 

algebra}J can be represented as a Boolean product }J ~ n}J i of the algebras }J i 
iEll • 

(as a congruence-Boolean power }J 1 (a).B of a certain algebra }J 1)' then any algebra 

}J I polynomially equivalent to}J can be represented as a Boolean product 
I 

}J I ~ n}J; of algebras }J/ polynomially equivalent to the algebras}Ji (as a 
iEll • 
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congruence-Boolean power Jl i(a).B of some algebra Jl i polynomially equivalent to 

the algebra 11 1). 

And, finally, let us briefly dwell on the relation between the notions of a 
Boolean product and an algebra of global sections of a sheaf of algebras. It should 
be recalled that a triple < S,X,1f > is called a sheaf of algebras if: 

(1) S and X are topological spaces, 

(2) 1f: S -+ X is a local homomorphism of S on X, 

(3) Sx = 1f -1 (x) are algebras of the same signature a for all x EX, 

(4) if f is a functional symbol of the signature a, and Sn is a subspace (n Sx) n of the space (S x) n, then under a natural definition of the mapping 
xEX 

f: Sn -+ S x, f is continuous. 

A global section of the sheaf < S,X,1f > is any continuous mapping g: X -+ S 
such that 1f. g is identical on X. The algebra of global sections of the sheaf 

< S,X,1f > is called a subalgebra of the direct product n Sx' the basic set of which 
JI.€X 

consists of global sections of the sheaf < S,X,1f >. Let us denote this algebra with 
y(S,X,1f). The sheaf < S,X,1f > is called a Hausdorff sheaf, if the space S is a 
Hausdorff space. 

One can also directly check the following statement 

Theorem 4.5. 

(a) If < s,.B *,1f > is a Hausdorff sheaf and .B· is a Stone space of a 

Boolean algebra .B, then y(S,.B· ,1f) is a Boolean product of the algebras Sx of 

degree .B. 

(b) Let 11 be a Boolean product of algebras 11 x of degree X. Let 

S = U {x}xll x' and let us define a topology on S with a basis of open 
xEX 

neighborhoods of the type {< x,f(x) >1 x EN}, where f ElI and N is an open
closed subset of X. Let us define the mapping 1f:S -+ X with the equalities 
1f«x,a »=x. Then <S,X,1f> is a Hausdorff sheaf of algebras, and y(S,X,1f) is 

isomorphic to 11 under a homomorphism a defined by the equalities a(gXx) = a if 
g(x) =< x,a > . 



92 BOOLEAN CONSTRUCTIONS 

Priorities. The notion of a Boolean product was introduced by S.Burris and 
H.Wemer [29] as a reformulation of the construction of a Boolean sheaf, which has 
been studied in detail starting from a paper by J.Dauns and K.H.Hofman [45]. The 
construction of a filtered Boolean power for a variety of rings stems from a work 
by R.F.Arens and J.Kaplansky [5]. The statements of lemma 4.1 belong to 
S.D.Comer [39]. Lemmas 4.2, 4.3 and 4.7 are by S.B.Burris and R.McKenzie 
[27], theorem 4.1 is by S.D. Comer [40]. The construction of a double Boolean 
power belongs to S.Burris and has been effectively used in [27]. The construction of 
a congruence-Boolean power was introduced by A.G.Pinus [168] and used by him to 
study skeletons of epimorphism of congruence-distributive varieties [168, 169]. 

In its implicit form theorem 4.2 can be found in a number of papers. It 

should be remarked that its simplest variant for the case of congruences on a 
Cartesian product of two algebras from a congruence-distributive variety is, in 
essence, the statement of a known Fraser-Hom theorem [70]. Theorem 4.3 and 
corollary 4.1 are by A.G.Pinus [168], lemma 4.4 and corollary 4.2 also belong to 
him [169]. Lemma 4.5 was proved by S.Burris and D.Clark [25]. The definitions 
of independence and of a direct product of varieties, as well as lemmas 4.6 and 
4.7 stem from a paper by G.Gratzer, H.Lakser and J.Plonka [81]. Theorem 4.4 
belongs to C.Herrmann [92].As regards theorem 4.5, see [29]. Some details on 
algebras of global sections can be found, for instance, in [112]. 

5. Discriminator Varieties And Their Specific Algebras 

In many cases studies of varieties representable by Boolean constructions is 
reduced to those of Abelian and discriminator varieties. By theorem 2.20, the former 
are polynomially equivalent varieties of unitary modules over some ring with unity 
which have been quite thoroughly studied in the literature [see, for instance, [97], 
[191], [239]). The present section will be devoted to the description of the structure 
of discriminator varieties using constructions of a Boolean product, followed by the 
demonstration of the resulting possibilities of reducing descriptions of various special 
algebras in discriminator varieties to considering the corresponding Boolean algebras. 
Namely, we will describe the construction of injective, equationally compact, 
topologically compact, algebraically closed and other algebras of discriminator 
varieties, starting with a number of examples of discriminator varieties and their 
various characterizations. 

Here are some examples of discriminator varieties: 

(1) +-Heyting algebras. These are varieties consisting of algebras 

jj =<H;/\,v,-,+,O,I> such that: 
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(a) < H; A. v .0.1 > is a bounded distributive lattice; 

(b) x A y - y - 1; (the operation -+ 

(c) X A (x - y) = X A y; is here a relative 

(d) XA(XAY-Z)"XA(Y-Z); pseudocomplement) 

(the operation + is 

here a dual 

pseudocomplement) 

Subdirectly non-decomposable algebras of this variety are < H;". V.- .+.0.1>. 
where < H; A. v .0.1> is an arbitrary bounded distributive lattice with v -non
decomposable unity. and 

x ... . + {I. if x;d 
O. if x = 1 

The discriminator for such algebras on H is the term t(x.y.z) = 

[z A «x- y) A (y- x» ++]v [X" «(x- Y)" (Y- x» ++-0)]. 

(2) Boolean algebra. The only subdirectly non-decomposable algebra of this 
variety is the two-element Boolean algebra < (O.l};A. v ...... 0.1>. The discriminator on 
it is defined by the term t(x.y,z) ... «x " z) v .... y) ,,(x v z). 

(3) Lukasiewicz algebras of the order n. The variety consists of 

algebras of the form .B =< L;".v .-.11 ..... Dn_l.0.1 > such that 

(a) < L;A.V .0.1 > is a bounded distributive lattice; 

(b) j ... x. X A Y = x v y; 



94 BOOLEAN CONSTRUCTIONS 

[{(x v y) = Di(x) v Di(y), 1 si < n; 

(d) [{(x) ~Dj' Isisj<n; 

(e) Di(x) v [{(x) =1, 1 s i <n, 

[{(x) A [{(x) = 0, Isi<n; 

(h) Dn_1(x) s x < Dt; 

(i) X A Dn_1(x) = 0, x v Dt (x) = 1; 

(j) [{(o) =0, Di(l)=l, Isi<n; 

(k) ysxvDi(x)vDi+1(y), Isisn-2. 

The operation x - y = y v A ([{(x) v Di(y)) has been shown [236] to be a 
l:5i<n 

relative pseudocomplement in the lattice <L;A,v,O,1>. The operation x+=D1(x) is a 

dual pseudocomplement on <L;A,V,O,1>. Therefore, <L;A,v,-,+,O,I> is a +

Heyting algebra, and a variety of Lukasiewicz algebra of the order n i s 
discriminatory. Subdirectly non-decomposable algebras of this variety are subalgebras 
of an algebra of the type <{O, ... ,n-l}; A,v,-,Dl, ... ,Dn-l>0,n-l>, where 

x=n-l-x, Di (x)=n-l, if isx and is equal to 0, if 

i > x, X A Y = min{x,y}, ,x v y = max{x,y}. The discriminator on them is defined by 

the term which determines a discriminator on subdirectly non-decomposable + -Heyting 
algebras under the above-mentioned representation of the functions - ,+ in the 

signature of Lukaciewicz algebras. 

(4) Cylindric algebras of dimension n. The variety consists of algebras 
of the type € =<C;A,v,~,O,l,cl, ... ,cn > such that: 
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Subdirectly non-decomposable algebras of this variety are algebras of the type 
C =<C;A,v, .... ,O,l,cl' ... ,cn >, where <C;A,v, .... ,O,l> is an arbitrary Boolean algebra, 
and cl,c2 , ... cn(x) = 1 if x = 1 and is equal to zero if x .. 1. The discriminator on this 

algebras is defined by the same term as that on + -Heyting algebras if we assume 
++ x-y= .... xvy, x =clc2, ... ,cn(x). 

(5) Relation algebras. The variety consists of algebras of the type 

:R =< R;A,V, .... ,0,1, ;+,A > such that 

(a) < R; A, v, .... ,O,1 > is a Boolean algebra; 

(b) x·(y·z) =(x·y)·z,x·A; 

(d) (xvy)·z=(xvz)·(yvz); 

Subdirectly non-decomposable algebras of this variety are algebras of the type 

:R =<R;A,v, .... ,O,I,+,A > such that for any xER l·x·l=1 if x .. O and is zero if 

x = O. The discriminator on these algebras is defined by the same term as that on 
+-Heyting algebras, if we set x-y= .... xvy, x++= .... (I·x·l). 

(6) Rings. Since the lattice of the congruence of any ring is isomorphic with 
that of its ideals, and the lattice of the congruence of an algebra of a discriminator 
variety is distributive, then any discriminator variety of rings must consist of rings 
with a distributive lattice of ideals, i.e., of arithmetic rings. 

Theorem 5.1. For an arbitrary variety ,.VI, the following conditions are 

equivalent: 

(a) ,m is generated by a finite set of finite fields; 

(b) ,m is a discriminator variety; 

c) all ,.VI -rings are arithmetic; 

(d) there is a polynomial t(x) with integer coefficients and with no free term 
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such that on any ring 1l E.m , the identity X' t(x) - x holds; 

(e) there is an integer n ~ 2 such that on any ring 1l E.m , the identity x n = X 

is true. 

Proof. The implication (1) -+ (2) is fulfilled because for any field GF(q) for 
any nEw such that n -1 .. o (mod q-l), the discriminator t(x,y,z) on GF(q) is set 

by the term Z + (x - zXy - x) n. 

The implication (2) -+ (3) has been discussed earlier, the implications (5) -+ (4) 

and (1) -+ (5) are obvious. Let us prove that the implication (3) -+ (4) holds. If the 

variety of rings .m is arithmetic then, by theorem 2.10, there is a term p(x,y,z) 

(i.e., a polynomial with integer coefficients) such that the following identities are true 

on .. m: p(x,x,y) = x =p(x,y,x) =p(y,x,x). These identities imply that the polynomial 

s(x,y,Z) = p(x,y,z) - p(O,O,z)- p(O,y,O)

p(x,O,O) + 2p(0,0,0) 

has integer coefficients. Besides, the free term of the polynomial s(x,y,z) and its 
coefficients at x,y, z are zero. Direct checking shows that for s(x,y,z) the same 
identities are valid as those mentioned above for p(x,y,z). Putting x beyond the 
brackets in the polynomial s(x,x,x) we get a polynomial t(x) such that 

x·t(x)=s(x,x,x). But s(x,x,x)-x is an identity on.m and, hence, the implication 
(3) -+ (4) is true. 

Concluding the proof of this theorem, let us prove the implication (4) -+ (1). 
First of all, since t(x) is a polynomial with no free term, i.e., t(x) = x 'q(x) for a 

certain polynomial q(x), the equality x 2= 0 implies that x·t(x) =0 as well and, 
hence, according to (4), x = O. It should be noticed now that if e is an idempotent 

of the ring 1l, then e is central, i.e., for any elements e,xEll e2=e imply 
ex = xe. Indeed, 

(ex - exe) 2 = exex - exexe - exeex + exeexe = 0 

and, due to the above, ex = exe. In an analogous way it should be observed that 
xe=exe, i.e., ex=xe. Since x·t(x)=x and t(x)=x'q(x)=q(x)'x, 

t(x)·t(x) =t(x). The same equality x·t(x)=x implies that if t(a)=O, then a=O for 

any element a Ell. If 1l is a directly non-decomposable ring, then the only non

zero central idempotent of the ring 1l is unity. Therefore, a directly non

decomposable Jl. must have unity, and for any a Ell we have t(a) = 1 if a;o! 0, 

and t(a) =0 if a=O. As t(x)=x'q(x), then for any a;o!O a'q(a)=I, i.e., 1l is 
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a sfield obeying the identity x' t(x) - x = 0. Hence, :R has not more elements than 
the power of the polynomial x' t(x) - x. By the Wedderburn theorem (see, for 

instance, [96]), every finite sfield is a field. Thus,:R will be a finite field with a 
bounded number (the power of the polynomial x' t(x) - x) of elements, i.e., (1) 
follows from (4) .• 

(7). Rings with operators. Let us consider a variety of :Rd -algebras 
obtained by adding one unary operation g(x) into the ring signature and consisting 

of algebras :R =< R;+,-,O,',g > such that 

(a) < R; +, -,0,'> is an associative ring; 

(b) g(x)' y = Y' g(x), g(x)' g(x) = g(x); 

(c) g(x)' x = x ; 

(d) g(x' g(y» = g(x) . g(y), 

g(x -x' g(y» = g(x) - g(x)' g(y). 

The subdirectly non-decomposable algebras of this variety are algebras of the 
type <R;+,-,O,;g>, where g(x)=1 if x .. O, and g(x)=O if x=O. The 
discriminator on these algebras is defined by the term t(x,y,z) = Z + (x - z)g(y - x). 

The ring :R is biregular if for any x E:R there is a central idempotent x + 

which generates the same principal ideal in :R that x does. It is evident that x+ is 
uniquely defined by x and, by modifying the biregular ring with the operation 

g(x) = x +, we see that every biregular ring modified in this way is an algebra from 

the variety :Rd' 

A ring is called a Baer* -ring if for any x E:R, the ideal of annihilators of x is 

generated by a certain central idempotent x * (x' is uniquely obtained by x). The 

ring :R is called strictly regular if for any xE1l there is an element x-1E1l such 

that X2 'X-1=X (x-1 is uniquely defined except for the case x=o when we set 

0-1=0). Extension of Baer*- and strictly regular rings, respectively, with unary 
. * ~ operatIOns x -+ x , x -+ x converts these families of rings into discriminator 

varieties. 
By way of concluding this series of examples of discriminator varieties, it 

should be remarked that despite the fact that the above-mentioned varieties are not of 
prime importance in modern algebra, their investigation is worth undertaking not only 
in view of the examples listed above (the list, incidentally, can be extended), but in 
view of the following result as well. Let us first recall the definition of quasi
primarity discussed in Section 2. 
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Definition 5.1. A finite algebra 21 is called quasi-primal if it is subdirectly 

non-decomposable, and .m (21) is a discriminator variety. In other words, 21 is 
quasi-primal if the discriminator on it is defined by some term. 

Theorem 5.2. If G(n) is a number of mutually non-isomorphic groupoids of 
the power n, and Q(n) is a number of mutually non-isomorphic quasi-primal 

groupoids of the power n, then lim Q(n) = 1 i.e., 'nearly all' finite groupoids of 
11-+ ooG(n) , 

greater power are quasi-primal. 
The following characteristics of quasi-primal algebras are known. 

Theorem 5.3. A finite algebra 21 is quasi-primal iff 21 and its all 

subalgebras are simple, and .m (21) is arithmetic. 

Theorem 5.4. A finite algebra 21 is quasi-primal iff for any n-ary function 

f set on 21 and such that any subalgebra of the algebra 21 2 which is a graph of 

the isomorphism between any subalgebras of the algebra 21 is closed relative to f, 

then for f there is a term of the algebra 21 defining f on 21 . 
The class of discriminator varieties among the class of all arithmetic ones is 

singled out with the help of a certain property of congruence determinability. 

Definition 5.2. The principal congruences on a variety .m are definable by 
bounded identities if there is a finite set of pairs of terms of four variables 

< tl,ql >, ... ,< tn,qn > such that for any algebra 21 E.m and any a,b,c,d E2I 
< a,b >E(Jc,d iff 

n 
211= &tj (a,b,c ,d) = qj(a,b,c ,d). 

bol 

Theorem 5.5. A variety.m IS a discriminator variety iff .m is arithmetic 

and the principal congruences on .. m are definable by bounded identities. 
This, in particular, entails the properties of extensibility of congruences for 

discriminator varieties. 
Without proof let us recall the following description of principal congruences on 

subalgebras of direct products of simple algebras of discriminator varieties to be used 
below. 

Theorem 5.6. If 21 j are simple algebras belonging to a discriminator variety 

(congruence-distributive, with extensible congruences, and such that .mSl is 
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approximated and the principal congruences on . .r.rl are elementary definable), and C 
is a subalgebra of a direct product Il21 i' then for any f, g ,h,k EC , 

iE/ 

< f,g >Eefk iff {iEIlf(i) =g(l)}::2{iEII h(i) =k(i)}. 

The proof of this theorem can be compared with the description of principal 
congruences of Boolean powers of simple algebras in congruence-distributive varieties 

given in theorem 3.2 (see also theorem 4.2). 

As has been mentioned in the beginning of this section, discriminator varieties 
allow a simple description using the construction of a Boolean product. By 

.. m ;/C.m ;) we will mean a class . .r.rl s/(..r.rl s) with a singleton algebra added to it. 

Theorem 5.7. If .. m is a discriminator variety, then.m = IT a (.m ;/). 

Proof. Let a term t(x,y,z) define the function of a discriminator on subdirectly 

non-decomposable . .m -algebras. S p21 will denote a set {e ECon21 I for any 

a ECon21 , e ~ a implies either e = a or a = V} for any algebra 21 of.m, i.e., 

S p21 is a family of all maximal congruences on 21 plus the congruence V. For any 

elements x,yE2I , E(x,y) will denote the set {eEsp2li<x,y >Ee}, while D(x,y) 

will denote the set {e ESp21 i< x,y >fj:.e}. Let us define on S p21 the topology the 

subbasis of open sets of which is a family ([ of all subsets S p21 of the type 

E(x,y), D(x,y) for any x,y E2I . Let us first of all note that this family forms a 

Boolean algebra and is the basis of the given topology, which consists of open

closed subsets of the space sp21 . Since D(x,y) = sp21 \ E(x,y), it suffices to show 

that the family {E(x,y),D(x,y)lx,yE2I} is closed relative to intersections. Let e be 

a maximal congruence on 21, i.e., e ESp21 \ {V}, in which case for any x,y,zE2I 

we have, by the definition of t(x,y,z) : 

and 
< x,y >Ee ~< t(x,y,z),z >Ee 

< x,y >$.e ~< t(x,y,z),x >Ee. 

Therefore, for any r,s,u,v E2I , 

<r,s>Ee and <u,v>Ee<;:;><t(r,s,u),t(s,r,v)>Ee, 

< r,s >Ee and < u, v >$.e <;:;>< t(r,s,u), t(s,r ,v) >fj:.e, 

<r,s>Ee and <u,v>fte<;:;><t(r,t(r,s,u),u), t(r, tt(s,r,v)v>$.e. 

The above equivalences together with the fact that VEE(x,y), 

any x, y E2I imply the required equalities: 

V $.D(x,y) for 
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E(r,s) n E(u.v) = E(t(r.s.u). t(s.r. v». 

E(r,s) nD(u,v) = D(t(r,s.u).t(r.s.v» • 

BOOLEAN CONSTRUCTIONS 

E(r,s) n D(u, v) = D(t(r.t(r.s.u). t(r.s. v» t(r.t(r.s.v).v». 

Therefore. the family ([ of subsets of the space S pll indeed forms a Boolean 

algebra. consists of open-closed subsets of this space and forms its basis. 

Let now C be a closed subset of the space S i J and V EC. Then. since ([ 

is the basis of the space spll consisting of open-closed sets. C= n{AEi2:" IC~ A}. 

Since for any r.s ElI V ftD(r.s). C = n{E(r,s) Ei2:" IC ~ E(r.s)}. 

Turning to the complement of C. we get the following statement: for any open 

subset q of the space spll such that CI:JV. the equality 

CI = U{D(r.s) Ei2:" ICI Q; E(r,s)} holds. Let now a be an arbitrary congruence on the 
algebra 11. and let us establish a correspondence between a and the set 

U(a) ={(JESplllaQ; (J) of the space spll. Evidently. U(a) is an open subset. and 

V ftU( a). Using the above-mentioned representation of similar open sets CI • one can 

directly check that U is an isomorphism between the lattice Conll and the lattice of 

open subsets of the space S pll containing no element V. 

Let us now show that S pll is a Boolean space. and a Boolean algebra of all 

open-closed subsets of the space S pll coincides with the family ([ . Since ([ is a 

basis of S pll consisting of open-closed subsets of the space S pll • S pll is a 0-

dimensional space. and in order to prove that S pll is Boolean. one has to show 

that it is compact and is a Hausdorff space. If (J.a ESpll and (J Q; a. then there 

are x.yElI such that <x.y>E(J.<x.y>fta and. hence. E(x'y).D(x.y) are disjunct 

neighborhoods of the points (J.a. which proves that S pll is a Hausdorff space. Let 

now {Ujli EI} be an open covering of the space spll . There is an io EI such that 

VEUjo and. therefore. since ([ is a basis and VftD(x.y). there are r.s ElI such 

that V EE(r.s) ~ Uio . Let "i = Uj n D(r.s) for i EI. then {"i Ii El} is an open 

covering of the set D(r.s). Let us choose an aj ECon2/ such that U(aj) = "i, 
where U is the above constructed isomorphism Con1J and the lattice of open 

subsets of S pll containing no V. Then 

Therefore. as U is an isomorphism. (Jr oS = ~ aj and. since (Jr oS are compact. 

there are il • ...• in EI such that (Jr oS = ajl v ... v ai". But in this case 
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U«(Jr s) =- D(r,s) = U(ai )U ... UU(ai )= Vi U ... UV; 
, 1 n. 1 "'11 

and, hence, S p1l .. U io U U ~ U ... U Uin . This is the proof that the space S p1l is 

compact and, at the same time, Boolean. The family {[ is the basis of S p1l which 

consists of open-closed subsets of S p1l and is a Boolean algebra, but then, as is 

known, {[ is the family of all open-closed subsets of S p1l . 

Let Jro «(J ESp1l) be a canonical homomorphism from the algebra 11 to 

11 I (J and 1 a mapping from 11 to n1l I (J such that for x E1I, (J ESp1l we 
oJJ?J 

get l(x)(8) = Jro(x) . 

It should be remarked that for (J ESp1l , 21 I (J is either simple or singleton, 

i.e., in particular, 1 is a mapping of 21 on a subdirect product of ,m ;ralgebras. 

If x~yE2I, then there is a (JESp21 such that Jr8(x)~Jr8(Y)' Indeed, let 

a = U{y ECon2l1< x,y >~y}. Then 11 I a Em SI and, since ,m is a discriminator 

variety, ,mSI = ,m S (see section 2) and, hence, a ESp (21 ) and Jra(x) ~ Jra(y). 

Therefore, I(x) ~ I(Y), i.e., 1 is an isomorphism. 
Let us prove that 1(21) is a Boolean product of the algebras 21 I (J, (J ESp21 , 

which will require the validity of the following conditions: 

(a) for any x,y E2I t/(x) = l(y)]1 is open-closed in sp21 ; 

(b) for any x,y E2I and any open-closed subset A ~ sp21 there is a z E2I 

such that I(z) = I(x) I AU/(y)ISp21 \A. 

Condition (a) is obviously fulfilled, since by the definition of 1 and the set 
E(x,y) we have t/(x) = l(y)]1 = E(x,y). 

Assume now x, y E2I and A err . For the sake of definiteness, let us assume 

that A-E(r,s), in which case sp21 \A=D(r,s).One can directly check that 
z = t(t(r,s,x), t(r,s,y),y) indeed has the properties of condition (b). Therefore, indeed, 

1(21 ) Era( .. rrl ;1)' i.e., the arbitrary algebra 21 E.m is isomorphic with a Boolean 

product of ,m II -algebras. • 

The proof of theorem 5.7 makes it also possible to establish a relationship 
between algebras of an arbitrary discriminator variety and a variety of distributive 

lattices with relative complements. Let D(21) denote the lattice of open-closed 

subsets of the space s/21) containing no V for an algebra 11 which belongs to a 

discriminator variety ,m. D(21) is a distributive lattice with relative complements. Let 

us fix an arbitrary element a from 21, and define the operations x A y, X V y, x \ Y 
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on J! in the following way: 

X /\ Y = t(a,t(a,x,y),y), x v y = t(x,a ,y), x \ y = t(a,y,x). 

One can also directly check that a mapping d:J! - D(J! ), defined as 

d(r) = D(a,r) for r EJ! , is a homomorphism from the basic set of the algebra Ji 
with polynomial operations V,/\, \ to the distributive lattice with relative complements 
D(Ji) . 

The proofs of theorem 5.7 and the statement of theorem 5.6 obviously yield 
the following statements. 

Corollary 5.1. For any algebra Ji from a discriminator variety JJl, ConpJ! 

is a Boolean algebra if V J{ E ConpJ! . 

Corollary 5.2. For any quasi-primal algebra Ji , for any Boolean algebra .B 
and subalgebra J( I of the algebra Ji .B , if Ji I contains all constant elements of the 

algebra J( .B , then there is a subalgebra .BI of the Boolean algebra.B such that 

J!I S5 J( .B 1. Indeed, .BI == <It - g]1I t, g EJi I}. 

Let us now tum to the description of the construction of various special 

algebras in discriminator varieties. Let . .'Ol be a discriminator variety, and let 

J!I ,J! 2 E..'Ol. In this case, by theorem 5.7, the algebras Ji i are representable as 

Boolean products of simple and singleton . .'Ol -algebras. Let us use the notations of 

the proof of this theorem, while the algebras )f i proper will be identified with the 

corresponding subalgebras of the algebras n J! J (). Let g be a homomorphism 
(JJ;P~i 

from the algebra J!I to the algebra J( 2. Since subalgebras of simple . .'Ol -algebras are 

simple, for any () ESpJ( 2, when x(J is a canonical projection of J!2 on J( 2/ (), we 

get ker(x(J· g) ESpJ!l. Let us refer to ker(x(J· g) as g \() and we can easily check 

that g + is a continuous mapping from the space S pJi 2 to the space S pJi I. As S pJi i 

are Stone spaces of Boolean algebras 

fL 1/. = {0J. (x,y), E1/. (x,y) Ix,y EJi J, , , , 

a mapping g * from the Boolean algebra rr 1/ to the Boolean algebra {[ 1/ (a dual 
1 2 

of g +) will be a homomorphism, in which case for any x, y EJi I we get 

g *<D1/ 1 (x, y» = D1/ /g(x),g( y». Let S Po Ji i = SpJ! i \ {V 1/ J, and let us notice that the 
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mappingg+ preserves the points of V}Jj' i.e., g+CV}J2)=V}JI.Let CP}Jj be an 

ultrafilter on ([}f. equal to {E(x,y)1 x,y ElI i}' in which case g * preserves this filter, 
• 

i.e., (g *) -\ CP}J 2) = CP}J I' The ideal 1}J j of the Boolean algebra ('[}J j is also the dual 

of the subspace SPolli: 1}J. = T}J. \ CP}J ={LXx,y)lx,yElI j } and, although g+ may 
• • • 

not be a mapping from S Po 11 2 to S Po 11 I' g * is a homomorphism from a lattice 

with relative complements of 11/ to 11/ . 
I 2 

Before we start studying the structure of special embeddings and special 
algebras in discriminator varieties, let us cite some necessary results related to the 
truth of elementary formulas about the algebras of similar varieties. 

Lemma 5.1. 

(a) For any algebra 11 E.m s, any aI'" a2 ElI , for any formula cP of the type 
p(71) = q(a) where p,q are terms and a is a tuple of elements of the algebra 

11 , J/ 1= p(71) ... q(ii) iff 

11 1= t(p(a), q(a),aI) = t(p(71),q( a), a2)' 

(b) For any algebra 11 E.m, any formula cP of the type V'Ey 
n 

(& ~(x,y) = qj(x,y)), where pj,qi are terms and x,y are tuples of variables, J/ 1= cP 
i-I 

iff for any cP ESpoJ/ we have 11 I <PI= cp. 

Proof. Statement (a) can be checked directly, owing to the fact that the term 

t(x,y,z) defines the discriminators on .ms algebras. In order to prove statement (b), 

one should notice that, since 11 1= cP, cP is true on J/ I cP for any ljJ ESpll 

because the formula of cP is positive. Let us prove the converse case, so let 

11 I CPI= cP for any cP ESpoll and, therefore, 11 I CPI= cP for any cP ESpll . 

Assume that aElI , and let 1fIP(ii) (CPESpll) stand for a tuple consisting of 1fIP

images of the elements of the tuple a. Then for a certain tuple hIP EJ/ I cP we 
have 
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contains a point q> of the space S /1. Choosing a finite subcovering AtP!,· .. , AtPn 

from the covering {A.p 1 q> ESpJl} of the space S pJl , one can consider the latter a 

subdivision of the space S pJl. Since 21 is a Boolean product of the algebras 

21 / q> for q> ESpJl , there is a b EJI such that for i ~ n, any 'IjJ EA.pi we have 
- -tP 

l1:tp(b) = l1:tp(b i). Therefore, for any q>ESpJl , 

n _ _ 

and, hence, 211= & p/ a,b) = qi(a,b), which means that there is an 211= cpo • 
i=l 

Lemma 5.2. For any set of 'V3-formulas ~ there exists a set ~' of formulas 
of the kind 'VEy(p(x,y) = Xl), where p is a term and x,y are tuples of variables 

such that for any algebra 21 E.m J11=~' iff for any 'IjJ ESPoJl 21 / 'IjJ 1 = ~. 

Proof. Let us assume that all the negations occurring in the ~ -formulas refer 
only to atomic subformulas, i.e., occur as inequalities p(x) .. q(x). Let us replace 

every occurrence of a similar inequality a in the ~ -formula with a corresponding 

positive 'V -formula a' of the type 'Vx,y(t(p(x),q (x),x) = t(p(x),q(X),y). Then for the 

algebras .B E.ms , .B 1 = a iff .B 1 = a'. Let ~" be a result of the substitution of the 
inequalities a in ~ -formulas with subformulas of the type a'. ~" is a family of 

positive 'V3-formulas and, obviously, for 21 E..m s, 21 E~" _ 211= ~. 

Let us now consider a certain standard transformation of positive quantifierless 
formulas in discriminator varieties. Let us, first of all, take into consideration the 
following terms: 

n(x,y,z,u) = t(t(x,y,z),t(x,y,u),u) and 

s(x,y,z) = n(x,y,z,t(x,z,y». 

One can observe directly that for 21 E..m s, for any a,b,c,d EJI , 
n(a,b,c,d)=c if a=b, is equal to d if a .. b, s(a,b,c) =a, if a .. b,c, is equal to 

b if a = c, is equal to c if a = b. By way of induction, let us establish a 
correspondence between any positive quantifierless formula cp with variables Xl,·· .,xn 

and a certain term T(cp) according to the following rules: 

(a) if cp is an equality of terms p(x) =q(x), then T(cp) = s(p(x),q(X),xl); 

(b) if cp=av{3, then T(av{3)=n(T(a),xl,xl ,T({3»; 
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(c) if cp=aA{J, then T(aA{J)=t(T(a),xt>T({J)). 

One can also directly check that for any algebra }j E..rn s, and al' ... ,an E}j , 

}j 1= cp(al , .. . ,an) -«>}j 1= T( cp)(al'· .. ,a n) = al· 
For any formula l/J = Vx3y cp(x,y) EI", we will construct a formula 

* * l/J = VX3Y(T(cp)(x,Y) = xl) and let I' = {l/J Il/J EI"}. By lemma 5.1 we see that 

for any algebra }j E.rn, }j 1= I' iff for any l/J ES~, }j Il/JI= I'. Since for 

any }j E.rn s, 

}j 1= I' -«>}j 1= I" -«>}j 1= I, 

the family of the I' -formulas is the one we were loking for. • 

Definition 5.3. 

(a) A subalgebra }j 1 is called an essential subalgebra of the algebra}j if for 

any homomorphism I from the algebra}j to the algebra .R, I is an isomorphism 

iff 11}j 1 is an isomorphic embedding of }j 1 in .R. An embedding g of the algebra 

}j 2 to the algebra}j is said essential if the algebra g(}j 2) is an essential 

subalgebra of the algebra }j . 

(b) The algebra}j is called a pure extension of its subalgebra }j 1 if for any 

finite set of equalities {t:(x,a) = t;(x,a)li EI}, where t/,t; are terms, a is a tuple 

of elements of }j 1 and x = xt> ... ,xn' the fulfilment of the conjunction 

& tl(x,a) = ti2 (X,li) in }j implies the fulfilment of this conjunction in }j 1. The 
iEl 

embedding g of the algebra }j 2 in the algebra}j is called pure if}j is a pure 

extension of the algebra g(J1 2). 

(c) The algebra}j is called an existential extension of its subalgebra }j l' if for 
any finite set of equalities and inequalities 

{tt (x, a) = t; (x,a),t; (x,b) ;o! tJ (x,b)1 i EI,j E./}, 

1234 -- ')1 where ti,t i .tj.tj are terms, a,b are tuples of the elements from .a land 
x = Xl' ... ,xn' the fulfilment of the conjunction 

& ~(X,a)= t;(x,li)& & tJ~(x,b);o! tJ~(x,b) 
iEl jEJ 
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in 11 implies that in 11 l' The embedding g of the algebra 11 2 in the algebra 11 IS 

called existential if J/ is an existential extension of the algebra g(J/ 2)' 

Lemma 5.3. If X ~ sPQ1l ,then the following conditions are equivalent: 

(a) a family of canonical projections {JfoIO EX} implies a subdirect 

decomposition of the algebra 11 ; 

(b) n{OIO EX} =.1; 

(c) the set X U {V} is dense in the space SpJ/ . 

Proof. n{(Jlo EX} =.1 iff for any x,y ElI , when X;a! y, there is a 0 EX 

such that < x,y >$.0. The latter statement is equivalent to the fact that for any 
x,y EJ/ , x = Y if for all 0 EX < x,y >EO, which is, in turn, equivalent to the fact 

that for any x,y ElI , the inclusion X ~ E(x,y) implies the equality x = y .• 

Lemma 5.4. The following conditions are equivalent for the embedding 
f:J/ -€: 

( 1) f is essential; 

(2) for any e~ spC such that VEe, e is dense in Sp€ iff f\c) is 
dense in spll ; 

(3) if e is a closed subset in Sp€, then sPQ1l ~f\c) iff SPo€ ~e; 

. . 
(4) the embeddmg f :J2I - JC is essential in the class of distributive lattices 

with relative complements. 

Proof. In the definition of the essentiality of an embedding of the algebra J/ 

in the algebra € it is obviously sufficient to consider only the principal congruences 

of the algebra € and, in this case, the implication (1) -+ (2) directly results from 

the criterion (b) of density of the subset of the space Sp,€ )(sp(lI» of lemma 5.3. 
The implication (2) -+ (3) is obvious. The implication (3) -+ (1) can be also directly 
proved using lemma 5.3. At the same time, the equivalence of conditions (3) and 
(4) results from the fact that any congruence on the lattice of J2I is uniquely 
determined by a certain ideal of this lattice, while the latter is uniquely determined by 

a certain open subset of the space S pJ/ containing no element V. • 
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Lemma 5.5. If f is an embedding of the algebra JI in the algebra €, and 

there is an Xc;;,Sptl such that f+(X) = SlbJl , and for any c])EX the induced 

embedding itp:JI / f \ c]») -+ tl / c]) is pure, then the embedding f is pure itself. 

Proof. Let 

and al, ... ,as EJI. In this case, if tll= cp(f(al), ... ,f(as ))' then, SInce cp is a 
positive formula, for any c]) ESptl , 

As f<p are pure embeddings of the algebras JI / f\ c]») in € / C]), for any 

c])EX, 

Andsincef\X)=SpJl \{V},foranyljJESpa1l wehave JI /1jJ1=cp(a1 /1jJ, ... ,a s /1jJ). 

By lemma 5.1 (b), we get from here that JlI= cp(al, ... as ) .• 

Lemma 5.6. Let f be an embedding of the algebra JI in the algebra tl, 

and let the space spJl have no other isolated points but V. If there is a subset X 

dense in SPo€ such that f+(X) = SR;JI , and for any c]) EX the induced embedding 

f<p:JI / f\ c]») -+ tl / c]) is existential, then the embedding f is existential itself. 

Proof. Let the formula 

Cpj will denote the formulas 
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for j s k, and q/ the fonnula 

Let al, ... ,a/ EJI and tll= qJ(j(al), ... ,f(a/». The task is to show that 
JlI= qJ(al, ... ,a/). .; 

Since tl is a subdirect product of algebras tl I q>, where q> ESptl, it is 
obvious that for any q> ESp€ , 

and there are q>1, ... ,q> k ESptl such that 

for all js k. 

It is obvious that, since € I V is singleton, q>1 , ... , q> k are different from V. 

It is also obvious (see proof of lemma 5.1 (b» that for any existential 
formula, the definition of a Boolean product entails that the truth of this formula for 
a certain position of the projection xi of this Boolean product implies that of this 

formula for any projection occurring in a certain neighborhood of the projection xi' 

By virtue of this remark and since X is dense in SPo€ , there are q>{, ... ,q>k EX 

such that 

Since the embeddings f<p of the algebras JI I f \ q» in the algebras € I q> are 
existential for any q> EX , 

for any jsk, and for any q>EX JI If\q»I=qJ'(al/q>, ... ,a{1 q». But 

f+(X) = s~JI and, therefore, JI I q>1= qJ'(al I q>, ... ,a{ I q» for any q> ESpJl. As 

in the case considered above, the validity of qJj(all f\q>j), ... ,a{ I f+(q>j» for the 

algebra JI I f \ q>j) implies that of the formula qJ j( al I q>, ... ,a { I q» for the algebra 

JI I q> for any q> from a certain neighborhood Sj of the point f+(q>j) of the 

space spJl. But spJl has no other isolated points but V and, obviously, 

f + (q> j) ;0' V. This enables us to choose points q> j' E Sj in such a way that they are 
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mutually different at j s; k and, therefore, for pairwise different <1>J (at j s; k), we 

have 

From this fact, and since JI '<1>1= cp' (aI' <1>, .•• ,af' <1» for any <1> ESJ1I , one 

can deduce in a standard way (see, for instance, the proof of lemma 5.1.(b» the 

truth of the formula cp(al,. .. ,af) for the algebra JI , which is a Boolean product of 

algebras JI ,<1>( <1> ESpJl) over the Boolean space spJl .• 

Definition 5.4. 

(a) The algebra JI is called injective in the class R iff for any embedding 

h:.R - C of the algebras .R,C ER and any homomorphism f of the algebra .R 
in the algebra JI , there is a homomorphism g from the algebra C to the algebra 

JI such that f = g oh. 

(b) The algebra JI is weakly injective in the class R iff for any embedding 

h:.R - C of algebras .R,C ER , and for any homomorphism f from the algebra 

.R to the algebra JI , there is a homomorphism g from the algebra C to the 

algebra JI such that f = g oh. 

(c) The algebra JI is an absolute subretract in R if for any embedding 

h:JI - C ER there is a homomorphism g from the algebra C to JI such that 

g . h is identical on JI . 

(d) The algebra JI has no proper essential extension in the class R if any 

essential embedding h:JI - C ER is an isomorphism. 

(e) The algebra JI is algebraically closed in the class R if any embedding 

h:JI - C ER is pure. 

(f) The algebra JI is existentially closed in the class R if any embedding 

h:JI - C ER is existential. 

(g) The algebra JI is called equationally compact if any set 

{t:(Xi,ai) =t;(xi,aj)1 iE/}, where tl,t; are terms, Xi,ai are tuples of variables and 

JI -elements, respectively, each of the finite subsets of which is fulfilled in JI, is 
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self-fulfilled in JI . 
One can now easily prove the following lemma. 

Lemma 5.7. If a variety .m has the property of extensibility of congruences, 

then the following conditions on the algebra 21 Em are equivalent 

(a) JI is weakly injective in .m ; 

(b) JI is an absolute subretract in .m ; 

(c) 21 has no proper essential extension in .m . 

Let then.m be a discriminator variety . . m;, as earlier, will stand for the class 
of algebras .mS] = .. 'lTl s modified with a one-element algebra. 

Lemma 5.S. 

(a) For any 21 ,.R E.m s+, any embedding f: 21 -.R 

(1) is essential but for the case when 1211= 1.I.R I> 1; 

(2) if 21 is finite, then f is pure iff f is an isomorphism, or IJlI = 1; 

(3) if 21 is finite, then f is existential iff f is an isomorphism. 

(b) For .R Em ;, the following conditions are equivalent 

(1) .R is injective in .m ; ; 
(2) .R is finite, and any isomorphism between non-singleton subalgebras of the 

algebra.R is extendable up to the automorphism of the algebra .R, and for any 

21 E .. 'lTl ;, either 21 is imbeddable in .R, or .R and 21 have no non-singleton 
isomorphic subalgebras; 

(3) .R is injective in .m . 

(c) For a non-singleton .R Em ;, the following conditions are equivalent: 

(1) .R is weakly injective in .m;; 
(2) .R has no proper extensions in .m ;; 
(3) .R is finite and algebraically closed in .. 'lTl ; ; 
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(4) 11 is finite and existentially closed in .. m ~; 
(5) .R is weakly injective in.m . 

(d) .B E .. m ~ is equationally compact iff .R is finite. 

Proof. Statement (a)(l) is obvious. 

111 

Statements (a)(2), (a)(3) are obvious for the case when IJi 1= 1. Let IJi I> 1, 

JI = {aI'" .,an } and al '" a2' For any algebra 1£ such that I(JI) ~ 1£ ~R, the 
n 

formula &t(ai,x,al) = t(ai ,x,a2) is fulfilled on an element b E€ iff b $./(JI ). 
i-I 

Therefore, if I is pure and existential, then I is certainly an isomorphism between 

the algebras JI and.R. Hence, statements (a)(2) and (a)(3) are completely proved. 
Let us show that (b)(l) and (b)(2) are equivalent. Let us first of all prove that 

an algebra JI that is weakly injective in the class.m; must be finite. Let us 

assume that the opposite holds, i.e., let JI be infinite, JI = {ai I I EI}, and let an 

element b$.Ji, then the family of the statements {ai",bl iEI}U{t(x,y,z)

discriminator} U {diagram of the algebra JI} is locally compactable, and, hence, 

according to the compactness theorem, it is compactable. The model of .B of this 

family of statements will be a proper extension of the algebra JI in the c1ass.rrl;, 

i.e., in particular, a simple algebra. And again, since the algebra JI is weakly 

injective, the algebra .R must homomorphically map on JI. The obtained 

contradiction proves the finiteness of any weakly injective in.rrl; algebra. 

Let now h be an embedding of the algebra 1£ in the algebra .1), and 

1£ ,.1) E..rrl;. Let I be a homomorphism from 1£ to the algebra .B, in which case 

(b)(l) states the existence of a homomorphism g from the algebra.1) to the algebra 

.B such that 1= h:g, while (b)(2) states the existence of such a homomorphism g 

only in the case when 1/(1£)1> 1. In the case when 1/(1£ ~ = 1, it suffices to choose 

g in such a way that g(.1) = 1(1£ ). 

Let us show that (b)(1) ~ (b)(3). Let h be an embedding JI - €, where 

JI ,€ E . .rrl, and I be a homomorphism from the algebra JI to the algebra .B. 
Since I(JI) is a simple subalgebra of the algebra.B and since the congruences on 

.. m are extendable, there exists a congruence 'l/J maximal in Can€ and a 

congruence cp maximal in CanJi such that the following diagram is commutative: 



112 BOOLEAN CONSTRUCTIONS 

Fig. 4 

The injectivity of the algebra.R in the class .. 'tTl; implies the existence of a 

homomorphism 1C:€ / 1jJ -. .R such that g = 1C' k. But in this case, 1C' qJ is a 

homomorphism from the algebra € to the algebra.R and, obviously, is the one to 

prove the injectivity of the algebra.R in the variety .111 • 
Statement (b)(3) - (b)(l) is obvious. 
Statements (c)(5) - (c)(l), (c)(l) - (c)(2), (c)(4) - (c)(3) are also obvious. 

Implication (c)(3) - (c)(2) results from statement (a)(2). The proof of statement 
(c)(2) - (c)(4) results from the considerations of the proof of statements 
(b)(1) -(b)(2) and (a) (2). The statement (c)(2) - (c)(5) is proved analogously to the 
implication (b)(1) - (b)(3). 

Statement (d) results from the fact that for an infinite algebra Jl E.m;, if J 
is not the principal ultrafilter on ro , then Jl (}) / J is a proper extension of Jl, and 

since the term t(x,y,z) will define the discriminator on Jl (}) / J , as well as on Jl , 
Jl (}) / J is simple. On the other hand, taking a positive diagram of Jl (}) / J in a 

standard way and replacing the constant elements in Jl (}) / J with the corresponding 

constants from Jl , and the rest of the elements with various variables, we obtain a 

system of equations finitely fulfillable in Jl , with its fulfill ability in Jl implying that 
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21 is a retract of 21 W / J . The contradiction obtained proves statement (d) .• 

Lemma 5.9. Any non-singleton algebra 21 algebraically closed in . .m; is 

existentially closed in.m;. 

Proof. It suffices to notice that for any .. m; -algebra 21 contammg elements 

al;" a2, the solvability of any inequality J('XJi);" g(x,ii) in 21, where J,g are 

terms, x is a tuple of variables and a is a tuple of the elements of the algebra 21 , 
is equivalent to the solvability of the equation 

t(j(x,ii),g( x, a), al) = t(j(x,ii),g( x, a), a2), 

where t is a term determining the discriminator on 21 .• 

Theorem 5.8. Let.m be a discriminator variety and 21 E..m such that for 

any l/J ESroJI ' the algebra 21 / l/J is algebraically closed in.m;. Then: 

(a) 11 is algebraically closed in .. m ; 

(b) 11 is existentially closed in.m provided that one of the following 
conditions are met: 

(1) the non-singleton.m; -algebra has no one-element subalgebras, and the 

space sp21 has no isolated points other than, possibly, V; 

(2) a certain non-singleton .. m; -algebra has a one-element subalgebra, while the 

space sp21 has no isolated points. 

Proof. 

(a) Let J be an embedding of the algebra 21 in the algebra .R E .. m. As 

21 / l/J are algebraically closed in .. m; for any l/J ESroJI ' for any 'IjJ ESPo€ such 

that J + ('IjJ) ESPcll ' the embedding J", of the algebra 21 / J \ 'IjJ) in the algebra 

IC / 'IjJ is pure. Therefore, by lemma 5.5, the embedding J is pure and statement 
(a) is proved. 

bl). It should be first of all noticed that, since non-singleton.m; -algebras 

contain no singleton subalgebras, for any embedding j:21 -IC , where IC E .. m, for 

'IjJ ESp([ , the equality J+ ('IjJ) = V yields the equality 'IjJ = V. Therefore, for any 
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1jJ ESPOC , the algebra ~+(1jJ) is a non-singleton algebra algebraically closed in 

.m;. According to lemma 5.9, the algebra ~+ (1jJ) is existentially closed and, 

hence, the embedding f1jJ:~+( 1jJ) into the algebra Cfv, is existential for any 

1jJ ESPoC . The embedding f is, hence, existential by lemma 5.6. 

b2). If V is not an isolated point in spll, then for any embedding 

f: II -+ C , the set {1jJ ESpC I f+ (1jJ) ... V J is dense in the subspace S PoC, since 

the mapping f+ is a continuous mapping from the space SpC to the space spll . 
Now the statement b(2) follows, like the statement bel), from lemma 5.6 .• 

Let us now assume that.m is a finitely generated discriminator variety. By the 

Jonsson lemma and by the fact that .. m S! =.m s' the class of .. m sralgebras is finite, 

as all "msralgebras are. By "mmax we will mean the "msralgebras which are 

maximal in .m S! relative to the embedding. As "m is congruence-distributive and, by 

the Baker theorem [6], ([16l])m is finitely generated, (in fact, by the 

Padmanabhan-Quackenbush theorem [153], ([16l]),m is even one-based). Let 

8l(xl , ... ,xn ), ... ,8 m(xl'''''xn ) be the basis of identities for "m. In this case, the class 

of "m sralgebras is axiomatizable by the universal positive formula 

m 
a = 'v'xl , ... ,Xn(&8i (Xl"",Xn )&(Xl = X2 v t(xl ,x2'X:3) = xl )&t(xl'xl ,X:3) = x3 ), 

i-l 

where the term t(x,y,z) defines the determinators on .msralgebras. 

For any algebra II EmS! let CP2/ (xl,""xm ) be a positive diagram of the 

algebra ll. If II = {al ... ,am }, then the positive 'v'3-formula 

62/ = 'v'X,y3xl, .. ·,Xm (CP2/ (xl,···,xm )&. & t(Xi,Xj'X) = t(Xi,Xj,y) 
I<Jsm 

is true only for a one-element algebra or for those .. msralgebras which contain 

subalgebras isomorphic to II . Let {lll, ... ,ll k} =.m max' then a positive 'v'3- formula 

cP = a& v 62/ is a system of axioms for a class which consists of.mmax and a 
isk i 

one-element algebra. Now we evidently can, depending on whether "mmax contains a 
one-element algebra or not, write a 'v'3- formula CPl as a system of axioms for 

"mmax' 
Let us now take into consideration the following 'v'3- formulas: 

So = 'v'x,y3z(x ... y) -+ t(x,y,z) = x&t(x,z,y) ... x&x ... z), 
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S = Vx,y3u,v«x;o! y - t(x,y,u) = x&t(x,u,y);o! 
;o! x& x ;o! u)& (t(x, v, y) = x& t(x, y,v) ;o! x)). 
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Since any.m -algebra is representable as a Boolean product of .m; -algebras, 
i.e. such that the term t(x,y,z) defines the discriminator on it, and, as for the 

elements f, g,h from this Boolean representation of the .. m -algebra () j,g ~ () j,h iff 

It ;o! hll;;d Ilt ;o! gil, then the inclusion ()x,z ~ () X,Y for any elements x, y, z of an 

arbitrary .. m -algebra is equivalent to the fact that the formula t(x,y,z) = x is true on 
this algebra. Therefore, one can easily conclude that for an arbitrary algebra, 

II ~.m:ll 1= S iff S pll has no other isolated point than, possibly, V. 

Lemma 5.10 .. Let.m be a finitely-generated discriminator variety. The 

formulas CP1'SO'S have been constructed above and are such that 

{ll E.m 1Jl1= CP1} = .m max, {ll Ern 1Jl1= so} = II Ern Ispll has no isolated points 

besides, possibly, the point V}, {ll Ern IJlI=s} = {ll Ern jspll has no isolated 

points}. 
Let cp{ be the formula constructed by CP1 according to lemma 5.2.. In this 

case, we have: 

(a) the .. m -algebra II is algebraically closed iff II 1= cpi ; 

(b) when non-singleton .. m s-algebras have one-element subalgebras, the .. m
algebra JJ is existentially closed iff II 1= cpi& So ; 

(c) if a certain .m s -algebra has a one-element subalgebra, then the .. m -algebra 

II is existentially closed iff II 1= CPt &S . 

Proof. Since any .m s -algebra is embeddable into an .. m max -algebra, an 

arbitrary .. m -algebra II can be embedded into an .. m -algebra ll' so that for any 

1/J Espll " we have II h E.m max' i.e. so that II '1= cpt.ln this case, depending on 

whether the non-singleton .. mmax-algebra with a one-element subalgebra exists or not, 

ll' can be chosen in such a way that either the formula S or the formula So' 

respectively, is valid on ll'. The latter requirements are, in other words, reduced to 

the fact that the Boolean algebra corresponding to the space spll be atomless (this 
can be achieved as any Boolean algebra is embeddable into an atomless one), as well 
as to the fact that for the case when a one-element algebra is contained as a 

subalgebra in a certain non-singleton .. m max -algebra, the congruence V on ll' be not 
principal. The latter can be achieved, for instance, in the following way: if 
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J/ 1 E.mmax , a EJ/ l' and {a} is a subalgebra of J/ l' then assume that 

J/ 2 ~ J/ ' xJ/ IW and J/ 2 = {< b,f > IbEJ/ " / EJ/ IW ,and there is a k Ew such that 

for all n~k, /(n) = a}. Then J/'~J/2' and J/'~5' 
Thus, let J/' obey the requirements fonnulated above, and let J/ ~J/ '. If J/ 

is algebraically closed, then the embedding of J/ into J/' is pure and, since the 

fonnula tp{ has the fonn 'v'Ey(p(f,J)" Xl), the truth of tp{ for J/' results in that 

of tp{ for J/. Conversely, if for a certain algebra .B E.m the formula tp{ holds, 

then .B is algebraically closed in.m by theorem 5.S. The statements of the 
lemma related to existentially closed algebras are proved in an analogous way. • 

Lemma 5.10 results in the following statement. 

Theorem 5.9.. Let .1.11 be a finitely-generated discriminator variety. In this 
case, we have: 

(a). an arbitrary .1.11 -algebra J/ is algebraically closed iff its any non-singleton 

simple factor-algebra lies in .1.11 max; 

b) an arbitrary .tJl -algebra J/ is existentially closed iff any of its non-singleton 

simple factor-algebras lies in .mmax, the Boolean algebra ConpJ/ is atomless, and 

V f/;.ConpJ/ in the case when a certain .mmax-algebra contains a one-element 
subalgebra. 

Before we describe the construction of injective, weakly injective, equationally 
compact and topologically compact algebras in finitely-generated discriminator varieties, 
we will require another subsidiary result. 

Definition 5.5. The algebra J/ is called a subdirect retract of the algebras 

J/ i(i EI) if there exists an embedding / of the algebra J/ into n J/ i, and a 
El 

homomorphism g from the algebra n J/ i to J/ such that g./ is identical on J/ , 
iEI 

and for any i EI, Hi'/ is a homomorphism of J/ onto J/ i' 

Lemma 5.11. Let J/ be a subdirect retract of the algebras J/ i E.m s (i EI) 

and for any i EIIJt il;o! 1, in which case we have: 

(a) if R is a certain class of simple .m -algebras elementary In .1.11, then 
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{cp ESpll 1114' ER} is open-closed in spll ; 

(b) ([ 0(11) the Boolean algebra of open-closed subsets of the space sPell is 

complete; 

(c) if all lIh are isomorphic with a certain finite algebra 11 1, then 

11 S!lI~o(lJ). 

Proof. 

(a) Let the mappings f and g be the same as in Definition 5.5, and let 

tC '" n 11 i' It should be remarked that sPrfC is exactly the space of all the 
El 

ultrafilters over the set I, and the Boolean algebra of open-closed subsets of the 

space S PrfC is the Boolean algebra 2 I of all the subsets of the set I. It should be 
also remarked that as V EConptC , V is an isolated point of the space SpfC . 

Let us consider dual mappings f+:spfC - spll and g+:Spll - sptC . In this 

case, f+· g + = (g. ft = (idlJ ) + '" id splJ' ide being here an identical mapping on the 

set C. In particular, f+ is a mapping "onto", and g + is an embedding. Since g is 

the homomorphism "onto", for any <P ESpll in the following commutative diagram 

~ 

! 1ij+(c/» 

b/h4» 

Fig. 5 

the canonical homomorphism kIP will be a mapping "onto", and, since ~+(<P) is 
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simple, kcp is an isomorphism for cP ESlbll . Therefore, 

But, according to the above remark on the space SPrfC , for any cP ESnlt: we 
have 

where cP * is an ultrafilter on I corresponding to CP. Since R is an elementary, 
i.e., a finitely axiomatizable class, by the Los's theorem on ultraproducts [35], 

Therefore, {<l> ESPrfC IC"" En.} is open-closed in sPrfC. As has been 

remarked above, V is an isolated point of the space SpC and, hence, the set 

{<l> ESpC IC k ER} is also open-closed in SpC. But in this case, 

{<l> ESpll 111", En.}, as a preimage of the latter under a continuous mapping g + , 

will also be open-closed in the space spll , which is the proof of the statement (a). 

(b) From the diagram in the proof of the statement (a) given above, and from 
the fact that the mapping kcp is an isomorphism, one can readily deduce that 

(g + rl(V € ) = V 21 . Since idsp21 - j+ . g + for the continuous mappings 

j+:SpC -+ spll and g+:Spll -+ SpC, all the open-closed subsets of the space 
spll have the form (g+rl(M), where M is open-closed in SpC. If we take 

into account that V € ,v 21 are isolated points in SpC, spll , respectively, as well as 

the above-mentioned equality (g + rl(V € ) = V 21 for the Boolean algebras 

([0(11 ),([o(C) , which are open-closed subsets of the spaces sPrll ,SPoC , then for 

the mappings J*=U+)-\g*=(g+r1 , j* maps ([0(11) into ([o(C), while g* 

maps ([o(C) into ([0(11). In this case, ([0(11) proves to be a retract of the 

Boolean algebra ([0 (C) as j+. g + = id sp2I' As we have noted in the proof of the 

statement (a) above, ([ o(C) is isomorphic to the Boolean algebra of all the subsets 

of the set I which, in particular, implies that it is complete. In this case, ([0(11) 

is, as a retract of a complete Boolean algebra, also complete. 
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(c) Let 11 i 51! 11 1 for any i EI. where 11 1 is a certain finite algebra. In this 

case. one can assume € -11 [. Since for any cP ESpfl 

where cp* is an ultrafilter on I corresponding to cp. and 1I}{,. 51! 11 1. for any 

cP E S PJ€ • we have €.4 51! 11 I' The proof of the statement (a) entails that for any 

cpEsp11. we have 1IJr,5I!111 . 

The algebra 11 is isomorphic to the Boolean product of algebras 
{11 <t>1Cf> ESp11} ={11 I • a one-element algebra} by the Boolean space sp11. Besides. 

11 Jr, is singleton iff cp .. V. in which case V is an isolated point in sPrll. 
Therefore, the algebra 11 is the Boolean product of the algebra 11 I by the Boolean 

space sp11 . One can easily check that the conditions of lemma 3.4 are satisfied 

and. hence, we have 11 51! 11 iB for some algebra .B . The fact that .B ... ([ rJ 11) can 
also be checked easily .• 

Theorem 5.10. Let .m. be a finitely generated discriminator variety. In this 
case, 

(a) 11 E.m. is equationally compact iff 11 51! 11 iB I x ... x11 ~B n, where 11 i E..m s 

and .Bl ...... B n are complete Boolean algebras; 

(b) 11 E.m. is weakly injective in .m. iff 11 E11 IBI x ... x11 ~Bn. where 

11 i E..m max and .BI'· ... B n are complete Boolean algebras; 

(c) 11 E.m. is topologically compact iff we have 11 51! 11 /1 x ... x11!n for some 

sets ft .... ,/n and some algebras 11i E.m. s ; 

(d) 11 E.m. is injective in.m. iff 11 E11 11JI x ... x11 !n, where 1Ii Em. max' 

any isomorphism between non-singleton subalgebras of the algebras 11 i can be 

extended to the automorphisms of 11 i' any of the algebras 11 i has no non-singleton 
subalgebras isomorphic to the subalgebras of any .m. max -algebras other than 11 i and 

the Boolean algebras .BI ..... B n are complete. 

Proof. 

(a) Let 11 be equationally compact. By lemma 5.5. the embedding of the 

algebra 11 into the algebra n 11 ~ induced by the representation of the algebra 11 
<PESP21 
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as a Boolean product of the algebras 214(iP ESplJ) is pure. Therefore, the algebra 

lJ is a retract of the algebra 

Indeed, the algebra lJ is a subdirect retract of the algebras 214(iP ESPJ}J). In 

this case, for any algebra lJ j E.'Ul s, since lJ j is finite, {lJ j} is an elementary class, 

and, by lemma 5.11(a), {<I>ESplJl2I,,!l!!lJ 1} is open-closed in splJ. Since .rns 
is a finite set, there can be found various lJ 1, ... ,lJ n Ems such that the family 

{iP ESplJ 1214 er, lJ j} (i s n) is an open-closed division of the space splJ. 
Therefore, since lJ is isomorphic to the Boolean product of the algebras 214 by the 

Boolean space S plJ , we observe that lJ er, n ([ j, where ([ j is the Boolean product 
isn 

of the algebras 214 by the Boolean space lj = {iPESplJ 1214 er, lJ j}. By lemma 

5.11(c), Cjer,lJtr°({[j). Besides, since by lemma 5.11(b), flo(lJ) is a complete 

Boolean algebra, flo(lj) will also be complete. Thus, lJ er,lJ~o(1i)x ... xlJ~o(Tn), 
and the Boolean algebras fl oCI;) are complete. Therefore, the statement (a) has been 
proved in one direction, while in the other direction it can be checked directly. 

(b) Let lJ be weakly-injective. As lJ is equationally compact in this case, it 

follows that, according to (a), lJer,lJIBlx ... xlJ~Bn for certain lJjE.'Ul s and 

complete Boolean algebras .Bj. Let us assume that, for instance, lJ 1 $..'Ulmax and 

lJ 0 Em max' lJ 0 ~lJ I. In this case, one can easily see that the algebra lJ is not a 

retract of the algebra lJ ifl xlJ 2B2 x ... xlJ ~Bn, which contradicts the weak injectivity 

of lJ . Therefore, all the algebras lJ j are to lie in . .'Ul max. One can directly check 

the converse statement, i.e., the one that if lJ = lJ iB 1 X ••• xlJ nB n, lJ j Em max' and 

.Hj. are complete Boolean algebras, then lJ is weakly-injective in.'Ul . 

(c) Since a homomorphic image of an algebra injective in "m is injective, it 

follows that, by lemma 5.8(b), for any iP ESplJ where lJ is an algebra injective 

in . .'Ul , 214 satisfies the condition b(2) of the same lemma, i.e., 214 Em max' any 

isomorphism between non-singleton subalgebras of the algebra 214 can be extended 

to the automorphism of the algebra 214, and 214 has no non-singleton subalgebras 

isomorphic with subalgebras of some .. mmax-algebras other than 214. On the other 

hand, since lJ is weakly injective in . .'Ul , it follws that, according to the statement 

(b), lJer,}JIBlx ... xlJ~Bn, where lJ j =21hi for some iPjESPJlJ, andBj are 
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complete Boolean algebras. As with the above proof related to the algebras JfA,i' the 

statement (d) is proved in one direction, and its proof in the other direction is easily 
obtained. 

(c) Let the algebra JI Em possess a compact Hausdorff topology which agrees 

with the algebraic structure of JI, i.e., let JI be topologically compact. Since, 

obviously, JI will also be existentially compact in this case, it follws that, according 

to the statement (a), JI '=!! JI iB 1 x ... xJl ~Bn, where JI i Ems andB i are complete 

Boolean algebras. The topological compactness of JI implies that of each of the 

algebras of the type JI / i. Let us fix a certain element h in the algebra JI / i, and 

let us define the following arbitrary operations on JI iBi for any f, g EJI iBi : 

and 

f /\ g = t(h,t(h,f,g),g), 

f v g = t(j,h,g) 

f \ g = t(h,g,t). 

Let (JI/i)* be an algebra given on the basic set of the algebra JliBi, its 
signature consisting of the functions /\, v, \ defined in a similar way. One can easily 

check that the mapping d:(JljBi)* -i[ o(JI), defined as 

d(j) ={lJ> ES[bJlI< f,h ~CP} is a homomorphism from the algebra (JI/i)* to the 

Boolean algebra [[0 (JI ). The topological compactness of the algebra JI / i implies 

that of the algebra (JI / i)* and, hence, that of the homomorphic image of the 

algebra [[ o(JI ) '=!! Ri . But, as is well known (see, for instance, [39]), the only 

topologically compact Boolean algebras are those of the type 21 of all the subsets of 

a set. Therefore, for any is n there is a set Ii such that .Bi '=!! 2/i, in which case 

JI/i '=!!JI/i (as Jl i is finite). Thus, JI '=!!JI/IX ... xJl ~n, and the statement (c) is 
proved in one direction. The converse statement is obvious: it suffices to choose a 

Tikhonov's topology of the product on the algebra JI /1 x ... xJl ~n when choosing a 

discrete topology on every JI i Em s. • 

By way of concluding this section, let us obtain one more characteristic feature 
of discriminator varieties in addition to theorems 2.15 and 5.5 which will be 
required below in section 7. But first let us prove a lemma. 

Lemma 5.12. For any algebra JI of a congruence-distributive variety which 

is a Boolean product of simple algebras, for any principal congruence e:,b there is 
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a complement to ():,b in the lattice Con21 . 

Proof. Assume that 21 ~ n 21 i is a Boolean product of simple algebras 21 i 
iElJ" 

with a Boolean power .R .Let a.b e21 and i e[a = b ]1. Using the conditions of 

defining a Boolean product in a standard way, one can find an element ci e21 such 

that l a = cdl :21[a .. b]1 and i el a .. cd!- But in this case, by virtue of the description 

of the principal congruences on Boolean products in congruence-distributive varieties 

from theorem 4.2, the congruence v ()~c. will be an addition to the congruence 
EI[a-b:! • I 

()!.b in the lattice Con 21 . • 

Theorem 5.11. The variety .m is a discriminator variety iff it is arithmetic, 

and for any .m -algebra 21 any principal congruence ()!,b on the algebra 21 has a 

complement in Con21 . 

Proof. The fact that a discriminator variety is arithmetic has been noted in 
section 2, and it can also be proved easily using theorem 2.10 •. The existence of 
complements of the principal congruences of discriminator varieties results from 
lemma 5.12.. Therefore, the theorem is proved in one direction. 

Let now.om be arithmetic, and let the principal congruences have complements 

in Con21 for any 21 E.m . Let us prove that.m is a discriminator variety. Let X 
be an arbitrary infinite set, and x,y,Z,U be various elements not incorporated into X. 

Let us set Xl = XU {x,y,z,u}. As, by the condition, J,,?Jl (Xl) is arithmetic, we get: 

where y!.~ (XI) IS the complement of ();: (XI) in ConJ'Ul (Xl)' As 

() Jm(XI ) , f'll h d' h al' . bo h ' < Z,U >E z,u , It .0 ows tat, accor 109 to t e equ Ity gIven ave, t ere IS a 

term g(X,y,Z,U,XI," .xm) such that 

and 
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Let g(x,y,z,u) = g(x,y,z,u,x, ... ,x), i.e., g(x,y,z,u) is a homomorphic image of 

the element g(x, y,z,u,xI"'" xm) ES.m (Xl) under the homomorphism S,m (Xl) on 

S,m (x, y, z,u) = JI which is an induced mapping of X in x and identical on 

( x.y.z.u). Then, by corollary 2.1., 

~ ~ ~ ~ 
<z,g(x,y,z,u) > ()z,u II ()x,y' < g(x,y,z,u),u >E()z,u II Yx,y' 

Considering the homomorphism S 1ll (x, y, z,u) = JI on S,m (x, y,u) induced by 

the mapping {x,y} in x and identical on {z,u}, we again get, by corollary 2.1., the 

equality Z= g(x,x,z,u). Therefore, the identity Z= g(x,x,z,u) is true on .om. 
Let us now show that for any .omS! -algebra € and a.b.c.d E€ , 

g( a,b,c, d) = d if a;.o b. Let us, first of all, notice that the condition of the existence 

of a complement for any principal congruence in the lattices of the congruences of 

the .om -algebras evidently implies the simplicity of any subdirectly non-decomposable 

algebra in .om . If I XI;,: € , then let cp be a homomorphism of S,m (Xl) induced by 

the mapping XU{x} in a, y in b, z in c, u in d, and 'IjJ = ketcp. In this case, 

since € is simple, 'IjJ is a maximal congruence in ConS,m (Xl)' As .om is 

arithmetic, we have the equality 

Since a;.o b, ()J'm (Xl) L ()J'm(Xl ) V 
x,y ". 'IjJ, i.e., 'IjJ v x,y = Sm (Xl) and, hence, 

J'm (Xl) 
Y x,y s 'IjJ. But 

J'm(Xl ) 
< g(x,y,z,u),u >Eyx,y and, hence, < g(x,y,z,u),u >Ey, i.e., 

g( a,b,c, d) = d. 

Assume now that 

and 

It is obvious that the inclusion Fy ~ F X is valid for X ~ Y and, since Fx;.o (/) 

for any X, there is a g(x,y,z,u,xI, ... xm)EFx for arbitrarily large sets X. As has 

been proved above, the identity z = g(x,x,z,u) is true for such a g(x,y,z,u) onWl, 

and for any .omsralgebra of € and a.b.c.dE€, if a;.ob, then g(a,b,c,d)=d. 

Therefore, the term h(x,y,z) = g(x,y,z,z) is a discriminator on .. msralgebras, i.e., 
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.. m is a discriminator variety. • 

Priorities. Sufficient information on discriminator vanetIes can be found in the 
H. Werner's monograph specially devoted to this class of varieties [236], which also 
considers some examples of discriminator varieties, both the ones cited in the present 
section and a number of others. Theorem 5.1. is by G. Michler and RWille [139], 
theorem 15.2 belongs to G.L.Mursky [144]. Theorems 5.3 and 5.4 are contained 
in the work by A.F.Pixley[188] (see also [161], [238]). Theorem 5.5 can be found 
in a work by W.J.Blok and D.Pigozzi [18], theorem 5.6 in a paper by E.Fried, 
G.Gratzer and RQuackenbush [73]. Theorem 5.7 for finitely generated varieties has 
been proved by K.Keimel and H.Werner [102], while in the total completion it was 
achieved by S. Bulman-Heming and by H. Werner [22]. The statement of corollary 
5.2 belongs to RW. Quackernbush [196]. The remaining material of the section, 
except lemma 5.12 and theorem 5.11 is from the material of the H. Werner's 
monograph [236]. Theorem 5.11 is by E. Fried and E. W.Kiss [74]. 

6. Direct Presentation of a Variety and Algebras with a Minimal 
Spectrum 

The present section is devoted to the description of the so-called directly 
presentable varieties and algebras with a minimal spectrum. Though the description of 
these varieties has interest of its own, in the context of the present chapter these 
results play an auxiliary role for the description of varieties representable with 
Boolean constructions. 

