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Preface

Novel applications for microwave and millimeter wave subsystems emerge in fields such as
monitoring, logistics, health, and security, leading to stricter performance requirements for
the underlying microwave and millimeter wave front-ends. As a result, there is a necessity
for novel circuit and system architectures and topologies, for fast, efficient, and accurate
modeling and optimization techniques of circuit components and systems as well as for
collaboration between the signal processing and microwave electronics communities.

The book addresses a number of topics that are of fundamental importance in the field of
microwave and millimeter wave systems and are expected to play a leading role in the next
5 years. Microwave systems as well as millimeter wave systems in a lesser extent have
enjoyed great evolution and application in recent years. Wireless systems, smart-phones,
WiFHi, satellite systems, and RFID technologies have become part of everyday life. Although
the book is concerned with and strongly related to current state-of-the-art in microwave and
millimeter wave systems, the authors specifically chose to discuss topics that have the poten-
tial of having a long lasting impact in the longer term. The motivation behind the book has
been to provide a reference point for the readers working in the field of microwave and milli-
meter wave circuits and systems. Undoubtedly there are many different technical issues and
problems within this field, ranging from a circuit perspective to a system perspective, and
they are ultimately interconnected under the unifying umbrella of the various applications
they address. The book intends to provide a starting point, a key reference useful in every
designer’s library. The aim of the book is to address a selected number of challenging emerg-
ing problems and provide, on the one hand, state-of-the-art information and, on the other
hand, a perspective on promising new technologies such as textile electronics, substrate inte-
grated waveguide technology, and selected architectures such as software-defined radio,
digital transceivers, and ultrawideband (UWB) radar, all of which are expected to lead to
new breakthroughs in terms of system performance in the next decade. Depending on the
chapter, prior knowledge at the level of a Master of Science in Electrical Engineering with
knowledge in electromagnetic fields, antennas, microwave engineering, and signal process-
ing is a prerequisite.

This book aims to highlight selected research and technology trends that emerged as topics
of the European Union Cooperation in Science and Technology (COST) Action IC0803
RF/Microwave Communication Subsystems from Emerging Wireless Technologies, a
collaboration project between leading European and cooperating institutions worldwide,
focusing on the design of novel microwave and millimeter circuits and systems.
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COST is the oldest and widest European intergovernmental network for cooperation in
research (www.cost.eu). Established by the Ministerial Conference in November 1971,
COST is presently used by the scientific communities of 35 European countries to cooperate
in common research projects supported by national funds. The funds provided by COST —
less than 1% of the total value of the projects — support the COST cooperation networks
(COST Actions) through which, with EUR 30 million per year, more than 30 000 European
scientists are involved in research having a total value that exceeds EUR 2 billion per year.
This is the financial worth of the European added value that COST achieves. A ‘bottom up
approach’ (the initiative of launching a COST Action comes from the European scientists
themselves), ‘a la carte participation’ (only countries interested in the Action participate),
‘equality of access’ (participation is open also to the scientific communities of countries not
belonging to the European Union), and ‘flexible structure’ (easy implementation and light
management of the research initiatives) are the main characteristics of COST. As precursor
of advanced multidisciplinary research COST has a very important role for the realization of
the European Research Area (ERA) anticipating and complementing the activities of the
Framework Programmes, constituting a ‘bridge’ towards the scientific communities of
emerging countries, increasing the mobility of researchers across Europe, and fostering the
establishment of ‘Networks of Excellence’ in many key scientific domains such as:
Biomedicine and Molecular Biosciences; Food and Agriculture; Forests, their Products and
Services; Materials, Physical and Nanosciences; Chemistry and Molecular Sciences and
Technologies; Earth System Science and Environmental Management; Information and
Communication Technologies; Transport and Urban Development; Individuals, Societies,
Cultures and Health. It covers basic and more applied research and also addresses issues of
pre-normative nature or of societal importance.

Action IC0803 was established in 2008 for a period of four years and forms part of the
Information and Communication Technologies (ICT) COST Domain. More than one hun-
dred researchers from 57 entities have participated in the Action. The work program of the
Action is divided into three Working Groups, on ultra-low power and power efficient tech-
nologies, smart and reconfigurable radio transceivers, and finally design and optimization
methods towards highly integrated terminals and efficient communication systems. The first
two Working Groups are driven by applications whereas the last one is focused on simulation
and optimization techniques that provide for accurate and efficient tools for the design of
systems addressed by the other two working groups.

The first Working Group targets energy efficient systems. Energy efficiency is considered
both in terms of reducing the overall power dissipation as well as improving the efficiency of
high power systems. There are many research efforts and technologies targeting these goals.
In terms of low power systems one can distinguish design efforts towards extremely low
power sensor networks and RFIDs. In terms of power efficient systems there are research
efforts towards architectures that reduce the nonlinear distortion present in power amplifiers
in order to accommodate nonconstant envelope modulation techniques as well as highly effi-
cient architectures that inherently do not pose strict linearity requirements in the power
amplifiers due to the use of constant envelope modulated signals. In both cases the resulting
efficiency of the amplifiers is maximized. In all these types of systems there is a need for
both circuit-oriented, signal-processing, and system-oriented advancements. A promising
technology that is explored concerns MEMS-based devices, as they have displayed excellent
RF/microwave characteristics in terms of loss, bandwidth, and power consumption and,
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consequently, have found numerous applications in radar and communication system appli-
cations. It should be noted that low power and power efficient designs, and ultimately
battery-less circuits, lead to more environmental friendly solutions, which is one of the criti-
cal challenges of present and future subsystems.

Working Group 2 of the COST IC0803 Action dealt with Smart and reconfigurable RF
radio transceivers, covering all hardware and software aspects of state-of-the art RF radio
transceivers. The most important development of the last few years is the convergence of
hardware and software related research. With the availability of large processing power
at reasonable cost and energy consumption, typical tasks that were previously purely
implemented in hardware are now also available in the digital domain. The transition of
hardware to software implementations comes with its own new challenges. The most typ-
ical example is software-defined radio, requiring suitable algorithms to limit interference
and to perform decent estimation and synchronization. Also adaptations are required in
terms of hardware, such as the development of wideband adaptive antennas and transmit-
ters as well as sparse sampling in efficient radio receivers. By means of DSPs, hardware
impairments may be mitigated in wireless communication systems. Novel emerging
communication techniques, such as MIMO, UWB, and body-centric systems, as well as
cognitive radio and wireless sensor networks, also present new challenges in terms of
software and hardware, and open novel applications and terms of localization, monitor-
ing, and communication.

Finally, Working Group 3 focuses on developing new and efficient computer-aided design
(CAD) techniques for the design of novel compact components and efficient systems.
Efficient simulation methods are required in order to reduce the design time and, more
importantly, allow for fast optimization methodologies that include multiple constraints
based on the properties of the signals being transmitted. Such techniques will be applied in
the design of new compact components that lead to more integrated designs. As an example,
substrate integrated waveguide (SIW) resonators provide a low cost, high performance solu-
tion for filter design. SIW components combine advantages of rectangular waveguides such
as high Q-factor and low losses, with compact size and ease of integration with traditionally
used microstrip implementations as they share the same dielectric substrate. Another very
promising technology that is explored is components based on meta-materials. In addition,
the design of nonlinear circuits presents additional challenges associated with their rich
dynamical behavior. Although linear simulation and optimization methods are very well
developed, there is still a lot of work to be done in terms of nonlinear techniques applied in
the accurate and efficient design nonlinear circuits that are used for the generation and con-
version of frequencies (oscillators, frequency dividers, and mixers). Their nonlinear response
and their potential instability make their experimental behavior very difficult to predict. In all
of these topics it is essential to combine circuit and system theory with stability theory and
nonlinear dynamics. The presence and the effects of modulated signals in the stability
of such circuits also needs to be accurately analysed using efficient simulation methods.
Such topics are addressed in this Working Group and the results are ultimately utilized in the
various applications considered within the other Working Groups.

The applications, research problems, and challenges addressed within the Action Working
Groups have led to the realization of this book. The book is divided into two parts, address-
ing design and modeling trends, on the one hand, and highlighting important applications, on
the other. Furthermore, the material is ordered in such a way that it progresses from circuit
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challenges to systems and finally to applications. Part one of the book contains seven chap-
ters, whereas part two includes ten chapters.

The first chapter, Low coefficient accurate nonlinear microwave and millimeter-wave
nonlinear transmitter power amplifier behavioural models, by Mairtin O’Droma, from the
Telecommunications Research Centre of the University of Limerick, Ireland, and Lei
Yiming, from the State Key Laboratory of Advanced Optical Communication Systems and
Networks, School of EECS, Peking University, China, provides comprehensive coverage of
the new RF power amplifier (PA) modified Bessel-Fourier (MBF) behavioral model. It is
shown to be most suitable for large signal PA behavioral modeling and superior to all other
established low-order models used by the microwave and millimeter wave research and engi-
neering design community, such as power series models, the Saleh model, the modified Saleh
model, and the original Bessel-Fourier model, from which the MBF takes its origin.

The second chapter, Artificial neural network in microwave cavity filter tuning, by Jerzy
Michalski, Jacek Gulgowski, Tomasz Kacmajor, and Mateusz Mazur from TeleMobile Elec-
tronics Ltd., Gdynia, Poland, is related to filter optimization. Presently, microwave filter
tuning is a necessary step in the production process. This step typically consists of manual
work performed by a trained operator and usually requires a considerable amount of time.
Hence, there is great expectation among microwave filter production companies to automate
the process. Automated methods of filter tuning based on artificial neural networks are
suggested and different approaches to the problem are described with a series of experiments
supporting the presented ideas.

The third chapter, Wideband directive antennas with high impedance surfaces, by Anne
Claire Lepage, Julien Sarrazin, and Xavier Begaud from Telecom ParisTech, Paris, France,
demonstrates that it is possible to design low profile wideband directive antennas with high
impedance surfaces. The artificial magnetic conductor (AMC) behavior of such surfaces is
utilized in order to improve performances. Limitations of AMC narrow bandwidth character-
istics are overcome with two different approaches. A first technique leads to an optimized
antenna using a lumped element based AMC whereas a second one leads to a hybrid AMC
that enhances the antenna’s performances over a wide band.

The fourth chapter, Characterization of software-defined and cognitive radio front-ends for
multimode operation, by Pedro Miguel Cruz and Nuno Borges Carvalho from the Instituto de
Telecomunica¢des — Departamento de Electronica, Telecomunicagdes e Informatica from
Universidade de Aveiro, Portugal, addresses software radios. Software-defined radios (SDRs)
are now being accepted as the most probable solution for resolving the need for integration
between actual and future wireless communication standards. SDRs take advantage of the
processing power of modern digital processor technology to replicate the behavior of a radio
circuit. Such a solution allows inexpensive, efficient interoperability between the available stan-
dards and frequency bands, because these devices can be improved and updated and given new
capabilities by a simple change in software algorithms. This SDR concept is also the basis for
cognitive radio (CR) approaches, in which the underneath concept imposes strong changes in
terms of both complexity and flexibility of operation due to its potential adaptation to the air
interface. A promising application for this CR technology is to implement a clever manage-
ment of spectrum occupancy by use opportunistic radios, where the radio will adapt and
employ spectrum strategies in order to occupy spectra that are not being used by other radio
systems at a given moment. Nevertheless, for the correct operation of these radios a correct
behavioral model is fundamental, and thus this chapter is devoted to discuss these problems.
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The fifth chapter, deals with the Impact and digital suppression of oscillator phase noise
in radio communications, and is authored by Mikko Valkama and Ville Syrjala, from
Tampere University of Technology, Finland, and Risto Wichman and Pramod Mathecken
from Aalto University, Finland. The design of compact and low-cost radios with high per-
formance and reconfigurable capabilities is a challenging task due to the contradictory nature
of these requirements, and is further hindered by the various imperfections and impairments
of the analog electronics involved in the radio transceiver. Such imperfections are: mirror-
frequency interference due to I/Q imbalance, nonlinear distortion due to mixer and amplifier
nonlinearities, timing jitter and nonlinearities in sampling and analog-to-digital (A/D)
converter circuits, and oscillator phase noise. These impairments can easily become a limit-
ing factor in the performance of the radio device, especially when complex high-order
modulated waveforms such as orthogonal frequency division multiplexing (OFDM) are
being deployed. This chapter concentrates on phase noise, which has a complicated character
and a large impact on the performance of multicarrier OFDM systems. A model of time-
varying phase noise for free running and phase locked loop oscillators is presented, followed
by a detailed description of the effects of phase noise in OFDM systems and time-varying
channels. Finally, different algorithms for the compensation of phase noise in the digital
base band are explored.

The sixth chapter, A pragmatic approach to cooperative positioning in wireless sensor net-
works, contributed by Albert Bel Pereira, Jose Lopez Vicario, and Gonzalo Seco Granados
from the Universitat Autonoma de Barcelona — UAB, Spain, is devoted to the theoretical
framework behind localization techniques in wireless sensor networks. In recent years,
location estimation in wireless sensor networks (WSNs) has raised a lot of interest from
researchers. In particular, much attention has been recently paid to cooperative positioning
techniques, as accurate positioning estimates can be obtained in networks with low complex-
ity and low-cost terminals. The objective of this chapter is to provide a review on cooperative
schemes for WSN. Among all of them, special emphasis is given to receive signal strength
(RSS) based techniques as they provide suitable solutions for practical implementation. Since
the accuracy of RSS methods depends on the suitability of the propagation models, coopera-
tive localization algorithms that dynamically estimate the path loss exponent are also
described. Practical examples based on real WSN deployments are also presented.

Finally, the last chapter of this first part of the book, Chapter 7, is devoted to Modelling of
substrate noise and mitigation schemes for ultra-wideband (UWB) systems, and is written
by Ming Shen, Jan H. Mikkelsen, and Torben Larsen from Aalborg University, Denmark. In
highly integrated mixed-mode designs, digital switching noise is an ever-present problem
that needs to be taken into consideration. This is of particular importance when low-cost
implementation technologies, for example lightly doped substrates, are aimed for. For tradi-
tional narrow-band designs much of the issue can be mitigated using tuned elements in the
signal paths. However, for UWB designs this is not a viable option and other means are
therefore required. Moreover, owing to the ultra-wideband nature and low power spectral
density of the signal, UWB mixed-signal integrated circuits are more sensitive to substrate
noise compared with narrow-band circuits. This chapter presents a study on the modeling
and mitigation of substrate noise in mixed-signal integrated circuits (ICs), focusing on UWB
system/circuit designs. Experimental impact evaluation of substrate noise on UWB circuits is
presented. It shows how a wideband circuit can be affected by substrate noise. This chapter
also presents a new analytical model for the estimation of the spectral content of the
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switching noise. In addition, a novel active noise mitigation scheme based on spectral infor-
mation is presented.

The second part of the book begins with Chapter 8, Short-range tracking of moving
targets by a handheld UWB radar system by DuSan Kocur and Jana Roviidkova from Techni-
cal University of KoSice, Slovak Republic. The chapter gives a description of the signal
processing methods for a handheld UWB radar system applied for a short-range detection
and tracking of moving persons. It explains the importance of the particular phases and pro-
vides an overview of methods applied within them. The performance of the selected methods
is illustrated by the results of processing of radar signals obtained by the M-sequence UWB
radar system applied for tracking of people moving behind walls.

The ninth chapter, Advances in the theory and implementation of GNSS antenna array
receivers, by Javier Arribas, Pau Closas, and Carles Fernandez-Prades from CTTC, Spain,
and Manuel Cuntz, Michael Meurer, and Andriy Konovaltsev from DLR (German Aerospace
Centre), Germany, focuses on recent developments in the field of antenna arrays applied to
the design of robust, high-performance global navigation satellite system (GNSS) receivers.
This work mainly focuses on the architecture of a GNSS receiver with an adaptive antenna
array. The specifics of the design of such receivers are discussed, covering both analog and
digital signal processing blocks. Special attention is devoted to the design of critical compo-
nents such as the antenna array, radio frequency (RF) front-ends, and analog-to-digital (A/D)
converters. Array signal processing techniques are also addressed describing two main strat-
egies based on (i) spatial filtering by means of digital beamforming and (ii) signal parameter
estimation by statistical array processing. Finally, two operational prototypes of GNSS
receivers with adaptive antennas are proposed, including their latest test results.

Chapter 10, by Roberto Goémez-Garcia, José-Maria Munoz-Ferreras, and Manuel
Sanchez-Renedo from the University of Alcald, Spain, is devoted to Multiband RF front-
ends for radar and communications applications. New concepts and implementations of
radio frequency (RF) front-ends are essential for emerging radar and wireless technologies.
In this context, multiband approaches are interesting for acquiring multistandard services.
This chapter focuses on deriving a mathematical framework for band allocation so that the
minimum sub-Nyquist sampling frequency can be employed without aliasing in a digital
multiband acquisition process. This justifies the use of direct-sampling architectures for the
associated receiver, where the input RF multiband bandpass filter becomes the key element
in terms of hardware. Design rules and experimental prototypes for a novel class of multi-
band bandpass filter based on signal-interference principles and suitable for these systems
are also described.

Chapter 11, on Mm-wave broadband wireless systems and enabling MMIC technologies,
is contributed by Jian Zhang, Mury Thian, Guochi Huang, George Goussetis, and Vincent F.
Fusco, from Queen’s University Belfast, UK. Millimeter wave bands provide large available
bandwidths for high data rate wireless communication systems, which are envisaged to shift
data throughput well in the GBps range. This capability has over the past few years driven
rapid developments in the technology underpinning broadband wireless systems as well as in
the standardization activity from various nongovernmental consortia and the band allocation
from spectrum regulators globally. This chapter provides an overview of the recent develop-
ments on V-band broadband wireless systems with the emphasis placed on enabling MMIC
technologies. An overview of the key applications and available standards is presented.
System-level architectures for broadband wireless applications are being reviewed.
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Examples of analysis, design, and testing on MMIC components in SiGe BiCMOS are pre-
sented and the outlook of the technology is discussed.

The twelfth chapter, Reconfigurable RF circuits and RF-MEMS, was contributed by
Robert Malmgqvist from Swedish Defence Research Agency (FOI) and Uppsala University,
Sweden, Aziz Ouacha from FOI, Sweden, Mehmet Kaynak from IHP GmbH, Frankfurt
(Oder), Germany, Naveed Ahsan from Linkoping University, Sweden, and Joachim
Oberhammer from KTH Royal Institute of Technology, Stockholm, Sweden. While most of
today’s RF circuits are designed for a specific (fixed) function and frequency range, a much
higher degree of flexibility would be possible using highly reconfigurable circuit implementa-
tions and front-end architectures. This chapter presents examples of reconfigurable RF circuits
that have been realized using either fully transistor based solutions or by employing RF
microelectromechanical systems (RF-MEMSs). First a novel approach for implementing
reconfigurable circuitry based on the concept of programmable microwave function arrays
(PROMFA) is presented. Various reconfigurable circuit designs based on the emergence of
high performance RF-MEMS switches being developed in GaAs, GaN, and SiGe RFIC/
MMIC process technologies are then reviewed. In the final section, an overview of state-of-
the-art RE-MEMS based phase shifter designs intended for electronic beam-steering antennas
and phased array systems is presented.

Chapter 13, authored by Federico Alimenti, Andrea Battistini, Valeria Palazzari, and Luca
Roselli from the University of Perugia, Italy, and Stephen M. White from the University of
Maryland, College Park, USA, is titled MIOS: millimeter-wave radiometers for the space-
based observation of the Sun. Millimeter-wave observations of the Sun have never been
carried out from a space-based platform. This chapter presents a feasibility study for a full-
disk 90 GHz radiometer designed to detect the radio emission of solar flares. First, flare
radiation mechanisms are introduced, showing that millimeter-waves are very sensitive
probes of the highest energy electrons accelerated in solar flares. Then the fluctuation of
the Sun to satellite radio path attenuation is studied by modeling the ionosphere as charged
plasma. Finally, the science requirements and the system design are described.

The fourteenth chapter, Active antennas in substrate integrated waveguide (SIW) technol-
ogy, by Francesco Giuppi, Apostolos Georgiadis and Ana Collado from CTTC, Spain, and
Maurizio Bozzi and Luca Perregrini from the University of Pavia, Italy, presents the model-
ing and implementation of active cavity-backed antennas in substrate integrated waveguide
(SIW) technology. The cavity-backed topology helps to suppress undesired surface-wave
modes and provides improved antenna oscillator phase noise performance. The use of SIW
technology allows for a compact and cost-effective implementation of the structure. SIW
active antennas open new perspectives in the field of microwave and mm-wave low-cost
radio systems and wireless sensors.

The fifteenth chapter, Active wearable antenna modules, by Frederick Declercq and
Hendrik Rogier from Ghent University, Belgium, and Apostolos Georgiadis and Ana
Collado from CTTC, Spain, introduces the novel concept of active wearable antenna
modules, constructed entirely from breathable textiles and integrated flexible electronics, for
body-centric communication systems. First, a broadband transmission line and an inverse
small-band antenna characterization technique are presented. Both methods allow character-
izing the electromagnetic properties of the materials as used in the final antenna design. The
latter technique is especially developed for a fast and accurate environmental characteriza-
tion of textile materials allowing predicting antenna performance as a function of relative
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humidity. Second, an active wearable antenna module is designed relying on computer-aided
full-wave co-optimization techniques. Measurements prove that the proposed design tech-
nique together with an accurate material characterization provides an excellent performance
prediction. Also, energy scavenging by means of integration of flexible solar cells on to
wearable antennas is discussed by means of an example antenna design.

Chapter 16, Novel wearable sensors for body area network applications, by Chomora
Mikeka and Hiroyuki Arai from Yokohama National University, Japan, describes a novel
wearable waveguide: a flexible interface for body-centric wireless communications, capable
of concentrating wireless communication within the so-called smart suit, and made of flexi-
ble, lightweight, conductive fabric: the SC8100 textile. A typical sensing and wireless data
transmission design example is also presented.

Finally, Chapter 17 focuses on Wideband antennas for wireless technologies: trends and
applications. It has been authored by Bahattin Tiretken, Umut Bulus, Erkul Bagaran, Eren
Akkaya, Koray Stirmeli, and Hiiseyin Aniktar, from TUBITAK-UEKAE, Turkey. Antennas
form a critical part of every wireless system and wideband antennas form an important sub-
set of antennas and arrays with many applications.

The last chapter of the book provides an overview of the development history, design
methodologies, and applications of wideband antennas, and concludes with a review on
emerging trends.

Monitoring, imaging, security, radar, Gbit communications, body area networks, RFID,
and wireless sensor networks are fields of significant interest and primary importance world-
wide, and represent examples where the use of microwave and millimeter wave technology
will be central in the next decade. Some of the requirements these applications pose to the
underlying front-ends are conformal topology, large bandwidths, linearity, miniaturization,
MIMO, and diversity techniques relying on multiple antennas, as well as adaptive and
reconfigurable transmission/reception capabilities including robust performance against
interference. The Editors have made an effort to address selected distinct challenges in the
design and modeling of microwave and millimeter wave circuits and systems, identify
important applications, and focus on new technologies such as substrate-integrated wave-
guide and textile electronics.

The Editors would like to acknowledge the chapter authors and all members of EU COST
Action IC0803 RF/Microwave Communication Subsystems for Emerging Wireless
Technologies for their active participation, contributions, and friendship. The many fruitful
scientific and other discussions with all the COST friends over these four years were highly
appreciated. The work of Dr. Georgiadis was additionally supported by Project TEC2008-
02685/TEC on Novel Architectures for Reconfigurable Reflectarrays and Phased Array
Antennas (NARRA) of the Ministry of Science and Innovation, Spain, and by EU Marie
Curie Project FP7-PEOPLE-2009-IAPP 251557 on Symbiotic Wireless Autonomous
Powered System (SWAP). The work of Prof. Rogier and his group was supported by several
project grants of the Special Research Fund of Ghent University, the Flemish Research Fund
(Fonds voor Wetenschappelijk Onderzoek Vlaanderen, FWOV), and the Flemish Agency for
Innovation by Science and Technology (IWT), by the ‘Protection e-Textiles: MicroNano-
Structured Fibre Systems for Emergency-Disaster Wear — ProeTex’, Sixth Framework
Programme Integrated Project, and the ‘Antenna and fRont-end MOdules for pUblic Regu-
lated Service applications (ARMOURS)’, and EC-FP7 Galileo.2011.3.1-2: Collaborative
Project. This publication is supported by COST. Neither the COST Office nor any person
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acting on its behalf is responsible for the use that might be made of the information con-
tained in this publication. The COST Office is not responsible for the external websites
referred to in this publication.
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3G

AC
ACEPR
A/D
ADC
ADS

AE

AGC
ALU
AM-AM

AM-PM
BAN
BF
BOC
BP
BPSK
BTS
BW
CAD
CBOC
CCDF
cf.
CME
CMOS
CNO
COTS
CP
CRPA
CST
Cu
CwW
D/A
DC

third generation mobile telecommunications
alternating current (electricity; physics)
adjacent channel error power ratio
analog-to-digital
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1.1 Introduction

The new modified Bessel-Fourier (MBF) nonlinear RF power amplifier (PA) memoryless
behavioural model is fully derived and its attributes explored and described in this chapter.
Its performance is compared most favourably with the other main competing models. Effec-
tively it is shown in this chapter to be the model of choice when it comes to microwave and
millimetre wave memoryless PA behavioural modelling.

This new model originated from efforts to find low order models with better model accu-
racy than that attainable from Bessel-Fourier (BF), itself along with the modified Saleh (MS)
model being among the best memoryless small to large signal PA behavioural models in use
today [1-6]. Good low order models are desirable in certain situations, such as where model
parameters need to be constantly recomputed as, for example, in adaptive predistortion line-
arizers of PAs with linear memory [7—11] or in simulations of large multicarrier and/or
multiband subsystem simulations containing nonlinear PAs. For these latter situations — a

Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies, and Applications,
First Edition. Edited by Apostolos Georgiadis, Hendrik Rogier, Luca Roselli, and Paolo Arcioni.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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single orthogonal frequency division multiplex (OFDM) air interface would be a common
modern-day example — PA models possessing accessible decomposability properties are
desirable. BF models and now the new MBF models are such examples. Decomposability
here means the capacity to individually generate, isolate, include or exclude each and all
nonlinear PA harmonics and intermodulation products (IMP), multipath and adjacent chan-
nel interference signals.

1.1.1 Chapter Structure

Demonstrating the superiority of the new model naturally requires a comparative analysis
with other models. Here this analysis is benchmarked against the same physical measure-
ments. Hence the physical context for model extraction for this analysis is first described in
Section 1.1.2. There details on an L-band laterally diffused metal oxide semiconductor
(LDMOS) PA and the modern wideband code division multiple access (WCDMA) signal,
which are used throughout this chapter for model extraction, validation and comparison, are
presented. This is a typical modern solid state PA; results found for other PAs, not presented
here, are quite similar. Then, in Section 1.1.3, the BF model, for which the MBF model was
sought as an improvement, is summarized. This is done especially from the perspective of
model accuracy, highlighting in particular the anomalous accuracy gaps of low order BF models.
In Section 1.1.4 the MBF derivation is set out. This necessitates a more indepth exposition of
aspects of the origin and composition of the BF model. The concept of deriving hypothetical
RF instantaneous voltage transfer characteristics IVTC) of the PA, and complex FS approxi-
mation of these, is introduced. Exploring the relationship between the two enabled the
discovery of better accuracy low order models. From this it is shown how to derive the new
MBF model by means of which such improved accuracy low order models may be directly
extracted. Further benefits from this exposition are the new useful insights gained into the BF
model. In Section 1.1.5, various MBF models of the LDMOS PA are extracted and analysed in
the context of their IVTCs. Section 1.1.6 focuses mainly on showing how much better model
accuracy and behaviour prediction performance of third order MBF models is compared with
other established low order models. Section 1.1.7 addresses key conclusions.

