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Introduction

1 An Initial Assignment

I haven’t taught the history of mathematics that often, but I do rather like
the course. The chief drawbacks to teaching it are that i. it is a lot more work
than teaching a regular mathematics course, and ii. in American colleges at
least, the students taking the course are not mathematics majors but edu-
cation majors— and and in the past I had found education majors to be
somewhat weak and unmotivated. The last time I taught the course, however,
the majority of the students were graduate education students working toward
their master’s degrees. I decided to challenge them right from the start:

Assignment. In An Outline of Set Theory, James Henle wrote about mathe-
matics:

Every now and then it must pause to organize and reflect on what it
is and where it comes from. This happened in the sixth century B.C.
when Euclid thought he had derived most of the mathematical results
known at the time from five postulates.

Do a little research to find as many errors as possible in the second sentence
and write a short essay on them.

The responses far exceeded my expectations. To be sure, some of the under-
graduates found the assignment unclear: I did not say how many errors they
were supposed to find.?2 But many of the students put their hearts and souls

! My apologies to Prof. Henle, at whose expense I previously had a little fun on this
matter. I used it again not because of any animosity I hold for him, but because I
was familiar with it and, dealing with Euclid, it seemed appropriate for the start
of my course.

2 Fortunately, I did give instructions on spacing, font, and font size! Perhaps it is
the way education courses are taught, but education majors expect everything to
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into the exercise, some even finding fault with the first sentence of Henle’s
quote.

Henle’s full quote contains two types of errors— those which everyone
can agree are errors, and those I do not consider to be errors. The bona fide
errors, in decreasing order of obviousness, are these: the date, the number
of postulates, the extent of Euclid’s coverage of mathematics, and Euclid’s
motivation in writing the Flements.

Different sources will present the student with different estimates of the
dates of Euclid’s birth and death, assuming they are bold enough to attempt
such estimates. But they are consistent in saying he flourished around 300
B.C.? well after the 6th century B.C., which ran from 600 to 501 B.C., there
being no year 0.

Some students suggested Henle may have got the date wrong because he
was thinking of an earlier Euclid, namely Euclid of Megara, who was con-
temporary with Socrates and Plato. Indeed, mediseval scholars thought the
two Fuclids one and the same, and mention of Euclid of Megara in modern
editions of Plato’s dialogues is nowadays accompanied by a footnote explicitly
stating that he of Megara is not the Euclid.* However, this explanation is in-
complete: though he lived earlier than Euclid of Alexandria, Euclid of Megara
still lived well after the 6th century B.C.

The explanation, if such is necessary, of Henle’s placing of Euclid in the
6th century lies elsewhere, very likely in the 6th century itself. This was a
century of great events— Solon reformed the laws of Athens; the religious
leaders Buddha, Confucius, and Pythagoras were born; and western philoso-
phy and theoretical mathematics had their origins in this century. That there
might be more than two hundred years separating the first simple geometric
propositions of Thales from a full blown textbook might not occur to someone
living in our faster-paced times.

As to the number of postulates used by Euclid, Henle is correct that there
are only five in the Elements. However, these are not the only assumptions
Euclid based his development on. There were five additional axiomatic asser-
tions he called “Common Notions”, and he also used many definitions, some of
which are axiomatic in character.> Moreover, Euclid made many implicit as-
sumptions ranging from the easily overlooked (properties of betweenness and
order) to the glaringly obvious (there is another dimension in solid geometry).

be spelled out for them, possibly because they are taught that they will have to
do so at the levels they will be teaching.

3 The referee informs me tht one eminent authority on Greek mathematics now
dates Euclid at around 225-250 B.C.

4 The conflation of the two Euclid’s prompted me to exhibit in class the crown on
the head of the astronomer Claudius Ptolemy in Raphel’s painting The School
of Athens. Renaissance scholars mistakenly believed that Ptolemy, who lived in
Alexandria under Roman rule, was one of the ptolemaic kings.

® E.g. I-17 asserts a diameter divides a circle in half; and V-4 is more-or-less the
famous Axiom of Archimedes. (Cf. page 60, for more on this latter axiom.)
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All students caught the incorrect date and most, if not all, were aware
that Euclid relied on more than the 5 postulates. Some went on to explain
the distinction between the notion of a postulate and that of an axiom,’ a
philosophical quibble of no mathematical significance, but a nice point to
raise nevertheless. One or two objected that it was absurd to even imagine
that all of mathematics could be derived from a mere 5 postulates. This is
either shallow and false or deep and true. In hindsight I realise I should have
done two things in response to this. First, I should have introduced the class
to Lewis Carroll’s “What the Tortoise said to Achilles”, which can be found
in volume 4 of James R. Newman’s The World of Mathematics cited in the
Bibliography, below. Second, I should have given some example of amazing
complexity generated by simple rules. Visuals go over well and, fractals being
currently fashionable, a Julia set would have done nicely.

Moving along, we come to the question of Euclid’s coverage. Did he really
derive “most of the mathematical results known at the time”? The correct
answer is, “Of course not”. Euclid’s Elements is a work on geometry, with
some number theory thrown in. Proclus, antiquity’s most authoritative com-
mentator on Euclid, cites among Euclid’s other works Optics, Catoptics, and
Elements of Music— all considered mathematics in those days. None of the
topics of these works is even hinted at in the FElements, which work also
contains no references to conic sections (the study of which had been begun
earlier by Menaechmus in Athens) or to such curves as the quadratrix or the
conchoid which had been invented to solve the “three construction problems
of antiquity”. To quote Proclus:

... we should especially admire him for the work on the elements of
geometry because of its arrangement and the choice of theorems and
problems that are worked out for the instruction of beginners. He did
not bring in everything he could have collected, but only what could
serve as an introduction.”

In short, the Elements was not just a textbook, but it was an introductory
8

textbook. There was no attempt at completeness®.
5 According to Proclus, a proposition is an axiom if it is known to the learner and
credible in itself. If the proposition is not self-evident, but the student concedes
it to his teacher, it is an hypothesis. If, finally, a proposition is unknown but
accepted by the student as true without conceding it, the proposition is a pos-
tulate. He says, “axioms take for granted things that are immediately evident to
our knowledge and easily grasped by our untaught understanding, whereas in a
postulate we ask leave to assume something that can easily be brought about or
devised, not requiring any labor of thought for its acceptance nor any complex
construction”.
This is from page 57 of A Commentary on the First Book of Euclid’s Elements
by Proclus. Full bibliographic details are given in the Bibliography in the section
on elementary mathematics.
8 T used David Burton’s textbook for the course. (Cf. the Bibliography for full
bibliographic details.) On page 147 of the sixth edition we read, “Euclid tried to

=1
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This last remark brings us to the question of intent. What was Euclid’s
purpose in writing the Elements? Henle’s appraisal that Euclid wrote the
Elements as a result of his reflexion on the nature of the subject is not that
implausible to one familiar with the development of set theory at the end of
the 19th and beginning of the 20th centuries, particularly if one’s knowledge
of Greek mathematical history is a little fuzzy. Set theory began without
restraints. Richard Dedekind, for example, proved the existence of an infinite
set by referring to the set of his possible thoughts. This set is infinite because,
given any thought Sy, there is also the thought S; that he is having thought
Sy, the thought S5 that he is having thought S, etc. Dedekind based the
arithmetic of the real numbers on set theory, geometry was already based
on the system of real numbers, and analysis (i.e., the Calculus) was in the
process of being “arithmetised”. Thus, all of mathematics was being based on
set theory. Then Bertrand Russell asked the question about the set of all sets
that were not elements of themselves:

R ={z|z ¢ x}.

Is R € R? If it is, then it isn’t; and if it isn’t, then it is.

The problem with set theory is that the nalve notion of set is vague.
People mixed together properties of finite sets, the notion of property itself,
and properties of the collection of subsets of a given unproblematic set. With
hindsight we would expect contradictions to arise. Eventually Ernst Zermelo
produced some axioms for set theory and even isolated a single clear notion
of set for which his axioms were valid. There having been no contradictions
in set theory since, it is a commonplace that Zermelo’s axiomatisation of set
theory was the reflexion and re-organisation® Henle suggested Euclid carried
out— in Euclid’s case presumably in response to the discovery of irrational
numbers.

Henle did not precede his quoted remark with a reference to the irrationals,
but it is the only event in Greek mathematics that could compel mathemati-
cians to “pause and reflect”, so I think it safe to take Henle’s remark as assert-
ing Euclid’s axiomatisation was a response to the existence of these numbers.
And this, unfortunately, ceases to be very plausible if one pays closer atten-
tion to dates. Irrationals were probably discovered in the Hth century B.C.
and Eudoxus worked out an acceptable theory of proportions replacing the

build the whole edifice of Greek geometrical knowledge, amassed since the time of
Thales, on five postulates of a specifically geometric nature and five axioms that
were meant to hold for all mathematics; the latter he called common notions”. It
is enough to make one cry.
Zermelo’s axiomatisation was credited by David Hilbert with having saved set
theory from inconsistency and such was Hilbert’s authority that it is now common
knowledge that Zermelo saved the day with his axiomatisation. That this was
never his purpose is convincingly demonstrated in Gregory H. Moore, Zermelo’s
Aziom of Choice; Its Origins, Development, and Influence, Springer-Verlag, New
York, 1982.

©
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Pythagorean reliance on rational proportions in the 4th century. Euclid did a
great deal of organising in the Elements, but it was not the necessity-driven
response suggested by Henle, (or, my reading of him).1°

So what was the motivation behind Euclid’s work? The best source we
have on this matter is the commentary on Book I of the Elements by Proclus
in the 5th century A.D. According to Proclus, Euclid “thought the goal of the
Elements as a whole to be the construction of the so-called Platonic figures”
in Book XIII.'" Actually, he finds the book to serve two purposes:

If now anyone should ask what the aim of this treatise is, I should reply
by distinguishing betweeen its purpose as judged by the matters in-
vestigated and its purpose with reference to the learner. Looking at its
subject-matter, we assert that the whole of the geometer’s discourse is
obviously concerned with the cosmic figures. It starts from the simple
figures and ends with the complexities involved in the structure of the
cosmic bodies, establishing each of the figures separately but showing
for all of them how they are inscribed in the sphere and the ratios
that they have with respect to one another. Hence some have thought
it proper to interpret with reference to the cosmos the purposes of
individual books and have inscribed above each of them the utility
it has for a knowledge of the universe. Of the purpose of the work
with reference to the student we shall say that it is to lay before him
an elementary exposition...and a method of perfecting. ..his under-
standing for the whole of geometry. .. This, then, is its aim: both to
furnish the learner with an introduction to the science as a whole and
to present the construction of the several cosmic figures.

The five platonic or cosmic solids cited are the tetrahedron, cube, octahe-
dron, icosahedron, and dodecahedron. The Pythagoreans knew the tetrahe-
dron, cube, and dodecahedron, and saw cosmic significance in them, as did
Plato who had learned of the remaining two from Thesatetus. Plato’s specu-
lative explanation of the world, the Timeus assigned four of the solids to the
four elements: the tetrahedron to fire, the cube to earth, the icosahedron to
water, and the octahedron to air. Later, Aristotle associated the dodecahe-
dron with the sther, the fifth element. Euclid devoted the last book of the
Elements to the platonic solids, their construction and, the final result of the
book, the proof that these are the only regular solids. A neo-Platonist like
Proclus would see great significance in this result and would indeed find it
plausible that the presentation of the platonic solids could have been Euclid’s
goal'?2. Modern commentators don’t find this so. In an excerpt from his trans-

10 Maybe I am quibbling a bit? To quote the referee: “Perhaps Euclid didn’t write
the Elements directly in response to irrationals, but it certainly reflects a Greek
response. And, historically, isn’t that more important?”

1 Op.cit., p. 57.

12 Time permitting, some discussion of the Pythagorean-Platonic philosophy would
be nice. I restricted myself to showing a picture of Kepler’s infamous cosmological
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lation of Proclus’ commentary included by Drabkin and Cohen in A Source
Book in Greek Science, G. Friedlein states simply, “One is hardly justified in
speaking of this as the goal of the whole work”.

A more modern historian, Dirk Struik says in his Concise History of Math-
ematics,

What was Euclid’s purpose in writing the Elements? We may assume
with some confidence that he wanted to bring together into one text
three great discoveries of the recent past: Eudoxus’ theory of propor-
tions, Theatetus’ theory of irrationals, and the theory of the five reg-
ular bodies which occupied an outstanding place in Plato’s cosmology.
These three were all typically Greek achievements.

So Struik considers the Elements to be a sort of survey of recent research in
a textbook for beginners.

From my student days I have a vague memory of a discussion between
two Math Education faculty members about Euclid’s Elements being not a
textbook on geometry so much as one on geometric constructions. Specifi-
cally, it is a sort of manual on ruler and compass constructions. The opening
results showing how to copy a line segment are explained as being necessary
because the obvious trick of measuring the line segment with a compass and
then positioning one of the feet of the compass at the point you want to copy
the segment to could not be used with the collapsible compasses'® of Euclid’s
day. The restriction to figures constructible by ruler and compass explains
why conic sections, the quadratrix, and the conchoid are missing from the
Elements. It would also explain why, in exhausting the circle, one continu-
ally doubles the number of sides of the required inscribed polygons: given an
inscribed regular polygon of n sides, it is easy to further inscribe the regu-
lar 2n-gon by ruler and compass construction, but how would one go about
adding one side to construct the regular (n 4+ 1)-gon? Indeed, this cannot in
general be done.

The restriction of Euclid’s treatment to figures and shapes constructible
by ruler and compass is readily explained by the Platonic dictum that plane
geometers restrict themselves to these tools. Demonstrating numerous con-
structions need not have been a goal in itself, but, like modern rigour, the
rules of the game.

One thing is clear about Euclid’s purpose in writing the FElements: he
wanted to write a textbook for the instruction of beginners. And, while it is

representation of the solar system as a set of concentric spheres and inscribed
regular polyhedra. As for mathematics, I used the platonic solid as an excuse to
introduce Euler’s formula relating the numbers of faces, edges, and vertices of
a polyhedron and its application to classifying the regular ones. In Chapter 3,
section 5, below, I use them for a different end.

I have not done my homework. One of the referees made the remark, “Bell,
isn’t it?”, indicating that I had too quickly accepted as fact an unsubstantiated
conjecture by Eric Temple Bell.

13
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clear he organised the material well, he cannot be said to have attempted to
organise all of mathematical practice and derive most of it from his postulates.

Two errors uncovered by the students stretched things somewhat: did all
of mathematical activity come to a complete stop in the “pause and reflect”
process,— or, were some students taking an idiomatic “pause and reflect”
intended to mean “reflect” a bit too literally? And: can Euclid be credited
with deriving results if they were already known?

The first of these reputed errors can be dismissed out of hand. The second,
however, is a bit puzzling, especially since a number of students misconstrued
Henle as assigning priority to Euclid. Could it be that American education
majors do not understand the process of derivation in mathematics? I have
toyed with the notion that, on an ordinary reading of the word “derived”,
Henle’s remark that Euclid derived most of the results known in his day from
his postulates could be construed as saying that Euclid discovered the results.
But I just cannot make myself believe it. Derivations are proofs and “deriving”
means proving. To say that Euclid derived the results from his postulates says
that Euclid showed that the results followed from his postulates, and it says
no more; in particular, it in no way says the results (or even their proofs)
originated with Euclid.

There was one more surprise some students had in store for me: Euclid was
not a man, but a committee. This was not the students’ fault. He, she, or they
(I forget already) obviously came across this startling revelation in research-
ing the problem. The Elements survives in 15 books, the last two of which
are definitely not his and only the 13 canonical books are readily available.
That these books are the work of a single author has been accepted for cen-
turies. Proclus, who had access to many documents no longer available, refers
to Euclid as a man and not as a committee. Nonetheless, some philologists
have suggested multiple authors on the basis of linguistic analysis. Work by
anonymous committee is not unknown in mathematics. In the twentieth cen-
tury, a group of French mathematicians published a series of textbooks under
the name Nicolas Bourbaki, which they had borrowed from an obscure Greek
general. And, of course, the early Pythagoreans credited all their results to
Pythagoras. These situations are not completely parallel: the composition of
Bourbaki was an open secret, and the cult nature of the Pythagoreans widely
known. Were Euclid a committee or the head of a cult, I would imagine some
commentator would have mentioned it. Perhaps, however, we can reconcile
the linguists with those who believe Euclid to have been one man by pointing
to the German practice of the Professor having his lecture notes written up
by his students after he has lectured?

2 About This Book

This book attempts to partially fill two gaps I find in the standard textbooks
on the History of Mathematics. One is to provide the students with material
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that could encourage more critical thinking. General textbooks, attempting
to cover three thousand or so years of mathematical history, must necessarily
oversimplify just about everything, which practice can scarcely promote a
critical approach to the subject. For this, I think a little narrow but deeper
coverage of a few select topics is called for.

My second aim was to include the proofs of some results of importance one
way or another for the history of mathematics that are neglected in the modern
curriculum. The most obvious of these is the oft-cited necessity of introducing
complex numbers in applying the algebraic solution of cubic equations. This
solution, though it is now relegated to courses in the History of Mathematics,
was a major occurrence in our history. It was the first substantial piece of
mathematics in Europe that was not a mere extension of what the Greeks had
done and thus signified the coming of age of European mathematics. The fact
that the solution, in the case of three distinct real roots to a cubic, necessarily
involved complex numbers both made inevitable the acceptance and study
of these numbers and provided a stimulus for the development of numerical
approximation methods. One should take a closer look at this solution.

Thus, my overall purpose in writing this book is twofold— to provide
the teacher or student with some material that illustrates the importance of
approaching history with a critical eye and to present the same with some
proofs that are missing from the standard history texts.

In addition to this, of course, is the desire to produce a work that is not
too boring. Thus, in a couple of chapters, I have presented the material as
it unfolded to me. (In my discussion of Thomas Bradwardine in Chapter 3 I
have even included a false start or two.) I would hope this would demonstrate
to the student who is inclined to extract a term paper from a single source—
as did one of my students did— what he is missing: the thrill of the hunt,
the diversity of perspectives as the secondary and ternary authors each find
something different to glean from the primary, interesting ancillary informa-
tion and alternate paths to follow (as in Chapter 7, where my cursory interest
in Horner’s Method led me to Descartes’ Rule and De Gua’s Theorem), and
an actual yearning for and true appreciation of primary sources.

I hope the final result will hold some appeal for students in a History of
Mathematics course as well as for their teachers. And, although it may get
bogged down a bit in some mathematical detail, I think it overall a good read
that might also prove entertaining to a broader mathematical public. So, for
better or worse, I unleash it on the mathematical public as is, as they say:
warts and all.

Chapter 2 begins with a prefatory essay discussing many of the ways in
which sources may be unreliable. This is followed by an annotated bibliog-
raphy. Sometimes, but not always, the annotations rise to the occasion with
critical comments.

14 Tt is standard practice in teaching the History of Mathematics for the instructor
to hand out an annotated bibliography at the beginning of the course. But for
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Chapter 3 is the strangest of the chapters in this book. It may serve to
remind one that the nature of the real numbers was only finally settled in
the 19th century. It begins with Pythagoras and all numbers being assumed
rational and ends with Bradwardine and his proofs that the geometric line
is not a discrete collection of points. The first proofs and comments offered
on them in this chapter are solid enough; Bradwardine’s proofs are outwardly
nonsense, but there is something appealing in them and I attempt to find some
intuition behind them. The critical mathematical reader will undoubtedly
regard my attempt as a failure, but with a little luck he will have caught the
fever and will try his own hand at it; the critical historical reader will probably
merely shake his head in disbelief.

Chapters 4 to 7 are far more traditional. Chapter 4 discusses the construc-
tion problems of antiquity, and includes the proof that the angle cannot be
trisected nor the cube duplicated by ruler and compass alone. The proof is
quite elementary and ought to be given in the standard History of Mathemat-
ics course. I do, however, go well beyond what is essential for these proofs. I
find the story rather interesting and hope the reader will criticise me for not
having gone far enough rather than for having gone too far.

