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Foreword

About a half century ago began a remarkable intellectual revolution
which transformed the field of finance from a collection of anecdotes

and accounting identities into a scientific discipline with general principles
and rigorous empirical assessments of its hypotheses. In the ensuing
decades, finance science was both shaped, and shaped by, the extraordinary
transformation of the practice of finance.

Oldrich Vasicek was one of the pioneer scientists to provide founda-
tional contributions in the pricing and risk measurement of fixed income
securities–default-free bonds that form the term structure of interest rates,
and credit-risky bonds and loans–and to implement them in practice. Here
we have the collection of the original papers and articles of his intellectual
history of thought–with the content of the models still applicable today.

Whether a master researcher, experienced finance professional or novice
student of finance, you are in for a treat.

Bon appétit!

Robert C. Merton
Distinguished Professor of Finance
MIT Sloan School of Management

1997 Nobel Memorial Prize in Economic Sciences
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Preface

This book is a selection of my published and unpublished papers written
between 1968, when I came to the United States, and 2014. The ideas for

them came to me at different times and in different circumstances. I have
worked as a theoretical mathematician in the Czech Academy of Sciences,
as a vice-president in a large U.S. bank, as an external consultant in a small
investment technology software developer, as a full-time professor and a vis-
iting professor at several universities. I have been a founding partner and
a managing director in a startup, a special adviser for a large bond rating
firm and, since 2010, an independent researcher not associated with any
institution.

I cannot saywhichwas the most satisfying. It has all been fun, and still is.
I have met, and in many cases worked with, many extremely interesting and
capable people. These meetings, discussions, and collaboration have meant
a lot to me.

I have usually worked somewhat outside the organizational structure. I
have never had a subordinate, which was exactly as I wanted it. And I have
been very fortunate that I rarely found much discrepancy between what I
wanted to work on, and between what seemed to be needed at the time.

I have enjoyed collaborating with other people. A number of the papers
in this collection are joint works. I would like to take this opportunity to
thank my coauthors: Gifford Fong, my one-time employer and long-time
friend, with whom I wrote six of the papers here; John McQuown, who
hired me to Wells Fargo Bank on my arrival to the USA, with whom, along
with Stephen Kealhofer, we founded the KMV Corporation years later, and
with whom I have been friends the whole time; my colleague at the Uni-
versity of Rochester, the late Professor Julian Keilson; and the tireless and
resourceful Professor Helyette Geman, who arranged my pleasant stay at
ESSEC. I appreciate their input, insights, and joint work.

I would like to express my thanks and appreciation to many people.
There are some, however, that I cannot but mention specifically: my father,
JUDr. Oldřich Vašíček, who encouraged and supported my interest in math-
ematics from early childhood; the late Professor Alois Apfelbeck, much
feared for his first-year analysis class, who singlehandedly, and success-
fully, opposed the Party authorities from expelling me from the university;

xi
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xii PREFACE

John McQuown, who introduced me to finance; Professor Richard Roll,
whose critique of an earlier draft of my 1977 paper made me to rewrite it
for much improvement; and Professor Robert Merton, one of the smartest
yet gracious people I know. To these and many other people who helped me
by advice, debate, collaboration, or example, I wish to give my gratitude.

Oldrich Alfons Vasicek
August 2014



PART

One
Efforts and Opinions

“A lot of attention goes to the pricing of various complicated
debt instruments because those instruments are becoming more

common. That’s needed short-term. I think long-term it’s
important to understand the more basic problem we were talking
about before — what exactly goes into the pricing of the straight
debt of a firm. That’s the economics of credit, not the valuation of
assorted derivatives. There is too much mathematics and too little
economics in finance nowadays. That may sound funny coming
from a mathematician, but nevertheless that’s my opinion. We
must not forget that the subject of finance is economic decisions”.
(page 15)
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CHAPTER 1
Introduction to Part I

The past fifty years or so have been a time of great bloom in the field of
finance. This period has seen the birth of concepts such as variance as a

quantitative definition of risk, portfolio diversification as a means of control-
ling risk, portfolio optimization in the mean/variance framework, expected
utility maximization as an investment and consumption decision making
criterion. These notions were applied in the development of Capital Asset
Pricing Model to describe the market equilibrium, to the concepts of system-
atic and specific risks and the introduction of asset beta. We have witnessed
the revolution brought by the theory of options pricing. We have seen the
appearance of the general principle of asset pricing as the present value of
the cash flows expected under the risk-neutral probability measure. We have
seen the development of the theory of the term structure of interest rates and
the pricing of interest rate derivatives.

These theoretical developments have been accompanied by equally
exciting changes in investment practices and indeed in the nature of capital
markets. Few of us can still envision investment decision making without
quantitative risk measurement, without hedging techniques, without deep
and efficient markets for futures and options, without swaps and interest
rate derivatives, and without computer models to price such instruments.
And yet, these are all very recent developments. It has not been much
longer than some thirty years ago that the very notion of an index fund was
greeted with disbelief, if not outright ridicule!

I had the great fortune to be cast right into the middle of such develop-
ments when I joined the Management Science Department of Wells Fargo
Bank in 1969. The annual conferences organized by Wells Fargo in the early
seventies brought together people such as FrancoModigliani, MertonMiller,
Jack Treynor, William Sharpe, Fisher Black,Myron Scholes, Robert Merton,
Richard Roll and many others. The second half of the twentieth century was

Risk, 72-73, December 2002
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4 EFFORTS AND OPINIONS

in my eyes as exciting in the field of finance as the first half must have been in
physics.

I have worked on a variety of projects at Wells Fargo and later at the
University of Rochester and the University of California at Berkeley, but
one thing that bothered me for quite a while in the mid-seventies was the
absence of solid results on the pricing of bonds. At that time, the CAPMwas
already in existence, and people had tried to apply it to bonds by measuring
their betas to determine the yield, but that did not really lead anywhere. The
options pricing theory had also been freshly developed by then, but it did
not seem very feasible to apply a theory of pricing derivative assets to assets
as primary as government bonds. What would be the underlying?

And yet, it was obvious that there must be some conditions that govern
interest rate behavior in efficient markets. You cannot have, for instance,
a fixed-income market in which the yield curves are always flat and move
up and down in some random fashion through time, because then a barbell
portfolio would always outperform a bullet portfolio of the same duration,
and therefore it would be possible to set up a profitable riskless arbitrage.
But what are these conditions?

The clue came from comparing the return to maturity on a term bond to
that of a repeated investment in a shorter bond. The common denominator
between bonds of any maturity would be a rollover of the very short bond,
and thus it seemed natural to postulate that the pricing of a bond should be
a function of the short rate over its term. And once the idea of describing the
short rate by a Markov process came to me, it became obvious: the future
behavior of the short rate is determined by its current value and therefore
the price of the bond must be a function of the short rate! From then on,
it’s mathematics: in order to exclude riskless arbitrage, this function must be
such that the expected excess return on each bond is proportional to its risk,
which gives rise to a partial differential equation. The boundary condition
of this equation is the maturity value, and the solution is the bond price.
This was my 1977 paper. (Curiously, the thing that became known as the
Vasicek model was just an example that I put in that paper to illustrate the
general theory on a specific case. Well, you never know.)

Since then, it was like opening Pandora’s box. Great many papers fol-
lowed, extending the model in various ways—multiple factors, non-Markov
risk sources, development of various specific models for practical use. One
paper I have a great respect for is the Cox, Ingersoll and Ross article (for
some reason, they did not publish the paper until 1985, although they did
the work many years earlier), because it is about more than interest rates: it
is about an equilibrium in the bond market.

A big shift came in 1986 with the publication of the Ho and Lee paper.
This article presented a simple interest rate model, which was just a special
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case of my theory. The shift was in the interpretation: Ho and Lee assumed
that the current bond prices were given (equal to the actual observed prices)
and concerned themselves with pricing interest rate derivatives. This, of
course, allows very useful applications for valuation of various instruments
from simple callable bonds to the most complex swaptions.

The Ho and Lee paper engendered a great development effort in that
direction, including the 1992 paper by Heath, Jarrow, and Morton, which
formalized this approach. This direction was in fact taken further: There
are models that assume as given not only the current bond prices, but also
prices of caps and floors or even more. These models, used then to value
other derivatives, have the great virtue of fitting the current market pricing
of the more primary assets.

While I appreciate the usefulness of these models, I somewhat regret
the direction away from the economics. To ask how derivatives are priced
given the pricing of bonds seems to me assuming away the more interesting
question: How are bonds priced? I personally hope to see a return to efforts
to understand the economics, rather just to aid trading.

A similar situation has arisen in default risk measurement and pricing,
another subject dear to my heart. The so-called reduced-formmodels, which
have been advocated for the purpose of credit risk analysis, assume that cor-
porate debt prices are given and use these prices to value debt derivatives.
Again, to me it seems that the more interesting question is how to price
corporate debt. Fortunately, this is possible given the legacy of Merton,
Black, and Scholes, since corporate liabilities are derivatives of the firm’s
asset value, and a structural model of the firm can price its debt (and debt
derivatives) from equity prices.

As appreciative as I am of the past in the field of finance, I am equally
enthusiastic about its future. There will be no lack of problems to address,
and there will be no lack of talent to solve them. Indeed, it is the professionals
in this area of endeavor that are its greatest assets, and I am grateful to have
worked with, and learned from, so many of them.
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CHAPTER 2
Lifetime Achievement Award

By Dwight Cass

In the late 1960s, Wells Fargo Bank in San Francisco assembled a team of
uniquely gifted thinkers who would go on to push the boundaries of finan-

cial theory.Working alongsideWilliam Sharpe,Myron Scholes, Fisher Black,
and Robert Merton at the time was Oldrich Vasicek, who is Risk’s lifetime
achievement award recipient. Like his Wells Fargo colleagues, Vasicek has
had a profound effect on both financial theory and practice. His equilib-
rium model of the term structure of interest rates is widely acknowledged
as the landmark work in the field, and many credit it for setting off the
series of modeling innovations that paved the way for the rapid growth of
the interest rate derivatives market. Ten years later, he developed a ground-
breaking credit portfolio risk model that paved the way for the approaches
incorporated in the Basel II capital Accord.

Among market practitioners, he is perhaps best known for co-founding
KMV, the San Francisco credit analysis firm, and for using Scholes,
Black, and Merton’s insights on option pricing to develop the expected
default frequency (EDF) credit pricing system—a so-called Merton model
approach—at the heart of KMV’s product line. The company has been
extremely successful, with KMV claiming more than 70 percent of the
world’s largest financial institutions as clients. It is hard to find a major
credit derivatives dealer or loan house that does not use it. The success of

Risk, 44-45, January 2002

7

www.ebook3000.com

http://www.ebook3000.org


8 EFFORTS AND OPINIONS

the approach has prompted other companies, including Moody’s Investors
Service and JPMorgan Chase, to add a Merton model-based default
probability estimator to their offerings.

This combination of theoretical and business accomplishments alone
might be enough to warrant Risk’s lifetime achievement award. But 60-
year-old Vasicek has shown no interest in resting on his laurels to free more
time for his enthusiasms, which range from playing classical flute music to
windsurfing in the cold, windy waters surrounding San Francisco. He con-
tinues to tackle new challenges, such as the tricky problem of modeling spot
and derivatives price behavior of nonstorable commodities such as electricity
and telecoms bandwidth (on which he co-authored a technical article with
Hélyette Geman published in the August 2001 issue ofRisk). And, according
to his colleagues at KMV, he remains the driving force behind the evolution
of that firm’s product line.

Vasicek did not originally intend to pursue a career as a financial the-
orist. He trained in his native Czechoslovakia as a mathematician, earning
a PhD with honors in probability theory from Charles University in 1968.
The first event that placed him on the road to his career in finance was the
Soviet invasion in August of that year. Vasicek had been at the Czechoslovak
Academy of Science in Prague, working in pure mathematics, when the
Soviet tanks rolled in. He and his wife left for Vienna a few days later.

He made his way to San Francisco and began applying for jobs as a
mathematician.He was interviewed for several positions—including a job at
Stanford University’s marine biology department doing spectral analyses of
dolphins’ songs. But fate lent a hand again, and he was interviewed by John
(Mac) McQuown, head of Wells Fargo’s Management Science Department,
who was looking to hire several mathematicians. “I’m a mathematician by
profession, and only went into finance because my first job here was in a
bank,” Vasicek jokes.

McQuown’s group already included Scholes, Merton, and Black. Also,
Sharpe was consulting for the bank. This was before the Black-Scholes
option pricing model had been published. “Mac hired these guys before
they were famous,” Vasicek says. Wells Fargo was one of the first banks
to embrace Sharpe’s capital asset pricing model (CAPM), and McQuown’s
group was looking at ways to apply it. Vasicek worked on this project and
on index fund construction.

McQuown, who would later launch KMV with Vasicek and Stephen
Kealhofer, said Vasicek’s talents quickly became obvious. “I vividly remem-
ber Fischer Black saying to me, on a couple of occasions, that when he had a
really intractable mathematical problem, he would go to Oldrich,” he says.

Myron Scholes, the Nobel laureate in economics who is now a finance
professor at Stanford University in Palo Alto, California, says: “He’s got
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tremendous mathematical and engineering abilities, and is also a very good
listener. He articulates his views and holds to his path if he thinks he is
right, but he’s willing to appreciate other people’s views, which makes him
a good scientist.” Indeed, in an arena where oversized egos are often the
norm, many of Vasicek’s past and current colleagues praise his tolerance
and humility. “He has ideas that seem quite simple in retrospect, so much so
that they’re quickly borrowed by everyone else. But they reflect a deep and
powerful mind.” says Kealhofer. “He has a wonderful old world/new world
charm—a mixture of Prague and San Francisco,” he adds.

In 1974, Vasicek left Wells Fargo to teach at the University of Rochester
(New York) Graduate School of Management, where he would stay for two
years. During this period, his attention turned to the problem of interest rate
behavior, which he would continue to pursue when he returned to California
as a visiting professor at UC Berkeley’s business school. “The pricing of
bonds and behavior of interest rates was an open question at that point,”
Vasicek says. “The work on the CAPM was exciting, but the research that
had been done wasn’t applicable to bonds.”

Vasicek realized that arbitrage would link bond prices up and down
the term structure, so, for example, there had to be a relationship between
investing in a one-year bond twice in succession and investing in a two-year
bond straight off. He found the common denominator to be the short-term
interest rate. “If you postulate that the pricing of a long bond is a function
of the short rate over the term of the bond, or more accurately, of your
probabilistic description of the short rate’s behavior over the term of the
term bond, you have a common variable for the pricing of bonds,” he notes.
“In other words, you have a state variable for the pricing of bonds with all
terms from the current value of the short rate—that was the point at which
the idea really broke for me at the time,” he says.

INSPIRATION

Vasicek’s paper, titled “An Equilibrium Characterization of the Term
Structure,” was published in the Journal of Financial Economics in 1977. It
was either the basis for, or inspired many of the theoretical advances that
came in the years that followed. Among these was the influential 1985 Cox-
Ingersoll-Ross model. One of that model’s authors, Stephen Ross, professor
of finance and economics at MIT’s Sloan School of Management in Boston,
says of Vasicek’s work: “It is a wonderfully simple, empirically amenable
model. It guides us in a lot of our intuitions about the subject.” McQuown
argues that Vasicek’s model was the critical catalyst that spurred develop-
ment of the interest rate derivatives market. “The interest rate swap market
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10 EFFORTS AND OPINIONS

relies on that model,” he says. “If it wasn’t for Oldrich’s contribution, the
interest rate swap market may have taken longer to develop. I dare say the
problem would have been solved sometime, but Oldrich solved it first.”

“It was like opening a Pandora’s box as far as academic research goes,”
Vasicek says. But, he notes with somemodesty that he had not actually aimed
to redefine how the world viewed interest rate products. “But what’s kind of
funny is that my paper focused on the theory,” he says. “What has become
known as the Vasicek model was just an example. I developed the theory
and I wanted to illustrate it on a particular type of process and go through
the calculation and determine the final equation. But it’s the example I used
that’s been remembered.”

The shift in his emphasis to credit risk came when McQuown recruited
Vasicek for an ill-fated scheme in the early 1980s. “I persuaded him to
join me in a venture that ultimately went down the tubes called Diversified
Corporate Loans in 1983. We wanted to create a pool of credit from major
US banks where the banks could swap qualified loans into a pool in return
for a pool interest.” The idea was to give the banks liquidity and portfolio
diversification, but to do so, the firm needed a way to value credit risk, to
aid the participating banks in valuing the loans they put into the pool, and
the pool itself.

“So,” Vasicek says, “I started to work on credit. Up to then, credit was
strictly a judgment call. So I developed an application of option pricing
theory—the Black-Scholes and Merton work.” Kealhofer says: “He laid
down the theoretical footprint in a short time that we’ve been using for
17 years now. He laid the groundwork for both the basic credit technology
and the portfolio technology. We’ve been laboring in those two veins
ever since.”

When DCL went out of business in 1989, Kealhofer (who had joined
several years before), McQuown and Vasicek launched KMV to further
develop and market the credit evaluation tool. Myron Scholes says: “It set
the stage for using more modern technology than the rating agencies have
used, and it led to more people thinking about using option technology to
do credit pricing. Others had used the option framework to price debt. But
his work at KMV took the lead in developing something that was usable by
a vast number of people.” Indeed, having a widely available set of reliable
credit pricing tools was a necessary precondition for the development of the
credit derivatives market, Scholes notes.

PIONEERING

MIT’s Ross says: “Vasicek’s work on credit risk is a different kind of pioneer-
ing. It’s a demonstration of how one can take high-quality academic work
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and turn it into a solid business without compromising the academic stuff
or the understanding of the needs of the marketplace. Marrying those two
is never easy.”

Vasicek says the launch of competing Merton-model products—
JPMorgan Chase’s being the most recent, the specifications of which were
published in the November 2001 issue of Risk—is good for the markets.
“I’m glad that people are becoming interested, because any effort in this
direction will make the market for these securities more liquid and more
efficient,” he says. “There has been a bit of confusion about what a Merton
model is. I guess people keep forgetting it is not a formula, it is a framework.
It is a structure that allows you to get a specific mathematical solution to
the value of a firm. But it would depend on the assumptions you make
about the firm’s financial structure and the capital statements and the
payments the firm is making—coupons, dividends, and the nature of the
debt, convertibility and optionality. It’s a very complicated thing. We give a
lot of attention to how we characterize the firm, on top of the mathematical
problem, then it’s a fair amount of work.”

As co-head of KMV’s research group, Vasicek continues to guide devel-
opment of the firm’s products. “We just rolled out a new method of calculat-
ing a loss on credit instruments that uses the empirical distribution of default
risk,” Kealhofer says. “That was suggested by Oldrich.” As factors such as
the Basel Accord and the rapid growth of the credit derivatives and synthetic
collateralized debt obligation markets have kept the credit risk modeling
arms race in full swing, and new pricing challenges such as those in the elec-
tricity and bandwidth markets have arisen, Vasicek’s work has remained at
the vital crux between theory and practice.
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CHAPTER 3
One-on-One Interview with

Oldrich Alfons Vasicek

By Nina Mehta

O ldrich Alfons Vasicek, a mathematician, is one of the leading lights in
modern finance. His 1977 paper, “An Equilibrium Characterization of

the Term Structure,” described the behavior of interest rates across maturi-
ties and paved the way for the development of the interest rate derivatives
market. He is one of the co-founders of KMV Corp., the granddaddy of
credit risk modeling firms, which Moody’s Investors Service bought in 2002
(and renamed Moody’s KMV). Throughout his career Vasicek has been
at the forefront of credit risk modeling. Earlier this year he increased his
stockpile of awards when he was named the 2004 IAFE/SunGard Financial
Engineer of the Year. The author of more than 30 papers in mathematical
and finance journals, Vasicek received a PhD in probability theory from
Charles University in Prague, in what is now the Czech Republic, in 1968.
This interview was conducted in February.

FEN: You’ve worked on models to value credit risk for a large part of your
career, but you said recently that valuing the plain debt of a single issuer
is more challenging. Why?

Oldrich Vasicek: It’s a very basic question we need to ask and answer with
a higher priority than asking how the derivatives are priced. Derivatives
are secondary instruments. I’m not a great fan of so-called reduced-form
models, which assume you know how to price debt—namely, that you
observe the market prices of plain debt of various maturities—and once
you have that, you price the credit default swaps and other options.

Financial Engineering News, May 2005
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14 EFFORTS AND OPINIONS

We need to understand how the more primary instruments are
priced. In theory, we have the methodology available to do so—the
Merton-Black-Scholes approach to valuing corporate liabilities. A com-
pany’s debt is, after all, an option on the company’s assets. If we know
the terms of the option—that is, the financial structure of the firm—
and we know the market value of the firm’s assets, which we can infer
from the stock price, then the derivative asset pricing theory should
enable us to come up with the value of the debt. That approach been
around for 30 years, but applying it is not a trivial problem because
the firm’s liability structure is usually very complex. There are various
contingencies that are hard to describe and analyze mathematically.

FEN: Has this problem become more pressing in recent years because com-
panies can now issue complex hybrid instruments across the debt-equity
range?

Vasicek: It’s always been a problem. A perfectly theoretically and practi-
cally complete solution has never really been available. It is more difficult
because of new instruments constantly being invented and brought into
practice. Financing now includes much more complex instruments than
what was in use 20 years ago.

FEN: Credit models have become more and more sophisticated as the
market has grown up around them. In your view, is there some area of
insufficiency in credit risk valuation?

Vasicek: I’m not sure whether the existing approaches to credit valuation
actually take into account correctly the possibility of very atypical catas-
trophic events that have not happened for the last 50 years, but that
may be lurking in the future—such as a general collapse of the whole
economy or a Great Depression or something of that nature. Empiri-
cal works that measure the default probabilities of various classes of
credit risk typically use data that don’t cover the occurrence of any such
events. People may be a little too optimistic in measuring the probabil-
ities of default if inferences are based just on data covering periods of
relative calm.

FEN: So model prices for debt instruments don’t correctly include the pos-
sibility of extreme events occurring?

Vasicek: No. Look at it this way: To protect himself against extreme losses,
a lender may buy a way-out-of-the-money put on the company’s stock.
But if there is a general economic collapse, chances are that the issuers
of the put will be unable to honor their obligation, since they will them-
selves be bankrupt.

On the other hand, I think that the market pricing of debt actually
does take these kinds of things into account—that would explain
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the discrepancy between the probabilities of default, particularly on
high-quality credits, and the actual pricing of debt for those companies.
Typically, for high-quality corporate credits the spread over the riskless
rate is higher than the measured probability of default. Part of the
possible explanation is that the bond market incorporates the possibility
of extreme events occurring in the future, while models do not.

FEN: You’re talking about high-quality debt because there are fewer other
reasons that would explain the excess spread?

Vasicek: Yes. The same thing would be true for low-quality debt, but it
would add a relatively smaller amount to the risk premia.

FEN: I know you’ve cut back your work in the credit area in the last few
years, but let me ask you where you think credit modeling is heading.
What kinds of questions should credit modelers try to address?

Vasicek: A lot of attention goes to the pricing of various complicated debt
instruments because those instruments are becoming more common.
That’s needed short-term. I think long-term it’s important to understand
the more basic problem we were talking about before—what exactly
goes into the pricing of the straight debt of a firm. That’s the economics
of credit, not the valuation of assorted derivatives. There is too much
mathematics and too little economics in finance nowadays. That may
sound funny coming from a mathematician, but nevertheless that’s my
opinion. We must not forget that the subject of finance is economic
decisions.

FEN: You have a paper that’s just coming out in the Journal of Financial
Economics called “The Economics of Interest Rates.” That’s an example
of what you’re talking about, since you’re focusing on the economics
rather than the behavior of interest rates, which is where you initially
made your name in finance. What does the paper say, and why is it
interesting?

Vasicek: The area we somehow lost sight of, and should return to now, is
economics. Twenty or thirty years ago it was the focus of a large portion
of the work in finance. A prime example of an early work that went
in that direction is the Cox-Ingersoll-Ross paper that was published in
1985. You can view this recent paper of mine as a generalization of that
approach.

What Cox, Ross, and Ingersoll did at the time is they said, Where
do interest rates come from? They had a formal description of the eco-
nomic opportunities in a society on the one hand, and, on the other
hand, a quantitative description of the preferences of the participants—
preferences for current versus future consumption, the degree of risk
aversion, and so on. If you then impose the market clearing conditions
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that ensure the existence of an equilibrium, you can see how the prices
of various assets and in particular the prices of bonds—that is, the deter-
mination of interest rates—would happen in that economy.

But they assumed that everybody’s preferences are the same, that
you have homogenous investors in the economy, which is a limiting
factor in the analysis. For one thing, there would be no borrowing or
lending in that economy and the bond market wouldn’t exist, because
if everybody had the same preferences, everybody would hold the same
investment portfolio. Besides, in reality, investors do have different pref-
erences. So I have attempted to extend the general equilibrium models
by incorporating heterogeneous preferences among investors. I’d been
working on this problem for three or four years, but the actual break-
through that allowed me to come up with the solution occurred about
a year ago.

FEN: What was the breakthrough?
Vasicek: The main difficulty in dealing with heterogeneous investors is that

the society’s average, or aggregate, attitude toward risk and toward
present versus future consumption shifts through time. This is because
the investors’ wealth levels change due to their different investment port-
folios, and that gives different weights to their individual preferences. It
turned out that the behavior of the individual wealth levels is driven by
a single stochastic process, which gives you a mathematically tractable
way of characterizing the development of the aggregate preferences.

FEN: Let me go back to an earlier point in your career. What exactly were
you hired to do at Wells Fargo?

Vasicek: The Management Sciences Department of Wells Fargo was trying
to look at the implications of newfangled theories such as the Capital
Asset Pricing Model in the banking and investment practice. I was hired
to be part of that because these models are highly quantitative and
a mathematical background is definitely useful, even though they are
essentially economic theories. CAPM was just making it into existence
at that time. In fact, it was very slow in getting accepted. When I started
at Wells Fargo in early 1969, most people in the bank still thought it
was nonsense to measure risk by the variance of returns.

FEN: You went on to do other research, and in 1977 you published “An
Equilibrium Characterization of the Term Structure.” Were you already
thinking about interest rates at Wells Fargo?

Vasicek: No. It was when I was at the University of Rochester in New
York, and thenwhen I came back to California in 1976 andwas teaching
part-time at the University of California at Berkeley and doing part-time
consulting for Wells Fargo that I got most of that work done.
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FEN: What drew you to the term structure of interest rates?
Vasicek: At the time, there was very little available on the pricing of risk-

less debt and on interest rates in general. There was CAPM, which
addressed the risk-return relationship of financial assets, but that was
mostly applied to equities. There was the option-pricing theory for the
pricing of derivative assets. But there was not much available on interest
rates—how they behave, why they behave that way, what the relation-
ships are among interest rates of variousmaturities. Some empiricalwork
was available, but there was no theory of the term structure, so there was
a void or gap. I was bothered by the gap, so I started to look into that.

FEN: And bridged that gap. In 1983, you and John McQuown formed
Diversified Corporate Loans, a high-minded but relatively short-lived
venture. At that timemortgageswere resold but commercial loans stayed
put on the balance sheet. You were essentially trying to restructure a
traditional business.

Vasicek: Right. For some larger loans there were multiple lenders and there
was some packaging and selling of loans, but that was not enough. We
wanted to give banks an opportunity to diversify their portfolios.

FEN: McQuown came up with the idea of pooling loans, right? Did he
have to sell you on the concept?

Vasicek: It was his idea but it made immediate sense to me. It was a mean-
ingful thing. If you have an equities market where securities are effi-
ciently and easily traded, any institutional investor can get a reasonably
diversified portfolio. But it is much harder to get a well-diversified port-
folio in a less-liquid market like bank loans because you do not have
access through origination to the whole market. It’s not good if a portfo-
lio is concentrated in a specific industry or geographical region. Short of
an efficient and extensive bond exchange, like a stock exchange—which
was then and still is a ways away—the next means of allowing banks
to diversify their loan portfolios would be for them to sell off a part of
their portfolios to a pool and get back a share of the pool. That’s what
we were trying to do.

FEN: But banks were reluctant to do that because they thought it would
hurt their relationship with borrowers. Was that surprising to you at the
time?

Vasicek: I was not involved in visits to banks. I was trying to get a first
crack on the valuation of the debt, trying to come up with what was
later extended into the KMV approach. It was obvious that a condition
for such pooling of loans across banks would be having a reasonable
understanding of the value of those loans. These were privately held
instruments by the originating bank. There was no secondary market.
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What was needed was some measure of the default risk for the pricing of
these loans. I was spending my time trying to come up with a theoretical
methodology for doing so.

FEN: The modeling you did at KMV Corporation was a continuation of
what you were doing at DCL.

Vasicek: Yes, it was a continuation of that same effort. The early experi-
ence of the Black-Scholes-Merton approach to valuing debt had been so
successful in actually giving an early warning of bankruptcies that when
DCL closed, we thought a credit risk valuation methodology might have
some value of its own.

FEN: When you, McQuown, and Stephen Kealhofer formed KMV, was
there an end point? How did you expect the market to evolve?

Vasicek: It seemed to me that the approach made sense. If you develop
something that makes sense, there should be an interest in it. KMV was
a collective effort. I did my part on the theory of credit valuation. Steve
made the approach applicable to real firms and real data.Mac kept track
of the conceptual goal of these efforts and went to banks like a mission-
ary to the native tribes to convince them that these crazy things could
actually have some value for them.

FEN: KMV’s EDF (expected default frequency) measures and quantitative
models have long been considered a counterbalance to the more quali-
tative models used by rating agencies. As rating agencies began buying
credit risk modeling firms, there have been grumblings that there’s been
a reduction in terms of the different approaches to credit valuation. Is
there any validity to that?

Vasicek: I don’t think that happened. Moody’s has consciously kept a sep-
aration between the tradition of letter-rating methodologies and the
KMV approach in order to have independent viewpoints on credit val-
uation. If anything, there have been lots of new models coming out in
the industry.

FEN: What do you think credit rating agencies and modelers learned from
Enron, Worldcom, and other bankruptcies?

Vasicek: The Enron case demonstrates the power of market-price-based
measures of risk. The KMV model was giving warning signals before
concerns found their way into ratings and bond market prices. Ratings
often don’t pay sufficient attention to market prices—by prices, I don’t
mean just the value of the stock but also its behavior, its volatility. If
there’s a lesson from the Enron case, it is that measures such as stock
price volatility should be more explicitly incorporated into the criteria
for forming letter ratings.

FEN: I read something interesting a couple of days ago. CreditSights,
an independent credit analysis and research firm, recently looked at
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Venezuelan and Brazilian sovereign debt and pointed out that Brazilian
debt had higher ratings than Venezuelan debt. However, Venezuelan
debt looked stronger, based on 13 out of 15 quantitative indicators.
CreditSights observed that subjective factors often wind up trumping
quantitative factors in assessing the credit quality of sovereign debt.
What do you think?

Vasicek: I do not know of any theoretically satisfying model for sovereign
debt, frankly. So far, we’ve been talking about corporate debt for pub-
licly held corporations. For those kinds of debt instruments we may not
have perfectly worked out models, but we do have an approach—the
derivative asset-pricing model. For sovereign debt, what’s available right
now is a combination of empirical statistical-type models and subjective
judgment. There’s no self-contained theory or model that exists for the
valuation of sovereign debt.

www.ebook3000.com

http://www.ebook3000.org




CHAPTER 4
Credit Superquant

By Robert Hunter

O ldrich Alfons Vasicek is perhaps the most unlikely member of the Deriva-
tives Hall of Fame. That he ended up studying derivatives at all can be

chalked up to pure happenstance.Had events occurred differently in his early
years, Vasicek might well have spent his career studying nuclear physics or
marine biology rather than default probabilities. The derivatives world is
fortunate things turned out the way they did.

Vasicek, now 58, was born in Prague, Czechoslovakia, and was drawn
to mathematics at an early age. His father, a lawyer, had suffered through
the vastly different but equally onerous political systems of Nazism and
Communism, and believed his children should choose careers in the physical
sciences, which were less vulnerable to political crosscurrents.

At his father’s urging, Oldrich studied nuclear physics at the Czech
Technical University, but never lost his passion for mathematics. When
the university introduced a new degree program in pure mathematics for
selected students, Oldrich jumped at the chance. In 1964, he earned a
master’s degree in math.

Immediately after graduating, he enrolled at Charles University in
Prague to pursue a PhD in probability theory. He earned his diploma four
years later, just as Soviet tanks rolled into Prague to restore order to an
unraveling government. Within five days of the invasion, Vasicek and his
wife, a physician, boarded a train leaving the country.

Vasicek made his way to San Francisco in late 1968 and started to look
for a job. Stanford University’s biology department was looking for a math-
ematician to do spectral analysis of dolphins’ sounds, but passed on Vasicek.

Derivatives Strategy, March 2000
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Wells Fargo Bank, which needed a research analyst in its management
science department, quickly nabbed Vasicek for the post in January 1969.
In the coming decade, the derivatives explosion would reshape finance.
Vasicek, still a financial neophyte, would be at the epicenter of the changes.

GOOD COMPANY

In the early 1970s, Wells Fargo’s Management Science Department began
organizing annual conferences that brought select academicians together
with half a dozen bankers to discuss various cutting-edge topics in finance.
The 1970 affair featured two young turks named Fischer Black and Myron
Scholes, who had just begun thinking about the problem of valuing equity
options. Their effect on Vasicek was immediate. “It was like being in heaven,
being exposed to all of these new ideas and these people,” he recalls. Later
conferences broughtMertonMiller, FrancoModigliani, and Robert Merton,
who introduced his continuous time equation before it was published.

The conferences awakened in Vasicek a passion for finance he never
knew he had. By the early 1970s, he was working with Black, Scholes,
William Sharpe, and others to develop for Wells Fargo a radical new invest-
ment vehicle known as an index fund. “You cannot imagine how revolu-
tionary an idea it was at the time,” Vasicek recalls. “The basic plan was to
form a capitalization-weighted stock market fund. The whole bank went up
in arms. The security analyst division was aghast. They said, ‘You mean you
want to buy all the dogs along with the good stocks? You’re not going to
do fundamental analysis of stocks to see which ones are good and which
are bad?’ We said, ‘No, the market’s already doing that.’” After two years
of in-fighting, the team was encouraged to resign. “The bank just couldn’t
comprehend the idea, because nobody else was doing this,” Vasicek says.

Vasicek headed east to take a teaching job at the University of Rochester.
After two upstate New York winters, he went back to California, this time
as a visiting professor at the University of California at Berkeley. In 1977,
he wrote a paper that would change the face of finance. In “An Equilib-
rium Characterization of the Term Structure,” published in the Journal of
Financial Economics, Vasicek first traced the relationship between the term
structure of interest rates and the pricing of bonds. The paper examined how
interest rates affect prices of riskless bonds, such as Treasuries. It asked how
bonds of different maturities are related to each other, what kind of stochas-
tic processes derived them, and what kind of conditions have to hold across
the whole bond market, for all maturities, so that it stays in equilibrium.

“That was, at the time, kind of a novel thing,” Vasicek says modestly.
“When I was working on it, the theory available for stocks was the Capital
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Asset Pricing Model. Somehow, it wasn’t perceived as being applicable to
bonds—they didn’t seem to have any beta. The bond question was hard to
get hold of. Then the idea that illuminatedmy thinkingwas the consideration
that the pricing of longer bonds must in some way be related to what the
short rate would do over the tenure of the bond. Now it seems fairly obvious,
but it surely wasn’t at the time.”

The basic assumption of the theory was that the pricing of, say, a
five-year bond is a function of the short rate—or, more accurately, today’s
probability assessment of the behavior of the short rate—over the next five
years. “This was something to build on,” he says. “You simply need to
specify what type of stochastic processes you’re dealing with. The mathe-
matical implementation was easy; the idea was the hardest part—that the
short rate over that span is what should determine the price of the long
bond.”

The idea caught on instantly. Within a few years, dozens of articles were
popping up in journals that took the concept further. Now, in one form
or another, anybody who buys, sells, prices, or structures an interest rate
derivative is using some version of Vasicek’s model.

CREDIT IS DUE

Despite such success—or maybe because of it—Vasicek realized his heart
wasn’t in teaching. He needed to be on the front lines all the time, focus-
ing his considerable mathematical powers on the furthest reaches of finance
theory. In 1978, Vasicek left Berkeley to become a consultant, eventually
ending up at Gifford Fong Associates, where he became a senior research
associate in 1980, specializing in mathematical approaches to the newest
exotic products in the rapidly growing derivatives markets.

After several years in that role, he left to become a partner in a new com-
pany, Diversified Corporate Finance, together with John McQuown, who
had first hired Vasicek at Wells Fargo in 1969. The company was built with
a groundbreaking mission: to pool bank loans to improve asset diversifi-
cation. The concept was, by today’s standards, quite simple: Banks would
contribute their loans to a massive pool of diverse loans in exchange for
a share of the entire pool. “They were entirely off-balance-sheet transac-
tions,” Vasicek says. “In effect, they were the first credit derivatives.” But
banks were afraid to take the plunge.

Meanwhile, Vasicek was working on some theoretical questions relating
to credit. While at DCF, he created a proprietary credit valuation model
to help banks evaluate the loans they were contributing to the pool and
evaluate the pool itself. The model, later published under the title “Credit
Valuation” in several publications, is based on the assumption that credit
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valuation should not be a subjective judgment of an individual credit analyst,
but rather should be inferred objectively from the characteristics of the firm
and the firm’s share price.

“It sounds extremely natural now, valuing the debt of a company from
knowing its equity and derivative asset pricing,” says Vasicek. “We take
it for granted. But in the mid-1980s they were absolutely laughing at us.”
The theoretical underpinning for the model went back to Black and Scholes,
who argued in the 1970s that the stock of a firm is simply a call on the firm’s
assets. When Vasicek tried to apply that thinking to credit, he was met with
tremendous resistance.

“Prospective clients said you value credit by knowing the corporate
customer, working with him, analyzing, going to visit, having him visit
you, studying the financial statements. It was a completely nonanalytical
approach, based on the relationship with the client and on experience.
We proposed that the stock market in effect does all that—that it’s the
aggregate judgment of hundreds of thousands of investors, with the bottom
line of their evaluation expressed as the price at which they’re willing to buy
and sell the stock. If we could succeed in extracting the information from
the stock and converting it to the valuation of the credit, we’d capitalize on
all this information. In fact, unless the bank credit officer knows something
that the market does not know, it should be a superior gauge. You’d have to
know more than the aggregate of market participants to arrive at a superior
valuation.”

Vasicek was so sure of his revelation that DCF hired a retired former
bank credit officer to soothe potential clients. To no avail: The company
folded in 1989.

But Vasicek moved forward. After the failure of DCF, he cofounded
KMV Corp. with McQuown and Steve Kealhofer, a former Berkeley
professor who had also worked at DCF. The new firm beefed up its credit
capabilities. In addition to portfolio risk management systems, KMV offers
explicit default probabilities from one year to five years for 20,000 com-
panies worldwide. Whereas most portfolio managers used agency ratings
to gauge expected losses, KMV offered a quantitative measure—which,
among other things, also helped banks price loans and make lending
decisions. While Vasicek’s pioneering use of quantitative methods in credit
analysis would prove instrumental to the credit derivatives boom of the
1990s, demand for KMV’s services was nonexistent in the beginning. It
took two years for the company to sign up its first client, Bank of America.

Once Bank of America signed on, however, business snowballed. One
client led to two, then five, then ten, and before long KMV could count 35
of the world’s 50 biggest banks as clients. KMV now models portfolios with
combined assets of several trillion dollars.
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Nowadays, Vasicek is spending much of his time developing pricing
mechanisms for credit derivatives. “You need to know the complete proba-
bility distribution of the potential losses in the underlying portfolio before
you can fully structure or write, say, a collateralized bond obligation,”
he says.

Thanks to Oldrich Vasicek, this is no longer such a difficult proposition.
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PART

Two
Term Structure

of Interest Rates

The price P(t, s) at time t of a default-free zero-coupon bond with unit face
value maturing at time s is given by the equation

P(t, s) = Et exp
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where r(t) is the short interest rate, z(t) is a Wiener process constituting a
source of risk, and q(t) is the market price of risk. (page 38)
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CHAPTER 5
Introduction to Part II

Interest rates are a function of time and term (time to maturity). As a
function of time, rates behave as stochastic processes. As a function of

term, interest rates on a given date form a yield curve. Term structure
models describe the behavior of interest rates of different maturities as a
joint stochastic process.

Term structure models are a necessary tool for valuation and risk man-
agement of interest rate contingent claims—that is, securities or transactions
whose payoff depends on future values of interest rates, such as callable or
putable bonds, swaps, swaptions, caps, and floors. For instance, a bond will
be called if its value on the call date is greater than the call price. To deter-
mine the current value of the bond, it is necessary to know the subsequent
behavior of interest rates. The same is true for all debt securities subject to
prepayment, such as mortgages with refinancing options.

The immediate acceptance and application of term structure models in
banking and investment practice is due to the fact that there are few financial
instruments whose value is not in some degree dependent on future interest
rates. Even stock options such as calls and puts depend on the development
of interest rates. Interest rate models enter into valuation of firms and their
liabilities. Besides valuation, term structure models are necessary for interest
rate risk measurement, management, and hedging.

Interest rates of different maturities behave as a joint stochastic process.
Not all joint processes, however, can describe interest rate behavior in an
efficient market. For instance, suppose that a term structure model postu-
lates that rates of all maturities change in time by equal amounts, that is,
that yield curves move by parallel shifts (which, empirically, appears to be
a reasonable first-order approximation). It can be shown that in this case a
portfolio consisting of a long bond and a short bond would always outper-
form a medium-term bond with the same Macaulay duration. In an efficient
market, supply and demand would drive the price of the medium maturity
bond down and the prices of the long and short bonds up. As this would
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cause the yield on the medium bond to increase and the yields on the long
and short bonds to decrease, the yield curves would not stay parallel. This
model therefore cannot describe interest rate behavior.

In order that riskless arbitrage opportunities are absent, the joint process
of interest rate behavior must satisfy some conditions. Determining these
conditions and finding processes that satisfy them is the purpose of term
structure theory. Term structure models are specific applications of term
structure theory.

The joint stochastic process is driven by sources of uncertainty. For
continuous processes, the sources of uncertainty are often specified as
Wiener processes. If the evolution of the yield curve can be represented by
Markovian state variables, these variables are called factors.

A general theory of one-factor term structure models is given in the 1977
paper “An Equilibrium Characterization of the Term Structure” (Chapter 6).
It is proven that the term structure is fully described by the specification of
the behavior of the short rate and the market price of risk. This relationship
is expressed by the fundamental bond pricing equation (18) in that chapter,
which gives the price of a bond as a function of the short rate and the market
price of risk over the term of the bond.

The bond pricing equation was derived as the solution to a partial dif-
ferential equation under certain assumptions, but it is valid generally for any
arbitrage-free term structure model. The equation is valid even in the case
of multiple factors or multiple risk sources, if the products in the equation
are interpreted as scalar products of vectors. Every term structure model is
either a direct application of that equation, or it assumes that the equation is
true for bonds and uses it to price interest rate derivatives (as in the Heath,
Jarrow, Morton model).

The 1977 paper gives an example of a term structure model in which the
short rate follows a mean reverting random walk (the Ornstein-Uhlenbeck
process), and the market price of risk is constant. In this example, which has
become known as the “Vasicek model,” interest rates are Gaussian.

The difference between the forward rate and the expected spot rate has
been traditionally called the liquidity premium. The unpublished memoran-
dum written in 1979, “The Liquidity Premium” (Chapter 7), shows that the
liquidity premium consists of two components: The first component, driven
by the market price of risk, is equal to the expected integral over the span
of the forward rate of the forward rate volatility multiplied by the market
price of risk. The second component is equal to the negative of the expected
aggregate over the forward rate span of the bond price volatility times the
forward rate volatility. This component, which is present even if the market
price of risk is zero, arises as a result of the nonlinear relationship between
prices and rates.



Introduction to Part II 31

A plot of bond yields on a given date as a function of term is called
the yield curve. Since yield quotes are typically available only for selected
maturities, it has been necessary to interpolate between these maturities,
or differently stated, fitting a smooth curve to the discrete data. A favorite
method for doing so had been the use of polynomial splines to the yields. The
paper “Term Structure Modeling Using Exponential Splines” (Chapter 8),
written in 1982 with H. Gifford Fong, proposes a different method, namely
fitting exponential splines to the discount function. The advantages of using
this type of splines are their desirable asymptotic properties, and their having
both a sufficient flexibility to fit a wide variety of yield curves and a sufficient
robustness to produce stable forward rate curves.

Heath, Jarrow, and Morton in their intricate 1992 paper proposed a
framework for pricing interest rate derivatives based on the knowledge of
the initial term structure and of the forward rate volatilities. By writing the
dynamics of interest rates directly in terms of a process that is Wiener under
the martingale measure, it is possible to price interest rate contingent claims
without knowing the market price of risk. The 1994 memorandum “The
Heath, Jarrow, Morton Model” (Chapter 9) provides a three-line derivation
of the HJM model.
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CHAPTER 6
An Equilibrium Characterization

of the Term Structure

ABSTRACT

The paper derives a general form of the term structure of interest rates.
The following assumptions are made: (A.1) The instantaneous (spot) interest
rate follows a diffusion process; (A.2) the price of a discount bond depends
only on the spot rate over its term; and (A.3) the market is efficient. Under
these assumptions, it is shown by means of an arbitrage argument that the
expected rate of return on any bond in excess of the spot rate is proportional
to its standard deviation. This property is then used to derive a partial differ-
ential equation for bond prices. The solution to that equation is given in the
form of a stochastic integral representation. An interpretation of the bond
pricing formula is provided. The model is illustrated on a specific case.

INTRODUCTION

Although considerable attention has been paid to equilibrium conditions in
capitalmarkets and the pricing of capital assets, few results are directly appli-
cable to description of the interest rate structure. The most notable excep-
tions are the works of Roll (1970, 1971), Merton (1973, 1974), and Long
(1974). This paper gives an explicit characterization of the term structure of
interest rates in an efficient market. The development of the model is based

Journal of Financial Economics 5, No. 2, 177–188, 1977; reprinted in Vasicek and
Beyond: Approaches to Building and Applying Interest Rate Models, L. Hughston
(ed.), London: Risk Publications, 1996; reprinted in The Debt Market, S.A. Ross
(ed.), Glos, G.B.: Elgar Publishing Ltd., 2000; reprinted in Options Markets, G. M.
Constantinides and A. G. Malliaris (eds.), Glos, G.B.: Elgar Publishing Ltd., 2000.
The author wishes to thank P. Boyle, M. Garman,M. Jensen, and the referees, R. Roll
and S. Schaefer, for their helpful comments and suggestions.
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on an arbitrage argument similar to that of Black and Scholes (1973) for
option pricing. The model is formulated in continuous time, although some
implications for discrete interest rate series are also noted.

NOTATION AND ASSUMPTIONS

Consider a market in which investors buy and issue default-free claims on
a specified sum of money to be delivered at a given future date. Such claims
will be called (discount) bonds. Let P(t, s) denote the price at time t of a
discount bond maturing at time s, t ≦ s, with unit maturity value,

P(s, s) = 1.

The yield to maturity R(t,T) is the internal rate of return at time t on a bond
with maturity date s = t + T,

R(t,T) = − 1
T

log P(t, t + T), T > 0. (1)

The rates R(t,T) considered as a function of T will be referred to as the term
structure at time t.

The forward rate F(t, s) will be defined by the equation

R(t,T) = 1
T ∫

t+T

t
F(t, 𝜏)d𝜏. (2)

In the form explicit for the forward rate, this equation can be written as

F(t, s) = 𝜕

𝜕s
[(s − t)R(t, s− t)]. (3)

The forward rate can be interpreted as the marginal rate of return from
committing a bond investment for an additional instant.

Define now the spot rate as the instantaneous borrowing and lending
rate,

r(t) = R(t, 0) = lim
T→0

R(t,T). (4)

A loan of amount W at the spot rate will thus increase in value by the
increment

dW = Wr(t)dt. (5)

This equation holds with certainty. At any time t, the current value r(t) of the
spot rate is the instantaneous rate of increase of the loan value. The subse-
quent values of the spot rate, however, are not necessarily certain. In fact, it
will be assumed that r(t) is a stochastic process, subject to two requirements:
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First, r(t) is a continuous function of time, that is, it does not change value by
an instantaneous jump. Second, it is assumed that r(t) follows aMarkov pro-
cess. Under this assumption, the future development of the spot rate given
its present value is independent of the past development that has led to the
present level. The following assumption is thus made:

(A.1) The spot rate follows a continuous Markov process.

The Markov property implies that the spot rate process is characterized
by a single state variable, namely its current value. The probability distribu-
tion of the segment {r(𝜏), 𝜏 ≧ t} is thus completely determined by the value
of r(t).

Processes that areMarkov and continuous are called diffusion processes.
They can be described [cf. Itô (1961), Gikhman and Skorokhod (1969)] by
a stochastic differential equation of the form

dr = f (r, t)dt + 𝜌(r, t)dz, (6)

where z(t) is a Wiener process with incremental variance dt. The functions
f (r, t), 𝜌2(r, t) are the instantaneous drift and variance, respectively, of the
process r(t).

It is natural to expect that the price of a discount bond will be deter-
mined solely by the spot interest rate over its term, or more accurately, by
the current assessment of the development of the spot rate over the term of
the bond. No particular form of such relationship is presumed. The second
assumption will thus be stated as follows:

(A.2) The price P(t, s) of a discount bond is determined by the assessment,
at time t, of the segment {r(𝜏), t ≦ 𝜏 ≦ s} of the spot rate process over
the term of the bond.

It may be noted that the expectation hypothesis, the market segmen-
tation hypothesis, and the liquidity preference hypothesis all conform to
assumption (A.2), since they all postulate that

R(t,T) = Et

(
1
T ∫

t+T

t
r (𝜏)d𝜏

)

+ 𝜋(t,T, r(t)),

with various specifications for the function 𝜋.
Finally, it will be assumed that the following is true:

(A.3) The market is efficient; that is, there are no transactions costs, infor-
mation is available to all investors simultaneously, and every investor
acts rationally (prefers more wealth to less, and uses all available
information).
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Assumption (A.3) implies that investors have homogeneous expectations,
and that no profitable riskless arbitrage is possible.

By assumption (A.1) the development of the spot rate process over an
interval (t, s), t ≦ s, given its values prior to time t, depends only on the
current value r(t). Assumption (A.2) then implies that the price P(t, s) is a
function of r(t),

P(t, s) = P(t, s, r(t)). (7)

Thus, the value of the spot rate is the only state variable for the whole
term structure. Expectations formed with the knowledge of the whole past
development of rates of all maturities, including the present term structure,
are equivalent to expectations conditional only on the present value of the
spot rate.

Since there exists only one state variable, the instantaneous returns on
bonds of different maturities are perfectly correlated. This means that the
short bond and just one other bond completely span the whole of the term
structure. It should be noted, however, that bond returns over a finite period
are not correlated perfectly. Investors unwilling to revise the composition of
their portfolio continuously will need a spectrum of maturities to fulfill their
investment objectives.

THE TERM STRUCTURE EQUATION

It follows from Eqs. (6) and (7) by the Itô differentiation rule [cf., for
instance, Itô (1961), Kushner (1967), Åström (1970)], that the bond price
satisfies a stochastic differential equation

dP = P𝜇(t, s)dt − P𝜎(t, s)dz, (8)

where the parameters 𝜇(t, s) = 𝜇(t, s, r(t)), 𝜎(t, s) = 𝜎(t, s, r(t)) are given by

𝜇(t, s, r) = 1
P(t, s, r)

[
𝜕

𝜕t
+ f

𝜕

𝜕r
+ 1
2
𝜌
2 𝜕

2

𝜕r2

]
P(t, s, r), (9)

𝜎(t, s, r) = − 1
P(t, s, r)

𝜌
𝜕

𝜕r
P(t, s, r). (10)

The functions 𝜇(t, s, r), 𝜎2(t, s, r) are the mean and variance, respectively, of
the instantaneous rate of return at time t on a bond with maturity date s,
given that the current spot rate is r(t) = r.

Now consider an investor who at time t issues an amountW1 of a bond
with maturity date s1, and simultaneously buys an amount W2 of a bond
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maturing at time s2. The total worth W = W2 −W1 of the portfolio thus
constructed changes over time according to the accumulation equation

dW = (W2𝜇(t, s2) −W1𝜇(t, s1))dt − (W2𝜎(t, s2) −W1𝜎(t, s1))dz (11)

[cf. Merton (1971)]. This equation follows from Eq. (8) by application of
the Itô rule.

Suppose that the amounts W1,W2 are chosen to be proportional to
𝜎(t, s2), 𝜎(t, s1), respectively,

W1 = W𝜎(t, s2)∕(𝜎(t, s1) − 𝜎(t, s2)),

W2 = W𝜎(t, s1)∕(𝜎(t, s1) − 𝜎(t, s2)).

Then the second term in Eq. (11) disappears, and the equation takes the form

dW = W(𝜇(t, s2)𝜎(t, s1) − 𝜇(t, s1)𝜎(t, s2))(𝜎(t, s1) − 𝜎(t, s2))−1 dt. (12)

The portfolio composed of such amounts of the two bonds is instantaneously
riskless, since the stochastic element dz is not present in (12). It should there-
fore realize the same return as a loan at the spot rate described by Eq. (5).
If not, the portfolio can be bought with funds borrowed at the spot rate, or
otherwise sold and the proceeds lent out, to accomplish a riskless arbitrage.

As such arbitrage opportunities are ruled out by Assumption (A.3), com-
parison of Eqs. (5) and (12) yields

(𝜇(t, s2)𝜎(t, s1) − 𝜇(t, s1)𝜎(t, s2))∕(𝜎(t, s1) − 𝜎(t, s2)) = r(t),

or equivalently,
𝜇(t, s1) − r(t)
𝜎(t, s1)

= 𝜇(t, s2) − r(t)
𝜎(t, s2)

. (13)

Since Eq. (13) is valid for arbitrary maturity dates s1, s2, it follows that the
ratio (𝜇(t, s) − r(t))∕𝜎(t, s) is independent of s. Let q(t, r) denote the common
value of such ratio for a bond of any maturity date, given that the current
spot rate is r(t) = r,

q(t, r) = 𝜇(t, s, r) − r
𝜎(t, s, r)

, s ≧ t. (14)

The quantity q(t, r) can be called the market price of risk, as it specifies the
increase in expected instantaneous rate of return on a bond per an additional
unit of risk.
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Eq. (14) will now be used to derive an equation for the price of a discount
bond. Writing (14) as

𝜇(t, s, r) − r = q(t, r)𝜎(t, s, r),

and substituting for 𝜇, 𝜎 from Eqs. (9) and (10) yields, after rearrangement,

𝜕P
𝜕t

+ (f + pq)𝜕P
𝜕r

+ 1
2
𝜌
2 𝜕

2P
𝜕r2

− rP = 0, t ≦ s. (15)

Eq. (15) is the basic equation for pricing of discount bonds in a market
characterized by Assumptions (A.1), (A.2), and (A.3). It will be called the
term structure equation.

The term structure equation is a partial differential equation for P(t, s, r).
Once the character of the spot rate process r(t) is described and the market
price of risk q(t, r) specified, the bond prices are obtained by solving (15)
subject to the boundary condition

P(s, s, r) = 1. (16)

The term structure R(t,T) of interest rates is then readily evaluated from the
equation

R(t,T) = − 1
T

logP(t, t + T, r(t)). (17)

STOCHASTIC REPRESENTATION OF THE BOND PRICE

Solutions of partial differential equations of the parabolic or elliptic type,
such as Eq. (15), can be represented in an integral form in terms of an under-
lying stochastic process [cf. Friedman (1975)]. Such representation for the
bond price as a solution to the term structure equation (15) and its boundary
condition is as follows:

P(t, s) = Et exp
(
−∫

s

t
r (𝜏)d𝜏 − 1

2∫
s

t
q2(𝜏, r(𝜏))d𝜏 +∫

s

t
q(𝜏, r(𝜏))dz(𝜏)

)
,

t ≦ s. (18)

To prove (18), define

V(u) = exp
(
−∫

u

t
r (𝜏)d𝜏 − 1

2∫
u

t
q2(𝜏, r(𝜏))d𝜏 + ∫

u

t
q(𝜏, r(𝜏))dz(𝜏)

)
,
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and apply Itô’s differential rule to the process P(u, s)V(u). Then

d(PV) = VdP + PdV + dPdV

= V
(
𝜕P
𝜕t

+ f
𝜕P
𝜕r

+ 1
2
𝜌
2 𝜕

2P
𝜕r2

)
du + V

𝜕P
𝜕r
𝜌dz + PV

(
−r − 1

2
q2

)
du

+ PVqdz + 1
2
PVq2du + V

𝜕P
𝜕r
𝜌qdu

= V
(
𝜕P
𝜕t

+
(
f + 𝜌q

) 𝜕P
𝜕r

+ 1
2
𝜌
2 𝜕

2P
𝜕r2

− rP
)
du + PVqdz + V

𝜕P
𝜕r
𝜌dz

= PVqdz + V
𝜕P
𝜕r
𝜌dz,

by virtue of Eq. (15). Integrating from t to s and taking expectation yields

Et(P(s, s)V(s) − P(t, s)V(t)) = 0,

and Eq. (18) follows.
In the special case when the expected instantaneous rates of return on

bonds of all maturities are the same,

𝜇(t, s) = r(t), s ≧ t,

(this corresponds to q = 0), the bond price is given by

P(t, s) = Et exp
(
−∫

s

t
r (𝜏)d𝜏

)
. (19)

Eq. (18) can be given an interpretation in economic terms. Construct
a portfolio consisting of the long bond (bond whose maturity approaches
infinity) and lending or borrowing at the spot rate, with proportions 𝜆(t), 1 −
𝜆(t), respectively, where

𝜆(t) = (𝜇(t,∞) − r(t))∕𝜎2(t,∞).

The price Q(t) of such portfolio follows the equation

dQ = 𝜆Q(𝜇(t,∞)dt − 𝜎(t,∞)dz) + (1 − 𝜆)Qrdt.
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This equation can be integrated by evaluating the differential of log Q
and noting that 𝜆(t)𝜎(t,∞) = q(t, r(t)). This yields

d(log Q) = 𝜆𝜇(t,∞)dt − 𝜆𝜎(t,∞)dz + (1 − 𝜆)rdt − 1
2
𝜆
2
𝜎
2(t,∞)dt

= rdt + 1
2
q2dt − qdz,

and consequently

Q(t)
Q(s)

= exp
(
−∫

s

t
r (𝜏)d𝜏 − 1

2∫
s

t
q2(𝜏, r(𝜏))d𝜏 + ∫

s

t
q(𝜏, r(𝜏))dz(𝜏)

)
.

Thus, Eq. (18) can be written in the form

P(t, s) = EtQ(t)∕Q(s), t ≦ s. (20)

This means that a bond of any maturity is priced in such a way that the
same portion of a certain well-defined combination of the long bond and
the riskless asset (the portfolioQ) can be bought now for the amount of the
bond price as is expected to be bought at the maturity date for the maturity
value.

Equivalently, Eq. (20) states that the price of any bond measured in units
of the value of such portfolio Q follows a martingale,

P(t, s)
Q(t)

= Et
P(𝜏, s)
Q(𝜏)

, t ≦ 𝜏 ≦ s.

Thus, if the present bond price is a certain fraction of the value of the
portfolio Q, then the future value of the bond is expected to stay the same
fraction of the value of that portfolio.

In empirical testing of the model, as well as for applications of the
results, it is necessary to know the parameters f , 𝜌 of the spot rate process,
and the market price of risk q. The former two quantities can be obtained
by statistical analysis of the (observable) process r(t). Although the market
price of risk can be estimated from the defining Eq. (14), it is desirable to
have a more direct means of observing q empirically. The following equality
can be employed:

𝜕R
𝜕T

||||T=0
= 1
2
(f (t, r(t)) + 𝜌(t, r(t)) ⋅ q(t, r(t))). (21)

Once the parameters f , 𝜌 are known, q could thus be determined from the
slope at the origin of the yield curves. Eq. (21) can be proven by taking
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the second derivative with respect to s of (18) (Itô’s differentiation rule is
needed), and putting s = t. This yields

𝜕
2P
𝜕s2

||||s=t
= r2(t) − f (t, r(t)) − 𝜌(t, r(t)) ⋅ q(t, r(t)). (22)

But from (1),
𝜕
2P
𝜕s2

||||s=t
= r2(t) − 2

𝜕R
𝜕T

||||T=0
. (23)

By comparison of (22), (23), Eq. (21) follows.

A SPECIFIC CASE

To illustrate the general model, the term structure of interest rates will now
be obtained explicitly in the situation characterized by the following assump-
tions: First, that the market price of risk q(t, r) is a constant,

q(t, r) = q,

independent of the calendar time and of the level of the spot rate. Second,
that the spot rate r(t) follows the so-called Ornstein-Uhlenbeck process,

dr = 𝛼(𝛾 − r)dt + 𝜌dz, (24)

with 𝛼 > 0, corresponding to the choice f (t, r) = 𝛼(𝛾 − r), 𝜌(t, r) = 𝜌 in
Eq. (6). This description of the spot rate process has been proposed by
Merton (1971).

The Ornstein-Uhlenbeck process with 𝛼 > 0 is sometimes called the
elastic random walk. It is a Markov process with normally distributed
increments. In contrast to the random walk (the Wiener process), which
is an unstable process and after a long time will diverge to infinite values,
the Ornstein-Uhlenbeck process possesses a stationary distribution. The
instantaneous drift 𝛼(𝛾 − r) represents a force that keeps pulling the process
towards its long-term mean 𝛾 with magnitude proportional to the deviation
of the process from the mean. The stochastic element, which has a constant
instantaneous variance 𝜌2, causes the process to fluctuate around the level
𝛾 in an erratic, but continuous, fashion. The conditional expectation and
variance of the process given the current level are

Etr(s) = 𝛾 + (r(t) − 𝛾)e−𝛼(s−t), t ≦ s, (25)

Vartr(s) =
𝜌
2

2𝛼
(1 − e−2𝛼(s−t)), t ≦ s, (26)

respectively.
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It is not claimed that the process given by Eq. (24) represents the best
description of the spot rate behavior. In the absence of empirical results on
the character of the spot rate process, this specification serves only as an
example.

Under such assumptions, the solution of the term structure equation (15)
subject to (16) [or alternatively, the representation (18)] is

P(t, s, r) = exp
[
1
𝛼

(
1 − e−𝛼(s−t)

)
(R(∞) − r) − (s − t)R(∞) − 𝜌

2

4𝛼3
(
1− e−𝛼(s−t)

)2
]
,

t ≦ s, (27)

where
R(∞) = 𝛾 + 𝜌q∕𝛼 − 1

2
𝜌
2∕𝛼2. (28)

The mean 𝜇(t, s) and standard deviation 𝜎(t, s) of the instantaneous rate of
return of a bond maturing at time s is, from Eqs. (9), (10),

𝜇(t, s) = r(t) + 𝜌q
𝛼
(1 − e−𝛼(s−t)),

𝜎(t, s) = 𝜌

𝛼
(1 − e−𝛼(s−t)),

with t ≦ s. It is seen that the longer the term of the bond, the higher the
variance of the instantaneous rate of return, with the expected return in
excess of the spot rate being proportional to the standard deviation. For
a very long bond (i.e., s → ∞) the mean and standard deviation approach
the limits

𝜇(∞) = r(t) + 𝜌q∕𝛼,

𝜎(∞) = 𝜌∕𝛼.

The term structure of interest rates is then calculated from Eqs. (17)
and (22). It takes the form

R(t,T) = R(∞) + (r(t) − R(∞)) 1
𝛼T

(1 − e−𝛼T) + 𝜌
2

4𝛼3T
(1 − e−𝛼T)2, T ≧ 0,

(29)

Note that the yield on a very long bond, as T → ∞, is R(∞), thus explaining
the notation (28).

The yield curves given by (29) start at the current level r(t) of the spot
rate for T = 0, and approach a common asymptote R(∞) as T → ∞. For
values of r(t) smaller or equal to

R(∞) − 1
4
𝜌
2∕𝛼2,
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the yield curve is monotonically increasing. For values of r(t) larger than that
but below

R(∞) + 1
2
𝜌
2∕𝛼2,

it is a humped curve. When r(t) is equal to or exceeds this last value, the
yield curves are monotonically decreasing.