1.1.2 LDMOS PA Measurements

For model extraction, validation and evaluation measurements, an L-band LDMOS nonlinear
PA manifesting some memory effects is driven at 5 dB input backoff (IBO) by a standard
WCDMA signal having a bandwidth of 3.84 MHz and channel spacing of 5 MHz. Sample
input and output signal spectra are shown in Figure 1.1. IBO and output backoff (OBO) here
denote the signal’s input and output powers normalized to the values at the 1 dB compression
point (P1), which is that point where an output power is compressed by 1 dB relative to that
yielded by the ideal linear PA equivalent for the same input power. This normalization rule is
applied to all powers and voltages in this chapter, unless otherwise stated.
The N input WCDMA envelope signal samples, u;,(i),i = 1, N, may be written

(i) = / A(D)?V8(t — it)dt = Ae/® (1.1)

where A(t), ¢(t),A; and ¢; are the continuous and sampled input envelope amplitude and
phase at time ¢ and sample point i respectively, and § is the delta Dirac function. The number
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Figure 1.1 LDMOS PA 3G WCDMA input and output spectra, in dB relative (dBr) to the peak value,
with the PA driven at 5 dB IBO.

of samples, N, is 10°; at 32 x 10° samples/s, this corresponds to a 3.125 ms signal duration.
The peak-to-average power ratio (PAPR) of the signals at the PA input and output under the
operating conditions defined above are found to be 10.36 and 6.6 dB respectively. Hence the
PA operation stretches deep into its large signal nonlinear region.

The corresponding N samples of the output envelope, u, 5 (i) are as defined in Equation (1.2)
below. These are graphed in Figure 1.2 (grey dots) in the form of RF envelope gain and
phase versus IBO for each sample pair. It is clear from the spread of output samples at
any input IBO point that the PA complex envelope transfer characteristic, f;,, manifests
some memory effects. As shown also in Figure 1.2 (full lines), the gain (i.e. AM-AM, g)
and phase (i.e. AM-PM, ®) envelope characteristics of an EM PA, denoted fz,,, may be
extracted from these by applying a moving average process over the sampled instanta-
neous input—output envelope responses. These EM characteristics are also graphed
in Figure 1.3, but there the input and output amplitudes are voltages normalized to
the corresponding voltages at the Pl point. The EM PA’s sampled outputs, u, g (i),
corresponding to the u;,(i), are then read off these. The memoryless PA behavioural
model f,,,, is of fi), and its output samples are denoted 4, moq (7).

The relationship between the fy,, fz), and f,,,; PA complex nonlinear envelope and the
input—output sample sets may be expressed as

o (i) = / Fi (A N8(r — iT)de (1.2)
2 g e (i) = fon (Aie'?) = g(A;)/ @ PAD (1.3)

= uO,mOd(i) = ﬁnod (Aiej¢i) (1 4)
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Figure 1.2 Measured samples of AM-AM (gain, g) and AM-PM (®) versus IBO responses of
LDMOS PA driven by a 3G WCDMA signal (10° samples; grey dots), together with the extracted EM
envelope characteristics fz, (full lines).
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Figure 1.3 The magnitude and phase IVT characteristics of G over the PA’s measured dynamic range
—D to D, which are denoted Gy and Gpuse respectively, together with the extracted EM AM-AM, g,
and AM-PM, @, envelope characteristics. The ‘input’ and ‘output’ are normalized to their respective
voltages at P1.
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The behavioural prediction performance figures of merit (FOMs), used here, for example in
Equation (1.13) below, are based on the difference between output measurement samples
uom (i) and the model’s prediction of these, u, ,04(i). The difference between u, (i) and
u, gy (f) amounts to a memory to EM error, be that memory linear or nonlinear, or both [1, 7].
This clearly sets a performance upper-bound to the closeness the behavioural prediction of any
memoryless model of this PA EM characteristics can come to the actual PA behaviour. Hence
it is denoted ‘memory to EM upper-bound’ (MEMUB).

1.1.3 BF Model

A memoryless BF model of a PA, £, ; of fz),, of order L may be written [3]

L
Foa(A) =D bi 1 (kA) (1.5)

k=1
where J represents Bessel functions of the first kind, by, k = 1,L . . ., L, are the model’s L

complex coefficients and A is the envelope amplitude of a single PA input RF tone. Parame-
ter « is shown in O’Droma [3] to be inversely related to the model’s dynamic range. As such
it should be harmonized with the actual or measured dynamic range, D, of the PA being
modelled, rather than be arbitrarily set as other researchers have done, for example Shimbo
& Nguyen, [12]. Using a modelled-to-measured PA dynamic range ratio parameter y (cf.
Equation (1.9) below, where it is defined in relation to «, and associated explanations) the
notation BF(L; y) is used to denote these models, i.e., as defined in Equation (1.5). While
theoretically extensible to infinity, usually any L > 7 will yield excellent full range (small to
large signal dynamic range) model accuracy of the fz;, envelope characteristics of most PAs.

Coefficients may be extracted through minimizing an error function such as the mean
absolute error, AE, between the model’s envelope characteristics and the device’s EM enve-
lope characteristics, that is

1S - "
a2 = 13 o) 3 by (19
s=1 k=1

AE is taken over S points, distributed over the PA dynamic range. To reflect any internal
minor deviations between the EM measurements and their model, a reasonably large value
for S is advisable, for example more than 40 measurements. Here we use 81, but much
smaller numbers yielded almost identical results. Below, in Section 1.1.6, AE is also
employed as a model goodness FOM in model comparisons.

Graphs of AE versus o for model orders ranging from 2 to 10, 15 and 20, for BF
models of the L-band LDMOS PA, are presented in Figure 1.4. A ‘zero model’ is
included as a useful reference. It is that model where all model coefficients in Equation
(1.6) are set to zero; hence its AE, denoted AE.;o—model, 1S €quivalent to the average
absolute EM envelope amplitude, normalized here of course. These graphs immediately
convey why Shimbo and other authors of References [2, 12, 13], were successful with
their ‘arbitrary’ choice of 0.6 for « in creating good tenth order BF models, but why
Vuong and Moody, authors of Reference [14], where they strongly criticised the model,
were quite unsuccessful because of their bad choice of 200.
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Figure 1.4 Model accuracy of the BF models of the LDMOS PA EM envelope characteristics with
2 to 10, 15 and 20 coefficients as a function of ay. Log scales used. Full line: even order models;
dashed line: odd order models.

1.1.3.1 BF Model Accuracy Anomalies that Spurred the Development
of the MBF Model

Values of o < 1.2 yield viable and good BF models, with accuracy improving exponentially
with model order, hitting an AE ‘floor’ for orders > 8, as may be seen in Figure 1.4. The
sixth and seventh order models manifest optima that almost reach this floor. The AE for the
low order BF[3; y] model, at 0.0083, for the best we could extract via Equation (1.6), is more
than 10 times worse than that for a BF[10; y] model, which at 0.0006 is excellent. However,
what is more notable is that it is about five times worse than the quite good BF[4;y| and
BF[5; y] models. A search for a better third order model to bridge this ‘accuracy gap’ is what
led to the discovery of the modified BF models (MBF). Key to this is a deeper understanding
of the relationship between AE and «; this is examined further in Section 1.1.4.

1.1.4 Modified BF model (MBF) — Derivation

The proposed new MBF model is derived by exploiting the link between the BF envelope
model in Equation (1.5) and the complex Fourier series (FS) approximation of the periodic
extension G,,, of the PAs RF complex EM IVTC, denoted G. This latter may be expressed as

$0(0) = G (1)) = Gapi (1] o)

o 1.7
= Y ad™W—D<vw() <D (L.7)

k=—00
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where v;(¢) and v,(¢) are the instantaneous complex RF input and output voltage signals,
Gampi and Gppgge are the magnitude and phase parts of G and ¢y is the kth complex coefficient
of the FS approximation of G.

In Reference [3], O’Droma has shown both that the relationship between the coefficients
by in the envelope BF model, Equation (1.5), and the FS ¢ coefficients here is

bk Zj(Ck — C,k) (1.8)

and that parameter « is the same in both Equations (1.5) and (1.7). Implicit to the definition
of the FS is that the period of the periodic extension G, of G is 27/a. This period is effec-
tively the model’s dynamic range and may be so defined. Hence linking it to D, the PA
measured envelope dynamic range, which in turn is half that of the actual IVTC range, is
important and may be achieved by defining a dynamic range ratio parameter y such that

2
~=yD 1.9
o 12 ( )

In the LDMOS PA example here, the value of the normalized dynamic range of the PA
envelope amplitude is D = 1.855. Just as the relationship between « and the period of the FS
approximation of the periodic extension of the associated IVTC G,,, has been missed
in some seminal papers on the BF model, for example Shimbo, and Vuong and Moody in
References [12, 14], so also the linking of the ratio of the modelled to measured dynamic
ranges through y has been missed. However, as will be seen below, all this plays an impor-
tant role in both the BF models and in the new MBF models.

1.1.4.1 PA IVT Characteristics from BF Envelope Models

From the extracted coefficients b; of a BF model of the PA EM envelope characteristics,
Equation (1.5), an FS approximation of the periodic extension G, of a hypothetical non
unique memoryless IVTC of the PA, G, may be derived, by obtaining the ¢, coefficients in
Equation (1.7) via Equation (1.8). As the dynamic range of the PA EM envelope is 0 to D, so
the dynamic range of G is —D to D. While being hypothetical, in a mathematical sense, this
IVTC model will be a good model if the originating BF envelope model is good. In fact,
there is an unlimited number of such ‘derived’ IVTC models, depending on how one chooses
to fix the relationship between c_; and ¢ in Equation (1.8). Presumably at least one of these
will match the actual PAs IVTC, which is unknown here and may remain unknown without
affecting the validity of the theory being set out below; cf. also Blachman’s approach in
Reference [15]. In Equation (1.8), setting

C_j = —Ck (1.10)

yields IVTC models manifesting odd and even symmetry for the amplitude and phase com-
ponents respectively. Deriving such an IVTC, G, for this LDMOS PA from an optimum 10™
order BF(10; 2.7) model yields an excellent match to the measured EM envelope character-
istics over the dynamic range D. This derived G is shown in Figure 1.3, in its Gy and
Gpnase components, together with the PA EM AM-AM, g, and AM-PM, ®, envelope
characteristics.
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1.1.4.2 Finding Good Low Order BF PA Envelope Models from a Derived PA IVTC

Treating this derived G as though it was a measured EM IVTC of the PA, new FS approx-
imations (models) now may be extracted from it, via Equation (1.7). Different FS
approximations may be found depending on how the periodic extension of G is achieved,
quite apart from the order of the FS. These models in turn may be converted back into new
BF envelope models by applying Equation (1.8) to the extracted FS coefficients. Such BF
models obviously cannot be better than the originating excellent BF(10; 2.71) used to find G
but, as there is some freedom in choosing how to make the periodic extension G,., of G for
the new FS models, following O’Droma and Lei [16], there is a potential to find, low order
BF models that are more accurate than those directly extracted.

The first step in finding such improved models is to control the ratio of the period, yD, of
the periodic extension G,,, to the 2D dynamic range of G. This can be done directly via
control of y (or a, Equation (1.9)); hence the inclusion of the subscript y in G.,,. Making
y > 2 opens a gap of (y — 2)D width between the recurring G sections in the middle of
each period of the G,.,, creating the possibility, the second step, to control the shape of the
curve in this gap, which connects these G sections. Different gap widths and different shapes
of connecting curves will yield different FS approximations. A ‘good’ FS model extracted
from G,,,, following Equation (1.7), is one that is a good match to the IVTC G that is in
the ‘—D to D’ range only of G.,,.

That the dynamic range of the model, the period yD, should be greater than or at least
equal to that of G, the dynamic range of the PA being modelled, which results when y > 2,
is a natural expectation. However, for a fuller understanding, it is useful to consider in more
depth the modelling dynamics as a function of the actual values of y (>2,=2 and <2), as
addressed in the following.

y = 2: poor models with strong Gibbs effect
With y = 2 the period of the FS model and the PAs IVTC dynamic range are equal, that is
both are 2D. Hence G,.» will consist simply of G sections repeated with a step discontinuity
‘connecting’ them at each period transition, as seen in Figure 1.5 for two periods of the
amplitude component of G, and in Figure 1.6 for the corresponding phase component. An
FS approximation (to G,,») will naturally manifest a Gibbs effect [17] at these discontinu-
ities, resulting in an inherently poor IVTC model accuracy, especially in the region of the
discontinuity, that is in the PAs large signal region. An FS(20;2) approximation of this,
which was extracted but is not shown here, is indistinguishable from the graphs marked ‘FS
from BF(10;2)’ in these figures; the Gibbs effect is clearly visible in both.

This impact on model accuracy for values of y in and closely around y = 2 is also evident
from the AE graphs in Figure 1.4, where y = 2 falls in the transition area between the good
AE models on the right and the poor models on the left.

y > 2: Good models, especially around y =4

Depending on the size of this gap (y — 2)D between the G sections in each period of the G..,
and the shape of the curve connecting the G sections within the gap, different models result.
It is intuitive to seek a smooth transition between the end points thereby eliminating disconti-
nuities and thus also the Gibbs effects in the FS approximations. Further, it makes sense to
choose the shape of a ‘transition’ curve so that attributes present in the G sections are
exploited. One such clear attribute is the resemblance of the typical shape of the large signal
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Figure 1.5 The periodic extensions, G,.» and G4, of the PA EM IVT amplitude characteristic G (the
full line from —D to D; also Figure 1.3) and the amplitude parts of FS approximations of these shown
over the normalized input range —4 to 4. The periodic extensions are with y values of 2 and 4
respectively, the former with discontinuities at £D, +3D and so on, the latter without, as it is
constructed following Equation (1.11). There are graphs of six FS approximations superimposed on the
G, and G,4. One is of G, derived from BF(10; 2). The Gibbs effect is visible and strong. The other
five are of G.4: one, the FS(20; 4) approximation, is directly extracted from G4, Equation (1.7), and
four are derived from optimized and nonoptimized 3 and 10 coefficient MBF envelope models, via
Equations (1.7) to (1.9). The y optimized ones are MBF(3; 3.8) and MBF(10; 4.2) and non-optimized
are MBF(3; 4) and MBF(10; 4). All five models are visually indistinguishable from G,.4 and G,., over
the relevant —D to D range, although outside this range, the best ones, from the y optimized MBF(10;
4.2) and MBF(3; 3.8) models, are clearly distinguishable. The extracted EM g(A) characteristic is also
shown. Input and output are normalized with respect to their respective voltages at P1.

nonlinear amplitude component of a PA IVTC to a half period (—m/2, 7/2) of a sinusoid.
Hence if the period of the periodic extension is widened to 4D, that is y = 4, and thus the
gap between the G sections in each period increased to 2D, then making an even reflection
of the IVTC about its end points, that is about the G, end points at D and —D, will tend to
complete the resemblance to a full sinusoid. Besides greatly reducing or eliminating the
discontinuity in the amplitude component of the IVTC, this kind of manipulation of G4
significantly increases the likelihood of finding reduced coefficient-count FS approximations
with acceptable accuracy, as there is a good potential to achieve a significant matching of the
dominant amplitude part of G.4 by the first term of the FS approximation. Such a periodic
extension, with odd symmetry about zero for the amplitude characteristic, is yielded by

Gea(2nD + x) = (—1)"G(x), —D<x<D withn=0,+1,+2,... (1.11)

The graph of the G.4 periodic extension in accordance with Equation (1.11) for the
LDMOS PA IVTC G is shown in Figure 1.5 (amplitude component). An FS(20;4) model,
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Figure 1.6 The G, and G, phase characteristics and their FS approximations corresponding to the
Figure 1.5 graphs. Apart from the FS approximation derived from BF(10; 2), in the relevant —D to D
range, the models match the G,s, and G., very well. For the most part they are visually
indistinguishable from one another, especially those from MBF(10; 4) and MBF(10; 4.2). Only in a
narrow region in the vicinity of zero and £D may the directly extracted FS(20; 4) approximation and
the models from MBF(3; 3.8) and MBF(3; 4) be visually distinguished. As with the amplitude models
from MBF(10; 4.2) and MBF(3; 3.8), here also these are clearly distinguishable outside the —D to D
range.

extracted from G, in Equation (1.7), is graphed there also. It is visually indistinguishable
(without zooming) from G..4. Further, over the dynamic range —D to D, the G4 graph is
indistinguishable from other superimposed FS models that are derived from the newly
extracted MBF models — yet to be described (Section 1.1.5 below).

In Figure 1.6, the phase component graphs corresponding to those in Figure 1.5 are shown.
There the FS(20; 4) approximation of G,y is visually distinguishable from G4 (and G,.)
only in the vicinity of the mild discontinuities at zero, 0, £D, 2D and so on. The differences
are really quite insignificant, being of the order of a fraction of a degree.

Given the nature of the periodic extension rule used, Equation (1.11), the even coefficients
of the F'S(20; 4) approximation of G.4 will be zero. The spectrum of the odd coefficient
magnitudes are found to decrease exponentially and rapidly towards zero with increasing
coefficient number. This is as would be expected. It is almost identical in fact to the spectrum
for the new MBF(10; 4) model, shown later in Figure 1.12(b); the positive order coefficients
only are shown here. This means of course that the significance for model accuracy of the
higher order terms reduces exponentially with order value. While this attribute might in gen-
eral be expected in a series-based approximation model, in fact it is not normally the case for
the coefficient sets directly extracted for BF(L;y) models via Equation (1.6). However, here,
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following the algorithm described, the attribute does apply and hence good lower order FS
models of the IVTC, and thus derived BF models of the envelope characteristics, may be
found, either by just dropping coefficients or by simply extracting new low order FS models
of Ge;4.

Y <2 and the ‘Zero Model’ asymptote

Reducing y below 2 means that the period of the periodic extension of the IVTC will be
shorter than the 2D dynamic range of G and so the ends of each period will overlap. It is
similar to the aliasing errors in DSP when undersampling happens. With this, it is impossible
to reproduce the G IVTC in the overlap region. Moreover, considering that the fundamental
FS component itself will be 2/y sinusoid periods long in the 2D IVTC dynamic range and as
such a poor match to the monotonic half-sinusoid form of the IVTCs Gy, over this 2D
range, then the coefficient extraction optimization process will tend to attenuate this first FS
coefficient; the smaller the y, the greater the attenuation. Hence it is intuitive to appreciate
that the model extraction optimization process will quickly drive the FS coefficient values
towards zero as y decreases and the overlap increases. This behaviour of the FS, and thus of
the BF, coefficients is reflected in Figure 1.4, shown on the left where all models tend
towards the ‘zero model’ asymptotically.

1.1.4.3 The Modified BF Model

Having set out a process (above) that makes for a good low order model — viz. deriving a
good IVTC G from an excellent high order BF model, finding good low order FS models of
it and converting these back to good low-order BF models — a new MBF model may be
adduced as a way to find these good low order models directly, that is bypassing the algo-
rithm’s intermediate steps. In can be achieved with two modifications of the BF model. The
first is, following the logic of Equation (1.11), to impose the constraint of allowing only odd
order coefficients. The second is to substitute « in the BF model with 27/(yD), in accordance
with Equation (1.9), and thereby express the period of the underlying FS approximation of
the IVTC in terms of the measured dynamic range D of the PA being modelled and have
control of the ratio, y, of both. For low order models the value of y should be kept in
the region of 4 so as to optimize the intuitive match of the fundamental component of the
directly linked underlying FS approximation of that underlying hypothetical IVTC, which
will have the sinusoidal-like form of the G.4 as described above and in Equation (1.11).
Hence this modified BF (MBF) may be expressed as

. L 2
W = (2 k- 1a) (1.12)

The following section analyses MBF models extracted using this equation.

1.1.5 MBF Models of an LDMOS PA

Tenth and third order MBF models of the LDMOS PA above were directly extracted, using
Equation (1.12), with y = 4, Equation (1.11), and with values of y that were optimized to
yield minimum AE, those values found here being 4.2 and 3.8 respectively.
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Table 1.1 LDMOS PA model performance comparisons: MBF vs classical models

Model L’ y Average error (AE) NMSE (dB) ACEPR (dB)
MBF (optimum) 3 3.8 0.0030 —33.3 —43.1
MBF 3 4 0.0034 —33.0 —42.8
MBF 10 4 0.0006 —335 —43.5
MBF (optimum) 10 4.2 0.0005 —335 —43.5
BF (optimum) 3 3.64 0.0083 —31.3 —40.5
BF (optimum) 10 2.71 0.0006 —33.5 —43.5
Saleh” 2 — 0.0514 —-27.7 —36.6
MS 4 — 0.0063 —32.1 —43.1
PS(3)¢ 3 — 0.0085 -31.0 —39.8
MEMUB? 10-40 — — —335 —43.5

“L is the number of coefficients only; it does not include y or o in MBF and BF, or the various optimiz-
able exponent parameters in Saleh and MS.

bWith AM—AM only, hence two parameters; for this PA, a Saleh AM—PM model is unextractable [6].
“Three complex coefficients: first, third and fifth.

9RFOM’s “memory to equivalent memory upper bound” for the LDMOS PA.

To check these models in the IVTC domain against the G..4 characteristic and the FS(20; 4)
model extracted from G,.4, they were translated into FS approximations using Equations (1.7),
(1.6) and (1.10). These then are approximations of hypothetical periodically extended
IVTCs of the PA. They are graphed in Figures 1.5 and 1.6 as the graphs marked
‘FS models from MBF(10; 4), MBF(10; 4.2), MBF(3; 4) and MBF(3; 3.8)’. For the
amplitude component, over the key G dynamic range —D to D, they appear excellent and
visually indistinguishable from G.4 and from the FS(20; 4) model. This is the range
where model accuracy matters. Outside this region, < —D and > D, the two FS approxi-
mations derived from the optimized MBF models can be distinguished, just as might be
expected. A similar result may be noted for the phase component in the range —D to D,
except in the vicinity of the mild discontinuities present here at Oand + D, although
interestingly the two 10-term MBF models are also indistinguishable from the IVTC
here, unlike the FS(20; 4) model. This latter is an indication that higher order MBF mod-
els are better than their equivalent BF models, even if only slightly. That the optimized
MBF envelope models do yield better results may be seen in the accuracy and perform-
ance comparisons in the sequel in Section 1.1.6 (e.g. Table 1.1).

As might be intuited from the foregoing, for lower order models, especially third order
ones, the actual value of y for optimum results relates mainly to the kind of extension
needed to migrate the underlying extended IVTC shape into a sinusoidal resemblance
with period yD, and hence enable its periodical extension G,., to be largely approxi-
mated through the first coefficient of the FS approximation. Whether y is > 4 or < 4,
and by how much, depends inversely on how deeply the EM characteristics (from
extracted measurements) penetrate into the PA saturation region. For high order models,
there is little difference in the AE between the optimum and a model with y = 4, as may
be observed in Figure 1.7 for MBF(10; y) and MBF(7; y). There AE is more determined
by the interplay between the coefficient terms.
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Figure 1.7 Accuracy of the BF and MBF envelope models, with 3, 5, 7 and 10 coefficients, of the
LDMOS PA EM envelope characteristics as a function of y and «.

The tendency in the typical PA AM-AM characteristic, g(A), towards quarter wavelength
sinusoidal resemblance means the model is particularly suited to large signal modelling, with
measurements deep into the PA saturation region, for example extending up to —6 dB IBO.

1.1.6  MBF Model — Accuracy and Performance Comparisons

Comparisons in the following are focused on low order models for the most part — on third
order MBF models being compared with third order BF and with other established low order
power series (PS), Saleh and modified Saleh models [1, 5, 6]. All models are extracted from
the EM LDMOS PA. Excellent tenth order MBF and BF models are also included. The
behavioural prediction performance is set against the measurements of PA amplifying
WCDMA signals, as described in Section 1.1.2, and generally follows traditional compara-
tive analysis [8, 9]. These comparison results are summarized as follows:

1. MBF and BF model accuracy.

2. Gain characteristics — model accuracy.

3. Behaviour prediction performance — NMSE and ACEPR.
4. Regeneration of the envelope amplitude’s CCDF.

5. Model large signal margin of reliability.

6. Model extensibility, MBF versus BF.

These are addressed in Table 1.1 under the following subsection headings.

1.1.6.1 MBF and BF Model Accuracy

Through the AE model accuracy FOM, that is Equation (1.6) for BF and an equivalent for
MBF, models may be compared. Figure 1.7 shows these comparisons as a function of y (and
o, top axis).
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Figure 1.8 Accuracy of optimum BF and MBF models as function of model order, L.

The behaviour on the left (poor AE, asymptotically driven towards the zero model) and in
the transition region follows the logic already discussed above for the BF model in Section
1.1.4.2. On the right, in the region with y > 4, the AE improves (exponentially) with increas-
ing model order; this is also seen in Figure 1.8. For each order all model coefficients are
separately extracted.

MBF models of 2 and 4 coefficients (and others) are omitted for clarity; as with the 5; 7
and 10 coefficient MBF models, they provide no special AE improvement over their BF
equivalents in the y > 4 region. Orders > 10 are omitted but these are found to yield negligi-
ble further improvement; this may already be observed for BF models in Figure 1.4.

Of particular note, and the main outcome of this comparison, is the greater sensitivity to y
of the third order MBF model; it manifests a pronounced optimum occurring at y = 3.8. At
this point MBF(3; 3.8) has an AE of more than 250% better than any third order BF model,
that is, any BF(3; y) model directly extracted, via Equations (1.5) and (1.6). Examination of
other PA characteristics yield similar results (not shown here), with optimized y always being
found in a narrow region around 4. The AE comparisons with the other low order models may
be seen in Table 1.1, where MBF performs better than twice as good as its nearest competitor,
the MS model.

For higher order models the AE improvement of MBF over their BF equivalents is not signifi-
cant. In a sense all higher order (L > 7) BF and MBF models are good. Optimization points for
y are so mild as to be nearly indefinable; hence setting y > 4 (or @ < 0.85) will always yield
good near-optimum models. Both MBF and BF models are better than equivalent power series
models, and of course better than the modified Saleh (MS) and Saleh models [1, 6].

1.1.6.2 Gain Characteristics — Model Accuracy

Complementing the AE view (Table 1.1) are graphs shown in Figure 1.9 comparing a selec-
tion of gain characteristics of lower order models over the envelope dynamic range.
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Figure 1.9 MBF(3, 3.8), BF(3, 3.64), Saleh, MS and PS(3) AM-AM gain models (top part) and
modelling errors with respect to EM ‘measured’ gain (bottom part) over the LDMOS PA input dynamic
range.

Models included are the best MBF(3; 3.8), BF(3; 3.64), MS, two-parameter AM—AM
Saleh and three-term power series PS(3) with complex coefficients that could be extracted
for the LDMOS PA used here. The MBF model is clearly quite superior over the input
dynamic range, and especially through the important large signal region. The four-parameter
MS is a close second.