Chapter 5 concerns a Chinese word problem that piqued my interest. Os-
tensibly it is mainly about trying to reproduce the reasoning behind the orig-
inal solution, but the account of the various partial representations of the
problem in the literature provides a good example for the student of the need
for consulting multiple sources when the primary source is unavailable to get
a complete picture. I note that the question of reconstructing the probable
solution to a problem can also profitably be discussed by reference to Plimp-
ton 322 (a lot of Pythagorean triples or a table of secants), the Ishango bone
(a tally stick or an “abacus” as one enthusiast described it), and the various
explanations of the Egyptian value for .

Chapter 6 discusses the cubic equation. It includes, as do all history text-
books these days, the derivation of the solution and examples of its application
to illustrate the various possibilities. The heart of the chapter, however, is the
proof that the algebraic solution uses complex numbers whenever the cubic
equation has three distinct real solutions. I should say “proofs” rather than
“proof”. The first proof given is the first one to occur to me and was the first
one I presented in class. It has, in addition to the very pretty picture on page
153, the advantage that all references to the Calculus can be stripped from
it and it is, thus, completely elementary. The second proof is probably the
easiest proof to follow for one who knows a little Calculus. I give a few other
proofs and discuss some computational matters as well.

Chapter 7 is chiefly concerned with Horner’s Method, a subject that usu-
ally merits only a line or two in the history texts, something along the lines of,
“The Chinese made many discoveries before the Europeans. Horner’s Method

some editing and the addition of a few items, Chapter 2 is the one I handed out
to my students.
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is one of these.” Indeed, this is roughly what I said in my course. It was only
after my course was over and I was extending the notes I had passed out
that I looked into Horner’s Method, Horner’s original paper, and the account
of this paper given by Julian Lowell Coolidge in The Mathematics of Great
Amateurs'® that I realised that the standard account is oversimplified and
even misleading. I discuss this in quite some detail before veering off into the
tangential subjects of Descartes’ Rule of Signs and something I call, for lack
of a good name, De Gua’s Theorem.

From discussion with others who have taught the History of Mathemat-
ics, I know that it is not all dead seriousness. One teacher would dress up
for class as Archimedes or Newton...I am far too inhibited to attempt such
a thing, but I would consider showing the occasional video'®. And I do col-
lect mathematicians on stamps and have written some high poetry— well,
limericks— on the subject. I include this material in the closing Chapter 8,
along with a couple of other historically interesting poems that may not be
easily accessible.

Finally, I note that a short appendix outlines a few small projects, the
likes of which could possibly serve as replacements for the usual term papers.

One more point— most students taking the History of Mathematics
courses in the United States are education majors, and the most advanced
mathematics they will get to teach is the Calculus. Therefore, I have deliber-
ately tried not to go beyond the Calculus in this book and, whenever possible,
have included Calculus-free proofs. This, of course, is not always possible.

15 Cf. the Annotated Bibliography for full bibliographic details.
16 T saw some a couple of decades ago produced, I believe, by the Open University
in London and thought them quite good.
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Annotated Bibliography

1 General Remarks

Historians distinguish between primary and secondary or even ternary sources.
A primary source for, say, a biography would be a birth or death record,
personal letters, handwritten drafts of papers by the subject of the biography,
or even a published paper by the subject. A secondary source could be a
biography written by someone who had examined the primary sources, or a
non-photographic copy of a primary source. Ternary sources are things pieced
together from secondary sources— encyclopaedia or other survey articles, term
papers, etc.! The historian’s preference is for primary sources. The further
removed from the primary, the less reliable the source: errors are made and
propagated in copying; editing and summarising can omit relevant details,
and replace facts by interpretations; and speculation becomes established fact
even though there is no evidence supporting the “fact”.?

1.1 Exercise. Go to the library and look up the French astronomer Camille
Flammarion in as many reference works as you can find. How many different
birthdays does he have? How many days did he die? If you have access to
World Who’s Who in Science, look up Carl Auer von Welsbach under “Auer”
and “von Welsbach”. What August day of 1929 did he die on?

! As one of the referees points out, the book before you is a good example of a
ternary source.

2 G.A. Miller’s “An eleventh lesson in the history of mathematics”, Mathematics
Magazine 21 (1947), pp. 48 - 55, reports that Moritz Cantor’s groundbreaking
German language history of mathematics was eventually supplied with a list of
3000 errors, many of which were carried over to Florian Cajori’s American work
on the subject before the corrections were incorporated into a second edition of
Cantor.
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Answers to the Flammarion question will depend on your library. I found
3 birthdates and 4 death dates.? As for Karl Auer, the World Who’s Who in
Science had him die twice— on the 4th and the 8th. Most sources I checked let
him rest in peace after his demise on the 4th. In my researches I also discovered
that Max Planck died three nights in a row, but, unlike the case with von
Welsbach, this information came from 3 different sources. I suspect there is
more than mere laziness involved when general reference works only list the
years of birth and death. However, even this is no guarantee of correctness:
according to my research, the 20th century French pioneer of aviation Clément
Ader died in 1923, again in 1925, and finally in 1926.

1.2 Exercise. Go to your favourite encyclopadia and read the article on
Napoleon Bonaparte. What is Napoleon’s Theorem?

In a general work such as an encyclopadia, the relevant facts about Napo-
leon are military and political. That he was fond of mathematics and discov-
ered a theorem of his own is not a relevant detail. Indeed, for the history of
science his importance is as a patron of the art and not as a a contributor. For
a course on the history of mathematics, however, the existence of Napoleon’s
Theorem becomes relevant, if hardly central.

Translations, by their very nature, are interpretations. Sometimes in trans-
lating mathematics, a double translation is made: from natural language to
natural langauge and then into mathematical language. That the original was
not written in mathematical language could be a significant detail that is
omitted. Consider only the difference in impressions that would be made by
two translations of al-Khwarezmi’s algebra book, one faithfully symbol-less
in which even the number names are written out (i.e., “two” instead of “2”)
and one in which modern symbolism is supplied for numbers, quantities, and
arithmetic operations. The former translation will be very heavy going and it
will require great concentration to wade through the problems. You will be
impressed by al-Khwarezmi’s mental powers, but not by his mathematics as it
will be hard to survey it all in your mind. The second translation will be easy
going and you shouldn’t be too impressed unless you mistakenly believe, from
the fact that the word “algebra” derived from the Arabic title of his book,
that the symbolic approach originated here as well.

The first type of translation referred to is the next best thing to the primary
source. It accurately translates the contents and allows the reader to interpret
them. The second type accurately portrays the problems treated, as well as
the abstract principles behind the methods, possibly more as a concession
to readability than a conscious attempt at analysis, but in doing so it does
not, accurately portray the actual practice and may lead one to overestimate
the original author’s level of understanding. Insofar as a small shift in one’s

3 1 only found them in 4 different combinations. However, through clever footnoting
and the choice of different references for the birth and death dates, I can justify
3 x 4 = 12 pairs!
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perspective can signify a major breakthrough, such a translation can be a
significant historical distortion.

It is important in reading a translation to take the translator’s goal into
account, as revealed by the following quotation from Samuel de Fermat (son
of the Fermat) in his preface to a 1670 edition of Diophantus:

Bombelli in his Algebra was not acting as a translator for Diophantus,
since he mixed his own problems with those of the Greek author; nei-
ther was Viete, who, as he was opening up new roads for algebra, was
concerned with bringing his own inventions into the limelight rather
than with serving as a torch-bearer for those of Diophantus. Thus it
took Xylander’s unremitting labours and Bachet’s admirable acumen
to supply us with the translation and interpretation of Diophantus’s
great work.*

And, of course, there is always the possibility of a simple mistranslation.
My favourite example was reported by the German mathematical educa-
tor Herbert Meschkowski.> The 19th century constructivist mathematician
Leopold Kronecker, in criticising abstract mathematical concepts, declared,
“Die ganzen Zahlen hat der liebe Gott gemacht. Alles andere ist Menschen-
werk.” This translates as “The Good Lord made the whole numbers. Every-
thing else is manmade”, though something like “God created the integers; all
the rest is man’s work” is a bit more common. The famous theologian/mystery
novelist Dorothy Sayers quoted this in one of her novels, which was subse-
quently translated into German. Kronecker’s remark was rendered as “Gott
hat die Integralen erschaffen. Alles andere ist Menschenwerk”, or “God has
created the integrals. All the rest is the work of man”!

Even more basic than translation is transliteration. When the matchup be-
tween alphabets is not exact, one must approximate. There is, for example, no
equivalent to the letter “h” in Russian, whence the Cyrillic letter most closely
resembling the Latin “g” is used in its stead. If a Russian paper mentioning
the famous German mathematician David Hilbert is translated into English
by a nonmathematician, Hilbert’s name will be rendered “Gilbert”, which,
being a perfectly acceptable English name, may not immediately be recog-
nised by the reader as “Hilbert”. Moreover, the outcome will depend on the
nationality of the translator. Thus the Russian mathematician Chebyshev’s
name can also be found written as Tchebichev (French) and Tschebyschew
(German). Even with a fixed language, transliteration is far from unique, as
schemes for transliteration change over time as the reader will see when we
get to the chapter on the Chinese word problem. But we are digressing.

We were discussing why primary sources are preferred and some of the
ways references distant from the source can fail to be reliable. I mentioned

4 Quoted in André Weil, Number Theory; An Approach Through History, From
Hammurapi to Legendre, Birkhauser, Boston, 1984, p. 32.

5 Mathematik und Realitit, Vortrdge und Aufsditze, Bibliographisches Institut,
Mannheim, 1979, p. 67.
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above that summaries can be misleading and can replace facts by interpre-
tation. A good example is the work of Diophantus, whose Arithmetica was a
milestone in Greek mathematics. Diophantus essentially studied the problem
of finding positive rational solutions to polynomial equations. He introduced
some symbolism, but not enough to make his reasoning easily accessible to
the modern reader. Thus one can find summary assessments— most damn-
ingly expressed in Eric Temple Bell’s Development of Mathematics,— to the
effect that Diophantus is full of clever tricks, but possesses no general meth-
ods. Those who read Diophantus 40 years after Bell voiced a different opinion:
Diophantus used techniques now familiar in algebraic geometry, but they are
hidden by the opacity of his notation. The facts that Diophantus solved this
problem by doing this, that one by doing that, etc., were replaced in Bell’s case
by the interpretation that Diophantus had no method, and in the more mod-
ern case, by the diametrically opposed interpretation that he had a method
but not the language to describe it.

Finally, as to speculation becoming established fact, probably the quintes-
sential example concerns the Egyptian rope stretchers. It is, I believe, an
established fact that the ancient Egyptians used rope stretchers in survey-
ing. It is definitely an established fact that the Pythagorean Theorem and
Pythagorean triples like 3, 4, 5 were known to many ancient cultures. Putting
2 and 2 together, the German historian Moritz Cantor speculated that the
rope stretchers used knotted ropes giving lengths 3, 4, and 5 units to deter-
mine right angles. To cite Bartel van der Waerden,”

...How frequently it happens that books on the history of mathe-
matics copy their assertions uncritically from other books, without
consulting the sources. ..In 90% of all the books, one finds the state-
ment that the Egyptians knew the right triangle of sides 3, 4, and 5,
and that they used it for laying out right triangles. How much value
has this statement? None!

Cantor’s conjecture is an interesting possibility, but it is pure speculation,
not backed up by any evidence that the Egyptians had any knowledge of the
Pythagorean Theorem at all. Van der Weaerden continues

To avoid such errors, I have checked all the conclusions which I found
in modern writers. This is not as difficult as might appear. .. For reli-
able translations are obtainable of nearly all texts. ..

Not only is it more instructive to read the classical authors themselves
(in translation if necessary), rather than modern digests, it also gives
much greater enjoyment.

Van der Waerden is not alone in his exhortation to read the classics, but
“obtainable” is not the same as “readily available” and one will have to rely on

5 McGraw-Hill, New York, 1940
T Science Awakening, 2nd ed., Oxford University Press, New York, 1961, p. 6.



1 General Remarks 15

“digests”, general reference works, and other secondary and ternary sources
for information. Be aware, however, that the author’s word is not gospel. One
should check if possible the background of the author: does he or she have the
necessary mathematical background to understand the material; what sources
did he/she consult; and, does the author have his/her own axe to grind?

Modern history of mathematics began to be written in the 19th century
by German mathematicians, and several histories were written by American
mathematicians in the early 20th century. And today much of the history of
mathematics is still written by mathematicians. Professional historians tradi-
tionally ignored the hard technical subjects simply because they lacked the
understanding of the material involved. In the last several decades, however,
a class of professional historians of science trained in history departments
has arisen and some of them are writing on the history of mathematics. The
two types of writers tend to make complementary mistakes— or, at least, be
judged by each other as having made these mistakes.

Some interdisciplinary errors do not amount to much. These can occur
when an author is making a minor point and adds some rhetorical flourish
without thinking too deeply about it. We saw this with Henle’s comment on
Euclid in the introduction. I don’t know how common it is in print, but its
been my experience that historical remarks made by mathematicians in the
classroom are often simply factually incorrect. These same people who won’t
accept a mathematical result from their teachers without proof will accept
their mentors’ anecdotes as historical facts. Historians’ mistakes at this level
are of a different nature. Two benign examples come to mind. Joseph Dauben,
in a paper® on the Chinese approach to the Pythagorean Theorem, compares
the Chinese and Greek approaches with the remark that

... whereas the Chinese demonstration of the right-triangle theorem
involves a rearrangement of areas to show their equivalence, EUCLID’s
famous proof of the Pythagorean Theorem, Proposition 1,47, does not
rely on a simple shuffling of areas, moving a to b and ¢ to d, but instead
depends upon an elegant argument requiring a careful sequence of
theorems about similar triangles and equivalent areas.

The mathematical error here is the use of the word “similar”, the whole point
behind Euclid’s complex proof having been the avoidance of similarity which
depends on the more advanced theory of proportion only introduced later in
Book V of the Elements.”

8 Joseph Dauben, “The ‘Pythagorean theorem’ and Chinese Mathematics. Liu
Hui’s Commentary on the Gou-Gu Theorem in Chapter Nine of the Jin Zhang
Suan Shu”, in: S.S. Demidov, M. Folkerts, D.E. Rowe, and C.J. Scriba, eds., Am-
phora; Festschrift fiir Hans Wussing zu seinem 65. Geburtstag, Birkhauser-Verlag,
Basel, 1992.

9 Cf. the chapter on the foundations of geometry for a fuller discussion of this
point. Incidentally, the use of the word “equivalent” instead of “equal” could also
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Another example of an historian making an inconsequential mathematical
error is afforded us by Ivor Grattan-Guinness, but concerns more advanced
mathematics. When he discovered some correspondence between Kurt Godel
and Ernst Zermelo concerning the former’s famous Incompleteness Theorem,
he published it along with some commentary'®. One comment was that Godel
said his proof was nonconstructive. Now anyone who has read Godel’s original
paper can see that the proof is eminently constructive and would doubt that
Godel would say such a thing. And, indeed, he didn’t. What Godel actually
wrote to Zermelo was that an alternate proof related to Zermelo’s initial crit-
icism was— unlike his published proof— nonconstructive. Grattan-Guiness
had simply mistranslated and thereby stated something that was mathemat-
ically incorrect.

Occasionally, the disagreement between historian and mathematician can
be serious. The most famous example concerns the term “geometric algebra”,
coined by the Danish mathematician Hieronymus Georg Zeuthen in the 1880s
to describe the mathematics in one of the books of the Elements. One histo-
rian saw in this phrase a violation of basic principles of historiography and
proposed its banishment. His suggestion drew a heated response that makes
for entertaining reading.!!

be considered an error by mathematicians. For, areas being numbers they are
either equal or unequal, not equivalent.

I. Grattan-Guinness, “In memoriam Kurt Godel: his 1931 correspondence with
Zermelo on his incompletability theorem”, Historia Mathematica 6 (1979), pp.
294 - 304.

The initial paper and all its responses appeared in the Archive for the History
of the Ezxact Sciences. The first, somewhat polemical paper, “On the need to
rewrite the history of Greek mathematics” (vol. 15 (1975/76), pp. 67 - 114) was
by Sabetai Unguru of the Department of the History of Science at the University
of Oklahoma and about whom I know only this controversy. The respondents
were Bartel van der Waerden (“Defence of a ‘shocking’ point of view”, vol. 15
(1975), pp. 199 - 210), Hans Freudenthal (“What is algebra and what has been
its history?”, vol. 16 (1976/77), pp. 189 - 200), and André Weil (“Who betrayed
Euclid”, vol. 19 (1978), pp. 91 - 93), big guns all. The Dutch mathematician van
der Weaerden is particularly famous in the history of science for his book Science
Awakening, which I quoted from earlier. He also authored the classic textbook
on modern algebra, as well as other books on the history of early mathematics.
Hans Freudenthal, another Dutch mathematician, was a topologist and a colourful
character who didn’t mince words in the various disputes he participated in during
his life. As to the French André Weil, he was one of the leading mathematicians of
the latter half of the 20th century. Regarding his historical qualifications, I cited
his history of number theory earlier. Unguru did not wither under the massive
assault, but wrote a defence which appeared in a different journal: “History of
ancient mathematics; some reflections on the state of the art”, Isis 20 (1979), pp.
555 - 565. Perhaps the editors of the Archive had had enough. Both sides had
valid points and the dispute was more a clash of perspectives than anyone making
major errors. Unguru’s Isis paper is worth a read. It may be opaque in spots,

10

11
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On the subject of the writer’s motives, there is always the problem of the
writer’s ethnic, religious, racial, gender, or even personal pride getting in the
way of his or her judgement. The result is overstatement.

In 1992, T picked up a paperback entitled The Miracle of Islamic Science
by Dr. K. Ajram. As sources on Islamic science are not all that plentiful, I
was delighted— until I started reading. Ajram was not content to enumerate
Islamic accomplishments, but had to ignore earlier Greek contributions and
claim priority for Islam. Amidst a list of the “sciences originated by the mus-
lims” he includes trigonometry, apparently ignorant of Ptolemy, whose work
on astronomy beginning with the subject is today known by the name given
it by the Arabic astronomers who valued it highly. His attempt to denigrate
Copernicus by assigning priority to earlier Islamic astronomers simply misses
the point of Copernicus’s accomplishments, which was not merely to place
the sun in the centre of the solar system— which was in fact already done by
Aristarchus centuries before Islam or Islamic science existed, a fact curiously
unmentioned by Ajram. Very likely most of his factual data concerning Islamic
science is correct, but his enthusiasm makes his work appear so amateurish
one cannot be blamed for placing his work in the “unreliable” stack.'?

Probably the most extreme example of advocacy directing history is the
Afrocentrist movement, an attempt to declare black Africa to be the source
of all Western Culture. The movement has apparently boosted the morale of
Africans embarrassed at their having lagged behind the great civilisations of
Europe and Asia. I have not read the works of the Afrocentrists, but if one may
judge from the responses to it,'* ' emotions must run high. The Afrocentrists
have low standards of proof (Example: Socrates was black for i. he was not
from Athens, and ii. he had a broad nose.) and any criticism is apparently met
with a charge of racism. (Example: the great historian of ancient astronomy,
Otto Neugebauer described Egyptian astronomy as “primitive” and had better
things to say about Babylonian astronomy. The reason for this was declared
by one prominent Afrocentrist to be out and out racial prejudice against black

12

and not as much fun to read as the attacks, but it does offer a good discussion of
some of the pitfalls in interpreting history.
An even earlier clash between historian and mathematician occurred in the pages
of the Archive when Freudenthal pulled no punches in his response (“Did Cauchy
plagiarize Bolzano?”, 7 (1971), pp. 375 - 392) to a paper by Grattan-Guinness
(“Bolzano, Cauchy, and the ‘new analysis’ of the early nineteenth century”, 6
(1969/70), pp. 372 - 400).

12 Knowledge House Publishers, Cedar Rapids, 1992

13 The referee points out that “the best example of distortion due to nationalist
advocacy is early Indian science”. I have not looked into this.