Definition 6.1. A variety is termed directly presentable iff it is finitely 
generated and contains (to the accuracy of isomorphism) only a finite set of finite 
directly non-decomposable algebras. 

Therefore, according to the definitions given in the end of section 2, a finite 
ring R has a finite type of representations iff the variety of R -modules is directly 

presentable. On the other hand, a finitely generated variety.m is directly presentable 

iff any finite.m -algebra is representable as a Boolean product (see lemma 4.2) of 

the algebras of a certain fixed finite set of directly non-decomposable .. m -algebras. 
Theorem 6.3 given below describes directly presentable congruence-modular varieties 
relative to the module of directly representable Abelian varieties, i.e., by theorem 
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2.20, relative to the module of the vanetles which are polynomially equivalent to 
those of R-modules, where R is a finite ring with a finite type of representations. 

Let us consider some auxiliary lemmas and theorems before we start proving 
this theorem. 

Definition 6.2. If R is a certain class of algebras, then Pr(R) will denote 

a set of simple divisors of the powers of finite R -algebras. The class R is called 

narrow if Pr(R) is finite. 

Lemma 6.1. If for a certain finite algebra }J the class SP(}J) is narrow, 

then}J is congruence-homogenous. 

Proof. Let f) ECon}J and al, ... ,ak be the powers of all f) -classes on }J . Let 

us prove that al ,-... = ak. For any n ~ 1 let sn( 1i) = a~ + ... +a k ' where 
ii =< alr .. ,ak >. Let 

Then we have }J n ESP(}J), and it is obvious that j1J nl = sn{li). Therefore, any 

simple divisor of the number sn(if) belongs to Pr(SP(}J ». To complete the proof it 

suffices to demonstrate that if Pr( {}J nl n Em}) is finite for any positive natural 
numbers ab ... ,ak> then al = ... = ak. This theoretico-numerical result belongs to Polya, 
and for the sake of completeness of representation let us give its proof here. 

Let Pr({}JnlnEw}) = {A,···,Pt}· Let us divide all aj by GCD(ajlisk) (GCD 

stands for greatest common divisor), and one can obviously assume, with the 

generality preserved, that GCD(ajli sk)= 1. Let m = (p_l)pk and bj = a'(' for any 

simple p. Then pk+ I divides none of sn( b) at n ~ 1. Indeed, by the Fermat theorem 

arl a 0, or a l(mod p), so a'(' a 0, or a l(mod l+I), respectively,. Let a be a 
number of different is k such that p does not divide aj. In this case, 1 s ask, 

since GCD( ajl i s k) = 1. For n ~ 1 we have 

k 
b- ~ mn od k+1 sn( )= LJaj aa(m p ), 

j=1 

. 1 k k+ 1 . d ed k+ 1 -and, SInce sa s < p , In e , p does not divide sn(b). 
t 

Let now m = n (pj -1)pf. For any n ~ 1, p;+1 does not divide smnCa). 
1'-1 
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Therefore, since {Pl, ... ,Pt} are all simple divisors of the numbers of the type s/(ii), 

f 0< all n > 1 we have 9 m,(a) < (n Jl )' Hence, the sequence <9m, (ifjl nEw> i, 

bounded, which is possible only when al," .,ak = 1. • 

Lemma 6.2. If S(1I2) is a class of congruence-uniform algebras, then 11 IS 

a congruence-permutable algebra. 

Proof. Let y, () EConll . It suffices to demonstrate that (). y ~ y . (). The 

relation y' () can be obviously viewed as a certain subalgebra .B of the algebra 

112. Let us define the congruence ()' on .B in the following way: 
«x,y>,<u,v»E(}' iff <x,u>E(} and <y,v>E(}. Since, as a diagonal algebra, 

11 EI8..1I2), then both () on 11 and ()' on.B are uniform. Let r be the power 

of the () -classes on 11 , and s be that of the ()' -classes on .B. For any a ElI we 

have (%) x (%) ~.B, and, hence, s = 1< a,a :;10,1 = r2. Therefore, for all 

< a,b >EB we have (%) x (%)~.B, or, otherwise, ra,b :;10,1< r2 .The inclusion 

(%) x (%J ~.B implies the inclusion (). y.(). () s y' (), or (). y s y' (), which is the 

required proof. • 

Theorem 6.1. If R is a finite set of finite algebras and .om (R) is a 

directly representable variety, .om or) is congruence-permutable. 

Proof. Being directly representable, the variety .m (R) is narrow. Besides, 

since for any finite algebra 11 Esp(R) we have SP(lI ) ~ SP(R. ), the class SP(lI) 

will also be narrow for any finite 21 Esp(R). By lemma 6.1, any finite 

11 ESp(ft) is congruence-uniform. As for any finite algebra .B E.m (R) there 
exists a finite algebra 11 ESp(R.) such that .B EH(2I) , and since the property of 

congruence-uniformity is preserved under homomorphisms, any finite .om (R.) -algebra 

is congruence-uniform. Therefore, for any finite 11 E.m (R) any algebra .B ES(1I 2) 
is congruence-uniform. By lemma 6.2, any finite 21 E.m at) is congruence

permutable. As .m (R) is finitely generated, J m (11 )(3) is a finite algebra and hence, 

in particular, Jm (R )(3) is congruence-permutable. By theorem 2.S, this means that 

the whole variety .m (R) is congruence-permutable .• 

Lemma 6.3. If .B is a finite algebra and if any finitely generated subalgebra 
" of a certain algebra € is contained in the class PsH 8...B), then € itself is 
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contained in this class. 

Proof. Since any finitely generated subalgebra of the algebra € is embeddable 

into a locally finite class PsH S{.B), € itself is locally finite. Let j) = {j) 1 j) is a 

finite subalgebra of the algebra €}, then < j) ;k> is a directed set. By the 

condition of the lemma, for any j) Ej) there is a j)' EPsH8....B) such that 

j)5!!j)'. Let j)'kO}JP, where }Jj1)EHS{.B). As HS(.B) is finite, and 
iEln 

< j); k> is directed, choosing in the opposite case the co-final subset < j) ;k>, one 

can assume that {}J j1) 1 i EI1)} is the same for all j) Ej), and let it be equal to 

{}J 1, . .. ,}J n}. It is also obvious that we can assume that 11) = I for all j) Ej) , 

and that for any j:s n {il i EI1) ,}J j1) =}J j} is not changeable for all j) Ej) . 

Let {il i EI1), }J j1) =}J j} = Ij , and k j be a certain fixed element of Ij . T(j) ) 

will denote the family of all the isomorphisms from the algebra j) to j)'. The set 

T(j») is finite. For j)1,j)2 Ej)' and j)1 k j)2' 1J.r~: will denote the mapping from 

T(j)2) to T(j) 1) such that for f ET(j)2)' hE: (1J.r~: (j)) is the restriction of f to 

the algebra j)1 (here h~: is an embedding of j){ into j)2 fixed for the pair 

j)1 kD2' 

Let us consider the inverse spectrum qJ of the finite sets {T(D)I D Ej)} and 
1) -

the mappings between them {1J.rD:1j)1,j)2Ej),j)1kj)2}' By a well-known theorem 

(see, for instance, [59]), there is a non-empty inverse limit lim qJ of this spectrum. 

Let g Elim qJ, i.e., g E l1!(j»), in which case for j)1 k D2 we have 
1)63) 

qJ~: (g(D2 )) = g(D1). Let us define the mapping h of the algebra € in II? ' k 
1)63) 

fl (O}J /'), where }J j1) EH S{B ), in the following way. For any c E€ and 
1)63) B 

any D Ej) , if c ED, then h(c)(j») = g(j»)(c). Since {h(c)(j»)(kj)lj) Ej) ,c Ej)} 

is finite for j:s n, let b/c) be such that for the co-final subset Aj of the set 

< j) ;k>, we have h(c)(D)(kj ) = b/c) for j) EAj,c Ej). In the case when 

cfED,DEj), let us set h(c)(j»)(i) = bj(c) for any iEIj . By the definition of h 

we can directly check that h is an isomorphic embedding of € into fl (O}J j1)), 

1)63) B 
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and that all the projections h(€) on the co-factors of the type 21/) coincide with 

21/). Therefore, we get € EPsHS(.B) .• 

Theorem 6.2. If for a certain algebra 21 the variety .'Ill (H) is locally finite, 

and in .. m (H) there exists (to the accuracy of isomorphism) only a finite number of 

finite subdirectly non-decomposable algebras, then .m (H) is n -residual for a certain 
n<w. 

Proof. Let 21 1" .. ,21 n be all (to the accuracy of isomorphism) subdirectly non

decomposable finite algebras of the variety .m (21). Then for any finite algebra 

.B E.m (21), .B EPs(J1 1, ••• ,J1 n)r;;;. PsHS(J1 1x ... xJl n)' 

Since .m is locally finite, for any algebra .B E.m (21) we have 

.B EPsHS(J1 1, ••. ,J1 n), i.e., .m (21 ) = PsHS(J1 1, ••• ,J1 n), by lemma 6.3. But we 

have HS(J1 1 x. .. xJl n) r;;;. Ps(J1 1,···,J1 n), then .m (21 ) = Ps(J1 1, ••• ,J1 n) and, hence, 

211, ... ,21 n are all subdirectly non-decomposable algebras of the varietym .• 

Lemma 6.4. For a congruence-modular variety .m and an algebra 21 E.m , 
the following conditions are equivalent: 

(1) for any"", v EConJl we have l"",,,,,J II v s l"", v J ; 

(2) for any "",V EConJ/ the inequality vs L"",,,,,J results in the equality 
lv,,,,,J= v. 

Proof. Let condition (2) be valid. Then, since for any "",V EConJl we have 

l"",,,,,Jllvsl,,,,,,,,,J, the equality l"",,,,,Jllv=ll,,,,,,,,,Jllv,,,,,J is true. As l"",,,,,JIIVSV, it 

follows that, since the commutator is monotonous, llll,,,,, J II v,,,,, J s l v,,,,, J = l"", v J. 
Therefore, we get l"",,,,,J II v s l"", v J and, hence, statement (1) is valid. 

Let us now suppose that statement (1) is valid. Let us show that if 9 is non-

decomposable in the intersection in ConJ/ , and 1jJ is the only covering of 9 from 

ConJl , if "" EConJl and"" ~ (), L"",1jJ J s 9, then l"",,,,,J s 9. Indeed, by virtue of 
(1), we have l"",,,,,J II 1jJ s L"", 1jJ J s 9. Therefore, 9 = 9 v (1Il,,,,, J II 1jJ) = 1jJ II (9 v _"",,,,, J) 
(by modularity). As 9 is non-decomposable in the intersection, 9 = 9 v L"",,,,, J, i.e., 
indeed, l"",,,,,J s 9. 

Let us now prove that statement (2) is valid. Assume to the contrary that 

"",vEConJl and vsL"",,,,,J,l,,,,,vJ<v. The latter inequality implies the existence of a 

9 EConJl , non-decomposable in the intersection and such that 9 ~ l"",v 1. but 9 -i:. v. 
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Let 'IjJ be the only congruence covering (J in Con11. Since 'IjJ s (J v v, 
l8vl-','ljJjsJjvl-',8vvjsll-',vjv8s8. But then, by virtue of what proved above, 
we get l8v 1-',8 vl-'js8. The latter fact implies VS_I-',l-'jsL8vl-',Ov I-'js 0, which 
contradicts the choice of O. Therefore, the assumption that ll-', vj < v is contradictory, 
i.e., vs[I-',I-'] results in the equality lv,l-'j= v, and statement (1) results from 
statement (2). • 

Lemma 6.S. Any subdirectly non-decomposable algebra of a directly 

representable variety.m is either simple or Abelian. 

Proof. Let 11 E.m , f3 is the monolith of 11, .m is directly representable, 

and lv, V j O!: f3, which means that 11 is not Abelian. Let us assume that 11 here is 

not simple, i.e., f3 < V. By theorem 6.2, directly presentable .m should be 

residually small. Since.m is, by theorem 6.1, congruence-permutable and, hence, 

also congruence-modular, for any algebra .B E.m the identity x A ly,yj sLx,yj is 

valid on Con.B by theorem 2.25 and lemma 6.4. Therefore, the equality l V,f3 j = f3 

holds on Con11 . For any n > 1 let us define the subalgebra .B n of the algebra 11 n 

in such a way that 

Let us prove that .B n are directly non-decomposable, and, since the powers of 

such .R n strictly increase with n growing, we arrive at a contradiction to the direct 

presentability of .m . It is this contradiction that proves the simplicity of any non

Abelian subdirectly non-decomposable .m -algebra. 

For 0 ECon11 and i < n let us define 8i ECon.R n as 
{< j,g >1 < j(i),g(i) >EO}. It is obvious that f30 =f31 = ... =f3n-l. Let us denote this 

congruence on .R n by li. The congruences L1 i are kernels of i -the projections of 

.Bn on 11 . Let us define Ai = .A.tl j. Obviously, the following equalities hold: 
./"1 

Ai V Ai = Ai '! . A j = . v Ai = ji . 
./" 1 I<n 

Let us now assume that .Bn is directly decomposable, to arrive at a 

contradiction. As .B n is directly decomposable, then there are qJ, 'IjJ ECon.B n such 
that 'IjJ v qJ = A, 'IjJ A qJ = A, qJ > A and 'IjJ > A. 

For any i < n we have either 
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or 

Indeed, according to the commutator properties (see theorem 2.17), since 

lJ3,v J = J3 and 13 = v(J3), we get 
11:; 

As J3 covers L1 in Con21 , 13 = J3i covers Ai in ConE n (the interval lif,Ai J 

of the lattice ConE n is mapped to the interval lJ3,A J of the lattice Con21 while xi 

is being projected. By virtue of the inequalities 

and the fact that cp 1\ 1jJ = A, we come to the conclusion that lA',1jJJ and lA',cpJ are 

disjunct. As we have already noticed, 13 = Ai V l A;, 1jJ j v l A;,cp j and, since 13 .. Ai' 

l A;, 1jJ J and l A;,cp J could not be simultaneously equal to A. But 13 covers 

Ai,13 = Ai v A;, while A; covers A, and hence we get the required statement, i.e., 

for any i < n we have either 

or 

Let now 

According to what has been pproved above, we have Sf(! U S1jJ = {O,l, .. . ,n -I}, 

and Sf(! n S1jJ = 0. Let us show that if S1jJ" 0, then cp s J3, and if Sf(!" 0, then 

1jJ s 13. Indeed, if i ES1jJ and cp;'13, then cp;' A; and, hence, Ai v cp ~ 13 = J3i' As 

v Ai s cp, ConE n is modular, and v Ai s 1jJ entails ( v Ai) 1\ cp = A, we get 
jeE'!' jeE.p}ES.p 
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The obtained contradiction is the required proof, i.e., if 81/1 ¢ 0, then tp:S 1J , 
and if Sf{) ¢ 0, then 'Ij1 :S 1i. By the supposition, 1i < V and, since tp v 'Ij1 = V, we 
have either Sf{) == 0 and S1/1 = {O,I, ... ,n - I}, or S1/1 = 0 and Sf{) == {O,I, . .. ,n -I}. If we 

assume the former, then, as has been noted above, tp:S f3 but, by the definition of 

81/1' we have L1i=lL1;,'Ij1J:s'Ij1 for all i<n. Therefore, 1i =.v A~ :S'Ij1, i.e., tp:S 'Ij1, 
I<n 

which contradicts the choice of tp,'Ij1. Hence, tp,'Ij1 ECon.Bn such that 
tp v 'Ij1 = V, tp A 'Ij1 = L1, tp > L1, 'Ij1 > L1 does not exist. According to what has been 
proved above, this is the proof of the lemma. • 

Lemma 6.6. If .m is a directly presentable variety and 11 E .. 'U/, then the 

identity lx,yJ = x A Y A S,V J is valid on Conll . 

Proof. Let us assume, to the contrary, that 11 E.m, e,'Ij1 EConll, and 

le,'Ij1 J < e A 'Ij1 A lv,v 1. Let us choose an a EConll such that 11 Ia is subdirectly 

non-decomposable, le,'Ij1 J:s a, and e A'Ij1 A S,V J.J. a. By lemma 6.5, 11 Ia is either 

Abelian, or simple. Ifll Ia is Abelian then, by theorem 2.17 (4), 

v v v 

tp([V lIla'V lila]) = [tp(V lila ),tp(V lila)] va, 

where tp is a canonical homomorphism of 11 on 1I1a. However, 

(as 11 Ia is Abelian), and ~(AlIla) = a. Therefore, a = l V,V Jv a, i.e., l V,V h a, 

which contradicts the choice of a. Thus, 11 Ia must be a simple algebra, i.e., V 

must cover a in Conll . Since,by the choice of a, 'Ij1, e .J. a, V = e v a = 'Ij1 va. 
Hence, we get 
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which again contradicts the choice of a. It is the obtained contradiction that proves 
that the inequality lB,-l/d < B A 1jJ A lv,v J is not possible .• 

Lemma 6.7. If on a modular Con11 the identity x A ly,yJ :s:Lx,yJ is valid, 

then l V,V J is a neutral element of Con11, and for any B ECon11 we have 
lV,BJ = lV,vJ A B. 

Proof. According to the identity given in the formulation, for any B ECon11 
we have 

Therefore, we get lV,BJ=lv,vJAB. To prove that lV,vJ is neutral in a 

modular Con11 , it suffices, as has been shown in section 2, to show that for any 

B,1jJ ECon11 , the following equality holds: 

But the left-hand side of this equality is as follows: 

Lemma 6.8. Let 1111 be a directly representable variety, 11 E .. r.rl, and 11 
finite, then: 

(a) lv, V J and ZlJ are neutral elements of Con11 complementary to each other. 

Therefore, 11 ~ ~V,v j x YzlJ' this isomorphism inducing that of the lattice 

Con11 and the lattice l v;l V, V JJ xlv;z lJ J are isomorphic; 

(b) l V,V 1, ZlJ is the only pair of the elements < a,{3 > from Con11 such that 

a,{3 are complements to each other, and 

(c) YzlJ ~Blx ... xBn' where .Bj are simple, non-Abelian algebras, and this 

decomposition is the only one. 
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m 

Proof. Let JI obey the conditions of the lemma, A = A (}i' where 
i-I 

(}i EConJl , and such that 1!fei are subdirectly non-decomposable, and for any 

S C {I, . .. ,m} we have A';' A (}j. By lemma 6.5, one can assume that for a certain 
jCS 

() :s; k :s; m we have: 

(1) for 1:s; i :s; k we have (}i v l V,V J = V, and V covers (}j in ConJl (in other 

words, o/ai (1:s; i :s; k) are simple non-Abelian algebras); 

(2) for k + 1:s; i:s; m we have lv,v J:s; (}i (i.e., 1!fei (k + 1:s; i:s; m) are Abelian). 

k m 
Let I-" = A (}i' A = A (}i. Since (}i is maximal in ConJl and the congruences 

i-I i-k+l 

are permutable on JI (by theorem 6.1), JI~ is isomorphic to the product 

pJl ~ .• The conditions (}i v lv,v J = V (for 1:s; i :s;k), as well as the properties of 
1=1 / (}I 

commutators (theorem 2.17) imply JI~I= Lv,v J = V. And again, by property (4) of 

theorem 2.17 we get I-" v Lv,v J = V in ConJl. The definition of A entails 

lv,v J:s; A, A A I-" = A. Hence, we get lv,v JA I-" = A. As ConJl is modular, we 
have 

To sum up, we see that lV,VJAI-"=L1, lv,vJvI-"=V, and lV,vJ,1-" are 
permutable, i.e., 

Let us now recall that I-" = ZJI (the center of JI). Indeed, by virtue of lemma 

6.6, we have l v, I-" J = l V,V J A I-" = 11. Let us prove that I-" is a maximal congruence 

on JI possessing this very property. Indeed, if y > 1-", since ConJl is modular, we 
get: 
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i.e., Y A lv,v J '" L1, and, since by lemma 6.6, Y A [V,v] = [y,V], ly,v J > L1 . 
Therefore, l V,,u J = L1, and y is maximal in ConJl relative to this property, i.e., by 
the definition, ,u = Zll . 

By lemma 6.7, lV,vJ is a neutral element of ConJl and, therefore, its 

complement in ConJl is unique and neutral. One can easily see that < lv,v J,Zll > 

is the only pair < a,f3 > of elements in ConJl such that 
lV,VJsa, Lv,vJvf3=V, aAf3=L1, i.e., statement (b) is valid. 

To prove statement (c) it suffices to note that l Zll ;V j = 2k. The latter results 

from the isomorphism of lattices lZll;Vj and lL1;lv,vjJ, and from the fact that 

lL1;lV,V JJ is a distributive lattice according to the identity [x,y] = x A Y A [V,v], 
which is true on ConJl by lemma 6.6. • 

Lemma 6.9. Let ConJl be modular, and JI s.B1x .. .x.B n , where .Bj are 
simple non-Abelian algebras. In this case, the following statements are valid: 

(a) for any cp,'IjJ EConJl, [cp,'IjJ] = cpA 'IjJ; 

Proof. Since in every .Bj, true lv,vJ=v is true, by theorem 2.17 (5), for 

the congruences cp, 'IjJ on JI representable as intersections of the kernels L1 j of the 

projections Xj of the algebra JI onto algebras .Rj , the equality lcp,'IjJ J = cp A 'IjJ is 

valid. In particular, lv,v J = V on ConJl . To complete the proof of the lemma, let 

us show that for any e EConJl we have e = L1], where J = {jl e s L1 j}, and for 

Kc;;;,{l, ... ,n} L1K= A L1J .. Let us notice that for a,f3 such that eva=evf3=v, 
jEK 

we have e v (a A f3) = V. Indeed: 

V = lV,vJ= Le v a,e v f3Js e v la,f3Js e v (a A f3). 

Therefore, since all L1j are maximal, we have e v L1{l, ... ,nj\] = V. As ConJl is 

modular, we get: 

Let us cite without proof a well-known and easily provable statement contained 
in the following lemma. 
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Lemma 6.10. If 1I1, ... ,lIn are simple algebras and .m(1I1, ... ,lIn) is 

congruence-permutable, then for any algebra D such that D ~1I 1 x ... xll n as a 
subdirect product of these algebras, there exists an I ~ {I, ... , n} such that 

D 51! IT 11 l' and, at the same time, this isomorphism is a projection of D over the 
El 

subset I. 

Theorem 6.3. Let R be an arbitrary finite set of finite algebras. The 

conglomeration of the following conditions is necessary and sufficient for "m (11') to 
be directly representable: 

(1) "m (R) is congruence-permutable; 

(2) any algebra from S R is isomorphic to a direct product of simple algebras 
and Abelian algebras; 

(3) a variety generated by Abelian direct cofactors from direct decompositions of 

S R -algebras is directly representable. 

Proof. Let R be an arbitrary set of finite algebras, and .m (Jl') be a directly 

representable variety. Then, by theorem 6.1, "m (Jl') is congruence-permutable, and 
by lemma 6.S, any finite "m (R) -algebra is isomorphic to a direct product of simple 
algebras and Abelian algebras. 
It is also obvious that a variety generated by a set of Abelian direct cofactors in 

direct decompositions of S(R) -algebras is directly representable. 
Let us now prove the opposite case. Let conditions (1), (2) and (3) from the 

formulation of the theorem be valid for the variety .m (R ). Let G be a class of 

simple non-Abelian cofactors in direct decompositions of S(Jl') -algebras, and A be a 

variety generated by Abelian cofactors in direct decompositions of S(Jl') -algebras. The 

class r.; is finite to the accuracy of isomorphism, the variety A is directly 

representable by condition (3). To prove that "m (Jl') is directly representable, it 
suffices to show that any finite .m (R ) -algebra lies in p(G U A). 

Let us first consider a finite algebra Y from SP(Jl'). In line with condition 

(2), .y is isomorphic to a subdirect product D ~1I x .1J1 X. •• x.B n' where 

11 EA, .Bi EG . Let ;.., be the kernel of D projection on 11 , and I-t = 1\ 0i' 
i;sk 

where 0i are the kernels of D projection on .Bj • In this case, Dh ~p .111 X. .. x.B k 
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and, since .B; are simple and j) ~ is congruence-permutable, j) ~ e .B 1 x ... x.B k, by 

lemma 6.10. As 2f/oi are simple Abelian algebras at isk, 8;vlv,vJ=v. By 

virtue of the properties of a commutator (theorem 2.17), we get l'"~I=lV,V J= V, 

and, again by theorem 2.17, I' v S, V J = V. The definition of A results in the 

inequality l V,V J SA. Since Conl'" is modular, we have 

A = A " (L V,V Jv 1') = lv,v J v (I''' A) and, as A" I' = 11, A = [V,vl. All these facts 

imply j) el'" x.B1x ... x.Bk , i.e., S(p(R )c;;,p(G UA.)). 
Let now C E..'lfl (R') = Hsp(R) and C be finite. Then for a certain finite 

algebra j) Esp(R) and a certain 8 EConj) we have C e j) 10. Let us assume that 

j) el'" x.B1x ... x.Bn, where l'" EA., .B;EG. Let 1', as above, be equal to ,,8;. 
isn 

By lemma 6.9 (a) we get 

[%' I' v %1 = %" (I' v %) = I' v % . 
By theorem 1.17 (g), this formula yields lV,l'v8JvI'=(l'v8)v1'=l'v8, 

but 

i.e., I'v 8 = lV,8Jv 1'. Hence, because of modularity, we get: 

l V,V J" (I' v 8) = l V,v J " (lv, 8 J v 1') = Lv, 8 J v (l V,V J "I') = S ,8J, 

as l V,V J" I' = 11. Therefore, 

The latter equality, combined with the equality l V,V J v I' = V and permutability 

of the congruences on j), demonstrates that j) h e! ~v, V J v 8 x j) h v 8' But 

~v,vJ v 8EH(O/V,V~' i.e., ~v,vJ v 8 EA. and j)~ v 8 EH(.B1 x ... x.Bn). By 

lemma 6.9 (b), % v 8 e lIB i, where I c;;, {I, ... , n} and, therefore, as A. is 
iEI 

directly representable, we have proved the decomposition of C = j) Ie into a direct 

product of algebras from G and A.. Hence, the finite .m (.Il. ) -algebras lie in 
P(A.uG) .• 
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Definition 6.3. 

(a) The spectrum of an arbitrary class of algebras R is a family of the powers 

of R -algebras; 

(by the finite spectrum of an arbitrary class of R -algebras is a set of the 

powers of finite R -algebras. 

The compactness theorem for the calculus of first-order predicates yields, as is 

well-known, that for any variety of.'Ul -algebras the finite spectrum of the variety 

. .'Ul is either finite, or it is infinite, in which case the spectrum of .. m consists of 

the finite spectrum of.'Ul and all infinite cardinals. Spec.R' and FSpec.R' will 

denote the spectrum and the finite spectrum of the class R , respectively. 

Definition 6.4. The finite algebra JI has a minimal spectrum provided that 

FSpec.'Ul (JI) ={IJllnl nEw}. 

The remaining part of the present section will be devoted to algebras with a 
minimal spectrum. 

Lemma 6.11. Let a finite algebra Jf be simple, and.'Ul (Jf) be congruence

permutable, (} EConJf n for a certain nEw and A < (} < V. In this case, the algebra 

(JI n)2(O) (the congruence-Boolean power of the algebra Jf n) is isomorphic to the 

algebralJ n+ k for a certain k such that 1:s k :s n - 1, the congruence (} having in 

this case jll n-kl classes, each of which consists of jll kl elements. 

Proof. As.'Ul (JI) is congruence-permutable, (Jf n t ((}), as a subdirect product 

of algebras isomorphic to the algebra Jf , will, by lemma 6.10, be isomorphic to a 

direct product of algebras isomorphic to the algebra Jf in a number smaller than 2n, 

this isomorphism being implemented by way of projecting the algebra (JI n )2 ((} ) 
relative to a certain subset S~{O,l, ... ,n -l,O',l', ... ,(n -I)'} (here i' denotes the index 
of the i -th cofactor in the second co-ordinate of the elements of the algebra 

(Jf n t ((}) when presenting these elements as pairs < a,b >, where a,b EJf n). For 

any a1, ... ,an EJI we have 
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On the other hand, the choice of co-ordinates of this element in correspondence 
with the indices contained in S determines all the other co-ordinates of this element 

uniquely. But, obviously, if the co-ordinates with the indices i and i' are fixed for 

1:s i < n, then the co-ordinates with the indices ° and 0' will not be uniquely 
determined by the choice of fixed co-ordinates, i.e., SQ;{I, ... ,n-l,l'y .. ,(n-l)'}. 
Analogously, for any other i < n the set S contains either i or i'. Therefore, 

(}J n )2 «()) a!}J I, where n:s 1 < 2n. Moreover, I > n , as () > A. By retaining the 

indices we can assume S = {O,I, ... ,n -1, i{, ... ,ii_n}. 

Let C1, ... , Ct be all equivalence classes of the algebra }J n over (), and ICjl = kj 

at j:s t. Let us show that k j :S IJl r- n. Indeed, let 

also for such is that i,i' ES bj = d j (note that there are (1- n) of such is). The 

element 

b' =« bO, .. ·,bn- 1 >, < bo, ... bn- 1 » 

also belongs to the algebra (}J n )2 «()), but the elements b and b' have the same co

ordinates for the indices incorporated in the set S. Hence, b = b' and bj = d j for all 

i < n. 

Let now < ao, ... ,an-l >ECj. It should be noticed that kj = IC;I, where 

Let us consider the mapping .1l: C; -+}J l-n defined as follows: 

Notice that .1l is an embedding. Let us assume that 
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so that their .7r-images coincide, i.e., d i! = bi!, ... ,d~_n = bi1 _n. In this case, since e is 

a congruence, «lJo, ... ,bn- 1 >,< dQ, ... ,dn _1 »E(2I n)2(eJ, but, as has been noted 

above, this implies the equality bi = di for all i < n. Therefore, indeed,.7r is an 
t 

embedding and, hence, k j S jlJ I/-n. And, finally, let us note that ~kj = jlJ rand 
j-l 

± k; = ~ 21 n)2 (8) I = jlJ II. As k j S jlJ 1/- n, these equalities are satisfied iff ICj 1= ilJ r-n 

j-l 

for all j < t .• 

Theorem 6.4. A finite non-singleton algebra 21 has a minimal spectrum iff it 

is simple, has no non-singleton proper subalgebras, and.m (21) is congruence

permutable. 

Proof. Let 21 have a minimal spectrum, in which case 21 is obviously simple 

and has no non-singleton proper subalgebras. Since the spectrum of the algebra 21 
is minimal, SP(C) is a narrow class of algebras, in the sense of the definition 6.2, 

for any finite C E..'Ul (21). By lemmas 6.1 and 6.2, any finite algebra C E..'Ul (21) 

will be congruence-permutable. The variety.'Ul (21) is finitely generated, hence, 

locally finite and, therefore, according to what has been proved above, a finite 

algebra S,m (JJ )(3) is congruence-permutable, which implies congruence-permutability 

of the whole variety ,.m (21 ). 
Let us now assume that the opposite case is true, i.e., 21 is a simple algebra 

with no non-singleton proper subalgebras, and ,.'Ul (21) is congruence-permutable. By 

these conditions and lemma 6.10, any finite algebra C E"m (21) has the form 

21 % for certain n Em and e ECon21 n. By lemma 6.11, 121 %1=12Ilk for some 

k s n, i"e., 21 has a minimal spectrum .• 

Before we formulate the next theorem, let us recall some facts related to 
modular lattices which can be found in a book by G. Birkhoff [14]. In a modular 

lattice of a finite length, all maximal chains are of the same length. A modular lattice 
is termed geometric if it is of a finite length and is a lattice with complements or, 
which is equivalent, if it is of a finite length and a unit is a family of atoms in it. 

Modular geometric lattices are self-dual. Each modular geometric lattice is 
representable as a product of Boolean lattices and projective geometries, i.e., lattices 
of the subspaces of finite-dimensional vector spaces. The filters of modular geometric 
lattices are modular geometric lattices themselves. 
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Theorem 6.5. If a finite algebra 2/ has a minimal spectrum, then either of 
the following two cases is possible: 

(a) 2/ is quasi-primal, has no non-singleton subalgebras and in this case any 

finite algebra C E.m (2/) has the form 2/ n for a certain n Em; 

(b) 2/ is a simple Abelian algebra with no non-singleton proper subalgebras. In 

this case, if 2/ has a one-element subalgebra, then any finite algebra C E..'lfl (2/) 
has the form 2/ n for some n Em, while if 2/ has no proper subalgebras, then 

there is an algebra 2/ v E.m (2/) such that 2/ v ~ 2/ , 12/ v 1=12/1, 2/ v has a one

element subalgebra, and any finite .m (2/ )-algebra has either the form 2/ n or the 

form (2/ v t for some n Em. 

Proof. As the 2/ spectrum is minimal, the algebra 2/ 2 is congruence-uniform 

by lemma 6.1. Let us consider a congruence on 2/ 2 generated by a set of pairs 

B = {« X,x >,< Y,Y »1< x,y >E2/ 2}, i.e., in terms of the commutator theory, the 

congruence L1~ (see section 2). 

Since 2/ 2 is congruence-uniform, all the classes of the congruence A~ on the 

algebra 2/ 2 are of the same power, and, sinq! one of these classes contains the set 

~={<x,x>,IXE2/}, rX:I:s:I2II. As the spectrum of the algebra is minimal, 

either we have L1~ = V or the L1~- class containing the set ~ coincides with this 
set. By the definition of a commutator, we have 

lV,VJ={<x,y>I«x,x>,<x,Y»EA~}. Therefore, in the former case the equality 

A~ = V implies the equality l V,V J = V, while in the latter case, i.e., when ~ is a 

A~ -class on 2/ 2 , we obtain the equality lv,v J = A, i.e., that the algebra A is 
Abelian. 

Let us now prove that in the former case the variety .m (2/ )is congruence

distributive. Indeed, for the simple algebra 2/ the equality lv,v J = V implies its 

neutrality. By theorem 2.22, the neutrality of 2/ implies that of any algebra of the 

type 2/ n, where n Em. The neutrality of an algebra evidently implies (see, for 
instance, theorem 2.17), its congruence-distributivity. As has been remarked in the 

proofs of theorem 2.4, for certain n Em and () ECon2/ n we have 

J!Ill ()J) (3) s 2/ % and, therefore, 2/ n as well as J!Ill ()J) (3) prove to be 

congruence-distributive algebras. By theorem 2.9, the whole variety .m (2/) will also 
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be congruence-distributive. Therefore, 11 is a simple finite algebra, having no non
singleton proper subalgebras, generating a congruence-distributive and congruence

permutable variety .m(lI). By theorem 5.3, 11 is quasi-primal. 

Let us now consider the latter case, when 11 is Abelian. Since .BI is a 

subalgebra of the algebra 11 2 and a ..1~-class in the case under consideration, the 

algebra 1I.x~ has a one-element subalgebra Let us refer to 1I.x~ as 11 v. Since 

the spectrum of the algebra 11 is minimal, we get the equality III vI = I1J I· 
As has been noted earlier, any finite .m (11 )-algebra iC is isomorphic to an 

algebra of the type 11 % for certain m Em and a EConll m. If 8 j (i < m) are 

kernels of the corresponding projections :Jrj of the algebra 11 m, ..1 = A 8 j and, since 
i<m 

Conll m is a modular lattice em (11) is congruence-permutable and, hence, 

congruence-modular), then Conll m is a modular geometric lattice. As a filter of the 

modular geometric lattice Conll m, ConiC will also be, according to the the facts 
remarked before proving of this theorem, a modular geometric lattice. In particular, a 

non-zero element in ConiC will be the intersection of a finite number of co-atoms: 

..1 = A 8 j •• It means that the algebra iC can be represented as a subdirect product of 
j<k 

simple algebras % .. By lemma 6.10, we get an isomorphism iC a! OiCfo., where 
I El I 

I is a certain subset of the set {O,l, ... k -I}. Therefore, any finite .m (11 )-algebra is 
representable as a direct product of simple algebras. 

Let.B be a simple .rn. (11 )-algebra , and for some n Em and 8 EConll n we 

have .B = 11 'Ie. Let us first of all note that if n ~ 3, then there is a 1/J EConll 2 

such that 11 'Ie a! 11 h. Indeed, let n ~ 3, and let us consider subalgebras of the 

algebra 11 n : 

and 

In this case 11 I n 11 2 .. 0, and 11 I U 11 2 generates 11 n : since 

I1JI u1l21= 2·11J r-I-111 r-2, and the 11 spectrum is minimal, the subalgebra 

generated by the set 11 I ull 2 in 11 n must have the power I1J r, i.e., coincide with 
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11n. If we had Fiel=FYeI=1, then ~hl=1, but (J is a co-atom in Con11n. 

Let F 101> 1. As 11 has a minimal spectrum, we get 111 YoI=I11 1m for some 

m < n. Since (J is a co-atom in Con11 n, 111 hl=l11 I. However, 11 Yo ~ 11 Yo 
and, hence, 11 Yo = 11 %. But 11 1 e 11 n -1. If we continue our considerations by 

induction, we can find a 'IjJ ECon11 2 such that 11 % e 11 h. Therefore, any 

simple finite ..'TJl (11 )-algebra has the form 11 h for a certain 'IjJ ECon11 2 , 

A< 'IjJ<V. 

It should be recalled that Bt is a diagonal subalgebra of the algebra 

112:Bt ={< a,a >laE11}. Since the spectrum of the algebra 11 is minimal, 

111 hl=l11 I and we have either I "X, I =111 I, or I"X,I= 1. As 1"X,1~11 h and 

Bte11, we have 11h ="X,e11 for the case when I "X, 1 =111 1 and Bt is not a 

'IjJ -class. If' 11 h ~ 11 , then I "X, I = 1 and, since 11 is congruence-uniform and 

111 hl=l11 I, Bt is a 'IjJ -class. 

Let cp, 'IjJ be two co-atoms in Con11 2 such that 11 % and 11 h are not 

isomorphic to the algebra 11. As has been just noted, the set Bt will be 
simultaneously both a cp- and a 'IjJ -class. By corollary 2.4, .m (11) is congruence

regular and, hence, the coincidence of two cp - and 'IjJ -classes on 11 2 implies that of 

the congruences cp and 'IjJ. Therefore, for any cp -co-atom of Con11 2 such that 

11 % e 11 we get: 

This means that the only simple algebras of the considered variety .om (11) are 

the algebras 11 and 11 v and, since any finite .om (11 )-algebra is a direct product of 
simple algebras, in order to complete proof of statement (b) it remains to show that 

for any nonzero numbers I,n Em we have 11 I x (11 v r e 11 1+ n. To this end it 

suffices to show that the algebras 11 x 11 v and 11 2 are isomorphic. 

Let fh be the kernel of a projection of the algebra 11 2 on the first cofactor, in 

which case fh 1\ A~ = A (since 11 2 is congruence-regular and Bt is a A~ -class). 

Therefore, since fh 1\ A~ = A and .m (11) is congruence-permutable, we get: 
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Priorities. The material presented in this section and devoted to the direct 
presentability of varieties mostly originates from R. McKenzie [136] (lemmas 6.1, 
6.2, 6.4-6.9, theorems 6.1-6.3. Lemma 6.3 is by A.F.Pixley [188]. The 
information on modular geometric lattices, as has been remarked in the text, can be 
found in a book by G.Birkhoff [14]. The data on algebras with a minimal spectrum 
are from R.W.Quackenbush [194] (lemma 6.11, theorems 6.4 and 6.5). Lemma 
6.10 is by A.L.Foster and A.F.Pixley [65]. All the results presented in this section 
can be found in a monograph [161]. 

7. Representation of Varieties with Boolean Constructions 

The basic aim of the present section is to clarifify of the possibilities of 
generation of varieties using Boolean products, Boolean powers and other Boolean 
constructions. In this respect, the result of theorem 7.2, which limits the class of 
similar finitely generated varieties by direct products of Abelian and discriminator 
varieties is essential. We have already shown above (section 5) that any algebra of a 

discriminator variety.m. is isomorphic to a Boolean product of .m. ~ -algebras. For 
the class of congruence-distributive varieties this statement allows an inversion, i.e., 
the following theorem is valid. 

Theorem 7.1. If .m. is a congruence-distributive variety, then .m. = Ira(m. ;1) 
iff.m. is discriminator. 

Proof. By theorem 5.7, it suffices to show that the equality .m. = Ira(m. ;1) 
implies that if.m. is congruence-distributive, then it is also a discriminator variety. 

Let us first of all demonstrate that.m. is semi-simple, i.e., any subdirectly non

decomposable algebra is simple. Let us assume the opposite and let 11, thus, be a 
subdirectly non-decomposable algebra with a monolith fJ, and not simple. Let us 

consider a congruence-Boolean power 1I.B (fJ), where.R is a four-element Boolean 

algebra. By corollary 4.1, there is a congruence on the algebra 1I.B (fJ) (fJ.B in the 
notation of the proof of theorem 4.2) other than V and 11, and comparable with 

any other congruence on 1I.B (fJ). On the other hand, the same corollary 4.2 yields 
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that JJ 11 (f3) will not be subdirectly non-decomposable: 

conpJJ.B (f3) =.B r:JJConpJJ B (f3)I> f3B. According to the formula .om = Ira(.om ;/), 

we have JJ.B (f3) c IT JJ i, where .BI is a more than two-element Boolean algebra, 
iEllt 

and JJ.B (f3) is a Boolean product of .om;ralgebras JJ i with respect to the Boolean 

algebra RI . 

Let bEBI, b;o'O,1 and aba2 the kernels of the projections :lEb, :lE_b of the 

algebra JJ.B (f3) relative the open-closed subsets b, ~b C.B;. One can assume 

al,a 2;0' A in which case, by lemma 4.1, al,a 2 obey the following conditions: 

aI, a 2 ;0' V, A; al 1\ a2 = A; al v a2 = V. But these conditions contradict the fact that 

the congruence f3.B, which is different from A,V, is comparable with aI' a 2' It is 

this contradiction that proves that any subdirectly non-decomposable IIfl -algebra is 

simple, i.e., .m is semi-simple, and, hence, we getm = Ira(.,m ;). By theorem 

4.2, for any algebra JJ which is included in a congruence-distributive variety, the 

following statement is valid: if JJ is a Boolean product of Jfl; -algebras JJ i relative 

to the Boolean algebra .BI(JJ C IT JJ i ), then for any J,g,h,k EJJ, we have 
iEB; 

h k >ESli 1'ff <, f,g 

Starting from the above description of the principal congruences of the algebra 

JJ , one can directly prove that the principal congruences of the algebra JJ are 

permutable. Since any congruence on JJ is a union of principal congruences, the 
permutability of the principal congruences implies that of any congruence on an 

arbitrary algebra JJ E.om. By theorem 5.10, in order to prove that the variety.m 

is a discriminator variety it suffices to show that for any congruence S~b in the 

lattice ConJJ there is a complement to S~b' but this conclusion follows from the 

formula .. m = Ir(.om;) by lemma 5.12 .• 

As for finitely generated varieties, only those presentable as Boolean products of 
algebras of a certain finite class can be described completely. 

Lemma 7.1. If for a certain finite set n. of finite algebras .om (R) = Ira or ), 
.m (R) =m ab v.om dist' wheremab(.m dist) is a certain Abelian (congruence

distributive) subvariety of the variety.m . 
Proof. As, by lemma 4.2, any finite algebra which is a Boolean product of 
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some algebras 11 i (i EI) is a direct product of these algebras, the equality 

.. 'lfl (R) = Ira(R) implies that the variety .m (R) is directly presentable for a certain 

finite set R of finite algebras. Since .. 'lfl (R) is finitely generated, we get 

JJl (R) = .m (Sm (R )(s» for a certain sEw. As, by lemma 6.8, .m (R) is directly 

presentable, there is an Abelian algebra 11 E.m (R) and simple non-Abelian .m (R)-
algebras .B1, ... ,.Bn such that $1Tl(R)(s) ~11 x.B1x ... x.B n. Let 

.mab = .. 'lfl(1I), .. 'lfldist= .. 'lfl(.BIX ... x.Bn)' in which case we have 

.m (R) = .m ab v .m dist. By corollary 2.2, the variety .m ab generated by an Abelian 
algebra is Abelian itself, and for the lemma to be proved it would suffice to prove 

that the variety .mdist is congruence-distributive. 

Let us first show that any non-singleton subalgebra of the algebra .Bi(i ~ n), as 

well as .Bi itself, is a simple non-Abelian algebra. 

Let us introduce the following notations: a subalgebra 11 of the algebra .B will 

be called well-skew in.B provided that for any direct decomposition .B ~ Dl XD2 

of the algebra .B, i.e., for any permutable congruences (J,'ljJ ECon.B such that 

(J'1/J = V.B' (J A 1/J = AB ' the inequality «(}.11 ).( 1/J11I ) < V JI holds. 
It should be recalled that, by theorem 6.1, the directly presentable variety 

.. 'lfl (R) is congruence-permutable. 
Let us assume that a certain non-singleton subalgebra 11 a of the algebra .Ba, 

one of .B1, ... ,.Bn , is either not simple or Abelian. Let us prove that in this case 

there are subalgebras 11 m well-skew in .B5m of an arbitrary large finite power in 

algebras of the type .B5m(m E w). Indeed, if 11 a c;;, .Ba is not simple, and 

qJ ECon1l a, qJ;oO VJI ,AJI ' let 11m = {f E1I ({'I for any i,j < m < f(i),J(j) >EqJ}. 
o 0 

As qJ;oO A JI ' IH ml2: 2m , and since qJ;oO V JI ' and all the congruences of the algebra 
o 0 

.B(: are, by lemma 6.9, projections relative to the subsets of the set {O, .. . ,m -I}, 
one can easily observe that 11 m is well-skew in .B(:. In the case when 11 a is not a 

one-element Abelian algebra, let 11 2m c;;, .B5m and 

11 2m = {t E1I6m1f(O)+ ... + f(m - 1) = f(m)+ ... + f(2m -I)}, 

where + is a certain fixed operation of addition of an Abelian group polynomially 

determinable in the Abelian algebra 11 a and correlated with all the operations of the 

algebra 11 a according to the theorem 2.20. Let, in particular, 11 2m be a subalgebra 

of the algebra .B5m . In this case we get 1ll2ml = 111 a,m-l, and again, as all the 

congruences of the algebra .B5m are exhausted by the projections relative to the 
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subsets of the set {O, .. . ,m -I}" considering pairs of the kernels of these projections 

(},'ljJEcon.R;Jm such that (}·'IjJ=V.B6m , (}1I'IjJ=A B6m , we can easily see that 

((}IJI 2m)' ('ljJIJI 2m) < V 2f ' i.e., JI 2m is well-skew in .R;Jm for any mEw. 
2m 

Therefore, indeed, if JI a ~ .Ro is either a non-singleton Abelian or non-simple 

algebra, in algebras of the typeR;Jm there exist well-skew subalgebras of an 
arbitrary large finite power. 

Let now € be a certain subdirect product of simple non-Abelian algebras 

€ li EI) from the variety under consideration (,m (R», and let (), 'IjJ ECon€ be 

such that (). 'IjJ = V c, () II 'IjJ = AC' in which case ()( 'IjJ) is the kernel of projecting 

the algebra € relative to the subset AU \ A) of the set I for a certain A ~ I. 

Indeed, let C(Jj = ker Xj for i EI. For any i EI we have either C(Jj ~ () or C(Jj ~ 'IjJ. In 

the opposite case, as € j is simple, i.e., C(Jj is maximal in Con€ , the equalities 

() v C(Jj = 'IjJ V 'ljJj = V c hold. 

By lemma 2.17, the equality [V,V] = V is also true on the algebra € , like the 
equalities l V,V J = V on simple non-Abelian algebras € j(i EI). In this case we get 

It is the obtained contradiction that shows that for any i EI we have either 

C(Jj ~ () or C(Jj ~ 'IjJ. Let now A= {iEIIC(Jj ~ (}}. Obviously, we have 

{i Ell C(Jj ~ 'IjJ} = A \ I. (}1' 'IjJ 1 will denote II C(Jj, II C(J j, respectively. The inequalities 
iEA jEl\A 

(}1 ~ (), 'ljJ1 ~ 'IjJ are also obvious and, in addition, (}1 II 'ljJ1 = A. As has been noted 

above, .. m is directly presentable and, hence, congruence-modular. Since Con€ is 

modular and we have (}1 ~ (), 'ljJ1 ~ 'IjJ, (}1 II 'ljJ1 = A and () v'IjJ = V, the equalities 

() = (}1' 'IjJ = 'ljJ1 hold, i.e., the mutually complementary congruences on the subdirect 
products of simple non-Abelian algebras of the variety under consideration have the 

form of projections relative to the mutually complementary sets of indices of 

cofactors. 

Let us consider the following .m (R ) -algebra: € m = {j E(R ;Jm r I for some 
A 

a EJI 2ml{iEwlf(i);o' all< Xo}, where m is an arbitrary number. For any fE€m, f 

will denote aEJl 2m such that l{iEwlf(i);o'a}ld~o, while for aEJl 2m , let aE€m 
such that for any i Ew we have a( 1) = a. 

Let us first notice that if € m ~ 1> 1 x 1>2' either 1>1 or 1>2 is finite, and if 

a1 ;0' a2 EJI 2m' the images of the elements a1' a2 are different when projecting € m 

into the infinite cofactor from 1>1,1>2' Indeed, by the definition, € m is a subdirect 

power of a simple non-Abelian algebra .Ro:€ m ~p f1lE l , and lEI = lEo for any 
IE2mxOJ 
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I E2m x w. Let € m 51! D I x D 2 , and 0,1/J ECon€ m correspond to this direct 
decomposition of the algebra em. As has been noted earlier, we can find an 
A ~ 2m x w such that 0,1/J are the kernels of projection of the algebra 

€ m ~ TIl! I relative to the subsets A, 2m x w \ A of the set 2m x w, respectively. 
lElmxw 

In order to prove that one of the algebras DI , D2 is finite, it suffices to prove that 

either one of the sets A or 2m x w \ A is finite. For any i Ew of the projections of 

the algebra .Bgm relative to the subsets t\ = {j E2ml< j,i >EA} and 
Bi = {j E2ml< j,i >E2m x w \ A} of the set {O, ... ,2m-1} result in a direct 

decomposition Bg-m 51! DI;n x D 2,n' It should be remarked that these direct 

decompositions of the algebra Bg-m are trivial finite numbers i Ew, i.e., we get 

either iDI,nl = 1 or iD2.nl= 1. Indeed, otherwise there exists an infinite I~ w such 

that for any i,jEI we have t\ = Aj , Bi =Bj and t\,~ ;0<0. 

Let 0', 1/J ' be the kernels of projections of the algebra B gm relati ve to the 
subsets A' = t\(i EI) and B' = Bi(i EI) of the set {O, ... ,2m -I}, respectively. It is 

obvious that (}"1/J'=V BJm, (}'A1/J'=A BJm and, as the subalgebra Ji 2m is well-

skew in Bg-m, there are elements al,a2 EJi 2m such that 

< al,a2 >Et:( (}'IJi 2m)' (1/J 'IJi 2m)' On the other hand, since < al,a2 >EV € = (}'1/J, 
m 

there is an element U E€ m such that < al,u >E (}, < u, a2 >E 1/J. As I is infini te, we 

get <al,u>E(}", <u,a2>E1/J'. As far as uEJi 2m , we have come to a 

contradiction which proves that for all but a certain finite number of elements i Ew 

we have either iDul = 1 or iD2.il = 1, in other words, either t\ = 0 or~ = 0. 

Let us now assume that both the equalities t\ = 0 and ~ = 0 are valid for an 

infinite set of elements i Ew. Let al;O< a2 be elements of Ji 2m' As (}. 1/J = V € ' 
m 

there is a u E€ m such that < al'u >EO, < u,a2 >E1/J. But in this case at a certain 

k Ew for all P> k we have u(p) = U EJi 2m' In this case if ApI = 0, APl = 0 and 

Pl,P2>k, al=al{J~J=u(PI)=U and a2='O,z(P2)=U(P2)=u, i.e., al=a2 contradicts 
the choice of al,a2' Therefore, either t\ ={O, ... ,2m-1} is valid for all but the finite 
numbers i Ew, or this statement is valid for ~. Thus, either A or B is finite, i.e., 

one of the algebras in the decomposition € m !is D X D2 must be finite. In this case 

it is obvious that for different al,a2 EJi 2m' the projections of the elements al,a2 

onto the infinite cofactor from Dl and D2 are also different. 

Since ll' is a finite set of finite algebras, let sEw be such that s > IV 1 for 

any D Ell'. According to the equality .m (J~.) = Ira (ll ), the algebra € s is 

representable as a Boolean product of ll' -algebras: € s ~bp IJ..n j , where .n j Ell' , 
EB 

and.B is a Boolean algebra. For i E.B· the inequalities 13 2s1 > IW il imply covering 
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of the space .B* with open-closed sets llal -iiiIJ. where al '" ~ are elements of 

J/ 2s. Since .B * is infinite. at least one of the sets II al - iiilJ (al '" ~ EJ/ 2S) will be 

infinite. But in this case €s=D 1 xD2• where Dl =€sl_lal "'lizlJ, 
D2=€sl_lal=iiilJ, in which case D2=€sillal=a2IJ is infinite. and the images of 
the elements ai.li2 coincide when projecting € s on D2 = € silial - iiilJ. which 
contradicts the statement proved above. It is this contradiction that shows that all 

non-singleton subalgebras of the algebras .B 1 •. ..•. B n are indeed simple and non
Abelian. 

As long as .mdist is generated by a finite set {.B1 •...•. B n} of finite algebras. 

Jrn . (3) is finite and. hence, Jm (3) EHSRjin(.B1 •.... B n). By theorem 2.9. in 
. dut disl 

order to prove that the variety .mdist is congruence-distributive, it suffices to show 

that ConJmd' (3) is distributive, while by the inclusion 
.. I< 1St 

Jrnd' (3)EHSRjin(.B1 •... ,.Bn). it is enough to show that the lattice ConJ/ is 
.. 1St 

distributive for any algebra J/ ESPji,l...B1, ... ,.Bn). But if J/ ESPji,/...B1, ... ,.Bn), J/ 
is a subdirect product of some finite family of the subalgebras of the algebras 

.B1, .•• ,.B n. As has been shown above, these subalgebras are simple and, hence, as 

.o'lTldist is congruence-permutable, J/ will be isomorphic to some finite direct product 

of these subalgebras by lemma 6.10, i.e., J/ is a direct product of simple non

Abelian algebras from the variety .m. By lemma 6.9, ConJ/ is distributive, which 

fact implies, as has been mentioned above, that .mdist is congruence-distributive. 
Therefore, indeed, under the conditions of the lemma under discussion we have 

.m .. .o'lTl ab v .m dist' where .mab is Abelian, and .o'lTldist is congruence-distributive .• 

It should be recalled that. in line with theorem 2.20, any Abelian variety .m 
is polynomially equivalent to the variety of left unitary R -modules over some ring R 

with unity. Let us denote this ring R by R(.o'lTl). It should be also noted that for a 

finitely generated .m , the ring R(.m) is finite (for more details on the structure of 

the ring R(.m) see, for instance [32], [166]). 

Theorem 7.2. For any variety .m, the following conditions are equivalent: 

(a) for a certain finite set n. of finite .m -algebras. the equality.m = Ir\R) 
holds; 

(b) .m =.m 1 ®.m2 , where .ml is a finitely generated discriminator variety, 

.m2 is a finitely generated Abelian variety, and the ring R(.m2) has a finite type of 
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presentations. 

Proof. Let us show that (b) follows from (a). 

Let .. r.rl = Ira(J't) for a certain finite set H of finite algebras. According to 

lemma 7.1, for some Abelian .1llab and congruence-distributive .. r.rldist subvarieties of 

the variety .1ll, we have .1ll =1ll ab v .1ll dist. By theorem 4.4, 

.1ll(J't)= .. r.rlab@.1lldist, while by lemma 4.8, for the finite sets 

R\ = H n.1ll ab, J't2 = J't n1lldist of finite algebras we have 

.. r.rlab=Ira(H I ), .1lldist=Ira(H2)' As has been remarked in the conclusion of 

section 4, if the Abelian algebra JI E .. r.rl ab is representable as a Boolean product of 

the algebras JI i EH I, the module polynomially equivalent to the algebra JI will be 
representable as a Boolean product of the modules polynomially equivalent to the 

algebras JI i' In particular, any finite R(.1llab )-module will be isomorphic to a 

Boolean product (to a direct product, i.e., to a direct sum, by lemma 4.2) of the 

modules of polynomially equivalent to the HI-algebras. Therefore, R(..r.rlab ) has a 

finite type of presentations. 

Let us now demonstrate that .. r.rl dist is a discriminator variety. Let us first notice 

that the formula .1lldist = Ira(H 2) implies the direct presentability and, hence, the 

congruence-permutability of .1lldist . Let us also notice, exactly as we did in the 

beginning of the proof of theorem 7.1, that the formula .. r.rl dist = Ira (11' 2) implies 

the semi-simplicity of the variety .1ll dist . Therefore, any H 2 -algebra, since it is finite, 

is representable as a subdirect product of simple .. r.rldist-algebras. Lemma 6.10 makes 

it possible to state, as.r.rl dist is permutable, that any H 2 -algebra is isomorphic to a 

direct product of (.1ll dist)s-algebras. 

Let now J't2 = {C I'''''C n}, and JI an arbitrary .1lldis,-algebra. Let also 

JI ~ ilJl i be a representation of JI as a Boolean product of H 2 -algebras, i.e., in 
EB 

particular, JliE{CI, ... ,Cn } for any iE.B*. By lemma 4.1, for any iE.B* there is 

an open-closed neighborhood Ni of the point i such that for any j ENi the algebra 

JI i is isomorphically embeddable into the algebra JI j' Taking into account this fact 

as the well compactness ofB*, one can obtain an open-closed partition N{, ... ,N~ of 

the space .B * such that for j EN; we get JI j 'iii!!. C I (at I ~ n). Let, then, JI (I) 
denote the projection of the algebra JI relative to the subset N;; then JI (I) is the 

Boolean product of the algebras C I, and JI 'iii!!. Il JI (1). Let C I = Il C lk (1 ~ n) be 
lsn ksml 

the above-mentioned representation of the algebras C I as a direct product of 

(.1ll dist>s-algebras. If 
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11 (I) ~ (C { )B / = ( fl C h·B • 
ksml 

is the representation of the algebra 11 (I) as a Boolean product of the algebras 

isomorphic to the algebra C {, let pi 11 (1» be a natural projection of the algebra 

11 (I) in this representation onto the algebra (C n.B t. The algebras Pk( 11 (I» are 

obviously Boolean products of the algebras Cf with the degrees .B;. It is also 

obvious that 11 (1) is isomorphic to a subdirect product of the algebras 

Pl(lI (I»,···,Pml(lI (1». As the congruences on .1!ldist are permutable, 11 (I) will be 

isomorphic to the direct product flpi 11 (I». Therefore, the initial algebra 11 is 
ksrnz 

representable as a direct product of a finite number of Boolean products of (.1!ldist)s

algebras, and, hence, 11 itself is isomorphic to a Boolean product of (.,mdist)s

algebras. By theorem 7.1, .1!ldist is a discriminator variety, the implication (a) -
(b) of the theorem is thus completely proved. 

Let us now show that (a) follows from (b). Let the varieties .,ml and .,m2 

obey statement (b) of the theorem. According to theorem 2.26 (a), any R(.1!l2)

module is representable as a direct sum of finite directly non-decomposable modules, 

the number of the latter being finite (to the accuracy of isomorphism). Let D be a 

finite family of finite directly non-decomposable R(.1!l2) -modules. Therefore, for 

R(.1!l2)-module, Me ®Mi , where MiED for iEI. One can assume that we have 
EI 

iM~ I = 1 for some io EI. Let us convert the set I into a Boolean space by 

considering the Boolean algebra of finite and co-finite subsets of the set 1\ {io}, and 

by identifying io with the Frechet filter of this Boolean algebra. We obviously get an 

isomorphism from the module M with the Boolean product of the modules Mi with 

respect to the Boolean Frechet algebra over the set 1\ {io}. As has been remarked in 

the conclusion of section 4, the .1!l2-algebra polynomially equivalent to the module 

M will be in this case representable as a Boolean product of .,m 2 -algebras 

polynomially equivalent to the modules M j ED +. Therefore, in the case under 

discussion, any .,m 2 -algebra is isomorphic to a Boolean product of a finite number 

of finite .1!l2-algebras, i.e., .1!l2 = Ira(R 2), where R2 is finite, and R2-algebras 

are finite. By theorem 2.16, for a finitely generated discriminator variety .1!l!, the 

set (.1!ll);] is a finite set of finite algebras, while by theorem 7.1 we have 

.1!ll = II' a«·,'lTl l );] ). 

Therefore, any .1!l -algebra is a Cartesian product of two Boolean products of 
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H2 - and (..7.71 1 );{algebras, respectively. By lemma 4.2, this Cartesian product will be 

isomorphic to a Boolean product of Ol2 U (.om 1 );/) -algebras, i.e., 

. .7.71 = Ira(H 2 U (.7.71 1);/), • 

Corollary 7.1. 

(a) For the variety of rings .om , the equality . .7.71 = Ira(H) holds for a certain 

final family H of finite rings iff.m is generated by some set of finite rings with 
zero multiplication and a set of finite fields. 

(b) For the variety of groups . .7.71, the equality .om = IraOr.) holds for a 

certain finite family H of finite groups iff.m is a variety of Abelian groups of a 
finite exponent. 

Proof. (a) Let . .7.71 be a variety of rings, and let . .7.71 = Ira(H) for a certain 

finite family H of finite rings. Then, by theorem 7.2, . .7.71 = . .7.71 (R\)®.omor. 2), 
where . .7.71 (H 1) is Abelian, while . .7.71 (H 2) are discriminator varieties of rings 

generated by the finite sets of finite rings H1,H 2, respectively. As has been 

observed before the proof of theorem 2.19, .om(H1) will be a variety of rings with 

zero multiplication, while according to theorem 5.1, . .7.71 Or. 2) is generated by a finite 
set of finite fields. Therefore, the statement (a) has been proved in one direction. 
The proof of this statement in the opposite direction is reduced to the following: 

(1) by theorem 5.1, the variety .oml generated by a finite set of finite fields is 

a discriminator variety and, hence, by theorem 5.7, . .7.71 = Ira(H) , and it is the set 

(,.7.711 );/ that is a finite family of finite fields generating .om1 ; 

(2) by the Prtifer, theorem a variety generated by a finite family of finite 
Abelian groups (finite rings with zero mUltiplication) consists of direct sums (this 
being, obviously, a particular case for Boolean products) of finite cyclic groups 
(finite cyclic rings with zero multiplication); 

(3) a Cartesian product of two algebras isomorphic to certain Boolean products 

of R -algebras will be, by lemma 4.2, itself isomorphic to a Boolean product of 

H -algebras for any class of H. 

The statement (b) results from the remark before the proof of theorem 2.19 
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concerning the equality of the notions of an Abelian group in the group-theoretical 
sense and in that of commutator theory, as well as from the fact that a non-singleton 
group cannot be a discriminator algebra. • 

Making use of theorem 7.2 one can obtain a complete description of finite 

algebras Jf generating varieties which consist only of Boolean powers of the algebra 

Jf and isomorphic to these powers of algebras, i.e., the varieties having the same, 
to a certain extent, structure as those of Boolean algebras. 

Theorem 7.3. For an arbitrary finite algebra Jf, the equality 

.m (Jf ) = IPB(Jf) is valid iff either Jf is a quasi-primal algebra without proper 
subalgebras, or Jf is a simple Abelian algebra having no non-singleton proper 
subalgebras but having a one-element subalgebra. 

Proof. Let for a finite algebra Jf the equality .m (Jf ) = IPB(Jf) hold. This 

equality yields the following eqUality: .m (Jf ) = Ira(Jf). Therefore, by theorem 7.2, 

we get .. m (Jf ) =.m 1 ®.m 2, where .ml is a discriminator variety and .m 2 is an 

Abelian one. Since Jf is the only subdirectly non-decomposable algebra of the 

variety .m (Jf ), we have either .m (Jf ) = "m l , or .. m (Jf ) =.m 2' 

In the former case, as Jf is a finite subdirectly non-decomposable algebra 

generating discriminator varieties, it is quasi-primal. Since any non-singleton .m (Jf )-
algebra has the form Jf.B , i.e., the power cannot be less than /111, Jf has no non

singleton subalgebras. Let us show that Jf can have no one-element subalgebras, 

either. Let us assume, to the contrary, that a EJf and {a} is a subalgebra of the 

algebra Jf . Let us consider a subalgebra C of the algebra Jf W such that 

Since the equality .m (Jf ) = IPB(Jf) holds, we have the isomorphism C 5!! Jf .B for 

some Boolean algebra .R. By theorem 5.6, unit congruences on Boolean powers of 
simple algebras in discriminator varieties are principal, i.e., according to the 

isomorphism C 5!! JI .B we get V it ECon pC. Let V it = (J~ ,g for some f, g EC , 
and let n Em be such that for i 2: n we have f(i) = g(i) = a. Let a be the kernel of 

C projecting relative to the first nco-ordinates. By theorem 5.6, we get 

(J~8 ~ a ;o! V it. It is the contradiction obtained that proves that Jf cannot have one

element subalgebras, i.e., that in the case under discussion Jf is quasi-primal with 
no proper subalgebras. 
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In the latter case 11 is a subdirecdy non-decomposable Abelian algebra. 
Moreover, it is an simple Abelian algebra, since by the Magari theorem the variety 

.m (11) must have a simple algebra, and it is only the algebra 11 that can be such 

according to the equality .m (11 ) = Ira(1I). The same equality implies that 11 has 

no non-singleton subalgebras, as well as that there is an isomorphism 11 v S! 11 , 
where 11 v is the algebra described theorem 6.5 and has a one-element subalgebra. 
Thus, we have proved the statement of the theorem in one direction. 

Let us now prove the converse statement considering again both cases 

separately. Let 11 be a quasi-primal algebra with no proper subalgebras. As 11 
contains no proper subalgebras, 11 is the only subdirectly non-decomposable 
.m (11 )-algebra by theorem 2.16. Therefore, by theorem 5.7, any .. 'm (11 )-algebra is 
representable as a Boolean product of a one-element algebra and the algebra 11. In 

line with lemma 4.2, any finite algebra will in this case have the form 11 n for 

some n Em and, as .m (11) is locally finite, any finitely generated algebra will have 

the same form. This, in particular, implies that any non-singleton .. 'm (11 )-algebra 

contains a subalgebra isomorphic to the algebra 11 . 
Let € E.m (11 ) and IC I > 1. As we have already noted, € 5!! € 1 ~ n 11 j , 

iEB 
where € 1 is the Boolean product of the algebras J/ j with the index .ll, and for 

i E.ll * we have either J/ j 51! J/ or IH jl = 1. Let J/ 0 be a subalgebra of the algebra 

€ 1 isomorphic to the algebra 11 . It should be remarked that as J/ has no proper 

subalgebras, we have 11: j( 11 0) = 11 for any i E.ll * provided that 11: I{ € 1) = 11 . Let 

f ~ g be elements of the algebra J/ o. Since 11 0 is simple, Of.; = V)J o. By theorem 

5.6 we get 

Since, as has been noticed earlier, we have 

we get the following equality: 

As € 1 is a Boolean product, {i E.ll * I f( I) ~ g( i)} is open-closed in .ll *; let this 
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set correspond to an element b of the algebra .B. According to the equality 

{iE.B*I/(l) '" g(O} - {iE.B\n'z{CI~"'I}, the projection of the algebra C I relative to 

the element b E.B is isomorphic to the algebra C I and, moreover, this projection is 

isomorphic to the Boolean product of the algebra 21 relative to the Boolean algebra 

.Blb. Any non-singleton algebra CI E.m (21) can therefore be considered a Boolean 

product of the algebra 21 with respect to a certain algebra .B, while C I can be 

considered to contain a subalgebra 21 0 s 21 such that for any i E.B* we have 

xt2l 0 )=21. 
Let us fix an io E.B and let la stand for an element of the algebra 21 0 such 

that Ia(io) = a for any a E2I . Let gj (i E.B * \{io} )we will denote the mapping of 

the algebra 21 to the algebra 21 such that gj(a) = la(i) for any a E2I. It is 

obvious that gj is a homomorphism from 21 to 21, and, since 21 is finite and 

simple, gj is an automorphism of 21 for any i E.B * \ {io}. Let us determine the 

mapping h from the algebra C I to the algebra 21 iJ ' setting, for any i E.B * \ {io} 

and any 1 EC I , h(f)(i) = g;I(f(iO» and h(f)(io) = I(io). By the definition of the 

mappings gj, h(f(a» is a constant function on .B* taking the value a for any 

a E2I . Since C I is a Boolean product of the algebras xt C I) = 21 with the index 

.B , in line with properties 1, 2 of the definition 4.1 of a Boolean product, we see 

that for qJ Eh(CI ) qJ -l(a) is open-closed in .B* for any a E2I . Therefore, h(CI ) 

is contained in the Boolean power 21·B of the algebra 21. It is directly obvious 

from the definition of h that it is an isomorphism between C I and 21iJ. Any non

singleton .m(21 )-algebra is thus isomorphic to an algebra of the type 21B, i.e., 

.. m (21 ) = IPB (21) in the case when 21 is quasi-primal and has no proper 
subalgebras. 

Let now 21 be a simple finite Abelian algebra with no non-singleton proper 
subalgebras, but containing a one-element subalgebra. By theorem 6.15, any finite 

.m (21 ) -algebra will have the form 21 n (n Em). By theorem 2.21, the only directly 
non-decomposable module in the variety M Rm(11) of RJII. (lJ ) -modules polynomially 

equivalent to the Abelian variety .m (21) will be the module MlJ, which is 

polynomially equivalent to the algebra 21 . Therefore, the ring Rm (lJ) will be a ring 

with a finite type of representations and, by theorem 2.26, any Rm (lJ ) -module will 

be isomorphic to a direct sum of modules M}J. As has already been noted (see 

section 3), the direct sum ®( MlJ )j, where /MlJ). = M}J, is isomorphic to some 
e I 

Boolean degree M§. By theorem 2.21, this implies an isomorphism from an 
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arbitrary .m (21 )-algebra with a certain Boolean power of the algebra 21 , i.e., in the 

case under consideration, the equality .. m. (}/ ) = IPB(}/) again holds .• 

By way of concluding this section, let us consider the problem of the 
representation of a variety generated by a given finite algebra using subBoolean 
powers of this algebra. 