Eq. (29), together with the spot rate process (24), fully characterizes the
behavior of interest rates under the specific assumptions of this section. It
provides both the relationship, at a given time t, among rates of different
maturities, and the behavior of interest rates, as well as bond prices, over
time. The relationship between the rates R(t,T1),R(t,T2) of two arbitrary
maturities can be determined by eliminating r(t) from Eq. (29) written for
T = T1,T = T2. Moreover, Eq. (29) describes the development of the rate
R(t,T) of a given maturity over time. Since r(t) is normally distributed by
virtue of the properties of the Ornstein-Uhlenbeck process, and R(t,T) is a
linear function of r(t), it follows that R(t,T) is also normally distributed.
The mean and variance of R(𝜏,T), given R(t,T), t < 𝜏, are obtained from
Eq. (29) by use of Eqs. (25) and (26). The calculations are elementary and
will not be done here. It will only be noted that Eqs. (24) and (29) imply that
the discrete rate series,

Rn = R(nT,T), n = 0, 1, 2,… ,

follows a first-order linear normal autoregressive process of the form

Rn = c + a(Rn−1 − c) + 𝜀n, (30)

with independent residuals 𝜀n [cf. Nelson (1972)]. The process in Eq. (30) is
the discrete elastic random walk, fluctuating around its mean c. The param-
eters c, a, and s2 = E𝜀2n could be expressed in terms of 𝛾, 𝛼, 𝜌, q. In particular,
the constant a, which characterizes the degree to which the next term in the
series {Rn} is tied to the current value, is given by a = e–𝛼T .

Also, Eq. (29) can be used to ascertain the behavior of bond prices.
The price P(𝜏, s), given its current value P(t, s), t ≦ s, is lognormally dis-
tributed, with parameters of the distribution calculated using Eqs. (1), (25),
(26), and (29).

The difference between the forward rates and expected spot rates, con-
sidered as a function of the term, is usually referred to as the liquidity pre-
mium [although, as Nelson (1972) argues, a more appropriate name would
be the term premium]. Using Eqs. (3) and (25), the liquidity premium implied
by the term structure (29) is given by

𝜋(T) = F(t, t + T) − Etr(t + T)

=
(
R (∞) − 𝛾 + 1

2
𝜌
2

𝛼2
e−𝛼T

)
(1 − e−𝛼T), T ≧ 0. (31)
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The liquidity premium (Eq. (31)) is a smooth function of the term T. It
is similar in form to the shape of the curves used by McCulloch (1975) in
fitting observed estimates of liquidity premia. Its values for T = 0 and T = ∞
are 𝜋(0) = 0, 𝜋(∞) = R(∞) − 𝛾 , respectively, the latter being the difference
between the yield on the very long bond and the long-term mean of the
spot rate. If q ≧ 𝜌∕𝛼, 𝜋(T) is a monotonically increasing function of T. For
0 < q < 𝜌∕𝛼, it has a humped shape, with maximum of q2∕2 occurring at

T = 1
𝛼
log

(
𝜌∕𝛼

𝜌∕𝛼 − q

)
.

If the market price of risk q ≦ 0, then 𝜋(T) is a monotonically decreasing
function.

REFERENCES

Åström, K.J. (1970). Introduction to Stochastic Control Theory. New York: Aca-
demic Press.

Black, F., and M. Scholes. (1973). “The Pricing of Options and Corporate Liabili-
ties.” Journal of Political Economy, 81, 637–654.

Friedman, A. (1975). Stochastic Differential Equations and Applications. New York:
Academic Press.

Gikhman, I.I., and A.V. Skorokhod. (1969). Introduction to the Theory of Random
Processes. Philadelphia, PA: W. B. Saunders.

Itô, K. (1961). Lectures on Stochastic Processes. Bombay: Tata Institute.
Kushner, H.J. (1967). Stochastic Stability and Control. New York: Academic Press.
Long, J.B. (1974). “Stock Prices, Inflation, and the Term Structure of Interest Rates.”

Journal of Financial Economics, 1, 131–170.
McCulloch, J.H. (1975). “An Estimate of the LiquidityPremium.” Journal of Political

Economy, 83, 95–119.
Merton, R.C. (1971). “OptimumConsumption and Portfolio Rules in a Continuous-

Time Model.” Journal of Economic Theory, 3, 373–413.
Merton, R.C. (1973). “An Intertemporal Capital Asset Pricing Model.” Economet-

rica, 41, 867–887.
Merton, R.C. (1974). “On the Pricing of Corporate Debt: The Risk Structure of

Interest Rates.” Journal of Finance, 29, 449–470.
Nelson, C.R. (1972). The Term Structure of Interest Rates. New York: Basic Books.
Roll, R. (1970). The Behavior of Interest Rates: The Application of the Efficient

Market Model to U.S. Treasury Bills. New York: Basic Books.
Roll, R. (1971). “Investment Diversification and BondMaturity.” Journal of Finance,

26, 51–66.



CHAPTER 7
The Liquidity Premium

Let the price P(u, v) at time u of a discount bond maturing at time v be
described by the stochastic differential equation

dP(u, v) = P(u, v)𝜇(u, v)du− P(u, v)𝜎(u, v)dz (1)

where z(u) is a Wiener process. As shown in Vasicek (1977) (Chapter 6 of
this volume), the mean 𝜇(u, v) and volatility 𝜎(u, v) of the instantaneous rate
of return are related by

𝜇(u, v) = r(u) + q(u)𝜎(u, v) (2)

where r(u) is the spot rate and q(u) is the market price of risk. Eq. (1) can
be written as

dP(u, v)
P(u, v)

= r(u)du + 𝜎(u, v)q(u)du− 𝜎(u, v)dz. (3)

Integrate Eq. (3) over u from t to s, t ≤ s. We get

logP(s, v) − logP(t, v) + 1
2

s

∫
t

𝜎
2(u, v)du=

s

∫
t

r(u)du +

s

∫
t

𝜎(u, v)q(u)du

−

s

∫
t

𝜎(u, v)dz(u) (4)

Now differentiate this equation with respect to v. This produces

F(s, v) = F(t, v) −

s

∫
t

𝜓(u, v)q(u)du+

s

∫
t

𝜓(u, v)𝜎(u, v)du+

s

∫
t

𝜓(u, v)dz(u) (5)
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where
F(t, v) = − 𝜕

𝜕v
logP(t, v) (6)

is the forward rate, and

𝜓(t, v) = 𝜕𝜎(t, v)
𝜕v

(7)

is the volatility of the forward rate F(t, v). The stochastic differential
equation corresponding to the integral form (5) is

dF(t, v) = −𝜓(t, v)q(t)dt + 𝜓(t, v)𝜎(t, v)dt+ 𝜓(t, v)dz(t). (8)

We note that the drift of forward rates is fully determined by their volatilities
and the pricing of risk.

The dynamic of the spot rate is described by

dr(t) = 𝜕F (t, s)
𝜕s

||||s=t
dt − 𝜌(t)q(t)dt + 𝜌(t)dz(t) (9)

where 𝜌(t) = 𝜓(t, t) is the volatility of the spot rate. The drift of the spot rate
is equal to the slope of the forward rate curve at the origin, less the market
price of risk multiplied by the volatility of the spot rate. This is consistent
with equations (21) and (22) in Vasicek (1977).

Put v = s in Eq. (5). Then

r(s) = F(t, s) −

s

∫
t

𝜓(u, s)q(u)du +

s

∫
t

𝜓(u, s)𝜎(u, s)du +

s

∫
t

𝜓(u, s)dz(u). (10)

Taking the expectation as of time t yields the equation

Etr(s) = F(t, s) − Et

s

∫
t

𝜓(u, s)q(u)du + Et

s

∫
t

𝜓(u, s)𝜎(u, s)du. (11)

The liquidity premium (or term premium, as it should be called) 𝜋(t, s) is
given by

𝜋(t, s) = F(t, s) − Etr(s) = Et

s

∫
t

𝜓(u, s)q(u)du − Et

s

∫
t

𝜓(u, s)𝜎(u, s)du. (12)

The liquidity premium in a term structure of interest rates has two com-
ponents. The first component is driven by the market price of risk. It is equal
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to the expected integral over the span of the forward rate of the forward rate
volatility multiplied by the market price of risk. There is, however, a second
component, which is present even if the market price of risk is zero. This
component, equal to the negative of the expected aggregate over the for-
ward rate span of the bond price volatility times the forward rate volatility,
arises as a result of the nonlinear relationship between prices and rates.
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CHAPTER 8
Term Structure Modeling Using

Exponential Splines

By Oldrich A. Vasicek and H. Gifford Fong

INTRODUCTION

Term structure of interest rates provides a characterization of interest rates as
a function ofmaturity. It facilitates the analysis of rates and yields such as dis-
cussed in Dobson, Sutch, and Vanderford [1976], and provides the basis for
investigation of portfolio returns as for example in Fisher and Weil [1971].
Term structure can be used in pricing of fixed-income securities (cf., for
instance, Houglet [1980]), and for valuation of futures contracts and con-
tingent claims, as in Brennan and Schwartz [1977]. It finds applications in
analysis of the effect of taxation on bond yields (cf. McCulloch [1975a] and
Schaefer [1981]), estimation of liquidity premia (cf. McCulloch [1975b]),
and assessment of the accuracy of market-implicit forecasts (Fama [1976]).
Because of its numerous uses, estimation of the term structure has received
considerable attention from researchers and practitioners alike.

A number of theoretical equilibrium models has been proposed in the
recent past to describe the term structure of interest rates, such as Vasicek
[1977] (Chapter 6 of this volume), Brennan and Schwartz [1979], Langetieg
[1980], and Cox, Ingersoll, and Ross [1981]. These models postulate
alternative assumptions about the nature of the stochastic process driving

Journal of Finance 37, No. 2, 339–348, 1982; reprinted in Dynamic Asset-Pricing
Models, A.W. Lo (ed.), Cheltenham, G.B.: Edward Elgar Publishing Ltd., 2007.
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50 TERM STRUCTURE OF INTEREST RATES

interest rates, and deduct a characterization of the term structure implied by
these assumptions in an efficiently operating market. The resulting spot rate
curves have a specific functional form dependent only on a few parameters.

Unfortunately, the spot rate curves derived by these models (at least in
the instances when it was possible to obtain explicit formulas) do not con-
form well to the observed data on bond yields and prices. Typically, actual
yield curves exhibit more varied shapes than those justified by the equilib-
rium models. It is undoubtedly a question of time until a sufficiently rich
theoretical model is proposed that provides a good fit to the data. For the
time being, however, empirical fitting of the term structure is very much an
unrelated task to investigations of equilibrium bond markets.

The objective in empirical estimation of the term structure is to fit a spot
rate curve (or any other equivalent description of the term structure, such
as the discount function) that (1) fits the data sufficiently well, and (2) is a
sufficiently smooth function. The second requirement, being less quantifiable
than the first, is less often stated. It is nevertheless at least as important as
the first, particularly since it is possible to achieve an arbitrary good (or even
perfect) fit if the empirical model is given enough degrees of freedom, with
the consequence that the resulting term structure makes little sense. For a
discussion of this point, see Langetieg and Smoot [1981].

A simple approach to estimation of the term structure is to postulate that
bond payments occur only on a discrete set of specified dates, and assume no
relationship among the discount factors corresponding to these dates (such
as that they lie on a smooth curve). The discount factors can then be esti-
mated as the coefficients in a regression with the bond payments on the given
set of dates as the independent variables, and the bond price as the dependent
variable. This approach has been taken by Carleton and Cooper [1976].
They include both U.S. Treasury and Federal Home Loan Bank securities in
the estimation, with an adjustment for the default risk in the FHLB bonds.
The resulting discount function is discrete rather than continuous, and the
forward rates are found not to be smooth.

McCulloch [1971] introduced the methodology of fitting the discount
function by polynomial splines. This produces estimates of the discount
function as a continuous function of time. For cubic or higher order splines,
the forward rates are a smooth function. Since the model is linear in the
discount function, ordinary least-squares regression techniques can be used.

In addressing the effect of taxation, McCulloch [1975a] estimates the
after-tax term structure of interest rates and the marginal income tax rate.
Estimates of the tax rate were achieved by minimizing the standard error of
the regression. This estimated tax rate is used to convert the after-tax term
structure into a before-tax term structure. This procedure makes the esti-
mated forward rates very sensitive to any estimation errors in the tax rate.
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Moreover, because the tax effect is estimated by best fitting to minimize large
errors, the inclusion of special securities such as flower bonds tends to prej-
udice the results.

Langetieg and Smoot [1981] discuss extensions of McCulloch’s spline
methodology. These include fitting cubic splines to the spot rates rather than
the discount function, and varying the location of the spline knots. Nonlinear
estimation procedures are required in these models.

This paper presents a different approach, which can be termed an expo-
nential spline fitting. The methodology described here has been applied to
historical price data on U.S. Treasury securities with satisfactory results. The
technique produces forward rates that are a smooth continuous function of
time. The model has desirable asymptotic properties for long maturities, and
exhibits both a sufficient flexibility to fit a wide variety of shapes of the term
structure, and a sufficient robustness to produce stable forward rate curves.
An adjustment for the effect of taxes and for call features on U.S. Treasury
bonds is included in the model.

In the next section, we provide a brief description of the basic con-
cepts of the term structure, such as spot and forward rates, market-implicit
forecasts, and the discount function. This provides some background for
understanding some of the prior work, and of the model to be proposed in
the last section.

CONCEPTS AND TERMS

The spot interest rate of a given maturity is defined as the yield on a pure
discount bond of that maturity. The spot rates are the discount rates deter-
mining the present value of a unit payment at a given time in the future.
Spot rates considered as a function of maturity are referred to as the term
structure of interest rates.

Spot rates are not directly observable, since there are few pure discount
bonds beyond maturities of one year. They have to be estimated from the
yields on actual securities by means of a term structure model. Each actual
coupon bond can be considered a package of discount bonds, namely one for
each of the coupon payments and one for the principal payment. The price
of such component discount bonds is equal to the amount of the payment
discounted by the spot rate of the maturity corresponding to this payment.
The price of the coupon bond is then the sum of the prices of these compo-
nent discount bonds. The yield to maturity on a coupon bond is the internal
rate of return on the bond payments, or the discount rate that would equate
the present value of the payments to the bond price. It is seen that the yield
is thus a mixture of spot rates of various maturities. In calculation of yield,
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each bond payment is discounted by the same rate, rather than by the spot
rate corresponding to the maturity of that payment. Decomposing the actual
yields on coupon bonds into the spot rates is the principal task of a term
structure model.

Spot rates describe the term structure by specifying the current interest
rate of any given maturity. The implications of the current spot rates for
future rates can be described in terms of the forward rates. The forward
rates are one-period future reinvestment rates, implied by the current term
structure of spot rates.

Mathematically, if R1, R2, R3… are the current spot rates, the forward
rate Ft for period t is given by the equation

1 + Ft =
(1 + Rt)t

(1 + Rt−1)t−1
, t = 1, 2, 3, · · · . (1)

This equation means that the forward rate for a given period in the future
is the marginal rate of return from committing an investment in a discount
bond for one more period. By definition, the forward rate for the first period
is equal to the one period spot rate, F1 = R1.

The relationship of spot and forward rates described by Eq. (1) can be
stated in the following equivalent form:

(1 + Rt)t = (1 + F1)(1 + F2) · · · (1 + Ft). (2)

This equation shows that spot rates are obtained by compounding the for-
ward rates over the term of the spot rate. Thus, the forward rate Ft can be
interpreted as the interest rate over the period from t − 1 to t that is implicit
in the current structure of spot rates.

Just as the forward rates are determined by the spot rates using Eq. (1),
the spot rates can be obtained from the forward rates by Eq. (2). Thus,
either the spot rates or the forward rates can be taken as alternative forms
of describing the term structure. The choice depends on which of these two
equivalent characterizations is more convenient for the given purpose. Spot
rates describe interest rates over periods from the current date to a given
future date. Forward rates describe interest rates over one-period intervals
in the future.

There is a third way of characterizing the term structure, namely by
means of the discount function. The discount function specifies the present
value of a unit payment in the future. It is thus the price of a pure discount
riskless bond of a given maturity. The discount function Dt is related to the
spot rates by the equation

Dt =
1

(1 + Rt)t
(3)
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and to the forward rates by the equation

Dt =
1

(1 + F1) (1+ F2) · · · (1 + Ft)
. (4)

The discount function Dt considered in continuous time t is a smooth curve
decreasing from the starting value D0 = 1 for t = 0 (since the value of one
dollar now is one dollar) to zero for longer and longer maturities. It typically
has an exponential shape.

While the discount function is usually more difficult to interpret as a
description of the structure of interest rates than either the spot rates or the
forward rates, it is useful in the estimation of the term structure from bond
prices. The reason is that bond prices can be expressed in a very simple way in
terms of the discount function, namely the sum of the payments multiplied
by their present value. In terms of the spot or forward rates, bond prices
are a more complicated (nonlinear) function of the values of the rates to be
estimated.

The concept of forward rates is closely related to that of the market-
implicit forecasts. The market-implicit forecast Mt,s of a rate of maturity s
as of a given future date t is the rate that would equate the total return from
an investment at the spot rate Rt for t periods reinvested at the rate Mt,s
for additional s periods, with the straight investment for t + s periods at the
current spot rate Rt+s. Mathematically, this can be written as follows:

(1 + Rt)t(1 +Mt,s)s = (1 + Rt+s)t+s. (5)

The market-implicit forecasts can be viewed as a forecast of future
spot rates by the aggregate of market participants. Suppose that the current
one-year rate is 12 percent, and that there is a general agreement among
investors that the one-year rate a year from now will be 13 percent. Then
the current two-year spot rate will be 12.50 percent, since

(1 + 0.1250)2 = (1 + 0.12)(1 + 0.13).

The two-year rate would be set in such a way that the two-year security has
the same return as rolling over a one-year security for two years. There may
not be such a general agreement as to the future rate, and in any case the
forecast would not be directly observable. Knowing the current one-year
and two-year spot rates, however, enables us to determine the future rate for
the second year that would make the two-year bond equivalent in terms of
total return to a rollover of one-year bond. This rate is the market-implicit
forecast.

The market-implicit forecasts have a number of interesting properties.
The first thing to note is that when a futures contract is available for a given
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future period, the rate on the futures contract is equal to the market-implicit
forecast (up to a difference attributable to transaction costs). If this were
not true, a riskless arbitrage can be set between a portfolio consisting of
the futures contract and a security maturing at the execution date on one
hand, and a security maturing at the maturity date of the contract on the
other hand. Such riskless arbitrage opportunities should not exist in efficient
financial markets.

Another feature of market-implicit forecasts is that the holding period
return calculated using these forecasts is the same for any default-free secu-
rity, regardless of its maturity. It is equal to the spot rate corresponding to the
length of the holding period. Indeed, the total return over a holding period
of length h on an issue with maturity s (s > h) is equal to

(1 + Rs)s

(1 +Mh,s−h)s−h
.

Recalling the definition of the market-implicit forecast in Eq. (5), the total
return over the holding period is readily calculated as

(1 + Rs)s

(1 +Mh,s−h)s−h
=

(1 + Rs)s(1 + Rh)h

(1 + Rs)s
= (1 + Rh)h.

Thus, the holding period return is independent of thematurity of the security,
and is given by the spot rate for the holding period.

This is a characterization of the market-implicit forecasts that can
actually serve as their definition. No other set of forecasts would have the
property in which the holding period returns over a given period are the
same for securities of all maturities (including coupon bonds). In a sense,
the market-implicit forecast is the most “neutral” forecast. It is the equilib-
rium expectation such that no maturities or payment schedules are ex-ante
preferred to others.

The definition of the market-implicit forecasts as given by Eq. (5) is per-
haps more intuitive if stated in terms of the forward rates. It is given by the
following equation:

(1 +Mt,s)s = (1 + Ft+1)(1 + Ft+2) · · · (1 + Ft+s). (6)

Specifically, the market-implicit forecast of one-period rate is equal to the
forward rate for that period,

Mt,1 = Ft.

It is seen from Eq. (6) that the market-implicit forecast is obtained by
compounding the forward rates over the period starting at the date of the
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forecasting horizon and extending for an interval corresponding to the term
of the forecasted rate. In other words, the market-implicit forecast corre-
sponds to the scenario of no change in the forward rates. The current spot
rates then change by rolling along the forward rate series.

One last thing to mention about the market-implicit forecasts is that
since it is a forecast of the future spot rates, we can also infer from it the
corresponding forecast of yields, discount functions, and all other character-
izations of the future term structure. The current and future term structures
have the forward rates as the one common denominator, which makes the
forward rates the basic building blocks of the structure of interest rates.

THE MODEL

In specification of the model proposed for estimation of the term structure,
we will use the following notation:

t time to payment (measured in half years)
D(t) the discount function, that is, the present value of a unit

payment due in time t
R(t) spot rate of maturity t, expressed as the continuously

compounded semiannual rate. The spot rates are related to the
discount function by the equation

D(t) = e−tR(t)

F(t) continuously compounded instantaneous forward rate at time t.
The forward rates are related to the spot rate by the equation

F(t) = −d
dt

log D(t) = R(t) + t
d
dt
R(t).

n number of bonds used in estimation of the term structure
Tk time to maturity of the k-th bond, measured in half years
Ck the semiannual coupon rate of the k-th bond, expressed as a

fraction of the par value
Pk price of the k-th bond, expressed as a fraction of the par value.

The basic model can be written in the following form:

Pk + Ak = D(Tk) +
Lk∑

j=1
CkD(Tk − j + 1) −Qk −Wk + 𝜀k k = 1, 2, · · · , n

(7)
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where
Ak = Ck(Lk − Tk)

is the accrued interest portion of the market value of the k-th bond,

Lk = [Tk] + 1

is the number of coupon payments to be received, Qk is the price discount
attributed to the effect of taxes,Wk is the price discount due to call features,
and 𝜀k is a residual error with E𝜀k = 0.

The model specified by Eq. (7) is expressed in terms of the discount func-
tion, rather than the spot or forward rates. The reason for this specification
is that the price of a given bond is linear in the discount function, while it is
nonlinear in either the spot or forward rates. Once the discount function is
estimated, the spot and forward rates can easily be calculated.

An integral part of the model specification is a characterization of the
structure of the residuals. We will postulate that the model be homoscedastic
in yields, rather than in prices. This means that the variance of the residual
error on yields is the same for all bonds. The reason for this requirement is
that a given price increment, say $1 per $100 face value, has a very different
effect on a short bond than on a long bond. Obviously, an error term in
price on a three-month Treasury bill cannot have the same magnitude as
that in price of a 20-year bond. It is, however, reasonable to assume that the
magnitude of the error term would be the same for yields.

With this assumption, the residual variance in Eq. (7) is given as

E𝜀2k = 𝜎
2
𝜔k, k = 1, 2, · · · , n (8)

where

𝜔k =
(
dP
dY

)2

k
(9)

is the squared derivative of price with respect to yield for the k-th bond, taken
at the current value of yield. The derivative dP∕dY can easily be evaluated
from time to maturity, the coupon rate, and the present yield. In addition,
we will assume that the residuals for different bonds are uncorrelated,

E𝜀k𝜀j = 0, for k ≠ j.

In specification of the effect of taxes, we will assume that the term Qk
is proportional to the current yield Ck∕Pk on the bond,

Qk = q
Ck

Pk

(
dP
dY

)

k
, k = 1, 2, · · · , n. (10)
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For the call effect, the simplest specification is to introduce a dummy
variable Ik, equal to 1 for callable bonds and to 0 for noncallable bonds,
and put

Wk = wIk, k = 1, 2, · · · , n. (11)

Although more complicated specifications (such as those based on option
pricing) are possible, the form (11) seems to work well with Treasury bonds,
which invariably have the same structure of calls five years prior to maturity
at par.

We will now turn to the specification of the discount function D(t).
Earlier approaches (cf. McCulloch [1971], [1975b]) fit the discount function
by means of polynomial splines of the second or third order. While splines
constitute a very flexible family of curves, there are several drawbacks to
their use in fitting discount functions. The discount function is principally
of an exponential shape,

D(t) ∼ e−𝛾t, 0 ≤ t < ∞.

Splines, being piecewise polynomials, are inherently ill suited to fit an expo-
nential type curve. Polynomials have a different curvature from exponen-
tials, and although a polynomial spline can be forced to be arbitrarily close to
an exponential curve by choosing a sufficiently large number of knot points,
the local fit is not good. A practical manifestation of this phenomenon is
that a polynomial spline tends to “weave” around the exponential, resulting
in highly unstable forward rates (which are the derivatives of the logarithm
of the discount function). Another problem with polynomial splines is their
undesirable asymptotic properties. Polynomial splines cannot be forced to
tail off in an exponential form with increasing maturities.

It would be convenient if we can work with the logarithm log D(t) of
the discount function, which is essentially a straight line and can be fitted
very well with splines. Unfortunately, the model given by Eq. (7) would then
be nonlinear in the transformed function, which necessitates the use of com-
plicated nonlinear estimation techniques (cf. Langetieg and Smoot [1981]).

A way out of this dilemma is provided by the following approach, which
is used in our model. Instead of using a transform of the function D(t), we
can apply a transform to the argument of the function. Let 𝛼 be some con-
stant and put

t = −1
𝛼
log(1 − x), 0 ≤ x < 1. (12)

Then G(x) defined by

D(t) = D
(
−1
𝛼
log (1 − x)

)
= G(x) (13)
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is a new function with the following properties: (a) G(x) is a decreasing
function defined on the finite interval 0 ≤ x ≤ 1 with G(0) = 1, G(1) = 0;
(b) to the extent that D(t) is approximately exponential,

D(t) ∼ e−𝛾t, 0 ≤ t < ∞

the function G(x) is approximately a power function,

G(x) ∼ (1 − x)𝛾∕𝛼 0 ≤ x ≤ 1;

(c) the model specified by Eq. (7) is linear in G. Thus, we have replaced the
function D(t) to be estimated by the approximately power function G(x)
which can be very well fitted by polynomial splines, while preserving the
linearity of the model. Moreover, desired asymptotic properties can easily
be enforced.

If G(x) is polynomial with G′(1) ≠ 0, then the parameter 𝛼 constitutes
the limiting value of the forward rates,

lim
t→∞

F(t) = 𝛼.

Indeed, in that case

G(x) = −G′(1)(1 − x) + o(1 − x)

and consequently
D(t) = −G′(1)e−𝛼t + o(e−𝛼t)

as t → ∞. Using polynomial splines to fit the function G(x) will thus assure
the desired convergence of the forward rates. The limiting value 𝛼 can be
fitted to the data together with the other estimation parameters.

Let gi(x), 0 ≤ x ≤ 1, i = 1, 2,…, m be a base of a polynomial spline
space. Any spline in this space can be expressed as a linear combination of
the base. If G(x) is fitted by a function from this space,

G(x) =
m∑

i=1
𝛽igi(x), 0 ≤ x ≤ 1, (14)

the model of Eq. (7) can be written as

Pk + Ak =
m∑

i=1
𝛽i(gi(Xk1) +

Lk∑

j=1
Ckgi(Xkj)) − q

Ck

Pk

(
dP
dY

)

k
−wIk + 𝜀k, (15)

E𝜀k = 0, E𝜀2k = 𝜎
2
𝜔k, E𝜀k𝜀j = 0 for k ≠ j
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where
Xkj = 1 − e−𝛼(Tk−j+1), j = 1, 2, · · · ,Lk.

The model described by Eq. (15) is used in the estimation of the term
structure. It is linear in the parameters 𝛽1, 𝛽2,… , 𝛽m, q,w, with residual
covariance matrix proportional to

Ω =

|||||||||||||||

𝜔1
𝜔2

⋅
⋅
⋅
⋅
𝜔n

|||||||||||||||

.

If we write

Uk = Pk + Ak

Zki = gi(Xk1) +
Lk∑

j=1
Ckgi(Xkj

), i = 1, 2, · · · ,m

Zk,m+1 = −
Ck

Pk

(
dP
dY

)

k

Zk,m+2 = −Ik

for k = 1, 2,… , n, then the least-squares estimate of 𝛽 = (𝛽1, 𝛽2,… , 𝛽m, q,w)′
conditional on the value of 𝛼 can be directly calculated by the generalized
least-squares regression equation

𝛽 = (Z′Ω−1Z)−1Z′Ω−1U

where U = (Uk),Z = (Zki). The sum of squares

S(𝛼) = U′Ω−1U − 𝛽′Z′Ω−1U

is then a function of 𝛼 only. We can then find the value of 𝛼 that minimizes
S(𝛼) by use of numerical procedures, such as the three-point Newton mini-
mization method.

Once the least-squares values of the regression coefficients 𝛽1, 𝛽2,… , 𝛽m,

q,w and the parameter 𝛼 are determined, the fitted discount function is
given by

D̂(t) =
m∑

i=1
𝛽igi(1 − e−𝛼t), t ≥ 0. (16)
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As for the spline space, we choose cubic splines as the lowest odd
order with continuous derivatives. The boundary conditions are G(0) = 1,
G(1) = 0. The base {gi(x)} should be chosen to be reasonably close to
orthogonal, in order that the regression matrix

Z′Ω−1Z

can be inverted with sufficient precision.
Although the model is fitted in its transformed version given by Eq. (15),

it may be illustrative to rewrite it in the original parameter t. In any interval
between consecutive knot points, G(x) is a cubic polynomial, and therefore
D(t) takes the form

D(t) = a0 + a1e
−𝛼t + a2e

−2𝛼t + a3e
−3𝛼t

on each interval between knots. The function D(t) and its first and second
derivatives are continuous at the knot points. This family of curves, used
to fit the discount function, can be described as the third order exponential
splines.

Since least-squares methods are highly sensitive to wrong data, we use
a screening procedure to identify and exclude outliers. Observations with
residuals larger than four standard deviations are excluded and the model is
fitted again. This procedure is repeated until no more outliers are present.
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CHAPTER 9
The Heath, Jarrow,

Morton Model

The price P(𝜏,T ) at time 𝜏 of a discount bond maturing at T is subject to
the dynamics

dP(𝜏,T )
P(𝜏,T )

= 𝜇P(𝜏,T )d𝜏 + 𝜎P(𝜏,T )dW(𝜏)

with
𝜇P(𝜏,T ) = r(𝜏) + 𝜆(𝜏)𝜎P(𝜏,T )

where 𝜆(𝜏) is the market price of risk (see Vasicek, 1977, Chapter 6 of this
volume). This can be written as

dP(𝜏,T )
P(𝜏,T )

= r(𝜏)d𝜏 + 𝜎P(𝜏,T )dW∗(𝜏) (1)

where

W∗(𝜏) = ∫
𝜏

0
𝜆(u)du +W(𝜏).

Integrate Eq. (1) with respect to 𝜏 from 0 to t,

logP(t,T ) − logP(0,T ) =∫
t

0
r(𝜏)d𝜏 − 1

2∫
t

0
𝜎
2
P(𝜏,T )d𝜏 +∫

t

0
𝜎P(𝜏,T )dW∗(𝜏),

and differentiate with respect to T. This produces

F(t,T ) − F(0,T ) = ∫
t

0
𝜎F(𝜏,T )𝜎P(𝜏,T )d𝜏 − ∫

t

0
𝜎F(𝜏,T )dW∗(𝜏) (2)

Written in 1994; printed in Economic Notes, 36 (3) (2008), 205–207.
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where 𝜎F is the volatility of the forward rates and

𝜎P(t,T ) = ∫
T

t
𝜎F(t, s)ds.

Eq. (2) is the Heath, Jarrow, Morton (1992) model.
IfW, 𝜆, 𝜎F are vectors, their products are interpreted as inner products.
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PART

Three
General Equilibrium

Suppose each participant in an economy maximizes the expected isoelastic
utility of end-of-period wealth. When the technology risk is independent

of the production risk, the equilibrium value of the short rate is given by

r(t) = 𝜇(t) − 𝜎2(t)Et
1

Γ(T)
A(T)Y(T)
A(t)Y(t)

where A(t) is the production process, Y(t) is the state price density process,
and

Γ(T) =

n∑

k=1
𝛾kWk(T−)

W(T−)

is the average coefficient of risk tolerance as of the end of the period. If
𝛾k = 𝛾, k = 1, 2,… , n, then

r(t) = 𝜇(t) − 1
𝛾
𝜎
2(t)

(page 108)
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CHAPTER 10
Introduction to Part III

General equilibrium models investigate the pricing of real and financial
assets resulting from the balance of supply and demand in an economy.

The participants in the economy (often called agents) make their investment
and consumption decisions to optimize their individual objectives, typically
the maximum expected utility of end-of-period wealth, or the maximum
expected utility of lifetime consumption. This creates a demand and
supply for transactions, whose pricing is then set by the equality of supply
and demand.

Equilibrium is not a stationary state. It changes at every moment,
depending on the stochastic nature of the flow of capital and goods, of
investment results, and of technology changes.

One result obtained from the solution of a general equilibrium model
is the relationship of interest rates to economic variables. Interest rates
are determined by economic forces through the equilibrium of supply and
demand. Term structure models describe the behavior of interest rates of
different maturities as joint stochastic processes; these models do not relate
interest rates to economic variables. General equilibrium models explain
why interest rates behave the way they do, not just how they behave.

Most of the modern general equilibriummodels fall into two broad cate-
gories: pure exchangemodels and production models. Pure exchangemodels
assume that each participant receives some endowment (such as income from
labor) during his lifetime, which he can trade with other participants to max-
imize his expected utility of consumption. Thus, a participant who assigns
large utility to immediate consumption will borrow from those participants
who assign higher utility to consumption at a later date. The mechanism of
supply and demand will determine the pricing of such contracts, resulting in
a description of the term structure of interest rates and the pricing of bonds.
For this kind of a model, see, for instance, Karatzas and Shreve (1998).

Models of production economies often start with an initial endowment
assigned to each participant. The economy contains production opportuni-
ties, which consist of production processes with stochastic rates of return on
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investment. The production processes can be viewed as exogenously given
assets that are available for investment in any amount. The amount of invest-
ment in the production, however, is determined endogenously. The param-
eters of the production process can themselves be stochastic. This can be
interpreted as representing uncertain changes in production technology.

It is assumed that investors can issue and buy any derivatives of any of
the assets and securities in the economy. The investors can lend and borrow
among themselves, either at a floating short rate or by issuing and buying
term bonds. The resultant market is complete. It is further assumed that
there are no transaction costs and no taxes or other forms of redistribu-
tion of social wealth. The investment wealth and asset values are measured
in terms of a medium of exchange that cannot be stored unless invested in
the production process. For instance, this wealth unit could be a perishable
consumption good. A model of production economy with these characteris-
tics is described in Cox, Ingersoll, and Ross (1985a). They assume that the
investors have identical preferences.

For a meaningful economic analysis, it is essential that a general equi-
librium model allows heterogeneous participants. If all participants have the
same preferences, they will all hold the same portfolio. Since there is no bor-
rowing and lending in the aggregate, there is no net holding of debt securities
by any participant, and no investor is exposed to interest rate risk. Moreover,
if the utility functions are the same, it does not allow for study of how asset
pricing and interest rates depend on differences in investors’ preferences.

The main difficulty in developing a general equilibrium model of pro-
duction economies with heterogeneous participants had been the need to
carry the individual wealth levels as state variables, because the equilibrium
depends on the distribution of wealth across the participants. It is shown
in the 2005 paper “The Economics of Interest Rates” (Chapter 11) that the
individual wealth levels can be represented as functions of a single process,
which is jointly Markov with the technology state variable. This allows con-
struction of equilibrium models with just two state variables, regardless of
the number of participants in the economy.

The papers in Part Three investigate an economy in continuous time
with production subject to uncertain technological changes described by a
state variable. Each investor maximizes the expected utility from lifetime
consumption. The participants have different utility functions and different
time preferences.

The economy contains a production process whose rate of return dA/A
on investment is

dA
A

= 𝜇dt + 𝜎dy
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where y(t) is aWiener process. The processA(t) represents a constant return-
to-scale production opportunity.

The parameters of the production process are stochastic, reflecting the
fact that production technology evolves in an unpredictable manner. It is
assumed that their behavior is driven by a Markov state variable X(t), 𝜇 =
𝜇(X(t), t), 𝜎 = 𝜎(X(t), t). The state variable can be interpreted as representing
the state of the production technology. The process X(t), which can be a
vector, may be correlated with the production process A(t).

In equilibrium, the total wealth must be invested in the production
process (which justifies referring to the production process as the market
portfolio). Any lending and borrowing (including lending and borrowing
implicit in issuing and buying contingent claims) is among the participants
in the economy, and its sum must be zero.

It may seemmore realistic to have a model of the economy with multiple
production processes: factories for different goods, farming of different com-
modities, and so on. It may be noted, however, that the equilibrium condi-
tions would simply determine in which proportion these production pro-
cesses are held by the aggregate of the economy participants. Now, this total
is actually known and observed: It is the market portfolio. Rather than speci-
fying the vectors of expected returns for each production and the covariance
matrix of their risks (and perhaps arriving at a market portfolio different
from the observed one due to misspecification of the inputs for the individual
productions), it serves the purpose of investigating an economic equilibrium
better to model the properties of the market portfolio directly.

An economy cannot be in equilibrium if arbitrage opportunities exist.
A necessary and sufficient condition for absence of arbitrage is that there
exists a process Y(t), called the state price density process, such that the
price P of any asset in the economy satisfies the equation

P(t) = EtP(s)
Y(s)
Y(t)

.

Equilibrium is fully described by specification of the process Y(t), which
determines the pricing of all assets in the economy, such as bonds and deriva-
tive contracts, by means of the previous equation. Bond prices in turn deter-
mine the term structure of interest rates. The state price density process also
determines each participant’s optimum investment strategy. Solving for the
equilibrium means solving for the process Y(t).

In “The Economics of Interest Rates” (Chapter 11), it is assumed
that consumption takes place continuously at rates based on the investor’s
optimal investment and consumption strategy. The equilibrium conditions
are used to derive a nonlinear partial differential equation whose solution
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determines the state price density process and consequently the term
structure of interest rates. (The results are stated in terms of the so-called
numeraire portfolio Z(t) = 1∕Y(t)). While the solution to the equation can
be approximated by numerical methods, the nonlinearity of the equation
could present some difficulties.

The 2013 article “General Equilibrium withHeterogeneous Participants
and Discrete Consumption Times” (Chapter 12) provides the exact solu-
tion for the case that consumption takes place at a finite number of discrete
times. If the time points are chosen to be dense enough, the discrete case will
approximate the continuous case with the desired precision. This solution
does not require solving partial differential equations, and explicit compu-
tational procedure is provided. The algorithm requires no more complicated
mathematical tools than finding the root of a monotone function.

In many applications, the technology risk is independent of the produc-
tion risk. For instance, if the production is farming, the progress in devel-
opment of new agricultural methods, hybrids, fertilizers, and so on is inde-
pendent of weather. The unpublished 2013 memorandum “Independence
of Production and Technology Risks” (Chapter 13) provides an intriguing
formula for the equilibrium value of the short rate in the case that each
participant maximizes the expected utility of end-of-period wealth.

The paper “Risk-Neutral Economy and Zero Price of Risk”
(Chapter 14), written in 2014, investigates the equilibrium in an economy
in which all participants are indifferent to risk. The mechanism of asset
and derivative pricing in such an economy is identified. It is shown that no
economy in equilibrium with stochastic interest rates can be simultaneously
risk-neutral and have zero market price of risk. On the other hand, there
exist equilibrium economies with risk-averse participants and zero prices
of risk. The paper explains the paradox: In a risk-neutral economy in
equilibrium, the expected returns are the same on all assets, regardless of
their riskiness, over the one period that is relevant to the investors, namely
to the point of consumption. Due to the nonlinearity of compounding,
however, this precludes the expected instantaneous returns to be the same,
unless they are deterministic. The market price of risk will not be zero.



CHAPTER 11
The Economics of Interest Rates

ABSTRACT

The paper looks at the behavior of investors in an economy consisting of a
production process controlled by a state variable representing the state of
technology. The participants in the economy maximize their individual util-
ities of consumption. Each participant has a constant relative risk aversion.
The degrees of risk aversion, as well as the time preference functions, differ
across participants. The participants may lend and borrow among them-
selves, either at a floating short rate or by issuing or buying term bonds.
We derive conditions under which such an economy is in equilibrium, and
obtain equations determining interest rates.

INTRODUCTION

What determines interest rates? Intuitively, it seems that interest rates should
be set by supply and demand for borrowing and lending, given the produc-
tion opportunities in the economy (both current and as they may change in
the future depending on technological developments), the time preference
for consumption and the attitude toward risk and return of the partici-
pants in the economy, and the distribution of wealth across the participants.
This would necessitate a general equilibrium model of the economy under
the optimal consumption and investment decisions of the players. So far,
however, such a model does not seem to have been developed in sufficient
generality.

Cox, Ingersoll, and Ross (1985a, 1985b) postulate an economy with
endogenous production subject to technological changes described by state
variables. After identifying the optimal investment and consumption strate-
gies, they derive conditions under which the total riskless lending and the

Journal of Financial Economics, 76 (2)(2005), 293–307.
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total holdings in debt securities and contingent claims are zero. They then
obtain a specific interest rate model under the assumption that the means
and variances of the production rates of return are proportional to a single
state variable following a square-root process.

This analysis, however, is limited by their assumption that all partic-
ipants in the economy are identical in their preferences (namely, all with
a logarithmic utility function). All investors will thus hold the same port-
folio. If there is no borrowing and lending in aggregate, there is no hold-
ing of debt securities by any participant. In such an economy, the bond
market does not exist. Moreover, since the utility functions are fixed, it
does not allow us to study how interest rates depend on the investors’ pref-
erences. Dumas (1989) investigates equilibrium conditions in an economy
with no technology change and with two investors. Wang (1996) looks at
a pure exchange economy with two heterogeneous participants. Chan and
Kogan (2002) analyze an exchange economy with heterogeneous partici-
pants, where each individual’s utility is a function of consumption measured
in units of an average aggregate endowment.

What is attempted here is an investigation of the term structure of inter-
est rates imposed by equilibrium in a production economy consisting of
participants with heterogeneous preferences. When the participants in an
economy have different objectives, some will borrow from others in opti-
mizing their investment strategies. Bond prices will be set in such a way that
the total demand for borrowing at anymaturity equals the total supply. Bond
repricing changes the excess returns expected on the production processes
and on bonds and thus alters the relative attractiveness of the different invest-
ment opportunities. The bond market provides a means of reapportioning
the investments in production among the participants in the economy to
accommodate their diverse preferences.

We postulate a very simple economy, namely one consisting of a single
production process whose behavior is affected by a single variable represent-
ing the state of technology. The members of the economy maximize their
individual utilities of consumption. It will be assumed that each participant
has a constant relative risk aversion. The degrees of risk aversion, as well
as the time preference functions, differ across the participants. The partici-
pants may lend and borrow among themselves, either at a floating short rate
or by issuing or buying term bonds. In this economy, the total social wealth
is invested in the production process and the sum of the bond investments is
zero. This provides equilibrium conditions from which we derive equations
for the short rate and for the market prices of risk. These relations will allow
us to investigate the nature of interest rates. The main difficulty in develop-
ing a general equilibrium model with heterogeneous participants, namely,
that the aggregate preferences in the economy shift due to changes in the
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distribution of wealth across the participants, is resolved by showing that the
individual wealth levels can be represented as functions of a single process.

We will assume that investment wealth and asset values are measured
in terms of a medium of exchange that cannot be stored unless invested in
the production process. For instance, this wealth unit may be a perishable
consumption good. In this case, interest rates can become negative, because
no participant will hold the exchange medium physically but will instead
invest it in the production process or lend it to other participants who will
put it into production.

OPTIMAL INVESTMENT STRATEGIES

Consider an economy consisting of a production process whose rate of
return dA∕A on an investment A is

dA
A

= 𝜇dt + 𝜎dy, (1)

where y(t) is aWiener process. The rate of return on an investment in the pro-
duction process is independent of the investment amount. The development
of the production process is affected by a state variableX, 𝜇 = 𝜇(X(t), t), 𝜎 =
𝜎(X(t), t). The dynamics of the state variable, which can be interpreted as
measuring technological change, is given by

dX = 𝜁dt + 𝜓dy + 𝜑dx, (2)

where x(t) is a Wiener process independent of y(t). The parameters 𝜁, 𝜓 , and
𝜑 are functions of X(t) and t.

In addition to the production process, the economy allows unrestricted
borrowing and lending at any maturity. Denote the interest rate on instan-
taneous borrowing (the short rate) by r(t). An asset M(t) consisting of rein-
vestment at the short rate,

M(s) = M(t) exp
⎛
⎜
⎜
⎝

s

∫
t

r (𝜏)d𝜏
⎞
⎟
⎟
⎠
, (3)

will be called the money market account.
It will be assumed that it is possible to issue and buy any derivatives of

any of the assets and securities in the economy. Specifically, it is possible to
short the production process by writing futures against it. It will further be
assumed that there are no transaction costs and no taxes or other forms of
redistribution of social wealth. We do not explicitly consider firms, since an
equity participation in a firm is equivalent to holding a contingent claim on
the value of the firm’s business.
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We will take a shortcut in the development of the equilibrium model. If
asset pricing is not free of arbitrage, the economy cannot be in equilibrium.
Since there are only two sources of uncertainty, namely the processes y and x,
there exist processes 𝜆, 𝜂, called themarket prices of risk for the risk sources
y, x, respectively, such that the price P of any asset in the economy must
satisfy the equation

dP
P

= (r + 𝛽𝜆 + 𝛿𝜂)dt + 𝛽dy + 𝛿dx, (4)

where 𝛽, 𝛿 are the exposures of the asset to the two risk sources. In particular,
we have

r = 𝜇 − 𝜎𝜆. (5)

Alternatively stated, there will exist a numeraire portfolio Z of Long (1990)
with the dynamics

dZ
Z

= (r + 𝜆2 + 𝜂2)dt + 𝜆dy + 𝜂dx (6)

such that the price P of any asset satisfies

P(t) = Z(t)Et
P(s)
Z(s)

. (7)

Here and throughout, the symbol Et denotes expectation conditional on a
filtration ℑt generated by y(t), x(t). In integral form, the numeraire portfolio
can be written as

Z(s) = Z(t) exp
⎛
⎜
⎜
⎝

s

∫
t

rd𝜏 + 1
2

s

∫
t

(
𝜆
2 + 𝜂2

)
d𝜏 +

s

∫
t

𝜆dy+

s

∫
t

𝜂dx
⎞
⎟
⎟
⎠
. (8)

The price B(t, s) at time t of a default-free bond with unit face value
maturing at time s is given by the equation

B(t, s) = Et
Z(t)
Z(s)

= Et exp
⎛
⎜
⎜
⎝
−

s

∫
t

rd𝜏 − 1
2

s

∫
t

(
𝜆
2 + 𝜂2

)
d𝜏−

s

∫
t

𝜆dy−

s

∫
t

𝜂dx
⎞
⎟
⎟
⎠
.

(9)
Term rates will be defined by

R(t, 𝜏) = −1
𝜏

logB(t, t + 𝜏), (10)

with r(t) = R(t, 0+). Bonds of all maturities, together with the money market
account, will be referred to as the bond market. We see from Eqs. (5), (9),
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and (10) that interest rates are completely described by specifying the market
prices of risk 𝜆(t) and 𝜂(t), so our goal is to find out how the two processes
are determined in an equilibrium economy.

Suppose that the economy has n participants and letWk(0) be the initial
wealth of the k-th investor. Suppose each investor maximizes the expected
utility of lifetime consumption,

maxE

T

∫
0

pk(t)Uk(ck(t))dt, (11)

where ck(t) is the rate of consumption at time t,Uk(c) is a utility function
with U′

k > 0,U′′
k < 0, and pk(t) ≥ 0, 0 ≤ t ≤ T is a time preference function.

We will consider specifically the class of isoelastic utility functions, which
we will write in the form

Uk(c) =
c(𝛾k−1)∕𝛾k
𝛾k − 1

𝛾k > 0, 𝛾k ≠ 1

= log c 𝛾k = 1. (12)

Here 𝛾k is the reciprocal of the relative risk aversion coefficient, 1∕𝛾k =
–cU′′

k∕U
′
k. We will call 𝛾k the risk tolerance.

An investment strategy is fully described by the exposures 𝛽k(t) and 𝛿k(t)
to the sources of risk y and x. The wealth Wk(t) at time t grows by the
increment

dWk = Wk(r + 𝛽k𝜆 + 𝛿k𝜂)dt +Wk𝛽kdy +Wk𝛿kdx − ckdt. (13)

Let Vk(t) be the value at time t of the expected utility of consumption under
an optimal investment and consumption strategy,

Vk(t) = maxEt

T

∫
t

pk(s)Uk(ck(s))ds. (14)

Under some mild regularity conditions (cf. Fleming and Rishel, 1975), a
necessary and sufficient condition for optimality is given by the Bellman
equation

max (EdVk + pkUk(ck)dt) = 0. (15)

Put
Vk = 1

𝛾k − 1
Qk

1∕𝛾kWk
(𝛾k−1)∕𝛾k 𝛾k > 0, 𝛾k ≠ 1

= Qk logWk +Gk 𝛾k = 1, (16)
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with the dynamics of Qk written as

dQk

Qk
= 𝜗kdt + 𝜃kdy + 𝜔kdx. (17)

Calculating EdVk yields the equation

max

((
1

𝛾k

(
𝛾k − 1

)𝜗k +
1
𝛾k

(
r + 𝛽k𝜆 + 𝛿k𝜂 −

ck
Wk

)

−1
2

1
𝛾k

2

((
𝛽k − 𝜃k

)2 +
(
𝛿k − 𝜔k

)2)
)

Qk
1∕𝛾kWk

(𝛾k−1)∕𝛾k + pkUk(ck)

)

= 0. (18)

Maximization over the values of 𝛽k, 𝛿k, and ck yields a unique maximum
attained at the point

𝛽k = 𝛾k𝜆 + 𝜃k (19)

𝛿k = 𝛾k𝜂 + 𝜔k (20)

ck =
pk

𝛾kWk

Qk
. (21)

The investment position of each participant is independent of his current
wealth levelWk and the rate of consumption is proportional to the current
wealth.

Substituting these values back into (18), we get the equation

𝜗k + (𝛾k − 1)(r + 𝜆𝜃k + 𝜂𝜔k) +
1
2
𝛾k(𝛾k − 1)(𝜆2 + 𝜂2) +

pk
𝛾k

Qk
= 0 (22)

and consequently

dQk

Qk
=
(
−
(
𝛾k − 1

)
(r + 𝜆𝜃k + 𝜂𝜔k) −

1
2
𝛾k(𝛾k − 1)(𝜆2 + 𝜂2) − pk

𝛾k

Qk

)
dt

+ 𝜃kdy + 𝜔kdx. (23)

We note that
Ed(QkZ

𝛾k−1) = −pk𝛾kZ𝛾k−1dt (24)

and integrating subject to the condition

Qk(T) = 0, (25)
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we get

Qk(t) = Z1−𝛾k (t)Et

T

∫
t

pk
𝛾k(𝜏)Z𝛾k−1(𝜏)d𝜏. (26)

The wealth increment can be determined as

dWk

Wk
= (r + 𝜆𝜃k + 𝜂𝜔k + 𝛾k(𝜆2 + 𝜂2))dt + (𝛾k𝜆 + 𝜃k)dy + (𝛾k𝜂 + 𝜔k)dx

−
p
𝛾k
k

Qk
dt. (27)

Comparing equations (6), (23) and (27), we find that

d
(
Wk

Qk
Z−𝛾k

)
= 0. (28)

On integration,
Wk(t) = 𝜈kZ

𝛾k(t)Qk(t) (29)

and therefore

Wk(t) = 𝜈kZ(t)Et

T

∫
t

pk
𝛾k(𝜏)Z𝛾k−1(𝜏)d𝜏, (30)

where
𝜈k =

Wk(0)
Qk(0)

Z−𝛾k(0) =
Wk(0)

Z(0)E

T

∫
0

pk
𝛾k(𝜏)Z𝛾k−1(𝜏)d𝜏

(31)

is a constant. The behavior of the individual wealth levelsWk is fully deter-
mined by the process Z.

The optimal rate of consumption is, from Eqs. (21) and (29),

ck = 𝜈kp
𝛾k
k Z

𝛾k . (32)

We see from equations (30), (32) that, when measured in units of the
numeraire portfolio, the current wealth is equal to the expected future
consumption.
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THE EQUILIBRIUM ECONOMY

If we consider the economy as a whole, the total wealth must be invested
in the production process. Any lending and borrowing is among the partic-
ipants in the economy, and its sum must be zero. Thus, the total exposure
to the process y is that of the total wealth invested in the production, and
the total exposure to the process x is zero. The conditions for equilibrium
are then

n∑

k=1
𝛽kWk = 𝜎W (33)

n∑

k=1
𝛿kWk = 0, (34)

where

W =
n∑

k=1
Wk (35)

is the total social wealth.
Using the relation (29) and substituting back from (19) and (20), write

equation (27) as

dWk = Wk(r + 𝛽k𝜆 + 𝛿k𝜂)dt +Wk𝛽kdy +Wk𝛿kdx − 𝜈kp
𝛾k
k Z

𝛾kdt (36)

and sum over all investors. This produces the equation

dW = 𝜇Wdt + 𝜎Wdy −
n∑

k=1
𝜈kp

𝛾k
k Z

𝛾kdt (37)

describing the dynamics of the total wealth. The first two terms on the
right-hand side correspond to the investment of the total social wealth in
the production, and the third term represents the total consumption. The
terminal condition isW(T) = 0.

The unique solution of the stochastic differential equation (37) is given
by

W(t) = Z(t)Et

T

∫
t

n∑

k=1
𝜈kp

𝛾k
k (𝜏)Z𝛾k−1(𝜏)d𝜏. (38)

Indeed, we can write (37) as

d
(W
A

)
= − 1

A

n∑

k=1
𝜈kp

𝛾k
k Z

𝛾kdt (39)
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and therefore

Ed
(W
Z

)
= Ed

(
W
A

A
Z

)
= A
Z
d
(W
A

)
+ W

A
Ed

(
A
Z

)
= −

n∑

k=1
𝜈kp

𝛾k
k Z

𝛾k−1dt,

(40)
due to the property (7) of the numeraire process. Eq. (38) follows by
integration.

To determine the process Z, however, we need the solution of Eq. (37)
in a more explicit form. We see from Eq. (37) that the only state variable for
W besides X is the value of Z. Write W(t) = W(X,Z, t) as a function of the
state variables. Then

dW = Wtdt + (𝜁dt + 𝜓dy + 𝜑dx)WX

+ ((𝜇 − 𝜎𝜆 + 𝜆2 + 𝜂2)dt + 𝜆dy + 𝜂dx)ZWZ

+ 1
2
(𝜓2 + 𝜑2)WXXdt + (𝜓𝜆 + 𝜑𝜂)ZWXZdt +

1
2
(𝜆2 + 𝜂2)Z2WZZdt,

(41)

where the subscripts X,Z, and t denote partial derivatives with respect to
these variables. Comparing Eqs. (37) and (41), we must have

𝜓WX + 𝜆ZWZ = 𝜎W (42)

𝜑WX + 𝜂ZWZ = 0. (43)

Solving for 𝜆, 𝜂 and substituting produces the equation

Wt = −ℜ[W, t] −
n∑

k=1
𝜈kp

𝛾k
k Z

𝛾k , (44)

where

ℜ[W, t] = (𝜁 + 𝜎𝜓)WX + 𝜇ZWZ + 1
2
(𝜓2 + 𝜑2)WXX

+ (𝜎𝜓W − (𝜓2 + 𝜑2)WX)
WXZ

WZ

+ ((𝜓2 + 𝜑2)WX
2 − 2𝜎𝜓WWX + 𝜎2W2)

(
1

ZWZ
+ 1
2
WZZ

WZ
2

)

− (𝜇 + 𝜎2)W (45)
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is an operator that involves only derivatives with respect toX andZ. Eq. (44)
is subject to the condition

W(T) = 0. (46)

The value of ℜ[W,T] is defined by its limit for t → T. From (38), we have

W(t) ∼
n∑

k=1
𝜈kZ

𝛾k(t)

T

∫
t

p
𝛾k
k (𝜏)d𝜏, t → T. (47)

If none of the time preference functions pk(t) has an atom at T, the limit
is ℜ[W,T] = 0. This assumes that the sum of the integrals in Eq. (47) is
nonzero for all t < T, in other words, that at least one participant in the
economy assigns positive utility to consumption up to the date T. If it is zero
forT1 < t < T but positive for all t < T1, the boundary conditions are applied
to T1.

Once the functionW(X,Z, t) has been determined, 𝜆 and 𝜂 are calculated
as

𝜆 = 𝜎W − 𝜓WX

ZWZ
(48)

𝜂 = −𝜑WX

ZWZ
. (49)

To demonstrate that the process W is indeed a function of X, Z,
and t only, assume to the contrary that there are other state variables
(for instance, the current and past values of the individual wealth levels
Wk) of which W is a function. Suppose Y (possibly a vector) is such
a variable, W(t) = W(X,Y,Z, t). In that case, the market prices of risk
𝜆 = 𝜆(X,Y,Z, t), 𝜂 = 𝜂(X,Y,Z, t) are functions of Y as well and the dynamics
of Z depends on Y. Write the dynamics of Y as dY = 𝜒0dt + 𝜒1dy + 𝜒2dx,
where 𝜒i = 𝜒i(X,Y,Z, t), i = 0, 1, 2. Expressing dW by Ito’s lemma and
comparing the coefficients of dt, dy, and dx with those of (37), we can
again eliminate 𝜆, 𝜂 and obtain a partial differential equation in X,Y,Z,
and t. But the only coefficients in that equation that depend on Y are the
𝜒 i, all of which are multiplied by derivatives with respect to Y. Therefore,
any solution of (44) is also a solution of that equation. Since W is unique,
it must be independent of Y. Consequently, 𝜆 and 𝜂 are functions of X, Z,
and t only. The process (X(t),Z(t)) is Markov.

Eqs. (44), (48), and (49) define 𝜆 and 𝜂, and the process Z is given by
its dynamics (6). Bond prices and rates are then determined by (5), (9), and
(10). This constitutes a complete solution of the problem.

Eq. (44) is an evolution equation. Very little is known about nonlin-
ear partial differential equations in general, and the equation needs to be
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investigated case by case. For some of the problems that may be encountered
in the presence of nonlinearity see, for instance, Li and Chen (1992) or Logan
(1994). We can expect, however, that the reasons for ill behavior of the solu-
tion will often be an economic misspecification rather than mathematical
irregularity. For instance, if 𝜇(X,t) is too steep a function of the state vari-
ableX, and X is allowed to drift to large values too freely (as in Example 7),
the production processA(t) may explode or have an infinite expectation. The
process Z will not exist, and Eq. (44) will have no solution.

In well-posed situations, Eq. (44) is easy to solve computationally. The
simplest method is to replace the derivative Wt by the difference quotient
and recursively calculateW(t–h) from W(t). For some guidance on numer-
ical methods see, for instance, Ganzha and Vorozhtsov (1996). The main
computational difficulty is the necessity to iterate on the values of the con-
stants 𝜈1, 𝜈2,… , 𝜈n, since they are determined (up to a scalar) by (31) only
after Z has been found.

EXAMPLES

Example 1. Suppose 𝛾k = 𝛾,k = 1, 2,… , n (although the investors may
still differ by their time preference functions pk(t)). Then the solution of
Eq. (44) is

W = Z𝛾F, (50)

where F = F(X, t) is the solution of

Ft +
(
𝜁 + 𝛾 − 1

𝛾
𝜎𝜓

)
FX + 1

2
(𝜓2 + 𝜑2)FXX − 𝛾 − 1

2𝛾
(𝜓2 + 𝜑2)FX

2

F

+(𝛾 − 1)
(
𝜇 − 1

2𝛾
𝜎
2
)
F +

n∑

k=1
𝜈kp

𝛾

k = 0 (51)

subject to F(X,T) = 0. The process Z is given by

Z(t) = W1∕𝛾 (0)A−1∕𝛾 (0)A1∕𝛾 (t)F−1∕𝛾 (X(t), t) exp
⎛
⎜
⎜
⎝
−1
𝛾

t

∫
0

∑
𝜈kp

𝛾

k (𝜏)
F(X(𝜏), 𝜏)

d𝜏
⎞
⎟
⎟
⎠
.

The constants 𝜈1, 𝜈2,… , 𝜈n are determined by the equations

Wk(0) = 𝜈kW(0)A(1−𝛾)∕𝛾 (0)F−1∕𝛾 (X(0), 0)

× E

T

∫
0

p𝛾k(t)A
(𝛾−1)∕𝛾 (t)F (1−𝛾)∕𝛾 (X(t), t) exp

⎛
⎜
⎜
⎝

1 − 𝛾
𝛾

t

∫
0

∑
𝜈kp

𝛾

k (𝜏)
F(X(𝜏), 𝜏)

d𝜏
⎞
⎟
⎟
⎠
dt.
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Then

𝜆 = 1
𝛾

(
𝜎 − 𝜓 FX

F

)

𝜂 = −𝜑FX
𝛾F

.

The dynamics of 𝜆 = 𝜆(X, t) and 𝜂 = 𝜂(X, t), as well as that of the short rate
r = 𝜇 − 𝜎𝜆, follow from the dynamics of X.

Example 2. If, in particular, 𝛾k = 1, k = 1, 2,… , n, then

F(X, t) =
n∑

k=1
𝜈k

T

∫
t

pk(𝜏)d𝜏

and
Z(t) = W(0)

A(0)F(X(0), 0)
A(t).

Solving Eq. (31) for 𝜈1, 𝜈2,… , 𝜈n, we get

𝜈k =
NWk(0)
T

∫
0

pk(𝜏)d𝜏

,

where N is an arbitrary multiplier. On substitution, we have

F(X, t) = N
n∑

k=1
Wk(0)

T

∫
t

pk(𝜏)d𝜏
/ T

∫
0

pk(𝜏)d𝜏.

The prices of risk are
𝜆 = 𝜎

𝜂 = 0

and the short rate is
r = 𝜇 − 𝜎2.

Example 3. Let 𝛾k = 𝛾, k = 1, 2,… , n and suppose there are no unfore-
seen technological changes, so that 𝜇 and 𝜎 are functions of time only. Then
F is a function of t only and we have 𝜆 = 𝜎∕𝛾, 𝜂 = 0, and

r = 𝜇 − 1
𝛾
𝜎
2.
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Interest rates are deterministic, independent of the time preference functions
pk(t).

Example 4. Suppose that the time preference functions of all participants
are concentrated at the point T. In other words, each participant maximizes
the expected utility of end-of-period wealth. Then

W(t) = W(0)
A(0)

A(t) t < T

= 0 t = T.

At T, we have

W(T−) =
n∑

k=1
𝜈kZ

𝛾k(T).

Put

K(Z) = A(0)
W(0)

n∑

k=1
𝜈kZ

𝛾k

and denote by K–1 the inverse function of K. Since

A(t)
Z(t)

= Et
A(T)
Z(T)

,

we get

Z(t) = A(t)

Et
A(T)

K−1(A(T))

and bond prices are given by

B(t, s) = A(t)

Et
A(T)

K−1(A(T))

Et
A(T)

A(s)K−1(A(T))
.

Example 5. Suppose that the time preference functions of all partici-
pants are concentrated at the point T, and assume moreover that 𝛾k = 𝛾, k =
1, 2,… , n (so that investors have homogeneous preferences). Then

K−1(A) = NA1∕𝛾 ,

where N is a constant multiplier, and

Z(t) = NA(t)
EtA(𝛾−1)∕𝛾 (T)

. (52)
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For instance, suppose that
𝜇 = X

𝜁 = 𝛼(X −X)

and let 𝜎, 𝜓, and 𝜑 be constant. Evaluating the expectation in Eq. (52) gives

Z(t) = A1∕𝛾 (t) exp
(
1 − 𝛾
𝛾

D(t,T)X + g(t)
)
,

where g(t) is a function of t alone, and

D(t,T) = 1
𝛼

(
1 − e−𝛼(T−t)

)
. (53)

Alternatively, we can solve equation (51) and find F in the form

F(X, t) = exp((𝛾 − 1)D(t,T)X + h(t)). (54)

Consequently, we have

𝜆 = 𝜎

𝛾
+ 1 − 𝛾

𝛾
𝜓D (55)

𝜂 = 1 − 𝛾
𝛾

𝜑D (56)

r = X − 𝜎
2

𝛾
+ 𝛾 − 1

𝛾
𝜎𝜓D. (57)

The dynamics of r is given by

dr = 𝛼(r − r)dt + 𝜓dy + 𝜑dx,

where r is a function of time. Interest rates of all maturities are Gaussian, and
market prices of both sources of risk are functions of time only. All investors
hold the same portfolio, 𝛽k = 𝜎, 𝛿k = 0.