14 Robert Palter, “Black Athena, Afrocentrism and the History of Science,” History

of Science 31 (1993), pp. 227 - 287.

Mary Lefkowitz, Not Out of Africa; How Afrocentrism Became an Excuse to Teach

Myth as History, New Republic Books, New York, 1996.



18 2 Annotated Bibliography

Egyptians and preference for the white Babylonians. The fact of the greater
sophistication and accuracy of the Babylonian practice is irrelevant.)

Let me close with a final comment on an author’s agenda. He may be
presenting a false picture of history because history is not the point he is trying
to get across. Samuel de Fermat’s remarks on Bombelli and Viete cited earlier
are indications. These two authors had developed techniques the usefulness of
which they wanted to demonstrate. Diophantus provided a stock of problems.
Their goal was to show how their techniques could solve these problems and
others, not to show how Diophantus solved them. In one of my own books, I
wanted to discuss Galileo’s confusions about infinity. This depended on two
volume calculations which he did geometrically. I replaced these by simple
applications of the Calculus on the grounds that my readers would be more
familiar with the analytic method. The relevant point here was the shared
value of the volumes and not how the result was arrived at, just as for Bombelli
and Viete the relevant point would have been a convenient list of problems.
These are not examples of bad history, because they are not history at all.
Ignoring the context and taking them to be history would be the mistake here.

So there we have a discussion of some of the pitfalls in studying the history
of mathematics. I hope I haven’t convinced anyone that nothing one reads
can be taken as true. This is certainly not the case. Even the most unreliable
sources have more truth than fiction to them. The problem is to sort out
which statements are indeed true. For this course, the best guarantee of the
reliability of information is endorsement of the author by a trusted authority
(e.g., your teacher). So without further ado, I present the following annotated
bibliography.

2 General Reference Works

Encyclopedia Britannica

This is the most complete encyclopadia in the English language. It
is very scholarly and generally reliable. However, it does not always
include scientific information on scientifically marginal figures.
Although the edition number doesn’t seem to change these days, new
printings from year to year not only add new articles, but drop some
on less popular subjects. It is available in every public library and also
online.

Any university worthy of the name will also have the earlier 11th
edition, called the “scholar’s edition”. Historians of science actually
prefer the even earlier 9th edition, which is available in the libraries
of the better universities. However, many of the science articles of the
9th edition were carried over into the 11th.
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Enciclopedia Universal Ilustrada Europeo-Americana

The Spanish encyclopaedia originally published in 70 volumes, with a
10 volume appendix, is supplemented each year.

I am in no position to judge its level of scholarship. However, I do
note that it seems to have the broadest selection of biographies of
any encyclopadia, including, for example, an English biologist I could
find no information on anywhere else. In the older volumes especially,
birth and death dates are unreliable. These are occasionally corrected
in the later supplements.

Great Soviet Encyclopedia, 3rd Edition, MacMillan Inc., New York, 1972 -
1982.

Good source for information on Russian scientists. It is translated
volume by volume, and entries are alphabetised in each volume, but
not across volumes. Thus, one really needs the index volume or a
knowledge of Russian to look things up in it. It is getting old and has
been removed from the shelves of those few suburban libraries I used
to find it in. Thus one needs a university library to consult it.

3 General Biography

J.C. Poggendortt, Biographisch-literarisches Handwdrterbuch zur Geschichte
der exacten Wissenschaften

This is the granddaddy of scientific biography. Published in the mid-
19th century with continuing volumes published as late as 1926, the
series received an American Raubdruck'® edition in 1945 and is con-
sequently available in some of the better universities. The entries are
mostly short, of the Who’s Who variety, but the coverage is exten-
sive. Birth and death dates are often in error, occasionally corrected
in later volumes.

Allen G. Debus, ed., World Who’s Who of Science; From Antiquity to the
Present

Published in 1968 by the producers of the Who’s Who books, it con-
tains concise Who’s Who styled entries on approximately 30000 scien-
tists. Debus is an historian of science and the articles were written by
scholars under his direction. Nonetheless, there are numerous incorrect
birth and death dates and coordination is lacking as some individuals
are given multiple, non-cross-referenced entries under different names.

16 That is, the copyright was turned over to an American publisher by the US
Attorney General as one of the spoils of war.
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The preface offers a nice explanation of the difficulties involved in cre-
ating a work of this kind and the errors that are inherent in such an
undertaking.

I have found the book in some municipal libraries and not in some
university libraries.

Charles Gillespie, ed., Dictionary of Scientific Biography, Charles Scribner’s
Sons, New York, 1970 - 1991.

This encyclopaedia is the best first place to find information on in-
dividual scientists who died before 1972. It consists of 14 volumes of
extensive biographical articles written by authorities in the relevant
fields, plus a single volume supplement, and an index. Published over
the years 1970 - 1980, it was augmented in 1991 by an additional 2
volumes covering those who died before 1981.

The Dictionary of Scientific Biography is extremely well researched
and most reliable. As to the annoying question of birth and death
dates, the only possible error I found is Charles Darwin’s birthdate,
which disagrees with all other references I’ve checked, including Dar-
win’s autobiography. I suspect Darwin was in error and all the other
sources relied on his memory. . .

The Dictionary of Scientific Biography is available in all university
and most local libraries.

A Biographical Dictionary of Mathematicians has been culled from
the Dictionary of Scientific Biography and may interest those who
would like to have their own copy, but cannot afford the complete set.

Eric Temple Bell, Men of Mathematics, Simon and Schuster, New York, 1937.

First published in 1937, this book is still in print today. It is a pop-
ularisation, not a work of scholarship, and Bell gets important facts
wrong. However, one does not read Bell for information, but for the
sheer pleasure of his impassioned prose.

Julian Lowell Coolidge, The Mathematics of Great Amateurs, Oxford Univer-
sity Press, Oxford, 1949.

A Dover paperback edition appeared in 1963, and a new edition edited
by Jeremy Gray was published by Oxford University Press in 1990.
What makes this book unique are i) the choice of subjects and ii) the
mathematical coverage. The subjects are people who were not primar-
ily mathematicians— the philosophers Plato and Pascal, the artists
Leonardo da Vinci and Albrecht Diirer, a politician, some aristocrats,
a school teacher, and even a theologian. The coverage is unusual in
that Coolidge discusses the mathematics of these great amateurs. In
the two chapters I read carefully I found errors.
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Isaac Asimov, Asimov’s Biographical Encyclopedia of Science and Technology,
Doubleday, New York, 1982.

This is a one-volume biographical dictionary, not an encyclopadia,
with entries chronologically organised.

One historian expressed horror to me at Asimov’s methodology. So he
would be an acceptable source as a reference for a term paper, but his
use in a thesis would be cause for rejection. The problem is that the
task he set for himself is too broad for one man to perform without
relying on references far removed from the primary sources.

This list could be endlessly multiplied. There are several small collections
like Bell’s of chapter-sized biographies of a few mathematicians, as well as
several large collections like Asimov’s of short entry biographies of numerous
mathematicians and scientists. For the most part, one is better off sticking
to the Dictionary of Scientific Biography or looking for a dedicated biogra-
phy of the individual one is interested in. That said, I note that works like
E.G.R. Taylor’s The Mathematical Practitioners of Tudor and Stuart Eng-
land (Cambridge University Press, 1954) and The Mathematical Practition-
ers of Hanoverian England (Cambridge University Press, 1966), with their
3500 mini-biographies and essays on mathematical practice other than pure
mathematical research are good sources for understanding the types of uses
mathematics was being put to in these periods.

4 General History of Mathematics

Florian Cajori, History of Mathematics, Macmillan and Company, New York,
1895.

—, A History of Elementary Mathematics, with Hints on Methods of Teaching,
The Macmillan Company, New York, 1917.

—, A History of Mathematical Notations, 2 volumes, Open Court Publishing
Company, Lasalle (I11), 1928 - 29.

The earliest of the American produced comprehensive histories of
mathematics is Cajori’s, which borrowed a lot from Moritz Cantor’s
monumental four volume work on the subject, including errors. Pre-
sumably most of these have been corrected through the subsequent
editions. The current edition is a reprint of the 5th published by the
American Mathematical Society.

Cajori’s history of elementary mathematics was largely culled from
the larger book and is no longer in print.

Cajori’s history of mathematical notation is a cross between a refer-
ence work and a narrative. A paperback reprint by Dover Publishing
Company exists.
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David Eugene Smith, History of Mathematics, 2 volumes, 1923, 1925.
—, A Source Book in Mathematics,, 1929.
—, Rara Arithmetica, Ginn and Company, Boston, 1908.

All three books are in print in inexpensive Dover paperback editions.
The first of these was apparently intended as a textbook, or a history
for mathematics teachers as it has “topics for discussion” at the end
of each chapter. Most of these old histories do not have much actual
mathematics in them. The second book complements the first with a
collection of excerpts from classic works of mathematics.

Rara Arithmetica is a bibliographic work, describing a number of old
mathematics books, which is much more interesting than it sounds.

Eric Temple Bell, Development of Mathematics, McGraw-Hill, New York,
1940.

Bell is one of the most popular of American writers on mathematics
of the first half of the 20th century and his books are still in print.
There is nothing informational in this history to recommend it over
the others listed, but his style and prose beat all the rest hands down.

Dirk Struik, A Concise History of Mathematics, revised edition, Dover, New
York, 1967.

This is considered by some to be the finest short account of the history
of mathematics, and it very probably is. However, it is a bit too concise
and I think one benefits most in reading it for additional insight after
one is already familar with the history of mathematics.

Howard Eves, An Introduction to the History of Mathematics, Holt, Rinehart,
and Winston, New York, 1953.

Carl Boyer, A History of Mathematics, John Wiley and Sons, New York, 1968.

Both books have gone through several editions and, I believe, are still
in print. They were written specifically for the class room and included
genuine mathematical exercises. Eves peppers his book (at least, the
edition I read) with anecdotes that are most entertaining and reveal
the “human side” of mathematicians, but add nothing to one’s un-
derstanding of the development of mathematics. Boyer is much more
serious. The first edition was aimed at college juniors and seniors in a
post-Sputnik age of higher mathematical expectations; if the current
edition has not been watered down, it should be accessible to some
seniors and to graduate students. Eves concentrates on elementary
mathematics, Boyer on calculus.

Both author’s have written other books on the history of mathemat-
ics. Of particular interest are Boyer’s separate histories of analytic
geometry and the calculus.
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David M. Burton, The History of Mathematics; An Introduction, McGraw-
Hill, New York, 1991.

Victor J. Katz, A History of Mathematics; An Introduction, Harper Collins,
New York, 1993.

These appear to be the current textbooks of choice for the Ameri-
can market and are both quite good. A publisher’s representative for
McGraw-Hill informs me Burton’s is the best-selling history of math-
ematics textbook on the market, a claim supported by the fact that,
as I write, it has just come out in a 6th edition. Katz is currently in its
second edition. One referee counters with, “regardless of sales, Katz
is considered the standard textbook at its level by professionals”.!”
Another finds Burton “systematically unreliable”. I confess to having
found a couple of howlers myself.

Both books have a lot of history, and a lot of mathematical exercises.
Katz’s book has more mathematics and more advanced mathematics
than the other textbooks cited thus far.

Roger Cooke, The History of Mathematics; A Brief Course, Wiley Inter-
science, 1997.

I haven’t seen this book, which is now in its second edition (2005).
Cooke has excellent credentials in the history of mathematics and 1
would not hesitate in recommending his book sight unseen. The first
edition was organised geographically or culturally— first the Egyp-
tians, then Mesopotamians, then Greeks, etc. The second edition is
organised by topic— number, space, algebra, etc. Both are reported
strong on discussing the cultural background to mathematics.

Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford
University Press, New York, 1972.

This is by far the best single-volume history of general mathematics
in the English language that I have seen. It covers even advanced
mathematical topics and 20th century mathematics. Kline consulted
many primary sources and each chapter has its own bibliography.

5 History of Elementary Mathematics

Otto Neugebauer, The FExact Sciences in Antiquity, Princeton University
Press, Princeton, 1952.

B.L. van der Weerden, Science Awakening, Oxford university Press, New York,
1961.

17 The referee did not say whether these are professional historians, mathematicians,
or teachers of the history of mathematics.



24 2 Annotated Bibliography

These are the classic works on mathematics and astronomy from the
Egyptians through the Hellenistic (i.e. post-Alexander) period. Van
der Waerden’s book contains more mathematics and is especially rec-
ommended. It remains in print in a Dover paperback edition.

Lucas N.H. Bunt, Phillip S. Jones, and Jack D. Bedient, The Historical Roots
of Elementary Mathematics, Prentice Hall, Englewood Cliffs (New Jersey),
1976.

This is a textbook on the subject written for a very general audience,
presupposing only high school mathematics. It includes a reasonable
number of exercises. A Dover reprint exists.

Asger Aaboe, Episodes From the Early History of Mathematics, Mathematical
Association of America, 1964.

This slim volume intended for high school students includes exposi-
tions of some topics from Babylonian and Greek mathematics. A small
number of exercises is included.

Richard Gillings, Mathematics in the Time of the Pharoahs, MIT Press, Cam-
bridge (Mass), 1973

This and Gilling’s later article on Egyptian mathematics published in
the Dictionary of Scientific Biography offer the most complete treat-
ments of the subject readily available. It is very readable and exists
in an inexpensive Dover paperback edition.

Euclid, The Elements

Proclus, A Commentary on the First Book of Euclid’s Elements, translated
by Glenn Morrow, Princeton University Press, Princeton, 1970.

The three most accessible American editions of The Elements are
Thomas Heath’s translation, available in the unannotated Great Books
of the Western World edition, an unannotated edition published by
Green Lion Press, and a super-annotated version published in 3 pa-
perback volumes from Dover. The Dover edition is the recommended
version because of the annotations. If one doesn’t need or want the
annotations, the Green Lion Press edition is the typographically most
beautiful of the three and repeats diagrams on successive pages for
greater ease of reading. But be warned: Green Lion Press also pub-
lished an abbreviated outline edition not including the proofs.
Proclus is an important historical document in the history of Greek
mathematics for a variety of reasons. Proclus had access to many doc-
uments no longer available and is one of our most detailed sources of
early Greek geometry. The work is a good example of the commen-
tary that replaced original mathematical work in the later periods of
Greek mathematical supremacy. And, of course, it has much to say
about Euclid’s Elements.
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Howard Eves, Great Moments in Mathematics (Before 1650), Mathematics
Association of America, 1980.

This is a book of short essays on various developments in mathematics
up to the eve of the invention of the Calculus (which is covered in a
companion volume). It includes historical and mathematical exposi-
tion as well as exercises. I find the treatments a bit superficial, but
the exercises counter this somewhat.

6 Source Books

A source book is a collection of extracts from primary sources. The first of
these, still in print, was Smith’s mentioned earlier:

David Eugene Smith, A Source Book in Mathematics
At a more popular level is the following classic collection.

James R. Newman, The World of Mathematics, Simon and Schuster, New
York, 1956.

This popular 4 volume set contains a wealth of material of historical
interest. It is currently available in a paperback edition.

Ivor Thomas, Selections Illustrating the History of Greek Mathematics, I;
Thales to Euclid, Harvard University Press, Cambridge (Mass), 1939.

—, Selections Illustrating the History of Greek Mathematics, II; From Aristar-
chus to Pappus, Harvard University Press, Cambridge (Mass), 1941.

These small volumes from the Loeb Classical Library are presented
with Greek and English versions on facing pages. There is not a lot,
but the assortment of selections was judiciously made.

Morris R. Cohen and I.E. Drabkin, A Source Book in Greek Science, Harvard
University Press, Cambridge (Mass), 1966.

Edward Grant, A Source Book in Medieval Science, Harvard University Press,
Cambridge (Mass), 1974.

Dirk Struik, A Source Book in Mathematics, 1200 - 1800, Harvard University
Press, Cambridge (Mass), 1969.

In the 1960s and 1970s, Harvard University Press published a num-
ber of fine source books in the sciences. The three listed are those
most useful for a general course on the history of mathematics. More
advanced readings can be found in the specialised source books in
analysis and mathematical logic. I believe these are out of print, but
I would expect them to be available in any university library.



26 2 Annotated Bibliography

Ronald Calinger, Classics of Mathematics, Moore Publishing Company, Oak
Park (I11), 1982.

For years this was the only general source book for mathematics to in-
clude twentieth century mathematics. The book is currently published
by Prentice-Hall.

Douglas M. Campbell and John C. Higgins, Mathematics; People, Problems,
Results, Wadsworth International, Belmont (Cal), 1984.

This three volume set was intended to be an up-to-date replacement
for Newman’s World of Mathematics. It’s extracts, however, are from
secondary sources rather than from primary sources. Nonetheless it
remains of interest.

John Fauvel and Jeremy Gray, The History of Mathematics; A Reader, McMil-
lan Education, Ltd, London, 1987.

This is currently published in the US by the Mathematical Association
of America. It is probably the nicest of the source books. In addition to
extracts from mathematical works, it includes extracts from historical
works (e.g., comments on his interpretation of the Ishango bone by its
discoverer, and extracts from the debate over Greek geometric algebra)
and some cultural artefacts (e.g., Alexander Pope and William Blake
on Newton).

Stephen, Hawking, God Created the Integers; The Mathematical Breakthroughs
that Changed History, Running Press, Philadelphia, 2005.

The blurb on the dust jacket and the title page announce this collec-
tion was edited with commentary by Stephen Hawking. More correctly
stated, each author’s works are preceded by an essay by the renowned
physicist titled “His life and work”; explanatory footnotes and, in
the case of Euclid’s Elements, internal commentary are lifted without
notice from the sources of the reproduced text. This does not make
the book any less valuable, but if one doesn’t bear this in mind one
might think Hawking is making some statement about our conception
of time when one reads the reference (which is actually in Thomas
Heath’s words) to papers published in 1901 and 1902 as having ap-
peared “in the last few years”. Aside from this, it is a fine collection,
a judicious choice that includes some twentieth century mathematics
with the works of Henri Lebesgue, Kurt Godel, and Alan Turing.

Jean-Luc Chabert, ed., A History of Algorithms, From the Pebble to the Mi-
crochip, Springer-Verlag, Berlin, 1999.

Originally published in French in 1994, this is a combination history
and source book. I list it under source books rather than special his-
torical topics because of the rich variety of the excerpts included and
the breadth of the coverage, all areas of mathematics being subject to
algorithmic pursuits.
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7 Multiculturalism

George Gheverghese Joseph, The Crest of the Peacock; Non-European Roots
of Mathematics, Penguin Books, London, 1992.

A very good account of non-European mathematics which seems to
be quite objective and free of overstatement.

Yoshio Mikami, The Development of Mathematics in China and Japan, 2nd.
ed., Chelsea Publishing Company, New York, 1974.

Joseph Needham, Science and Civilization in China, I1II; Mathematics and
the Sciences of the Heavens and the Farth, Cambridge University Press, Cam-
bridge, 1959.

Li Yan and Du Shiran, Chinese Mathematics; A Concise History, Oxford
University Press, Oxford, 1987.

Mikami’s book was first published in German in 1913 and is divided
into two parts on Chinese and Japanese mathematics, respectively.
Needham'’s series of massive volumes on the history of science in China
is the standard. The third volume covers mathematics, astronomy,
geography, and geology and is not as technical as Mikami or the more
recent book by Li Yan and Du Shiran, for which Needham wrote the
Foreword.

Needham'’s book is still in print. The other two books are out of print.

David Eugene Smith and Yoshio Mikami, A History of Japanese Mathematics

I haven’t seen this book, but in the introductory note of his book on
Chinese and Japanese mathematics, Mikami announces that the book
was to be written at a more popular level. It is in print in 2 or 3
editions, including a paperback one by Dover.

Seyyed Hossein Nasr, Science and Civilization in Islam, Harvard University
Press, Cambridge (Mass), 1968.

Nasr borrowed the title from Needham, but his work is much shorter—
only about 350 pages. It does not have much technical detail, and the
chapter on mathematics is only some 20 odd pages long. The book is
still in print in a paperback edition.