IVTC Domain Accuracy

For completeness the associated underlying FS models derived from the MBF(3; 3.8) and
MBF(3; 4), following Equations (1.7), (1.8) and (1.10), have been included in the IVTC
domain graphs in Figures 1.5 and 1.6. Addressing the amplitude characteristics, in the rele-
vant —D to D dynamic range of G (i.e. of the G, 4 and/or G, ;) the FS models cannot be
distinguished from the G, 4 and/or G, ,; a zoom at saturation regions would show small dif-
ferences (not shown here). Outside that range, MBF(3; 3.8) can be distinguished, as would
be expected, but this is not relevant to model accuracy.

1.1.6.3 Behaviour Prediction Performance - NMSE and ACEPR

This is done here by comparing the output signal from the model to that of the actual
LDMOS PA output when using a WCDMA validation signal, a different signal from that
used for model extraction. That signal’s input and output PAPR values were similar at 10
and 6.57 dB respectively. Two figures of merit, FOMs, are compared in Table 1.1: normal-
ized mean square error (NMSE) and adjacent channel error power ratio (ACEPR[1, 18, 19].
The NMSE effectively evaluates the autocovariance of the difference between the measured
and modelled PA outputs [19]. In ACEPR the power of the error between the measured and
the modelled signal outputs within the adjacent channel is evaluated and compared to the
power in the carrier channel [20]. As ACEPRs can be taken of the upper or lower adjacent
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channels both are calculated and the worst case selected for presentation here. Both FOMs
are defined as follows [1]:

Z |uo,M(i) — uo‘mod(i){z
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where the sampled output spectra Y,,..s and Y,,,s of the measured and modelled output sig-
nals are obtained by fast Fourier transforms of u, 3 and u, ;04 respectively. The values of n;,
and of n,, n3, are chosen so as to correctly define the inband channel components over £1.92
MHz and the standard first upper or lower adjacent channel components over 4(5 4 1.92)
MHz respectively relative to the 3G WCDMA centre frequency; cf. Figure 1.1.

PA memory effects are present in the actual PA output. With memory omitted from the
models, there is then a ‘memory to equivalent memoryless’ upper bound (MEMUB) on each
of the FOMs, that is an upper bound on the performance achievable by the EM models. This
can be estimated by calculating the signal output differences between a near ‘perfect’ (high
order) EM PA model and the actual PA device with memory. To set the MEMUB results for
the FOM bounds (row ‘MEMUB’ in Table 1.1), several excellent BF, MBF and higher order
piecewise linear models of the PA EM envelope characteristics were examined (covering the
model order range of 10 to 40 terms) and none could improve on the MBF(10; 4) and opti-
mized MBF(10; 4) and BF(10; 2.71) models. This is not unexpected, as the AE improvement
with ever higher order BF or MBF models is negligible.

In Table 1.1 it is clear that, for these FOMs, MBF(3; 3.8) is significantly better than a
classical BF(3), a PS(3) and the Saleh model, and is also better than the MS model, though
this latter compares well with it.

1.1.6.4 Regeneration of the Envelope Amplitude’s CCDF

A comparison is made of the performance of the models to regenerate or preserve the
statistical distribution of the envelope amplitude. This is done here through the comple-
mentary cumulative distribution functions (CCDFs) of the output envelopes of the actual
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Figure 1.10 A comparison of the CCDF regeneration performance of the low order models of the
LDMOS EM envelope characteristics set against the actual CCDF extracted from the measurements
(‘measured’) and against the ‘memory to EM upper bound’ CCDF regeneration (MEMUB); the upper
two graphs. The model graphs, in order going from bottom (worst case) to top (best case), are Saleh
(AM-AM only), PS(3), BF(3; 3.64), MS and MBF(3; 3.8).

LDMOS PA (‘measured’) and its models obtained using the validation WCDMA signal.
For the N output samples,

CCDF(P,,):% / n(o)do (1.16)

where n(o) is the density distribution function of the time domain output signal samples
over the power domain. These are shown in Figure 1.10. There P, e, 1S the average signal
power over the N output signal samples. It is clear that here again the MBF performs
best among the low order models, with the MS a close second. The CCDF result for the
MBF(3; 3.8) model is indistinguishable from the MEMUB graph, that is the graph obtained
using the near ‘perfect’ model, which is the regenerated CCDF upper bound achievable for
this LDMOS when memory is omitted from the model.

1.1.6.5 Model Large Signal Margin of Reliability

A further advantage of the MBF model over its corresponding BF model, be these high or
low order models, is its behaviour beyond the PA measured dynamic range used to extract
the model. If the model extraction signal drove the PA deep into saturation, even into flat
compression as for the LDMOS PA here, then the MBF envelope model and its correspond-
ing IVTC model, both of which can be considered ‘extended” when employing a value of y
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in the region of 4, through their even reflection about the upper limit of the measured
dynamic range (i.e. about D for the envelope measurement and about both the D and —D
points for the IVTC model), effectively continue this compression for some (short) distance
beyond the measured dynamic range. This may be observed in Figure 1.5. Such continuation
of this compression is what would be expected to be seen in the actual behaviour of a PA.
This can be regarded as providing a modelling ‘margin of reliability’. It will even do this
when falling short of the deep PA saturation. It is an attribute that can be important when a
model is used in a context where the signals being amplified in a simulation or behavioural
analysis experiment have PAPRs that are greater than the model extraction signal.

This is notable as normally models, and model extraction procedures, do not set any con-
straints on the behaviour in the region outside the measurement dynamic range (except
sometimes by artificial extrapolation of the characteristics). It can happen that the behaviour
of some models in this region is erratic. This is the case for BF models. Therefore, if one
seeks a BF(L; y) model by a direct fitting process to the EM envelope characteristics of Equa-
tion (1.5) and using a y that one judges to be good that is correctly following the thinking
outlined above, then the resulting model will in all likelihood be good — excellent for high
order L — within the measurement dynamic range D (i.e. for the envelope characteristics or
from —D to D for the IVTCs) but its behaviour outside this range will be erratic and not
amenable to prediction. If not foreseen, it could result in significant behaviour prediction errors
when the envelope dynamic range of the signal being analysed is even slightly greater than D.

An example of a good directly extracted BF(10; 4) model which does not have this margin
of reliability may be observed in Figure 1.11. There the amplitude characteristics of it and its

3 T T T T T T .\ T T T 9000
! - - - axis pointer ! BF(10;4) 1
: <-\__)for Fa hs :/ (10:4) :
' grap ¥ '
] — o RS 1
2f ST TN SN 6000
o) ' /, 1 ‘\," “ ' o)
(0] : ,/ 1 KN 1 : (0]
N 1 / P i e A N
g ' G A S L
= [ ) e 4 P g(A) N PO £
g/ FS20; ) om MBF(10; 4) L ) g
o o
T R i e e ~ o 3
= S
£ £
5 ; 1143000 5
g | T
(@) . < . @]
: U ' 1-6000
N ) ¢‘\:\ [
1 1
' .'/ FS(20; 4)srom BF(10:4) '
1 ''-D D !
_3 1 iTH 1 1 1 11 1 _9000
°4 3 2 - 0 1 2 3 4

Input Amplitude (normalized)

Figure 1.11 Amplitude parts of the actual (right axis) and zoomed (left axis) BF(10; 4) envelope
model obtained by direct fitting to the LDMOS PA EM characteristics and its corresponding FS(20; 4)
IVTC approximation set against the well-behaved MBF(10; 4) model and its FS(20; 4) approximation;
the measured EM g(A) and IVTC G, are also included.
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Figure 1.12 The coefficient spectra of (a) the FS(20; 4) IVTC model derived from (a) the BF(10; 4)
model (one side) and (b) the MBF (10; 4) model.

corresponding FS(20; 4) IVTC model, derived from it using Equations (1.7), (1.8) and
(1.10), are shown (actual and zoomed) and set against those of the MBF(10; 4) and
its derived FS(20; 4). All the models perform well within the dynamic range of the measure-
ments: the derived amplitude IVTC FS approximations FS(20; 4)pompr(10;4) and
FS(20; 4)pommpr(10:4) Within the —D to D range and the BF(10; 4) and MBF(10; 4) models
within the envelope AM—AM dynamic range 0 — D. However, immediately outside this, the
FS(20; 4)pr(10:4) and BF(10; 4) manifest erratic behaviour and radically ‘take off” vertically.
With a zoom-out scale of 18 000 (right-hand side axis), it is possible to show their full behav-
iour. The behaviour of the phase characteristic outside the measurement dynamic range is
likewise just as erratic (not shown here).

This effect is also reflected in the magnitude values in the coefficient spectrum
(Figure 1.12a). Besides, there being a growth in the coefficient magnitude until the third
coefficient and only thereafter an exponential decline, there are several order-of-magnitude
differences in the coefficient values compared to the MBF(10; 4) coefficients (Figure 1.12b).
Numerical computational precision is a further concern when handling such large order-of-
magnitude numbers mixed with other small numbers. The MBF coefficients notably have
values in close proportion to the (normalized) PA measurements and have an exponential
decline to zero with coefficient order.

1.1.6.6 Model Extensibility — MBF versus BF

Both BF and MBF models are extensible. However, MBF has an additional distinguish-
ing extensibility property. For a given MBF model of a given order L, the model AE will
deteriorate gradually and monotonically, as terms are dropped, starting with the highest
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Figure 1.13 A comparison of model AE deterioration as a function of an orderly dropping
of coefficients terms, starting with the highest order ones, for directly extracted BF(10; 4) and
MBF(10; 4) models.

order coefficients. Such behaviour would be analogous to that expected in power series
models. However, as is implicit in Figure 1.12(a), this is not normally the case with the
BF model class. There, the integrity of the coefficient set generally must be maintained;
dropping even one coefficient regardless of its order can cause radical deterioration in
accuracy. An example of this is illustrated in Figure 1.13, which shows a comparison of
AE deterioration for a BF(10; 4) versus an MBF (10; 4) model as a function of an orderly
dropping of coefficients.

1.1.7 MBF Model — the Memoryless PA Behavioural Model of Choice

The evolution and derivation of the MBF PA behavioural model has been set out. Its
most immediate and significant contribution is the superiority of its low order models
over all existing established low order models, and this is especially so where large sig-
nal behaviour is being considered. This has been demonstrated here, where three-term
MBF models are extracted of equivalent memory characteristics of an L-band LDMOS
nonlinear PA that displays some memory effects and compared to other low order models
of the PA, namely a three-term BF model, a three-term power series model, the modified
Saleh model and the classical Saleh model. It yields the best model accuracy — more
than twice as good as its nearest competitor — and behavioural performance prediction
among all these low order models (with margins of several dB in some instances). The
reason for its good low order modelling of large signal PA behaviour modelling
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capability is shown to be an inherent suitability to match the general quarter wavelength
sinusoidal resemblance of the typical heavily saturated PA AM—AM characteristic, g(A).
The behavioural prediction performance analysis and comparisons are based on the PA
amplifying a 3G WCDMA. In fact, for the performance FOMs considered — NMSE,
ACEPR and the fidelity with which a model regenerates the CCDF of the signal’s
envelope — the MBF comes exceptionally close to the upper-bound values set by the
memoryless approximation of the PA ‘with memory’.

In evolving the MBF, useful concepts introduced include the ‘equivalent memoryless’
model of those PAs that manifest linear and nonlinear memory, and the use of this in setting
FOM memory to equivalent memory upper-bounds (MEMUB) as well as the behavioural
prediction performance achievable by any memoryless model of a nonlinear PA with mem-
ory effects and the hypothetical instantaneous voltage transfer characteristic (IVTC) domain,
where one may find any number of hypothetical PA IVTCs that correspond to the PA EM
envelope characteristic. This IVTC domain was most useful in showing the direct relation-
ship of complex FS approximations of the PA IVTCs in this domain with MBF and BF
approximations in the envelope characteristic domain. This linkage has been known but
never really explored, or exploited to yield the MBF model, as done here. While an MBF
model is directly extracted in the PA envelope characteristic domain, its principal novel
modelling attribute is to implicitly exploit the possibility, in the corresponding hypothetical
IVTC domain, of shaping the extension of the IVTC outside the PA measured dynamic range
in such a way as to achieve a good (even optimum) alignment between a periodic extension
of this and the first (fundamental) FS term. This is why MBF is so good as a low order model
and also why it is particularly suited to large signal memoryless PA behavioural modelling
applications with a signal dynamic range extending beyond saturation, while simultaneously
maintaining good modelling accuracy in the small signal region. Since for best low order
MBF models, parameter y, the ratio of the PA model to measured dynamic ranges, should be
optimized in a narrow region around a value of 4; then perhaps it is more correct to call the
model an (L + 1) parameter model. This optimization, however, while important for third
order models, is unnecessary for other orders and particularly orders greater than 7, as the
accuracy improvement is negligible.

Another benefit of evolving the MBF model has been the deeper insight it afforded into
both BF and MBF model classes. How to always get accurate stable models of either type
has been fully clarified. Importantly the new MBF model class inherits all attributes and
capabilities of the BF model, such as its instantaneous RF and equivalent baseband or enve-
lope behavioural modelling capability, and its accessible intermodulation product and
harmonic decomposability property, which is so useful in multicarrier and multiband system
analysis.

Further advantages it manifests over the BF model include augmented extensibility and
an additional margin of reliability. It augments the BF model’s series-extensibility propert-
ies, in that higher order coefficients monotonically and exponentially increment model
accuracy by ever smaller amounts, which is not the case in the BF model, where high order
coefficients can be very important in their contribution to accuracy and thus cannot be
dropped with an expectation of a small change in accuracy. Unlike the BF model, the MBF
has the potential to inherently introduce a margin of reliability into large signal model
behaviour for some distance beyond the measured dynamic range. Thus, and also for
higher order models, these subtle but important advantages and distinctions over the BF
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model would recommend it as the model of choice when selecting between the BF and
MBF models.

As a final concluding remark, MBF is recommended as the model of choice among all
models for small or large signal behavioural modelling of microwave and millimetre-wave
nonlinear PAs using low or high order models.
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2.1 Introduction

The growth and progress in the mobile telecommunication industry drives a big demand for
microwave filters. Looking from the perspective of rapidly developing industry one must
face the technological obstacles limiting its growth. In the case of microwave filters the pro-
duction process is very difficult because of the requirements imposed on the final product
and the precision that is implied by these requirements. It turns out that even a modern
assembly line cannot guarantee the satisfactory precision that is repeatable in the industrial
scale. This is the basic reason for the situation where the microwave filter manufacturing
process is now only partially automated. When the device leaves the automatic assembly
line there is no guarantee that it satisfies the requirements assumed in the design process. It
may be said that the filter is pre-tuned and waits for the intervention of the skilled human
operator — this phase is called the tuning process. The filter’s construction allows for some
tuning elements (practically screws) that influence the resonant frequencies of cavities and
values of couplings between them.

In the literature many different attitudes to the filter tuning process are described. The
basic idea is to find the relations between characteristics of the filter being tuned and the
positions of the tuning screws. In a wider aspect this means finding the relation between
measurable physical properties of the filter and the change to the tuning screws that must be
applied to make these properties fulfil the technical requirements.

Here should be mentioned, especially, the methods that identify the tuning element that
has to be changed, like those based on the time domain response [1, 2] or the coupling matrix
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parameter extraction method [3, 4]. Only a few approaches to filter tuning are discussed here
but the interested reader may be directed to specific descriptions [5-9] and to an overview of
methods [10].

2.2 Artificial Neural Networks Filter Tuning

Looking at the filter tuning process from a more formal perspective, we have the device that
is described by a filter characteristic function (or set of numbers). The filter may be treated as
a function that converts the position of tuning elements into the filter characteristics. There-
fore, when we denote the space of filter characteristics by C and we assume that there are R
tuning elements, then we have the function F : RR — C. In this context there are many possi-
ble choices for the space C. It may be the space of real- or complex-valued functions, the
space of coupling matrices, the space RX for some K or many others, but what really matters
is the inverse of this mapping, that is F~! : C — R. It may happen that such mapping does
not exist as a single-valued one, but even if a given element of C may be achieved for
multiple positions of tuning screws, it is still acceptable. It is enough to know how much the
positions of tuning screws should be changed in order to achieve the desired filter characteristics.

It is hard to expect that we will be able to find the inverse mapping F~! in an analytic
form, as the numerical approximations are of huge complexity. That is why the artificial
neural network (ANN) seems to be a good choice. The idea is to find the ANN representation
of the unknown function F~! and see if it may be used in the filter tuning process. This
representation is called the inverse model of the filter. Such an inverse model, for the detuned
characteristic of a filter Sy, generates the tuning element deviations (distance vector from
properly tuned filter) Az, which, after applying to the current filter screw positions z, makes
the filter tuned (Figure 2.1).

The theoretical ideas behind ANN are not presented in this chapter — only basic intuitions
related to the subject are briefly described. The ANN may be perceived as a certain extrap-
olation of a function defined by a discrete set of samples. The extrapolation is built in the
so-called learning process. In this phase the arguments of the function and the expected values
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Figure 2.1 Tuning process with the use of an ANN approximator.
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are specified. The larger the set of learning samples, the better it is — but only to some extent. If
we supply too many or too few learning data, then the ANN loses its generalization properties.
The generalization ability is the real value that we are chasing here — the network is expected
to correctly ‘guess’ the values of the function for the argument outside the learning set. The
power of this tool is hidden just here: to generate the correct values of the function not from
the well-known formula but from the dependencies, patterns and similarities ‘discovered’
during the learning process.

The ANN cannot be treated as the universal tool that will solve all the problems and
approximate all unknown functions. The examples showing that the ANN approximation
of function F~! may be useful in the filter tuning process are to be presented in this
chapter. It will be shown how such a filter’s inverse models may be built based on the
ANN and used in the filter tuning procedures. In the more detailed descriptions the fol-
lowing notations will be used: N will denote the filter order, R will define the number of
tuning elements of a filter, typically it will be the filter order plus number of tunable
couplings and cross-couplings, while M will denote the number of points that represent
the discretized filter characteristic.

2.2.1 The Inverse Model of the Filter

The inverse model of the filter is built as the artificial neural network of a certain architec-
ture. In the described case the three-layer, feedforward multilayer-perceptron ANN [11] is
used. Its input layer contains the fixed number of N; neurons, the middle layer contains Ny,
neurons and the output layer has Ny neurons. The number N; depends on the measured char-
acteristics of the filter — this issue will be discussed a little bit later, but one may consider it to
represent a set of complex values of the reflection characteristics Sy (f) measured at a certain
number of frequency points. The value of Ny corresponds to the number of tuning elements
of a filter. In the case of sequential tuning there is always Np = 1, while in the case of paral-
lel methods we have Ny = R, where R is the number of tuning elements. The number Ny, of
middle (hidden) layer neurons is selected experimentally for the given filter.

The inverse model is always trained using training pairs (input and output vectors) of the
form {s,, Az, }, where n varies through some finite set of indexes. In this pair s, is the input
vector of dimension N; while Az, is the expected output, being a vector of dimension Np.
Vectors s, represent the detuned filter characteristics and Az, the corresponding deviations
of tuning elements responsible for filter detuning. The training set may be selected according
to different methodologies: the certain number of vector pairs may be selected randomly,
where one may select points distributed uniformly in specified hypercube in the AZ space,
but there is always a necessity to measure the filter’s characteristics for the filter being
detuned in a controlled way. This shows the most important drawback of the model based on
the ANN: the measurements for different positions of tuning elements must be repeated
many times. The size of the learning set appears to be an important problem. Collecting
learning data takes a lot of time and moreover it may happen that the network loses its gener-
alization capabilities.

Looking at the filter tuning problem one may follow one of two main paths: one is sequen-
tial tuning and the other is parallel tuning. Both methods treat the tuning process as a
sequence of tuning steps but the first one assumes that we are adjusting all elements of the
filter one by one — one at a time. In this method, before tuning, the filter has all tuning
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elements removed. In some situations, depending on the filter design, it is better to put the
cavity tuning screws maximally down. The second method assumes that before tuning a filter
is pre-tuned and during the tuning process all employed tuning elements are changed at the
same time. The two methods imply different approaches towards the ANN architecture and
learning process — and each of them has some advantages and disadvantages.

It must be mentioned here that whatever automated tuning method is chosen, the reduction
in the number of steps necessary to have the filter tuned should be treated as the main goal. It
means much more than saving time necessary to tune the filter. By minimizing the number of
tuning element changes, it also reduces the problem of passive intermodulation (PIM), which
can appear if a tuning element is changed many times. In this case small metal elements of
the tuning screw can drop into a cavity and can be the source of PIM. One must remember
that each time the position of tuning screws is changed, it influences the physical properties
of the filter. This is not a problem when the number of tuning steps is limited, but it may
appear when the tuning is performed by a human operator. The automated solutions gener-
ally lead to a smaller number of tuning steps.

2.2.2  Sequential Method

The description of the sequential tuning method will be presented here. Following the
description given in Reference [12], in the sequential tuning method the general inverse
model for a filter is not built but a set of inverse models for many subfilters of the given filter
is created. How may this be achieved? At the beginning of collecting the data (the learning
vectors) for algorithm preparation a filter must be correctly tuned. It is used as the inverse
model of the entire filter. Then the R-th tuning element is removed (or put maximally down
in the case of cavity),' which gives us a filter with simpler topology (we have one tuning
element less). This changes the filter’s properties but one may build the inverse model for
such a subfilter. The procedure of removing (or inserting) tuning elements is repeated one
by one, which results in the set of inverse models. Figure 2.2 presents the eighth subfilter of
a sixth order filter consisting of 13 tuning elements (tuning elements: 2, 4, 6, 8, 10, 12 —
cavities, tuning elements: 1, 3, 5,7, 9, 11, 13 — couplings).

Now let us assume building the inverse model for the r-th subfilter. The set of samples
P, = {Sﬁ, Azfﬁ} is collected, where Az’,f goes through the set of tuning element positions in
the form

Azi‘l’ ={—Ku,—Ku+u,—Ku+2u,...,0,... ,Ku—2u,Ku—u,Ku}

which gives (2K + 1) training points. For each Azl,j value the filter characteristic Sﬁ is read
from the vector network analyser (VNA). In this model « is the unit change of the tuning
screw position, while Ku is the maximal change in the tuning element position. The values
of u and K depend on the sensitivity of the tuning elements and for each filter type should be
chosen experimentally. The important observation is that for a given subfilter the size of the
training set is not too big and one may expect that for each subfilter it will be approximately
the same. This means that the size of the training set for the entire filter (the set of all R
inverse models) grows linearly with the number of tuning elements R. The r-th inverse model
is presented in Figure 2.3.

'In practice, it is enough to change the tuning element to shift the resonance frequency outside the observed band.
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Figure 2.2 The eighth subfilter model of the six cavity filter, with R =13 tuning elements. The tuning
elements 1-7 are tuned, 9—13 are removed. Reproduced courtesy of The Electromagnetics Academy.

ANN |:> Az,

Figure 2.3 The inverse model in the case of the sequential filter tuning method.
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When the r-th inverse model is trained the ANN learning ability is checked with the error
function given by

T Az —azh
" 2K +1

] (2.1)

where k is the index of the measurement, AzX0 is the correct value of the tuning element
deviation (known value) and Azﬁ€r is the tuning element deviation as a response of the
ANN.

When the set of R inverse models is trained, one may use them in the process of micro-
wave filter tuning whose path is inverted compared to the data collecting order. The tuning
process starts from the filter input. Initially it is referred to the latest built inverse model.
During tuning the tuning screw is put in an initial position and then, based on measured char-
acteristics, the first inverse model generates the Az; value. The value of Az; must be applied
to the tuning element to enable the subfilter to be tuned; in this case the ANN answers
Az; = 0. Then the second tuning element is processed by putting it in some initial position
and looking for the response of the second inverse model to the measured filter’s character-
istics. The value Az, is obtained and needs to be applied to the second tuning element. The
procedure is repeated until Az, = 0, which means that the second element has found its cor-
rect position. This scheme is repeated for all R inverse models and all R tuning elements.

2.2.3 Parallel Method

The sequential method described above requires rather simple ANN architecture and
offers a tuning algorithm that is very straightforward. Later it is proved that this concept
may be applied practically, but the user must be aware of its limitations. It should be
especially mentioned that when the filter is not tuned properly in a certain step (for a
certain subfilter) then the ANN responses in the following steps will not lead to a tuned
filter. In other words, if there is a need to return to one of the elements that is already
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Figure 2.4 The inverse model in the case of parallel filter tuning. Reproduced courtesy of The
Electromagnetics Academy.
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tuned there will be no ability to do it. The model is not going to answer the question
‘which element is incorrectly tuned’.

The parallel method allows one to look at the filter from a different perspective. In this
case the inverse model is treated as the vector-valued function returning a vector of dimen-
sion R. So each response of the inverse model tells how much the positions of all tuning
elements that require tuning should be changed. Moreover, one may possibly expect that the
filter will be tuned in one step only (assuming that positions of all tuning screws may be
changed in a single step — at the same time) and even if this theoretical expectation is not
observed practically, one may expect that the number of tuning steps is very small. This
sounds like a much more universal attitude than the sequential tuning, but starts numerous
problems that were not observed previously. The inverse model used in the parallel method
of filter tuning is presented in Figure 2.4.

The first problem that emerges now is the selection of the training set. In the case of
sequential tuning when uniformly distributed positions of tuning elements were selected,
the size of the learning set kept growing linearly with the order of the filter. Theoretically
there is no problem now; if one wants to have tuning element positions uniformly distrib-
uted in some hypercube of R¥ then one must use (2K + 1)R positions of tuning elements!
In practice this is not acceptable because it increases the time of the learning process
considerably. The example of distribution of samples in three-dimensional space is pre-
sented in Figure 2.5.

Therefore, some other methods of learning point selection should be chosen. One of the
methods is to select the samples randomly from the set of acceptable tuning element varia-
tions [—Ku,Ku]R. One may also select points by varying one tuning element only — this
looks like a serious limitation of the space of possible settings of tuning elements, but, sur-
prisingly, appears to work.

The number of points representing the discretized filter characteristic that should be
selected is also an issue. The performed tests [13] show that it may be relatively small (of
order 2R), but it is good to increase it to have better learning and generalization properties.
The exact dependences between the training vector number and network topology (number
of weights) are very difficult to establish. The theoretical estimation can be done using the
Vapnik—Chervonenkis dimension [14]. In practice this relation should be chosen experimen-
tally. In general, if the number of elements of the training set is too low the network can be
overtrained and will poorly generalize. If the number of elements of the training set is too
high the training process of the network can be very hard and time consuming or even
impossible to perform successfully. The training process for an ANN designed for parallel
tuning method is based on vector pairs from one set P, = {S;,Az,} (learning set). The
ANN generalization ability, during the training process, is checked using the vector pairs
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Figure 2.5 The example of sampling in three-dimensional space (R = 3). Learning vectors are
marked as pairs {Az;s;}, i = 1,2,..., L, where L is the number of learning pairs. Reproduced courtesy
of The Electromagnetics Academy.

from a different set Pr = {Sr, Az} (training set). The generalization error in the case of the
parallel method is calculated as

TE R

GErr =2K Y > " |Az§;(b) — Az4y(b)|/(TE x R) (2.2)

a=1 b=1

where 7E is the number of testing elements, R is the number of output neurons (i.e. tuning
elements of the filter), K is as defined before, the maximal deviation of tuning the element in
both directions, and Az{(b) and Az%,(b) denote respectively the known and expected ANN
response for the filter characteristic s7 from the testing set.

Now, assuming that the inverse model is ready (i.e. the ANN is trained), the tuning algo-
rithm may be described following the much simpler method than in the case of sequential
filter tuning — the same steps are repeated as many times as the filter’s characteristics differ
from the one of the correctly tuned filter. This single step is to put the measured filter’s char-
acteristics as an ANN input and read the response that indicates which screws should be
changed and by how much. After the screw’s positions are adjusted we look for the filter’s
characteristics again and repeat the step until Az(b) =0, = 1,2,...,R.