Example 6. Make the same assumptions as in Example 5, but let

𝜎
2 = 𝜎

2X

𝜓
2 = �̂�

2X

𝜑
2 = �̂�

2X,
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where 𝜎, �̂� , and �̂� depend on time only. The function F still has the form
of Eq. (54), with D given by a different expression than in Eq. (53) but still
independent of X. Equations (55), (56), and (57) hold, and we have

𝜆 = 𝜆

√
X

𝜂 = 𝜂

√
X

r = 𝜁X

with 𝜆, 𝜂, and 𝜁 being functions of time only. The dynamics of r are described
by

dr = 𝜅(r − r)dt +
√
r(𝜉1dx + 𝜉2dy),

where 𝜅, r, 𝜉1, 𝜉2 are functions of time. This is a model of the Cox, Ingersoll,
Ross type.

Example 7.Consider the same situation as in the previous two examples,
but let

𝜎 = 𝜎X

𝜓 = �̂�X

𝜑 = �̂�X

with 𝜎, �̂�, and �̂� constant. If 𝛾 > 1, the expectation in (52) is infinite. We
haveZ(t) ≡ 0 and the numeraire portfolio does not exist. Equilibrium cannot
be attained in this economy.

TERM STRUCTURE MODELS

A number of specific models of the term structure of interest rates have been
proposed, derived from the principle of no arbitrage. We wish to ask the
following question: For a given term structure model, does an equilibrium
economy of the kind investigated here exist in which interest rates are gov-
erned by that model?

If an equilibrium exists, the expectations in Eq. (30) must be finite. For
that, it is necessary that

EtZ
𝛾k−1(s) < ∞ (58)

for all k = 1, 2,… , n, 0 ≤ t ≤ s ≤ T. On the other hand, if Eq. (58) holds,
it is always possible to construct an economy in equilibrium (cf. Harrison
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and Kreps, 1979). We will therefore investigate whether condition (58) is
satisfied by a given term structure model.

We will look specifically at one-factor interest rate models. We obtain
such models in the economy proposed here if there is only one source of risk.
This will happen if, for instance, 𝜎 = 0, 𝜓 = 0. These models then have the
form

B(t, s) = Et
Z(t)
Z(s)

= Et exp
⎛
⎜
⎜
⎝
−

s

∫
t

rd𝜏 − 1
2

s

∫
t

𝜂
2d𝜏−

s

∫
t

𝜂dx
⎞
⎟
⎟
⎠
.

This question was investigated in some detail in Vasicek (2000), who
gives a somewhat different rationale for the condition (58). It is shown that a
Gaussian model always satisfies the finiteness condition. On the other hand,
consider the Cox, Ingersoll, Ross model described by

dr = 𝛼(r − r)dt + 𝜉
√
rdx

𝜂 = 𝜂

√
r.

Note that 𝜉𝜂 is negative when the bond risk premia EdB∕B –rdt =
𝜂EdxdB∕B are positive. Put

a = 𝛾max 𝛼
2 +

(
1 − 𝛾max

) ((
𝛼 + 𝜉𝜂

)2 + 2𝜉2
)

b = 𝛼 +
(
1 − 𝛾max

)
𝜉𝜂,

where 𝛾max is the largest of 𝛾k, k = 1, 2,… , n. The expectation in (58) is finite
if and only if a ≥ 0, or a < 0 and

s < t + 2√
−a

(
𝜋 − arctan

(√
−a∕b

))
.

When applying a term structure model (for instance, in derivatives pric-
ing), one does not want to make assumptions about the preferences of the
participants in the economy that generated that model. In other words, it
is desirable to know under what conditions the model is consistent with an
equilibrium economy with any participant preferences. For the Cox, Inger-
soll, Ross model, in order that Eq. (58) holds for all 𝛾k and all t ≤ s, it is
necessary (and sufficient) that

(𝛼 + 𝜉𝜂)2 + 2𝜉2 ≤ 𝛼
2. (59)

The inequality in Eq. (59) (which can be written as 𝛾 ≤ 𝜅 in the notation of
their 1985b paper) is a restriction on the parameters of the model in order
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that it may describe the behavior of interest rates in an economy with arbi-
trary preferences of the participants.

For the Black, Derman, Toy (1990) model, the expectation in (58) is
infinite for all 𝛾k > 1 and s > t. No equilibrium economy exists in which
the bond market follows this model. There would be an infinite demand for
interest rate swaps (receiving floating and paying fixed rates) with no supply.

CONCLUSIONS

This chapter looks at the behavior of heterogeneous investors in an economy
consisting of a production process and a bond market. If each participant in
the economy pursues a strategy optimal with respect to his preferences, the
market has to accommodate the resultant demand and supply of credit by
pricing risk so that the economy stays in equilibrium. We derive conditions
under which such equilibrium is possible, and obtain equations determining
interest rates. These results can be used for quantitative analyses of various
economic phenomena.
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CHAPTER 12
General Equilibrium with

Heterogeneous Participants and
Discrete Consumption Times

ABSTRACT

The paper investigates the term structure of interest rates imposed by
equilibrium in a production economy consisting of participants with hetero-
geneous preferences. Consumption is restricted to an arbitrary number of
discrete times. The paper contains an exact solution to market equilibrium
and provides an explicit constructive algorithm for determining the state
price density process. The convergence of the algorithm is proven. Interest
rates and their behavior are given as a function of economic variables.

INTRODUCTION

Interest rates are determined by the equilibrium of supply and demand.
Increased demand for credit brings interest rates higher, while an increase in
demand for fixed-income investment causes rates to go down. To determine
the mechanism by which economic forces and investors’ preferences cause
changes in supply and demand, it is necessary to develop a general equilib-
rium model of the economy. Such model provides a means of quantitative
analysis of how economic conditions and scenarios affect interest rates.

Vasicek (2005) (Chapter 11 of this volume) investigates an economy
in continuous time with production subject to uncertain technological
changes described by a state variable. Consumption is assumed to be in
continuous time, with each investor maximizing the expected utility from

Journal of Financial Economics, 108, (2013), pp. 608–614; short version published
in FAMe, 2013.
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lifetime consumption. The participants have constant relative risk aversion,
with different degrees of risk aversion anddifferent timepreference functions.
After identifying the optimal investment and consumption strategies, the
paper derives conditions for equilibriumandprovides a descriptionof interest
rates.

For a meaningful economic analysis, it is essential that a general equi-
librium model allows heterogeneous participants. If all participants have
identical preferences, then they will all hold the same portfolio. Since there
is no borrowing and lending in the aggregate, there is no net holding of debt
securities by any participant, and no investor is exposed to interest rate risk.
Moreover, if the utility functions are the same, it does not allow for study of
how interest rates depend on differences in investors’ preferences.

The main difficulty in developing a general equilibrium model with het-
erogeneous participants had been the need to carry the individual wealth
levels as state variables, because the equilibrium depends on the distribu-
tion of wealth across the participants. This can be avoided if the aggregate
consumption can be expressed as a function of a Markov process, in which
case only this Markov process becomes a state variable. This is often simple
in models of pure exchange economies, where the aggregate consumption is
exogenously specified.

The situation is different in models of production economies. In such
economies, the aggregate consumption depends on the social welfare
function weights. Because these weights are determined endogenously, it is
necessary that the individual consumption levels themselves be functions
of a Markov process. This has precluded an analysis of equilibrium in a
production economy with any meaningful number of participants; most
explicit results for production economies had previously been limited to
models with one or two participants.

The above approach is exploited here. Vasicek (2005) shows that the
individual wealth levels can be represented as functions of a single process,
which is jointly Markov with the technology state variable. This allows con-
struction of equilibrium models with just two state variables, regardless of
the number of participants in the economy.

InVasicek (2005), the equilibrium conditions are used to derive a nonlin-
ear partial differential equationwhose solution determines the term structure
of interest rates. While the solution to the equation can be approximated
by numerical methods, the nonlinearity of the equation could present some
difficulties.

The present paper provides the exact solution for the case that con-
sumption takes place at a finite number of discrete times. This solution does
not require solving partial differential equations, and explicit computational
procedure is provided. If the time points are chosen to be dense enough, the
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discrete case will approximate the continuous case with the desired preci-
sion. Some may in fact argue that, in reality, consumption is discrete rather
than continuous, and therefore the discrete case addressed here is the more
relevant.

The following section summarizes the relevant results from Vasicek
(2005). The next section contains the solution for the equilibrium state
price density process and the structure of interest rates in the discrete con-
sumption case. The final section gives a proof that the proposed algorithm
converges to the market equilibrium.

THE EQUILIBRIUM ECONOMY

Assume that a continuous time economy contains a production process
whose rate of return dA/A on investment is

dA
A

= 𝜇dt + 𝜎dy, (1)

where y(t) is a Wiener process. The process A(t) represents a constant
return-to-scale production opportunity. An investment of an amount W
in the production at time t yields the amount WA(s)/A(t) at time s > t.
The production process can be viewed as an exogenously given asset that
is available for investment in any amount. The amount of investment in
production, however, is determined endogenously.

The parameters of the production process can themselves be stochastic.
It will be assumed that their behavior is driven by a Markov state variable
X, 𝜇 = 𝜇(X(t), t), 𝜎 = 𝜎(X(t), t). The dynamics of the state variable, which
can be interpreted as representing the state of the production technology, is
given by

dX = 𝜁dt + 𝜓dy + 𝜑dx, (2)

where x(t) is aWiener process independent of y(t). The parameters 𝜁, 𝜓, and
𝜑 are functions of X(t) and t.

It is assumed that investors can issue and buy any derivatives of any of
the assets and securities in the economy. The investors can lend and borrow
among themselves, either at a floating short rate or by issuing and buying
term bonds. The resultant market is complete. It is further assumed that
there are no transaction costs and no taxes or other forms of redistribution
of social wealth. The investment wealth and asset values are measured in
terms of a medium of exchange that cannot be stored unless invested in
the production process. For instance, this wealth unit could be a perishable
consumption good.
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Suppose that the economy has n participants and let Wk(0) > 0 be the
initial wealth of the k–th investor. Each investor maximizes the expected
utility from lifetime consumption,

maxE

T

∫
0

pk(t)Uk(ck(t))dt, (3)

where ck(t) is the rate of consumption at time t, Uk(c) is a utility function
withU′

k > 0, U′′
k < 0, and pk(t) ≥ 0, 0 ≤ t ≤ T is a time preference function.

Consider specifically the class of isoelastic utility functions, written in the
form

Uk(c) =
c(𝛾k−1)∕𝛾k
𝛾k − 1

𝛾k > 0, 𝛾k ≠ 1

= log c 𝛾k = 1. (4)

Here 𝛾k is the reciprocal of the relative risk aversion coefficient, 1∕𝛾k =
– cU′′

k∕U
′
k, which will be called the risk tolerance.

An economy cannot be in equilibrium if arbitrage opportunities exist
in the sense that the returns on an asset strictly dominate the returns on
another asset. A necessary and sufficient condition for absence of arbi-
trage is that there exist processes 𝜆(t), 𝜂(t), called the market prices of risk
for the risk sources y(t), x(t), respectively, such that the price P of any asset in
the economy satisfies the equation

dP
P

= (r + 𝛽𝜆 + 𝛿𝜂)dt + 𝛽dy + 𝛿dx, (5)

where 𝛽, 𝛿 are the exposures of the asset to the two risk sources. In particular,

𝜇 = r + 𝜎𝜆. (6)

It is assumed that Novikov’s condition holds,

E exp
⎛
⎜
⎜
⎝

1
2

T

∫
0

(
𝜆
2 + 𝜂2

)
dt
⎞
⎟
⎟
⎠
< ∞. (7)

Let Z be the numeraire portfolio of Long (1990) with the dynamics

dZ
Z

= (r + 𝜆2 + 𝜂2)dt + 𝜆dy + 𝜂dx, (8)
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such that the price P of any asset satisfies

P(t)
Z(t)

= Et
P(s)
Z(s)

. (9)

Specifically, the price B(t, s) at time t of a default-free bond with unit face
value maturing at time s is given by the equation

B(t, s) = Et
Z(t)
Z(s)

. (10)

Here and throughout, the symbol Et denotes expectation conditional on a
filtrationℑt generated by y(t), x(t). In integral form, the numeraire portfolio
can be written as

Z(s) = Z(t) exp
⎛
⎜
⎜
⎝

s

∫
t

rd𝜏 + 1
2

s

∫
t

(
𝜆
2 + 𝜂2

)
d𝜏 +

s

∫
t

𝜆dy+

s

∫
t

𝜂dx
⎞
⎟
⎟
⎠
. (11)

The process Z(t) is the reciprocal of the state price density process.
Vasicek (2005) shows that the optimal consumption rate of the k-th

investor is a function of the numeraire process only, given as

ck(t) = 𝜈kp
𝛾k
k (t)Z𝛾k(t), (12)

where
𝜈k =

Wk(0)

Z(0)E

T

∫
0

p𝛾kk (t)Z𝛾k−1(t)dt

(13)

is a constant. The individual wealth levelWk under an optimal strategy is

Wk(t) = 𝜈kZ(t)Et

T

∫
t

p𝛾kk (𝜏)Z𝛾k−1(𝜏)d𝜏. (14)

The behavior of the wealth levelWk(t) is fully determined by the process
Z(t). Moreover, the process (X(t), Z(t)) is Markov. That means thatWk(t) =
Wk(X(t),Z(t), t) is a function of two state variables X and Z only.

In equilibrium, the total wealth

W(t) =
n∑

k=1
Wk(t) (15)
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must be invested in the production process (which justifies referring to the
production process as the market portfolio). Any lending and borrowing
(including lending and borrowing implicit in issuing and buying contingent
claims) is among the participants in the economy, and its sum must be zero.
Thus, the total exposure to the process y is that of the total wealth invested in
the production, and the total exposure to the process x is zero. This produces
the equation

dW = 𝜇Wdt + 𝜎Wdy −
n∑

k=1
𝜈kp

𝛾k
k Z

𝛾kdt (16)

describing the dynamics of the total wealth. The terminal condition is

W(T) = 0. (17)

The process Z is further subject to the requirement that

A(t)
Z(t)

= Et
A(s)
Z(s)

. (18)

The unique solution of the stochastic differential Eq. (16) subject to Eqs.
(17) and (18) is given by

W(t) = Z(t)Et

T

∫
t

n∑

k=1
𝜈kp

𝛾k
k (𝜏)Z𝛾k−1(𝜏)d𝜏. (19)

In Vasicek (2005), the process Z(t) is determined in the following man-
ner: WriteW(t) = W(X,Z, t) as a function of the state variables. Expanding
dW in Eq. (16) by Ito’s lemma and comparing the coefficients of dt, dy,
and dx provides equations from which 𝜆, 𝜂 can be eliminated, resulting in a
nonlinear partial differential equation with known coefficients. Once the
function W(X,Z, t) has been determined as the unique solution of this
equation, 𝜆 and 𝜂 are calculated from W(X,Z, t) as functions of X, Z,
and t. The process Z(t) is obtained by integrating the stochastic differential
equation (8). Bond prices are determined from Eq. (10).

In the case of discrete consumption dealt with in this paper, the partial
differential equation and the subsequent integration of Eq. (8) is replaced by
an explicit algorithm described in the next section.

Equilibrium is fully described by specification of the process Z(t), which
determines the pricing of all assets in the economy, such as bonds and deriva-
tive contracts, by means of Eq. (9). Solving for the equilibrium requires deter-
mining the values of the constants 𝜈1, 𝜈2,… , 𝜈n. The algorithm proposed in
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this paper utilizes the fact that any choice of the constants is consistent with
a unique equilibrium described by the process Z(t), except that the corre-
sponding initial wealth levels calculated as

W′
k(0) = Z(0)E

T

∫
0

𝜈kp
𝛾k
k (t)Z𝛾k−1(t)dt (20)

do not agree with the given initial values Wk(0). Repeatedly replacing 𝜈k
by 𝜈kWk(0)∕W′

k(0) and recalculating Z converges to the required equilib-
rium, as proven in “Proof of Convergence” section later in this chapter. This
is analogous to the method proposed by Negishi (1960) in a deterministic
economy.

In economic literature, the usual approach to investigating the exis-
tence and uniqueness of equilibrium has been the concept of a representative
agent (see Negishi, 1960, and Karatzas and Shreve, 1998). The representa-
tive agent maximizes an objective (the social welfare function)

maxE

T

∫
0

max
c1+c2+…+cn=c

n∑

k=1
Λkpk(t)Uk(ck(t))dt, (21)

where c(t) is the consumption rate of the agent (equal to the aggregate con-
sumption of all participants) and Λ1, Λ2, … , Λn are weights assigned to the
individual participants. The constants 𝜈1, 𝜈2,… , 𝜈n in Eq. (12) are related
to the representative agent weights. Eq. (4.5.7) in Theorem 4.5.2 of Karatzas
and Shreve (1998) can be written as

ck(t) = 𝛾
−𝛾k
k Λ𝛾kk p

𝛾k
k (t)Z𝛾k(t). (22)

Comparing Eqs. (22) and (12) yields the relationship

Λk = 𝛾k𝜈
1∕𝛾k
k (23)

for k = 1, 2,… , n.

DISCRETE CONSUMPTION TIMES

This chapter considers an economy in which consumption takes place only at
specific discrete dates. The economy exists in continuous time, and between
the consumption dates the participants are continuously trading and the pro-
duction is continuous. The market is assumed to be complete.
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Suppose each investor’s time preference function is concentrated at pos-
itive points t1 < t2 <… < tm = T, so that the k-th investor maximizes the
expected utility

maxE
m∑

i=1
pikUk(Cik), (24)

where Cik is the consumption at time ti, and Uk is a utility function given by
Eq. (4). It is assumed that

n∑

k=1
pmk > 0. (25)

Let Y(t) = 1∕Z(t) be the state price density process. Put

Ai = A(ti),

Xi = X(ti), (26)

Yi = Y(ti)

for i = 0, 1, … , m, with t0 = 0. The state variableX(t) can be a vector. Fur-
thermore, let

Ni =
W(ti+)
Ai

(27)

for i = 0, 1, … , m – 1, and Nm = 0.
The optimal individual consumption is given from Eq. (12) by

Cik = 𝜈kp
𝛾k
ikY

−𝛾k
i (28)

for i = 1, 2, … , m, k = 1, 2, … , n, where 𝜈k are positive constants satisfy-
ing the equation

𝜈k = Y0Wk(0)

E
m∑

i=1
p𝛾kikY

−𝛾k+1
i

. (29)

Eq. (16) takes the form

W(t) = NiA(t) for ti ≤ t < ti+1 , i = 0, 1,… ,m − 1 (30)

and
Ni−1 −Ni =

Ki(Yi)
Ai

i = 1, 2,… ,m, (31)
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where

Ki(Y) =
n∑

k=1
𝜈kp

𝛾k
ikY

−𝛾k i = 1, 2,… ,m. (32)

From Eq. (31),

N0 =
m∑

i=1

Ki(Yi)
Ai

. (33)

From Eq. (18),

Yi−1 = Eti−1
Ai

Ai−1
Yi , i = 1, 2,… ,m. (34)

Note that Eqs. (33) and (34) imply

W(0) = 1
Y0

E
m∑

i=1
YiKi(Yi), (35)

as is easily established by multiplying Eq. (33) by AmYm ∕Y0 and taking
expectation.

The solution to Eqs. (31) and (34) subject to Nm = 0, N0 = W(0)∕A(0)
is obtained by successive elimination of Ym,Ym–1,… ,Y1 and Nm–1,
Nm–2,… ,N1. Let K–1

m be the inverse of the function Km and define
recursively two sets of functions G, H as follows:

Gm(N,A,X) = K−1
m (NA) (36)

and Gi(N, A, X) = Y is the positive solution of the equation

Y = Hi

(
N −

Ki (Y)
A

,A,X
)

(37)

for i = 1, 2,… , m – 1; and

Hi(N,A,X) = Eti

[
Ai+1
Ai

Gi+1
(
N,Ai+1,Xi+1

)||||
Ai = A,Xi = X

]
(38)

for i = 0, 1,… , m – 1. Then

Yi = Hi(Ni,Ai,Xi) i = 0, 1,… ,m − 1

= Gi(Ni−1,Ai,Xi) i = 1, 2,… ,m. (39)
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It will be now shown that the functions Gi(N,A,X), Hi(N,A,X)
are decreasing functions of the first argument. Suppose, for some
1 ≤ i ≤ m, Gi(N,A,X) is a decreasing function of N. It follows from
Eq. (38) that Hi–1(N,A,X) is also decreasing in N. Denote by N =
H−1

i (Y,A,X) the inverse of the function Y = Hi(N, A, X)with respect to the
first argument while keeping the remaining arguments constant. Then from
Eq. (37),

H−1
i−1(Gi−1(N,A,X),A,X) +

Ki−1(Gi−1(N,A,X))
A

= N. (40)

The expression on the left-hand side of this equation is a decreas-
ing function of Gi–1, and therefore the function Gi–1(N,A,X) is
decreasing in N. Because Gm(N,A,X) is decreasing in N, it fol-
lows by induction that Gi(N,A,X), i = 1, 2, … , m, and consequently
Hi(N,A,X), i = 0, 1, … , m – 1, are all decreasing functions of the first
argument.

Then from Eq. (39),

Yi = Gi
(
H−1

i−1
(
Yi−1,Ai−1,Xi−1

)
,Ai,Xi

)
(41)

for i = 1, 2, … , m. Eq. (41) together with Y0 = H0(N0, A0, X0) determines
Y1, Y2,… , Ym recursively. The state price density process at time t is

Y(t) = Et
Ai

A(t)
Yi for ti−1 ≤ t ≤ ti, i = 1, 2,… ,m. (42)

Eqs. (41), (42) represent the exact solution to the equilibrium economy
in the case that consumption is limited to a number of discrete times, pro-
vided Eq. (29) holds.

Calculation of the equilibrium solution proceeds as follows: Choose ini-
tial values of the constants 𝜈1, 𝜈2, … , 𝜈n. A reasonable initial guess is

𝜈k =
Wk(0)A

𝛾k−1
0

E
m∑

i=1
p𝛾kikA

𝛾k−1
i

(43)

for k = 1, 2, … , n. Calculate recursively the functions Gi, i = 1, 2, … , m
and Hi, i = 0, 1,… , m – 1 from Eqs. (36), (37), and (38). Calculate
Y0 = H0(N0, A0, X0) and determine Y1, Y2,… , Ym from Eq. (41).
CalculateW′

k(0) as

W′
k(0) =

𝜈k

Y0
E

m∑

i=1
p
𝛾k
ikY

−𝛾k+1
i (44)
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for k = 1, 2, … , n. Set new values of constants 𝜈1, 𝜈2,… , 𝜈n as

𝜈
′
k = 𝜈k

Wk(0)
W′

k(0)
. (45)

Repeat the above calculations with the new values of the constants until
W′

k(0) are sufficiently close to Wk(0), k = 1, 2, … , n. The state price den-
sity process is given by Eq. (42). Bond prices are given as

B(t, s) = Et
Y(s)
Y(t)

. (46)

Interest rates are determined by bond prices.
In the special case that 𝛾k = 𝛾, k = 1, 2,… , n, the functions take the

form Gi(N,A,X) = (NA)–1∕𝛾 (Fi(X) + qi)1∕𝛾 , i = 1, 2,… , m, Hi(N,A,X) =
(NA)–1∕𝛾Fi1∕𝛾 (X), i = 0, 1,… , m – 1, where Fm(X) = 0,

Fi(X) =

(

Eti

[(
Ai+1
Ai

)(𝛾−1)∕𝛾

(Fi+1(Xi+1) + qi+1)1∕𝛾
|||||
Xi = X

])𝛾

i = 0, 1,… ,m − 1 (47)

and

qi =
n∑

k=1
𝜈kp

𝛾

ik. (48)

Then
Y0 = N−1∕𝛾

0 A−1∕𝛾
0 F0

1∕𝛾 (X0) (49)

and

Yi = N−1∕𝛾
0 A−1∕𝛾

i (Fi(Xi) + qi)1∕𝛾
i−1∏

j=1

(

1 +
qj

Fj
(
Xj

)

)1∕𝛾

i = 1, 2,… ,m. (50)

PROOF OF CONVERGENCE

Define the function Qm as

Qm(N,A1,A2,… ,Am,X1,X2,… ,Xm)

= Gm(H−1
m−1(Gm−1(…H−1

1 (G1(N,A1,X1),A1,X1)… ,

Am−1,Xm−1),Am−1,Xm−1),Am,Xm). (51)
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Since there is an odd number of decreasing functions in the nested expression
(51), Qm is a decreasing function of N. Then

Ym = Qm(N0,A1,A2,…,Am,X1,X2,…,Xm). (52)

Note that Eq. (52) represents the solution to Eqs. (33) and (34), since the
intermediate values of N1, N2,… , Nm–1 have been eliminated.

Assume that 𝛾k ≥ 1, k = 1, 2,… , n (corresponding to the sufficient con-
dition (4.6.4) for uniqueness of the equilibrium solution in Theorem 4.6.1
in Karatzas and Shreve, 1998). Let 𝜈1, 𝜈2,… , 𝜈n be arbitrary positive con-
stants and determine Y0, Y1,… , Ym from Eq. (39). Calculate W′

k(0) from
Eq. (44) and 𝜈′k from Eq. (45), k = 1, 2,… , n. Put

K′
i(Y) =

n∑

k=1
𝜈
′
kp

𝛾k
ikY

−𝛾k (53)

and denote by Y′
0,Y

′
1,… ,Y′

m the variables calculated using the constants
𝜈
′
1, 𝜈

′
2,… , 𝜈

′
n in place of 𝜈1, 𝜈2,… , 𝜈n. Then

N0 =
m∑

i=1

K′
i(Y

′
i )

Ai
(54)

and

Y′
i−1 = Eti−1

Ai

Ai−1
Y′
i , i = 1, 2,… ,m. (55)

Put

W′′
k (0) =

𝜈
′
k

Y′
0
E

m∑

i=1
p𝛾kikY

′−𝛾k+1
i (56)

and

𝜈
′′
k = 𝜈

′
k
Wk(0)
W′′

k (0)
. (57)

Define

ak =
𝜈k

𝜈
′
k

=
W′

k(0)
Wk(0)

,

a′k =
𝜈
′
k

𝜈
′′
k

=
W′′

k (0)
Wk(0)

. (58)
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Then

a′k =
Y0E

m∑

i=1
p𝛾kikY

′−𝛾k+1
i

Y′
0E

m∑

i=1
p𝛾kikY

−𝛾k+1
i

. (59)

Set

bk = a
1∕𝛾k
k ,

b′k = a′1∕𝛾kk , (60)

k = 1, 2,… , n. Let bmin, bmax be the lowest and highest value, respectively,
of b1, b2,… , bn, and b

′
min, b

′
max be the lowest and highest value, respectively,

of b′1, b
′
2,… , b′n. Put

𝛼k =
Wk(0)
W(0)

, (61)

k = 1, 2,… , n. Note that

n∑

k=1
𝛼kak =

n∑

k=1
𝛼ka

′
k =

n∑

k=1
𝛼k = 1 (62)

and therefore
bmin ≤ 1 ≤ bmax. (63)

Define
Vi = bminY

′
i (64)

and put

M0 =
m∑

i=1

Ki(Vi)
Ai

. (65)

The values V1, V2,… , Vm satisfy the relationship

Vi−1 = Eti−1
Ai

Ai−1
Vi , i = 1, 2,… ,m. (66)

Eqs. (65) and (66) have the solution

Vm = Qm(M0,A1,A2,… ,Am,X1,X2,… ,Xm). (67)
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Now

K′
i(Y) =

n∑

k=1

𝜈k

ak
p𝛾kikY

−𝛾k =
n∑

k=1
𝜈kp

𝛾k
ik (bkY)

−𝛾k ≤
n∑

k=1
𝜈kp

𝛾k
ik (bminY)

−𝛾k

= Ki(bminY) (68)

for i = 1, 2,… , m, and consequently

N0 =
m∑

i=1

K′
i(Y

′
i )

Ai
≤

m∑

i=1

Ki(bminY′
i )

Ai
= M0. (69)

Because Qm is a decreasing function of its first argument, Eqs. (52)
and (67) imply

Ym ≥ Vm = bminY
′
m. (70)

It is proven similarly that

Ym ≤ bmaxY
′
m, (71)

and from Eqs. (34) and (55) it then follows that

bminY
′
i ≤ Yi ≤ bmaxY

′
i (72)

for i = 0, 1,… , m.
From Eq. (59),

b𝛾k−1min
Y0

Y′
0
≤ a′k ≤ b𝛾k−1max

Y0

Y′
0

(73)

and consequently

b
1−1∕𝛾k
min (Y0∕Y′

0)
1∕𝛾k ≤ b′k ≤ b

1−1∕𝛾k
max (Y0∕Y′

0)
1∕𝛾k . (74)

If Y0∕Y′
0 ≤ 1, then

bmin ≤ b′k ≤ b
1−1∕𝛾k
max ≤ b1−1∕𝛾maxmax (75)

and
b′max
b′min

≤ bmax
bmin

b−1∕𝛾maxmax . (76)
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If Y0∕Y′
0 ≥ 1, then

b1−1∕𝛾maxmin ≤ b1−1∕𝛾kmin ≤ b′k ≤ bmax (77)

and
b′max
b′min

≤ bmax
bmin

b1∕𝛾maxmin . (78)

Thus, either the inequality in Eq. (76) or (78) holds.
Put bmax∕bmin = s ≥ 1 and let l be such that bl = bmin. Then

1 =
n∑

k=1
𝛼kb

𝛾k
k = 𝛼lb

𝛾l
min +

n∑

k=1
k≠l

𝛼kb
𝛾k
k = 𝛼ls

−𝛾l b𝛾lmax +
n∑

k=1
k≠l

𝛼kb
𝛾k
k ≤ 𝛼ls

−𝛾l b𝛾lmax

+
n∑

k=1
k≠l

𝛼kb
𝛾k
max ≤ 𝛼ls

−𝛾minb𝛾maxmax +
n∑

k=1
k≠l

𝛼kb
𝛾max
max = b𝛾maxmax (𝛼ls−𝛾min + 1 − 𝛼l)

≤ b𝛾maxmax (𝛼mins−𝛾min + 1 − 𝛼min) (79)

and therefore
bmax ≥ (𝛼mins−𝛾min + 1 − 𝛼min)−1∕𝛾max . (80)

Similarly, if l is such that bl = bmax, then

1 =
n∑

k=1
𝛼kb

𝛾k
k = 𝛼lb

𝛾l
max +

n∑

k=1
k≠l

𝛼kb
𝛾k
k = 𝛼ls

𝛾l b
𝛾l
min +

n∑

k=1
k≠l

𝛼kb
𝛾k
k ≥ 𝛼ls

𝛾l b
𝛾l
min

+
n∑

k=1
k≠l

𝛼kb
𝛾k
min ≥ 𝛼ls

𝛾minb𝛾maxmin +
n∑

k=1
k≠l

𝛼kb
𝛾max
min

= b𝛾maxmin (𝛼ls𝛾min + 1 − 𝛼l) ≥ b𝛾maxmin (𝛼mins𝛾min + 1 − 𝛼min) (81)

and therefore
bmin ≤ (𝛼mins𝛾min + 1 − 𝛼min)−1∕𝛾max . (82)
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Here 𝛾min, 𝛾max are the lowest and highest value, respectively, of 𝛾1, 𝛾2,… , 𝛾n,
and 𝛼min is the lowest value of 𝛼1, 𝛼2,… , 𝛼n. Put

q(s) = max((𝛼mins−𝛾min + 1 − 𝛼min)1∕𝛾
2
max , (𝛼mins𝛾min + 1 − 𝛼min)−1∕𝛾

2
max ) ≤ 1.

(83)
Combining the inequalities in Eqs. (76), (78), (80), and (82) produces

b′max
b′min

≤ bmax
bmin

q(s). (84)

Now consider the sequence of iterations b(0)min = bmin, b
(1)
min = b′min,…

and b(0)max = bmax, b
(1)
max = b′max,…. The series s(j) = b(j)max∕b

(j)
min, j = 0, 1,…

is nonincreasing due to the inequality (84) and bounded from below by
unity, so it converges to a limit s∗ ≥ 1. Assume that s∗ > 1. Because q(s) is
a decreasing function of s, q(s(j)) ≤ q(s∗) < 1 and the series s(j) decrease at
least as fast as a geometric series with quotient q(s∗). In a finite number
of terms, it falls below the level s∗. Therefore, the assumption that s∗ > 1
is false, and s(j) converges to unity. Then b(j)1 , b

(j)
2 ,… , b(j)n and therefore

a(j)1 , a
(j)
2 ,… , a(j)n converge to unity and from Eq. (58), the sequence of the

iterated valuesW(j)
k (0) converges toWk(0), k = 1, 2, … , n.

CONCLUDING REMARKS

This paper provides explicit procedure to obtain the exact solution of
equilibrium pricing in a production economy with heterogeneous investors.
Each investor maximizes the expected utility from lifetime consumption,
taking place at discrete times. Interest rates are determined by economic
variables such as the characteristics of the production process, the individual
investors’ preferences, and the wealth distribution across the participants.
Such a model provides a tool for quantitative study of the effect of changes
in economic conditions on interest rates.

The algorithm is constructive and converges to the equilibrium solu-
tion. The convergence is proven for the case of 𝛾k ≥ 1, k = 1, 2, … , n, for
which the uniqueness of the equilibrium has been established (cf. Karatzas
and Shreve, 1998). All other steps of the procedure, however, are valid in
general for any positive values of the risk tolerance coefficients. If some of
the 𝛾1, 𝛾2, … , 𝛾n are smaller than unity and the values W(j)

k (0) fail to con-
verge to the input valuesWk(0), k = 1, 2, … , n after a reasonable number
of iterations, a search over the space of positive values of 𝜈1, 𝜈2, … , 𝜈n needs
to be made.
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While this paper concentrates on the case that the participants have isoe-
lastic utility functions (4), it can be extended tomore general class of utilities.
Suppose the k-th investor maximizes the objective (24), where Uk(C) has a
positive, decreasing continuous derivative U′

k(C) with U
′
k(0) = ∞, U′

k(∞) =
0, k = 1, 2, … , n. Denote the inverse of the derivative by Ik(x) = U′−1

k (x).
Then the optimal consumption is given by

Cik = Ik

(
Yi

Λkpik

)
, (85)

where Λk is a positive constant satisfying the condition

Wk(0) =
1
Y0

E
m∑

i=1
YiIk

(
Yi

Λkpik

)
(86)

for k = 1, 2, … , n (cf. Karatzas and Shreve, 1998, Theorems 3.6.3 and
4.4.5). Put

Ki(Y) =
n∑

k=1
Ik

(
Y

Λkpik

)
i = 1, 2,… ,m. (87)

Then Eqs. (30), (31), and (33) through (42) still hold. The algorithm
consisting of making an initial choice of the constantsΛ1, Λ2, … , Λn, deter-
mining Y0, Y1,… , Ym from Eqs. (39) and (31), setting new values of the
constants from Eq. (86), and repeating the calculations may still be applica-
ble, although a proof of convergence is not provided here.
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CHAPTER 13
Independence of Production and

Technology Risks

The economies investigated in Vasicek (2005, 2013) (Chapters 11 and 12
of this volume) contain a production process whose rate of return dA∕A

on investment is
dA
A

= 𝜇dt + 𝜎dy, (1)

where y(t) is a Wiener process. The process A(t) represents a constant
return-to-scale production opportunity. The amount of investment in
production is determined endogenously.

The parameters of the production process can themselves be stochastic,
reflecting the fact that production technology evolves in an unpredictable
manner. It is assumed that their behavior is driven by aMarkov state variable
X(t), 𝜇 = 𝜇(X(t), t), 𝜎 = 𝜎(X(t), t). The dynamics of the state variable, which
can be interpreted as representing the state of the production technology, is
given by

dX = 𝜁dt + 𝜓dy + 𝜑dx, (2)

where x(t) is a Wiener process independent of y(t). The parameters 𝜁, 𝜓 , and
𝜑 are functions of X(t) and t. The stochastic part of dA∕A will be called
the production risk, and the stochastic part of dX will be called the technol-
ogy risk.

In many applications, it is realistic to assume that the technology risk
is independent of the production risk—that is, 𝜓 = 0. For instance, if the
production is farming, progress in development of new agriculturalmethods,
hybrids, fertilizers, and so on is independent of weather. When the two risks
are independent, some special cases attain.
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Case 1. Suppose all investors have the same degree of risk tolerance,
𝛾k = 𝛾, k = 1, 2,…, n. Then the short rate of interest in the economy in
equilibrium is

r(t) = 𝜇(t) − 1
𝛾
𝜎
2(t). (3)

This is a consequence of the equation for 𝜆 in Example 1 of Vasicek (2005)
with 𝜓 = 0. Eq. (3) holds for any specification of the processes 𝜇(t), 𝜎2(t),
and for any investors’ consumption time preferences.

Case 2. Suppose that the time preference functions of all participants
are concentrated at the point T. In other words, each participant maximizes
the expected utility of end-of-period wealth. Let Y(t) be the state price den-
sity process (in Vasicek (2005), results are stated in terms of the so-called
numeraire portfolio Z(t) = 1∕Y(t)). The equilibrium value of the short rate
is given by

r(t) = 𝜇(t) − 𝜎2(t)Et
1

Γ(T)
A(T)Y(T)
A(t)Y(t)

(4)

where

Γ(T) =

n∑

k=1
𝛾kWk(T−)

W(T−)
(5)

is the average coefficient of risk tolerance, weighted by the end-of-period
wealth levels.

To derive Eq. (4), note that

W(t) = N0A(t) 0 ≤ t < T

W(T−) = K(Y(T)) (6)

where N0 = W(0)/A(0) and

K(Y) =
n∑

k=1
𝜈kY

−𝛾k . (7)

The state price density process given by

Y(t) = 1
A(t)

EtA(T)K−1(N0A(T)) (8)

is a function of X(t),A(t), and t. Put

L(t) = logA(t) (9)
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and write Y = Y(X,L, t). The process R(t) = A(t)Y(t) is a martingale,

EdR = 0. (10)

Expand the left-hand side of (10) by Ito’s lemma to obtain a partial differ-
ential equation for R in the variables X,L, t. Since the coefficients of that
equation are all independent of L, differentiating both sides with respect to
L produces the same equation for the derivative RL. Consequently, RL =
R + AYL and therefore also AYL are martingales and

A(t)YL(t) = EtA(T)YL(T)). (11)

At T,

YL(T) =
A(T)
AY(T)

= −

n∑

k=1
𝜈kY

−𝛾k(T)

n∑

k=1
𝛾k𝜈kY

−𝛾k−1(T)
. (12)

The individual end-of-period wealths are given by

Wk(T−) = 𝜈kY
−𝛾k (T), k = 1, 2,… , n (13)

and Eq. (12) can be written in the form

YL(T) = −Y(T)
Γ(T)

. (14)

From the coefficients of dy in the expansion of dY (or from Eq. (48) of
Vasicek (2005) with 𝜓 = 0), it follows that

𝜆(t) = −𝜎(t)YL(t)
Y(t)

(15)

and therefore

𝜆(t) = − 𝜎(t)
A(t)Y(t)

EtA(T)YL(T)). (16)

Eq. (4) follows from the relationship r = 𝜇 − 𝜎𝜆 and from Eqs. (16), (14).
In terms of the underlying economic variables, Eq. (4) can be written as

r(t) = 𝜇(t) + 𝜎2(t)
Et

N0A
2(T)

K′(K−1(N0A(T)))
EtA(T)K−1(N0A(T))

. (17)
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CHAPTER 14
Risk-Neutral Economy and Zero

Price of Risk

ABSTRACT

The paper investigates the equilibrium in an economy in which all partici-
pants are indifferent to risk. The mechanism of asset and derivative pricing in
such economy is identified. It is shown that no economy in equilibrium with
stochastic interest rates can be simultaneously risk-neutral and have zero
market price of risk. On the other hand, there exist equilibrium economies
with risk-averse participants and zero prices of risk.

INTRODUCTION

The concept of the risk-neutral economy, that is, an economy in which all
participants are indifferent to risk and only care about expected return, is
often used in finance as a standard of reference. That is due to the supposition
that in such an economy there is no compensation for risk and all assets
have the same expected return, which is therefore equal to the risk-free rate.

In general, a complete economy (an economy that allows all derivative
contracts) in which there are no opportunities for riskless arbitrage will con-
tain a process, called the market price of risk, for each source of uncertainty
it involves. If x is a Wiener process of the risk sources and 𝜆 is the vector
of the corresponding market prices of risk, and if r is the short riskless rate,
then the expected instantaneous rate of return 𝜇 on an asset whose exposure
to the sources of risk is 𝛽 satisfies the relationship

𝜇 = r + 𝜷 ′𝝀. (1)

It is often assumed that in the risk-neutral economy the market prices
of risk are all zero and therefore 𝜇 = r for all assets. Why should there be
compensation for risk if all investors are risk-neutral?

Mathematics and Financial Economics, 8 (2014), 229–239.
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This is used in a number of conceptual conjectures. For instance, the
general bond pricing formula

B(t, s) = Et exp
⎛
⎜
⎜
⎝
−

s

∫
t

rd𝜏 − 1
2

s

∫
t

𝜆
′
𝜆d𝜏 −

s

∫
t

𝜆
′dx

⎞
⎟
⎟
⎠

(2)

is claimed in the risk-neutral economy to take the simple form

B(t, s) = Et exp
⎛
⎜
⎜
⎝
−

s

∫
t

rd𝜏
⎞
⎟
⎟
⎠
, (3)

called the expectation hypothesis. Note that when the short rate r(t) is deter-
ministic, the expectation hypothesis holds trivially.

It has been noted in Cox, Ingersoll, and Ross (1981) that the returns on
different assets in a risk-neutral economy are in general not all the same, and
the price of risk is not identically zero. They show that in a production econ-
omy of the Cox, Ingersoll, and Ross (1985) type, the expected instantaneous
return on any bond (in fact, on any asset) can be written as

E
dB
B

= rdt − E
dB
B

dQ
Q

(4)

where

Q(t) = Et exp

⎛
⎜
⎜
⎜
⎝

T ∗

∫
t

r (𝜏)d𝜏
⎞
⎟
⎟
⎟
⎠

(5)

and T* is the time of consumption. The second term on the right-hand side
of (4), which is the instantaneous covariance of the bond price with the
expected return to the consumption date on the money market account, is
in general nonzero.

This chapter investigates the relationship between risk neutrality of
investors and zero prices of risk in an equilibrium economy. Two questions
are posed: First, if all investors are indifferent to risk, are the prices of risk
identically zero? Second, are there economies with risk-averse participants
and zero price of risk?

The chapter gives an explicit characterization of the risk-neutral
economy in equilibrium. It is shown that there is no consumption by the
participants until a certain moment, given by the first entry of the state price
density process into an absorbing boundary. At that time, the total social
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wealth is consumed. The pricing of assets in such an economy is explicitly
given, and equations for interest rates are provided.

In answer to the two questions, it is shown that no economy in which all
participants are indifferent to risk can have zero market price of risk, unless
interest rates are deterministic. On the other hand, there exist economies
with risk-averse participants and stochastic interest rates in which the price
of risk is identically zero.

In the derivative asset pricing theory, the term risk-neutral probabilities
is often used to refer to the martingale probability measure under which the
expected returns on risky assets are equal to the riskless rate r. It is a mis-
nomer, since the martingale measure does not correspond to the probability
measure in a risk-neutral economy.

This chapter draws heavily on the results and methodology of Vasicek
(2005, 2013) (Chapters 11 and 12 of this volume).

AN ECONOMY IN EQUILIBRIUM

Consider a continuous time economy with n participants endowed with ini-
tial wealthWk(0), k = 1, 2,… , n. It is assumed that investors can issue and
buy any derivatives of any of the assets and securities in the economy. The
investors can lend and borrow among themselves, either at a floating short
rate or by issuing and buying term bonds. The resultant market is complete.
It is further assumed that there are no transaction costs and no taxes or
other forms of redistribution of social wealth. The investment wealth and
asset values are measured in terms of a medium of exchange that cannot be
stored unless invested in production.

Production in the economy is described by a production process A(t)
whose rate of return on investment is

dA
A

= 𝜇dt + 𝜎dy (6)

where y(t) is a Wiener process. The process A(t) represents a constant
return-to-scale production opportunity. The amount of investment in
production is determined endogenously.

The parameters of the production process can themselves be stochastic,
reflecting the fact that production technology evolves in an unpredictable
manner. It will be assumed that their behavior is driven by a Markov state
variableX, 𝜇 = 𝜇(X(t), t), 𝜎 = 𝜎(X(t), t). The dynamics of the state variable,
which represents the state of the production technology, is given by

dX = 𝜁dt + 𝜓dy + 𝜑dx (7)
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where x(t) is aWiener process independent of y(t). The parameters 𝜁, 𝜓 , and
𝜑 are functions of X(t) and t.

In equilibrium, the total wealth must be invested in the production pro-
cess (which could thus be referred to as the market portfolio). Individual
investors may hold financial securities and contracts, such as bonds, futures,
and derivatives, in order to optimize their objectives. Because these securities
and contracts were issued by other participants in the economy, however,
the net borrowing and lending (including lending and borrowing implicit
in issuing and buying contingent claims) is zero and the total availablewealth
is put into production.

An economy cannot be in equilibrium if arbitrage opportunities exist
in the sense that the returns on an asset strictly dominate the returns on
another asset. A necessary and sufficient condition for absence of arbitrage
is that there exist processes 𝜆(t), 𝜂(t), called the market prices of risk for
the risk sources y(t), x(t), respectively, such that the price P of any asset
in the economy satisfies the equation

dP
P

= (r + 𝛽𝜆 + 𝛿𝜂)dt + 𝛽dy + 𝛿dx (8)

where 𝛽, 𝛿 are the exposures of the asset to the two risk sources. It is assumed
that Novikov’s condition holds,

E exp
⎛
⎜
⎜
⎝

1
2

T

∫
0

(
𝜆
2 + 𝜂2

)
dt
⎞
⎟
⎟
⎠
< ∞. (9)

Let Y(t) be the state price density process,

Y(s) = Y(t) exp
⎛
⎜
⎜
⎝
−

s

∫
t

rd𝜏 − 1
2

s

∫
t

(
𝜆
2 + 𝜂2

)
d𝜏 −

s

∫
t

𝜆dy −

s

∫
t

𝜂dx
⎞
⎟
⎟
⎠
. (10)

The price P of any asset satisfies

P(t) = EtP(s)
Y(s)
Y(t)

. (11)

Here and throughout, the symbol Et denotes expectation conditional on a
filtration ℑt generated by y(t), x(t).

Equilibrium is fully described by specification of the process Y(t), which
determines the pricing of all assets in the economy, such as bonds and deriva-
tive contracts, by means of Eq. (11). Specifically, the price B(t, s) at time t of
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a default-free bond with unit face value maturing at time s is given by the
equation

B(t, s) = Et
Y(s)
Y(t)

. (12)

The short rate is given by
r = 𝜇 − 𝜎𝜆. (13)

An assetM(t) consisting of reinvestment at the short rate,

M(t) = exp
⎛
⎜
⎜
⎝

t

∫
0

r (𝜏)d𝜏
⎞
⎟
⎟
⎠

(14)

will be called the money market account.

THE RISK-NEUTRAL ECONOMY

In a risk-neutral economy, where each participant is indifferent to risk, each
investor maximizes the expected present value of lifetime consumption,

maxE

T

∫
0

pk(t)ck(t)dt (15)

where ck(t) is the rate of consumption at time t and pk(t) ≥ 0, 0 ≤ t ≤ T is
a time preference function. An investment strategy is fully described by the
exposures 𝛽k(t), 𝛿k(t) to the sources of risk y(t), x(t). The wealth Wk(t) at
time t grows by the increment

dWk = Wk(r + 𝛽k𝜆 + 𝛿k𝜂)dt +Wk𝛽kdy +Wk𝛿kdx − ckdt. (16)

LetVk(t) be the value at time t of the expected remaining consumption under
an optimal investment and consumption strategy,

Vk(t) = maxEt

T

∫
t

pk(s)ck(s)ds. (17)

The process Vk(t) satisfies the Bellman equation for optimality

max (EdVk + pkckdt) = 0. (18)

Put
Vk = QkWk (19)
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with the dynamics of Qk written as

dQk

Qk
= 𝜗kdt + 𝜃kdy + 𝜔kdx. (20)

Calculating EdVk yields the equation

max((𝜗k + r + 𝛽k(𝜃k + 𝜆) + 𝛿k(𝜔k + 𝜂))QkWk + ck(pk −Qk)) = 0. (21)

The function to be maximized is linear in the decision variables 𝛽k, 𝛿k, and
ck. Because 𝛽k, 𝛿k are unrestricted, in order to get a final maximum it must
be that

𝜃k = −𝜆

𝜔k = −𝜂. (22)

IfQk > pk, the rate of consumption will be zero and consequently from (21),

𝜗k = −r ifQk > pk. (23)

When Qk ≤ pk, the rate of consumption will be infinite, with the total con-
sumption equal to the available wealth. Thus, the investor refrains from
consuming until the process Qk(t) hits the boundary pk(t), at which time
the whole wealthWk(t) is consumed. Eq. (17) takes the form

Vk(t) = max
t≤s≤T Etpk(s)Wk(s) (24)

Because the investment strategy is immaterial in virtue of Eqs. (21) and
(22), it can be assumed that each participant is fully invested in the market
portfolio,

Wk(t) = Wk(0)
A(t)
A(0)

ifQk(t) > pk(t). (25)

From Eqs. (19), (24), and (25),

Qk(t) =
1

A(t)
max
t≤s≤T Et pk(s)A(s) ifQk(t) > pk(t). (26)

From Eq. (10), the dynamics of the state price density process Y(t) is

dY
Y

= −rdt − 𝜆dy − 𝜂dx (27)
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Comparing Eqs. (20), (22), (23), and (27), it follows that

dQk

Qk
= dY

Y
ifQk > pk (28)

and therefore
𝜈kQk(t) = Y(t) ifQk > pk (29)

where 𝜈k is a constant. It follows that

Y(t) = 1
A(t)

max
t≤s≤T Et 𝜈kpk(s)A(s). (30)

For equilibrium pricing to exist, the right-hand side of Eq. (30) must be
the same for all k = 1, 2,… , n, which requires that the preference functions
all be the same. Equilibrium cannot attain in a risk-neutral economy if the
participants have differing time preferences. It will therefore be assumed that
pk(t) = p(t) for k = 1, 2,… , n. In that case,

Y(t) = 1
A(t)

max
t≤s≤T Et p(s)A(s). (31)

Note that Y(t) ≥ p(t) for all t. Total consumption takes place when Y(t) =
p(t) for the first time. If S(t) is the time point at which the maximum in (31)
occurs,

max
t≤s≤T Etp(s)A(s) = Etp(S(t))A(S(t)),

then Y(t) = p(t) is equivalent to S(t) = t.
The expectation

U(X, t, s) = Et

[
A (s)
A(t)

||||
X(t) = X

]
(32)

is a function of X, t only, and therefore the state price density process given
by Eq. (31) is likewise a function of the state variable and time, Y = Y(X, t).
The market prices of risk are given by

𝜆 = −𝜓 1
Y
𝜕Y
𝜕X

(33)

𝜂 = −𝜑 1
Y
𝜕Y
𝜕X

(34)

In order that 𝜆 = 𝜂 = 0 in a risk-neutral economy, it follows from Eqs.
(33) and (34) that either X is deterministic or Y does not depend on X.
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In either case, Y(t) is deterministic and so are interest rates. No economy
with stochastic interest rates can be simultaneously risk-neutral (i.e., with
all participants being indifferent to risk) and have zero market price of risk.

The expected instantaneous returns on different assets in a risk-neutral
economy are not in general equal. The same is true for expected returns on
the assets over a given finite period. If T∗ is the point of absorption of the
process Y(t) into the boundary p(t), however, then

Et exp

⎛
⎜
⎜
⎜
⎝

T∗

∫
t

r (𝜏)d𝜏
⎞
⎟
⎟
⎟
⎠

= Et
A(T∗)
A(t)

. (35)

The expected return over the term T∗ on the money market account is
the same as on the market portfolio, and in fact the same on any asset in
the economy. Indeed, conditionally on the value of T∗, Eqs. (31) and (11)
reduce to

Y(t) = p(T∗)Et
A(T∗)
A(t)

(36)

and
P(t) = p(T∗)Et

P(T∗)
Y(t)

(37)

respectively, and therefore

Et
P(T∗)
P(t)

= Et
A(T∗)
A(t)

(38)

for any asset P. Because this is valid conditionally for any value of T*, it is
valid unconditionally.

This explains the paradox: In risk-neutral economy in equilibrium, the
expected returns are the same on all assets, regardless of their riskiness, over
the one period that is relevant to the investors, namely, to the point of con-
sumption. Due to the nonlinearity of compounding, however, this precludes
the expected instantaneous returns to be the same, unless they are determin-
istic. The market price of risk will not be zero.

Two examples of risk-neutral economies follow.
Example 1. Let the time preference function of all participants be

p(t) = e−𝜅t

and suppose that

𝜇 = X

dX = 𝛼(X −X)dt + 𝜓dy + 𝜑dx
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with 𝛼, 𝜓, 𝜑, and 𝜎 constant. Put

a = 𝜓
2 + 𝜑2
𝛼2

b = X + 𝜎𝜓

𝛼
+ 1
2
a

and assume for simplicity that 𝜅 ≥ b. Evaluating the expectation in (32) gives

U(X, t, s) = exp
(
D(t, s) (X − b) + b(s − t) − 1

4
a𝛼D2(t, s)

)

where
D(t, s) = 1

𝛼

(
1 − e−𝛼(s−t)

)

Denote by S(t) = S(X(t), t) the time point at which the maximum in Eq. (31)
occurs. The state price density process is given by

Y(X, t) = exp
(
D(t, S) (X − b) + b(S − t) − 1

4
a𝛼D2(t, S) − 𝜅S

)
.

Total consumption takes placewhenY(X(t), t) = e–𝜅t for the first time, which
is equivalent to S(t) = t for the first time. Here S(X, t) is given as

S(X, t) = T if X ≥ (𝜅 − b)e𝛼(T−t) + b + 1
2
a − 1

2
ae−𝛼(T−t)

= t − 1
𝛼
log

⎛
⎜
⎜
⎝

1
a

⎛
⎜
⎜
⎝
−X + b + 1

2
a +

√(
X − b − 1

2
a
)2

+ 2a(𝜅 − b)
⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

if 𝜅 < X < (𝜅 − b)e𝛼(T−t) + b + 1
2
a − 1

2
ae−𝛼(T−t)

= t ifX ≤ 𝜅.

If X(0) ≤ 𝜅, consumption takes place immediately at time zero. If X(0) > 𝜅,
consumption occurs when X(t) = 𝜅 for the first time, or at the end date T if
X(t) fails to reach 𝜅.

The risk premia are

𝜆 = −𝜓D(t, S(t))

𝜂 = −𝜑D(t, S(t))
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Example 2. Suppose that the time preference functions of all participants
are concentrated at the point T. In other words, each participant maximizes
the expected end-of-period wealth. Then

Y(t) =
EtA(T)
A(t)

.

Bond prices are given by

B(t, s) = A(t)
EtA(T)

Et
A(T)
A(s)

.

Specifically,

B(t,T) = A(t)
EtA(T)

= 1
Y(t)

.

A contingent claim that pays a random amount C(T) at time T is priced as

P(t) = B(t,T)EtC(T).

In an economy with risk-averse participants, this pricing will hold only when
the payout C(T) is uncorrelated with Y(T).

AN ECONOMY WITH ZERO PRICE OF RISK

There are equilibrium economies with risk-averse participants in which the
price of risk is zero. There is no practical significance of such economies, and
they are investigated here solely to demonstrate the disconnection between
risk neutrality and zero price of risk.

Suppose each investor maximizes the expected utility of lifetime con-
sumption,

maxE

T

∫
0

pk(t)Uk(ck(t))dt (39)

where Uk(c) is an isoelastic utility function

Uk(c) =
c(𝛾k−1)∕𝛾k
𝛾k − 1

𝛾k > 0, 𝛾k ≠ 1

= log c 𝛾k = 1 (40)

Here 𝛾k is the reciprocal of the relative risk aversion coefficient, called the
risk tolerance.
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It is shown in Vasicek (2005) that the optimal consumption rate of
the k-th investor is a function of his own preference parameters and initial
wealth and of the state price density process only, given as

ck(t) = 𝜈kp
𝛾k
k (t)Y−𝛾k (t) (41)

where
𝜈k =

Y(0)Wk(0)

E

T

∫
0

pk
𝛾k(𝜏)Y−𝛾k+1(𝜏)d𝜏

(42)

is a constant determined by the initial wealth. The investor’s wealth Wk(t)
at time t is

Wk(t) = 𝜈k
1

Y(t)
Et

T

∫
t

pk
𝛾k(𝜏)Y−𝛾k+1(𝜏)d𝜏. (43)

(This and other results in Vasicek (2005) are expressed in terms of the
so-called numeraire process Z(t) = 1∕Y(t).)

In equilibrium, the total wealth in the economy

W(t) =
n∑

k=1
Wk(t) (44)

is invested in the production process. This produces the equation

dW = 𝜇Wdt + 𝜎Wdy −
n∑

k=1
𝜈kp

𝛾k
k Y

−𝛾kdt (45)

subject to the terminal condition W(T) = 0.
Eq. (45) has a unique solution

W(t) = 1
Y(t)

Et

T

∫
t

n∑

k=1
𝜈kp

𝛾k
k (𝜏)Y−𝛾k+1(𝜏)d𝜏. (46)

The state price density Y(t) is determined as the unique process satisfying
Eqs. (45) and (11) (cf. Vasicek (2005)). In the special case that 𝛾k = 𝛾, k =
1, 2,… , n, it is given by

Y(t) = W−1∕𝛾 (0)A1∕𝛾 (0)A−1∕𝛾 (t)F1∕𝛾 (X(t), t) exp
⎛
⎜
⎜
⎝

1
𝛾

t

∫
0

∑
𝜈kp

𝛾

k (𝜏)
F(X(𝜏), 𝜏)

d𝜏
⎞
⎟
⎟
⎠

(47)
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where the function F(t) = F(X(t), t) is

F(X, t) = Y𝛾−1(t)Et
⎡
⎢
⎢
⎣

T

∫
t

n∑

k=1
𝜈kp

𝛾

k (𝜏)Y
−𝛾+1(𝜏)d𝜏

|||||||

X(t) = X
⎤
⎥
⎥
⎦
. (48)

Now assume that the prices of risk in the economy are all identically
zero. Then

r(t) = 𝜇(t) (49)

and

Y(t) = 1
M(t)

= exp
⎛
⎜
⎜
⎝
−

t

∫
0

𝜇 (𝜏)d𝜏
⎞
⎟
⎟
⎠
. (50)

From Eq. (46), the total wealth is given by

W(t) =
n∑

k=1
M𝛾k(t)Fk(X(t), t) (51)

where

Fk(X, t) = Et
⎡
⎢
⎢
⎣

T

∫
t

𝜈kp
𝛾k
k (𝜏) exp

⎛
⎜
⎜
⎝

(
𝛾k − 1

)
𝜏

∫
t

𝜇(s)ds
⎞
⎟
⎟
⎠
d𝜏

|||||||

X(t) = X
⎤
⎥
⎥
⎦
. (52)

The stochastic part of dW∕W, given by

n∑

k=1
M𝛾k (t)𝜕Fk(X, t)

𝜕X
n∑

k=1
M𝛾k(t)Fk(X, t)

dX (53)

must by Eq. (45) be equal to 𝜎(X, t)dy and therefore independent of M(t).
This is only possible if the values of 𝛾1, 𝛾2, … , 𝛾n are all equal. It will there-
fore be assumed that 𝛾k = 𝛾, k = 1, 2,… , n. The investors may still differ
by their time preference functions pk(t). Eq. (48) becomes

F(X, t) = Et

⎡
⎢
⎢
⎣

T

∫
t

n∑

k=1
𝜈kp

𝛾

k (𝜏) exp
⎛
⎜
⎜
⎝
(𝛾 − 1)

𝜏

∫
t

𝜇(s)ds
⎞
⎟
⎟
⎠
d𝜏

|||||||

X(t) = X
⎤
⎥
⎥
⎦
. (54)
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It follows from Eq. (47) that the economy will have zero price of risk if (and
only if) the market portfolio satisfies

A(t) = A(0)
F(0)

M𝛾 (t)F(X(t), t) exp
⎛
⎜
⎜
⎝

t

∫
0

∑
𝜈kp

𝛾

k (𝜏)
F(X(𝜏), 𝜏)

d𝜏
⎞
⎟
⎟
⎠
. (55)

Equation (55) does not seem to have an economic interpretation. It is
just a technical condition that needs to be satisfied in order that the prices
of risk are zero.

There are two kinds, both rather singular, of economies in equilibrium
with risk-averse participants and stochastic interest rates in which the price
of risk is identically zero:

1. The market portfolio is instantaneously riskless, A(t) = A(0)M(t), and
the investors are myopic with logarithmic utility function of consump-
tion. Each participant is fully invested in the market portfolio A(t) (or
any combination of derivative contracts equivalent to it).

2. The market portfolio is risky, investors have the same degree of risk
tolerance, and the stochastic part of dF∕F equals 𝜎dy. This last condition
is sufficient, and necessary, for (55) to hold. This implies 𝜑 = 0. Bond
prices, as well as prices of any derivatives, are perfectly instantaneously
correlated with the market portfolio.

Example.All investors maximize the expected value of their investments
at time T and 𝛾k = 𝛾, k = 1, 2,… , n. The condition (55) becomes

A(t) = 𝜈M(t)EtM𝛾−1(T) (56)

where 𝜈 = A(0)∕EM𝛾 –1(T) is a constant. For instance, if the dynamics of
𝜇(t) = r(t) is as in the Cox, Ingersoll, Ross model of interest rates

d𝜇 = 𝛼(𝜇(t) − 𝜇)dt + �̂�
√
𝜇dy

where 𝛼, �̂� are constants and 𝜇(t) is a deterministic function of time, the
expectation in (56) will be finite when 𝛾 ≤ 1 + 1

2
𝛼
2∕�̂�2. The price of risk

will be zero if the volatility of the production process is

𝜎(t) = (𝛾 − 1)D(t,T)�̂�
√
𝜇(t)
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where

D(t,T) = 1 − e−𝜅(T−t)

𝜅 + 1
2
(𝛼 − 𝜅)(1 − e−𝜅(T−t))

𝜅 =
√
𝛼2 + 2(1 − 𝛾)�̂�2.

The production process has the form

A(t) = M𝛾 (t) exp((𝛾 − 1)D(t,T)𝜇(t) + f (t,T))

with f (t,T) deterministic.
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PART

Four
Credit

The probability of loss on a homogeneous portfolio of corporate loans
converges with the number of loans n → ∞ to the distribution function

P[L ≤ x] = N

(√
1 − 𝜌 N−1 (x) −N−1(p)

√
𝜌

)

where L is the portfolio gross loss, p is the probability of default on any one
loan, and 𝜌 is the correlation coefficient between the asset values of any two
of the borrowing companies. (page 148)
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CHAPTER 15
Introduction to Part IV

Contemporary credit analysis comprises the following three areas:

1. Credit valuation of individual borrowers, as expressed in probability of
default, and in the risk-neutral probability of default needed for debt
pricing;

2. Portfolio risk measurement, taking into account the correlation
of defaults, resulting in determining the probability distribution of
portfolio losses, and of changes in the portfolio value; and

3. Structuring and pricing of credit derivatives, such as credit default swaps
or collateralized debt obligations.

The theory of derivative asset pricing (options pricing) of Black, Scholes,
andMerton opened upmeans of quantitative assessment of creditworthiness
and pricing of debt securities. By being able to derive values of corporate
liabilities from the market price of equity and its volatility, it became possible
to measure credit risk in terms of probabilities of default rather than ordinal
ratings.