J.L. Berggren, Episodes in the Mathematics of Medieval Islam, Springer-
Verlag, NY, 1986.

This appears to be the best source on Islamic mathematics. It even
includes exercises. The book is still in print.
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8 Arithmetic

Louis Charles Karpinski, The History of Arithmetic, Rand McNally and Com-
pany, Chicago, 1925.

This is the classic American study of numeration and computation by
hand. It includes history of early number systems, the Hindu-Arabic
numerals, and even a brief study of textbooks from Egypt to America
and Canada. The book is out of print.

Karl Menninger, Number Words and Number Symbols; A Cultural History of
Mathematics, MIT Press, Cambridge (Mass), 1969.

This large volume covers the history of numeration and some aspects
of the history of computation, e.g. calculation with an abacus. The
book is currently in print by Dover.

9 Geometry

Adrien Marie Legendre, Geometry

One of the earliest rivals to Euclid (1794), this book in English trans-
lation was the basis for geometry instruction in United States in the
19th century wherever Euclid was not used. Indeed, there were several
translations into English, including a famous one by Thomas Carlisle,
usually credited to Sir David Brewster who oversaw the translation.
The book is available only through antiquariat book sellers and in
some of the older libraries. It is a must have for those interested in
the history of geometry teaching in the United States.

Lewis Carroll, Fuclid and His Modern Rivals, Dover, New York, 1973.

Originally published in 1879, with a second edition in 1885, this book
argues, in dialogue form, against the replacement of Euclid by numer-
ous other then modern geometry textbooks at the elementary level.
Carroll, best known for his Alice books, was a mathematician himself
and had taught geometry to schoolboys for almost a quarter of a cen-
tury when he published the book, which has recently been reprinted
by Dover.

David Eugene Smith, The Teaching of Geometry, Ginn and Company, Boston,
1911.

This is not a history book per se, but it is of historical interest in a
couple of ways. First, it includes a brief history of the subject. Second,
it gives a view of the teaching of geometry in the United States at the
beginning of the twentieth century. It is currently out of print, but
might be available in the better university libraries.



10 Calculus 29

Julian Lowell Coolidge, A History of Geometrical Methods, Oxford University
Press, 1940.

This is a rather advanced history of the whole of geometry requiring a
knowledge of abstract algebra and the calculus. Publication was taken
over by Dover in 1963 and it remains in print.

Felix Klein, Famous Problems of Elementary Geometry, Dover.
Wilbur Richard Knorr, The Ancient Tradition of Geometric Problems, Dover.

There are several books on the geometrical construction problems and
the proofs of their impossibility. Klein was a leading mathematician
of the 19th century, noted for his fine expositions. The book cited is a
bit dated, but worth looking into. Knorr is a professional historian of
mathematics, whence I would expect more interpretation and analysis
and less mathematics from him; I haven’t seen his book.

Robert Bonola, Non-FEuclidean Geometry, Open Court Publishing Company,
1912.

Republished by Dover in 1955 and still in print in this edition, Bonola
is the classic history of non-Euclidean geometry. It includes transla-
tions of the original works on the subject by Janos Bolyai and Nikolai
Lobachevsky.

Marvin Jay Greenberg, Euclidean and Non-Euclidean Geometries; Develop-
ment and History, W.H. Freeman and Company, San Francisco, 1974.

This textbook serves both as an introduction to and a history of non-
Euclidean geometry. It contains numerous exercises. The book is cur-
rently in its third edition and remains in print.

10 Calculus

Carl Boyer, History of Analytic Geometry, The Scholar’s Bookshelf, Princeton
Junction (NJ), 1988.

—, The History of the Calculus and Its Conceptual Development, Dover, New
York, 1959.

These are two reprints, the former from articles originally published in
the now defunct journal Scripta Mathematica in 1956 and the second
published in book form in 1949. Both books discuss rather than do
mathematics, so one gets the results but not the proofs of a given
period.

Margaret L. Baron, The Origins of the Infinitesimal Calculus, Pergamon
Press, Oxford, 1969.

This is a mathematically more detailed volume than Boyer.
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C.H. Edwards, Jr., The Historical Development of the Calculus, Springer-
Verlag, New York, 1979.

This is a yet more mathematically detailed exposition of the history
of the calculus complete with exercises and 150 illustrations.

Judith V. Grabiner, The Origins of Cauchy’s Rigorous Calculus, MIT Press,
Cambridge (Mass), 1981.

Today’s formal definitions of limit, convergence, etc. were written by
Cauchy. This book discusses the origins of these definitions. Most col-
lege students come out of calculus courses with no understanding of
these definitions; they can neither explain them nor reproduce them.
Hence, one must consider this a history of advanced mathematics.

11 Women in Science

Given the composition of this class'®, I thought these books deserved special
mention. Since women in science were a rare occurrence, there are no unifying
scientific threads to lend some structure to their history. The common thread
is not scientific but social— their struggles to get their feet in the door and to
be recognised. From a masculine point of view this “whining” grows tiresome
quickly, but the difficulties are not imaginary. I’ve spoken to female engineer-
ing students who told me of professors who announced women would not get
good grades in their classes, and Julia Robinson told me that she accepted
the honour of being the first woman president of the American Mathematical
Society, despite her disinclination to taking the position, because she felt she
owed it to other women in mathematics.

Several books take the struggle to compete in a man’s world as their main
theme. Some of these follow.

H.J. Mozans, Women in Science, with an Introductory Chapter on Woman’s
Long Struggle for Things of the Mind, MIT Press, Cambridge (Mass), 1974.

This is a facsimile reprint of a book originally published in 1913. I
found some factual errors and thought it a bit enthusiastic.

P.G. Abir-Am and D. Outram, Uneasy Careers and Intimate Lives; Women
in Science, 1789 - 1979, Rutgers University Press, New Brunswick, 1987.

Publishing information is for the paperback edition. The book is
strong on the struggle, but says little about the science done by the
wormen.

18 Mostly female.
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H.M. Pycior, N.G. Stack, and P.G. Abir-Am, Creative Couples in the Sciences,
Rutgers University Press, New Brunswick, 1996.

The title pretty much says it all. Pycior has written several nice papers
on the history of algebra in the 19th century. I am unfamiliar with
the credentials of her co-authors, other than, of course, noticing that
Abir-Am was co-author of the preceding book.

G. Kass-Simon and Patricia Farnes, eds., Women of Science; Righting the
Record, Indiana University Press, Bloomlngton 1990.

This is a collection of articles by different authors on women in various
branches of science. The article on mathematics was written by Judy
Green and Jeanne LaDuke. Both have doctorates in mathematics, and
LaDuke also in history of mathematics. With credentials like that, it
is a shame their contribution isn’t book-length.

There are a few books dedicated to biographies of women of science in
general.

Margaret Alic, Hypatia’s Heritage; A History of Women in Science from An-
tiquity through the Ninetheenth Century, Beacon Press, 1986.

Margaret Alic is a molecular biologist who taught courses on the his-
tory of women in science, so this narrative ought to be considered
fairly authoritative.

Martha J. Bailey, American Women in Science; A Biographical Dictionary,
ABC-CLIO Inc., Santa Barbara, 1994.

As the title says, this is a biographical dictionary of women scientists—
including some still living, but limited to Americans. The entries are
all about one two-column page in size, with bibliographic references
to ternary sources. The author is a librarian.

Marilyn Bailey Ogilvie, Women in Science; Antiquity through the Nineteenth
Century, MIT Press, Cambridge (Mass), 1986.

Probably the best all-round dictionary of scientific womens’ biography.

Sharon Birch McGrayne, Nobel Women in Science; Their Lives, Struggles and
Momentous Discoveries, Birch Lane Press, New York, 1993.

There being no Nobel prize in mathematics, this book is only of tan-
gential interest to this course. It features chapter-length biographies
of Nobel Prize winning women.

Edna Yost, Women of Modern Science, Dodd, Mead and Company, New York,
1959.

The book includes 11 short biographies of women scientists, none of
whom were mathematicians.
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Lois Barber Arnold, Four Lives in Science; Womens’ Education in the Nine-
teenth Century, Schocken Books, New York, 1984.

This book contains the biographies of 4 relatively obscure women sci-
entists and what they had to go through to acquire their educations
and become scientists. Again, none of them were mathematicians.

There are also more specialised collections of biographies of women of
mathematics.

Lynn M. Osen, Women in Mathematics, MIT Press, Cambridge (Mass), 1974.

Oft reprinted, this work contains chapter-sized biographies of a num-
ber of female mathematicians from Hypatia to Emmy Noether.

Miriam Cooney, ed., Celebrating Women in Mathematics and Science, Na-
tional Council of Teachers of Mathematics, Reston (Virginia), 1996.

This book is the result of a year-long seminar on women and sci-
ence involving classroom teachers. The articles are short biographical
sketches written by the teachers for middle school and junior high
school students. They vary greatly in quality and do not contain a
lot of mathematics. The chapter on Florence Nighingale, for example,
barely mentions her statistical work and does not even exhibit one of
her pie charts. Each chapter is accompanied by a nice woodcut-like
illustration.

Charlene Morrow and Teri Perl, Notable Women in Mathematics; A Biograph-
ical Dictionary, Greenwood Press, Westport (Conn.), 1998.

This is a collection of biographical essays on 59 women in mathematics
from ancient to modern times, the youngest having been born in 1965.
The essays were written for the general public and do not go into
the mathematics (the papers average 4 to 5 pages in length) but are
informative nonetheless. Each essay includes a portrait.

There are quite a few biographies of individual female scientists. Marie
Curie is, of course, the most popular subject of such works. In America,
Maria Mitchell, the first person to discover a telescopic comet (i.e., one not
discernible by the naked eye), is also a popular subject. Florence Nightin-
gale, “the passionate statistician” who believed one could read the will of
God through statistics, is the subject of several biographies— that make no
mention of her mathematical involvement. Biographies of women of mathe-
matics that unflinchingly acknowledge their mathematical activity include the
following.

Maria Dzielska, Hypatia of Alexandria, Harvard University Press, 1995.

This is a very scholarly account of what little is known of the life
of Hypatia. It doesn’t have too much to say about her mathematics,
citing but not reproducing a list of titles of her mathematical works.
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Nonetheless, the book is valuable for its debunking a number of myths
about the subject.

Doris Langley Moore, Ada, Countess of Lovelace, Byron’s Legitimate Daugh-
ter, John Murray, London, 1977.

Dorothy Stein, Ada; A Life and a Legacy, MIT Press, Cambridge (Mass),
1985.

Joan Baum, The Calculating Passion of Ada Byron, Archon Books, Hamden
(Conn), 1986.

Betty Alexandra Toole, Ada, the Enchantress of Numbers; A Selection from
the Letters of Lord Byron’s Daughter and Her Description of the First Com-
puter, Strawberry Press, Mill Valley (Calif), 1992.

I've not seen Moore’s book, but do not recommend it'?. For one thing,
I’ve read that it includes greater coverage of Ada Byron’s mother than
of Ada herself. For another, Dorothy Stein, in defending the publica-
tion of her own biography of Ada Byron so soon after Moore’s, says
in ther preface, “...a second biography within a decade, of a figure
whose achievement turns out not to deserve the recognition accorded
it, requires some justification. My study diverges from Mrs. Moore’s in
a number of ways. The areas she felt unable to explore— the mathe-
matical, the scientific, and the medical— are central to my treatment”.
A psychologist with a background in physics and computer science,
Stein is the only one of Ada’s biographers with the obvious creden-
tials to pass an informed judgment on Ada’s scientific prowess. And
her judgment is very negative.

The romantic myth of a pretty, young girl pioneering computer science
by writing the first ever computer program has proven far too strong
to be exploded by the iconoclastic Stein. According to the blurb on
the dust jacket, “Unlike recent writers on the Countess of Lovelace,
Joan Baum does justice both to Ada and to her genuine contribution
to the history of science”. Of course, an author cannot be blamed for
the hype on the dust jacket and Baum is no doubt innocent of the out
and out false assertion that “Ada was the first to see from mechanical
drawings that the machine, in theory, could be programmed”. “The
machine” in question is Babbage’s analytical engine and was designed
expressly for the purpose of being programmed. In any event, Baum
is a professor of English and her mathematical background is not
described. Approach this book with extreme caution, if at all.

19 The referee, whose comments themselves often display a great deal of respect for
authority, admonished me for this remark. However, in the real world, one must
decide whether or not to expend the effort necessary to consult one more reference.
In the present case, Stein’s credentials are impeccable, her writing convincing, and
her comments say to me that Moore’s book contains nothing of interest to me.
This suffices for me.
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Toole’s book consists of correspondence of Ada Byron “narrated and
edited” by a woman with a doctorate in education. The editing is
fine, but the narration suspect. At one point she describes as sound
a young Ada’s speculation on flying— by making herself a pair of
wings! I for one have seen enough film clips of men falling flat on their
faces after strapping on wings to question this evaluation of Ada’s
childhood daydreams. Approach with caution.

Louis L. Bucciarelli and Nancy Dworsky, Sophie Germain; An Essay in the
History of the Theory of Elasticity, D. Reidel Publishing Company, Dordrecht,
1980.

This is an excellent account of the strengths and weaknesses of a
talented mathematician who lacked the formal education of her con-
temporaries.

Sofya Kovalevskaya, A Russian Childhood, Springer-Verlag, New York, 1978.

Pelageya Kochina, Love and Mathematics: Sofya Kovalevskaya, Mir Publish-
ers, Moscow, 1985. (Russian original: 1981.)

Ann Hibler Koblitz, A Convergence of Lives; Sofia Kovalevskaia: Scientist,
Writer, Revolutionary, Birkhauser, Boston, 1983.

Roger Cooke, The Mathematics of Sonya Kovalevskaya, Springer-Verlag, New
York, 1984.

Before Emmy Noether, Sofia Kovalevskaya was the greatest woman
mathematician who had ever lived. She was famous in her day in a
way unusual for scientists. A Russian Childhood is a modern transla-
tion by Beatrice Stillman of an autobiographical account of her youth
first published in 1889 in Swedish in the guise of a novel and in the
same year in Russian. Over the next several years it was translated
into French, German, Dutch, Danish, Polish, Czech, and Japanese.
Two translations into English appeared in 1895, both published in
New York, one by The Century Company and one by Macmillan and
Company. Each of these volumes also included its own translation of
Charlotte Mittag-Leffler’s biography of her. The original translations
are described by the new translator as being “riddled with errors”,
which explains the need for the new edition, which also includes a
short autobiographical sketch completing Kovalevskaya’s life story and
a short account of her work by Kochina, to whom, incidentally, the
book is dedicated.

The volumes by Kochina and Koblitz are scholarly works. Kochina
was head of the section of mathematical methods at the Institute of
Problems of Mechanics of the Soviet Academy of Sciences and is also
known for her work in the history of mathematics. Koblitz’s areas
of expertise are the history of science, Russian intellectual history,
and women in science. Both women are peculiarly qualified to write
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a biography of Kovalevskaya. Kochina’s book actually includes some
mathematics.

Cooke’s book discusses Kovalevskaya’s mathematical work in detail,
placing it in historical context. He includes biographical information
as well. This book is quite technical and not for the weak at heart.

Auguste Dick, Emmy Noether, 1882 - 1935, Birkhéduser, Boston, 1981.

This is a short biography of the greatest woman mathematician to
date. It includes three obituaries by such mathematical notables as
B.L. van der Waerden, Hermann Weyl, and P.S. Alexandrov.

Tony Morrison, The Mystery of the Nasca Lines, Nonesuch Expeditions Ltd.,
Woodbridge (Suffolk), 1987.

The author is an English man and not the African American poetess
(Tons). The Nasca Lines are lines laid out by prehistoric Indians on a
high, dry plateau in Peru. The book has much information on these
lines and Maria Reiche’s studies of them, as well as biographical in-
formation on Reiche. Reiche studied mathematics in Germany before
moving to Peru and making a study of the lines her life’s work. The
book has lots of photographs.

The Nasca Lines and Maria Reiche have been the subjects of televised
science specials. According to these, her specific astronomical interpre-
tations of the lines are in dispute, but her demonstrations of the utterly
simple geometric constructions that can be used to draw the figures
accompanying the lines obviate the need to assume them the work of
ancient astronauts a la Erich von Déaniken. I don’t recall this being in
the book, which I found at a local library.

Constance Reid, Julia; A Life in Mathematics, Mathematical Association of
America, 1996.

This is a very pleasant little volume on the life and work of Julia
Robinson. It contains an “autobiography” actually written by Robin-
son’s sister Constance Reid, as well as three articles on her math-
ematical work written by her friend Lisl Gaal and her friends and
collaborators Martin Davis and Yuri Matijasevich.

Constance Reid has written a number of popular biographies of mathe-
maticians. She is not a mathematician herself, but had access to math-
ematicians, in particular, Julia Robinson and her husband Rapheel.

12 Miscellaneous Topics

F.N. David, Games, Gods and Gambling; A History of Probability and Statis-
tical Ideas, Dover.

Jacob Klein, Greek Mathematical Thought and the Origin of Algebra, Dover.
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I haven’t seen these books which are listed on Dover’s website.

Petr Beckmann, A History of w, Golem Press, 1971.

Lennart Berggren, Jonathan Borwein, and Peter Borwein, Pi: A Source Book,
Springer-Verlag, New York, 1997.

This is a delightful book on 7, covering everything from early esti-
mates to the attempt by the Indiana legislature to pass a law making
the number rational. The book has been republished by St. Martin’s
Press and is currently in print in a paperback edition by St. Martin’s.
As the title says, the book by Berggren et al. is a source book, con-
sisting of a broad selection of papers on 7 of varying levels of diffi-
culty. The book is not annotated, several papers in Latin, German
and French are untranslated, some of the small print is illegible (too
muddy in Lindemann’s paper on the transcendence of 7 and too faint
in Weierstrass’s simplification), and the reader is left to his or her own
devices. Nonetheless, there is plenty of material accessible to most stu-
dents. The book is currently in its third (2004) edition. There are other
books on 7, as well as books on e, the golden ratio, and ¢, but these
books are particularly worthy of one’s attention.

Elisha S. Loomis, The Pythagorean Proposition. Its Demonstrations Analyzed
and Classified and Bibliography of Sources for Data of the Four Kinds of
“Proofs”, 2nd. ed., Edwards Brothers, Ann Arbor, 1940.

Originally published in 1927, the book received the endorsement of
the National Council of Teachers of Mathematics when it published
a reprint in 1972. I've not seen the book, and paraphrase my friend
Eckart Menzler-Trott: 370 proofs are analysed in terms of being alge-
braic (109), geometric (255), quaternionic (4), or dynamic (2). He jok-
ingly states that it is the Holy Book of esoteric Pythagoreans, having
got the book through a religious web site. Indeed, I myself purchased
a couple of biographies of Pythagoras at a religious bookstore, and
not at a scientific bookseller’s.

13 Special Mention

Anon, ed., Historical Topics for the Mathematics Classroom, National Council
of Teachers of Mathematics, Washington, D.C., 1969.

This is a collection of chapters on various topics (numbers, compu-
tation, geometry, etc. up to and including calculus) with historical
information on various aspects of these topics. The discussions do not
include a lot of mathematical detail (e.g., it gives the definition and
graph of the quadratrix, but does not derive the equations and show
how to square the circle with it). Nonetheless, if one is interested in
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using history in the classroom, it is a good place to start looking for
ideas on just how to do so.

Ludwig Darmsteedter, Handbuch zur Geschichte der Naturwissenschaften und
der Technik, 2nd enlarged edition, Springer-Verlag, Berlin, 1908.

Claire L. Parkinson, Breakthroughs; A Chronology of Great Achievements in
Science and Mathematics 1200 - 1930, GK Hall and Company, Boston, 1985.

Darmsteedter’s book is a carefully researched 1070 page chronology of
all of science up to 1908. It exists in an authorised reprint by Kraus
Reprint Co., Millwood, NY, 1978, and thus ought to be in any re-
spectable American university library.