2.2.4 Discussion on the ANN’s Input Data

In general, the inverse modelling idea is based on the transformation of the filter’s character-
istics into the change of tuning element’s position. However, there are many possible choices
of what should be used to describe the filter, that is the filter characteristic. It appears
that not all of them are useful as far as the filter tuning is concerned. The first idea that was



34 Microwave and Millimeter Wave Circuits and Systems

used — and appeared to be a good choice — is to take the discrete sample of the reflection
characteristic — as the complex-valued function. Theoretically for Chebyshev filters (without
cross-couplings) the complex reflection characteristic is a full filter representation. All
experiments presented below consider the reflection characteristics only. Alternatively, or
additionally, the transmission S, can be used. If we decide to use both the reflection and
transmission characteristics the dimension of the input layer of the neural network must be
doubled. What should be highlighted here is the fact that performing the tuning experiments
on cross-coupled filters, when basing this on the reflection characteristics only, we obtained
very good results.

Let us assume now that the certain number of frequency pointsf;, where i=
1,2,...,M are taken and the ANN input data are defined as the set of complex values of
function Sy, (f;). This set appears to carry the entire information on the reflection charac-
teristic that may be extracted from the analyser — the question remains, how many
elements should be taken? From the theoretical analysis it occurs that at least 2N data
points are needed (to recreate the formula of S;;(f), which is the rational function, being
the ratio of two polynomials of degree N, with the coefficient of the highest degree of the
denominator equal to 1).

As presented in Reference [15], in general, the transmission and reflection characteristics
of a two-port filter network, composed of a series of N intercoupled resonators, can be
defined as a ratio of two polynomials

() =A@ _ g (2.3)

B(w) ZJNZO bj/

This equation may be transformed into

T N
> aw = S(w)) b (2.4)
i=0 =0

and in matrix form it can be written as

Xus(r+1)A(r+1)x1 — Yarxveybvanyx1 = 0 (2.5)
and then
A(T4+1)x1
[Xnrx(rs1) = Yarsv)) [ ] =0 (2.6)
(N+1)x1

which gives the final matrix form of the homogeneous linear equation as
Xuxrini2)drinizx1 =0 (2.7)

This equation looks homogeneous but actually it is not because of necessity to impose
some restrictions on coefficients — especially that by = 1. Therefore we have T + N + 1
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Figure 2.6 ANN error defined by Equation (2.2) for the TX filter from Figure 2.7.

unknown values. With M < T 4+ N + 1 equations the system is expected to have multiple
solutions. That is not acceptable because there is no clear criteria to select one of them.
On the other hand, if M > T + N + 1 the system is overdetermined and is rather expected
to be inconsistent, but one may still look for a least-square type solution, that is the
unknown vector that gives the value closest to zero. Equation (2.7) may therefore be
solved if the S(w) characteristic of Equation (2.3) is determined in at least M =T + N + 1
frequency points. Considering the reflection characteristic S;; then 7 = N [15]. Having such
a discrete set of points S(w;),/ = 1,2,... M, it is possible to restore the whole characteristic
in an analytical form [13]. Considering this, it is assumed that for M > 2N + 1,
unambiguous mapping between the reflection characteristic S1; determined at M frequency
points to tuning element positions is possible. Each sampled complex point of the reflection
characteristic requires two input neurons, one for the real and the second for the imaginary
part. This gives relations between the filter order N and the number of input layer neurons
N > 2M.

A series of tests were done showing that the number of points may be limited (also the
number of input layer neurons) to a number close to 2N, keeping the generalization error on
nearly the same level [13]. Below Figure 2.6 is shown the generalization error defined by
Equation (2.2) for the filter presented in Figure 2.7. In this experiment the learning and test-
ing sets have 1000 and 100 elements respectively.

What about the other possible representations of the reflection characteristics? Practically,
when the filter is tuned by the human operator the only information that is used is the modu-
lus of reflection characteristics |Sy;(f)|. It is therefore reasonable to expect that the ANN
input data may be limited to a modulus |S;;(f)| so decreasing the number of input layer
neurons by half. Unfortunately, performed experiments were not successful — it turned out
that the generalization error could not drop below a certain level. Apparently the modulus is
not sufficient to recreate the inverse model in a reasonable way.

It is also worth mentioning that other partial representations of the complex-valued
functions, such as phase, only real or only imaginary parts, did not lead to reasonable generali-
zation properties of the inverse model. In general, the method can be customized with regard
to any filter characteristics that fully describe a filter, constituting the filter tuning goal.
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Figure 2.7 The layout (a, c) and the topology (b) of the filter used in the experiment. Small circles
represent tunable couplings and cross-couplings. Bigger circles represent cavities. There are no
coupling tuning elements between cavities 15-17 and 17-18. Fixed cross-coupling occurs between
cavities 2—6. Reproduced courtesy of The Electromagnetics Academy.

2.3 Practical Implementation — Tuning Experiments

The tests were performed to check whether the procedures described above may be imple-
mented in practice. The testing environment was completely automated and consisted of the
programmed robot that was responsible for changing the positions of the tuning screws
according to responses of the appropriate inverse model.

The multiple tests were performed for filters with different topologies. Below we present
results of selected and representative tests of the most general case, that is filters where not
only cavities but also couplings may be adjusted in order to have a filter tuned.

2.3.1 Sequential Method

Following the example given in Reference [12] this method represents two relatively com-
plex filters — one of order 11 and the other of order 8.The first tuning experiment for the filter
of order 11 is described (Figure 2.7), with the lower part of diplexer — a TX filter marked
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Figure 2.8 The real part of the reflection. All tuning elements, 1-21, are removed. Solid line — IMT
characteristic, dotted line — TF characteristic. Reproduced courtesy of The Electromagnetics Academy.

with numbers — and the upper part of the diplexer — an RX filter not used in the tuning experi-
ment. One of the most important features of the presented approach is that the filter is treated
as a black box; no information on the filter topology and its technical details is necessary in
the algorithm customization.

The inverse models were built based on the following tuning elements extraction path: 21,
20,19, ..., 2, 1. The training sets for each inverse model were prepared for 41 positions of
the tuning screw, ranging from —20u to +20u, where u = 22.5°. In the experiment, the
inverse filter models were built based on the complex reflection characteristics collected
from one filter, which can be described as an inverse model template (IMT). The tuning pro-
cess was performed for another filter of the same type, which is defined as a tuned filter (TF).
The reflection characteristics were represented by 256 complex points. The scattering char-
acteristics obtained in the following steps of the tuning process are presented in the following
pictures. Apart from the scattering characteristics in dB we present the real part of S}, that is
the characteristic that was used in the process of preparing ANN.?

The filter used in the present experiment should be considered as tuned if the reflection
characteristic level is below —18 dB within the passband centred at f, = 943.5 MHz and
with bandwidth BW = 35 MHz. Figures 2.8 to 2.13 present the reflection characteristic of
the filter during the tuning process where successive tuning elements are set in the proper
position. While observing the final tuning results in Figures 2.12 and 2.13 one may conclude
that the filter is properly tuned. Experiments were performed for five different filters of the
same type using the inverse models generated based on the inverse model template. All fil-
ters were tuned within the time of a couple of minutes, which is very short compared to the
time needed by skilled technicians to do it manually.

Now let us proceed to the next example of the filter of order 8, which is an RX part of the
900 MHz GSM combiner (Figure 2.14). The inverse models were built on the following tun-
ing element extraction path: 8,7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1. In this case the training
sets for each inverse model were prepared for 21 settings starting from —10u up to +10u,

2 1n the process of preparing an ANN an imaginary part of S;; was also used. To avoid the mess in figures, authors
decided to include only the real part.
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Figure 2.9 The transmission and the reflection (in dB). All tuning elements, 1-21, are removed. Solid
line — IMT, dotted line — TF characteristics. Reproduced courtesy of The Electromagnetics Academy.

where u = 45°. The reflection characteristics were represented by a discrete set of 32 points.
The steps of the tuning process are presented in Figures 2.15 to 2.20.

The last characteristics, depicted in Figures 2.19 and 2.20, show the filter condition
when tuning is completed, with all elements set. The centre frequency for this filter is at
fo =897.5MHz and the bandwidth equals BW = 35 MHz. The technical filter specifica-
tion requires that within the passband we should have |S};| below the level of —16dB, so
that the filter is properly tuned. The tuning time for this filter is about 3 minutes and in
this case it requires one tuning iteration for each tuning element, so each tuning element
is positioned only once. The differences between the inverse model template character-
istics (which we treat as the ideal reference) and the tuned filter may be explained by
small physical discrepancies appearing as a result of the production process. Due to those
discrepancies in some cases we may expect that in practice the filter may require fine
tuning, which can be performed very easily even by a mildly experienced human
operator.
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Figure 2.10 The real part of the reflection. Tuning elements, 1-11, are tuned. Solid line — IMT
characteristic, dotted line — TF characteristic. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.11 The transmission and the reflection (in dB). Tuning elements, 1-11, are tuned. Solid
line — IMT characteristics, dotted line — TF characteristics. Reproduced courtesy of The Electro-
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Figure 2.12 The real part of the reflection. All tuning elements, 1-21, are tuned. Solid line — IMT
characteristic, dotted line — TF characteristic. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.13 The transmission and the reflection (in dB). All tuning elements, 1-21, are tuned. Solid
line — IMT, dotted line — TF characteristics. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.14 The picture (a) and the topology (b) of the filter used in the experiment. Small circles
represent tunable couplings and cross-couplings. Bigger circles represent cavities. There is no tunable
coupling element between cavities 7-8. Fixed cross-couplings can be found between the cavities 1-7
and 8-14. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.15 The real part of the reflection. All tuning elements, 1-14, are removed. Solid line — IMT
characteristic, dotted line — TF characteristic. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.16 The transmission and the reflection (in dB). All tuning elements, 1-14, are removed.
Solid line — IMT, dotted line — TF characteristics. Reproduced courtesy of The Electromagnetics
Academy.
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Figure 2.17 The real part of the reflection. Tuning elements, 1-5, 10-14 are tuned. Solid line — IMT
characteristic, dotted line — TF characteristic. Reproduced courtesy of The Electromagnetics Academy.

2.3.2 Parallel Method

To test the parallel method the tuning experiments were performed for two filters: the first
one of fourth order and the second one of fifth order. The topologies of these filters are pre-
sented accordingly in Figures 2.21 and 2.22. For both filters the relatively small learning sets
are collected: for each tuning element the S;; characteristics were collected (512 points) for
11 positions of each tuning screw (from —5u to +5u), where u = 3.6° (for cavity) and u =
216° (for coupling). This gave the learning sets consisting of 77 and 99 elements for fourth
order and fifth order filters respectively.

Tables 2.1 and 2.2 show the positions of the tuning elements for the investigated filters
before and after tuning. The corresponding reflection and transmission characteristics are
depicted in Figures 2.23 and 2.24.

The performed filter tuning process, for both filters, required changes to all tuning ele-
ments — both cavities and couplings, which makes the experiment essentially different from
the one described in Reference [16, 17]. The described change in the tuning element position
was applied to all elements one by one and each element was touched only once. The fifth
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Figure 2.18 The transmission and the reflection in (dB). Tuning elements, 1-5, 10-14 are tuned.
Solid line — IMT characteristics, dotted line — TF characteristics. Reproduced courtesy of The
Electromagnetics Academy.
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Figure 2.19 The real part of the reflection. All tuning elements, 1-14, are tuned. Solid line — IMT
characteristic, dotted line — TF characteristic. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.20 The transmission and the reflection (in dB). All tuning elements, 1-14, are tuned. Solid
line — IMT, dotted line — TF characteristics. Reproduced courtesy of The Electromagnetics Academy.
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Figure 2.21 The topology of the fourth order filter used in the experiment. Large circles denote
cavities, smaller couplings.
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Figure 2.22 The topology of the fifth order filter used in the experiment. Large circles denote cavities,
smaller couplings.
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Table 2.1 Deviations of tuning elements before and after the tuning process for the fourth order filter

Tuning element number 1 2 3 4 5 6 7
Az(m) before tuning (1) 5 -2 5 1 -5 -5 -3
Az(m) after tuning (1) 0 0 0 0 0 0 0

order filter’s centre frequency is f, = 1.95 GHz and the bandwidth BW = 20 MHz. For the
fourth order filter we have f, = 2.14 GHz and the bandwidth BW = 20 MHz. For both
devices the requirement was to have the reflection characteristics level in the passband below
—20dB. Therefore one can see that both filters are tuned correctly. In practice the tuning
process is not always completed in one step and the additional fine tuning procedure is
required, but it does not require special experience from the human operator and is relatively
quick and straightforward.

We refer the reader to the paper [16] to see test results for some other filters with more
complex topology. The tuned device is a 17 cavity diplexer with a sixth order filter having a
single cross-coupling between cavities 2 and 5 as the RX part, with the TX part being an 11
cavity filter with two cross-couplings (between cavities 2 and 5, and between cavities 5 and
8). As mentioned, the testing environment was different from the one described in the pres-
ent chapter, because only cavities were used in the tuning process. Some additional factors
were investigated including utilization of a number of filters in the testing process (in this
work only one is used to collect learning vectors). Also the influence of the learning set size
on the generalization error was discussed. The learning and generalization error curves for
different learning sets, varying from 25 up to 1000 elements, were compared. What may be
observed is the dependence of the learning set cardinality on the learning and generalization
error — with an increased number of learning elements a defined level of learning/generaliza-
tion error appears, but with the learning set large enough (over 200 elements) the error level
that is achieved is basically the same in all cases. Thus learning may take longer but final
learning and generalization effects are approximately the same.

2.4 Influence of the Filter Characteristic Domain on Algorithm
Efficiency

As mentioned before, considerable reduction of the dimension of the input vector, keeping
the generalization error (i.e. the inverse model accuracy) at a reasonable level, is possible.
Still the issue of selection of the sampling frequency points appears to be very important.
The lower the number of points, the more important it is to specify how they should be
selected. Also additional problems start appearing — especially lower stability of the general-
ization process resulting from the measurement errors. It appears that a minor fluctuation of a
single frequency point value starts to be meaningful.

Table 2.2 Deviations of tuning elements before and after the tuning process for the fifth order filter

Tuning element number 1 2 3 4 5 6 7 8 9
Az(m) before tuning (1) 3 1 -1 —4 -5 2 3 1 -5
Az(m) after tuning (u) 0 0 0 0 0 0 0 0 0
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Figure 2.23 The scattering characteristics of the fourth order filter. Solid lines represent character-
istics of the detuned filter. Dashed lines show results of the tuning process.

However, the problem of limiting the dimension of the input data vector remains very
important. It is therefore worth mentioning that recently two different ideas on input data
compression were reported [18, 19]. The first one is related to discrete wavelet transform
compression and the other to principal component analysis (PCA). In both cases the basic
idea is very similar: instead of passing the complete characteristic as the pattern that is
required to be recognized, authors extract ‘the most important data’ from it, ignoring the
‘meaningless’ remainder. In the case of the wavelet transform D4 a discrete wavelet trans-
form is used and experiments show that the relatively long tail of the transform (Figures 2.25
and 2.26) may be ignored, keeping the generalization error on the nearly unchanged level.
On the other hand, the PCA method suggests the reduction of the input data vector dimen-
sion by the selection of the appropriate basis. The experiments show that even if the
dimension of the space spanned by the newly selected basis is much smaller than the original
one, the generalization error is kept at the acceptable level.

First, let us focus on the Daubechies D4 wavelet transform as a method of filter reflection
characteristics compression. The details about that transform and its application in the reflec-
tion characteristics representation are described in References [19] to [21] respectively.

In Figures 2.25 and 2.26 the original signal and its D4 transform are presented. When
looking at the Daubechies D4 transforms one may observe that the biggest value of the trans-
formed signal occurs at its beginning. This observation raises a question: at which moment
can the transform signal be truncated without significant influence to the inverse model? To

0

RN A BT\

g %0 / AN \

T -40 I

» EREA \
-50 i :

19 192 194 196 1.98 2
frequency (GHz)

Figure 2.24 The scattering characteristics of the fifth order filter. Solid lines represent characteristics
of the detuned filter. Dashed lines show results of the tuning process.
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Figure 2.25 The reflection characteristic of a filter. Real part — solid line, imaginary part — dashed
line. © 2011 European Microwave Association. Reprinted, with permission, from [19], Fig. 1.

answer this question, some numerical investigations have been performed. Starting from 512
complex-valued points different compression rates were taken into account — starting from
the first eight transform values up to 512 values (meaning no compression). Figure 2.27 pres-
ents how the generalization error for the trained ANN depends on the number of learning
epochs for different compression levels (denoted by different values of C). One may come to
the conclusion that if the signal is highly compressed and fewer than 56 transform points are
left, the ANN cannot be properly trained, causing high generalization errors. If 64 or more
transform points are left, the ANN trains very well and practically no improvement is
achieved with additional transform points.

The other compression idea is related to the principal component analysis (known
also as Karhunen-Loeve transformation — for details see References [11] and [22]).
The brief description of the method is to transform the signal into the so-called feature
space and select only the most important features of the signal. This is achieved by
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Figure 2.26 D4 transform of the reflection characteristic of a filter. Real part — solid line, imaginary
part — dashed line. Point C defines the location from which the transform is completed with zeros or
truncated in further considerations. © 2011 European Microwave Association. Reprinted, with
permission, from [19], Fig 2.
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Figure 2.27 Generalization error of the ANN trained with D4 filter characteristics for different
compression levels C, where C is the point at which the D4 transform is truncated. © 2011 European
Microwave Association. Reprinted, with permission, from [19], Fig 3.

changing the appropriate coordinates, so the biggest variance is in the subspace generated
by the first basis vector, then in the subspace spanned by the second basis vector and so
on. Similarly, as in case of wavelet transform, we can truncate the least important basis
vectors compressing the signal [18]. Figures 2.28 and 2.29 present the original and com-
pressed signals.

Similarly, we can compare the generalization error depending on the number of learning
epochs for different dimensions C of the space of the compressed signal (Figure 2.30). As
one may notice, if there are less than 16 components the ANN may not be trained on a
satisfactory level, but for more than 16 components further increasing the number of compo-
nents does not affect the efficiency of the network.

The two compression techniques presented in this section show that the input data dimen-
sion may be reduced considerably. This results in a far less complex internal structure of the
ANN and finally in a much faster learning process. The tests described above show that this
might be used in practice based on real measurement data.
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Figure 2.28 The reflection characteristic of a filter. Real part — solid line, imaginary part — dashed
line. © 2011 IEEE. Reprinted, with permission, from [18], Fig. 1.
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Figure 2.29 PCA transform of reflection characteristic of a filter. Point C defines the location from
which the transform is completed with zeros or truncated in further considerations. © 2011 IEEE.
Reprinted, with permission, from [18], Fig. 2.

2.5 Robots in the Microwave Filter Tuning

An present in production practice the filter tuning is performed by skilled and experienced
technicians who are responsible for finding the positions of tuning screws that guarantee the
shape of reflection characteristics matching requirements specified for the device. The man-
ual tuning process is the only option when there is no algorithm that specifies which tuning
element should be adjusted and how much. However, when the filter inverse model is availa-
ble a fully automated tuning environment may be designed and implemented.

As already mentioned, there are two different attitudes to filter tuning: sequential and paral-
lel. The parallel one has a major advantage over the sequential — the ability to change position
of all tuning elements at the same time, considerably speeding up the tuning process. How-
ever, to change more than one element at the same time we need to have a dedicated robot
head that interconnects multiple stepper motors to filter tuning elements. Practically this
model is not flexible because different filter types require a different construction of the head.
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Figure 2.30 Generalization error of the ANN trained using the first C principal components. ©) 2011
IEEE. Reprinted, with permission, from [18], Fig. 3.
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VNA FILTER

Figure 2.31 The tuning environment [23] — block diagram (PC - the computer used for ANN
processing and reading characteristics from the VNA and stepper motor control, SMC — stepper motor
controller, SM — stepper motor, HEAD — interconnects stepper motors and filter screws, VNA — vector
network analyser, FILTER — microwave filter).

The other option is to use the single arm robot. That results in the much slower tuning
process (because we may change the position of only one screw at a time) but is a much
more flexible solution, because the same device may be configured for different filters.

The developed test environment is fully automated. It consists of the PC set (used for ANN
processing), a vector network analyser (VNA) and a mechanical system responsible for tun-
ing screw control. It must contain stepper motors with stepper motor controllers. The block
diagram of the parallel system is presented in Figure 2.31.

In the parallel setup the IAFTT robot (Figure 2.32) was used to collect ANN learning elements
and to tune the filter. It is possible for this robot to change all tuning elements simultaneously.

On the other hand, the one-arm SCARA robot (Figure 2.33) is used in the sequential
tuning environment. Fortunately the one-arm robot configuration may also be used in the
parallel tuning algorithm.

Figure 2.32 A photo of the IAFTT robot controlling all tuning elements simultaneously.
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Figure 2.33 A photo of a one-arm SCARA robot controlling one tuning element at a time.

2.6 Conclusions

In this chapter the basic idea about the artificial neural network microwave filter tuning was
outlined. Two attitudes towards the tuning algorithms with possible advantages and disad-
vantages of both of them were presented. The experiments were performed and proved that
the suggested methods work in practice — even for relatively complex filters (of high order
and complex topology). All tuning experiments, described in the present chapter, were per-
formed with the use of the reflection characteristic of filters. The proposed tuning methods
can work with the other filter characteristic representations like the transmission Sy;. This
may be necessary if we want to tune filters with transmission zeros (cross-coupled filters). In
general, ANN input vectors can be defined as concatenation of vectors of more than one
different filter characteristic.

There are still many open problems related to the optimization of the suggested solutions,
especially to the learning process, which requires a lot of learning data samples that are not
always possible to retrieve. Some novel, interesting ideas showing the possible ways to solve
these problems were also given.
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3.1 Introduction

In recent years, there has been a growing interest in applying artificial materials, known as
metamaterials, to antennas. This generic term covers a variety of definitions: left-handed
material (LHM), high impedance surface (HIS), epsilon-near-zero (ENZ), and mu-near-zero
(MNZ). A common thread to all these definitions is that these materials derive their unique
properties not from their composition but from their structure. They are mostly composed of
a periodic arrangement of materials, patterns. This spatial periodicity naturally induces a
spectral selectivity. This narrow bandwidth is, in addition to losses, one of the main limita-
tions for metamaterials applications.

The objective of this chapter is to demonstrate that it is possible to design wideband anten-
nas with metamaterials. Among the above-mentioned variety of metamaterials, it focuses on
high impedance surfaces (HISs), introduced by Sievenpiper in Reference [1]. These surfaces
can be used in order to improve antennas by reducing their thickness and making them uni-
directional rather than bidirectional. Thus, designing unidirectional antennas is required on
many platforms (aircrafts, unmanned aerial vehicles, etc.) in order to obtain outward radia-
tion and preserve the interior of any electromagnetic pollution. Furthermore, for integration
and mechanical constraints, antennas have to be low profile. To achieve these properties,
most common solutions consist in locating the antenna above a reflector or an absorbent
cavity. The solution with an absorbing cavity is simple but half of the radiated power is lost.
Absorbents are heavy and their features are difficult to reproduce. Moreover, the cavity is
sized at a quarter of a wavelength at the lowest operating frequency and can become very
bulky for low frequency applications. Another efficient technique is to use a reflector made
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of a good electrical conductor to retrieve the radiated power lost in the first solution. This
technique is optimal in the middle of the bandwidth where a constructive interference phe-
nomenon is obtained by locating the reflector at a quarter wavelength (at center frequency)
from the antenna. However, this solution is inherently limited bandwidth and can rarely
exceed the octave and leads to quite thick structures.

It therefore appears difficult to design a unidirectional antenna while achieving a simulta-
neously wide bandwidth and compactness, but among metamaterials, the so-called HIS have
remarkable characteristics and can exhibit two different properties. Indeed, within a limited
frequency bandwidth, these periodic structures can exhibit on the one hand an electro-
magnetic bandgap (EBG) in which surface wave propagation is forbidden along the
structure. On the other hand, they are able to reflect electromagnetic waves without any
phase shift for the electric field, which makes them behave like an artificial magnetic
conductor (AMC). Both the EBG and AMC behaviors may or may not occur at the same
frequency. Furthermore, some geometries do not exhibit EBG characteristics whereas they
act as an AMC. In this chapter, only the AMC property is considered since it is the one that
allows low profile unidirectional antennas to be obtained by using the metamaterial as a
reflector. In fact, while perfect electric conductors (PEC) impose a reflection phase of ,
perfect magnetic conductors (PMC) do not introduce any phase shift. Artificial magnetic
conductors reproduce the PMC behavior at a given frequency and, at about this specific
frequency, constructive interferences between incident and reflected electric fields can occur.
It is therefore possible to locate the antenna closer to the AMC reflector. Consequently, the
antenna becomes unidirectional and thin. However, the main challenge consists in preserving
the wideband properties of the antenna.

This chapter investigates the possibility of using AMC to achieve wideband antennas. An
introduction to AMC is firstly presented in Section 3.2. Its characteristics are detailed in
order to explain how these metamaterials are used with antennas. The main limitations
related to wideband aspects are highlighted. Sections 3.3 and 3.4 propose two different
approaches to deal with these limitations. Section 3.3 gives some insights on how to optimize
the AMC design with a wideband bow-tie antenna. Furthermore, the addition of lumped
elements on the AMC is considered in order to reduce side lobes of the radiation pattern.
Section 3.4 illustrates the way that an AMC can be modified to increase antenna gain. This
has been made possible with a technique based on surface current observation. Thanks to this
technique, a low profile wideband antenna using a hybrid AMC is presented.

3.2 High Impedance Surfaces (HIS) Used as an Artificial Magnetic
Conductor (AMC) for Antenna Applications

3.2.1 AMC Characterization

An artificial magnetic conductor surface is usually composed of a periodic arrangement
of unit cells. The classical method to characterize such an AMC has been proposed by
Sievenpiper in 1999 [1] and is called the reflection phase method. This method consists in
illuminating the surface to be characterized by a TEM wave at normal incidence. Then, the
phase difference between the incident electric field and the reflected one is compared. The
reference plane at which this phase difference is determined is usually the AMC surface or
the plane at which the radiating element will be located. Constructive interference occurs
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Figure 3.1 Mushroom structure (W=8mm, g =1 mm, 7 =4.8 mm, & = 1).

when the phase difference in the AMC plane is between —n/2 and +/2 and this defines the
bandwidth of the artificial magnetic conductor. The graph of the evolution of the phase
difference as a function of frequency is represented by the ‘phase diagram’. It can be deter-
mined using analytical models, computational methods or experimental test-beds.

Most of analytical models are based on the transmission line theory. The HIS is described
with an equivalent circuit model. This implies constraints on the shape of the unit cell, which
has to be simple, and also on the periodicity of the HIS, which has to be small compared to
the wavelength. Several models have been developed in References [2] to [5] for normal or
oblique incidences. The advantage of using analytical models is that they enable one to pro-
vide the phase diagram in a very short time. The main drawback is the accuracy of the model.