The paper “Philosophy of Credit Valuation”(Chapter 16), written in
1984, provides an extensive argument for such methodology, as opposed to
the previously established approach. Traditional approaches to credit valu-
ation, such as agency ratings, involve a detailed examination of company’s
operations, projection of cash flows, measures of leverage and coverage, an
assessment of the firm’s future earning power, and so on. An assessment of
the company’s future, however, has already been made by all market partic-
ipants and is reflected in the firm’s current market value. Both current and
prospective investors constantly perform this analysis, and their actions set
the price for the company’s equity. If the value of the company’s assets can
be inferred from the market valuation of equity, it will take advantage of the
information contained in market prices.
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The firm’s liabilities are all claims, in one form or another, on the firm’s
assets. The firm’s asset value is the worth of the firm’s ongoing business.
If all liabilities were traded, the market value of assets could be obtained
as the sum of the market value of liabilities. It is asking the question: How
much would it cost, in today’s markets, to become the sole owner of the
firm’s business? It would necessitate buying all the stock, all the preferreds,
convertibles, and so on, and all the firm’s outstanding bonds, to pay off the
bank debt, current obligations, and other costs. The total cost is the current
market value of the firm’s assets.

Typically, only the equity has observable price. The asset value must be
inferred from equity value alone. This can be done by the options pricing
theory. Merton’s equation can be solved for the firm’s asset value, provided
we are able to supply the following information: Equity market value, stock
price volatility, a complete description of the firm’s liability structure includ-
ing the terms of the liabilities (such as convertibility and callability), and the
cash flows (such as interest payments and dividends). The author’s work in
this area could not be included in this publication, because it is the property
of KMV Corporation and its successor, Moody’s Corporation.

The market value of assets changes as the firm’s future prospects change.
The volatility of the asset value reflects the firm’s business risk. The asset
volatility needs to be estimated simultaneously with asset value from stock
price and stock volatility.

If the asset value falls below the default point, the firm does not have the
resources to repay its debt obligations. The default point is the cumulative
amount of obligations payable within the given time frame. The probability
of default is then calculated as the probability that the asset value falls below
the default point.

Such an approach based on a causal relationship between the state of
the firm and the probability of the firm defaulting allows for utilizing market
information. It provides frequent updates and early warning of deterioration
(or improvement) of credit quality.

Besides the valuation of credit for individual borrowers, it is necessary
to measure the risks of portfolios of debt securities. The portfolio risk can-
not be inferred solely from knowledge of the probabilities of default for the
individual loans in the portfolio; it necessitates taking into account the corre-
lation of defaults, resulting from the dependences of the asset values among
the firms. The values of the firms’ businesses are correlated, because they
depend on common factors such as the state of the economy, the industries
they have in common, and their mutual business relationships.

There is a number of useful measures of portfolio risk characteristics—
for example, the expected loss, standard deviation of loss (unexpected loss),
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value-at-risk, various measures of diversification and concentration, and tail
risk contribution. All these characteristics are determined by the probability
distribution of the portfolio value as of a given future date. This is the subject
of the article “Loan Portfolio Value” (Chapter 19).

There are three types of such probability distributions:

1. The distribution of portfolio realized losses
2. The distribution of portfolio market value at horizon date due to credit

migration
3. The risk-neutral portfolio distribution (needed for pricing portfolio

derivatives, such as CDOs)

Typically, bank loan portfolios are large, containing hundreds or thou-
sands of names. A question naturally arises: How does the loss behave for
large portfolios? Is there an asymptotic distribution type?

This question can be answered in affirmative for homogeneous port-
folios, that is portfolios that have the same amount outstanding in each
loan, same default probability for each loan, same maturity of each loan,
and the same asset correlations between any two borrowers. In the limit,
the distribution function of the loss on a homogeneous loan portfolio has
a particular form, given in the 1987 memoranda “Probability of Loss on
Loan Portfolio” and 1989 “Limiting Loan Loss Probability Distribution”
(Chapters 17 and 18). This formula, which was incorporated into Basel II,
has been shown empirically to provide a good approximation to the loss dis-
tribution for large portfolios, provided that the parameters in the formula
are estimated from the actual portfolio composition, default characteristics,
and correlations.

The note “The Empirical Test of the Distribution of Loan Portfolio
Losses” (Chapter 20) reports the results of a test of the portfolio loss
distribution performed by Patrick McAllister of Federal Reserve Bank.
The test is based on the realization that it is not possible to obtain a
sufficiently long time series of loan losses on a single loan portfolio, and
that the only meaningful way of testing the distribution of loan losses is
by using a cross-sectional sample of data on many portfolios. The sample
contained about 23,000 actual annual gross losses reported to the FRB by
U.S. banks over a period of several years. The frequency of losses were
plotted in a histogram and compared with that calculated from the formula
for the asymptotic loan loss distribution. The agreement in the shape of the
distribution is remarkable.

The asymptotic distribution was derived as the limit distribution for
a homogeneous portfolio. The sample in the FRB study is certainly as
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nonhomogeneous as possible: Each of the bank portfolios in the sample is
a mix of loans of different qualities, maturities, and amounts outstanding,
with nonequal diversification or concentration in specific industries; in
addition, they are portfolios of different banks. There is nevertheless a
conformity with the theoretical distribution; as is the case with many limit
theorems, the asymptotic laws often appear to apply beyond their strict
assumptions.



CHAPTER 16
Credit Valuation

THE APPROACH

Credit valuation is a necessary prerequisite to lending. It ensures a desired
quality of the asset portfolio, and results in loan pricing that corresponds to
the risks assumed. It also provides means to reduce the likelihood of sub-
stantive losses through portfolio diversification.

Credit valuation is an objective and quantitative process. It should not
depend on the judgment of a particular person or committee. Instead, it
should be based on observable quantities, most particularly the market
value of the borrower’s assets. Credit risk should be measured in terms
of probabilities and mathematical expectations, rather than assessed by
qualitative ratings. When performed in this manner, we can refer to a credit
valuation model.

A credit valuation model requires a theory that describes the causality
between the attributes of the borrowing entity (a corporation) and its poten-
tial bankruptcy. This does not mean merely an empirical analysis that con-
sists of examining a large number of different variables until a fit is found to
the data. Statistical correlations among data do not necessarily signify causal
relationships, and therefore provide no assurance of predictive power.

The credit model should be consistent with the modern financial theory,
particularly with the theory of option pricing. The various liabilities of a
firm are claims on the firm’s value, which often take the form of options.
The option pricing theory provides means to determine the value of each of
the claims, and consequently allows one to price the firm’s debt.

If the credit model provides a realistic description of the relationship
between the state of the firm and the probability of default on its obligations,

Written in 1984; printed in NetExposure, Issue 1, 1997; reprinted on CD in Deriva-
tives: Theory and Practice of Financial Engineering, P. Wilmott (ed.) (London: John
Wiley & Sons, 1998).
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it will also reflect the development in the borrower’s credit standing through
time. This means that the model can be used to monitor changes and give
an early warning of potential deterioration of credit. Obviously, this is only
possible if the model is based on current, rather than historical, measure-
ments. It also implies that the relevant variables are the actual market values
rather than accounting values.

Pursuing this kind of approach to credit valuation means parting ways
with some of the traditional credit analysis. Conventional analysis involves
detailed examination of the company’s operations, projection of cash flows,
and assessment of the future earning power of the firm. Such analysis is not
necessary. This is not because future prospects of the firm are not of primary
importance—they most definitely are. It is because an assessment, based
on all currently available information of the company’s future, has already
been made by the aggregate of the market participants, and reflected in the
firm’s current market value. Both current and prospective investors perform
this analysis, and their actions set the price at an equilibrium value through
the means of supply and demand. We do not assume that this assessment
is accurate in the sense that its implicit forecasts of future prospects will be
realized. We only assume that any one person or institution is unlikely to
arrive at a superior valuation. The most junior claim on the firm’s assets is
equity. If the future earnings of the corporation start looking better or worse
than before, the stock price will be the first to reflect the changing prospects.
Our challenge is to properly interpret the changing share prices.

It is also not essential to determine whether the firm will have enough
cash flow for payment of interest and maturing debt. What is important
is whether the market value of the company’s assets (i.e., its business) will
be adequate. If the assets of the firm have sufficient market value, the firm
can easily raise cash it needs by selling off a portion of its assets. If the
assets are not easily transferable, the firm can sell them indirectly, by issuing
additional equity or additional debt. In any case, the firm’s ability to pay
its debt is dependent upon its future market value, rather than on its future
cash position.

THE FIRM’S VALUE

The value of a firm is the value of its business as a going concern. This value
depends on the future prospects and profitability of the firm’s business, its
risks, and its standing relative to other investment opportunities existing in
the economy. The firm’s business constitutes its assets, and the present assess-
ment of the future returns from the firm’s business constitutes the current
value of the firm’s assets.
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The value of the firm’s assets is different from the bottom line on the
firm’s balance sheet. The book asset value is a fairly arbitrary statement of
the initial cost of the physical assets of the company and their depreciation.
When the firm is bought or sold, the value traded is the ongoing business.
The difference between the amount paid for that value and the amount of
the book assets is usually accounted for as the goodwill.

The value of the firm’s assets can be measured by the price at which the
total of the firm’s liabilities can be bought or sold. The various liabilities of
the firm are claims on its assets. The sum of the market value of the liabilities
is the amount for which sole possession of the total of the firm’s assets can
be obtained (or disposed of) and that is exactly what the firm is worth. The
market value of the individual liabilities is directly observable if the liabilities
are publicly traded. Thus, the value of equity can be usually obtained by
multiplying the share price by the number of shares outstanding. The various
bond issues can often be valued as the current price per unit of face value
times the total face amount of the issue. If the debt is privately placed, an
approximate valuation can be achieved by pricing the debt at current interest
rates. Current liabilities can be typically valued at their nominal amount,
since they are usually immediately payable.

Although the sum of the market values of liabilities is a convenient way
to determine the value of the assets, the asset value does not depend on
the structure and composition of the liabilities. If the firm decides to raise
additional equity to retire part of its debt, or to borrow in order to buy
back some of its outstanding stock, the value of the firm’s assets does not
change.What changes is merely the division of the ownership of these assets.
The same is true even in bankruptcy proceeding. Bankruptcy is a transfer of
ownership from the stockholders to the holders of debt. If the firm is worth
more as a going concern than its liquidation value, the debt holders will keep
it going. If the debt holders do not want to run the firm, they can sell it to
somebody who does.

LOAN DEFAULT

We will start with a simple situation. Consider a corporation that at present
has no debt, and wants to borrow. Assume the debt is in the form of a dis-
count note issued by the company (such as commercial paper). How much
risk does the buyer of the note (the lender) take, and how much should he
pay for it? In other words, how does he value the credit?

In buying the note, the lender purchases a claim on the firm’s assets, and
thereby becomes a partial owner of the company. The value of the company’s
assets increases by the amount received on the note (the stock price itself
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does not change by the issuance of the debt). The new total value of the
firm’s assets is equal to the value of the stock and the value of the debt.

With time, the market value of the company’s assets will change.
(Perhaps not the book value, but we are not concerned with book values.)
The value of assets will be changing as the market’s perception of the future
earning power of the company changes. These changes obviously involve
considerable uncertainty. We can characterize these changes as a stochastic
(random) process, subject to a probability law.

What concerns the lender is the market value of the firm’s assets when
the note matures. Two situations are possible. The asset value is at least that
of the face value of the debt, or the asset value is less than the debt.

In the first situation, the stockholders will pay the debt. The total value
of the company is sufficient for them to do so. If the firm does not have
enough cash, the stockholders can raise it by selling a part of the assets at
their market value. Moreover, it is in the interest of the stockholders to pay
the loan, since otherwise the lenders would force the firm to bankruptcy
and the stockholders would lose control of the firm (although not money,
apart from bankruptcy costs). Since the borrower is both willing and able
to repay the loan, the lender will realize no loss.

In the situation that the market value of the firm’s assets falls below the
amount due on the loan, the company cannot repay the lender. There is no
way to raise the cash. No other lender would refinance the loan, because
that would mean taking over the loss from the original lender. It is also not
possible to raise additional equity, since the stock is worthless. The com-
pany has to declare bankruptcy. The stockholders get nothing, while the
lenders take over the assets. The lenders will thus realize a loss equal to
the difference between the face value of the debt and the market value of
the assets.

The risk to the lender at the time he contemplates making the loan is that
the second situation may arise. The probability of this situation is the proba-
bility that the asset value at the maturity of the loan will be less than the loan
balance. If we can describe the process governing the changes in the asset
value, this probability can be explicitly calculated. This calculation provides
a measure of credit risk.

A reasonable specification of the behavior of the asset value is that the
change in market value over an interval of time is independent of its past
changes, and has an expected component and a random component. The
magnitude of both the expected and random components is proportional to
the asset value (that is, it is the same for each dollar of assets). This type of
process is variously referred to as a logarithmic Wiener process, or a pro-
portional Brownian motion, or a geometric random walk.
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The probability of default calculated under this assumption depends on
the following quantities: the initial value of assets; the expected rate of return
on assets; the variability of the asset value; the face value of the debt; and
the loan term.

The higher the initial asset value in relation to the loan amount, the
lower is the probability of default on the loan. If the company borrows little
relative to the market value of its equity, the loan is comparatively safe. If
the company levers itself considerably (in market value terms), the riskiness
of the loan is high.

The default probability also depends highly on the variability of the asset
value. If the assets grow more or less along the firm’s expected growth path,
the loan carries little risk even with relatively high leverage. If, on the other
hand, the asset value fluctuates wildly, the likelihood of default on the loan
is considerable.

As to the length of the loan term, typically the default probability will
increase with the term. In effect,more things can gowrong with the company
over a long interval than over a short one. For very long loans, however,
the probability of default may start decreasing again, as the long-term asset
growth asserts itself over the fluctuations.

The probability of default does not in itself provide a measure of the
magnitude of the possible loss. It only characterizes the occurrence of loss,
rather than the dollar amount. This latter quantity can be measured by the
expected loss. Naturally, we care about both the probability of default and
the size of loss.

The expected value of a quantity is defined as the average of the possible
values of that quantity, each value being weighted by the probability of its
occurrence. The expected loss is therefore the probability weighted mean
dollar amount of the difference between the face value of the loan and the
actual receipts by the lender.

The same considerations that led to a formula for the probability of
default also allow deriving an equation for the expected loss. In the example
of a commercial borrower whose liabilities consist of equity and one class of
debt, the formula for the expected loss turns out to depend on the same
quantities as the probability of default: namely, the current market value of
total assets, the expected asset return, the variability of the asset value, the
face value of debt, among others. The expected loss is given as the difference
of two terms; the first term is the loan face valuemultiplied by the probability
of default. This would be the expected loss if default meant losing the entire
loan. As it is, there is a recovery equal to the assets of the bankrupt firm,
and the formula for the expected loss has a second term subtracted from the
first, which represents the expected amount recovered.
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DEBT STRUCTURE

The financial structure of most corporations is more complicated than the
one with which we have dealt so far. The liabilities will include current
liabilities (such as accounts payable, provisions for taxes, etc.), debt of
various terms, and equity. The whole structure of liabilities needs to
be considered in valuing the company’s credit from the viewpoint of a
particular lender.

The first question to address is determining the hierarchy of the claims
on the firm’s assets. In other words, the priority and subordination of the
claims in the event of dissolution of the firm has to be considered. From
the viewpoint of a particular lender, the relevant distinction is between the
claims that take precedence over that lender’s claim, claims that are at par,
and claims that are subordinated to the lender’s claim. This last category
includes the firm’s equity.

It is obvious that we need to talk about valuation of the borrower’s credit
for a given lender, not for the lenders in general. Depending on the standing
of the lender’s claim in the hierarchy of debt, a companymay be a good credit
risk, or a poor one, even though the probability of bankruptcy is the same
for everybody. As a matter of fact, the same event can improve the firm’s
credit for one lender and make it worse for another lender. For instance,
issuing additional debt reduces the expected loss for holders of claims with
a higher priority, while it increases the expected loss for holders of claims
subordinated to the new debt.

In general, the credit standing of a commercial borrower from the view-
point of a particular lender improves whenever debt with lower priority is
added, or debt with higher priority is retired. It deteriorates with decreasing
the total amount of more junior debt and with increasing the total amount
of more senior debt. Lower priority debt, like equity, is a protection for the
lender; the corresponding assets provide a cushion between the value of total
assets and the face value of his claim.

In addition to categorizing liabilities of a firm by their priority, it is nec-
essary to distinguish among them on the basis of their term. The firm goes
bankrupt if its assets are less than the face value of debt that is due at that
time; if the value of the assets is less than the amount of debt, which is not
yet due, the firm can, and will, continue operating. A lender must therefore
determine which of the firm’s liabilities mature within the term of his claim.

This can lead to a very complicated situation if the structure of debt by
priority and by term takes the most general form. In a simple situation when
all debt matures at the same time, the holder of a claim is not concerned
about any subordinated claims. His loss may only come if the company’s
assets at the maturity of the debt are less than the total of his loan and all



Credit Valuation 137

debt with a higher priority. Moreover, the lender only needs to consider the
possible value of the company’s assets as of the date his loan is due.

If, however, different claims mature on different dates, claims that
mature early may trigger a bankruptcy even if they are junior to the lender’s
claim. His loan may still be paid in full, if the firm’s assets at that time
exceed the total of his and the more senior debt. It is no longer sufficient,
however, to consider only the more senior claims; and it is no longer
sufficient for the lender to be concerned about the value of the firm’s assets
on the maturity date of his claim only.

Fortunately, from the viewpoint of the provider of short-term credit to
a commercial borrower, the situation is relatively simple. It is reasonable to
assume that the more senior claims (such as employee wages and benefits,
and provisions for taxes) are also short-term; and that debt at par with ours
is either similarly short (bank revolving credit, etc.) or, as with notes and
bonds, matures after the term of our debt.

In this case, default occurs if, on the maturity date of our loan, the
market value of the borrower’s assets is less than the maturing debt amount
(the total short-term obligations). The probability of default is then given by
a similar formula to the one obtained in the case of a single class of debt,
except that the face value of debt in that formula is replaced by the value
of the short-term debt only. In other words, the term debt is treated like
equity.

The expected loss amount, however, needs now to be calculated by a dif-
ferent formula than in the simple case of one type of debt. If, on the maturity
of our loan, the market value of the firm’s assets exceeds the total maturing
debt, there is no loss. If the assets are less than the total maturing debt but
more than the higher priority debt, the loss is equal to the maturing debt
amount less the value of assets. Finally, if the assets are less than the higher
priority debt, the loss is complete and we recover nothing. This is a more
complex loss function than in the case of one class of debt. Nevertheless, it
is still possible to derive a formula for the expected loss—it is just a more
complicated equation.

Here it may seem that if the value of the firm’s assets is less than the
total maturing debt, the amount received by the short-term lender would be
further decreased by payments to the holders of the long-term debt. Indeed,
if the firm were forced into bankruptcy, the long-term debt would become
payable and the short-term lender would only receive a proportional part of
the remaining assets. This, however, can be avoided. The short-term lender
should in this situation renew a partial credit to the firm that is equal to the
exact difference between the amount due and the value of the firm’s assets.
This will keep the firm from going bankrupt and prevent the long-term
lenders from collecting on their claim. The loss to the short-term lender will
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thus be limited to the same amount as if the long-term debt was a subordi-
nated claim. From our viewpoint, long-term debt is as good as capital.

CAPITAL FLOWS

An explicit consideration must be paid to flows of value from the firm to its
owners (stockholders as well as holders of debt). Unlike other cash flows,
payments to owners are not reflected in the current market value of the firm,
since they do not change the total owners’ wealth. For example, if the com-
pany decides to double its dividends, or to accelerate repayment of its out-
standing debt, the total current value of the firm will not change. In contrast,
if taxes double, the firm’s value will decline. Now, although changes in policy
concerning payments to owners do not affect the firm’s total value, they do
affect the distribution of value between the different classes of claims. Thus,
an extra dividend will transfer some value from the lenders to the stock-
holders. Consequently, payments to owners, such as dividends and interest
on debt, need to be included in the lender’s credit valuation.

When considering short-term lending, it is a reasonable, indeed conser-
vative, approximation to assume that the total dividends expected to be paid
during the term of the loan are paid at the beginning date. This means that
the market value of the firm’s assets is reduced by the total expected divi-
dend payout. Similarly, interest on existing debt expected to be paid during
the term of our loan is taken to reduce the initial assets.

Since these payments decrease the initial asset value, the probability of
default and the expected loss increase. These payments are withdrawals of
capital from the firm and as such change the relative value of the different
claims. It should be noted that if the stockholders vote themselves additional
dividends that have not been anticipated, they transfer wealth from the debt
holders to themselves. It is important for the creditor not to underestimate
the dividend payments.

LOAN PRICING

The purpose of credit valuation is for loan pricing. Pricing a loan means
determining the current value of the loan as a function of its risks. A loan
is an asset that can be bought and sold like any other asset. A lender has
no economic reason to refuse making the loan if the price is right. If the
riskiness of the loan does not suit the lender’s preferences, he can sell the
loan to somebody whose preferences it does fit.

Of course, determining the interest rate to be charged on a given
loan (which is what is usually meant by loan pricing) is the same thing
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as determining the present value of the loan payments. It is just more
convenient in view of the general theory of asset pricing to obtain the value
of the loan first and then derive the interest rate from it.

It would seem that a loan should be priced at the present value of the
expected payoff (that is, the face amount less the expected loss), using the
risk-free rate as the discount rate. Indeed, by subtracting the expected loss
from the face amount, a provision is made for the possibility of default; and
discounting this amount to present at the risk-free rate then simply accounts
for the time value of money.

This, however, is not correct. If it were, then the expected rate of return
on the loan would be the risk-free rate, while risky assets in general earn
higher than the risk-free rate. In particular, the assets of the firm to which
the loan is made may be earning a rate of return whose expected value is
higher than the risk-free rate. Since the loan is a claim on these assets, shar-
ing the risks associated with these assets, it should also share the higher
expected return.

The exact answer to the pricing of the loan is provided by the option
pricing theory. The option pricing theory is in turn a special case of the theory
of pricing derivative assets, that is assets whose value depends solely on the
value of another, underlying asset. This is the situation at hand: the value of
the loan is a function of the value of the firm’s assets on which the loan is
a claim.

It turns out, on the basis of this theory, that the value of the loan cannot
be determined from the knowledge of the expected loss alone. As a matter
of fact, it cannot be determined even from knowing the whole probability
distribution of the loss. What is needed is the joint probability distribution
of the loss together with the value of the underlying assets of the firm.

The equation for the value of the loan provided by the derivative asset
pricing theory has a curious form. The loan value is equal to the present value
of the expected payoff, discounted by the risk-free rate, with the expected
payoff calculated as if the firm’s assets earned the risk-free rate rather than
its actual expected rate. In other words, we can take the formula for the
expected loan loss, but substitute in it the risk-free rate for the expected
asset rate of return. This hypothetical expected loss is subtracted from the
loan face value, and the difference is discounted to present at the risk-free
rate. This provides the correct loan price.

If the expected rate of return on the assets of the firm is higher than
the risk-free rate (which in general it will be), the premium to be charged
on the loan over the risk-free rate will actually be higher than the expected
loss. This extra increment above the expected loss is a compensation for the
variance of loss, or more accurately, for a component of that variance that
is related to the systematic factors in the economy. The possible deviation
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of the loss from its expected value is in part due to factors specific to the
firm, and in part due to more general factors, such as the market in general.
It is this second source of variance that carries compensation to the lender
beyond the amount of the expected loss itself.

PORTFOLIO DIVERSIFICATION

Portfolio diversification is a means of reducing the probability of large losses.
Even if the expected loss on an individual loan is small, the loan can still
result in a large loss. If this loan is a part of a portfolio, such a loss is a
smaller percentage of the total assets. The portfolio can only incur a large
loss if a number of loans in the portfolio realize losses simultaneously. This
is less likely than the default on a single loan.

Diversification does not reduce the expected loss. The expected loss on
a portfolio is the average of the expected losses on the individual loans,
weighted by their relative proportions in the portfolio. If each loan in the
portfolio had an expected loss of 0.1 percent, the expected loss on the port-
folio would still be 0.1 percent.

What changes is the certainty of that loss. With a single loan, there may
be no loss, but there may also be a big or total loss. In other words, there is
a large dispersion of the possible loss amount around its expected, or mean,
value.With a diversified portfolio, the dispersion of the portfolio loss around
its expected value is much smaller.

An ideally diversified portfolio would have no deviation of the actual
loss from the expected amount. It would be like playing the statistical odds in
an infinite population. Since the expected loss is a probability weighted aver-
age of the possibilities, and in such an ideal situation the frequencies of the
occurrence of each possibility conform to their probabilities, the portfolio
loss would be guaranteed to be no more, or less, than the expected value.
Some loans in the portfolio would realize losses larger than those expected,
and some would realize no losses or losses smaller than expected. These
individual deviations would average out.

In reality, an ideally diversified portfolio is not possible. For one thing,
it would take an infinite number of loans in the portfolio to achieve this.
More importantly, however, it would necessitate that there is a sufficient
degree of independence among the individual loans. It would be necessary
that an occurrence of larger than expected losses on some loans does not
substantially decrease the likelihood of smaller than expected losses on other
loans. Now, the loss on a loan results from a decline of the assets of the
borrowing firm below the face value of the loan. The changes in the value
of assets among firms in the economy are correlated, that is, tend to move
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together. There are factors common to all firms, such as their dependence
on economy in general. Such common factors affect the asset values of all
companies, and consequently the loss experience on all loans in the portfolio.
This common, or systematic, risk cannot be diversified away. Only the risks
that are specific for the individual companies, unrelated from one to another,
can be reduced by diversification.

What this means is that even a very large portfolio of loans will have a
substantial likelihood of a loss which is larger, or smaller, than that expected.
There is a limit to the extent to which the variation of the actual loss from
the expected loss can be reduced. This limit is the systematic portfolio risk.
A well-diversified loan portfolio will have only this systematic risk, with very
little of the specific risk. The goal of diversification is to bring the riskiness
of the portfolio close to this minimum.

This goal can be achieved by ensuring that the loans in the portfolio
are not unduly concentrated in any one segment of the market, such as a
particular industry or particular type of firms. The less the companies in the
portfolio have in common, the lower is the probability of large portfolio
losses. The degree of diversification can be measured quantitatively by the
variance of loss (variance characterizes the degree to which a quantity can
deviate from its expected value), and this measure should be minimized sub-
ject to the portfolio requirements and constraints.

SUMMARY

The approach to credit valuation presented here differs in many aspects from
traditional credit analysis. It does not involve judgmental evaluation of the
company’s operations and prospects. Instead, it is based on an explicit eco-
nomic theory of bankruptcy and default, applied within the context of the
modern financial theory. It thus relies on a belief in market values and the
efficiency of the market to reflect all available information in security prices.

The model considers the borrower’s credit to be a function of the value
of his assets. For a corporate borrower, the assets are the firm’s ongoing
business. The market value of the firm’s assets can be determined from the
market price of the company’s stock.

A default on a loan occurs if the value of the firm at the maturity of the
loan is less than the amount due. Given a description of the firm’s value as a
stochastic process, the probability of default on the loan can be calculated.
This probability depends on the initial market value of the firm, the total
amount of debt and the hierarchy of debt, dividends and interest expense,
the expected rate of return on assets, the variability of the asset value, and the
loan term. The expected loss on the loan can also be calculated from these
quantities.
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The loan is priced to compensate the lender for the expected loss and
for the systematic component of the variance of loss. The pricing formulas
are derived from the theory of option pricing.

Portfolio diversification, although it does not reduce the expected loss,
decreases the variance of the possible loss around its expected value. The
limit to diversification is given by the amount of systematic (nondiversifiable)
risk. This risk arises from dependence of the individual companies on the
total economy.



CHAPTER 17
Probability of Loss
on Loan Portfolio

Consider a portfolio consisting of n loans in equal dollar amounts. Let the
probability of default on any one loan be p, and assume that the values

of the borrowing companies’ assets are correlated with a coefficient 𝜌 for
any two companies. We wish to calculate the probability distribution of the
percentage gross loss L on the portfolio, that is,

Pk = P
[
L = k

n

]
, k = 0, 1,… , n.

Let Ait be the value of the i-th company’s assets, described by a logarith-
mic Wiener process

dAi = 𝜇iAidt + 𝜎iAidzi

where zit, i = 1, 2,… , n are Wiener processes with

E(dzi)2 = dt

E(dzi)(dzj) = 𝜌dt, i ≠ j.

The company defaults on its loan if the value of its assets drops below the
contractual value of its obligations Di payable at time T. We thus have

p = P[AiT < Di]

=N(−ci)

Written in 1987; printed inDerivatives Pricing: The Classic Collection, P. Carr (ed.),
London: Risk Books, 2004.
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where

ci =
1

𝜎

√
T

(
log Ai0 − logDi + 𝜇iT − 1

2
𝜎
2T

)

and N is the cumulative normal distribution function.
Because of the joint normality and the equal correlations, the processes

zi can be represented as

zi = bx + a𝜀i, i = 1, 2,… , n

where
b =

√
𝜌, a =

√
1 − 𝜌

and

E(dx)2 = dt

E(d𝜀i)2 = dt

E(dx)(d𝜀i) = 0

E(d𝜀i)(d𝜀j) = 0, i ≠ j.

The term bx can be interpreted as the i-th company exposure to a common
factor x (such as the state of the economy), and the term a𝜀i represents the
company’s specific risks. Then

Pk = P
[
L = k

n

]

=
(n
k

)
P
[
A1T < D1,… , AkT < Dk, Ak+1T ≥ Dk+1,… , AnT ≥ Dn

]

=
(n
k

)
∞

∫
−∞

P
[
A1T < D1,… , AkT < Dk, Ak+1T ≥ Dk+1,… ,

AnT ≥ Dn|xT = u
]
dP

[
xT < u

]

=
(n
k

)
∞

∫
−∞

P
[
c1
√
T + bxT + a𝜀1T < 0,… , ck

√
T + bxT + a𝜀kT < 0 ,

ck+1
√
T + bxT + a𝜀k+1T ≥ 0,… , cn

√
T + bxT + a𝜀nT ≥ 0 |xT = u ]

]

× dP
[
xT < u

]

=
(n
k

)
∞

∫
−∞

(
N

(
−c + bu

a

))k(
1 −N

(
−c + bu

a

))n−k
dN(u).
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In terms of the original parameters p and 𝜌, we have

Pk =
(n
k

)
∞

∫
−∞

(

N

(
1√
1 − 𝜌

(
N−1 (p) −

√
𝜌u

)
))k

×

(

1 −N

(
1√
1 − 𝜌

(
N−1 (p) −

√
𝜌u

)
))n−k

dN(u)

Note that the integrand is the conditional probability distribution of the
portfolio loss given the state of the economy, as measured by the market
increase or decline in terms of its standard deviations.

www.ebook3000.com

http://www.ebook3000.org




�

� �

�

CHAPTER 18
Limiting Loan Loss Probability

Distribution

The cumulative probability that the percentage loss on a portfolio of n
loans does not exceed 𝜃 is

Fn(𝜃) =
[n𝜃]∑
k=0

Pk

where Pk are given by an integral expression in Oldrich Vasicek’s memo,
“Probability of Loss on Loan Portfolio,” February 1987 (Chapter 17 of this
volume). The substitution

s = N

(
1√
1 − 𝜌

(
N−1 (p) −

√
𝜌u

))

in the integral gives Fn(𝜃) as

Fn(𝜃) =
[n𝜃]∑
k=0

(n
k

)
∫

1

0
sk(1 − s)n−kdW(s)

where

W(s) = N

(
1√
𝜌

(√
1 − 𝜌 N−1 (s) −N−1(p)

))
.

Written in 1989; printed in Derivatives Pricing: The Classic Collection, P. Carr (ed.).
London: Risk Books, 2004.

147

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

148 CREDIT

By the law of large numbers,

lim
n→∞

[n𝜃]∑
k=0

(n
k

)
sk(1 − s)n−k = 0 if 𝜃 < s

= 1 if 𝜃 > s

and therefore the cumulative distribution function of loan losses on a very
large portfolio is

F∞(𝜃) = W(𝜃).

This is a highly skewed distribution. Its density is

f∞(𝜃) =
√

1 − 𝜌

𝜌
exp

(
− 1
2𝜌

(√
1 − 𝜌 N−1 (𝜃) −N−1(p)

)2
+ 1

2

(
N−1 (𝜃)

)2)
.

Its mean, median, and mode are given by

𝜃 = p

𝜃med = N

(
1√
1 − 𝜌

N−1 (p)

)

𝜃mode = N

(√
1 − 𝜌

1 − 2𝜌
N−1 (p)

)
for 𝜌 <

1
2
.

The 𝛼-quantile, P[L < L𝛼] = 𝛼, is given by

L𝛼 = N

(√
𝜌N−1 (𝛼) +N−1(p)√

1 − 𝜌

)



CHAPTER 19
Loan Portfolio Value

The amount of capital necessary to support a portfolio of debt securities
depends on the probability distribution of the portfolio loss. Consider

a portfolio of loans, each of which is subject to default resulting in a loss
to the lender. Suppose the portfolio is financed partly by equity capital and
partly by borrowed funds. The credit quality of the lender’s notes will depend
on the probability that the loss on the portfolio exceeds the equity capital.
To achieve a certain credit rating of its notes (say Aa on a rating agency
scale), the lender needs to keep the probability of default on the notes at
the level corresponding to that rating (about .001 for the Aa quality). It
means that the equity capital allocated to the portfolio must be equal to the
percentile of the distribution of the portfolio loss that corresponds to the
desired probability.

In addition to determining the capital necessary to support a loan port-
folio, the probability distribution of portfolio losses has a number of other
applications. It can be used in regulatory reporting, measuring portfolio risk,
calculation of value-at-risk (VaR), portfolio optimization and structuring,
and pricing debt portfolio derivatives such as collateralized debt obligations
(CDO).

In this chapter, we derive the distribution of the portfolio loss under cer-
tain assumptions. It is shown that this distribution converges with increasing
portfolio size to a limiting type, whose analytical form is given here. The
results of the first two sections of this paper are contained in the author’s
technical notes, Vasicek (1987) and (1991) (Chapters 17 and 18 of this

Risk, 15 (12) (2002), 160–162; reprinted in Risk 20 (7) (2007), 130–133; reprinted
in A. Lipton (ed.), Theory and Practice of Credit Risk Modelling, London: Risk
Books, 2008.
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volume). For a review of recent literature on the subject, see, for instance,
Pykhtin and Dev (2002).

THE LIMITING DISTRIBUTION OF PORTFOLIO LOSSES

Assume that a loan defaults if the value of the borrower’s assets at the loan
maturity T falls below the contractual value B of its obligations payable. Let
Ai be the value of the i-th borrower’s assets, described by the process

dAi = 𝜇iAidt + 𝜎iAidxi.

The asset value at T can be represented as

logAi(T) = logAi + 𝜇iT − 1
2
𝜎
2
i T + 𝜎i

√
TXi (1)

whereXi is a standard normal variable. The probability of default of the i-th
loan is then

pi = P[Ai(T) < Bi] = P[Xi < ci] = N(ci)

where

ci =
logBi − logAi − 𝜇iT + 1

2
𝜎
2
i T

𝜎i

√
T

and N is the cumulative normal distribution function.
Consider a portfolio consisting of n loans in equal dollar amounts. Let

the probability of default on any one loan be p, and assume that the asset
values of the borrowing companies are correlated with a coefficient 𝜌 for any
two companies. We will further assume that all loans have the same term T.

Let Li be the gross loss (before recoveries) on the i-th loan, so that Li = 1
if the i-th borrower defaults and Li = 0 otherwise. Let L be the portfolio
percentage gross loss,

L = 1
n

n∑

i=1
Li.

If the events of default on the loans in the portfolio were independent
of each other, the portfolio loss distribution would converge, by the cen-
tral limit theorem, to a normal distribution as the portfolio size increases.
Because the defaults are not independent, however, the conditions of the
central limit theorem are not satisfied and L is not asymptotically normal. It
turns out, however, that the distribution of the portfolio loss does converge
to a limiting form, which we will now proceed to derive.
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The variables Xi in Eq. (1) are jointly standard normal with equal pair-
wise correlations 𝜌, and can therefore be represented as

Xi = Y
√
𝜌 + Zi

√
1 − 𝜌 (2)

where Y,Z1,Z2,… ,Zn are mutually independent standard normal vari-
ables. (This is not an assumption, but a property of the equicorrelated
normal distribution.) The variable Y can be interpreted as a portfolio
common factor, such as an economic index, over the interval (0,T). Then
the term Y

√
𝜌 is the company’s exposure to the common factor and the

term Zi
√
(1 − 𝜌) represents the company-specific risk.

We will evaluate the probability of the portfolio loss as the expectation
over the common factorY of the conditional probability givenY. This can be
interpreted as assuming various scenarios for the economy, determining the
probability of a given portfolio loss under each scenario, and then weighting
each scenario by its likelihood.

When the common factor is fixed, the conditional probability of loss on
any one loan is

p(Y) = P[Li = 1|Y] = N

(
N−1 (p) − Y

√
𝜌

√
1 − 𝜌

)

. (3)

The quantity p(Y) provides the loan default probability under the given
scenario. The unconditional default probability p is the average of the con-
ditional probabilities over the scenarios.

Conditional on the value of Y, the variables Li are independent equally
distributed variables with a finite variance. The portfolio loss conditional on
Y converges, by the law of large numbers, to its expectation p(Y) as n → ∞.
Then

P[L ≤ x] = P[p(Y) ≤ x] = P[Y ≥ p−1(x)] = N(−p−1(x))

and on substitution, the cumulative distribution function of loan losses on a
very large portfolio is in the limit

P[L ≤ x] = N

(√
1 − 𝜌N−1 (x) −N−1(p)

√
𝜌

)

. (4)

This result is given in Vasicek (1991).
The convergence of the portfolio loss distribution to the limiting form

in Eq. (4) actually holds even for portfolios with unequal weights. Let the
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portfolio weights be w1, w2,… ,wn with Σwi = 1. The portfolio loss

L =
n∑

i=1
wiLi

conditional on Y converges to its expectation p(Y) whenever (and this is a
necessary and sufficient condition)

n∑

i=1
w2
i → 0.

In other words, if the portfolio contains a sufficiently large number of loans
without it being dominated by a few loans much larger than the rest, the
limiting distribution provides a good approximation for the portfolio loss.

PROPERTIES OF THE LOSS DISTRIBUTION

The portfolio loss distribution given by the cumulative distribution function

F(x;p, 𝜌) = N

(√
1 − 𝜌N−1 (x) −N−1(p)

√
𝜌

)

(5)

is a continuous distribution concentrated on the interval 0 ≤ x ≤ 1. It forms
a two-parameter family with the parameters 0 < p, 𝜌 < 1. When 𝜌 → 0, it
converges to a one-point distribution concentrated at L = p. When 𝜌→ 1, it
converges to a zero-one distribution with probabilities p and 1 − p, respec-
tively.When p → 0 or p → 1, the distribution becomes concentrated atL = 0
or L = 1, respectively. The distribution possesses a symmetry property

F(x; p, 𝜌) = 1 − F(1 − x; 1 − p, 𝜌).

The loss distribution has the density

f (x;p, 𝜌) =
√

1 − 𝜌
𝜌

exp
(
− 1
2𝜌

(√
1 − 𝜌N−1 (x) −N−1(p)

)2
+ 1
2
(N−1(x))2

)

which is unimodal with the mode at

Lmode = N

(√
1 − 𝜌

1 − 2𝜌
N−1 (p)

)
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TABLE 19.1 Values of (L
𝛼
− p)∕s for the portfolio loss distribution

p 𝝆 𝜶 = .9 𝜶 = .99 𝜶 = .999 𝜶 = .9999

.01 .1 1.19 3.8 7.0 10.7

.01 .4 .55 4.5 11.0 18.2

.001 .1 .98 4.1 8.8 15.4

.001 .4 .12 3.2 13.2 31.8
Normal 1.28 2.3 3.1 3.7

when 𝜌 < 1∕2, monotone when 𝜌 = 1∕2, and U-shapedwhen 𝜌 > 1∕2. The mean
of the distribution is EL = p and the variance is

s2 = VarL = N2(N−1(p),N−1(p), 𝜌) − p2

where N2 is the bivariate cumulative normal distribution function. The
inverse of this distribution, that is, the 𝛼-percentile value of L, is given by

L
𝛼
= F(𝛼;1 − p, 1 − 𝜌).

The portfolio loss distribution is highly skewed and leptokurtic.
Table 19.1 lists the values of the 𝛼-percentile L

𝛼
expressed as the number of

standard deviations from the mean for several values of the parameters. The
𝛼-percentiles of the standard normal distribution are shown for comparison.

These values manifest the extreme non-normality of the loss distribu-
tion. Suppose a lender holds a large portfolio of loans to firms whose pair-
wise asset correlation is 𝜌 = .4 and whose probability of default is p = .01.
The portfolio expected loss is EL = .01, and the standard deviation is s =
.0277. If the lender wishes to hold the probability of default on his notes
at 1 − 𝛼 = .001, he will need enough capital to cover 11.0 times the port-
folio standard deviation. If the loss distribution were normal, 3.1 times the
standard deviation would suffice.

THE RISK-NEUTRAL DISTRIBUTION

The portfolio loss distribution given by Eq. (4) is the actual probability dis-
tribution. This is the distribution from which to calculate the probability
of a loss of a certain magnitude for the purposes of determining the neces-
sary capital or of calculating VaR. This is also the distribution to be used in
structuring collateralized debt obligations—that is, in calculating the prob-
ability of loss and the expected loss for a given tranche. For the purposes
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of pricing the tranches, however, it is necessary to use the risk-neutral prob-
ability distribution. The risk-neutral distribution is calculated in the same
way, except that the default probabilities are evaluated under the risk-neutral
measure P∗,

p∗ = P∗[A(T) < B] = N

⎛
⎜
⎜
⎜
⎝

logB − logA − rT + 1
2
𝜎
2T

𝜎

√
T

⎞
⎟
⎟
⎟
⎠

where r is the risk-free rate. The risk-neutral probability is related to the
actual probability of default by the equation

p∗ = N
(
N−1 (p) + 𝜆𝜌M

√
T
)

(6)

where 𝜌M is the correlation of the firm asset value with the market, and
𝜆 = (𝜇M − r)∕𝜎M is the market price of risk. The risk-neutral portfolio loss
distribution is then given by

P∗[L ≤ x] = N

(√
1 − 𝜌N−1 (x) −N−1(p∗)

√
𝜌

)

. (7)

Thus, a derivative security (such as a CDO tranche written against the
portfolio) that pays at time T an amount C(L) contingent on the portfolio
loss is valued at

V = e−rTE∗C(L)

where the expectation is taken with respect to the distribution (7). For
instance, a default protection for losses in excess of L0 is priced at

V = e−rTE∗(L − L0)+ = e−rT
(
p∗ −N2

(
N−1 (p∗

)
,N−1(L0),

√
1 − 𝜌

))
.

THE PORTFOLIO MARKET VALUE

So far, we have discussed the loss due to loan defaults. Now suppose that the
maturity date T of the loan is past the dateH for which the portfolio value is
considered (the horizon date). If the credit quality of a borrower deteriorates,
the value of the loan will decline, resulting in a loss (this is often referred to
as the loss due to credit migration). We will investigate the distribution of
the loss resulting from changes in the marked-to-market portfolio value.
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The value of the debt at time 0 is the expected present value of the loan
payments under the risk-neutral measure,

D = e−rT(1 −Gp∗)

where G is the loss given default and p* is the risk-neutral probability of
default. At time H, the value of the loan is

D(H) = e−r(T−H)

⎛
⎜
⎜
⎜
⎝

1 −GN

⎛
⎜
⎜
⎜
⎝

logB − logA (H) − r(T −H) + 1
2
𝜎
2(T −H)

𝜎

√
T −H

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

.

Define the loan loss Li at time H as the difference between the riskless value
and the market value of the loan at H,

Li = e−r(T−H) −D(H).

This definition of loss is chosen purely for convenience. If the loss is defined
in a different way (for instance, as the difference between the accrued value
and the market value), it will only result in a shift of the portfolio loss dis-
tribution by a location parameter.

The loss on the i-th loan can be written as

Li = aN

(

b

√
T

T −H
−Xi

√
H

T −H

)

where
a = Ge−r(T−H)

, b = N−1(p) + 𝜆𝜌M
T −H√

T

and the standard normal variables Xi defined over the horizon H by

logAi(H) = logAi + 𝜇iH − 1
2
𝜎
2
i H + 𝜎i

√
HXi

are subject to Eq. (2).
Let L be the market value loss at timeH of a loan portfolio with weights

wi. The conditional mean of Li given Y can be calculated as

𝜇(Y) = E(Li|Y) = aN

(

b

√
T

T − 𝜌H
− Y

√
𝜌H

T − 𝜌H

)

.
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The losses conditional on the factor Y are independent, and therefore the
portfolio loss L conditional on Y converges to its mean value E(L ∣ Y) =
𝜇(Y) as Σwi

2 → ∞. The limiting distribution of L is then

P[L ≤ x] = P[𝜇(Y) ≤ x] = F
(
x
a
;N

(
b
)
,
𝜌H
T

)
. (8)

We see that the limiting distribution of the portfolio loss is of the same
type (5) whether the loss is defined as the decline in the market value or the
realized loss at maturity. In fact, the results of the section on the distribution
of loss due to default are just a special case of this section for T = H.

The risk-neutral distribution for the loss due to market value change is
given by

P∗[L ≤ x] = F
(
x
a
;p∗, 𝜌H

T

)
. (9)

When applying the limiting distribution to an actual portfolio, the
parameters p, 𝜌 should be chosen in such a way that the limiting distri-
bution has the same mean and variance as the actual portfolio. The latter
calculation is facilitated by the formula for covariance of the loan values at
the horizon,

Cov(Di(H),Dj(H)) = e−r(Ti+Tj−2H)GiGj

×N2

⎛
⎜
⎜
⎜
⎝

N−1 (pi
)
,N−1(pj), 𝜌ij

min(Ti,Tj,H)
√
TiTj

⎞
⎟
⎟
⎟
⎠

.

ADJUSTMENT FOR GRANULARITY

Eq. (8) relies on the convergence of the portfolio loss L given Y to its mean
value 𝜇(Y), which means that the conditional variance Var(L|Y) → 0. When
the portfolio is not sufficiently large for the law of large numbers to take
hold, we need to take into account the non-zero value of Var(L|Y). Consider
a portfolio of uniform credits with weights w1,w2,… ,wn and put

𝛿 =
n∑

i=1
w2
i .

The conditional variance of the portfolio loss L given Y is

Var (L|Y) = 𝛿a2
(
N2

(
U,U, (1 − 𝜌)H

T − 𝜌H

)
−N2(U)

)



Loan Portfolio Value 157

where

U = b

√
T

T − 𝜌H
− Y

√
𝜌H

T − 𝜌H
.

The unconditional mean and variance of the portfolio loss are EL = aN(b)
and

VarL = EVar (L|Y) + VarE(L|Y)

= 𝛿a2N2

(
b, b,

H
T

)
+ (1 − 𝛿)a2N2

(
b, b,

𝜌H
T

)
− a2N2(b). (10)

Taking the first two terms in the tetrachoric expansion of the bivariate nor-
mal distribution functionN2(x, x, 𝜌) = N2(x) + 𝜌n2(x), where n is the normal
density function, we have approximately

VarL = 𝛿a2n2(b)H
T

+ (1 − 𝛿)a2n2(b)𝜌H
T

= a2N2

(
b, b, (𝜌 + 𝛿 (1 − 𝜌)) H

T

)
− a2N2(b)

Approximating the loan loss distribution by the distribution (5) with the
same mean and variance, we get

P[L ≤ x] = F
(x
a
;N

(
b
)
, (𝜌 + 𝛿(1 − 𝜌))H

T

)
. (11)

This expression is in fact exact for both extremes n → ∞, 𝛿 = 0 and n =
1, 𝛿 = 1.

Equation (11) provides an adjustment for the “granularity” of the port-
folio. In particular, the finite portfolio adjustment to the distribution of the
gross loss at the maturity date is obtained by putting H = T, a = 1 to yield

P[L ≤ x] = F(x;p, 𝜌 + 𝛿(1 − 𝜌)). (12)

SUMMARY

We have shown that the distribution of the loan portfolio loss converges,
with increasing portfolio size, to the limiting type given by Eq. (5) (see
Figure 19.1). It means that this distribution can be used to represent the
loan loss behavior of large portfolios. The loan loss can be a realized loss
on loans maturing prior to the horizon date, or a market value deficiency
on loans whose term is longer than the horizon period.
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FIGURE 19.1 Portfolio Loss Distribution (p = .02, 𝜌 = .1)

The limiting probability distribution of portfolio losses has been derived
under the assumption that all loans in the portfolio have the same maturity,
the same probability of default, and the same pairwise correlation of the
borrower assets. Curiously, however, computer simulations show that the
family (5) appears to provide a reasonably good fit to the tail of the loss
distribution for more general portfolios. To illustrate this point, Figure 19.2
gives the results of Monte Carlo simulations of an actual bank portfolio.
The portfolio consisted of 479 loans in amounts ranging from 0.0002 per-
cent to 8.7 percent, with 𝛿 = .039. The maturities ranged from 6 months
to 6 years and the default probabilities from .0002 to .064. The loss given
default averaged 0.54. The asset returns were generated with 14 common
factors. Plotted is the simulated cumulative distribution function of the loss
in one year (dots) and the fitted limiting distribution function (solid line).
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FIGURE 19.2 Simulated Loss Distribution for an Actual Portfolio
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CHAPTER 20
The Empirical Test of the

Distribution of Loan Portfolio
Losses

This note reports the results of a test of the portfolio loss distribution
performed in 1993 by Patrick McAllister of Federal Reserve Bank. The

test is based on the realization that it is not possible to obtain a sufficiently
long time series of loan losses on a single loan portfolio, and that the only
meaningful way of testing the distribution of loan losses is by using a
cross-sectional sample of data on many portfolios.

By law, every U.S. bank must report to the Federal Reserve Bank its
actual losses for the previous year. The data used in the study consisted of
the reported gross losses on commercial and industrial loans for small and
medium-sized banks over the period 1984–1991 on some 4,000 banks. Alto-
gether, the sample contained about 23,000 data points, each data point being
the actual gross loss of a given bank in a given year.

The data points were plotted in the graph, using the kernel method of
sample density estimation (see Figure 20.1). On the horizontal axis is the
gross loss as a fraction of the bank portfolio: .05 is a loss of 5 percent of
the portfolio value, .10 is a 10 percent loss, and so on. The vertical distance
gives the number of observations of that size of loss. The graph is thus a
histogram, plotting the frequency of gross loss of the given magnitude. This
is the full line.

The dotted line is calculated from the formula for the density of the
asymptotic loan loss distribution in Chapter 19 “The Loan Portfolio Value,”
using the values for the parameters p and 𝜌 to have the same first two
moments. The agreement in the shape of the distribution is striking.
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PART

Five
Markets, Portfolios,

and Securities

Let

I0 =
m∑

j=1
CjP0(sj)

be the value at time zero of a bond portfolio with payments Cj due at times
sj, j = 1, 2,… ,m and let

D =
m∑

j=1
sjCjP0(sj)∕I0

be the Macaulay duration of the portfolio. Here

P0(s) = exp
⎛
⎜
⎜
⎝
−

s

∫
0

i (t) dt
⎞
⎟
⎟
⎠

and i(t) are the forward rates. Let IH be the future value of the portfolio at
time H = D,

IH = I0∕P0(H).

Put

M2 =
m∑

j=1
(sj −H)2CjP0(sj)∕I0
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Suppose the forward rates change instantaneously to new values i′(t) = i(t) +
Δi(t), t ≥ 0. If K is an upper bound for the change in the slope of the forward
rate curve,

dΔi(t)
dt

≤ K, t ≥ 0,

then the change ΔIH in the portfolio value is bound from below by

ΔIH
IH

≥ −1
2
KM2

.

(page 198)



CHAPTER 21
Introduction to Part V

The Capital Asset Pricing Model (CAPM) represented a significant step
in the development of modern finance theory. It rested on Markowitz’s

concept of risk as the volatility of price, and on the ideas of mean-variance
portfolio optimization, but it went a step further: It made a statement about
the market, under the assumption that investors optimize their individual
holdings. By postulating that the part of stock volatilities that are not corre-
lated with the market portfolio (the specific risks) are mutually sufficiently
independent to be diversified away, the model derives its powerful tenet:
The risk of a security consists of two parts: the systematic risk and the spe-
cific risk. Systematic risk, measured by the covariance of the security price
with the market portfolio price, carries a compensation in terms of expected
return premium. The specific risk is not compensated for, since it can be
reduced by diversification. Quantitatively, this is expressed by the equation
for the capital market line,

𝜇i = r + 𝛽i(𝜇M − r)

where 𝜇i is the expected rate of return on the i–th security, 𝜇M is the expected
rate of return on the market portfolio, 𝛽i is the regression coefficient of the
security price on the market portfolio price, and r is the risk-free rate of
return. A review of the model is provided in the paper “The Efficient Market
Model” (Chapter 22) originally written in 1972 with John A. McQuown.

An interest in liability funding, such as fixed liabilities in pension plans,
generated research in portfolio immunization strategies. Portfolio immu-
nization is a technique of balancing long and short bonds in such a way
that the portfolio value at a given horizon date (the date a liability is due)
is guaranteed. Typically, this involves maintaining the Macaulay duration of
the portfolio to be equal to the remaining horizon length. Such strategies are
based on the assumption that interest rates of all maturities move up and
down by the same amount (parallel shifts).
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The paper “A Risk Minimizing Strategy for Portfolio Immunization”
(Chapter 23), co-authored in 1984 with H. Gifford Fong, gives a lower
bound on the portfolio value at the horizon date, should the assumption
of parallel shifts be violated. The shortfall is bound by a quantity that is
the product of two elements: the magnitude of a twist in the yield curve,
as measured by the maximum value of the derivative with respect to term
of the forward rate change; and a characteristic of the portfolio composi-
tion called M2, which is a measure of dispersion of the portfolio cashflows
around its duration. While the former quantity is outside the control of the
bond investor, the latter can be minimized to assure a minimum risk of not
meeting the fixed obligation on the horizon date.

This result is exploited in the 1983 paper “The Tradeoff BetweenReturn
and Risk in Immunized Portfolios” (Chapter 24), also written with H. G.
Fong. It is argued that among portfolios with a fixed duration, some may
offer higher return than others. An efficient frontier can be constructed that
identifies the portfolio with the maximum expected return for a given level
of risk, as measured byM2. Investors can choose a portfolio on the efficient
frontier that represents the desired tradeoff between return and risk.

The paper “Bond Performance: Analyzing Sources of Return”
(Chapter 25), written in 1983 with H. G. Fong and C. J. Pearson, identifies
the principal sources of the gains or losses in performance measurement.
It is argued that the total return on a bond portfolio can be meaningfully
attributed to two primary components: the effect of external interest rate
development, and the contribution of the management process. The interest
rate effect can be further decomposed into that due to the initial yield curve
level and shape, and that due to the changes in the forward rates over
the performance measurement period. The contribution of the portfolio
management consists of the following components: return from manage-
ment of the portfolio maturity composition; return from the management
of the industry and quality sectors; and return due to the selection of the
specific issues.

The method proposed in the paper for measurement of these compo-
nents of performance consists of repricing of the securities in the portfolio.
By pricing each bond as if it were a Treasury issue and calculating the return
on such portfolio (including the actual changes in the portfolio composition
over the period due to purchases, sales, swaps, etc.), the maturity man-
agement component is equal to the difference between this return and the
external interest rate component. The next step is repricing each bond as if
it were exactly in line with its own sector and quality group—that is, with
the same average yield spread over Treasuries. The difference between the
return on the portfolio with such pricing, and the sum of the external com-
ponent and the maturity management, is the part of the total return due to
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the management of sectors and qualities. Finally, the difference between the
actual total return and the sum of the previous components is due to the
choice and management of the individual bonds.

A desirable property of this methodology is that the timing of any
changes in the portfolio composition over the performance measurement
period is properly allocated to each component of the management process.

Portfolio insurance is a technique that guarantees a minimum return
over a specified horizon period even if the target asset, usually the market
portfolio, is down by more than the minimum. This is achieved by a strategy
that simulates the performance of a call on the target asset. Buying a call,
togetherwith an investment in a fixed-return bond, has the required property
of having a guaranteed minimum return (in case the call is not exercised)
together with sharing the performance of the target asset (in case the call is
worth exercising). Creating a synthetic call, by maintaining the proportion of
funds invested in the target asset equal to the hedge ratio of the call, achieves
the same result. The cost of the strategy, equal to the cost of buying the call,
is realized by a fixed and known return difference between the target asset
return and the return on the portfolio.

A generalization of portfolio insurance is the best return strategy. Port-
folio insurance can be viewed as a strategy that promises the better of two
returns, each less a fixed return differential. The two assets are the target
portfolio and a bond maturing on the horizon date. In the best return strat-
egy, the objective is to get the best of several returns on different assets, each
less a fixed return differential. The return on the strategy is thus

RI = max(R1 − c1,R2 − c2,… ,Rn − cn).

The costs c1, c2,… , cn are subject to a single condition, which corresponds
to the pricing of the multiple asset call that the strategy creates synthetically.
A detailed description of the strategy and examples of the strategy costs are
given in the 1987 paper “The Best-Return Strategy” (Chapter 26).

Changes in interest rates are not the only source of risk in fixed-income
investment. A bond portfolio value also depends on changes in interest rate
volatility. Nearly all fixed-income instruments contain embedded options—
callable bonds, pass-throughs, futures, and so on. Just as fixed-income
investors need to know how changes in interest rates affect portfolio value,
they need to be also concerned about changes in interest rate volatility.

The 1992 paper “Volatility: Omission Impossible” (Chapter 27) withH.
Gifford Fong andD. Yoo presents a term structure model with two stochastic
factors: the short rate and the short rate volatility. This model allows for
measurement of the exposure to the risk of volatility changes.

The article “A Multidimensional Framework for Risk Analysis”
(Chapter 28) was co-authored in 1997 with H. Gifford Fong. It provides
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a methodology for quantitative analysis of portfolio exposures to different
types of risks, and the calculation of VaR measures. These risks can run
from market risks (such as changes in stock market index or changes in
interest rate levels) to credit or operations risks. As long as a given source
of risk can be described by a risk factor, such as the level of interest rates
or the quality spread of corporate yields over Treasuries, the sensitivity of
the portfolio to changes in the risk source can be measured. By determining
the covariance matrix of the different risk sources, value-at-risk can be
calculated.

A characteristic of some commodities, foremost of which is electricity,
is that they cannot be easily stored. For a storable commodity, the forward
price is equal to the current spot price divided by the price of a zero coupon
bond with the same maturity as the forward contract. This is because the
forward contract to buy a commodity at a future date can be duplicated by
issuing a bond maturing on the contract date and buying the commodity
now. For electricity, this relationship between the spot and forward prices
breaks down.

“Plugging into Electricity” (Chapter 29) was written in 2001 with
Helyette Geman. (The article was originally called “Forward and Futures
Contracts on Non-Storable Commodities: The Case of Electricity,” but Risk
likes to assign cute titles to its feature articles.) The paper investigates the
relationship between spot and forward prices, and proposes a methodology
for modeling electricity spot and futures prices.

The unpublished 2002 memorandum “Pricing of Energy Derivatives”
(Chapter 30) goes further: It provides a general equation that represents a
complete specification of the forward/spot process. The spot price behav-
ior is fully described by the current forward curve and by forward contract
volatilities, and it only includes processes whose stochastic properties under
the martingale measure are known. Therefore, the prices of energy deriva-
tives and contingent claims can be calculated without recourse to the market
prices of risk, which are not directly observable.



CHAPTER 22
The Efficient Market Model

By Oldrich A. Vasicek and John A. McQuown

INTRODUCTION AND SUMMARY

The purpose of this chapter is to discuss what is known as the “efficient
market model of capital market theory,” the most significant part of which
is the Capital Asset PricingModel. The paper does not extend the model. It is
a nontechnical summary of the papers by Treynor (1961),1 Sharpe (1970),
Lintner (1965), Black (1972), and others. Their writings require consider-
able familiarity with mathematical and econometric concepts, hence a more
verbal exposition of the basic ideas may be helpful to some readers.

There are two appropriate caveats concerning the context of this
chapter. They both follow from the fact that it is an exposition, and not
an extension, of the thinking of the authors of capital market theory. The
first is that this paper does not expose all of the work by all of these
authors. It is not, therefore, a fully comprehensive exposition. In particular,
completeness has been sacrificed in the treatment of some of the more
advanced extensions and refinements of capital market theory, especially
where considerable mathematical sophistication is involved. This incom-
pleteness seems palatable on the grounds that the basic essentials should
be exposed first. The second warning is that the authors are attempting to
expose the basics of capital market theory and not to validate it per se. All
theories are abstract simplifications of reality. No one theory encompasses

Financial Analysts Journal, 28 (5) (1972), 71–84 (received Graham and Dodd
Award); reprinted in Analyze Financière 15, 21–35, 1973 (in French); reprinted in
Supplementary Readings in Financial Analysis, Institute of Chartered Financial Ana-
lysts, University of Virginia, 1973.
1References appear at end of article.
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all aspects of anything, nor is the most elaborate theory expected to go
unchanged with the subsequent evolution of thought. Accordingly, all
existing features of capital market theory do not inherently correspond to
reality equally well. What the authors do assume, however, is that there is
sufficient correspondence between reality and the extent of capital market
theory exposed herein to warrant the attention of the financial community.

The chapter begins with a definition of the risk of investing in the cap-
ital markets and with a method of measuring return and risk. It is shown
that risk can be decomposed into two parts: the systematic risk due to the
response of any stock to changes in the market as a whole, and the specific
risk attributable to a particular stock. It is shown how the market place com-
pensates the investor for taking systematic risk with an appropriate expected
return. It is also shown that specific risk is not compensated, since it can
be essentially eliminated through diversification. It is shown that under the
assumptions of borrowing and lending at a risk-free rate, the expected return
is proportional to the systematic risk borne. The security market line, which
represents the relationship between systematic risk and expected return, is
derived. The concept of efficient portfolios is introduced. The capital mar-
ket line is defined as the set of such combinations of risky and riskless assets
that are superior to all other portfolios in terms of return and risk. It is
shown that an investor’s choice of a portfolio on the capital market line (or
a well-diversified portfolio close to the capital market line) depends only
on his attitude toward expected return and risk. A generalized form of the
model is outlined for the case when borrowing at the risk-free rate is not
possible.

As the name suggests, the efficient market model describes the equilib-
rium state of efficient capital markets. A perfectly efficient market is one
in which new information is immediately and costlessly available to all
investors and potential investors, and the cost of action (transaction costs,
taxes, etc.) is zero. While actual capital markets do not conform exactly to
“perfect” assumptions, empirical studies suggest that the main conclusions
of the efficient market model hold very well in real markets. The theory of
efficient markets represents the best description of capital markets available
at present, and probably the only one that considers explicitly uncertainty
and risk. Since it also offers important implications for investment decisions
and portfolio construction, the efficient market model should command the
attention of every practicing investor.

RISK, RISK AVERSION, AND COMPENSATION

Since the future prices of common stocks are uncertain, the outcome of
an investment in common stocks cannot be determined in advance, and
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inevitably carries some risk. Risk is a chance of loss, which can be thought
of either as an actual capital loss or a failure in achieving the return that
was expected. There can be no risk if the outcome is certain; the investor,
by definition, achieves the return he has expected. The more uncertain an
investment opportunity is, the larger is the chance of loss, or the risk. Risk
is therefore intrinsic to the existence of uncertainty about the outcome of an
investment, and a formal quantitative definition of risk can be based on the
concept of uncertainty.

Some financial instruments exhibit fixed return characteristics. Govern-
ment bonds, for instance, when held to maturity, leave virtually no uncer-
tainty about the total amount of money that will be returned. In accordance
with the concept of risk as uncertainty, we will call these instruments, when
held to maturity, risk-free. Common stocks, on the other hand, are risky
issues. They may result in high gains, but may lead to large losses as well. A
wide distribution of possible outcomes exists over all future horizons, since
they do not mature.

Within the class of common stocks, not all issues exhibit the same risk.
Some firms—for example, electronics or airlines—are generally engaged in
endeavors whose outcome is less certain than those of other firms. For an
investor, it means that there is less certainty that the future price of such stock
is not going to decline considerably in value.On the other hand, the relatively
stable and predictable nature of a utility company’s business implies less
uncertainty about the future price of its stock.

This leads to the following definition of risk in a capital asset market:
The risk of an issue is the degree to which future price of that issue can dif-
fer from its expected value. Stated in different terms, risk is the dispersion of
future price changes. The next section will deal with the question of how the
dispersion can be measured ex post and estimated ex ante. Before address-
ing this issue, however, it is useful to discuss some aspects of this definition
of risk.

There are several implications of the risky character of common stocks
that generally make investors prefer (other things being equal) less risky
investments to more risky ones. These include the so-called gambler’s ruin,
the consumption effects, and the liquidity requirement effects.