Parkinson’s book is a modern replacement for Darmsteedter’s. It
brings one a bit more up to date, but starts a lot later. Parkinson com-
piled her dates from more secondary sources than did Darmstaedter,
and her book is probably best viewed more as a popularisation than
as a scholarly reference work. On the other hand, her book does have
an extensive bibliography, which Darmsteedter’s does not. Moreover,
neither book is illustrated and they ought not to be confused with
some more recent, coffee table publications on the subject.

Chronologies are not all that useful, a fact possibly first made manifest
by the failure of Darmstaedter’s massive effort to have had an effect on the
history of science?’. One limitation of the usefulness of such a volume is the
breadth of coverage for a fixed number of pages: more exhaustive coverage
means shorter entries. For example, we read in Darmsteedter that in 1872
Georg Cantor founded “the mathematical theory of manifolds (theory of point
sets)”, i.e. Cantor founded set theory in 1872. What does this mean? Is this
when Cantor started his studies of set theory, when he published his first
paper on the subject, a date by which he had most of the elements of the
theory in place, or...?7 Similarly, we read that in 250 A.D., “Diophantus of
Alexandria freed arithmetic from the bonds of geometry and founded a new
arithmetic and algebra on the Egyptian model”. What does this mean? How
does the algebra founded by Diophantus compare with the geometric algebra
of Euclid, the later algebra of al-Khwarezmi, or the “letter calculus”?! by
Viete in 15807 To answer these questions, one must go elsewhere.

Another problem concerns events we do not have the exact dates of. In
compiling a chronology, does one include only those events one can date ex-
actly, or does one give best guesses for the uncertain ones? Darmstaedter has
done the latter, as evidenced by his dating of Diophantus at 250 AD. Unfortu-
nately, he did not write “c. 250” to indicate this to be only an approximation.
Is the year 1872 cited for Cantor an exact date or an estimate, perhaps a

20 Helge Krogh, An Introduction to the Historiography of Science, Cambridge
University Press, Cambridge, 1987, pp. 17 and 175.
21 Te., the use of letters as variables.
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midpoint in Cantor’s career? Once again one has to look elsewhere for the
answer.

And, of course, a problem with Darmstaedter or any older reference is that
later research may allow us to place questionably dated events more exactly
in time. It may uncover events that were unknown and thus left out of the
chronology. Darmstaedter himself cites the 1906 discovery of The Method of
Archimedes by J.L. Heiberg, a result that Darmstaedter could not have in-
cluded in his first edition. And such research may correct other errors: Darm-
steedter cites Euclid of Megara as the author of the FElements, a common
misidentification we discussed in Chapter 1.

Ivor Grattan-Guinness, ed., Companion Encyclopedia of the History and Phi-
losophy of the Mathematical Sciences, 2 vols., Routledge, London and New
York, 1992.

With over 1700 pages not counting the end matter, these two volumes
give a very broad but shallow coverage of the whole of mathematics.
It has a useful annotated bibliography as well as a chronology.

Augustus de Morgan, A Budget of Paradozes, 2 vols., 2nd ed., Open Court
Publishing Company, Chicago and London, 1915.

The first edition was published in 1872, edited by de Morgan’s widow
Sophia. The second edition was edited by David Eugene Smith. Some
later printings of the second edition appeared unter the title An En-
cyclopedia of Eccentrics.

The book is an amazing bit of odds and ends— anecdotes, opinion
pieces, and even short reviews, some dealing with mathematical sub-
jects and some not. Smith’s description of the work as a “curious
medley” and reference to its “delicious satire” sum it up nicely.

14 Philately

In connexion with the final chapter of this book, I cite a few references on
mathematics and science on stamps.

W.J. Bishop and N.M. Matheson, Medicine and Science in Postage Stamps,
Harvey and Blythe Ltd., London, 1948.

This slim volume written by a librarian of a medical museum and a
surgeon contains a short 16 page essay, 32 pages of plates sporting 3 to
6 stamps each, a 3 page bibliography, and 23 pages of mini-biographies
of the physicians and scientists depicted on the stamps, together with
years of issue and face values of the stamps.
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R.W. Truman, Science Stamps, American Topical Association, Milwaukee
(Wisconsin), 1975.

This is a rambling account of science on stamps with 7 pages densely
covered with images of stamps. The text is divided into three parts, the
first being split into shorter chapters on Physicists, Chemistry, Nat-
ural History, Medicine, and Inventors; the second with special chap-
ters on The Curies, Louis Pasteur, Alexander von Humboldt, Albert
Schweitzer, and Leonardo da Vinci; and the third with chapters on
the stamps of Poland, France, Germany, Russia, and Italy. There are
also checklists of stamps by name, country, and scientific discipline.
These checklists give years of issue and catalogue numbers from the
American Scott postage stamp catalogue.

William L. Schaaf, Mathematics and Science; An Adventure in Postage
Stamps, National Council of Teachers of Mathematics, Reston (Virginia),
1978.

This is the earliest book in my collection to deal primarily with
mathematics. It has a narrative history of mathematics illustrated
by postage stamps, some reproduced in colour. This is supplemented
by two checklists, one by scientist and one by subject. The checklists
are based on the American catalogue.

Peter Schreiber, Die Mathematik und ihre Geschichte im Spiegel der Philatelie,
B.G. Teubner, Leipzig, 1980.

This slim East German paperback contains the customary short his-
tory of mathematics illustrated by 16 pages of not especially well
printed colour plates featuring about a dozen stamps each. Its check-
list is by country, but there is a name index that allows one to look
up an individual. The checklist is based on the East German Lip-
sius catalogue, which is quite rare. When I visited the library of the
American Philatelic Association some years ago, they didn’t have a
complete catalogue.

Robert L. Weber, Physics on Stamps, A. S. Barnes and Company, Inc., San
Diego, 1980.

This book concerns physics, not mathematics, but some of the stamps
are of mathematical interest. The book makes no attempt at complete
coverage. There is no checklist and the narrative is a sequence of
topical essays illustrated by postage stamps, all in black and white
despite the promise of colour on the blurb on the dust jacket.

Hans Wussing and Horst Remane, Wissenschaftsgeschichte en Miniature,
VEB Deutscher Verlag der Wissenschaften, Berlin, 1989

This very attractive volume consists of essays on the development of
science through the ages, each page illustrated with 4 to 6 stamps.
Waussing is both an historian and a philatelist.
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Robin J. Wilson, Stamping Through Mathematics, Springer-Verlag, New York,
2001.

This slim volume consists of a collection of short 1 page essays on
various topics in the history of mathematics, each illustrated by a
page of 6 to 8 beautiful oversize colour reproductions of appropriate
stamps.
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Foundations of Geometry

1 The Theorem of Pythagoras

It has been known for some time that the Pythagorean Theorem did not
originate with Pythagoras. He is credited, however, with having given the first
proof thereof— a credit not in serious doubt as far as Western mathematics
is concerned!. There are other early proofs from China and India, with the
Chinese claiming priority by a period of time that is not determined too
exactly by the references at hand.? But, except for ethnic bragging rights—
and I am neither Greek nor Chinese nor Hindi— the earliest authorship is
unimportant. What I wish to discuss is not the original discoverer of the
proof, but the original proof and form of the result.

I have on the shelves of my library a curious volume by a Dr. H.A. Naber,
a secondary school teacher in Hoorn (Netherlands), published in 1908 under

L To be sure, there is room for doubt. That Pythagoras was the European author
of the theorem is a tradition, not a documented fact. However, the tradition is
strong and, there being no arguable alternative hypothesis, one simply accepts it.
For example, Mikami’s Mathematics in China and Japan places Pythagoras “six
long centuries” after the proof given in the Chou-pei Suan-ching, while Joseph’s
The Crest of the Peacock says, “While it is no longer believed that this trea-
tise predates Pythagoras by five centuries, it is still thought likely that it was
composed before the time of the Greek mathematician”. Li and Du’s Chinese
Mathematics; A Concise History does not commit to a pre-Pythagorean date for
the treatment of the Pythagorean Theorem in the Nine Chapters, while Joseph
Dauben, in a Festschrift for Hans Wussing (full citation in footnote 8 in the
Bibliography) dates the composition to no later than 1100 B.C. and possibly as
early as the 27th century. The problem is that in 213 B.C., the emperor decreed
all books burned and all scholars buried. The emperor did not survive long and
searches were made and unfound classics rewritten and one cannot be certain of
which passages might have included newer material.

N
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the lengthy and, to modern tastes, pretentious title,

Das
Theorem des Pythagoras
wiederhergestellt in seiner
urspringlichen Form und betrachtet als
Grundlage der ganzen

Pythagoreanischen Philosophie.

This translates to The Theorem of Pythagoras, Restored to Its Original Form
and Considered as the Foundation of the Entire Pythagorean Philosophy. The
book is a mixture of mathematics and unbridled speculation. But it is inter-
esting, and it does raise an interesting question: what is the original form of
the Pythagorean Theorem?

Naber cites the existence of 70 proofs of the Pythagorean Theorem, and
considerably more are catalogued in the book by Loomis cited in the bib-
liograpy. But for many centuries schoolboys in the West had to struggle
with Euclid’s proof and, unless they became mathematicians, would never
see another. While Edna St. Vincent Millay may rhapsodise on how “Euclid
alone has looked on Beauty bare”, keener critics have had less kind things to
say. Naber offers a few choice quotations, including Arthur Schopenhauer in
The World as Will and Representation: Des Eukleides stelzbeiniger, ja hin-
terlistiger Beweis verldsst uns beim Warum. (Very roughly: Euclid’s stiltwalk-
ing, indeed cunning proof leaves us wondering why.) I'm not sure if Schopen-
hauer’s “why” is asking why the result is true, or why Euclid gave the proof
that he did. For, Euclid’s proof is surely one of the most complex and difficult
ones on record, and it can’t be said to yield much insight.

Let us briefly review this proof, which is essentially what Book I of the
Elements builds up to. Euclid begins Book I with some basics— some congru-
ence properties of triangles and basic constructions (e.g., angle bisections)—
and then gets into the theory of parallel lines eventually proving Proposition
36: Parallelograms which are on equal bases and in the same parallel lines are
equal to one another. In other words, for parallelograms, equal base and equal
height mean equal area. He then repeats the exercise to show the same to hold
for triangles. After showing that one can construct a square on a given side,
he is now ready to prove the Pythagorean Theorem.

Sketch of Fuclid’s Proof. Let ABC' be a right triangle, with the right angle
at C' and draw the figure so the triangle is resting on the hypotenuse. Put
squares on each of the sides and drop the perpendicular from C' to the far
side of the opposite square as in Figure 1. Draw the lines connecting C' to the
vertex D and B to the vertex I.

The area of triangle CAD is the same as that of ADK since they share
the base AD and are both trapped between the parallels AD and CJ. Thus
CAD is half the area of ADJK. Similarly, I AB is half the area of ACHI.



1 The Theorem of Pythagoras 43

But it turns out that TAB and CAD
are congruent: A and CA are sides
of a square, whence equal. The same H
holds of AB and AD. Finally, the an- C F
gles between these corresponding sides
are each the sum of a right angle
and ZC'AB; thus they are also equal. A
Now we are just about finished because
ADJK has area double that of CAD,
which is double that of TAB, which is
the area of ACHI. In a similar man- D J
ner one sees KJEB to equal CBFG, .
whence the area of ADEB is the sum Figure 1

of CBFG and ACHI. O
Euclid’s proof is nice in that it does show how the areas of the small

squares fit into the large square— but less complicated proofs do the same,
albeit without such simple regions. Joseph Dauben?® presents the Chinese proof
reproduced in Figure 2, below. This is a simple dissection proof whereby one
cuts the large inscribed square up and reassembles it to make the two smaller
squares. Subtractive proofs also exist. Naber cites the Dutch writer Multatuli
(real name: Douwes Dekker) for what the latter declared to be the simplest
possible proof and which I reproduce as Figure 3, below.

G

7777777

*

Figure 2 B Figure 3

Naber also notes that this proof was known to the Hindu mathematicians. The
most famous Indian proof, however, has got to be that of Bhaskara, which I
reproduce in full in Figure 4.

Behold!

Figure 4
3 Cf. footnote 8 of the Bibliography. Cf. also note 2, above.
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Nowadays we add the explanation that, if a, b are the legs of the right triangle,
with b the shorter, and ¢ the hypotenuse, the first half of the figure is ¢? =
4 (3ab) 4 (a —b)? and the right half is 2ab+ (a — b)?, whence equal to ¢?. But
it is also equal to a? + b?, as can be seen by extending the leftmost vertical
side of the small square downward.

A final variant is the geometric form of comparing (a + b)? with ¢ as in

Figure 5.

Figure 5

With all these simple proofs, the question to ask is why Euclid gave the
proof that he did. Thomas Heath, in his definitively annotated edition of the
Elements, suggests that Euclid may have given a correct version of an earlier
Pythagorean proof that was invalidated by the discovery of irrational numbers.
Arthur Gittleman’s textbook* on the history of mathematics elaborates on
this and, since the point is not made in most other textbooks, I repeat it here.

Reconstructed Pythagorean Proof of the Pythagorean Theorem. Referring
to Figure 1, let whole numbers mq, mo, m3, n1,ny, ng be found so that

AC my BC _ma AB mg

E_nl’ M_TLQ’ E_n@,'

Letting n be the common denominator, and writing m;/n; = k;/n, we see
that we can find a common unit of measure by dividing AK into n equal
parts. Write the integral lengths of these lines in terms of this unit as follows:

a=BC=ky, b=AC=k, c=AB=ks, AK=n, KB=c—n.

The line CK subdivides the triangle ABC' into triangles similar to itself:
ABC is similar to ACK and CBK. To see the first, note that

/CAB = /KAC
since they physically coincide. Also,
LACB = ZAKC,

since they are right angles. The remaining angles must also be equal and
similarity is established. But then

4 Arthur Gittleman, History of Mathematics, Merrill Publishing Company, 1975.
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AC AB . b ¢
Ak~ A0 LTy
These are ratios of whole numbers, whence they can be multiplied to yield
b? = nc, i.e. the area of the square ACHI equals that of the rectangle ADJK
as before.
Similarly, CBFG equals KJEB and a® + b® = nc+ (¢ — n)c = % O
This proof is a bit more memorable than Euclid’s and today, with our
willingness to multiply and divide arbitrary real numbers, the proof is valid
as soon as we remove the step yielding integers. We just set

a=BC, b=AC, c=AB, d=AK, c—d=KB,

cite the similarity of the triangles, and conclude

whence b? = cd, a®> = ¢(c — d), and the areas of the two rectangular pieces of
the large square are those of the corresponding small squares.

Depending as it does on the concept of similarity, to present the proof in
this manner, Euclid would first have to develop the theory of proportions and
then the theory of similar triangles. The theory of proportions, however, is
much more abstract than anything in the first book of the Elements and, like
the use of the axiom of choice today, there is a premium on its avoidance.

Whatever the reason or configuration of reasons, Euclid chose to give the
intricate but elementary proof he gave and that is that.

Euclid followed his proof of the Pythagorean Theorem with a proof of
its converse: If in a triangle the square on one of the sides is equal to the
squares on the remaining two sides of the triangle, the angle contained by
the remaining two sides of the triangle is right. The proof is a fine example of
minimalism. It establishes what is needed and no more. One starts with ABC,
supposing the square on AB being the sum of the squares on AC' and BC,
and draws a line from C perpendicular to BC' to a point D equal in distance
to AC as in Figure 6. Because AC =
DC and CB = CB, two sides of the
triangles ABC and DBC are equal. B
Now the square on BD is the sum of
the squares on BC and CD by the
Pythagorean Theorem and the square
on AB is the sum of the squares on
C A and BC by assumption, whence the D 1
square on BD equals the square on AB. '

But then BD equals AB and the tri- Figure 6
angles ABC and DBC are congruent,
whence ZACB is a right angle.
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Later, in Propositions 12 and 13 of Book II, he generalises both the
Pythagorean Theorem and its converse to an arbitrary triangle by provid-
ing error terms in what we now recognise as geometric forms of the Law of
Cosines.

In Book VI, Euclid offers another generalisation of the Pythagorean The-
orem in Proposition 31: In right-angled triangles the figure on the side sub-
tending the right angle is equal to the similar and similarly described figures
on the sides containing the right angle. The proof of this is not easy to follow
because FEuclid offers a curious circumlocution involving things being in “du-
plicate ratio”. Going into this proof he has Proposition VI-20 at his disposal,
which we may restate as follows: Let Py, Py be similar polygonal figures with
sides s1, 8o corresponding under the similarity. Then Py is to Py as the square
on side sy is to the square on side ss. In other words, the ratio of the area of
Py to P; is the same as the ratio of the squares of the lengths of s; and ss.

Modulo a change of notation, C
Fuclid draws the figure on the
right, where C'D is perpendicular

to AB and «, 3, denote the ar- i) @
eas of the similar polygons. Now,
by VI-20, D
A B

B _AC* a _ BC? 7

v AB?2’ ~y  AB?’
whence Figure 7

a+ 5  BC?+ AC?
5y - AB2 (1)

By the same token,
ACD AC? CBD B BC?
ABC ~ AB?" ABC  AB?

and
ACD+CBD a+f3

ABC vy

But ACD+CBD = ABC, whence 1 = QT"’B and v = a+ . But this is VI-31
and we are finished.

The Pythagorean Theorem is obviously a special case of this theorem
and, assuming the results it depended on did not depend on the Pythagorean
Theorem itself, we have another proof of the latter. Alternatively, we can
avoid the last step in the proof by appealing to the Pythagorean Theorem
right after proving (1). From the assumption AB? = AC? 4+ BC?, one goes
from (1) to O“Tw:ltovza—i—ﬁ.

And this brings us back to Naber and his hunt for the theorem in its
original form. According to him, we know the Theorem is valid for any sim-
ilar polygons constructed on the sides of the right triangle. We also know
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that squares will yield no insight (else why would there be over 70 proofs?).
Therefore let us place similar triangles on the sides instead of squares. In
fact, let them be similar to ABC itself as in Figure 8, below. But now he re-
calls Euclid’s Proposition VI-8 asserting the triangles we’ve been considering
all along— the ones obtained by dropping the perpendicular from C to AB—
are similar to ABC®. Thus he sees as the urform of the Pythagorean Theorem
the equation of Figure 9.

B B
ABC =ADC+CDB
E ¢ D
C A
c A
Figure 8 F Figure 9

It may or may not take a moment’s thought to see that the desired equation
AGB = CEB+ AFC of Figure 8 is the same as the equation of Figure 9, but
it is: triangle AGB is just the reflexion across AB of triangle ACB of Figure
9, CEB the reflexion across BC' of CDB, and AFC the reflexion across AC
of ADC.

So, is Naber right? Is Figure 9 the wrform of the Pythagorean Theo-
rem, and, if so, what about Figure 10, below? In fact, can’t we generalise
this further by dropping the requirement that
ZACB be a right angle? Why the right angles at B
C and D in Figure 97 The reason is that there are D
two components to the proof of the Pythagorean
Theorem as represented in Figure 9 and only one is

present in Figure 10. First, of course, is the instance, C A
ABC = ADC + CDB, of the axiom asserting the
whole is equal to the sum of its parts. Second, how- Figure 10

ever, is the requirement that the polygons placed on

the sides of the triangles be similar— and this clearly is not the case for the
triangles that would be obtained from Figure 10 by reflecting AC'D across
AC, BCD across BC, and ACB across AB. That it is the case for the tri-
angles of Figure 8 resulting from Figure 9 follows from Euclid’s Proposition
VI-8.

But consider this: however immediate to the senses Figure 9 may be and
however quickly we conclude AGB = AFC'+CEB in Figure 8, this is still not
the Pythagorean Theorem. Figure 9 is only a viable candidate for recognition
as the original® form if the reduction of the Pythagorean Theorem to Figure

® We actually proved this in the course of reconstructing the Pythagorean proof,
above.