Computational methods consist in simulating a single cell of the HIS and applying
appropriate periodic boundary conditions to obtain the behavior of the infinite surface [6].
Figure 3.1 presents a mushroom pattern. Each cell is composed of a square metallic patch
above a grounded substrate. The patch is connected to the ground with a metallic via hole.
This HIS has been simulated with a CST Microwave Studio using methods described in
Reference [7]. The phase diagram is presented in Figure 3.2. As described earlier, the inci-
dent wave is a TEM wave with normal incidence. It can be deduced from Figure 3.2 that the
phase difference is null at 6.3 GHz. At this frequency, the surface behaves like a perfect mag-
netic conductor. The +90° bandwidth ranges from 4.6 to 8.5 GHz.

The bandwidth of this structure strongly depends on the height 4. The greater the height,
the wider the bandwidth, but the structure becomes bulky.

Regarding the mushroom structure, the simulation demonstrates that the presence of
metallic vias has no influence on the phase diagram as long as the incident wave is normal to
the surface. However, for this pattern, vias are mandatory when EBG properties are required.
In coming sections, no via is used for simplicity reasons and because only the AMC behavior
is considered in the design of low profile directive antennas.

By applying the Floquet theorem, it is even possible to characterize the surface for various
incident angles [5]. Therefore numerical methods enable quite accurate characterization to
be provided, but can be time consuming, especially when complex designs are involved.

Regarding the experimental characterization, several methods can be employed to deter-
mine the phase diagram. The first one presented in Reference [3] consists in using two horn
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Figure 3.2 Phase diagram of the mushroom structure.

antennas located in an anechoic chamber as shown in Figure 3.3. The transmitting horn illu-
minates the surface to be characterized and the reflected wave is collected by the receiver
horn. The two antennas are located at an equal distance from the surface and an absorber
takes place between the two in order to avoid any coupling effect. A preliminary measure-
ment is done with a metallic surface, which is taken as a reference. This method enables the
phase diagram to be determined at normal incidence but also for different values of the inci-
dent angle by rotating the surface under test and moving the receiving antenna [8].

Another method uses a so-called ‘waveguide simulator’. This measurement technique has
been first developed to characterize antenna arrays and frequency selective surfaces [9], but
can be applied to other periodic surfaces like the AMC. It consists in using an oversized
rectangular waveguide terminated with the AMC surface [7]. Thanks to the image principle,

Figure 3.3 Phase diagram: measurement test bed using two horns.



‘Wideband Directive Antennas 55

this device simulates an infinite surface. The main advantage of this method is that it is easier
to implement than the first one. Moreover, it does not require any anechoic chamber. How-
ever, it enables measurement only over the frequency band of the TE10 mode and incident
angle depends of the frequency. Finally, the size of the AMC surface must be equal to the
size of the waveguide and must be composed of an integer number of unit cells.

3.2.2  Antenna over AMC: Principle

As has been mentioned, the AMC can be used as a perfect magnetic conductor to reflect the
electric field in-phase. So it can be located close to an antenna to behave as an efficient
reflector. On the contrary, if a classical perfect electric conductor is used as a reflector with
an antenna, theoretically it has to be located at a quarter wavelength distance away from the
antenna to lead to constructive interferences between the field radiated by the antenna and
the field reflected by the PEC surface. This is shown in Figure 3.4(a). While a PEC surface
introduces a 180° phase shift in the reflected wave path, a PMC surface does not add any
additional phase shift. Therefore it can be located very close to the antenna and still leads to
constructive interferences, as presented in Figure 3.4(b).

To achieve an AMC-based antenna, the first step is to design the AMC to operate in the
desired bandwidth. Then, the method consists in locating a planar antenna operating within
the same bandwidth, parallel and close to the AMC. Theoretically, constructive interferences
occur. However, it is important to keep in mind that the phase diagram has been calculated
without the antenna and with a plane wave at normal incidence. These conditions are very
different from practical ones. The next step is to take into account the coupling between the
antenna and the AMC by simulating the whole structure. This methodology is followed in
the next sections and limitations are discussed, especially for wideband applications.

3.2.3 AMC’s Wideband Issues

The operational bandwidth of an antenna is commonly defined by its impedance matching
bandwidth but not only that. The radiation pattern has to be taken into account as well. An
efficient radiation in a given direction is often a limiting criterion in addition to a reflection
coefficient below —10dB. As has been mentioned earlier, an AMC leads to constructive
interferences over a limited bandwidth defined in Reference [1] by a +90° reflected phase
criteria. Thus, if the antenna bandwidth is equal or larger than the AMC bandwidth, one
would expect that the operational bandwidth would be limited by the AMC one. Similarly, if
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Figure 3.4 Planar antenna with (a) PEC reflector and (b) AMC reflector.
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the AMC bandwidth is equal or larger than the antenna one, one would expect that the opera-
tional bandwidth would be limited by the antenna one. However, in practice, the behavior of
an antenna over an AMC is a rather complex phenomenon. An AMC is a resonating surface
and the antenna is often a resonator. Thus, some interactions take place between both and
some authors study their influences.

In Reference [6], the behavior of a dipole antenna over a high impedance surface com-
posed of square patches with metallic vias (mushrooms) is studied. This surface exhibits
both AMC and EBG properties. It is found that the dipole antenna can be matched as
long as its resonance frequency ranges within the AMC bandwidth defined by a new
criterion: 90° +=45°. This observation is different from what was expected from the the-
ory mentioned in Reference [1]. This study shows that it is possible to design an efficient
narrow bandwidth antenna when its band overlaps the AMC one. But what to do when a
wide bandwidth is desired?

In Reference [10], a wide bandwidth is achieved with a simple dipole antenna over a
mushroom-based AMC. By optimizing properly the interaction between the impedances of
the dipole and its image through the AMC design, a bandwidth of 38% is obtained.

To increase the bandwidth further, different antennas should be used intuitively. Rather
than a narrowband dipole, a wideband dipole could be considered. This has been done in
Reference [11] for example. Two different structures are studied over an AMC, a diamond
antenna and an open sleeve dipole. It is shown that if antenna and AMC designs are opti-
mized together rather than separately, interesting wideband results can be obtained. A
—10dB impedance bandwidth of 67% is achieved. However, by taking into account the radi-
ation pattern, the effective bandwidth is reduced to 36% around 5.6 GHz. This band has been
defined by the authors by considering a gain greater than 6 dB. From this study, it appears
that though it is possible to achieve an impedance matching over a wide bandwidth by opti-
mizing the AMC and the antenna together, it is more difficult to achieve high gain toward
one direction over the same bandwidth. It therefore appears that using AMC for wideband
applications presents some issues regarding the radiation pattern.

These issues have been addressed in Reference [12]. Authors demonstrate that for wide-
band antennas, limited bandwidth AMCs do not necessarily avoid obtaining a wideband
operation of the antenna over the AMC. With an appropriate design of the antenna element
combined with the AMC, the return loss is independent of the reflection phase criteria. The
operational bandwidth is then limited by the degradation of the radiation pattern that may
occur at some frequencies. An example of a folded bow-tie dipole over a square-patch-based
AMC is presented. Though the impedance bandwidth of the antenna can exceed 50%, its
operational bandwidth is limited to 40% due to the drop of the gain. The main beam splits
into two side beams thereby presenting a minimum of radiation in the broadside direction.

Mechanisms involved in the radiation of AMC-based antennas have been investigated in
References [13] and [14]. By studying the behavior of a dipole antenna over an AMC com-
posed of square patches, authors identified two different kinds of resonance. One is due to
the resonance of the antenna modified by the presence of the AMC. The other one is due to
resonances of the AMC itself. These resonances can be used for broadening the antenna
bandwidth. However, the radiation pattern of these resonances strongly depends on the size
of the AMC. When the size is greater than a wavelength in the effective medium, side lobes
appear and the main beam may split into two beams. So the same beam splitting effect
observed previously in Reference [12] is described here in Reference [13].
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Wideband issues have been clearly identified in the literature. Limitations related to the
radiation of AMC-based antennas have been explained as well. However, few techniques
that could help antenna designers to improve antennas based on AMC surfaces have been
reported [15]. That is why the following sections investigate some design optimization tech-
niques to deal with these issues.

3.3 Wideband Directive Antenna Using AMC with a Lumped Element

The purpose of this section is to demonstrate how an AMC reflector enables the gain of a
wideband linear polarized antenna to be increased. The classical bowtie antenna is proposed
as the radiating element. Firstly, the features of the bowtie in free space without any AMC
reflector are described. The second part deals with the design of the AMC reflector using the
phase diagram. Then, the performances of the bowtie antenna above the AMC are presented.
In the last part, an alternative solution is proposed with the use of lumped elements to
improve the radiation pattern over a wider frequency band.

3.3.1 Bow-Tie Antenna in Free Space

The bow-tie antenna [16] is a planar version of the biconical antenna. Its bandwidth depends
significantly on the flare angle . As with any dipole, the antenna feed has to be balanced. To
increase the mechanical rigidity and thus facilitate the fabrication of a reproducible proto-
type, the proposed bow-tie is etched on a substrate with a thickness of 1.6 mm. The relative
permittivity is 3.7. There is no ground plane. The geometry of the antenna is presented in
Figure 3.5. Dimensions are d =27 mm and « = 7/2. The input impedance of the bow-tie is
close to 175 ().

Simulations have been performed with CST Microwave Studio ™ software using the time
domain transient solver. As expected, the impedance bandwidth is very large: it starts at
2.2 GHz until at least 6 GHz using the criteria |S;| < —10dB. Regarding the radiation pat-
tern, it is bidirectional along the Oz axis at the beginning of the band as shown in Figure 3.6
at 3 GHz. For higher frequencies, several side lobes appear and the broadside realized gain
decreases (see Figure 3.7). It should be remembered that the realized gain, by definition,
takes into account the reflection coefficient |S;| of the antenna.

Figure 3.5 Geometry of the bow-tie antenna.
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Figure 3.8 Unit cell geometry.

3.3.2 AMC Reflector Design

The AMC reflector is composed of metallic square patches etched on a grounded substrate.
There is no via between the patch and the ground plane, which helps to reduce the cost and
facilitate the realization. The unit cell geometry is presented in Figure 3.8.

Simulations have been performed with different values of the AMC parameters [17].
Results show that for a constant gap value, when the patch width decreases, the null reflec-
tion phase frequency increases and so does the fractional bandwidth of the AMC. Moreover,
for a constant ratio w/g, when the gap width decreases, the null reflection phase frequency
increases and also the fractional bandwidth of the AMC.

In order to design an AMC whose frequency band is included within the operational
band of the bow-tie, the following dimensions have been chosen: w =8.2 mm, g =0.4 mm,
hamc = 3.2 mm. The substrate is the same as that of the bow-tie (¢, = 3.7). The bandwidth of
this AMC is deduced from the phase diagram depicted in Figure 3.9 and goes from 3.57 to
4.67 GHz.

Figure 3.9 Phase diagram of the AMC.
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Figure 3.10 Geometry of the bow-tie above the AMC reflector: front view and side view.

3.3.3 Performances of the Bow-Tie Antenna over AMC

The bow-tie antenna is now located above the previous AMC made up with 14 x 14 unit
cells. The port impedance is now 100 €). The complete structure described in Figure 3.10 has
a total size of 120 x 120 mm? with a thickness of /1 = 4.8 mm = A/20 at 3 GHz, where A is the
wavelength in free space. In Figure 3.10, one can see four teflon screws enabling the differ-
ent layers to pile up. It has been verified that these elements do not disturb the return loss and
the radiation pattern.

The reflection coefficient (see Figure 3.11) shows that the bow-tie’s bandwidth has
been reduced. The lowest frequency is now 2.9 GHz instead of 2.2 GHz for the bow-tie
in free space. The coupling between the bow-tie and the AMC reflector leads to
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Figure 3.11 Simulated reflection coefficient of the bow-tie above the AMC reflector (normalized to
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Figure 3.12 Simulated broadside realized gain of the bow-tie above the AMC reflector.

additional resonances, which enable an acceptable value of the magnitude of S;; to be
maintained until 6 GHz.

From 3 to 4.6 GHz, the AMC reflector has significantly increased the broadside realized
gain, which is greater than 8 dB (Figure 3.12). However, for higher frequencies, the gain
strongly decreases due to the split of the radiation pattern.

This first result proves that designing the radiating element and the AMC reflector inde-
pendently enables a structure to be obtained that provides a broadside gain higher than 6 dB
over a bandwidth of 42% with a thickness of only 1/20 at the lowest frequency. In the next
section, it is demonstrated that it is possible to limit the decrease of the gain at higher
frequencies and thus to obtain a directive structure over a wider bandwidth.

3.3.4 AMC Optimization

In order to improve radiation patterns beyond 4.6 GHz, the AMC reflector is designed again
to shift the null reflection phase at higher frequencies. Thereby, new dimensions are:
wy =7.3mm, g, = 1 mm, Aispco = 3.2 mm. The operational frequency band of this optimized
AMC deduced from its phase diagram is 4.3—6 GHz. The complete antenna (bow-tie above
AMC) keeps approximately the same bandwidth and is matched from 3 to 6 GHz.

Compared to the previous antenna, the broadside gain with the optimized AMC has been
significantly improved beyond 4.6 GHz, as shown later in Figure 3.16. However, the side
lobe level remains high at higher frequencies. In fact, some important currents appear at the
edges of the ground plane, as shown in Figure 3.13 at 5 GHz.

In order to minimize the propagation of surface currents at higher frequencies and thus to
reduce the side lobe level, SMD resistors (100 ()) are connected between patches at the edges
of the AMC reflector. This technique has already been used in Reference [18] but SMD resis-
tors were soldered to all patches, making the AMC surface behave like a wideband absorber.
In this case, the position and the number of resistors have been optimized in order to both
keep the radiation behavior in the broadside direction and also limit the side lobe level.



62 Microwave and Millimeter Wave Circuits and Systems

Figure 3.13 Current distribution on the AMC plane (XY) at 5 GHz: magnitude of J, (in A/m).

A prototype of this structure has been realized and measured (Figure 3.14). The proto-
type is fed by a taper balun designed to transform a 100 () balanced line to a 50 ()
unbalanced line [19].

Figure 3.15 presents the simulated and measured reflection coefficient of the bow-tie
above the optimized AMC reflector with SMD resistors. It should be pointed out that adding
SMD resistors does not change the return loss of the structure composed of the bow-tie above
the optimized AMC. The difference between simulation and measurement can be explained
by the fact that the balun has not been taken into account in the simulation in order not to
increase the computation time.

Figure 3.16 presents the broadside gain from 3 to 6 GHz for three structures: the bow-tie
above the AMC reflector previously designed and the bow-tie above the optimized AMC
with and without the SMD resistors. We observe that the optimized AMC enables the gain to
stay more stable over the band. The drop in the gain at 3 GHz was expected due to the fact
that this frequency is out of the operational band of the new AMC, but it stays at an accept-
able value (2 dB). The optimized AMC has significantly improved the gain beyond 4.6 GHz
especially at 5.2 GHz, which corresponds to the null reflection phase of the AMC. It can also
be noticed that SMD resistors contribute to increase the gain of 4 dB at the end of the band
and thus to improve the stability of the gain over the band.

The effect of SMD resistors on surface currents is shown in Figure 3.17. Compared to
Figure 3.13, one can see that currents at the edges of the AMC reflector have been reduced.

Figure 3.18 compares the realized gain in the E-plane (ZX plane) and in the H-plane
(ZY plane) of the antenna with the optimized AMC with and without resistors at 5.8 GHz. It
can be noticed that, in both planes, side lobe levels are largely reduced thanks to resistors
while the broadside gain increases. Moreover, Figure 3.18 presents a comparison between
simulation and measurement, which demonstrates the validity of the proposed method.
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Figure 3.14 Prototype of the bow-tie above the optimized AMC with SMD resistors.
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Figure 3.15 Reflection coefficient of the bow-tie above the optimized AMC reflector with SMD resistors.
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Figure 3.16 Broadside realized gain of the bow-tie above the optimized AMC reflector.

3.4 Wideband Directive Antenna Using a Hybrid AMC

The complex problem to achieve a wideband operation with an antenna over an artificial
magnetic conductor has been addressed in Section 3.2. In particular, obtaining a high gain
over a broadband is a challenge because of the beam splitting phenomenon occurring at
certain frequencies. A method based on the phase diagram observation has been presented in
the previous section in order to increase the bandwidth along which the antenna maintains a
main beam in the broadside direction. In this section, an alternative procedure is given.

Figure 3.17 Current distribution in the AMC plane with resistors (XY) at 5 GHz: magnitude of
J. (in A/m).



‘Wideband Directive Antennas 65

o simulation without resistor
simulation with resistors

— measurement with resistors

Figure 3.18 Realized gain (dB) of the bow-tie over the optimized AMC at 5.8 GHz: (a) E-plane and
(b) H-plane.

A method based on the current’s interpretation is applied to explain the radiation behavior of
an AMC-based antenna and to identify the structure’s areas contributing to the beam split-
ting. This approach is helpful in order to find a solution to cancel this unwanted effect.
Consequently, a modified AMC is proposed that is able to maintain a formed radiation
pattern over a wide frequency bandwidth.

3.4.1 Performances of a Diamond Dipole Antenna over the AMC
3.4.1.1 Diamond Dipole Antenna in Free Space

This section starts with analyzing a diamond dipole antenna alone, as presented in
Figure 3.19. This antenna has already been used above for the periodical AMC in Refer-
ence [11] and difficulties to achieve a wideband operation have already been addressed. The
diamond dipole structure is printed on a Teflon substrate of thickness /4 = 0.8 mm, relative
permittivity &, = 2.2 and losses tan 8 =0.0009, and has the following dimensions according
to Figure 3.19: a=1.5mm, h =3 mm, s = 0.5 mm and /=8 mm.

The structure is simulated with an input port impedance of 50 () by using the CST
Microwave Studio. A relative bandwidth A; of 28% (defined for |S;;| < —10dB) is
obtained at about 5 GHz (from 4.5 to 5.7 GHz). The realized gain in the broadside direc-
tion is shown in Figure 3.20, where the antenna bandwidth A; is also indicated. It ranges
between 1.1 and 1.6 dB over the whole bandwidth. The radiation pattern at 5 GHz in the
E-plane is given in Figure 3.21. As expected, the antenna exhibits a typical dipole pattern
which is quite stable over the bandwidth. The polarization is linear along the x axis
(according to Figure 3.19). These results are taken as references for the next section
where the classical AMC is introduced.
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Figure 3.19 Diamond dipole antenna geometry.

3.4.1.2 Diamond Dipole Antenna with a Classical AMC

Once the reference antenna has been characterized, the AMC might be designed.
The pattern chosen is the same as in the previous section, the square patch without via.
The geometry of the AMC is shown in Figure 3.8. Its dimensions are found by simulat-
ing a unit cell using PEC/PMC boundary conditions in order to generate a TEM incident
wave. The design is done in such a way that the resonance occurs at the antenna
operating frequency, for example 5GHz. So the dimensions are found to be:
w=74mm, g = 1mm, 7 =3.2mm withg, = 4.1, tan § = 0.0009, where w is the width
of the square patch, g is the gap width, £ is the substrate height, ¢, is the relative permit-
tivity of the substrate and tan § its losses. The simulated reflection phase is null at 5 GHz

Figure 3.20 Realized gain of the simulated diamond dipole antenna (A¢ is the antenna bandwidth
defined for |S;;| < —10dB).
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Figure 3.21 Radiation pattern of the simulated diamond dipole antenna at 5 GHz in the E-plane
(XZ plane).

and the constructive bandwidth defined by the +90° criteria ranges from 4.24 GHz up to
5.84 GHz (32%). Consequently, it completely overlaps the diamond dipole antenna band-
width previously designed. Theoretically, and by neglecting the coupling between the
square patches and the antenna, the AMC should reflect the electric field in phase with
the electric field radiated by the diamond dipole. Thus, constructive interferences should
occur over the whole antenna bandwidth.

The diamond dipole antenna is located above the AMC as presented in Figure 3.22.
A distance h,;,, =2 mm is observed between the antenna’s substrate and the AMC. So the
antenna’s overall thickness is 6 mm (1y/10 at 5 GHz). This distance, /,;,, has been obtained
by optimization in order to improve the impedance matching.

The whole structure is simulated with AMC of four different sizes. All the surfaces ana-
lyzed are square. The number of patches constituting each of them ranges from 6 x 6 up to
12 x 12. The input impedance of the antenna is now 75 €}, which provides better perform-
ances in terms of impedance matching when the AMC is located below the dipole. Results
in terms of the reflection coefficient are compared in Figure 3.23. The case without AMC is
also shown as a reference. The achieved —10 dB bandwidths of the different examples are
summarized in Table 3.1. While the bandwidth of the antenna alone is 28%, the bandwidth
of AMC-based antennas goes up to 51% for the surface with 12 x 12 square patches. As
mentioned in Section 3.2, using AMC with a resonating antenna can lead to an enhancement
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Table 3.1 Frequency bandwidths achieved with different sizes of the AMC

Lower frequency Higher frequency Bandwidth Bandwidth
Antenna alone 4.50 GHz 5.90 GHz 1.40 GHz 28%
AMC 6 x 6 4.35GHz 6.65 GHz 2.30GHz 42%
AMC 8 x 8 4.35GHz 7.15GHz 2.80 GHz 49%
AMC 10 x 10 4.45GHz 7.15GHz 2.70 GHz 47%
AMC 12 x 12 4.40 GHz 7.40 GHz 3GHz 51%

Figure 3.22 Geometry of the AMC-based diamond dipole antenna (w, =7.4 mm, g = 1 mm).

of the frequency bandwidth. The lower frequency of the bandwidth remains nearly constant
at 4.4 GHz for any AMC size, whereas the upper frequency becomes higher as the AMC size
increases (except between the 8 x 8 and 10 x 10 AMC). When observing reflection coeffi-
cients in Figure 3.23, we notice that when the number of square patches increases, more
resonances appear in the upper frequency band. Thanks to those, using a greater number of
patches can lead to an enhanced bandwidth (under proper impedance matching conditions).
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Figure 3.23 Simulated reflection coefficient of the antenna with and without the AMC.
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Figure 3.24 Broadside realized gain of the 8 x 8 AMC-based antenna.

Regarding the obtained frequency bandwidths with respect to AMC sizes, the antenna
with the 8 x 8 AMC is now considered. The surface of the AMC is 67.2 mm? or (l.lkoz) at
5 GHz. The realized gain provided by this solution is shown in Figure 3.24 over the whole
antenna bandwidth, that is, from 4.35 to 7.15 GHz. The gain goes up to 7.4 dB at 4.6 GHz.
However, it decreases drastically down to —10dB at 5.8 GHz. To understand this behavior,
the radiation pattern at 5.8 GHz in the E-plane is drawn in Figure 3.25. The reason for
the gain drop appears clearly: the radiation pattern splits into two main beams, thereby
exhibiting a null of radiation in the broadside direction. Therefore avoiding this effect is
compulsory in order to achieve a high gain over a wide band. Thus, in the next section, a
method to analyze the origin of the beam splitting is presented.

3.4.2 Beam Splitting Identification and Cancellation Method

The behavior of the antenna is studied by analyzing its surface current. In fact, it is well
known that a surface on which a uniform current is circulating exhibits a directive radiation
pattern with a main beam in the direction normal to the surface (broadside direction). Fur-
thermore, the larger the surface, the greater the directivity. However, when the surface
becomes large compared to the wavelength, the current distribution may be not uniform and
the current phase may range between 0° and 360°, thereby inducing some opposite phase
current. Consequently, destructive interference may occur with null directions in the radia-
tion pattern. This effect is particularly undesirable when the null is in the broadside direction.

To understand if this effect happens, the surface current of the 8 x 8§ AMC-based antenna
previously designed is observed. The current is considered in the AMC plane, where it is
mainly concentrated and spread over the larger surface (compare to the antenna where the
current is highly localized). The surface current J lying in the XY plane is determined from
the magnetic field H with the boundary condition on the patch’s metallic surface:

Js:_Hy'jC+Hx')A’
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Figure 3.25 Radiation pattern of the 8 x 8 AMC-based antenna at 5.8 GHz in the E-plane (peak gain
of 6.5 dBi).

Furthermore, as the antenna is linearly polarized along the x axis, only the current directly
contributing to this polarization is considered. Thus the expression is reduced to

jx: _Hy')AC

The surface current J, responsible for the main component of the radiation pattern is
directly related to the y component of the magnetic field. The magnitude and the phase of J,
are plotted in Figure 3.26(a) and (b) respectively, at 5.8 GHz, the frequency at which a null
appears in the broadside direction. From Figure 3.26(a), we can observe that the current is
not uniformly spread. The maximum concentration of current is close to the antenna. Some
other minor maxima can be distinguished as well. However, this nonuniform current distri-
bution does not lead necessarily to a radiation pattern with null directions. It also depends on
the phase of the current. This phase is depicted in Figure 3.26(b). We can see that the phase
ranges between 0 and 360°. Thus, in some areas, the current is in opposite phase, thereby
inducing some destructive interference. Because of this effect, at the frequency of 5.8 GHz,
the main beam is split in the broadside direction. To identify clearly which parts of the
surface are responsible for the beam splitting, a methodology is developed.
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Figure 3.26 Current distribution of the 8 x 8 AMC-based antenna in the AMC plane (XY) at 5.8 GHz:
(a) magnitude of J, (in A/m) and (b) phase of J, (in degrees).

1. Strongest current identification. The area where the current is the strongest is consid-
ered as the reference area. To define this reference, a threshold empirically chosen at half
the current maximum value is taken. For this case, the maximum value of the current
amplitude |J,| is 4.8 A/m. Therefore, any area along which the circulating current is
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Figure 3.27 Distribution of the strongest current J, of the 8§ x 8 AMC-based antenna in the AMC
plane (XY) at 5.8 GHz: (a) magnitude of J, (in A/m) and (b) phase of J, (in degrees).

greater 2.4 A/m is part of the reference area. This reference area is shown in Figure 3.27
(a), where the current amplitude ranges between 2.4 and 4.8 A/m. One can see that this
area lies in the proximity of the dipole antenna.

2. Destructive phase interval determination. While considering the current J, only in the
reference area, the phase is plotted in Figure 3.27(b). As can be observed, the phase
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ranges between 202° and 326°. By assuming that constructive interferences occur when
currents are in phase £90°, the phase range is extended from 112° to 416° (416° =56°
for phase wrapped between 0° and 360°). Consequently, a ‘destructive interval’ is defined
between 56° and 112°. This means that wherever the current has a phase ranging between
56° and 112° on the AMC surface, this current contributes to destructive interference in
the broadside direction and so to the beam splitting effect.

3. Destructive current identification. The phase of the current lying in the ‘destructive
interval’ is plotted in Figure 3.28(a). Parts of the surface that are responsible for the beam
splitting are now clearly identified. To further refine the localization of this area, it is
weighted by the amplitude of the current. This is done by considering the current only
wherever it is greater than a given threshold, here chosen empirically at a quarter of the
maximum value. By doing so, it is assumed that the current whose phase lies in the
destructive interval has an effect somehow proportional to its amplitude. In other words,
the ‘destructive current’ having high amplitude contributes more to the beam splitting
than the ‘destructive current’ having low amplitude. This final identification leads to the
current phase shown in Figure 3.28(b). One can see that the current that mainly contrib-
utes to the beam splitting is localized in the middle of the AMCs edges along the x axis.
By modifying the AMC structure in these areas, it may therefore be possible to change the
current distribution and consequently avoid its phase ranging in the ‘destructive interval’.
This perspective is studied in the next section.