The phenomenon known as gambler’s ruin refers to a particular out-
come of an investment under uncertainty. It consists of losing effectively
all funds in an extremely unlucky turn of events, thus being excluded from
further participation in the investment. Thereby, the possibility of recover-
ing from such loss is eliminated. Although this is an extreme case and it is
generally very improbable (particularly in the short run), the effect—if it
occurs—is fatal.

Another reason for investors’ reluctance to bear risk relates to their con-
sumption requirements. Most investors expect to consume some part of their
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income through time, and preservation of their wealth thus demands achiev-
ing a certain level of gain. Although a highly risky investment opportunity
may have the prospect of high gains (as well as large losses), it may not,
therefore, be as attractive to a particular investor as an opportunity to obtain
more stable returns.

An even more important factor concerns liquidity requirements: the
need to be able to convert stock holdings into another form of asset,
namely cash, at any moment. An investment in highly risky stocks has a
considerable disadvantage in this respect relative to an investment in more
stable stocks, not because it is difficult to convert to cash, but because
high-risk assets may happen to be at low values when cash is required, quite
apart from the longer-term prospects.

For these reasons, it can be expected that investors are generally
risk-averse. That is, they prefer more stable holdings to less stable ones,
other things being equal. If this is true, how can one explain the behavior
of market participants who place their investments in very risky positions?
What would induce investors to hold these securities? The efficient market
model suggests that the market pays higher rates of return for more risky
holdings; otherwise, investors could not be induced to hold these issues.
That is, the expected value of return on investment is higher for more risky
issues than it is for less risky ones. The principle of risk compensation has
been well established empirically (cf. Black, Jensen, and Scholes (1972)).
It will be discussed again in quantitative terms in the Capital Asset Pricing
Model section.

Different investors have different investment objectives, different con-
sumption and liquidity requirements, and different planning horizons; thus,
the degree of risk aversion differs from one investor to another. This means
that some investors will be more comfortable at low risk levels with atten-
dant comparatively small expectation of return, while others would prefer
positions at higher risk levels with the attendant higher expected compensa-
tion. The actions of market participants, trading off their individual require-
ments with each other, then result in the appropriate pricing of risky assets.

Every investor can find a position in the market that corresponds to the
degree of risk he considers adequate, given the compensation for risk the
market offers. To avoid unnecessary risk (risk that can be diversified away)
and to choose a proper tradeoff between the risk and expected return, are
some of the practical applications of the efficient market model.

MEASUREMENT OF RISK AND RETURN

Risk has been introduced in the previous section as the dispersion of future
price changes. This ex ante uncertainty manifests itself ex post as volatility
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in price series. The price of a company engaged in a business of highly unpre-
dictable nature is likely to vary considerably as the prospects and outcomes
of business ventures evolve. The price of a stock subject to less uncertainty
is bound to change less swiftly.

These observations suggest that the risk is measured ex post by the vari-
ability of price changes. Since it has been established empirically that the
degree of volatility of price changes of any stock is a reasonably stable quan-
tity (cf. Blume (1971)), it can also be taken as an estimate of the ex ante
uncertainty, or risk. This is a concept of great importance: It allows quanti-
tative measurement and anticipation of risk.

Risk is one of the essential concepts of capital market theory, and the
theory would lose much of its impact if techniques to measure risk were
not provided. When risk is measured by price fluctuation, it is necessary to
know to what extent ex post volatility of price can be taken as an estimate
of ex ante uncertainty (i.e., risk). This depends on two factors: instability of
the parameters of price change distributions, and sampling errors in estimat-
ing the parameters from data. The latter source of error can be minimized
by using enough data for sampling and by choosing appropriate statistical
techniques. The former source of misestimation depends on the speed with
which the parameters change. In most cases, the rate of change is moderate,
and past dispersion is as good an estimate of future dispersion as an esti-
mate obtained by other means. Therefore, ex post measurements of price
volatility provide a usably accurate proxy of ex ante risks.

To measure risk directly as the variability of price changes is not quite
convenient, since it would mean that risk depends on the level of the
price—the higher the price in dollars per share, the higher the dispersion.
To avoid this scaling problem, variability of the rates of return is used.
Another reason for choosing rates of return rather than price changes is
that rates of return include dividends.

The rate of return Rt over a time period (t − 1) to t is defined as

Rt =
Pt − Pt−1 +Dt

Pt−1

where Pt is the price per share at time t, and Dt is the (cash) dividends per
share paid during the period (t − 1) to t. The rate of return is thus expressed
as total return on a dollar invested at the beginning of the period. Rate of
return on a portfolio is defined in analogy, with return on an individual
issue, as the increase in total wealth during the period divided by the original
wealth.

Under uncertainty, future rates of return behave as random variables
and can, accordingly, be described by the characteristics of their probability
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distribution. The expected rate of return is the mean value of the distribution
of future returns. The expected rate of return is thus the value around which
future rates are expected to center. The expected rate is the most likely esti-
mate of what the future rates will be.

The expected rate of return may be different from the average perfor-
mance of the company in previous periods. If a company is believed to main-
tain the same a priori distribution of rates of return, however, the expected
value can be estimated by the average rate of return in the previous period,

R = 1
n

n∑

t=1
Rt.

Any investor certainly prefers investment opportunities with higher
expectations to those with lower expectations, if other things are equal. The
expected return alone, however, does not fully characterize an investment
opportunity. It is necessary to consider the deviation of possible future
returns from the expected value, which brings us back to the concept of
uncertainty, or risk.

Risk has been defined as the dispersion of the rates of return from their
expected value. The larger the dispersion, the less sure the investor is that
the expected performance will be attained. The dispersion can be measured
by the variance, which is the mean squared deviation of the distribution of
returns from the expected value.

The variance in rates of return measures the expected degree of fluctua-
tion of future returns about their expectation—that is, the probable variabil-
ity of future payments. It is therefore a convenient measure of the riskiness
of an investment. Investors, being risk-averse, will generally prefer smaller
variance to larger variance on their investments.

The variance (which is, like the expected return, an unobservable ex ante
parameter of the distribution of future returns) can be estimated by the ex
post sample variance of rates of return attained:

V = 1
n

n∑

t=1
(Rt − R)2.

If the sample variance of past rates of return is used to estimate future
dispersion, it must be assumed that the degree of fluctuation in the series of
returns remains relatively stable over time. Stated differently: The variation
in returns must be “usably” constant—a question that can be empirically
tested.
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The varianceV is a quadratic measure of volatility. It is sometimes useful
to consider its square root,

S =
√
V

which is called standard deviation. Since these two measures of risk are so
closely related, we will occasionally use one and occasionally the other in
referring to risk. The difference between them is a matter of mathematical
convenience, not economic significance.

The prices, and consequently the rates of return, of two common stocks
or of a stock and the stock market as a whole do not move independently.
When the market advances, a stock listed on that market is also likely to
advance, and similarly for declines. This is due to the dependence among
industries and among companies of the same industry. It is estimated that
about 50 percent of the price fluctuation of a particular company can be
explained by overall market movements, and some 10 percent by the fluc-
tuation of that industry. Then, the remaining 40 percent fluctuation is that
due to the characteristics of the individual company (cf. King (1966)).

Since the comovement of stocks plays an eminent role in constructing
a portfolio (e.g., in diversification), it is necessary to introduce a measure
of dependence between rates of return, in addition to measures of expected
return and dispersion. A convenient measure of comovement is what statis-
ticians call the covariance.

Covariance between two rates of return is defined as the mean value of
the product of the deviations of the two rates from their respective expected
values. A positive covariance means that the two issues are likely to move in
the same direction (which is typically the case in the stock market). Negative
covariance means that the two stocks tend to move in different directions.

On past rates of return, the covariance can be estimated by the sample
covariance, which is defined as

Cij =
1
n

n∑

t=1
(Rit − Ri)(Rjt − Rj)

where Rit, Rjt are the rates of return on two stocks, and Ri, Rj are their
respective averages.

It will be shown in a later section on the role of the portfolio that nearly
all fluctuations of returns on a well-diversified portfolio are due to the aver-
age covariance of the issues with the market as a whole. The total dispersions
of individual companies do not, therefore, add directly to form the disper-
sion of the portfolio. Rather, there are dispersion components of individual
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companies that cancel each other out. The result is that total portfolio disper-
sion is less than for any individual company. This is, of course, the desirable
impact of diversification.

EFFICIENT MARKET HYPOTHESIS

Capital markets can be characterized by two important factors: divisibility,
and liquidity. Divisibility means that real assets are divided into a large
number of shares, which can be purchased by investors in arbitrary
amounts. Therefore, an asset can be held in various proportions by a
number of investors, and conversely, an investor can distribute his wealth
among “shares” of many assets. Thus, divisibility in a marketplace permits
diversification.

Liquidity means that each investor can easily and at relatively small
expense trade his share in any real asset for shares of other assets, or con-
vert his shares into cash, and vice versa. This implies that each investor can
hold a portfolio of assets perceived to correspond best to his requirements.
He may shift his holdings at any time when either his requirements or his
perceptions of the characteristics of the assets change.

It is in the interest of each investor to collect information about the
shares of real assets traded in capital markets. Such information allows the
investor to evaluate the prospects of each investment opportunity, and there-
fore to invest in the portfolio with the most promising performance. The
demand for this information generates the existence of various information
channels expected to provide the investor with pertinent knowledge, such as
periodic income statements and balance sheets of companies, stock prices,
and volumes; there are also newspapers specializing in bringing and evaluat-
ing news relevant to investments, and reports from financial intermediaries
who engage in estimating the prospects of corporations.

These channels are efficient in that information spreads rapidly, and
each new piece of information quickly becomes public property. Because
shares are both divisible and liquid, investors are able to react very quickly
to perceived changes in the value of any company. This information-induced
buying and selling affects the market price to the point where the price
quickly corresponds to value again. Thus, information is rapidly discounted
into the market price.

It thereby becomes very difficult for any individual investor to find a
stock that is not priced correctly. In fact, it is hypothesized that the capital
markets are very close to what is called an efficient market. In an efficient
market, each common stock is, at any moment, priced fairly with respect to
its value. This premise will be referred to as the efficient market hypothesis.
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While it is very difficult to decide once and for all through empirical tests
whether the capital markets are efficient, most empirical studies suggest that
the principle of efficiency holds very closely. Only rarely does the perfor-
mance record of an investor show results that can confidently be attributed
to stock selection skill. More often than not, superior performances can
be attributed to investors having systematically taken high risk (since the
expected return on a high-risk portfolio exceeds the expected return of a
market index).

In an efficient market, all currently available information about future
prices is discounted in today’s price. If the price were confidently expected to
advance tomorrow by 10 percent, investors would buy the stock until that
10 percent expectation is arbitraged out of today’s price. Hence tomorrow’s
expected price change is thereby reduced to zero. In this process of discount-
ing information, today’s price becomes an unbiased estimate of tomorrow’s
price. Strictly speaking, of course, this statement needs refinement, since the
market exhibits a positive long-term trend. The principle of efficiency there-
fore asserts that today’s price is an unbiased estimate of tomorrow’s price,
discounted by the expected long-term growth.

The process described in the preceding paragraph is called amartingale.
Such a process implies that all information about future prices is already
impounded in the current price. A special case of a martingale, with an
additional assumption of independent distribution of price changes, is the
well-known and frequently misunderstood random walk process.

The term random walk is often misinterpreted as implying that price
changes “randomly,” that is, by chance alone and without any causal rea-
sons. This is not what the efficient market hypothesis states. Prices change
because the characteristics and prospects of the company or the general
economy change, and because investors’ perception and evaluation of these
characteristics and prospects change. In other words, an investor’s knowl-
edge evolves with the continuous supply of new information and with the
revision of old information. What the efficient market hypothesis does state,
however, is that at any given moment in time, the next period price change
is random with respect to the state of knowledge at this moment. Moreover,
the hypothesis of efficiency asserts that the current price fully reflects the
present state of knowledge in the sense that it is equal to the (discounted)
mean value of the distribution of the next period price as given by the present
state of knowledge.

To summarize, under the efficient market hypothesis all the informa-
tion available at any given moment is discounted into the current market
price. The market price at any moment is an unbiased estimate of the next
period price. In an efficient market, no investor can expect consistently to
obtain information not already discounted into the market price by actions

www.ebook3000.com

http://www.ebook3000.org


178 MARKETS, PORTFOLIOS, AND SECURITIES

of other investors. Consequently, no investor can consistently achieve abnor-
mal returns (i.e., returns in excess of that paid for risk taking, as discussed
later in this chapter). In an efficient market, benefits from security analysis
cannot be expected to exceed the costs of trading.

Since most of the discussion thus far has dealt with price changes, a
word about the role of dividends is in order. Capital market theory deals
with total rates of return, generally without distinction between the capital
appreciation component and the component due to dividend income. Empir-
ical studies by Black and Scholes (1970) have established that, while for a
taxpaying investor it may be important whether the return on his investment
comes in the form of dividend or capital gains, it makes no difference for the
equilibrium of the market as a whole.

The next two sections will deal with the Capital Asset Pricing Model. In
these sections, it will be assumed that the (total) rates of return over nonover-
lapping periods are independently distributed random variables, and that
each investor tries to maximize his expected rate of return subject to consid-
eration of risk, without regard to whether the rate of return is composed of
dividends or of capital gains. The assumption here that investors are indif-
ferent between capital gains and dividends is not a realistic assumption when
the component returns are taxed differently. The usefulness of this assump-
tion is only to simplify the analysis, and the conclusions reached are, in fact,
affected unimportantly.

THE ROLE OF THE PORTFOLIO IN RISK REDUCTION

It is intuitively obvious that “risk” of the volatility of future returns can be
reduced by diversifying into several stocks rather than investing one’s total
wealth in a single stock. Let us, however, characterize this diversification
phenomenon quantitatively.

Consider two different common stocks. Assume for simplicity that they
both have the same expected rate of return,E. If a part of thewealth available
for investment, call it x1, is allocated to one stock and the remaining part
x2 = 1 − x1 is invested in another, the expected rate of return, EP, on this
two-issue portfolio is a weighted average of the two expected returns, or

EP = x1E + x2E = E.

The expected return on the portfolio is thus equal to that of either stock,
since we, of course, assumed them to be the same. The volatility of the
two-issueportfolio,however, is less (aswill be seen) than thevolatilityof either
stock, if only we assume them to move together through time imperfectly.

According to a theorem in statistics, the variance VP of the portfolio is
computed as:
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VP = x21V1 + x22V2 + 2x1x2C12.

In this equation,V1 and V2 are variances of the two stocks, respectively;C12
is the covariance of their returns; and x1, x2 are their weights in the portfolio.
The covariance term is crucial to the effect of diversification. If the two issues
fluctuate in price independently of each other, then the covariance term is
zero, and it is always possible to choose the relative proportions x1, x2 in
such a way that the risk of the portfolio is smaller than that of either stock
taken separately. This is due to the effect of squaring numbers less than one.
For instance, when the volatility of both stocks is the same, V1 = V2, and the
covariance is zero, the risk of a portfolio of equal investment in each stock is

VP = (.5)2V1 + (.5)2V2 = .5V1.

Thus, the portfolio has a variance equal to only one half of the variance of
either stock. Since the expected return on the portfolio is not reduced (i.e., as
shown earlier, EP = E), such a portfolio is clearly preferable to a single-issue
portfolio for any investor who is averse to risk.

Typically, two stocks exhibit some positive co-movement; therefore, the
covariance term cannot be realistically assumed to be zero. The reduction of
risk in that case is not as large as if the two stocks were independent, but it
always can be made smaller than the simple average risk of the two stocks.
Hence, the amount of risk per unit of expected return can be decreased
through diversification.

The foregoing illustration of a two-issue portfolio can be generalized to
the case of any number of stocks in a portfolio. Assume for simplicity that
the proportion of each of the n stocks in a portfolio is kept equal. Empirical
studies conducted by Lorie and Fisher (1970) show the following relative
risk reduction: If the average risk level of a single typical common stock is
taken as the basis, the percentage reduction of risk for randomly selected
portfolios with approximately the same expected return depends upon the
number of issues as follows:

Number of Issues
Relative Risk with
Respect to Average Stock

1 100%
2 81
8 64
16 60
32 59
128 57
510 57
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Thus, diversification can provide a substantial reduction of risk. By
diversifying funds among a large number of issues, the chances of heavy
losses are lowered, since a price decline in some stocks is likely to be offset
by price appreciation of others.

Common stocks are usually positively correlated with each other, and it
is thereby not possible to eliminate variance completely. A down movement
of a set of stocks in a portfolio will be only partly compensated by an up
movement of some other stocks in the portfolio. There is, therefore, a part
of the total variance of the portfolio that is due to the positive covariance
between stocks and can never be eliminated by diversification. This part is
called the systematic risk and will be dealt with in more detail in the next
section.

Let us now investigate more thoroughly the impact of diversification on
the expected return of the portfolio. Suppose an investor wants to maximize
his expected rate of return but does not want to acceptmore than a particular
risk level, call it V0. His unwillingness to take more risk might, for instance,
be attributable to the fact that the investor wants to keep the chances of
failing to meet certain expected financial obligations below a particular level.
Of all possible combinations of all stocks in various proportions that have
the risk level of V0, there will be one particular combination that has the
highest expected return. This combination represents the optimal portfolio
for that investor, since it is superior to all other portfolios of the same risk.

This portfolio can be constructed by means of so-called quadratic pro-
gramming, provided all the prerequisite estimates of expected returns, vari-
ables, and covariances can be obtained. While it is difficult (and expensive)
in practice to obtain the exact solution to this problem, due to the large num-
ber of stocks involved, there are methods that lead to a portfolio reasonably
close to the optimal portfolio.

There will be a portfolio with maximal expected return for each dif-
ferent risk level. These portfolios are called efficient portfolios. The set of
efficient portfolios, or the efficient frontier, as it is sometimes called, is a set
of portfolios superior to all other portfolios. They are superior since, for
each level of risk, there is no other portfolio with higher expected return.
It is also possible, and often useful, to refer to efficient portfolios as those
portfolios possessing minimum risk for a given level of expected return.

An investor’s choice of a portfolio from the efficient frontier is a matter
of finding a suitable tradeoff between expected return and risk. This choice
depends on the investor’s consumption, fixed obligations, time horizon, and
other factors (which can be, at least for theoretical purposes, summarized in
a so-called “utility function”). Whatever these factors might be, a rational
risk-averse investor will select an investment portfolio that is at, or close to,
the efficient frontier.
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From what has been discussed, it should be apparent that the expected
rate of return on portfolios on the efficient frontier increases with increas-
ing risk. This is in agreement with the principle of risk compensation, as
mentioned before. In the next section, this principle will be formulated quan-
titatively in the context of the efficient market model.

THE CAPITAL ASSET PRICING MODEL

The Capital Asset Pricing Model, or efficient market model, is usually
derived under the assumption that there exists a riskless asset available
for investment. The future return on this asset is not subject to uncertain
fluctuations. It yields, therefore, a constant rate, RF, called the risk-free rate.
It is assumed, further, that any investor can borrow or lend as much as he
desires at the risk-free rate. The assumption of unlimited borrowing at the
risk-free rate has been properly viewed as unrealistic. In the next section, a
generalized form of the efficient market model will be discussed, with this
assumption relaxed. For the purposes of the present discussion, however, it
will be retained.

In addition, twomore assumptions will bemade: First, that each investor
is risk-averse; given his requirements in terms of expectedwealth at the end of
a period, each investor attempts to minimize the variance of his wealth at the
end of the period. Second, that this period is the same for all investors, and
all investors agree about the distribution of the end-of-period asset values.
While the realism of the last assumption can again be disputed, it is important
to note that it is not basically necessary to the model (cf. Lintner (1969)).

When an investor allocates part of his funds to the riskless asset and the
remaining part to a portfolio of common stocks, the expected return on such
holdings will be an average of the expected return on the (risky) common
stock portfolio ERP, and the risk-free rate RF, weighted proportionally to
the relative allocation. This can be expressed as

ER = xRF + (1 − x)ERP

where x is the proportion of money invested at the risk-free rate, and ER is
the expected rate of return on the total holdings. Since the variance of the
risk-free asset is (by definition) zero, the variance V of the total holding is

V = (1 − x)2VP

where VP is the variance of the risky assets. Expressed in terms of standard
deviations, this same relation is linear:

S = (1 − x)SP.

www.ebook3000.com

http://www.ebook3000.org


182 MARKETS, PORTFOLIOS, AND SECURITIES

If an investor borrows somemoney at the risk-free rateRF, the equations
for ER and S will both still apply, with x now being a negative quantity
expressing the proportion of borrowings to the investor’s equity. Both the
cases of lending and borrowing at the risk-free rate can be described as
follows:

1. The expected rate of return in excess of the risk-free rate RF (the excess
return) is proportional to the expected excess return on the common
stock portfolio,

ER − RF = (1 − x)(ERP − RF).

2. The risk (in terms of standard deviation) is proportional to the risk of
the common stock portfolio,

S = (1 − x)SP.

These equations show that both expected return and risk are linear
functions of the proportion x invested at the risk-free rate: If plotted in a
coordinate system with expected return on the vertical axis and standard
deviation on the horizontal axis (return-risk coordinates), the set of combi-
nations of riskless asset and a common stock portfolio will be represented
by a straight line with intercept equal to the risk-free rate.

Figure 22.1 gives a graphical representation of this relationship. The
darkened area represents all possible portfolios of common stocks plotted
in terms of their risk and return. The upper boundary of this set consists of
portfolios with maximum expected return for a given level of risk, and is
therefore the efficient frontier. The riskless asset, which has no risk, is repre-
sented by the point RF on the vertical axis. Any combination of a common
stock portfolio (point P) and the riskless asset is situated on a straight line
determined by these two points (line RFP). On this line, the points that fall

Expected
return

Efficient
frontier

Risk (Total)

RF

M

P

FIGURE 22.1



The Efficient Market Model 183

between RF and P are alternative portfolios, each of which consists of some
lending at the risk-free rate; portfolios which consist of some borrowing (at
risk-free rate and investing in portfolio P) are depicted on this line to the
right of point P.

Any straight line going through the risk-free rate and a point at or
below the efficient frontier represents an available set of investment oppor-
tunities. Since these lines differ only in slope, it is clear that there is one
of them, namely the line tangential to the efficient frontier (line RFM in
Figure 22.1), with investment opportunities that dominate all the efficient
frontier portfolios. That is, every point on the line segment RFM lies above
the efficient frontier and therefore represents investment opportunities with
superior expected returns for each level of risk.

Thus, when the riskless asset is available for borrowing and lending,
optimal investment opportunities are described as combinations of the
risk-free asset and one particular portfolio of common stocks (point M in
Figure 22.1). An investor who wants to take a relatively low-risk position
would allocate his assets between the riskless asset and the risky portfolio
M. An investor wishing to take more risk (with increased expectation of
return, of course) will borrow at the risk-free rate and invest all available
funds in the risky portfolioM.

This analysis therefore leads to the conclusion that the equity holdings
of all investors should consist of a share of the same portfolio of common
stocks, namely the one lying at point M on the efficient frontier. Thus, the
selection of the risk level can be separated from the problem of an opti-
mal combination of risky securities. This important result is known as the
separation theorem, first attributed to Tobin (1958). The crucial conclusion
thereby suggested is that every investor must resolve what risk level he is
willing to assume, but need not select particular stocks nor be concerned
with combining them into a portfolio.

If every investor’s equity holdings are made up of a part of the same
portfolio, it follows that this portfolio comprises all the shares outstanding
of all the common stocks in the market. This portfolio is called the market
portfolio. The separation theorem can therefore be stated as: Every investor
should hold a combination of the riskless asset and the market portfolio.

Thus, point M in Figure 22.1 is the market portfolio. The line RFM,
which represents the dominant investment opportunities, is called the capital
market line. Since the line goes through the point of the market portfolio’s
expected return ERM and its risk SM, the equation of the capital market
line is

ER − RF = ERM − RF

SM
⋅ S (1)

where ER and S are the expected rate of return and standard deviation,
respectively, of any particular portfolio on the capital market line.
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This equation expresses quantitatively the principle of risk compensa-
tion. In words, it can be stated: For a portfolio on the capital market line,
the expected rate of return in excess of the risk-free rate is proportional to
the risk of that portfolio.

The constant of proportionality

ERM − RF

SM
,

which represents the slope of the capital market line, is called the market
price of risk. The price that one pays for his expected return is measured in
risk, and hence the name “market price of risk.” Thus expected return in
excess of RF is given by the amount of risk taken, multiplied by the market
price of risk.

Individual stocks and imperfectly diversified portfolios will all fall below
the capital market line, thus demonstrating that the market does not com-
pensate for unnecessary risk—that is, for risk that can be diversified away.
To give exact meaning to this statement, it is necessary to define what is
meant by unnecessary risk. For this purpose, it is useful to return to the
earlier discussion about the efficient frontier.

It has been seen that the market portfolio is the tangent point of the
efficient frontier with the line of highest slope in Figure 22.1. Now, it can
be shown (with the help of some complicated mathematical techniques) that
this tangent-point portfolio must be such that the covariance of return on
every security with this portfolio is proportional to the expected return on
that security (in excess of the risk-free rate).2 The expected rate of return
ERi for security i must fulfill the equation

ERi − RF = K.CiM. (2)

Here CiM is the covariance of security i with the market portfolio, and K is a
constant of proportionality. When combining securities into a portfolio, the
expected return on the portfolio is equal to a weighted average of expected
returns of individual securities, and similarly, the covariance of the portfolio
with the market is a weighted average of the covariances of individual secu-
rities with the market portfolio. Consequently, the equation above holds for
any portfolio as well as every individual stock. In particular, it holds also for
the market portfolio, of which we must have

ERM − RF = K.S2M,

2To provide a proof of this statement is beyond the scope of this paper. It can be
found, for instance, in the Sharpe book (1970), Chapter 5.
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since the covariance of the market portfolio with itself is just the variance of
the market.

The last equation allows us to identify this constant of proportionality:

K = ERM − RF

S2M
.

Then, upon substituting for K into Eq. (2), the following relation emerges:

ER − RF = ERM − RF

SM
⋅ CiM. (3)

We can now compare Eq. (3), which holds for any security or portfolio, with
Eq. (1), which holds only for the portfolios on the capital market line. It is
seen that for portfolios below the capital market line, the market price of
risk rewards only part of the total risk. The only part of the total risk-taking
that has expected rate of return (reward) associated with it is the part:

CiM

SM
.

This is the part of the total risk that is due to the covariance of that portfolio
with the market portfolio. This part of the total risk is called the system-
atic risk.

The systematic risk CiM∕SM never exceeds the total risk Si. In fact, it is
smaller than the total risk for all portfolios that are not on the capital market
line. But for the efficient portfolios on the capital market line, the systematic
risk is equal to the total risk and, consequently, all the risk of these portfolios
is rewarded.

The portfolios whose risk consists of the systematic risk only (portfo-
lios on the capital market line) are called perfectly diversified portfolios.
Those portfolios whose total risk is composed of systematic risk and some
additional specific risk are imperfectly diversified. These are, of course, the
portfolios that lie below the capital market line.

To summarize, the total risk of a security or of a portfolio is composed of
two parts: the systematic risk, which is due to the covariance of that security
or portfolio to the market, and the specific risk, which is due to any volatil-
ity of the security or portfolio that is independent of market fluctuations.
The market price of risk rewards investors only for the systematic risk they
assume; no compensation is paid for bearing specific risk. The expected rate
of return on a portfolio or single security is, then, solely a function of the
systematic risk; the higher the systematic risk, the higher the expected return.
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Some portfolios, namely those on the capital market line, are perfectly corre-
lated with the market portfolio and have no specific risk. Consequently, risk
compensation applies to the total risk of such portfolios, and they represent
investment opportunities superior to all other combinations of assets. These
are the perfectly diversified portfolios.

The reason why only the systematic risk is compensated by appropri-
ately higher expected return is that the systematic risk cannot be reduced by
diversification, while the specific risk generally can. Specific risk can gener-
ally be reduced by diversification because it arises from fluctuations in the
security price peculiar to that individual company, rather than from fluctu-
ations in response to general market fluctuations.

Eq. (3) can be rewritten in a perhaps more familiar form:

ERi − RF = CiM

S2M
(ERM − RF).

Those familiar with least squares regression analysis will note at once that
the term CiM∕S2M is the slope coefficient in the regression of the security’s
rate of return on the market rate of return. This coefficient is customarily
denoted by 𝛽i and referred to as beta of that security. Since

𝛽i =
CiM

S2M
=
(
CiM

SM

)
∕SM,

it is seen that beta of a security is merely its systematic risk expressed in units
of market risk. For portfolios, beta is defined similarly as the covariance
of that portfolio with the market, divided by the variance of the market
portfolio itself. Since beta of the market portfolio is 1.0, beta is a suitable
measure of relative riskiness. Portfolios whose betas are less than one have
less systematic risk than themarket as a whole; while those with betas greater
than one have higher systematic risk.

Introducing 𝛽 i into Eq. (3), the following relation is obtained:

ERi − RF = 𝛽i(ERM − RF). (4)

When this equation is plotted in expected return/beta coordinates, it will
yield a straight line (line RFM in Figure 22.2). This line is called the secu-
rity market line. It is determined by the risk-free rate (where 𝛽 = 0) and the
market expected rate of return ERM for 𝛽 = 1. Since beta is a measure of sys-
tematic risk only, all securities and all portfolios will be plotted along this
line. This distinguishes the security market line from the capital market line,
which depicts perfectly diversified portfolios only.

Eq. (4) represents one of the most important results of the Capital
Asset Pricing Model. It states that expected rate of return of any security or
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portfolio is determined solely by the beta of that security or portfolio, thus
promoting beta to the most important single characteristic of any security
or portfolio. In addition, betas are easy to estimate through regression
analysis, and consequently play a central role in portfolio construction and
analysis.

Beta was defined as the systematic risk; the return whose expectation
is defined by Eq. (4) can appropriately be named systematic return. If the
market advances 10 percent during a period, a stock with beta of 2 will, on
average, appreciate by 20 percent. Similarly, a market decline of 10 percent
will cause the stock to drop 20 percent on average.On the other hand, stocks
with beta of 0.5 will reflect market movements with a magnitude of only one
half as large. For this reason, betas are sometimes calledmarket sensitivities.

The difference between the total price movement of a stock and the com-
ponent explained by the market movement multiplied by beta, is what we
call the “specific risk.”

No applications of the Capital Asset PricingModel to portfolio selection
and management will be discussed in this paper. The reader interested in
practical implications of the theory is referred to Wagner (1971).

GENERALIZATION OF THE MODEL

The principal conclusions of the capital asset pricing model previously devel-
oped are as follows:

1. In an efficientmarket, every investor should be expected to hold a combi-
nation of the riskless asset and the market portfolio. Such combinations
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of assets dominate any other alternatives in the sense that they are sub-
ject to less risk for the same level of expected return. The proportions
to be invested in the riskless asset and in the market portfolio depend
solely on each investor’s tradeoff of risk and expected return.

2. In an efficient market, the expected return on each stock in excess of the
risk-free rate is related only to its beta. A stock with a beta twice as high
as another stock exhibits twice as high an expected excess return. The
relationship of the expected excess return on all stocks with their betas
is called the security market line. Mathematically, the relationship for
any stock is described by:

ER − RF = 𝛽(ERM − RF). (5)

The first of these two conclusions represents a normative rule; that is, it
describes how a rational investor should behave in an efficient market. As
such, it is not subject to direct empirical validation. The second conclusion,
however, is of a descriptive nature; it predicts how an efficient marketwould
appear if the assumptions of the model are fulfilled. The latter can therefore
be tested empirically.

Of the studies that deal with empirical validation of the efficient market
model, the work by Black, Jensen, and Scholes (1970) warrants attention for
its rigorous character.3 The principal conclusion of this study is that while
the relationship between expected excess return of a stock or portfolio and
its systematic risk is linear, it is not directly proportional. Rather, the empir-
ical security market line exhibits a positive intercept, and a slope that is
flatter than that is predicted by Eq. (5). The empirically observed market
line appears to conform to a model of the form

ER − RF = 𝛾 + 𝛽(ERM − RF − 𝛾) (6)

where 𝛾 is a positive quantity.
In intuitive terms, the observed relation (6) can be stated as follows: If

the expost excess rates of return on a stock are regressed against the market
excess rates of return in a simple regression model

R − RF = 𝛼 + 𝛽(ERM − RF) + e, (7)

estimates of the regression coefficients 𝛼, 𝛽 can be obtained. The estimate of
𝛽 is an estimate of the systematic risk (beta) as introduced in the previous

3There still can be some reservations with respect to accepting the empirical results
of this study; the most important objection is that an equal weighted market index
is employed there, rather than the theoretically justified value weighted index.
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section. The regression coefficient 𝛼 can be called the abnormal return, or
simply alpha. It is the additional rate of return left after the stock’s rate of
return is adjusted for its systematic risk by subtracting the factor 𝛽(RM − RF)
from the total excess return.

Now, the simpler model (Eq. (5)) asserts that there should be no expected
abnormal returns, or, more specifically, that

𝛼 = 0.

This implication can be seen by comparing Eqs. (5) and (7), bearing in mind
that the expected value of the error term in the regression (e in Eq. (7)) is
zero by design. However, in reality, we observe that

𝛼 = 𝛾 (1 − 𝛽), (8)

which can be seen when Eqs. (6) and (7) are compared.
Thus, empirical measurements imply that stocks (and portfolios) with

systematic risk (beta) lower than that of the market portfolio exhibit a pos-
itive abnormal return, whereas stocks and portfolios with betas higher than
that of the market show negative abnormal returns. That is, high-risk stocks
are observed to return less than what is predicted by the simple theory,
and the converse for low-risk stocks. Moreover, the lower the beta, the
higher the alpha, and conversely. This empirical result is sometimes called
the alpha effect.

Thus, the actual behavior of capital markets differs in an important
aspect from that predicted by the simple efficient market model described in
the section “The Capital Asset Pricing Model.” This, of course, casts some
doubt on the validity of the assumptions on which this model is based. One
questionable assumption is that each investor is able to borrow without lim-
itation at a rate equal to the rate on the riskless asset. This, we know, does
not correspond to actual behavior. Generally, borrowers pay more than the
risk-free rate RF. The question then naturally arises as to whether remov-
ing the unrealistic assumption of unlimited borrowing at the risk-free rate
would produce a model that is in better agreement with empirical data than
the Capital Asset Pricing Model.

Black (1972) investigated the market equilibrium under the assump-
tion that there is no riskless asset, thereby preventing both borrowing at
a risk-free rate and investing at a risk-free rate. Black has shown that ide-
ally every investor holds a linear combination of the market portfolio and
another portfolio that, though risky, possesses no market risk. This latter
portfolio, which is called the zero-beta portfolio, is composed of long and
short holdings in risky assets in such proportions that the systematic risk, or
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beta, of this portfolio is zero. The zero-beta portfolio (which, taken alone
is not even an efficient portfolio in the sense developed previously in this
chapter), takes on the general role previously played by the riskless asset in
the Capital Asset Pricing Model. The expected rate of return on a security is
still a linear function of the security’s beta. The intercept of this relationship
is the expected rate of return on the zero-beta portfolio. The security market
line can thus be described by the equation

ER = ERZ + 𝛽(ERM − RZ) (9)

where ERZ is the expected rate of return on the zero-beta portfolio. It is
seen that this equilibrium equation is of the form of Eq. (6), and therefore
consistent with the empirical results.

Vasicek (1971) dealt with the case when the riskless asset is available
for investment, but investors cannot borrow at the risk-free rate. These
assumptions correspond better to actual capital markets. This model is
again based on each investor’s minimizing the risk he assumes, while
meeting his requirements in terms of expected return. Vasicek has shown
that there exists a portfolio, called the tangent portfolio, which has the
following properties: Every investor whose expected return requirements do
not exceed the tangent portfolio’s expected return, invests part of his assets
into the riskless asset and the remaining part into the tangent portfolio. An
investor with higher return requirements (which of course means taking
more risk) will hold a combination of the tangent portfolio and the market
portfolio.

The set of efficient portfolios is therefore composed of two parts: The
first part consists of all combinations of the riskless asset and the tangent
portfolio. The second part comprises all combinations of the tangent portfo-
lio and a long position in the market portfolio. To select a portfolio satisfying
his requirements, an investor can therefore separate the task of identifying
suitable combinations of risky assets from the selection of risk level. The
result can again be called the separation theorem.

The tangent portfolio itself is an efficient portfolio. It is a linear com-
bination of the zero-beta portfolio and the market portfolio. Vasicek has
shown that the tangent portfolio is that combination of assets with the high-
est expected excess return to standard deviation ratio of all combinations of
risky assets.

In this model, the security market line is given by Eq. (9). Moreover, it
is shown that the expected rate of return on the zero-beta portfolio is not
smaller than the risk-free rate RF,

ERZ ≥ RF.
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Since the constant 𝛾 in Eq. (8) is equal to ERZ − RF (as is readily seen by
comparing Eqs. (6), (7), and (9)), it follows that

𝛾 ≥ 0

and therefore, the possible existence of the alpha effect is admissible in the
generalized efficient market model, providing substantially better correspon-
dence between the theoretical model and empirical tests.

This generalized capital asset pricing model then permits replacement of
the two propositions at the beginning of this section by the following two:

1. In an efficient market, each investor holds either a combination of the
riskless asset and the tangent portfolio, or a combination of the tangent
portfolio and long holdings in the market portfolio. The choice between
the two alternatives, and within each alternative, depends solely on the
investor’s attitude towards risk and expected return.

2. In an efficient market, the expected excess rate of return on each secu-
rity or portfolio is linearly related to the systematic risk, or beta, of that
security. The intercept of the security market line is equal to the expected
excess return on the zero-beta portfolio, and is non-negative. The gen-
eralized model thus takes the form

ERi − RF = ERZ − RF + 𝛽i (ERM − RF).

The abnormal return 𝛼 is related to beta by the relationship

𝛼i = (ERZ − RF) (1 − 𝛽i).

Thus, stocks or portfolios with low betas may have positive alphas, and
stocks or portfolios with high betas may have negative alphas. But since
alphas also may be zero, as well as positive, the efficient market model dis-
cussed in this chapter is a special case of the more generalized efficientmarket
model.

The descriptive aspect of this generalized efficient market model, as sum-
marized in the second point, is consistent with empirical results. While the
normative aspect of the first point is not necessarily met by all investors, it
may be noted that it still corresponds reasonably well to the actual behav-
ior of large institutional investors. Those investors who exhibit strong risk
aversion often hold a combination of riskless assets and a low to medium
risk portfolio of common stocks. The equity portion of their holdings can
be interpreted as an attempt to obtain the tangent portfolio. With increased
total risk, the riskless portion decreases and the risky part increases, prob-
ably without a considerable shift in the composition of the equity portion.
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Holdings of investors with even higher risk are often characterized by no
riskless asset, while a portfolio of more risky common stocks is held in var-
ious proportions to the low-risk part.

In conclusion, it has been argued in this section that the capital asset
pricing model can be generalized to correspond better to empirical observa-
tions by making the assumptions of the model more realistic. In particular,
the possible existence of the alpha effect can be derived from the general-
ized model. While the more generalized models in this section certainly are
not the final word in the theory of capital markets, the ability of the effi-
cient market model to be generalized in various directions demonstrates the
viability of the simplest form of the model.

CONCLUSION

The concluding remarks can appropriately contain some “so-what?” over-
tones, provided the reader is forewarned that we present these speculations
without much support. We have, in fact, decided to exclude specific refer-
ences to supporting materials since concluding remarks are hardly the appro-
priate point to introduce new evidence—especially since we have attempted,
in this paper, to deal only with the concepts of the efficient market models
and not with their empirical support. Having offered this warning, we now
proceed to what we think are some plausible assertions.

If the efficient market model is to be applicable to real capital markets,
and not idealized ones, it must be able to explain actual observed price
changes. The beta coefficient in the model has been estimated by numer-
ous investigators and found to be usefully stable and to be related in the
predicted way to rate of return: the higher the beta, the higher the observed
rate of return. This fact alone is sufficient to place the efficient market model
in that rare class of theories that can be usefully employed. Given this fact,
one may also expect that the efficient market model will be put to work in
numerous ways (as, indeed, it has been) by practicing investors.

The efficient market model was developed under some simplifying
assumptions concerning zero transactions costs and rapid information
dissemination. However, the empirical findings to date tend to conform to
the implications of the model, suggesting that these assumptions may be
relaxed. Actually, it has been shown that the basic conclusions of the model
hold under much more general assumptions—adding further confirmation
to the empirical evidence. Thus, the reader should be cautious about
rejecting the efficient market model for what he may correctively perceive
to be unrealistic assumptions in the simplified model presented here.

The efficient market model is seen to be elegantly simple by many who
have thoughtfully studied it. Less careful appraisals may tend to precipitate
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the view that a model containing considerably more variables is still waiting
to be “discovered.” The present model, it may be argued, does not take
certain obvious effects into consideration—such as market ability, industry,
management, foreign competition, and government policies. Still, the model
works remarkably well—suggesting that these effects do get imbedded in
prices, the behavior of which empirical studies find to be so efficient. The
model is, we assert, much richer than its simplicity may suggest.

The thoughtful investor may find it profitable to ask himself: “Unless I
know the beta of my portfolio, what evidence do I have that the returns are
not systematic, rather than specific, returns? And if they are indeed specific
returns, what assurance do I have that the portfolio has earned them con-
sistently enough to justify the extra risk incurred in departing from perfect
diversification?”
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CHAPTER 23
A Risk Minimizing Strategy for

Portfolio Immunization

By H. Gifford Fong and Oldrich A. Vasicek

ABSTRACT

Consider a fixed-income portfolio whose duration is equal to the length of
a given investment horizon. It is shown that there is a lower limit on the
change in the end-of-horizon value of the portfolio resulting from any given
change in the structure of interest rates. This lower limit is the product of
two terms, of which one is a function of the interest rate change only and
the other depends only on the structure of the portfolio. Consequently, this
second term provides a measure of immunization risk. If this measure is
minimized, the exposure of the portfolio to any interest rate change is the
lowest.

INTRODUCTION

The traditional theory of immunization as formalized by Fisher and Weil
(1971) defines the conditions under which the value of an investment in a
bond portfolio is protected against changes in the level of interest rates. The
specific assumptions of this theory are that the portfolio is valued at a fixed
horizon date, that there are no cash inflows or outflows within the horizon,
and that interest rates change only by a parallel shift in the forward rates.
Under these assumptions, a portfolio is said to be immunized if its value
at the end of the horizon does not fall below the target value, where the
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target value is defined as the portfolio value at the horizon date under the
scenario of no change in the forward rates. The main result of this theory is
that immunization is achieved if the duration of the portfolio is equal to the
length of the horizon.

The assumption that interest rates can only change by a parallel shift
(that is, by the same amount for all maturities) has been the subject of consid-
erable concern. Bierwag (1977; 1978), Bierwag and Kaufman (1977), Khang
(1979), and others have postulated alternative models of interest rate behav-
iors. Each of these specifications implies a different measure of duration,
with immunization attained if this duration measure is equal to the horizon
length. A limitation of this approach is that the portfolio is protected only
against the particular type of interest rate change assumed.

In a more recent development, Cox et al. (1979), Brennan and Schwartz
(1981), and others have investigated immunization conditions when interest
rates are governed by a continuous process consistent with a market equi-
librium. Depending on the specification of the interest rate process, there
is a duration-like measure (possibly multidimensional, as in Brennan and
Schwartz) such that the portfolio is immunized if a proper value of this mea-
sure is maintained. This assumes a continuous rebalancing of the portfolio.
Again, immunization is achieved only if interest rate changes conform to the
specific process assumed.

In this chapter, we wish to pursue a different approach. If it turned out
that the portfolio exposure to an arbitrary type of interest rate change were
determined by some characteristic of the portfolio, then this characteristic
could be considered a measure of immunization risk. By minimizing this risk
measure, the portfolio could be structured to have as little vulnerability as
possible to any interest rate movement.

It is shown in this chapter that there is a lower limit on the change in
the end-of-horizon value of an immunized portfolio for an arbitrary interest
rate change. This lower limit is a product of two terms. One of these terms
depends only on the type and magnitude of the rate change, while the other
term depends solely on the structure of the portfolio. This second term pro-
vides the desired measure of immunization risk, since, when it is small, the
exposure of the portfolio to any interest rate change is small.

As in Fisher and Weil, we will consider interest rate shocks of finite
magnitude, rather than infinitesimal rate changes with continuous portfolio
rebalancing. This appears to be a more relevant approach for applications,
since in practice rates will always move by a noninfinitesimal amount before
the portfolio can be restructured.

The main result is stated in the form of a theorem in the next section, fol-
lowed by a discussion of the concept. The mathematical proof of the theorem
is given in the Appendix.
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IMMUNIZATION RISK

Consider a portfolio at time s0 = 0 to be immunized with respect to a given
horizonH. Let C1,C2,… ,Cm be the payments on the portfolio, due at times
s1, s2,… , sm, and denote by I0 the initial portfolio value,

I0 =
m∑

j=1
CjP0(sj). (1)

Here P0(t) is the current discount function of term t. If i(t) is the current
forward rate of term t, t ≥ 0, the discount function can be written as

P0(t) = exp
(
−∫

t

0
i (𝜏)d𝜏

)
.

Let D be the Macaulay duration of the portfolio, defined as

D =
m∑

j=1
sjCjP0(sj)∕I0. (2)

Define the target value IH of the investment at the horizon date as the
end-of-horizon value of the portfolio if the forward rates do not change,

IH = I0∕P0H. (3)

As shown by Fisher andWeil (1971), if the portfolio durationD is equal
to the length of the horizon, the target value IH is a lower bound of the
terminal value of the portfolio regardless of any parallel shift in interest rates.
If rates of different maturities change by different amounts, the IH is not
necessarily a lower bound on the end-of-horizon investment value. In order
to establish a measure of immunization risk, we shall analyze the change in
the terminal value of a given portfolio for a given (nonparallel) rate change.

The amount by which the terminal value of the portfolio may be short of
the target, as a result of an interest rate change, will depend on the character
and magnitude of the change as well as on the structure of the portfolio. The
immunity of a portfolio to parallel rate changes is attained as a consequence
of balancing the effect of changes in reinvestment rates on payments received
during the horizon against the change in capital value of the portion of the
portfolio still outstanding at the end of the horizon. For a nonparallel change
in interest rates, such balancing may not take place. Consider the case when
the change in short rates is algebraically less than the change in long rates
(for example, short rates decline while long rates go up). Such a scenario,
characterized by an increase in the slope of the interest rate structure, will
result in a decline of the terminal portfolio value below the target. The larger
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the magnitude of such a twist of the yield curve, the bigger the resulting
shortfall will be for a given portfolio.

Not all portfolios, however, will be affected by a given change equally.
Consider a “barbell” portfolio composed of very short and very long bonds,
and a “bullet” portfolio consisting of low-coupon securities with maturi-
ties close to the horizon date. Assume that both portfolios have durations
equal to the horizon length. Should short rates go down and long rates go
up, both portfolios will realize a decline in the end-of-horizon value, since
they experience a capital loss in addition to lower reinvestment rates. The
decline, however, would be substantially higher for the barbell portfolio for
two reasons. First, the lower reinvestment rates are experienced on the bar-
bell portfolio for longer time intervals than on the bullet portfolio, so that the
opportunity loss is much greater. Second, the portion of the barbell portfolio
still outstanding at the horizon date is much longer than that of the bullet
portfolio, which means that the rate increase would result in a much steeper
capital loss.

To characterize these arguments quantitatively, suppose that the forward
rates change instantaneously from i(t) to i′(t) = i(t) + Δi(t), where Δi(t) is an
arbitrary function of the term t. Consider a portfolio whose duration is equal
to the horizon length, and denote by ΔIH the corresponding change in the
portfolio value as of the horizon date. We will state the following theorem,
a proof of which is given in the Appendix:

Theorem 1. Let K be an arbitrary constant. If dΔi(t)∕dt ≤ K for all t ≥ 0,
then

ΔIH∕IH ≥ −1∕2K ⋅M2, (4)

where

M2 =
m∑

j=1
(sj −H)2CjP0(sj)∕I0. (5)

The inequality in (4) provides a lower bound on the change in the ter-
minal value of the portfolio. The theorem states that this lower bound is the
product of two terms. The first term, −1∕2K, is a function of the interest rate
change only, while the second term, M2, depends solely on the structure of
the investment portfolio.

The quantity K can be interpreted as an upper bound, over maturity, on
the change in the slopeof the termstructure.Note that thederivativedΔi(t)∕dt
is with respect to the term, not time. In effect, this quantity characterizes the
twist of the yield curve. Since the rate change can be arbitrary, the maximum
slope change is an uncertain variable, outside the control of the investor.
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The investor, however, can determine the portfolio composition and
therefore the quantityM2. This term, which is a multiplier of the unknown
rate change, is a measure of risk for an immunized portfolio, since it
determines the exposure of the portfolio to rate changes. The lower bound
for the change in the end-of-horizon value of the investment as a result
of an arbitrary rate change is proportional to M2. Note that to justify M2

as a measure of risk, no assumptions are necessary about the nature or
dimensionality of the stochastic process that governs the behavior of the
term structure of interest rates.

To gain insight into the meaning of the risk measure M2, note the sim-
ilarity in form of M2 in Eq. (5) to the definition of duration in Eq. (2).
While duration is a weighted average of time to payments on the portfo-
lio, the weights being the present value of the payments, M2 is a similarly
weighted variance of time to payments around the horizon date. If the port-
folio payments occur close to the end of the horizon, as with a portfolio
of deep-discount bonds maturing close to the horizon date, M2 is low. If
the payments are widely dispersed in time, as with a portfolio consisting
of very short bonds and very long bonds, M2 is high. The theorem states
that a low M2 portfolio has less exposure to whatever the change in the
interest rate structure may be than a highM2 portfolio. An optimally immu-
nized portfolio that has the minimum exposure to interest rate changes is
obtained by minimizing the risk measureM2, subject to the duration condi-
tion D = H and any portfolio constraints. It may be noted thatM2 is linear
in the portfolio weights, so that minimizing M2 can be written as a linear
program.

The risk measureM2 is always nonnegative. It attains its lowest possible
value of zero if and only if the portfolio consists of a single discount bond
with maturity equal to the length of the horizon. This is indeed the perfectly
immunized portfolio, since no interest rate change affects its end-of-horizon
value. Any other portfolio is to some extent vulnerable to an adverse interest
rate movement. The immunization risk M2 in effect measures how much a
given portfolio differs from this ideally immunized portfolio consisting of
the single discount bond.

It may be pointed out that the previous theorem contains, as a special
case, the main result of classical immunization theory. Indeed, for parallel
shifts, we have

d
dt

Δi(t) = 0

for all t ≥ 0, which then implies ΔIH ≥ 0 for any portfolio whose duration
is equal to the horizon length.
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APPENDIX: PROOF OF THE THEOREM

Suppose that forward rates change from i(t) to i′(t) = i(t) + Δi(t). The dis-
count function then becomes

P′
0(t) = exp

(
−∫

t

0
i′ (𝜏)d𝜏

)

= P0(t) exp
(
−∫

t

0
Δi (𝜏) d𝜏

)
.

The change ΔIH in the end-of-horizon value of the portfolio due to the
change Δi(t) in the forward rates is

ΔIH =
m∑

j=1
CjP

′
0(sj)∕P

′
0(H) −

m∑

j=1
CjP0(sj)∕P0(H)

=
m∑

j=1
Cj exp

(

∫
H

sj

Δi (𝜏)d𝜏

)

P0(sj)∕P0(H) −
m∑

j=1
CjP0(sj)∕P0(H),

or

ΔIH =
m∑

j=1
f (sj)CjP0(sj)∕P0(H) − I0∕P0(H), (A1)

where
f (t) = exp

(

∫
H

t
Δi (𝜏)d𝜏

)
.

Let
g(t) = d

dt
Δi(t).

Then
Δi(H) − Δi(𝜏) = ∫

H

𝜏

g(u)du

and

∫
H

t
Δi(𝜏)d𝜏 = Δi(H) ⋅ (H − t) − ∫

H

t
d𝜏∫

H

𝜏

g(u)du

= Δi(H) ⋅ (H − t) − ∫
H

t
(u − t)g(u)du.
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Assume that g(t) ≤ K for all t ≥ 0. If t ≤ H, then

∫
H

t
(u − t)g(u)du ≤ K∫

H

t
(u − t)du = 1∕2K(h − t)2.

If t > H, then

∫
H

t
(u − t)g(u)du =∫

t

H
(t − u)g(u)du ≤ K∫

t

H
(t − u)du = 1∕2K(h − t)2.

Therefore,

∫
H

t
(u − t)g(u)du ≤ 1∕2K(H − t)2

for all t ≥ 0, and, consequently,

∫
H

t
Δi(𝜏)d𝜏 ≥ Δi(H) ⋅ (H − t) − 1∕2K(H − t)2.

Since ex ≥ 1 + x, we have

f (t) = exp
(

∫
H

t
Δi (𝜏)d𝜏

)

≥ 1 + ∫
H

t
Δi(𝜏)d𝜏

≥ 1 + Δi(H) ⋅ (H − t) − 1∕2K(H − t)2.

From Eq. (A1), we then have

ΔIH ≥
m∑

j=1
[1 + Δi(H) ⋅ (H − sj) − 1∕2K(H − sj)2]CjP0(sj)∕P0(H) − I0∕P0(H)

= −1∕2K
m∑

j=1
(H − sj)2CjP0(sj)∕P0(H)

= −1∕2KM2IH,

which completes the proof.
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CHAPTER 24
The Tradeoff between Return

and Risk in Immunized Portfolios

By H. Gifford Fong and Oldrich Vasicek

ABSTRACT

The target value of an immunized portfolio at the horizon date defines the
portfolio’s target rate of return. If interest rates change by parallel shifts for
all maturities, the portfolio’s realized rate of return will not be below the
target value. To the extent that nonparallel rate changes occur, however, the
realized return may be less than the target value.

The relative change in the end-of-horizon value of an immunized port-
folio resulting from such an arbitrary rate change will be proportional to
the value of its immunization risk. Immunization risk equals the weighted
variance of times to payment around the horizon date, hence depends on
portfolio composition. For example, immunization risk will be low if port-
folio payments cluster around the end of the horizon and high if payments
are widely dispersed in time. One may minimize the extent to which a port-
folio’s realized return differs from its target return by minimizing the portfo-
lio’s immunization risk (while keeping the portfolio’s duration equal to the
remaining horizon length).

Although risk minimization is the traditional objective of immuniza-
tion, the immunization risk measure may also be used to optimize the
risk-return tradeoff. The standard deviation of an immunized portfolio’s
rate of return over the investment horizon will be proportional to the value

Financial Analysts Journal, 39 (5) (1983), 73–78.
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of its immunization risk. Thus an investor may choose from immunized
portfolios of equal duration a portfolio with a high level of immunization
risk in order to maximize his expected return.

INTRODUCTION

The traditional theory of immunization, as formalized by Fisher and Weil
in 1971, assumed that a portfolio is valued at a fixed horizon date, that
there are no cash inflows or outflows within the horizon, and that interest
rates can change only by a parallel shift (that is, by the same amount for
rates of all maturities). Under these assumptions, a portfolio is said to be
immunized if its value at the end of the horizon does not fall below the
target value, the target being defined as the value at the horizon date under
the scenario of no change in the forward rates. The main result of this theory
is that immunization is achieved if the duration of the portfolio is equal to
the length of the horizon.

Immunization theory and practice have developed in a number of direc-
tions since the work by Fisher and Weil. The most significant development
has been in overcoming the limitations of a fixed horizon with no contri-
butions or withdrawals. Marshall and Yawitz (1974), for instance, demon-
strated that, even if the value of an immunized portfolio declines because
of interest rate changes over the investment horizon, a lower bound on the
value of the portfolio exists at any point during the investment period. Fong
and Vasicek (1980) and Bierwag, Kaufman, and Toevs (1983) subsequently
addressed the multiple liabilities situation. Multiple liability immunization
involves an investment strategy that guarantees that a specified schedule of
future liabilities will be met, regardless of any parallel interest rate shifts. The
amount of initial investment necessary for multiple liability immunization is
equal to the present value of the liability stream under the initial interest rate
structure (cf., for instance, Fong and Vasicek (1980)).

Immunization theory has also been extended to allow relaxation of
the assumption of parallel changes in interest rates. Most of the work in
this area—such as Bierwag (1978), Cox, Ingersoll, and Ross (1979), and
Brennan and Schwartz (1983)—postulates alternative models of interest
rate behavior and derives modified definitions of duration corresponding
to the assumed interest rate process. A limitation of this approach is that
immunity is achieved only against the assumed type of rate changes. A
different approach to nonparallel rate changes described in Fong and
Vasicek (1980) is to establish a measure of immunization risk for an
arbitrary interest rate change; this risk can then be minimized, subject
to the duration condition and other constraints, to obtain an optimally
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immunized portfolio. Whereas duration measures the mean time to payment
on a portfolio, the proposed risk measure represents the time-to-payment
variance around the liability dates, hence the exposure of the portfolio to
relative changes of rates of different maturities.

Finally, immunization techniques have recently been used in con-
junction with elements of active bond investment strategies. The classical
objective of immunization has been risk protection, with little consideration
of possible returns. Leibowitz and Weinberger (1981) proposed a scheme
called contingent immunization, which provides a degree of flexibility in
pursuing active strategies while ensuring a certain minimum return in the
case of parallel rate shifts. With this approach, immunization serves as
a fall-back strategy if the actively managed portfolio does not grow at a
certain rate.

This article explores the risk-return tradeoff for immunized portfolios
using a very different approach. The strategy proposed here maintains the
duration of the portfolio at all times equal to the horizon length (or, in the
multiple-liability case, keeps the generalized immunization conditions sat-
isfied). Thus, the portfolio always remains fully immunized in the classical
sense. However, instead of attempting to minimize the portfolio’s immuniza-
tion risk—that is, its vulnerability to arbitrary rate changes—this strategy
aims for an optimal tradeoff between risk and return. The immunization
risk measure can be relaxed if the compensation in terms of expected return
warrants it.

Specifically, the strategy maximizes a lower bound on the portfolio’s
return. The lower bound is defined as a confidence interval on the realized
return for a given probability level. The optimal portfolio therefore has the
following characteristics:

1. It is completely immunized against parallel rate shifts, so the target rate
of return is guaranteed as long as rates of various maturities change by
the same amount.

2. Its level of immunization risk for arbitrary nonparallel rate changes is
measured and minimized in the tradeoff with expected return.

3. Maximization of the expected portfolio return is included in the objec-
tive function together with risk consideration by maximizing a lower
bound on return.

PORTFOLIO VALUE AND INTEREST RATE CHANGES

The duration of a bond portfolio is defined as the weighted average time
to all the portfolio payments, the weights being the present values of the
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payment amounts. Mathematically, duration can be written as:

D =
m∑

i=1
tiCiP0(ti)∕I0, (1)

where:

m = the number of portfolio payments (interest and principal),
Ci = the amount of the payment due at time ti, i = 1, 2,… ,m,

P0(t) = the current discount function—that is, the present value of a
unit payment expected at time t, and

I0 = the initial portfolio value, equal (by definition of the discount
function) to the sum of the present values of the payments.

Assume that a portfolio has been constructed to have its duration equal
to the investment horizon H. If interest rates do not change (in the sense
that the forward rates stay the same), the portfolio, including reinvestment
of portfolio cash flows received over the horizon, will have a certain value
at the horizon date. This value, denoted by IH, is called the target value.

Now suppose that, after the portfolio has been constructed, interest rates
do change, but in such away that rates of all maturitiesmove, up or down, by
the same amount. This is called a parallel shift of interest rates. The resulting
change in the portfolio value at the horizon date,ΔIH, will never be negative.
In other words, the portfolio’s terminal value will not fall below the target
value because of a parallel shift of the yield curve. This is the principal result
of the traditional immunization theory.

This immunization against changes in the level of rates is achieved by
balancing the changes in reinvestment rates against capital gains or losses.
Suppose that rates of all maturities increase by a given amount. Because the
average time to payments (the portfolio’s duration) is equal to the length of
the horizon, there are some portfolio payments before the horizon date and
some after the horizon date. The portion of the portfolio still outstanding
at the horizon date will experience a capital loss. This loss, however, will
be compensated for by the reinvestment of the portfolio payments received
over the horizon at rates higher than those originally expected. Conversely, if
rates of all maturities decrease by a like amount, the lower value of reinvest-
ment is balanced by capital gains on the longer portion of the portfolio. The
condition that the portfolio duration be equal to the horizon length assures
that the magnitudes of the opposing changes in the reinvestment amounts
and the principal values are such as to keep the end-of-horizon portfolio
value from falling below the target value.

This balancing act obviously works only if rates of various maturities
move in the same direction and by the same amount. If, instead of a parallel
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shift of the initial yield curve, there is a more complicated rate change, immu-
nization may not take place. If the yield curve twists in such a way that
short rates decline while long rates increase, the portfolio will suffer both a
decrease in reinvestment rates and a capital loss on the longer portion, and
its value at the horizon date will be below the target. We refer to such a
possibility as immunization risk.

If immunization risk could be measured, immunized portfolios could be
constructed to minimize this risk. For instance, there may be a number of
portfolios having the same investment horizon and duration, each having
a different degree of exposure to nonparallel rate changes. A quantitative
measure of this exposure, independent of assumptions about the character
of the possible changes in the interest rate structure, would be desirable.

IMMUNIZATION RISK

Fong and Vasicek (1984) (Chapter 23 of this volume) have shown that the
change ΔIH in the end-of-horizon value of an immunized portfolio resulting
from an arbitrary change in interest rates is approximated by the following
equation:

ΔIH
IH

= −M2Δs. (2)

Here Δs is the change in the slope of the term structure of interest rates; this
quantity characterizes the degree of twist of the yield curve. The termM2 is
given by the formula:

M2 =
m∑

i=1
(ti −H)2CiP0(ti)∕I0. (3)

Eq. (2) has an interesting structure. It expresses the relative change in
the end-of-horizon portfolio value as a product of two terms. The first term,
M2, depends solely on the structure of the portfolio, whereas the second
term, Δs, is a function of the interest rate change only. The investor has
no control over the quantity Δs; it is an uncertain variable that can take
any value. The investor can, however, determine the portfolio composition,
hence the quantityM2. As a multiplier of the unknown rate change, this term
measures the extent to which the portfolio can be affected by such a change.
The change in the end-of-horizon value of the investment resulting from an
arbitrary rate change is thus proportional to M2, and M2 is a measure of
immunization risk.

To gain an insight into the meaning of the risk measureM2, note the sim-
ilarity in form betweenM2 in Eq. (3) and the definition of duration in Eq. (1).
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Whereas duration is a weighted average of time to portfolio payments, the
weights being the present values of the payments,M2 is a similarly weighted
variance of times to payment around the horizon date. If the portfolio pay-
ments occur close to the end of the horizon (as would be the case with a
portfolio of deep-discount bonds maturing close to the horizon date),M2 is
low. If the payments are widely dispersed in time (as would be the case with
a portfolio consisting of very short bonds and very long bonds),M2 is high.

It is not difficult to see why a barbell portfolio composed of very short
and very long bonds should be more risky than a bullet portfolio consisting
of low-coupon issues with maturities close to the horizon date. Assume that
both portfolios have durations equal to the horizon length, so that both
portfolios are immune to parallel rate changes. When interest rates change
in an arbitrary nonparallel way, however, the effect on the two portfolios is
very different.

Suppose, for instance, that short rates decline and long rates increase.
The end-of-horizon values of both portfolios would fall below the target,
since both portfolios would experience a capital loss in addition to lower
reinvestment rates. The decline, however, would be substantially higher for
the barbell portfolio than for the bullet portfolio, for two reasons. First,
the barbell portfolio experiences lower reinvestment rates for a longer time
interval than the bullet portfolio, so its opportunity loss is much greater.
Second, the portion of the barbell portfolio still outstanding at the horizon
date is much longer than that of the bullet portfolio, which means that the
same rate increase will result in a much steeper capital loss for the former.
The lowM2 bullet portfolio has less exposure to whatever the change in the
interest rate structure may be than the high M2 barbell portfolio.

Note that the risk measureM2 is always nonnegative. It attains its low-
est possible value of zero if and only if the portfolio consists of a single
discount bond with maturity equal to the length of the horizon. This is
indeed the perfectly immunized portfolio; no interest rate change can affect
its end-of-horizon value. Any other portfolio is to some extent vulnerable
to an adverse interest rate movement. The immunization risk M2 in effect
measures how much a given portfolio differs from this ideally immunized
portfolio consisting of the single discount bond.