Theorem 7.4. For a finite algebra 21, the equality .m(21 2)=IPsB(21) is 
equivalent to the validity of the following conditions: 

(1) 21 =211x2l2' where 211 is an Abelian algebra and .. m. (21 2) is a 
discriminator variety; 

(2) if both algebras 211 and 21 2 are not singleton, they both contain singleton 
subalgebras; 

Proof. As the equality .m (}/ ) = IPSB(}/) yields the equality 

Jfl(21) = Ira (S(21 )), according to theorem 7.2, we have .. m.(21) =.m1 ®.m 2, 

where .. m.l is an Abelian variety, while .m2 is a discriminator variety. Therefore, 

there are algebras 21 i E.m i such that 21 51! 211 x 21 2' in which case 211 is an Abelian 
algebra, while the variety .. m.(21 2). as it is contained in .m2, is a discriminator 

variety. By lemma 4.8, any sub-Boolean power .1) of the algebra 21 with the 

index .B is presentable as a direct product .1)1 x.1)2 of the sub-Boolean powers .1)1 

and .1)2 of the algebras 211 and 212 with the same index .B. Therefore, as 

.m (21 j)!';;;;; .. m. j and, hence, .. m. (21 i) n .. m. (21 2 ) consists of only a one-element algebra, 

we get .m(211)=IPSB(}/I) and .. m.(}/2) = IPSB(}/2)' 

Let us now assume that both algebras, 211 and 21 2' are non-singleton, in 

which case 211 is isomorphic to a certain sub-Boolean power of the algebra 21 with 

a non-singleton index .B . As has been noted earlier, }/ 1 will be isomorphic to the 

direct product .1)1 x .1)2' where .1)i are certain sub-Boolean powers of the algebras 

}/i with the same index .B. As .m(}/1)n.m(}/2) consists of a single one-element 

algebra, .1)2 must also be non-singleton, but since .1)2 is a sub-Boolean power of 

the algebra }/ 2 with the one-element index .B, this is possible only when }/ 2 

contains a one-element subalgebra. The existence of a one-element subalgebra in the 

algebra 211 is proved in an analogous way. 
Let us now prove that the conditions (1) - (3) of the theorem result in the 
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equality.m (2/ ) = IPSB(2/). The conditions (2)-(3) obviously yield the following 
equality: 

i.e., taking into account the condition (1), I{l\ xD21D j E.om (2/ j)} = IPSB(2/) 

It also follows from the condition (1) that .m (2/ ) =.om em (2/1) U.om (2/2))' 
but, by theorem 4.4, .om (2/1) and .om (2/2) are independent and, hence, 

.. m (2/ ) =.om (2/1) ®.om (2/2)' i.e., .m (2/ ) = IPsB( 2/). • 

By virtue of the theorem just proved, the problem of the description of finite 

algebras 2/ for which the equality .om (2/ ) = IPsB(2/) is valid falls into the problems 
of describing similar Abelian algebras and those generating discriminator varieties with 

this property. For Abelian algebras 2/ , this problem can be formulated in terms of 
the language of modules over the rings with a finite type of representation which are 

polynomially equivalent to the variety .om (2/ ), while for quasi-primal 2/ it is 

possible to obtain a complete description of such 2/ with the property 

.om (2/ ) = IPsIi 2/ ). Let us first prove a number of auxiliary lemmas. 

Lemma 7.2. Let 2/ be a quasi-primal algebra, in which case any .om (2/ )

algebra is isomorphically embeddable into some Boolean power of the algebra 2/ . 

Proof. As 2/ is quasi-primal, the class of subdirectly non-decomposable 

.om (2/ )-algebras coincides with the class S(2/) by theorem 2.16. Therefore, any 

m (2/ )-algebra is isomorphically embeddable into some direct power 2/ x of the 

algebra 2/. But since the algebra 2/ is finite, the algebra 2/ x is obviously 

isomorphic to a Boolean power 2/.R, where .B is the Boolean algebra of all the 

subsets of the set X. Therefore, € is embeddable into 2/ B , thus the lemma is 
proved .• 

Let € be a subalgebra of the algebra 2/ x, a direct power of the quasi-primal 

algebra 2/ . Let us introduce the following notations: 

and 

E(€) = {U/ = g!j 1/, g E€ }, 
J)(€) = {U/;o'glJI/,gE€ } 

N(D) = E(€) U D(€). 
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By analogy with the proof of the theorem 5.7, one can easily prove the 
validity of the following statement. 

Lemma 7.3. If C is a subalgebra of the Boolean power 1/.B of the quasi

primal algebra 1/ ,: 

(a) E(C), j) (C) are closed relative to families and intersections, and N(C) is 

a subfield of the open-closed subsets of the space .B*; 

(b) for j,gEC and NEN(C), the element jINUgl.B* \ N also belongs to 

c· , 

(c) for NEN(C) such that N~0,.B*, there is an isomorphism 

C 51! C I N x C I.B * \ N, where C I X is the projection of the algebra C relative to the 

set X r;;;,.B *. Moreover, if C is a sub-Boolean power of the algebra 1/, C IN is 

also a sub-Boolean power of the algebra 1/ . 

For any algebra C r;;;,1/ .B , let i stand for the subalgebra of the algebra 1/.B 

generated by the algebra C and all constant functions from 1/.B. Let us introduce 
• 

the following equivalence on the space .B : i -c j iff the kernels of projections lCj 

and lC j on the algebra C coincide. Nl (C) will denote a Boolean algebra of the .. 
subsets of the space.B generated by the set N(C). It should be noticed that there 

is a natural one-to-one correspondence of the set .B* /-c and the Stone space 

(Nl(C))*, which for any iE.B* puts the element {NENl(C)liEN} of the Stone 

space (Nl(C ))* in correspondence with the equivalence class iI-c' Henceforth, we 

will identify .B* /-c with (Nl (C )) *. At the same time, the inclusions 

Nl (C) r;;;, Nl (C ) r;;;, .B imply, due to Stone duality, the existence of canonical 
* ,.. * .... * * continuous mappings of the space.B onto (Nl(C)) and (Nl(C)) onto (Nl(C)) . 

Lemma 7.4 •. If C is a subalgebra of the Boolean power 1/.B of a quasi

primal algebra 1/ , the following statements are valid: 

(a) nE(C) = {i E.B * I IlCj(C~=I} is either empty or is a -c-equivalence class 

on .B*; 
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(b) all maximal congruences on C have the form of the kernels of projections 
1lj for i $.nE(C ) ; 

(c) C is a sub-Boolean power of the algebra 21 iff any -c -equivalence class 

on .B", except for, possibly, class nE(C), is one-element; 

(d) V C EConpC iff nE(C) is open-closed in .B". 

Proof. The statement (a) is obvious. The statement (b) follows from that of 

theorem 5.6. Let now C be a sub-Boolean power of the algebra 21, i;oo j, and 
l1lj(C)I>1. Let us choose elements l,gEC such that l(i);oog(i), and an open-

closed subset N of the space .B" such that iEN and j$.N. In this case we get 

h=/INUgI.B" \NEC, h(i);oog(i) and h(j) = g(j), i.e., i+C j. 

Let us now prove the statement (b) in the other direction. Let l,gEC and N 

an open-closed subset of .B". Let the relation -C coincide with the equality on the 

set .B" \ nE(C ). In order to prove the fact that C is a sub-Boolean power of the 

algebra 21 , we have to show that the element fiN U gl.B" \ N belongs to C. With 
the generality preserved, we can assume N~ J/;oo gUo In this case for any i EN and 

j $.N there is a set Nij EN(C) such that i ENij, j $.Njj , (as i +C j). Since .B* i~ 
compact, N is equal to a finite family of sets from N(C) and, hence, by lemma 
7.3 (a), N also belongs to N(C). By virtue of the statement (b) of the same 

lemma, this means that the element liN U gl.B * \ N belongs to C, which completes 
the proof of the statement (b). 

The statement (d) is reduced, using theorem 5.6, to the proof of the following 

equivalence: nE(C) is open-closed in .B* iff there are l,gEC such that 

[I 1;00 glj = .B" \ nE(C ). In one direction this statement is obvious. To prove it in 
the another direction, let us choose, making use of lemma 7.3 (a) and the 

compactness of the space .B, a finite decomposition N1, ... ,Nk of the set 

.B*\nE(C) such that Nj=llJi;oogjlJ for isk and some Ji,gjEC. Let us also 
construct, using lemma 7.3 (b), elements l,gEC coinciding with Ji and gj, 

respectively, on Nj •• 

Let now C be an .orR (21 )-algebra, where 21 is quasi-primal. By lemma 7.2, 

one can assume that C ~2I.B for a certain Boolean algebra .B. In this case, the 

mapping .B* on (N1(C »*, following the statement of lemma 7.3, yields an 

isomorphic image C' of the algebra C such that C' is a subalgebra of the direct 
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power 11 (NI (C »' which obeys the property proved in the statement (c) of lemma 

7 • 4, i.e., the algebra € ' is such that any class of -C' -equivalence on 

(Nl (C » * \ nE(C') is non-element. If in this case €' is a subalgebra of the 

Boolean power 11 NI (C), €' proves to be a sub-Boolean power of the algebra 11 . 
But no one can guarantee that C' will be contained in 11 NI(C), i.e., that the 

elements of €' will be continuous functions from (Nl(C»o into a discrete 11. 
Therefore, more sophisticated constructions are required for the desired representation 

of the algebra C as a sub-Boolean power of the algebra 11 . 
The following statement is obvious. 

Lemma 7.5. If C r;;,1I.B , the following statements are valid: 

(a) for i,j E.B 0, i - i j iff f(i) = f(j) for any f EC ; 

(b) every class of -C -equivalence is a family of a finite number (the greatest 

possible 111 I!) - i -equivalence classes. 

For any algebra C r;;,21 .B, Y will denote a mapping from the algebra C to 

the algebra 21 (NI (C»· such that for any iE.B* we have y(f)(i/-i) = f(i)· In this 

case the algebra y(C) will be called a collapse of C. 

Lemma 7.6. If C r;;,21 .B, the following statements are true: 

(a) y is an isomorphism from i to 11 (NI (C»' and y(C) =11 (NI (C»· and, 

hence, -. is the relation of the equality on (Nl(i ))*; 
y(C) 

(b) every - y(C) -equivalence class is finite; 

(c) if C is a sub-Boolean power of 11, the collapse of C is also a sub

Boolean power of 21 . 

Proof. The statement (a) of the preceding lemma obviously implies that y is 

an embedding of the algebra € into the algebra 11 NI (i»·. Let }., be the 

factorization of the space .B* relative to - i' taking into account that .B*/-i is 
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A * A 

identified with the space (NI (tl ». For any f Etl and a E}J we have 

;.-I(y(f)-I(a»=lif=alj, where a is a constant function taking the value a. 

Therefore, we get ;.-I(y(frI(a»EN(tl) and, hence, y(f)-I(a) is an open-closed 
A * ~ * 

subset of (NI(tl» . Hence, y(f) is a continuous mapping from the space (NI(tl» 

to a discrete}J, i.e., y(f)E}J N1(i). It is obvious that y(i)=y(C) contains all 

constant functions belonging to }J N1(i). As by lemma 7.3 (b), for any f,gEtl 

and N EN( C) we have 

• A 

fiN U gl.E \ NEtl , 

A A 

then for any h,k Ey(tl) and N ENI(tl) we get 

Owing to the fact that any element of the algebra }J NI (€) is obtained by a 

finite number of such constructions from constant functions included in }J N1(i) and 

that, according to the inclusion discussed above, y(i )c;;,}J N1(i), we get 

y(i) =}J N1(i), i.e., y is an isomorphism from i to }J N1(i). 

The statement (b) of the lemma under consideration follows from the statement 
(b) of lemma 7.5, while the statement (c) is obviously obtained from the statement 

(c) of lemma 7.4 .• 

The subalgebra C of the algebra }J.B will be called reduced provided that: 

(1) i =}J.B ; 

(2) for i,j E nE(C) and i ¢ j there is no automorphism a of the algebra }J 

such that a(Ki(C» = Kj(C). 

For any open-close subset N of the space .E", and for any automorphism a 

of the algebra }J , PN,a will denote the following automorphism of the algebra }J . .B : 

for fE}J.B,iEE* we have PN,a(f)(i)=f(i) if i$.N, and PN,a(f)(i)=a(f(i» if 

i EN. The following equalities are obvious: 
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E(C ) - E(PNa (C», 

N(C) - N(PN.a(C» , 
-C-- (C). 

PN.a 

161 

In line with the statement (c) of lemma 7.4, the last equality implies that 

PN.a (C) is a sub-Boolean power of the algebra}J iff the algebra C itself is a 

sub-Boolean power of }J . 

Lemma 7.7. If }J is a quasi-primal algebra, there is a reduced representation 

of the algebra C, and if in this case C is a sub-Boolean power of the algebra }J , 

the reduced presentation of C will also be a sub-Boolean power of }J . 

Proof. By virtue of the preceding lemmas, one can assume that C r;;,}J .B ,-i 

is an equality on .B* (Le., that i =}J.B). Besides, nE(C) is, as a -C

equivalence class on .B*, a finite set. If for i,j EE(C), i ;o! j there exists an 

automorphism a of the algebra}J such that a(xj(C» = Xj(C), let us choose an 

open-close neighborhood N of the point i such that j fl.N, and letp = P N.a' In this 
case i-A j and, hence, for the collapse y(p(C» = C', the set nE(tt') contains 

p(C) 

less elements then the set E(C), tt' still obeying the condition (1) of the definition 

of a reduced algebra. Therefore, we get a reduced representation of the algebra C 
through a finite number of steps. • 

Let us now consider two subalgebras of different Boolean powers of the 

algebra }J: C l r;;,}J .Bl ,C 2 r;;,}J .B2 , and let A be an isomorphism between C l and 

C 2 . Let us determine the relation R). r;;,.Bl* x.B/ in the following way: <i,j>ER). 

iff at the isomorphism A the kernel of projections Xj of the algebra C l corresponds 

to the kernel of projections Xj of the algebra C 2 • If <i,j>ER)., let Ajj be a 

canonical isomorphism from the algebra x 1{ ttl) to the algebra x /C 2) corresponding 

to the isomorphism A; then we get Ai.!, f(i» = A(f)(j) for f ECl . For the case 

when C l =C2 and A -identical, we get R). =-)., and Aij is the isomorphism from 

xtCl) to x/C l ) at i-C1 j. 

Lemma 7.S. Let C l ,C2 and A be such as indicated above. Then the 
following statements are valid: 
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(b) if we have either nE«C 1) = 0 or nE«C 2) ;.0 0, for any I, g E(C1 we get 

and 

Proof. Let i E.B; and 1 Jlj «C 1)1> 1. Since Jlz{ (C 1) is, as the subalgebra of a 
quasi-primal algebra, simple, the kernel of projections Jlj is a maximal congruence on 

the algebra (C l' and the A -image of this kernel is a maximal congruence on the 
algebra (C2' By lemma 7.4 (b), this A -image has the form of a kernel of a certain 
projection Jl j of the algebra (C 2 and, hence, we get < i, j >ERA . 

Let now l,gE€I' Then if <i,j>ERA, iEli/=glJ iff </(i),g(i) > belongs to 
the projection kernel Jl i , and this is the case iff < A(/)(j), A(g)(j) > belongs to the 

A -image of the kernel Jl j , i.e., iff jEll A(/) = A(g)lj. Therefore, now the statement 

(b) obviously follows from the statement (a) proved above. 

Lemma 7.9. Let JI be a quasi-primal algebra, Jl 1 and Jl 2 its non-singleton 

isomorphic subalgebras such that a certain isomorphism A of the algebra Jl 1 onto 

JI 2 has no extensions up to isomorphism from the algebra JI. In this case there is 

a countable .. m. (JI ) -algebra isomorphic to no sub-Boolean power of the algebra JI . 

Proof. Let .B be a countable atomless Boolean algebra. Let us fix some 

i 1 ;.0 iz EB *. Let also (C = {! EJI B 1 l(i1) EJl 1,f( iz) = a(j(i1»}. It is evident that 

(C is a subalgebra of a Boolean power JI B, Jl il «C ) = Jl 1, Jli2 «C) = Jl 2 for j E.B * 

such that j ;.0 i1,iz, Jl j«C ) = JI , and for k,l E.B * we have k - C I iff either k = I, 

or k,l E{i1,i2 }. By lemma 7.4 (d), we get V C EConp(C . 

Let us now assume that A is an isomorphism from the algebra € to the 

algebra €1 ~JI BI , which is a sub-Boolean power of the algebra JI. Then by 

lemma 7.4 (d), N = {i E.B;IIJlj«Cl)1 = I} is open-closed in S;. By lemma 7.3 (c), 

(Cl ~€IINx€IIB* \ N and, hence, (C ~(ClIS' \ N, and the latter, as S* \ N is 

open-closed, is a sub-Boolean power of the algebra JI. Therefore, without violating 

generality, one can assume that for any iE.B; we have IJli«C)I> 1. By lemmas 7.4 

(c) and 7.8 (a), there exists a unique io E.B; such that < il,iO >, < i2 ,io >ERA' in 

which case we get Jl 1 ~ JI 2 ~ Jlio (€ ). On the other hand, since all the factors of 

the algebra € relative to the maximal congruences are, by lemma 7.4 (b), 
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isomorphic to either the algebra 11 I or the algebra 11. for any i E.Rt such that 

i", io• we have xlC I )=lI by the same lemma. 

Let us choose a finite set of elements {./l .. .. ,jn} of the algebra C such that 

and let N be an open-closed neighborhood of the point io such that all the functions 
J..(/i)(i:s n) are constant on N. Using lemma 7.3. one can in a standard way 

choose such /. g EC. that N = II A(f) '" J..(g)lJ. Then. by lemma 7.8 (b), 

M = R)..I(N) EN(C) and iIh EM. Let us choose open-closed subsets Nj of the set 

M such that il ENI'~ EN2• and each of the functions ./l •... ,jn is constant on NI 

and N2. Let ji ENI \ {il}' h EN2 \ {~} and kl."-2 E.R; be such that 

<h.kl>.<h.t2>ERJ.... Since ~Cl coincides with the equality on :R; and 

~ERJ...·R~I(N) then kjEN. Therefore. obviously. {J=J..hk2·J..ilkl is an 

automorphism of the algebra 11 extending a in contradiction to the choice of the 

isomorphism a. The algebra C is thus isomorphic to no sub-Boolean power of the 

algebra 11 .• 

Lemma 7.10. Let 11 be a quasi-algebra having a non-identical isomorphism 
with fixed points. In this case. there is an .m (11 )-algebra of the power ~I 

isomorphic to no sub-Boolean power of the algebra 11 . 

Proof. By the condition of the lemma. one can easily choose a proper 

subalgebra 11 0 of the algebra 11 . and a subgroup G of all the automorphisms of 

the algebra 11 such that 11 0 is a family of points fixed relative to G. Let 
y:G- Sy11(n) be a canonical embedding of G into the group of permutations of the 
set {a.I •.. .• n -I}, where n =IGf. 

For any limiting ordinal I-" let FI' = (I-" x n) U{I-"}, and let us introduce a partial 

order on ~ defined in the following way: < v.i >« v'.j> iff i =j and v< v'. 

and the element I-" is greater than all the elements of the type < v.i >. where 
v< 1-". i < n. Let us consider a topology on ~ with the basis of open sets of the 

type {XEFI'I<v.i><x«v'.i>}. {XEFl'lx«v.i>}. and {xEFI'I for some i<n. 

< vj.i >< x} at various < v.i >. < v'.i >. < vo.o > •...• < vn_l.n -1 >EFw 

It is obvious that ~ is a Boolean space. i.e.. that FI' = .R;. where .R I' is a 
family of open-closed subsets of the space Fl'. Let us define the action of the group 

G on the space ~ in the following way: for g EG we have 
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g«v,i»=<v,y(g)(i» and g(ft)=ft. Let now X=FwxFwl with a common 

Tikhonov topology of the product, and let us define the action of G on X, setting 

g( < x',x" » =< g(x'),g(x") >. Let .ll be a family of open-closed subsets of the 

space X, in which case X = .ll • . 
Let us show that X has no closed subsets Z such that Z contains exactly one 

point of each orbit of G on X, i.e., Z contains one point of each set of the type 
{g(x)lg(EG}, for all xEX. Let v<w1, and let iy<n be the only i such that 

<£0,< v,i >>EZ. For any i .. iy there is an m(i)<w such that for all m';?m(l) and 

any j < n, we have «m,j >,< v,i »EX \ Z since, in the opposite case, as Z is 
closed, we get < £0,< v,i >>EZ. Therefore, there is an my < £0 such that for all 

m';?my , j<n and i<n,i .. iy we get «m,j>,< v,i»EX\Z. Hence, at any fixed 

m ';? my and j < n, the element «m,j >,< v,iy » will be the only one in its G

orbit belonging to the set Z. Let us choose an iii < £0 such that iii = my for an 

uncountable number of elements v < WI. Since for any j < n any neighborhood of 
the point« m,j >,£01 > of the space X contains a certain element 
« m,j >,< v,iy » such that iii = my and Z is closed, we get «m,j >,£0 1 >EZ. 

But this implies that Z wholly includes the G -orbit of the kind 

{« m,j >,£01 >1 j < n}. It is the contradiction to the choice of Z that proves the 
improbability of the existence of closed Z \: X with the above-discussed condition 
relative to G -orbits. 

Let us consider an algebra ([ = {f EJI·B Ig(j(i» = I(g(i» for all g EG}. It 

should be noticed that the constant functions ii EJI·B belong to ([ iff a EJI 0, and 

that :n;<W.Wl >(€ ) = JI 0 and :n;/.. €) = JI for all other i Ell' = X. Moreover, i-c' j 

for i,j E X iff both i and j belong to the same G -orbit. 

Let us show that ([ can be isomorphic to no sub-Boolean power of the 

algebra JI. Let us assume that the opposite is the case, and let A be an 

isomorphism from ([ to ([1 \:JlBl, a sub-Boolean power of the algebra JI. By 
lemma 7.7, €1 can be assumed to be reduced. Let us refer to an element < £0,£01 > 

of the space X by in, and consider two cases. 

Case 1: JI 0 is non-singleton, and, hence, V C EConp€. In this case, as in 

the proof of the previous lemma, one can assume l:n;i(€l)l> 1 for all iEB;. And 

again, one can find the only jo Ell; such that < io ,jo >ER;.,. Therefore, in 

particular, we get :n;.io(€l)=JI 0, and for any jEll; other than jo we get 

:n;/€ 1) = JI . Let us choose a finite set of constant functions U1, ... ,fd from € so 

that Jlo={.!i(rQ), ... ,A(io)}. Let us choose an open-closed neighborhood N of the 
element jo so that all the functions A(.!i), ... ,A(jk) are constant on N. In a standard 
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way one can choose N in the form N = 0 A(g) = A(h)l] for some g,h EC , in which 

case, by lemma 7.8 (b), we get Ri.I(N) EN(C). As io is not an isolated point in 

R*, there can be found an i' ERi.\N) \{io}. Let j' EN be such that < i',j' >ER)... 

Therefore, we get an automorphism f3 = Ai,j' of the algebra 21 which extends the 

automorphism Aiojo of the algebra 21 o. Without violating generality, one can assume 

Aiojo to be an identical mapping on 21 0 (in the opposite case considering 

PB; ,13-1 (C 1) instead of C I )· 

Let us now choose an open-closed neighborhood M of the point io such that 

Me;;, Ri.I(N), and such that M together with the action of the group G on it is 

homomorphic to the space .R" together with the action of the group G on it. For 

i EM let 0i be the G -orbi t of the point i, and let ji E.R; be such that 
< i,ji >ER)... Then < i',ji >ER).. iff i' Eq since, as has been already noted, 

o i = if~' c· For i EM \ {io} the automorphism A i.i; leaves all the elements of the 

algebra 21 0 fixed and, hence, Ai.i; EG. For i,i' EM such that 0i = q" the equality 

Ai.i; = Ai'jj holds iff i = i' (indeed, if i' = g(i);oo i,g EG then, choosing I Eft.: in such 

a way that I(i) = a where g(a);oo a, we get g(a) = l(i') = At')j . Ai). (a), i.e., 

Aij;(a);ooAi'j/a». Therefore, for iEM\{io} we get G={Ai'jjli'EOi} and, in 

particular, there exists a unique i EOj such that A.*. is identical on 21. The same, 
I 'j* 

obviously, is also true for; = ;0' Let now Z = {ll; EM}. One can directly prove that 

Z is closed in M. Hence, in the subspace M homomorphic to .R" we have found 
a closed subset Z intersecting exactly one element in any G-orbit lying in M. We 
have already proved the improbability of the existence of such a Z. The contradiction 

obtained here proves that case 1 is also impossible. 

Case 2: 21 0 is a one-element algebra. In this case, since V C f/:.Conpft.: , 

nE(ft.: 1) is not empty, and as ft.:1 is reduced, nE(ft.: 1) is finite. Let 

nE(C I) = {YI, ... ,Yr}· Let I be the only constant function from ft.:. Let us choose 

pairwise non-intersecting open-closed sets NI , ... , Nr e;;,.R; containing the points 
YI, ... ,Yr' respectively, and such that A(j) is constant on each of them. In a standard 
way one can find g,hEC such that [IA(g) = A(h)I]=NIU ... UNr . Preserving the 
generality of the considerations, one can assume that none of Yi is an isolated point 

of the spaceR; (in the opposite case, .R; \ {Yi} is considered instead of RI*)' Let 

Y; ENi \ {yJ. Then for some x; E.R· we have < x;,y; >ER).. and, hence, Ax'y[ is an 

automorphism of the algebra 21 mapping 210 onto .7ly/C I ). Since C I is reduced, 

the existence of such automorphisms implies the equality r = 1, in which case the 
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arguments in the proof of case 1 come into play. • 

Theorem 7.5. Let 11 be a quasi-primal algebra. Then .m (11 ) = 1PsB(1I) iff 

any isomorphism between non-singleton subalgebras of the algebra 11 has a unique 

extension to an automorphism of the algebra 11, the only automorphism of the 

algebra 11 with fixed points being the identical one. 

Proof. The necessity of the conditions on 11 given in the formulation of the 

theorem follows from lemmas 7.9 and 7.10. Let us prove that these conditions are 

sufficient for the equality .Ill (11 ) = IPsB(lI) to hold. Let C be an arbitrary algebra 

from .,r.Tl(1I). By lemmas 7.2 and 7.7, C c;;.lI·B , and C is reduced. Let us 

choose an arbitrary fEC , and let Aft, ... ,Mt be a decomposition of .B* with 

open-closed subsets of the space .B* of the type r1(a), where aElI. Let iej 

for i,j s I iff there is an isomorphism aij from the algebra 11 such that 

aij(f(Mj » = f(Mj ). Let us choose an automorphism p of the algebra lI·B , which 

is a product of automorphisms of the type PM. a.. at i e j and such that for any 
,. IJ 

i e j, the function p(f) is constant on M j U Mj . 

Let us first of all prove that the equivalence - p(tC) limited relative to the set 

.B* \ nE(p(C» is contained in the equivalence - A • Let i,j E.B * \ nE(fi.. C » = 
p(tC) 

= .B * \ nE(C) and i-A j. As has been noted after lemma 7.6, this implies 
p(tC ) 

i -tC j. Therefore, the subalgebras lrtC) and lr/C) of the algebra 11 are 

isomorphic, this isomorphism being, by the condition of the theorem, extendable to 

the automorphism a of the algebra 11 (since Ilrt (C )1> 1). The uniqueness of this 

extension implies the equality a(f(l) = f(j) and, hence, if iEM", jEMn, k = n. 
Therefore, p(f)(i) =p(f)(j). In this case the algebras lrl{p(C» and lr/p(C», 

which are isomorphic to the algebras lrtC) and lrj(C), respectively, are pairwise 

isomorphic, the element p(f)(i) remaining fixed at this isomorphism. By the 

conditions of the theorem, qJ is extendable to the automorphism of 11, and, since 
this extension will have a fixed point, the extension itself and qJ will be identical 
mappings. The latter consideration, obviously, implies the equivalence i-A j. 

p(tC ) 

Therefore, indeed, the limitation -p(tC) on .B* \ nE(fi.. C» is contained in - A • 

p(tC) 

But in this case the collapse C I of the algebra p(C) obviously meets the condition 
that the classes of -tC' -equivalence (other than nE(C'» are one-element and, hence, 

by lemma 7.4, the collapse C I is a sub-Boolean power of the algebra 11 
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isomorphic to the algebra C. • 
The theorem considered describes those quasi-primal algebras 11 which generate 

varieties representable by sub-Boolean powers of the algebra 11. With some minor 

modifications we can describe the quasi-primal algebras 11 generating varieties the 
countable algebras of which are isomorphic to sub-Boolean powers of the algebra 

11. 

Lemma 7.11. Let any isomorphism between non-singleton subalgebras of a 

quasi-primal algebra 11 be extendable to an automorphism of 11. Then any 

countable .m (11 )-algebra is isomorphic to a Boolean product € of 8(11)+ -algebras 

with the index .B*, so that the following statements are true: 

(a) there is no more than one i E.B * with the property l.1t"j(C )1= 1; 

(b) there is no more than a countably infinite family {N[IIEI} of pairwise 

disjunct open-closed subsets of the space .B* such that {i E.B *U.1t"j(C )1> I} = 

= U N[, and .1t"N/ (C) are sub-Boolean powers of the algebra 11 for all lEI. 
lEI 

Proof. Let C 1 be a .m(lI )-algebra. By theorem 7.7, €1 is isomorphic to 

some Boolean product of .om (11 );ralgebras. Since 11 is quasi-primal, 

.m(1I);I=8(1I)+ and, therefore, C 1 is a Boolean product of 8(1I)+-algebras with 

some Boolean index .B1' As C 1 is countable, .B1 can also be considered countable. 

The set A = {i EB 1*1I.1t"1 (C 1)1 = I} is closed in the space .B1*' If A = 0, the statement 

(a) is fulfilled for the algebra C 1• If A;o! 0, let io be a fixed point from A. The 

subspace (.B; \ A) U{io} of the space .Bt" is, being a continuous image of the 

Boolean space .B1*' Boolean itself. Let us identify (.B; \ A) U{io} with the space 

.Bt for a certain Boolean algebra .B2' Then the algebra 

C 2 = C 11(.Bt \ A) U {io} = C1I.B; 51! C1 is a Boolean product of 8(11)+ -algebras with 

the index .B;, in which case the statement (a) is valid for C 2' i.e., 

{i E.B;U.1t"j(C 2)1= I} = 1. We thus can consider the statement (a) to be fulfilled for 

C 1 in any case. 

Let us denote {i E.B;U .1t"j(€ 1)1 > I} with AI' Let us show that 

(*) for any i EA1 there is an open-closed neighborhood Nj of the 
point i and an isomorphism 1/Jj of the algebra .1t"N. (€ 1) on a certain 

I 

sub-Boolean power of the algebra 11 with a Boolean index Nj • 
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The proof will be carried out by induction over the power 11 \ :njCC 1)' Let 

111 \:nz(C1)I=O, and let in this case 1)JI=n and fI, ... ,fnECl be such that 
Ui(i), .. ·,fn(i)} = :njC(1)· Since C 1 is a Boolean product, there is an open-closed 
neighborhood Nj of the point i such that at j ENj for any signature function lP of 

the algebra 11 we have lPC!kICi), ... ,fkmCi»=ftCl) iff lPC!kI(j), .. ·,fkm(j» = ft(j), and 

/d i ) = ftCz) iff /k(j) = ftU), i.e., the subalgebras Fj of 11 with the basic set 

{f1 (j), .. ·,fn(j)} are isomorphic to the algebra :nl C 1) = 11, the isomorphism Aij 

being defined by the equality Ai.J{/~z) = ft(j). Let us define the mapping 1/Jj from 

the algebra :nNi CC 1) to the algebra 11 Ni in the following way: for any j ENj we 

get 1/Jl/(j» = X;/U(j». The 1/Jj-images of the elements ft are in this case 

obviously constant elements of the algebra )J Ni and, as :nN CC 1) is a Boolean 
I 

product, 1/Jz{:nNC(1» is a sub-Boolean power of the algebra 11, the basis of 
I 

induction is thus proved. 

Let i EBt and let the statement C*) be valid for all j EB; such that 

I)J \ :njC(1)1<11I \ :njC(1)1. Let also iJ, ... ,fm EC1, m =1:njC(1)1 and 

{II (i), .. ·,fmCi)} = :njCC 1)' By analogy with the case considered above for 

:nl C 1) = 11 , let N j be an open-closed neighborhood of the point i such that for 

j ENj the mapping from the algebra :ni C 1) to the algebra :n JCC 1)' defined by the 

equality Ai.J{ /~ 1) = ft(j), is an isomorphic embedding of :nz( C 1) into :n/C 1) c;;;,)J . 

It is obvious that, if j ENj and Aij is not a mapping "onto", there is an open 

neighborhood Ij of the point j such that, for all q EIj Ajq is not a mapping "on". 

Therefore, Y = {j ENjl Aij is a mapping "onto"} is closed. For any j ENj \ Y we 

have 111 \ :njC(1)1<11I \ :njC(1)1 and, hence, by the induction supposition, there is an 

open-closed neighborhood Nj c;;;, Nj of the point j and an isomorphism 1/J j of the 

algebra :nNj C(1) on the sub-Boolean power of the algebra 11 with the index Nj . 

Moreover, since HI is countable, the number of open-closed subsets of the space 

H; is also countable, and one can consider the set {NjljENj \ Y} to be countable 

and disjunct. One can also obviously assume that 1/J jl coincides with 1/J h for jl, h 
belonging to the same set of the type N/j ENi \ Y), and that elements of the type 

'IT N· 1/J /ft) Cl s m) are constant elements of the sub-Boolean power.a J. 

Let lJjj be a certain automorphism of the algebra)J extending the isomorphic 

embedding Sij from the algebra :njC(1) to :n/1/J /:nN/( 1») , where 

S j/ ft C 1) = 1/J /ft )(j). For j E Y let pjj be a certain automorphism of the algebra 11 

extending the automorphism Aij' Let us then define the mapping lPj from the algebra 
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:lrN (C 1) to the algebra JI N; in the following way: for / EC1 and j EY, we have , 
CfJj(:lrN/.f)Xj) = Pj-/U(j», and for jENj (jENj \ Y) we have CfJj(:lrN/f)(j) = 

= 11i/(/(j». The elements of the type CfJj(:lrN;(h» are obviously constant elements of 

the algebra JI N; for Ism. One can easily check that CfJi{:lrN{C 1» is a sub-Boolean , 
power of the algebra JI with an index equal to.B such that .B· = Nj • Therefore, 
the induction step in the proof of the statement (*) has been made, and this 

statement is completely proved. 
Now, in order to prove statement (b) of the lemma, one can use a countable 

family of open-closed subsets Nj(i EA1) covering AI' and construct a family of 

pairwise disjunct similar subsets in an obvious way, which proves the statement in 

(b) .• 

Theorem 7.6. Let JI be a quasi-primal algebra. Then the condition that every 

countablem (JI )-algebra is isomorphic to a sub-Boolean power of the algebra JI , 

i.e.,m (JI)x ~ IPsB(JI), is equivalent to the condition that any isomorphism 
o 

between non-singleton subalgebras of the algebra JI is extendable to the 

automorphism of JI . 

Proof. The necessity of the above condition on the subalgebras of the algebra 

JI results from lemma 7.9. Let us now prove the sufficiency of this condition. Let 

JI be quasi-primal and let any isomorphism between its non-singleton subalgebras be 

extendable to the automorphism of JI . Let also C E.m (JI )xo ' and let C obey the 

conclusion of lemma 7.11. Let us now use the notations of the formulation of that 

lemma, and let in this case io E.B· be the only element of i (provided that it exists) 
such that l:lrj(C )1= 1. If such an io either does not exist or is an isolated point in 

.B' then, by its compactness, the set I is finite, i.e., there exists a finite number of 

open-closed subsets Nl, ... ,Nk~.B· such that :lrN/C)EPsdJl) for lsk, and 

C etCI(N1U ... UNk). Since the Cartesian product of PsB(JI)-algebras is also an 

IPSB(JI) -algebra, the inclusion .. m (JI )1<0 ~ IPsS< JI) is proved. 

Let us now consider io to be a limiting point in B'. Let us choose a certain 

fa EC , and let M = {i E.B ·1{:Ir.{ /o)} is a subalgebra of JI}. Obviously, M is open

closed in .B·. As C is a Boolean product with the index .B", we get 

B • * • C etCIMxCI. \M. Since io$..B \M, one can assume CLB \ MEPss<JI) 

B* * (representing. \ M as a finite union of sets of the type N{ ncB \ M) and again 

recalling that the Cartesian product of PsB(JI) -algebras is also an IPsB(JI) -algebra). 

Therefore, it is sufficient to show that CIMEPSB(JI), i.e., henceforth one can 
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consider .B* = M. Choosing, if required, a certain extension of the decomposition 

{io}, N[(l EI) of the space .B* one can view 10 as constant on every N[(l EI). 

Let al, ... ,as be values of the function I on .B* \ {io}. Let us set 

N(J) ={N[llEI, ft(N[) = {aj }}. Let us define the space .B; as .B* with the element 

io substituted with a new element Yj. Let now J:j = UN(J) U {Yj} at Is s. 

It should be noticed that J:j is a closed subset in .B;, and that at j "",k we 
s 

have J:j n Yk = 0. Let Y = ~ lj be a discrete family of the spaces lj. Obviously, Y 
}-l 

is a Boolean space, i.e., Y = .B; for a certain Boolean algebra.Bl , in which case 

B* is obtained from Y by identifying the points Yl, ... Ys- Let us define the 

embedding a of the algebra ([ into the Cartesian degree }J Y: for all I E([ let 

a(f)IY \ {Yl,···,Ys} = IIY\{Yl'···'Ys}, and for Isjss let a(f)(Yj) = aj. It is obvious 

that a«([) obeys the following condition: for any l,gEa«([), any open-closed 

Nc;;;.y we have IINUgIY\NEa«([) (as ([EraS(}J». 

Therefore, in order to prove the inclusion a«([) EPsB(}J ), it suffices to show 

that a«([) is a subalgebra of a Boolean power }J.B 1, i.e., that for any I E([ the 

function a(f) is a continuous mapping from the space Y to a discrete }J. Let 
Y EY \ {Yl'· .. , Ys}. Then we get Y ENj for a certain N j which is, in particular, open

closed in Y, and a(f~Nj = IINj. The function IINj is continuous on N j, since 

([ INj EPsB(}J ). Therefore, I is continuous on a certain neighborhood of any point 

yEY\{Yl, ... ,Ys}. If for a certain Isjss we have Y=Yj' a(f) is constant and, 

hence, continuous on the open-closed neighborhood (D I = loll n UN(J) U {y j}) of the 

point Y j in the space Y . Therefore, for any I E([ we get a (f) E}JB 1, which is 

the required proof. • 

It should be remarked in connection with theorems 7.4, 7.5 and 7.6 that, 

taking into account the results of lemma 4.3 as well as the fact that the algebra }J 

is finite, the operation PSB in the formulation of the theorems can be substituted with 

the operation PFB , as the conditions of these theorems describe algebras}J such that 

any (countable)'Dl (}J )-algebras are presentable by filtered Boolean powers of the 

algebra }J. It is also of interest that countable algebras of a finitely generated 

discriminator variety .. m are always representable by filtered Boolean powers of a 

certain finite algebra which is not, in fact, necessarily in .. m . 

Theorem 7.7. If.m is a finitely generated discriminator variety, there is a 

finite algebra.Jj (not necessarily belonging to .. m) such that any at most countably 
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infinite.m -algebra is isomorphic to a certain filtered Boolean power of the algebra 

Ii. 
Proof. As .m is a finitely generated discriminator variety, .om;[ consists of a 

finite number of finite algebras 111, ... ,11 n' and any .om -algebra is isomorphic to a 

certain Boolean product of the algebras 111, ... ,11 n' Let 0 be a signature of the 

variety .m , and let J a be a class of all finite algebras of the signature o. Since 

J a has the properties of mutual embedding and amalgamation, there are J a -algebras 

P1r"'Pn and Ii such that: 

(1) l1i is a subalgebra of the algebra Pi at 1 sis n; 

(2) if }j) is isomorphicall y embeddable into 11 i, and a is an embedding of 

11) into Pi' there is an embedding f3 of the algebra A into the algebra p) such 

that f3' a is identical on 11); 
(3) every algebra Pi is embeddable into Ii ; this embedding will be referred to 

as lPi' 

Let 11 be an arbitrary at most countably infinite .m -algebra, in which case one 

can assume that}j is a Boolean product of the algebras 111, ... ,11 n: 11 ~ n 11 x' 

~h· 
where 11 x E{l1 1'" .,11 J, and .B is a certain at most countably infinite Boolean 
algebra. Let us prove that: 

(*) for any x E.B there exists an open-closed neighborhood N of the point 

x and embeddings fly of the algebras 11 y into Ii at y EN such that 

for fEl1 ,hEIi the set {yEMflyCf(y» =h} is open-closed in .B*. 

The proof of the statement (*) is similar to that of lemma 7.11. By induction 

over Iii \ lPi(l1 i~' where is nand l1i = 11 x' let us prove the statement obtained 

from (*) by replacing the algebra Ii with the algebra Pi ' and the embedding fly 

with 0y- Let x be such that Iii \ lPi(l1 i~ is minimal among the numbers 

Iii \ lP/l1 )1 where js n. Let us choose f1'''''/m El1 such that 

{fr (x), ... ,fm(x)} = 11 x and m =111 xl. By analogy with what has been done for the 
induction basis in the proof of lemma 7.11, we find an open-closed neighborhood 
N of the point x such that for y EN there are isomorphisms Ax,y from the algebra 

11 x to the algebra }j y defined by the equalities Ax,/f)(x» = f/y), where 1 s j sm. 

In particular, A~~y is an embedding of the algebra 11 y into the algebra A, where 

is such that }j x = 11 i' Let us set Oy = A~~Y' Let h EPi and f El1 , we get 
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{y ENlA~~y(f(y» = h} = N n [If =.n]' 

i.e., this set is open-closed in .B* provided h"" Jj(x). Therefore, the required 

statement is proved for xE.B* such that 1$ \ fPi(l" x)1 is minimal. 

Let us assume that the required statement has been proved for all y EB * such 

that 1$ \ fP/l" y)1 <1$ \ fPi(l" x~' where i,j are such that l" x = l" i,l" y = l" j' And 
again, as has been the case in the induction step when proving lemma 7.11, we 

find functions fl, ... ,fmEl" such that {ft(x), ... ,fm(x)}=l"x, where m=ll"xl, we 

find an open-closed neighborhood N of the point x of the space .B*, we find 

embeddings Ax,y of the algebra l" x in the algebras l" y at yEN, and we also find 

a closed subset yr;, N such that Y ={xEMAx,y is an isomorphism from l" x to 

l" y}' Since N \ Y is an open subset of the space .B* and.B is at most countably 

infinite, by the induction supposition, there is at most countably infinite set J and 

open-closed pairwise-disjunct subsets Nk(k EI) such that UNk = N \ Y. At the same 
kEI 

time, for every k EI, one can find embeddings a~ (y ENk ) such that the statements 

(*) hold for Nb a: with the corresponding substitution of the algebra $ by 

algebras P 7IJ:' where nk ~ n and l" i "" l" x is isomorphically embeddable into l" nk for 

all k EI. Ei(id) will denote an identical embedding of the algebra l"i in Pi(l" i)' 
Let us choose embeddings Jl-y (yENk ) (which do exist by the property (2) of 

the algebras l" i, Pj' $ noted in the beginning of the proof) such that the following 

diagram is commutative: 

OL% 
).11:,,.. 0(, 6f .. :Pn.K 

i4t 

, 
~ Pf 

01Ji, EL 
~ !PL 

Figure 6 
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Let us define the embeddings 0y of the algebra 21 y into A as fJy · 0; for 

y ENk(k EI) and for all y EY let us set 0y = ).~~y" Therefore, 0y are defined for 

all y EY and for yEN, and for j s m we have 0 llj(y)) = ox< h(x)) . 

Let I EJI and h EPi . If h EJI i' we get 

{yENloy(l(y)) = h}= UI = hl]n N, 

where Ij is such that Ij(x) = h. If h eJl i then 

{yENloy(/(Y)) = h}= 

= U{yENklfJko~(f(y))=h}= U{yEN,J ely (f(y)) = fJy1(h)} 
kEI kEI 

is an open set. 

Therefore, for h EPi the sets {y ENloy(/(y)) = h} form an open finite disjunct 

decomposition of the open-closed N and, hence, indeed, for any h EPi 

{y ENI OyU(y)) = h} is open-closed. 

Thus, the statement (*) with the algebra A substituted for the algebra Ii has 
been proved with induction. To prove the statement (*) itself it now suffices to 

replace the embeddings Oy:JI y - Pi with the embeddings fly = f(Ji· 0y of the algebra 

21 y into IJ , where f(Ji is an embedding of A into IJ mentioned in property (3) 
in the beginning of the proof of the theorem. 

The validity of the statement (*) for the algebra 21 makes it possible, as .E* is 
compact, to single out a finite number of pairwise-disjunct sets N1, ... , Nk covering 

E*, as well as a system of embeddings fly of the algebras 21 y into Ii obeying the 
lJ* statement (*). Let us define the embedding fl:J1 -IJ in such a way that for any 

x E.E * we have 1J{f)(x) = flx(f(X)). Let 

Since for any I, g EJI and open-closed subset N r;;,.B·, the element 

liN U glB * \ N also belongs to 21, an analogous property is also valid for the 
lJ* algebra fl( JI ) r;;, IJ . . For I EJI and h EIJ we have 

{y E.B *11J{f)(y) = h} = Uy ENkl flk(f(y)) = h} 
l:sft: k 
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and, hence, by the statement (*), this set is open-closed in .B·. Thus, we get 

f](lI)r:.b·B . Let Xj ={XE.B·If](lI)(x)r:.b j } for lsjsn. 

The sets Xj are obviously closed in .B·. To conclude the proof of the theorem, 

we now have to notice that f1{1I) =b.B (X1, ••• ,x1I ;b1, ••• ,b1l ). In one direction the 
inclusion is valid by the definition of the sets Xj' Let now 

IEb·B (X1, ••• ,X1I ;bl, ... ,b1l ). Standard considerations implying that for any hEb, 

[1/(x)=hl] is open-closed in .B·, {f](1I)(x)lxE.B*}={bl, ... ,b1l} and f](1I) is 

closed relative to the formation of the elements liN U gl.B· \ N, prove that 

IE f1{ 11 ). Therefore, indeed, any at most countably infinite .m -algebra proves to be 
isomorphic to a certain filtered Boolean power of the algebra b. • 

And finally let us formulate without proof some results concerning the 
representability of varieties with Boolean G -powers. 

Theorem 7.S. For a finite algebra 11 with a group of automorphisms G, the 
equality .m (11 ) .. IPG(lI) is equivalent to the following conditions: 

(1) 11 e 111 x 11 2 , where 111 is an Abelian algebra, .m (11 2 ) is a discriminator 
variety; 

(2) if both algebras 111 and 11 2, are non-singleton, they both contain one
element subalgebras which are families of fixed points relative to the automorphisms 
for each of them; 

(3) .m (111) = IPG;g1 (1I1),·m (11 2 ) = IPG;gz (11 2 ), where GlJ i are groups of 

automorphisms of the algebras 11 i . 

Theorem 7.9. Let 11 be a quasi-primal algebra and G be its group of 
automorphisms. Then we get .m (11 ) = IPG(lI) iff: 

(1) any isomorphism between non-singleton subalgebras of the algebra 11 is 

extendable to the automorphism of 11 ; 

(2) any subalgebra of the algebra 11 is a family of fixed points of 11 relative 
to a certain subgroup of the group G. 
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By way of concluding this section let us recall one more result concerning 
Boolean representability. Theorem 4.1 is a generalization of a result obtained by 
RS.Pierce [157]: any commutative ring with unity is representable as a Boolean 
product of directly non-decomposable rings. In a paper by W.O. Burgess and 
W.Stephenson [23], the authors proved that any ring R with unity is representable as 
a Boolean product of directly non-decomposable rings iff any idempotent of the ring 
R is central. 

Priorities. Among the first results concerning the representability of varieties 
using Boolean constructions were those obtained by RF.Arens and J.Kaplanski [5] 
on varieties of algebras over a finite field, A.L.Foster [67] on varieties generated by 
primal algebras, J.Oauns and K.H.Hofmann [45] on biregular rings, etc.. Theorem 
7.1 of the present section is by to O.M.Clarkand and P.H.Krauss [36]. Lemma 7.1 
as well as theorem 7.2 resulting from it were proved by S.Burris and RMcKenzie 
[31], using description of finitely generated congruence-modular varieties with a 
solvable elementary theory. The proof of these lemmas and the theorem cited here 
and employing no results on solvability is by E.W.Kiss [106]. The statement of 
theorem 7.3 is due to RW.Quackenbush [195]. Theorems 7.4, 7.5, 7.6 and 
lemmas 7.2-7.11 pertaining to them were proved by S.Burris and RMcKenzie [31], 
theorem 7.7 is by S.Burris and H.Werner [33]. The proof of theorems 7.8 and 7.9 
can be found in a paper by S.Burris and O.Clark [29]. 



CHAPTER 3 

V ARIETIES: SPECTRA, SKELETONS, CATEGORIES 

The aim of the present chapter is to apply the methods, results and 
constructions considered in the first two chapters to "external" studies of universal 
algebra varieties. "External" studies of varieties imply consideration and description of 
not the algebras incorporated into a given variety but of the variety as a whole, i.e., 
studies of the variety as a single object the elements of which are the algebras of the 
variety with basic algebraic relations and operations among them such as 
isomorphisms, epimorphisms, embeddings, Cartesian products, etc.. Studies of the 

"external" structure of a variety imply, first of all, those of the categories of the 
algebras belonging to the variety in the case when the morphisms of the category are 
all homomorphisms between algebras of the given variety. Indeed, the overwhelming 
part of the notions related to an algebra can be formulated in terms of these 
categories and, therefore, the varieties with "the same" categories must be "almost the 

same" themselves, as we will see in the first theorems proved in section 8. Another, 
rougher "external" characteristic of a variety is its spectrum and its fine spectrum. We 
have already discussed in section 6 some results for algebras with a minimal 
spectrum, these impose very rigid limitations and allow only three variants for the 
varieties generated by such algebras. Below, in section 8, we will present a result 
describing to the accuracy of "the same category" all the varieties with a minimal fine 
spectrum of a certain quite definite type, as well as a number of other results on 
spectra and fine spectra. Well-known descriptions of category transformations also 
pertain to the results characterizing varieties with a fine spectrum. On the other hand, 
in the case when the fine spectrum of a variety is big, i.e., when the number of the 
types of the isomorphisms of the algebras of a given variety is big, it is interesting 
to study various relations and operations between the types of the isomorphism 
induced by algebraically important relations and operations between the algebras of the 
variety themselves. This results in the definition of the notion of the skeleton of a 
variety, and the greater part of the present chapter is devoted to studying skeletons 
of congruence-distributive varieties for which the application of Boolean constructions 
is most efficient. In particular, a number of results on countable skeletons of 
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congruence-distributive vanetIes make it possible, using the language of "external" 
description of varieties, to express such facts as the degeneration of a variety with a 
quasi-primal algebra with no proper subalgebras, finite generation of discriminator 
varieties, etc. 

8. Spectra and Categories 

The present section is devoted to the problems of characterizing vanetIes by 
categories and spectra associated with them. The basic notions of the theory of 
categories can be found elsewhere [138]. 

Definition 8.1. 

-
(a) For any variety of the algebras .. r.n , .. r.n will denote the category the objects 

of which are all.r.n -algebras, and the morphisms of which are homomorphisms 

between . .r.rt -algebras. 

(b) The categories R\ and Jl'2 are isomorphic if they are isomorphic as partial 
semi groups or, which is equivalent, if there is a bijective mapping qJ from the set of 

objects Obm 1) of the category Jl'1 to Ob(Jl' 2), and if for any a,b EOb(H1), the 

bijective mapping qJa,b from the set HOl1(a,b) of R\ -morphisms from a to b to the 

set Hon(qJ(a),qJ(b», for any a,b,c EOb(Jl'I) and aEHom(a,b),{3 EHom(b,c), we 

have qJa,c(a{3) = qJa,b(a)·qJb,c(f3)· 
- -

In the case of an isomorphism of the categories.r.rt1 and . .r.rt2 for some algebra 

varieties.r.rt1 and . .r.rt2, we will speak about a weak equivalence of the varieties . .r.rtl 
and.r.rt 2 denoted by.r.n 1 ::::..r.rt 2 . 

-
(c) By the erasing functor Sm from the category of.r.rt -algebras of the variety 

.r.rt to the category of the sets Set we will mean a correlation between any . .r.rt
algebra and its basic set, any homomorphism between . .r.rt -algebras being considered 

in this case as a mapping between the basic sets of the algebras. The varieties.r.n1 

and.r.rt2: are called equivalent provided that there is an isomorphism F of the - -
categories . .r.rtl and.r.rt2 such that S.'fJl2F = S.'fJl!; the equivalence of the varieties will 

be denoted by.r.n 1 ~.r.rt 2 . 
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(d) The vanetles of the algebras.r.rl 1 of the signature 01 and those of the 

algebras .. m2 of the signature 02 are rationally equivalent, provided that there are 
mappings FJ.(F2) from the operations of the signature 02(01) into the set of terms 
of the signature 01 (02) such that an n -ary operation transforms into an n -ary term, 
in which case: 

(1) for any.r.rl1-algebra J/ =< A;ol > we have FJ.(J/) =< A;02 >E . .r.rl 2, where 

the 02 -operations on the algebra FJ. (J/) are defined using FJ. ( 02) terms of the 

algebra J/ ; 

(2) for any . .r.rl2-algebra J/ =< A; 02 > we have Fz(J/) =< A;ol >E.r.rl l ; 

(3) for any .. m2-algebra J/ =< A; 02 > we have FJ.(F2(J/)) = J/I; 

(4) for any .. ml -algebra J/ =< A;ol > we have Fz(FJ.(J/)) = J/ . 

The rational equivalence of the varieties.r.rl l and.r.rl2 is denoted by 

.. ml =t·.r.rl 2' 

(e) Let us say that the algebras J/ I and J/ 2 of the signatures 01 and 02, 

respectively, are rationally equivalent provided that the conditions given in the 

definition (d) for the varieties.r.rl l and.r.rl2 are valid for these algebras. When the 

algebras J/ 1 and J/ 2 are rationally equivalent, we will write J/ 1 =t J/2' 

Definition 8.2. A clone of the variety .. m is a multi-basis algebra 

< i\,Az, ... ,An, ... ; er, c~ll:s is n< w,m < W >, where each An is a family of terms of 

the signature of the variety.r.rl from the variables Xl," "xn having been factorized 

with respect to the module of their equivalence on the variety.r.rl; er are the 
constants incorporated into An' i.e., they are the term-projections correlating the 

variable Xi to the set of variables xl,''''xn ; and, finally, c::Z are operations such that 

the terms tEAn,tl, ... ,tn EA", are correlated to the term c::Z(t,tl,· .. ,tn) = t(tl,··.,tn)· 

Such a clone of the variety will henceforth be denoted by Clon .. m . 
The following theorem will reveal the interrelations among the notions introduced 

above. 

Theorem 8.1. For any varieties.r.rl l and . .r.rl2 the following conditions are 
equivalent: 

- -
(a).r.rl1 e.r.rl 2; 
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(e) Clon .. 'fJI 1 9! Clon.m 2' 

Proof. The implication (b) - (c) is obvious. Let now .,'fJI i = .. 'fJI (11 i) and 

111 ",,/11 2 , Since .mi - HSp(1I i ), there is a set Ii' a subalgebra C j r;;;,11 /i and a 

homomorphism ~ from the algebra tl j to the algebra .Bj . for any algebra .Bj E .. 'fJI j • 

The equivalence 111 ",,/11 2 implies the existence of mappings Fj from the operations 

of the signature aj(j .. i) of the algebra 11 j to the terms of the signature aj such 

that Fj(1I j) 9! 11 j(j .. i) provided that the operations of the signature aj are defined 

on the basic set of the algebra 1Ij 'using the Fj-corresponding terms of the signature 
a j • Obviously, a similar construction of Fj-algebras can be extended to direct powers 

of the algebra 11 i, subalgebras and homomorphic images of these direct powers, 
with all the conditions (1) - (4) of the definition 8.1 (d) fulfilled. But at the same 

time this implies that ,m1 ""/ .. 'fJI 2 • Therefore, the statement (c) of the present theorem 
yields the statement (d). 

Let now ,m1 ",,/ .. 'fJI 2 and Jii,F2 be the mappings from the definition 8.1 (d). In 
this case, extending Jii(F2) in a natural way to a family of all a2(al) terms, we get 

an isomorphism of the multi-basis algebras Clon .. 'fJI 1 and Clonm 2' Therefore, (d) 
yields (e). 

- -
Let .. 'fJII 9!,m 2 and !(xl""'xm ) one of the operations of the signature al' Let 

us consider Sm.! (m)r;;;, :s.m.! (No). Since free algebras of varieties are defined in 

category terms, the isomorphismm1 9! ,m 2 can be implemented by a certain functor 

F such that S.m. z F = Sm.! implies the equalities 

Therefore, the element !(xl,""xm ) of the algebra J.m.!(m) is equal to a certain 

element tp(xl'''''xm ) of the algebra J,mz (m), where tp is a term of the signature a2 

of the variety .. r.n.2 . For any al," .,am ES.m.! (Jm! (1'(0)) = SJIl 2 (J JIl z (1'(0)), by defining 

the mappings ~(Xj) = aj (i = 1,2 and j:s m), we can find, bearing in mind that the 
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algebras J JIl (m) and J JIl (m) are free and unique, pairwise coinciding extensions 
1 2 

~ of the mappings llj to all the algebras $ JIl. (m), which are homomorphisms from 
1 

the algebras J JIl. (m) to the algebras J JIl. (Xo), respectively. In this case, as 
I I 

!(x}, ... ,xm ) = tp(x}, ... ,xm ), we get 

Setting Fz(j) - tp(x}, ... ,xm ), we get a certain mapping Fz from the operations 

of the signature a} to a2 -terms. The mapping 11 from the operations of the 
signature a2 to at-terms is defined analogously. The above properties of these 
mappings obviously imply the fulfillment of requirements (1) - (4) in definition 8.1 

(e). Therefore, we get JJIl (I'(o)=/$m (1'(0), i.e., condition (a) of the theorem under 
1 . 2 

consideration implies condition (b). 
To complete the proof of the theorem, we now have to prove that the 

isomorphism of multi-basis algebras Clon.m} 51! Clon.m 2 implies the isomorphism F - -
of the categories .m} and .m2 such that SJIl F - SJIl . So, let Clon.m} 51! Clon.m 2. 

2 1 

By the definitions, this obviously implies the rational equivalence of the algebras 

J m (n) and $ JIl (n) which is, at n < (J), implemented by the same mappings Fz (11) 
. 1 2 

of a}(a~-operations into a2(a})-terms for any n. In this case the basic sets of the 

algebras J JIl (n) and J 1Tl (n), respectively, can be identified. The rational 
1 2 

equivalence of $ JIl (n) and $ JIl (n) implies the coincidence of the lattices 
1 2 

ConJ 111. (n) and ConJ JIl (n). The latter condition allows us to construct a functor 
. 1 2 

F mapping finitely generated .m}-algebras to finitely generated .m2 -algebras, a set of 
morphisms from J JIl (n) to an n -generated .mI -algebra 1I} to a set of morphisms 

1 

from J.m2 (n) to an n-generated algebra F(lI}) so that S1Tl2 F = S1Tl l ' 

Any morphism of an n -generated .m} -algebra 1I} on an n -generated .m}
algebra .B} is uniquely defined by certain morphisms from the algebra J.ml (n) in 

1I} and .BI' This makes it possible to extend the functor F, with the required 

condition on full subcategories of the categories .. '01 j generated by families of finitely 

generated .m ralgebras fulfilled. On the other hand, any homomorphism from an 

arbitrary .. '01}-algebra 11 to an algebra.B is uniquely defined by its limitations up to 

finitely generated subalgebras of the algebra 11. This enables one to extend the 
- -

functor F to the isomorphism of F of the whole category .m} on the category .. '01 2 

such that S JJl F = SJIl ' which is the required proof for the implication (e) - (a) .• 
2 1 
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The condition on weak equivalence of varieties is essentially weaker than that 
on the equivalence of varieties, as will be shown below in the description of all 
varieties weakly equivalent to the variety of Boolean algebras. 

Theorem 8.2. A variety of algebras .'Dl is weakly equivalent to a variety of 

the Boolean algebras BA iff.'Dl is generated by a primal algebra. 

- v 
Proof. Let }l be a primal algebra, and let us show that .1fl (}l )::. BA. 

Indeed, by theorem 7.3, .'Dl (}l ) = IPB(}l) and, therefore, for any .1fl (}l )-algebra 

}l 1 there is a Boolean algebra.B such that }l 1 ~}l.B. By virtue of congruence

distributivity of'Dl(}l) and theorem 3.2, we get Conp}l 1 ~ conp}l.B ~.B, i.e., 

Conp}l 1 EBA. Let us define the mapping 

- v 
cp:Ob(.'Ul (}l)) =.1fl (}l) - Ob(BA) = BA 

as cp(}l 1) = Conp}l l' 

For any }l 1,}l 2 E.'Dl (}l) and h EHorr(}l 1,}l 2), let us define 

CPJl JI (h) EHom(Conp21 1, Conp212) 
I' 2 

To prove that ..rfl (}l) and BA are weakly equivalent, it now suffices to notice 

that any homomorphism from the algebra }lBI to the algebra }l.B2 is uniquely 

defined by a certain homomorphism conp}lB, into Conp}lB2. To this end, let us 

note that at any homomorphism h from }lBI to }lB2, a subalgebra }l o~}l.B, 
such that }lo={lilaE}l and for any iE.B; a 1(i)=a} obeys the condition 

h«(il)=a 2, where a 2E}lB2, and for any iE.B;, a 2(1)=a. Indeed, this directly 

results from the fact that}l is simple, has no subalgebras and its only 

automorphism is identical. Hence, the h -image of any element d E}lBI is uniquely 
defined by the rule 
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h ." 0111 0111 ' . . al were {a1 •... an}= ..... • and < a1 •... an. ~ d,al •...• d,a n > IS a quasl-canomc setting of 

the element d of the Boolean power 2I.B I defined in section 3. 
- v 

Let us now assume that the variety.m is such that .m =. BA. and the 
- v 

isomorphism of the categories ..'En and BA is implemented with the mappings 

- v 
cP: Ob(m) =.m -+ Ob(B~ = BA 

and 

Let 21 Ern be such that cp( 21 ) = 2 is a two-element Boolean algebra. and let 

us show that 21 is primal and .m =.m (21 ). Let us first remark that since 

Horr(I.2) = 0. where 1 is a one-element Boolean algebra. Horr(cp-l(I).2I) = 0 and. 

hence. 21 is not a one-element .m -algebra. 

Let us show that for any algebra 211 Em. the lattices of congruences of 211 

and cp( 211) are isomorphic. Let f: 211 -+ 21 2 be a certain epimorphism from the 

algebra 211 to 21 2 in the sense of the theory of categories. Let us define a 

sutjective homeomorphism f1 from 211 to f(2I 1) by the equalities ft(a) = f(a) for 

all a E2I1• and let us consider the embedding i of the algebra f(2I 1) into the 

algebra 212 to be identical. The equality f = i'fl shows that i is an epimorphism of 

the category .m . and. since i is an embedding. i is also a monomorphism in .. r.fl . 

Therefore. CPf{!(1I 1 )/p(1I 2 )(i) also is both an epi- and a monomorphism in the category 

of Boolean algebras but, as is well-known and can be readily checked those 
v -

morphisms in BA are isomorphisms. As a result. i is also an isomorphism in .m. 
i.e.. any epimorphism of the category.m is a surjective homomorphism of .m -
algebras. Hence. the lattice of the congruences of the algebra 211 is isomorphic to 

the natural lattice q,(2I) of the epimorphisms (in the category .. r.fl) of the object 
-

211 EOb(,m) arising when identifying such epimorphisms f1' fz for which there is an 
isomorphism iEHorr(A(2I1».fz(2I 1) such that if! =/z. But in this case the 

- v 
isomorphism of the categories .. r.fl and BA implies that of the lattices q,(2I 1). and 

Concp(2I 1) 5!5 q,(cp(2I 1». Therefore. indeed. for any algebra 211 Em. we get 
Con2l1 e Concp(2I 1). 

Let us now prove that the algebra 21 is finite. Let us assume the opposite. 

and let al •...• an •... be pairwise different elements of the algebra 21. A free two

generated Boolean algebra J Bi2) is equal to 24 and. therefore. it has a finite lattice 
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v 

of congruences. Obviously, an isomorphism of the categories .til and BA implies 

that an .til -algebra tp -1(J BA(2)) is also a free two-generated .m -algebra and, hence, 

according to the isomorphism of Contp-l(JBA(2)) and ConJBA(2) proved above, the 

congruence lattice of the algebra J m (2) is finite. Therefore, any two-generated .til -
algebra has a finite lattice of congruences. 

Let us consider a subalgebra 1/1 of the algebra 1/ W generated by the elements 
II and h such that for any nEw we have !t(n) = al and h(n) = a". Since the 

algebra 1/ , as well as the algebra 2 EBA, has no proper subalgebras (by virtue of 
- v 

the isomorphism of.m and BA ), 1/1 contains all the elements A of the algebra 

1/ W such that for any nEw, lin) <= ak' Therefore, the kernels of projections 

llli Ew) are pairwise different congruences of the algebra 1/1' The contradiction 

obtained proves that 1/ is finite. 

Let now A be the basic set of the algebra 1/ , and let I be a mapping from 

the set An to 1/ for some nEw. As earlier, llj will denote the projection of the 

set An relative to the i-th coordinate. Let us consider ll/..i =O,I, ... ,n-l) as elements 
~ ~ of 1/ , and let 1/1 be a subalgebra of the algebra 1/ generated by the set 

{llo, ... ,lln_l}' For any sEAn there is a homomorphism hs from the algebra 1/1 to 

the algebra 1/ defined by the equalities hillj) = llj(s), Let us define the 

homomorphism h from the algebra 1/1 to the algebra 1/ An with the following 

condition: h(a)=<hs(a)lsEAn > for any aE1/I' Let us prove that h is an 
isomorphism. 

From the definition one can directly notice that h is injective, i.e., h is a 
v 

monomorphism in the category m . The isomorphism of the categories "rrl and BA 
v 

implies that tp(h) is also a monomorphism in the category BA. Since 
v 

monomorphisms in BA are injective homomorphisms of Boolean algebras, 
~ ~ Itp(1/ )1:?!ltp(1/1~' On the other hand, tp(1/ ) must be a direct product of IAnl 

copies of the Boolean algebras 2 = tp(1/) (as 1/ An is a direct product of IAnl copies 

of the algebra 1/ in .m). Therefore, Itp(1/ An )I=2IAnl, and hence Itp(1/1)ls2 IAnl . 

Moreover, tp11 11 maps HOrr(1/1,1/) to HOrr(CP(1/1),2) bijectively. Since all 
I' 

homomorphisms hs(sEAn) from the algebra 1/1 to 1/ are different, 

IHorr(cp(1/1),2)1:?!IAnl. A finite Boolean algebra of the power 2m has exactly m of 
its various homomorphisms on the algebra 2 and, hence, by virtue of the inequalities 

mentioned above, the Boolean algebras CP(1/1) and cp(1/ An) are isomorphic. This 
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implies the existence of an isomorphism h of the . .r.Tl -algebras 111 and 11 An. The 

mapping /ElI An and, hence, h-1U)E1I 1, i.e., there is a term t(xO, ... ,xn_1) of the 

signature of the variety .. m such that h(t(Jlo, ... ,Jl,,_l» = /, the latter fact implying 

that the mapping / is defined on An with the help of the term t. The algebra 11 
is, therefore, primal. 

Let us, finally, show that.m (11 ) = . .r.Tl . Let us assume the opposite, and set 
- v 

111 E..r.Tl \ .. m (11 ). As 11 is primal, the categories.m (11) and BA are isomorphic, 
as has been demonstrated in the beginning of the proof of the theorem. Let 

cp':.m (11 ) --+ BA be the mapping of the objects of these categories implementing their 
isomorphism. Therefore, there is an algebra 112 EBA such that cp'(1I 2) is 

isomorphic to the Boolean algebra cp(1I 1). Since Con1l1 ~ Concp(1I 1) and 

Con1l2 ~ Concp'(1I 2), Con1l1 ~ Con 11 2' But in this case we get 

Concp(1I 1) ~ Con 11 1 ~ Con1l2 ~ Concp(1I 2). 

It is a well-known fact that if congruences of Boolean algebras are isomorphic, 
the algebras are isomorphic as well. Therefore, there is an isomorphism i of the 

Boolean algebras cp(1I 1) and cp(1I 2) and, hence, CP;~}Jl).rp(}J z)(i) will be an 

isomorphism of the algebras 111 and 11 2, Hence, 111 E..r.Tl (11), i.e.,.m = .. m (11) .• 

As a corollary to this theorem one should remark that weak equivalence of 

varieties does not imply their equivalence. Indeed, if 11 is an arbitrary primal algebra 
v v 

of the power more than 2, according to theorem just proved, we have.r.Tl(lI).::. BA 

but, since all.m (11 ) -algebras have the form 1I.B, there is no two-element algebra 

in.m (11) and, hence, the varieties.r.Tl (11) and BA cannot be equivalent. 