3.4.3 Performances with the Hybrid AMC

Since the problematic current responsible for the beam splitting is mainly localized on the
last rows of patches along the x axis (one for positive y and one for negative y), it is natural
to try to modify the geometry of these last rows. The first idea is to remove them completely
in order to obtain a 6 x 8 AMC-based antenna. Thus, since the last rows are removed, no
current can propagate along them. This could suppress the beam splitting effect at 5.8 GHz.
However, while doing so, the size of the whole system is reduced and one can expect that
the directivity decreases as well. Another idea is to short-circuit the patches of these last
rows by filling the gap between them with metal in order to cancel their resonance. Thus the
last rows are no longer composed of square patches but are a metallic surface as presented in
Figure 3.29. With this modification, the phase of the circulating current along the x-oriented
AMC edges is affected. Theoretically, since resonating patches act as a perfect magnetic
conductor (PMC), replacing those with a perfect electric conductor (PEC) should introduce
a 180° phase shift. Consequently, one can expect to suppress the beam splitting effect. Since
both PEC and PMC surfaces are composing the surface, the solution is referred as a hybrid
AMC-based antenna.

Such a solution has been simulated and results in terms of the reflection coefficient are
shown in Figure 3.30 along with those of the antenna alone and the antenna with the
classical 8 x 8 AMC. Though the shapes of the curves between antennas with the classi-
cal AMC and with the hybrid AMC are not similar, the —10dB frequency bandwidths
are identical. Therefore the proposed solution also has a wide bandwidth, A;=49%,
ranging from 4.35 to 7.15 GHz.

Realized gains are compared in Figure 3.31 between the solutions based on the hybrid
AMC, the classical AMC, and the diamond dipole alone. The realized gain obtained with the
proposed hybrid solution is greater than the one obtained with the diamond dipole alone over
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Figure 3.28 Phase of the problematic current J, of the 8 x 8 AMC-based antenna in the AMC plane
(XY) at 5.8 GHz: (a) full problematic current and (b) strongest problematic current (both in degrees).

the whole frequency bandwidth. It goes up to 9dB at 5 GHz while with the diamond dipole
alone it goes up to 1.6 dB at the same frequency. Furthermore, it does not decrease drastically
like the classical AMC-based solution and remains greater than 5 dB along the frequency
bandwidth except in the upper part, from 6.8 to 7.15 GHz, where it goes down to 0.6 dB. It
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Figure 3.29 Hybrid AMC-based diamond dipole antenna (patches on the y edges are connected with
each other in order to form a perfect metallic surface).

can also be noticed that except in this upper part of the band, the realized gain achieved with
the hybrid AMC is always greater than the one achieved with the classical 8 x 8 AMC while
both solutions have the same surface size.

To illustrate what happens at 5.8 GHz with the hybrid solution, the radiation pattern is
shown in Figure 3.32. The main beam of the antenna no longer splits in the broadside
direction and has a peak gain of 6.3 dBi. Thanks to the AMC modifications, the surface
current might be more uniformly distributed than with the classical AMC. In order to
prove this assumption, the magnitude and the phase of the surface current along the
hybrid AMC is plotted in Figure 3.33(a) and (b) respectively. These figures are to be
compared with Figure 3.26(a) and (b) from the classical AMC case. From Figures 3.26(a)
and 3.33(a), it can be seen that the distribution of the current is more concentrated in
the center of the AMC with the hybrid solution than with the classical one. However,

Figure 3.30 Reflection coefficient of the hybrid AMC-based antenna compared to the classical
solutions.
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Figure 3.31 Realized gain of the hybrid AMC-based antenna compared to the classical solutions.
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Figure 3.32 Radiation pattern of the co-polarization radiated by the hybrid AMC-based antenna at
5.8 GHz in the E-plane (peak realized gain of 6.3 dBi).



‘Wideband Directive Antennas 77

Figure 3.33 Current distribution of the hybrid AMC-based antenna in the AMC plane (XY) at
5.8 GHz: (a) magnitude of J,. (in A/m) and (b) phase of J, (in degrees).

from the phase shown in Figure 3.33(b), it is difficult to determine qualitatively if this
distribution is more suitable to obtain a main beam toward the broadside direction than
the one of the classical AMC shown in Figure 3.26(b). In fact, the phase is also distrib-
uted over the entire 360° range. In order to give more insight into the hybrid solution’s
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behavior, the same problematic current identification method used in the previous
section is applied.

Firstly, regions where the hybrid AMC current is the strongest are identified by keeping
the same threshold than earlier at half its maximum magnitude value. Secondly, in these
regions, the phase of the current is plotted and can be seen in Figure 3.34(a) (this figure is to
be compared with Figure 3.27b). The plotted phase ranges between 161° and 322°. By
considering constructive interferences occurring when currents are in phase £90° and by
wrapping the phase between 0° and 360°, a ‘destructive interval’ is defined between 52° and
72°. Thirdly, the phase of the current lying in this ‘destructive interval’ is plotted and is
shown in Figure 3.34(b) (this figure is to be compared with Figure 3.28a). One easily notices
that not much current is included in the ‘destructive interval’. Furthermore, if the current is
considered only where its amplitude is above a given threshold, such as a quarter of its
amplitude maximum, as has been done earlier between Figure 3.28(a) and (b), nothing would
be displayed. This means that the current whose phase lies in the destructive interval does not
contribute much to the radiation because of its relatively low amplitude.

Consequently, by applying the same identification method as previously with the same
relative thresholds, with the classical AMC some problematic current areas have been identi-
fied as responsible for the beam splitting while with the hybrid AMC no problematic area has
been found. Thus, this explains why no beam splitting is observed with the proposed hybrid
solution. The observation of the current appears to be a good tool to use in order to under-
stand the radiation behavior of an AMC-based antenna at particular frequencies within a
given bandwidth. From an understanding of this behavior, some possible solutions can be
found by the antenna’s designers.

3.5 Conclusion

In this chapter, high impedance surfaces (HISs) are used to improve wideband antenna per-
formances. In particular, the artificial magnetic conductor (AMC) behavior is utilized in
order to achieve a reflector that can be located very close to antennas, thereby leading to low
profiles. AMCs are inherently narrow band. However, it has been shown that the bandwidth
of AMC-based antennas can exceed the AMC bandwidth alone in terms of impedance
matching. Nevertheless, some issues regarding the radiation pattern are reported. In particu-
lar, maintaining a high gain value toward a given direction over a wide frequency range is a
difficult task. Regarding this problem, this chapter presented two different approaches.

The first approach highlighted the fact that designing the antenna and the AMC separately
does not lead to optimal performances and that adjustment in AMC designs is necessary. A
methodology has been presented for that purpose and has been used to design a wideband
AMC-based bow-tie antenna. Though a wide bandwidth has been obtained in terms of
impedance matching, the frequency range over which the gain level is high is narrower. As a
consequence, it reduces the operational antenna bandwidth. Therefore a method based on
side lobe reduction using lumped resistors has been proposed. With this method, the gain has
been successfully kept at a higher level over a wider bandwidth.

The second approach has been illustrated using a diamond dipole antenna. Unwanted radi-
ation behaviors over the frequency range have been efficiently suppressed by modifying the
AMC pattern. A method to identify the problematic current circulating over the AMC has
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Figure 3.34 Phase distribution in degrees of the current J, in the AMC plane (XY) at 5.8 GHz plotted
(a) where the current J, has the highest amplitude and (b) where the current is problematic (i.e., where
the phase lies in the destructive interval, thereby leading to destructive interferences and so to beam
splitting).
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been developed. Then, from this identification, the AMC surface has been modified in order
to cancel problematic currents. Thus, a hybrid AMC has been developed that makes the
antenna radiating with a high gain over its entire impedance bandwidth.

Some solutions to overcome, to some extent, limitations regarding the achievability of a
wide bandwidth with an AMC-based antenna have been detailed in this chapter. By increas-
ing antenna impedance bandwidths, the AMC offers a great potential in designing wideband
radiating structures, but only as long as the radiation is well controlled.
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4.1 Introduction

Software-defined radios (SDRs) [1] are now being accepted as the most probable solution for
resolving the need for integration between actual and future wireless communication stan-
dards. SDRs take advantage of the processing power of modern digital processor technology
to replicate the behavior of a radio circuit. Such a solution allows inexpensive, efficient inter-
operability between the available standards and frequency bands, because these devices can
be improved, updated and their operation changed by a simple change in software
algorithms.

The ultimate goal for an SDR architecture is to push the digitization closest to the antenna
as much as possible, thus providing an increased adaptation and reconfigurability in the
digital domain by the use of current digital signal processors (DSP, FPGA, etc.) capable of
treating the incoming signals correctly. A common implementation for the SDR concept as
proposed in Reference [1] is shown in Figure 4.1.

This SDR concept is also the basis for cognitive radio (CR) approaches [3] in which the
underneath concept imposes strong changes in terms of both complexity and flexibility of
operation due to its potential adaptation to the air interface. A promising application for this
CR technology is to implement a clever management of spectrum occupancy by the use of
opportunistic radios, where the radio will adapt and employ spectrum strategies in order to
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Figure 4.1 Typical implementation for an ideal software-defined radio [1]. © 2010 IEEE. Reprinted,
with permission, from [2].

take profit from portions of spectra that are not being used by other radio systems at a given
moment.

In that sense, these new developments will impose huge impairments in the design of radio
receivers and characterization techniques that will allow the behavior of the radio receiver to
be represented in order to minimize interferences and nonidealities and thus to increase the
dynamic range, bandwidth, and so on. Moreover, this chapter provides a good foundation for
supporting RF engineers in the overall receiver design to achieve better radio solutions.

This chapter will start first by presenting the most used receiver strategies for radio com-
munications and concentrate on the usability for SDR/CR systems. Afterwards, the chapter
will focus on techniques for modeling and characterization of SDR receivers, where the pro-
posed behavioral model format allows the identification of different memory taps depending
on the observed nonlinear mechanisms for a correct understanding of such wireless systems.
Then, a specific practical application of the proposed behavioral model will be presented,
when considering a band-pass sampling receiver with a quadrature-phase shift keying
(QPSK) modulated wireless signal.

4.2 Multiband Multimode Receiver Architectures

For SDR/CR applications several receiver architectures may be used, ranging from common
super-heterodyne, zero-IF, and low-IF designs to band-pass sampling approaches, but also
recent proposals of six-port interferometers and direct RF sampling with analog decimation.
All these are valid and practical receiving architectures, but some are gaining visibility over
the others mainly because of the actual advancements in ADC/DAC technology and the
enormous increase in the capabilities of digital signal processors.

The basic review that is done here is mostly based on References [2], [4], and [5]. Starting
with the well-known super-heterodyne receiver (Figure 4.2), where the received signal at
the antenna is translated to an intermediate frequency (IF) using a down conversion mixer,
band-pass filtered and amplified. This is followed by a second stage for down conversion to
baseband based on an I/Q demodulator and then converted to the digital domain to be
treated. This architecture is now adopted mostly for higher-RF and millimeter-wave
frequency designs [6, 7], for instance in point-to-point microwave links or short radar com-
munications. However, super-heterodyne receivers have a considerable number of problems
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Figure 4.2 A super-heterodyne receiver architecture. © 2010 IEEE. Reprinted, with permission, from [2].

regarding their use in SDR/CR applications, the most relevant being the mandatory use of an
image-reject filter in front of the mixer and the filter construction for a specific channel.
Therefore, the super-heterodyne configuration is not attractive for use in SDR/CR receivers
due to its complicated expansion for multicarrier multiband receivers.

The second approach is the zero-IF receiver [8, 9] (see Figure 4.3), which eliminates the IF
stage of the previous super-heterodyne architecture, down converting the desired RF band
directly to baseband. The received signal is selected at RF by a band-pass filter (BPF)
and amplified by a low-noise amplifier (LNA), being afterwards directly down converted to
DC by an I/Q demodulator and finally converted to the digital domain using an ADC. A
substantial reduction in the number of analog components compared to a super-heterodyne
architecture is evident. Moreover, in this architecture, a high level of integration is guaran-
teed thanks to its simplicity and relaxed specification requirements for the RF band-pass
filter. These advantages make it a common architecture for multiband receivers such as the

Figure 4.3 A zero-IF architecture. © 2010 IEEE. Reprinted, with permission, from [2].
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one described in Reference [9] and for complete transceiver architectures as in References
[10] and [11]. Despite its simplicity and higher integration, many components of the zero-IF
receiver are more complex to design. Additionally, the direct translation to DC raises several
problems such as DC offset [12], local oscillator (LO) leakage, I/Q impairments, second-
order intermodulation products (that are generated around DC), and large flicker noise of the
mixer [13], which can easily corrupt the received baseband signal. Some techniques to mini-
mize these problems associated with its advantages and integration currently make this the
most used configuration in radio receivers.

A similar configuration to the previous one is the low-IF receiver [14], wherein the incom-
ing RF signal is down converted to a nonzero IF frequency instead of going directly to DC.
This can be achieved by a complex RF down conversion (quadrature I/Q approach) or by a
real RF down mixing. This architecture combines the advantages from zero-IF and super-
heterodyne receivers. After a few filtering and amplification steps as in the previous
approaches, the signal is converted to the digital domain by using relatively robust ADCs,
which increase total power consumption because of the required higher conversion rate.
Moreover, in this solution an image suppression block at the digital domain is commonly
employed to cancel undesired effects from the image frequency problem now reintroduced.
Again, a high level of integration is possible and the use of digital signal processing is
allowed to execute the reception of several contiguous channels.

Another feasible alternative is the band-pass sampling receiver (BPSR) [15, 16] shown in
Figure 4.4. The incoming signal is filtered by an RF band-pass filter that can be a tunable
filter or a bank of filters, and subsequently amplified by a wideband LNA. Afterwards, the
signal is sampled and converted to the digital domain by a high sampling rate ADC and
digitally processed. The underlying idea is that energy from DC to the input analog band-
width of the sampling circuit present in the ADC is folded back to the first Nyquist zone
(NZ) [0, fs/2] because of the inherent sampling properties. It is essential to emphasize the
importance of RF band-pass signal filtering because it must reduce all signal energy

Figure 4.4 A band-pass sampling receiver. © 2010 IEEE. Reprinted, with permission, from [2].
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(essentially noise) outside the desired NZ that would otherwise be aliased and thus degrade
the attainable signal-to-noise ratio (SNR). Moreover, this filtering procedure has to separate
the signals present in each NZ in order to avoid overlap of signals at the output. One
advantage is that the needed sampling frequency and associated processing rate are propor-
tional to the information bandwidth, rather than to the carrier frequency. However, a few
critical requirements exist such as the fact that the analog input bandwidth of the sampling
circuit must include the RF carrier band and the clock jitter dependence, which can be seri-
ous problems with modern ADCs.

A different possibility includes a quite old technique known as the six-port interferometer
(SPI), which is being evaluated to become a practical architecture for SDR/CR receivers
[17]. In the past this technique was mainly used for instrumentation and measurement appli-
cations [18-20]. Nevertheless, quite recent works demonstrate the use of an SPI radio
receiver with some modifications to operate at millimeter-wave frequencies for QPSK and
binary phase-shift keying (BPSK) modulated signals [21]. An SPI demodulator eliminates
the use of down converting mixers and obtains directly the baseband information with a
decoder (by means of a new phase spectrum demodulation scheme) from the four interfer-
ometer output signals. On the other hand, the support of quadrature amplitude-modulated
(QAM) signals by the SPI radio are the object of ongoing research and development efforts.
The possible operation of the SPI radio at very high transmission rates (large bandwidths) by
using mostly passive devices and its low-cost implementation can be confirming factors for
these SPI radio approaches.

Finally, other architectures proposed for SDR/CR receiver applications involve the utiliza-
tion of direct RF sampling techniques with discrete-time analog signal processing and deci-
mation to allow the signal to be received properly, such as the ones developed in References
[22] and [23]. These designs are still in a very immature stage but should be further studied
due to their potential efficiency in implementing reconfigurable receivers.

4.3 Wideband Nonlinear Behavioral Modeling

From the previously discussed architectures one of the most promising for SDR/CR applica-
tions is the BPSR design because of its approximation to the initial idea from Mitola [1]. In
order to use such an approach in real SDR/CR configurations, a correct characterization of
the front-end should be performed as a way to construct digital equalizers that could increase
the receiving signal quality and, thus, maximize dynamic range, bandwidth, and so on.
Moreover, the simulation of such a huge and complex architecture (an entire BPSR) is quite
computer intensive, mainly when the objective is to simulate RF signals modulated with high
bandwidth excitations.

In that way, the main motivation of this section is to give a brief overview of the BPSR
architecture operation and then propose a suitable wideband behavioral model, accompanied
by the respective parameter extraction procedure, to cover RF/IF and baseband
frequency responses as presented in Reference [24], within the first and over several
different NZs.

4.3.1 Details of the BPSR Architecture

This section aims to provide a more profound detail about the account of the BPSR opera-
tion. This architecture has its key element in the ADC component (commonly in a pipeline
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structure) that contains a sample-and-hold circuit, which in theory will down convert the
incoming signals as a mixer module, followed by the quantizing scheme based on a pipeline
approach [25]. As mentioned above, the BPSR design is an approach that permits all of the
energy from DC to the input analog bandwidth of the ADC to be folded back to the first NZ.
This process occurs without any mixing down conversion because a sampling circuit is
somehow replacing the mixer module. Actually, this is one of the most interesting compo-
nents of this architecture, because it allows an RF signal of higher frequency to be sampled
by a much lower clock frequency.

The basic concept is depicted in Figure 4.5, in which it is observed that all the input sig-
nals present in the allowable bandwidth of the sampling circuit are folded back to the first NZ
(Figure 4.5, bottom). Furthermore, the signals are down converted and fall over each other if
no filtering has been used previously. This folding process occurs for all the available signals
at the input of the circuit as well as for any nonlinearity that may have been generated previ-
ously (e.g., in the LNA or even in the specific sampling circuit). In addition, based on some
relationships [15], it is possible to predict the resulting IF folded frequencies, ff,;4 using the

Figure 4.5 Process of folding that occurs in the sample-and-hold circuit: (top) entire input spectrum
bandwidth and (bottom) output from the circuit with all the signals folded back and overlapped in the
first NZ. © 2011 IEEE. Reprinted, with permission, from [24].
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following formulation:

: [ fc ) . even, fiuq =rem(f¢,fs)
if fix <q> 18 { odd, f;oij =fg— rgm(s}”c,fs) (4.1)

where f¢ is the carrier frequency, fs is the sampling frequency, fix(a) is the truncated portion
of argument a and rem(a,b) is the remainder after division of a by b.

In order to better understand the operation of the explained BPSR in different NZs let us
assume that the BPSR, as shown in Figure 4.4, is sampled by a clock of 100 MHz and excited
first by a signal excitation present in the first NZ (e.g., 14 MHz) and then excited by a signal
excitation situated in the second NZ (e.g., 78 MHz). For instance, if we consider a system
that generates three harmonics, for the first excitation frequency and taking into account the
frequency folding phenomena, the fundamental and respective harmonics will fall within the
first NZ. However, the same will not happen for the second excitation frequency, where the
baseband will fall on the first NZ, the fundamental and second harmonic will fall in the sec-
ond and fourth NZs, respectively, and are folded back in the reversed way, obtained with
Equation (4.1). Regarding the third harmonic, it will fall in the fifth NZ and is folded back in
the normal mode.

In that sense, any model that may be used to describe the behavior of such architecture
should have in mind that the operation over a huge bandwidth has to be covered and accom-
panied by different dynamic effects, which can be represented by different memory taps in
the nonlinear model.

4.3.2 Proposed Wideband Behavioral Model

As was seen in the last section, to represent the BPSR nonlinear behavior effectively requires
that the produced behavioral model should be wideband and take into account the NZ when
the signal is sampled. In addition, several spectral components may appear in the first NZ
case of the low-frequency baseband nonlinearities (defined by an even-order nonlinear prod-
uct), with high-frequency components also possibly appearing at higher NZs where they are
folded back to the resultant ADC bandwidth. This will impose conditions where the dynamic
response of the BPSR will have time constants of highly different orders, with some at the
RF time frame and others inside the baseband time frame.

In that sense, an appropriate behavioral model that produces the required mathematical
description for describing the nonlinear behavior of the BPSR could be supported on the
Volterra series theory [26], due to its good performance in this type of mildly nonlinear sce-
narios. The Volterra series conditions represent a combination of linear convolution and non-
linear power series providing a general structure to model nonlinear systems with memory.
As such, it can be used to describe the relationship between the input and output of the
considered BPSR, which may present a nonlinear behavior having memory effects. This
relationship can be written as

y(t) = Z/ . / ha(tiy .oy To)Xin(t — 1) - X (2 — T)dTy - - - d1y (4.2)
n=0 v — —00
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where x;,(f) and y(¢) are the input and output signal waveforms, respectively, and 4,,(7y, . . . ,T,)
is the nth-order Volterra kernel.

The applicability of such an RF time-domain Volterra series model to account with all
these nonlinearities at once is complex because of the complicated model structure, which
leads to an exponential increase in the number of coefficients for higher degrees of nonli-
nearities and memory lengths. Furthermore, the overall system description can behave
very differently because, for instance, the even-order coefficients can generate signals at very
high frequencies (such as in the case of the second harmonic) and at baseband frequencies
near DC.

In that sense, the Volterra approach as presented in Equation (4.2) is not optimum for this
situation since it uses the same descriptor for the second harmonic as for the baseband
responses and thus does not provide the required flexibility. In fact, this problem was
observed in the work presented in Reference [27], where a good approximation was achieved
at higher frequencies but it had some problems at lower frequencies and vice versa.

To overcome this issue the Volterra series model can be applied in a low-pass equiv-
alent format [28], in which a selection of each nonlinear cluster (baseband, fundamen-
tal, second harmonic, etc.) is firstly made and its particular complex envelope is then
digitally obtained. As a result, the Volterra low-pass equivalent behavioral model is
applied individually to each complex envelope cluster, taking into consideration the
nonlinearity that has originated it. Actually, it can be seen as a model extraction based
on the envelope harmonic balance method, where each cluster is addressed individually
[29]. This low-pass equivalent conversion is exemplified in Figure 4.6, which considers
a third-order degree nonlinear scenario.

As illustrated in Figure 4.7, the resulting model will be a collection of different sub-mod-
els obtained and extracted individually for each nonlinear cluster. Generally, this begins with
the application of different Volterra operators in the extracted complex envelopes, followed
by an up conversion of each cluster to the correct carrier frequency and finally summed
together to create the resulting model output. In this way, the input of the proposed model
will be the complex envelope of the desired excitation signal, which will then produce a real
waveform representing the output of the nonlinear component/system.

Thus, as an example, the baseband and second harmonic arise from a second-order multi-
plication and are represented in this circumstance as

- QA] QA2 -
pp(k) = ho+ > Y hass(gy,42)X(k — q,)%" (k — q,) (4.3)

¢1=0 42=q,

Oct Q2
Yattarm (k) = Z Z o parm Gy, 42)%(k — g,)X(k — ¢,) (4.4)

41=0 ¢:=q,

where £ is the DC value of the output, /i, gg and /5 55,4, are the second-order Volterra
kernels for the baseband and second harmonic responses, respectively. The character ~
refers to a complex signal or value and the symbol * means the complex conjugate.

For the proposed modeling strategy it can be noted that different memory lengths are used
on the baseband and second harmonic components (represented in Equations (4.3) and (4.4)
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Figure 4.6 Diagram of the low-pass equivalent conversion of each cluster. © 2011 IEEE. Reprinted,
with permission, from [24].

Figure 4.7 Proposed design for the wideband behavioral model. © 2011 IEEE. Reprinted, with
permission, from [24].
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by Qa1/Q4> and Qc1/Qc¢»), which provides an augmented flexibility to these models. As
regards the fundamental signal and associated intermodulation distortion, these arise from a
first-order function combined with a third-order nonlinear product:

Opi
Frwak) =Y hruna(q)X(k = qy)
¢,=0
O Op Op (45)
+ZZ ZhSFund q17q27q3) (k_ql) (k qZ) (k ‘I’%)
=00,=419:=4>
In the same line, the third harmonic arises uniquely from a third-order degree polynomial:
Opi Op  Ops
V3tarm (K Z Z Z h33tam (41, 425 43) X (k — q1)%(k — q;)X(k — gq3) (4.6)
=04=41 3¢,

Moreover, when higher orders are requested more Volterra kernels should be determined.
When extracting the kernels for each nonlinear cluster it is desirable to include all the
possible contributions for each specific case, since it will deeply affect the extraction per-
formance. For example, if expecting a component/system with fifth-order nonlinearities,
then the third harmonic will not be exclusively characterized by a polynomial of third order
but also including the contributions from a fifth-order coefficient.

In summary, it should be emphasized that in each cluster any nonlinear order and memory
depth can be used and thus clearly different approaches can be employed. Also, the newly
proposed behavioral model scheme has the feasibility to be extended and applied into multi-
carrier nonlinear components/systems, as demonstrated in Reference [30].

4.3.3  Parameter Extraction Procedure

This section is devoted to describing the parameter extraction procedure, which has been
employed in a BPSR design similar to that in Figure 4.4. The constructed laboratory proto-
type of this BPSR architecture (device under test, DUT) considered several band-pass filters
to select the desired NZ to be modeled connected to a wideband (2—-1200 MHz) LNA, which
has a 1-dB compression point close to +11 dBm, an approximated gain of 23 dB, and a noise
figure near to 5 dB. This is then followed by a commercially 10-bit pipeline ADC that has a
linear input range of around +10dBm (2 Vpp for a 50-Q) source) and an analog input band-
width (—3 dB bandwidth of the sampling circuit) of 160 MHz. This ADC component was
then sampled using a sinusoidal clock of 90 MHz.

Evaluating the DUT at such a clock frequency will virtually create several NZs of 45 MHz
(f/2) each at the output of the DUT. In this sense, the chosen excitation carrier frequencies
are 11.5 MHz for the first NZ and 69 MHz for the second NZ. To measure the described DUT
correctly, a laboratory setup based on the mixed-domain test bench proposed in Reference
[31] was used, shown briefly in Figure 4.8. As illustrated in Reference [2] it is specifically
dedicated to mixed-domain radio front-ends (SDR/CR) characterization.

As was widely discussed in Reference [24], it is quite difficult to have a setup for mixed-
domain measurements with synchronized samplers between the different domains. The
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Figure 4.8 The experimental test bench proposed in Reference [31]. © 2011 IEEE. Reprinted, with
permission, from [24].

solution for this situation was to embed a triggering pulse in the input signal followed by the
waveform excitation of interest. In this way, all the measurements will be corrected accord-
ingly to that trigger signal and become fully synchronous. Further details about this practice
can be seen in Reference [24].

In addition to this, the treatment of the measured signals revealed in certain situations a
huge corruption of these measurements by noise (instrumentation noise and noise generated
in the DUT components), which is very close to the small distortion products desired to be
modeled, making the parameter extraction impractical. Once again to minimize this issue a
new approach was pursued consisting of the following steps:

. Apply a fast Fourier transform (FFT) to the output RF time-domain signals.

. Select only the desired frequency bins [27, 32] taking into account the nonlinearity order
considered and construct a noise-free signal, only with the selected frequency compo-
nents, for each cluster to be extracted.

3. Afterwards, apply an inverse fast Fourier transform (IFFT) in order to obtain a cleaner
(without undesired frequency components and out-of-band noise) time-domain signal for
each cluster.

4. Calculate the complex envelopes (e.g., using the Hilbert transform) for each cluster of the
rearranged output signals.

5. Apply the low-pass equivalent Volterra series model, expressions (4.3) to (4.6), into these
new output signals using also the measured input complex envelope and obtain the desired
low-pass complex Volterra kernels.