6 Speaking strictly historically, this is bunk: it often happens that the first formu-
lation and proof of a result are over-complicated. But I don’t think Naber was
seriously interested in the historical accident, but was, rather, interested in find-
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9 is relatively simple. The proof given by Euclid can be replaced by a simpler
one as follows.

Proof of the Pythagorean Theorem by appeal to Figure 9. Again using
Euclid’s VI-8, we can conclude from
Figure 9 that the exterior triangles of
Figure 8 are similar and satisfy AGB =
AFC + CEB. Using the fact (proven
in Book I and used in Euclid’s proof
of I-47) that triangles of equal height
and base have equal areas, we can re-
place the external triangle by right tri-
angles of equal area as in Figure 11. The Figure 11 F !
preservation of the area means

B B

C A

AG'B = BE'C + CF'A. (2)
The triangles are still similar and we have

AB BC CA
AG' ~ BE' ~ CF"

Call this common ratio A.

Each triangle is half of the rectangle of which the triangle’s hypotenuse
is the diagonal. Replacing the triangles by these rectangles we get something
like Figure 7, rotated. The common ratio A is the ratio of the lengths of these
rectangles to their widths, and is the ratio of the areas of the squares on the
lengths to the areas of the rectangles themselves:

AB? B BC? B CA? )
AB-AG'  BC-BE' CA-CF 7
Thus,
AB? = \-AB- AG'
= A[BC - BE' + CA - CF’], (essentially) by (2)
=\-BC-BE +\-CA-CF'
= BC? + CA?,
as was to be shown. O

This is certainly simpler and more memorable than Euclid’s proof of I-
47. But it does depend heavily on similarity, which, by Euclids’s proof, the
Theorem does not.

ing the proof that lies in Plato’s world of forms, the one which the 70 proofs he
cites are mere human approximations to. If we accept the divinity of Pythagoras,
who was the Hyperborean Apollo and had a golden leg to prove it, then it is
plausible that the first proof that occurred to Him was this platonic ideal of a
proof. But such speculation is really taking us off the deep end, so to speak.
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It is easy to dismiss Naber out of hand: his great insight is pretty much
just Euclid’s proof of VI-31, he inflates its importance tremendously, and he
surrounds it with everything but the kitchen sink— Pythagorean philosophy,
the golden ratio, the great pyramid, etc., etc. Against these most inauspicious
trappings there is, however, the fact that this great insight of his is genuinely
insightful. No less a light than Georg Pdlya’ also saw fit to comment on
the proof of VI-31. His remarks on it, however, were a bit more measured:
instead of reading philosophical significance into the proof, he saw in it a useful
example for mathematical psedagogy. He viewed proving the Pythagorean
Theorem as a problem to be solved. The first step in the solution is to realise
that the square shape of the figures erected on the sides is irrelevant. What
matters is the similarity of the figures. Thus, one generalises the problem.
The next step is the realisation that one can prove the general result if one
can prove it for any shape, or similarity class if you will. Finally, comes the
realisation that, a la Figure 9, we already know the result for one such set of
similar triangles.

2 The Discovery of Irrational Numbers

The most amazing event in the history of Greek mathematics has to have
been the discovery of irrational numbers. This was not merely a fact about
real numbers, which didn’t exist yet. It was a blow to Pythagorean philosophy,
one of the main tenets of which was that all was number and all relations
were thus ratios. And it was a genuine foundational crisis: the discovery of
irrational numbers invalidated mathematical proofs. More than that, it left
open the question of what one even meant by proportion and similarity.

The discovery of irrationals is wrapped in mystery. We don’t know who
discovered them. We don’t know exactly when they were discovered. And we
don’t even know which was the first number recognised to be irrational. Other
than the never disputed assertion that the Pythagoreans, who had based so
much of their mathematics on the assumption of rationality, discovered the
existence of irrational numbers and the belief that they tried to keep the
discovery to themselves for a while, all else is legend. And quite a legend it is.

The story goes that Pythagoras was walking down the street listening to
the melodious tones coming from the local blacksmith shop. After consult-
ing with the smith, he went home and experimented on strings of various
lengths and discovered the most harmonious sounds arose when he plucked
strings whose lengths stood in simple ratios to one another. Thus were the
seven-stringed lyre and the musical scale invented. Thus too, apparently, was

7 George Polya, “Generalization, specialization, analogy”, American Mathemati-
cal Monthly 55 (1948), pp. 241 - 243, and again in Induction and Analogy in
Mathematics, Princeton University Press, Princeton, 1954. Pélya was a compe-
tent researcher whose interests turned to paedagogy. He is not one to be dismissed
lightly.
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the foundation of Pythagorean mathematics laid. In early Pythagorean phi-
losophy, all things were numbers and all relations between things were thus
numerical ratios, like the relations between harmonious notes on the scale.

Aristotle mentioned that the late Pythagorean Eurytus would determine
the number of an object (e.g., a man) by making a picture of the object with
pebbles and counting the pebbles. Theophrastus confirms this and Alexander
of Aphrodisias expands on it: Eurytus would say, “Suppose the number of
man is 2507, and illustrate this by smearing plaster on the wall and using 250
pebbles to outline the figure of a man®.

Specific numbers had their own special properties: 1 generated all other
numbers and hence was the number of reason; 2 was the number of opinion—
hence the feminine; 3, being composed of unity (1) and diversity (2), was the
number of harmony— incidentally (or, therefore) it represented the male; 4
represented the squaring of accounts and so was the number of justice; and
5 = 2 + 3 was the number of marriage. When the Pythagoreans said all was
number, they evidently meant it.

And again, if all is number, all relations are ratios of numbers. What one
is to conclude from the observation that the relation between man and woman
is 3 to 2 is something I would not care to hazard a guess on. In mathematics,
however, one can see where this would lead. The Pythagoreans gave primacy to
arithmetic, in which field they developed a full theory of proportions, proving
things like

a c . a b

b d ¢ d
And in geometry they applied proportions to questions of similarity. The
most fundamental geometric consequence of the Pythagorean belief that all
was number would be that any two line segments stood in rational relation to
one another and hence could be measured by a common unit, i.e. they were
commensurable. If, for example, segment AB stood in relation 7 : 3 to segment
CD, then a segment equalling 1/7th of AB was the same as a third of C'D,
whence it would serve as a common unit to measure AB and C'D by.

The Pythagoreans were not a school of mathematicians in the modern
sense. They were a cult and initially were very secretive. We don’t know
any of their proofs and can only guess. The natural guess is that, as in the
reconstructed proof of the Pythagorean Theorem given in the last section,
they freely assumed the existence of a common measure in their geometric
proofs. As we saw, there are other proofs of the Pythagorean Theorem that
can be given that do not depend on this commensurability assumption. A
point that is brought out nicely in Arthur Gittleman’s textbook?, but ignored
by others, is that this is not always the case. The example he cites is the
following (Euclid VI-1).

8 Edward Maziarz and Thomas Greenwood, Greek Mathematical Philosophy, Fred-
erick Ungar Publishing Co., New York, 1968, p. 16
9 Cf. footnote 4.
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2.1 Theorem. Two triangles of equal height are to each other as their bases.

Numerically stated: the ratio of the areas of two triangles of equal height
is the ratio of the lengths of their bases!'?

Unlike the Pythagorean Theorem, this Theorem cannot be given a different
proof without some new aussumptlons11

Let us consider the proof of Theorem 2.1 assuming the axiom of com-
mensurability. We may assume the special case (Euclid 1-37) which is proven
without appeal to commensurability or proportions:

2.2 Lemma. Two triangles of equal height and equal base are equal.

That is: triangles of equal heights and equal bases have equal areas.
Proof of Theorem 2.1. Imagine the two triangles as drawn in Figure 12.

C F
Figure 12
Assume AB/DE = m/n for some whole numbers m,n. Divide AB into m

equal subintervals and DE into n such. Since AB/m = DE/n, the resulting
tiny triangles (Cf. Figure 13.) have equal bases.

AN

Figure 13
Hence they are of equal areas. Thus

10 The Euclidean tradition is not to use mensuration formulee like
1
Area = 5 X Base x Height,

because the Greeks were dealing with magnitudes instead of numbers. One histo-
rian told me the best way to view magnitudes is as vectors over the rationals—
one can add them and multiply them by positive rational numbers, but one cannot
multiply or divide them by other magnitudes.

This is not like the independence of the parallel postulate, where one gives a
model of geometry in which the postulate is false. In the present case, until one
explains what the ratio of two incommensurable line segments is, the statement
of the theorem is rendered meaningless once such segments are shown to exist.

11



52 3 Foundations of Geometry
Area(ABC) = m x (Area(AB,C)) = m x (Area(DELF))

=m x (1 X Area(DEF)) )
n

and ABC/DEF =m/n = AB/DE. O

The discovery of irrational numbers doesn’t completely invalidate the proof
given; it merely narrows its range of applicability: the proof works for pairs
of triangles of equal height whose bases stand in some rational proportion.
For other triangles, however, the statement is not only unproven but mean-
ingless'?. Only after Eudoxus explained what is meant by the ratio of incom-
mensurable lines would the full result become an open problem amenable to
solution. But this discussion belongs to the next section; for now we have the
discovery of irrationals to discuss.

The Pythagoreans flourished from c. 600 to c¢. 400 B.C. Some time in that
period they discovered that not every pair of line segments stood in rational
proportion to one another. Exactly who made the discovery and how he did
it is unknown. Whether it was owing to their general penchant for secrecy,
or was more directly related to the devastating blow the discovery dealt to
their mathematics is not known, but they tried to keep the result secret and
vengeance was taken on Hippassus'? for his having divulged the secret when it
finally got out. What is known is: i. the Pythagoreans discovered the irrational
numbers; ii. Plato reports in the dialogue Theetetus that Theodorus proved
the irrationality of the square roots of 3, 5, and “other examples” up to 17,
suggesting the irrationality of v/2 already known by Plato’s time; and iii.
Aristotle alludes to a proof of the irrationality of v/2 in his Prior Analytics.

2.3 Theorem. /2 is irrational.

The proof that Aristotle hints at is assumed to be the familiar one: Suppose
V2 = p/q is rational, with p/q reduced to lowest terms. Then 2¢> = p? and p
must be even, say p = 2r. Then 2¢* = (2r)? = 472, whence ¢ = 2r2. Thus ¢
is even, contradicting the assumption that p/q is reduced.

By the Pythagorean Theorem, v/2 is the length of the diagonal of the
square of side 1, and Theorem 2.3 thus gives the side and diagonal of a square
as incommensurable line segments.

There is another, in some ways more natural, candidate for mankind’s
first irrational number. This is the golden ratio, revered for its self-duplication
property— which property ensures its irrationality. Also known as the divine
proportion, the golden ratio ¢ is the ratio of the length to width'* of the sides

12 Cf. footnote 11.

13 Tt is not clear who meted out justice to Hippassus— his fellow Pythagoreans or
the gods. I found four distinct stories in the history books.

1 The letter “¢” is now standard for the golden ratio. What is not quite standard
is the decision as to whether it represents the ratio of the long to short sides or
the short to long ones. Thus, what I call ¢ another would call ¢~ *.
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of the rectangle ABC'D of Figure 14 on the next page with the following
property. If one rotates a short side, say BC, until it lies evenly on the long
side and then deletes the resulting square, the rectangle AEF D left over is
similar to the original:

AB DA
BC ~ AE 3)
D F C
A E B
Figurely

Choosing the short side to be 1, so that the long side AB is ¢ itself, this
self-replication (3) reads
1
r__- 4
= ()
ie. 92 — ¢ —1 =0, whence
1+
0=

Since we do not allow negative lengths, this yields

145
2

=

¢

—=1.68... (5)

2.4 Theorem. ¢ is irrational.

Of course, this follows from the irrationality of v/5, which can be estab-
lished exactly as we established the irrationality of v/2. However, there is an
alternative proof that applies in these cases— and most naturally for ¢. Geo-
metrically, the proof runs as follows. Suppose ¢ were rational, i.e. AB and
BC are commensurable with

AB m

BC n’

Lay BC off AB and delete the square obtaining AEF D similar to the first
rectangle. One can now subtract AE from AD to obtain a smaller rectangle
still similar to the first. Obviously, this can go on forever. But, if AB and BC
are measured by the same unit, so is AE = AB — BC. And so are AD — AF
and all the sides of the successive rectangles. Eventually, however, one of these
will be shorter than the unit used to measure them. This is a contradiction,
whence AB and BC' are not commensurable.

I present the proof a bit more formally, as well as more arithmetically.

Proof of Theorem 2.4. Suppose ¢ were rational, i.e. suppose
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m
- 6
o=" ©
for some positive integers m > n. Now (4) tells us
m 1
no Z-1
ie. m n
—_—= . 7
no m-n @
By (5), we conclude
1l<m/n<2, (8)

from which we can further conclude
n<m<2n (9)

and
0<m—n<n. (10)

We now define two infinite sequences m;, n; (corresponding to the lengths
of the long and short sides of the (i + 1)-th rectangle in terms of the common
unit for AB and BC). Start with mg,ng being any pair of whole numbers
satisfying (6). Given m;,n; satisfying (6), define m; 1 = n;,nj+1 = m; — n;.
By (10), n;+1 is not 0 and we can divide m;41 by n;41. By (7),

mi+1 _ & _ (b
Ti+1 ng
I.e., the process can be iterated infinitely often.
But, (9) tells us
mip1 = ng < my,

while (10) yields
O<ni+1 =m; —n; < Nny.

Thus we have two infinite descending sequences,
mg > mi > ... and ng>mng > ...
of positive integers, which cannot be. a

2.5 Remark. One can avoid the appeal to infinite descent by stipulating m, n
to be a pair for which m or n is minimum satisfying (6) and then producing
n,m —n with n < m by (9) and m —n < n by (10) to get the contradiction.
Another approach is to assume m/n to be in lowest terms and apply (7) to
get m? — mn = n? and conclude that any prime divisor of n (respectively,
m) must be a prime divisor of m (respectively, n). This forces, for m/n in
lowest terms, m = n = 1, which choice does not yield ¢. In the 1950s, the
logician John Shepherdson proved that the irrationality of such numbers as
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V2 and ¢ cannot be proven without the use of some variant of mathematical
induction, be it the Method of Infinite Descent, the Least Number Principle,
or some consequence thereof such as the ability to reduce fractions to lowest
terms. That said, the three variants of the proof are worth noting. The appeal
to infinite descent most closely mirrors the geometric approach; the appeal to
the Least Number Principle clears away some of the grubbier details of the
infinite descent; and the appeal to reduced fractions would be most palatable
to students unfamiliar with induction.

One of the things making ¢ plausible as a candidate for the first irrational
number is the geometric intuition behind the proof. Another is the familiar-
ity of the Pythagoreans with the golden ratio. Indeed, they were intimately
familiar with it. One of the symbols of the Pythagorean brotherhood was the
pentagram or 5-pointed star which is obtained from the regular pentagon by
connecting alternate vertices of the latter by lines. When one does this, the
centre of the star is another pentagon, as in Figure 15, below.

Figure 15 Figure 16

The uncluttered pentagram with its encompassing pentagon (Figure 16) is
already fascinating to contemplate without the infinite series. It contains quite
a few sets of congruent and similar triangles, equalities, and, hidden amongst
its various proportions, more than one instance of ¢. There is such a wealth
of material here that it is easy to go astray in trying to demonstrate any of
these facts. It is thus not the sort of thing to try to present to class without
careful preparation'®. Thus, let me outline some of its features leading up to
the presence of ¢.

2.6 Lemma. The triangles ABC, BCD,CDE, DEA and EAB are congruent
1sosceles triangles.

Proof. By regularity, AB = BC = CD = DE = EA and LABC =
/BCD = /CDE = /DEA = /FAB. The familiar side-angle-side criterion
for congruence yields the congruences. Repeating the first equation, AB =
BC, shows ABC, and thus its congruent companions, to be isosceles. O

15 This is the voice of experience speaking.
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2.7 Corollary. The triangles ACD,BDE,CFEA,DAB, and EBC are con-
gruent isosceles triangles.

Proof. By Lemma 2.6 and the side-side-side criterion. O

2.8 Corollary. The triangles ABD', BCE',CDA’, DEB’ and EAC" are con-
gruent isosceles triangles.

Proof. Consider ABD' and BCE'.
/D'AB = /CAB = /DBC = /E'BC
by Lemma 2.6. But
/BCFE' = /BCA=/BAC = /CBD = /CBF'

by two applications of the Lemma. Similarly, /BAD’ = ZABD'. Thus the
triangles are isosceles with a common repeated angle. Moreover, the sides AB
and BC' between these angles are equal and we get congruence by appeal to
the angle-side-angle criterion. O

2.9 Corollary. The triangles AD'C', BE'D',CA'E',DB'A’, and EC'B’ are
congruent isosceles triangles.

Proof. The sides AD', AC', BE', BD', etc. are all equal by Corollary 2.8.
As to the angles, note that

/C'AD' = /DAC,/D'BE' = /ZEBD, etc.
whence we can appeal to Corollary 2.7 to conclude
LC0'AD' = /D'BE' = ...

Thus, the side-angle-side criterion applies. a
We haven’t exhausted all the congruent isosceles triangles in Figure 16.
To proceed further with them, however, we seem to need a little lemma. To
state it, let
a=/LABC, [=ABD', ~=/C'AD.

2.10 Lemma. v = (.

Proof. Note that triangles AD'C" and ACD, being isosceles with a shared
non-repeating angle, are similar, whence

/AD'C' = ZACD = B + 7.

But also,
LAD'B=m—2/ABD =1 — 28,

whence
7=LAD'C' + LAD'B=3+~vy+7—-28=~v+m—f3,

whence v = . O
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2.11 Corollary. i. The triangles ABE', BCA',CDB’, DEC’, and EAD’ are
congruent isosceles triangles.

i1. The triangles BAC',CBD', DCE’', EDA’, and AEB' are congruent isosce-
les triangles.

115. The triangles of assertions i and i are congruent to each other.

Proof. Note that

/AE'B=7—-/CE'B
=7n1—(r—28)=20

and
/ABE = ZABD' + /D'BE' = 3+~ =2p5.

Thus ABE’ is an isosceles triangle and, in particular,
AE' = AB. (11)

The angle calculation holds for each of the triangles in question, whence
they are all isosceles with repeated angle 23. Moreover, since AB = BC' =
etc., the repeated sides are all the same. a

2.12 Corollary. The triangles ACB', BDC',CED’', DAE’, and EBA’ are
congruent isosceles triangles and are congruent to the triangles of Lemma
2.6.

I leave the proof to the reader. There is plenty more to explore— the
parallelism of the lines AB and A’B’, or BC' and B’C’, etc.; the congruences
of parallelograms ABC B’ and others; and so on. The two facts needed beyond
Corollary 2.11 for our purposes are the following two results.

2.13 Corollary. The triangles of Corollaries 2.7, 2.9, and 2.11 are all simi-
lar.

2.14 Corollary. The pentagon A'B'C'D'E’ is regular.

Corollary 2.13 follows from the observation that these triangles all have
one angle equal to § and two equal to 23. As for Corollary 2.14, note that
the sides are equal to the bases of the congruent triangles of Corollary 2.9
and the interior angles (e.g. ZC'D'E’) equal corresponding angles (£/BD’A)
of the congruent triangles of Corollary 2.8. Hence the sides and angles of
A’B'C'D'E’ are equal.

I promised that we would find the golden ratio in this figure. It occurs
several times.