CONFIDENCE INTERVALS

The target value of an immunized portfolio at the horizon date IH defines the
target rate of return R∗ over the horizon. If immunization works as assumed,
the realized rate of return R will not be below the target value. This will
be the case if interest rates change only by parallel shifts for all maturities.
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To the extent that nonparallel rate changes occur, the realized return may be
less than the target return.

Minimizing immunization risk M2 during the horizon (while keeping
the portfolio duration equal to the remaining horizon length) will minimize
the extent to which the realized return differs from the target return. Unless
a portfolio can be constructed with zeroM2, however, the immunized port-
folio is subject to some risk. A common way of characterizing the effect of
this risk on the investment is by the variance of return (or its square root,
the standard deviation).

Eq. (2) can be used in deriving an expression for the standard deviation
of the rate of return over the horizon, but not without further work. This
equation only characterizes the portfolio’s response to a single, instan-
taneous change in interest rates (an interest rate shock). Over an entire
investment horizon, changes in the level and shape of the yield curve can
be thought of as a series of interest rate shocks, each of which affects the
portfolio’s terminal value. The resulting change in value over the whole
horizon is then an aggregate of these individual impacts. By Eq. (2), each
such impact is proportional to what the portfolio M2 was at the time. To
measure the total impact, it is necessary to establish the statistical properties
of the variable Δs, the change in the slope of the term structure.

Assuming that the subsequent values of change in the slope of the yield
curve are independent random variables with a common variance 𝜎2s , the
effects of the individual rate shocks can be integrated over the total horizon,
subject to a function describing howM2 changes with the remaining time to
horizon. This results in a formula for the standard deviation of return:

𝜎R = aHM
2
𝜎s, (4)

where:

𝜎R = the standard deviation of the rate of return over the horizon,
𝜎s = the standard deviation of the change in slope of the term

structure (which can be estimated from historical data),
M2 = the risk measure for the initial immunized portfolio, and
aH = a constant that depends only on the horizon length.

Note that the standard deviation of return in Eq. (4) is again propor-
tional to M2. A portfolio whose M2 is half the value of another portfolio’s
can be expected to produce half the dispersion of realized returns around
the target value, when submitted to a variety of interest rate scenarios, than
the other portfolio.

The standard deviation of return as given by Eq. (4) can be used in
the construction of confidence intervals. A confidence interval represents an
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uncertainty band around the target return within which the realized return
can be expected with a given probability. It can be provided in the form:

R = R∗ ± k𝜎R, (5)

where k is the critical value corresponding to the given confidence level. The
value of k can be obtained from tables of normal distribution. For instance,
to construct an interval within which the realized return can be expected
with 95 percent probability, the value of k is 1.96.1

RISK AND RETURN

In a narrow sense, the objective of immunization is risk minimization. Given
M2 as a measure of a portfolio’s exposure to general interest rate changes,
construction of an immunized portfolio then becomes an optimization prob-
lem of the following structure:

Minimize the immunization risk M2 subject to

1. immunization condition D = H and
2. investment policy requirements.

The investment policy requirements can include restrictions such as min-
imum or maximum holdings of individual securities or groups of securities
(for instance, issuing sector or quality requirements). It is also possible to
include transaction constraints or turnover limits in the optimization.

In some situations, strict risk minimization may be deemed too restric-
tive. Because not all bonds are priced exactly on the current term structure of
interest rates, there are yield differentials within the available universe that
may be exploited to enhance the target return. If a substantial increase in the
target return can be accomplished with little effect on immunization risk,
then the higher yielding portfolio may be preferred in spite of its higher risk.

Consider an optimally immunized portfolio that has a target return of
13 percent over the horizon, with a 95 percent confidence interval of ±0.20
percent. This means that the minimum risk portfolio would have a 1 in 40
chance of realizing a return less than 12.8 percent. Suppose that another
portfolio, less well immunized, can produce a target return of 13.3 percent
with a 95 percent confidence interval of±0.30 percent. In all but one case

1The use of normal tables is justified by the fact that the return differential can be
thought of as the result of a large number of independent interest rate changes, so
that the central limit theorem is in effect.
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out of 40, this portfolio would realize a return above 13 percent, compared
with 12.8 percent on the minimum-risk portfolio. For many investors, this
may be a preferred tradeoff.

It is possible to set up the optimization problem in such a way that,
instead of risk minimization, the risk-return tradeoff is optimized. This can
be accomplished by maximizing a lower bound on the realized return corre-
sponding to a given confidence level. Since the confidence interval width in
Eq. (5) is proportional toM2, the objective function is a linear combination
of the target return R∗ and the risk measure M2. It could be written in an
equivalent form as:

MinimizeM2 − 𝜆R∗

where the value of the coefficient 𝜆 depends on the desired confidence level.
This objective function represents a tradeoff between immunization risk

and target return. If the parameter 𝜆 is small (corresponding to a high con-
fidence level for the lower bound), the emphasis in the construction of the
optimal portfolio is on risk. In the extreme case of 𝜆 being equal to zero, the
objective would be strict risk minimization. On the other hand, if 𝜆 is high
(such as for low confidence levels), the primary concern of the optimization is
maximum return. The other extreme case of 𝜆 being equal to infinity would
correspond to maximization of return subject only to the requirement that
the portfolio be immunized against parallel rate shifts. This would mean
selecting the highest return portfolio among all portfolios with durations
equal to the horizon length.

By varying the coefficient 𝜆 over its range, it is in fact possible to
obtain efficient frontiers for immunized portfolios, analogous to those in
the mean-variance framework.
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CHAPTER 25
Bond Performance:

Analyzing Sources of Return

By Gifford Fong, Charles Pearson, and Oldrich Vasicek

Measuring the performance of bond portfolios has been an evolutionary
effort. Early work focused on measuring the total return of the portfolio

(Bank Administration Institute 1968). This involved establishing alterna-
tive measures of performance suitable for comparing the total return of one
portfoliowith another. The performance of a given portfolio can then be con-
trasted with that of an index, other portfolios, and the investment objectives
of the fund sponsor. While this allows an assessment of the total portfolio
results relative to the market conditions, it provides an insufficient insight
into the underlying causes of the experienced performance. Explaining how
the actual portfolio return was achieved is also an important objective of
performance analysis.

Understanding the sources of the return of a portfolio can help in
monitoring the effectiveness of the management process and in identifying
its strengths and weaknesses. The manager can more effectively evaluate
the consequences of the decision-making process. A framework providing
sources of return may also serve as a communication aid for clients or
for marketing purposes. For the portfolio sponsor, this analysis promotes
insight into where and how much contribution to return has been made
from the various sources of return. This is useful again as an aid to
communication and also in the selection of managers by desired skill
or style.

Journal of Portfolio Management, 9 (3) (1983), 46–50.
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An explanation of the observed performance takes the form of decom-
posing the total return into components corresponding to the various sources
of return. For equity portfolios, a framework for such analysis was presented
in Fama (1972). A component analysis of bond portfolio performance was
given in Dietz, Fogler, and Hardy (1980). These break the total bond return
into yield tomaturity, interest rate effect, sector/quality effect, and a residual.
While this approach represents a significant development in bond perfor-
mance measurement, it has several limitations. Yield to maturity is taken to
represent the holding-period return under the assumption of no change in
interest rates, which is not quite correct. The sector/quality component may
be misleading, since the way it is calculated does not account for the differ-
ences in the maturity composition of the sectors. Most important, the return
components are identified only for the portfolio as it existed at the begin-
ning of the evaluation period. Thus, any actual management of the portfolio
other than the initial portfolio selection is not included in the appropriate
return components.

The goal of this paper is to extend the capabilities of bond performance
analysis to provide a precise and comprehensive structure both for the mea-
surement of the total realized return and for attribution of the return to its
sources. The approach presented here is based on recent investment technol-
ogy developments, including term structure modeling, which permit a more
refined and precise methodology. The emphasis will be first on identifying
the macro sources of return: external market conditions and the manage-
ment contribution. In further analysis, we will define the micro components
of return, including maturity management, spread/quality management, and
individual security selection.

An important aspect of the performance analysis system outlined next
is that it includes the portfolio activity over the evaluation period. Rather
than just reviewing the performance of a static portfolio as it existed at the
beginning of the period, we include as an integral part of the analysis all
transactions, cash flows, contributions and withdrawals, cash account activ-
ity, and any other changes in the portfolio structure. The components of the
performance also reflect the timing of the managerial decisions.

ANALYSIS OF RETURN

In the evaluation of bond portfolio performance, the first step is the mea-
surement of return on the portfolio over the evaluation period. The next
step is an analysis of return. We can think of analysis of return as the iden-
tification of the factors that contributed to the realized performance and a
quantitative assessment of the contribution of each factor to the total return.
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The total portfolio return is partitioned into components, each component
representing the effect of the given factor.

The first level of this decomposition aims at distinguishing between the
effect of the external interest rate environment and the management con-
tribution. If we separate the effect of circumstances that are outside the
control of the portfolio manager from the effect of the portfolio management
process, we can gain valuable insight into the nature of the portfolio perfor-
mance. Denoting the total realized portfolio return by R, such a partition
can be written as:

R = I + C, (1)

where:

I = the effect of the external interest rate environment beyond the
portfolio manager’s control, and

C = the contribution of the management process.

If the portfolio had no element of management, then the return would
be I, or the return due to the environment. This portfolio can be considered
to be randomly selected from an available universe of fixed-income securi-
ties. As a proxy for this management-free randomly selected portfolio, we
can use the total of all default-free securities, best approximated by all out-
standing U.S. Treasury issues. These are the only available securities that
are truly fixed-income securities in the sense that the promised payments
can be expected with virtual certainty. Including corporate, municipal, or
agency issues constitutes an element of the management process: It involves
a decision to accept a degree of default risk in exchange for higher yields typ-
ically expected on lower quality securities. The standard for identification of
the effect of the internal interest rate environment is thus a value-weighted
Treasury index.

One might argue that the relevant portfolio bogey should vary accord-
ing to investor preference. In the determination of the investor’s investment
objectives, individual preferences are certainly appropriate. The intent here,
however, is to measure the interest rate effect on a universe that involves
no other aspect, such as credit risk or spread relationships. That does not
mean that a comparison of the portfolio return to a broader bond market
index is inappropriate. Such comparison is in fact an integral part of the per-
formance analysis as discussed in this article. It is done by performing the
return analysis for the chosen bogey as well, thus allowing a direct compar-
ison of the resulting components of return between the actual portfolio and
the specialized bogey.

We can achieve a more refined analysis of the external factor component
by partitioning the actual holding-period return on the Treasury index into
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two sources: interest rate level and interest rate change. Higher interest rate
levels mean higher holding-period returns, onwhich the effect of interest rate
changes is then superimposed. The effect of the interest rate environment
thus consists of two components: return that would be realized if interest
rates did not change, and the return due to the actual interest rate change.

To assign a precise meaning to the assumption of no change in interest
rates, we use the basic concepts of the term structure of interest rates. The
discount rates that determine the present value of a unit payment at a given
time in the future are called spot rates. Spot rates are essentially yields on
pure discount bonds. The market value of a coupon bond can be considered
the sum of the present values of its payments, each payment being discounted
by the spot rate corresponding to the maturity of that payment. The yield to
maturity, or the internal rate of return on the bond payments, is a mixture
of spot rates of various maturities.

The future one-period rates implied by the current spot rates are called
forward rates. Forward rates are defined by the property that we can obtain
the spot rates by compounding the forward rates over the term of the spot
rate. If the forward rates do not change, future spot rates will be formed by
compounding the current forward rates over the appropriate future inter-
val. This implies that an investment in a long security would realize the
same return as rolling over a short-term security. As a consequence, for-
ward rates exhibit the following property: Under the scenario of no change
in the forward rates, the holding period returns over a given period are the
same for securities of all maturities and coupons. No other scenario of inter-
est rate development would make the holding period returns independent
of the maturity of the security or portfolio. In this sense, no change in the
forward rates is the most “neutral” forecast, since under this assumption no
maturities or payment schedules would be ex ante preferred to others. This
scenario is often referred to as the market implicit forecast.

One can therefore define the effect of the current level of interest rates
as the return on Treasury bonds under the assumption of no change in the
current forward rates. The effect of the interest rate change is then defined
as the difference between the actual realized return on the Treasury index
and the return under the market-implicit forecast. We can then decompose
the effect of I, the external interest rate environment, in the following way:

I = E + U, (2)

where:

E = return on the default-free securities under the market-implicit
scenario of no change in the forward rates, and

U = return attributable to the actual change in forward rates.
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We can interpret the component E as the expected return on a portfolio
of default-free Treasury securities. The component U is then the unexpected
part of the actual return on the Treasury index, due to the forward rate
change. The sum I of these components is then the actual return on the
Treasury index. We can attribute the difference between the actual portfolio
return and the actual Treasury index return, termed C in Eq. (1), to the
management process.

In evaluating the management contribution C, consider the means by
which themanagement process can affect the portfolio. Three principal man-
agement skills that have an effect on performance include maturity manage-
ment, sector/quality management, and selection of the individual securities.
A partitioning of the management contribution is as follows:

C = M + S + B, (3)

where:

M = return from maturity management,
S = return from spread/quality management, and
B = return attributable to the selection of specific securities.

Maturity management (which might more correctly be called duration
management) is an important tool of a bond portfolio manager and one that
typically has the largest impact on performance. The successful application
of this skill is related to the ability of the manager to anticipate interest
rate changes. Holding long duration portfolios during periods of decreasing
interest rates and short duration portfolios during periods of rate increases
will typically result in superior performance. Being short when rates decline
or long when rates go up will have a negative impact on performance.

Sector and quality management allocates the portfolio among the
alternative issuing sectors and quality groups of the bond market. There
may be spread relationships among the individual sector/quality groups
that the manager may be able to exploit. Having a portfolio concen-
trated in high-quality industrial issues, for instance, during a period
when high-quality industrials generally perform better than other sectors,
would increase the portfolio return. The ability to select the right issuing
sector and quality group at the right time constitutes the sector/quality
management skill.

Selectivity, or individual bond picking, is the skill of selecting specific
securities within a given sector/quality group to enhance the portfolio return.
Individual securities show specific returns over and above the average per-
formance of their sector/quality group. While sector/quality management
means selecting the right market segment, selectivitymeans concentrating on
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the bonds, within that segment, whose specific returns are the most advan-
tageous. As with the other two management skills, selectivity is involved in
the initial portfolio construction as well as in subsequent activities such as
purchases, sales, or swaps within a sector/quality group.

There is a fourth important skill of bond portfolio management, namely,
timing. Timing is not a separate skill, but rather, an aspect of each of the
skills identified earlier. Timing the shift of the portfolio from short to long
duration or vice versa is really an element of maturity management, rather
than an independently exercised ability. Without timing, there would be no
maturity management. Similarly, timing is an essential part of sector/quality
management and a part of choosing the proper bonds within a given
sector/quality group. To provide a meaningful analysis of the portfolio
return, the timing aspect must be included in the calculation of the return
components.

MEASUREMENT OF RETURN COMPONENTS

We can measure the return components by security repricing. Consider
maturity management first. If all securities held during the evaluation period
were Treasury issues and if each issue were consistently priced exactly on
the term structure of default-free rates (so that there would be no specific
returns on any security), the maturity management component M of the
total return would be equal to the difference between the realized total
return R and the effect I of the external environment. In other words, if
the sector/quality effect and the selectivity effect were eliminated, the total
management contribution can be attributed to maturity management. This
means that we can reprice each security as if it were a Treasury issue priced
from the term structure, measure the total return under such pricing, and
subtract the external effect component I to obtain the effect of maturity
management.

Practically, this is accomplished by estimating the term structure of
default-free rates from the universe of Treasury issues as of each valuation
date throughout the evaluation period. The default-free price of each
security held on that date is then calculated as the present value of its
payments discounted by the spot rates corresponding to the maturity of
that payment. The total return over the evaluation period is then calculated
using the default-free prices, but otherwise maintaining all actual activity
in the portfolio, including all transactions, contributions and withdrawals,
cash account changes, and the like. Finally, the actual Treasury index
return over the evaluation period is subtracted to arrive at the maturity
management component M.



Bond Performance: Analyzing Sources of Return 219

To determine the spread/quality management component S of the total
return, we price each security as if it were exactly in line with its own sec-
tor/quality group (that is, with no specific returns), calculate the total return
under such prices, and subtract the total of the external component I and
the maturity management component M.

Here we have to be careful to determine the sector/quality prices
correctly. It is not correct to base the sector/quality pricing on sector/quality
indexes, since the differences in actual performance among various sec-
tor/quality indexes is primarily due to the different maturity composition
of the market segments. For instance, the telephone issues would generally
perform poorly during periods of increasing interest rates, not because they
are telephones but because they are longer than the bond market as a whole.

We therefore adopt the following approach: First, we define a mean-
ingful classification of the bond market by sector/quality groups. We then
estimate the term structure of default-free rates from U.S. Treasury issues.
Next, for each valuation date, we calculate the default-free prices for all secu-
rities existing in the market at that date. We then calculate the spreads, or
yield premia, for each security as the difference between the actual yield and
yield determined from the default-free price. These yield premia are then
averaged over all securities in the given sector/quality group to determine
the average yield premium for the sector/quality group as of the given date.
After all this is done, we can calculate the sector/quality prices of the secu-
rities in the given portfolio by determining their default-free prices from the
term structure, calculating the yield, adding the appropriate average yield
premium depending on the sector/quality of that security, and converting
this yield back to price. When all securities in the portfolio have been priced
according to their sector/quality group at each of the valuation dates, we
calculate the total portfolio return with the sector/quality prices. Again,
the portfolio return with these prices is calculated including all actual pur-
chases, sales, swaps, contributions, and withdrawals. We then obtain the
sector/quality component S of the portfolio management by subtracting the
external effect component and the maturity management component from
the return calculated on the sector/quality prices.

Finally, to determine the selectivity component of the management con-
tribution, we use the actual prices, which reflect the specific returns on each
security. The selectivity component B is thus calculated by subtracting the
total of all previously determined components from the actual total portfolio
return.

In this way, we partition the total portfolio return into five components
as follows:

R = E +U
⏟⏟⏟

I

+M + S + B
⏟⏞⏞⏞⏟⏞⏞⏞⏟

C

(4)
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These components are the effect of interest rate level (E), the effect
of interest rate change (U), the maturity management (M), sector/quality
management (S), and selectivity (B). The first component can also be inter-
preted as the expected return on default-free securities, and the second as
the unexpected component of the actual return on the default-free Treasury
market index. The first two components are the effect of external factors
beyond the control of the portfolio manager, namely, the interest rate envi-
ronment. Their sum is the actual return on the Treasury index. The last three
components reflect factors within the control of the manager, that is, man-
agement skill. Together, they add up to the total management contribution.
The sum of all five components is the actual return on the portfolio.

An alternative way of looking at the composition of the total return
given by Eq. (4), which will reflect theway these components are actually cal-
culated, is to consider the cumulative totals. The first total, E, is the expected
return on a randomly selected portfolio of Treasury issues, calculated assum-
ing no change in interest rates. The second total, E + U, is the actual return
on a randomly selected portfolio of Treasury issues. The third total, E +U +
M, is the return on the actual portfolio (including all activity) as if all securi-
ties were Treasury issues priced on the term structure (i.e., no sector/quality
effects and no specific returns). The fourth total,E +U +M + S, is the return
on the actual portfolio as if all securities were priced according to their issu-
ing sector and quality (i.e., no specific returns). Finally, the fifth total, E + U
+ M + S + B, is the actual portfolio return. The decomposition of the total
return into its components as specified in Eq. (4) provides a meaningful and
informative analysis of the portfolio performance.

The effect of transaction costs is also included by this analysis. As a
transaction is made, the cost is reflected in the price paid for a purchase and
the price received for a sale. This, in turn, is captured in the return due to
the selectivity component. Hence, excessive turnover of the portfolio would
be reflected in the selectivity component of the portfolio.

After we have calculated components of return for the portfolio being
analyzed, we can repeat the same return decomposition for a total bond
market index such as the Lehman Government/Corporate Bond Index. The
return components of the bond index provide benchmarks against which we
can compare the return components of the portfolio.

We will conclude our exposition of the performance measurement by
a discussion of risk adjustments. For equity portfolios, it is customary to
calculate a risk-adjusted return, defined as the actual portfolio beta. Crude
attempts at a similar adjustment for bond portfolios have been made by
substituting the bond portfolio duration relative to an index for the beta
of a stock portfolio. This is incorrect, since duration would measure the
portfolio response only if interest rates always changed by parallel shifts of
the forward rates.
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It turns out that the correct adjustment for interest rate risk would actu-
ally be the maturity management component M as defined previously. Simi-
larly, the sector/quality component Swould be an adjustment for the second
source of risk in the bond market, namely, the default risk. If the invest-
ment policy of a fund constrains the manager as to the maturity compo-
sition and/or sector and quality composition of the portfolio, it may be
appropriate to consider the maturity and/or the sector/quality return com-
ponents risk adjustments. For instance, if both maturity and sector compo-
sition of the portfolio are specifically prescribed by policy, the risk-adjusted
return is equal to the selectivity component B. In general, however, inter-
pretation of the maturity and sector/quality components as risk adjustments
would mean removing the principal sources of return from the observed
performance.

SUMMARY

This paper has described a framework for comprehensively measuring and
understanding the performance of a fixed-income portfolio. Macro com-
ponents include the external interest rate environment and the managerial
contribution to total returns. A more refined perspective is achieved by par-
titioning the external interest rate environment into expected and unex-
pected components. The managerial contribution is further partitioned into
the return components of maturity, sector/quality, and individual security
selection. These components are then contrasted with those of a total bond
market index. An example of the analysis is contained in Table 25.1.

TABLE 25.1 Bond performance analysis

Portfolio: Sample portfolio Beginning date: 1-1-82
Ending date: 3-31-82
Evaluation period returns (%)
Portfolio LBKL Govt/Corp Index

I. Interest Rate Effect
1. Expected 2.89 2.89
2. Unexpected 0.34 0.34

Subtotal 3.23 3.23
II. Management Effect

3. Maturity 0.48 0.10
4. Sector/Quality 1.54 0.23
5. Individual Bonds −0.72 0.00

Subtotal 1.30 0.33
III. Total Return 4.53 3.56
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CHAPTER 26
The Best-Return Strategy

INTRODUCTION

Portfolio insurance is a technique that allows the investor to participate in
the upside potential of a risky portfolio (called the target asset), while reduc-
ing or eliminating the downside risk. Typically, this means guaranteeing a
specified minimum return over a given investment horizon. The cost of the
insurance is paid in terms of a return differential by which the investment
return lags behind the performance of the target asset.

The target asset itself can be a portfolio containing a number of invest-
ment assets. For instance, the target portfolio can be a balanced fund con-
sisting of equities, bonds, and mortgages. The allocation of funds within
this portfolio can be fixed, or can vary according to a passive or active strat-
egy. The insurance then applies to the total fund, and depends only on its
total performance rather than on the performance of the individual compo-
nents. Although the insured portfolio consists of multiple assets, from the
viewpoint of the insurance strategy it is a single target asset.

In this chapter, we address a different type of multiple asset strategy,
called the best return strategy. Instead of ensuring the performance of a com-
bination of assets, this strategy assures that the return on the total investment
will be that of the best performance of the individual assets, less the known
cost of the strategy. Thus, if the individual assets are stocks, bonds, andmort-
gages, and if stocks happen to perform the best of the three, the return on
the strategy will be that of the stock portion, less the known cost. If bonds
perform better over the investment horizon than stocks and mortgages, the
investment return will equal the return on bonds, less cost. If mortgages do
better than stocks or bonds, the investor will realize the return, after costs,
of the mortgage portfolio on his total investment.

Moreover, if one of the assets has a fixed return over the investment
horizon, this strategy guarantees a specified minimum return in addition to
assuring the best of the remaining asset returns. This minimum guaranteed
return is the return on such safety asset less the known costs. Thus, if the
assets include a pure discount bond maturing at the end of the investment
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horizon in addition to stocks, bonds, and mortgages, the strategy will yield
a specified minimum return even if stocks, bonds, and mortgages all per-
form poorly.

There is no restriction on the number of assets used in the best return
strategy. It can be applied to individual securities (such as getting the best
of several individual stock returns), to portfolios (for example, assuring that
the return achieved by the best—or luckiest—of several portfolio managers
is realized on the total plan), or to whole markets (for instance, obtaining
the best performing of several international equity markets). The cost of the
strategy, of course, increases with the number of assets involved. In addi-
tion to the number of assets, the costs depend on the riskiness of the assets
(the riskier the assets, the higher the costs), on the correlations among the
assets (the higher correlated they are, the lower the costs), and on the length
of the investment horizon (the costs per year decrease with increasing hori-
zon length).

The strategy is implemented by a dynamic allocation of the investment
funds among the several assets. The proportions of the total investment
allocated to the individual assets are continuously monitored and adjusted,
depending on their performance to date, and on the time remaining to the
horizon date.

THE OBJECTIVE

The best-return strategy is a generalization of portfolio insurance to multi-
ple assets. To understand the connection, consider the objective of portfolio
insurance. The objective function can be written in the following form:

RI = max (RT − c, Rmin)

where RI is the total investment return, RT is the target asset return, Rmin
is the assured minimum return, and c is the insurance cost. (Throughout
this chapter, all returns are assumed to be expressed in terms of annual,
continuously compounded rates.)

Portfolio insurance is nothing other than getting the better of two
asset returns. Indeed, when the insurance plan is implemented by means of
dynamic asset allocation, it is necessary to utilize a second asset that has
a fixed return over the insurance horizon, such as a pure discount bond
with no default risk. The difference between the second asset return and the
assured minimum return can be viewed as a second insurance cost, assigned
to this second asset. The objective function can then be written as

RI = max (R1 − c1, R2 − c2)
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where R1, R2 are returns on the two assets and c1, c2 are the corresponding
insurance costs. A minimum return guarantee is just a special case when
one of the two assets has a fixed terminal value. (In a world of changing
interest rates, however, that asset is also risky, since its value fluctuates during
the horizon.)

The two insurance costs, c1, c2 (both of which must be positive) are
subject to a pricing equation that determines one of them if a value for the
other is selected. This equation reduces to a version of the Black-Scholes
(1973) option pricing formula if one of the assets is a bond and interest rates
are deterministic and constant, and to Merton’s (1973) extension of that
formula if one asset is a pure discount bond and the variability of interest
rates is independent of their level. Margrabe (1978) has provided a formula
for two risky assets. In general, the insurance costs will depend on the risk
structure of the two assets throughout the horizon (i.e., their instantaneous
covariance matrix as a function of time and state variables) and the length
of the horizon.

It is a natural generalization of the two-asset case to postulate an objec-
tive function of the form

RI = max (R1 − c1, R2 − c2,… ,Rn − cn)

where n ≥ 2 is the number of assets, R1, R2, … , Rn are their returns, and
c1, c2, … , cn are the corresponding insurance costs. This objective is to get
the best of multiple risky asset returns, less the cost of insurance. This con-
stitutes the goal of the best-return strategy.

THE COSTS

The valuation formula from which the costs of the best-return strategy are
calculated is a single equation for the n costs, so that n − 1 of the costs can be
independently chosen (subject to feasibility constraints) and the remaining
one is then determined. Alternatively, n − 1 relationships can be imposed on
the costs (such as that they be all equal) to determine their values.

The formula depends on the number of assets, the risk structure of the
n-dimensional stochastic process that describes their behavior over the hori-
zon, and the horizon length. For diffusion processes, the valuation formula
involves (n − 1)-dimensional cumulative normal distribution functions with
covariance matrices that are transformations of the n-dimensional instanta-
neous covariance matrix of the assets, integrated over the horizon. In addi-
tion to the two-asset formulas of Black and Scholes, Merton, and Margrabe
mentioned earlier, the other result previously available is Stulz’s (1982) for-
mula for two risky and one riskless asset.
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The values of the costs are determined by the investor’s preferences,
much like in the case of portfolio insurance. In that special case of two
assets, the investor chooses a tradeoff between the minimum guaranteed
return (which is the fixed return of the safety asset less the cost attributed to
the safety asset), and the return differential between the target asset return
and the total investment return (which is the cost attributed to the target
asset). Thus, portfolio insurance strategies can guarantee a relatively high
minimum return at a high cost of the insurance, or a lower minimum return
at a more modest insurance cost.

In the best return strategy, one alternative is to choose the costs to be all
equal,

c1 = c2 = … = cn.

In that case, the objective function of the strategy has a particularly simple
form

RI = max (R1,R2,… ,Rn) − c,

where the common value c of the n costs is determined from the valuation
formula. This case, which will be called uniform cost allocation, assigns the
costs equally to all of the assets included in the objective.

As an example, consider n assets whose stochastic behavior is described
by a logarithmic Wiener process. Let the instantaneous covariance matrix
be specified by standard deviations all equal to 15 percent annual, with cor-
relations among the assets all equal to 0.4, and assume a five-year horizon.
Table 26.1 lists the value c of the uniform costs, in annual percent, as a
function of the number of assets.

TABLE 26.1 Uniform costs in annual percent

Number of Assets

n = 2 3 4 5 6 8 10
c = 2.7 4.1 5.0 5.7 6.2 7.0 7.6

These costs are the price to pay for getting the best out of a number
of asset returns. Suppose that the values of the parameters chosen for the
example are descriptive of the international equity markets. It is possible
to implement a strategy whose realized return is equal to the highest of six
separate national stock markets, over a five-year period, less 6.2 percent
annual. It goes without saying that no prediction is needed as to which of
these markets will have the highest return, or, for that matter, what are the
expected returns of each.

Table 26.1 is an extract from Table 26.2, which lists the values of the
uniform costs as a function of the number of assets and of the correlation
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TABLE 26.2 Best-return strategy

Uniform Costs (in Annual %)
Horizon Length (yrs): 5.0
Standard Deviation (%): 15.0

Number of Assets

Corr. 2 3 4 5 6 7 8 9 10 11 12
.0 3.4 5.2 6.3 7.2 7.9 8.4 8.9 9.2 9.6 9.9 10.2
.1 3.3 4.9 6.0 6.9 7.5 8.0 8.4 8.8 9.1 9.4 9.7
.2 3.1 4.7 5.7 6.5 7.1 7.6 8.0 8.3 8.7 8.9 9.2
.3 2.9 4.4 5.4 6.1 6.7 7.1 7.5 7.8 8.1 8.4 8.6
.4 2.7 4.1 5.0 5.7 6.2 6.6 7.0 7.3 7.6 7.8 8.0
.5 2.5 3.8 4.6 5.2 5.7 6.1 6.4 6.7 6.9 7.2 7.4
.6 2.3 3.4 4.1 4.7 5.1 5.5 5.8 6.0 6.2 6.4 6.6
.7 2.0 3.0 3.6 4.1 4.5 4.8 5.0 5.2 5.4 5.6 5.8
.8 1.6 2.4 3.0 3.4 3.7 3.9 4.1 4.3 4.5 4.6 4.7
.9 1.2 1.7 2.1 2.4 2.6 2.8 2.9 3.1 3.2 3.3 3.4

among them, assumed to be the same between any pair. The investment hori-
zon is taken to be five years, and the standard deviations of the individual
asset returns are assumed to be all equal to 15 percent per year. It can be
seen that the costs decrease drastically with an increase in the correlation
among the assets. The uniform costs under the same assumptions but for a
one-year horizon are given in Table 26.3.

NONUNIFORM COSTS

The costs of the strategy do not have to bemade equal. It is possible to choose
them in such a way that a disproportionate part of the burden is borne by
those assets in which the investor has a secondary interest. For instance, con-
sider the case of four assets with standard deviations of 15.7 percent, 11.7
percent, 15.2 percent, and 1.3 percent, and a correlation matrix as shown in
Table 26.4. These values correspond to historical estimates of volatilities and
correlations (over the period January 1979 to December 1980) for S&P 500
stock index, Lehman government/corporate bond index, GNMA index, and
Treasury bill index. For a five-year horizon, the uniform costs are 3.8 per-
cent annually. This means that the best return strategy applied to these four
assets assures the investor a return equal to the highest of the realized annual
returns over the five-year period of stocks, bonds, mortgages, and cash, less
3.8 percent. For instance, if stocks turned out to do the best of these four
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TABLE 26.3 Best-return strategy, one-year horizon

Uniform Costs (in Annual %)
Horizon Length (yrs): 1.0
Standard Deviation (%): 15.0

Number of Assets

Corr. 2 3 4 5 6 7 8 9 10 11 12

0 8.1 12.2 14.9 16.8 18.4 19.6 20.7 21.6 22.3 23.1 23.7
0.1 7.7 11.6 14.1 16 17.4 18.6 19.6 20.5 21.2 21.9 22.5
0.2 7.3 11 13.4 15.1 16.5 17.6 18.5 19.3 20.1 20.7 21.3
0.3 6.8 10.3 12.5 14.2 15.4 16.5 17.4 18.1 18.8 19.4 19.9
0.4 6.3 9.5 11.6 13.1 14.3 15.3 16.1 16.8 17.4 18 18.5
0.5 5.8 8.7 10.6 12 13.1 14 14.7 15.4 16 16.5 16.9
0.6 5.2 7.8 9.5 10.8 11.8 12.6 13.2 13.8 14.3 14.8 15.2
0.7 4.5 6.8 8.3 9.4 10.2 10.9 11.5 12 12.4 12.8 13.2
0.8 3.7 5.6 6.8 7.7 8.4 8.9 9.4 9.8 10.2 10.5 10.8
0.9 2.6 4 4.8 5.5 5.9 6.3 6.7 7 7.2 7.5 7.7

assets with an annual return of 20 percent, the investor would realize 16.2
percent annually over the horizon. If stocks, bonds, and the GNMA port-
folio all lost money, the strategy would still provide a return equal to that
realized on Treasury bills, less 3.8 percent.

Now suppose that it is essential to the investor to maintain a five-year
return of no less than that of Treasury bills less 2 percent, while retaining as
much of the upside potential of stocks, bonds, and GNMAs as possible. The
costs of a best-return strategy can be chosen as

c1 = 4.9%, c2 = 4.9%, c3 = 4.9%, c4 = 2.0%.

(See Case #4 in Table 26.4.) This choice of costs would assure a minimum
performance of Treasury bill return less 2 percent, while keeping the possi-
bility open to participate in the performance of the three riskier assets if any
one of them turns out to do well.

If mortgages were less important to the investor than stocks and bonds,
perhaps the following cost assignment may be a preferred choice:

c1 = 4.2%, c2 = 4.2%, c3 = 7.3%, c4 = 2.0%.

(See Case #5 in Table 26.4.) This cost allocation would attribute lower costs
to stocks and bonds than the previous case, and higher costs to the less
important mortgage portfolio.
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TABLE 26.4 Best-return strategy costs

Number of assets: 4
Horizon length (years): 5.0
Standard deviations (%): 15.7 11.7 15.2 1.3
Correlation matrix: 1.00 .25 .24 −.08

1.00 .97 .74
1.00 .75

1.00
Costs (in annual %):
Case Stocks Bonds Mortgage Bills
Uniform 3.8 3.8 3.8 3.8
1 4.1 4.1 4.1 3.0
2 3.0 5.8 5.8 3.0
3 2.2 9.0 9.0 3.0
4 4.9 4.9 4.9 2.0
5 4.2 4.2 7.3 2.0
6 3.4 7.0 8.0 2.0
7 6.4 6.4 6.4 1.0
8 2.0 5.0 5.0 6.0

Table 26.4 lists a number of possible alternatives for the cost allocation.
Note that these are just a few possibilities out of an infinite range of feasible
cost allocations, with no particular meaning to the order in which the cases
are listed.

STRATEGY IMPLEMENTATION

The strategy is executed by a dynamic allocation of investment funds among
the several assets. The amounts allocated to the individual assets are main-
tained to be proportional to the partial derivatives, with respect to the asset
values, of the valuation function (the same function that is also used initially
to determine the costs of the strategy). The required allocation changes con-
tinuously as a function of the asset performance to date, and the remaining
time to the horizon.

An example of the strategy is provided in Table 26.5. The strategy is
simulated over a one-year investment horizon from January 1, 1981, to
December 31, 1981, using the four assets described. The risk parameters
are those listed in Table 26.4, as measured over a prior period from January
1979 to December 1980. The costs, allocated uniformly, are 8.8 percent for
each asset. The simulations assume monthly rebalancing, with transaction
costs of 0.25 percent round-trip (since the rebalancing can be executed by
trading futures).
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The initial allocation was 36.1 percent, 8.7 percent, 28.8 percent, and
26.4 percent among stocks, bonds, mortgages, and cash, respectively. One
month later, based on the market moves over the month, the allocation was
changed to 23.3 percent, 6.8 percent, 34.5 percent, and 35.5 percent, respec-
tively, for a turnover of 13.6 percent. The rebalancing is continued each
month until the horizon date.

Table 26.5 lists, for each rebalancing period, the last month perfor-
mance and the performance since inception of the four assets, as well as the
scheduled performance of the plan (the performance, calculated from the
valuation formula, that is expected from the strategy given the performance
of the individual assets), and the actual performance of the plan before and
after transaction costs.

The summary of the strategy performance is provided in Table 26.6.
Over the one-year horizon, the annual continuously compounded returns
for the four assets were −5.1 percent for stocks, 7.0 percent for bonds,

TABLE 26.6 Simulation summary

Plan #5: Best of Four Assets

Plan Inception Date 1/1/1981 Horizon Length 1.00 Yrs
Plan Horizon Date 12/31/1981 Initial Investment $10,000,000

Stocks Bonds Mortgage Bills
Return Since
Inception:

Total −5.01% 7.25% 0.16% 16.10%
Per/yr (Annl.
Comp)

−5.01% 7.25% 0.16% 16.10%

Per/yr (Cont.
Comp)

−5.14% 7.00% 0.16% 14.93%

Plan Sched-
uled

Plan Actual

Before
T/Costs

After
T/Costs

Investment
Value

$10,569,185

Return Since
Inception:

Total
Turnover

118.14%

Total 6.37% 6.01% 5.69% Total Trans.
Costs

$29,768

Per/yr (Annl.
Comp)

6.37% 6.01% 5.69%

Per/yr (Cont.
Comp)

6.18% 5.83% 5.54%
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0.2 percent for mortgages, and 14.9 percent for cash. The scheduled return
was 6.2 percent, equal to the best of the four asset returns (Treasury bills
in this case) less 8.8 percent. The actual performance of the plan was 5.8
percent before and 5.5 percent after transaction costs, very close to the sched-
ule. The difference between the actual and promised performance is due to
monthly (rather than continuous) rebalancing and to the actual risk param-
eters over the investment horizon differing from the assumed values (which
were estimated over a previous period).
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CHAPTER 27
Volatility: Omission Impossible

By Gifford Fong, Oldrich Vasicek, and Daihyun Yoo

INTRODUCTION

Investors have long understood the need to measure how changes in interest
rates will affect the value of fixed-income portfolios. Duration and convexity,
used to measure these effects, belong in every portfolio manager’s tool kit.
But these alone do not give a complete picture of the risk in a portfolio.
Changes in interest rates are not the only source of risk in fixed-income
investment. What about changes in interest rate volatility?

Nearly all fixed-income instruments contain embedded options. The
price of a callable bond, for example, depends on the value of the call
option; this, in turn, depends on the volatility of interest rates. Measuring
an instrument’s sensitivity to interest rate volatility is thus central to valuing
the instrument as a whole.

The Black-Scholes formula shows that options’ sensitivity to volatility,
and the value of callable bonds, pass-throughs, futures, and other instru-
ments with option-like features also depends on market volatility. Even non-
callable bonds are volatility-dependent. The published results from Vasicek
(1977) (Chapter 6 of this volume), Cox, Ingersoll, and Ross (1985), and oth-
ers on the behavior of the term structure of interest rates show the presence
of the volatility parameter in the bond pricing formula.

Just as the fixed-income investor needs to know how changing inter-
est rates affect portfolio value, he or she should be concerned about the
effects of random (stochastic) changes in volatility. This article outlines a

Risk, 5 (2) (1992), 62–65.
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new two-factor term structure model that explicitly incorporates volatility
as a stochastic factor and produces a new risk measure—volatility exposure.

STOCHASTIC VOLATILITY TERM STRUCTURE

Term structure theory attempts to define the behavior of interest rates. Its
starting point is to identify the stochastic factors that explain the movement
of interest rates. The stochastic processes that govern the behavior of the
factors are then specified.

The next step is to derive an equilibrium condition that precludes riskless
arbitrage, and to define the risk premia associated with the factors. This
results in a partial differential equation for the bond price. For the theory to
be practicable, a closed-form solution should be achievable. The exposure
of the bond price to the stochastic factors can then be evaluated, and the risk
measures quantified. Finally, the pricing can be extended to more complex
instruments such as interest rate–contingent claims.

The stochastic volatility term structure (SVTS) describes the behavior of
the short rate r by a diffusion process:

dr = 𝛼(r − r)dt +
√
vdx (1)

where

dr = change in the short rate,
𝛼 = speed of reversion to the mean r,
r = long-term mean of the short rate,
dt = change in time,
v = instantaneous variance (volatility), and

dx = random element.

Eq. (1) describes the short rate as a continuous process with a tendency
to revert to a long-term mean value. The strength of this tendency is pro-
portional to its current deviation from the mean. Thus, high rates have a
tendency to come down, while low rates tend to go up. In all cases, however,
there is a random component associated with the change in interest rates,
which can make high rates go higher or low rates go lower. The magnitude
of this random component is described by its variance v = 𝜎

2.
If the variance v is a constant, as previous models have assumed, a

one-factor description of the term structure can be derived. In the SVTS spec-
ification, the variance (volatility) v is a second stochastic factor, described by
the following equation:

dv = 𝛾(v − v)dt + 𝜉
√
vdx (2)
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where

dv = change in volatility,
𝛾 = speed of reversion to the mean v,
v = long-term average volatility,
dt = change in time,
𝜉
2v = instantaneous variance, and
dy = random element.

Similar in form to the short-rate equation, the volatility equation (2)
also has a mean reverting tendency with strength proportional to the cur-
rent deviation from the mean level. Unlike the equation for the short rate,
however, the random component has a variance proportional to the current
level of volatility. This means that volatility changes less abruptly in very
quiet markets than in very unstable markets.

In addition, the random element dx of the short rate and the random
element dy of the volatility can be correlated with a correlation coefficient 𝜌.
Thus, increasing levels of rates are typically accompanied by an increase in
their volatility and vice versa, as indeed happens in reality.

Under this description of the term structure, the price P = P(t, r, v) of a
zero coupon bond with term t depends on the values of the two stochastic
factors, r and v. From Ito’s lemma, the price change is then governed by the
factor changes dr, dv according to the equation

dP
P

= 1
P

(
−𝜕P
𝜕t

+ 1
2v
𝜕
2P
𝜕r2

+ 𝜉𝜌v 𝜕
2P

𝜕r𝜕v
+ 1

2𝜉
2v
𝜕
2P
𝜕v2

)
dt + 1

P
𝜕P
𝜕r

dr + 1
P
𝜕P
𝜕v

dv.

(3)
Given the nature of the price changes specified by Eq. (3), it is possible

to form a portfolio of three bonds of different maturities in such propor-
tions that the dependence on the risk factors dr, dv is eliminated. Since this
portfolio is riskless, its rate of return must be equal to the riskless rate r.

This is the arbitrage argument first invoked by Black and Scholes in their
1973 article. Indeed, the impossibility of a riskless arbitrage is a necessary
condition in an efficient market. If excess profits are to be achieved, then risk
must be assumed.

Formalizing the argument results in the partial differential equation

−𝜕P
𝜕t

+ (𝛼r − 𝛼r + 𝜆v)𝜕P
𝜕r

+ (𝛾v − 𝛾v − 𝜉𝜂v)𝜕P
𝜕v

+ 1
2v
𝜕
2P
𝜕r2

+ 𝜉𝜌v 𝜕
2P

𝜕r𝜕v
+ 1

2𝜉
2v
𝜕
2P
𝜕v2

− rP = 0 (4)

that must be satisfied by the bond prices P(t, r, v) in order for the market to
be efficient.
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Eq. (4) contains terms that capture the pricing of risk in a risk-averse
market. We have assumed that the market price of risk corresponding to
each of the stochastic factors is proportional to the level of risk in the market,
with the proportionality constants 𝜆 and 𝜂.

The solution of Eq. (4) subject to the boundary condition P(0, r, v) = 1
is given by the expression

P(t, r, v) = exp(−rD(t) + vF(t) +G(t)). (5)

The quantities D(t), F(t),G(t) in Eq. (5) are functions of the term t
alone. They are obtained as the solutions of ordinary differential equations
to which the partial differential equation reduces. In particular, the function
D(t) is given by

D(t) = (1 − e−𝛼t)∕𝛼. (6)

The functions F(t) andG(t) are given by more complicated (but closed-form)
expressions, involving the confluent hypergeometric function. For the exact
formulas, refer to Fong and Vasicek (1991).

We may point out that the form of the bond pricing equation (5) and the
specifications of the functions D, F, and G are deduced from the condition
of market efficiency, rather than simply declared. This provides a rigorous
framework that goes beyond the intuitive description that is commonly the
first and only step in many term structure formulations.

The term structure of interest rates is determined from the pricing
Eq. (5). If we define R(t, r, v) as the spot rate of term t, then

R(t, r, v) = rD(t)∕t − vF(t)∕t −G(t)∕t. (7)

Eq. (7) describes the behavior of interest rates as a function of the term
and the development in time of the two stochastic factors r and v. The result-
ing spot rate curves can bemonotone or have one or two humps. Figures 27.1
to 27.3 show the shapes of the spot rate curves for several values of the
parameters. Note in particular in Figure 27.3 that the SVTS allows for the
possibility of different yield curves when both the short and the long end of
the curves are fixed, which cannot happen in a single-factor model. From
the form of the solution for the bond price in Eq. (5), we note that

D(t) = −1
P
𝜕P
𝜕r

(8)

F(t) = 1
P
𝜕P
𝜕v

. (9)
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The quantities D and F are thus, respectively, the rate exposure (i.e.,
duration) and the exposure to volatility. Together, duration and volatility
exposure constitute the risk parameters of a bond. Moreover, the expected
rate of return is also fully determined by the two measures. Two securities or
portfolios will have the same returns over a given period if their durations
and their volatility exposures are kept matched during that period.

TERM STRUCTURES OF INTEREST RATES
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VOLATILITY EXPOSURE

Figure 27.4 depicts the shape of the function F(t) that constitutes the mea-
sure of volatility exposure for a zero coupon bond. We note that in most of
its range, it is a concave function, unlike, for instance, Macauley duration
(linear) or convexity (convex quadratic).

Simple calculation shows that duration or volatility exposure for a
coupon bond is each weighted averages of the duration or volatility expo-
sures of its individual cash flows. The same principle applies to portfolios
of fixed-income instruments: Both risk measures combine linearly as a
function of the market value of the portfolio components.
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INDEX TRACKING

One possible application of volatility management is in index tracking.
The approach is to apply volatility analysis and control using a strategic
optimization system called Stratos. The effectiveness of this system can be
measured by comparing the tracking error produced by a Stratos portfolio
with that of a more traditional approach to bond tracking, Bondtrac, as
shown in Table 27.1. (Both systems come from Gifford Fong Associates.)

We chose the period October 1990 to March 1991 for the simulations,
since we wished to select a six-month time period in which the implied
volatilities changed significantly. We used the spot rate on one-month T-bill
for the risk-free short rate. The target index was the widely used Shearson
Lehman Treasury Index. Since the SVTS theory asserts that even the prices of
noncallable bonds are affected by volatility, we restricted ourselves to such
securities.

To compare the effectiveness of Bondtrac versus Stratos, both systems
optimized a portfolio containing the same assets and indexed against the
same target index. To replicate the index using the traditional approach
(Bondtrac), we separated the bonds into 10 cells; these cells were defined
by coupon and maturity break points.

The index was first partitioned into two groups by coupon (0–10%
and 10–30%), then both coupon groups were partitioned into five maturity
groups (1 to 2 years, 2 to 5 years, 5 to 10 years, 10 to 20 years, and 20 to
30 years). These 10 cells gave a fair representation of the characteristics of
the target index, which was made up of high-coupon and low-coupon bonds
with short to long maturities.

After randomly selecting one bond from each cell to be included in
the portfolio, we ran Bondtrac to calculate the optimal composition of
the 10 bonds. In this optimization procedure, Bondtrac tries to match the
duration, convexity, and cell representation of the portfolio with those of
the index.

We then ran Stratos with the same bonds used by Bondtrac to get the
optimal composition for the Stratos portfolio. Unlike Bondtrac, Stratos tries
to match duration, convexity, and volatility exposure without aiming to
match the index cell representation.

Once we had the optimal portfolio compositions, we calculated the
actual returns from each portfolio strategy. The tracking error was defined
as the deviation of the portfolio return from the index return (RB − RI and
RS − RI, where RB is the return on the Bondtrac portfolio, RS is the return
on the Stratos portfolio, and RI denotes the return on the index). The
tracking errors found are reported in Table 27.1.
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TABLE 27.1 Tracking error: stratos versus bondtrac

Monthly returns (%) Tracking error (%)

Period Volatility (%) Bondtrac Stratos Index Bondtrac Stratos

October 1990 3.791 1.652 1.667 1.609 0.043 0.058
November 1990 3.710 2.267 2.150 2.107 0.160 0.043
December 1990 3.263 1.580 1.582 1.576 0.004 0.006
January 1991 4.037 1.071 1.042 1.042 0.029 0.000
February 1991 3.429 0.519 0.532 0.548 0.029 0.016
March 1991 3.158 0.439 0.503 0.477 0.038 0.026
Average 3.565 0.028 0.019
Standard deviation 0.338 0.065 0.025

With the randomly selected bond, Stratos generated lower tracking error
in terms of absolute value in four out of six months. The average tracking
error was 2.8 basis points (bp) for the Bondtrac portfolio and 1.9 bp for
Stratos; theoretically, it should be zero for both.We tested the null hypothesis
H0: 𝜇B = 𝜇S = 0. The values of the t statistic were 0.43 and 0.76, too low to
reject the null hypothesis.

The monthly standard deviations of the tracking errors were 6.5 bp and
2.5 bp, respectively. On an annualized basis, the corresponding figures are
23 bp and 9 bp—a substantial difference.

To test whether this difference in standard deviations in tracking
error was statistically significant, we constructed another null hypothesis
H0∶ 𝜎2B = 𝜎

2
S against the alternative H1∶ 𝜎2B > 𝜎

2
S . To test these hypotheses,

we computed the ratio of sample variances, which has F distribution if H0 is
true. The computed F value was 6.62 > 5.05 = F (5 percent). We therefore
rejected the null hypothesis in favor of the alternative at the 5 percent
significance level. The evidence proves that the variance of the tracking error
of the Stratos portfolio was smaller than that of the Bondtrac portfolio.

Stratos generally tracked the index better than Bondtrac during the
period covered in this study. In particular, it tended to work better when
the volatility of the short rate changed significantly, as happened from
November 1990 to January 1991.

Applying the concept of volatility exposure to an indexed Treasury port-
folio can significantly reduce risk.
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CHAPTER 28
A Multidimensional Framework

for Risk Analysis

By Gifford Fong and Oldrich A. Vasicek

ABSTRACT

The variety and complexity of portfolio holdings have given rise to the need
for additional analyses for purposes of risk management. A framework for
risk analysis includes three dimensions: sensitivity analysis, value at risk
(VaR), and stress testing. This article describes each dimension and suggests
a procedure for achieving a VaRmeasure. Once individual holdings are ana-
lyzed, attention can be directed to portfolio-level analyses and the types of
output suitable for monitoring purposes. In combination, this framework
can capture the important features of portfolio risk.

INTRODUCTION

Risk control in asset management is the ability to manage the uncertainty
associated with the investment process. Fundamental to risk control is risk
measurement, which can be thought of as quantification of the characteris-
tics of risk.

Early attempts at risk quantification dealt with investments in relatively
simple security types. This approach included both fixed and known
cash flows, as is the case for Treasury securities and equities described

Financial Analysts Journal, 53 (4) (1997), 51–57.
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by lognormal return distributions. Risk was characterized by volatility of
returns, measured by quantities such as variance, standard deviation, or
mean absolute deviation (Markowitz 1952, 1959).

As the concept of risk measurement and risk control evolved over
time, additional approaches were introduced. In the case of fixed-income
securities, the concept of duration, modified duration, and effective dura-
tion became widespread tools for risk management (see, e.g., Fabozzi
1988, Appendix A). For equities, beta coefficients and fundamental betas
were introduced to provide additional capability in managing the risk
of equity portfolios (Sharpe 1964; Rosenberg and Guy 1976a, 1976b).
These analytical paths are indicative of specialization by asset type since
the earlier attempts at risk management. Portfolio-oriented measures such
as the concept of shortfall risk also have been introduced (Leibowitz and
Henriksson 1989).

As the structure of marketable assets has become more complex and as
market conditions have exposed the limitations of the traditional measures
of risk, a number of recommendations have emerged to address the per-
ceived need for additional risk analysis insight. The Group of Thirty (1993)
reviewed the derivative product industry practice and suggested capital at
risk as an appropriate risk measure. The Group of Thirty’s Derivative Policy
Group further described specific parameters for a capital-at-risk analysis.

The complexities of the many risk factors and their interaction call for
a multidimensional approach to risk measurement. The nature of complex
marketable assets has increased the requirements for the necessary analytical
methods. In general, these methods represent a revisit to the early macro
perspective in viewing risk from an overall portfolio standpoint.

These methods must deal with the multiplicity of risk sources and their
correlations. They must also recognize the asymmetry of the return distribu-
tion. Derivative securities, such as options or swap transactions with embed-
ded options, exhibit a skewed price distribution that cannot be adequately
analyzed using the traditional risk measures suitable for simpler investments.

The objective of this study is to describe the methods appropriate for
quantifying the risk of complex investments that are subject to a variety of
risk sources. The overall methodology consists of three functional elements:
sensitivity analysis, value at risk (VaR), and stress testing. Each element has
its unique contribution to comprehensive risk measurement. Sensitivity anal-
ysis provides a basic building block to risk analysis and is a necessary input
for hedging activities. VaR provides a useful summary, under prespecified
conditions, of the amount at risk, given the risk characteristics of the port-
folio. Stress testing complements VaR by providing the results of extreme
scenarios of joint risk-factor change.

This chapter discusses ways of measuring and analyzing quantifiable
risks, with emphasis on assessment of total portfolio risk and on the tools
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for risk management. The discussion, for illustrative purposes, focuses on
fixed-income portfolios, because they typically contain the largest percent-
age of derivative securities and transactions. The principles of the analysis,
however, apply to portfolios of all asset types.

RISK SOURCES

An investment portfolio of securities, derivatives, or contracts is exposed to
many types of risk, including the following:

■ Market risks. The value of a portfolio may change because of changes
in market conditions, such as changes in a stock market index or in the
level of interest rates.

■ Foreign exchange risks. The value of foreign investments may change
because of exchange rate movements.

■ Option risks. The counterparty may exercise its options at a time that
is disadvantageous to the security holder.

■ Prepayment risks. Principal payments and other cash flowsmay be accel-
erated at a time when prepayments are undesirable.

■ Credit risks. The counterparty or issuer of the security may be unable
to fulfill its obligations.

■ Specific risks. Individual securities may be subject to price changes not
explained by changes in the level of the market.

■ Liquidity risks. A security may be difficult or impossible to sell or liqui-
date at its proper value.

■ Management and operations risks. The portfolio may be poorly man-
aged or maintained, such as by engaging in disadvantageous transac-
tions or executing trades improperly.

■ Administrative risks. A loss in value may result from excessive fees or
fraud.

■ Regulatory risks. The governing laws and regulations may change,
requiring adjustments to a portfolio that can affect its value.

■ Event risks. The portfolio may be vulnerable to specific events such as
political instability in a country in which the portfolio has an exposure.

The total risk of a portfolio is the potential decline in its market value.
Measuring this risk requires quantification of possible market value changes,
under probable as well as extreme circumstances, resulting from the individ-
ual risk sources and their interplay.

A quantitative measure of the contribution of the various types of risk to
the market value change is possible for only some of them, including market,
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option, prepayment, foreign exchange, credit, and specific risks. Additional
risk components, notably liquidity, management, administrative, regulatory,
and specific event risks, must be determined by other means, including judg-
mental procedures, and incorporated into the total risk assessment.

An investor may be able to hedge or otherwise compensate for some of
these risks; for example, the portfolio’s interest rate risk can be easily coun-
terbalanced by short positions in interest rate futures contracts, and foreign
exchange risk can be eliminated by forward currency hedges. The specific
risk of the portfolio may be diversified away by the investor’s other hold-
ings. Proper risk management, therefore, requires measuring the exposures
to the sources of risk in such a way that they can be reduced or eliminated.

RISK EXPOSURES

An essential basis to risk measurement and management is determining the
security and portfolio exposures to risk factors. Risk factors are market char-
acteristics whose change affects the value of a given security or contract. For
fixed-income derivatives, the principal risk factors are as follows (for each
of the currencies involved):

■ Interest rate level, the overall level of the term structure whose shifts will
affect the portfolio value

■ Rates of benchmark maturities, the specific maturity points along the
term structure by which changes in interest rates can be measured

■ Spreads over government rates (such as various corporate bond quality
sectors, swap spreads, or mortgage-backed security spreads), the yield
premiums attributable to specific nongovernment securities

■ Volatility of rates, measures of interest rate variability for various matu-
rities and forward horizons

■ Exchange rates, measures of currency exchange rates

Denote the values of these risk factors by F1, F2,… , Fn. If P is the value
of a security, then the change in the security value resulting from the change
in the risk factors can, in the first approximation, be given as

ΔP
P

= −
n∑

i=1
DiΔFi. (1)

The quantitiesD1,… ,Dn in this equation are the exposures, or sensitiv-
ities, of the security to each of the risk factors. They measure the percentage
change in the value of the security resulting from a unit change in the value
of the factors.



A Multidimensional Framework for Risk Analysis 251

A well-known example is the exposure to changes in the level of interest
rates, which is the security duration. Another example is the exposure to
changes in volatility (relevant especially for options), sometimes referred to
as vega. In equities, the exposure of a stock to a stock market index move is
proportional to its beta.

If we postulate a linear relationship between changes in the value of
the factors and the percentage price change represented by Eq. (1), then the
exposures to the factors are defined by the partial derivatives as

Di = −1
P
𝜕P
𝜕Fi

. (2)

If Fi is the interest rate level, Eq. (2) is the familiar definition of duration.
It generalizes in the same form (apart from the choice of sign in Eqs. (1)
and (2), which is strictly a matter of convention) to other risk factors as
well. Care needs to be taken that the duration and all other exposures are
correctly measured on an options-adjusted basis. If so, the price sensitivities
will have already taken into account any embedded options affecting price
changes.

For several reasons, except as a first-order approximation, Eqs. (1)
and (2) are not a satisfactory representation for the price change of a
security. First, the price change is not a linear function of the factor change,
particularly for derivatives. Second, the changes in the factors are not
instantaneous, so a change resulting from the passage of time needs to be
incorporated. Third, the market move may not explain fully the change in
the value of a security. Fourth, it is more appropriate to characterize the
dollar change rather than the percentage value change because derivatives
such as swaps and other contracts often start with a low or even zero
value.

Assume that the change ΔP in the market value of a security over an
interval Δt is governed by the equation

ΔP = A −
n∑

i=1
DiXi + 1

2

n∑

i=1
CiX

2
i + Y, (3)

where Xi = ΔFi are changes in the value of each risk factor, and Y is the
risk specific to each security. The quantities Di,Ci are then the linear and
quadratic exposures of the security value to the factors. They are analo-
gous to the dollar duration and dollar convexity measures of interest rate
exposure. So that the nonlinear price response is properly approximated,
however, Di,Ci should be measured for a finite factor change rather than
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the infinitesimal one given by Eq. (2). The exposures are estimated as

Di = −
P ′
i − P ′′

i

2ΔFi
(4)

and

Ci =
P ′
i + P ′′

i − 2P
(ΔFi)2

, (5)

where P ′
i and P

′′
i are the prices of the security calculated under the assump-

tion that the risk factor Fi changed by the amount of ΔFi and −ΔFi, respec-
tively. Some considerations (related to the theory of Hermite integration)
suggest that ΔFi should be taken specifically to equal

ΔFi = 𝜎i

√
3

= 1.73𝜎i, (6)

where 𝜎i is the volatility of Fi over the intervalΔt. In Eqs. (4), (5), and (6), the
exposures characterize the global response curve of the security price rather
than the local behavior captured by durations and convexities.

The quantity A in Eq. (3) is equal to

A = 𝜇 − 1
2

n∑

i=1
Ci𝜎

2
i , (7)

where 𝜇 is the expected return, 𝜇 = EΔP.
This representation of price behavior facilitates risk analysis and mea-

surement. The linear risk exposures Di and the quadratic risk exposures Ci
combine in the portfolio as simple sums of those exposures for the individual
securities. Thus, if Dik is the linear exposure of the k-th security to the i-th
risk factor (and similarly for Cik), then

DiP =
m∑

k=1
Dik

and

CiP =
m∑

k=1
Cik

would be the risk exposures for the portfolio.
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A risk-management process may then consist of a conscientious program
of keeping all the portfolio risk exposures close to zero,

DiP = 0, i = 1,… , n

CiP = 0, i = 1,… , n

to eliminate an undesirable dependence on market factors. This approach is
equivalent to hedging against all sources of market risk. The specific risks,
s2k = Var(Yk), which combine by the formula

s2P =
m∑

k=1
s2k,

can only be reduced by diversification.
The overall variability of the portfolio or security value can be calculated

from its risk exposures, using the formula

𝜎
2 = Var(ΔP)

=
n∑

i=1

n∑

j=1
DiDj𝜎ij + 1

2

n∑

i=1

n∑

j=1
CiCj𝜎

2
ij + s2, (8)

which is a consequence of the value change Eq. (3). Here, the 𝜎ij are the
covariances in the changes of the i-th and j-th risk factors; that is,

𝜎ij = Cov(Xi,Xj).

To the extent possible, the variances and covariances should be obtained
from current pricing of derivatives whose values depend on these variances
(the implicit volatilities). For instance, quotes are available in the swap mar-
ket for interest rate volatilities, calculated from market prices of swaptions.
These volatilities reflect the market’s estimate of the prospective, rather than
past, interest rate variability. Only when such implicit volatilities are not
available for a given risk factor should a historical variability be used. In
that case, care should be taken that the historical period is long enough to
cover most market conditions and cycles.

The calculations of the price variability of a portfolio, its sectors, and the
individual securities can be an accurate picture of the structure of the risks.
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In addition to the total price variabilities, risk may also be broken down by
source. One possible presentation is

Source Volatility (%)

Interest rate risk 10
Other market risk 2
Derivative risks 3
Specific risks 1
Foreign exchange risks 6
Total 22

These risks are defined as follows:

Interest rate risk = portfolio value vulnerability to changes in
interest rates

Other market risks = additional components of the total market
risk (spread changes, basis risk, etc.)

Derivative risks = nonmarket risks, including options and
prepayment risks, generated by the
portfolio’s holding in derivative securities

Specific portfolio risk = component of total risk unexplained by the
market factors (akin to a tracking error for
index funds)

Foreign exchange risk = exchange rate fluctuations (to the extent
they are not hedged)

Although the risks are measured by standard deviation, and standard
deviations do not add, the component risks do add up to the total risk. This
summation is accomplished by calculating the risk increment each compo-
nent adds to the previous subtotal. This method makes the decomposition
dependent on the order in which the components are listed, but it also makes
the components meaningful: The 3 percent derivative risk, for example,
means that the fund’s derivative holdings add 3 percentage points to the
12 percent price variability attributable to market factors.

VALUE AT RISK

The capital at risk, also called the value at risk (VaR, not to be confused with
variance, Var, of the previous section), is a single, highly useful number for
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the purposes of risk assessment. It is defined as the decline in the portfolio
market value that can be expected within a given time interval (such as two
weeks) with a probability not exceeding a given number (such as 1 percent).
Mathematically, if

Prob(ΔP ≤ −VaR) = 𝛼, (9)

then VaR is equal to the value at risk at the probability level 𝛼.
To calculate the VaR, it is necessary to determine the probability distri-

bution of the portfolio value change. This distribution can be derived from
Eq. (3).