In relation with theorem 8.2 the problem of describing the categories 
v 

isomorphic to the categories BA arises. A number of various descriptions of the 
kind can be found in a paper by K.Sokolnicki. Here we will dwell on one of them 

in detail. 

Definition 8.3. A category R' is called algebraic provided that there is a 

variety of the algebras .. m such that R' and .. m are isomorphic. 

All the category notions given below without definitions can, for instance, be 
found in a monograph by S.McLane [138]. A Lauvere theorem describing algebraic 
categories is also known. 
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Theorem 8.3. The category R is algebraic iff 

(1) R contains co-equalizers and finite limits, and there is a separate object G 

in Jl' such that: 

Uz 
(2) for any set Z in R there is a co-product (G- IT z) and, in particular, 

zEZ 

there is an initial object I = II0 in R . 

(3) A morphism f is regular in Jl' iff Jl' (G, f) is a surjection. 

(4) For any parallel pair f, g of morphisms from R, if R ( G, j),Jl' (G,g) is a 

kernel pair in Set, f, g is a kernel pair in R . 

(5) For any set Z S;;; Jl' and any morphism h: G - IT z, there is a finite subset 
zEZ 

Y S;;; Z and a morphism k G - IT Y such that h = Z· k, where Z: IT y - IT z is a 
yEY yEY zEZ 

canonical "inclusion" such that Z.uy = uy for y EY. 

Now, taking into account the statement of theorem 8.3, let us prove the 
following theorem. 

v 
Theorem 8.4. The category Jl' is isomorphic to the category BA iff Jl' is 

algebraic, (i.e., the conditions (1) - (5) of theorem 8.3 are met) and, in addition, iff 
the following conditions are valid in terms of the statement of theorem 8.3: 

(6) I Horr(I2,I)I= 2. 

(7) For any Jl' -object P there is a cardinal A and a monomorphism a from 

the object P to IA. 

(8) For any R -object P, if IHorr(P,I)I=n, where nEw, P and In are 

isomorphic in Jl'. 

(9) For any set S and ultrafilter 1> we have Co lim Id = I on S. 
dED 
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Here [A for the cardinal A and [d for the set d denote the product in R of 

A and Idl, respectively, copies of the object [. Here is a more exact formulation of 
the condition (9). 

Let n{ [d -+ [ (i Ed) be morphisms corresponding to the fact that [d is a 

product of Idl copies of the object [ in R . Let D be a category corresponding to 

the ultrafilter D viewed as partially ordered in terms of the set inclusion, and let 
~ ~ ~ 

D op be the dual of category D. Let J:(j) 01) -+ R be a functor defined in the 

following way: for d EOb(Dop) = D, J(d) = [d, and if d,d' ED are such that 

dc;;;,d' and Hotr(d,d') ={fl}, J({3)EHom(ld',Id), and lC1'J({3)= lCt' for any iEd, 

where < lCfliEd >, < lC1'ljEd' > are families of the morphisms defining [d,Id' as 

products of the object [ in R. In this case the condition (9) of the statement of 

theorem 8.4 claims that for any ultrafilter D we have [= Colim J. 

Let us now turn to the proof of theorem 8.4. Let us first directly recall that 
v 

all conditions (1) - (9) are met for the category BA when choosing [ as an initial 
object of this category, i.e., when [ is a two-element Boolean algebra. Let us only 

v 
notice that the condition (9) is fulfilled on BA only under the following statement: if 

D is a filter on the set e, 2f is a universal algebra and Co lim2f d is defined 
dE!) 

relative to the category .. m (2f) in the same way as Co lim [d has been defined in 
dE!) 

the category R, CO lim 2f d is isomorphic to a filtered power 2f S /1) of the algebra 
dE!) 

2f. 

Let us now prove the converse statement. Let the conditions (1) - (9) hold for 

the category R. By theorem 8.3, there is a variety of the algebras.'Ul containing 

an 2f and an isomorphism of the category cp: R -+ .. m such that cp([) = 2f . As the 
category notions of a monomorphism and a product are preserved under an 

isomorphism of categories, and as the monomorphisms of categories of the type.m 

correspond to isomorphic embeddings between Jll -algebras, we get.'Ul c;;;, [SP( 2f) in 

line with the property (7). But.'Ul is a variety containing the algebra 2f and, 

hence,.'Ul =.'Ul (2f ). 

Let us show that 2f is primal. Indeed, since, by the property (6), 

1 Hotr(2f 2,2f )1= 2, 2f is non-singleton. Let S be an infinite set and D be a non

principal ultrafilter on S. As is well-known, 2f S / D ~ 2f iff 2f is a finite algebra. 

But, as we have already noted, Co Iim2f d ~ 2f S /D and, by the property (9), 
dE!) 

Co lim2f d ~ 2f . Therefore, 2f is finite. 
dE!) 

Let now m =12f nl and p(n)(2f) be a family of all the terms of the variables 



CHAPTER 3 187 

Xl'" "xn of the algebra 11, considered as a subalgebra of the Cartesian power 

11 121 In -= 11 m of the algebra 11. Obviously, IHon('p,n)(11 ),11 )1 = m and, if now 

CEOb(R) is such that tP(C)=p(n)(11), IHon(C,/)I=m. By the property (8), C is 

isomorphic to an R -object 1m and, hence, there is an isomorphism from the algebra 

[f-n\11) to the algebra 11 m . Since 11 is finite and [f-n)(11 )c;;,11 m, [f-n)(11) =11 m 

and, thus, any function on the basic set of the algebra 11 of n variables coincides 

with a certain term of this algebra. Therefore, 11 is primal, R is isomorphic to 
- - v 

.m(11) and, by theorem 8.2, .m(11) 51! BA. • 

In the introduction to the present chapter, we have mentioned that one of the 
"external" characteristics of varieties often essentially characterizing its internal structure 
is the notion of a spectrum and its variations. 

Definition 8.4. 

(a) A spectrum Spec .. 'lfI. of a variety JJl is called a family of the powers of 

the algebras of the given variety. A finite spectrum FSpec .. 'lfI. of a variety .. 'lfI. is a 
family of the powers of the finite algebras of the given variety. 

(b) A fine spectrum of a variety .. 'lfI. is a function SpecJJl (X) which puts the 

power of a set of types of the isomorphism of .. 'lfI. -algebras of the power X in 

correspondence with an arbitrary cardinal X, i.e., Spec.'fTl (X) =1 J{11 E..'lfI.II11 1 = X~. A 

finite fine spectrum FSpecm (n) of a variety .m is a limitation of the function 
Specm to co. 

Lemma 8.1. 

(a) If the varieties .. 'lfI. and .ml are rationally equivalent, Spec.m = Spec .. 'lfI.l' 

FSpec .. 'lfI. = FSpec.m l , and the functions Spec JJl, Spec.'fTl1 and FSpecm, FSpec1Jl1 

coincide. 

(b) If .. 'lfI. o =.m ({1/ E.m 11/ is finite}), FSpec .. 'lfI. = FSpec.mo, and for any 
n Eco, FSpec.'fTl (n) = FSpec.'fTl o (n). 

The statements of the lemma are obvious. Therefore, we get, in particular, that 
spectra and fine spectra can characterize varieties only to the accuracy of rational 
equivalence. On the other hand, when trying to characterize varieties with a finite or 
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a finite fine spectrum. it would be natural. as is shown by the statement (b). to limit 
ourselves to the varieties generated by their finite algebras. Indeed. for any variety 

.. ffl. if .. fflI is an arbitrary variety having no non-singleton finite algebras. 

FSpec.,m = FSpec.,m ®.,m 1. and for n Ew we have FSpec.m (n) = FSpecm ®.m 1 (n). 

Choosing here different not rationally equivalent varieties as .'OlI • we can get families 
of not rationally equivalent varieties with the same fine finite spectrum. 

It should be noticed that. since the varieties are closed with respect to direct 
products. and by virtue of the LOwenheim-Skolem theorem for elementary classes of 

algebras. if Spec.'Ol .. {l} • for any infinite cardinal l'( we have Spec.,m 3 l'( . 

Therefore. only the finite spectrum of a variety can impose essential limitations on 

.'Ol . 

The description of the fine and. in particular. finite fine spectrum of a variety, 
which is a trivial problem in a number of cases (varieties of Boolean algebras. of 
vector spaces), can. on the other hand. be a problem of greater complexity (varieties 
of groups. lattices. etc.). 

In a work by W.Taylor [227] one can find a number of interesting digital 
functions which are finite fine spectra of some varieties of algebras. 

The finite spectrum of a variety is, evidently, a multiplicatively closed subset of 
w, the inverse statement being also valid. 

Theorem 8.5. Let ! be a mapping from w to w such that 
!(O) = 0'/(1) = 1, and if !(m),f(n) > O. !(m ·n) > O. In this case there is a variety 

.,m such that: 

(a) for any nEw we have !(n) s FSpecm (n) <l'(o; 

(b) !(n)=O~FSpecm(n)=O. 

Proof. For n;;,:2,Osm<!(n) let us define algebras 

21 n,m =<{I, ... ,n};D.g.aj >iEm. where D is a discriminator on {1 ..... n}, g is a certain 

cyclic permutation on {1 ..... n} fixed for a given n. and aj = min(n.max(l.i - m». Let 

,m =,m (21 n,mln ;;,:2.0 s m< !(n)}. By theorem 2.10,.'Ol is both congruence
distributive and congruence-permutable. By theorem 2.16. any subdirectly non

decomposable .m -algebra belongs to the class HS(2I). where 21 is a certain 

ultraproduct of algebras of the type 21 n,m' But any subalgebra of a similar 
ultraproduct is simple (the discriminator D belongs to the signature of the algebras 

21 n,m and. hence. it is also a discriminator on the ultraproduct). Therefore, all 

subdirectly non-decomposable .m -algebras belong to S( 21 ), where 21 is a certain 
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ultraproduct of algebras of the type J/ n,m' But since it belongs to the signature of 

the functions g, any ultmproduct of algebras of the type J/ n,m contains no finite 

subalgebras, except for the cases when either the ultmfilter is principal or all 

cofactors, except a finite number of them, coincide with the same algebra, J/ nom' 

Therefore, all finite subdirectly non-decomposable JJl -algebras are subalgebras of 

some of the algebms J/ nom' and hence, a family of finite subdirectly non

decomposable .m -algebras coincides with the set {J/ nmln ~ 2,0 sm < fen)}. Hence, 

any finite .m -algebm is a subdirect product of a finite number of algebras from 

{J/ n,ml n ~ 2,0 s m < f(n)}. In particular, any finite .m -algebm belongs to a certain 

variety .. 'ms =.m({J/n,m12snss,Osm<f(n)}), where sEw. But .. 'm s is a finitely 

genemted, semi-simple, congruence-permutable variety and, hence, by theorem 6.3, 

any finite .. 'm s and, therefore, any finite .m -algebra is a direct product of algebras of 
the type J/ nom' But this fact, since the set {nlf(n) > O} is multiplicatively closed, 
implies the statement (b) of the theorem. The statement (a) follows from the 

definition of constants aj on algebras of the type J/ n,m' • 

Bearing in mind the statement of the theorem and the remark made before its 
formulation, we get the following corollary. 

Corollary 8.1. A subset K of the set w is a finite spectrum of a certain 
variety (which can be chosen to be adiscriminator variety) iff K 31 and K is 
multiplicatively closed. 

We can prove the following theorem in an analogous way. 

Theorem 8.6. If P is a certain set of simple numbers, there is a 2111 of 

pairwise rationally non-equivalent varieties.m genemted by a family of their finite 
algebras and such that for all nEw we get FSpecm (n) = 1 if all simple divisors of 

the number n lie in P, and FSpecm (n) = 0 in the opposite case. 

Proof. For any nEw let us define algebras J/ n =< {l, ... ,n};D,g,1 > and 

.Bn =<{I, ... ,n};D,g,1 >, where D is a discriminator on {1, ... ,n}, g in .Bn is a cyclic 
permutation on {2,. .. ,n} and g in J/ n is a cyclic permutation on {1, ... ,n}. Let G,Q2 

be a decomposition of the set P, and .mQ1Q2 =.m (J/ n,.Bmln EG, mEQ2)' 

As was the case in the proof of the previous theorem, first we show that only 

direct products of the algebras J/ n,.B men EQl,m EQ2) can be finite .'IJlQd22 -algebras. 

Now we have to remark that for different decompositions G,Q2 and Q{,Qz of the 
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set P of the variety, III Qd22 and JTl Qi•Q2 are not rationally equivalent. Indeed, for 

n EQ2 \ Qz, the algebras .B nand 21 n are the only algebras of the power n 
belonging to the varieties .. 'Ut Qtl22 and .mQi .Q2' respectively. The algebra .Bn, 
however, contains the one-element subalgebra {I}, while the algebra 21 n has no one
element subalgebras. • 

Using direct products and families of varieties one can easily prove the 
following theorem. 

Theorem 8.7. A class R of functions which are finite fine spectra of 
varieties is closed under the following operations: 

(a) if !,gER, also !*gER, where !*g(n) = ~!(d)·g(n/d); 
din 

(b) if ! ER, k Em, also i k] ER, where ikl( n) = !(m) if n = mk for some 

m, and ikl( n) = 0 in the opposite case; 

(c) if !,gER , there is an hER such that for any n Em we get 

!(n)g(n) s h(n) s n!!(n)g(n), 

(assuming here OoXo = 0). In particular, h(n) =0 iff either !(n) = 0 or g(n) = 0, and 

h(n) is finite iff both !(n) and g(n) are finite. 

It should be remarked that one cannot claim that R is closed under the product 

of functions. Indeed, let .. 'Ul =.m (21 0,21 1) , where 

21 0 =< {0,1};+,0>,21 1 =< {0,1};+,1 > and + is a binary addition on {O,l}. Then we 
get 

FSpecm (2) = FSpec.m (16)= 2, FSpec.m (6) =0. 

However, as will be shown in the theorem to follow, for any variety .. 'UtI if 

FSpec.m 1(2)=3+m and FSpec!Jl] (6) =0, FSpecJJl.](23+m+s»3+m. Therefore, the 

function ! = FSpecJn. cannot be a function of the finite fine spectrum for any 
variety. 

The following properties of the functions from R can be easily deduced: 
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(1) /(mk) ~ /(m) for any m,k Ew; 

More subtle properties of functions from Jr. will be discussed in the theorem to 
follow. Since its proof is based on the lemmas from the proof of theorem 8.9, it 
will be given after them. 

Theorem 8.8. If / EJr. , 

(a) if /(2) = 1, /(6) = 0 and /(2'1 > 1, we get /(2k+1) > 1; 

(b) if /(2) = 2, /(6) = 0 and /(2k) > 2, we get /(2k+1) > 2; 

(c) if /(2) = 3 + m, /(6) = 0, /(23+m+s ) > 3 + m 

(here k,m,s are arbitrary elements from w). 

The properties of the functions of finite fine spectra of varieties considered 
above leave, nonetheless, a whole number of problems open for discussion. 

Problem 8.1. To find any description of the class of functions R'. 

Problem 8.2. Is the set R n WW closed in the space wW? In other words, if 
/ is a function from w to w that is finitely approximated by finite fine spectra of 

varieties (for any NEw there is a variety.m N such that for n s N 

/(n) = FSpec.rlI.N (n», will / obligatory belong to R (i.e., is there a variety .. m 
such that /(n) = FSpec.rlI. (n) for all nEw?) ? 

The following problem is of interest in connection with theorem 8.6. 

Problem 8.3. Let S={<m1,nl, ... ,mk,nk>1 k,mi,niEw, and for no variety 

.m , the equalities FSpec.m (lnj) = ni are simultaneously valid for all 1 sis k}. Is S a 
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recursive, or a recursively enumerable set? 

In section 6, when discussing algebras with a minimal spectrum, we have 
shown, in particular, that the conditions imposed on the spectrum, the finite or the 
fine spectrum of a variety impose quite strict limitations on the variety itself. In some 
cases, varieties with one or another limitation on their fine spectrum can be described 
even to the accuracy of rational equivalence, which will be demonstrated in the 
theorems to follow. 

From now on, in theorem 8.9 and the related lemmas, + and . will denote the 
operations of addition and multiplication by the module 2 defined on the set {O,I}. 

Obviously, in this case the operations x 1\ y and x v y are defined on {O,I} by the 
terms X· y and x + y + xy. 

Let us introduce the following notations for certain two-element algebras: 

211 =< {O,I};x + Y + z >, 

212 =< {O,I};x + y> , 

1/3 =< {O,I};x + y+z,xy+ yz+zx>, 

1/ 4 =< {O,I};x+ 1, x + Y +z, xy+ yz+zx >, 

215 =<{O,I};x+ y+ z, xy>, 

1/ 6 =< {O,I};x + y, xy>, 

217 =< {O,I}; 1, x + y, xy>, 

1/ 8 =<{O,I};x+ 1, x + Y +z >, 

219 =< {O,I}; 1, x + Y >. 

In the Post classification, the varieties generated by these algebras are referred 
to as follows: 

"m (1/ 1 ) = L4 is a variety of Boolean 3-groups, 

"rJl (1/ 2) = ~ is a variety of Boolean groups, 
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.. m (Jl 3 ) = Dt is a variety of Boolean 3-rings, 

.m (Jl 4 ) = ~ is a variety of Boolean 3-algebras, 

m (JI 5) = C4 is a variety of Boolean lattices, 

.. m (Jl 6 ) = C2 is a variety of Boolean rings, 

m (JI 7) = C1 is a variety of Boolean algebras, 

.om (Jl 8) = Ls is a variety of Boolean 3-groups with supplements, 

.om (Jl 9 ) = 4 is a variety of Boolean groups with supplements. 

Theorem 8.9. Let a variety .m be generated by its finite algebras. Then the 
following statements are valid. 

(a) The fine spectrum ofm obeys the condition FSpecm (n) = 1 if n = 2k for 

some k Em, and FSpecm (n) = 0 for all other n Em iff.m is rationally equivalent 

to one of the following varieties: L4,L3,Dl,~,C4,C2,Cl' 

(b) The fine spectrum of .om obeys the condition FSpec.m (n) = 1 if n = 1, 

FSpecm (n) = 2 if n = 2k for some 1 oS k oS m, and FSpec.m (n) = 0 for all other 

n Em iff.m is rationally equivalent to one of the varieties, Ls or 4. 

Proof. Let us first remark that the algebras Jl3 ,Jl4, ... ,Jl7 are quasi-primal, 
i.e., the term x + z + xy+ yz + zx definable in them is a discriminator on {O,l}. It is 

also obvious that the algebras Jl 1,Jl 2 are simple Abelian algebras with one-element 

subalgebras, while Jl8 ,Jl 9 are simple Abelian algebras without one-element 
subalgebras. Now the statements of the present theorem on fine spectra of the 

varieties .. m (JI i)(i = 1, ... ,9) result directly from the statements of theorems 6.4 and 
6.5. Therefore, it remains to be shown that the converse is valid, i.e., that any 
variety generated by its finite algebras and having a fine spectrum of one of the 

types listed in the theorem is rationally equivalent to one of the varieties .om (JI i), 

where i = 1, ... ,7 or i = 8,9, respectively. 

Let us first analyse the terms definable on the algebras Jl 1, ... ,Jl 9 . 
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Lemma 8.2. 

(a) Every term of the algebra }j 1 has the form ~ xi' where IKI is odd. 
iEK 

(b) Every term of the algebra }j 2 has the form ~Xi' where IKI is an 
iEK 

arbitrary natural number. 

(c) The functions defined by the terms of the algebra }j 3 are exactly those 

among the functions F:{O,I}k - {O,I} which obey the conditions F(O~ .. , 0) = 0 and 
F(xl + I"",xk + 1) = F(xl,,,,,xk) + 1. The equivalent condition is as follows: it must be 

the set of functions F:{O,I}k -{O,I} for which F(al, ... ,ak) is either x or y in the 

case when al, ... ,ak are contained in the set {x,y}. 

(d) The functions defined by the terms of the algebra }j 4 are exactly those 
k among the functions F:{O,I} - {O,I} which obey the condition 

F(xi +1, ... ,Xk +1) =F(XI,,,,xk)+1. And this is the equivalent condition: it is the set 

of functions F:{O,I}k-{O,I} for which F(al, ... ,ak) is either x or y, or I+x or 

I+y in the case when al, ... ,ak are contained in the set {x,y}. 

(e) The functions defined by the terms of the algebra }j 5 are exactly those 

among the functions F:{O,I}k - {O,I} which obey the conditions: F(O~ .. , 0) = 0 and 
F(I, . .. ,1) = 1. 

(f) The functions defined by the terms of the algebra }j 6 are exactly those 

among the functions F:{O,I}k -{O,I} which obey the condition F(O, ... ,O) =0. 

(g) Any function F:{O,I}k - {O,I} defined by the terms of the algebra }j 7' 

(h) The functions defined by the terms of the algebra }j 8 have either the form 
a or a + 1, where a is one of the functions defined by the terms of the algebra 

}j l' 

(i) The functions defined by the terms of the algebra }j 9 have either the form 
a or a + 1, where a is one of the functions defined by the terms of the algebra 

}j2 

Proof. The statements (a), (b), (h) and (i) are obvious. The remaining 
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statements result from the fact mentioned earlier that J!3 , ... J! 7 are quasi-primal 
algebras and can be directly deduced from theorem 2.14 .• 

Lemma 8.3. For any algebra J! =<{O,1};f},j2''''>' the coincidence of a 
family of ternary functions definable by the terms of this algebra with that of ternary 

functions definable by the terms of one of the algebras J!l , ... J! 9 implies a similar 
coincidence for families of all functions definable by their terms. 

Proof. This statement readily follows from that of lemma 8.2. For instance, if 

a family of ternary functions defined by the terms of the algebra J! coincides with 

that of ternary functions defined by the terms of the algebra J!3, obviously, any 

function defined by the terms of the algebra J!3 is also definable by the terms of 

the algebra J!. If the converse statement was invalid" by lemma 8.2(c), for a 

certain term t(x},,,,,xk) of the algebra J! there could be found a}, ... ,ak E{x,y} such 

that t( a}, ... ,a k) would be equal to neither x nor y on J!. But t( a}.oo .,a J is a 
binary term and, hence, by the supposition of the lemma, the function defined by 
them does not coincide with a single function defined by the terms of the algebra 

J!3' The latter statement contradicts that of lemma 8.2(c). Therefore, indeed, the 

families of functions definable by the terms of J! and J!3 must coincide. • 

* A function f (Xl'" .,xJ defined by the equality 

will be termed dual to the function f(x}, ... ,xk) defined on the set {O,l} . 

For any set F of functions defined on • {O,l}, F will denote the set 
* U If EF}, where F is self-dual provided that • F = F. Obviously, the mapping 

cp(x) = X + 1 is a homomorphism of the algebras < {O,1};f}./2''''> and 
• • < {O,l};fl ./2 , ... > . 

Lemma 8.4. For any algebra J! =<{O,l};fl'/z"'>' a set of binary functions 
on {O,l} definable by the terms of this algebra coincides with one of the following 
sets or their dual sets (the sign * denotes the cases of self-dual sets): 

* (a) x,y; 

(b) x,y,O,x + y; 
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* (c) x,y,x + I,y + 1; 

* (d) x,y,x" y,x v y; 

(e) x,y,O,x +y,xy,x+x~y+x~x+y+xy; 

* (0 the family of all binary functions on {O,I}; 

* (g) x,y,O,l,x + y,x + I,y+ I,x + y + I; 

(h) x,y,O; 

(i) x,y,l; 

(j) x,y,xy; 

(k) x,y,xy,O; 

(I) x,y,xy,1; 

(m) x, y, xy,O,I ; 

(n) x,y,x" y,x v y,O ; 

* (0) x,y,x" y,x v y,O,I; 

* (p) x,y,x + I,y + 1,0,1; 

(q) x,y,O,xy,xy+ x,xy+ y. 

The proof of this lemma is carried out by directly checking the following 
statements: 

(1) each of the above mentioned sets of functions is closed under 
superpositions; 

(2) any binary function on {O,I} generates one of the given sets; 

(3) a set of any two of the sets of functions given in the formulation of the 
lemma is also contained in this list. • 
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Lemma 8.5. For any algebra 21 =< {O,l};fl,fZ'" .>. if SP(2I) contains no 
six-element algebra. the set of binary functions on {OJ} definable by the terms of 
this algebra coincides with either of the following sets or their dual sets (the sign *. 
as above. denotes the cases of self-dual sets): 

* (a)x.y; 

(b) x.y.O.x +y; 

* (c) x.y.x + l,y + 1; 

* (d) x.y.x 1\ y.x V y; 

(e) x.y.O,x + y.xy.x + x~y + x~x + y + xy; 

* (f) the family of all binary functions on {O,l}; 

* (g) x.y. O.I.x + y.x + l,y+ l.x + Y + 1. 

The proof is reduced to the fact that SP(2I) contains a six-element (or even a 
three-element) algebra in the cases (h) - (q) in lemma 8.4. One can also notice that. 

obviously. free two-generated algebras of the variety .m (21) will also be of the 
same kind in the cases (h). (j). (0). (p) and (c). Therefore. only the cases (i). (k). 

(1). (m) and (n) are left for consideration. Let us set X ~ B ~ {O,l}z such that 
IXI,s 2.IBI= 3. and let B be generated by the set X with the help of the binary 

operations of the algebra 21 in each of the cases (i). (k). (I). (m) and (n). 

Therefore. B will be a basic set of a three-element algebra in SP(2I ). 

(i) X = {< 0,1 >}. B = {< 0,1 >.< 0.0 >.< 1.1 >}; 

(k) X={<O.!>.< 1,0 >}.B ={<O.!>.< 1,0>.< O.O>}; 

(1) X = {< 0.0 >.< O.!>}. B ={< 0.0 >.< 0,1 >.< 1,1 >}; 

(m) X = {< 0,1 >}. B = {< 0,1 >.< 0.0 >.< I.!>}; 

(n) X = {< 1.1 >.< 0.1 >}. B ={< 1.1 >.< 0,1 >.< O.O>} .• 

Lemma 8.6. For any algebra 21 =<{O.l};fl,fZ .... >. if SP(2I) contains no 
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six-element algebra, either JI is quasi-primal, or a set of ternary functions on {0,1} 
definable by the terms of this algebra coincides with either one of the following sets 
or their dual sets ( the sign * denotes the cases of self-dual sets): 

* (a) x,y,z,x+y+z; 

(b) O,x,y,z,x + y,x +z,y +z,x + y +z; 

* (c) x,y,z,x+1,y+1,z+l,x+y+z,x+y+z+1; 

* (d) functions of the type a and a + 1, where a are functions from (b). 

Proof. By lemma 8.5, for binary functions on {0,1} definable by the terms of 

the algebra JI one of the cases (a) - (g) considered in lemma 8.5 is valid. The 
sets of binary functions in the cases (b) and (g) of this lemma obviously uniquely 
correspond to the sets of ternary functions described in the cases (b) and (d), 
respectively, of the present lemma. From the set of binary functions presented in the 
cases (e) and (f) of lemma 8.5 one can, obviously, deduce that the discriminator is 

definable on {0,1} by the terms of the algebra JI and, hence, that JI is quasi
primal. Therefore, we have to consider only the situation when a family of binary 

functions defined on {0,1} by the terms of JI coincides with one of sets given in 
the cases (a), (c) and (d) of lemma 8.5. 

(a) The only binary functions definable on {0,1} by the terms of JI are x and 

y. Since, by the condition of the lemma, Jl2 has no three-element subalgebras, 

there is a term F(x,y,z) such that we get F«O,1>,<O,O >,< 1,0 »=<1,1>, i.e., 

F(O,O,l) = F(l,O,O) = I in Jl 2. But F(x,x,y), as well as F(y,x,x) must coincide 

with either x or y, thus we see that the following identity is valid on JI: 
JlI= F(x,x,y) = Y = F(y,y,x). However, since one of the identities F(x,y,x) = x or 

F(x,y,x) = y is also valid on JI , we will consider the following two subcases. 

(al): JlI= F(x,y,x) = y and the identities discussed above obviously yield 
F(x,y,z) = x + y + z. Therefore, we see that, in the case under consideration, the 

functions x,y,z,x + y + Z are defined on {0,1} by the ternary terms of the algebra JI . 
The alternative now is as follows: either this set exhausts all ternary functions 

definable on {O,l} by the terms of the algebra JI , and then we come to the case (a) 
of the present lemma, or there is one more function G(x,y,z) definable on {O,l} by 

the ternary terms of the algebra JI which induces only x and y as binary 
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functions. By lemma 8.2, since only the case (c) of the present lemma is plausible 
due to the latter condition, G(x,y,z) must coincide with one of the functions of the 
type xy+yz+zx, x+y+xy+yz+zx, x+z+xy+yz+zx and y+z+xy+yz+zx. 

Superposition of these functions to the function x + y + z implies that the 
discriminator set by the function x + Z + xy+ yz + ZX on {0,1} is definable by the 

terms in 11 . 

(a2) 11 1= F(x,y,x) == x. This equality, however, combined with the above

mentioned identities F(x,x,y) .. F(y,x,x) = y, means that F is a discriminator on 

{a, I}, i.e., 11 is also quasi-primal in this case. 

(c) The only binary functions definable on {0,1} by the terms of the algebra 11 
are x,y,l + x,l+ y. Let .R be a subalgebra of the algebra 11 3 generated by the 

elements < 1,0,0 >, < 0,1,0> and < 0,0,1 >. Then, obviously, .R contains the 

elements < 0,1,1 >, < 1,0,1> and < 1,1,0 >. Since .R cannot be six-element, .R 
contains also one of the elements < 0,0,0 > or < 1,1,1 > and, in addition, as .R is 
closed under the operation x + 1, it must contain both of these elements. Therefore, 

there exists a ternary term F(x,y,z) such that in 11 3 we get 

F( < 1,0,0 >,< 0,1,0 >,< 0,0,1 » =< 1,1,1>, i.e., 

F(1,O,O) = F(O,l,O) .. F(O,O,l) = 1. 

Therefore, each of the functions F(x,y,y), F(y,x,y) and F(y,y,x) must coincide 
with one of the functions x, 1 + y. At the same time, all three functions under 
discussion must simultaneously coincide with one of the functions x, 1 + y, since in 
the opposite case we would get the equalities x = F(x, x, x) = 1 + x. Thus, the 
alternative now is as follows: either 

F(x,y,y) = F(y,x,y) = F(y,y,x)" x, 
or 

F(x, y, y) = F(y,x,y) - F(y,y,x) = 1 +y. 

Let us consider the following two cases. 

(c1) 11 1= F(x,y,y) = F(y,x,y) = F(y,y,x)" 1+ y. One can easily check that this 

is possible only when we have 
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F(x,y,z) = 1 +xy+ yz+ zx, 

but in this case we get 

1 +F(x,y+ I,z) = x+ z+ xy+ yz+zx 

which is a discriminator on {O,I} and, hence J/ is quasi-primal. 

(c2) J/ 1= F(x,y,y) = F(y,x,y) = F(y,y,x) = x. We can also directly notice that in 

this case F(x,y,z) = x + y + Z and, hence, the ternary functions of the algebra J/ 
define all the operations definable on {O,I} by ternary terms of the algebra 
< {O,I}; x + I, x + Y + z >. In this case, the alternative is as follows: either there are no 

other ternary functions definable on {O,l} by the terms of the algebra J/ and, hence, 

the ternary functions definable on {O,I} by the terms of the algebra J/ coincide with 
those discussed in the case (d) of the present lemma, or alongside with the ternary 
functions definable on {O,I} by ternary terms of the algebra <{O,I};x+l,x+y+z>, 

there are ternary functions definable by the terms of the algebra J/ . 
By virtue of the statement (d) of lemma 8.2, all ternary functions definable on 

{a, I} by the terms of the algebra J/ are also definable by the terms of the algebra 

J/ 4. Owing to the fact that in this case there are ternary terms of the algebra J/ 
not definable by the terms of the operations x + 1, x + y + z, we can remark that the 

discriminator on J/ is definable by the terms, i.e., J/ is quasi-primal in this case 
as well. 

Let us now consider the remaining case, (d), when the binary functions 

definable on {a, I} by the terms of J/ are J/ x, y, x v y, X A y. Since J/ 2 must not 

have a three-element subalgebra, there is a ternary term F(x,y,z) on J/ such that 

F( < 0,0 >,< 1,0 >,< 1,1 » =< 0,1 > 

F(O,O,I) = I, F(O,I,I) = 0. 

Let G(x,y,z) = F(x A Y A Z,X A y,x) v F(x A Y A z,y A z,z). One can directly check 
that G(x,y,z) = x + z + xy+ yz + zx, i.e., it is a discriminator on {0,1} and, hence, in 

this case J/ is also quasi-primal. • 

Lemma 8.7. Any two-element quasi-primal algebra is rationally equivalent to 

one of the algebras J/ 3, J/ 4, J/ 5' J/ 6, J/ 7· 
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Proof. By theorem 2.14, for any quasi-primal algebra 11 defined on {0,1} 
any function preserving the subalgebras and partial isomorphisms of this algebra must 

be defined by the terms of the algebra 11 . Enumerating all possible candidates to be 

a family of basic sets of subalgebras of the algebra 11, i.e., 

(1) {O,l}, 
(2) {0,1},{0}, 
(3) {O,l},{l}, 

(4) {0,1},{0},{1}, 

and all possible candidates to be partial isomorphisms between the subalgebras of 
these families, we come to the conclusion that the statement of the lemma is true. • 

Let us now return to the proof of the theorem. If a variety.m has the 

spectrum given in the statement (a) of the theorem, there is a two-element .m
algebra 11 and, since.m is categoric at any power of the type 2\nEw), all finite 

.m -algebras are exhausted by algebras 11 n. As ..'lll is generated by its finite 

algebras, the equality ..'Ill =..rll (11) is valid. By lemma 8.6, either one of (a), (b), 

(c) or (d) considered in its formulation must be the place, or 11 must be quasi

primal. Since in the cases (c) and (d) 11 is a simple Abelian algebra without one

element subalgebras" according to theorem 6.5,.m has algebras of any power 2n 

which are not isomorphic to 11 n, where 1 s n < w. For the cases (a) and (b), or 

when 11 is quasi-primal, statement (a) of the theorem results directly from lemmas 
8.7 and 8.3. 

To prove statement (b) of the theorem, let us remark that, by virtue of lemma 

8.6 and theorem 6.5, the fact that a finite .. m spectrum has the form {2n ln Ew} 

and .. m is not categoric in finite powers implies that only the cases (c) and (d) out 
of those enumerated in the conclusion of lemma 8.6 are possible, but then, by 

virtue of lemmas 8.3 and 8.2, the two-element algebra 11 generating .m is 

rationally equivalent to either algebra 118 or algebra 11 9' • 

It should be remarked that all the varieties given in the formulation of theorem 
8.9 are pairwise non-equivalent, which fact can be deduced from the equalities 
following directly from lemma 8.2 for I s n < w: 
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Now, let us return to the proof of theorem 8.8 employing the lemmas just 
proved. 

Proof of theorem 8.8. 

(a) Let 1 ER, i.e., 1 = FSpecm for a certain variety .m , and in this case we 

have 1(2) = 1, 1(6) = O. It suffices to show that the equality 1(2k+1) = 1 yields the 

equality 1(2k) = 1. Let 11 be a two-element .m -algebra, and let 11' E.m ,1111 = 2k. 

Then, in accordance with the equality 1(2k+1) = 1, the algebra 11 x 11' is isomorphic 

to the algebra 1I k+1 and, hence, 11' EHP(1I). By lemma 8.6, 11 is either quasi
primal or one of the algebras presented in the cases (a) - (d) of the lemma under 
consideration. On the other hand, the condition 1(2) = 1 excludes the cases (c) and 

(d). Therefore, 11 is either quasi-primal or has the form described in the cases (a) 

and (b) of the present lemma. But then, by lemmas 8.7 and 8.3, 11 is rationally 

equivalent to one of the algebras 111 -117' and the equality 1(2k) = 1 results now 
from the statement (a) of theorem 8.9. 

(b) Let 1 ER, 1 = FSpec.m and 1(6) = 0, 1(2) = 1(2k+1) = 2. Let us prove 

that in this case we get 1(2k) = 2. Let e E.m and Ie 1= 2k. 1I,.B E..m , 
1111 =I.B 1= 2, and 11 r:;..B. It should be remarked that, in this case, by theorem 

h 'tlk+1..J.Bk+1 .. Bk'tl 'tlk+1 Bk'tl Bk+1 2.28, we ave <-I '" . • Therelore,. <-I ~ <-I or. <-I ~. • Let us 

assume that the latter is valid, 11 EHP(.B). And again, either tC.B ~.B k+1 or 

tC.B s1l k+1 and, hence, either e EHP(.B) or e EHP(1I )c;;;,HP(.B). By lemma 

8.6 applied to the algebra.B and theorem 6.5, the algebra.B must obey one of 

the conclusions of lemma 8.6, (c) or (d) and, hence, according to lemma 8.3, .B 
is rationally equivalent either to the algebra 118 or to the algebra 11 9' and the 
statement (b) of the lemma under discussion now results from the statement (b) of 
theorem 8.9. 

(c) Let now 1 = FSpecm, 1(6) = 0 and 1(2) = 1(23+m+s ) = 3 + m, and thus we 

come to a contradiction. Let e 1 ,00' ,e 3+m be non-isomorphic .m -algebras of the 
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power 2. Then the algebra <C {+1 X <C 2 x ... x<C 3+ m is isomorphic to one of the 

algebras <cj+m+s(l s j s3 +m) which are pairwise non-isomorphic, by theorem 2.28. 
"r3+m+s"r "r "r 3+m+s d h Let us assume ~1 x~2x ... x~3+m5!!~1 an , ence, 

<C 1' .•• '<C 3 +m EHP(<C 1). The variety .. '01 (<C 1), however, cannot have more than two 
non-isomorphic algebras of the power 2 by lemmas 8.6, 8.3 and theorem 8.9 .• 

So far we have been limiting ourselves with to fine spectra solely. Turning to 

values of the function Specm (x) on infinite cardinals, let us first of all recall the 

equality Specm (X) = 21-\ for any infinite cardinal X for the case when the variety.'01 

is an arbitrary non-Abelian and congruence-modular variety. Indeed, by corollary 2.2, 

a non-Abelian variety . .'01 must contain a non-Abelian subdirectly non-decomposable 

algebra JI which will be, according to theorem 3.1, Boolean-separated, i.e., for any 

non-isomorphic Boolean algebras B1,B2 , the algebras JI Bl and JlB 2 are also non

isomorphic. Therefore, the equality SpecJJl (X) = 21-\ will result from the equality 

SpecBA(X) = 21-\ known for infinite cardinals. For the case of congruence-modular 
varieties, it is possible to completely describe, by the module Xo, the values of the 

functions of a fine spectrum on infinite X. Since we have considered the non-Abelian 
case, it suffices to analyse the functions Specm (X) for Abelian varieties. 

Theorem 8.10. If . .'01 is a congruence-modular variety and the function 
nm (X) = Spec.m (X) +Xo, on infinite cardinals nm (X) coincides with one of the 

following functions: 

The proof of this theorem is, by theorem 2.20, reduced to the analysis of the 
functions nm (X) for varieties of left unitary modules over the rings with unities and 

will thus be omitted. A full description of fine spectra of varieties has been given by 
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E.A.Paljutin [153]. 
The case of category varieties also pertains to the cases when a variety is 

described to the accuracy of rational equivalence employing fine spectra. Let us not 
prove the corresponding results, which are of a specific model-theoretical character, 
and give instead their formulation with some required definitions. 

Definition 8.5. 

(a) A variety.m. is called categoric if for any cardinal ~ SpecITl (~) s 1 and 

.m. is not trivial (has non-singleton algebra). 

(b) A variety .m. is categoric in the power ~ if SpecITl (~) s 1. 

The following limitations are also valid on the function of a fine spectrum of a 
variety pertaining to the notion of category. 

Theorem 8.11. 

(a) The equality Specm. (~o) = 1 implies that the variety "m is categoric. 

(b) The equalities Spec ITl ~l) = 1 and Spec.m (n) > 0 for any n obeying the 

inequalities 2 s n < ~o imply that the variety.m. is categoric. 

Definition 8.6. For any algebra 11 and any n ~ 1, let us define the 

operations d~ and P~j on the algebra 11 n in such a way that 

For any variety .m., .m.n will denote {1I nlll Em}, where 11 n is an 

enrichment of the algebra 11 n with the operations d~ and P~i (1 sis n). If t(x) is 

the term of the signature of the variety .m. n' by T(t) we will denote the set 

{r(xl, ... xm)lr(xl""'xm) is the term of the signature of the variety .m.n, and 

.. mnl- Vxr(t(x), ... ,t(x» = t(x)}. "mn(t) will denote a class of algebras obtained on the 
basic sets of .m. n -algebras by including the functions definable on them by the terms 

of the set T(t), as well as the functions d~ and P~i' into the signature. 
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Theorem 8.12. A variety ,,'Ul is categoric iff it is rationally equivalent to a 
variety of one of the following types: 

(a) Vn(t), where V is the variety of vector spaces over a certain sfield 1), 

n ~ 1, and t(x) is a certain term of the signature of the variety Vn ; 

(b) (£ n' where (£ is the variety of all sets (of an empty signature), and n ~ 1; 

(c) Cn' where C is the variety of all sets with an element singled out (the 
signature consists of one constant), and n ~ 1. 

Priorities. Theorem 8.1 comprises the equivalences of various statements 
proved by different authors at different times. In particular, the equivalence of the 
conditions (a) and (d) was proved by A.I.Malzev, that of the conditions (d) and (e) 
was proved by W.Taylor [225]. Theorem 8.2 is by T.K.Hu [94], theorem 8.4 by 
K.Sokolnicki [214]. Theorems 8.5, 8.7, 8.8 and 8.9 and the related proof of the 
lemmas are by W.Taylor [227]. The description of categoric varieties was obtained 
by E.A.Paljutin and S.Givant [77] independently. The formulation of theorem 8.12 
used here belongs to S.Givant. Theorem 8.11 was proved by E.A.Paljutin for 
quasi-varieties [157] (see also [156]) when describing categoric quasi-varieties, the 
description of categoric positive Hom theories are also by him. Theorem 8.10 is by 
Y.T.Baldwin and R.McKenzie [7], the statement of corollary 8.1 is by G,Gratzer 
[85]. Theorem 8.6 was proved by A.Ehrenfeucht and can be found in [227]. 
Theorem 8.3, as has been pointed out in the text, belongs to F.W.Lauvere [123]. 

9. Epimorphism Skeletons, Minimal Elements, 
the Problem of Cover, Universality 

Let If be an arbitrary class of universal algebras, and J n denote a family of 

the types of the isomorphism of n -algebras. Studies of the relation of epimorphism 

between If -algebras result in the following notion: for a,b EJR., the relation 

a «b is valid iff there is a homomorphism from an algebra of the type of the 
isomorphism b on an algebra of the type of the isomorphism a. The relation « 

will be used in an analogous sense between the algebras from n as well. 
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Obviously, « is a quasi-order relation on JH . 

Definition 9.1. The skeleton of epimorphism of the class of algebras n. will 

be called a quasi -ordered class < J H ; «> . 

The present section, as well as the following ones, will be devoted to studying 
epimorphism skeletons of varieties of universal algebras (basically congruence
distributive), as well as to studying the algebras the types of isomorphisms of which 
occupy extreme positions in the epimorphism skeletons of the corresponding varieties 
themselves. 

JlI will denote the isomorphism type of the algebra 11. Let us first 
investigate relations between the epimorphism skeletons of varieties and such 
traditional objects of universal algebra as lattices of subvarieties and those of 

congruences. It should be recalled that for an arbitrary cardinal ~, .. 'lTl x denotes a 

family of .. 'lTl -algebras whose power is not greater than ~. Bounded epimorphism 

skeletons of the variety JJl will be called quasi-ordered sets < J.mx;«>, a 

countable epimorphism skeleton of .m will be termed a quasi-ordered set 

< J.mxo;«>' Obviously, the epimorphism skeleton of any variety contains a least 

element (let us denote it with OJll) which is the isomorphism type of a one-element 

algebra. Any bounded epimorphism skeletons of the variety .m, < J.mx;«> 
~:2: ~o) contains a greatest element which is the isomorphism type of a free algebra 

SJIl (~). 
For any quasi-order < A;:s>, let =s denote the equivalence relation naturally 

associated with this quasi-order: a =s b iff a:s b and b:s a. 
If - is a certain equivalence relation on the quasi-ordered set < A;:s> with 

convex classes of equivalence, < A/-;:s> will denote the quasi-order defined on the 
factor-set A/- in the following way: [aL:s [bL iff for some cE[aL, d E[bL we 
have c:s d (here [aL is a class of --equivalence containing the element a). A subset 

B of the quasi-ordered set < A;:s> is called a semi-ideal if for any a EA, b EB it 
follows from a:s b that a EB. Henceforth we will often consider lattices as partially 
ordered sets without pointing it out especially, if it is clear from the context. 

Let us define the relation :S J on ConS JIl (~) in the following way: 1/J:S J 8 

iff Sm (~)/8 «S .. m (~)/1/J. Obviously, 1/J:S 8 yields 1/J:S J 8, the latter implying 

that there is a 8" EConS .. m (~) such that 1/J:S 8' and SJIl {~)/8 sSm {~)/8'. For 

8,8' EConSm (~), the existence of the isomorphism S.m ~)/8 S!Sm (~/ 8' will be 

expressed by 8 S! 8'. Let us introduce one more equivalence relation on ConSm~): 

8 = 8' if 8:s J 8' and 8':s J 8. Let us also define the relations :S Jc' S!c,=c on the 

lattice ConSm (~): 
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1jJ S Jc () iff there is a t/J ~ 1jJ such that 

< ConJm (X)I~ (); V,A >~< ConJm (X)I~ t/J; V,A >; 

< ConJm (X)I~ (); V,A >~< ConJm (X)I~ ()'; V,A >. 

Th(~ following relations between the equivalence relations 

on ConSm (X) and the quasi-orders S J ,S Jc are also obvious: 

2m 

introduced 

It should be remarked the the equivalence classes on ConJ.m (X) will be 

convex subsets relative to '" and '" C" One can also easily note, by correlating the 

algebras J.m (X)/() to congruences () EConJm (X), that < 3 .. m'/'(;«> is an 

antimonotonic image of a partial order < ConJ.m (X);s> at X ~ Xo. Moreover, 

< 3.m'/'(/",« ;«> is anti isomorphic to < ConJm (X)/",;s J >. 

In its tum, < ConJm (X)/"'c;s Jc> is an anti monotonic image of < 3 .. m'/'(;«> 

(by correlating the algebra }f Em and congruence () EJ.m (X) so that 

J.m (X)/() 5o!}f ). 

The lattice of subvarieties Lm of the variety.m considered as a partially 

ordered set is also a monotonic image of any limited epimorphism skeleton 

< 3 .. m'/'(;«> of the variety.m at X ~ Xo: it suffices to correlate the variety 

.m (}f ) ~~.m to the algebra }f Em. The discussed relations < 3m'/'(; «>, 

ConJm (X) and Lm are concluded in the following statement. 

Statement 9.1. For any algebra variety .m and any infinite cardinal X, the 
following anti monotonic, f, g, and monotonic, h, mappings exist, in which case 
f, g,h are surjections: 
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Let us recall some more simple facts pertaining only to the epimorphism 
skeletons of congruence-distributive varieties. As was the case in the preceding 
discussion, let BA be a variety of Boolean algebras, IBA be a subclass in BA 
consisting of only interval Boolean algebras. It should be recalled that Btko ~ IBA, 

and, obviously, JIBA is a semi-ideal in < JBA,«>. 
Let L be the family of all linearly ordered sets. Correlating the linearly ordered 

set < A;s> and a corresponding interval Boolean algebra , we get a mapping f: JL 

on JIBA. Obviously, I preserves the relation « and, moreover, if 
I( < A;s» «/« B;s>), there is a < C;s>EL such that 1« A;s» = 1« C;s» and 
< C;s> « < B;s>. In other words, there is a strong homomorphism from the 
epimorphism skeleton of the class of linearly ordered sets on the epimorphism 
skeleton of interval Boolean algebras. 

Let now .m be an arbitrary nontrivial congruence-distributive variety and let }f 

be a simple.m -algebra existing by theorem 2.11. Then, for any Boolean algebra 

.B , any homomorphic image of the algebra}f.B has, by corollary 3.1, the form 

}f .B I, where .BI is a homomorphic image of the algebra .B. Besides, by the same 

corollary 3.1, for any Boolean algebrasBI andB2 the relation }f.B I «}f.B2 is 

equivalent to the relation .BI« .B2 , while }fBI and the algebra }fB2 are 

isomorphic iffBI andB2 are isomorphic. Hence, the correlation of them -algebra 

}f.B to the Boolean algebra .B is an isomorphic mapping from the epimorphism 

skeleton < JBA,«>of a variety of Boolean algebras on a certain semi-ideal of the 

epimorphic skeleton < J.m ; «> of the variety In. Taking all the facts just 
discussed into account, we arrive at the following statement. 

Statement 9.2. Ifm is a nontrivial congruence-distributive variety, then there 

IS a semi-ideal isomorphic to < JBA,«> in < J .. m ;«>, and there is a certain 
strong homomorphism from the epimorphism skeleton of the class of linearly ordered 

sets to a certain semi-ideal of .m . 

Definition 9.2. An element a of the epimorphism skeleton of the variety .m 

will be called minimal if a .. 0m' and for any b EJm , 0 . .'01 «b« a yields 

either b = 0m or b =« a . 
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The type of isomorphism of any simple .m -algebra is obviously minimal in the 

epimorphism skeleton of m and, hence, by theorem 2.11, there is at least one 
minimal element in the epimorphism skeleton of any nontrivial variety. 

Definition 9.3. A non-singleton algebra is called pseudo-simple if any of its 
homomorphic images is either one-element or isomorphic to it. 

Simple algebras are often particular cases of pseudo-simple ones. Unlike simple 
algebras the congruence lattices of which are two-element, the congruence lattices of 
pseudo-simple algebras can be arbitrarily large. 

Theorem 9.1. The congruence lattice of any pseudo-simple algebra is well

ordered and has the form of a non-decomposable ordinal wfJ + 1, where f3 is a 
certain ordinal. For any ordinal f3 there is a pseudo-simple algebra with its 

congruence lattice isomorphic to wfJ + 1. 

Proof. Let 21 be a pseudo-simple algebra. Let us first remark that 21 has a 

monolith. Indeed, let us choose a .. b E2I , and let £) be a maximal congruence on 

21 such that < a,b >$.£). Then, obviously, £)!,J~/(J is the least congruence on 21/£) 
other than L1lJ I(J' but 21/£) 5!! 21 . Let us now show that Con21 is linearly ordered. 

Indeed, if the opposite is the case, if £)1'£)2 ECon21 and are incomparable, 21/£) 
isomorphic to 21 has no monolith, since 

Let us show that Con21 is well-ordered: choosing an infinitely descending 

chain of congruences £)1 > £)2 > ... > £)n >... on 21 , we arrive at a contradiction with 

the fact that 21/ A £)j must have a monolith. Therefore, Con21 5!! y, where y is an 
iEw 

ordinal. But, on the other hand, since for any £) .. V lJ we have 21/ £) 5!! 21 , 

Con21 I£) 5!!<{£)1 ECon2l1£)1:2!: £)};s>5!! Con21 , 

i.e., for any a Ey we get < {6 Ey16:2!: a}; s>s y. The fact that such not limit 

ordinals have the form wfJ + 1 for a certain ordinal f3 is well-known. Thus, the 
theorem is thus proved in one direction. 

Let us now construct a pseudo-simple algebra 21 such that Con21 S! wfJ + 1 for 

an arbitrary ordinal wfJ + 1. As the basic set of 21 let us choose an ordinal wfJ, 
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and let us define the function / on wfJ in the following way: /(a,b,c) = 0 if 
a > b,c, and / (a,b ,c) - c otherwise. 

We can easily notice that for any congruence () on 11 =< wfJ;/ >, one of the 
equivalence classes relative to () has the form of the initial interval in the ordinal 

wfJ, while all the other classes are one-element and conversely, any similar 

equivalence on wfJ is a congruence of the algebra 11. Therefore, indeed, 

Conll e! wfJ + 1. It is also obvious that 11 is pseudo-simple. • 

Thus, the types of isomorphisms of pseudo-simple algebras, as well as those of 
simple algebras, are obviously minimal in the epimorphism skeletons of the varieties 
containing these algebras. In search of describing all algebras the types of 
isomorphisms of which are minimal in the epimorphism skeletons of the varieties 
containing them, we come to the following definition. 

Definition 9.4. A one-element algebra 11 is called quasi-simple if for any 

congruence a on 11 other than the greatest, there is a congruence fJ on 11 such 

that fJ ~ a and 11/ fJ is isomorphic to 11 . 

In particular, simple and pseudo-simple algebras are quasi-simple as well. 

Obviously, for any variety .o'Ul, an element a EJ.m. is minimal in 

< J,m. ;«> iff a is an isomorphism type of a quasi-simple algebra. In this case, a 
will be an isomorphism type of either a simple or a pseudo-simple algebra iff the 

equivalence class E« on J,m. containing the element a (let us refer to this class 
as [ale ) is one-element. Therefore, the power of [a]. can serve as a measure of - -distinction of a not simple and not pseudo-simple algebra from the latter. 

It should be noticed that, since any algebra is decomposable in a subdirect 
product of subdirectly non-decomposable algebras, for any quasi-simple algebra there 
is a subdirectly non-decomposable algebra 55« -equivalent to it. Therefore, the number 

of quasi-simple algebras of the variety.o'Ul which are pairwise non-equivalent in 
terms of 55« (the number of minimal elements which are pairwise non-equivalent in 

terms of 55« in the skeleton of < J"m. ;«» is not greater than the number of 
non-isomorphic subdirecdy non-decomposable algebras. 

The following statement shows that well-ordered congruence lattices are not 
characteristic of pseudo-simple algebras even in the class of quasi-simple ones and, 
moreover, there are quasi-simple algebras with well-ordered congruence lattices and 

any measure of distinction from pseudo-simple algebras. Let JlI denote this 

isomorphism type of the algebra 11 . 
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Theorem 9.2. For any ordinal fJ > 0 and cardinal ~ not greater than 1 wfJ 1 

(strictly less than ~o for the case when fJ = 1) there is a quasi-simple algebra JI 
such that ConJl 51! wfJ + 1 and I[JJi]. 1= ~. 

« 

Proof. Let JI fJ -< wfJ;/ > be a pseudo-simple algebra constructed in the proof 

of theorem 9.1, i.e., ConJi fJ 51! wfJ + 1, and let any congruence () EConJi fJ be such 

that the only non-singleton equivalence class relative to () has the form of the initial 

interval on wfJ, and let any initial interval on wfJ be the equivalence class for a 

certain congruence on JI fJ . 

Let g be a certain unary function on wfJ such that g(x):s x for all xEw fJ 

and, therefore, any congruence () EConJi fJ remains a congruence in the extension 

Ji p =< Ji fJ' g > of the algebra Ji fJ by adding the function g in the signature. 

Let us consider the two cases:(a) when ~ is infinite, and (b) when ~ is finite. 

In the case (a), let ~ = ws' Let us define the function g(x) on Ws in the 
following way: g(n) = 0 for all n < w. If g(x) is already defined on all 

i<wjU<ws), then let us set g(y)=y for y (wj:sy<wj+w j ), and let us set 

g(y)=g(6) for any y=(wj +wj )'n+6 (O<n<w and 6<wj +wj ). These 

conditions define g on the ordinals less than w j +1 • Therefore, the function g is 

defined on all y < WS' If wfJ .. wp g is defined on the entire Ji fJ' while if 

Ws < wfJ, g is periodically defined furthermore on Ji fJ = wfJ with the period ws' 

Let now ()y( y < wfJ) be a congruence on Ji /J uniquely defined by the 

following condition: there is an equivalence class over ()y equal to {6I6 < y}. 

Obviously, at j1 < h < ws ' we have Ji /J /()wi! ~Ji /J/()w h ' Indeed, the identity 

g(x) = x is fulfilled in JI p / () wi! on the first wjl elements, while in JI /J / () wh in 

the first wh elements (the natural order on the ordinal-elements JI /J is defined with 

the function / obviously). Therefore, we get I[,JJI /J].« 1= X. 

For any i < wfJ there is a y < wfJ and a finite set wjl ~ ... ~ w jl of ordinals less 

than Ws such that i .. Ws . Y + wjl + ... +w jk . In this case, by the definition of g and 

Jl fJ , it is obvious for i1=Ws'y+wjl+1+wiI+1 that the mapping 

h(j) = ws' y + w M1 + wM1 + j is an isomorphism of JI /J and JI /J /()4' Therefore, 

JI p is quasi-simple and the statement of the theorem is proved for the case (a). The 

construction of the function / for the case (b) can be carried out analogously .• 
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Definition 9.5. A partially ordered set (lattice) L will be termed upper-non
decomposable if for any not greatest element a from L there is abEL such that 

b ~ a and L is isomorphic to 4 = {c ELlc ~ b}. 

According to the theorem on homomorphisms, the congruence lattice of a quasi
simple algebra is algebraic and upper-non-decomposable. 

Let us show that, under certain additional conditions, for an algebraic upper

non-decomposable lattice L, there is a quasi-simple algebra 11 such that Con11 51! L. 
This, in particular, implies the statement on the existence of a greater number of 
quasi-simple algebras of any infinite power. 

/[ (L) will denote the upper semi-lattice of compact elements of the algebraic 

lattice L, 1l(L) a partially ordered set of v-non-decomposable elements of the semi

lattice /[ (L) (an element a is v -non-decomposable if for any b,c, from a = b v c 
we have either a = b or a = c). A complete lattice L is called well-distributive if for 

any sets I,Ji(iEI) and any families of the elements Cj (jEUJi ) of the lattice L 

the following equality is valid: 

A ( V cJ.) = v (A Cj(i». 
iEl jEJ jEn Jj iEI 

jEl 

The following characterization of algebraic well-distributive lattices is known 
[44]: a lattice L is algebraic and well-distributive iff it is isomorphic to the lattice 
1« A;:s» of non-empty semi-ideals of a certain partially ordered set < A;:s> with a 

least element. In fact, one can choose the set 1l(L) as < A;:s>. 

Definition 9.6. The algebraic lattice L is called strongly upper-non

decomposable if the partially ordered set 1l(L) is upper-non-decomposable, and the 

biggest element of L is not compact. 

By virtue of the characterization of algebraic well-distributive lattices given 
above, it is obvious that if such lattices are strongly upper-non-decomposable, they 
are upper-non-decomposable. 

Theorem 9.3. For any algebraic well-distributive strongly upper-non

decomposable lattice L there is a quasi-simple algebra 11 such that Con11 51! L. 

Proof. Let the lattice L obey the conditions of the theorem. As has been 

noted earlier, L 51! I(1l (L». The functions 11./2 are defined on 1l(L) in the 
following way: il(a,b) = 0 if a .. b, Jl(a,b) = a if a = b (here 0 is a least element 
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of L), f2(a,b) = 0 if a < b, f2(a,b) = a otherwise. 

Let JI L =< R(L);JlJ2 >, where R(L) is the basic set of the partially ordered 

set :R. (L ). Let us prove that Con JJ L 51! L. 

For any 8 EConJl L there is a non-empty semi-ideal 10 of the set :R.(L) such 

that all the equivalence classes in terms of 8 are lo,{a}, where a ER(L) \ 10, 

Indeed, let 10 be a non-singleton equivalence class in terms of 8, a,b E/o and 

a .. b. Then a=ft(a,a)50Jl(a,b) =0, i.e., OE/o. If cE/o and d<c, d .. O, 

0= Jz(d,c) 50 Jz(d,O) = d, i.e., any non-singleton equivalence class in terms of 8 is 

a semi -ideal in :R. (L) and, since :R. (L) contains the least element 0, this class being 
unique. 

The validity of the converse statement can also be checked directly: for any 

non-empty semi-ideal I in :R.(L), the equivalence with the classes I,{a}, where 

a ER(L) \ I, is a congruence on JI L' Therefore, ConJl L 5!! I(R(L» 9! L. 

To prove the theorem, one now has to notice that JI L is quasi-simple. Indeed, 

for any 8 EConJl L if 8 .. VlJ ,AlJ ' there is a semi-ideal 10 " R(L) which is the 
L L 

only non-singleton equivalence class in terms of 8. Let c ER(L) \ 10, As L is 

strongly upper-non-decomposable in R(L), there is ad:?: c such that :R.(L) is 

isomorphic to an interval {b ER(L~ b:?: d}. Let 1 be a semi-ideal in :R.(L) equal to 
R(L)\{bER(L)lb:?:d}. Obviously, 1-:2/0 and, hence, 8] :?:8Io =8 (8] is a 

congruence on JJ L with the classes 1,{a}, where a E:R.(L) \ 1). Besides, the 

isomorphism :R.(L) and {bER(L~b:?:d}, as well as the definition of JI L yield the 

isomorphism JI £18] and JI L' Therefore, indeed, JI L is quasi-simple .• 

The condition of well-distributivity is not necessary for congruence lattices of 
quasi-simple algebras. Moreover, as can be seen from the next theorem, the 

limitations on congruence lattices of quasi-simple algebras are not local (interval) 
limitations, but algebraic ones. 

Theorem 9.4. For any algebraic lattice L there is a quasi-simple algebra JI 
of a finite signature such that L is isomorphic to the ideal of the lattice ConJl . 

Proof. Let L be an arbitrary algebraic lattice and 4 = L(£) 1, i.e., 4 is 
obtained from L by adding a new greatest element. Let JJ I =< A'; a > be a certain 

algebra (existing by theorem 2.4) such that ConJl 5!! 4. By the same theorem, as 

V lJ' is compact, JlI can be chosen of a finite signature. Since V lJ' is v-non-

decomposable, let it be principal in JJ I. Let gl,g2 EJI' be such that V lJ ' = 8~~2 . 
Let also e .. JJ I, and let us define the algebra JJ /I =< A' U{e};a > in such a way 
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that 2/" -:)2/', and for any f Eo, any chain a of the elements of 2/" we get 
f(ll) = e if at least one of the elements in a is e. Obviously, It is isomorphic to 

the ideal of the lattice Con2/" generated by a congruence on 2/" with the 

equivalence classes A', {e}. For i Ew let 2/ i =< 1\; 0> be pairwise disjunct algebras 

isomorphic to 2/", the elements gf, gte i of the algebra 2/ i corresponding to the 

elements gl,g 2,e of the algebra 2/" under these isomorphisms. Let us define the 

algebra 2/ =<A;o,g,h > in the following way: A= U~, 2/ -;;22/ i for all iEw, 
iEw 

and f(a) = eo for f Eo provided that the chain a belongs to no 1\. The ternary 

function g will be defined on A in the following way: 

g( a,b,c ) = g~ if a = g~, the conditions on b,c being the same, 

g( a,b,c) = eio if a = eio, the conditions on b,c being the same, 

g(a,b,c) = e~ if b = c E1\!, 

° g( a,b,c ) = e otherwise. 

The unary function h will be defined by the following condition: 

h(a)=e i if a=gf, 

h() i+l· f i a =e 1 a = g2, 

h(a) = eO otherwise. 

Let 1jJ ECon2/ . It is clear that, if for some b;o' c,b E1\!,c EAiz ,il O!: iz and 

< b,c >E1jJ, UAi U {ei1 } is contained in one and the same equivalence class in terms 
i<~ 

of 1jJ. Indeed, for any i < il we get: 
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and, since (J~ i i = V)J , all the elements of the set U Ai U {eil } belong to one and 
gbgZ i 

i<~ 

the same equivalence class in terms of 1jJ . 

In an analogous way, using h, we see that if < gLg~ >E1jJ, < ei ,ei +1 >E1jJ. On 
the other hand, one can directly check that for any (J EConJl i such that (J ¢ V)J , 

I 

the equivalence 1jJ«(J,i) with the equivalence classes: UAjU[ei]e, (J-classes on Jl i 

j>i 

containing no ei and, finally, one-element subsets of the set UAj' will be a 
j>i 

congruence on JI . Therefore, we get 

where i Ew. Now we have to prove that JI is quasi-simple. Indeed, if 1jJ EConJl 

and 1jJ ¢ V)J' there are i Ew and (J EConJl i such that 1jJ = 1jJ( (J,l). Then 

1jJ1 = 1jJ(V)J.,i)~ 1jJ. From the definition of JI and 1jJ(V)J.,i) one can directly see 
I I 

that JI/1jJ1 51! JI , i.e., JI is quasi-simple .• 

Now the following problem is open for discussion. 

Problem 9.1. Is there a quasi-simple algebra JI such that ConJl 51! L for 
any algebraic upper-non-decomposable lattice L? 

By way of concluding the discussion of quasi-simple algebras let us recall some 
more of its elementary properties. 

Theorem 9.S. If JI is a quasi-simple algebra which is not simple,: 

(1) V)J is not compact; 

(2) if the JI signature is finite, JI contains a one-element subalgebra; 

(3) if the JI signature is finite, JI is not finitely generated. 

Proof. 

(1) Let R be a certain chain in ConJl \ {V)J} maximal in terms of inclusion. 
In this case, R has no greatest element, since if (J were the greatest element in R 
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then, as 11 is quasi-simple, there would be a congruence 0' ~ 0 such that 

11/0' !!IS 11 . Let f be an isomorphism of 11/0' on 11. Since 11 is not simple, 

there is a rpECon1l such that All <rp<VlI, but in this case O<](rp)<VlI 

which contradicts the maximality of the chain R. Hence, R has no greatest element. 
On the other hand, it is obvious that, since R is maximal, v 0 = V lI' As 

(JER 

R ~ Con1l \ {V 1I }, and R is the chain without a greatest element, V 1I cannot be a 

finite family of elements from R, which proves the fact that V 1I is not compact. 

(2) If a = < Jt! , ... ,iki > is the signature of 11, let a be an arbitrary element 
k 

of 11. Let bi =/i1l;(a, ... ,a),is.k and 0= v O!p. Since, according to (1), VlI is 
i-I I 

not compact, 0 < V 1I and, as 11 is quasi-simple, there is a 0' > 0 such that 

11/0' !!IS 11 . However, 

i.e., 11/0' and, hence, 11 as well, have a one-element subalgebra. Obviously, we 

can claim even more: for any positive formula tp(xl , ... ,xn ) fulfilled on 11 , there is a 

one-element subalgebra {e} such that 111= tp(e, ... ,e). 

(3) If 11 was generated by a finite set of its elements a1, ... ,an , and {e} was a 
m 

one-element subalgebra of the algebra 11 ({e} exists by virtue of (2», V 1I = :'1 Oai,e 

was compact, which contradicts the statement (1) .• 

Corollary 9.1. In the epimorphism skeleton of any variety JIl of a finite 
signature only one-elements 55« -equivalence classes have minimal elements less than 

Jm. (n),n < w. 

The proof of the corollary results immediately from the statement (3) of the 
previous theorem. 

It should be noticed that, in line with what has been proved by G.Tardos [22], 
for varieties of in infinite signature the corresponding statements are no longer valid: 
there are finitely generated pseudo-simple not simple algebras of an infinite signature. 

Definition 9.7. An element a is called the cover of an element b in a 
quasi-ordered set < A;s.> if as. b, [a].« ;o! [b] .. « and, for any c EA such that 
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a :s c:s b, we have either c:s a or b:s c. An algebra 21 is called the cover of the 

algebra 21' in the variety .m provided that J,2I is the cover of J,2I' in the 

epimorphism skeleton of .m . 
Therefore, minimal elements of the epimorphism skeleton of any variety are the 

covers of the least element (of a one-element algebra) and, as has been noted earlier, 
there exists at least one cover of the least element. The problem arises whether there 
exists a cover for any element in the epimorphism skeleton of an arbitrary variety. In 
the general case, the answer remains obscure. In the considerations to follow, a 
number of sufficient conditions for the existence of covers of various algebras will 
be given, basically for congruence-distributive varieties. 

Let k(2I) stand for the least number of generating elements for 21 for any 

finitely generated algebra 21 . 

Definition 9.8. A variety .m has the basis property if for any finitely 

generated algebra 21 E.m and finitely generated proper subalgebra 211 of the algebra 

21 the equality k( 21 1) < k(2I) is valid. 

Examples of varieties with the basis property are, obviously, the varieties of 
vector spaces over any fixed field, and, generally speaking, the varieties of algebras 
in which the sets of independently generating algebras have the same number of 
elements, and any set of independent elements is extendable to the set of 
independently generating algebras. 

Theorem 9.6. If a variety .m has the basis property, any finitely generated 

.om -algebra has a cover in the epimorphism skeleton of .m . 

Proof. The proof of this theorem basically follows the ideas used in proving 

theorem 2.11. Let .,m be a variety with the basis property, 21 be a finitely 

generated .om -algebra and k = k( 21 ). By theorem 2.11, 21 can be considered non

singleton. Let J l = J m (Xl" .. ,xk+l),J = J,m (xl"",xk) and let e EConJ be such 

that 21 = J Ie. Let el denote a congruence on J l generated by the pairs 

< a,b >Ee. Considering the homomorphism from the algebra J l to J defined by 
the conditions !(Xj) = Xi for i:s k and !(xk+l) = xk we see, by corollary 2.1, that 

the bound el on J (elIJ) is e. 
It should be noticed that el i, eXI,xk+I' Assume, conversely, that el <!: eXI,xk+1 . 

Let us choose an h(Xl, ... ,xdEJl such that < h(Xl"",Xk),Xl >$.el . Such an h does 

exist since ellJ = e and J Ie is non-singleton. In this case, however, we get 
el v e Xk+l •h <!: eX1h+1 v e Xk +l •h <!: ex"h' On the other hand, by corollary 2.11, we have 
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the equality (e1 v eXk+1,h)IJ = e (it suffices to consider the homomorphism It from 

the algebra J 1 to J defined by the conditions: !(xi) = Xi for is k and 

!(xk+1) = h). Therefore, we see that < x1,h >Ee contradicts the choice of hand, 
hence, indeed, e1 'i, ex ,x . 