2.15 Theorem.
AC

1. — =

AB
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AB

i = )
!/
i, S = &
Proof. i. By Corollary 2.13, ABD and E'C'D are similar. Now,
AC  AD
4v 4l 1 .
AB ~ AB’ by Corollary 2.7
DB
- E/Cv Yy Sumilarity
__bEr
~AC - AF
AFE'
= AC _AE" by Corollary 2.11 or 2.12
AB
T A _ AR 11).
AC — AB’ by ( )

ii. Triangles ABD and AD'FE are similar by Corollary 2.13, whence

AB _AD _ AC
AD'  AE  AB’

[Alternatively, one can observe that /BD'A = /C'D'E’ = «, whence ABD’
is similar to AC'B and

AB _AC
AD'  AB’
iii. Observe
AB AD' ..
AD ~ AR _Ap VPt
AD’
~ap—ape
AD'
~DE 5

2.16 Corollary. A’D' = AD’.

Proof. Applying part i of the Theorem to the small pentagon A’B’'C'D'E’,
we see

A'D’
e "
But part iii tells us
AD'
pE
The equality follows. O

Assuming the Pythagoreans’ interest in the pentagram predates the dis-
covery of irrational numbers, they would have known all these facts about
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it. Assuming AB and AC' commensurable, one could go on to note that the
unit measuring AB and AC also measures AD' = AC — AB,A’D' = AD’,
and D'E’ = AB — AD’. That is, this unit also measures the correspond-
ing segments of A’B'C'D’'E’ and its inscribed pentagram. Hence it measures
everything in the next pentagram, etc. In this way one produces an infinite
sequence of smaller pentagons with sides all measured by a single common
unit, which is impossible.

Thus we see that, whether contemplating the golden rectangle itself or
delving into the deeper mysteries of the pentagram, the golden ratio ¢ could,
on assumption of its rationality, easily lead to the realisation that something
was wrong. The geometric representation of irrationality via the repeated
production of ever smaller similar figures is appealing. The importance the
Greeks attached to the golden ratio, as well as its multiple appearance in the
pentagram add weight to the argument that ¢ was the first number recognised
to be irrational. On the other hand, the primacy of arithmetic among the
Pythagoreans prior to the discovery, the utter simplicity of the argument,
and its mention in the earliest extant literature on the irrationals all support
the argument for /2 as the first irrational.

3 The Eudoxian Response

Strictly speaking, the last section should have been titled “The Discovery
of Incommensurables” rather than “The Discovery of Irrational Numbers”.
For, irrational numbers were not officially numbers in Greek mathematical
ontology. For that matter, neither were rational numbers. Rational numbers
were ratios, relations between whole numbers and, by extension, relations
between line segments. Ratio in geometry had an operational definition. If
one could use a segment to measure two other segments AB and C'D by and
the measures came out as 7 and 3, respectively, then the ratio of AD to C'D
was 7 to 3. If this unit were, say, a meter long and one replaced it by a ruler
10 centimeters long, the measures would now be 70 and 30— still a 7 to 3
ratio. But there is no such common measure for incommensurable segments,
such as the diagonal and the side of a square. This raises a fundamental
difficulty over and above the obvious invalidation of previously acceptable!®
proofs, possibly turning some accepted theorems into open problems, there
is now the problem that one doesn’t know what— if anything— the ratio of
incommensurable segments is.

The eventual Greek solution to the problem by Eudoxus, a contemporary
of Plato, would nowadays be recognised as a compromise, a stopgap that
solved the problem at hand but in no way addressed the truly fundamental
difficulty. This would finally be done in the 19th century by various means, in
one case by completing the Eudoxian solution.

16 T write “acceptable” instead of “accepted” because, of course, any specific state-
ment about this or that “Pythagorean” proof is only hypothetical reconstruction.
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The best way to explain the Eudoxian solution to the problem is to use
modern terminology. The main thing one wants to do with proportions is to
compare them. The comparisons are real numbers, comparison means deter-
mining equality or inequality, and we know how to do this for rational num-
bers. Eudoxus simply postulates the density of the rational numbers among
the possible ratios, defining, for two proportions /3 and ~/J,

v

% =3 iff for all positive integers m,n,
e e ang
n n 19
m o .. m 7
_ = — lﬁ _— = = and
n 0 n 0
n n §
iff for all positive integers m,n,

[mfB < na iff méd < ny and
mB =na iff md = ny and (12)
mpB > na iff méd > nvyl.

Eudoxus also added an axiom, now known as the Archimedean Aziom in
honour of Archimedes, who made liberal use of it: given any segment AB,
however large, and any segment C'D, however small, some multiple of CD
will be larger than AB.

Euclid repeats (12) as Definition V-5 in the Elements. He does not explic-
itly assume the Archimedean Axiom, preferring instead to define two mag-
nitudes to have a ratio if each magnitude is capable upon multiplication of
exceeding the other (Definition V-4). The Euclidean role of the Archimedean
Axiom is primarily to guarantee that magnitudes have ratios and is largely
unneeded by Euclid whose propositions largely concern magnitudes that are
assumed to have ratios.!” 8

The assumption that magnitudes have ratios comes in to play in another
manner.

17 “Largely” is not the same as “always”. Euclid implicitly assumes magnitudes to
have ratios in some of his proofs (e.g., V-8, VI-2). Thus, Definition V-4 is often
taken as asserting the Archimedean Axiom.

18 T note in reading Victor Katz’s textbook, there is another interpretation of Defi-
nition V-4: some types of magnitudes do not have ratios. He points to the angle
between the circumference of a circle and a tangent to the circle as an example
of a magnitude that has no ratio to, say, a rectangular angle. Of course, no 0
degree angle has such a ratio. Euclid did not consider this to be a 0 angle, how-
ever, as evidenced by his Proposition I1I-16 in which he shows it to be smaller
than any proper rectilinear angle, but does not draw the obvious conclusion. In-
deed, this angle, known as the horn angle or contingency angle, would puzzle
mathematicians through the centuries.
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3.1 Lemma. Let o, 3,7, be magnitudes.

a_2 iff  for all positive integers m,n,[mB < na iff mé < ny).

ERE)
Proof. The left-to-right implication is immediate.
To prove the right-to-left implication, assume

Vmnmp < na  iff mé < nyl.
We have to show

VYmn[mB =na iff moé =ny]
Vmn[mp > na it mé > nyl.

Toward proving (14), assume m, n given such that

mf = na.

61

(16)

If mé # nry, then either md < ny or md > nvy. By (13), the first of these
implies mf3 < na and hence cannot hold. Assume, accordingly, that md > n-,

SO
md —ny > 0.

By (16), for any k > 1, kmf = kna, whence

(km —1)8 < kna

and, by (13)
(km —1)6 < kn~,
ie.
kmé — kny < §
ie.
kE(mé —ny) < 6.

(17)

But, applying the Archimedean Axiom to md — n-y, the applicability of which
is guaranteed by (17), for some k, k(md—n~y) > ¢ and we have a contradiction.

Thus
mfB =na implies md = ny.

The symmetric argument yields the converse implication and we’ve established

(14).
To establish (15), suppose

mf > na.
If mé > nvy does not hold, then either

mo = ny and it follows by (14) that mfS = na
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or
mo < ny and it follows by (13) that mg < na.

Thus md must be greater than nvy. O

The practical significance of this Lemma is not that it cuts down on the
number of conditions one must prove to verify two ratios equal, but that it
guarantees trichotomy and allows one to prove two ratios equal by showing
neither one to be greater than the other, where (Euclid, Definition V-7) one
defines inequality by:

% > % iff Im, nlna > mpB but ny $ md),

i.e., iff for some m,n,

y_m_a

5 n 3
Note that

a . L
- (E > g> iff VYmn[mpg < no implies md < nv]

and

= (% > %) iff  Vmn[md < nvy implies mf < naj,
whence the two conditions taken together yield both implications of the con-
dition of Lemma 3.1 for equality.

Following such basic definitions, Euclid devotes Book V of the Elements
to developing the theory of proportions and begins Book VI with Theorem
2.1 and its extension to parallelograms. The proof is simple enough that its
inclusion will not do much harm to my intention to supplement rather than
overlap most textbooks. As before, we assume proven that two triangles of
equal height and base have equal area. We also assume that, if two triangles
have equal height but unequal bases, the one with the larger base is the one
of greater area.

Proof of Theorem 2.1. Let ABC and DEF be as in Figure 12 and let m,n
be arbitrary positive integers. Extend the base of ABC' by tacking on m — 1
copies of AB, thereby obtaining a new triangle AB,,C as in Figure 17.

C

A B = Bl B2 Bm
Figure 17

Clearly AB,,C has area m x ABC. Similary, extend DF to obtain a triangle
DE, F of base n x DE and area n x DEF. We have




3 The Eudoxian Response 63

m x ABC < n x DEF iff AB,,C < DE,F
iff AB,, < DE,
iff m x AB <n x DE.

Thus Lemma 3.1 tells us
ABC AB

DEF  DE’

The appeal to Lemma 3.1 was not necessary here. We could successively
replace all the <’s by =’s and then by >’s in the given proof and thereby
obtain a proof using the original definition of equality of ratios. The real
usefulness of Lemma 3.1 comes in the more complex proofs, e.g. in Euclid’s
determination of the area of a circle.

Euclid’s proof that the ratio of the areas of two circles is the same as the
ratios of the areas of the squares on their diameters is the most often presented
example of a proof by the method of exhaustion. It is the Greek equivalent of
a limit argument. Some textbooks present it in full and some, like Katz, just
outline the proof. I prefer not to present it in too much detail, but we ought
to discuss it. For, a point seldom made is that the proof is not without its
weaknesses.

Euclid’s Proposition on the area of a circle depends on three lemmas. First,
there is the existence of a fourth proportional (Proposition VI-12).

ad

3.2 Lemma. For given magnitudes «, 3,7, there is a magnitude & such that

a7

g6

FEuclid proves this for line segments, for which it is an easy enough matter.
Suppose for the sake of argument that o < . Choose points A, B,C on a
line segment with AB = a, AC' = ~; draw a perpendicular BD to AC at B
so that BD = (3; extend AD at least as far as AC' and draw a perpendicular
to AC at C. The point E on this perpendicular intersecting AD will be such
that CE = §. For, the triangles ABD and ACFE will be similar. (Cf. Figure
18.)

E
D
8 ?
A B (&
| —a— |
| v =
Figure 18

The result also holds for areas of rectilinear figures. For, Euclid proves any
rectilinear figure equal in area to a rectangle and his proof of the Pythagorean
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Theorem shows (as he also proves explicitly by a different argument in Book
II) every rectangle is equivalent to a square. Thus, if one has three rectilinear
magnitudes a, (3,7, one can assume them squares of sides o', 3’,~’, find the
fourth proportional ¢’ of these and the area of the square of side ¢’ will be the
fourth proportional § of the given rectilinear magnitudes. He has not shown
how to construct such a fourth proportional should one of the plane figures
be a circle. This can be shown once one has proven the areas of the circles
are to each other as the squares on their diameters, or one has shown how
to construct a square equalling a given circle (squaring the circle), or one
has added an axiom asserting the existence of a plane figure of any given
magnitude.

Euclid’s second lemma (Proposition X-1) is a sort of variant of the unas-
sumed Archimedean Axiom dealing with small rather than large magnitudes.

3.3 Lemma. Suppose a and 3 are magnitudes with « smaller than (. If one
deletes from B more than half of it, deletes more than half the remainder
from itself, and continues doing this, after finitely many steps one will get a
magnitude smaller than c.

Proof. Let AB and CD be line segments of magnitudes § and «, respec-
tively, with @ < (3. By the Archimedean Axiom for some number n,n x C'D
is greater than AB. On AB carry out the deletion n — 1 times. The smallest
piece, say DE is less than C'D. For, it is the smallest of n pieces totaling AB
and n x CD is greater than AB. O

Euclid’s third lemma is the polygonal version of the desired result (Propo-
sition XTII-1).

3.4 Lemma. Similar polygons inscribed in circles are to one another as the
squares on the diameters of the circles.

Armed with these three lemmas, Euclid is now ready to determine the
area of a circle (Proposition XII-2).

3.5 Theorem. The areas of two circles are to each other as the areas of the
squares on their diameters.

Proof sketch. Imagine two circles K, Ko with diameters Dy, Do, respec-
tively. To show

K (Dy)?
Ky (D3)2’
it suffices to show
K (Dy)? K; (Dy)?
— and —
K, ? (Dy)? 2 s (D2)?

Case 1. Suppose
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LS (D1)?
Ky = (Dy)?*
Let X be the fourth proportional to (D1)?, (D2)?, and K;:

(D) Ky
(D2)2 X7

Note that X < K.

Inscribe a sequence P, P, ... of regular polygons inside Ko as follows: P;
is the inscribed square. P, ;1 is obtained from P, by doubling the number of
sides: if A, B are successive vertices of P,, bisect the arc AB of K5 at a point
C and replace the edge AB of P, by the edges AC and CB. Note that in
doing so, the excess Ko — P41 is less than half the excess Ko — P,. Hence
Lemma 3.3 tells us, for some n, Ko — P, < K5 — Y. Choose such an n.

Inscribe a figure P/, similar to P, inside K;. By Lemma 3.4, we have
P (D)) Ky _ K;_ P,

= > >
P, (D2)? P P, P,

a contradiction.
Case 2. Suppose

K (D)
Ky = (D2)*
Then
K _ (D))
Ky~ (D1)*
which case we have just proven impossible. a

The strengths and weaknesses of Euclid’s Elements are made manifest in
this proof. The strengths pretty much speak for themselves, but the weak-
nesses require some thought, and some class time should be devoted to them.

Euclid’s Elements has often been viewed as the deductive system par ex-
cellence. His rigour and style served as model and inspiration for centuries.
This is perhaps most dramatically demonstrated by Baruch Spinoza’s emu-
lation of the Elements in writing his book on Ethics. Yet one can question
how important the deductive presentation was to Euclid. He did not cover
all cases in his proofs, something he was certainly aware of as evidenced by
the fact that, according to Proclus, many of the early commentators— lesser
mathematicians than Euclid himself— devoted much of their energies to sup-
plying the details in additional cases. For centuries, geometry was the theory
of space, not merely a deductive system, and modern criticism of Euclid’s
logic is largely misdirected.

Modern criticism of Euclid began in the 19th century when Moritz Pasch
added axioms for the notion of betweenness and proved that if a straight
line entered a triangle it had to exit at a second point. This development
reached its pinnacle with David Hilbert, who spent the 1890s teaching and
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reteaching the subject, his efforts culminating in 1899 with the publication
of Grundlagen der Geometrie (Foundations of Geomelry), a short booklet
giving a highly axiomatic treatment of the subject. To Hilbert, the objects
of study in an axiomatic treatment are defined implicitly by the axioms, and
we are not allowed to use any properties of these objects not supplied by the
axioms. Euclid did not follow the Hilbertian dictum, using evident properties
of points, lines, and circles not supplied by his axioms. Hilbert too did not
entirely succeed in this, but he went a long way and, indeed, as a deductive
system, his axiomatisation was as close to perfection as had ever been seen.
It would have made a lousy textbook however.

Now Euclid was not presenting a closed deductive system about objects
defined, a la Hilbert, via their axioms. He was presenting geometry, a theory
of space, deriving new results from old. I do not consider it a logical weakness
that he would use additional obvious properties, such as the circle’s possess-
ing an interior and an exterior. Nor do I fault him for not axiomatising the
notions of betweenness and order. Pure deductive systems have their uses,
but paedagogy is not one of them and Euclid was writing the most successful
textbook in the history of the world.

Even if one eschews the Hilbertian yardstick used by some authors to
measure Euclid by!?, one can still find fault with Euclid. His treatment of
magnitudes I find especially weak. The linear case he handles well. It is true
that, in Proposition I-3, he assumes of two unequal line segments that one
is greater than the other, but in Proposition I-2 he shows how a copy of one
segment can be affixed to the endpoint of the other and one can then use
the compass to place both segments on the same line and compare lengths
using the Common Notion that the whole is greater than the part to establish
trichotomy for magnitudes of line segments. This cannot be done directly for
areas and with our modern knowledge of partial orderings we can imagine a
geometry with incomparable areas.

The rectilinear case is unproblematic. He shows how, via decomposition
or reference to parallelograms every polygonal figure is equal in area to a
square, and the magnitudes of squares can be ordered by the magnitudes of
their sides. And even without proving Theorem 3.5 it is clear that trichotomy
for the magnitudes of areas of circles follows from the same property for the
magnitudes of their diameters. But how do magnitudes of circles fit in with
magnitudes of squares? And can one, ¢ la Eudoxus, compare 7 copies of one
circle with 3 of another? Without some axiom asserting the existence of, say, a
square of any planar magnitude®’, I don’t see how to make these comparisons
in general.

19 Cf. for example the discussion of Euclid given in David Burton’s The History of
Mathematics, the textbook used in my course.

20 In terms of he notion of constructibility of the next chapter, all polygonal areas
in the model of geometry given there are constructible numbers, while all circular
areas are nonconstructible. Being real numbers, they are still linearly ordered,
but the two sets are disjoint.
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Again, without an axiom to the effect that all magnitudes were given by
squares, I don’t see how to effect the construction of the fourth proportional
in the proof of Theorem 3.5 other than to assume the truth of the theorem
being proven.

It could be that Euclid’s reasoning is just circular. It could be that he
just didn’t see a problem because, in the back of his mind, he was thinking
of magnitudes (upon designation of a unit) as numbers of some kind and
the axiom I want was not necessary (to construct a square of area a, use a
side of length /). Even so, his failure to address the issue is not the mere
oversight that neglecting to discuss betweenness was. Betweenness was like the
air, unnoticeable amidst so many more remarkable things. And, in any event,
betweenness was not a problematic issue like number. While it may be true
that “number” officially meant only 2,3,4,... (or, maybe, 1,2,3,4,...), the
Greeks, particularly the astronomers, calculated freely with rational numbers
in the form of sexigesimal fractions inherited from the Babylonians. They
knew of numerical approximations to v/2 and hence its numerical nature. The
discovery that \/2 is irrational raised serious foundational issues and caused
a shift in emphasis from arithmetic to geometry, where it was clear what the
diagonal of a square was even though one did not know what to make of /2.

Euclid’s failure to come to grips with real numbers manifests itself in
another nearly inexplicable way. Once he has proven

K1 (Dy)?

Ky (Dy)?

for circles K1, Ky of diameters Dy, Do, respectively, it is only a tiny step to

K K>

(D1)? (D2)?

and the mensuration formula A = Cd? for some constant C. Euclid would
certainly have been aware of the existence of approximate values of m and
could have used one of the inscribed regular polygons to give a rough lower
estimate. Such estimates are not very good— a square yields 7 > 2 and
an octagon only m > 2.8—, but it would have been a start. Such numerical
work was only first undertaken by Archimedes, who also first proved the two
definitions of 7 in terms of the circumference and the area to be identical,
and then estimated 7 by the circumferences of inscribed and circumscribed
regular polygons.

4 The Continuum from Zeno to Bradwardine

The discussion of the weaknesses of Euclid’s treatment of magnitude in the
last section, although it may seem somewhat tangential, really gets to the
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heart of the matter. With the Pythagoreans all had been number and geom-
etry had been applied arithmetic. The discovery of irrationality changed all
that. One did not know what to make of the new “numbers” or even if there
were other stranger ones yet lurking in the shadows, but line segments were
more-or-less tangible objects. Thus geometry became its own foundation, and
even the foundation of the rest of mathematics. Indeed, after specifying a
fixed unit, Euclid treated numbers as magnitudes and reduced number the-
ory to geometry. Geometry, however, does not make a good foundation for
mathematics.

One problem is the proliferation of types of magnitudes. Euclid is non-
committal on the identification of linear, planar, and solid magnitudes, i.e.
the abstraction of a single notion of number shared by lengths, areas, and vol-
umes. That he proves, for example, the existence of the fourth proportional for
linear magnitudes and applies the result to planar magnitudes suggests them
to be fundamentally the same. On the other hand, he does not apply the
trisectibility of the line segment to conclude that of an angle, which suggests
angular magnitudes to be possibly different from linear ones.?!

Nongeometric magnitudes also occur in Greek mathematics. Archimedes
discusses weight in several works, even to the point of considering ratios of
weights. And, of course, there is that most mysterious of all magnitudes—
time. In his book on Mechanics, late in Greek scientific history, Heron treated
time as a geometric magnitude, even taking ratios, but, for the most part,
time was treated more qualitatively than quantitatively by the Greeks.