6. Up convert each output complex signal to the corresponding cluster center frequency,

depending on the resultant frequency from Equation (4.1), and finally assess the model

performance.

N =

Figure 4.9 shows a generalized flow diagram for the overall parameter extraction proce-
dure. Such an approach allows, in step 5, the selection of nonlinear orders and memory taps
that are more convenient in each specific cluster, reducing in some sense the required number
of parameters. As well, it is important to notice that when the signal is within an even-order
NZ, the output signal at the output of the DUT will appear rotated (reversed) (see Figure 4.5).
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Figure 4.9 Flowchart diagram of the kernel extraction procedure. © 2011 IEEE. Reprinted, with
permission, from [24].

Thus, in these circumstances an inversion of the signal is required, prior to the extraction of

the particular cluster behavioral model.
Taking into consideration a few assumptions about the input signals, the extraction process
of the low-pass complex Volterra kernels was based on a least-squares technique, expressed by

H= (X"X) 'XTY (4.7)
where X and Y are the input complex signal matrix and the output signal vector, respectively,
and H is the vector of complex kernels being searched. This least-squares extraction is then
executed for each one of the previously selected clusters.

As an example, if the complex parameters are being investigated for a baseband cluster with

a memory length of Q taps, the input signal matrix (X) will be designed in the following way:
L x(0)x7(0)  x(0)x"(-=¢q) -+  X(-Q)x"(-Q)

X=|1 x(m)x'(n) x(n)x(=¢) - X(n—0Q)x(n—0) (4.8)

I EW)FN) FNTN-q) - 5N - Q)F (N - 0)
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and the complex output at baseband frequencies (Y) is defined as
Y = [yp5(0) -+ pp(n) - S’BB(N)]T (4.9)

where Q represents the memory length and N is the number of captured samples for both input
and output complex envelope signals.

Afterwards, the seek vector of complex kernels (H) for the baseband cluster is calculated
using Equation (4.7), which is actually composed of the following Volterra operators:

H=[hy hypp(0,0) hypp(0,q) - ilZ,BB(Q>Q)}T (4.10)

This process is then executed for each individual cluster and then the final response of the
behavioral model is achieved by employing the design depicted in Figure 4.7, wherein each
cluster is up converted to the exact carrier frequency, based on Equation (4.1), as shown in
the following expression:

y(k) = Re{j}BB(k) + S)Fund(k)ejw]t + S)ZHarm(k)eint + )N)SHarm (k)eiwﬂ} (411)

As a final remark about the proposed behavioral model and respective parameter extrac-
tion strategy, it should be emphasized that great care should be taken when choosing carrier
frequencies, signal bandwidths, and so on, due to the folding process that happens in the
addressed DUT; the model extraction will become not valid if different clusters fall within
overlapping frequency bins.

4.4 Model Validation with a QPSK Signal

In order to evaluate the performance of the proposed behavioral model for a BPSR, a QPSK
modulated signal with a symbol rate of around 1 Msymbol/s filtered with a square-root raised
cosine(RRC) filter with a roll-off factor of o« = 0.25, which determined a signal PAPR
of approximately 5.4 dB, has been applied. These results were previously presented in
Reference [24]. It used the laboratory setup shown in Figure 4.8 to perform the various mea-
surements. The extraction of the seek parameters was executed in part of the captured input
and each cluster output complex envelopes. After that, an equal number of remain samples
were used to assess the accuracy of the complete behavioral model when compared with the
obtained measurement results.

4.4.1 Frequency Domain Results

The obtained results are shown in Figures 4.10 and 4.11 for the two different NZs evaluated.
Looking at the figures, it can be said that the proposed behavioral model and its associated
parameter extraction procedure estimate the unknown parameters well and produce good
results for the two NZ signals. Moreover, in Figure 4.10 the different memory depths (taps)
for each nonlinear cluster can be checked for different NZs.

In order to be more precise in this evaluation, the integrated power within the frequency
band of the fundamental signal, lower and upper adjacent channels, baseband component,
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Figure 4.10 Entire bandwidth (smoothed) of measured and modeled outputs for a QPSK signal
centered at 11.5MHz (top) and 69 MHz (bottom). © 2011 IEEE. Reprinted, with permission,
from [24].
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Figure 4.11 Spectrum of measured and modeled results, at the carrier band and second harmonic
band for a QPSK signal centered at 11.5 MHz (top) and 69 MHz (bottom). © 2011 IEEE. Reprinted,
with permission, from [24].
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Table 4.1 Measured and modeled integrated powers for the QPSK excitation © 2011 IEEE.
Reprinted, with permission, from [24]

first NZ (f.=11.5MHz) second NZ (f. = 69 MHz)
Measurement Model Measurement Model
(dBm) (dBm) (dBm) (dBm)
Baseband —41.7 —-429 —44.6 —454
Fundamental —3.01 —3.02 0.40 0.38
Adjacent channel —533 —54.6 —-52.7 —52.5
(lower)
Adjacent channel —-55.9 —56.0 —50.3 —51.2
(upper)
Second harmonic —38.5 —38.5 —40.8 —40.9
Third harmonic —51.6 —52.2 —52.8 —-53.0

and second and third harmonics were calculated. These results are revealed in Table 4.1 for
the two NZs evaluated. It is clear that there is a good approximation to the DUT measure-
ments presented by the proposed behavioral model.

Another figure-of-merit commonly used to express the error of a given model is the nor-
malized mean square error (NMSE), [33]. The comparison between the complete measured
output signals and the proposed behavioral model results reached NMSE values of —33.0 dB
for the first NZ excitation and —32.9 dB for the second NZ excitation.

These demonstrated results validate in some sense this behavioral model proposed for
BPSR application.

4.4.2 Symbol Evaluation Results

In order to validate the presented behavioral model even further, a digital version of a QPSK
demodulator was implemented in order to obtain the symbol information (around 1000 symbols)
from the previously measured and modeled QPSK signals, evaluated in the two different NZs.

Figure 4.12 illustrates the obtained normalized constellation diagrams for each NZ
addressed. The figure verifies once again the good performance of the proposed behavioral
model and the respective parameter extraction procedure. These assumptions are fully con-
firmed by the values presented in Table 4.2, where a good matching in terms of the root mean
square (rms) EVM and also the peak EVM is observed.

Table 4.2 Measured and modeled EVM values for the QPSK excitation ©) 2011 IEEE. Reprinted,
with permission, from [24]

first NZ (f.=11.5 MHz) second NZ (f, = 69 MHz)
Measurement Model Measurement Model
EVM rms 4.23% 4.97% 6.85% 5.2%
EVM peak at symbol 16.39% 16.15% 22.13% 19.24%

(703) (703) (898) (898)
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Figure 4.12 Normalized constellation diagrams for the QPSK signal centered at 11.5 MHz (top) and
69 MHz (bottom). © 2011 IEEE. Reprinted, with permission, from [24].
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5.1 Introduction

Building compact-size and low-cost yet high-performance, flexible and reconfigurable radio
transceivers for future wireless systems is generally a very challenging task. Using dedicated
hardware particularly designed and optimized for only a single application or part of the
radio spectrum yields only limited solutions, especially in terms of radio flexibility and re-
configurability. Also, to keep the overall size and cost of the radio parts feasible, especially
in multiantenna multiradio scenarios, the cost and size of individual radios are strongly
limited. This implies that various circuit imperfections and impairments are expected to take
place in the used radio transceivers, especially in the radio frequency (RF) analogue
electronics [10]. This is also further catalysed by decreasing supply voltages and increasing
electronics miniaturization. This is discussed at a general level, for example in References
[1] to [4]. Good examples of such RF imperfections are, for example, mirror-frequency inter-
ference due to I and Q branch amplitude and phase mismatches (I/Q imbalance),
intermodulation and harmonic distortion due to mixer and amplifier nonlinearities, timing
jitter and nonlinearities in sampling and analogue-to-digital (A/D) converter circuits, and
oscillator phase noise. These RF impairments, if not properly understood and taken into
account, can easily limit the performance of the radio transceivers, and thereby the perform-
ance of the corresponding wireless radio link and system. The RF impairment effects are
becoming increasingly important in the evolution of radio communications when more and
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more complex, and thus more sensitive, high-order modulated wideband communications
waveforms are being deployed in the emerging radio systems, compared to legacy narrow-
band binary modulation-based radio communications.

While there are various different types of RF impairments related to underlying radio
electronics, this chapter concentrates on analysis and digital signal processing-based sup-
pression of oscillator phase noise [5-8]. In general, phase noise has a rather complicated
character and a large impact to the radio transceiver and link performance, especially in
OFDM and other multicarrier type systems, and therefore analysis and compensation of
phase noise in multicarrier systems continues to be a relevant active research topic. We
first present the modelling of time-varying phase noise for free running and phase locked
loop oscillators. Thereafter, we explain the effect of phase noise in OFDM systems and
analyse the performance of OFDM in time-varying channels in the presence of phase
noise. The last part of the chapter explores different algorithms for the compensation of
phase noise in the digital baseband.

In general, as will be explained in detail in the forthcoming sections, phase noise appears
in the form of multiplicative noise relative to the ideal phase noise-free signal. Thus the gen-
eral impact of phase noise is that it broadens the spectral content of the signals (through
spectral convolution). From an individual multicarrier waveform (like OFDM) point of view,
this yields intercarrier interference (ICI) between the neighbouring subcarriers. This can be
seen as an in-band problem, essentially increasing the in-band noise floor of a single radio
waveform. In a more general context, however, phase noise also causes interference between
the neighbouring RF channels or bands, which can be seen as an out-of-band problem
dealing with multiple RF signals. Such an effect can be even more troublesome, compared
to in-band problems, due to different RF power levels (dynamic range) of different RF
carriers. In this chapter, the focus is on the phase noise-induced in-band problems. In terms
of presentation, this chapter follows the presentations in References [9] and [10].

5.2 Phase Noise Modelling

This section gives a very short introduction to phase noise modelling and is based on the
phase noise modelling given in References [11] and [12] and summarized in Reference [8].
There are many nonidealities related to oscillators, such as carrier frequency offset and
phase offset. However, the most complex of the nonidealities is the time-varying phase noise
denoted here by ¢(¢). A real oscillator-generated signal with phase noise can be written as

v(t) = A cos(w .t + ¢(1)) (5.1

Here, A is the amplitude of the oscillating signal and w, is the nominal angular oscillation
frequency. The phase noise modelling focuses on the modelling of the time-varying phase
noise component ¢(z). The modelling in this chapter is based on the simple mathematical
free-running oscillator (FRO) model and on more complex phase-locked loop (PLL) oscilla-
tor model, since in practice PLL oscillators are used in communications devices.

5.2.1 Free-Running Oscillator

The FRO model is simple and easy to use in simulations and mathematical analysis. It is
based on the assumption that the phase noise process is a so-called Brownian motion process
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(also known as the Wiener process or random-walk process). It can be written as
$(1) = Ve B(1) (52)

where B(t) is the time-varying standard Brownian motion and c is the diffusion rate, which
basically is the inverse of the relative oscillator quality. What makes FRO easy to use in
simulations is the simple generation of the sampled version of Equation (5.2):

¢, = \/EB(nTx) = \/EBn (53)

where T is the sampling interval. From the definition of the standard Brownian motion,
B(nTy) — B((n+1)T,) ~ N(0,Ty), where N(iu,0?) denotes the normal distribution with
expectation value p and variance o”. This effectively means that the sampled FRO process
can be generated as the cumulative sum of normal distributed random variables with zero
mean and variance ¢T;. Thus, it is possible to characterize the whole phase noise process
with just a single parameter c.

To map the parameter ¢ to a more easily measurable parameter, let us study the power
spectral density (PSD) of the FRO. This is because the decay of the oscillator PSD is
commonly used to characterize the oscillator phase noise properties. Specifically, a 3-dB
bandwidth is used in this context, and it can be calculated as a point where the PSD has
decayed to half of its maximum. If we assume that the oscillation frequency w, is relatively
large and the diffusion rate c is relatively small (which they are in practice), we can approxi-
mate the one-sided PSD of the noisy oscillator signal as [11]

¢/2

S + (s

(5.4)

Here, Aw = w — w, is the frequency difference from the nominal oscillation frequency.
This corresponds to the well-known Lorentzian spectrum as discussed, for example, in
Reference [11]. From this it is simple to calculate the 3-dB bandwidth § of the oscillator
process of Equation (5.1) as

B=— (5.5)

Now, instead of characterizing the phase noise process with ¢, we can use the 3-dB band-
width of the oscillator, which is a more tangible quantity.

5.2.2 Phase-Locked Loop Oscillator

There are various ways to model PLL oscillators. In this section, the model introduced in
Reference [12] is used. It models a PLL oscillator that takes into account white and
flicker (1/f) noises [13] in its free-running (FR) voltage-controlled oscillator (VCO) and
only white noise in its FR crystal oscillator (CO). The VCO model is based on the work
done in Reference [14]. In the oscillator model, first a one-sided PSD of a baseband
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equivalent VCO is generated according to Reference [14] as

e + ¢S5 (Aw)

Sass(Aw) = 5 (5.6)
' w A
2
Here, the PSD of the flicker noise is
27 4 y
Si(Aw) = T Ty 4(4) 5.7
r(A0) =15 " 50 ™ Ae (57)
2 L(Awy) L(Aw,)
w=——— [Aw} X 10710 —Aw’ x 10" 10 5.8
c Aoy — Aoy { wp X w;, X ] (5.8)
and
27 ( Aw,, — Aa)f) 5 L(Awy) 5 L(Aw,)
Cf = W |:Aa)f X 10 10 — Aa)w X 10 10 (59)

On these, y, is a frequency corner point at which the flicker noise PSD essentially deviates
from the nominal 1/f slope and Aw,,, Awy, L(Aw,,) and L(Awy) can be attained from the
circuit simulator or one-sided PSD spot measurements of the VCO oscillator. L(Aw,) is a
measurement at a white noise dominated region of the oscillator spectrum at offset Aw,,
from the nominal oscillation frequency and L(Awy) is a measurement at a flicker noise domi-
nated region of the oscillator spectrum at offset Awy from the nominal oscillation frequency.
The corresponding PSD of the CO is generated also with Equation (5.6), but without flicker
noise. The equation for the PSD of the CO can thus be written as

Cw,co

(Cny,zco)2 + (Aw)?

Sass(Aw) =

(5.10)

Here, ¢, co is given by Equation (5.8), but naturally from the measurements of the CO.
Equation (5.10) closely resembles the PSD of the FRO model in Equation(5.4), because the
used CO is a high-quality FRO with relatively low nominal oscillation frequency. However,
Equation (5.10) is the PSD for the baseband equivalent oscillator and, furthermore, maps the
oscillator measurements to the PSD through the measurement parameter c,, co. Now, to gen-
erate the actual PSD of the PLL oscillator v(¢) = Ae/(“**¢() actually needed in the baseband
simulations, we need to combine the PSD of the CO and VCO. In this work, combination is
done according to the work in Reference [15].

We know that the PSD of the complex exponential of the phase noise approximately
equals the PSD of the actual phase noise ¢(t) at frequencies higher than the oscillator 3-dB
bandwidth [16]. For our oscillator model, as justified in Reference [15], we use this approxi-
mation in general. Thus, we can generate the phase noise by shaping the spectrum of white
Gaussian noise to correspond to the baseband equivalent version of S, (Aw), namely
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Figure 5.1 An example PSD of the CO and VCO used in the design of a PLL. Theoretical and
simulated PSDs of the resulting PLL are also depicted. © 2009 IEEE. Printed, with permission, from [8].

Sass(®). An example of the CO, VCO and PLL PSDs with parameters L(Aw, )=
—120dBc/Hz at Aw,, =1MHz, L(Aw;) =—76 dBc/Hz at Aw; =10kHz, Leo(Awy_co) =
—160 at 1 MHz and y,. = 2.15kHz is depicted in Figure 5.1. For more details and discussion
refer to References [12] and [14].

5.2.3 Generalized Oscillator

To generalize the oscillator model even further, the nonconstrained form of the given PLL
oscillator model is presented. We generate the phase noise in the same way with the help of
a spectral masque, but now without tight constraints on the oscillator phase noise spectrum.
Practically, this means that we generate white Gaussian noise, transfer it to the frequency
domain with a discrete Fourier transform (DFT), then filter the signal with an arbitrary phase
noise spectral masque and the filtered result is then finally transformed back to the
time domain with an inverse discrete Fourier transform (IDFT). Naturally in this model,
phase noise is generated in blocks since we cannot have an infinite length DFT/IDFT pair.
The actual spectral masque can be obtained, for example, directly from the circuit simulator
or from measurements of an oscillator.

For the purpose of later analysis, let us derive a connection between the phase noise spec-
tral masque and average powers of the spectral components of the phase noise complex
exponential. The spectral components can be calculated easily with the DFT. The N-point
DFT of the phase noise complex exponential is

1 N-1 .
Je(m) = N/ > eftnlmeizmkiN (5.11)
n=0
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Here, k =0,1,...,N — 1 is the index of the spectral component and m is the index of the
spectral DFT block. With a small phase approximation, namely e/*(") ~ 1 + jg, (m), and
when keeping unit variance we can write

otnm) 5, LTS () (5.12)

,/l—i—(ré

where oé is the average power of the phase noise ¢,(m), which can be derived from the
spectral masque as [17]

N

22 (5.13)
k=0

= \:%

Here, aﬁ, is the variance of the time-domain white Gaussian noise from which the phase
noise is generated and A is the spectral masque multiplier for the kth spectral component.
Now by combining Equations (5.11) and (5.12), we can write

1 N-1 A
Ti(m) m ———= " [1 + jp, (m)]e >N (5.14)
\ /N(l + ai) n=0
When k # 0, this can be written as
J S 2k J®Pi(m)
Je(m) ~ —— Z m)e2mk/N — L0 (5.15)

N(H%) J1+02

where @ (m) is the kth frequency bin of the N-point Fourier transform of ¢, (m). So finally

)\‘ 2)\’2 2
k200 E[lam)P] ~- 0 = I (5.16)
1+ % g2 N1 1 N ,
142 Zxk HN,Z w2
K'=0
For the DC bin, that is when k = 0, we can write
5 gum)
N+j), ¢,(m .
— N+ j®
Jo(m) ~ n=0 VN +/%o(m) (5.17)

N(l—&-aé) \/1+Oé
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Figure 5.2 An example power spectral density function of the phase noise. © 2011 IEEE. Printed,
with permission, from [17].

so we have

N+oidi  N+oiij N+ ;5
k=0: Eflomp] » X0 Mot WAV (5.18)
1 +oy

o lel
T+ 22 14— ;

Here, /7 = 02} is the energy of the phase noise around the kth subcarrier as depicted in
Figure 5.2. Quantity wi can be simply connected to the practical oscillator PSD measure-
ments by

1
V7 = o2l ~ PSD, (k F)

N

1
— 5.19
T (5.19)
Here, PSD,, is the PSD of the phase noise process at the frequency given by the argument.
Equation (5.19) connects the powers of the spectral components of the phase noise complex
exponential to the tangible PSD values.

5.3 OFDM Radio Link Modelling and Performance under Phase Noise

Direct conversion architecture is used in most commercial mobile devices of today, and
therefore impairments that are not so tightly considered architectural weaknesses are inter-
esting. One of the most interesting impairments in this context is phase noise. Its effect on
DCR is especially interesting since phase noise is a very big problem in mobile OFDM
receivers, in which DCR is usually used. Furthermore, emerging cellular systems like LTE
and LTE-Advanced use OFDM.

First, this section describes the effect of the phase noise on a general I/Q signal in DCR.
After that the section focuses on the phase noise effect on OFDM, followed by SINR and
capacity analyses of the OFDM radio link impaired by receiver phase noise.
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5.3.1 Effect of Phase Noise in Direct-Conversion Receivers

A general bandpass signal contains two low-frequency components, namely the inphase
(D and quadrature (Q) components. Such a bandpass signal is typically written as
si(t)cos (wct) — so(t)sin (w.t), where w, denotes the signal centre frequency and s;(¢) and
so(t) are the I and Q components. The so-called baseband equivalent signal, in turn, is a
complex-valued signal s(¢), whose real and imaginary parts are the I and Q components,
that is

s(t) = s1(t) +jso(1) (5.20)

I/Q modulation is thus a modulation technique in which the above formalism is utilized such
that the I and Q components are low-frequency message signals, being then modulated into
orthogonal cosine and sine carriers. In the case of digital transmission, these I and Q compo-
nents, and thereon the corresponding bandpass signal, are carrying the transmitted bits, while
the more detailed mapping from bits to message waveform(s) depends on the applied data
modulation. On the receiver side, the I and Q components are recovered by I/Q
demodulation.

In a direct-conversion receiver (DCR), the received signal from the target centre frequency
is I/Q down-converted directly to baseband, and lowpass filtering implements most of the
receiver selectivity. This is typically divided between both analogue and digital filters. Now,
when the I/Q down-conversion stage suffers from phase noise, we essentially end up having
a complex observation of the form

5(2) = 51(2) +jso(2) = si(2)[cos(p(r)) + jsin(@(2))] + jso(t)[cos(p(2)) + jsin(p())]
si(0)e + jiso (1)) = s(1)e/*)

(5.21)

Therefore, in the DCR the phase noise effect on the signal waveform (namely the baseband
equivalent effect of phase noise) can be seen as a multiplication with a complex exponential
that has phase noise as its argument. Thus phase noise appears as multiplicative noise. Of
course, after the sampling, the signal with phase noise is

5, = s(nTy)e/ (5.22)

where T is the sampling interval, n is the sampling index and ¢,, = ¢(nTy).

5.3.2  Effect of Phase Noise and the Signal Model on OFDM

In the frequency domain, the effect of phase noise can be seen as spread of the received
signal spectral contents. From an individual waveform point of view, the corresponding
effect on the constellation of a single carrier signal is just the corresponding time-varying
phase rotation of the constellation, as can be seen in Figure 5.3(a), and, if small, the effect
on the signal quality is only very minor. However, the phase noise can still be a serious prob-
lem in the case of single-carrier waveforms if the spectral content of the possibly much
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Figure 5.3 (a) Single-carrier 16QAM signal (1024 symbols) with phase noise and (b) OFDM with
16QAM subcarrier modulation (1024 subcarriers) with phase noise. In both cases the FRO oscillator
with 100 Hz 3-dB bandwidth due to phase noise is assumed. I and Q components of the signals are
presented in the horizontal and vertical axes respectively.

stronger neighbouring channel signal is spread on top of the weak desired signal. This
depends on the assumed RF signal dynamic range and the amount of RF filtering in general.
For multicarrier signals, in turn, the effect of phase noise is much more complex and
severe, even without any neighbouring channels, as depicted in Figure 5.3(b) for OFDM.
This is the focus in the rest of this chapter. In addition to the rotation that every OFDM
symbol experiences (as in single carrier symbols), OFDM symbols suffer from intercarrier
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interference (ICI) because phase noise spreads the energy of every subcarrier on top of the
other subcarriers [18-20]. In a constellation it is seen as a spread around the ideal rotated
constellation points. The effects of the phase noise on OFDM signals have been studied and
analysed, for example, in References [9], [11], [19] and [21] to [24].

In general, for an OFDM configuration with N subcarrier symbols k = 0,1,...,N — 1, the
mth OFDM symbol is generated from subcarrier modulated symbols Xy (m) with the help of
the N-point IDFT. The n th sample of such an OFDM symbol can be written as

xa(m) = %Nzlxk(m) o2/ (5.23)
k=0

where sampling indices are n =0,1,...,N — 1. Now if the sampling interval is Ty, the
symbol length in seconds is NT; and the sampling frequency is Fy = 1/T. In practice, to
exploit the long symbol duration in the OFDM signal, the cyclic prefix is also implemented
to mitigate the impacts of multipath components of the radio channel. This is done by recon-
structing the OFDM symbol so that the last G samples of Equation (5.23) are transmitted first
and then the OFDM waveform without the prefix. This lengthens the OFDM symbol to N +
G samples, which is (N + G)T seconds. The cyclic prefix effectively makes the OFDM sig-
nal immune to intersymbol interference, so at the receiver after ideal up-conversion at the
transmitter, the time-invariant multipath channel, ideal down-conversion and removal of the
cyclic prefix, the mth received OFDM symbol can be written as

ry = (hm * Xm) + 1z (524)

where h,, is the (D x 1) multipath channel impulse response vector,
X = [Xo(m),x1(m), ..., xy_1(m)]", operator % denotes circular convolution between the
elements of the operated vectors, and z,, is the (N x 1) vector of white Gaussian noise sam-
ples. Now the expression in (5.24) can be simplified with the help of the circular convolution
matrix [25] as

r, = H,x,, + 2, (5.25)

where H,, is the (N x N) circular convolution matrix corresponding to the channel impulse
response vector h,,,.

The previous formulation assumed ideal oscillators in the transmitter and receiver. With
phase noise included in up-converting and down-converting oscillators in the transmitter and
receiver, respectively, we can write the received signal as

r,, = diag(e/*»*)H,, diag(e/*7)x,, + z,, (5.26)

Here, diag(-) is a function that creates a diagonal matrix out from its input vector and
&b, and &, are vectors consisting of transmitter and receiver phase noise samples
¢n‘X(m)7 Xe {TaR}v respectively, so that d)m.T = [¢O‘X7¢1,Xa ce 7¢N71,X]Ta Xe {Ta R}' In
this chapter, a reasonable channel delay spread is assumed. This means that the channel
coherence bandwidth is relatively high. From this stems the fact that in approximations we
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are able to change the order of the diagonal phase noise matrices and the cyclic channel
matrix in Equation (5.26). We are therefore able to approximately model all the phase noise
either as transmitter or receiver phase and mark the combined phase noise term as

(bm = (bm,T + (anR [95 6» 11]

5.3.3 OFDM Link SINR Analysis under Phase Noise

In the frequency domain (after the receiver FFT), the signal model for the received signal in
Equation (5.26) without transmitter phase noise (or all phase noise referred to thereceiver
side) can be written as

Re(m) = Xe(m)Hi(m)Jo(m) + 3 Xim)Hy(m)Jio(m) + VNZi(m) — (527)
=014k

where Hy(m) is the channel transfer function, Jx(m) is the frequency-domain phase noise
complex exponential defined in Equation (5.11) and Z (m) is the frequency-domain additive
white Gaussian noise. Z;(m) is multiplied by /N because with the DFT scaling used
in Equations (5.11) and (5.23) the ideal oscillator response is amplitude multiplication by
V/N. The scaling used in Equation (5.11) is also used for the phase noise here. If we assume
that the common phase error (CPE) is easily mitigated and the ICI is the only contribution of
noise due to phase noise, we can derive the signal-to-interference-and-noise ratio (SINR)
into the form [17]

E [ X (m)Hi (m) o ()]

Vi = - 3 (5.28)

E S Xi(m)H(m)Jg—i(m) + VNZy(m)
1=0,1#k

Here E[] is the statistical expectation operator. Now, if we make natural assumptions that (1)
Xi(m), Hi(m), Ji.(m) and Z;(m) are mutually statistically independent and stationary, (2)
that for Vk : Xy (m) are independent of each other and (3) that E[Xj(m)] = 0, and with
assumption that noise power, average channel power response and average transmitted signal
power are subcarrier independent, namely

Vk : E[|zk(m)|2} = o> (5.29)

Vk : E[|Hk(m)|2} = o (5.30)
and

Vk : E[|Xk(m)|2} =2 (5.31)
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we can rewrite Equation (5.28) as

vy = O'ZO'%E“JO(’”)‘Z} B [‘JO ] B E|i|]0(m)|2j|
o 2 T N-1
%ZEW(H%Wé ZEW(M 22 ;Ewwﬂ+%
(5.32)

where p is the received signal-to-noise ratio (SNR). Now from Parseval’s theorem and linear-
ity of the expectation value operator it is found that

=

E[|Jk(m)|2} —N (5.33)
0

e
i

By using Equation (5.33), we can rewrite quation (5.32) in more simple form as

E|[o(m)’]
N

N—-E [|J0(m)|2] +

Yi=VY= (5.34)

which is subcarrier independent and only depends on second-order statistics of the CPE.
Now by using Equation (5.18), we can approximate the above as

N 2
e ¥ (5.35)

N—1 -1 N
Ut vit—
k=1 . P; T

This is relatively simple formula for the SINR in the general OFDM case with a general
oscillator.