1 k+l 

Let R={aEConJlase1 veX1 ,xk+l and a'i, eX1,xk+)' One can easily see that 

R is inductive by inclusion and e1 ER. Therefore, there is a e* ER, maximal in R 

and such that e1 s e*. Let Jl 1 = JJe*. It should be noticed that, by corollary 2.1, 

the equality e1 v eX1,xk+1J =e yields the isomorphism Jde1 v eX1,xk+l 9!.JI. 
In accordance with the choice of e*, for any a EConJ1 from 

* * e s a s e1 v eX1,xk+l we get either as e or eX1,xk+l sa. Therefore, for any algebra 

l: from JI «l: «Jl 1, we get either l: «JI or Jl 1 «l:. In order to prove 

that Jl 1 is the cover of JI , we now have to show that Jl 1 I.I.JI . 
• Let us first remark that the class of e -equivalence containing xk+1 does not 

~ * intersect with S. Conversely, if we had < h(x1"",xk),Xk+1 >Ee for a certain 
h(x1"",xk), then, by the inequality e'*se1 V ()Xl,Xk+l' we would have the inclusion 

i.e., 

However, as has been noted earlier, ()1 v ex,x I J = () and, since 
1 k+l 

* ()se, 
* • • 

< x1,h(X1"",Xk) >Ee . Thus, < X1'Xk+1 >E() contradicts the definition of () . Hence, 

if cp is a natural homomorphism from J 1 to JI, CP(xk+1) does not belong to the 

subalgebra generated by the elements CP(x1)" .. ,cp (xk)' Since the minimum number of 

elements generating the algebra JI 9!. cp(J) is k, the fact that the basis property is 

valid for.m yields that the minimum number of elements generating the algebra Jl 1 

is k + 1. Therefore, Jl 1 I.I.JI , i.e., Jl 1 is the JI cover. • 

Let us now consider the problem of the existence of covers for congruence

distributive varieties. Let I be a certain semi-ideal in < 3.m ;«>. The algebra Jl 1 

will be called I -extendable in the algebra JI 2 if Jl 1 «Jl 2 and there is an Jl3 EI 

such that Jl 1 x Jl3 5O« Jl 2 . 

Lemma 9.1. If .. m is a congruence-distributive variety, I is a semi-ideal in 

< 3.m ; «> closed under direct products of a finite number of algebras, for any 

.m -algebra JI there is no more than one algebra (to the accuracy of 5O«) which is 
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minimal relative to the quasi-order « among algebras I -extendable to 1I . 

Proof. Let 1I I and 1I 2 be minimal among algebras I -extendable to 1I, i.e., 

there are algebras 1I I, 1I II EI such that 1I ""« 1I I x 1I I,ll "'« 1I 2 xli ", and for 

any 1I 11I,1I 1111 EI and any algebras 1I 3,1I 4 we get 1I I «1I 3 from 1I 3 «1I I if 

1I ",,« 1I3 xli III, and we get 1I2«1I4 from 1I4«1I2 if 1I ",,«1I4xll"ll. Let 

us show that in this case we have 1I I «1I 2 (by symmetrical consideration we then 

get 1I 2« 1I I, i.e., 1I I ""« 1I 2, and the lemma is thus proved). By theorem 4.2, 

as has been noted in section 4, in a congruence-distributive variety JJl for any 

algebras €1,€2 E .. r.rt and any 8 ECon(€1 x(2) there are 8 j ECon€j(i = 1,2) such 

that €I x €2/8 5!! € 1/81 x€ 2/82. Since 1I 2 xli II «1I I x 1I I, 1I 2 «1I I x 1I I and, 

according to what we have just discussed, there are 1I 5ll v such that 1I 5 «1I I, 

1I v «lJ I and 1I 2 5!! 1I 5 xli v. As I is a semi-ideal closed under finite direct 

products, we get lIv,lIvxll"EI. Therefore, 1I ",,«1I5x(lIvxll"),1I5«1I1 
and, since 1I I is minimal among the algebras I -extendable to 1I, we get 

1I I «1I 5· However, 1I 5 «1I 2 and, hence, indeed, 1I I «1I 2· • 

Lemma 9.2. If .. r.rt is a non-trivial congruence-distributive variety, then there 

IS a weB-ordered semi-ideal in < J .. r.rt ; «> closed under direct products of a finite 
number of algebras and not a set itself. 

Proof. Let Ord be the family of all ordinals. It should be recalled that for 
any linear order < A;s> by B < A;s> we mean an interval Boolean algebra 
constructed on the order < A;s> (see section 1). One can easily see that the family 

{B(w a . n)1 a EOrd,n Ew} forms in < JBA;«> a semi-ideal of the type presented in 

the formulation of the lemma. Let 1I be a simple .m -algebra. Then, by corollary 

3.1, we obviously get that {lI B(w u 'n)laEOrd,nEw} is the semi-ideal in 

< J .. r.rt ;«> with the properties required .• 

The semi-ideals with the properties presented in lemma 9.2 will be called Ord

chains. The same notation will be also used for the semi-ideals in < J .. r.rt ;«> 

obeying the conditions of lemma 9.2 with the requirement of well-ordering replaced 
with that of the factor of the semi-ideal relative to ""«. It should be noticed that, by 

choosing quasi-simplem -algebras incomparable relative to « as 1I in the proof of 

lemma 9.2, we get different Ord -chains in < Jm ;«> with the only common 

element Om. Therefore, the number of different Ord -chains in < J .. r.rt ; «> is not 

less than the number of pairwise ""« -non-equivalent minimal elements in 

< J.m;«>. 
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Definition 9.9. The power of the maximal set of pairwise =« -non-equivalent 
minimal elements in < 3.m ; «> will be called the initial width of the epimorphism 

skeleton of a variety .. 'lTl . 

Theorem 9.7. If .m is a congruence-distributive variety, 21 E .. 'lTl, and the 

principal semi-ideal generated by an element 321 in < 3.m /=«;«> is well

founded, 21 has a cover in < 3.m ; «>, and the number of such =« -equivalent 
covers is not less then the initial width of < 3 .. 'lTl ; «> . 

Proof. Let I be any of Ord -chains in < 3.m ; «> eXIstmg by lemma 9.2. 

Let 21 1 be minimal among the algebras I -extendable to 21. The algebra 21 1 does 

exist since the principal semi-ideal generated by the element 321 in 

< 3 .. 'lTl /=« ;«> is well-founded. Let 21 = 21 1 X 21 ',21 ' EI. Let 21" be a minimal 
algebra in terms of the order « in the Ord -chain among the 21'" EI such that 

21 'f.'f.21 1 x21 "'. The existence of such 21 II' is prompted by power considerations 

(I is a proper class, not a set), while the existence of a minimal 21" follows from 

the fact that I is well-ordered. Let us show that 211 x 21" is the cover of 21 . 
Indeed, 21'« 21 " and, hence, 21 E!! 21 1 X 21 '« 21 1 x21 " . By definition, 

21 1 X 21 "1:.1:.21 . Let now C E.m be such that 21 «C «21 1 x21 ". By theorem 

5.2, for some 21 2 «21 1 and 21 "" «21" we have C E!! 21 2 x21 "". Since 

21 ' III EI, and 21 1 has been chosen minimal among I -extendable algebras, we get 

21 2 =« 21 l' If 21 "" is strictly «-less than 21", C «21 , while in the opposite 
case 21 "" =« 21" and, hence, C »21 1 x21 ". Therefore, 21 1 X 21" is, indeed, the 

cover of 21. Obviously, choosing different Ord -chains we get different covers of 

21 . The statement of the theorem on the number of covers follows now from the 
remark on the number of different Ord -chains made after the proof of lemma 9.2 . 

• 
Corollary 9.2. If .m is a congruence-distributive variety, 21 E.m and 

(Con2l)* is well-founded, 21 has a cover in < 3 .. 'lTl;«>, and the number of such 
=«-non-equivalent covers is not less than the initial width of < 3.m ;«>. Here 

(Con21 ) * is a lattice dual to the lattice Con21 . 

The proof results from the statement of theorem 9.7 and the fact that the 

principal semi-ideal generated by the element 3J1 in < 3 .. 'lTl; «> will be, as a 

monotonous image (see 9.1) of a well-founded lattice (ConJl) *, well-founded itself. 
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Theorem 9.8. If .m is a congruence-distributive variety and JI is a 

subdirectly non-decomposable.m -algebra, JI has a cover in < J"m ;«>. 

Proof. A family of Boolean algebras of the type B(w a . n) forms, as has been 

noted earlier, an Ord -chain in < JBA;«>. Let f3 be a monolith of the algebra JI 
and B( w a, . nl) be the least in the given Ord -chain among such B( w a . n) that 

JI (f3)B(w a 'n) .f..f. JI . The Boolean algebra B( w a, . nl) does exist since the Ord -chain 
is well-ordered and by virtue of power considerations. Let us show that 

JI (f3)B(w a"n,) covers JI. Indeed, it is obvious that JI (f3)B(w a"n,) »JI and, by 

the choice of B( w a, . nl ), JI (f3 )B( w a, 'n,) .f..f. JI. Let now I[, be such that 

JI «I[, «JI (f3)B(w<XJ. 'n,) and let e ECan(JI (f3)B(Wa
1.nd ) be such that 

I[, sJl (f3)B(wa"n')/e. 

By corollary 4.1, we get either e<f3 B(wa
1.n,) or e?!f3 B(wa"n,). In the former 

case, by corollary 4.2, there is a Y EB( w a, . nl) such that 

However, B(w a , 'nl)/y is either isomorphic to B(w a , 'nl) and then 

I[, »JI (f3l(w a"n,), or B(w a , 'nl)/Y is strictly «-less than B(w a , 'nl) and then, 

by the choice of B(w a , 'nl ), we get I[, sJl (f3)B(wa"n,) «JI . In the latter case we 
B(wa"n,) . 

get e» f3 and, SInce 

f' " JI H' JI JI B(wa'·n). JI lor some u ECan , i.e., \:..«< . Hence, (f3) 'Indeed covers .• 

Let us consider one more algebra type having a cover in the epimorphism 
skeletons of congruence-distributive varieties. 

Lemma 9.3. If "m is a congruence-distributive variety, X is an infinite 

cardinal, the algebra Y.m (X) has a one-element algebra, Y.m (X) s Jl l x JI 2 and V 11 
2 

is compact then Jl I »Y.m(X). 
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Proof. Let us assume that Sm(X)et,Jl l xJl 2 • Let {eala<X} be free

generating elements of Sm (X). By theorem 4.2, any congruence on Jl l x JI 2 has 

the form °1 x °2 where OJ EConJl j. This fact combined with the compactness of 
V JI in ConJl 2 results in the compactness of the congruence AJI xV JI in 

2 1 2 

ConS Jll (X). Let a ES Jll (X) be such that {a} is a subalgebra of S Jll (X). Then, 
since 

there is a finite set A = {al' . .. ,an}!:: X such that 

Let {all be a one-element subalgebra of the algebra generated by the elements 

{eala <X \ A} in Sm (X). Then we get 

As has been noticed earlier, there are °1 ,°2 belonging to ConJl l , ConJl 2' 

respectively such that 0" = °1 x °2 , in which case 02 :!! V JI . Then we get 
2 

Since X is infinite, Sm(X)/O"e.Sm(X), i.e., Jll/01e.Sm(X) and, hence, 

Jl l »Sm(X) .• 

Theorem 9.9. If .m is a congruence-distributive variety with all its algebras 

having one-element subalgebras, any .om -free algebra with an infinite number of 
generating elements has a cover in < 3.m ; «>, and the number of such ... « -non
equivalent covers is not less than the initial width of < 300m; «> . 

Proof. Let JI be a simple .om -algebra, X an infinite cardinal, X+ the cardinal 

succeeding X, and .R x'" a Boolean Frechet algebra over a family of atoms of the 

power X+, i.e., a Boolean algebra of subsets of a set of the power X+ generated by 
.B 

one-element subsets. Let us show that S m (X) x JI IF covers S m (X). Indeed, 
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owing to the power considerations, we get 

S,m (X) xJ/ 1J x+ U s,m (X) . 

Let now € be such that 

As has been repeatedly noted in the proofs of the previous theorems, there are 

81 ECons,m (X), 82 EConJ/1J X+ such that 

For any Y EConB~+ we get either B~+ /Y ~ B~+ or IB~+ /Y Is K By corollary 

B 'lIB + / 'll 1J + /6 B / 3.1, there is a /j ECon ~+ such that.a x / 82 ~.a x . If I. ~+ Y Is X, 

and, hence, € «S,m(X). Therefore, the case C ~S,m(X/81 xJ/1J x+ »S,m(X) 

remains to be considered. And again, as above, there are 83 E ConS,m (X), 83 ;;>: 81 

'll B + and 84 ECon.a . x such that 

However, V B is compact and, hence, compact is V B I ' 
)J x+ )J x+ 1(}4 

Therefore, by lemma 9.3, S,m (X)/83 »S,m (X), Since 81 s 83, 

S,m (X)/81 »S,m (X) and, hence, 

which completes the proof that S,m (X) xJ/ .B x+ is a cover of S,m (X), By choosing 
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}J to be various pairwise ",,«-non-equivalent minimal elements from < J,m ;«>, 

obviously, we get pairwise ""« -non-equivalent covers of the algebra J.'lJl (X). • 

Let us recall an obvious result establishing a relationship between covers in 
epimorphism skeletons of congruence-distributive varieties and quasi-simple algebras: if 

,m is congruence-distributive, and there are quasi-simple algebras of any great power 

inm , then any ,m -algebra}J has a cover in the epimorphism skeleton ofm. 

Indeed, it suffices to choose an algebra }J x}J 1 as such a cover where }J 1 is a 

quasi-simple "m -algebra of a power greater than I}J I. This, in particular, entails that 

in any variety ,m of lattice-ordered groups any ,m -group has a cover in 

< J"m ; «>. Indeed, by bringing to a linear anti lexicographic order any group of the 

type n* Gj where n* Gj is a direct sum of the groups Gj , and Gj are equal to 
iEw a iEw a 

Z x R for any i (here Z x R is a lexicographic product of linearly ordered groups of 
integer and real numbers), we get quasi-simple linearly ordered groups lying in any 
variety of lattice-ordered groups. 

The following problem is now open for discussion. 

Problem 9.2. Does any algebra of a congruence-distributive variety have a 
cover in the epimorphism skeleton of this variety ? 

The results discussed above make it possible to expect a positive answer. If, 
however, we consider relative covers, i.e., those not in the whole skeleton of a 
variety but in a prefixed interval within this skeleton such covers might not exist. 
Before we prove this to be the case, let us obtain a number of statements on the 
structure of epimorphism skeletons of arbitrary non-trivial congruence-distributive 
varieties which are proved using the constructions of Boolean powers and 
congruence-Boolean powers, and are analogous to the statements for Boolean algebras 
in Chapter 1. 

It should be recalled that the relation }J 1 :s }J between algebraic systems }J 1 ,}J 

implies that }J 1 is isomorphically embeddable into }J. 2A will denote the set of all 

subsets of the set A. For an arbitrary set of Boolean algebras ,BjU EI), ~,Bj will 
iEI 

denote a subalgebra of the algebra IT,B j generated by those elements I from 
iEI IT ,Bj for which I(i) .. 0 only for a finite number i from I. 

iEI 

Lemma 9.4. If ,,'01 is a congruence-distributive variety, }J E"m , and X is a 
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regular cardinal, X >IJlI ,Xo, there is anm -algebra JI (X) such that IJI (X)I = X and 

< [,JJI ,JJI (X)]/=«;«>~< 2!<;~>. If JI is subdirectly non-decomposable, JI (X) 
meets an additional condition: 

[0.m , JJI (X)] = [O.m ,JJI)EB[JJI ,JJI (X)]. 

Proof. According to the statement of theorem 1.17, there are Boolean algebras 

Bi of the power XCi EX) with the following properties: 

(a) for any i EX, any a EBi \ {O} l{bE.Bil bs a~= X; 

By defining a Boolean algebra B I (/ ~ X) as 2 B I, we come to the obvious 
iEl 

conclusion that for Il,I2~X, the relationB!, «BI2 is valid iff Il~I2' 

Let JI be an arbitrary Jfl -algebra, and }f 0 an arbitrary simple .m -algebra. 

JI (/) will denote the algebra JI! I xJl . For any II ~ 12 ~ X, we obviously get 

JI «Jf (/1) and JI (/1) «JI (/2) «}f (X). Let us show that JI (/1) «JI (/2) 

implies the inclusion II ~ 12 , The relation }f (/1) «JI (/2) implies the relation 

JI :11 «JI (/2)' and let a EConJl (/2) be such that JI (/2)/ a s}, JI oB II. Since.m. 

is congruence-distributive, there can be found al EConJl OBI2, a2 EConJl such that 

However, Con pJl : II s.B II' and 

where y is a congruence of the algebra .BI2 . At the same time, as has been noticed 

earlier, for any aEBh \{O} we have l{bEBlllbsa~=X, while for (j EConpJl/a2 

we get I{y EConli /a21 Y s (j}lsIJlI +Xo < X. Therefore, the congruence a2 must be 

equal to V JJ' Hence, we get 



226 

d · }J .B 11 B }J BI2 an , SInce Conp 0 e. 11' Conp 0 

.BII «.B 12' According to the remark 

inclusion 11 ~ 12, which proves that 
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e.B 12 , and.m is congruence-distributive, 

we have made earlier, this implies the 

If JI is a subdirectly non-decomposable algebra and () is its monolith, for 

I~ X we define the algebras JI (I) to be equal to JI (()lI. The inequality 

< 2x ;~>s< LJ JI ,J JI (X)] =«;« > follows from the fact that 11 ~ 12 ~ X iff 

.B II «.B 12 , while the latter, by corollary 4.2, is valid iff 

The equality [0.111' JJI (X)] = [0.111 ' JJI) ® [JJI , J JI (X)] obviously results 

from the fact that [0.111' JJI (X)] is an antiisotonic image of the lattice ConJl (X) 

which, by corollary 4.1, equals ConJl (X)ls ().B x ® ConJlI> () .• 

Lemma 9.4 prompts that the epimorphism skeletons of non-trivial congruence
distributive varieties in the class of all quasi-ordered sets are universal. 

Theorem 9.10. For any non-trivial congruence-distributive variety .. m, any 

regular cardinal t-\ > Xo and any algebra JI of a power less than X, an arbitrary 

quasi-ordered set of a power not greater than X is isomorphically embeddable into 

< J . .fflxl» JJI ;«>. In particular, for a non-trivial congruence-distributive variety 

.ffl , any quasi-ordered set is isomorphically embeddable into < J.ffl ;«>. 

Proof. Since any partially ordered set of the power s X is isomorphically 

embeddable into < 2x ;~>, by lemma 9.4, any such set is isomorphically embeddable 

into < J .. mxl» JJI ;«>. For a<X let .Ba =B((wa+w +1])'X) (here, as in 
Chapter 1, 1] is the ordinal type of rational numbers). One can easily see that 

f3;oo a < X .B a r;. .B fJ, but .B a =« .B fJ, and the powers of all Boolean algebras .B a 

are equal to t-\. One can also see that for any I ~ X we have .B I x .B a ~.B I X .B fJ , 

but III this case .BI x.B a =«.B I x.B fJ. Besides, for 11'/2 ~ X, 

Bllx.Ba«Bllx.BfJ iff 11~/2' Indeed, if .Blt x.B a «BI2 x.BfJ, 

Bll «.BI2 xBfJ, If j is a homomorphism from .BI2 x.BfJ to .BII , and :n2 is a 

projection ofBI2 x.BfJ toBfJ then, for the case when kerj:2ker:n2' we get the 
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inequality .B II «B h which, by lemma 9.4, yields the inclusion II k; 12 , 

If ker f ~ ker JZ"2, .Bft s B 12/ {) x.B fJ /cp for some 

{) ECon.B 12 , cp ECon.B fJ \ {V}. In the algebra BfJ / cp there are always elements a 

such that I.B fJ /cpl:s al:s Xo , while in the algebra BII there are no such elements, i.e., 

for any element a E.B It \ {O}, I{b E.B III b :s a ~= X. Therefore the case ker f ':R ker JZ"2 

is impossible and, indeed, the inequality .BII x.Ba «BI2 xBfJ is equivalent to the 

inclusion II ~ 12 , Using algebras of the type B I x .B a (l ~ X,a < X) instead of the 

algebras .BI in the construction of lemma 9.4, we get an embedding into 

< 3 .. mxl» 321 ;«> of a quasi-ordered set obtained from the partial order < 2x;k;> 
by "smearing" every element into the class consisting of X elements pairwise 
equivalent in terms of the quasi-order. This implies not only that any partial order of 

the power not greater than X is embeddable into < 2x ;~>, but also that any quasi
order of the power not greater than X is isomorphically embeddable into 

< 3 .. mxl» 321 ;«> .• 

In connection with lemma 9.4 the problem arises whether there are intervals 

"'« -equivalent to the partially ordered set < 2x ;k;> in the epimorphism skeletons of 

congrue:nce distributive varieties .. m . Though this problem remains open to discussion 
in the general case, it appears possible to prove the existence of such intervals under 
certain circumstances. 

For a finite set of the algebras 21 1, ... ,21 n and their homomorphisms iI, ... ,fn to 

the same fixed algebra 21, let us define an algebra TI < 21 i, Ii > as the subdirect 
isn 

product of the algebras 2I i (;:sn) with a basic set {gETI2I i l for i,j:sn 
iEI 

Ii (g(i» = .f.j(g(j»}. Let fJ i be kernels of the homomorphisms Ii· If ai ECon21 i' 

then IT ai will denote the following congruence on TI < 21 i' Ii > : for 
.n ~n 

g,hEfl<2Ii,li> we get <g,h>ETI2I i iff for any i:sn <g(i),h(i»Eai' One 
~n iH 

can directly check that for any g,h E TI < 21 i,1i > if < g(i),h(i) >EfJi for some i:s n, 
isn 

then for any j:s n we get < g(j),h(j) >EfJj and, thus, IT < 21 i, Ii >/IT fJi S 21. In 
l'!in ,sn 

the case when all the algebras 21 i belong to a certain congruence-distributive variety, 
we get, analogously to the proof of theorem 4.2, that for any congruence 

fJ ECon TI < ai, Ii > less than TI fJi , there are fJ::s fJrcongruences of the algebras 
~n ~n 

21 i such that fJ = TI fJ: . 
isn 
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These remarks prove the following statement. 

Lemma 9.S. If .m is a congruence-distributive variety, 111, ••• ,11 n E.m and 

A(i S n) are homomorphisms from the algebras lIj to a certain fixed algebra 11 , 

Conn < 11 j,A >1 S n ()j E!! n Con 11 ,I S ()j' 
is n j$n isn 

and D < 11 j, A >/D ()j E!!1I . If in this case all ()j are intercepting, we get 
I$n I$n 

Conn<lIj,A>E!!nConll,1s ()j®(Conll \{A}). 
is n j$n 

If, moreover, for any i~jsn and ()'S()j,()"s()j it follows from lIJ()Ir/!.lI 
and lIJ()"r/!.lI that lIJ()Ir/!.lI j /()II, then 

< LJlI ,J D <11 j,A >]/""«; «>E!! D < [JlI, JlI ;J/",,«;«>. 
I$n I$n 

An algebra 11 1 that is a cover of the algebra 11 in the epimorphism skeleton 

of the variety.m will be called a strong cover of 11 provided that there is an 

intercepting congruence () of the algebra 11 1 such that 11 1/ () E!! 11 . 

Theorem 9.11. 

(a) If in the epimorphism skeleton of a variety.m the algebra 11 has k < X 

pairwise "'« -non-equivalent covers, there is an algebra 11 1 E.m such that 

(b) If for a countable algebra 11 in a congruence-distributive variety.m there 
are k < Xo pairwise ",,«-non-equivalent subdirectly non-decomposable algebras 

C ,(i < k) with monoliths ()j such that C J()j E!! 11 , there is an algebra 11 1 E.m such 

that 

< [JlI ,JlI ']/",,« ;«>E!! WI X • •• xWI (k times). 

The statement (a) of the lemma under consideration follows immediately from 

the statement of lemma 9.S, since in this case < [JlI ,JlI ']/""«;«>E!!2. To 
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prove the statement (b) it suffices to replace the algebras 11 j in lemma 9.5 with the 

algebras € jB( cot ) ( OJ), since 

The definition of a non-compactable chain has been given in section 1. The 
following statement shows that in the epimorphism skeletons of non-trivial 
congruence-distributive varieties there are non-compactable chains of both discrete and 
dense ordinal types. It should be recalled that r denotes the ordinal type of real 
numbers. 

Theorem 9.12. Let JIl be a non-trivial congruence-distributive variety, 11 be 

a subdirectly non-decomposable . .'lfl -algebra. In this case the following statements are 
valid: 

(a) in the epimorphism skeleton of .. m there is a non-compactable chain 

isomorphic to an ordered class of ordinals such that its lower bound in < 3 . .'lfl;« > 

is equal to 311 ; 

(b) (CH) in the epimorphism skeleton of . .'lfl there is a non-compactable chain 

B su~ that < B/=«;«> is isomorphic to an ordered set of real numbers. 

Proof. Let 11 be a subdirectly non-decomposable .. m -algebra. By corollaries 

4.1 and 4.2, a family of the types of isomorphism of .. m -algebras of the type 

11 (O)B(a), where a EOrd and 0 is the monolith of 11 , forms a non-compactable 
chain isomorphic to the ordered class Ord. On the other hand, according to the 
same corollaries 4.1 and 4.2 and by theorem 1.15, a family of the types of 

isomorphisms of algebras of the type 11 o(O)B, where .B runs the non-compactable 

chain in < 3BA;«> considered in theorem 1.15, and 110 is an arbitrary countable 
subdirectly non-decomposable algebra, forms itself a similar chain isomorphic to a set 

of real numbers in the epimorphism skeleton of .. m. • 

Let us now show that in the epimorphism skeleton of any non-trivial 
congruence-distributive variety there are algebras having no relative covers. 

Theorem 9.13.(CH) If .. m is a non-trivial congruence-distributive variety, 

there are . .'lfl -algebras JJ 1,11 2 such that JJ 1 «JJ 2' 11 2 ",,,, JJ l' and the algebra JJ 1 
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has no covers lying in the interval [J1I 1,J1I 2 ] of the epimorphism skeleton of.m. 

Proof. Let 11 be a countable subdirectly non-decomposable .m -algebra with a 
monolith 8. In the proof of theorem 14.2 (theorem 1.15) a set of real numbers P 
and Boolean algebras B(Pa ) are constructed for any real number a. Let us fix a 

certain pair of real numbers PI < P2, and let 

As 111,112 let us consider algebras 11 (8).BI,1I (8).Bz, respectively. From the 
properties of the algebras B(Pa ) considered in the proof of theorem 1.15, it is 

obvious that 111 «11 2 and 112 .f;..f;.11 l' Let us show that 11 1 has no covers in the 

interval [J 11 I,J 11 2]' Indeed, let 113 E..'lll such that 11 1 «11 3 « 11 2, 113 .f;..f;.11 1 . 

By corollary 4.2, the algebra 113 has the form 11 (8)'l , where the Boolean algebra 

C is such that B(Pp)xB('I])«C «B(Ppz)xB('I]) and C .f;.I::.B(Pp) x B('I]). As 

long as C «B(PPz) x B('I]), as is noted in the proof of theorem 14.2, we get 

C eB(Ppl EelEeD) for some Dr;;,pn(f3I>fJ2 )Ee'l] and, hence, C eB(Ppl ) xB(D). 

The set D cannot be countable, since otherwise we would have B(D)« B( '1]) and 

C «.R 1, which contradicts the above deductions. By assuming CH, IVI = 2No and, 

therefore, there is a {j E(A ,P2) such that IV n (Pl,{j 1 =ID n ({j ,P2 )1= 2No. Let .R' 
denote a Boolean algebra B(Ppl Eel Ee(Dn (f:Jl,{j») xB('I]). Obviously, 

Rl «.R' «C but, on the other hand, considerations analogous to those in the 

proof of theorem 14.2 show that .R' I:.I:..Bl and tl I:.I:.R'. In this case, by 
. .B' B' B' corollary 4.2, we get 11 1 «11 « 11 3' 11' f::.I::.111 and 113 -u 11' .• 

Definition 9.10. A pair of algebras 111,112 is said totally disjunct if for any 

algebra 11 such that 11 «11 1,11 2 the power of the algebra 11 is strictly less that 

the powers of the algebras 11 1 and 11 2' 

Theorem 9.14. (GCH) Let .. 'lll be a non-trivial congruence-distributive variety. 
Then for any non-limit cardinal ~ there is a family of the power ~ consisting of 

totally disjunct .m -algebras of the power ~. 

Proof. In line with theorem 1.14, there is a similar family G consisting of 

Boolean algebras. Let 11 be a countable simple .m -algebra. By corollary 3.1, the 

family of .o'lll -algebras lI·B (.R EG) has the required properties. 
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Priorities. Studies of epimorphism skeletons of various classes of algebraic 
systems with no special definition introduced have been carried out in a number of 
papers by many authors. For instance, C.Landraitis [121] studied the epimorphism 
skeleton of countable linearly ordered sets. The epimorphism skeleton of uncountable 
linearly ordered sets was investigated by A.G.Pinus [162]. A number of results 
pertaining to skeletons of the class of ordered sets belonging basically to the French 
school were presented in a monograph by R.Frrusse [69]. 

The notion of an epimorphism skeleton of algebras has been introduced by 
A.G.Pinus [178]. Pseudo-simple algebras have been studied in papers by H.Andreka, 
I. Nemeti [3], D.Monk [40], Szelpal [222]. Theorem 9.1 was, in particular, presented 
in a paper by D.Monk [140]. The notion of a quasi-simple algebra has been 
introduced in a paper by A.G.Pinus [171], where he also proved theorems 9.2, 
9.3, 9.4 and 9.S. Theorems 9.6 - 9.9 also belong to A.G.Pinus [168], as well 
as theorems 9.10 - 9.13 [169]. 

10. Countable Epimorphism Skeletons of Discriminator Varieties 

According to theorem 9.11 of the preceding section, limited epimorphism 

skeletons < J.mx;«> of any non-trivial variety.m are, when K is uncountable, 
universal in the class of all quasi-ordered sets of the power s K. The situation 
changes when considering K = Ko. Indeed, as has been noted earlier in section 1, the 

• countable epimorphism skeleton of a variety of Boolean algebras is equal to WI EEl 1 , 
* where the order of WI Eel is obtained by adding to the set WI of all countable 

ordinals (isomorphism types of countable superatomic Boolean algebras) a continuum 
of elements pairwise equivalent in terms of the quasi-order as the latter (isomorphism 
types of countable non-superatomic Boolean algebras). The factor-order of the quasi-

• ordered set ~ Eel is linear as regards the natural relation of equivalence. 

Definition 10.1. A quasi-ordered set < A;s> is called linear-factor-ordered if 
the factor of this set is a linear order as regards the natural equivalence relation "':s. 

Therefore, a countable epimorphism skeleton of a variety of Boolean algebras is 

linear-factor-ordered. On the other hand, if ,m is an arbitrary non-trivial congruence

distributive variety, and JI is a simple .m -algebra existing by the Magari theorem" 

by corollary 3.1(b), for any Boolean algebras .BI,.B2 the relation JI.B 1 « JI .B2 
holds iff .BI «.B2 • Moreover, since we have earlier agreed that only varieties of at 
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most countably infinite signature are considered, we can assume 1111 s ~o and, hence, 

they are at most countably infinite for at most countably infinite Boolean algebras .R 
and the algebra 11·B . All these facts imply that the countable epimorphism skeleton 
of a variety of Boolean algebras is isomorphically embeddable into that of any non
trivial congruence-distributive variety, i.e. the countable epimorphism skeleton of a 
variety of Boolean algebras is minimal as regards embedding in the class of all 
countable epimorphism skeletons in non-trivial congruence-distributive varieties. 

The following theorem gives a complete description of congruence-distributive 
varieties with minimal or, which proves equivalent, linear-factor-ordered countable 
epimorphism skeletons. 

Theorem 10.1. Let .m be a non-trivial congruence-distributive variety, the 
following conditions are equivalent: 

(b) < J .. r.Tlxo;«> is linear-factor-ordered; 

(c) .. r.Tl = .. r.Tl (11), where 11 is a quasi-primal algebra with no proper 
subalgebras. 

Proof. Let us show that (c) follows from (b). Let .. r.Tl be a non-trivial 

congruence-distributive variety such that < J.r.Tl xo ;« > is linear-factor-ordered, and let 

11 be a simple .m'Xo -algebra. Since < J .. r.Tl xo ;«> is linear-factor-ordered, 11 is the 

only simple algebra in .. r.Tl xo . 
Let .R F be a Boolean algebra of finite and co-finite subsets of a countable set. 

As < J .. r.Tlxo;«> is linear-factor-ordered, for any finite n we get either 

S.m (n) «11 .B F or 11·B F «S.m (n). The latter inequality, however, would entail 

that the algebra 11.BF is finitely generated and, by the definition of a Boolean 

power, the same would be true for the algebra .R F as well, which is impossible. 

Therefore, for any Il Em we have Sm (Il) «11 .B F. By corollary 3.1(a), any 

principal congruences on 11·B F are permutable and, hence, any congruences on 

11BF and its homomorphic images-algebras Y.m (n) are permutable. Since Sm (3) is 

congruence-permutable, the whole variety .m is also congruence-permutable by 

theorem 2.5 . Therefore, .. r.Tl is ari thmetic. On the other hand, 

.m =.m({Jm(Il)lnEm}) and, hence, .m =.m(11 BF )=m(11). 
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Let us demonstrate that JI contains no non-singleton proper subalgebras. Let 

us, assume to the contrary that Jl 1 is a proper subalgebra of the algebra JI, and 

IJl 11> 1. One can also assume that Jl 1 is finitely generated. Since Jl 1 «Jm (n) for 

some n I:::m and, as has been shown above, J m (n)« JI.B F and J m (n) ~ JI .BF, 

we get J m (n) s JI.B for some algebra .R such that B«.R F and .R ~ B F by 

corollary 3.1(b). All such .R s, however, have the form of finite Boolean algebras. 

Therefore, for some mn Em we get J m (n) s JI mn. All homomorphic images of the 
~ .,1 m .,1 k algebra Sm (n) s <.l n also have, by corollary 3.1(c), the form <.l for some 

k Em. In particular, the algebra Jl 1 is isomorphic to the algebra Jll for some 1 Em 

and, hence, the algebra Jl 1 contains a subalgebra isomorphic to the algebra JI . As a 

result, if JI contains a non-singleton proper subalgebra, JI contains a proper 
subalgebra isomorphic to itself. However, this implies the existence of a strictly 

ascending chain of algebras 1)0 C 1)1 C .. C 1)n Coo., each of which is isomorphic to 

the algebra JI . 
Let 1) = U1) i' 1) E.m. Since all 1)i are simple, the algebra JI will be 

iEw 

simple as well. Indeed, for any a,b,c,d E1) there is an i Em such that 

a,b,c,d E1)i, and if a;" b then, as 1)i is simple, < c,d >Eea~b and, since 

e!'.b ~ ea~b' < c,d >Eea~b' Therefore, for any a,b,c,d E1) , a;" b implies 

< c,d >Ee:b, i.e., 1) is a simple algebra. If we take into account the fact that 

< 3m 'Ko ;« > is linear-factor-ordered, JI s 1) . Therefore, JI is a family of strictly 

ascending chain of proper subalgebras and, hence, it cannot be finitely generated. On 

the other hand, as < 300m 'Ko ;« > is linear-factor-ordered, we get JI «Jm (2), i.e., 

JI must be finitely generated. The contradiction obtained proves that JI has no non
singleton proper subalgebras. 

Let us show that JI has no one-element subalgebras, either. Let us assume to 

the contrary, assume that that it has one-element subalgebras and let a EJI be such 

that {a} is a subalgebra of the algebra JI. By theorem 3.2, Coni JI.B F) s B F' Let 

JI' denote a subalgebra of the algebra JIll F such that for f EJI.B F we get 

f EJI' iff {i ER ;If(i);" a} is finite. Repeating nearly word by word the proof of 

theorem 3.2, we see that ConpJl' is isomorphic to the lattice f/3 of all finite 

subsets of m. Since < 3.m 'Ko ;« > is linear-factor-ordered, we get either 

JI.B F «JI' or JI'« JI.B F. But in this case it follows from the theorem on 

homomorphisms that if Coni JIB F) sR F and Con pJl ' s f/3, we get either 

BF «f/3 or f/3 «BF. Obviously, neither of the cases is possible and, hence, the 
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algebra 2/ has neither one-element nor other proper subalgebras at all. 

Let us now prove that 2/ is finite. Let us assume, to the contrary, that 2/ is 
infinite and, as has been proved above, it is simple and has no proper subalgebras. 

Let f be a bijective mapping of w on 2/, g a certain mapping from w to an 

element (for instance, d) from 2/, and e a subalgebra of the algebra 2/ co 

generated by the functions f and g. In this case, e «Y.m. (2) 51! 2/ mz and, as has 

been noticed earlier, there is an I < m2 such that ([, 51! 2/ l . In particular, since all the 

congruences of the algebra 2/ l are projections by corollary 3.1, Cone 51! Con2/ l 

contains only I different co-atoms. It should be noticed that as 2/ is simple with no 

proper subalgebras, e is a subdirect product of 2/ into 2/ co, and for any i Ew 

the 0rkemel of the i-th projection of ([, ~2/ co on 2/ is a co-atom in Cone. For 

any jEw let rj(x) be a term of the signature of the algebra 2/ such that 

r/d) = f(j) (since 2/ is generated by any of its elements, for any jEw, r/x) 

does exist). Therefore, r/gXj) = f(j), and, since for any k,l Ew we have 
r/gXk) = r/g)(l), for nEw and n pO j we get rj(gXn) pO fen). Therefore, for any 
jpOnEw we get <rig),f>EOjand <rig),f>rt:.on , i.e., all O/jEw) are different 

co-atoms of Cone, which contradicts the fact that the family of these co-atoms is 

finite. The contradiction obtained proves that 2/ is finite. 

Thus, 2/ is finite, simple, has no proper subalgebras, and .m =.m (2/) is 

arithmetic. By theorem 2.14, 2/ is quasi-primal and, hence, the implication (b) -

(c) is proved. 
The implication (a) -(b) is obvious, while the implication (c) - (a) follows 

from theorem 7.3 and the isomorphism < JB;No;«>5I!< J{2/.B I.E EBA};«> 

resulting from corollary 3.1. • 

It should be remarked that, as the epimorphism skeleton of a congruence
distributive variety is linearly ordered, the epimorphism relation « and the 

embedding relation :s: coincide on non-singleton countable algebras. Let .m I be a 

family of non-singleton .m -algebras. 

Corollary 10.1. If a countable epimorphism skeleton of a congruence

distributive variety.m is linear-factor-ordered, the relations « and :s: coincide on 

J··'Ulxo · 

Proof. It follows from the proof of theorem 10.1 that in the case under 

consideration the fact that < J.m'/(o ;«> is Iinear-factor-ordered implies an 
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isomorphism of < J.1.llxo;«> and < JB.'ko;«> by way of putting into 

correspondence .B _l1·B for any at most countably infinite Boolean algebra .B. 
Since in this case .. m proves to be a discriminator variety, it has the property of 

extending congruences and, by theorem 3.3, for any Boolean algebras .B1,.B 2, the 

embedding relationBI :s .B2 holds iff l1B\ :s 11 .B2 • On the other hand, as follows 

from section 1 for countable non-singleton Boolean algebrasBI ,.B 2, .B1 « .B2 iff 

.Bl :s .B2, while .B is one-element iff so is the algebra l1·B .• 

In the case when the variety1.ll is a discriminator variety, it is possible to 
make a complete analysis of the construction of countable epimorphism skeletons. The 
definition of a better quasi-order, as well as the proof of a number of theorems on 
the properties of such quasi-orders are given in section 15 of the present 
monograph. 

Theorem 10.2. If .m is a finitely generated discriminator variety, the 

countable epimorphism skeleton of .om is a better quasi-order. In particular, 

< J.mxo;«> contains neither infinite anti-chains nor infinite strictly descending 

chains. 

Proof. Let .. m be a finitely generated discriminator variety. By theorem 7.7, 

there is a finite algebra 11 and a finite set of its subalgebras 11 1, ... ,11 n such that 

any at most countably infinite.m -algebra has the form of a filtered Boolean product 

11.B(111, ••. ,l1 n ;Fi, ... ,F,J for a certain at most countably infinite Boolean algebra .B 
and some closed subsets FJ., ... ,Fn of the space .B'. The chain <.B ,F1, ••. ,Fn > will 

be denoted through .BE'. 
Let roW be a family of all sequences of natural numbers with a common 

Tikhonov topology, let 2w be a subset of roW consisting of sequences of zeros and 

ones, and let the topology on 2w be induced by row. Therefore, 2w is 

homomorphic and, hence, it can be identified with a Stone space .B~ of a countable 

atomless Boolean algebra .Bf'/' Since for any at most countably infinite Boolean 

algebra.B we have .B «B f'/' the space .B' can be identified with a certain closed 

subspace of the space of 2w according to the Stone duality. 

n2 will denote a set of sequences from 0,1 of the length n + 1, ordered in a 

trivial way: a:s b iff a = b. Therefore, n2 is, in particular, a better quasi-order. By 

ai(i = O, ... ,n) we will mean the i -th element of the sequence a for a E' 2. For at 
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most countably infinite Boolean algebra.B and any closed FJ. , ... , F" ~ .B *, I-:ii will 

denote the mapping from roW to n+1 2 defined in the following way: if 

lJl;'(x)=aE'+1 2 , ao=l, if xE2w and a;=O for all i=O, ... ,n+l, if xEro w \2w, 

and moreover: al" 1 iff x E.B *, and a;+1 = 1 iff x EFt at i = 1, ... ,n. For any 

a E'+I 2 and any .BF in the Borel hierarchy of sets we obviously have 
,-I ~o iBF)(a) E.LJ 2' Let us arrange the set of all mappings lJl;' into a quasi-order in the 

following way: 1 'lIM :s ~.B iff there is a continuous self-embedding h of ro W such 
(.Q')I (~)2 

that for any x Ero W we get ~B (x):s ~B (h(x)). By theorem IS.8, the set of 
(. 7")1 ( ~)2 

mappings lJl;' (where .B is an arbitrary at most countably infinite Boolean algebra 

and FJ., ... ,F" is a chain of closed subsets of the spaceB*) will be a better quasi-

order. Let us now remark that if~.B :s I 'lIM ' 
(~>I (.Q')z 

Indeed, let 1 'lIM :s ~B ' and h be a continuous self-embedding of ro W 
(.a-)) (. 7")2 

implementing this inequality. Since for any xEro w we have l-B (x):s l-B (h(x)), 
(. ~>I (. ~)2 

B* W B* the restriction of h on . 1 ~ 2 will be a continuous embedding of the space . 1 

into the space .B~ such that for any i = 1, ... ,n we get x EFtI iff h(x) EF/ . 
Therefore, .BI* can be identified with a subspace of the space .B~ such that 

1 B* 2 . Ft =. 1 n F; for I = 1, ... ,n. Let 

i.e., / is a continuous mapping from .B~ to a discrete II such that /(F/) ~ ll; 
* * B* for i:s n. In this case /I.BI is obviously a continuous mapping from .BI ~. 2 to 

II , in which case UI.BI* XF'h ~ ll;. The mapping lP:/ - /I.B; is also obviously a 

homomorphism from the algebra Jf B2 (lll, ... ,Jf n; Ft2 , ... ,F;) to the algebra 

llBl(llI, ... ,lln;FtI, ... ,~). Let us prove that lP is a mapping on 

ll·Bl(llI, ... ,lln;FtI, ... ,~). Let gEll·Bl(llI, ... ,lln;FtI, ... ,F;); our task is to 

construct a continuous extension & of the mapping g to the space .B~ meeting the 

condition &(F;2) ~ll j. 
As g is a continuous mapping from .B; to a discrete II , there is a partition 

AI, ... ,Ak of the space .BI" by open-closed subsets such that g is constant on Aj . 
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Since ,B; is a subspace of ,B~, due to the Stone duality, there is a homomorphism 

cp from the Boolean algebra .B2 identified with the open-closed subsets of the space 

.B~ to the Boolean algebra .Bl (also viewed as a set of open-closed subsets of the 

space .B;). Let ~, ... , Bk be a partition ofB~ with the elements of .B2 such that 

'IjJ(Bj ) = Aj for j = 1, .. . ,k. In this case we get 'IjJ(Bj ) = Aj = Bj nB;. For any j s k 

let Kj = {i s nlAj n F/2 = 0}. Since F/2,Aj are closed in ,B~, there is an open-closed 

Cij separating Aj from F/2 for iEKj . 

Let Bj = Bj n ~,Cij. The mapping & from the space ,B~ to Ji will be 
J 

defined in the following way: gl(Bj) = g(Aj ), and let gl coincide with any function 

from Ji.B2(Ji 1, ... ,Ji n;F12, ... ,F;) on .B~ \ U Bj' ,. In this case gEJi.B2 and the 
,isk 

conditions &(F/) c;;,Ji j are obviously fulfilled, since gl-l(Ji) n B; = 0 for j = 1, .. . ,n 

iff g-1(Jij)n~=0. Therefore, glEJi B2(Ji l , ... ,Jin;F12, ... ,F,,2), and, since 

g = &I.B;, cp(&) = g, i.e., cp is indeed a homomorphism from the algebra 

Ji.B2(Ji l , ... ,Ji n;F12, ... ,F;;) to the algebra Ji.B 1(Ji l , ... ,Ji n;F/, ... ,F;). Thus, we 
have shown that lr;;;-« lr;;;- implies the relation 

(a-)1 (a- h 

l.e., that < J,,,'01 xo ;«> is a homomorphic image of a better quasi-order. As is noted 

III section 15, <J,,,'01xo ;«> is thus also a better quasi-order. • 

The situation changes radically when considering countable epimorphism 
skeletons of discriminator varieties which are not finitely generated. 

Theorem 10.3. If ,'01 is a discriminator variety which is not finitely 

generated, < J,,,'o1 Xo ;« > contains an uncountable number of pairwise incomparable 

elements. If, moreover, either the signature of.m is finite or all non-singleton ,,'01-
algebras contain a finite simple subalgebra, any countable quasi -order is 

isomorphically embeddable into < J,.mxo ;«>' 

The proof of the theorem is reduced to that of a number of lemmas. Let us 

first consider the simplest case, when.m contains an infinite number of various 

finite, subdirectly non-decomposable and, hence, (as ,,'01 is a discriminator variety) 
simple algebras. 
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Lemma 10.1. If .m is a discriminator variety containing an infinite number 

of non-isomorphic simple finite algebras, .m contains no infinite finitely generated 

simple algebras, and either the.m signature is finite or all non-singletonm -algebras 
contain a finite simple subalgebra, any countable quasi-order is isomorphically 

embeddable into < J,m'll,o;«>' and < J,.rn'll,o;«> contains 2'1l,o pairwise 

incomparable elements. 

Proof. Let the .. m signature be finite, and let JI 1,,,.,JI n"" be finite simple 

non-isomorphic .. m -algebras. As the signature is finite, one can assume 

IJI 11<IJI 21<. .. <IJI n 1<. ... Let fl = fl JI n and S a non-principal ultrafilter on w. By 
lEw 

theorem 5.6, Conpfl = P(w), i.e., a set of all the subsets of wand, hence, CIS 
is a simple .m -algebra. As is well-known, 1£ I J is infinite. Sincem is a 
discriminator variety, all subalgebras of the algebra fll S are simple and, since all 

finitely generated simple .. m -algebras are finite, by the lemma condition one can 

construct an ascending chain of finite simple .. m -algebras (1£ I J subalgebras): 

flo C 1£1 c. .. C 1£ n C .... Let Il: w \ {O} and fl j = ~ fl i(fl 1) ={j E fl 1£ i}' There is 
iEJ iEl 

an n EI such that for all I,m ~ n we get f(l) = f(m) EC l' 
If g is a homomorphism from fll to some algebra 1£ j" since 1£ j is finite, 

there is a finitely generated subalgebra 1) of the algebra fll such that g maps 1) 

on 1£ j' One can easily note that 1£1 is locally finite and, hence 1) is finite. Any 

finite subalgebra of the algebra 1£1 lies in a subalgebra of the algebra 1£1, which is 

isomorphic to an algebra of the type fl 1£ i for a certain finite subset II l: I. 
Ell 

Therefore, we get 1£ j « fl fl i' By theorem 6.6, since all 1£ i are simple, all 
iEII 

simple factors of the algebra fl 1£ j have the form fl j for some i Ell' Thus, if 
iEII 

1£ j «1£ j, jEI. Hence, for any I1,!2l: w \ {O} we have 1£11 «1£12 iff II l: 12, 
which implies an isomorphic embedding of P(w \ {O}) to < J, .. m'll,o;«>' Since any 

countable partial order is embeddable into P( w \ {O}), any countable partial order is 

isomorphically embeddable into < J,.rn'll,o;«> according to the lemma conditions. 

Let 1] be, as was the case earlier, an ordered type of rational numbers. As has 

been noted in section 1, for any I .. mEw we have B(w l '1]) =« B(w m '1]) and 

B(w l '1]) ~ B(w m '1]). Since flo is simple, for any Boolean algebras'B1,·'B 2 , 

CoBI«CoB2(CoBlaCoB2) is equivalent to the relations .B1 «B2 (.B1 a.B 2 ) by 

corollary 3.1. In addition, all the factors of the algebra fltl have the form flaB 
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for a certain Boolean algebra .R «.B l' As .. m is congruence-distributive, any factor 

of the product }1' x}1 /I of the algebras }/ "}/,, has the form of a factor product 

of the algebras }/' and }/". This fact implies that for any 11,12 ~ w \ {O}, any 

B I I b R d B ,I' ,1'11 1 H' ,1'112 'ff 1 C] d 
00 ean a ge ras . 1 an . 2 we get ~ II X ~ 0 «~ 12 X ~ 0 1 1 _ 2 an 

.Bl «B2 · 

Let now < C;~> be an arbitrary countable quasi-order and f be a certain 
bijective mapping of C on w. Let h be an embedding of a partial order < C/=:5; s> 

into < 3.mxo;«> constructed above, in which case it is obvious that the mapping 

g(c)=h([c])x€oB(w f (C)'1/), where [c] is a =:5-class containing the element c, will be 

an isomorphic embedding of the quasi-order < C;s> into < J.mxo;«>' The 

statement that there are 2xo pairwise incomparable elements in < J.om xo ;« > holds 

true because the number of the subsets w which do not contain each other is the 
same, and since we have constructed the mapping 1 ~ w \ {O} -+ € I' • 

The case when .om is of an infinite signature, but the algebras 

}/ 2' ... ,}1 11"" contain a subalgebra isomorphic to a finite simple algebra }/ 1 is 

considered in the same manner with the algebras }/ i substituted for the algebras € i' 

• 
Lemma 10.2. If.m is a discriminator variety, }/ Em, and }/ is an 

infinite finitely generated simple algebra, there is an uncountable set of pairwise 

incomparable elements in < J.omxo;«> and any countable quasi-order is 

isomorphically embeddable into < J.mxo;«>' 

Proof. Let }/ = {al, ... ,a ll , ••• }, and let al, ... ,ak generate }/. h will denote an 

element }1 W such that hen) = ai for any nEw, and assume that g E}/ wand 

g(n) = all for any nEw. Let us also set }/ 0 equal to a subalgebra of the algebra 

}/ W generated by the elements It, ... , A, and }/ 1 equal to a subalgebra generated by 

the elements fl,,,,A,g. By corollary 5.1, Conp}/1 is a Boolean algebra, so let us 

consider two plausible cases: (1) Conp}/ 1 is not superatomic and (2) Conp}/ 1 is 
superatomic. 

Case (1). There is an uncountable number of various ultrafilters J i . 0 n 

Conp}1 l' each of them corresponding to pairwise different congruences a i on }/ l' 

which are co-atoms in Con}/ l' i.e., to a i such that }/ l/ai are simple. The number 

of pairwise non-isomorphic }/ Ja i cannot be countable, i.e., each of the algebras of 
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this type is countable (21 1 is countable) and 211 is finitely generated. Indeed, if 

IJ {2I 1/ai Ii E2N°}I:s Xo, let 

The number of 211 homomorphisms in C i (since C i are countable and 211 is 
finitely generated) is at most countably infinite and, hence, the number of various 

congruences, which are kernels of 211 homomorphisms on the algebras of the type 

C i' is at most countably infinite, which contradicts the existence of 2No pairwise 

different co-atoms ai ECon2l 1. Therefore, there is an uncountable n~mber of those 

a ECon2l1 for which 211/ a are simple and pairwise non-isomorphic':. In particular, 
this fact implies the existence of an uncountable family of pairwise incomparable 

elements in < J'IllNo;«>' 

Let us choose a countable set al, ... a n, ... among such a ECon2l 1. Therefore, 

211/ an are simple, and we have 21 II an rfs. 21 II am for n;o! m. Let us also assume 

that 2Idan rfs.2I o. For any jEw and n;o!mEw, we get /n/aj;o!fm/aj, since 

otherwise, by theorem 5.6, a j would be a unit congruence on 21 1, Therefore, the 

algebra 21 ° (isomorphic to 21) is a subalgebra of all simple algebras of the type 

2I 1/an (nEw). As was the case in the proof of lemma 10.1, let us, for any 

IS;;;;w, define an algebra 2II=~2II/ai(2IO)={fEIT2I1/ai' and for some nEI, 
iEI E 

all l,m:1!:: n, f(1) = f(m) E2I a}. If g is a homomorphism from the algebra 211 to 

the algebra 2I 1/aj' either there are two elements hl,h2 E2I I such that for some 

nEw and all m:1!::n we get hl(m);o!~(m), in which case g(ht)=g(~), or , as 

21 daj is simple, for any ZI,Z2 E2I I the equality g(ZI) = g(Z2) holds provided that 
for some I Ew and all m:1!:: I we have ZI (m) = Z2 (m). In the former case, 

2I 1/aj« IT2I 1/ai and, as was the case in the proof of lemma 10.1, we get 
iEI.isn 

j EI. In the latter case we obtain, as can be easily seen, 21 d a j 5!! 21 0' which 

contradicts the choice of the algebras 211/ an' Therefore, for any jEw and IS;;;; w 
we get 21 j «21 I iff j EI. Repeating the end of the proof of lemma 10.1, we see 
that the statement of the present lemma for the case (1) is proved. 

Case (2). Since Conp2l1 is here superatomic, we get Conp2l1 5!! B( wa 's) for 
some countable ordinal a and some sEw. Any principal congruence (Ja,b on the 

algebra 211 will be, by theorem 5.6, identified with a subset {i Ewla(l) = b(i)} of 

the set w. For a d EConp2l1 let d* denote a corresponding open-closed subset of 

the Stone space (Conp2l1)*' For CS;;;;2I(J) and C;221 1, for dECon)11' 
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ConpC I .... d will denote a naturally ansmg Boolean algebra with a basic set 

{d1 EConpC Id1 :s .... d}, while tPd will stand for a natural homomorphism ConpC on 

Con pC I .... d. Under the same conditions C I .... d will denote a subalgebra of the 

algebra 11 ~ d ( .... d is a subset of w) which is the projection of algebra C relative 
to the subset .... d. In this case ConiCI .... d)=Con/CI .... d. 

It should be noticed that if k is a homomorphism of a subalgebra C of the 

algebra 11 OJ containing the algebra 11 1 on 11 11 .... d, where d is a certain element of 

Conp111' for any irejEw and sE .... d~w we get k(/i)(s)rek(h)(s). Indeed, 

(}c = V d th I:" (}1I ll~d = V . b th 5 6 f fiJj C an, erelore, k(./i)k(!}) 11 ll~d' I.e., y eorem ., or any 

s E .... d we get k(/i)(s) re k(h)(s). 

It should also be noticed that for any algebras .B1,.B2 E.m, for any 

homomorphism k from the algebra .B1 to B 2, the mapping qJk from Conp.B1 to 

Conp.B2 51! COnpB11?; kerk, defined as qJk«(}!.n = (}~i>,k(h) equal to (}!.~ v kerk when 

identifying ConpB2 with ConpB 11?;kerk, is, since .m is congruence-distributive, a 

homomorphism from the Boolean algebra ConpB1 to Conp.B2 . 

Let now R = {r1, ... ,rs } be a subset of a Stone space (Conpl1 1) * of the Boolean 

algebra Conpl1 1 composed of all the points of this space having the highest Cantor-
* Bendixon rank. Let D = {d1, ... ,dn, ... } be elements of Conpl1 1 such that dn 3 rj for 

some Ii ER. 

Let us enumerate: k1, .•• ,kn, ••. are the homomorphisms of the algebra 111 in 

algebras of the type 11 lid, where d is a certain element of the set D (let us refer 
to this d corresponding to kn as d(n)), corresponding to the following conditions: 

(1) fo.~ ire jEw and for sEd(n) knC/i)(s) reknCf))(s); 

(2) qJkn , a homomorphism from the Boolean algebra Conpl1 1 to the Boolean 

algebra Conpl1 1Id(n), is a homomorphism "onto". 

The number of such k s is at most countably infinite, since D is countable and 

11 1 is finitely generated. 
The homomorphisms qJkn induce dual continuous embeddings 

"1"1 * * * (Conp"'" 1Id(n)) = (Conpl1 1) Id(n) = d(n) 

into (Con pl1 1)*. Let us refer to these embeddings as 1jJ no 

* d d Let Rd = Rn d ={r1 , ... ,rm(d)}. For any nEw we get Rd(n) re 0. It should be 
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also noticed that 

(a) for any nEw. js.m(d(n» we have 1/Jn(rJ(n»ER; 

* (b) if t is an isolated point of the set d(n) • we get 1/Jn(t) fER. as 1/Jn are 

embeddings except. possibly. for a finite number of such Is. Hence. Kn = {t is an 

isolated point of d(n) *11/Jn (I) fER} = {If ..... 1 ::r .... } is an infinite set. All isolated points 

of the space (Conll I ld(n»* have the form (}~.~d(n) for a certain jEw; let 

O(n.m) Ew be such that 1m = (})Jl ld(n) . 
n io(n,m),g 

For any 
I, n d(n) 
1m t(m) = Ii 

m .... 1X> 

nEw let us choose a sequence 

and. hence. since 1/J n is continuous. 

denote the latter limit. i.e.. lim 1/Jn (1(",» '" r(n) . 
m-IX> 

n n K h h 1(1) ••.•• I(m).·... n suc t at 

lim 1/Jn (t(m» ER. Let r( n) 
m-IX> 

Let 1] be a bijective enumeration of pairs of numbers. By induction. let us 

construct a sequence ht •. ". bn .... of disjunct elements of ConpllI' and a subsequence 

I~n •.. .• t ~n •. .. of the sequence t(nm) such that if 1]( m.q) = n • 
Jl Jk 

Let bI ..... bn- I have been constructed. and let 1](m,q) = n. Since 

lim 1/Jm(tCh) ==r(m) and (bIv ... vbn_I)* jr(m). there is a pEw such that 
I-IX> 

Let b be an arbitrary element of ConpllI contammg a point 1/Jm(t(;». not 
containing the points of the set R. and disjunct from ht v ... vbn _ I . Let us set 

I;: .. 1(;) and bn = b. The condition (*) is now met. One can assume in addition 

that the sequence bI ..... bn .... results in a partition of the unit in Conp1l1 • i.e.. that 

any isolated point of (ConpllI) * belongs to one of b:(n Ew). One should also 

remark that the condition (*) implies 

(**) ( (b »* m fPk n 3 t ·m. 
m Jq 

i.e .• (b ) C (})J Ild(n) 
fPk n - f. 

m o(J:;',m),g 
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Let Wl"",Wn"" be an enumeration of all the elements of the algebra Jl 1• Let 

t1(xl"",xk,x,y), ... ,tj (Xi."",xk'x,y), ... be an enumeration of all (k + 2) -ary terms of 

the signature of the variety .m , i.e., for any h EJI W the algebra < JI l,h >, which 

is a subalgebra of the algebra JI W generated by the elements of the algebra JI 1 and 
the element h, has {tjUl, ... ,A,g,h~iEw} as its basic set. 

By induction over nEw we will define the value apn of the element h on 

i Ebn and, simultaneously, certain infinite subsets Al:2 ~ :2 ... :2 t\ :2... of the set 

{al, ... ,a n, ... } of the elements of algebra JI . 

Let An-I have been constructed and let the function h have been defined for 

iEb1v ... vbn_1• Let n= 'Y/(m,q) and wq(OU:;,m»=a/. By the condition (1), 

for any sl ... s2 Em. Therefore, for all but possibly one values of aj Et\-1 we get 

Let us refer to the set aj Et\-1 as A;,. We see that A;, IS infinite, and if 
ajE~, 

Let us now construct a partition of the set A;, into subsets A(s), where s runs 

over the subsets of the set {{i,j}li,j :s n}. In this case, if ar E~, ar EA'(s) iff 

{{i,j}ltj Ul,' .. , ft, g, fr) = t/ll," ·,fk,g,fr ),i,j :s n} = s. 

For some s, A(s) is infinite. Let us set An equal to this A(s). Let apn be a 

certain fixed value from An' 

By virtue of the construction of h and An' the following statements are true: 

(a) if 'Y/(m,q) =n, then wq(OU:;,m» ... km(lpn)(O(j:;,m». In this case, 

1/Jm (t~m) Eb:, i.e., as has been noted in (**), fPk (bn) ~ lJj111Id(n) , with the latter 
Jq m O(j:;'.m).8 

congruence identified with O(j:;,m). Therefore, fPkm (bn) 3 O(j:; ,m). Moreover, for any 
i Ebn we get h(i) = iPn (i); 
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(f3) for any nEw and 1,Jsn, [ltlft,···,A,g,h) =t/II, ... ,A,g,h)l] either 
contains w \ (bIv ... vbn ) or does not intersect with w \ (bIv ... vbn ). 

Bearing in mind that Con p < JI I,h >,Con pJl 1 are Boolean algebras, and that 

[It,{ ft, ... ,A ,g,h) = t/II, . .. , A,g, h~] n Cq v ... v bn) = 
n 

= V [itjUI,···,/k,g,jPl) = tj(ft, ... ,A,g,jp)] nbf , 
f~I 

we get from (f3) that the Boolean algebras Con p < JI I,h > and Con pJl 1 coincide. 

Let now JI 2 =< JI I,h >, and we will show that there is no homomorphism 

from the algebra JI 2 to JI Ii ~ d for any d ED. Assume to the contrary that d ED , 

and k is an JI 2 homomorphism on JI 1/ ~ d. As has been noted in the beginning of 
the proof of case (2), the homomorphism k meets condition (1) imposed on the 
homomorphisms of the sequence kn(nEw). By virtue of the equality 

ConpJl 2 = ConpJl l' the condition (2) for the mapping CfJkl2l I is also met. Therefore, 

klJlI=km for some mEw. Let us assume in this case that k(h)=Wq/~d=wqld, 

and let 1J(m,q) = n. By the definition of h we have efj2 :2 bn- Hence, we get 
• Pn 

i.e., O(j;,m) Ed and Wq(OU;,m» = kmUPn)(O(j;,m». According to (a), however, 

we have wq(OU;,m».,. kmUp)(O(j;,m». The contradiction obtained proves the 

impossibility of the existence of the homomorphism h. 

Iterating the construction of JI 2 relative to JI 1, let us build a sequence of 

finitely generated algebras JI I,JI 2, ... ,JI n"" with the property ConpJl n = ConpJl 1 for 

any nEw and for any m > n, while for any d ED we have JI m ~~ JI nl d. 

It should be recalled that ConpJl I =B(wrx ·s). Let .1lI, ... ,.lln, ... be a sequence 

of Boolean algebras such thatlln =B(wrx+n) for any nEw. Let Sf (iss) be 

ultrafilters on ConpJl 1 corresponding to the points rI, ... ,rs of the space «(;~npJl 1)*' 

and let a?, ... ,a; be the corresponding congruences of the algebra JI n' For any 

j s s, JI nI aj is a simple algebra, and let y j be a natural homomorphism of JI n 

on JI nl aj. Let Gn be an ultrafilter of a maximal Cantor-Bendixon rank on the 

algebralln- Let €n,j = (JI nl ai)lln, and let f3i be a natural homomorphism from 

the algebra € n,j to € 1I.,j I bj', where bj ECon€ n,j and bj correspond to the 

ultrafilter Gn . In this case, € 1I.,J bj e!. JI nl aj, as € n,j / bj is simple and, as has 
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been repeatedly noted. in a congruence-distributive variety any factor of a Boolean 

power of the simple algebra 2/ nl aj has the form of a Boolean power of this 

algebra. Let us set the algebra D n equal to a subdirect product of the algebras 

2/ n.e2/ Ja~).Bn .... ,e2/ n/a~).Bn with the basic set 

{<a.b1, ... ,bs >E2/nx(2/Ja~).Bnx ... xe2/nla:}Bnl for any jss yjea)=fJj(bj)}. 

Let us prove now that for any m.nl' .... nkEw such that m EE{nl, ... ,nk}' we 

have Dm.f:..f:. Dnl x ... xDnk . Let us assume to the contrary that m EE{nl, ... ,nk}, and let 

() be a homomorphism from the algebra Dnl x ... xD nk (henceforth, D) to Dm. 

Since the largest congruences of the algebras Di are principal ones, there is a 
partition of the congruence Vi> with the principal congruences fJl,,,,,Pk such that the 

factors of the algebra D relative to the congruences ~ pj(i s k) are the algebras 

D nl •• .. ,D nk' If gj(i s k) are natural homomorphisms of the algebra D into factor

algebras of the algebra Dm corresponding to the congruences I-'j = ker () v ~pj then, 

since .111 is congruence-distributive, gj are homomorphisms of the algebra D on 

some algebras D ! ... . ,D! such that D m SO! D! x ... xD! (from now on. we will 

identify Dm with D!x ... xD!), in which case the congruences corresponding to the 

Dm projections on D~ (as well as the congruences ~fJj) are principal congruences 

of the algebra Dm, i.e., elements from Con~m' 

Let us refer to these elements of Con~m as ul"",uk' As 2/ m« Dm. 

(Conp2/ m)* is naturally identified with a subspace of the space (ConpDm)*. and let 
* * 2/* * * n* * * dj = U; n (Conp m)' Since ul ..... uk form a partition of (Conr m) • d1 .... ,dk also 

form a partition of (Conp2/ m)* and, hence, at least one of the elements d1, ... ,dk 

belongs to the set D. Let it be a d1• Therefore, since ker gl = ker () v ~ PI and 

D / ~ PI = D nl ' we get a homomorphism (we will denote it by gi) from the algebra 

Dnl to the algebra Dm/~Ul' Extending. if required, the homomorphism g{ by 

projecting the algebra Dm/~UI' one can assume that the element d; contains only 
one point from R. Let it be a point '1' 

y will denote a projection of the algebra D ml ~uI to the algebra 2/ ml ~ul . 
Since the algebra 2/ m/~dl (as well as 2/ m) is finitely generated, let h1, ... ,hp be its 

generating algebras, while vI ..... Vp be arbitrary elements of the algebra Dnl such that 

y(gl<Vj)) = h; for is p. In this case ygi is a homomorphism from a subalgebra 

< vl""'vp >i>m of the algebra D nl , generated by the elements vl .... ,vp. to the 

algebra 2/ m/~dl' Let xl, ... ,xq be generating elements of a finitely generated algebra 

2/ nl and YJ. .... ,yq arbitrary elements of the algebra Dnl of the type 

Yi =<Xj,!Jf, .... b; > for some bjE(2/njajl/nJ(jsS). The subalgebra of the algebra 
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1) nl generated by the elements VI'''.' V p' Yl' ... 'Y q will be denoted by JE and, since 

< vI'···' V P >.3) k: JE , the homomorphism ygi maps JE on the algebra JI ml ~dl. Let 
nl 

:n; be a projection of the algebra 1) nl on the algebra 

As JE is finitely generated, the algebra :n;(JE) is also finitely generated. But 
:n;(JE) is a subalgebra of the algebra 

Any finitely generated subalgebra of any Boolean power (JI nIl a? yEnl is 

contained in a subalgebra of the type (JlnJa'JI)BUl, where .E(j) are finite 

subalgebras of the algebra .Enl • Therefore, extending JE in an obvious way, if 

required, to another finitely generated subalgebra of the algebra 1) nl' one can assume 

for some finite Boolean algebrasE(l), ... ,E(s). If a/iss) is an .E(l) atom such 
* that aj E Gnl , we get 

LetE '(i) denote .E(l)I~ai and Ii the algebra 

There is a principal congruence fJ ECon~ nl such that JE IfJ 5!! JE I ~ fJ 5!! JI nl' and 

JE I ~ fJ 5!! JE I fJ 5!! Ii. Let fJl, ~ fJl EConp (JI ml d1) be the images of fJ and ~ fJ , 

respectively, at the homomorphism ygi. Since (fJ)* =.E '(l)*U ... u.E'(s)* is a finite 
* JI * space, (fJl) contains only a finite number of the points of the space (Conp midI)· 

Therefore, (~fJl)*:3 71 and, hence, ~ fJl ED. Factorizing the algebra JE over the 

congruence fJ and the algebra JI ml d1 over the ygi -image of fJ, i.e., over the 
congruence fJl, we get a homomorphism Yl induced by the homomorphism ygi, 
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from the algebra ~ /1] s Ji nl to the algebra Ji ml d1/ 1]1 s Ji ,,) -'1]1' where -. 'YIl ED. 