I want to say that the Greeks, knowing mensuration, but not making
it a formal part of their mathematics because it is arithmetic rather than
geometric, had the notion of magnitude as number in the back of their minds
and thus, if we ignore Euclid’s agnostic stance on the Archimedean Axiom, we
can interpret their magnitudes (upon specification of appropriate units) as real
numbers with dimensions attached as in modern science. From the arithmetic
standpoint we could then say that what they missed was a description of
the real numbers in their totality, a la Dedekind. The situation, however, is
more complicated than that. For, the switch from arithmetic to geometry was
not just a change of language, but one of perspective. Geometric insight was
appealed to and, in some crucial matters, we haven’t any.

Geometry, as the Greeks inherited it from the Babylonians and Egyptians,
dealt with mensuration. Its very name refers to land measurement. Under
the Greeks it transformed into a theory of space. And, as “Nature abhors a
vacuum”, space was filled and geometry was a theory of matter, perhaps only

21 And what should one make of his proof that the angle between the circumference
of and a tangent to a circle is less than any given rectilinear angle without conclud-
ing it to be the null angle, as cited in footnote 187 He offers no similar potentially
infinitesimal linear segment, also suggesting a different kind of magnitude. On
the other hand, he did not explicitly assume the Archimedean Axiom for linear
magnitudes either— perhaps because he assumed the two types of magnitudes to
be similar(?).
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of a special homogeneous matter like the sether, but matter nevertheless. In
the period between the discovery of irrationals and the Eudoxian response to
the problem, Democritus asked himself what happens if one takes an object
and keeps cutting it in half. His answer was that one could only do this so
many times before coming to a particle that couldn’t be divided any further.
Such a particle he called an atom. Democritean atoms were eztended— they
had dimension. Some believed one would arrive at a point, another form of
indivisible distinguished from the atom by its lack of extension, i.e. its lacking
in length, width, and breadth. Aristotle disagreed vehemently. To him, the
line did not consist of indivisibles, but was of one piece which could ever be
cut into shorter pieces. One can compare the lines of Democritus and Aristotle
by placing these lines under a very powerful microscope. That of Democritus
would look like a string of beads— indivisible particles lined one after another;
Aristotle’s would look like the original line. But for the density, one could
imagine in like manner the line composed of points to be represented by a
dotted line which would look like a dotted line under the microscope.

Time was not geometry, space, or matter. Our one great temporal intuition
seems to be the separation of the past from the future by the present. The
present is an instant and instants are ordered. Whether an instant has duration
or not, it takes a moment to complete experiencing the present and we are
likely to think in terms of passage from one instant to the next, i.e. to think
of time as discretely ordered, like the integers. Geometry alone cannot tell
us whether the spatial and temporal lines should be the same. For this we
need motion, as when Aristotle?? says, “If time is continuous, so is distance,
for in half the time a thing passes over half the distance, and, in general, in
the smaller time the smaller distance, for time and distance have the same
divisions”.

One of Aristotle’s goals in his Physics was to prove that the geometric
line was a continuous whole, capable of being subdivided any finite number
of times and thus potentially infinitely divisible, but not actually so. Another
goal was to refute the arguments of Zeno of Elea, although modern scholars
read the same goal into Zeno’s argumentation.??

Zeno of Elea was born a century before Aristotle and is remembered to-
day for his four paradoxes of motion which, on the surface, attempt to show
motion is impossible. The modern view is that he was actually attempting
to show motion impossible if one assumed space and time to be composed of
indivisibles, be they points or atoms. None of his work survives and our best
source of information on Zeno’s paradoxes is Aristotle’s brief statement of the
paradoxes and his several refutations thereof.

22 Physics, Book VI. I am quoting from Florian Cajori, “The history of Zeno’s argu-
ments on motion: Phases in the development of the theory of limits”, published
in ten parts in American Mathematical Monthly 22, 1915.

23 Zeno’s paradoxes are the subject of much philosophical literature. The best refer-
ence for the mathematician, however, is Cajori’s series of articles cited in footnote
22, above.
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The paradox known as Dichotomy goes as follows. To pass from point A
to point Z one must first reach the midpoint B between A and Z. Then, to
get from B to Z, one must first reach the midpoint C between B and Z. Etc.
Thus, if space is made up of an infinity of points, to get from A to Z, one must
visit infinitely many points in a finite amount of time, which is impossible.
Hence one cannot get from A to Z and motion is impossible.

Nowadays, we dismiss this argument by appeal to the infinite series,

1 1 1 1 18

2+4+8+..._, (18)
applying it not only to the distance from A to Z but also to the time it takes
to cover the distance. For, each successive step requires only half as long to
complete as the previous one.

According to Aristotle, Zeno’s argument is a fallacy. For one cannot actu-
ally subdivide an interval infinitely often. Infinite subdivision is only potential.
Thus, Zeno’s construction and argument cannot be carried out. This is not a
particularly pleasing response, but it is in line with the modern explanation
of (18) as the limit of finite sums and not an actual sum of infinitely many
numbers.

A second paradox by Zeno called Achilles is almost identical to Dichotomy.
The Arrow is aimed at refuting points. Consider an arrow in motion. At each
instant, it “occupies its own space” and thus cannot be moving. Hence, at no
instant is it moving, whence the moving arrow is at rest.

This is now explained away by observing that movement is not a property
of an object that may or may not hold at a given instant, but is rather a
difference in position of the object at distinct instants. Indeed, our definition
of instantaneous velocity in the Calculus is given as the limit of the average
velocities over progressively smaller intervals, which sounds very Aristotelian.

Aristotle dominated philosophy for nearly two millennia. He had been
found compatible with Judaism, Islam, and, after some initial opposition,
Christianity. Nevertheless, his views were not universally accepted nor his
authority always accepted as final. Thus, for example, around the end of the
11th century or perhaps in the early years of the 12th, the arabic scholar al-
Ghazzalt, known as Algazel in the west, wrote a summary of the views of ibn
Sina (known as Avicenna in the west) and shored up Aristotle with no fewer
than six refutations?* of Democritean atoms, i.e. extended indivisibles. Before
offering my favourite proof, let me quickly remind the reader that these atoms
are the components of space, not merely matter placed in space.

Arrange 16 atoms in a 4 x 4 square as in Figure 19 on the next page. Each
side is composed of 4 equal parts. But the diagonal is also composed of 4.
Hence the diagonal equals the sides, which is impossible because one proves
in geometry that the diagonal of a square is greater than the sides.

24 They can be found in section 52 on atomism in Grant’s Source Book in Medieval
Science cited in the bibliography.
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This proof just seems wrongheaded. Why must atoms be squares and not,
say, hexagons? Because he demands no vacuum, the 4 x 4 arrangement of
hexagons form a jagged honeycomb arrangement as in Figure 20. Now this
“square” has three diagonals: 11-22-23-33-44 and 11-22-32-33-44 of length 5
and 41-42-32-23-13-14 of length 6. All of these are greater than the sides and
al-Ghazzali’s argument fails for these atoms.?®

Figure 19
Figure 20

4.1 Remark. I cannot help but note that the ratios 5/4 and 6/4, though
neither equal to v/2, approximate it from below and above, respectively. Av-
eraging these values gives

2-5+6 16 4

3.4 3.4 3
Now (4/3)* = 16/9 = 1.77, which is a bit smaller than 2. So far this does
nothing for us?%. But, if we square again, we get

2
4\* 162 8\?
- =—=4x|=]) ,
3 92 9
the Egyptian value of 7. If you wish to test your students’ gullibility, you

might point this out to them with a comment that this clears up the mystery
of how the Egyptians arrived at this value.

The 6th proof is rather more convincing. When a wooden or stone wheel
revolves, the parts near the centre move less than the parts near the rim
because a circle near the centre is smaller than a circle near the rim. Now
when the circle near the rim moves only one atom, the circle near the center
will move less than an atom, thus dividing the atom, which is impossible.
Against this we could argue that the rigidity of the wooden or stone wheel is
illusory and that a smooth rotation at the rim might actually be accompanied
by jerky rotation near the centre.

25 But all is not lost— each of these diagonals is commensurable with the sides of
the “square”, a contradiction.

26 Interestingly enough, if one doubles the weight of the singularly occurring diagonal
6/4 and gives a weight of 1 to the duplicate diagonal 5/4, one gets (5+2-6)/(3-4) =
1.416, which is a good approximation to v/2. Indeed, its square is 2.00694.
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Moving on a couple of centuries we find ourselves with the Merton schol-
ars in Oxford, and, in particular, with John Duns Scotus, who also argued
that the continuum is not composed of indivisibles— specifically, of adjacent
indivisibles. Aside from one repetition of al-Ghazzali’s claim that indivisibles
commit one to equating the diagonal and the side, his arguments are more
involved. One of them proceeds as follows?7.

Take two adjacent points A, B on the side of a square, draw lines from
them parallel to the base and extend them to the opposite sides. Consider
the points C, D where these lines intersect the diagonal. Now these are either
adjacent or they are not. If they are adjacent, the diagonal has no more points
than the side?® and hence is not longer than the side.

Thus, there is some point E intermediate between C' and D on the diag-
onal. Extend a line through E parallel to the lines AC' and BD to the side
containing A and B. This parallel must intercept the side at A, B or some
intermediate point. None of these is a possibility: intersection at A makes AC
and AF intersecting parallel lines; intersection at B does the same for BD and
BE; and intersection at a point intermediate between A and B contradicts
the assumption that A and B were adjacent.

I will grant that the construction of the square and parallel lines is probably
not any more complicated than the construction of the midpoint using ruler
and compass, but the construction of the midpoint had already been effected
by Euclid (Proposition I-10), whose authority Duns Scotus seems to accept
as gospel. The argument accompanying his construction, however, is more
complicated than a simple appeal to the Euclidean construction and I conclude
the latter didn’t occur to him: his grasp of geometry was very weak.

Note that the proof just given was not aimed at Democritus, whose in-
divisibles were extended atoms, but probably at Henry of Harclay, “the first
thorough-going atomist and. .. adherent of the existence of an actual infinite,
in the later Middle Ages” according to Edward Grant, who includes an ac-
count of Harclay’s views in his Source Book cited in footnote 24. Harclay
believed in a continuum composed of infinitely many contiguous points.

And this brings us to Thomas Bradwardine, 14th century England’s best
mathematical mind, composing a treatise, the Tractatus de Continuo at Ox-
ford. Bradwardine believed, with Aristotle, al-Ghazzali, and most 14th cen-
tury scholars, that the continuum did not consist of atoms or points but was
a single entity capable of subdivision without end. However, he knew of un-
believers like Henry of Harclay. Indeed, in the Continuo, Bradwardine lists
no fewer than five views on the composition of the continuum. It might be
composed of

2T Cf. Grant’s book cited in footnote 24 for more details and another of his argu-
ments.

28 Logic must not have been Scotus’s strong point. He should argue that either the
points C, D are always adjacent and thus the diagonal has no more points than
the side, or that, for some pair A, B, the points C, D are not adjacent.
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1. a single piece divisible without end (Aristotle, al-Ghazzali, Bradwardine

and most of his contemporaries)

. corporeal indivisibles, i.e. atoms (Democritus)
. finitely many points (Pythagoras, Plato, Waltherus Modernus)
. infinitely many adjacent points (Henricus Modernus = Henry of Harclay)

. infinitely many densely packed points (Robert Grosseteste).

This treatise is, apparently, not the least bit important in the history of

mathematics. As of 198727, only three surviving copies were known to exist—
only one of them complete—, and only one oblique reference to the treatise in
any other 14th century work had been found. Nonetheless, the Continuo is a
valuable object for the student of mathematical history3?. There are several

29

30

Cf. John E. Murdoch, “Thomas Bradwardine: mathematics and continuity in the
fourteenth century”, in: Edward Grant and John E. Murdoch, eds., Mathematics
and Its Applications to Science and Natural Philosophy in the Middle Ages. Essays
in Honor of Marshall Clagett, Cambridge University Press, Cambridge, 1987

Or, it would be if it were readily available in English translation. Briefly, the
modern publication history of the Continuo is this. In 1868, Maximilian Curtze
reported on the two then known codices of the treatise, the complete one in Thorn
(now: Toruri) and the partial one in Erfurt. In 1936 Edward Stamm published a
more detailed description of the Thorn manuscript, “Tractatus de continuo von
Thomas Bradwardina”, Isis 26 (1936), pp. 13 - 32. However, Stamm’s article
has an extensive series of untranslated Latin quotes. In her book, Die Vorldufer
Galileis im 14. Jahrhundert (The Precursors of Galileo in the 14th Century)
published in Rome in 1949, Anneliese Maier made an apparently brief mention of
the Continuo. Her work is apparently important for its identification of Waltherus
Modernus and Henricus Modernus and does not cover the contents too fully. John
Murdoch’s unpublished dissertation, “Geometry and the Continuum in the Four-
teenth Century: A Philosophical Analysis of Thomas Bradwardine’s Tractatus de
Continuo” (University of Wisconsin, 1957) gives a fuller treatment and includes
the complete text of the Continuo. Another detailed treatment— published, but
in Russian with a Latin appendix— is V.P. Zoubov, “Traktat Bradwardina O
Kontinuume”, Istoriko-matematicheskiie Issledovaniia 13 (1960), pp. 385 - 440.
Zoubov is reported to give a detailed analysis of the treatise and the appendix
covers the definitions, suppositions, and conclusions. A selection of definitions,
suppositions, and conclusions appear in English in Marshall Clagett’s Science of
Mechanics in the Middle Ages, University of Wisconsin Press, Madison, 1959,
and a single short statement from the Continuo was translated into English in
Grant’s Source Book (1974). Murdoch’s account of Bradwardine in the Dictionary
of Scientific Biography includes a brief, nontechnical description of the Continuo.
Finally, for the English reader, there is Murdoch’s 1987 paper cited in the pre-
ceding footnote. This work gives a mathematically nontechnical summary of the
contents of the Continuo and provides a corrected and more complete listing in
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reasons for this. The axiomatic framing of the Continuo, as well as that of
Bradwardine’s other works, the Geometria speculativa, the Tractatus de pro-
portionibus velocitatum in motibus, the De incipit et desinit, and even a reli-
gious tract De causa Dei contra Pelagium, illustrates the high regard Euclid’s
Elements was held in during the Middle Ages. Moreover, Bradwardine’s treat-
ment of the problem of the continuum is as thorough-going as one could hope
to find and offers a good summary of the various views held during the early
14th century, if not much of a taste of the scholarly debate that was raging
on the subject.3!

As I say, Bradwardine mimics Fuclid in presenting the Continuo in an
axiomatic framework. He begins with a series of 24 definitions— of continua,
lines points, etc.,— follows these with a series of 10 suppositions, and then
proceeds to draw 151 conclusions. Unlike Euclid, however, the goal of his work
is not to derive true conclusions from these definitions and suppositions, but
to draw absurd conclusions from various hypotheses on the composition of
the continuum out of indivisibles. In this, he is probably better compared to
Girolamo Saccheri, who attempted to demonstrate the parallel postulate by
assuming its negation and deriving absurdities therefrom.3?

Bradwardine’s conclusions are assertions of the form “If the continuum
consists of indivisibles of such and such a type, then...” I would love to give
a sample of one of these conclusions and its proof, but I cannot quite do it.
The conclusions have been published—in Latin®3—, but the proofs apparently
haven’t. There is one exception, but I can’t say I understand the proof and
can only offer a sort of reconstruction of it. Toward’s this end, let me first
state a lemma. Conclusion 38 of de Continuo reads (in paraphrase):

4.2 Lemma. If continua consist of adjacent points, then each point in the
plane has only 8 immediate neighbours.

4.3 Corollary. Under the same hypothesis, each point in 3-dimensional space
has no more than 26 immediate neighbours.

I have no idea how he proves these, but one can see how he could conclude
the Lemma by imagining the “points” to be shaped like squares and to tile
the plane with them as in Figure 19, where each interior square borders on
exactly 8 others, sharing edges with 4 and vertices with 4 others. In the
three dimensional case, think of the points as being cubic. Each cube has 8

Latin of the definitions, suppositions, and conclusions of the treatise as an ap-
pendix. My account is based on the paper of Stamm and the last cited one of
Murdoch.

31 Murdoch, op. cit.

32 Saccheri, however, succeeded in forming the beginnings of non-Euclidean geome-
try; it is not clear what Bradwardine’s positive accomplishment, if any, was.

33 Cf. Murdoch’s paper cited in footnote 30.
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neighbours in its own plane, and 9 in each of the planes immediately above
and below this plane, thus 9 4+ 9 + 8 = 26 in all.34 3%

Bradwardine applies Conclusion 38, i.e. Lemma 4.2, in establishing Con-
clusion 40, which I paraphrase as follows:

4.4 Theorem. Under the same assumption, the right angle is the minimum
angle and is not acute, and all obtuse angles are equal to each other.

The proof as quoted in Stamm’s paper cited in footnote 30 is as follows.
“Let AB be a straight line with point C' intermediate between A and B, and
let DE be perpendicular to AB at C. In the immediate vicinity of C there
are no more than 8 points, and 4 of these are on the lines AC, BC, DC, EC.
The remainder would only number 4 and are in those 4 angles, therefore in
whatever direction you choose there is only one, but an angle of less than
one point does not exist nor is one point less than another by an earlier
conclusion.” This is as much of the proof as is given by Stamm and I confess
not to be completely confident in my translation®°.

Look at Figure 21. Now C'K does not define a straight line because C' and
K are not adjacent and continua are assumed to consist of adjacent points3”.

H| DI G| K B
A|lC|B Al C AB < AC = smallest length
I |E|F

Figure 21 Figure 22

Therefore, the only lines making angles with CB at C are CB,CG,CD,CH,
CA,CI,CE, and C'F. The smallest nonzero such angles would be GC'B and
FCB, neither of which is right. Perhaps Bradwardine is arguing against the
existence of the points F,G, H, [— he does use the subjunctive sint in first
referring to them (Igitur reliqua, tantum sint 4,...).

The “earlier conclusion” referred to is probably some variant of the ar-
gument that nothing is shorter than a point. Think in terms of atoms, say

3% Of course, why a dimensionless point should be thought of as having a shape at
all is unclear. Further, one might expect these results to apply to Democritean
atoms rather than to points. However, it is Henry of Harclay’s adjacent points
that Bradwardine wishes to refute with these particular conclusions. In any event,
I cannot offer these squares and cubes as anything more than a heuristic. But see
the next section of this Chapter.
Note that this argument assumes the squares aligned in a checkerboard pattern,
and not staggered like bricks. Staggering violates indivisibility: the length of the
overlap of staggered blocks is less than the length of a side, but (the side of) a
single point is the smallest distance.
I know no Latin and am relying on a dictionary and the first chapter of my newly
purchased Latin grammar.
37 Note that CB extends to include a point directly below K and CG to include
one directly above K, so neither B nor G is in line with C' and K.

35

36



76 3 Foundations of Geometry

squares tiling the plane. (Cf. Figure 22.) Staggered squares cannot exist be-
cause the length of an overlap is less than an atom in size and as space is
atomic, that length would have to be made up of atoms.

If one thinks of BGDHAIEF as the circle of radius 1 point around C, one
could possibly argue against the existence of G' by noting that the horizontal
component CB of the distance C'G is less than C'G itself, which is equal to
CB (both being 2 points long). If one ignores C, this horizontal component
is less than a point in size, contrary to the “earlier conclusion”. One would
conclude F, G, H, and I not to exist and the smallest angles around C would
be DCB,ACD, ECA, and BCE— right angles all.

What should we learn from al-Ghazzali, Duns Scotus, or Bradwardine?
Mathematically, there is the obvious lesson that Euclidean geometry is not
compatible with extended atoms or adjacent points. Historically, we can glean
the strengths and weaknesses of these mathematicians. While certainly less
skillful than the Greeks, they were not without some talent. Their interests
were different. The Merton scholars were noted for their study of motion and
the invention of the latitude of forms, a precursor to Descartes. The debate
on the nature of the continuum and atomism demonstrates their interest in
fundamentals. The strange proofs and argumentation brought to bear on the
subject, much as one is tempted to class them with debates on the number of
angels that can dance on the heads of pins, are to their credit. Such arguments,
howeve