Assume that the factor changes Xi have a jointly normal distribution
with zero mean and a covariance matrix (𝜎ij), i, j = 1,… , n. Then the first
three moments of ΔP are given by Eqs. (7), (8), and (10), where

𝜇3 = E(ΔP − 𝜇)3

= 3
n∑

i=1

n∑

j=1

n∑

k=1
DiDjCk𝜎ik𝜎jk +

n∑

i=1

n∑

j=1

n∑

k=1
CiCjCk𝜎ij𝜎jk𝜎ki. (10)

Knowing the three moments, the probability distribution of ΔP can be
approximated and the VaR calculated. There are theoretical reasons to
use the gamma distribution as a proxy for that distribution. The resulting
formula for the value at risk is then very simple:

VaR = k(𝛾)𝜎, (11)

where 𝜎 is the standard deviation of the value of the portfolio or security,
obtained as the square root of the variance given in Eq. (8), and 𝛾 is the
skewness of the distribution,

𝛾 =
𝜇3

𝜎3
, (12)

calculated using Eqs. (8) and (10). The ordinate k(𝛾) is obtained from
Table 28.1 (corresponding to the gamma distribution). Table 28.1 extends
only to the values 𝛾 = ±2.83 because that is the highest magnitude attainable
for the skewness of the quadratic form in Eq. (3).

Note that the value 2.33 in Table 28.1 corresponding to 𝛾 = 0 is the
1 percent point of the normal distribution. In other words, if the portfolio
value change can be represented by the symmetric normal distribution, the
VaR at the 1 percent probability will be

VaR = 2.33𝜎.
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TABLE 28.1 0.01 ordinates as a function of
skewness

𝜸 k(𝜸)

−2.83 3.99
−2.00 3.61
−1.00 3.03
−0.67 2.80
−0.50 2.69
0.0 2.33
0.50 1.96
0.67 1.83
1.00 1.59
2.00 0.99
2.83 0.71

For most derivative securities and portfolios, however, the probability distri-
bution is highly skewed one way or the other, and the normal ordinates do
not apply. The numbers in Table 28.1 represent the proper ordinate values.

In fact, the ratio of the ordinate in Table 28.1 corresponding to the
skewness of the portfolio to the normal ordinate provides the increase (or
reduction) of the VaR attributable to the portfolio composition. Thus, if
the portfolio has a negative skewness of 𝛾 = −0.50 (such as a portfolio of
callable bonds), the VaR is 2.69∕2.33 = 115 percent higher than it would
be if the portfolio returns were symmetric. A portfolio with positive skew-
ness of 𝛾 = 0.50 (for instance, holding bonds with puts) will require only
1.96∕2.33 = 84 percent as much capital to cover the VaR as a portfolio with
normally distributed returns.

Eq. (11) does not include the expected return 𝜇, because the mean is of a
lower order of magnitude (namely Δt) than the standard deviation 𝜎 (which
is of the order

√
Δt) and can be neglected.

The VaR can be calculated for individual securities, portfolio sectors,
and the total portfolio, as well as by sources of risk. This approach can lead
to a useful breakdown, such as that presented in Table 28.2. The numbers
in Table 28.2 do not necessarily add up, either down or across. The reason
is that the VaR resulting from, say, interest rate risk may come from rising
interest rates for one security (as for most bonds) and declining interest rates
for another (such as an income-only security or a short position in futures).
The reason the numbers do not add up across the sources of risk is that
events of a given probability (say, 1 percent) do not add up: An interest rate
change that can happen with 1 percent likelihood when considered alone
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TABLE 28.2 Example of value at risk calculation

Example
Portfolio

Interest
Rate Risk

Other
Market
Risks

Derivatives
Risks

Specific
Risks

Foreign
Exchange
Risks

Total
Risk

Sector A
Security 1 $103,400 $19,500 $52,100 $5,700 $0 $133,100
Security 2 85,600 0 0 2,300 0 86,700
Sector A total $189,000 $19,500 $52,100 $6,100 $0 $217,500

Sector B
Security 3 — — — — — —
Security 4 — — — — — —
Sector B total — — — — — —

Sector C (etc.)
Portfolio Total $2,358,100 $311,700 $827,700 $63,300 $556,900 $3,581,900

Note: The portfolio is assumed to be composed of several sectors (industries, etc.). Sector A
amounts are given for illustrative purposes only; the dash represents amounts for the other
sectors, which are not made explicit.

is not the same as if it would happen together with, say, an exchange rate
movement.

An alternative to Table 28.2 would be to measure the component values
at risk incrementally. This method would mean that the VaR attributable to
derivative risks, for example, would be calculated as the difference between
the VaR obtained when considering jointly interest rate risk, other market
risks, and derivative risks and the VaR obtained when considering interest
rate and othermarket risks alone. Suchmeasurement depends on the order in
which the sources of risk are taken, which seems somewhat arbitrary. More-
over, when applied down the table for securities and sectors, this method
also presumes that the risks of, say, Security 2 are measured on top of those
of Security 1, which may make sense in some situations (such as a futures
position as a hedge on top of bond holdings), but makes less sense in others.

STRESS TESTING

Although VaR provides a useful assessment of potential losses from var-
ious sources of risk and their interplay, it should be complemented by a
series of stress tests. A stress test consists of specifying a scenario of extreme
and unfavorable market conditions occurring over a specific time interval
and then evaluating the portfolio gains or losses under such scenarios. This
approach is useful for a number of reasons: It allows for consideration of
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TABLE 28.3 Stress tests

Scenario Gain/Loss

1. USD interest rate up 100 basis points (bps) −$10,123,900
2. USD interest rate down 100 bps 10,234,400
3. USD interest rate: 2 year up 50 bps, 10 year down 50 bps 410,500
4. USD interest rate: 2 year down 50 bps, 10 year up 50 bps −410,200
5. JPY/USD up 10% −1,200,700
6. JPY/USD down 10% 1,200,700
7. JPY interest rate up 30 bps −210,800
8. JPY interest rate down 30 bps 210,400
9. JPY/USD up 10% and JPY interest rate up 30 bps −1,035,300

path-dependent events such as cash flows on collateralized mortgage obli-
gations; it does not rely on a specific form of the value-response curve, such
as the quadratic form in Eq. (3); it appeals to intuition by showing the situ-
ations under which a loss can occur, which is lost in VaR alone; and last but
not least, it is required or recommended by the various oversight agencies
and auditors.

Table 28.3 shows a possible stress test output table. Scenarios 3 and 4
represent the US dollar interest rate term structure steepening or flattening,
which may affect long/short rate basis swaps. Scenario 9 is a combination of
an exchange rate change and foreign interest rate change, which may affect
currency swaps and the like.

Stress tests are less systematic and somewhat ad hoc compared
with VaR. Their usefulness is in an analysis of the portfolio response to
market-condition changes that are more extreme or persistent than those
likely to occur in a short time interval. Over large and protracted market
movements, the value of a security or portfolio may show a response curve
that is not well represented by a quadratic form such as Eq. (3). An example
is provided in Figure 28.1, which shows the price response to interest rate
movements for a callable bond.

The VaR calculations for this security would be based on an interest
rate move possible with 1 percent probability over a time interval, such
as two weeks, which may be some 50 basis points. Within that range, the
price-response curve is adequately described by the assumptions of the VaR
calculation. The VaR is therefore a proper measure of instantaneous, or cur-
rent, portfolio riskiness, which is all that would be necessary if all securities
in the portfolio were perfectly liquid and if the portfolio risk were managed
on a continuous-time basis. Because this assumption is often unrealistic, it
is advisable to measure portfolio value in response to extreme stress tests.
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FIGURE 28.1 Price Response Curve

CONCLUSIONS

The risk in complex portfolios can be quantified. The market characteristics
that affect the value of a security or portfolio are called risk factors. Risk
factors that affect fixed-income derivatives include interest rate level, bench-
mark maturity rates, spread over government rates, volatility of rates, and
exchange rates. A quadratic approximation may be used to quantify the risk
exposure to those risk factors, and then a standard deviation may be calcu-
lated. The risk-summary number, value at risk (or capital at risk), is defined
as the dollar amount that the total loss might exceed within a certain time
period with a certain probability. The VaR may be calculated by a gamma
distribution approximation. Although VaR gives a summary risk number,
it does not tell the source or direction of the risk. To see the possible loss
under extreme or least favorable market conditions, a series of stress tests
must be performed. The VaR and the result of a comprehensive stress test
give a better risk picture than either of them alone.

Risk measurement of fixed-income investments is an involved process.
The result of using three methods—sensitivity analysis, value at risk, and
stress testing—is an ability to evaluate complex return outcomes. Each of
these techniques has an important role; in combination, they represent the
comprehensive risk measurement necessary for portfolios with complex
structures and interrelationships.
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CHAPTER 29
Plugging into Electricity

By Hélyette Geman and Oldrich Vasicek

FORWARD AND FUTURES CONTRACTS
ON NONSTORABLE COMMODITIES: THE CASE
OF ELECTRICITY

Most of the literature about modeling commodity spot and futures prices
has dealt with storable commodities, such as wheat, gold, and oil. How-
ever, the deregulation of energy markets worldwide over the past few years
has paved the way to free electricity markets, both for spot and derivatives
trading, and made it necessary to focus on electricity’s unique features as a
commodity.

The most important feature is the nonstorability of power (except for
hydroelectricity). It accounts for the spikes observed during periods of
extreme weather conditions and/or lack of capacity: for example, in the
U.S. Midwest in June 1998; on the U.S. East Coast in July 1999; and in
California in much of 2000, followed by severe blackouts in early 2001.

From a financial economics standpoint, the nonstorability makes
irrelevant (as argued by Eydeland & Geman, 1998) the notion of con-
venience yield, which represents the benefits accrued from “holding” the
commodity. It also implies the collapse of the spot-forward relationship,
as its proof involves cost-of-carry arguments between the current date and
the maturity of the forward contract. Besides the nonstorability, electricity
has unusual physical attributes that makes the design of well-functioning

Risk 14(8) (2001), 93–97; reprinted in A. Lipton (ed.), Exotic Options: The Cutting
Edge Collection (London: Risk Books, 2003).
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markets difficult: Rather than following regulatory rules or the rules of
supply and demand balancing in each region, electricity obeys physical laws
such as Kirchoff laws at each node. When there is congestion at a node,
capacity becomes a good in its own right, distinct from electricity. The
same fundamental observations would prevail in the case of cable-based
telecommunications, wireless telecommunications, and bandwidth.

This chapter has three aims:

1. To examine the specific properties of forward contracts, since they play a
central role in the electricity industry, not only in the trading agreements
that have existed for decades but also for risk management purposes
made necessary by today’s highly volatile markets.

2. To analyze separately the behavior of futures contracts. In the general
situation of stochastic interest rates that we consider (and without any
assumption of independence between the shocks in the economy affect-
ing electricity prices and interest rates), their prices are different from
those of the forward contracts. This property was discussed in Cox,
Ingersoll, & Ross (1981) and has to be taken into account when the
length of the time period of analysis is too long to assume constant inter-
est rates (which is the case, for instance, when investing in a power plant,
a pipeline, or another physical asset).

3. To propose a process for the electricity spot price accounting for the
spikes (upward jumps followed at some point by downward moves)
observed in the power markets.

The first two points are discussed in the framework of diffusion pro-
cesses, since our goal is to emphasize the specificities of forward and futures
contracts in the case of nonstorability, namely the fact that they may not
deserve the terminology of derivatives since they are nonredundant with the
underlying asset (see Hakansson, 1979). The technical issues reside in the
discussion of the martingale property satisfied under different probability
measures by futures and forward prices.

FORWARD, FUTURES, AND OPTION PRICING IN A
DIFFUSION SETTING

Let B(t,T) be the price at time t of a bond with unit face value maturing at
time T. Assume for simplicity that bond prices are governed by a one-factor
model of the term structure of interest rates,

dB(t,T)
B(t,T)

= (r(t) + 𝜆(t)𝜎B(t,T))dt + 𝜎B(t,T)dX(t) (1)
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where r(t) is the short rate, 𝜆(t) is the market price of bond risk, and X(t) is
a Wiener process. An assetM(t) consisting of reinvestment at the short rate
r(t) will be called the money market account.

Assume that the spot price S(t) of a unit of energy follows a diffusion
process with mean μS, variance 𝜎S, and a correlation with bond prices 𝜌. The
parameters μS , 𝜎S, and 𝜌 may exhibit mean reversion, seasonality, and other
aspects of the empirical spot price behavior. We can write the dynamics of S
(under the actual probability measure) as

dS
S

= 𝜇Sdt + 𝜑SdX + 𝜓SdY (2)

where Y(t) is a Wiener process independent of X(t) and 𝜑S = 𝜎S𝜌,
𝜓S = 𝜎S

√
1 − 𝜌2.

We wish to investigate the pricing of forward and futures contracts and
options. Since energy cannot be stored, it is not possible to set up an arbi-
trage position between the spot price and the derivative. We can, however,
apply the standard arbitrage argument to a position consisting of two deriva-
tives, such as two futures contracts of different maturities, or a futures and
a forward contracts. We will start with the pricing of the futures contract.

Let F(t,T) be the price at time t of a futures contract with maturity T
on the energy unit. In Appendix A, we show that there exists a process 𝜈(t),
which we can interpret as the market price of risk corresponding to the risk
source Y(t), such that

dF
F

= (𝜆𝜑F + 𝜈𝜓F)dt + 𝜑FdX + 𝜓FdY. (3)

There then exists an equivalent probability measure P∗ under which F(t,T)
is a martingale and

F(t,T) = E∗
t S(T). (4)

This equation gives the pricing of the futures contracts.
The martingale property of the futures contracts and Eq. (4) are valid

for storable commodities as well. The difference is that for storable com-
modities, the expected rate of return E∗dS∕S on the spot commodity under
the risk-neutral measure is the risk-free rate, and consequently S(t)∕M(t) is
a martingale under P∗. (If there is a benefit/cost of storage accruing to the
holder of the commodity at a rate y, called the convenience yield, then the
martingale property is satisfied by the process eytS(t)∕M(t).) This is not true
if the commodity is not storable. Both the long and the short position in the
underlying commodity have, in effect, infinite carrying costs.
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Denote by 𝛼 the expected relative spot price change E∗dS∕S under P∗.
We have

𝛼 = 𝜇S − 𝜆𝜑S − 𝜈𝜓S. (5)

Since the spot process could not be involved in the arbitrage argument, we
have in general 𝛼 ≠ r. In other words, the price of risk 𝜈(t) is in no relation-
ship to the process describing the spot price. It means that the expectation
in the formula for pricing of futures contracts will lead to a different value
for a nonstorable commodity than it would have if the commodity could be
stored. Due to the fact that 𝛼(t) is not observable, the futures contract pric-
ing can be only applied relative to each other (i.e., giving the price of one
contract in terms of the prices of other contracts).

Let us now turn to the pricing of forward contracts. Denote by G(t,T)
the price at time t of a forward contract on the energy unit with maturity
at T. As shown in Appendix A, an arbitrage argument between the forward
contract G(t,T), a futures contract F(t,T), the bond B(t,T), and the money
market account implies that B(t,T)G(t,T)∕M(t) is a martingale under P∗. It
follows that

G(t,T) = 1
B(t,T)

E∗
t S(T)

M(t)
M(T)

. (6)

Again, this formula holds for pricing of forward contracts in general.
If the commodity is storable, however, the expectation can be evaluated to
yield

G(t,T) = S(t)
B(t,T)

.

This could be established directly by the following well-known argument:
The forward contract can be exactly duplicated by issuing a bond with the
maturity value G(t,T), buying the commodity with the proceeds today, and
storing it until time T. When the commodity is not storable, this argument,
and the aforementioned relationship, is not valid. For a discussion of the
martingale property satisfied by the storable commodity forward price, see
Geman (1989).

Consider now a European option on an energy unit with an expiration
date T, and denote its price by P(t,T). Let the terms of the option specify
that

P(T,T) = f (S(T))

An arbitrage argument applied to the option, a futures contract F(t,T), a
bond B(t,T), and the money market account implies that P(t,T)∕M(t) is a
martingale under P∗, and

P(t,T) = E∗
t f (S(T))

M(t)
M(T)

. (7)
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EXAMPLES

Example 1. Suppose 𝛼 is constant. Then

F(t,T) = S(t) exp(𝛼(T − t)).

Since 𝛼 is not directly observable, this equation provides only a relative pric-
ing of futures contracts,

F(t,T2) = F(t,T1)(T2−t)∕(T1−t)S(t)(T1−T2)∕(T1−t).

In this case, the prices of futures contracts of all maturities can be calculated
from the spot price and the price of one contract only.

Example 2. Suppose 𝜌 = 0 and 𝛼, 𝜎S are functions of t and S(t) only.
Then G(t,T) = F(t,T), and F(t,T) is the solution of the partial differential
equation

𝜕F
𝜕t

+ 𝛼S𝜕F
𝜕S

+ 1
2
𝜎
2
SS

2 𝜕
2F
𝜕S2

= 0

subject to F(t,T) = S(T). For instance, if log S follows a Gaussian
mean-reverting process with the drift 𝜅(𝜃 − log S) and 𝜅, 𝜃, 𝜎S, 𝜈 are
constant, then

F(t,T) = exp

(

e−𝜅(T−t) log S(t) +

(

𝜃 −
𝜈𝜎S

𝜅
−
𝜎
2
S

2𝜅

)

(1 − e−𝜅(T−t))

+
𝜎
2
S

4𝜅

(
1 − e−2𝜅(T−t)

)
)

.

Example 3. Suppose 𝜎B(t,T) is deterministic (so that interest rates are
Gaussian under the risk-neutral measure) and assume that 𝛼(t), 𝜎S(t), 𝜌(t) are
also deterministic functions of t. Then

G(t,T) = S(t) exp
⎛
⎜
⎜
⎝

T

∫
t

𝛼 (𝜏) d𝜏 +

T

∫
t

𝜌(𝜏)𝜎B(𝜏,T)𝜎S(𝜏)d𝜏
⎞
⎟
⎟
⎠

F(t,T) = G(t,T) exp
⎛
⎜
⎜
⎝
−

T

∫
t

𝜌 (𝜏)𝜎B(𝜏,T)𝜎S(𝜏)d𝜏
⎞
⎟
⎟
⎠
.
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Example 4. Let 𝜎B(t,T), 𝜎S(t), 𝜌(t) be deterministic as in Example 3, but
suppose that 𝛼 = r + 𝜂 with 𝜂(t) deterministic. Then

G(t,T) = S(t)
B(t,T)

exp
⎛
⎜
⎜
⎝

T

∫
t

𝜂 (𝜏) d𝜏
⎞
⎟
⎟
⎠

and

F(t,T) = G(t,T) exp
⎛
⎜
⎜
⎝

T

∫
t

(
𝜎
2
B (𝜏,T) − 𝜌(𝜏)𝜎B(𝜏,T)𝜎S(𝜏)

)
d𝜏

⎞
⎟
⎟
⎠
.

The relationship of the forward and future prices, which involves observable
quantities only, is quite different in Examples 3 and 4.

Under the assumptions of Example 4, an option to buy an energy unit
at time T for a fixed price X is valued as

P(t,T) = G(t,T)B(t,T)N

(
logG (t,T) − logX + 1

2
Σ2(t,T)

Σ(t,T)

)

−XB(t,T)N

(
logG (t,T) − logX − 1

2
Σ2(t,T)

Σ(t,T)

)

(8)

where N is the cumulative normal distribution function and

Σ2(t,T) =

T

∫
t

(𝜎2B(𝜏) + 𝜎
2
S (𝜏,T) − 2𝜌(𝜏)𝜎B(𝜏,T)𝜎S(𝜏))d𝜏.

Note that the Black-Scholes (1973) formula for the valuation of
calls, resulting from replacing G(t,T) by S(t)∕B(t,T), does not apply to
a nonstorable commodity such as electricity. For the pricing of options on
nonstorable commodities, it is not sufficient to know the current spot price;
such options can only be priced relative to the forward curve.

EXPECTATIONS AND RISK PREMIA

Leaving aside the issue of stochastic interest rates, in this section we discuss
the relationship between forward (or futures) prices and the realized values
of spot prices for the corresponding maturity.
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The rational expectations hypothesis, first expressed in the framework
of interest rates by economists such as Keynes and Lucas, states that forward
prices are unbiased predictors of futures prices, namely that F(t,T) = EtS(T),
where Et denotes the expectation with respect to the true probability mea-
sure conditional on the information available at time t.

Other economic theories view these quantities as related but not iden-
tical, the differences accounting for risk premia (whose full specification,
whether they are assumed to be constant or functions of time t and matu-
rity T, is not straightforward to establish). On the other hand, the arbitrage
theory developed in a thorough manner for the past twenty years in the
framework of traded financial assets, establishes that futures prices are mar-
tingales under the risk-neutral probability measure P∗, or in other words,

F(t,T) = E∗
t S(T).

Obviously, in the absence of risk premia, P = P∗ and the previous
relationship reduces to the rational expectations hypothesis. Given the
relatively short period of observations of electricity prices available in the
framework of deregulated markets worldwide, we maximize the number of
pairs (forward, spot prices) in our analysis by comparing day-ahead prices
with realized prices of the following day. In order to avoid the specific
problems of California, which would deserve a study by itself, we consider
a database of 740 observations at the western hub of PJM (Pennsylvania–
New Jersey–Maryland), another vibrant part of the U.S. economy. Figure
29.1 plots the differences between spot prices and day-ahead values and
allows us to sketch the following conclusions:

1. The mean is negative.
2. The distribution is skewed to the left.
3. These features become more accentuated when one reduces the analysis

to summer periods, times when the consumption of air-conditioning in
businesses and households entails a sharp rise in demand, and explains
why industrial corporations and wholesale marketers are prepared to
pay a risk premium for hedging away the risk of power disruption.

4. Conversely, during the so-called shoulder months of April or October,
this property is much less true and the distribution of the spreads
becomes symmetric.

These elements tend to support the existence of risk aversion and risk
premia in power markets (one expression of these being the development of
weather derivatives), hence the probability measures earlier denoted as P and
P* are distinct. When pricing options on futures, the use of a valuation for-
mula written in terms of the forward prices only (as in Eq. (8)) is admissible
from an economic standpoint, since all instruments satisfy the martingale
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FIGURE 29.1 Differences (spot prices minus one-day forward prices) on the PJM
Western Hub

property under P*; hence the representation and calibration of the forward
prices process should take place under P*. The hedging portfolio held by the
option seller only involves forward contracts; the underlying and the option
are redundant instruments, as in the Black-Scholes world. Not surprisingly,
these options represent a liquid market in all deregulated countries.

The remaining issues are of a mathematical nature and related to the
consequences for forward prices of the spikes in the electricity price processes
as discussed next. (One may arguably view the shocks as toned down when
translated into forward prices.)

In the case of daily power options, however, the situation may be
described as “bad news on all fronts”: Not only does the option seller need
to account for the spikes, fat tails, and stochastic volatility of the spot price
process, but also the seller should bear in mind that these spot prices are
observed under the true probability measure P while option prices should
be computed under P*. Or equivalently, the risk premium to be received
for the risk bought should be incorporated in the option price. The daily
power option market became very illiquid after the first major spike in the
power markets, which took place in June 1998 in the East Central Area
Reliability (ECAR) Coordination Agreement region of the United States,
and has remained so since then.
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ENERGY PRICE SPIKES

Energy prices exhibit sudden increases (often due to a heat wave and the
corresponding sharp increase in energy consumption) that can be considered
discontinuities in the spot price. If these discontinuities were modeled by a
jump process, however, it would not take into account the fact that there
is typically a discontinuity of a similar magnitude in the other direction (as
when the heat wave ends). To address this issue, we propose the following
simple model to describe the spot price spikes: A spike of a fixed magnitude
occurs at the change from the normal situation to the heat-wave situation,
corresponding to the transition from state 0 to state 1 of a Markov process.
Such change is followed by a spike of the same magnitude in the opposite
direction, occurring as a transition of the Markov process from state 1 to
state 0.

Let Z(t) be aMarkov process in continuous time with state space {0, 1},
and denote the transition intensity from state 0 to state 1 by 𝛾0(t) and the
transition intensity from state 1 to state 0 by 𝛾1(t),

P[Z(t + dt) = 1|Z(t) = 0] = 𝛾0(t)dt

P[Z(t + dt) = 0|Z(t) = 1] = 𝛾1(t)dt. (9)

For simplicity, assume that Z is independent of X, Y.
Let the spot price of an energy unit be given by

S(t) = s0(t)(1 − Z(t)) + s1(t)Z(t) (10)

where s0(t) < s1(t) are deterministic functions. Obviously, this description of
the spot price process is meaningful only if the commodity cannot be stored,
because otherwise selling energy when Z(t) = 1 and buying the money mar-
ket account guarantees a positive gain on no investment.

Let F(t,T) be the price at time t of a futures contract with maturity T on
the energy unit. It is shown in Appendix B that there exist values 𝛿0(t), 𝛿1(t)
such that Z(t) is a Markov process with transition intensities 𝛿0(t), 𝛿1(t)
under an equivalent probability measure P∗. The futures price is a martingale
under P∗, and consequently

F(t,T) = E∗
t S(T).

If 𝛿0, 𝛿1 are deterministic, the expectation can be evaluated to yield

F(t,T) = f0(t,T)(1− Z(t)) + f1(t,T)Z(t) (11)
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where

f0(t,T) = s0(T) + (s1(T) − s0(T))

T

∫
t

𝛿0(𝜏) exp(−

T

∫
𝜏

(𝛿0(u) + 𝛿1(u))du)d𝜏

f1(t,T) = s1(T) − (s1(T) − s0(T))

T

∫
t

𝛿1(𝜏) exp(−

T

∫
𝜏

(𝛿0(u) + 𝛿1(u))du)d𝜏.

(12)

The pricing of the futures contracts can thus be described as follows:
The futures price is equal to the expectation of its maturity value, calculated
as if the transition intensities of the spot price process were not the actual
values 𝛾0, 𝛾1, but rather some other values 𝛿0, 𝛿1. The intensities 𝛿0, 𝛿1 cannot
be derived from the character of the spot price process, so the pricing is again
only relative to the values of other contracts.

The same principle applies to pricing of options. As to the forward
contracts, their price is the same as the price of the corresponding futures
contracts, due to our assumption that Z is independent of X.

As an example, suppose 𝛿0, 𝛿1 are constant. Then

F(t,T) = G(t,T) = s0(1 − Z(t)) + s1Z(t) + (s1 − s0)
𝛿0(1 − Z(t)) − 𝛿1Z(t)

𝛿0 + 𝛿1
× (1 − e−(𝛿0+𝛿1)(T−t)).

We note that here the value of long forward and futures contracts tends to
a finite limit

F(t,∞) = G(t,∞) =
s1𝛿0 + s0𝛿1
𝛿0 + 𝛿1

.

This cannot happen with contracts on storable commodities, where the con-
tract prices increase without limits as the time to maturity increases.

THE SPOT PRICE

We can now propose the following description of the energy spot price pro-
cess (see Figure 29.2): The spot price has a continuous component and a
spike component,

S(t) = C(t) +D(t). (13)
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FIGURE 29.2 Electricity Daily Spot Prices at the PJM Western Hub: January 1,
1999–January 9, 2001

The continuous component is subject to the dynamics

dC = 𝜇CCdt + 𝜑CCdX + 𝜓CCdY (14)

and the spike component is given by

D(t) = A(t)Z(t). (15)

The quantity A(t), which is the magnitude of the spike, is defined as follows:
Let A1,A2,… be a series of identically distributed positive random variables
independent of each other and of X,Y,Z. Let t1, t2,… be the consecutive
transition times of the process Z(t) from state 0 to state 1,

Z(ti) −Z(ti−) = 1.
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Then
A(t) = Ai for ti ≤ t < ti+1.

Typically, the parameters of the continuous component μC(t), 𝜑C(t), 𝜓C(t)
and the transition intensities 𝛾0(t), 𝛾1(t) of the spike component will show an
annual periodicity, and 𝛾0(t) << 𝛾1(t).

Futures contracts are priced as

F(t,T) = E∗
t S(T)

which can be evaluated as

F(t,T) = E∗(C(T)|Jt) + f0(t,T)(1− Z(t)) + f1(t,T)Z(t) (16)

where

f0(t,T) = a

T

∫
t

𝛿0(𝜏) exp
⎛
⎜
⎜
⎝
−

T

∫
𝜏

(
𝛿0 (u) + 𝛿1(u)

)
du

⎞
⎟
⎟
⎠
d𝜏

f1(t,T) = (A(t) − a) exp
⎛
⎜
⎜
⎝
−

T

∫
t

𝛿1 (𝜏)d𝜏
⎞
⎟
⎟
⎠
+ a

⎛
⎜
⎜
⎝
1 −

T

∫
t

𝛿1 (𝜏)

× exp
⎛
⎜
⎜
⎝
−

T

∫
𝜏

(
𝛿0 (u) + 𝛿1(u)

)
du

⎞
⎟
⎟
⎠
d𝜏

⎞
⎟
⎟
⎠
.

Here a is a quantity not necessarily equal to EAi. For forward contracts, we
have similarly

G(t,T) = 1
B(t,T)

E∗
t C(T)

M(t)
M(T)

+ f0(t,T)(1− Z(t)) + f1(t,T)Z(t). (17)

CONCLUSION

The paper provides a general framework for the pricing of derivatives on
nonstorable commodities. It is demonstrated that options and other deriva-
tives can only be valued from the futures or forward curve, rather than from
the spot price. A specific process is proposed to describe the observed spot
price spikes and time-varying volatility.
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APPENDIX A: PRICING OF FUTURES, FORWARDS,
AND OPTIONS

Futures
We use the setting described by Eqs. (1), (2), and (3). Building a portfolio
comprising futures F1 with maturity T1, futures F2 with maturity T2, and
bonds with maturity T1, one obtains through classical argument

𝜇F1 − 𝜆𝜑F1
𝜓F1

= 𝜇F2 − 𝜆𝜑F2
𝜓F2

.

Hence
dF
F

= (𝜆𝜑F + 𝜈𝜓F)dt + 𝜑FdX + 𝜓FdY.

Put

V(t) = exp
⎛
⎜
⎜
⎝
−

t

∫
0

𝜆 (𝜏)dX(𝜏)−

t

∫
0

𝜈(𝜏)dY(𝜏)−1
2

t

∫
0

𝜆
2(𝜏)d𝜏 − 1

2

t

∫
0

𝜈
2(𝜏)d𝜏

⎞
⎟
⎟
⎠

and let P∗ be a probability measure whose Radon-Nikodym derivative with
respect to P is defined by

dP∗

dP
= V(t).

The processes

X∗(t) = X(t) +

t

∫
0

𝜆(𝜏)d𝜏,Y∗(t) = Y(t) +

t

∫
0

𝜈(𝜏)d𝜏

are Wiener processes under P∗. Then

dF
F

= 𝜑FdX
∗ + 𝜓FdY∗

and F(t,T) is a martingale under P∗. Since at the contract maturity F(T,T) =
S(T), we obtain

F(t,T) = E∗(S(T)|Jt).

This gives the pricing of the futures contracts.
If energy were storable, then S(t)∕M(t) (or S(t) times a factor accounting

for the convenience yield) would also be a martingale under P∗, but this will
not be the case for nonstorable commodities.
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Forwards
Let G(t,T) be the price at time t of a forward contract on the energy unit at
maturity T, with

dG
G

= 𝜇Gdt + 𝜑GdX + 𝜓GdY.

The wealth gain over an interval dt resulting from holding the forward con-
tract is

(G(t + dt,T) −G(t,T))B(t + dt,T) = B(t,T)dG(t,T) + dB(t,T)dG(t,T).

The presence on the left-hand side of B(t + dt,T) reflects the fact that gains
or losses on G are locked in the forward position up to its maturity, hence
need to be discounted when analyzed at time t + dt. Such discounting does
not apply to the future contract change in value, since futures are marked to
market over time.

Again, standard arguments provide

𝜇G = 𝜆𝜑G − 𝜎B𝜑G + 𝜈𝜓G.

Hence

M
BG

d
(
BG
M

)
= dB

B
+ dG

G
+ 𝜎B𝜑Gdt − rdt

= (𝜎B + 𝜑G)dX∗ + 𝜓GdY∗

so that B(t,T)G(t,T)∕M(t) is a martingale under P∗ and

G(t,T) = 1
B(t,T)

E∗
(
S (T) M(t)

M(T)
|Jt

)
.

Options
Finally, consider a European option on an energy unit with an expiration
date T, and denote its price by P(t,T). Let the terms of the option specify
that

P(T,T) = f (S(T)).

An arbitrage argument applied to the option, a futures contract F(t,T), a
bond B(t,T), and the money market account implies that

dP
P

= rdt + 𝜆𝜑Pdt + 𝜈𝜓Pdt + 𝜑PdX + 𝜓PdY

= rdt + 𝜑PdX∗ + 𝜓PdY∗
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and therefore P(t,T)∕M(t) is a martingale under P∗. The option price is then

P(t,T) = E∗
(
f (S (T)) M(t)

M(T)
|Jt

)
.

APPENDIX B: SPOT PRICE SPIKES

We work in the setting described by Eqs. (9), (10), and (11). Assume that
Z is independent of X, Y, and that 𝛾0(t), 𝛾1(t) are adapted to a filtration Kt
generated by Z(t) on an augmented probability space (Ω,L, P). Write

df0 = 𝜇0dt + 𝜑0dX

df1 = 𝜇1dt + 𝜑1dX.

Then

dF = (𝜇0(1 − Z) + 𝜇1Z)dt + (𝜑0(1 − Z) + 𝜑1Z)dX + (f1 − f0)dZ.

Consideration of an arbitrage position for Z(t) = 0 yields

𝜇01 − 𝜆𝜑01
f11 − f01

=
𝜇02 − 𝜆𝜑02
f12 − f02

= −𝛿0.

The quantity 𝛿0 must be positive, because otherwise shorting 𝜑0∕𝜎B bonds
for each future contract would generate a sure positive gain with no
investment.

By the same argument for Z(t) = 1,

𝜇1 − 𝜆𝜑1
f1 − f0

= 𝛿1

with 𝛿1 positive. On substitution,

dF = (𝜑0(1 − Z) + 𝜑1Z)(𝜆dt + dX) + (f1 − f0)((−𝛿0(1 − Z) + 𝛿1Z)dt + dZ).

The values of 𝛿0(t), 𝛿1(t) are Kt adapted. Let P
∗ be a probability measure

that is the same as before on J, but under which Z(t) is a Markov process
with transition intensities 𝛿0(t), 𝛿1(t). The measure P∗ is equivalent to P, with
Radon-Nikodym derivative

dP∗

dP
= V(T) exp(

T

∫
0

((𝛿0 − 𝛾0)(1 − Z) − (𝛿1 − 𝛾1)Z)d𝜏
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+

T

∫
0

((log 𝛿0 − log 𝛾0)(1 − Z) − (log 𝛿1 − log 𝛾1)Z)dZ(𝜏)).

Then

E∗[(−𝛿0(t)(1− Z(t)) + 𝛿1(t)Z(t))dt + dZ(t)|Z(t) = 0] = 0

E∗[(−𝛿0(t)(1− Z(t)) + 𝛿1(t)Z(t))dt + dZ(t)|Z(t) = 1] = 0

Therefore, F(t,T) is a martingale under P∗, and

F(t,T) = E∗(S(T)|Kt).

NOTE

The authors wish to thank Alexander Eydeland of Mirant for providing the data
on electricity prices and Vu-Nhat Nguyen, a doctoral student at Paris Dauphine, for
processing them.
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CHAPTER 30
Pricing of Energy Derivatives

I t was shown in Geman and Vasicek (2001) (Chapter 29 of this volume)
that the price G(t,T) of a forward contract maturing at T is subject to

dG(t,T)
G(t,T)

= −𝜎B(t,T)𝜑G(t,T)dt + 𝜑G(t,T)dX∗(t) + 𝜓G(t,T)dY∗(t) (1)

where X∗(t), Y∗(t) are Wiener processes under a risk-neutral probability
measure P∗ equivalent to P.

Integrating Eq. (1) from 0 to T and taking into account that G(T,T) =
S(T) yields

S(T) = G(0,T) exp(∫
T

0
𝜑G(𝜏,T)dX∗(𝜏) + ∫

T

0
𝜓G(𝜏,T)dY∗(𝜏)

−∫
T

0
𝜎B(𝜏,T)𝜑G(𝜏,T)d𝜏 −

1
2∫

T

0
𝜑
2
G(𝜏,T)d𝜏 −

1
2∫

T

0
𝜓
2
G(𝜏,T)d𝜏) (2)

Eq. (2) represents a complete specification of the forward/spot process.
It is fully described by the forward contract volatilities, and it only includes
processes whose stochastic properties under the measure P* are known.
Therefore, the prices of energy derivatives and contingent claims can be
calculated without recourse to the market prices of risk, which are not
directly observable. In this sense, it is akin to the Heath/Jarrow/Morton
(1992) model of interest rates (their Eq. (26)).

Unpublished memorandum, 2002.
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The price of any derivative contract (e.g., a futures or a swap) is a mar-
tingale under the measure P∗. The price of any derivative security (such as
options, whether simple or compound, European, American, or Asian, etc.)
expressed in units of the money market fund is also a martingale under P∗.
That is, if P(t) is the price of a derivative security, then the quantity P(t)∕M(t)
is a martingale.

Specifically, the forward contract is priced as

F(t,T) = E∗
t S(T). (3)

A European option with a value f (S(T)) at the expiration date T is priced as

P(t,T) = E∗
t f (S(T))

M(t)
M(T)

. (4)

A compound option paying the amount f (S(T1),… , S(Tn)) at time T, which
is dependent on the spot prices at times T1,… , Tn, is valued as

P(t) = E∗
t f (S(T1),… , S(T1))

M(t)
M(T)

. (5)

These valuation relationships, applied to Eq. (2), give an exact meaning to
the phrase that energy derivatives are priced off the forward price curve.

Write the dynamics of the spot price S(t) under the risk-neutral proba-
bility measure as

dS
S

= 𝛼dt + 𝜑SdX∗ + 𝜓SdY∗. (6)

Then

𝜑S(t) = 𝜑G(t, t)

𝜓S(t) = 𝜓G(t, t)

𝛼(t) = G′(t, t)
S(t)

where
G′(t, t) = 𝜕G (t, s)

𝜕s

||||s=t

is the slope of the forward price curve at the present date. If the commod-
ity can be stored, the expected rate of return on the commodity under the
risk-neutral measure is the risk-free rate, 𝛼 = r. This imposes the condition

G(t,T) = S(t)
B(t,T)
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for all t ≤ T that must be satisfied by the forward price curves. This is not so
for nonstorable commodities, and the forward prices can be specified with-
out restrictions.

EXAMPLES

Example A. Suppose 𝜎B(t, T) is deterministic (so that interest rates are Gaus-
sian under the risk-neutral measure) and assume that𝜑G(t, T) is also a deter-
ministic function of t. Then the relationship of forward and future prices is
given by

F(t,T) = G(t,T) exp

(

−∫
T

t
𝜎B (𝜏,T)𝜑G(𝜏,T)d𝜏

)

. (7)

Example B. If the commodity is storable, then

𝜑G(t,T) = 𝜑S(t) − 𝜎B(t,T) (8)

and the futures contract price is given by

F(t,T) = S(t)E∗
t exp

(

∫
T

t
r (𝜏)d𝜏

)

.

For a nonstorable commodity, we have

F(t,T) = G(t,T)B(t,T)E∗
t exp

(

∫
T

t
r (𝜏)d𝜏

)

whenever Eq. (8) holds.
Example C. Assume that

𝜑G(t,T) = 𝜑S(t) − 𝜎B(t,T)

𝜓G(t,T) = 𝜓S(t).

Then
G(t,T) = S(t)

B(t,T)
G(0,T)B(0,T)
G(0, t)B(0, t)

.

This is the Example 4 in Geman and Vasicek (2001).
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Example D. Suppose 𝜎B(t, T), 𝜑G(t, T) are deterministic, and the for-
ward price volatilities are independent of the contract maturity date T,

𝜑G(t,T) = 𝜑S(t)

𝜓G(t,T) = 𝜓S(t).

Then

G(t,T) = S(t)G(0,T)
G(0, t)

exp
(

∫
t

0

(
𝜎B (𝜏, t) − 𝜎B(𝜏,T)

)
𝜑S(𝜏)d𝜏

)
.

This corresponds to the Example 3 in Geman and Vasicek (2001).
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PART

Six
Probability Theory

and Statistics

ABayesian estimate of security beta 𝛽 is obtained from its posterior distri-
bution, which is approximately normal with mean

b ′′ =
b ′∕s ′2b + b∕s2b
1∕s ′2b + 1∕s2b

and variance
s ′′2b = 1

1∕s ′2b + 1∕s2b

where b is the least-squares estimate of 𝛽 in a linear regression, sb is the
standard error of the estimate, and b ′ and sb

′ are the mean and standard
deviation, respectively, of prior information about the company’s beta. In the
absence of more specific knowledge about the company, the parameters of
the prior distribution can be set to the mean (b ′ = 1) and standard deviation
of the cross-sectional distribution of betas in the universe. (page 291)
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CHAPTER 31
Introduction to Part VI

Estimation of security betas—that is, coefficients that measure the secu-
rity’s systematic risk—is crucial for application of the Capital Asset Pric-

ing Model. The standard estimation procedure is to use the least-squares
regression applied to historical data. This technique consists of fitting a lin-
ear relationship between the rates of return on the security and those on the
market portfolio.

The regression coefficient estimate, however, does not capture all avail-
able information. Suppose the estimated beta of a stock is b = .2. In the
absence of any additional information, this estimate is taken by the sam-
pling theory as being the best estimate, because the true beta is equally likely
to be overestimated as underestimated by the sample b. This, however, does
not imply that given the sample estimate, the true parameter is equally likely
to be below or above the value of .2. It is known from previous measure-
ments that betas of all stocks are concentrated around unity, most of them
ranging in value between .5 and 1.5. An observed beta of .2 is more likely
to be a result of an underestimation than overestimation.

Bayesian decision theory provides a framework for incorporating prior
information in estimation of unknown parameters. The paper “A Note on
Using Cross-Sectional Information in Bayesian Estimation of Security Betas”
(Chapter 32) from 1973 presents a method for Bayesian estimation of the
regression coefficients that is optimal with respect to the minimization of the
expected squared estimation error.

The bivariate normal distribution function appears often in mathemati-
cal finance. It is required in pricing of options whose payout depends on two
assets, such as rainbow options, of calls on the maximum of three assets, of
extendible options, cross-country swaps, and so on. It is also required for
calculation of covariances of derivatives and corporate liabilities.
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In some cases, the bivariate normal distribution involves correlations
that are close to unity. Suppose an investor wants to calculate the variance
of the portfolio value change over a horizon of length H, and suppose the
portfolio contains options and derivatives. The variance over an interval of
length H of the price of a call option with time to expiration T > H is given
by the bivariate normal function with correlation H/T. If the option expires
shortly after the end of the horizon period, the correlation can be very high.
The same correlation figures in the formula for variance in the change over
the horizon H in the market value of a loan maturing at time T.

The standard method of evaluating the bivariate normal distribution
function is the tetrachoric series. This series converges only slightly faster
than a geometric series with quotient equal to the correlation coefficient. If
the correlation is close to unity, the tetrachoric series is not practical. The
paper “A Series Expansion for the Bivariate Normal Integral” (Chapter 33)
from 1998 gives an alternative series that converges approximately as a geo-
metric series with quotient equal to oneminus the correlation squared, which
makes it a convenient means of calculation when the correlation is close to
one in absolute value.

The article “A Conditional Law of Large Numbers” (Chapter 34), orig-
inally written in 1980, is a purely mathematical work. The law of large
numbers in probability theory justifies interpreting limiting frequencies as
probabilities; the conditional law of large numbers provides a similar foun-
dation for the principle of maximum entropy, an extremely useful propo-
sition in many areas of physics, which had never been formally proven.
Informally stated, the theorem asserts that in the equiprobable case, the
frequencies conditional on given constraints converge in probability to the
distribution that has the maximum entropy subject to these constraints.

A generalization of that result is also given, which relaxes the assump-
tion of all states being equally likely. In the general case, the frequencies
conditional on a set of constraints converge in probability to the distribution
that maximizes the entropy relative to the underlying distribution.

The paper “A Test for Normality Based on Sample Entropy” (Chapter
35) written in 1976 also deals with the subject of entropy, although in a com-
pletely different setting and for a completely different purpose. This paper
proposes a statistical goodness-of-fit test to determine whether a given sam-
ple came from the normal (Gaussian) distribution. It is based on the fact that
the normal distribution has the maximum entropy among all distributions
with the same variance. The test statistic is the exponential of a sample esti-
mate of the population entropy, based on higher-order spacings, divided by
the sample standard deviation. The test is shown to be a consistent test of
the composite hypothesis of normality. The power of the test is estimated
against a number of different alternative distributions. It is observed that
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the power of the test compares favorably to that of several standard tests of
goodness-of-fit.

Another paper in probability theory is the joint 1998 work with
Julian Keilson, “Monotone Measures of Ergodicity for Markov Chains”
(Chapter 36). Finite irreducible Markov chains in continuous time approach
ergodicity—that is, they possess a limiting state probability distribution.
The speed of approaching the asymptotic distribution is provided by
measures of ergodicity. The paper provides a systematic discussion of a
certain set of norms, each a measure of ergodicity. Monotonicity of these
norms is proven, whether or not the chain is time-reversible. That is a
novel and useful result, because up to then monotonicity of these measures
had been proven only for time-reversible chains, a small subset of Markov
chains. Similar results are noted for Markov chains in discrete time.

The paper “An Inequality for the Variance ofWaiting Time under a Gen-
eral Queueing Discipline” (Chapter 37), originally written in 1977, belongs
to the field of operations research and, specifically, to the area of queueing
systems. Queueing systems aremathematicalmodels of structures into which
“customers” arrive at random times to receive some kind of service that takes
an uncertain amount of time. Typical examples are telephone exchanges
connecting phone calls, or airports accommodating arriving planes. When
all servers are busy, arriving customers must wait in line (“queue”) until a
server is available. The waiting customers are selected for service by some
rule, called the queueing discipline. Of interest are various characteristics of
the operation, such as the average waiting time, the number of customers in
the queue, the idle periods of the servers, etc.

The chapter proves an interesting inequality about the variance of the
waiting time. The queueing discipline can take a variety of forms, such as
serving next the customer who came the earliest (“First-come-first-served”),
or the most recent arrival (“Last-come-first-served”) as is often the case in
warehousing, or selecting a customer from the queue at random, or vari-
ous priority rules. The expected, or average, waiting time is the same under
any queuing discipline, as long as the selection rule does not depend on
the serving time of the customers in the queue. The variance, however, is
the lowest under the first-come-first-served discipline and the largest under
the last-come-first-served discipline. For any other rule of selecting the next
customer, the variance is in between these two extremes. It means that the
waiting times are the most and the least equitably distributed, respectively,
under the two extreme rules.
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CHAPTER 32
A Note on Using Cross-sectional

Information in Bayesian
Estimation of Security Betas

ABSTRACT

Bayesian decision theory provides formal procedures that utilize informa-
tion available prior to sampling, together with the sample information, to
construct estimates that are optimal with respect to the minimization of
the expected loss. This paper presents a method for generating Bayesian
estimates of the regression coefficient of rates of return of a security against
those of a market index. The distribution of the regression coefficients
across securities is used as the prior distribution in the analysis. Explicit
formulas are given for the estimates. The Bayesian approach is discussed in
comparison with the current practice of sampling-theory procedures.

INTRODUCTION

The Capital Asset PricingModel of Treynor (1961), Sharpe (1964), and Lint-
ner (1965) states that the expected rate of return on a security in excess of
the risk-free rate is proportional to the slope coefficient of the regression of
that security’s rates of return on a market index. The slope coefficient, or
beta, is for this reason one of the basic concepts of modern capital market
theory, and considerable attention has been devoted to its measurement.

Journal of Finance 28, (5) (1973), 1233–1239.
This paper is a minor revision of the author’s unpublished memorandum “Bayesian
Estimates of Beta,” Wells Fargo Bank, August 1971.
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Customarily, beta is estimated from past data by least-squares regression
procedures. The least-squares technique consists of fitting a linear relation-
ship between the rates of return on a security and the rates of return on a
market index so that the sum of squared differences between the security’s
actual returns and those implied by the relationship is minimized.

If yt, t = 1, 2,…,T and xt, t = 1, 2,…,T are the series of rates of return
on a security and on a market index, respectively, the least-squares estimates
of the parameters 𝛽, 𝛼, 𝜎2 in the simple linear regression process

yt = 𝛼 + 𝛽xt + et, t = 1, 2,…,T

Eet = 0,Eetes = 0 for t ≠ s,Eet
2 = 𝜎

2 (1)

are given as

b = Σ (yt − y) (xt − x)∕Σ (xt − x)2 (2)

a = y − bx (3)

s2 = 1
T − 2

Σ(yt − a − bxt)2, (4)

respectively, and the variance of b is estimated as

sb
2 = s2∕Σ (xt − x)2. (5)

These are the best unbiased estimates of the parameters in the sense that
the expected value of each of the estimates is equal to the corresponding
parameter and the expected quadratic error attains the minimal value. In par-
ticular, when the beta coefficient of a stock is estimated by b, the following
holds:

E (b|𝛽) = 𝛽 (6)

Var (b|𝛽) = minimum over all estimates of 𝛽 satisfying (6). (7)

For these reasons, the sampling-theory estimation procedures are com-
monly applied to the estimation of the beta of a security. Yet, the criteria as
represented by Eqs. (6) and (7) do not satisfactorily reflect the desired prop-
erties of a beta estimator. Eq. (6) describes an aspect of the distribution of the
estimate assuming that the true value of the parameter is given. The actual
situation is just the reverse: It is the sample coefficient that is known, and on
the basis of this (and any prior or additional) information we want to infer
about the distribution of the parameter.

To illustrate this point, assume that the estimated beta of a stock traded
on the New York Stock Exchange is b = .2. In the absence of any additional



A Note on Using Cross-sectional Information in Bayesian Estimation of Security Betas 289

information, this value is taken by sampling theory as being the best estimate
of the true beta because any given true beta is equally likely to be overesti-
mated as underestimated by the sample b. This, however, does not imply that
given the sample estimate b, the true parameter is equally likely to be below
or above the value .2. In fact, it is known from previous measurements that
betas of stocks traded on the New York Stock Exchange are concentrated
around unity, and most of them range in value between .5 and 1.5. Thus,
an observed beta as low as 0.2 is more likely to be a result of underestima-
tion than overestimation. The question of whether the estimate b is equally
likely to lie below or above the true beta is irrelevant, since the true beta
is not known. What is desired is an estimate such that given the sample
information (which is available), the true beta will with equal probability lie
below or above it.

To pursue this example further, assume that there are 1,000 stocks under
consideration, the betas of which are known to be distributed approximately
normally around 1.0 with standard deviation of .5. Each of these true betas is
equally likely to be underestimated or overestimated by b. Therefore, there
are 500 stocks with true beta higher than the observed estimate, and 500
with true beta lower than the estimate. If an estimate of b = .2 is observed,
the stock might be any of the approximately 500 × .945 = 473 stocks with 𝛽
larger than .2 and underestimated, or any of the approximately 500 × .055 =
27 stocks with 𝛽 smaller than .2 and overestimated. Apparently, given the
sample and our prior knowledge of beta distribution, the former is much
more likely, and thus, it is not correct to take .2 for an unbiased estimate.

This has been recognized before in the special situation where portfo-
lios were formed by ranking of sample estimates (cf. Wagner and Vasicek
(1971)). The knowledge of the cross-sectional distribution of betas, however,
can be used as prior information whenever a beta of a security is estimated.
Also, as a referee pointed out to the author, a similar problem has been
recently addressed by Bogue (1972). Following is a Bayesian analysis of the
simple normal regression process with the cross-sectional prior information.
For information about the principles and techniques of Bayesian statistical
theory, the reader is referred to Raiffa and Schlaifer (1961).

BAYESIAN ESTIMATES

For computational convenience, reparametrize the regression process (1) as
follows:

yt = 𝜂 + 𝛽 (xt − x) + et, t = 1, 2,…,T (8)

where
𝜂 = 𝛼 + 𝛽x.
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Assuming normal distribution of the disturbances, the kernel k(b, y, s|v,
𝛽, 𝜂, 𝜎) of the likelihood is proportional to (see Raiffa and Schlaifer (1961),
p. 335)

𝜎
−T exp [−(T − 2) s2∕(2𝜎2)] × exp

[
− 1
2𝜎2

(
T(y − 𝜂)2 + v (b − 𝛽)2

)]
(9)

where b, s2 is given by Eqs. (2), (4),

y = 1
T
Σyt,

and
v = Σ(xt − x)2.

Let the information available prior to sampling consist of knowledge of
the cross-sectional distribution of betas. Assuming that the distribution is
approximately normal with parameters b ′

, s ′b, the marginal prior density of
𝛽 is

f ′ (𝛽) ∝ exp [−(𝛽 − b ′)2∕(2s ′b
2)]. (10)

(In accordance with practice, the prior distributions and parameters are
denoted by primed letters, the posterior by letters with double primes, and
the sample information without superscripts.)

Unless some prior information is available on 𝜂, 𝜎, it is assumed that the
prior density of these parameters is assessed as

f ′ (𝜂, 𝜎) ∝ 𝜎
−1 (11)

and independent of f ′(𝛽). The density (11) is an improper density function
corresponding to the limiting case where the prior information on 𝜂, 𝜎 is
totally negligible. The joint prior density of the parameters 𝛽, 𝜂, 𝜎 is then

f ′ (𝛽, 𝜂, 𝜎) ∝ 𝜎
−1 × exp [−(𝛽 − b ′)2∕(2s ′b

2)]. (12)

Note that the prior distribution (12) is not of the natural conjugate
form (the bivariate normal-gamma distribution for the simple normal regres-
sion process). The reason why the natural conjugate density is not suitable
here is that the conjugate prior expresses prior information in the form
as if it were results of previous sampling from the same process, and it is
not rich enough to give a good representation of the case when the prior
information involves a cross-sectional relationship among several regression
processes.



A Note on Using Cross-sectional Information in Bayesian Estimation of Security Betas 291

Given the prior density (12), the posterior density f ′′ of the parameters
𝛽, 𝜂, 𝜎 is evaluated using Bayes’ theorem:

f ′′(𝛽, 𝜂, 𝜎 |v, b, y, s) = f ′(𝛽, 𝜂, 𝜎) k (b, y, s|v, 𝛽, 𝜂, 𝜎)D−1(b, y, s) (13)

where

D(b, y, s) = ∫ f ′(𝛽, 𝜂, 𝜎)k (b, y, s|v, 𝛽, 𝜂, 𝜎)d𝛽 d𝜂 d𝜎.

The marginal posterior density of 𝛽 is evaluated as

f ′′(𝛽|v, b, y, s) = ∫ f ′′(𝛽, 𝜂, 𝜎|v, b, y, s)d𝜂 d𝜎.

After substitution, this yields

f ′′(𝛽 |v, b, y, s) ∝ exp [−(𝛽 − b ′)2∕(2s ′b
2)].

[

T − 2 +
v
(
𝛽 − b

)2

s2

]− 1
2 (T−1)

.

(14)

When T is larger than 20, the posterior distribution of 𝛽 is approximately
normal with mean b ′′ and variance s ′′b

2, where

b ′′ =
b ′∕s ′b

2 + b∕sb2

1∕s ′b2 + 1∕sb2
(15)

s ′′b
2 = 1

1∕s ′b2 + 1∕sb2
. (16)

Here
sb

2 = s2∕v

is the estimated variance of b as given by Eq. (5). (In sampling-theory
terminology, sb is usually called the standard error of the estimate b.)

The marginal posterior density of 𝛽 describes the knowledge about the
distribution of the estimated parameter, given the information from the sam-
ple and the prior information. The choice of a point estimate of 𝛽 depends
on this posterior distribution as well as the utility function on the space of
decisions (estimates). Under a quadratic terminal loss function (which is a
Bayesian analogue to the sampling-theory concept ofminimum variance esti-
mates), the optimal estimate of 𝛽 is the mean of the posterior distribution
(14). For T > 20, the error of approximating the posterior mean by b ′′ does
not exceed .01 and decreases approximately linearly with 1/T. Since this
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error is small in comparison with the dispersion s ′′b of the posterior distri-
bution, no material loss is incurred when b ′′ is taken for the estimate that
minimizes the expected quadratic opportunity loss.

DISCUSSION AND CONCLUSIONS

The Bayesian estimate b ′′ as given by Eq. (15) can be interpreted as an
adjustment of the sample estimate b toward the best prior estimate b ′, the
degree of adjustment being proportionate to the precision h = 1∕sb2, h ′ =
1∕s ′b2 of the sample estimate and the prior distribution, respectively. Eq.
(16) can be interpreted as stating that the precision h ′′ = 1∕s ′′b2 of the pos-
terior distribution is the sum of the precision of b and that of the prior
distribution.

The choice of the parameters b ′
, s ′b of the prior density f

′(𝛽) depends on
the prior information available. If nothing is known about a stock prior to
sampling except that it comes from a certain population of stocks (e.g., from
the population of all stocks traded on the New York Stock Exchange), an
appropriate choice of the prior density is the cross-sectional distribution of
betas observed for that population. For the New York Stock Exchange pop-
ulation, the prior parameters might be approximately b ′ = 1, s ′b = .5. In this
case, the regression coefficient estimated from the sample is linearly adjusted
toward unity, the degree of the adjustment depending on the standard error
sb of the estimate.

A somewhat similar procedure is used in the Security Risk Evaluation
service by Merrill Lynch, Pierce, Fenner & Smith, Inc. Their simplified
method utilizes a formula of the form

b ′′ = 1 + k(b − 1) (17)

where k is a constant common for all stocks. This constant can be inter-
preted as the slope of the cross-sectional regression of beta estimates on those
obtained over a prior nonoverlapping period. Comparison of Eq. (17) with
Eq. (15) shows that this method assumes that the variance sb

2 of the sample
regression coefficient is the same for all securities. The effect of this proce-
dure is thus to overadjust more accurate estimates and underadjust the less
accurate ones.

In some cases, more can be known about a stock than that it comes
from a certain population. Assume, for instance, that a stock is selected on
the basis of an instrumental variable, which may be related to the true betas
but not to the estimation error of the sample estimates b. In this case, a
proper choice of the prior distribution is the distribution of betas implied
by the knowledge of the instrumental variable. Thus, if a utility stock is
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considered, and it is known from previous measurements that betas of utili-
ties are centered around .8 with a dispersion of .3, the estimate b is adjusted
toward .8 by the formula (15) with b ′ = .8, s ′b = .3. In general, the degree
and direction of the adjustment depend on the prior distribution f ′(𝛽) as
characterizing the information pertaining to 𝛽 that is contained in the instru-
mental variable.

When estimating beta of a portfolio composed of N stocks, the sample
estimate b is again adjusted through the formula (15). In this case, however,
the value used for s ′b is the cross-sectional dispersion of betas of portfolios
of size N. In most instances, a good approximation for this dispersion is
obtained by assuming cross-sectional independence of the regression resid-
uals (as in the diagonal model), and consequently using the cross-sectional
dispersion of individual securities’ betas reduced by the factor of 1∕

√
N.

In some cases, the prior informationmay contain information of another
sample from the same process (as regression results over a previous period),
but the two samples cannot be pooled. This situation arises, for example,
when a portfolio is formed by ranking securities on the basis of their esti-
mated betas, and then the portfolio’s beta is estimated over the next period.
In such cases, the estimation proceeds in two steps. First, the posterior dis-
tribution based on the first sample and the cross-sectional prior is obtained.
Next, this posterior distribution is used as the prior density to utilize the
information of the second sample. Thus, the sample estimate from the second
sample is adjusted toward the adjusted first sample estimate.

In summary, the estimate of a security’s beta that minimizes the expected
squared estimation error is given by Eq. (15), where the parameters b ′

, s ′b
of the prior distribution are chosen to reflect all the information on beta
available prior to sampling. The mean squared estimation error s ′′b

2 is given
by Eq. (16).

The relative merit of this Bayesian estimation method as contrasted to
procedures of sampling theory will now be briefly discussed. Themain objec-
tion to the Bayesian estimation method is that the estimate b ′′ is not an
unbiased estimate of 𝛽 (in the sampling-theory sense), while b is unbiased,

E (b ′′|𝛽) ≠ 𝛽,

E (b|𝛽) = 𝛽. (18)

To discuss this objection, it is useful to askwhy unbiasedness in the sense
of Eq. (18) is desirable. One can identify two reasons, the first of which is
that, in virtue of the law of large numbers, an unbiased estimate converges
in probability to the estimated parameter as the sample size increases,

P lim
T→∞

b = 𝛽.
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The same, however, is true for the estimate b ′′,

P lim
T→∞

b ′′ = 𝛽,

since with increasing sample size sb
2 → 0 and the degree of the adjustment

decreases. The second reason for requiring an unbiased estimate is that the
mean quadratic error

E ((𝛽 − 𝛽)2 |𝛽) (19)

is minimized in a class of estimates 𝛽 of the same variance by an unbiased
estimate. The expected value (19) is taken with respect to the conditional
likelihood (9) of the sample. This, however, is not justified. Rather than min-
imizing the squared sampling error, what should be done is to minimize the
squared estimation error. That is, minimize

E ′′ (𝛽 − 𝛽)2, (20)

the expectation being taken with respect to the posterior distribution of 𝛽.
The estimate b ′′, not b, is the estimate 𝛽 to minimize (20).

This is more than a mere philosophical point. If two persons, one
using the estimate b and the other b ′′, were penalized proportionally to
the squared difference of their respective estimates from the true parameter
value 𝛽 (or, for that matter, from the next-period sample estimate), the
former would go broke first.

In conclusion, Bayesian estimates (15) are preferred to the classical
sampling-theory estimates (2) for the following reasons: First, Bayesian
procedures provide estimates that minimize the loss due to misestimation,
while sampling-theory estimates minimize the error of sampling. This is
because Bayesian theory deals with the distribution of the parameters given
the available information, while sampling theory deals with the properties of
sample statistics given the true value of the parameters. Secondly, Bayesian
theory weights the expected losses by a prior distribution of the parameters,
thus incorporating knowledge that is available in addition to the sample
information. This is particularly important in the case of estimating betas
of stocks, where the prior information is usually sizable.
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CHAPTER 33
A Series Expansion for the
Bivariate Normal Integral

ABSTRACT

An infinite series expansion is given for the bivariate normal cumulative
distribution function. This expansion converges as a series of powers of
(1 − 𝜌2), where 𝜌 is the correlation coefficient, and thus represents a good
alternative to the tetrachoric series when 𝜌 is large in absolute value.

INTRODUCTION

The cumulative normal distribution function

N(x) = ∫
x

−∞
n(u)du

with

n(u) = 1√
2𝜋

exp
(
−1
2
u2

)

appears frequently in modern finance: Essentially all explicit equations of
options pricing, starting with the Black-Scholes formula, involve this func-
tion in one form or another. Increasingly, however, there is also a need for
the bivariate cumulative normal distribution function

N2(x, y, 𝜌) = ∫
x

−∞ ∫
y

−∞
n2(u, v, 𝜌)dudv (1)

Journal of Computational Finance, 1 (4) (1998), 5–10.
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where the bivariate normal density is given by

n2(u, v, 𝜌) =
1
2𝜋

(1 − 𝜌2)−
1
2 exp

(
−1
2

(
u2 − 2𝜌uv + v2

)
∕(1 − 𝜌2)

)
(2)

This need arises in at least the following areas:

1. Pricing exotic options. Options with payout depending on the prices of
two lognormally distributed assets, or two normally distributed factors,
involve the bivariate normal distribution function in the pricing formula.
Examples include the so-called rainbow options (such as calls on max-
imum or minimum of two assets), extendible options, and spread and
cross-country swaps.

2. Correlations of derivatives. While the instantaneous correlation of two
derivatives is the same as the correlation of the underlying assets, cal-
culation of the correlation over noninfinitesimal intervals often requires
the bivariate normal function.

3. Loan loss correlations. If a loan default occurs when the borrower’s
assets fall below a certain point, the covariance of defaults on two loans
is given by a bivariate normal formula. This covariance is needed when
evaluating the variance of loan portfolio losses.

A standard procedure for calculating the bivariate normal distribution
function is the tetrachoric series,

N2(x, y, 𝜌) = N(x)N(y) + n(x)n(y)
∞∑

k=0

1
(k + 1)!

Hek(x)Hek(y)𝜌k+1 (3)

where

Hek(x) =
[k∕2]∑

i=0

k!
i!(k − 2i)!

(−1)i2−ixk−2i

are the Hermite polynomials. For a comprehensive review of the literature,
see Gupta (1963).