By the conditions that hold for the algebras Ji 1, ... ,Ji n"'" the existence of the 
homomorphism Yl implies the inequality nl:S m and, asm ~{nl, ... ,nk} by the 

assumption, nl < m. Therefore, there is now a homomorphism gi from the algebra 

.Dnl to the algebra .Dm/-.Ul' and nl < m. Then -,ul is a principal congruence on 
~ * * '1'1* * . ,J./m, and for d1 = ul n (Conp.a m) we get d1 n D= {rl}' In this case, however, It 

follows from the definition of .Dm that .Dm/-'Ul is isomorphic to the algebra J , 
which is a subdirect product of the algebras Ji ml d1 (it should be recalled that here 

d1 is viewed as a subset of w), (Jim/a'{')lJmlll, ... ,(Jim/a,:)Bmlt., where 

11, ... ,ls E.Bm and, moreover, 11, ... '/s EGm , where Gm is, by the definition of the 

algebra .Dm, an ultrafilter of a maximal Cantor-Bendixon rank on .Bm. However, for 
11, ... ,ls EGm we have .Bml/1 s ... s.B,,)ls s.Bm and, therefore, if;r is a projection of 

the algebra J on (Ji m/a'{')lJmll1, ;rg{ is a homomorphism from the algebra .Dnl to 

the algebra (Ji m/ a'{')lJmlll s(Ji ml a{")lJm. Therefore, ;rgi induces a homomorphism 
1jJ from the Boolean algebra 

Con~nl c;;;;, ConpJi nl X Conp[(Ji nJ a~I)B nl x ... x(Ji nJ a:1 /n1 = 
=B(wa's)xB(wa+n1)s sB(wa+n1·s) 

to the Boolean algebra ConiJi m/ alm)lJm s.B m s B(wa +m) which, by virtue of the 

inequality nl < m, is impossible. The contradiction obtained proves that for any 

m,nl, ... ,nkEw, the existence of a homomorphism from the algebra .Dn1x ... x.D nk to 

the algebra .Dm must imply m E{nl, ... ,nk}' 

It should be noticed that all algebras of the type .D n contain subalgebras 

isomorphic to the algebra Ji. Indeed, for Ji n it is obviously a subalgebra 

{,ft, ... ,jk''''}' and for any aF at k .. lEw, we have AlaF .. 1t/aF. Therefore, for 
any k Ew, we get 

*1 n *1 n '" <1k,lk' al, .. ·,Ik· as >E,J./n, 
and 

*1 n '), / ",B . *1 n I n B * (here A ai E(.a n ai i n IS such that A ai (p) Elk ai for any p E(. n) . Let 
us refer to this subalgebra of the algebra .D n as Ji (.D n), and to the element 

<1k,f;la~, ... ,j;./a:> as Id.D n). For any infinite Ic;;;;,w, .D[ will denote the 
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algebra 2Dn(Ji (Dn), which is a subalgebra 
nEf 
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of the algebra IT 1)n with a basic 
nE1 

set {h E IT Dnl there are m,k Ew 
nE1 

such that for all p ~ m, h(p) = fi1) mH. 

Let us show that for any infinite I ~ wand any nEw, we get D n « D I iff 

n E/. If n EI then, obviously, Dn« D I . Let now g be a homomorphism from 

the algebra D I to D no If hl , ... , hr is a finite set of generating algebras of the 

algebra Ji n , let vl, ... ,vtEDI such that g(vi )=<ht, ... >E1)n for ist as well. Let 

lEw be such that for all m ~ l, for all is t we have vi(m) = A(i) (1) m) for some 

k(i) Ew. It is obvious that for any n Em there is a homomorphism from the algebra 

1)n to the algebra Ji and, hence, to the algebras Ji (1)m) isomorphic to it (at any 
mEw). 

Let us refer to some fixed homomorphisms of the algebras 1) n on the algebras 

Ji (1) m) as CPn,m. Let 1= {il < ... < im < .. .} and iq < Is iq +l. Let lC be a subalgebra of 

the algebra 1) I with a basic set {h E1) II for all m E/,m ~ l, hem) = fk(D m)' where 

k is such that fk(1)m)=CPi ,iq+l(h(iq))}. Obviously, we get lC ~1)i x ... x1)i. 
q 1 q 

Moreover, if lC is a projection of the algebra 1)I on the algebra 1)i x . .. xDi , ker lC 
1 q 

is a principal congruence. 

Let fJ be the image of ker lC under the homomorphism g (i.e., fJ = e~h;r;(b) if 

ker lC = eft); fJ is a principal congruence on 1) n. If lCl is a projection of the 

algebra 1)n on the algebra Ji n then, by the construction of lC, which included 

<vl' ... 'v/ >1) , a subalgebra of the algebra 1)I generated by elements vl' ... 'vt , we 
I 

get the equality lClg(lC) = Ji n. On the other hand, ker lC limited to lC is trivial 
(zero) and, hence, fJ, limited to g(lC) is also trivial. Therefore, we found a 

principal congruence fJ on the algebra 1)n such that for some subaJgebra g(lC) of 

the algebra D n' the fJ boundedness on this subalgebra is trivial, the projection of 

this subalgebra on the algebra Ji n coinciding with the whole algebra Ji n. By the 

construction of the algebra 1)n, the factor-algebra 1)n/fJ has the form 

{< a,CPl(b), ... ,cps(bs ) >I<a,bl, ... ,bs >E1)n, and CPi are homomorphisms from the 

algebras (Ji j a;)B n induced by the projections of the Boolean algebra B n to the 

algebras Bnldi for some di EGn}. 

It should be recalled that Gn is an ultrafilter of a maximal Cantor-Bendixon 

rank on the algebra Bn ~B(wa+n). Then Bnldi~Bn and, hence, 1)n/fJ ~Dn. In 

this case, since DI/kerlC~1)~x ... x1)iq,1)n/fJ~1)ll and g induces a 

homomorphism from 1) dker lC to 1) n/fJ, D n « D ~ x ... x1) iq • As has been proved 

earlier, nE{il, ... ,iq}~1. Therefore, indeed, 1)n «1)/ for any nEw,/~w iff nE/. 

Hence, it is obvious that for any Il,l2~W 1)/1 «1)/2 iff II ~/2· 
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The latter conclusion implies the existence of 2xo pairwise incomparable 

elements in < :rr.n Xo ;« >, and an embedding of any countable partially ordered set 

into < J .. r.nxo;«>' As was the case in the proof of lemma 10.1, the embedding of 

any countable partially ordered set into < J.r.nxo ;«> is extended to that of any 

countable quasi-order in it. • 

The statement of theorem 10.3 results directly from the statements of lemmas 

10.1 and 10.2 .• 

Priorities. Theorems 10.1 [173], 10.2 [163] and 10.3 [172] are by 

A.G.Pinus. 

11. Embedding and Double Skeletons 

Alongside with epimorphism relations, isomorphic embedding relations are 
fundamental in algebras of an arbitrary variety. We will say that the relation as b 

holds bf:tween the isomorphism types a,b of certain algebras iff an algebra of the 
isomorphism type a is isomorphically embeddable into an algebra of the isomorphism 
type b. The relation s will be used between algebras themselves in an analogous 
sence. It is obvious that the relation s is a quasi-order relation on isomorphism 
types. 

Definition 11.1. A quasi-ordered class < J Jl' ;s> will be termed an 

embedding skeleton of an algebra class Jl' . 

The present section is devoted to embedding skeletons of congruence-distributive 
varieties. Let me first remark that there is a relation between embedding skeletons of 
congruence-distributive varieties and such traditional notions of universal algebra as 

subvariety lattices and subalgebra lattices. It should be recalled that an algebra Ji of 

a certain class of algebras Jl' is called X -universal in Jl' if IJi I s X, and any Jl' ~c 
algebra is isomorphically embeddable into Ji. The following statement is directly 
deduced by analogy with the statement on epimorphism skeletons proved in section 
9. 

Statement 11.1. For any variety of algebras there is an isotonic mapping 



250 BOOLEAN CONSTRUCTIONS 

from the embedding skeleton < Jm ;s> to the lattice of subvarieties of the variety 

.rrl. If X is an infinite cardinal, and there is an algebra 11x(.rrl) X-universal in .. rrl , 
there is an isotonic mapping from the lattice of subalgebras of the algebra II xc.rrl ) 
to the limited embedding skeleton of .. rrl, < J.mx;s>. 

As was the case for epimorphism skeletons for arbitrary congruence-distributive 

varieties, those with extendable congruences prove universal in the class of all quasi
orders. 

Theorem 11.1. If .. rrl is a non-trivial congruence-distributive variety with 
extendable congruences, for any regular cardinal X > Xo, any quasi -order of the power 

not greater than ~ is embeddable into < J .. rrlx;s>. 

Proof. Let }f be a simple at most countably infinite .m -algebra. By theorem 

1.17, there are Boolean algebrasBi of the power X(iEX) with the following 

properties: for any i¢ jEX and 0 ¢ aEBi , 0 ¢ bEBj we get Bjlb .J.Bila. By 

defining a Boolean algebra BI as ~Bi for Ie;;;, X (see the definition of this algebra 
iEl 

before lemma 9.4), we obviously get that for /1'/2 e;;;, X B II S B lz' iff II e;;;, 12 , 

Therefore, the partially ordered set < 2x;e;;;,> is isomorphically embeddable into 

< J.rrlx;s>. 
Let now < A;sl> be an arbitrary quasi-ordered set of the power not greater 

than ~. A partially ordered set < A/=s;sl> is isomorphically embeddable into 

< 2x ;e;;;,>. Let us call this isomorphism f. It should also be noticed that among the 

Boolean algebras just constructed, no Boolean algebras of the type B«wi + 'YJ) oX) 

(where i EX and 'YJ is the ordinal type of rational numbers) have been chosen as 

direct co-factors. Moreover, for i ¢ j EX we have B« wi + 'YJ) 0 X) ~ B« w j + TO 0 X), but 

B«wi+'YJ)oX)=sB«wj+'YJ)oX). For any aEA, let "raj be a certain bijective 

mapping from the [a]= equivalence class to the ordinal X. Then for any a EA let 
-~I 

From the earlier remarks it is obvious that for a,b EA .B a S B b iff as b. 

}f a( a E A) will denote anm -algebra }f.B a, in which case l}f a IsLB al = X for any 

aEA, while by theorem 11.3, }fas}fb iff BasBb, i.e., iff aSlb .• 

Corollary 11.1. If.rrl is a non-trivial congruence-distributive variety with 

extendable congruences, any quasi-ordered set is isomorphically embeddable into the 
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.m embeddable skeleton. 

As follows from the proof of theorem 11.1, .m -algebras implementing 

embeddings of arbitrary quasi-orders in < J.m ;s> will be of uncountable power for 
both embedding skeletons and epimorphism skeletons. Even "small" quasi-orders may 
be not embeddable into countable embedding skeletons of certain non-trivial 
congruence-distributive varieties with extendable congruences. For instance, 

< JB~ ;s> is obviously isomorphic to the quasi-ordered set (WI $1*) U 1, whose 
o 

* * quasi-order wI $1 is described in section 10, and (WI $1 ) U 1 is obtained by 
* adding to wI $ 1 an element comparable to nothing (of the type of a one-element 

algebra isomorphism). Since it is often the case that a singleton algebra is not a 

subalgebra of other algebras of a variety, using .m I to denote a class of non

singleton .m -algebras, we introduce the following definition. 

Definition 11.2. A quasi-ordered set < J.mxo;s> will be termed a countable 

*embedding skeleton of a variety .m . 

Therefore, a countable *embedding skeleton of a variety of Boolean algebras is 
linear-factor-ordered. On the other hand, theorem 3.3 entailss that a countable 
*embedding skeleton of a variety of Boolean algebras is isomorphically embeddable 
into a countable *embedding skeleton of any non-trivial congruence-distributive variety 
with extendable congruences, i.e., the countable *embedding skeleton of a variety of 

* Boolean algebras wI $1 is minimal among countable *embedding skeletons of 
varieties of the class under discussion. Then the following statement holds. 

Theorem 11.2. If m is a congruence-distributive variety with extendable 

congruences, in which case either.m is semi-simple, .m 81 is an approximatizable 

class and the principal congruences are elementary definable on.m or JJI. , is locally 
finite, then the following conditions are equivalent 

(a) the countable *embedding skeleton of.m is linear-factor-ordered; 

(b) the countable *embedding skeleton of.m is minimal (i.e., isomorphic to 
* wI $1 ); 

(c) .. m =.m (21), where 21 is a certain quasi-primal algebra with no non

singleton subalgebras, and for anyone-element subalgebras of the algebra 21, there 

are 21 automorphisms transferring these subalgebras into one another. 
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Proof. Let us first prove some lemmas. 

Lemma 11.1. If .m is a congruence-distributive variety with extendable 

congruences and < .J.m Xo ;~> is linear-factor-ordered, for any simple at most 

countably infinite .m -algebras 21 1,21 2 21 1"" 21 2. 

Proof. Assume that 21 1,21 2 E.m Ko and they are simple. Since < .J .. 'tTl Ko ;~> is 

linear-factor-ordered, one can assume 11 1 ~ 11 2. For the same reason, we have either 

11 l ~2I 2 or 21 2 :s 2112. As the congruences on .m are extendable, any subalgebra 

of a simple algebra is simple itself and, therefore, the case 2Il ~11 2 is impossible. 

However, since 21 2 ~ 2Il is embeddable, as 11 2 is subdirectly non-decomposable, 

11 2 is embeddable into 11 1. Thus, 11 1 :s 11 2 and 11 2 :s 11 1· • 

Lemma 11.2. If .m is a congruence-distributive variety with extendable 

congruences, 11 is an infinite simple .m -algebra and < .J .. 'tTl xo ;:s> is linear-factor

ordered, then there is an infinite simple finitely generated .m -algebra. 

Proof. Since, due to extendable congruences on .. 'tTl, subalgebras of simple 

algebras are simple, 11 can be considered countable. Let al,a2 be different elements 

of 21 , and let 211 be a subalgebra generated in 11 by the elements al,a2. 11 1 is 
simple and infinite since, if it were finite" having by lemma 11.1 the relation 

11 1 .. " 11, we would get a finite 11, which contradicts the lemma conditions. 
Therefore, 211 is countable, simple, and is generated by the elements al,a2. • 

Lemma 11.3. If .m is a congruence-distributive variety with extendable 

congruences having an infinite simple finitely generated algebra, .. 'tTl S1 is an 

approximatizable class, and the principal congruences on .. 'tTl are elementary definable, 

any countable partially ordered set is isomorphically embeddable into < .J.mKo ;:s>. 

Proof. Let 21 be an infinite, simple, and finitely generated .m -algebra. For 

the sake of simplicity, 21 is assumed to be generated by two elements, al,a2. 210 

will, ~enote a diagonal subalgebra of a direct power 11 CJ) of the algebra 21, i.e., a 

subalgebra of the algebra 21 CJ) formed by constant functions. 

Let 21 ~ {a1,a2, ... ,a n, ... }, and Ji will denote an element of the algebra 21 CJ) 

such that for any mEw we get Ji(m)=aj. Therefore, 110 = {h,/2, ... ,/n, ... }, and the 
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elements 11,12 generate 11 o. g will denote an element of the algebra 11 W such that 

for any mEw we have g(m) = am' Let 111 be a subalgebra of the algebra 11 w 

generated by the elements 11' h., g. For any set P ~ w, kp will denote an element of 

the algebra 11 W such that for m EP we have kp (m) - aI' and for m Ew \ P we 

have kp (m) '"' llz. Let 11 (P) be asubalgebra of the algebra 11 W generated by the 
elements 11,J2,g,kp . 

We now will have to use some notions associated with the hyperarithmetic 
hierarchy of the subsets of the set w. All these notions can be found, for instance, 

in a well-known monograph by H.Rogers [200]. For any set P ~ w, P will denote 
the hyperpower of the set P, and :s the relation of order (reducibility) in the 

hyperarithmetic hierarchy. Let a be the signature of algebra 11 , and V the family of 
the numbers of the identities of the signature aU < a1,a2 > true on the algebra 

< 11 ,a 1> llz > at a certain fixed numeration of the signature aU < a1,a2 >. According 
to C.Spector [218] (the remark following theorem 1), there isa family 
{1\,P2 , ... Pn, ... } of subsets of the set w such that for any i,i1, ... ,in Ew we have 

~ ~ V and, if i EE{i1, ... ,in}, ~:i ifl V ... v It. 
For any I~ w, 11 [ will denote a subalgebra of the algebra Ill1 (ID with a 

iEI 

basic set {f E Ill1 (P;), there are n Ew and a El1 0 such that for any m > n 
iEI 

I(m) = a}. Let us prove that for any 1,1 ~ w, the algebra 111 is isomorphically 

embeddable into the algebra 11 J iff 1 ~ J .• 

Let 1 ~ J, and let 1J1 be a certain fixed homomorphism from the algebra 11 [ to 
the algebra 11 0 51! 11 (its existence is obvious). Let us define a mapping qJ from the 

algebra 11 I to the algebra 11 J in the following way: for I El1 I' let qJ(f) be such 
that qJ(f)(m) = I(m) if mEl, and qJ(f)(m) = 1J1(f) if m EJ \ I. It is obvious that 

qJ is an isomorphic embedding of 11 I into the algebra 11 J. 

Let us prove the opposite case. Let there be a certain embedding qJ from the 
algebra 11 I to the algebra 11 J. Let us prove that, in this case, 1 ~ J. Let us 
assume to the contrary, that lEI \ J. 1J1 will denote a fixed homomorphism from 

the algebra 11 (ID to the algebra 11 0 , 111 will denote a subalgebra of the algebra 

11 I with a basic set {f El1 [I, for any k EI \ {l} I(k) = 1J1(f(l»}. Obviously, 
11 1 5I!}f (l[). Since }f (ID and, hence, }f I, are finitely generated, by the definition 
of the algebra }f 1> there is an n EJ such that for any h E}f 1 there is an a(h) E}f 0 

such that for m EJ obeying the inequality m >n we get qJ(h)(m) = a(h). The 

mapping h -+ a(h) is, obviously, a homomorphism from the algebra qJ(}f I) to the 

algebra }f 0, and the projection of the algebra qJ(}f I) ~ Il}f (Ii) relative to the set 
El 

{I EJli:s n} is an isomorphism from the algebra qJ(}f I) to a certain subalgebra of the 



254 BOOLEAN CONSTRUCTIONS 

algebra n 1/ (lD· Therefore, there is an isomorphic embedding 1J of the algebra 
j,s n,iEJ 

1/(lDr;a1/1 in the algebra 1/(P;I)X ... x1/(P;k)' where {4, ... ,ik}={iEJli:s;n}. 

Let now tf(XI, .. . ,xi)' ... ,t j(XI' . .. ,xi)' ... (i Ew) be an enumeration of all the terms 

of the signature of the variety .Ill from the variables Xl' .. . ,Xj. Then, by the 

definition, for any pc;;,w we have 1/(P)={!J(A,h,g,kpn<w}. For any iEw, 

however, by the definition of the element kp , we have 

tjUI,h,g,kp)(i) =tJ(A,h,g,fI)(t) if iEP, 

tjUI,h,g,kp)(i) = tJ(A,f2,g,f2)(i) if ifEP. 

Let the recursive functions a(x),{J(x) be such that 

The chain <t!U),tj(j)'P> will be called a canonical description of the element 

tjUI,h,g,kp) E1/ (P), and we will write tjUI,h,g,kp) =< t!U),tJ(j)'P>. 

The embedding 1J of the algebra 1/ (ID into the algebra 1/ (P;I )x ... x1/ (P;k) is 

uniquely defined by the images of the elements il,j2,g,kp,. generating the algebra 

1/ (In. Let the following equalities be valid for some 

ml'· .. ,mk,nl'· .. ,nk,TI,·· .,Tk,sl'··· ,sk Ew: 
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By virtue of the definition of the elements kp and theorem 5.6, the following 

equivalence holds for any i Em: 

• . }J (p) }J (p) 
1 EP ¢> kp(l) = fI(i) ¢> ()kp,A ~ ()./;,g . 

As TJ is an embedding of the algebra }J (F}) into the algebra 

}J , =}J (P~ )x ... x}J U:;k) and the congruences on }J' are extendable, 

For h,kE}J', [h=k] will denote {<i,j>lisk,jEm and h(i)(j)=k(t)(j), 

where h(i),k(i) E}J (JD,h(i)(j),k(i)(j) E}J }. 
}J , }J , 

In this case, by theorem 5.6, f:}T/(kEj ),T/(Al ~ f:}T/('/;),T/(g) is equivalent to 

[TJ(kp) = TJUi)] :2 [TJUj) = TJ(g)], while the latter, by virtue of the canonical 

descriptions of the elements TJ(fr)(j),TJ(fz)(j), TJ(g)(j),TJ(kp/)(j) introduced above, and 

since Ji = t;Uf,fz), is equivalent (for any j s k) to the following relation: 

Therefore, for any i Em, i EF} ¢> for any j s k and u em, 

Z 3 Z 3 Z 
(u ~j =>(tj (ta(mj)(ar,az,tu (ar,az)),(ta(nj)(ar,az,tu (ar,a2))) = 

3 Z 3 2 
= ta(rj )(ar,a2 ,tu( ar,az» => ta(s j)( al>az,tu (ar,aZ» = 

3 Z 
= ta(m j )(ar,a2 ,tu( al,aZ»)))&(u fEl-jj => 

z 3 2 3 Z 
=>tj (tp(mj/al,a2,tu (al,az)),tp(nj)(al,a2,tu(al,aZ))) = 

3 Z 3 Z 
= tp(rj) (al,aZ,tu (a l ,a2» => tp(s j) (al,aZ,t u (aI' az)) = 

3 2 
= tp(mj)(al,a2,tu (al,a2»»' 

It should be recalled that we have already fixed a certain Godel numeration of 
the terms and identities of the signature aU < ar,a2 >, and that V is a family of the 
numbers of the identities of the signature aU < al,a2 > true on the algebra 

<}J ,al"az >. y(i,u,w,p,q) will denote the number of the identity 
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while 6(u, w,p) stands for the number of the identity 

It should be noticed that both y(i,u,w,p,q) and 6(u, w,p) are recursive 
functions. In this case, as has been noted earlier, for any i Ew we get 

i Ell ~ Vj s k, Vu«u E11j => (y(i, n,a(mj),a (nj),a( rj)) EV => 

=> 6(u,a(sj),a (mj )) EV)& (u ~l1j => (y(i,n,(3( mj),(3(nj),(3(rj)) EV => 

=> 6 (u,(3( Sj ),(3 (m j)) E V). 

Therefore, if the algebra 2/ I is embeddable into the algebra 2/ J and lEI \ J, 
there is a k Ew and numbers i1, ... ,ik EJ such that 

< w;+;,v >1= 3m1, ... ,mbn1, ... ,nbr1, ... ,rk,s1, ... ,sk[Vi(iEll ~ 

~ Vj skVu«u E11j => (y(i,u,a (m),a (nj),a(r)) EV => 

=> 6(u,a(sj),a (m)) EV))& (u rE11j => (y(i,u,(3( mj ),(3 (nj),(3( rj)) EV => 

=> 6 (u,(3( Sj ),(3 (m j)) E V))))] . 

The latter relation implies the inequality II s 111 v ... V ~k V V and, SInce V s Ifl ' 

we get Ii s Ifl v ... V ~k' which contradicts the choice of the sets 11. The obtained 

contradiction proves that if 2/[ is embeddable into 2/ J, the assumption HI J is 

impossible. Therefore, indeed, for any 1,1 ~ w, the algebra 2/ I is embeddable into 

2/ J iff I~J, i.e., <2w;~> is isomorphically embeddable into < J.mxo;s> and, 

since any countable partially ordered set is isomorphically embeddable into < 2w ;~> , 

the lemma is proved. • 

Lemma 11.4. Let 2/ be a quasi-primal algebra without non-singleton proper 

subalgebras. Let {a1},{a2} be the 2/ algebra of subalgebras, and let the countable 

*embedding skeleton JJl = JJl (JI) be linear-factor-ordered. In this case, there is an 

automorphism cp of the algebra JI such that cp( a1) = a2. 

Proof. Let us choose subalgebras 2/ 1,2/ 2 of the algebra JI W III such a way 

that Jli={fEJlwl there is an nEw such that for all j~n, !U)=ai}. As 
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<J.omXo;:!i:> is linear-factor-ordered. we can assume 1I1 :!i:1I 2• and let cp be an 

embedding from 111 to 11 2. By theorem 5.6. a factor of the algebra 11 i over any 
of its principal congruences is isomorphic to 11 i itself. Therefore. if n is such that 

for i'?:. n we get cp( a?)(i) = Oz (here a? ElI i. and for jEw a? U) = ai) then. by 

factorizing 112 and cp(1I 1) relative to v kerE :Jli' we get an embedding 1/J of the 
j,,;,n 2 

algebra 111 into 112 such that 1/J(a?) = ag. Let now b E1I 1• b(O) ~ a1 and b(i) = ar 
(i> 0). Then. if 113 is a subalgebra of the algebra 111 generated by the elements b 

and a~. 113 g 11 . Let i be such that b(i) ~ az. in which case. since 1/J(1I 3) g 11 is 

simple. :Jlz( 1/J) is an isomorphism from the algebra 113 to 11. and :Jlz( 1/J X a?) = az· 
By virtue of the isomorphism <1I 3.af >a<lI .a1 >. we obtain the statement 
required .• 

Let us now return to the proof of theorem 11.2. Since the implication (b) -
(a) is obvious. we have to prove the implications (a) - (c) and (c) -(b). Let us 

start with the former. and let.om be a non-trivial semi-simple congruence-distributive 

variety with extendable congruences. and let < J.m ~o;:!i: > be linear-factor-ordered. Let 

11 be a simple .om -algebra. By lemmas 11.1. 11.2 and 11.3. 11 is finite. By 

virtue of lemma 11.1. and sincerrl is semi-simple. 11 is the only subdirectly non

decomposable .m -algebra. Therefore. as < Jm~o;~> is linear-factor-ordered. for any 

nEw we get Jm(x1 •...• xn)~11 w. Since 11 is finite and Jm(X1 •...• Xn) is finitely 

generated. there is an mEw such that Jm(x1 •...• xn)~lIm. Let sn be the least of 

such m. and let us identify S.f1l (xl •...• xn) with a subalgebra of the algebra 11 9 n 

isomorphic to it. 

Let us now choose a k Ew such that S.f1l (x1,x2'X:3) c;;,11013 c;;,J.f1l (x1 •...• x,J • 

and let g be a mapping from {xl •...• xk} to {xl.x2.x3} such that g(xi) = Xi at i ~ 3. 

and g(xi) = X:3 at i> 3. Let us extend g to a homomorphism from J m (x1 •...• xk) to 

S.f1l (xl.x2. X:3). Then the limitation of g to 11 S3 is a homomorphism from 11 93 to 

S.f1l (xl.x2. x3)· By theorem 5.6, however. all homomorphic images of the algebra 

11 S3 have the form 111 for I ~ s3. Therefore, there is an I Ew such that 

Sm (xl,x2.X:3) aJi I. And again. by theorem 5.6. all congruences on 111 and. 

hence. on J m (xl.-X2.x3), are permutable. By theorem 2.5. this means that.m is 

congruence-permutable. By lemma 11.1. and since 11 is finite. 11 has no non

singleton subalgebras. All these facts tofether imply that 11 is quasi-primal. 

Moreover. as J m (xl •...• xn)c;;,lI Sn • S.m(xl •...• xn)E.rrl(lI) for any nEw and. 

hence. .om =.om (J/). where J/ is a quasi-primal algebra without non-singleton 
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proper subalgebras. By lemma 11.4, in this case, all one-element subalgebras of the 

algebra II must be transformed into each other by an automorphism on ll, which 

proves the implication (a) -+ (c) for the case when.m is semi-simple. The case 

when.m is locally finite is considered in an analogous way but without using 
lemma 11.3. 

Let us now prove the implication (c) -+ (b). Let II be a quasi-primal algebra 
without non-singleton proper subalgebras, with any of its one-element subalgebras 

transformed one into another by automorphisms on ll. Let us show that 

< 3 .. m (ll )1<0 ;s>s WI EB 1 *. By theorem 7.6 and lemma 4.3, any non-singleton 

. .m(ll)l'\o-algebra is representable as ll.B(lll, ... ,lln;Fi, ... ,F,,) for some at most 

countably infinite Boolean algebra .B, closed FJ., ... ,F" and some II -subalgebras 

lll, ... ,ll/!" Therefore, to prove that all non-singleton.m (ll )1'\0 -algebras are 

comparable in terms of embedding, it suffices to show that under our conditions on 

II , for at most countably infinite Boolean algebras .BI ,.B2 ,.B3 , any closed subsets 
I I 2 2 B* B' FJ. , . .. ,F m(Fi , . .. ,F n ) of spaces . I ( 2) and anyone-element subalgebras 
I I 2 2 '11 {al}, ... ,{am},{al }, ... ,{al} of the algebra .a , the algebras 

lli =llBl({a~}, ... ,{a~};FiI, ... ,F~), 
ll2 = II .BZ( {af}, ... ,{a;};Fi2 , ... ,F;) 

and ll.B3 are comparable in terms of embedding. Let us first remark that since we 

assume af ¢ aj at i ¢ j, Fjk n F'f = 0. As all closed Fjk, Ff are separable in .B; by 

open-closed subsets, i.e., elements of the algebraBk> we get for appropriate 

bl'· .. , bm E.BI (cl y •• ,c m E.B 2) 

and 

Therefore, in order to prove the statement (b), it suffices to prove the following 
statements: 

(1) all algebras of the type ll.B 1 ({al};Fi),ll.B Z({a2};F2), 

.BI,B 2,B 3 are countable, are comparable in terms of embedding; 

there 

where 

such that 
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Let us first make the following remark. Let 11 EFJ. ' and let us consider a 

space (.BI" \ FJ.) U{fJ such that the system of open neighborhoods of the points 

other than 11 in it will be the same as that of the same points of the space .B; not 
intersecting with 11, while the system of open neighborhoods of the point 11 in the 
new space will be the same as that of open neighborhoods of the set 11 in the 

space .B;, with the subset 11 \ {it} taken out of these neighborhoods. As can be 

seen easily, this space is Boolean (let us call it .B;), and we get 

1I.B1({aI};FJ.)5I!1I.B4 ({aI};fl). i.e., in the statements (1) and (2), all closed sets Fi 
can be considered one-element. 

Since .B 4 is countable, it is either superatomic or contains an atomless 

subalgebra. Let us consider only the case when .B 4 and other Boolean algebras are 
superatomic; the other case can be considered in an analogous way. Then we have 

.B 4 51! B( y), where y is a certain ordinal, in which case for a certain (j Ey + 1 we 

get 11 =16 ={bEB(y~(a,(j]~b for some a< (j}. 

If (j is not a limit ordinal then, obviously, lI B4 ({a I}' A ) 51! 11 B(y\{6}). If (j is 

a limit ordinal, 

Let us now notice that for any ordinals (jl'6z,y the following comparisons are 
obvious: 

if (jl :s:(jz, 1IB(~)({aI},f61):s:1I B(6z)({aI},f6z ); 

if y ~ (j 11 B(~)(Ia} f ):s:1I B(y). 
I, '\: 1 ,J61 ' 

if y < (jl' 11 B(Y):s:lI B(61}({aIl,f61)' 

Moreover, since for anyone-element subalgebras {al},{az} of the algebra .}j 

there is an .}j automorphism transforming them into each other, 

11 B(6)({al}./6) 5I!.}j B(6)( {az},f6}. Therefore, the statement (1) is proved, and the 
statement (2) can be proved analogously. • 

It follows from theorem 11.2 that all congruence-distributive varieties .m with 

extendable congruences such that .omS] is approximatizable and the principal 

congruences on.m are elementary definable, with minimal or, which is the same, 
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linear-factor-ordered *embedding skeletons are discriminator varieties. One can also 
obtain a number of further results on the structure of countable *embedding skeletons 
of discriminator varieties. 

Theorem 11.3. Ifm is a finitely generated discriminator variety with all its 

algebras containing a one-element subalgebra, < J.mxo ;s> is a better quasi-order 

and, in particular, < J.mxo;s> contains neither infinite anti-chains nor infinitely 

descending chains. 

Proof. Let us make use of the notations in the proof of theorem 10.2 and 

recall that .BF denotes a cortege <.B ,FI, ... ,Fn >, where .B is at most countably 

infinite Boolean algebra and l\, ... , 1';, are close subsets of the space .B·. Let JJ be 

a finite algebra such that any .r.n Xo -algebra is isomorphic to a certain filtered Boolean 

power of the algebra JJ . As follows from the proof of theorem 18.2, it suffices to 

show that the relation I(IJFlt sl l(l£h implies the relation 

As was the case in the proof of theorem 10.2, for I(IJFh sl I(IJFh the space 

BI* can be identified with a certain subspace of the space .B; in such a way that 

~l = ~2 nBt. Elements of Boolean algebras will be identified with open-closed 

subsets of Stone spaces. Let us also assume that the families {FJ.\ ... , ~},{Fi2, . .. , F;} 
are closed under intersections. Let ao = 1, al"'" On,... be an enumeration of all the 

elements of the algebra .Bo. Let us define by induction over n embeddings hn of a 

Boolean algebraB(n), which is a subalgebra of the algebra .BI generated by the 

elements {ao, ... ,an}, into a Boolean algebra .Blld for some d EB 2 . 

Let Ko = {i s 111 ~l = 0} and, hence, closed disjunct subsets of B lo and U Fi2 

iEKo 

of the space B; are separated by an open-closed set d EB 2 such that .B; ~ d and 

d n ( UFi2 = 0. Let us set ho(lBI ) = d, ho(OB) = OB z ' and assume that hm is 
iEKo 

defined on a Boolean algebra .B(m), and for any cEB(m), c~~(c) and 

C n Fil ;o! 0 iff hm(c) n F? ;o! 0, where i = l, ... ,n. Let cI"",ck be all atoms of the 

algebra .B(m). If either Cj nam+l = 0 or Cj n ~am+l = 0, the value of hm+l on the 

elements Cj nam+l,cj n ~am+l is assumed to be the same as the value of hm· 

Let now Cj n am+l ;o! 0 and Cj n ~am+l ;o! 0. K) will denote the set 

{i s kI~l n cj n am+l = 0}, while by KJ the set {i s kI~1 n Cj n ~am+l = 0}. The sets 
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Cj nam+l and Cj n -.am+l are closed and disjunct in .B~ and, hence, there is a 

bj E.B2 (we can assume bjkh",(C) such that bj ;;Jcj nam+l and 

hm(cj)\bj ;;Jcjn-.am+l" Analogously, there can be found elements e{,efE.B2 such 

that 

(such e{ can be found since cj nam+l and Fj2 nh,J .. cj) are closed and do not 

intersect; the latter is valid since the inequality Cj n am+l n Fj2 n h",(Cj)" 0, as 

hm(cj);;JCj and Fj2n.B; =~, implies the inequality Cjnam+lnFjl .. 0), 

then we set 

hm+l (cj n am+l) = (bj neb u (-.e1 n -.bj n h",(Cj»' 

hm+l (Cj n -.am+l) = (hm(Cj) n -.bj n e{) u (-.e{ n bj n h",(Cj»' 

in which case the induction condition for hm+l is obviously met for elements of the 

type Cj nam+l and Cj n -.am+l" If, for instance, -.e1 nbj n h",(Cj) n Fic2 .. 0 for 
1 . 2 U 2 some kEKj , for the case when (-.e~n-.bjnhm(cj)nFk)n( Fe )=0, one can 

eEK; 
"fix" e1 by adding to it a certain open-closed subset of the set -.e1 n -.bj nhm(cj) 

which contains all points of the set -. e~ n -.b j n h,J.. Cj) n F[ and does not contain 

U 2 . 2 U 2 points of Fe" The case when (-.e~n-.bjnhm(cj)nFk)n( Fe ) .. 0 IS 

eEK; eEK; 
impossible, since otherwise there would be an e EKJ such that 

F/nF/nh",(cj ) .. 0, but Fe2 nFl=Fr2 for a certain r~n and, by the condition 

on hm' there would be a p ECj such that p EFf. In this case, however, if 
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P ECj n am+l' P ECj n am+1 n Fi ;0< 0 and, hence, k ~K), while if p ECj n ~am+l' 
cj n am+1 n F; ;0< 0 and, hence, e ~K). The obtained contradiction proves that the 

inequality 

is impossible. 

By "fixing" e( in an analogous way, if required, we get a definition of the 
mapping hm+l on all elements of the type cj n am+1 , where j s k. On those elements 

of the algebra .B(m + I) which are not its atoms, we define hm+l by the additivity 

condition. Therefore, hm+1, being an extension of hm , isomorphically embeds the 

Boolean algebra .B(m+l) into the Boolean algebra .Bzld, in which case for any 

i=I, ... ,n and cE.B(m+I), we get cnF(;o<0 iff hm+1(c)nFfz ;o<0. Thus, 

h = U~ will be an isomorphic embedding of the algebra 0 1 into the algebra 
mEin 

.Bzl d, which obeys the same requirements on Ffl and Ffz. 

The embedding cp of the algebra 2/ B 1(2/1, ... ,2/ n;Fil, ... ,F~) into the algebra 

2/ B2 (2/ 1, ... ,2/n;fiZ, ... ,f',.Z) will be defined in the following natural way: if 

fE2/B1(2/1, ... ,2/ n;fi\ ... ,F;) and is such that for a partition c1,,,,,cl of the space 

0; by elements of the algebra .B1 , f is constant on ci(i =I, ... ,l) and f(ci) =bi , 

where bi E2/ , we set cp(f) to be constant on the subsets h(ci ) of the spaceB~. 
In this case cp(f)(h(ci)) = bl i = I, . .. ,l) and cp(f)(lB 2 \ h(1B l )) = e, where {e} is a 

certain fixed one-element subalgebra of the algebra 2/. Obviously, cp is an 

isomorphic embedding of the algebra 2/ B l (2/1, ... ,2/ n; Fi\ ... ,F~) into the algebra 

2/'02(2/1, ... ,2/ n;fiZ, ... ,f',.Z), which is the required proof. • 

Indeed, in the condition of theorem 11.3, one can join together the statements 
of theorems 10.2 and 11.3, i.e., it can be seen clearly from the proofs of these 
theorems that the relation l-B sl ly;;:;- implies the existence of such homomorphism 

(. 'Fh (..<r lz 

from the algebra 2/ B2 (2/ 1, ... ,2/ n;fiZ, ... ,f',.z) to the algebra 

2/Bl(2/1, ... ,2/n;F/, ... ,F~) and an embedding of the latter in the former such that 

2/'0 1 (2/1, ... ,2/ n;F/, ... ,F~) is a retract of the algebra 2/ B2(2/1, ... ,2/ n;fiz, ... ,f',.z). 
Therefore, the following corollary is valid. 

Corollary 11.2. If .. m is a finitely generated discriminator variety with all its 
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algebras containing a one-element subalgebra, any infinite family of countable .. m
algebras contains an infinite sequence of different algebras 11 1" .. ,11 n'''' such that for 

any i < j 11 j is a retract of 11 j' 

The statement of the corollary results from the remark made before its 
formulation, by applying the Ramsey theorem in a standard way. 

As has been shown in section 5, a variety of rings obeying a certain identity 

of the type xm = x is a finitely generated and discriminator variety and, hence, by 

corollary 11.2, in any infinite family of rings obeying a certain identity xm = x, an 

infinite sequence of different rings 11 1, ... ,11 n'''' can be found for which lIj is a 

retract of 11 j for any i < j . 

Problem 11.1. Is the condition of the existence of a one-element subalgebra 

for any.m -algebra in the formulation of theorem 11.3 necessary ? 

Any finitely generated variety is locally finite. The following theorem proves that 
countable embedding skeletons of not locally finite discriminator varieties are universal 
in the class of countable partial orders. 

Theorem 11.4. If .om is a discriminator variety of a finite signature which is 
not locally finite, any countable partially ordered set is isomorphically embeddable in 

the countable embedding skeleton of .om. If, moreover,.m contains at least two 

simple algebras, any countable quasi-ordered set is embeddable into < 3.m ~o ;s> . 

Proof. Let us first show that any not locally finite discriminator variety.m of 

a finite signature contains an infinite simple finitely generated algebra. Let 11 be a 

certain finitely generated.m -algebra. For the sake of simplicity, we assume it to be 

generated by two elements, a and b. By theorem 5.7, 11 can be considered the 

Boolean product of some simple .om -algebras 11 x< x E.B ') over a certain Boolean 

algebra .B. Since the algebras 11 x are generated by the elements a(x),b( x), in order 

to prove that there is an infinite finitely generated.'Ul -algebra, it suffices to show 

that at least one of the algebras 1I;t' (x E.B·) is infinite. Let us assume that the 

opposite case is true, i.e., all 11 x are finite. For any x E.B·, Tx will denote the 

finite family of the terms of the signature a of the varietY.om over two variables, 
u.,Z so that 

11 x = {(t( a(x),b( x))1 t(u., z) E Tx}' 
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Let Rx be a finite system (since both Tx and the signature a are finite) of all 

equalities of the type h(tI(u,Z), ... ,tn(u,z» =t/u,z), where h Ea, tI, ... ,tJj EI'x, and 

11 xl = h(ti (a(x), b(x», .. . ,1 n( a(x),b( x») = t/a(x»,b( x» . 

Obviously, for any algebra tl generated by some elements c, d, if C 1= r(c, d) 

for any r(u, z) ERx, C is a homomorphic image of the algebra Jl x and, as Jl x is 

simple, we get either C sa! 11 x or C is one-element. By virtue of the definition of a 

Boolean product, the set ex -{yEB*llI yl=r(a(y»,b(y» for any r(u,z)ERx } is an 

open-closed subset in .B* containing the element x. Therefore, {exl x E.B *} is an 

open cover of the compact space .B* and, hence, there is a finite set 
B o B* B* .,1 {xI'''.'xs}~' such that. = eX! U ... UCxs • Therefore, for any y E , either -a y 

is one-element, or 11 y sa! 11 x; for some i:s s, in which case the latter isomorphism qJ 

is such that qJ(a(y» = a(xi),qJ(b(y» = b(xi). Therefore, the algebra 11 generated by 
the elements a,b is finite. The contradiction obtained proves that there must be an 

infinite algebra among the finitely generated simple algebras 11 X. The existence of an 

infinite finitely generated .m -algebra implies, by lemma 11.3, embedding any 

countable partial order into < J .. m Xo ;:s>. 

Let now .m have at least one more simple algebra 111, and let < A;:s> be an 
arbitrary countable quasi-order. Let us assume that, for any a EA, [a]",,, is infinite. 

Let R be an arbitrary countable family of non-superatomic countable Boolean 

algebras and, therefore, for any .BI ,.B2 En. we get .BI:S .B2. Let "ra] be for 

[a] EA/=.. a bijective mapping from the set [a]. to R. Then, obviously, if / is 
" 

an isomorphic embedding of < AI= .. ;:s> into < J.mxo;:S>' qJ(a) = f([a].) x lI:[a] (a) 

will be the required isomorphic embedding of the quasi-order < A;:s> into the 

countable embedding skeleton of .m .• 

Now the following problem is open for discussion. 

Problem 11.2. Is the requirement on the finiteness of the signature necessary 
in the formulation of theorem 11.4 ? 

Moreover, the results obtained in theorems 11.3 and 11.4 leave the problem 

of whether < J.mxo ;:s> is well-quasi-ordered open only for locally finite 

discriminator varieties which are not finitely generated. 
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The following problem, in particular, remains unsolved. 

Problem 11.3. If < 3 em s )xo ;S>, i.e., a family of simple .1ll -algebras of at 

most countably infinite power, is well-quasi-ordered, does this imply that the 

countable embedding skeleton of a locally finite discriminator variety.1ll is also well 
quasi-ordered ? 

By way of concluding this section, let us tum to so-called double skeletons of 
algebra varieties, i.e., to studying the problem of interaction between epimorphism 
and embedding relations. 

Definition 11.3. A double skeleton of a variety.1ll is a family of the 

isomorphism type of.m -algebras 31ll having the epimorphism relations « and 

embedding relations s, i.e., a twice-quasi-ordered family < 3.1ll ; «,S> . 

Definition 11.4. Epimorphism and embedding relations are called finitely 

independent on a variety .. m provided that any finite set < A;sl ,sz > with two 

arbitrary quasi-orders is isomorphically embeddable in < 31ll; «,S>. 

Theorem 11.5. (CH). If .1ll is a non-trivial congruence-distributive variety 
with extendable congruences, the epimorphism and embedding relations are finitely 

independent on .1ll . 

Proof. Let Jl be a simple .1ll -algebra. Theorem 1.27, proved under an 

assumption weaker than the continuum-hypothesis P(2 w), claims finite independence 
of « and S relations on a variety of Boolean algebras, i.e., for any finite set 

< A;sl ,sz > there are Boolean algebras .B a (a EA) such that, for a,b EA,Ii a «.Ii b 

iff aSlb, and .Bas.Bb iff aSzb. By corollary 3.1 and theorem 3.3, an 

analogous statement is also valid for .1ll -algebras JlBa (a EA). • 

Problem 11.4. Is it possible to extend the result about finite independence of 
« and s on a congruence-distributive variety with extendable congruences to the 

embedding any countable twice quasi-ordered set in < 31ll ; «,S> ? 

Let us cite some other statements pertaining to double skeletons. 

Theorem 11.6. If .. m is a non-trivial congruence-distributive variety with 
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extendable congruences, the following statements are valid: 

(a) for any I'( >1'(0, any twice-quasi-ordered set < A;s},s2> of the power not 
greater than I'( is such that for any a,b EA, a s2 b is isomorphically embeddable in 

< 3.m!<;«,s> ; 

(b ) for any regular cardinal I'( > 1'(0' any twice-quasi -ordered set < A;s} ,s2 > of a 
power not greater than I'( and such that s} and s2 coincide on A is isomorphically 

embeddable in < 3.om!<;«,s>. In < 3JJl!<;«,s>, there also is a set of the power 

2!< of elements pairwise incomparable either by « or by s. 

Proof. Let 11 be a simple .om -algebra, in which case consideration of 

Boolean powers of the algebra 11 using corollary 3.1 and theorem 3.3 reduces the 
proof of this theorem to that of the corresponding statements for a variety of 

Boolean algebras instead of the variety .om. The statement (a) for a variety of 
Boolean algebras results from the statement of theorem 1.9 for the case when the 
quasi-order s} is a partial order. For the embedding of an arbitrary twice-ordered set 

< A;s},s2 > obeying the condition of the statement (a) in < 3.om!<;«,s>, it suffices 
to "dilute" the embedding of the set < A/Esl ;s},s 2> by additionally mUltiplying the 

corresponding Boolean algebras (images of E SI -classes in this embedding) by 

pairwise epimorphic and mutually embeddable Boolean algebras which would not 
distort the relation « on the images of E SI -classes. As the latter, one can use 

Boolean algebras of the type B« a + 1])' X), where a runs over all the ordinals less 
than 1'(. 

The statement (b) for Boolean algebras when s} and s2 are partial orders 
results directly from theorem 1.17 and corollary 1.7. In the case when s} =s2 is a 
quasi- rather than a partial order, it suffices to "dilute" the embedding of the set 

< A/Esl ;s},s 2> in the same way as in the proof of the statement (a) .• 

And, finally, let us formulate one more set of results directly obtainable using 
Boolean powers from the corresponding results on Boolean algebras: theorem 1.10 
on the retractivity of interval Boolean algebras and theorem 1.8 on the relation s on 
superatomic interval Boolean algebras. 

Theorem 11.7. If .om is a non-trivial congruence-distributive variety with 
extendable congruences then 

(a) there is an initial interval in the skeleton < 3m \ Wm };« >, which is a 
proper class (not a set), on which the relation s is an extension of the relation «; 
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(b) there is a proper class (not a set) of elements in the skeleton < 3.o'lIl ;:so> , 
which is a distributive lattice of a final width relative to the quasi-order :so. 

The problem of retractive Boolean algebras considered in section 1, in 
particular, in terms of double skeletons of varieties results in the following problem. 

Problem 11.5. For any congruence-distributive variety JJl with extendable 

congruences, describe the algebras }J E.m such that for each algebra }J 1 E.m, the 

relation }J 1 «}J implies the relation }J 1 :so}J • 

Priorities. The notion of the embedding skeleton of a variety was introduced 
by A.G.Pinus [178]. Theorems 11.1 and 11.2 [183], lemmas 11.3 and theorem 
11.4 [167], theorem 11.3 [163], as well as theorems 11.5 and 11.6 (a) [178] 
were proved by A.G.Pinus. 

12. Cartesian Skeletons of Congruence-Distributive Varieties 

Alongside with important embedding and epimorphism relations between algebras 
of an arbitrary variety, the operation of a Cartesian product belongs to the basic 
notions of the theory of universal algebra varieties. The same level of abstraction that 
resulted in the notions of embedding and epimorphism skeletons also results in the 

following definition. If.m is an arbitrary variety and a,b E::;..m , then a x b will 
denote the isomorphism type of a Cartesian product of algebras of the isomorphism 

type a and b. It is evident that::;..m (3.mx for any infinite cardinal ~) is closed 
under the operation x, the operation itself is commutative, and the 1m isomorphism 

type of a one-element .m -algebra plays the role of a unit element in < 3.o'lIl ; x > 

« 3.mx;x ». Therefore, for any infinite cardinal ~, < 3.mx;x,l.'fJI. > is a monoid, 

while < 3.m ; x,l.m. > differs from a monoid only in having not a set but a proper 

class as its basis. In this case, we will still speak about a monoid. 

Definition 12.1. A Cartesian skeleton (countable Cartesian skeleton) of a 

variety.o'lIl is a monoid < 3.m;x,I.m. > « 3.mxo;x,l.m. ». 

The following statement is derived directly from the results obtained in section 1. 

Theorem 12.1. For any non-trivial congruence-distributive variety .m, any 
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countable commutative semigroup is isomorphically embeddable in < 3.mxo;x >. 

Proof. By theorem 1.21, it suffices to show that for any non-trivial 

congruence-distributive variety .m , the countable Cartesian skeleton of the Boolean 

algebra variety < 3B4o;x,lBA > is isomorphically embeddable into < 3.mxo;x,lm >. 

Let 11 be a simple .mXo -algebra. Then, by theorem 3.2, we get conpl1.B 5I!.B for 

any Boolean algebra .B. On the other hand, for any algebras J/I,J/ 2 EJJl , 
according to the remark after theorem 4.2, since.m is congruence-distributive, we 

get Conp(J/ 1 xJ/ 2) Ell ConpJ/ 1 x ConpJ/ 2 • Moreover, the isomorphism of 11.B and 

11 I x 11 2 implies the relation 111 «l1·B and, hence, by corollary 3.1, it implies 

the existence of a Boolean algebra .BI such that J/ I 51! 11 .B 1. These remarks together 
prove that the correspondence of the isomorphism type of at most countably infinite 

Boolean algebra.B with the isomorphism type of an .mXo -algebra J/.B is an 

isomorphic embedding of < 3B4o;x,lBA > in < 3.mxo;x,lm > .• 

Problem 12.1. Is an arbitrary commutative semi group (of the power ~I) 

isomorphically embeddable into a Cartesian skeleton of any non-trivial congruence
distributive variety ? 

By theorem 4.1, the countable Cartesian skeleton of a variety of Boolean 
algebras plays the part of a small object among countable Cartesian skeletons of non
trivial congruence-distributive varieties. One should also recall a purely algebraic 

characterization of the monoid < 3B4o;x,lBA > as a universal V -monoid of the 

summation rank ~o' obtained in section 1. All these remarks result in the problem of 
describing all congruence-distributive varieties the countable Cartesian skeleton of 

which is isomorphic to < 3B4o;x,lBA >. 

Definition 12.2. The Cartesian (countable Cartesian) skeleton of a variety III 
is of a Boolean type provided that 

< 3 .. 'Ul;x.1m >s<3BA;x,lBA> 

« 3.mxo;x,lm >51!< 3B4o;x,lBA»' 

Theorem 12.2. If .m is a congruence-distributive variety, then the countable 

Cartesian skeleton of the variety.m is of a Boolean type iff.m is generated by a 
certain quasi-primal algebra with no proper subalgebras. 
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Proof. Let .'lTl be a non-trivial congruence-distributive variety and 

<J .. mxo;x,lm >5I!<JB~o;x,lBA>' the corresponding isomorphism denoted by /. 

Let 11 be a simple .'lTlXo -algebra. In the proof of theorem 12.1, we established a 

homomorphism h between < J{l1 .BI.B EB~o},x,l.m > and < JB~o;x,lBA >, in 

which case h(l1·B ) =.B . In section 1, we defined the notion of a V -monoid, and 

proved < JB~o;x,lBA > to be a V -monoid. Therefore, < J.'lTlxo;x,lm > will also 

be, by virtue of the homomorphism /, a V -monoid. In this case, however, the 

mapping h-1/ is a self-embedding of < J.'lTlxo;x,l.'IJl >. Then, since, as has been 

noted in the proof of theorem 12.1, the isomorphism 11.B 51! 11 1 X 11 2 implies the 

existence of Boolean algebras .BI ,.B 2 such that 11 j 51! l1.Bi and .B 5I!.B I x .B2 , a 

submonoid h-1U(J.'lTl xo » of the monoid < J.'lTlxo;x,lm > will be hereditary. 

Therefore, by theorem 1.23, the self-embedding h- I / of < J.'lTlxo;x,l.'IJl > must be 

identical and, in particular, J .. mxo = J{l1 B I.B EB~}. Hence,'lTl =.'lTl (11). 

Since the algebra 11.B is finitely generated, a Boolean algebra.B is also 

finitely generated, hence, finite. In this case, for any nEw there is a k n Ew such 
~ ~k ~B that Sm (n) 51! an. By corollary 3.1, all congruences of the algebra a' are 

generated by corresponding congruences of the Boolean algebra .B. Therefore, all 

congruences of the algebra 11 k n will be projections and, in particular, 11 k3 51! Jm (3) 

will be congruence-permutable. By virtue of theorem 2.5, the variety .. m will also 

be congruence-permutable. Let us show that 11 has no proper subalgebras. If 11 
contained a proper subalgebra 11' then, assuming 11' is finitely generated, 11 
would contain a non-singleton homomorphic image of the algebra Y.m (n) 51! 11 kn for 

some nEw. As has been noted earlier, by corollary 3.1, all these homomorphic 

images have the form 11 1(IEw) and, therefore, 11', as well as 11, would contain 

a proper subalgebra isomorphic to 11. Considering a strictly ascending chain 

11 0 c 11 I c .. c 11 n C.. of simple algebras isomorphic to 11, we get a simple 

algebra Ul1 n· As J..mxo = J{l1 .BI.B EB~o}' J.'lTlxo has a unique simple 
nEw 

algebra, the algebra 11, i.e., 11 51! Ul1 n. However, Ul1 n cannot be finitely 
nEw 

generated, in which case all non-singleton 

algebras of the type 11.B, also cannot be 

nEw 

'lTlXo -algebras, being isomorphic to 

finitely generated. The contradiction 

obtained proves the absence of non-singleton proper subalgebras in 11 . 
If 11 has a one-element proper subalgebra with a basic set {a}, then let us 
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choose an J/1={fEJ/ wl there is an nEw such that for i'<?n f(i)=a}. Let 

f1' fz EJ/1' and let n be such that for k> n, f1 (k) = fz (k). In this case, however, 
011 , 
1,'/2 is contained in some kernel other than V 11 of the projection of the algebra , 

J/1 over the set {m En! m s n} ~ w. Therefore, the family of principal congruences of 

the algebra J/ 1 has no greatest element and, at the same time, since Jl 1 5!! JI.B for a 

certain Boolean algebra .B, V 11 is principal. The contradiction obtained proves that , 
JI cannot have one-element subalgebras, either. 

To finish the proof of the theorem in one direction, we have to show that JI 
is finite. Let us assume to the contrary that the opposite is the case, and let f be a 

bijective w mapping on JI . Let g be a mapping from w to one of the elements 

(for instance, d) of the algebra JI. Let C be a subalgebra of the algebra JI W 

generated by the elements f and g. In this case, C is a homomorphic image of the 

algebra J.m (2) = JI kz and, as has been remarked earlier, there is an m s i0. Ew 

such that C 5!! JI m. In particular, since all JI m congruences are projections, ConC 
is finite. On the other hand, since JI is simple with no proper subalgebras, there is 

a term tix) for any element f(i) of the algebra JI such that tj(d) = f(j). 

Let OJ be the kernel of the projections of the algebra C ~ JI W over the set 

{n Ew)ln;oO j} ~ w. Then, since for any n;oO mEw we have tig)(n) = tj(gXm) = f(j) 

and f(n);oO f(m), for any n;oO j Em we get < tj(g),f >EOj and < tig),f >EOn · 

Therefore, {On1n Ew} is an infinite family of various configurations on C. The 

contradiction obtained proves JI to be finite. Thus, Jfl =.'Ul (JI), and JI is a 
quasi-primal algebra with no proper subalgebras, and the theorem has been proved in 
one direction. 

Let now JI be a quasi-primal algebra with no proper subalgebras. Then, by 

theorem 7.3, any .. m (JI ) -algebra is isomorphic to a Boolean power of the algebra 

JI, and since, moreover, Jl B,xB2 5!! JIB, xJl B2 and the isomorphism 

JI B, 5!!JI B2 implies the isomorphism .B1 and .B2 , 

Let P11 = J {C I and there is a C 1 such that JI '" C x C I} . 

Definition 12.3. A variety.'Ul obeys the Vaught isomorphism criterion if for 

any JI EJ .. mxo' IP11 Is Xo and < J . .'Ulxo;x,l.m > is a V -monoid, i.e., if 

< J.'Ulxo;x,l.m > is a refinement monoid, and for any at most countably infinite 



CHAPTER 3 271 

11 ,.B Ern , we get 11 IIl.B iff there is a relation R k P2I x P.B such that 

(1) R(Jl1 ,J.B); 

(2) if R( a,lm), then a == 1m ; if R(lm, b), then b = l:m ; 

(3) if a == al x a2 and R(a,b), then there are q,b2 such that b = q x bz and 
R(aj,bj); if b = b1 x bz and R(a,b), then there are al,a2 such that a = al x az and 
R(aj,bj ) ). 

Corollary 12.1. A congruence-distributive variety obeys the Vaught 
isomorphism criterion iff it is generated by a quasi-primal algebra with no proper 
subalgebras. 

Proof. If .rn obeys the Vaught isomorphism criterion then, by the definition, 

< J.rnxo ;x,lm > is a V -monoid of a countable summation rank, while the universal 

V -monoid of a countable summation rank < JB~o; x,IBA > is isomorphic to the 

hereditary submonoid < J{l1.B IB EB~o};x,lm > of the monoid < J.rnxo ;x,l.m >, 

where 11 is a simple .m.Xc! -algebra. By theorem 1.23, this implies the coincidence 

of the sets J {l1·B IB EB~o} = J.m.Xo and, hence, the isomorphism between 

< JB~o;x,1BA > and < J.rnxo;x,lm > established by the mapping .B _11.B. By 

theorem 12.2, .m. = .rn (111), where 111 is a quasi-primal algebra with no proper 
subalgebras. The converse is also true because the Vaught isomorphism criterion is 
fulfilled for Boolean algebra varieties, and because of corollary 3.1 and theorem 
7.3 .• 

By way of concluding this chapter, let us mention a counple of other general 
problems pertaining to the notions of variety skeletons. 

Problem 12.2. To describe quasi-ordered classes (sets) isomorphic to 
epimorphism and embedding skeletons (countable skeletons) of arbitrary congruence
distributive' discriminator' varieties. 

Problem 12.3. To describe monoids isomorphic to Cartesian skeletons 
(countable Cartesian skeletons) of arbitrary congruence-distributive 'discriminator' 
varieties. 

Priorities. The notion of a Cartesian skeleton of a variety was introduced by 
A.O.Pinus [166, 176]. Cartesian skeletons of various concrete varieties have been 
studied by a number of authors. In particular, Cartesian skeletons of a Boolean 
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algebra variety and skeletons of Boolean topological spaces dual to them have been 
studied by W.Hanf [90], J.Adamek, V.Koubek and V.Trnkova [1], as well as by 
J.Ketonen [104]. S.Koppelberg [111] studied the Cartesian skeleton of complete 
Boolean algebras. A.Tarski [224] and B.Jonsson [99] studied Cartesian skeletons of 
varieties of Abelian groups and semi groups. Theorem 12.1 was proved by 
A.G.Pinus [176]. The part of the section that follows this theorem also belongs to 
A.G.Pinus [166]. 
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13. Elementary Theories of Congruence-Distributive Variety 
Skeletons 

In connection to the problems of the theory of congruence-distributive variety 
skeletons undertaken in the preceding chapter, there are problems of estimating the 
complexity of formalized fragments of this theory and, as prime and traditional 
among them, problems of solvability of universal and elementary theories of 
congruence-distributive variety skeletons. 

Let us first notice that the results obtained in the previous sectionss yield the 
following theorem. 

Theorem 13.1. If .m is an arbitrary congruence-distributive variety,: 

(a) the universal theory of the In epimorphism skeleton is decidable; 

(b) the· universal theory of the.m Cartesian skeleton is decidable; 

(c) the universal theory of the.m embedding skeleton is decidable under the 

additional assumption that congruences on.m are extendable. 

Proof. Indeed, if.m is a trivial variety, all its skeletons are one-element, and 

the statement of the theorem is obvious. If.m is non-trivial, any quasi-ordered set, 

any countable commutative semi group is isomorphically embeddable in < 3.m ; «> 

and in < 3.m; x > by virtue of theorems 8.11 and 11.1, respectively. Therefore, 

the universal theories of < 3 .. m; «> and < 3 .. m; x> coincide with, respectively, 
universal theories of all quasi-ordered sets, and all commutative semigroups. The 
decidability of the former of these universal theories is well-known, that of the 
universal theory of commutative semi groups was proved by A.I.Malcev [129] (for 
more details see the review [57] and a monograph by Y.L.Ershov [59]). Under the 

assumpition on extending congruences on .m, by corollary 10.1, any quasi-ordered 

set is isomorphically embeddable in the.m embedding skeleton and, hence, in this 

case the universal theory of < 3.m ;«> also coincides with that of all quasi-ordered 
sets .• 

273 
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Turning now to elementary theories of congruence-distributive variety skeletons, 
let us first prove the hereditary undecidability of elementary theories of skeletons of 

the variety BA of all Boolean algebras. For any class R of algebraic systems, and 

any algebraic system JJ, That), Th( JJ) will denote the elementary theory of the 

class If and of the system JJ, respectively. The basic notions pertaining to 
elementary theories and solvability problems can be found elsewhere [59]. 

Lemma 13.1. The elementary theory of the Cartesian skeleton of the variety 

BA is hereditary undecidable. 

Proof. Let us construct a relative to elementary interpretation of the elementary 

theory of a class R2 in the elementary theory of < JBA;x >. Here H2 is a class 
of all finite models of the type < {1, ... ,n};-I'-2>' where nEw and -1'-2 are 
arbitrary equivalences on the set {l, ... ,n} such that for i,j:s n, i-I j and i -2 j 
entail the equality i = j. The hereditary undecidability of the elementary theory of the 

class H is well-known (see, for instance, [57], [59]). Therefore, the hereditary 

undecidability of the elementary theory of < JBA;x > results from the relative 

elementary interpretation Th( R 2) in Th( < JB A; x ». 

For any JJ ER 2 , let kj,ljEw such that i-Ii(i-2 j) iff kj =k/lj =lj), and 

~ <lj for all i,j:s n. L2I will denote a LOS ~«wk; + 1] +w'i) ·00). It should be 
j:sn 

recalled that 1] is the ordered type of the set of rational numbers. Let us consider 
the formula 

<l>(x,y) = 3z(x = zy)& Vu,v(y = uv - y = u v y = v)& 

&Vt,w,z(t = yW&Vuv(t = uv-t = u v t = v)&x =zt - t = y. 

stating the "maximality" of the non-decomposable cofactor y of the element x. It is 

clear that <JBA;x>I-<l>(B(L2I ),€) iff It e!B«wk; +1]+00' ;).00) for some i:sn. 

Let J JI = {It EBAI < JBA; x >1 = <l>(B(LJI ),It )}. 
Let us now consider formulas E(x), A(x), r(x) of the signature < x>: 

E(x) = Vy(yx= y), 

A(x) = Vy,z(x = yZ&~E(y) - 3t,u(y = tu&~E(/)& Vw,v 
(I = wv- 1 = w&E(v) vi = v&E(w»», 

r(x) = Vy,z(x = yz& ~E(y)-
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- .... :t,U(Y = tu& .... E(t)& Vw, v (t = wv- t = w&E(v) v t = v&E(w)))). 

It is obvious that < .JBA;x >1 = E(C) iff C is a one-element Boolean algebra. 

One can also easily check that < .JBA,x >1 = A(C Xr(C» iff C is an atomic 

(atomless, respectively) Boolean algebra. Let us set the formula 'PI(x,y) equal to 

.... A(y)& .... r(y)&y po! x& 3z(x = zy& VU,v(y = uv- y = U v y = v) . 

In this case, 

iff C e B(w k; + 11). 
Let 'P2(x,y) be obtained from the formula 'PI(x,y) by replacing the conjunctive 

term .... A(y)& .... r(y) with the formula 

A(y)& Vt(A(t)& 3z(x = zt)& VU,v(t = uv - t = U v t = v) 

&3w(t = yw- t = y». 

In this case, 

iff C e B(wh ). 

In < .JBA;x > the model <S)J ;1l(x,y),P2(x,y) >, 

~(x, y) = VZ,u( 'Pj(x,z)& ~(y,u) - z = u), is relatively elementary definable. 

where 
In this 

case, bearing in mind the remarks made earlier concerning formulas 'PI (x,y),'P2(x,y) , 

we obviously get < S)J ;1l(x,y),P2 (x,y) >e 11. Therefore, indeed, the formulas 

<ll(B(L)J ),X),PI(X,y), Pz(x,y) set a relatively elementary interpretation of Th(R2) in 

Th« .JBA;x » .• 

It should be noticed that, since all Boolean algebras used in the proof of lemma 
13.1 are countable, the proof also entails the undecidability of the elementary theory 

< .JB~o; x > of the countable Cartesian skeleton of a Boolean algebra variety. 

Lemma 13.2. (CH) The elementary theory of the epimorphism skeleton of 
the variety BA is hereditary undecidable. 

Proof. Let us use the same notations as in the proof of lemma 13.1. As was 
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the case in that proof, it is sufficient to construct a relative to elementary 

interpretation of the elementary theory of the class H2 in Th« .JBA;«». Let P be 
a subset of the set of all real numbers constructed in lemma 1.1. It should be 
recalled that P has the following properties: 

(1) 2xo is dense, i.e., for any a<bEP, we have IPn(a,b)I=2xo ; 

(2) for any subset S of the set P and any isotonic or antiisotonic mapping f 
from the set StoP, the equality I{x ESlf(x) .. x}l~ Xo holds. 

Let lQ,Il,IiI+2, ... ,P/n+2,ItI+2, ... ,Itn+2 be non-intersecting intervals of the set P. 

Therefore, each of these sets has the above-mentioned properties (1) and (2) as well. 
Moreover, they have one more property, namely: 

(3) For any LOS C, if there are isotonic or antiisotonic mappings &,g2 from 
some chains C I ,C 2 consisting of elements of Boolean algebras B(P') and B(P"), 

respectively (where P' ,P" are some sets from Po, ll, Iii +2'· ··,p/n+2, It\+2'···' Itn+2) to 

C, ICI~Xo. 

Indeed, let us assume to the contrary, that C,C I,C2,gl,g2'P',P" meet the 

conditions of property (3), in which case IC I = 2 Xo. Using & ,g2, one can obviously 

construct the isotonic and anti isotonic embeddings hl ,h2 of the set C in the chain 
C I ,C 2 of the Boolean algebras B(P'),B(P II ). Making now use of the notations used 
in section 1, let us take a subtraction R(hl(C)) of the chain hl(C) of elements of 

the Boolean algebra B(P'). Choosing iEp1(hl(C»Up~(hl(C» and establishing a 

correspondence between the element af(bf) and the element d El;-I(R(hl(C))), if 
m 

iEP1(hl (C)) (if iEp~(hl(C »)), where U(af,bfl is the canonical representation of 
j-I 

an element hl(d) in the Boolean algebra B(P'), we get an anti isotonic (isotonic) 

embedding cp from the continual subset h11(R(hl (C))) to the LOS P'. 

Let us identify h1-I(R(hl(C») with its image relative to cpo Repeating the same 

considerations for ,the linearly ordered set hl-l (R(h1 (C))) and the Boolean algebra 
B(P"), we find a continual subset Tr;;, P' which is either isotonically or 
antiisotonically embeddable into P", which contradicts property (2) for the set P. It 

is this contradiction that proves that the sets lQ,Il,Ii\+2, ... ,p/n+2,It\+2, ... ,Itn+2 have 

property (3). 

Let < {l, ... ,n};-1'-2> be a fixed H2-model, and let {a1,.··,a /} = {II + 2, .. . ,In + 2} 

and {b1,···,b s} = {k1 +2 r •• ,kn +2}, where Ij and k j are the numbers chosen in the 

proof of lemma 13.1. 
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Let us consider the following linearly ordered sets: 

n 

L = ~([Po + 1 +P~+2 + 1]' w+ [II + 1+ +1ki +2 + 1]'w *), 
i-l 

• Lt = (Po +1+Pa1 +",+Pal +I)'w + (II +1+Pq +···+l1s +I)'w , 
• Lo=(Po+I)'w+(II+I)'w, 

* L = (Po +1+ Pa1+ ... +PaI +1)'w+l+(Po+l+'Y/+ 1)'w+ 
• * 

+(1i +1+'Y/+l)'w +1+(li +1 + 111+",+Pbs +1)'w 
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Let us consider a formula <t>(x) of the signature «<> with parameters 
• B(Lo),B(Lt),B(L),B(L) defined in the following way: 

• <t>(x) = B(Lo)« x« B(Lt)&x« B(L)&x U B(L ). 

Let.R be a Boolean algebra such that B(Lo) «.R «B(Lt), and let g be a 

homomorphism from B(Lt) to.R and h be a homomorphism from .R to B(Lt). 

The Boolean algebra B(Lt) has a linearly ordered basis S of the ordered type Lt 
and, hence, g( S), which is an isotonic image of Lt, will be the ordered basis of the 

algebra .R. 

g(S) = ~ (g(P~) + 1 + g(F1z1 + ... + F1z1 + I) + I) + 
iEw 

~ j j j 
+ (g(li ) + 1 + g(11 + ... + 11 ) + I), 

• 1 s 
Em 

where Et(l,ajh) is the i-th copy of the set Po(1,aj,bk) 10 the representation of the 

linear order S S!! Lt discussed above. 

On the other hand, using h, one can construct in .R XO disjunct elements 

dj(i Ew) and Xo chains C,{i Ew) consisting of elements of the Boolean algebra .R, 
which are less than the elements dj , and so that Po is an isotonic image of each of 

the chains C j . Considerations similar to those used in the proof of property (3) 

imply now the existence of Xo disjunct intervals in g(S) containing subsets isotonic 

or antiisotonic to some continual subsets of the set Po. By property (3) such subsets 

are possible only within the intervals of the set g(S) which contain sets g(Pci) only 

under the condition that the corresponding g(Pci) are isomorphic to Po. The latter is 

insured by the Bonnet-rigidity of the Boolean algebra B(Po) (see section 1), or can 

be obtained by considerations to the contrary, analogous to those used in the proof 
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of property (3). Therefore, there is a function CPl mapping the final intervals of the 

set w to elements of w such that g( ~ Pci) Ii!! Po for any mEw, and ~ CPl (i) = w. 
jErpl(m) Ew 

By analogy, one can find a function CP2 from w into finite intervals of the set w 

such that, for any mEw g( ~PI> Ii!! Il and ~ CP2(i) = w. 
}Erpz(m) Ew 

Therefore, the linearly ordered basis g(S) of the algebra.R has the form: 

g(S) = ~(Jt +Uj )+ ~(pi +Vj ), 

iEw jan' 

where Uj,Vj are linear orders which are isotonic images of finite sums of sets of the 

type (Po + 1 + Pal + ... + Pilt + 1) and (ij + 1 + lbl + ... + lb. + 1), respectively. 

Let now .R meet an additional condition: .R« B(L). In this case there are 
k,m sn such that for sufficiently large i,j, the sets Uj,Vj in the representation of 

the set g(S) given above are isotonic images of finite sums of sets of the type 
(Po + 1 + Ptk +2 + 'rJ) and (ij + 1+ Jl.m+2 + 'rJ), respectively. Indeed, in the opposite case 

(it should be recalled that any countable LOS is an isotonic image of 'rJ) there are 
'I "'2 S 1 and infinite subsets R1,R2 ~ w such that, for i ERI (~), Uj contain 

continual subsets 1i which are isotonic images of the sets Pal) (P a". ). In the Boolean 

algebra B(L) there is an element b such that the intervals of the LOS L comprising 
the element b contain all the subchains of the ordered basis L of the algebra B(L) 

of the ordinal type Pa , while the intervals of the set L comprising the element ...., b 
'l 

contain all the subchains of the basis L of the ordinal type Pa . By property (3), if 
12 

cP is a B(L) homomorphism on .R, the intervals of the ordered basis g(S) of the 

algebra.R comprising the element cp( b) contain no continual subchains of isotonic 
chain images of the type Pa ' while the intervals comprising the element ...., cp( b) 

12 

contain no continual subchains of isotonic chain images of the type Pa . Therefore, 
I) 

an element cp( b) E.R must separate the chains 1i(i ER1) from the chains ~(j ER2) • 

Since Rl and ~ are infinite, there is not such an element in the Boolean algebra 
.R = B(g(S). The contradiction obtained shows that there are k,m s n such that, for 
sufficiently large i,jEw, the sets Uj,Vj in the above presentation of g(S) are 

isotonic images of finite sums of sets of the type (Po + 1 + Ptk +2 + 'rJ) and 

(ij + 1+ Jl.m+2 + 'rJ), respectively. 

Moreover, k = m. Indeed, if k .. m, a set of the ordered type 
* (Po + 1 + Ptk +2 + l)w is separated from a set of the ordered type (11. + 1+ Jl.m+2 + l)w 

in the ordered basis L of the Boolean algebra B(L) by an element of this algebra. 
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In this case, under a homomorphism from B(L) to .B = B(g(S», the subsets 

1+ }:(~ +Uj ) and }:ut +"1)+1 of the ordered basis g(S) of the Boolean 
iE.w jEw" 

algebra.B would prove to be separated in .B by an element of the algebra .B. 
Obviously, the representation of g(S) given above makes such a separation 
impossible. Thus, indeed, k must equal m. 

Therefore, indeed, 

g(S) = }:(~ +Uj )+ ~(pi + "1), 
jEw gEw" 

• • and there are k ~ n,pEw,PI Ew such that at iEw,jEw and i> pJ < PI' Ui is an 

isotonic image of finite sums of sets of the type (Ii + 1+ Ptk+2 + 1]), while "1 is an 

isotonic image of finite sums of sets of the type (Ii + 1 + 111+2 + 1]). At i ~ p,j ~ PI> 
Ui and "1 are isotonic images of finite sums of sets of the type 
(Po + 1 + Pa,. + ... + Paz + 1) and (Ii + 1 + Pt.! + ... + Pt., + 1), respectively. 

Let us now notice that each of the sets Ui ' "1 is either continual or 

countable, in the latter case being, as has been noted earlier, an isotonic image of 

the set 1]. Hence, if we add the condition .B 1:.1:. B(L") to the conditions imposed on 

.B earlier then, by virtue of this remark, for some infinite subsets Wt ~ W, W2 ~ W • , 

we get IU1l=lljl=2xO for any iEWt,jEW2. 

Therefore, if < JBA;«>I = <p(.B), the algebra.B has a linearly ordered basis 
Q of the following type: 

Q ... }:(pd +Uj )+ ~(Jt + "1), 
iE.w !=w" 

in which case there are k(.B) ~ n,p(.B) EW,PI (.B ) Ew' such that, at 

i> p(.B ),j < PI(.B), Uj is an isotonic image of finite sums of sets of the type 
(Po + 1 + Ptk +2 + 1]), while "1 is an isotonic image of finite sums of sets of the type 

(Ii + 1 + 11k +2 + 1]). At i ~ p(.B ),j ~ PI(.B), Ui and "1 are isotonic images of finite 

sums of sets of the type (Po + 1 + Pa! + ... + Paz + 1) and (Ii + 1 + P~ + ... + Pt., + 1), 

respectively. Moreover, there are infinite "1(.B)~ w,W2(.B)~ WO such that for 

iE~(.B),jEW2(.B), we get IUil=lljl= 2xo. 

Let us now consider the following linearly ordered sets: 

A = ~[(Po + 1+ Pc + l)w + 1], 
cE(a! •..• a/} 
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B= :2[(~ + 1+ ~ +1)w * +1]. 
dE{PI.··.,b.} 

Let us consider the following elementary formulas of the signature «<> with 
* parameters B(L),B( 4J), B(Ll),B(L ), B(A),B(B): 

X-I Y = q)(x)& q)(y)& 'VXl 'Yl (Xl «X& Xl « B(A)& Yl « y& 

Y« B(A) -+ 3z,Zl (q>(Z)&Zl « B(A)&Zl « Z&Xl « Zl & Yl « Zl» , 

X -2 Y = q)(x)& q>(y)& 'VXl' Yl (Xl «X&Xl «B(B)&Yl «y& 

Y« B(B) -+ 3z,Zl (q)(Z)&Zl « B(B)& Zl « Z& Xl « Zl &Yl « Zl»· 

Let < JBA;«>I= .Bl -1.B2 , and let Ql,Q2 be linearly ordered bases of the 
Boolean algebras .Bl and .B2 , which have the above mentioned form (the formula 
and condition for Q), in which case the sets Ui,vj corresponding to a Boolean 

algebra .Bm(m = 1,2) will be denoted by Ur,vF, , respectively. Let us show that, 

in this case, [k(.B I) = [k(B 2 )" 

Indeed, considerations analogous to those used above prove that the inequalities 

B:" «.Bm,.B:n« B(A)(m = 1,2) imply, for the Boolean algebrasB:", the existence 
of linearly ordered bases of the type: 

Q' = :2 [Po + (ur)'], 
Em 

where PO,(Ur)' are isotonic images of LOSes Po,Ur from the corresponding 
representations of Qi. The converse statement is also valid: any Boolean algebra with 

an ordered basis Q:n of such a type obeys the inequalities x«.B m and x« B(A) . 

Let now Q:n = :2 (Po + Ur). Then, according to the facts just proved, 
Em 

B(Q:n) «.B m and B(Q:n)« B(A) " Let tl ,tll be Boolean algebras playing the parts 

of Z,Zl when the formula .Bl -1.B 2 is valid if Xl = B(Q{)'YI = B(Q2). Since in this 
case < .JBA;«>I= q)(€ ),€ 1 «B(A) and €l «€ , €1 has a linearly ordered basis 

FJ. such that FJ. = :2 (Po + Gi ), in which case po, an isotonic image of Po and Gi , 

Em 
are isotonic images of finite sums of sets of the type Po + 1 + ~ +2 + TJ) for a 

Id,B) 

sufficiently large i. It should be recalled that for some infinite 

R1(.Bl ) ~ w,wl (.B 2 ) ~ w', we get IU;I=I U;I= 2xo for i ER1(.B),j ER1(.B 2 ). 

Therefore, the inequality .B{«tll,.B2,«tll results, using the same repeatedly 
employed considerations, in isotonic or anti isotonic embeddings of some continual 
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subsets of ordered sets U/Ci Ew(.B 1))'U; (j EW(.B z» in the LOS Gl at large I and, 

hence, finally, in embeddings of similar continual subsets in the LOS II ". +z as 
k( ... ) 

well. However, since Ul(uJ~) are embeddable in II +z(ll +z), and by virtue 
i(B I ) k(B 2 ) 

of property (3), this is possible for the sets PaI"",Pal only when 

Ik(B I )+2=ik(C) +2 and Ik(B2)+2=Ik(C)+2. Therefore, indeed, if 

<,JBA;«>I=.B1 - 1 .Bz , then the equality Ik(B I )=/k(B2 ) holds. The converse 

statement is also obvious: if Ik(B I )=/k(B2 ) and <,JBA;«>I=<1>(.B1)&<1>(.Bz) on 

< ,JBA;«>, the formula .Bl -1 .B z is valid. 
In an analogous way one can prove that for .B1,.Bz such that 

< ,JBA;«>I= <1>(.B1)&<1>(.Bz), the formula .Bl -zBz is true on < ,JBA;«> iff 

kk(BI ) = kk( B2 l" 

Let us introduce a formula x - y equal to x -1 Y& X -2 y. Bearing in mind the 

facts proved above, we see that a set J singled out by the formula <1>(x) in 

< ,JBA;«>, factorized with respect to the equivalence relation set by the formula 
x - y and having two equivalence relations set by the formulas x -1 y and x -z y, 

respectively, is isomorphic to the initial model < {l, ... ,n};-l,-z>EHz. Therefore, the 

relative to elementary interpretation Th(H2 ) in Th« ,JBA;«» has been constructed, 
which fact implies that the latter is hereditary undecidable .• 

Lemma 13.3.(CH) The elementary theory of the embedding skeleton of a 
variety BA is hereditary undecidable. 

Proof. Preserving the notations from lemmas 13.1 and 13.2, it suffices, as 
was the case in their proofs, to construct a relative to elementary interpretation of the 

elementary theory of the class of models Hz in Th« ,JBA;«». 

Let us fix a model < {l, ... ,n};-I'-Z> from the class Hz, 
Ij,kj(isn),aj(js/),br(rss) be the same as in the proofs of lemmas 

13.2. The sets P,EQ,ILPaI"",Pal,ItI"",Pbs are chosen in the same way 

proof of lemma 13.2. 
Let us first notice that the following statement holds: 

and let 
13.1 and 

as in the 

for any continual LOS L, if B(L) is isomorphically embeddable in B(P), 

(*) then there is a continual subset S of the ordered set L which is 
isotonically or anti isotonically embeddable in P. 

Indeed (let us use the notations of section 1), if q; is an embedding of B(L) 

in B(P), there is an isotonic embedding 1Jl of the LOS L in B(P). In this case, 
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if AI. = R( t/J(L)) is a subtract of t/J(L) in the Boolean algebra B(P) and 

iEpk(t/J(L))(iEp~(t/J(L))), putting the element at(bt) into correspondence to the 
m 

element d Et/J-l(R(t/J(L))), where U(at,btJ is a canonical representation of the 
j-l 

element t/J(d) in the Boolean algebra B(P), is an antiisotonic (isotonic) embedding of 

a continual 8 = t/J-l(R('P(L))) into the ordered set P. 

Choosing now suitable isomorphic copies of LOSes Po, 11, Pat ,···,Pal 'Pbt , ... ,Pbs ' 

let us assume that these LOSes are dense subsets of a set of all real numbers. 

Let us show that in this case the sets Po,11,Pat, ... ,PaI,Pbt, ... ,Pbs have, alongside 

with the properties (1) - (3) of the proof of lemma 13.2, the following property: 

(4) for any A~{O,l,al, ... ,af,bl, ... ,bs} and cE{O,1,al, ... ,af,b1, ... ,bs}, if cp is an 

embedding of a Boolean algebra B(P,;) in B( UPa), c EA and cp is identical on 
aEA 

Indeed, by virtue of statement (*), there is an 8 ~ P,; of the power 2xo which 

is isotonically or antiisotonically embeddable in U Pa. It should be also noticed that 
aEA 

if c E;t:A, IPc n U Pal < 2xo, since otherwise we get a continual set R ~ P,; n U Pa 
aEA aEA 

isomorphic to two disjunct subsets of the set P (to a subset of the interval of the 
set P which is isomorphic to P,; and to a subset of the interval of the set P which 

is isomorphic to one of Pa,a EA) which contradicts property (2) for P. Hence, if 

c E;t:A, 18 \ ( U Pa)l= 2xo, and 8 \ U Pa is isotonically or antiisotonically embeddable 
aEA aEA 

in U Pa , which, again, contradicts property (2) for P. Thus, c EA. Analogously, 
aEA 

using the 2xo -densities of P,; one can prove cp to be identical on p,;. 
Let us now consider the following linearly ordered sets: 

n 

M = ~ «(It U Pt; +2) + (Pt + Pic; +2))' 
i-I 

n n 
Ml = (Po U U Pt+2) + (Pt U U Pk +2 ), 

i-I ' i-l ' 

M2 = Po + Pt, 
n n 

M 3 =(Po UUl}+2)+1+(11 UU1k+2)· 
i=l l i==1 l 

Here If,p J denote isomorphic copies of the LOSes Pt, Po supplied with indices 
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i only for differentiating these sets from each other as subsets of the linearly ordered 

set M. 
Let us consider the following formula of the signature «<> with parameters 

B(M), B(MI ), B(M2 ), B(M3): 

<1>(x) = B(M2) s x s B(MI)&x s B(M)& Vy(B(M2 ) s y s B(MI)& y s B(M)& 

&x s Y -+ Y s x)& ..... :t:(x s z& ..... z s x& z s B(M)&z s B(M3))' 

Let us assume that C EBA and < JBA;s>1 = <1>(C ). Let cp be an embedding 

of the algebra B(M2 ) in the algebra B(MI ) induced by the embeddings implementing 

the inequalities B(M2 )sC and CsB(MI ). By virtue of property (4), one can 

easily notice that cp is identical on a LOS Po + II ~ B(M2 ). Therefore, C may be 

considered a subalgebra of the algebra B(MI)' the latter containing the chains Po and 

II of elements of the algebra B(Mt)· 

Let 1/J be a C embedding in B(M) implementing the inequality C s B(M). 

Property (4) implies that 1/J maps the elements of the chain Po + II ~ C into those 
n 

of the chain ~ (pd + l1i) ~ B( M), in which case if A is an interval of the chain 
i=I 

n n 

Po (11) , 1/J(A) ~ ~ pd (1/J(A) ~ ~ II\ and if 1/J(A) ~ P~ (1/J (A) ~ lh for some Is n, 
i-I i-I 

the mapping 1/J is identical when identifying Po with Po (If with II). Hence, the 

chain Po + II ~ C is subdivided into a finite number of intervals A~ (where 

Isn,j=,O,l) such that ~~Po,Ai~l1,1/J(Aj)~Pj, and 1/J is identical on A~ when 

identifying Ej with lj. 

Let ~! be a finite interval of the chain Po, while A~ be the initial interval of 

II. Since C is maximal as regards embedding among algebras lJ such that 
n 

B(M2 )slJ sB(M) and lJ sB(M)" obviously, C eeB(~(lt+~)) where ~(~) 
i-I 

is an interval of the LOS F6 UPt+2(l1i Ull:+2) cofinal and coinitial to the subset 
I I 

1/J(A6X 1/J(Af))· 

Let us now notice that kl = k2 . Indeed, if kI .. k2 , let j) be a subalgebra of 
the algebra B(M) generated by elements of the algebra C I (which is a subalgebra of 

the algebra B(M) isomorphic to the algebra C at C s B(M)) and an element of the 

type [-oo,a), where a is any fixed element of the set Ilk!. In this case, 

C s j) ,j) s B(M) and j) s B(M3). And, finally, j) .J;.C , since the elements 
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",,(~1) and ",,(Afz) are not separated in the algebra tC and they are separated in 

the algebra D and, hence, the embedding of D in C would imply (see the proof 
of property (4» embedding (without fixed points) of a certain continual subset of the 

n 

LOS ""(~)U""(Afz) in the LOS ~(~U~). Therefore, when kl ",k2, the 
i-l 

Boolean algebra D plays the part of z, the absence of which is stated in the latter 

part of the formula <I>(x) and, hence, < JBA;~>I ... <l>(tC) entails the equality kl = k2. 

Let k( C) denote kl as. 
It should be noticed that, obviously, (since the sets 

Pc,Pl,P'1+2, ... ,Pln+2,111+2, ... ,l1n+2 are rigid), we get < JBA;~>I= <l>(.B(l) for any 

i~n, where .B(l)=B(P~UI4+2+P:Ul1i+2). In this case, k(.B(i»=i. 

Let M4 = Po + 1 + fl. Let us consider the formula 

<1>1 (x,z) = <I>(x)& <l>(z)&Vt(t ~ x&t ~ z - 3u(t ~ u& 
&B(M4) ~ u ~ B(M3)& u ~ B(M». 

Let us prove that < JBA;~>I=<I>(tCl,C2) iff k(tC1)",k(C2). Indeed, let 

< JBA;~>I= <l>(C 1)&<l>(tC2). ""1,""2 will denote embeddings of the algebra C 1,tC2 

in the algebra.B implementing the inequalities C1 ~ B(M) and C 2 ~ B(M), and let 
us use the notations introduced when considering the formula <I>(x), adding to their 
left up comers indices 1 or 2, depending on whether they refer to the algebra tC l 

or tC 2. For instance, 1 At instead of Af when considering tC 1 instead of tC. As was 
the case earlier, let us assume C 1,tC2 ~B(Ml). If k(tC1)=k(tC2), as the t indicated 
in the formula <l>1(C1,C 2) it suffices to consider such Boolean algebras C ~ B(M1) 

which contain a subset 

This subset has the form C + D, where C is a finite interval of the LOS 

Po U Pz +2, while D is the initial interval of the LOS ij U Pk +2. If now D 
k(£I) k(£I) 

was a Boolean algebra playing the part of the element u from the formula 

<l>1(C1,C 2), the inequality B(M4)~D ~B(M3) would imply in a standard way the 

separation of the chains C and D contained in the algebra C ~ D by an element of 

the algebra D. This, in its tum, would contradict embedding of D in the algebra 
B(M), since this becomes possible only under the identical embedding of the chains 

C and D in the LOSes Po U Pz +2' ij U Pk +2' this contradiction arising since 
k(£I) 1(£1) 

these LOSes are not separated by elements of the algebra B(M), while C and D 
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are separated by an element of the algebra D. Therefore, the equality k( C 1) = k( C 2) 

indeed implies that the formula <1>1 (C l'C 2) is not true on < JBA,~>. In an 
analogous way one can prove that the equality k(C1) = k(C2) holds when 

<l>1(C1,C 2) is not true on < JBA,~>. 
Let us now consider the following formulas: 

1/J1 (x,Z) = <I>(x)& <l>(Z)&3X1, Zl(<I>(X1)&<I>(Zl)& ..... <1>1 (X'X1)& 

..... <1>1 (Z,ZI)&'v't(t ~ B(Ms) - (t ~ Xl - t~ Zl»)' 

1/J2(X,Z) = <l>(x)& <I>(z)& 3xl ,Zl (<I> (Xl )& <I>(Zl)& ..... <I>t (X,Xl)& 

..... <I>l(Z'q)&'v't(t ~ B(~) - (t ~ Xl - t ~ Zl)))' 

n n 
Here Ms = U Pt;+2' M6 = U &.+2' 

i-I i-I • 

Let <JBA,~>I-<I>(C)&<I>(1I) and lk(C) =11(11)' Taking into account what has 

been just proved, we get 

< JBA,~>I = <I>(.B (k(C )))& <I>(.B (k( 11)))& 

..... <1>1 (C ,.B (k( C )))& ..... <1>1 (11 ,.B (k(1I ))) 

Moreover, since 

.B(k(C» = B(Po U 1} +2 + ij U & +2), 
k(t:) k(t: ) 

.B(k(1I » = B(Po U 1} 11 +2 + ij U & 11 +2)' 
k( ) k( ) 

and Ik(C) = 11(11) then, obviously, for any algebra D embeddable in 
n 

B(Ms)=B(UR.+2)' the embeddings of D in .B(k(C» and in .B(k(1I» are 
i-l OJ 

equivalent. The converse statement can also be proved easily: if 

<JBA,~>I=<I>l(C,1I), lk(C) = 11(11)' Thus, <JBA,~>I=<I>l(C,1I) iff Ik(C) =11(11)' 

An analogous statement is also true for formulas 1jJ2 with the numbers Ii replaced 
with kj . 

Therefore, the set J {C EBA< JBA,~>I = <I>(C)} factorized over the formula 
..... <I>l(x,Z) and supplied with a couple of relations set by the formulas 
1jJl(x,Z),1jJ2(x'z) is a model of the isomorphic model <{l, ... ,n};-1'-2> chosen from 

the class R in the beginning of the proof of the lemma, i.e., the formulas 
<I>(X),<I>l(X,Z),1jJ 1(x,Z),1jJ2(x,Z) set a relative to elementary (with the parameters 
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B(M),B(Mr),B(M2),B(M3),B(M4),B(M5),B(M6» interpretation of the hereditary 

undecidable elementary theory of the class R in the elementary theory of the 
embedding skeleton of a Boolean algebras variety, and, hence, the latter is undecidable .• 

The lemmas just proved enable us to prove the following statement. 

Theorem 13.2.(CH) 

(a) If ,m is a non-trivial congruence-distributive variety, the elementary theories 

of the epimorphism skeleton < J fTl ;« > and the Cartesian skeleton < J ,.m ; x > of 

the variety,m are undecidable. 

(b) If "m is a variety containing a certain quasi-primal algebra without one

element subalgebras, the elementary theory of the embedding skeleton < J,m ;s> of 

the variety "m is undecidable. 

Proof. 

(a) Let ,m be a non-trivial congruence-distributive variety, and JI be a simple 

,m -algebra which exists by virtue of theorem 2.11. According to corollary 3.1, 

theorem 3.2 and the remark after theorem 4.2, for any Boolean algebra ,B, any 

algebras JlI,JI 2 such that JIB 5!! Jl I x JI 2, there are Boolean algebras ,BI "B 2 such 

that Jl I s JIB! ,Jl2 S JlB2 and ,B s ,B I x B2. Together with the isomorphism 

< J {JI BIB EBA}; x >s< JBA,x >, these prove that the hereditary undecidability of 

Th« JBA,x » established in lemma 13.1 implies the undecidability of 
Th« J,m;x ». 

Analogously, by theorem 13.1, < J{JlBI.B EBA};«>s<JBA,«>, in which 

case for any ,m -algebra fl, if for some Boolean algebra fl «JI B, there is a 

Boolean algebraBI «,B such that fl s JIB!. Therefore, < J {JI B I.B EBA};« > 

is the initial interval in < Jm ;«> and, since all the formulas participating in the 

interpretation of Th(R2) in Th« JBA,«» given in lemma 13.2 have quantifiers 
limited relative to the quasi-order « incorporated in the formula parameters then, by 

choosing the same formulas with parameters JI B instead of the corresponding 

parameters, i.e., Boolean algebras ,B, we obtain a relative to interpretation of 

Th(R2 ) in Th« J,m;«», which proves that Th« J"m;«» is undecidable. 
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(b) Let now.m. be an arbitrary variety containing a quasi-primal algebra 210 
with no one-element proper subalgebras. Hence. 210 is simple. and ..'TIl (21 0) is a 
discriminator variety. Let R be a linearly ordered set of all real numbers. It should 

be noticed that for any JJl -algebra 21 such that 21 0 s 21 s 21 t(R>. the algebra 21 
has the form 2Il for some Boolean algebra.B such that .B s B(R). 

Indeed. let JI 0 s JI s JI t(R>. Let us identify 21 with a corresponding 

subalgebra of the algebra JI t<R). and JI 0 with a subalgebra 21 b of the algebra JI . 
As JI 0 is simple and finite. and since for any iEB(R)* we have I lfj (JI b)l~ 1. we 

get Ilfj(Jlb~=Jlo. Since 2Ib is finite. there is a partition bl •...• ~(kEOJ) of the unit 

of the Boolean algebra B(R) such that elements of the algebra JIb are constant on 

the elements bj(j s k) as on subsets of the Stone space B(R/. Moreover. as JI 0 is 

finite and since for any iEB(R)* we have l3fj(2Ib)I=Jlo. for any jl.jzsk there are 

automorphisms 1/J it.h of the algebra 210 such that for il Ebit .i2 Ebh and for any 

aEJlb we get 1/Jjl>h(lfjl(a))=3fj2(a). 

Using the automorphisms 1/J it.h' let us define the automorphism 1/J of the 

algebra JI t<R) in the following way: for a E2I t<R). for any i Eb/j s k) • 

* 3f~1/J(a))= 1/Jj.o(3fj(a)). where 0 is a certain fixed element of B(R) . It is obviously 

the 1/J -image of the algebra JI b consisting of constant elements of the algebra 

JI t<R). Then. since 1/J(JI) ~ 1/J(JI b) and 1/J(2I) r;;, 21 t<R). by corollary 5.2. both 

1/J(JI) and the algebra JI are isomorphic to an algebra of the type JI l for some 

Boolean algebra .R. In this case. obviously. .B s B(R). Therefore. indeed. the 

inequalities JI 0 s JI s JI t(R> result in representing the algebra JI as JI l for a 

Boolean algebra .B such that .B s B( R). 

Since .m. (JI 0) is a discriminator variety and. hence. congruence-distributive with 
extendable congruences. by theorem 3.3. for any Boolean algebras .BI •. B 2 the 

inequality JI f 1 S JI 0.B2 is equivalent to the inequality .BI s .B2' Hence. 

< J {JI E.m.IJI 0 s 21 s 21 t(R) ;s} 51! 

51! {J EBAI.B s B(R),I.B I~ 1};s}. 

The relative to elementary interpretation of Th(R2 ) in Th« JBA;s» 
constructed in the proof of lemma 13.3 is in fact limited by the skeleton 

< J{B EBA.B sB(R);I.BI~I};s>. Therefore. both this interpretation and the 
isomorphism mentioned above result in a relative to elementary interpretation of 

Th(R 2 ) in Th« J .. 'l1l ;s>), and. hence. the latter is undecidable .• 
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According to the remark after the proof of lemma 13.1, under the conditions 
of theorem 13.2 the elementary theory of the countable Cartesian skeleton 

< J.m xo;x > of any nontrivial congruence-distributive variety is also undecidable. In 

this case, the continuum hypothesis is not required to prove either this statement or 
that on the Cartesian skeleton in theorem 13.2. The undecidability of elementary 
theories of countable embedding and epimorphism skeletons under the conditions of 
theorem 13.2, however, can prove not to take place, which fact can be traced from 

the repeatedly presented earlier equalities < J .. 'lTlxo ;«>E!! WI + 1*, 

< JBAKo;~>E!! wt +1*. 

The following problem is now open for discussion. 

Problem 13.1. Is the elementary theory of the embedding skeleton of any 
non-trivial congruence-distributive variety with extendable congruences undecidable? 

By way of concluding this section, let us dwell on a problem pertaining to 
elementary theories of variety skeletons. It is natural to assume that for large 
cardinals k, the bounded epimorphism, embedding and Cartesian skeletons of an 

arbitrary variety.m inherit the basic properties of the skeletons < J.m ;«>, 

< J.m ;~> and < J.m ;x> and, in particular, their elementary properties. In this 
case, the mere coincidence of the elementary theories of bounded and unbounded 
skeletons is not of the greatest interest; what really matters is the existence of a set 

of algebras 1/ {, ... ,1/ ~ (for any set of .m -algebras 1/1, ... ,1/ n) from a bounded class 

.. 'lTl <k, the elementary properties of which in terms of epimorphism, embedding and 

direct expansions in the class .. 'lTl <k coincide with analogous properties of the algebras 

1/1, ... ,1/ n within the whole variety .m. In other words, here we speak about the 
implementation of the elementary types of element corteges of unbounded skeletons in 

bounded ones. The class .m <k is considered instead of the class .m k, since there is 

a biggest element in the skeleton < J.mk;«>, while in the skeleton < J.m;«> 
there is no such element 

Definition 13.1. The LOwenheim number for the epimorphism skeleton of a 

variety.m is the least cardinal k such that for any .m -algebras 1/1, ... ,1/ n(nEw) 

there is a cardinal k' < k and .mk , -algebras 1/ {, ... ,1/ ~ such that the elementary 

theories of the models <J.m;«,1/1, ... ,1/ n > and <J.m<k,;«,1/{, ... ,1/~> 
coincide. 

The notions of the LOwenheim number for embedding and Cartesian skeletons, 

as well as for a complete skeleton of the variety .. 'lTl are introduced in an analogous 
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way, the algebraic system < J.m; «,!I:,X > considered as a complete skeleton. 
Second-order complete logic is an extension of the first-order predicate calculus 

using the formulas with existential and universal quantifiers over arbitrary predicates 
allowed. 

Let us recall the following definition. 

Definition 13.2. The LOwenheim number of the second-order complete logic 

is the least cardinal k such that for an arbitrary algebraic system 1/ of a finite 

signature there is an algebraic system 1/' of the power not greater than k such that 

the theories of the systems 1/ and 1/' coincide in the second-order complete logic. 

Localization of the LOwenheim number for the second-order complete logic 
depends on set-theoretical assumptions (see, for instance, [231]). 

Theorem 13.3. The LOwenheim number for the complete skeleton of an 
arbitrary finitely approximatizable variety of a finite signature is not greater than that 
of the second-order complete logic. 

Proof. Let .m be an arbitrary variety of a finite signature, and k the 

LOwenheim number fof the second-order complete logic. Let 1/1, ... ,1/ n E .. 'Ul , and let 
us, using induction over m Em, build a sequence of cardinals ko < kl « ... < km , ... in 

the following way: ko >11/11, ... ,11/ nl,XO and, if km has already been constructed, let 

us choose km+l in such a way that for an arbitrary formula of the first-order 
predicate calculus of the signature «<,!I:,X >, which has the form 

tp(X1,""Xp ) = 3yl, ... ,Ys1/J(X1, ... ,Xp ,Y1,""Ys), for any C1''''cp EJ.m<km such that 

<J.m;«,!I:,X >1=tp(c1'''''cp ) is true, there are elements b1, ... ,bsEJ.mkm+l such 

that < J.m;«,!I:,X >1-1/J(Cl, ... ,c p ,b1, ... bs )' 

Let k' = lim km . Standard model-theoretical considerations show that the skeleton 
m-'oo 

< J.m ;«,!I:,x,1/1, ... ,1/ n > is elementary equivalent to the skeleton 
< J.m<k,;«,!I:,x,1/}, ... ,1/ n >. 

For any formula tp of the first-order predicate calculus of the signature 
< «,!I:,X >, there is a formula tp' of the second-order complete logic of the signature 

of the variety .m such that for an arbitrary infinite cardinal X and any algebras 

C}, ... ,Cq E.m <x' we get < J.m<x;«,!I:,X >1- tp(C1, ... ,Cq ) iff 

J lIl (X)I=tp'(O}, ... ,Oq), where for i!l:q we have O}EConJlIl (X) and 

J 1Il (X)/ OJ Eo! C i' Indeed, without giving a formally inductive definition of the 

formula tp', let us note that any element a EJ.m <x is interpreted in FlIl (X) as a 
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congruence 8 EConSm (X) such that ISm (X)/ BI <ISm (X)I; the equality of the 

elements a1,a2 E J71l <K is interpreted as the existence of an isomorphism from the 

algebra S.m (X)/8l to Sm (X)/82 , where 8i interprets the elements ai; the relation 
a1 «a2 is interpreted as the existence of a homomorphism from the algebra 

Sm (X)/82 to the algebra S JJl (X)/8l ; the equality al x a2 = b is interpreted as the 

existence of congruences 83,84 EConSm (X) such that 

83 A 84 = 8, 

83 084 = 84 0 ~ = Vs (K)' 
In 

J.m (X)/83 ssSm (X)/81 ' 

J.m (X)/84 e!Jm (X)/82 

(here 8 is a congruence on J.m (X) interpreting the element b). All the properties of 

the algebras Sm (X)/8 enumerated above are, obviously, expressed by formulas of 

second-order logic as properties of 8 relations on the algebra Sm (X). Therefore, the 

formula q/ does exist. 

Let now T(JI 1, ... ,JI n) be the elementary theory of the complete skeleton 

<J .. m;«,s,x,Jl1, ... ,Jl n > of the variety.71l with the types of isomorphism of the 

algebras JI 1' . .. ,JI n chosen. According to the remarks made above, we have 

T' will denote {q/llP ET(JI 1, ••• ,JI n)}. By virtue of the construction of formulas 

lP', on Sm(IC') the formula lP'(81, ... 8n) holds for any lPET(Jl1, ... ,Jln) where 

8i EConSm (k') and Sm (J( )/8i e!JI i(i s n). In an obvious way, due to the 

definition of an algebra free in the variety .71l, and since the signature of .. m is 

finite and .. m is finitely approximated, we can write a formula 1/J of the second

order complete logic such that for any infinite algebra JI of the signature of the 

variety71l , we get JI 1= 1/J iff JI e! J.m (X) for an infinite cardinal X. Therefore, we 

get <Sm (k');81, ••• ,8n >1= T'U{1/J}. 
By the definition of the LOwenheim number of the second-order complete logic, 

there is an algebra JI and congruences 8{, ... ,8~ on JI such that IJI Is k and 

< JI ; 8{, ... , 8~ >1 = T U{ 1/J}. In line with the remark made earlier, JI ss S.m (X), where 

X =IJI Is k. At the same time, according to the definition of the formulas lP', we get 

< J.71l<K;«,S,X}J l', ... ,JI ~ >1= T(JI {, ... ,JI~) >, 
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"tl, ~ / ' where .a i = Sm (X) fJ j , i.e., 

< 3 . .'ffl <'/l.; «,S, x ll{, ... ,Jf ~ >=< 3.'ffl ;«,S,x,Jf 1',···,Jf ~ >, 

which is the required proof. • 

The statement of theorem 13.3 obviously results in the following corollary. 

Corollary 13.1. The LOwenheim number for the epimorphism (embedding, 
Cartesian skeleton) of an arbitrary finitely approximatizable variety is not greater than 

that of second-order complete logic. 

This corollary gives the upper bound of the LOwenheim numbers for skeletons 
of arbitrary varieties. In particular cases, these LOwenheim numbers can be much less 

than the upper bound. For instance, for any uncountable categoric variety .om, we 

get < 3.'ffl ;«>5!!< 3.'ffl <'/l.1 ;«> (fJOrd, where Ord is a well-ordered class of all 

ordinals. Tact that < Ord ;s> is elementary equivalent to an ordinal < w w ;s> is well

known and, hence, for any a1, ••• ,an EOrd , there are c1, ••• ,cn Eww+l such that 

Therefore, for any Jf 1"" "Jf n E..m , there are € 1,' .. ,€ n E..m <'/l. such that 
com+! 

i.e., the Lowenheim number for epimorphism skeletons of uncountable categoric 
varieties is equal to Xw", +1. It can be noticed easily that the LOwenheim numbers for 

embedding and Cartesian skeletons of similar varieties are also equal to Xw", +1. The 

case is different for congruence-distributive varieties, for them the Lowenheim 
numbers of the Cartesian skeletons and the second-order complete logic coincide. 

Theorem 13.4. Let .om be a non-trivial finitely approximatizable congruence

distributive variety of a finite signature such that all .om -algebras contain subalgebras 
isomorphic to a certain fixed simple or one-element algebra. In this case, the 
LOwenheim number of the Cartesian skeleton of the variety coincides with that of 
second-order complete logic. 

Proof. By corollary 13.1, it suffices to show that the Lowenheim number for 
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second-order complete logic is not greater than that of the Cartesian skeleton of the 

variety .. m. To this end, it suffices to construct an exact relative to elementary 
interpretation of the second-order theories of all algebraic systems of an arbitrary 

finite signature in the class of all bounded Cartesian skeletons of the variety .1.11. For 
this purpose, it is sufficient to construct an exact relative to elementary interpretation 

in the class of all bounded skeletons < 3.1.11<k; x> of the class R of algebraic 
systems of the kind <P(Wj);U,f,c;;;"al, ..• ,an >, where P(Wj) is a set of all subsets 
of an arbitrary initial ordinal Wj, U is a unary predicate on p(wi) selecting one

element subsets of the ordinal Wi (henceforth identified with elements of the ordinal 

Wi)' ~ is a set-theoretical relation of inclusion on P(wi), f is an arbitrary binary 

function bijectively mapping Wi x Wi to Wi, al, .•. ,an are constants belonging to 

P(wi)' 

In this case, the exact relative to elementary interpretation of the class .R in the 

class {< 3.m <k;x >Ik is an arbitrary cardinal} denotes the existence of an elementary 

property J (if) for some set of parameters if, and the existence of a set SeX) of 

elementary formulas with the parameters if so that in any skeleton < 3.1.11 <k; x >, 

under any choice of the parameters if from 3m <k obeying the formula J (if), the 

given set of formulas S (X) defined a certain algebraic system from .R, and for any 

system 21 from R there is such a choice of parameters if, that for cardinals k 

such that ifE3 .. m<k we get <3.1.11<k;«>I=J(if), while the given set of formulas 

S (X) determines systems isomorphic to 21 0 in the skeletons < 3.m <k; x >. In this 
case the required inequality for LOwenheim numbers results from the fact that for the 

exact relative to elementary interpretation of an R -system < P(wi);U,f,c;;;"al, ... ,an > 

in < 3.1.11 <k; x > constructed later, the inequality ~ 21 ';;? 2Xj holds. 
I<k 

It should be recalled that 'YJ is the ordered type of rational numbers, r is the 
ordered type of real numbers. Let 'YJ' be an ordinal type with neither initial nor final 

elements, of the power 22xo and with the following property: for any a,b E'YJ' the 

interval (a,b) is isomorphic to 'YJ' if a < b. Let i be a fixed ordinal, and f be a 
fixed bijective mapping of Wi x Wi on wi' Let 'YJl = 'YJ, 'YJ2 = r, 113 = 11'· Let 4,] denote 
a LOS 

1 EEl ~ « wi EEl 'YJ (f)w k EEl 'YJ2 EEl wf(j,k) EEl 113) . w) (f) 1. 
<i,k>Emr 

Let 4 = ~ « wi EEl 'YJI)' w) ® 1. A Boolean algebra .S is called non
jCWj 

decomposable provided that for any b ES we get either .B 9! .S Ib or .B 9! .S I ~ b. 
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In the proof of lemma 13.1, we introduced the formula <P(x,y) stating the 
"maximality" of the non-decomposable cofactor y of the element x. It can be easily 

noticed that < ,JBA,x >1=<P(B(4./),C) iff 

for some j,kEwj. 

In an analogous way, <,JBA,x>I=<P(B(4),C) iff 

C !!! B(IEE>(w j EE>1Jt)" wEE> 1). Jj will denote {C EBA<,JBA,x>I=<P(B(4),C)}. 

In the proof of lemma 13.1 we introduced the formulas E(x),A(x),r(x) 

selecting one-element, atomic and atomless Boolean algebras, respectively, in the 

skeleton < ,JBA,x >. 

It should be noticed that analogous considerations are also valid for formulas 

<P(x,y),E(x),A(x),r(x) not only on the skeleton < ,JBA,x >, but also on bounded 

skeletons < ,JBt\k; x >. 

Let us consider the following formulas: 

R(x,y,w) = 3z(x -= yz)&Vu,v(y =uv- y=u v y= v)& ..... A(y)& 
..... r(y)& ..... 3-z(y = xq)&3p(y - pw), 

T(x,y) .. Vz(A(z) - (3u(x = zu) 4+ 3v(y .. zv»). 

On < ,JBA,x > the formula 

holds iff C !!! B(1 EE> w j EE> 1Jt EE> 1) for s = 1, or C !!! B(1 EE> wk EE> 112 EE> 1) for s .. 2, or 

C !!!B(IEE>w/U,k)EE>1J:3EE>I) for s=3. Moreover, for any sl,sz -1,2,3 and any 

ordinals A, h we get 

iff jl = jz. 
The properties of the formulas constructed above remain valid when the skeleton 

< ,JBA,x > is replaced with bounded skeletons < JBt\k; x >. The required relative 

elementary interpretation of the ft. -system < P(Wj);U,f,~,al, .. ",an > in < ,JBt\k; x > 

is constructed for k > Wj in the following way: one-element subsets of the set Wi' 

i.e., elements of the R -system satisfying the predicate U, are interpreted in 
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< 3B1\k; x> by elements satisfying the formula <I>(B( L),x), i.e., a family of such 

elements in < 3B1\k; x > is, as has been earlier noticed, equal to J i . The function 

! from wi x Wi to Wi is interpreted by the following formula: 

1jJ(x,y,z) = <I>(B(I,),x)& <I>(B(4),y)& <I>(B(4), z)& 
3 

3t,u1'U2,u3(<I> (B(4,f),t)& & R(t,us ,B(1 EEl 1]s EEl 1))& 
s-l 

T(x,u1)& T(y,u2)& T(Z,u3)) . 

It is obvious that 

< 3B1\k; x >1 = 1jJ(B(1 EEl (w j EEl 1]1)' W EEl I) , 

B(1 ENwl Et> 1]1)' wEt> I), B(I EEl(w r EEl 1]1) 'W EEl I)) 

iff !(j,l) = r. Subsets of the ordinal wi are interpreted as subsets of J i with 

arbitrary elements .S E 3BA.ck in the following way: an element .B is interpreted 

with a subset B ~ Ji such that 

In this case, in order to interpret any subset A ~ wi' it suffices to choose the 

algebra B(I EEl ~ (wi EEl 1JI)' w EElI) as .S . The equality relation on the elements wi is 
jEcA 

interpreted by a common equality relation on Ji " the equality relation on P(Wj) (on 

subsets Jj) is interpreted by the formula 

<I> .(x, y) = Vz(<I>(B(4),z) - (<I> (x, z) ++ <I>(y, z))) , 

while the ~ relation is interpreted by the formula 

<I>dx, y) = Vz( <I>(B(4 ),z) - (<I> (x, z) - <I>(y,z))) , 

the interpretation of constants being obvious. 
Therefore, indeed, for any cardinal k> Wi, the 

<I>(B( 4), x), 1jJ (x, y, z), <I>~ (x, y),<I>~ (x,y) define the 

< P(wi);U,f,~,a1, ... ,an > in the skeleton 

formulas 

.R' -system 
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(here .Ba. are Boolean algebras from BA..:.k interpreting constants ail. , 
In an obvious way one can write an elementary formula J (xl, ... ,XS,yl,.··,Yn) 

such that for any cardinal k', for any ht, ... ,bS,cl"",cn E,JBAck" if 

then the formulas ct>, 1JI, ct> _, ct> ~ mentioned above define an algebraic system of the 

type <A;U,f,r;;;"al, ... ,an > where Ar;;;,p(U) in the skeleton <,JBt\k';x>, provided 

that b1,b2 , ... are replaced by the parameters B(4),B(4.f)"'" . It should be noticed 
that in this case A coincides with P(U), while the cardinal k' is such that 

~21 ~ 21u1 • The latter inequality is obvious and, therefore, for any subset 
l<k' 
S r;;;, U r;;;, BAck" we now have to find a Boolean algebra C s in BA.:k' such that 

iff C ES. 

Let S ={B1I/El}r;;;,U and, therefore, all algebras .BI are non-decomposable . 

. Bs will denote a Boolean algebra such that for any lEI in .Bs there is an element 

bl such that .Bslbl el.BI ; for I". jEI bl nbj =0 and .Bs are generated by elements 

of the algebras .Bslbl when lEI. Hence, the factor of the algebra .Bs relative to 

the ideal generated by a set U JI is isomorphic to a Boolean Frechet algebra over 
El . 

the set I. Here JI is an ultrafilter of the algebra .Bslb l . Since the algebras .B/EU, 
i.e., 

for any b,jEI we get .BI el.Bj if .BI el.Bj x.B for some Boolean algebra .B. 

This fact and the construction of the Boolean algebra .B s directly yield that on 

< ,JBt\k,;x,b1, ... ,bs,Cl,""C n > the formula ct>(~,C )&ct>(.B s,C) holds iff C ES. 

Therefore, in < ,JBt\k,;x,b1, ... ,bs,Cl,,,,,Cn > the set Sc;;;, U is really interpreted by 

the Boolean algebra .B s and, thus, an interpretation of the R class in bounded 
Cartesian skeletons of a Boolean algebra variety has been constructed. 

Let now.m be a variety satisfying the conditions of the theorem, and JI be 

an at most countably infinite simple .m -algebra existing by the Magari theorem. As 
has been noted in the proof of theorem 13.2, the following statements follow from 
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the results obtained in chapter 2: 

(1) for any Boolean algebra .B, any.m -algebras Jl 1 ,Jl2, JIB ~ Jl1 x JI 2 iff 

there are Boolean algebras .B1,.B2 such that for i=1,2, .B~.BIXB2 and 

JI. ""JI.Bi. 
1- , 

It should also be noticed that the formulas of the signature < x> used to 

construct an interpretation of the class it in a class of bounded Cartesian skeletons 
of a Boolean algebra variety, had quantifiers bounded by cofactors of the parameters 
employed in these formulas. These remarks enable us to use the formulas in question 

to obtain a relative to elementary interpretation of the class R' in a class of bounded 

Cartesian skeletons of the varietY.om with parameters JI rt:: substituted for the 

parameters € EBA in these formulas. To complete the proof of the theorem, now 

we have to notice that for any parameters b1, ••• ,bs,cl, ... ,Cn EJ.om<k such that the 
formulas <1>,1/',<1> c,<I> _ define at these parameters a system of the type 

<A;U,f,r;;"al, ... ,an > in <J.m<k;X>, where Ar;;,P(U), the equality A=P(U) in 

fact holds. In other words, we have to show that for any subset S r;;, U r;;, J.m <k, 

there is an element j) EJJ!l<k such that for € EJ.m<k' 

<J.om<k;x>I=<I>(~,€)&<I>(j),€) iff €ES. 

Let S = {JI iii EJ} and JI' be a simple algebra contained in all algebras JI i' j) 

will denote a subalgebra of the algebra !J JI i such that for / E iQ JI i' / Ej) holds 

iff for a certain a EJI' and all i but the final number of elements from I, we have 

lei) = a. The algebra j) is a Boolean product of the algebras {JI iii EJ} U {JI'} 
relative to a Boolean Frechet algebra over the set I. According to known descriptions 
of congruences on Boolean products in congruence-distributive varieties (section 4), 

any direct cofactor JI of the algebra j) has either the form JI ~ Jl i; x ... xJl 1m or 

the form JI~Jl::x ... xJl~xj)' for some i1, ... ,im EI and some direct 

decompositions Jl i; xJl i~, ... ,JI 1m X JI:~ of the algebras Jl i1 , ... ,Jl im , respectively, 

where the algebra j)' is constructed of algebras JI i(i EI \ {il"",i~ in the same way 

as the algebra j) of algebras JI i (i EI). Owing to this fact, one can easily notice 

that j) has the property discussed above, i.e., it interprets the subset S of the set 

U. Therefore, the interpretation under discussion is an interpretation of the R'
system, which completes the proof of the theorem. • 
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The following problems still remain open for discussion. 

Problem 13.2. 

(a) Does the LOwenheim number of the epimorphism skeleton of any non-trivial 
congruence-distributive variety coincide with that of second-order complete logic ? 

(b) The same problem concerning embedding skeletons. 

The following results should be mentioned in relation to the problems just 
posed. 

Theorem 13.5. The LOwenheim number for the skeleton < JBA,«,*> of a 
Boolean algebra variety coincides with that of second-order complete logic. 

Theorem 13.6. The LOwenheim number for the skeleton < JBA,~,*> of a 
Boolean algebra variety coincides with that of second-order complete logic. 

Here for a,b,c EJBA such that a is the isomorphism type of }j EBA, b is 

that of .B EBA and c is that of C EBA, and the equality a*b = c implies that .B 
is isomorphic to }j *.B , which is a free product of the Boolean algebras}j and .B . 

Priorities. All the results obtained in this section belong to A.G.Pinus. 
Theorems on the decidability of the elementary theory of skeletons were published in 
[164], [165] and [176]. Theorems 13.3 and 13.4 can be found in [185], theorem 
13.5 in [170] and theorem 13.6 in [186]. 

14. Some Theorems on Boolean Algebras 

In this section we will prove some statements on Boolean algebras formulated in 
section 1 and used in proofs of a number of theorems of Chapter 3 but not 
available in basic monographs on Boolean algebras. 

It should be recalled that a subset S of the cardinal ). is called closed and 
unbounded if: 

(1) for any a E)., there is a fJ ES such that fJ O!: a; 
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(2) for any S. ~ S such that for a certain a E).., S. ~{fJ E)"lfJ ~ a}, supS. ES. 

A subset D of the cardinal ).. is called stationary if its intersection with any 
closed and unbounded subset of)" is non-empty. Theorem 1.3 enables us to prove 
the following result (theorem 1.9 in Chapter 1). 

Theorem 14.1. For any uncountable cardinal ~j and I ~ Wj, there is a 

superatomic interval Boolean algebra .BI of the power ~j such that, for any 

I,J ~ Wj, .B I is embeddable in .B J, and .B I «.B J iff I ~ J. 

Proof. 

(1) Let ~j be a regular uncountable cardinal. By theorem 1.3, there is a family 
D = {S)j EWj} of pairwise disjunct stationary subsets of the ordinal Wj. For any Sj 

I flj *'f d (:lSj of t:t:. ett'a =Wj. aESj,an t'a =11 av::;;Sj. 

aSj will denote ~fJ:J. Let us show that for I .. j a Boolean algebra B(asj ) 
aEWi 

is not a homomorphic image of the algebra B( a SI ). Let us assume to the contrary 

that f is a homomorphism from the algebra B(asl ) to B(asj ). For any a Ewj, 

there is an a' EWj such that 

f( ~fJ~l) :2 ~fJ:j . 
c:sa' c:sa 

Indeed, if it was not the case, we would have that, for some b EWj' 

f(~fJ~I)~ ~fJ:j . 
c>b c:sa 

But then we get 

f(~fJ~I):2 ~fJ:j , 
c:sb c>a 

i.e., in particular, there could be found a homomorphism from the Boolean algebra 

B(~fJ~l) to B(~fJ:j). It should be noticed that l{cESllc~b}l<~j, and 
c:sb c>a 

l{cES)c> aJ=~j. Hence, there are ~j pairwise disjunct elements of the atomic rank 
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Wj in the Boolean algebra B(~p:j), i.e., intervals (dkodic]. where 
c~ 

d EfJ ~ d' R~ k d ' " f k Ck , k E pq , EWj an Co < Co < cl < Cl < ... < Ck < Ck <... is a sequence 0 

elements Wj such that Ck $.Sj' cic ESj . At the same time, the number of such disjunct 

elements in the Boolean algebra B( ~ P:') is strictly less than ~j (each element must 
csb 

contain some initial interval of the ordered set P:' for some C ESl ). As has been 

remarked in section 1, the homomorphism of an interval Boolean algebra, B(~P:') 
csb 

in the case under consideration, to the Boolean algebra B( ~p:j) implies that the 
c>a 

latter is isomorphically embeddable in B(~P:'). The remark made on the number of 
csb 

pairwise disjunct elements of the atomic rank Wj in these algebras results in a 

contradiction, which fact proves that the required element a' EWj such that 

f( ~P:'):1 ~p:j indeed exists. 
c:sa' csa 

One can prove analogously that for any a EWj there is an a' EWj such that 

f(~P:')r;;;,~p:j. Therefore, for any aEwj' there is a sequence 
csa csa' 

an - a < al < ... < an <... of elements of the ordinal Wj such that for any p we get 

An element d EWj will be said f -limiting provided that we have d = lim a/J for 
{JEw, 

an ascending sequence < a31p EWl > with the property (*). A family of f -limiting 

elements is, obviously, a closed unbounded subset of the set Wj. Since Sj is 

stationary, there is a b EWj such that b ESj and b is f -limiting. As b ESj , by the 

definition of pij , there is no supremum of an ascending chain of elements 

< ~P:'IPEWl> in the Boolean algebra B(as), where <a3IpEwl> is a sequence 
csa: 

converging to b in the definition of the f -limitedness of the point b. On the other 

hand, since Sl n Sj = 0, b $.Sl and, by the definition of P;', there is a supremum 

of an ascending chain of elements < ~P:'IPEWl > in the Boolean algebra B(as/). 
csa: 

In this case, however, by virtue of the inclusion (*), the following equalities hold: 
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i.e., III contrast to what has been remarked above, sup 2JJ:j must exist in the 
tEw csa" 

algebra B(as) at 1 ... j. 
J 

Let now Bj(j EWi) be a partition of wi into sets of the power l'<i' For any 

A ~ wi' let us set Y A = ~ aSj • 

jE U Bk 
kEA 

In this case, for any A,C ~ Wi, the relation B( Y A )«B( Y c> holds iff A ~ C, 

while the relation B( Y A) :s B( Y c> holds for any non-empty A,C ~ Wi' Indeed, for any 

non-empty A,C ~ wi' the LOS Y A is isomorphically embeddable in Y c, which 

implies the fact that the Boolean algebra B( Y A) is embeddable in B( Yc). At A ~ C a 

homomorphism from B(yd to B(YA) is obvious. Let now Ag;C and jEA \ C. Let 

us assume that there is a homomorphism f from B( Yc) to B( Y A)' By analogy to 

what has been proved earlier for algebras of the type B(ask ), we can show that 

there is an 1 EC such that aSI will have the form f( as) to the accuracy of a finite 

number of intervals bounded in asi . On the other hand, obviously, for any initial 

and final intervals ()1 and ()2' any ordered sets as ,as, respectively, the relations 
p q 

B(as )«B«()1 + ()2)«B(as) hold. Thus, we get a homomorphism from the Boolean 
q q 

algebra B( a Sj) to B( a SI) at j ... l, which contradicts the property of the Boolean 

algebra B(ask ) proved earlier. Therefore, indeed, B(YA)«B(yc) iff A~C. 

Setting .B I = B( Y I), we get the statement of the theorem for a regular l'<i' 

(2) Let l'<i be a singular cardinal. We will give only a schematic presentation of 

the proof for this case. 

Lemma 14.1. IfB1,.B2 are atomic interval Boolean algebras, and if there is a 

homomorphism from the Boolean algebra .Bl to .B2 , there is a homomorphism g 

from the Boolean algebra.B1 to .B2 with the following property: for any atom 

aE.B2 , there exists a unique atom a'E.B1 such that g(a') = a. 

The proof is obvious and consists in choosing for any preimage of the atom 

a E.H2 an atom a' E.Bl contained in this preimage. Setting then g(a') = a and 

g( b) = 0 for other atoms b E.B 1 contained in the preimage a, g is naturall y extended 

to the homomorphism ofBI toB2 • • 
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Homomorphisms obeying the property considered in this lemma will be called *
homomorphisms. 

Lemma 14.2. For any singular Ki , any regular Kj,Kk such that Kj,Kk <K i , 

* *.. the homomorphism from a Boolean algebra B( W j + wi) to B( Wk + Wi) eXists Iff 

k =j. 

As has been remarked in section 1, the Stone spaces of the Boolean algebras 
* * * * B(wj + wi) and B(wk + wi) are homomorphic to LOSes Wj + 1 + wi and wk + 1 + wi 

with a corresponding topology coinciding in the case under discussion with the 
• ordered one. If g is a *-homomorphism from the algebra B(wj + wi) to 

• • B(Wk + wi ), the continuous embedding h dual to g of the space Wk + 1 + Wi in the 
• space Wj + 1 + Wi meets an additional condition: for any isolated point x of the space 

• • 
wk + 1 + wi' hex) is an isolated point of the space W j + 1 + wi. Such a continuous 

• • embedding of wk + 1 + Wi in W j + 1 + Wi can be easily proved to exist only when 

k=j .• 

Let now Ki be a singular cardinal and K/ = cf(Ki) . Let k /j Ew/) be an 

ascending chain of cardinals such that L kj = Ki . For any subset I ~ Wi' let us set 
jEwI 

l(j)= In Wj+l for jEw/. As was the case in (1), let us choose a family 

Dj ={S{11Ew} of pairwise disjunct stationary subsets of the ordinal Wj+l with an 

additional condition: all elements of the set S{ unlimiting in S{ have a cofinal equal 
~.. . 

to Wj in Wj+l. Let us set Pal =Wi if aES{, and equal to 1 if af/:.S{. As was the 

case in (1), a sl will denote a LOS L P; I . The LOS Y /(j) is constructed from the 
aEw j +! 

LOS a sj also by analogy with the procedure used in (1). Therefore, Y /(j) will be a 
I 

lexicographicw;+l-sum of linear orders of the type 1 and w;, in which case, in 

accordance with the condition imposed on the elements of the set S{, any interval w; 
in the LOS Y /(j)' provided that it corresponds to p;l, where a is not a limiting 

point in S{, is contained in an interval of the type W j + w; of the same LOS Y /(j) . 

And, again, as in (1), we prove that for any 1,J~wj B(Y/(j»«B(YJ(j» iff 
l(j)~ J(j). 

Let us set lJ/ = LY/(j) for I~wj. For any 1,J~wi' B(lJ/) IS obviously 
!=WI 

embeddable in B( lJ J)' and for the case I ~ J we get B( lJ / )«B( lJ J ). To prove the 
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converse statement, it suffices, according to the remark made earlier on the algebras 
B( Y J(j» and B( Y JU»' to notice that the relation B( lJ J )«B( lJ J) implies the relation 
B(YJ(j»«B(y J(j» for any jEw/. 

Let B( lJ1 )«B( lJ J). By lemma 14.1, there is a *-homomorphism g from the 

Boolean algebra B( lJ J ) to the algebra B( lJ J). In this case, by lemma 14.2, only 

those elements of the algebra B( lJ J) can map to the intervals of the LOS lJ J of the 
* * ordered type Wj + wi(j Ew/) which contain intervals of the same type, Wj + Wi, (a 

fixed j is meant). We have noticed earlier that the intervals of the LOS lJJ of the 

ordered type Wj + w; correspond to all non-limiting elements in the sets sf in the 
2 * representation of lJJ(j) as a Wj+rsum of the LOSes of the ordered types 1 and wi. 

Therefore, the g -preimage of the interval Y J(j) (as an element of the Boolean algebra 

B(lJJ» coincides with the interval Y JU) (as an element of the Boolean algebra B(lJJ) 

to the accuracy of the initial interval of the former. This fact, as can be seen easily, 
implies the relations B(lJ/(j»«B(lJJ(j» for any jEw/ for the case when 
B(lJJ )«B(lJJ). 

Thus, we have also proved the statement of the theorem for the case of a 
singular ~ i. • 

Corollary 14.1. For any uncountable cardinal ~i' 

(a) there are 2Xi of mutually embeddable superatomic interval Boolean algebras 
of the power ~i' none of which is a homomorphic image of another; 

(b) any partially ordered set of the power not greater than ~i is isomorphically 

embeddable in < JSIR1<, ;«> in such a way that the images of the elements of this 

set are pairwise embeddable into one another. 

The statement of. the corollary results directly from that of theorem 15.2, i.e., 

that for any cardinal ~j there are 2Xi mutually non-embeddable subsets of the ordinal 
Wj, and from the fact that any partially ordered set of the power not greater than ~j 

is isomorphically embeddable into a set of all subsets of the ordinal wj • • 

Later on we will make use of a statement obtained by repeating word per word 
the considerations of theorem 14.1 (1) for ~i = ~, with the ordinal type 11 

substituted for Wj when constructing p;i. 

Corollary 14.2. There is an infinite number of pairwise embeddable interval 
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Boolean algebras C j of the power Xl' none of which is a homomorphic image of 
the other, in which case for each of the algebras C j , the set {dEC/1Cjld contains a 
chain of elements of the ordinal type 11" WI} forms an ultrafilter on C j. 

Let us now prove that there are noncompactable chains of the ordinal type of 
real numbers in the epimorphism skeleton of a Boolean algebra variety. In section 1 
we have given the notion of a formally real LOS and formulated a number of 
statements on the existence of rigid subsets of these LOSes, and on the properties of 
these rigid subsets. 

Let R be an ordered set of real numbers, and P!": R obey the conclusion of 
lemma 1.1. For any aER, let us define Pa as {xEPlx<a}. 

Lemma 14.3. 

(a) Boolean algebras B(Pa) are Bonnet-rigid; 

(b) for a < bER, B(Pa)«B(lb), and for any non-singleton algebra .B 

B(Pa) x .B 1<B(Pa); 

(c) for any a and any Boolean algebra .B, from .B =" B(Pa) we get 

.B s B(Pa); 

(d) (CH) for a ER and any Boolean algebra .B, if B(Pa)<<.B «B(lb) for all 

bER such that b>a, there is a countable set D!":{xEPlx~a} such that 
.B s B(Pa UD); 

(e) for a ER and any Boolean algebra .B, if B(lb)<<.B «B(Pa) for all b ER 

such that b < a, .B s B(Pa). 

Proof. Let h be an isomorphism of the LOS {x ERlx < a} and LOS R. 

Obviously, h(Pa)!": R obeys all the conclusions of lemma 1.1 and, hence, by lemma 

1.3 and theorem 1.12, a Boolean algebra B(h(Pa» s B(Pa) is Bonnet-rigid. The 

relation B(Pa)«B(lb) is obvious for a < b. If .B =" B(Pa) then, since .B «B(Pa) and 

B(Pa) is retractive, we see that .B is embeddable into the algebra B(Pa). This 

embedding and the relation B(Pa)«.B together imply, since the algebra B(Pa) is 

Bonnet-rigid, an isomorphism of the algebras B(Pa) and .B. For any non-singleton 

algebra C, the relation B(Pa) xC «B(Pa) implies B(Pa) xC =" B(Pa) and, hence, an 
isomorphism relation of B(Pa) x C and B(Pa). The latter fact implies the existence of 
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a non-identical embedding of the algebra B(Pa) into itself, which contradicts the 

Bonnet-rigidity of B(Pa). Therefore, the statements (a), (b) and (c) of the lemma have 

been proved. 
Let us show that the statement (d) is valid. Let us fix a bo > a. Since there is 

an isomorphism from the algebra B(P'1() to oR, as has been repeatedly remarked, 

oR 51! B(Dt) for a certain Dt ~ Pbo • Let us show that Pa ~ Dt. In the opposite case, 

there is a y EPa \ Dt. Let h be a homomorphism from B(Dt) oto B(Pa) , and let 

c EB(Dt) be such that h(c) -= (-oo,y] n P. From now on, we mean intervals of the 
set R in the proof of the lemma by intervals. There are Xl < x2 EDt such that 
h«xI,x2]nDI)~(Z,y]np for a zEPa, and, since Xz"y, we can assume 

(xI,x2]n(Z,y]-0. As l(z,y]nPaI=2xo , I(XI,X2]nDtI-2Xo as well. 
In an obvious way, using h, a homomorphism from the Boolean algebra 

B(Dt)I(xI,Xz]nDt to the algebra B(Pa)I(z,y]nPa is constructed. Since 
B(Dt)I(xI,x2]nDt is retractive, we get an embedding g of the algebra 
B(Pa)I(z,y]nPa into the algebra B(Dt)I(Xi,Xz]nDt. Considering a subtraction of the 

set {g«z,tDlt EPa and z < t < y} and using standard considerations, we get a continual 

subset S ~ (z,y] n Pa which is either isotonically or anti isotonically mappable to the 

set (xI,x2]nDt~p. Since, as has been remarked earlier, the intervals (xI,x2] and 
(z,y] are disjunct, we obtain a contradiction to the properties of the set P. 

Therefore, indeed, the inclusion Pa ~ Dt is valid. 

Analogous considerations show that ~ n {b ERib < a} = Pa . Let now D = DI \ Fa. 
It should be noticed that IDI<2xo. Indeed, in the opposite case there are bl ,b2 ER 

greater than a such that l(bI'~) n DI = 2xo. But if this was the case, the existence of 

a homomorphism from the Boolean algebra B(Jt) to the algebra oR would result in 

that of an isotonic or anti isotonic mapping of a certain continual subset Jt ~ P into a 
set (bl ,b2 ) n D ~ P disjunct from it, which contradicts the P properties. Therefore, 

by virtue of the continuum hypothesis, IDl:s No and oR 51! B(Pa U D). 

Let us now assume that the conditions of the statement (e) are met. Since 

B(Pa)>>oB, as has been remarked earlier, oR 51! B(D) for a certain D~ Pa. Let b be 
any real number less than a. Considerations from the proof of the statement (d) 
show that D~lb. However, since Fa U lb, D-Pa and D5I!B{Pa)· • 

b<a 

Theorem 14.2.(CH) In the epimorphism skeleton of a Boolean algebra 
variety, there is a noncompactable chain B of a dense order type or, more precisely, 
< B/=«;«> has the order type of a set of real numbers. 

Proof. Let us consider Boolean algebras of the type B(Fa) x B(Q) for a ER, 

where Fa, R and Q are defined before formulating lemma 14.1. Let us first show 
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that for any a,b ER, B(Fa) x B(Q)«B(I1) x B(Q) iff as b. It suffices to notice that 

the relation B(Fa) x B(Q)«B(I1) x B(Q) implies the inequality as b. Let h be a 

homomorphism from the algebra B(I1) x B(Q) to the algebra B(Fa) x B(Q). In this 

case, since B(Q) is countable and for any non-zero element of the algebra B(Fa), 

there is a continuum of less elements of the algebra B(Fa)' we get 

h«OB(Pb),lB(Q»)=<OB(Pa)'c> for some cEB(Q), and, hence, 
h«IB(Pb)'OB(Q»)=<IB(Pa ), .... c>. Therefore, there is a homomorphism from the 

algebra B(I1) to the algebra B(Fa). At the same time, the assumption b < a, 

combined with a homomorphism of B(I1) on B(Fa)' contradicts the Bonnet-rigidity 

of the algebra B(I1). Thus, indeed, the relations B(Fa) x B(Q)«B(I1) x B(Q) and 

a s b are: equivalent. 
To complete the proof of the theorem, it suffices now to show that a family of 

Boolean algebras "'« -equivalent to algebras of the type B(Fa) x B(Q), where a ER, 

forms a noncompactable chain in < JBA;«>. Since a set of real numbers is a 
complete linear order, it suffices to prove the following statements: 

(1 ) for any algebra.B and any a ER, if .B «B( Pa) X B(Q), as well as for any 

b ER such that b < a, B(I1) x B(Q)«.B , .B "'« B(Pa) x B(Q); 

(2) for any algebra .B and any a ER, if B(Fa) x B(Q)«.B , as well as for any 

b ER such that a < b, .B «B(Pb) xB(Q), .B "'« B(Pa) xB(Q). 

Let .B . satisfy the condition of the statement (1). Then, according to the 

inequality .B «B(Pa) x B(Q), there are Boolean algebras .Bl «B(Fa) and .B2 «B(Q) 

such that .B 51! .Bl x .B2 . Since in this case .B2 is countable, as has been noticed 

earlier, the inequalities B(I1) x B(Q)«.B1 x.B2 imply B(Pb)«.B1 for any b < a. In line 
with the statement (e) of lemma 14.3, this implies an isomorphism of the algebras 

.Bl and B(Fa). The algebra .B2, however, cannot be superatomic, since in that case 

a homomorphism of .B 51! B(Fa) xB2 on the algebra B(Fa) x B(Q) would amount to 
the existence of a non-identical homomorphism of the algebra B(Fa) on itself. 

Therefore, .B2 "'« B(Q)' .B "'« B(Pa) xB(Q), and statement (1) is proved. 

Let now.B satisfy the conditions of the statement (2). Let us fix a bo > a, 

and let the Boolean algebra B(l1o ) x B( Q) be isomorphic to a Boolean algebra 

B(Pbo + 1 + Q) and, hence, the relation .B «B(Pbo ) x B(Q) implies an isomomorphism 

of the algebras .B and B(~), where ~ is a subset of the LOS Pbo + 1+ Q. 

Considerations of the statement (d) of lemma 14.3 prove in this case also that 

~ = Fa (f) D, where D is a countable LOS. Since B(Fa) x B(Q)«B '" B(Fa (J) D), as 
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was the case in the proof of (I), we notice that the Boolean algebra B(D) is not 

superatomic. Therefore, to prove the relation .R =« B(Pa) xB(Q), it suffices to show 
that D has a least element. 

Let us assume to the contrary that if 1/J is a homomorphism from the algebra 
B(Pa $ D) to the algebra B(Pa) x B(Q) !l!! B(Pa $ 1 $ Q). Then, as was the case in the 
proof of lemma 14.3, it should be noticed that for zEPa we get 

1/J« -00, zD == (-oo,zJ. But in the algebra B(Pa U D), there is no suP{( -oo,zJI z EPa}, 
while in the algebra B(Pa) x B(Q) , suP{( -oo,zJlz EPa} = suP{1/J«-oo,z])lz EP ~ exists, 
which fact contradicts the existence of 1/J. Therefore, indeed, D has a least element, 
i. e., D = 1 $ D2 for some not scattered LOS and, hence, since B( D2) =« B( Q) , 

B(Pa $1 $~)!l!! B(Pa) xB(~) =« B(Pa) x B(Q) , 

which completes the proof of the statement (2). • 

By way of concluding this section let us present some proofs of independence 
of the embedding and epimorphism relations on a Boolean algebra variety. 