The tetrachoric series (3) converges only slightly faster than a geometric
series with quotient 𝜌, and it is therefore not very practical to use when
𝜌 is large in absolute value. In this note, we give an alternative series that
converges approximately as a geometric series with quotient (1 − 𝜌2).
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THE EXPANSION

The starting point of this chapter is the formula

d
d𝜌

N2(x, y, 𝜌) = n2(x, y, 𝜌) (4)

which is proven in the Appendix.
Because of the identity

N2(x, y, 𝜌) = N2

(

x, 0,
𝜌x − y

√
x2 − 2𝜌xy + y2

sgnx

)

+N2

(

y, 0,
𝜌y − x

√
x2 − 2𝜌xy + y2

sgn y

)

−
[
0 if xy > 0
1
2
if xy < 0

]

for xy ≠ 0, we can limit ourselves to calculation of N2(x, 0, 𝜌). Suppose first
that 𝜌 > 0. Then by integrating Equation (4) with y = 0 from 𝜌 to 1 we get

N2(x, 0, 𝜌) = min
{
N (x) , 1

2

}
−Q (5)

where

Q = ∫
1

𝜌

n2(x, 0, r)dr =
1
2𝜋∫

1

𝜌

(1 − r2)−
1
2 exp

(
−1
2
x2∕

(
1 − r2

))
dr.

To evaluate the integral, substitute

r =
√
1 − s

to obtain

Q = 1
4𝜋∫

1−𝜌2

0
(1 − s)−

1
2 s−

1
2 exp

(
−1
2
x2∕s

)
ds. (6)
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Using the expansion

(1 − s)−
1
2 =

∞∑

k=0

(2k)!
(k!)2

2−2ksk,

we get

Q = 1
4𝜋 ∫

1−𝜌2

0

∞∑

k=0

(2k)!
(k!)2

2−2ksk−
1
2 exp

(
−1
2
x2∕s

)
ds. (7)

Because

(2k)!
(k!)2

2−2ksk−
1
2 exp

(
−1
2
x2∕s

)
≤ sk−

1
2 ≤ (1 − 𝜌2)k−

1
2 (8)

for k > 0 and 0 ≤ s ≤ 1 − 𝜌2, the series in Equation (7) converges uniformly
in the interval [0, 1 − 𝜌2] and can be integrated term by term. It can be easily
established that

∫
t

0
sk−

1
2 exp

(
−1
2
x2∕s

)
ds = k!

(2k + 1)!
(−1)k2k+1|x|2k+1

×

[

exp
(
−1
2
x2∕t

) k∑

i=0

(2i)!
i!

(−1)i2−i|x|−2i−1ti+
1
2 −

√
2𝜋N(−|x|∕

√
t)

]

for k ≥ 0. Substitution into (7) then gives

Q =
∞∑

k=0
Ak (9)

where

Ak = 1
k!(2k + 1)

(−1)k2−k|x|2k+1

×

[
1
2𝜋

exp
(
−1
2
x2∕

(
1 − 𝜌2

)) k∑

i=0

(2i)!
i!

(−1)i2−i|x|−2i−1(1 − 𝜌2)i+
1
2

− 1√
2𝜋

N
(
− |x| ∕

√
1 − 𝜌2

)]

. (10)
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Equations (5), (9), and (10) give an infinite series expansion for
N2(x, 0, 𝜌) with 𝜌 > 0. When 𝜌 < 0, integration of Equation (4) from –1 to
𝜌 yields

N2(x, 0, 𝜌) = max
{
N (x) − 1

2
, 0
}

+Q (11)

withQ still given by (9) and (10).
A convenient procedure for computing the terms in the expansion (9) is

using the recursive relationships

Ak = − 2k − 1
2k(2k + 1)

x2Ak−1 + Bk

Bk = (2k − 1)2
2k(2k + 1)

(1 − 𝜌2)Bk−1

with

B0 = 1
2𝜋

(1 − 𝜌2)
1
2 exp

(
−1
2
x2∕

(
1 − 𝜌2

))

A0 = − 1√
2𝜋

|x|N(−|x|∕
√
1 − 𝜌2) + B0

To determine the speed of convergence of (9), integrate the first half of
inequality (8) from 0 to 1 − 𝜌2. This results in the bound

0 < Ak ≤ 1

4𝜋
(
k + 1

2

) (1 − 𝜌2)k+
1
2

for k > 0, and therefore the series (9) converges approximately as
Σ(1 − 𝜌2)k∕k. As the tetrachoric series for N2(x, 0, 𝜌),

N2(x, 0, 𝜌) =
1
2
N(x) + 1√

2𝜋
n(x)

∞∑

k=0

1
k!(2k + 1)

(−1)k2−kHe2k(x)𝜌2k+1 (12)

converges approximately as Σ𝜌2k∕k, a reasonable method for calculating
N2(x, 0, 𝜌) is to use the tetrachoric series (12) when 𝜌2 ≤ 1∕2 and expressions
(5) and (11) with the series (9) when 𝜌2 > 1∕2.
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The error in the calculation of N2(x, 0, 𝜌) resulting from using m terms
in the expansion (9) is bound in absolute value by

||||||

∞∑

k=m
Ak

||||||
≤ 1

4𝜋
(
m + 1

2

)
𝜌2

(1 − 𝜌2)m+ 1
2 .

NUMERICAL RESULTS

A comparison of the convergence of the tetrachoric series (12) and the alter-
native calculations (5) or (11) with the series (9) in calculating N2(x, 0, 𝜌) for
high values of the correlation coefficient is given in Tables 33.1 and 33.2.

TABLE 33.1 Partial Sums of the Tetrachoric and Alternative Series

x = −1, 𝝆 = .95 x = −1, 𝝆 = .99

Number of Terms Tetrachoric Alternative Tetrachoric Alternative

1 .171033 .158632 .174894 .158655
2 .171033 .158631 .174894 .158655
3 .167298 .158631 .170304 .158655
5 .161764 .158631 .162651 .158655

10 .157961 .158631 .156068 .158655
20 .158466 .158631 .158068 .158655
30 .158660 .158631 .159374 .158655
50 .158632 .158631 . 158599 .158655
100 .158631 .158631 .158711 .158655
200 .158631 .158631 .158657 .158655
300 .158631 .158631 .158654 .158655

Exact .158631 .158655

TABLE 33.2 Number of Terms Necessary for Precision 10–4

𝝆 = .8 𝝆 = .9 𝝆 = .95 𝝆 = .99

Tetrachoric series
x = 0 8 16 30 121
x = ± 1 7 14 22 75
x = ± 2 6 11 18 42

Alternative series
x = 0 4 3 2 1
x = ± 1 3 1 1 1
x = ± 2 1 1 1 1



A Series Expansion for the Bivariate Normal Integral 303

APPENDIX

We prove equation (4) by stating a slightly more general result. Let

np(x,𝜮) = (2𝜋)−p∕2|𝜮|−
1
2 exp

(
−1
2

x′𝜮−1x
)

and

Np(x,𝜮) = ∫
x

−∞
np(u,𝜮)du

be the p-variate normal density function and cumulative distribution func-
tion, respectively, where x = [x1, x2,… , xp]′ is a p × 1 vector and 𝜮 = [𝜎ij]
is a p × p symmetric positive-definite matrix. We now prove the following
lemma:

Lemma. Let p ≥ 2. Then for i ≠ j

𝜕

𝜕𝜎ij
Np(x,𝜮)= 𝜕

2

𝜕xi𝜕xj
Np(x,𝜮)

= n2(x(1),𝜮(11))Np−2(x(2)−𝜮(21)𝜮
−1
(11)x(1),𝜮(22)−𝜮(21)𝜮

−1
(11)𝜮 (12))

Here x(1) = [xi, xj]′ is the 2 × 1 vector of xi, xj, x(2) is the (p − 2) × 1 vector
of the remaining components of x, and 𝜮(11), 𝜮 (12), 𝜮 (21), 𝜮 (22) are the
2 × 2, 2 × (p − 2), (p − 2) × 2, and (p − 2) × (p − 2) decompositions of 𝜮

into the i-th and j-th row and column and the remaining rows and columns.

Proof. We have

𝜕

𝜕𝜎ij
np(x,𝜮) =

(
−1
2
tr
(
𝜮−1 𝜕𝜮

𝜕𝜎ij

)
+ 1
2

x′𝚺−1 𝜕𝜮

𝜕𝜎ij
𝜮−1x

)
np(x,𝜮)

Define V = [vij] by V = 𝜮−1 and put y = [y1, y2,… , yp]′ = Vx. Since
for i ≠ j

𝜕𝜮

𝜕𝜎ij
= Eij + Eji

where Eij is the matrix having unity for the (i,j)-th element and zeros else-
where, we get on substitution

𝜕

𝜕𝜎ij
np(x,𝜮) = (−vij + yiyj)np(x,𝜮).
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On the other hand,
𝜕

𝜕xi
np(x,𝜮) = −yjnp(x,𝜮)

and
𝜕
2

𝜕xi𝜕xj
np(x,𝜮) = (−vij + yiyj)np(x,𝜮)

and therefore
𝜕

𝜕𝜎ij
np(x,𝜮) = 𝜕

2

𝜕xi𝜕xj
np(x,𝜮).

Integrating with respect to x and exchanging the order of integration and
differentiation yields the first equality of the lemma. The second equality
follows from the factorization

np(x,𝜮) = n2(x(1),𝜮(11))np−2(x(2) −𝜮 (21)𝜮
−1
(11)x(1),𝜮(22) − 𝜮(21)𝜮

−1
(11)𝜮 (12)).
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CHAPTER 34
A Conditional Law
of Large Numbers

ABSTRACT

It is shown that, when conditional on a set of given average values, the
frequency distribution of a series of independent random variables with a
common finite distribution converges in probability to the distribution which
has the maximum relative entropy for the given mean values.

INTRODUCTION

In statistical mechanics and other areas of physics, empirical distributions in
the phase space conform in many circumstances to the distribution maximiz-
ing the entropy of the system subject to its constraints. The constraints are
typically in the form of specified mean values of some functions of phase. If
p = (p1, p2,… , pk) denotes the probability distribution over the state space,
the constraints on p take the form

k∑

i=1
ajipi = cj, j = 1, 2, · · · , r,

and themaximum entropy distribution is the one thatmaximizes the entropy
function

−
k∑

i=1
pi log pi

subject to the constraints.

Annals of Probability, 8(1) (1980), 142–147.
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A principle stating that the empirical distribution possesses the maxi-
mum entropy within the restrictions of the system is due to Gibbs (1902). As
a special case, he proposed the so-called canonical distribution as a descrip-
tion of systems subject to a single constraint that the average energy has a
fixed value,

k∑

i=1
aipi = c,

where a1, a2,… , ak are the energy levels of each state. In this case, the max-
imum entropy distribution has the form

pi = exp(v + 𝜆ai), i = 1, 2, · · · , k,

which is the form that Gibbs called canonical.
Gibbs offered no justification for the canonical distribution, and the

principle of maximum entropy in general. In spite of its apparent arbitrari-
ness, however, the maximum entropy principle has since found a number
of successful applications in a wide range of situations, and has led to many
new developments in physics. For an informed discussion, see Jaynes (1967).

In a subsequent paper, Jaynes (1968) presented a demonstration that
the distribution with the maximum entropy “can be realized experimen-
tally in overwhelmingly more ways than can any other.” Therefore, for large
physical systems, the empirical distribution should, indeed, agree with the
maximum entropy distribution.

In this chapter, a limit theorem is given that provides a foundation the
above principle in the same sense in which the law of large numbers justifies
interpretation of limiting frequencies as probabilities. Informally stated, the
theorem asserts that in the equiprobable case, the frequencies conditional
on given constraints converge in probability to the distribution that has the
maximum entropy subject to these constraints.

A generalization of this result is also given, which relaxes the assumption
of all states being equally likely. In the general case, the frequencies condi-
tional upon a set of conditions converge to the distribution that maximizes
the entropy relative to the underlying distribution.

THE LIMIT THEOREMS

Let X = (x1, x2, · · · , xk) be a finite set of k elements and consider a series
X1,X2,… of independent identically distributed random variables with val-
ues on X, such that

P[X1 = xi] = 1∕k, i = 1, 2, · · · , k. (1)



A Conditional Law of Large Numbers 307

Denote by fn = (fn1, fn2,… , fnk), n = 1, 2,… the frequency distribution of
X1,X2,… ,Xn,

fni =
1
n

n∑

m=1
I[Xm = xi], i = 1, 2, · · · , k,

where I is the characteristic function. Let (aji) be a given r × k matrix and
(c1, c2,… cr) a given vector. Put p = (p1, p2,… , pk) and define

D0 =

[

p ∶ p ∈ S,
k∑

i=1
ajipi = cj, j = 1, 2, · · · , r

]

(2)

where S is the set of probability distributions on X,

S =

[

p ∶ pi ≥ 0, i = 1, 2, · · · , k,
k∑

i=1
pi = 1

]

.

Assume that D0 ≠ Ø. Define the entropy of a distribution in S by

H(p) = −
k∑

i=1
pi logpi, p ∈ S, (3)

with the convention 0 ⋅ log 0 = 0. Denote by p0 = (p01, p02,… , p0k) the
maximum point of H on D0,

maxp∈D0
H(p) = H(p0). (4)

Since H is continuous on S and D0 is compact, the maximum exists. More-
over, it is unique by virtue of strict concavity of H on S and convexity of the
set D0.

Theorem 1. For every 𝜀 > 0, there exists 𝛿(𝜀) > 0 such that for every 𝛿, 0 <
𝛿 ≤ 𝛿(𝜀),

P

[

|fni − p0i| ≤ 𝜀, i = 1, 2, · · · , k
||||||
|

k∑

i=1
ajifni − cj| ≤ 𝛿, j = 1, 2, · · · , r

]

→ 1

(5)
as n → ∞, where p0 = (p01, p02,… , p0k) is the maximum entropy distribu-
tion, maxp∈D0

H(p) = H(p0).

www.ebook3000.com

http://www.ebook3000.org


308 PROBABILITY THEORY AND STATISTICS

This theorem is a special case of the more general conditional law of
large numbers, which will now be stated. Replace the assumption (1) of the
equiprobable case by a general assumption that

P[X1 = xi] = qi, i = 1, 2, · · · , k (6)

where q = (q1, q2,… , qk) ∈ S is a given distribution. Assume, without loss of
generality, that qi > 0, i = 1, 2,… , k. Define the entropyHq of a distribution
in S relative to the distribution q by

Hq(p) = −
k∑

i=1
pi log(pi∕qi), p ∈ S. (7)

Again let D0 be the set in (2), D0 ≠ Ø, and replace the definition (4) of p0
by the definition

maxp∈D0
Hq(p) = Hq(p0). (8)

Again, the maximum relative entropy point p0 exists and is unique.

Theorem 2. For every 𝜀 > 0, there exists 𝛿(𝜀) > 0 such that for every 𝛿, 0 <
𝛿 ≤ 𝛿(𝜀),

P

[

|fni − p0i| ≤ 𝜀, i = 1, 2, · · · , k
||||||
|

k∑

i=1
ajifni − cj| ≤ 𝛿, j = 1, 2, · · · , r

]

→ 1

(9)
as n → ∞, where p0 = (p01, p02,… , p0k) is the distribution with the maxi-
mum entropy relative to q,

maxp∈D0
Hq(p) = Hq(p0).

The maximum relative entropy distribution p0 is easy to find. It is
given by

p0i = qi exp

(

𝜈 +
r∑

j=1
𝜆jaji

)

, i = 1, 2, · · · , k,

where the constants 𝜈, 𝜆j, j = 1, 2,… , r are determined by the condition
p0 ∈ D0.
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PROOF OF THE THEOREMS

Theorem 1 follows immediately from Theorem 2, since for q =
(1∕k, 1∕k,… , 1∕k)

Hq(p) = H(p) − logk

so that the maximum points in Eqs. (4) and (8) coincide.

Proof of Theorem 2. Let 𝜀 > 0 be fixed, and put

V = [p ∶ p ∈ S, |pi − p0i| ≤ 𝜀, i = 1, 2, · · · , k] (10)

where p0 is given by (8). For each 𝛿 > 0, define

D
𝛿
=

[

p ∶ p ∈ S, |
k∑

i=1
ajipi − cj| ≤ 𝛿, j = 1, 2, · · · , r

]

. (11)

Define uniquely a point p
𝛿
by

maxp∈D
𝛿
Hq(p) = Hq(p𝛿). (12)

Introduce a topology on S by the metric

d(u, v) = max1≤i≤k|ui − vi|, u, v ∈ S.

We will first prove that
lim
𝛿→0+

p
𝛿
= p0. (13)

Let the set {p
𝛿
, 𝛿 > 0} be directed by the relation 𝛿1 ≺ 𝛿2 if 𝛿1 ≥ 𝛿2. Since S

is compact, the directed set {p
𝛿
} has at least one limit point. Let p* be one

such limit point. Choose an arbitrary 𝛿 > 0 and put

𝜂 = 1
2𝛿∕

r∑

j=1

k∑

i=1
|aji|, 𝛿

′ = 1
2𝛿.

There exists 𝛿′′, 0 < 𝛿′′ < 𝛿′ such that

max1≤i≤k|p𝛿′′ i − pi
∗| ≤ 𝜂.
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Then

|
k∑

i=1
ajipi

∗ − cj| ≤ |
k∑

i=1
aji(p∗i − p

𝛿
′′ i)| + |

k∑

i=1
ajip𝛿′′ i − cj|

≤ 𝜂

k∑

i=1
|aji| + 𝛿

′′ ≤ 𝛿, j = 1, · · · , r

and therefore p∗ ∈ D
𝛿
. Since this is true for every 𝛿 > 0, it follows that

p∗ ∈ D0 = ∩
𝛿>0D𝛿

.

Now Hq(p𝛿) ≥ Hq(p0) for every 𝛿 > 0. Since Hq is a continuous function,
the same is true for the limiting point,

Hq(p∗) ≥ Hq(p0).

But p0 is the unique maximum point of Hq on D0, and therefore p∗ = p0.
Thus, p0 is the only limit point of {p𝛿}, which proves Eq. (13).

It follows that there exists 𝛿(𝜀) > 0 such that for every 𝛿, 0 ≤ 𝛿 ≤ 𝛿(𝜀),

|p
𝛿i − p0i| ≤ 1

2𝜀, i = 1, 2, · · · , k. (14)

Let 𝛿 be selected arbitrarily from 0 ≤ 𝛿 ≤ 𝛿(𝜀) and fixed. Put W = S − V
where V is given by (10), and denote the adherence of W by W. Put

h = maxp∈W∩D
𝛿

Hq(p).

Since
maxp∈D

𝛿

Hq(p) = Hq(p𝛿),

and p
𝛿
∉ W by virtue of Eq. (14), it follows that

h < Hq(p𝛿).

Put
h′ = 1

2 (h +Hq(p𝛿))

so that
h < h′, (15)
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and define
R = [p ∶ p ∈ S,Hq(p) ≥ h′].

Let
B = R ∩ V ∩D

𝛿
.

We will now show that B contains an open set. Let 0 < 𝛿′′ < 𝛿 and put

s
𝜆
= (1 − 𝜆)p

𝛿
+ 𝜆p

𝛿′
, 0 < 𝜆 < 1.

The point s
𝜆
is an interior point of D

𝛿
for every 0 < 𝜆 < 1. To prove that,

choose

𝜂 = 𝜆(𝛿 − 𝛿′)∕
r∑

j=1

k∑

i=1
|aji|.

For every p = (p1, p2,… , pk) such that

|pi − s
𝜆i| ≤ 𝜂, i = 1, 2, · · · , k

it is true that

||||||

k∑

i=1
ajipi − cj

||||||
≤ 𝜂

k∑

i=1
|aji| + (1 − 𝜆)|

k∑

i=1
ajip𝛿i − cj| + 𝜆|

k∑

i=1
ajip𝛿′i − cj|

≤ 𝜆(𝛿 − 𝛿′) + (1 − 𝜆)𝛿 + 𝜆𝛿′ = 𝛿, j = 1, 2, · · · , r

so that p ∈ D
𝛿
. Thus, s

𝜆
belongs to the interior ofD

𝛿
for every 𝜆, 0 < 𝜆 < 1.

Since p
𝛿
is an interior point of V and, by continuity of Hq, also of R, the

point s
𝜆
will be in the interior of both V and R if 𝜆 is sufficiently small.

Thus, such s
𝜆
is an interior point of B, and consequently B contains an open

set, say C.
To summarize our results so far, we have proven that there exists an

open set C such that

C ⊂ V ∩D
𝛿
,

Hq(p) ≥ h′ for every p ∈ C,

and
Hq(p) ≤ h ≤ h′ for every p ∈ W ∩D

𝛿
.
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Now

P

[

|fni − p0i| ≤ 𝜀, i = 1, 2, · · · , k
||||||
|

k∑

i=1
ajifni − cj| ≤ 𝛿, j = 1, 2, · · · , r

]

= 1
1 + gn

where

gn =
∑

fn∈W∩D
𝛿

n!
(nfn1)!(nfn2)! · · · (nfnk)!

qnfn11 qnfn22 · · · qnfnkk

∕
∑

fn∈V∩D𝛿

n!
(nfn1)!(nfn2)! · · · (nfnk)!

qnfn11 qnfn22 · · ·qnfnkk .

We will make use of the inequality

nne−n ≤ n! ≤ 3(n + 1)
1
2 nne−n (16)

valid for n ≥ 0, where we define 00 = 1 in agreement with the earlier conven-
tion 0 ⋅ log 0 = 0. The inequality (16) is easily established from the Stirling
formula. Then

gn ≤ ∑

fn∈W∩D
𝛿

3(n + 1)
1
2 nn(nfn1)−nfn1(nfn2)−nfn2 · · · (nfnk)−nfnk

⋅ qnfn11 qnfn22 · · · qnfnkk

∕
∑

fn∈V∩D𝛿

3−k(nfn1 + 1)−
1
2 (nfn2 + 1)−

1
2 · · · (nfnk + 1)−

1
2

⋅ nn(nfn1)−nfn1 (nfn2)−nfn2 · · · (nfnk)−nfnkq
nfn1
1 qnfn22 · · ·qnfnkk

≤ 3k+1(n + 1)(k+1)∕2
∑

fn∈W∩D
𝛿

exp(nHq(fn))∕
∑

fn∈V∩D
𝛿

exp(nHq(fn))

≤ 3k+1(n + 1)(k+1)∕2
∑

fn∈W∩D
𝛿

exp(nHq(fn))∕
∑

fn∈C
exp(nHq(fn))

≤ 3k+1(n + 1)(k+1)∕2 exp(−n(h′ − h))#[fn ∶ fn ∈ W ∩D
𝛿
]

#[fn ∶ fn ∈ C]
,

and therefore

gn ≤ 3k+1(n + 1)(k+1)∕2 exp(−n(h′ − h)) #[fn ∶ fn ∈ S]
#[fn ∶ fn ∈ C]

(17)
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where #[Z] denotes the number of elements of a finite set Z. Now

#[fn ∶ fn ∈ S]
#[fn ∶ fn ∈ C]

converges with n → ∞ to a finite limit 𝜇(S)∕𝜇(C) where 𝜇(S), 𝜇(C) are the
volumes of S, C, respectively, by (k − 1)-dimensional Lebesgue measure, and
𝜇(C) > 0. Since h′ − h > 0, the right-hand side of Eq. (17) converges to zero
as n → ∞, and consequently

P

[

|fni − p0i| ≤ 𝜀, i = 1, 2, · · · , k
||||||
|

k∑

i=1
ajifni − cj| ≤ 𝛿, j = 1, 2, · · · , r

]

→ 1,

which completes the proof.
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CHAPTER 35
A Test for Normality Based on

Sample Entropy

ABSTRACT

This chapter introduces a test of the composite hypothesis of normality. The
test is based on the property of the normal distribution that its entropy
exceeds that of any other distribution with a density that has the same vari-
ance. The test statistic is based on a class of estimators of entropy constructed
here. The test is shown to be a consistent test of the null hypothesis for all
alternatives without a singular continuous part. The power of the test is
estimated against several alternatives. It is observed that the test compares
favorably with other tests for normality.

ENTROPY ESTIMATION

The entropy of a distribution F with a density function f is defined as

H(f ) = −∫
∞

−∞
f (x) log f (x)dx. (1)

Let x1, x2,… , xn, n ≥ 3, be a sample from the distribution F. Express (1) in
the form

H(f ) = ∫
1

0
log

{
d
dp

F−1 (p)
}

dp. (2)

An estimate of (2) can be constructed by replacing the distribution function
F by the empirical distribution function Fn, and using a difference oper-
ator in place of the differential operator. The derivative of F−1(p) is then

J. Roy. Statist. Soc., Series B, 38 (1) (1976), 54–59.
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estimated by (x(i+m) − x(i−m))n∕(2m) for (i − 1)∕n < p ≤ i∕n, i = m + 1,m +
2,… , n−m, where x(1) ≤ x(2) ≤ … ≤ x(n) are the order statistics and m is a
positive integer smaller than n/2. One-sided differences of the type x(i+m) −
x(1) or x(n) − x(i−m) are used in place of x(i+m) − x(i−m) when p ≤ m∕n, p >
(n −m)∕n, respectively. This produces an estimate Hmn of H(f )

Hmn = n−1
n∑

i=1
log

{ n
2m

(
x(i+m) − x(i−m)

)}
, (3)

where x(i) = x(1), i < 1, and x(i) = x(n), i > n.
To investigate the behavior of Hmn, it is useful to write it as a sum of

three components,

Hmn = −n−1
n∑

i=1
log f (xi) +Vmn +Umn, (4)

where

Vmn = n−1
n∑

i=1
log

[
F
(
x(i+m)

)
− F(x(i−m))

f (x(i)) {x(i+m) − x(i−m)}

]

.

Umn = n−1
n∑

i=1
log

[ n
2m

{
F
(
x(i+m)

)
− F(x(i−m))

}]
.

The first term in Eq. (4) does not depend on m and represents the sam-
ple mean estimate of H(f ) = E{−log f (xi)} assuming that the value of f at
the points x1, x2,… , xn is known. If the variance of −log f (xi) is finite, it is
the minimum variance unbiased estimate of H(f ) given the values of f at the
sample points. The two remaining terms represent two sources of additional
estimation error. The term Vmn is due to estimation of f by finite differences.
For fixed n, its effect decreases with decreasing values of m. The term Umn
corresponds to the error due to estimating increments of F by increments
of Fn. The increments are taken over intervals (x(i−m), x(i+m)), whose length
increases withm, and therefore the disturbance due toUmn is the smaller the
larger is the value of m.

As n → ∞, simultaneous reduction of the effect of these two noise terms
requires that m → ∞,m∕n → 0. An optimal choice of m for a given n, how-
ever, depends on the (unknown) distribution F. In general, the smoother the
density of F, the larger is such optimal value of m.

Since F(x(1)), F(x(2)),… , F(x(n)) are distributed as an ordered sample of
size n from the uniform distribution on (0, 1), the distribution of Umn does
not depend on F. Its limiting behavior is given by the following lemma.
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Lemma 1. The variable Umn converges to zero in probability as n → ∞,
m → ∞.

Proof. Put y(i) = F(x(i)), 1 −m ≤ i ≤ n +m. Since the geometric mean does
not exceed the arithmetic mean, it follows that exp(Umn) ≤ y(n) − y(1) ≤ 1.
Therefore, Umn is a nonpositive variable with the mean

EUmn = logn − log (2m) + n−1
n∑

i=1
E log (y(i+m) − y(i−m)).

The variable y(i+j) − y(i) has the beta distribution with parameters j, n − j + 1.
The expected value of its logarithm is easily evaluated by differentiation
of the generating function at zero as E log(y(i+j) − y(i)) = 𝜓(j) − 𝜓(n + 1),
where 𝜓(x) = Γ′(x)∕Γ (x) is the digamma function. Thus, after some
algebra,

EUmn = log n − log (2m) +
(
1 − 2m

n

)
𝜓(2m) − 𝜓(n + 1)

+ 2
n

m∑

i=1
𝜓(i +m − 1). (5)

The right-hand side of the last equality converges to zero with n → ∞,
m → ∞. Thus,Umn forms a series of nonpositive variables with expectations
approaching zero, and consequently

Umn
P
−−→ 0.

Since the distribution of Umn is independent of F, the bias due to the
presence of Umn in (4) can be eliminated by using

H
′
mn = Hmn − EUmn, (6)

rather than Hmn, as an estimate of entropy. Here EUmn is given by (5). The
following theorem deals with consistency of H

′
mn (and, by Lemma 1, also

that of Hmn).

Theorem 1. Let x1, x2,… , xn be a sample from a distribution F with a den-
sity f and a finite variance. Then

H
′
mn

P
−−→ H(f ) as n → ∞,m → ∞,m∕n → 0.
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Proof. With some reorganization, H
′
mn can be written

H
′
mn = (2m)−1

2m∑

j=1
Sj +Umn − EUmn, (7)

where

Sj = −
n∑

i=1
log

[
F
(
x(i+m)

)
− F(x(i−m))

x(i+m) − x(i−m)

]

{Fn(x(i+m)) − Fn(x(i−m))},

i ≡ j (mod 2m)

and Fn is the empirical distribution function. When x(i−m), x(i+m) belong to
an interval in which f (x) is positive and continuous, then there exists a value
x′i ∈ (x(i−m), x(i+m)) such that

F(x(i+m)) − F(x(i−m))
x(i+m) − x(i−m)

= f (x′i).

Therefore, Sj is a Stieltjes sum of the function − log f (x) with respect to the
measure Fn over the sum of intervals of continuity of f in which f (x) > 0. The
contribution of terms in Sj that corresponds to intervals in which f (x) = 0
approaches zero with n → ∞. Since in any interval in which f (x) is positive,
x(i+m) − x(i−m) → 0 a.s. asm∕n → 0 and Fn(x) → F(x) a.s. uniformly over x, Sj
converges a.s. toH(f ), which is either finite or −∞ in virtue of finite variance
of F. Moreover, this convergence is uniform over j. Consequently,

(2m)−1
2m∑

j=1
Si → H(f ) a.s.

Since
Umn − EUmn

P
−−→ 0 as n → ∞,m → ∞,

the statement of the theorem follows from (7).

TEST FOR NORMALITY

A well-known theorem of information theory (Shannon, 1949, p. 55) states
that among all distributions that possess a density function f and have a
given variance 𝜎2, the entropyH(f ) is maximized by the normal distribution.
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The entropy of the normal distribution with variance 𝜎2 is log {
√
(2𝜋 e)𝜎}.

The question arises as to whether a test of the composite hypothesis of nor-
mality can be based on this property. The estimateHmn will be used for that
purpose.

Definition. Let x1, x2,… , xn be a sample from a distribution F and let x(1) ≤
x(2) ≤ … ≤ x(n) be the order statistics. Let m be a positive integer smaller
than n∕2 and define x(i) = x(1) for i < 1, x(i) = x(n) for i > n. The Km test of
the composite hypothesis of normality is a test with critical regionKmn ≤ K∗,
where

Kmn =
n

2ms

{
n∏

i=1

(
x(i+m) − x(i−m)

)
}1∕n

(8)

and

s2 = n−1
n∑

i=1
(xi − x)2.

Under the null hypothesis,

Kmn
P
−−→

√
(2𝜋e) as n → ∞,m → ∞,m∕n → 0.

Under an alternative distribution with density f and a finite variance 𝜎2,

Kmn
P
−−→ 𝜎

−1 exp {H(f )} <
√
(2𝜋e).

This means that the K test is consistent for such alternatives. There is no
need, however, to restrict the use of the test to distributions with a density
and a finite second moment, as will be established in Theorem 2. First, a
lemma will be proven.

Lemma 2. Let F be a distribution with a density function f and without a
finite second moment. Put

ac = ∫
c

−c
f (x) dx.

For each c such that ac > 0, define a density function fc by

fc (x) = f (x)∕ac, |x| ≤ c,

= 0, |x| > c.

}

. (9)
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Denote the variance of fc by 𝜎
2
c . Then H(fc) − log 𝜎c → −∞ as c → ∞.

Proof. Let d be such that ad > 0. Then for c > d,

H(fc) − log 𝜎c = log ac −
ad
ac

log ad

+ ad
ac
H(fd) − a−1c ∫Af (x) log f (x)dx − log 𝜎c,

where A = (−c,−d) ∪ (d, c). According to an inequality in information the-
ory (cf., for instance, Kullback, 1959, p. 15),

∫Af (x) log {f (x)∕g(x)} dx ≥ ∫Af (x) dx log
{

∫Af (x) dx
/

∫Ag(x)dx
}

(10)
for nonnegative functions f , g. Let g be the density of the normal distribution
with the same mean and variance as fc. An application of inequality (10) and
the inequality −𝛼 log 𝛼 ≤ 1∕e then yields

H(fc) − log 𝜎c ≤ ad
ac
H(fd) +

ac − ad
ac

log {
√
(2𝜋)} + 1

2
+ 2
ac

1
e
− ad
ac

log 𝜎c.

For a fixed d and c → ∞, the right-hand side of the last inequality approaches
minus infinity, as was to be proven.

Theorem 2. TheKm test of any size 𝛼 > 0 is a consistent test, as n → ∞,m →
∞,m∕n → 0, for all alternatives without a singular continuous part.

Proof. Let x1, x2,… , xn be a sample from a distribution F. If F has a density
and a finite variance, the consistency of the test follows from Theorem 1.
Assume that F has a density f but the second moment is infinite. Let fc be the
truncated density (9) with variance 𝜎c. Define a statistic Kmnc as

Kmnc(x1, x2,… , xn) = Kmr(xi1 , xi2 ,… , xir),

where (xi1 , xi2 ,… , xir) is the subsample of all xi such that |xi| ≤ c. Since the
subsample has the density fc and r → ∞ a.s. as n → ∞, it follows that

Kmnc
P
−−→ 𝜎

−1
c exp {H(fc)}.

The difference Kmn − Kmnc converges to zero in probability with c → ∞ uni-
formly over n. Therefore,

Kmn
P
−−→ lim

c→∞
𝜎
−1
c exp {H(fc)} = 0
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in virtue of Lemma 2, which establishes consistency for that class of alter-
natives.

Finally, let F have an atom a with a weight p > 0. Then

P{Kmn ≠ 0} ≤ P{atmost 2m elements of (x1, x2,… , xn) are equal to a}

=
2m∑

i=0

(
n
i

)
pi(1 − p)n−i → 0

as n → ∞,m∕n → 0. Thus,

Kmn
P
−−→ 0

and the consistency of the test for alternatives with an atom follows. This
completes the proof.

It can be shown that always

0 ≤ Kmn <
√
(2𝜋e) = 4.133… .

Except in the simplest case n = 3,m = 1, the distribution of Kmn under
the null hypothesis has not been obtained analytically. To determine the per-
centage points K∗

mn(𝛼), Monte Carlo simulations were employed. For each
n ≤ 50, 5000 samples of size n from the normal distribution were formed,
using the congruence method of generating pseudo-random numbers and
obtaining approximately normal deviates as sums of 12 uniform deviates.
The statistic Kmn for several values of m was calculated from each sample,
and percentage points of the distribution of Kmn were estimated by the cor-
responding order statistics. For each significance level and each value of m,
the estimates were smoothed by fitting a polynomial in powers of n−

1
2 . The

lower-tail 5 percent significance points of Kmn for selected values of n, m are
given in Table 35.1.1

The power of the test was estimated against several alternatives. The
method was that ofMonte Carlo simulation of the distribution ofKmn under
alternative population distributions. For each alternative, 1,000 samples of
sizes n = 10, 20, 50 were generated, and the test power was estimated by
the frequency of the samples falling into the critical region. The continu-
ous alternatives investigated were gamma (1) (exponential), gamma (2), beta
(1,1) (uniform), beta (2,1), and Cauchy distributions.

1The full tables of percentage points of the statistic, together with the results of the
power studies, have been deposited in the Society’s Library.
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TABLE 35.1 0.05 points for the K statistic

m = 1 m = 2 m = 3 m = 4 m = 5

n = 3 0.99
4 1.05
5 1.19 1.70
6 1.33 1.77
7 1.46 1.87 1.97
8 1.57 1.97 2.05
9 1.67 2.06 2.13
10 1.76 2.15 2.21
12 1.90 2.31 2.36
14 2.01 2.43 2.49
16 2.11 2.54 2.60 2.57
18 2.18 2.62 2.69 2.67
20 2.25 2.69 2.77 2.76
25 2.83 2.93 2.93 2.91
30 2.93 3.04 3.06 3.05
35 3.00 3.13 3.16 3.16
40 3.19 3.24 3.24
45 3.25 3.29 3.30
50 3.29 3.34 3.35

For these alternatives, the maximum power was typically attained by
choosing m = 2 for n = 10,m = 3 for n = 20, and m = 4 for n = 50. With
increasing n, an optimal choice ofm also increases, while the ratiom∕n tends
to zero.

The power of the K test was compared to that of some other tests for
normality against the same alternatives. The tests investigated by Stephens
(1974) were considered. These are the Kolmogorov-SmirnovD, Cramér-von
Mises W2, Kuiper V, Watson U2, Anderson-Darling A2, and Shapiro-Wilk
W tests. Of these, only the Shapiro-Wilk test is a test of the composite
hypothesis of normality. The testsD,W2

,V,U2, andA2, based on the empir-
ical distribution function (EDF), require a complete specification of the null
hypothesis. When these tests are used to test the composite hypothesis, the
parameters must be estimated from the sample. Critical values correspond-
ing to such modification of the test statistics are then applicable.

Table 35.2 lists power estimates of .05 size tests with sample size n =
20. These results have been obtained by Stephens (1974) for the EDF statis-
tics against the exponential, uniform, and Cauchy alternatives; by Van Soest
(1967) for D,W2 against gamma (2); and by Shapiro and Wilk (1965) for
W. The powers of V,U2, and A2 against gamma (2) and of the EDF statistics
against beta (2,1) were estimated by the author from 2,000 samples, using
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TABLE 35.2 Powers of .05 tests against some alternatives (n = 20)

Alternative D W2 V U2 A2 W K3

Exponential .59 .74 .71 .70 .82 .84 .85
Gamma (2) .33 .45 .33 .37 .48 .50 .45
Uniform .12 .16 .17 .18 .21 .23 .44
Beta (2,1) .17 .23 .20 .23 .28 .35 .43
Cauchy .86 .88 .87 .88 .98 .88 .75

the critical values given in Stephens (1974). The standard error of the power
estimates in Table 35.2 does not exceed .015.

It is apparent from Table 35.1 that none of the tests considered performs
better than all other tests against all alternatives. Compared with any other
test, however, the K test exhibits higher power against at least three of the
five alternative distributions. For three of the alternatives, the power of the
K test is uniformly the highest. Similar results hold for other sample sizes
and sizes of the test.

These results, together with the relative simplicity of theK test (no tables
of coefficients or function values are needed to calculate the test statistic) and
its asymptotic properties against any alternative, suggest that the K test may
be preferred in many situations.
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CHAPTER 36
Monotone Measures of

Ergodicity for Markov Chains

By Julian Keilson and Oldrich Vasicek

ABSTRACT

The following paper, first written in 1974, was never published other than
as part of an internal research series. Its lack of publication is certainly unre-
lated to the merits of the paper since the paper is of current importance by
virtue of its relation to relaxation time. This chapter provides a systematic
discussion of the approach of a finite Markov chain to ergodicity by proving
the monotonicity of an important set of norms, each a measure of ergodicity
whether or not time reversibility is present. The paper is of particular inter-
est because the discussion of the relaxation time of a finite Markov chain
(Keilson 1979) has only been clean for time reversible chains, a small subset
of the chains of interest. This restriction is not present here. Indeed, a new
relaxation time quoted quantifies the relaxation time for all finite ergodic
chains (cf. the discussion of Q1(t) below Eq. (7)). This relaxation time was
developed by J. Keilson with A. Roy in his thesis (Roy 1996).

INTRODUCTION

Let N(t) be a finite homogeneous Markov chain in continuous time on the
state space N = {1, 2,… ,K}, which is irreducible and hence ergodic.

Journal of Applied Mathematics and Stochastic Analysis, 11 (3) (1998), 283–288.
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Let pT(t) = (pn(t)) be the state probability vector at time t with pn(t) =
P[N(t) = n]. Let eT = (en) be the ergodic vector eT = limt→∞ pT(t).

Consider the norm function with probability weights qn > 0,

h
𝛼
(p, q) =

{
∑

n

qn

(
pn
qn

)𝛼
} 1

𝛼

,−∞ < 𝛼 < ∞, 𝛼 ≠ 0

h0(p, q) = exp

{
∑

n

qn log
pn
qn

}

(1)

defined for arbitrary probability vectors p, q supported on N. Of interest are
the related functions of time

R
𝛼
(t) = h

𝛼
(p(t), e) =

{
∑

n

en

(
pn (t)
en

)
𝛼

} 1
𝛼

, 𝛼 ≠ 0

R0(t) = exp

{
∑

n

en log
pn (t)
en

}

(2)

and

Q
𝛼
(t) =

{
∑

n

pn (t)
(
pn (t)
en

)
𝛼

} 1
𝛼

, 𝛼 ≠ 0

Q0(t) = exp

{
∑

n

pn (t) log
pn(t)
en

}

. (3)

The functions h
𝛼
(w, e) are vector norms on RK, and R

𝛼
(t) then describes a

time dependent norm function. The function Q
𝛼
(t) has related properties.

It will be shown (cf. Theorem 1) thatQ
𝛼
(t) is strictly decreasing in t for

𝛼 > −1, and strictly increasing in t for 𝛼 < −1 when p
0
≠ e, that is, when the

chain is not stationary. When 𝛼 = −1,Q−1(t) = 1 for all t. A similar mono-
tonicity of R

𝛼
(t) with t is demonstrated in Theorem 2. We note that lim

Q
𝛼
(t) = 1 for all 𝛼 as t → ∞. In particular,

Q0(t) = exp{H(p(t), e)} (4)

and
R0(t) = exp{−H(e, p(t))} (5)
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where (cf. Kullback (1968), Renyi (1970))

H(p, q) =
∑

n

pn log
pn
qn

(6)

is the divergence of the distribution p from the distribution q, an entity
closely related to entropy and other concepts in information theory. The
monotonicity ofH(e, p(t)) andH(p(t), e) for arbitrary chains has been known
(Renyi 1970).

A value of 𝛼 of special interest corresponding to weighted quadratic
distance is 𝛼 = 1, for which

Q1(t) =
∑

n

p2n(t)
en

(7)

and this is strictly decreasing in t if the chain is not stationary.
In the time reversible case, the monotonicity of Eq. (7) is well known

(see Keilson 1979; and Kendall 1959). Indeed, for this case, the quadratic
distance to ergodicity

D(t) =

√
∑

n

(pn(t) − en)2

en
=
√
Q1(t) − 1 (8)

is strictly decreasing by virtue of the symmetry of e1∕2
D

[p(t) − 1eT]e−1∕2
D

and

its associated spectral representation (cf. Keilson (1979)). That Q1(t) and
D(t) are monotone decreasing for all ergodic chains is striking. The function
D2(t) decreases strictly to zero for every finite nonstationary homogeneous
ergodic chain.

The monotonicity of the distance to ergodicity (8) does not appear to
extend easily to the full family R

𝛼
(t) and Q

𝛼
(t).

It is shown in Roy (1996, Remark 3.2.2) that for any ergodic chain and
initial distribution,

D(t) ≤ D(0) e−|𝜃1|t =

√
∑

n

(pn(0) − en)2

en
e−|𝜃1|t (9)

where −𝜃1 is the smallest of the positive real singular values of e1∕2D
Qe−1∕2

D
(cf. Amir-Moez and Fass (1961)). When the chain is reversible in time, this
agrees with the known result (Keilson 1979). Consequently, Trel = 1∕|𝜃1 | is
a natural extension of the relaxation time for time reversible ergodic chains
to all ergodic chains.
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The distanceD(t) and the relaxation time also play a role in the covari-
ance function Rf (𝜏) = cov[fJ(t), fJ(t +𝜏)] of any stationary ergodic chain J(t).
Here (cf. Keilson 1979),

Rf (𝜏) = f Te
D
[p(𝜏) − 1eT]f = fTe

D
[p(𝜏) − 1eT] e−1∕2

D
e1∕2
D

f = gT(𝜏) b

where
gT(𝜏) = 1

f Te
fTe

D
[p(𝜏) − 1eT]e−1∕2

D
, b = (f Te)e1∕2

D
f .

Since f may be made positive by adding a constant without altering Rf(𝜏),

it follows that 1

fTe
f Te

D
[p(𝜏) − 1eT] is of the form pT(t) − eT needed for

Eq. (8) and that Eq. (9) is then relevant. One then has from the Schwartz
inequality

|Rf (𝜏)| ≤
√
gT(𝜏)g(𝜏)

√
bTb ≤

√
gT(0)g(0)

√
bTb e−|𝜃1|t. (10)

Note that for the Frobenius norm of r(t) = e1∕2
D

[p(t) − 1eT]e−1∕2
D

,

||r(t)||2FROB = Trace[r(t) rT(t)] =
∑

m,n

em
(pmn(t) − en)2

en

and this is strictly decreasing in time. This follows from Eq. (7) with pn(0) =
𝛿mn, weighting by em, and summation over m. Indeed,

∑

m,n

em
(pmn(t) − en)2

en
=
∑

m

emD
2
m(t)

≤ ∑

m

emD
2
m(0) e−2|𝜃1|t

= e−2|𝜃1|t Trace[e
D
[I − 1 eT]e−1

D
[I − e1T]]

and
||r(t)||FROB ≤ e−|𝜃1|t

√
K − 1.

When 𝛼 = ±∞,

Q∞(t) = maxn
pn(t)
en

(11)
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is a decreasing function of t, and

Q−∞(t) = minn
pn(t)
en

(12)

is an increasing function of t.

SOME BASIC LEMMAS

Lemma 1. For y > 0, let

g
𝛼
(y) = 1

𝛼 + 1
y𝛼+1 − 1

𝛼
y𝛼 + 1

𝛼(𝛼 + 1)

g0(y) = y − 1 − log y; g−1(y) = y−1 − 1 + log y. (13)

Then for all real 𝛼 and all y > 0,

g
𝛼
(y) ≥ 0 (14)

with equality if and only if y = 1.

Proof.

g
𝛼
(y) = ∫

y

1
z𝛼 (1 − z−1) dz, y > 1

g
𝛼
(y) = ∫

1

y
z𝛼 (z−1 − 1) dz, 0 < y < 1

Consequently, g
𝛼
(y) ≥ 0. Moreover, strict inequality holds for y ≠ 1.

Lemma 2. Let R = (rmn) be a doubly conservative matrix, that is,

rmn ≥ 0,m ≠ n,
∑

m

rmn =
∑

n

rmn = 0.

Then, for all real 𝛼 ≠ 0 and all xn > 0, n = 1, 2, ..,K

1
𝛼

∑

m

∑

n

xm rmn x𝛼n ≤ 0 (15)
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and ∑

m

∑

n

xm rmn(1 + log xn) ≤ 0. (16)

Moreover, equality holds if and only if xm = xn whenever rmn > 0,m, n =
1, 2,… ,K.

Proof. Let 𝛼 ≠ 0,−1. Then form simple algebra with ymn =
xn
xm
:

1
𝛼

∑

m

∑

n

xm rmn x𝛼n = −
∑

m

∑

n≠m
rmn x𝛼+1m g

𝛼
(ymn). (17)

By taking 𝛼 → 0, Eq. (17) yields

∑

m

∑

n

xm rmn(1 + log xn) = lim
𝛼→0

∑

m

∑

n

xm rmn

(
1 + x𝛼n − 1

𝛼

)

= lim
𝛼→0

1
𝛼

∑

m

∑

n

xm rmn x𝛼n

= −
∑

m

∑

n≠m
rmn xmg0(ymn) (18)

Lemma 2 then follows from Lemma 1.

Remark 1. Note that for special value 𝛼 = 1,
∑

m

∑

n

xm rmn xn ≤ 0

for all real x, because
∑

m

∑

n

xm rmn xn = − 1
2

∑

m

∑

n

rmn (xm − xn)2

+ 1
2

∑

m

∑

n

rmn x
2
m + 1

2

∑

m

∑

n

rmnx
2
n

and the last two terms are zero.

THE MAIN RESULT

Theorem 1. For a finite ergodic chain in continuous time, let

Q
𝛼
(t) =

{
∑

n

pn (t)
(
pn (t)
en

)
𝛼
} 1

𝛼

,Q0(t) =

{
∑

n

pn (t) log
(
pn (t)
en

)}

.
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If the chain is not stationary, Q
𝛼
(t) is a strictly decreasing function of t on

[0,∞) when 𝛼 > −1 and a strictly increasing function of t on [0,∞) when
𝛼 < −1.

Proof. Since pn(t) is differentiable, Q𝛼
(t) is also differentiable. Then for

𝛼 ≠ 0

d
dt

Q
𝛼
(t) = 𝛼 + 1

𝛼

(Q
𝛼
(t))1−𝛼

{
∑

n

p′n (t)
(
pn (t)
en

)
𝛼

}

. (19)

Let p(t) = (pmn(t)) be the transition matrix for the chain N(t), so that p(t) =
exp{S t}where S = (smn) is the infinitesimal generator of the chain. Let rmn =
emsmn. Then r = (rmn) is doubly conservative in the sense of Lemma 2. Let
xm(t) = pm(t)∕em. Then

1
𝛼

{
∑

n

p′n (t)
(
pn (t)
en

)𝛼
}

= 1
𝛼

∑

n

∑

m

pm(t) smn
(
pn (t)
en

)𝛼

.

= 1
𝛼

∑

m

∑

n

xm(t)rmnx𝛼n(t) (20)

The expression xm(t) > 0 for t > 0 is a property of ergodic chains in con-
tinuous time. By Lemma 2, the expression (20) is always nonpositive for
t > 0. From (19) it follows that d

dt
Q
𝛼
(t) is nonpositive for 𝛼 + 1 > 0, 𝛼 ≠ 0,

and nonnegative for 𝛼 + 1 < 0. It attains the value 0 iff smn > 0 implies
xm(t) = pm(t)∕em = xn(t) = pn(t)∕en. For chains with positive transition rates
between all pairs of states, this is possible only if pn(t) = en for all n, that is,
if the chain is stationary. The result then follows for all ergodic chains. When
𝛼 = 0,

d
dt

Q0(t) = Q0(t)
∑

m

∑

n

xm(t)rmn(1 + log xn(t)) ≤ 0

with equality iff the chain is stationary.
Similar monotonicity properties hold for the family R

𝛼
(t). From (2) and

(3) we have
R
𝛼
(t) = [Q

𝛼−1(t)]
(𝛼−1)∕𝛼 . (21)

When 𝛼 > 1 or 𝛼 < 0,R
𝛼
(t) and Q

𝛼−1(t) have the same monotonic-
ity properties with t. When 0 < 𝛼 < 1,R

𝛼
(t) increases when Q

𝛼−1(t)
decreases. When 𝛼 = 0, we have d

dt
R0(t) = −R0(t)

∑

n

p′n(t)
en
pn(t)

, which
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for nonstationary chains is strictly positive for any t > 0 by virtue of
Eq. (20) and Lemma 1. This yields the following theorem.

Theorem 2. Under the conditions of Theorem 1, R
𝛼
(t) is strictly decreasing

in t for 𝛼 > 1, strictly increasing in t for 𝛼 < 1, and R1(t) = 1.

ERGODIC CHAINS IN DISCRETE TIME

The results of the previous section apply also to discrete time finite Markov
chains with the strict monotonicity replaced by weak monotonicity. Since
the state probabilities pn(t) can be zero, we will restrict ourselves to the case
𝛼 ≥ 0 only. In keeping with this convention, p log pwill be defined to be zero
whenever p = 0.

Theorem 3a. Let 𝛼 ≥ 0. For a finite ergodic Markov chain, the sequence
Q
𝛼
(t), t = 0, 1, 2,… is a nonincreasing sequence.

Theorem 3b. If the elements of the one-step transition matrix are positive
and the chain is not stationary, then Q

𝛼
(t) is strictly monotone in t.

The details of the proofs are similar to that for the continuous time case
and are somewhat tedious. They will not be given here.
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CHAPTER 37
An Inequality for the Variance

of Waiting Time under a General
Queueing Discipline

ABSTRACT

We show that the expected value of any convex function of the waiting
time (such as the variance) in a general queuing system under any queuing
discipline independent of the service times does not exceed that under
the last-come-first-served discipline, and is not less than that under the
first-come-first-served discipline.

INTRODUCTION

It has been noted (see, for instance, Cohen (1969), Riordan (1962), Vaulot
(1954)) that the variance of the waiting time in theM∕M∕1 andM/G/1 queu-
ing systems under the last-come-first-served (LCFS) discipline exceeds that
under service in the order of arrivals, first-come-first-served (FCFS). This
observation has been made by comparison of explicit expressions for the
variance. Moreover, in the cases when the waiting-time variance has been
determined under service in random order (SIRO), it was found to attain
an intermediate value (see Riordan 1962). The expected waiting times in all
three cases are, of course, equal.

This has led to an interpretation of the FCFS discipline as more “fair”
than either the SIRO or LCFS: While the expected waiting time of a given
customer is not influenced, the total waiting time of all customers is more
equally divided under FCFS than under SIRO, while the LCFS discipline is
the least “egalitarian” of the three.

Operations Research, 25 (5) (1977), 879–884.
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Vasicek (1965) has shown that in theM∕M∕1 system the variance of the
waiting time actually attains its minimum and maximum for the FCFS and
LCFS disciplines, respectively, within the following class of queueing disci-
plines: Let rkn, k = 1,… , n; n = 1, 2,… be given nonnegative numbers such
that r1n + · · · + rnn = 1, n = 1, 2,…. If the queue length at the instant of com-
pletion of service is n and the waiting customers are enumerated in the order
of their arrivals, then the k-th customer is selected for service with proba-
bility rkn. Obviously, the three previously mentioned queuing disciplines are
special cases of this scheme. The proof of the proposition was specific for
the Markov character of the system.

In this paper, we give a proof of a general statement that similar inequal-
ities hold in any queuing system with an arbitrary arrival process and any
service time distribution, as long as the service times are independent of
each other and of the process of arrivals. The queuing discipline can be any
rule of selection among the customers present in the system at that moment
that is independent of their (future) service times. Such a rule can, however,
depend on the past experience of the system. Actually, amore general result is
proven, establishing inequalities for the expectation of any convex function
of the waiting times.

ASSUMPTIONS AND DEFINITIONS

Consider a G∕G∕c system, c ≥ 1, with a queuing capacity. The arrival pro-
cess is arbitrary. It could be temporally and spatially nonhomogeneous, and
the interarrival times need not be independent. Group arrivals are possi-
ble. The queuing capacity can be limited or unlimited, and balking based
on queue length is permitted. It is assumed that the service times are inde-
pendent identically distributed variables that are independent of the arrival
process. We assume further that each period of nonempty queue (“queue”
meaning the customers in the system that are not in service) is finite with
probability 1. The symbol GI∕G∕c will be used to denote a system with a
homogeneous renewal process of arrivals and independent identically dis-
tributed service times.

We will restrict the use of the term queuing discipline to any rule of
selection for service from the queue that is independent of the service times
of the customers in queue at the instant of selection. In other words, it is
required that the selection rule does not anticipate the service times. Such a
rule may, however, depend on any other aspect of the system, such as the
arrival times of the customers in the queue.

The disciplines FCFS and LCFS (as well as SIRO) are obviously
admissible under the definition. On the other hand, consider a system
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with several classes of customers, each class having a different service time
distribution but independent Poisson arrivals. Such a system can be viewed
as a single-class M∕G∕c system with a service time distribution that is a
mixture of the distributions for individual classes. A priority assignment to
the classes will not constitute a queuing discipline in the previous sense.

THE MAIN RESULTS

Theorem 1. LetD be a queuing discipline in a G∕G∕c system. Let the num-
ber of customers entering service during a period of nonempty queue be n,
and denote byWk, k = 1,… , n the waiting times under the discipline D. Let
Wk

′ and Wk
′′
, k = 1,… , n be the waiting times under the FCFS and LCFS

disciplines, respectively. Then for any convex function f on [0,∞),

n∑

k=1
Ef (W ′

k) ≤
n∑

k=1
Ef (Wk) ≤

n∑

k=1
Ef (W′′

k ). (1)

Moreover, the quantity
n∑

k=1
EWk does not depend on the queuing

discipline.

The proof of the theorem is based on the following lemma:

Lemma. Let t1 ≤ · · · ≤ tn, s1 ≤ · · · ≤ sn be two series of numbers such that
tk ≤ sk, k = 1,… , n. LetR = (R(1),… ,R(n))be any permutation of (1,… , n)
such that

tR(k) ≤ sk, k = 1, · · · , n. (2)

Put R′ = (1,… , n), R′′ = (R′′(1),… ,R′′(n)), where R′′(k) = max [i ∶ i ≠
R′′(j), j = 1,… , k − 1; ti ≤ sk], k = 1,… , n. Let f be a convex function on

[0,∞), and define V(R) =
n∑

k=1
f (sk − tR(k)). Then V(R′ ) ≤ V(R) ≤ V(R′′).

Proof. Let R be a permutation of (1,… , n) such that (2) holds. If R = R′′,
thenV(R) = V(R′′). Suppose then thatR ≠ R′′. Then there exist i, j such that
i < j,R(i) < R(j), tR (j) ≤ si. Define a permutation R∗ by R∗(k) = R(k), k ≠ i,
j,R∗(i) = R(j), R∗(j) = R(i). Obviously, tR∗(k) ≤ sk, k = 1,… , n. Then

V(R∗) −V(R) = f (si − tR(j)) + f (sj − tR(i)) − f (si − tR(i)) − f (sj − tR(j)). (3)
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If tR(i) = tR(j), then V(R∗) −V(R) = 0. Let tR(i) < tR(j), and put 𝛼 = [tR(j) −
tR(i)]∕[sj − si + tR(j) − tR(i)]. Write (3) as

V(R∗) − V(R) = 𝛼f (si − tR(j)) + (1 − 𝛼)f (sj − tR(i)) − f (sj − tR(j))

+ (1 − 𝛼)f (si − tR(j)) + 𝛼f (sj − tR(i)) − f (si − tR(i)). (4)

Since 0 ≤ 𝛼 ≤ 1, it follows from the convexity of f that the right-hand side
of (4) is nonnegative, and consequently V(R) ≤ V(R∗).

If R∗ = R′′, then V(R) ≤ V(R′′). If R∗ ≠ R′′, then there must exist i, j
such that i < j,R∗(i) < R∗(j), tR∗(j) ≤ si. In that case, a new permutation can
be defined by interchanging R∗(i) and R∗(j) with the value of V not smaller
than V(R∗). This process can be repeated until permutation R′′ is reached.
This will happen in a finite number of steps because each new permutation
contains more inversions than the previous one, so that they are all distinct.
This establishes the inequality V(R) ≤ V(R′′).

Again, letR be a permutation such that (2) holds. IfR = R′, thenV(R) =
V(R′). Assume that R ≠ R′. Then there exist i, j such that i < j,R(i) > R(j).
Define a permutation R

∗∗
by R

∗∗(k) = R(k), k ≠ i, j, R
∗∗ (i) = R(j), R∗∗ (j) =

R(i). Clearly, tR∗∗ (k) ≤ sk, k = 1,… , n. But R is obtained from R
∗∗

by an
operation that has been shown not to decrease the value of V, and con-
sequently V(R∗∗) ≤ V(R). Repeated construction of new permutations by
interchanging inversions leads in a finite number of steps toR′, and therefore
V(R′) ≤ V(R). This completes the proof of the lemma.

Proof of Theorem 1. Let t1 ≤ · · · ≤ tn be the arrival times of the n customers
entering service during a period of nonempty queue, and let s1 ≤ · · · ≤ sn
be the epochs of commencement of service under a queuing discipline D.
Let s′1 ≤ · · · ≤ s′n, s

′′
1 ≤ · · · ≤ s′′n be the epochs of commencement of service

under the disciplines FCFS and LCFS, respectively. Since the selection from
the queue under a queuing discipline is independent of the service times
of the customers in queue, the distributions of (s1,… , sn), (s1′,… , sn

′), and
(s1′′,… , sn

′′) are all the same.
Let R = (R(1),… ,R(n)) be the order in which the customers are served

under the disciplineD; that is, the customer selected for the k-th service is the
R(k)-th arrived. Obviously, R is a permutation of (1,… , n), and tR(k) ≤ sk,
k = 1,… , n. By the lemma

n∑

k=1
f (sk − tR′ (k)) ≤

n∑

k=1
f (sk − tR (k)) ≤

n∑

k=1
f (sk − tR′′(k)),

where R′(k) = k and R′′(k) = max [i ∶ i ≠ R′′(j), j = 1,… , k − 1; ti ≤ sk] for
k = 1,… , n.
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But R′
,R′′ are the orders of service under the FCFS and LCFS disci-

plines, respectively, given that the service commencement times are s1,… ,
sn. The quantities Wk = sk − tR(k), sk − tR′(k), sk − tR′′(k), k = 1,… , n are the
corresponding waiting times under D, FCFS, and LCFS, respectively. Since
(s1′,… , sn

′) has the same distribution as (s1,… , sn), the actual waiting times
Wk

′ = sk
′ − tR′(k), k = 1,… , n under FCFS have the same joint distribution as

sk − tR′(k), k = 1,… , n, and
n∑

k=1
Ef (W ′

k) =
n∑

k=1
Ef (sk − tR′ (k)) ≤

n∑

k=1
Ef (Wk).

Similarly, the actual waiting times Wk
′′
, k = 1,… , n under LCFS have the

same distribution as sk − tR′′(k), k = 1,… , n (here R′′ is not necessarily the

actual order of service), and
n∑

k=1
Ef (W′′

k ) =
n∑

k=1
Ef (sk − tR′′ (k)) ≥

n∑

k=1
Ef (Wk).

This proves the inequalities (1). Now, since both f (x) = x and f (x) = −x

are convex functions, it follows that
n∑

k=1
EW

′
k =

n∑

k=1
EWk =

n∑

k=1
EW′′

k .

Consequently, the sum of expected waiting times in a period of nonempty
queue is independent of the queuing discipline. This completes the proof of
Theorem 1.

The proof of Theorem 1 did not in fact require that the service times
be independent identically distributed variables. All that was necessary was
that the epochs of commencement of service had the same joint distribu-
tion under any queuing discipline. Thus the inequalities (1) will hold as long
as the distribution of the service time does not depend on the particular
customer served. If a barber doubles his speed when the queue is long, the
FCFS and LCFS disciplines still distribute the total waiting time in the most
equitable and least equitable fashion, respectively. On the other hand, the
theorem does not hold when customers are selected for service based on the
knowledge of their service times. If that customer is served first whose service
time is the shortest among those waiting (the shortest remaining processing
time rule), the total waiting time over a period of nonempty queue in fact
decreases (see Schrage 1968).

In the special case when the waiting times are identically distributed we
have

Theorem 2. Let D be a queuing discipline in a stationary GI∕G∕c system,
and denote by W,W′

,W′′ the waiting times under D, FCFS, and LCFS,
respectively. Then for any convex function f on [0,∞),

Ef (W ′ ) ≤ Ef (W) ≤ Ef (W′′). (5)

Moreover
EW′ = EW = EW′′. (6)
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Proof. LetW be the waiting time of a given customer. If the customer arrives
while at least one service line is idle, thenW = 0 independently of the queu-
ing discipline. Assume that the customer arrives while all service lines are
busy. Because the system is stationary, such a customer is equally likely
to be any of the (say) n customers entering service during that period of
nonempty queue. If W1,… ,Wn are the waiting times of these n customers,

then Ef (W) = (1∕n)
n∑

k=1
Ef (Wk), where the expectation on the left is condi-

tional on n. Theorem 1 then implies the relations (5) and (6) conditionally
on n. Since this is true for any n, the theorem follows.

By choosing f (x) = (x − a)2 where a = EW, we obtain:

Corollary 1. In a stationary GI∕G∕c system

Var W
′ ≤ Var W ≤ Var W′′. (7)

The variance has been singled out for historical reasons. Obviously,
inequalities similar to (7) hold for any moment of order at least 1, and for
any absolute moment around the mean of order at least 1 (such as the mean
absolute deviation). Another special case is given by

Corollary 2. Let 𝜙, 𝜙′
, 𝜙

′′ be the Laplace transforms of the waiting times in
a stationaryGI∕G∕c system under an arbitrary queuing discipline and under
the FCFS, LCFS disciplines, respectively. Then for any u ≥ 0, 𝜙′(u) ≤ 𝜙(u) ≤
𝜙
′′ (u).
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