The definitions of almost disjunct, ad-, mad-families of subsets, as well as the 

formulation of the set-theoretical assumption P(2w) are given in the end of section 
1. The relation "P \ R finite" will be denoted by P k* R, P =* R, provided that 
(P \ R) U (R \ P) is finite. 

Lemma 14.4. Under the assumption P(2 w), for any non-principal ultrafilter p 
on w, there is a mad -family X of the subsets of w such that F( X) = P. 

Proof. Let P be a non-principal ultrafilter on w, and let {all i < 2xO} be an 
enumeration of the elements of the ultrafilter p such that every a Ep is encountered 

2xo times in this enumeration. Let {bili < 2Xo} be an enumeration of the elements of 
the set {b k wlb $,p and I~ = Xo}. Let us set Ak = {OJ Ii < k}, &: = {b,U < k} and 

construct an ascending sequence {Xiii < 2xO} of the ad-families of the subsets w, so 
that: 

(2) if i = 1 + k, where 1 is limiting, and k < w, there is a c EX/+2k+l \ XI+ 2k 

such that C k OJ ; 

(3) if i == 1 + k, where 1 is limiting and k < w, there is a d EXI+ 2k+ 2 such that 
Id nbll =Xo. 
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The sequence {Xili<2xO} is constructed by induction over i: Xo = Xl = 0, and 

we have Xi constructed for i < j = 1+ 2n + 1, where I is limiting, n < w. Let 

S = ~+n+l U{w \ tibEBI+n}U{w \ xix EXI+2n}· 

The family S has the property jip, as S ~ P and lSI< 2xo. Under the 

assumption P(2 OJ), there is an infinite a!=: w such that a \ s is finite for any s ES. 

Let then a*~anal+n be such that a*$.p and la*I=~. Let us set 
* . XI+2n+I=Xl+ 2n U{a}. If now there IS an sEXj such that Isnbl+nl=~, we set 

Xj + I = Xj , while if there is no such an s EXj , let 

T = Al+ 2n+1 U{w \ ti b EBI+ n} U {w \ xix EXI+ 2n+I}. 

And again, since T ~ p, T has the property fip, 111 < 2xo and, according to 

P(2 OJ ), there is an infinite c!=: w such that c \ s is finite for any sET. Let 

c" ~ en al+ n be such that c" $. p and le'I = ~. Let us set 

For limiting I we get Xl = U Xi. The conditions (1) - (3) are obviously 
i<l 

satisfied for the sequence {Xiii < 2xO} by construction considerations. The same 
considerations show X = U Xi to be an almost disjunct family of subsets w. As 

i<2 xo 
X n p = 0 and p is a non-principal filter, a union of any finite number of elements 

X has an infinite complement in w, i.e., X is an ad-family. At the same time, by 

virtue of the conditions (2) and (3) on {Xiii < 2xO }, X is a mad-family. Let us 

show that F( X) = p. Let a Ep, for the 2xo ordinals i we get a = ai and, hence, by 

condition (2), there are 2xo different elements X contained in a, i.e., p ~ F(X). 

Assume now that a ~ w, a f/:.p, and a is infinite. Then a = bi for some i. By 

construction, {Ajlj<2xO }, for all j>i+w, for any dEXj+I\Xj Idn(w\bil=Xo, 

i.e., a $.F(X). Therefore, indeed, we have F(X) = P for the mad-family X 
constructed. • 

For any family T of subsets of a set A, B(A,T) will denote a subalgebra of 
the Boolean algebra of all subsets of the set A, generated by elements incorporated 
in T and by elements of the type {a} where a EA. If X is a mad-family of the 
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subsets of A, B( A, X) is a superatomic Boolean algebra of the characteristic < 2,1 > . 

Definition 14.1. (3A will denote the family of all ultrafilters on the set A. 

The Rudin-Keisler quasi-order -< is defined on different ultrafilters in the following 
way: for p E{3A, q E{3B the relation p -< q is valid iff there is a mapping f of a 
certain set XEq in A such that, for any Y~ A, YEp, iff for a certain ZEq the 
inclusion feZ) ~ Y holds. The Ridin-Keisler finite quasi-order s is defined 
analogously provided that there is an additional requirement on f: for any a EA, 

Irl(a~< Xo. 

The following theorem will be given without any proof, as it would require a 
lengthy digression into the theory of ultrafilters (see, for instance, theorem 10.4 in 
[41]). 

Theorem 14.3. There are 21<0 (221<0 under CII) of non-principal ultrafilters 

on w which are pairwise incomparable relative to the Rudin-Keisler quasi-order. 

Let P be an arbitrary non-principal ultrafilter on w, and Xp a mad-family of 

the subsets of w constructed by lemma 14.4 such that F( Xp) = p. .B p will denote 

the Boolean algebra B(w,Xp)' It should be noticed that the existence of the algebra 
B(w,Xp) has been proved only under the assumption of the set-theoretical hypothesis 

P(2 Xo ) or, under a stronger one, CH. 

Lemma 14.5. For any non-principal ultrafilters p,q on w, if the Boolean 

algebra .B p is isomorphically embeddable into a Boolean algebra .B q' p sq. 

Proof. It should be noticed that, for any b EB q' there are no two infinite 

subsets A, B of elements ofB q such that all elements of A( B) are pairwise disjunct, 

contain an infinite number of atoms each, and for any a EA, dEB we have 
a ~ b, d ~ .., b. From now on, the elements of A(B) will be identified with singleton 
subsets of w. From the remark just made, we can deduce that if f is an 

embedding of Bp inBq then, for any nEw (sEXp)' there are sl"",skEXq such 

that either fen) =. slU ... usk(f(s) =. slU",usk) or fen) =. 0(/(s) =.0). 
Let f be a certain fixed embedding ofBp inBq, and let g map U f(m) to 

mEw 
• w in such a way that n Ef(g(n» for any n E U f(m). f will denote the 

rrEw 
• mapping of a set of all subsets of w to itself such that for any A ~ w, f (A) is 

the set-theoretical union of the sets f(n), where n EA. It should be noticed that, for 

any A E.B p' the inclusion f(A);2 1" (A) holds, and for an A which is equal to a 
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finite family of atoms of the algebra .R p (i.e., to a finite subset of w), 

f(A) = l (A). Let g( A) = {g(n)ln EA and g is defined on n} for A ~ w. Let us 
show that g( q) = p. Assume to the contrary that d Eq and g( d) (/:. p. Since p is an 

ultrafilter, w \ g( d) = b Ep. Hence, 6 1 = {sis E Xp's ~* b} has the power 2No. For 

sEG'1 let us set /J(s)=snb, and let 6 2 = {u(s)lsE6 1}· In this case, iG'21=2No. 

For s EG' 2 we will define t(s) = f(s) \ / (s). Let T = U t(s). 
6 2 

For any s EG' 2' the equalities f(s) = l (s) Ut(s) =* sl U ... Usk hold for some 

Sj EXq . As w \ d (/:.q, I{l EXqll~. w \ d~< 2No and, hence, there is a continual 

6 3 ~6 2 such that f(s) n d;o! 0 for s ES 3. But for s ES 2' the inclusion s ~ b is 

valid and, hence, / (s) ~ / (b) ~ w \ d, and if f(s) n d;o! 0, t(s);o! 0. Therefore, 

there has been found a continual 63 such that f(s) n T ;o! 0 for s EG' 3. On the 

other hand, for sl ;o! s2 E6 3 , the set sl n s2 = m is a finite family of atoms and, 
• * thus, f(sl) n f(s2) = f (m) ~ f (b), i.e., f(sl) n f(s2) n T = 0. Therefore, we have 

got a continual system of non-intersecting non-empty subsets {f( s) n T = t( s ~ s E63} 
of the countable set T. The contradiction obtained proves that g(d)Ep for any 
dEq. 

In an analogous way we can prove that the domain of the definition of the 

function g lies within q. Thus, the fact that there is a embedding of .R p in .R q 

entails p -< q . 
Let us show that, in fact, the inequality p s q holds. Let b EXp and 

* * b ={nEbllf(n)I<!:Xo}. It should be noticed that b is finite. Indeed, in the opposite 

case, assume A = {f(n)lnEb·}~.R q and b1, ... ,bn , ••• are pairwise disjunct and b

disjunct elements of .R q' each containing an infinite number of atoms. For any 

a EA,d EB = {f(bj)li Ew}, the inequalities a ~ feb) and d ~ ~f(b) hold. As has 

been remarked in the beginning of the proof, there are no such elements feb) in the 

algebraRq , i.e., b* must be finite. 

Let a={nEwllf(n)I<!:Xo}. Let us show that a is finite, assuming that the 

opposite is the case. The element a cannot belong to Xp' as all Xp elements are 
* infinite, a = a and, hence, a would be finite. On the other hand, if we had a (/:.Xp 

and a was infinite" as Xp is a maximal ad-family, there would be an al EXp such 
* * that an a n al would be infinite. In this case, al dan aI, and al would be infinite 

in contrast to the earlier remark. Therefore, indeed, a is finite. 
Let D be the domain of g, and let Dt = D \ f(a). Then Dt Eq, since in the 

opposite case D n f( a) Eq, as D Eq and, hence, there is an i Ea such that 
f(i)nDEq, i.e., f(i)Eq. As has been remarked earlier, f(i)=* uIU ... Uum, where 
uj EXq and, hence, there is an i such that u j Eq. It is obvious at the same time 
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that none of the elements Xq can belong to q. Therefore, indeed, Dt Eq. In this 
case, however, the restriction of g to Dt makes it possible to state that p sq. • 

The statement of the theorem is, obviously, also valid for any ultrafilters p,q 

defined on arbitrary countable sets A,B, respectively. 
As a corollary, one can deduce from theorem 14.3 and lemma 14.5 the 

existence of 2xo (under the assumption P(2w)) or 22KO (under CH) of mutually 

non-embeddable Boolean algebras of the power 2xo. It should be recalled that in 
section 1 a stronger result was presented without any additional set-theoretical 

assumptions: for any ~ >~o, there are 2x Boolean algebras of the power ~ mutually 

non-embeddable into each other. The statements discussed earlier, however, will be 
used to construct families of mutually non-embeddable Boolean algebras with an 
additional property, i.e., they are homomorphic images of each other, which means 
that they are equivalent in terms of 55". 

Theorem 14.4. Under the assumption P(2w) (or under a stronger one, CH), 

for any nEw there are Boolean algebras .Bo, ... ,.Bn-l such that .Bi are mutually 

non-embeddable, and for any i,j<n we have .Bi«.Bj . 

Proof. Let P be a non-principal ultrafilter on w, and let <,4,1 i < 2xo > be an 

enumeration of all elements p, in which case for any A Ep A is encountered 2xo 

times in the sequence < 1\1 i < 2xo >. Let Xp be a mad-family of subsets w such 

that F( Xp) = p, as was the case earlier. Let us construct a partition of Xp into 

subfamilies X~(iEw) such that IX~I=2Xo and F(X~)= p for all iEw. 

A subfamily X~ will be constructed as a union of an ascending chain of ad

subfamilies X~(j) (j < 2xO) of the family Xp- If j is limiting, we set 

X~(j)= U.X~(k). Let the subfamilies X~(k) have been constructed for ksj<2xo . 
k<J 

We set ~ ={BEXplB~. Aj }. Since AjEp=F(Xp)' IRjl=2Xo. Let us now define 

X~(j + 1) (at i Ew), by adding one element (different for various i Ew) from 

Rj \ U X~(j) to X~(j). It is obvious that X~ - UK X~(j) has the properties 
~ ~o 

discussed earlier. 
Let tp be a bijective mapping from w to itself such that 1 w \ tp( w ~ = ~o. Let 

po' ... 'Pn-l be non-principal ultrafilters on w \ tp(w) pairwise incomparable in terms 
of the order -<, and for any sEw, let r(s) be a subtraction of the number s over 

the module n. For p,q Ew let X; = tpq( X: ) and Xp = U X:. Let us choose 
q r(q) q pEw q 
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g to be a bijective mapping from the set U XPk to the set U (XPk \ X~k) such that 
k<n k<n 

g( Xps .) = XpS+l for 1 sis n and sEw. T will denote a maximal ad-subset of the 
r(.) .-1 

family{A~wl for all i<n IAn(q./(w)\q./+\w»I<Xo}, and for l<n, let"-i be a 

bijective mapping from XPi \ X~i to T. Let us define the set X~q in the following 

way: 

X' = ~ U{A U qJq+i-l(g( qJ-(qH) (A))) U qJq+i-2 (g2 (qJ-(q+i)(A))) 
Pq Pq 

q i -(q+i) h (-(qH)(A»1 XO • I} U ... UqJ (g (qJ (A))) U ''r(i) qJ AE Pq+i,l;?!: , 

where q,,-n = (qJn)-l. One can directly check that X~q is a mad-family of subsets of 

the set qJq(w), and that {Bn(qJq(w) \ qJq+l(w»IBEX~q}=Xpq. It is also obvious 

that F(Xpq) is not a principal ultrafilter on the set qJq(w),qJq(w) \ qJq+l(w)EF(X~q)' 

and for any Y~ qJq(w), YEF(X~q) is equivalent to Yn(qJq(w) \ qJq+l(w» in 

F( X~q) = qJq (Pr(q». Therefore, we get F( X~q) --< Pr(q) and Pr(q) --< F(X~q). 

Let now 11i (iEw) be a Boolean algebra of the subsets of the set qJi(w) 

generated by one-element subsets and subsets of X~i. For any k,m Ew such that 

k=m(modn), it follows from the construction of X~i that 11k e11m (the mapping 

qJm-k is defined by an isomorphism). Since F( X~i ) --< Pr(j) and Pr(i) --< F(X~i) for 

i Ew, and the ultrafilters Po, ... ,Pn-l are pairwise incomparable in terms of the 
Rudin-Keisler quasi-order, we get from lemma 14.5 that the Boolean algebras 

.Bo, ... ,B n-l are mutually non-embeddable into each other. On the other hand, for 

any i < j, the homomorphism h from a Boolean algebra 11i to an algebra .Bj is 

defined by the following condition: h(a)=a for any aEqJj(w), and h(a)=0 for 

a EqJi( w) \ qJj (w). Therefore, 110 ",B n «11 n-l « .. . «.B1«B o. • 

Remark. The Boolean algebras 110, ... ,11 n-l constructed in the proof of 
theorem 14.4 are not only mutually non-embeddable into each other, but also have a 
stronger property, i.e., for any iE{O, ... ,n-l} and A~{O, ... ,n-l}, we get 

11j ;' n 11J. provided that i $.A. 
jEA 

Indeed, let us assume to the contrary that A = {ji> ... ,jml. The embedding ofBj 

in n 11J. implies that there is a partition IS of the elements C1, ••• ,Cm such that 
JEA . i 

11j l C[ s.B iz for any 1 sm. Preserving the notations of the proof of theorem 14.5, 

we get C[ EF( X~) for one of C1, ••• ,Cm. This implies the inequalities q s Pi and 

Pisq for the ultrafilter q={BnC[IBEF(X~)} on the set Ct. Therefore, q is 
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incomparable with the ultrafilter F(Xp'. ) relative to the Rudin-Keisler order. On the 
J/ 

other hand, .B)q-B(q./(w)nq;{XnqxEX~) and F({XnC1IXEX~)=q. By 

lemma 14.3, .B) C1 cannot then be embedded into the Boolean algebra .Bh . The 

contradiction obtained proves the statement. 

Theorem 14.5. Under the assumption P(2w), for any finite set 
B = {llo, ... ,as-l} with two quasi-orders, sl,s2, there exist pairwise non-isomorphic 

Boolean algebras C o"",Cs- 1 (of the power 21(0) such that for i,j<s, CjsC j iff 

al sl a j and C j«C j iff al s2 az. 

Proof. Let A - {llo, ... ,an-l} be an arbitrary n -element set (n Ew) with a partial 

order s. One can assume < A;s> to be a subset of a finite Boolean algebra B 
with n atoms do, ... ,dn- 1 , and the order s to coincide with the order on the 

elements of the Boolean algebra .B. Let Ao, ... ,An-1 be a subdivision of w into n 

infinite subsets. For a EA, if a = djl U ... Udj/, let us set .B a = D* .B;', where 
iEA;1 ... UA;/ 

.B / = .B j at i EAj , while .B j(j < n) are Boolean algebras obeying the remark 

following theorem 14.4. Here u* .B/ is a subalgebra of a direct product 
iE<\ ... UA;/ 

IT .B;' consisting of those of its elements the Cartesian projections of which 
jEJ\1 U ... UA;/ 

all except a finite number of them either equal 0 or equal 1 in corresponding 

Boolean algebras .B/. Since .Bj ii!«.B j at i,j < n and the sets A; are infinite then, 

obviously, .Ba ",,«.B b , for any a,b EA. 
Let us now show that .B a s.B b iff a s b. It suffices to notice that .B a s.B b 

entailss as b. Assuming that the opposite is the case, for some a,b EA, d j EB we 

get a~ d j,b12dj and .Ba s.B b • The considerations of the construction of the 

Boolean algebras .B a ,.B b show that the Boolean algebra .B j is embeddable into a 

certain Cartesian product of a finite number of Boolean algebras .Bjl , ••• ,.B jm from 

the family {Bo, ... ,.Bn- 1} \ {B i }, which contradicts the choice of .Bo, ... ,.Bn- 1• The 
contradiction obtained proves that, indeed, .B a s.B b iff a s b. 

Let Sa be an ultrafilter of the Boolean algebra .B a consisting of those its 
elements the Cartesian projections of which, except for, possibly, a finite number, are 
equal to 1 of the corresponding Boolean algebras .B;. Let D k be a Boolean algebra 

B(wk • .,,) for k < w, and let <Pk be an arbitrary non-principal ultrafilter of the 

Boolean algebra D k, consisting of non-superatomic elements. Let D be a Boolean 
algebra of finite and co-finite subsets w2, and let 1jJ be an ultrafilter of the algebra 



APPENDIX 313 

1) consisting of co-finite subsets £02' .B a k will denote the subalgebra of a Cartesian 

product .B a X 1) k X 1) , consisting of elements < c,d1,d2 > which obey the following 

condition: c E..Ya iff d1 E<l>1 and iff d2 E'I/J. 

Let Ra,k be an ultrafilter of the algebra .B a,k consisting of elements < c,d1,d2 > 

such that cE"ya,d1 E<l>k and d2 E'I/J. Since the algebras .Ba are superatomic, any 

element d1 of the ultrafilter ..Yk is non-superatomic, and {c ED tI c s d1} is countable, 
for any a,b EA, k,r Ew and any elements cl ERa,k' c2 ERb,r we get 

.Ba,k1c1 s.Bb.rlc2 iff asb, while .Ba,blcl«.Bb,rlc2;.Ba,k!llS.Bb,r iff a=b and k-r. 
Let now B = {bQ, ••• ,bs_1} be an arbitrary finite set, and sl,s2 be two arbitrary 

quasi-orders on B. For any b EB, [b]I,[b2] will denote equivalence classes in terms 
of the quasi-orders sl,s2, respectively, on the set B containing the element b. Let 
cp be an arbitrary embedding of the equivalence class [b]1 in w. In this case, 

according to a remark made earlier, we see, choosing a set < Bla,.! ;sl > as the 

partially ordered set < A;s>, that the correlation f:b - .B[bh,t/J[b\ (b) obeys the 

condition f(a) s f(b) iff al SI b; f(a) !lIS f(b) iff a = b; and f(a) «f(b) for any 
a,b EB. The first and the latter conditions are also valid for any algebras 

f(a)ld1, f(b)ld2 , where d1 E~ah'f/1a1J (a)' d2 E~bh,q.>[blJ(b)· It should be also noticed 

that for d Ef(b), the inequality If(b)ld :!:X2 is equivalent to the inclusion 

d2 E~bh,q.>[bh (b)' 

For [bh EBla"2' let h([bh) denote Boolean algebras in corollary 14.2, such 

that for q,b2 EB h([bd2)«h([~h) iff b1 s2~' and h([bd2)s h([~h) for any 
q,b2 EB. Any Boolean algebra of the type h([bh) has the power Xl and, 
moreover, h([bh) contains an ultrafilter Grbh such that, for d Eh([bh)' the algebra 

h([bh)ld contains a chain of elements of an ordered type 1J'W1 iff d Eqbh' in 

which case for any b1,b2 EB, d1 EGr~h and d2 Eq~h' h([btl21d1 a,. h([~hl ~, 
while the inequality h([btl21 d1 «h([~hl d2 is valid iff q s2 ~. It should be also 
remarked that none of the algebras of f(b)(bEB) contains chains of the ordered 
type 1]' WI' 

For b EB, cp(b) will denote the Cartesian product of Boolean algebras 
h([bh)xf(b). Bearing in mind all the facts discussed above, one can note that 
cp(bj) !lIS cp(b2) iff b1 = b2 , cp(bj) s cp(~) iff b1 sl~' and cp(bj)«cp(~) iff b1 s2 ~. 

Indeed, if the inequality q s2 (sl)~ holds, the inequality cp(ht)«(s)cp(b2) follows 
directly from the inequalities h(ht)<<(,s)h(b2) and f(b1)«(s)f(~) discussed earlier. 

Let now cp(ht)«cp(~), i.e., h([qhxf(ht)«h([~hxf(b2)' In this case, 
h([bd2)«h([~h X f(~), and there is an element d Eh([hth) such that 
h([bd2)ld«h([~h), h([qh~ -.d«f(~). Either h([b1h)ld or h([bd2~ -.d contains a 
chain of elements of the ordered type 1]'£01' however, since f(~) contains no such 
chains, an algebra of the type h([qh~d must contain such a chain. Therefore, 
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d Eq~h' which. as has been noted earlier. implies ht:S:2 ~ . 

Let now qJ(~):S:qJ(~). i.e .• h([bt12)x/(ht):s:h([~h)x/(~). Then 
/(ht):s:h([~h)x/(~), and there is an element dE/(ht) such that 
/(q)ld:s: h([~h) and /(q~...,d:s: /(~). Either /(q)ld or /(bl)l...,d have the power 
~2 and. since Ih([~h~:S:~I' 1/(ht~...,dl"'~2' As has been established earlier • 
...,dE~~ll.tp[bl.K~)' and in this case the embedding /(bl~...,d in /(~) implies the 

inequality bl:S:1 ~. Therefore. indeed. the mapping qJ is an isomorphism from 

< B;:S:I':S: 2> to < JBA;:s:.«> .• 

Priorities. The statement of theorem 14.1 for the case ~i = ~ is a variation 
of lemma 1 from a paper by A.G.Pinus [178], while in a general form it can be 
found in a work by Bonnet and Si-Kaddour [19]. Lemma 14.3 and theorem 14.2 
belong to A.G.Pinus [169]. Lemma 14.4 was proved by Weese. theorem 14.3 is 
by Kunen [116]. while its proof. as well as more detailed information on the Rudin
Keisler order on ultrafilters can be found in a monograph by Comfort and 
Negrepontis [41]. Lemma 14.5 and theorems 14.4 and 14.5 are from a paper by 
A.G.Pinus [178]. 

15. On Better Quasi-Orders 

In the present section the basic notions of the theory of better quasi-orders are 
presented. the proof of the Laver theorem on the quasi-order on trees is given. 
followed by the Van Engelen. Miller and Steel result deduced from it. and used in 
sections 10 and 11 to obtain statements on countable skeletons of finitely generated 
discriminator varieties. 

Definition 15.1. A quasi-ordered set < A;:s:> is said well quasi-ordered if it 
contains no infinite strictly descending chains. and any family of its pairwise 
incomparable elements is finite. 

It obviously follows from the Ramsey theorem that the requirement on the set 
< A;s> to be well-ordered is equivalent to the following statement: for any infinite 
subset X k A. there is a sequence al ..... a n .... of elements of X such that aj s aj 

for any i < j Em. 

The validity of the following statements can be noted directly: 
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(1) any well-ordered set is well quasi-ordered; 

(2) the union of two well quasi-ordered sets is also well quasi-ordered; 

(e) the Cartesian product of a pair of well quasi-ordered sets is well quasi
ordered; 

(f) if < I;s> is well quasi-ordered, and < A;;s> are well quasi-ordered for any 

i EI , ~ < A; ;s> is well quasi-ordered. 
&1-;;.> 

For any quasi-ordered set < A;s>, A<oo will denote a family of all finite 

sequences of A elements. We will introduce a quasi-order relation on A<oo: 
< aI,' .. ,am >s< q, ... ,bn > iff there are kI <. •• < km s n such that aj s 0c.. The 

I 

following result is one of the principal ones in the theory of well quasi-ordered sets. 

Theorem 15.1. If < A;s> is well quasi-ordered, < A<oo;s> is also well 
quasi-ordered. 

Proof. Let us assume to the contrary that a sequence < ujli Em> of 

A <00 elements is such that for any i < j Em we get uj.J. uj . Such sequences of 

elements of a quasi-ordered set will be said poor. The poor sequence < ujli Em> is 

said strictly minimal poor if for any i Em and any a EA<oo such that a < U;, there 

is no poor sequence starting with uO,uI, ... ,uj_I,a. 

Any well-founded set with a poor sequence has a strictly minimal poor 
sequence: it suffices to choose the least among the first elements of poor sequences 
as uo, the least among the second elements of poor sequences starting with Uo as 

ul' etc. 
Therefore, < ujli Em> can be assumed to be a strictly minimal poor sequence 

of elements < A<oo;s> « A<oo;s> obviously being well-founded). Let aj be the first 

element of A in the finite sequence Uj. Since < A;s> is well quasi-ordered, there is 

a sequence < ah(j) Ii Em > where h(o) <h(I)< •.. <h(i) < ... such that <ah(i)liEm> is 
either constant or strictly increases. Let vh(j) be obtained from uh(i) by crossing out 

the first element ah(j) and, hence, vh(i) is strictly less and uh(l) in < A<oo;s>. Since 
< ujliEm > is strictly minimal poor, the sequence uO,uI, ... ,uh(O)_l,vh(O),vh(1)' ... is not 

poor and, hence, it contains two elements bI ,b2 such that q s bz in < A <00 ;s> and 
q is encountered in this sequence earlier than b2. As <ujliEm> is a poor 

sequence, b1,b2 cannot be both encountered among <uo, ... ,llJ!(O)-l >. They cannot be 
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among Vh(O) , vh(I)"" either, since in this case, if bi = Vh(n) , b2 = vh(m) and n < m, 
uh(n) =< ah(n) , vh(n) >~ uh(m) =< ah(m) , vh(m) >, which contradicts the fact that 
<ujliEw> is poor. Therefore, ht =Uj for some j<h(O), b2-Vh(k)(kEw) and 
Uj ~ vh(k) ~ Uh(k) , where j ~ h(k), which again contradicts the choice of < ujli Ew >. 

Thus, there are no poor sequences in < A<w;~> .• 

The quasi-order relation on the set A <w of finite sequences of elements from A 

can be extended to a set of infinite sequences. Let AW be the family of all w

sequences of the elements from A, and let in this case < anln Ew >~< bnlnEw > iff 

there is a monotonous embedding f from the set w to itself such that for any 
nEw, an ~bf(n). 

It seems to be natural to try to transfer the statement of theorem 15.1 from 

< A <w ;~> to < AW ;~>. However, as is shown by an example belonging to Rado 
[198], this is impossible. 

Let A = w x w, and let the partial order ~o be defined on A in the following 

way: < a,b >~o< a',b' > iff either a - a' and b ~ b', or a' ~ a + band b' is 

arbitrary. It is obvious that < A;~o> is well-founded, i.e., < A;~o> contains no 

infinite strictly descending chains. If < a,b >EA, any element < c,d >EA 
incomparable with < a,b > must be such that C < a + b and, on the other hand, any 
pair of incomparable elements from A must have different first coordinates. 
Therefore, any family of pairwise incomparable elements of A is finite, i.e., 
< A;~o> is well quasi-ordered. On the other hand, a sequence < ujli Ew > of 

elements of AW in the form Uj =« i,O >,< i,I >, ... ,< i,k >, .. . Ik Ew > is, obviously, 

by virtue of the definition of the order on A such that for any i < jEw we have 

Uj J;. U j. Therefore, < AW ;~> is not well quasi-ordered. 
Analysis of the Rado example and an attempt to find a sufficiently wide class 

of quasi-orders < A;~> such that < AW ;~> could remain a well quasi-ordered set, 
resulted in the following definitions by Nash-Williams. 

Definition 15.2. 

(1) A family B of strictly increasing finite sequences of elements of a certain 
infinite set S ~ w is called a barrier provided that no sequence from B is a 
subsequence of any other sequence from B, and if for any strictly increasing infinite 
sequence <sjliEw> of elements of S, there is an nEw such that <sjli~n>EB. 
O(B) will denote the family of all numbers incorporated in sequences from B. 

(2)Let us introduce the relation <J on B in the following way: t <J U implies 
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that for some natural numbers So < Sl < ... < S n and an r such that 0 s r < n, we get 
1-< sjl i s r > and u =< sjl1 s j s n > . 

(3) A quasi-ordered set < Q;s> is called a better quasi-order if for any barrier 

B and any mapping 1 from the barrier B to Q there are I,u EB such that I <J U 

and 1(/) s I(u). 

It is obvious that the Rado example discussed above, < A;so>, is an example 

of a well-quasi-ordered set which is not a better quasi-order. Indeed, choosing as a 
barrier B a subset of the set A consisting of those pairs < a,b > in which a < b, 
and identically mapping B to A, we immediately get from the definition of the 
quasi-order So that for any I,u EB such that I <J U, we have 11:.0 u. 

On the other hand, any better quasi-order is a well-quasi-order. Indeed, if 
< Q;s> is a better quasi-order and < ajli Ew > is an arbitrary sequence of elements 

of Q then, choosing as a barrier B the set of all natural numbers, and as 1 a 
mapping from w to B such that I(i) = aj, we find, since < Q;s> is a better quasi

order, i <J j such that aj s a j' The relation i <J j on w, however, is equivalent to the 
relation i < j. Therefore, indeed, any better quasi-order is a well-quasi-order. 

The following combinatory statement on barriers plays an essential role in 
proving various properties of better quasi-orders. 

Theorem 15.2. If B is a barrier, for any division ~,~ of the set B, there 
is an infinite subset Hr;;,O(B) such that if B(H) = {bEBIb consists of the elements 
of H}, we get either B(H) r;;, ~ or B(H) r;;, ~, in which case B(H) is a barrier 
and O(B(H» = H. 

The reader interested in the details of the proof can find it in either an original 
work by Nash-Williams [146] or a monograph by Fraisse [69]. Let us use this 
theorem to prove a number of the simplest properties of better quasi-orders, having 
introduced some additional notation and definitions. 

Definition 15.3. 

(a) For any barrier B, Ii will denote the family of all sequences of the type 
<sjlisn>, where for some l,uEB, r<n such that l<Ju, I=<szlisr>, 

u-<sjI1sjsn}. Such a sequence<sjlisn> will be denoted by IUu. It is evident 

that Ii is a barrier. 

(b) A barrier V is called a barrier following the barrier U if O(V) r;;, O(U), and 
any element of V contains an initial interval belonging to U. 
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(c) Let < A;s> be an arbitrary partial order and {j a mapping from A to the 

ordinals. Let U and V be barriers, and I and g be the mappings from U and V, 

respectively, to the set A. The function g is called a function following I, if V is 
the barrier following U, and if for any t E V and any s, which is the initial interval 
of the sequence t belonging to U, we get either t = s, in which case get) = I(s), or 
s.,. t, in which case g(t) < I(s) and {j(g(t» < {j(j(s». 

(d) Let < A;s>, {j, U and I be the same as in (a). The mapping I is called 
poor if for any t,u EU such that t <l u, we have I(t) I;. I(u). The mapping I is 
called minimal poor if I is poor and for any barrier V and any mapping g from 

the barrier V to A such that g is poor and g is the function following I, the 

inclusion V ~ U holds, and g is an restriction of I to V. 

Theorem 15.3. 

(a) If < Q;s> is a well-ordered set, < Q;s> is a better quasi-order. 

(b) If <Q1;sl>' <~;s2> are better quasi-orders, and Q1n~=0, 

< Q1 U Q2; s 1 U s2> is also a better quasi-order. 

(c) A Cartesian product of better quasi-orders is a better quasi-order itself. 

Proof. 

(a) Let < Q;s> be well-ordered, B an arbitrary barrier, and I a mapping from 

B to Q. Let < sjliEw > be a sequence of B elements such that for any iEw we 

have Sj <l Sj +1. Since < Q;s> is well-ordered, there is an i Ew with the property 

I(sj) s I(Sj+1), which fact, however, implies that < Q;s> is a better quasi-order. 

(b) Let < G;sl>' < ~;s2> obey the requirements of the statement (b), and let 
s= (sl U s2). Let B be a barrier, I be a mapping from B to Q1 U ~, and 

Bt = 1-1(Q1)' ~ = r1(~). By theorem 15.2, there is a barrier ~ such that either 

~ ~ B1 or ~ ~ B2 • Let us assume ~ ~ Bt. In this case, since < G;sl> is a better 

quasi-order, there are t,u E~ such that t <l U and l(t) sl I(u), i.e., there are t,u EB 

such that t <l U and I(t) s I( u), which completes the proof of the statement (b). 

(c) Let < G;sl>' < ~;s2> be better quasi-orders, and let the relation s be 

defined on Q1 x Q2 as the Cartesian product of the relations sl and s2. Let B be a 
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barrier, I be a mapping from B to QI X Q2' and JrI,Jr2 be projections of Ql x Q2 

along the first and second co-ordinates, respectively. Let us define Bt ~ B2 as 

Bt = {t U ulJrI (/(t» S JrI (/(u))}, and ~ = B2 \ Bt. According to theorem 15.2, there 
is a barrier C such that we get either C ~ Bt or C ~ B2 . We can easily notice that 
B' = {t EBI for some u EB such that t <l u, t U u EC} is also a barrier, in which 

case (B,)2 ~ c. If we had C ~ B2, for any t,u EB' such that t <l u, we would get 
JrI(/(t»:SI JrI(f(u», which would contradict the assumption that < QI;sI> is a better 
quasi-order. Therefore, C ~ Bt and, hence, for the barrier B', for any t,u EB' such 
that t<lU, the inequality JrI(/(t»sJrd(u» would hold. As < Qz;s2> is a better 
quasi-order, there are tI,ul EB' such that tl <l ul and Jr2(f(tl» s2 Jr2/(ul» . 

Therefore, we found tI,ul EB such that tl <l ul and I(tI) S I(ul)' which completes 
the proof of the statement (c) .• 

It is also obvious that any extensions of better quasi-orders will be better quasi
orders themselves. 

Theorem 15.4. Let < A;s> be a certain partial order, (j a mapping from A 

to the ordinals and I a poor mapping from a barrier U to A. Then there is a 
minimal poor mapping g from a barrier V to A such that g follows I. 

Proof. For any pair of barriers U, V such that V follows U and V q, U, 

p(U,v) will denote the least of the last elements of the sequences which belong to 
U, consist of elements O(V) and are not elements of V. Let Wp(u,v) ={tEUI a set 

of elements t is not a subset of O(V), and those elements t which do not belong to 
O(V) are not greater than p(U,v)}. 

We can directly check that V' = V U Wp(u,v) is a barrier following U. If, 

moreover, < A;s> is a partial order, (j is a mapping from A to the ordinals, I,g 

are poor mappings from the barriers U and V, respectively, to A, and g follows I 
then, by defining g' as a mapping from V' to A that coincides with I on Wp(u,v) 

and with g on V, we get a poor mapping from V' to A following I. Such g' 
will be called a supplement of g in I, and the g following I will be called 
complek~ 'provided that g' = g. 

Let now U and I meet the conditions of the theorem. Let us set Vo = u, 
fa = I· Let us also assume that I is not minimal poor, in which case there is a 

barrier '1 following U, and a poor mapping 11' which is not a restriction of I to 
'1, following I· One can assume that Po = P(U,vI) is the least of all possible 

numbers p(U,v) for such V, and that 11 is a complete mapping. 
Iterating this process, for any natural i, we find a barrier vt+l and a poor 

complete mapping h+I from the barrier vt+I to A following h, assuming 
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Pi = p("i, "i+l) to be the least of all possible numbers p("i, V) for such V. The 
iteration process can be interrupted only when some "i,1; are obtained so that I; is 

a minimal poor mapping, in which case the theorem is proved. Let us, therefore, 
assume that none of 1;+1 is a minimal poor mapping and, in particular, none of 1;+1 
is a restriction of the mapping 1;. 

It should be noticed that, for any i Ew, Pi+l ~ Pi. Indeed, in the opposite case, 

if Pi+l <Pi' for a barrier "i+2 and its mapping 1;+2 we get P("i,"i+2)<Pi' which 
contradicts the choice of Pi as minimal. Moreover, lim Pi = 00, as there is only a 

iEw 

finite number of increasing sequences with their maximum equal to Pi' and every 

element of this set can play its role for the equality Pi("i, "i +1) = Pi but once, when 

going over from "i to "i+l. Since 1;+1 is complete, for every i Ew, Pi EO(lj) and 
{m EO("i)lm So Pi} at j ~ i. 

A sequence of sets < O(V;)li Ew > forms a chain decreasing by inclusion. Let 
H = n O(V;) , in which case H is infinite, since for any i Ew, Pi EH. For any 

iEw 

infinite X ~ H and a natural number i, there is a unique number si such that the 

initial interval Xs. of the set X, consisting of numbers not greater than Sj, is a 
I 

sequence belonging to "i. As the barrier elements are pairwise incomparable, we get 

the inequality si+l ~ si for any i Ew. Since I; +1 is a function following 1;, the strict 

inequality si+l >Si results in a strict equality for ordinals (j(I;+I(Xs;..» < (j(I;(Xsj» ' 

where Xr is a sequence of elements of the set X not greater than r. Therefore, 
there is an ix Ew such that for any j ~ ix we get S j = Six. Let Sx denote this Six 

and remark that V = {Xsx IX~ N} is a barrier, and that O(V) = H. Indeed, for any 

X ~ H, a certain initial interval Xsx of this X belongs to V. If u,t EV, by the 

definition of V and the numbers sx, there is an i Ew such that u,t EV; as well 

and, since V; is a barrier, U and t cannot be the initial intervals of each other. 

Hence, V is a barrier and, obviously, the one following any of the barriers "i. 

The mapping g from the barrier V to A will be defined in the following way: 
for tEV we· choose an iEw such that tEV;, and we set g(t)=I;(t). Since at j~i 
every Ij follows 1;, the definition is independent of the choice of i. If u,t EV then, 
for a certain i Ew, u,t EV; and g(u) = I;(u), g(t) = I;(t) and, hence, when u <l t and 

I; is a poor mapping from "i to A, g(u)J.g(t), i.e., g is also a poor mapping 

from V to A. 
It is evident that g follows any of the mappings I; and, in particular, 10 = I. 
Let us show that g is a minimal poor mapping following I. Let h be a poor 

mapping from the barrier W to A following g and such that h is not a restriction 
of g to W. If W g V, there are t E W, and its initial interval U EV other than t. 
Let us choose the least i Ew such that Pi> max: U and U EV;. Since g is a poor 
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mapping following 1;, and h is the one following g, h is a poor mapping 

following 1;. Since u E"I \ W, by choosing at the i -th step of the construction of 

the sequence «I; +1' Vi+ 1 >1 i Ew >, the barrier Wand the mapping h instead of 
"1+ 1,1;+1' we would get p( "I, W) :s max u < Pi, which contradicts the choice of 
minimal Pi. Therefore, W ~ V and, by the definition of the mapping following 

another mapping, h is a restriction of g to W. The contradiction obtained proves 
that g is minimal. • 

Using the statement of this theorem makes it already possible to show that for 

better quasi-orders < A;:s>, the set < AW;:s> is well-quasi-ordered. Let AOrd be the 
family of all ordinal sequences the elements of A, and for 

< aa la < y >,< bpltJ < 6 >EA°rd let the inequality < aa1a < y >:s< bpltJ < (» hold iff 

there is a strictly increasing embedding f of the ordinal y in the ordinal 6 such 
that for any a < y, aa:S bf(a). 

Theorem 15.5. If h is a poor mapping from the barrier U to < AOrd ;:S>, 

there is a subbarrier U' ~ U such that an h bounded on U' is (when one-element 
sequences are identified with the elements themselves) a poor mapping from U' to 

< A;:s>. Therefore, if < A;:s> is a better quasi-order, < AOrd ;:s> will be a better 
quasi-order as well. 

Proof. Let us define a function 6 mapping AOrd to the ordinals in the 
following way: 6« aa1a < y » = y. Let us assume that for a barrier U there is a 

poor mapping h from U to AOrd. By theorem 15.4, there is a minimal poor 
mapping following h. Let us assume h to be a minimal poor mapping from the 

barrier U to AOrd . Let us divide the elements of U into three classes: for t EU we 
get tEU1(U2,U3 ) if 6(h(t)) =1, (6(h(t)) is limiting, 6(h(t))>1 and not limiting). 

By theorem 15.2, there is a barrier U' ~ U such that U' ~ U1, U' ~ U2, or 
U'~U3· 

Let us assume that U' ~ U2, and let s,t EU' be such that s <I t, in which case 
h(s) .J. h(t). Since 6(h(s)) and 6(h(t)) are limiting, standard considerations show that 
there is a proper initial interval of the sequence h(s) which is not less than h(t) in 

< AOrd ;:s>. Let V = (U,)2 and for vEV let VI be the initial interval of V belonging 
to U', and v2 be v without the first element. Therefore, for v EV we get VI <I v2. 

Let us define g( v) as a minimal proper initial interval of the sequence h( VI) not 
embeddable into h(V2). By the definition of g, 6(g(v)) < 6(h(vI)). Hence, g is a 
mapping following h, in which case V ~ u. It should be remarked that g is poor. 
Indeed, let u,w EV such that U <I w. Then ul <I u2 = WI and, hence, g(u).J. h(wI). 

However, g(w) is the initial interval of the sequence h(w) and, hence, g(u).J. g(w). 
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The existence of such a poor 8 following h contradicts the assumption that h is 
minimal and, hence, the case U' k U2 is impossible. 

Let us consider the case when U' k U3 , i.e., the lengths of all h -images of 

sequences belonging to the barrier U' are not limiting and greater than unity. For 

1 EU', let 1(1) be the last element of the sequence h(t), and 8(t) the sequence h(t) 

without the last element, 1(1). There is a barrier U" k U' such that for any l,u EU" , 

I<JU entails 1(1) ~l(u). Indeed, if we subdivide (U,)2 into two subsets, CI and C2, 

then w ECI iff l(wI) ~ l(w2) and C2 = (U,)2 \ q. By theorem 14.2, there is an 

infinite EkO(U,)2 such that (U')2(E)k(U')2, and we get either (U,)2(E)kCI or 

(U,)2(E) k C;. The latter is impossible since in this case 1 will be a poor mapping 

of the barrier (U,)2(E) in the better quasi-order < A;~>. Therefore, indeed, we 

found a barrier U" = (U,)2(E) k (U,)2 with the required properties. In this case, 
however, since h is a poor mapping on U', 8 must be a poor mapping on U". 

Let us define a mapping tp(v) = 8(vI) on (U")2. It should be noticed that 

6(tp(v» = 6 (8(vI» <ij(h(vI». Therefore, tp follows h, in which case (U,,)2 kU'. As 
8 is a poor mapping, tp is a poor mapping as well. 

Indeed, let s' ,1' E(U,,)2 and s' <J I', (S')l,(t')l EU" and (S')l <J(t'h. Hence, 
tp(s') = 8«s')I) I. tp{t') = 8((t')I). The existence of such a tp contradicts the fact that 
h is minimal. Thus, the case when U' k U3 is also impossible. 

Hence, there is a barrier U' k UI such that the values of the restriction of h to 

U' are one-element sequences, i.e., the restriction of h to U' can be identified with 
a poor mapping from U' to < A;~>. 

In the case, when < A;~> is a better quasi-order, there is no poor mapping in 
< A;~> and, hence, in line with what has been proved above, there can be no poor 

mappings in .< AOrd ;~>, i.e., in this case < AOrd ;~> is a better quasi-order .• 

Let P(A) be the set of all subsets of the set A, and if ~ is a certain quasi
order on A, the quasi-order ~l on P(A) will be defined in the following way: for 
B,C EP(A), B ~l C iff there is an embedding h from the set B to the set C such 
that for any b EB we get b ~ h(b). The following corollary naturally results from 
theorem 15.5. 

Corollary 15.1. If < A;~> is a better quasi-order, < P(A);~I> is also a 
better quasi-order. 

In fact, a formulation similar to that in the former part of theorem 15.5 is also 
possible on the existence of a poor mapping in < A;~> corresponding to any poor 
mapping in < P(A);~I>. 
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Let us now recall some basic notions pertaining to the theory of trees. A tree 
is a partially ordered set < A;~> such that for any a EA, a set < {b EAlb < a};~> is 
well-ordered. By Au, where a is an ordinal, we will mean the family of a EA 

such that <{bEAlb< a};~> has the ordinal type of a. Therefore, A= U Au, 
aEDnJ 

where Ord is, as was the case earlier, the class of all ordinals. The height of a tree 
is the least a such that Au = 0. ~ a' A<a will denote the sets U Ap and U Ap, 

fJsa jJ<a 

respectively. A subset X ~ A is called a chain in the tree < A;~> provided that 
< X;~> is linearly ordered. If x EA, s( x) will denote the family of the covers of 
the element x in < A;~>, while if X is a chain in A, S(X) is the family of 
minimal elements of the set {yEAI for any xEX x < y}. 

brA (x) will denote a branch of the tree < A;~> generated by the element x. 

Henceforth, we will consider only trees with a certain least element, which is the 
root of the tree such that for any chain X in a tree with no largest element we get 

IS( X)I ~ 1. A family of such trees will be denoted by {[. If < A;~>E{[ and 
a,b EA, the set {y EAly ~ a,y ~ b} has a largest element, which is denoted by a" b. 

If Q is an arbitrary quasi-order, a Q -tree < A;~,l A > is a mapping 1 A from the 

tree < A;~> .to Q. If U~{[ , then UQ will denote those Q-trees < A;~,lA > for 

which < A;~>EU. The quasi-order ~ will be introduced on the family of Q-trees in 
the following way: < A;~,l A >~< B;~,l B > iff there is an embedding h of the set A 
in the set B such that for any a,b EA we have h(a" b) = h(a) " h(b) and 
Ii a) ~ lB(h(a)). The trees themselves will be identified with Q-trees, where Q is 

one-element, by determining the quasi-order ~ on trees in a corresponding way. 2<00 

will denote a standard dual tree of length w, the basic set of which is a family of 
finite sequences of zeros and unities, ordered according to the principle "to be the 
initial interval". 

Definition 15.4. A tree < A;~> is called scattered if 2<oo.J.< A;~>. Let S 
be a class of all scattered trees..om will denote a class of trees < A;~> such that 

there is a sequence < AnlnEw > of initial intervals of a partial order < A;~> such 

that A.. U An and < An ;~>ES . 
n=w 

The tree < A;~> is obtained by extending the tree < A';~> with the help of 
trees < Ap ;~>, where P are chains in < A;~> which either are maximal or have a 
maximal element, if Ap are sets which are pairwise non-intersecting and not 
intersecting with A', while A is obtained by adding to A' those branches of Ap 
whose roots are elements ap which directly follow P in < A;~> and do not belong 

to S(P) in < A';~>. One can readily notice that if < A';~>E6' and all 
< Ap ;~>E6' , < A;~>ES as well. 
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Let < A;~~ and P be a chain in < A;~>,z EP, in which case 
P(z) = {br(y)ly ES(z),y fEp}. If < A;~,lA > is a Q-tree, 

~ -P A (z) - {< A';~,l A >IA';~>EP(z)}. 

The following lemma describes the inductive method of constructing the class of 
all scattered trees. 

Lemma IS.1. Let So consist of an empty and a one-element trees. For any 
ordinal a, let Sa +1 =< A;~> and there is a maximal chain P in < A;~> such that 

for all zEP, P(z)ES a. If a is a limiting ordinal, Sa = uS fJ, in which case 
fJ<a 

Proof. Let S = uSa. By induction on a, we can notice that, for any 
aeJrrJ 

a EOrd , Sa ~S and, hence, S ~S . 
Let now < A;~~ , x EA and br(x) Et[. In this case, there are incomparable 

y,z such that x<y,x<z and br(y),br(z)q:.c;. Let us assume that the opposite is 

the case. Let us choose a chain Po in br(x) such that br(z) q:.c; for all zEPo. Let 

Po be a maximal chain with this property, i.e., in particular, {br(z)lz ES(Po)}~S . 
By the assumption, for all zEPo, Po(z)~S, and the equality 
br(x) = Po U u (UPo(z» holds. Let us choose a z ES(Po) if S(Po)'" 0, and let 

tES(Po) 

P= Po U I}, where II. is a maximal chain in br(z), bearing in mind that, by the 

definition of Po, br(z)EG. If for any yEP, P(y)~Sa' br(x) Ee a +1 , which 

contradicts the assumption br(x) q:.c;. Therefore, indeed, in the conditions under 
discussion there can be found incomparable y, z such that x < y, x < Z and 

br(y),br(z) ~. 
Let us now consider the inclusion S ~G. Let us assume to the contrary that 

< A;~>ES \G. By induction on the length of the sequence, j E2<OO, let us define 

an embedding h of the tree 2<00 in < A;~>: h(0) is the root of < A;~>; if h(j) 

has been defined and is such that br(h(j» $.S then, according to the facts just 
proved, there can be found incomparable y,z such that y,z> h(j) and 

br(y),br(z)~. Let us set h(jA<O»=y and h(jA<1»=Z. Let us now define 

the function g on 2 <00 in the following way: g(j) = h(jA < 0 > ) A h(jA < 1». One can 

directly check that for any jl,h E2<OO, we get g(h) A g(j2) = g(jl A h) and, hence, 
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2 <w :s < A;:s>. The contradiction obtained proves that G \ G - 0. Alongside with the 

inclusion S' !;;;;; G mentioned in the beginning of the proof, we get the equality 

S-G .• 

For any < A;:s>EG, the rank of < A;:s> is the least a such that 

< A;:s>EG a. The rank of the tree < A;:s> will be denoted by rg < A;:s>. One can 
easily deduce, using induction on the rank, that if < A;:s>:s < B;:s>, 

rg < A;:s>:srg < B;:s>. 

Theorem 15.6. If < Q;:s> is a better quasi-order, <G Q;:S> is also a better 

quasi-order. 

Proof. Assume to the contrary that f is a poor mapping from the barrier B 

to G Q' By theorem 15.4, there is a minimal poor mapping g from a certain 

barrier B' to· G Q' following f. Let for b EB', g(b) =< Ab;:s,lb >. ~ will denote 

{b EB'II Abl = I}. By theorem 15.2, there is a barrier C such that either C!;;;;; ~ or 

C!;;;;; B' \ ~. The former case is impossible, since in this case g, being bounded on 
C, would induce a poor mapping of C on Q, which would contradict the fact that 
< Q;:s> is a better quasi-order. Hence, we have found a barrier C and a poor 

mapping g:C -G Q such that, for any b EC, I At, I> 1. lb will denote a maximal 

chain in < At,;:s> for bEC such that for any xElb and any <D;:s>EP,,(x), the 

rank of < D;:s> is strictly less then that of < At, ;:s>. Such a It can be found by 

virtue of the definition of the class of trees S and the equality S' = G proved in 
lemma 15.1. 

Let us define the mapping Jb:It - Q x p(G Q) in the following way: 

Jb(x)=<lb(X),P,/b(x». On a set Qxp(G Q) the quasi-order -< is a Cartesian 

product of the quasi-order on Q and the quasi-order :SI defined on p(G Q) (which 

is, in its tum, induced on P(G Q) by the quasi-order defined on S' Q). Using the 

quasi-order -<, we will define the relation :S on {Jblb EC} in the following way: 

Jc:S Jb if th~re is an embedding h of the chain < Pc;:s> in the chain < It;:s> such 
that, for x<yEPc' h(x)<h(y) and Jc(x)-<Jb(h(x)). It should be remarked that if 
Jc :S J d, < t\: ;:s,lc > :S < Aci ;:s,ld >. 

Indeed, if h is the embedding discussed above from Pc to ~ then, by 

extending h to the mapping from the set J5;c (x) (at x EPc) to ~d (h(x)) using the 

order :SI defined earlier for p(G Q)' we obviously get an embedding hI from t\: to 
Act, which yields the inequality < t\:;:s,lc > :S < Aci;:s,ld >. Since the mapping g from 

the barrier C to GQ is poor, the mapping J:C-<{JblbEC};:s> such that 
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J(b) = Jb must also be poor. However, Jb E(Q x P~ Q))Ord and, hence, by theorem 

15.5, there is a barrier D ~ C such that the values of the restriction of J to barrier 

D are one-element Q x p(G Q) -sequences and, therefore, the restriction of J to the 

barrier D can be identified with a poor mapping from D to Q x p(G Q) following 
J. By theorem 15.3, there is a barrier E~ D such that either HlJ or H,} will be 

poor mappings from E to Q or to p(G Q)' respectively. The former case is 

impossible, since < Q;s> is a better quasi-order and, hence, H,} is a poor mapping 

from the barrier E~ B' to P(G Q). By corollary 15.1, there is a subbarrier F~ E 
such that the restriction of H2J to F is a poor mapping from F to a family of 

one-element subsets of the set G Q' i.e., the restriction of H2J to F can be 

identified with a poor mapping from F to G Q • 

Let us define a mapping cp from the barrier F2 to G Q in such a way that 

CP(ll Ulz) = H2J (4) for any 4,/2 EF such that 4 <l/2. It is obvious that cp is poor. 

Therefore, the barrier F2 follows the barrier B', F2 ~ B', and for 4,/2 EF such 
that 4 <l lz, we get CP(ll U 12) = H2J (4)' in which case 4 is the only element of the 
barrier B' which is the initial interval of the sequence II U 12 , and, by the definition 
of Pz1 , the rank of the Q-tree H,}(ll) is strictly less than the rank of the Q-tree 

g(ll). Hence, the mapping cp is a mapping following the mapping g, and is not a 
restriction of g to any subbarrier, which contradicts the assumption that g is 

minimal. This contradiction proves that there can be no poor mappings on < G Q;s> , 

i.e., that < G Q;s> is a better quasi-order .• 

Theorem 15.7. If < Q;s> is a better quasi-order, < . .'lTlQ;s> is also a better 

quasi-order. 

Proof. It can be proved easily that for any tree < A;s>E . .'lTl there is a 

decomposition A = U An such that An are initial intervals in < A;s>, and for any 
lEw 

nEw, < An;s>EG , AO~Al~ ... ~An~ ... and, if A n .. 0, A=AnUU{brA(X)1 x 

is a maximal element in An}. 

S Q will denote the class of all Q-trees < A;s,l A> such that < A;s>E . .'lTl, and 

there is no infinite sequence Xo < Xl < ... < xn < ... of elements of A such that 
« br(xn),IA >In Ew > which is a strictly decreasing sequence in the quasi-order 

< In Q ;s>. Let us show that < J Q ;s> is a better quasi-order. Let < A;s,1 A >ES Q 

and xEA, and let us set a<A;o;.lA> (x) =<{,br(y),IA >lyES(x) and < br(y),/A > is 

strictly less than < A;s,l A> in < . .'lTlQ ;s>}; l{y ES(x)1 < br(y),IA > is equivalent, in 

terms of the quasi-order on .. 'lflQ' to the Q-tree < A;s,IA >~>. 

Therefore, a<A;o;,lA> EP(SQ) x Card, where Card is the family of cardinals. For 
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any n Em, let us define T<A;sJA> (n) =< An;~,i >, where l(z) = IA(z) for all z which 

ar not maximal in An, while for z maximal in An, we get 

I(z) -< l(z), a<A;s,IA> (z) >. 

Hence, T<A;SJA>(n)EG R' where R= QU(Q xP(SQ) x Card). Let 

T« A;~,l A» = < T.:A;s,IA> (n)ln Em >, i.e., T is a mapping from .mQ to (G R)Ord . 

Let us first notice that the relation T( < A;~,I A » ~ T( < B,~,l B » implies the 
relation < A;~,l A >~< B,~,l B >. Indeed, let us construct the required embedding H of 
the Q-tree < A;~,lA > in the Q-tree < B;~,IB > using a chain of m steps. Let H be 

already defined within an initial interval Yn:2 An in such a way that: 

(a) if tEA \ Yn , there is a y < t which is maximal in Yn; 

(b) if y is maximal in Yn, there is a bijective mapping Jy: S(y) -+ S(H(y» such 

that if zES(y) and < br(z),IA > is strictly less then < A;~,IA > in .. 'lTl Q , 

<br(z),lA>~<br(Jy(z»,IB>' while if <br(z),lA>=s<A;~,IA >, 

< br(Jy( z»,1 B >=s < B;~,l B >. 

If y is a maximal element in Yn, and z ES(y), let us now define H on br(z). 

When < br(z ),1 A > is strictly less than < A;~,I A >, let us extend H using the 
embedding from br(z) to br(Jy( z» which implements the inequality 

< br(z),l A >~< br(Jy(z »,1 B >. If < br(z),1 A >=s < A;~,lA >, 

<br(Jy(z»,IB>=s<B;~,IB>' As T«A;~,/.J>~T«B;~h», there is a number 

i Em and a mapping Ie T<A;s,IA> (n) -+ T.:B;s,b>(i) implementing the inequality 

T<A;s/A> (n) ~ T.:B;sh> (z). 

Let h be an embedding from < B;~,IB > to < br(Jy(z»,IB >. Let us extend H 

to br(z) n An+1 , assuming H to be equal to a mapping h· k on br(z) n An+l. Since 

k is, in particular, an embedding from the Q-tree < br(z) n An +1 ,I A> to the Q-tree 

<B;~,IB >, iz'k is an embedding of Q-trees. Let us assume to the contrary that y' 

is maximal in br(z)nAn+1 • In this case a<A;s,IA>(y')~a<B;sJa>(k(y). This 

inequality and the embedding h together induce the existence of a bijective mapping 
Jy' from the set S(y') to the set S(h' k(y'» such that, for all z' ES(y'), we get 

<br(z'),IA ~<br(Jy'(z'),IB> if <br(z'),IA >«A;~,IA>' and 

< br(Jy.(z'»h >=s< B;~,lB > if < br(z'),IA >=s < A;~,IA >. Therefore, an induction 

step in the construction of H has been made, and the existence of H proves that 
the inequality T( < A;~,I A » ~ T( < B;~,I B » results in the ineq ual i ty 
< A;~,l A >~< B;~,l B >. 

Let us now define the relation <':<B;~,lB><'<A;~,IA> on the class JQ only 
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for the case when, for a certain x EA < B;~h > is isomorphic to < br(x),l A > , 

with the latter strictly less than < A;~,lA > in JJlQ. According to the definition of the 

class S Q' the relation <' is well-founded in the class Y Q' and r(B;~,lB) will denote 
the ordinal corresponding to the biggest chain going to < B;~h > from a minimal 

element in <SQ;<'>. 

Let us now tum directly to proving that < S Q ;~> is a better quasi -order. Let, 

to the contrary, g be a poor mapping of the barrier B on SQ. Let g be the 

minimal poor mapping on Y Q existing by theorem 15.4. For b EB, let < At, ;~,lb > 

denote g(b), and let g(b) =T« A;~,lb ». Taking into account the facts proved 

above, g is a poor mapping from the barrier B to (G R)Ord. By theorem 15.5, 
there is a barrier C ~ B such that g bounded on C is identifiable with a poor 

mapping from C to G R' i.e., for any b EC, g(b) is a one-element sequence 

consisting of a Q U (Q x P(Zb) x Card) -tree from G. In this case 
4, = {< br(x),lb >Ix EAt, and < br(x),lb > is strictly less than < At, ;~,lb > in 

<.mQ;~>}. 
The fact that Q and Card are better quasi-orders implies, by theorem 14.3, 

that there is a barrier C' ~ C such that for b EC' we get g'(b) EQ x P(Z,) x Card, 

and the mapping 1C2· g is a poor mapping from C' to P(Zb) (here 1C2 is a 

projection or" Q x P(Zb) x Card to P(Zb». By corollary 15.1, there is a subbarrier 

D of the barrier C' such that the restriction of 1C2· g to D is identifiable with a 
poor mapping from D to 4, (i.e., for bED 1C2· g are one-element subsets of the 

set 4,). Let us define a poor mapping j from a barrier D2 to 4, in the following 

way: for b1,b2 ED such that ht <Jb2 , we set j(ht Ub2 )= 1C2 ·g(b1). Hence, if bEB, 

dED 2 and b is the initial interval of d, j(d)=<br(x),lb> for some xEAb, in 

which case < br(x),lb > is strictly less than < At,;~,lb > in .. 'l1lQ. Therefore, the 

mapping j is poor, follows g and is not a restriction of g to a certain subbarrier of 
the barrier B, i.e., g is not minimal. The contradiction to the choice of g proves 

that there are no poor mappings in Y Q' i.e., that < Y Q ;~> is a better quasi-order. 
In order to complete the proof of the theorem we have to show that 

YQ=.m Q. 

Let us define b<A;sJ>(x),R<A;sJ>(x),R« A;~,l » for < A;~,l >E .. 'lTlQ analogously 

to a<c;s.m>(x),T.:c;s,m>(n) and T« C;s,m », defined earlier for < C;s,m>ESQ. If 

xEA, then 

b<A;sJ>(X) =< {< br(y),l >1 y ES(x),< br(y),l >ES Q}' l{y ES(x)1 < br(y),l >f,tSQ}I>. 

Let ~A's l> (n) =< An; s,i > for n < w, where i(z) = l(z) for all z which are not 
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maximal in An, while if z is maximal in An, i(z) -<l(Z),b<A;S,I>(n)lnEw >. 

Let us, finally, set R« A;:s,1 »=<R..:A;:s,I>(n)lnEw>, Let us prove that 

(*) if <A;:s,I>,<U;:s,m>ElTlQ\SQ and R«A;:s,l»:sR«br(u),m» for any 

u EU such that < br(u),m >~SQ' < A;:s,1 >:S < U;:s,m >. 

To this end, let us construct, by induction on nEw, a certain embedding I of 
the tree < A;:s,1 > in the tree < U,:s,m > in such a way that at a step n the mapping 

I will be defined at the initial interval Yn of the tree < A;:s> such that Yn ~ An, in 

which case: 

(a) if tEA \ Yn, there is an element y maximal in Yn such that y < t ; 

(b) if y is an element maximal in Yn, there is an embedding J y of the set 

S(y) in the set S(I(y» such that, for z ES( y), we get < br(z),1 >:S< br(Jy( z»,m > if 

< br(z),1 >ESQ, and < br(J,<z»,m>fESQ if < br(z),1 >eSQ. 

Let us assume that I has already been defined on Yn, let y be a certain 

maximal element in Yn and z = S(y). If < br(z ),1 >ES Q' we extend I to the 

embedding of the Q -tree < br(z ),1 > in the Q -tree < br(J i z», m >, which exists by 

the condition (b). If < br(z),l >eSQ then, according to the same condition, 

< br(Jy(z»,m>~SQ and, hence, by the condition on < A;:s,l >,< U,:S,m >, 

R( < A;:s,l » :S R( < br (Jy (z) ),m ». Therefore, in this case there is a number i Ew 

and an embedding k from the Q U (Q x P(S Q) x Card )-tree R..:A;:S/> (n + 1) to the 

QU(QxP(SQ)xCard)-tree R..:br(Jy(Z».m> (i). In this case, the mapping I will be 

extended to br(z) n An+l, setting 11 br(z) n An+1 equal to kI br(z) n An+l. If now y' 

is maximal in br(z) n An+l, the relation br<A;:sJ>(y'):s br<u,:s.m> (I(y'» makes it 

possible to define a mapping Jy' from the set S(y') to the set S(I(y'» and, 

therefore, the induction hypothesis is preserved. The embedding I constructed here 
proves that, under the conditions specified on < A;:s,l > and < U;:s,m >, 

< A;:s,l >:S < U; :S,m >. 

Let us now directly tum to the proof of the equality S Q = .m Q' Let us assume 

that there is a tree < A;:s,l >E.lTlQ \SQ' One can obviously set (br(x»n = br(x) nAn 

for any x EA and nEw. This entails that, for any t,u EA such that t:s u, the 
inequality R« br(u),1 »:S R( < br(t),l » holds, and that the mapping implementing 

this inequality is identical. By the definition, for any < C;:s, m >E.'lTl Q 
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R« C;s,m»E(S QU(QxP(SQ)XCOTd)(Jrd and therefore, since < Q;s> is, by the 

assumption, a better quasi-order, by virtue of theorems 15.3, 15.6, and since 

<JQ;s> is, as has been proved earlier, also a better quasi-order, 

< {R( < C;s,m »1< C;s,m >E.rrlQ};s> is a better quasi-order and, in particular, 

< {R«br(t),1 »ltEA};s> is well-founded. Therefore, there is a tEA such that 

< br(t),1 >$.J Q' and for any u EA such that t < U and < br(u),1 >$.J Q' 

R( < br(u),1 » is not strictly less than R( < br(t),1 ». Hence, taking into account the 
earlier remarks, we get R( < br(u),1 » "":5 R( < br(t),1 ». 

According to the statement (*) proved earlier, we see that for any u EA such 

that t < U and < br(u),1 >$.JQ, the inequality < br(t),l > s < br(u),1 > holds. On the 

other hand, by the definition of the class of trees J Q' the fact that < br(t),1 >$.J Q 

implies that there is a v EA such that t < v, < br(v),1 > is strictly less than 

< br(t),l > and < br(v),1 >$.JQ. The contradiction obtained proves the equality 

J Q =.rrl Q. As we have proved already that <JQ;s> is a better quasi-order, 

<.rrl Q ;s> is a better quasi-order as well .• 

Let us now deduce from the result of the theorem just proved the statement 
used in sections 10, 11 to prove the fact that countable skeletons of finitely 
generated discriminator varieties are better quasi-orders. 

w <m will denote a family of finite sequences of elements of w ordered III 

terms of the relation "to be an initial interval". The tree w <m, obviously, belongs to 

the class.rrl . Let us consider a Tikhonov topology on the family w m of all infinite 
sequences of elements w, the basis of the neighborhoods of which is set by 

elements from w <m. ~ ~, n ~ will denote the family of the subsets of the 

topological space w m belonging to the classes ~ ~, n ~, respectively, in the Borel 

hierarchy. If < Q;s> is a certain quasi-order, ~ ~(Q) (n ~(Q)) will denote the 

family of all mappings cp from the space w m to Q such that, for any q EQ, we 

get cp-I(q)E~~ (cp-I(q)En~). On sets of the type ~~(Q), n~(Q) the quasi

order si will be defined in the following way: for 11,12 E~ ~(Q) (n~(Q)), II sllz 

iff there is a continuous embedding a:ww -- w m such that for any xEww we have 
II (x) S 12 (a( x)). Then the following statement is valid. 

Theorem 15.8. If < Q;s> is a better quasi-order, < ~ g(Q);SI> is also a 

better quasi-order. 

Proof. Let us first prove that < n f(Q); si > is a better quasi-order. Let 

lEn f, and let us set the range of l:{qfJ lf3 Ea} well-ordered. Let us also define 
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l:ro<W_Q in the following way: for sEro<w l(s)=qp, where fJ is the least 

ordinal such that rl(qp)n{XErowls~s};o!0. Let us now notice that, since for any 

q EQ, rl( q) is closed, I(x) = q iff for an infinite family of natural numbers n the 

equality i(,xl n) = q holds, which is equivalent to the fact that for all but a finite 

family, 1 (xl n) = q nEro. 

Therefo~e, if 4,12 E f1 ?(Q) , and there is an embedding 0: roW - ro <w (where 

ro <w is considered as trees) such that for any s Ero <W, we get 4 (s) s ~(a(s», for 

any xEro w, I(x)s l(ho(x» , where ho:row - roW is defined in the following way: 

ho(x) = U a(xI n). It is obvious that ho is a continuous embedding from roW to 
nEw 

itself. By theorem 14.7, < {ill Ef1~;s> is a better quasi-order, which fact, 

combined with the earlier remarks, implies that in this case < f1 ?(Q)};SI > is a 

better quasi-order as well. 

Let now IE ~ ~(Q). For any q EQ, let rl(q) - U X;, where X; Ef1? and 
£J mEm 

{X;lmEro} is a family of pairwise disjunct sets. Let us define l(x):row_Qxro in 

the following way: l(x) =<l(x),m> if xEX/(x)' Let us consider a trivial order on 

ro in terms of which all elements of ro are equivalent. Therefore, Q x ro is a better 

quasi-order. Hence, bearing in mind the fact proved earlier, < f1?(Q x ro);sl> is 

also a better quasi-order and, since the inequality 4 SI lz obviously implies the 

inequality II sl 12 , < }: ~Q);SI> is a better quasi-order as well .• 

Priorities. The notion of a well-quasi-ordered set was introduced by 
J.Kaplansky. The first important results were obtained, with the theory of well-quasi
ordered sets employed, by A.I.Malcev and B.Neuman: if K is a field and G is a 
linearly ordered group, the group algebra K(G) is embeddable into a skew (for the 
proof see G.Higman [93]). Theorem 15.1 belongs to G Higman [93]. The definition 

of a better quasi-order is by Nash-Williams [147]. Theorem 15.2 can be found in 
[146] (see also [69]). Theorem 15.3 is by Nash-Williams [146], while theorem 
15.4 by RLaver [122]. Both theorem 15.5 and corollary 15.1 can be found in a 
work by Nash-Williams [146]. Lemma 15.1 and theorems 15.6, 15.7 belong to 
RLaver [122], while theorem 15.8 to EVan Engelen, A.W.Miller and J.Steel [232]. 
More details pertaining to the theory of better quasi-orders can be found in a 
monograph by RFraisse [69]. 
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