In Figure 5.4, the theoretical formula (5.35) is compared to results given by the OFDM
link simulator. In the simulator, the OFDM signal with 1024 subcarriers is generated, and
the signal is then passed through a channel. After that additive noise is added if applicable,
and the down-converting oscillator with PLL phase noise in the receiver is modelled. Then
the SINR is calculated.

5.3.4 OFDM Link Capacity Analysis under Phase Noise

In this section we shall derive closed-form expressions for the link capacity of an OFDM
system impaired by phase noise and subject to Rayleigh fading. For a system model with the
received signal comprising the desired signal part plus the noise part and assuming indepen-
dence between the two, with each drawn from a Gaussian distribution, the ergodic capacity is
typically employed to evaluate the throughput. To determine the ergodic capacity it is neces-
sary to average the instantaneous capacity over phase noise and channel realizations, but
since ICI is not a Gaussian random variable in general [23] the task is not straightforward.
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Figure 54 OFDM system (1024 subcarriers) performance under phase noise from a PLL type
oscillator with L(Aw,,) = —120dBc/Hz, L(Awy) = —76 dBc/Hz and y =2.15kHz. Equation (5.35) is
used and the SINR is given as a function of the received SNR.

To this end, we employ an alternative SINR expression instead of Equation (5.33), reflecting
the instantaneous SINR (i.e. the SINR for a given channel and phase noise realizations) and
determine its probability density function to determine the ergodic capacity [9, 26].

We start by determining the instantaneous capacity by fixing the phase noise process and
the channel and assuming that the symbol alphabet X}, Vk are Gaussian i.i.d. (independent
and identically distributed) random variables that are also independent with the Gaussian
receiver noise. Under such conditions, we see that for this fixed realization of the phase noise
and channel, the ICI along with the receiver noise is Gaussian and, hence, instantaneous
capacity is applicable and is given by

Cr =logy (1 + ) (5.36)
where
Hj. 21702
V=7 Hi "ol (5.37)
< > |H12|11|2> + 07 /0%
1=0,1%k

In the above equations, we have dropped the OFDM symbol index m without loss of
generality. If the 3-dB bandwidth of the phase noise process is small compared with the
subcarrier spacing and the channel coherence bandwidth is much larger than the subcar-
rier spacing, the following approximation holds [9]:

= 2,12 PR =
S HPIP ~ [H D (5.38)
=112k =
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Thus, the SINR is simplified to

|Hil ol _ -y

N—1 = 3 s
|sz(Z |J1|2> +ol/od Y+GZ/(|Hk| UX)
=1

Vi = (5.39)

where we have used the fact that

N—-1

o> = 1= | (5.40)

=1

and have defined

N—1
Y = ZWZ (5.41)
=1

We have dropped the subcarrier index k without loss of generality. From Equation (5.39), we
see that the SINR and, hence, capacity in Equation (5.36) is a random variable whose distri-
bution depends on the distribution of ¥ and of the channel |Hy|*.

With the knowledge of the distributions of the random variables in Equation (5.39), statis-
tical measures of capacity can be derived. For example, the average capacity can be derived
by using Equation (5.39) in Equation (5.36) and sequentially averaging over the distributions
of Y and the channel. We assume the channel to be Rayleigh faded. It is shown in Reference
[9] that for small ratios of phase noise 3-dB bandwidth to subcarrier spacing, Y can be char-
acterized as a sum of correlated gamma variables with a well-defined probability density
function. In Figure 5.5, the probability density function plots of Y for a Wiener phase noise
process are shown for two different phase noise levels. We clearly see from the figures that
for a fixed subcarrier spacing, increasing the phase noise 3-dB bandwidth broadens the distri-
bution of Y and thus we could expect the SINR in Equation (5.39) or (5.35) and, hence,
capacity in Equation (5.36) to decrease.

Using the probability density function of Y derived in Reference [9] for a Wiener phase
noise process, the capacity averaged over the distribution of Y while keeping the channel
fixed is given as

— - 1 L
C=log,(1+Y)—-K Z ¢k log, (Y %+ ka"k) (5.42)
k=0

where Y = |Hj \20% /o%. The coefficients ¢, ¢ are obtained from the parameters that charac-
terize the distribution of Y. Equation (5.42) represents the capacity for a static channel. The
first term in Equation (5.42) represents the AWGN capacity for a static channel while the
second term arises because of the presence of phase noise, which results in an overall reduc-
tion of the capacity. In the absence of phase noise the second term reduces to zero and the
capacity reduces to the traditional AWGN capacity. Averaging Equation (5.42) over the dis-
tribution of |Hk|2, the average capacity for an OFDM system impaired by Wiener phase
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Figure 5.5 PDF plots of Y for two different Wiener phase noise 3-dB bandwidths. The first plot is for
a phase noise 3-dB bandwidth equal to 80 Hz and the second plot is for a value of 2 kHz. Bandwidth is
625 kHz, N =32 and subcarrier spacing is 19 kHz.
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Figure 5.6 Average capacity C plots. The solid lines represent the analytical results and markers
represent the simulations. Bandwidth is 20kHz, N=1024 and subcarrier spacing is 19.5kHz. Beta
denotes the 3-dB bandwidth of Wiener phase noise.

noise is given by [21]
1
ebiY —

I,Ck

C=1 o I=a L 5.43
0g,(e) KZ:C/C log, (Y a 4+ kaCA.) ( )
k=0

The first term in the above equation represents the capacity in a Rayleigh fading channel
and the second term is due to the presence of phase noise, which causes the overall capacity
to reduce from the Rayleigh fading channel capacity. Figure 5.6 shows the average capacity
plots as a function of the SNR for different 3-dB bandwidths of the phase noise process. As
can be seen from the figure, with the presence of phase noise the capacity reduces from the
AWGN case where the phase noise is absent. Also, the capacity decreases with increasing
levels of phase noise.

5.4 Digital Phase Noise Suppression

The task of phase noise estimation and mitigation in OFDM radios is one of the main topics
of this chapter. The phase noise effect on OFDM signals is very severe and of a complicated
nature, and there have not been good algorithms to mitigate the phase noise from OFDM
signals until recently. In the literature, firstly, only CPE mitigation was considered, for
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example in Reference [19]. This was a natural approach as the CPE has potentially a very
serious effect on the OFDM signal if a free-running oscillator is used. However, the CPE is
hardly a problem in a wireless communications link, because in conventional channel
estimation techniques the effect of the CPE is usually estimated as a part of the channel.
Furthermore, if the phase noise is just jitter around the nominal phase, as is the case, for
example in an PLL oscillator, the CPE alone is merely a minor problem, because constella-
tion rotation caused by the CPE depends on the average phase error from the nominal phase
during the duration of one OFDM symbol and is thus very small. However, if the channel is
not fading, as, for example, with a plain additive white Gaussian noise channel assumption,
the CPE estimation becomes interesting because it is simpler than doing the channel estima-
tion. Furthermore, if the channel is assumed known, the CPE estimation is interesting for the
analysis of ICI mitigation algorithms.

The mitigation of the ICI part of the phase noise has also received extensive attention
in the recent literature. In Reference [27], a general phase noise mitigation technique
mitigating CPE and ICI has been considered. A more advanced iterative algorithm for
phase noise mitigation, where also the low-pass nature of the phase noise process is
taken into account, was proposed in Reference [6]. The iterative part of the technique
was further improved in Reference [28] by coding, and the actual phase noise compensa-
tion part was further improved in Reference [5].

This section reviews the latest phase noise mitigation algorithms in the literature. The first
derivative estimates ICI using linear interpolation of CPE estimates first proposed in Refer-
ence [8]. The idea is simply to interpolate CPE estimates from the middle sample of one
OFDM symbol to the middle samples of the adjacent OFDM symbols. Another idea pro-
posed in Reference [8], and based on the same problem setting as the technique in Reference
[5], was invented independently during the publication process of Reference [5]. It is rather
simple as well. It was noticed that the algorithm in Reference [6] provides poor phase noise
estimates at the beginning and at the end of each OFDM symbol. Due to the continuous
nature of the phase noise, the phase noise estimates can however be interpolated over the
interval in which the estimates are poor. Another iterative time-domain phase noise mitiga-
tion algorithm, which has first been published in Reference [7], is also reviewed. The idea is
to detect the received signal after only the CPE of the phase noise is mitigated and then to
reconstruct the phase noise-free signal. This signal is then used for a phase noise estimation
by comparing it to the signal with phase noise still present.

5.4.1 State of the Art in Phase Noise Estimation and Mitigation

First, this section presents a simple CPE mitigation technique proposed in Reference [29], as
it is usually needed in iterative ICI mitigation techniques to get the initial detection result.
Then, some more advanced algorithms are reviewed and the ICI mitigation algorithm pro-
posed in Reference [6] is presented in detail, followed by the detailed presentation of the
improvement to the algorithm proposed in Reference [5].

54.1.1 CPE Estimation and Mitigation

CPE is a multiplication of all the subcarrier symbols by the same complex number within an
OFDM symbol [11, 20]. CPE estimation techniques therefore merely estimate the common
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complex multiplier for all the subcarriers of an OFDM symbol. Such estimation tech-
niques have, for example, been proposed in References [19], [29] and [30]. The techniques
are similar and basically just solve the problem of a CPE estimation by averaging the
calculated CPE values at pilot subcarriers using a least squares (LS) estimation. Therefore,
directly from Reference [29], the LS solution for the CPE during the mth OFDM symbol
can be written as

5 Relm)X(m)Hi (m)
J _ =
ot > Wlmtc(m)

(5.44)

Here, S, is a set of pilot subcarriers. In this chapter, the LS estimate of Equation (5.44) is
always used for the CPE estimation, because of its computation simplicity. After computing
the LS estimate for the individual OFDM symbols, the mitigation of the CPE is straightfor-
ward. Just the division of the received subcarrier symbol values with the corresponding CPE
estimate is required.

5.4.1.2 ICI Estimation and Mitigation

The ICI is the more complex part of the phase noise effect, as is also its estimation. When the
CPE is mitigated from the signal, the remaining time-domain phase noise contribution for
individual OFDM symbols is just the same as before with only one exception: the mean of
the remaining phase noise is approximately zero. The zero-mean phase noise causes the ICIL.
The problem of estimating and mitigating the ICI has been widely studied in the literature.
Some examples are the studies in References [5] to [9], [12], [13], [23], [27] to [29] and [31]
to [51]. Of these, in References [35], [37] and [38] the phase noise is compensated jointly
with either channel and/or other transceiver impairments, such as an IQ imbalance. Exam-
ples of time-domain phase noise mitigation algorithms are given, for example, in References
[34] and [38]. The algorithm in Reference [34] is based on estimating the most dominant
discrete cosine transform terms of the phase noise. The algorithm is then enhanced in Refer-
ence [33] by iteratively using the nonpilot symbols in the phase noise estimation process.
Another time-domain algorithm based on Kalman tracking is proposed in Reference [31].
The frequency-domain ICI mitigation algorithm proposed in Reference [6] is based on two
simple but significant ideas, that is iterative estimation of the phase noise and exploiting the
knowledge that most information of the phase noise can be recovered from the first few terms
of its discrete Fourier transform. Its performance is improved in References [5] and [28] by
means of improving the estimation algorithm and exploiting the information given by chan-
nel coding, respectively.

From all the available ICI mitigation algorithms, the algorithm of Reference [6] with
its expansion in Reference [S] are presented as the state-of-the-art algorithms in more
detail, because of their good performance. Another reason is the fact that the algorithm
of Reference [6] is easily modified without practical performance loss to an LS-based
algorithm, which does not require prior knowledge about the statistics of the phase noise.
The idea is based on the frequency-domain signal model presented in Equation (5.27).
With the assumption that most of the phase noise effect is indeed in its first u spectral
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components, we are able to rewrite Equation (5.27) as

ZXkl VHie—i(m)J (m) + 4y (m ZAkl (m) + ¥, (m)  (5.45)

I=—u I=—u

where v,;(m) denotes the term with additive noise and remaining ICI outside of the first
u spectral components, and for simplicity we have substituted Xy (m)H(m) with Ay (m).
Now if this equation is written only for subcarriers k € {li,/5,...,lp}, where
P > 2(u+ 1), we can write a solvable matrix equation as

R, Appu(m)  Appu(m) - Ay _y(m) J_y(m) vy, (m)
R:z, _ A,ﬁ,.,(m) J*”*:l(m n w’zfm) (5.46)
Bl a0 am]) Lo 1 Luom

This can be written compactly as R, p = A, Ju + Wi p, where R, p and W, p are
(P x 1) vectors, Jyn, is a (2u + 1 x 1) vector and A, , is a (P x 2u + 1) matrix. From this it
is easy to use an LS estimation to estimate the most prominent ICI components J,,, , as

~ -1
Jm,u = (AZ uAm,u) AZWRm,P~ (547)

In order to compute the above estimate, A,, , needs to be known. In the algorithm, the
detection results after CPE mitigation are used and then for the next iteration the detection
result from the previous iterations are used. Channel estimates and prior channel information
are also needed for the computation of the estimate. Instead of the previous LS solution, we
could use also, for example, the minimum mean-square error (MMSE) estimation, but we
would then need to know more about the statistics of the phase noise process in order to use
it. Furthermore, the simulations by the author showed that the performance improvements
are almost nonexistent. This is why in this chapter only the LS version of the estimation
algorithm is used.

After estimation of the most prominent spectral components of the phase noise, the actual
mitigation can simply be done by taking deconvolution between the received signal and the
estimated phase noise in Equation (5.47). The resulting phase noise compensated signal can
then be used as seen fit.

5.4.1.3 Modified ICI Estimation

Using a heavily truncated Fourier transform to estimate a nonperiodic signal such as the
phase noise sequence is a problem, because the DFT assumes that the time-domain signal is
periodic, whereas the phase noise process is not. However, this is not a problem with the
nontruncated version of the DFT, but truncating the DFT makes the periodicity assumption
very prominent in the corresponding time-domain signal [5, 8].
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In Reference [5], a solution is proposed to the truncated DFT in the ICI estimation algo-
rithm of Reference [6]. The proposed solution is based on mapping the received time-domain
signal vector so that the edge parts of an OFDM symbol are mapped to the centre part of the
vector. The mapping can be done with time-domain multiplication with permutation matrices
of the form

T
Pr = [€N/2+1:€N/2425 - - s €N EN-1, - -, €N /2
r = [en / /] (5.48)

T
P = [eN/ZyeN/Z—lv-~~ael7e2a---7eN/2+l]

Here, p, and p; are the size (N X N) permutation matrices for the right and left edges,
respectively; e, is a unit vector of length N, which has unity as its nth element and other
elements are zeros. This time-domain mapping corresponds to mapping the truncated
frequency-domain phase noise estimate with Fourier transforms P, and P; of the permu-
tation matrices p, and p,. Therefore what we actually need to do is to multiply the
truncated phase noise estimate jm,u (filled with zeros to be size N x 1) with P, and P;.
When carrying out the actual calculations in the receiver, naturally only nonzero
elements of the jm,u are interesting, so P, and P; can be modified accordingly to be
smaller. The resulting sequence is then transformed to the time domain, and the samples
corresponding to the estimated phase noise are picked and used as phase noise estimates
at the edges, instead of using the estimates provided by jm,,,. In Reference [5], the edge
substitution window on the both sides was proposed to be around 6% of the OFDM
symbol length, which also gave the best results in the simulations [8].

Compared to the algorithm of [6], the complexity is increased because we need some extra
computations. Most burdensome computation results from the fact that signal processing is
done in the time domain, so the signal needs to be transformed to the frequency domain
again. This results in one extra DFT.

5.4.2 Recent Contributions to Phase Noise Estimation and Mitigation

In this section, first, a very simple technique to improve the CPE estimates with linear inter-
polation is presented. This is followed by the presentation of the technique to improve the
performance of the state-of-the-art technique of Reference [6]. Both of these techniques
were first published in Reference [8]. Then, the time-domain phase noise mitigation tech-
nique is presented, first published in Reference [7].

5.4.2.1 ICI Estimation Technique Using CPE Interpolation (LI-CPE)

The idea of the first ICI estimation technique introduced in this chapter, called LI-CPE, is
based on the fact that the CPE estimate for an OFDM symbol approximates the mean of the
phase noise sequence during that symbol. Because of this, the CPE corresponds to the exact
value of the phase noise most likely in the middle of the OFDM symbol. Then, if we interpo-
late between the CPE values of adjacent OFDM symbols, from the middle of one OFDM
symbol to the middle of adjacent OFDM symbols, we should have a crude estimate of the
phase noise with the CPE and ICI taken into account. To improve the estimate a little, we
can scale the interpolation result by replacing the DC bin of the estimated phase noise with
the original CPE estimate. This is logical since we know that CPE estimates should be
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Figure 5.7 Illustration of the phase noise sequence and corresponding CPE estimate and the
estimation result given by the LI-CPE technique. © 2009 IEEE. Printed, with permission, from [8].

relatively reliable. Interpolation, on the other hand, has changed the CPE estimate, so replac-
ing it with more reliable one gives an improved estimate. Illustration of the technique is
shown in Figure 5.7. In the figure, the small hops at the OFDM symbol boundaries result
from the CPE replacement.

The interpolation in this technique can be done in various ways. In this chapter, however,
only linear interpolation is used. The reason for this choice is not only the fact that linear
interpolation is very simple but also the fact that if we interpolate between two points of a
random walk (Wiener) process, the linear interpolation is actually approximately the opti-
mum way to do the interpolation [38].

It should be noted that using this technique imposes a delay of one OFDM symbol, since
we cannot get the full interpolation result before the estimation of the CPE of the next sym-
bol has been done.

5.4.2.2 TIterative ICI Estimation Technique Using Tail Interpolation (LI-TE)

The second ICI estimation technique is based on the ICI estimation algorithm of Reference
[6]. Before having access to Reference [5], the authors of this chapter also noticed the poor
performance of the algorithm of Reference [6] at the OFDM symbol boundaries. This is clear
when plotting the time-domain phase noise estimate versus the actual phase noise sequence
shown in Figure 5.8. The peaks at the OFDM symbol boundaries are very clear and relatively
wide, and the values of the estimates during these peaks differ from the underlying phase
noise sequence very clearly. Mathematically the effect results from the truncation of the
DFT done in the algorithm of Reference [6].

To combat the peaking effect of the algorithm of Reference [6] effectively, this chapter
introduces a new technique, called LI-TE, for improving the estimates at the OFDM symbol
boundaries. Simulations have shown that already continuing the last reliable estimate of the
phase noise to the edge of the OFDM symbol gives impressive performance improvement.
To further improve the estimate, once again, interpolation is used. In the LI-TE technique,
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Figure 5.8 Illustration of the phase noise sequence and the corresponding ICI mitigation result given
by the algorithm of Reference [6] and by the introduced LI-TE technique. © 2009 IEEE. Printed,
with permission, from [8].

interpolation is done from the last reliable phase noise estimate of the previous OFDM sym-
bol to the first reliable estimate of the phase noise of the current OFDM symbol. So once
again the idea is very simple and, like in LI-CPE, only linear interpolation is used. According
to empirical analysis, the optimal interpolation window is around 15% of the total OFDM
symbol length at both edges of the OFDM symbol. In this empirical analysis, the length of
cyclic prefix was assumed to be 6.15% of the total OFDM symbol length.

It should be noted that like LI-CPE also LI-TE imposes a delay to the system. LI-TE needs
the ICI estimation results given by the algorithm of Reference [6] for the previous and next
OFDM symbol, so delay of one OFDM symbol results in the first iteration. The delay can
increase when the number of iterations increases if the LI-TE is also used to the next OFDM
symbol prior to interpolation. This is not necessary, because the interpolation can be done
based on the nonperfect phase noise estimate of the next OFDM symbol as well. However,
the best performance is obtained if LI-TE is done for the next OFDM symbol as well as in
the iteration loops. This results in one extra delay length of one OFDM symbol per iteration.
Already two or three iterations give performances very near to the maximum performance
the technique is capable of [7, 8, 39], so the actual number of iterations does not need to be
high. Also, being relatively computationally complex, using many iterations is not very fea-
sible anyway. In terms of complexity, the technique is similar to that in Reference [5].

In Reference [36], the authors present a phase noise compensation scheme using the itera-
tive method proposed in Reference [6]. A Bayesian approach is used in arriving at the esti-
mates of the spectral components of the phase noise. The authors show that the real and
imaginary parts of the spectral components can be characterized as the sum of two random
variables. The first random variable follows a Gaussian distribution while the second has a
distribution that is a weighted sum of gamma distributions. Using this a priori knowledge,
estimates of the spectral components are derived. The obtained estimates require knowledge
of the transmitted symbols. Thus, the compensation method operates in an iterative fashion
where symbol estimates are used for arriving at estimates of the spectral components of the
phase noise process.
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5.4.2.3 Channel Estimation Aspects in the Introduced Techniques

Both the introduced techniques, LI-CPE and LI-TE, rely on interpolation of phase noise esti-
mates between adjacent OFDM symbols. However, if a channel estimation is done in the
conventional way, OFDM symbol by OFDM symbol, the CPE is also estimated at the same
time, and when the channel equalization is done, the CPE information is also lost. CPE infor-
mation is vital for the LI-CPE technique and LI-TE also needs the CPE information to work
optimally, but it still manages to cut the bad peaks in the ICI estimates at the symbol bounda-
ries even when the CPE information is lost. Here, a channel estimation technique that retains
the CPE information is reviewed. It works with a quasistatic channel and was first proposed
in Reference [39].

In the reviewed channel estimation algorithm, channel estimates for the pilot subcarriers
are first needed. These can be attained, for example, by using the zero forcing principle as

Hm,pilotx = Rm,pilots o /Pm (549)

Here, o/ is a point-by-point division operator, I:Im_p,-,,,,s is a (P x 1) vector (P is the number of
pilots) consisting of the estimate of the channel frequency responses for the pilot subcarriers,
which are in (P x 1) vector Py, and Ry, pii0rs is @ (P x 1) vector of the received subcarrier
symbols corresponding to the pilot subcarriers. Now if we assume that the channel is quasi-
static for the duration of K OFDM symbols, we know that, without CPE, the partial channel
estimates I:Im,p,yo,s should be the same for the current and adjacent K — 1 OFDM symbols.
Using this, it is trivial to estimate the relative CPE from the partial channel estimates. The
relative CPE in the /th OFDM symbol with respect to the CPE in the mth OFDM symbol
(we assume that the relative CPE is nonexistent in the m th OFDM symbol) can then be
written as

jl,O,rel = I:Il,pi/ors o /I:Im,pilots (550)

As stated before, this is the relative CPE. We are actually not interested in the absolute CPE
value before channel equalization, but we are indeed interested in the relative CPE value.
This is because the ICI estimation methods LI-CPE and LI-TE rely on the relative CPE infor-
mation. We now have P estimates of the same CPE for each OFDM symbol, so to get the
final CPE estimate for the m th OFDM symbol we can take the mean of the all CPE estimates
within one OFDM symbol as

jO,rel (m> = jm,O,rel (5 Sl )

where X denotes taking the mean of the elements of vector J. The CPE can then be taken
out from the channel estimates before the channel equalization to retain the CPE infor-
mation in the OFDM symbols. This also allows averaging of the channel estimated
within the quasistatic windows. Naturally if the channel can be assumed to be static dur-
ing the K OFDM symbols, it is beneficial to average the channel estimates. However, this
would not be possible if the CPE is not removed first from the channel estimates. After
averaging, the partial channel estimates can be used in any way seen fit for channel
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estimation. Here, the total channel estimate is constructed by using linear interpolation
between the adjacent pilot subcarriers.

It should be noted that for LI-CPE and LI-TE algorithms, the minimum quasistatic case
(K = 3) is already sufficient to make them work very well.

5.4.2.4 TIterative Time-Domain Phase Noise Mitigation Algorithm

The time-domain algorithm (called here the Syrjala algorithm), presented next, was first pro-
posed in Reference [7] and is depicted in Figure 5.9. The idea is to use the time-domain
signal, which is reconstructed from the detection results without phase noise, and compare
that reconstructed signal to the time-domain signal, which still has phase noise present. Since
the phase noise effect in the time domain is a simple multiplication by the time-varying com-
plex exponential, estimating it is very simple.

Let us start from the received time-domain signal of Equation (5.26), which is corrupted
by the noise oscillator at the transmitter, channel and the noisy oscillators at the receiver.
Now, as already discussed, Equation (5.26) can be approximated as

r, ~ H,, diag (ei“’"')xn, + 1z, (5.52)

After DFT, channel equalization and CPE mitigation and IDFT, Equation (5.52) can be writ-
ten as

Ym &~ (ﬁn1,CPE) - [Hm diag (ei(bm)xm + Zm]

. : . - 5.53
diag (e’ (n—mcre) ) Xm + (Hucrr) 2, (353)

%

Here, I:I,,17CPE is the (N x N) convolution matrix of channel estimates, which also includes
the CPE estimate ¢,,, -pr. Already before the IDFT we are able to do symbol detection in the

Ly Channel Est. CPE Est. +

DFT + Equalization Removal IDFT

=y

le
<

®Pm | Scaling % e
+arg() ~Z DFT
. v
1l Xm IDFT |l Symbol
* Detection

Figure 5.9 The first introduced time-domain phase noise mitigation algorithm (Syrjala). The switch S
passes through the OFDM symbol and then opens. It is open until all the iterations have been completed
and the next OFDM symbol is taken in. © 2011 IEEE. Printed, with permission, from [7].
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first iteration, so Figure 5.9 is a little misleading on this part. After the symbols are detected,
an estimate of the time-domain OFDM waveform X,, is reconstructed from the detected sym-
bols with IDFT. This symbol is approximately the input signal of the iterative part of the
algorithm y,, without the phase noise and additive channel noise effect. The signal y,, is
then divided by the signal X,,, and the result is a very crude estimate of the phase noise term,
given as

¢, ~ diag~'(X,,) {diag (ej (®n e ”E))Xm + (I:Im,CPE>7lzm:|
(5.54)

~ dlag (ef(¢yz1 _¢2H7‘CPE)) —+ diag_l (ﬁm) (ﬁﬁ17CPE) Z,,

Here we need reciprocals of the elements in vector X,,, which can however have zero ele-
ments. In the case of a zero element, the resulting value from the inverse operation is set to
zero. This selection is done because it forces the estimation algorithm to ignore zero values
in X,,.. If x,,, had zero values, they would anyway be affected very heavily by the additive
noise, so it is better to ignore them in the estimation process. At this point, we use the knowl-
edge that the phase noise complex exponential and the actual phase noise sequences are steep
low-pass processes, so we filter signal ¢,,, to improve the estimate. Prior to filtering, however,
we scale the signal and take its argument. The scaling is done to give more weight to
the samples that probably have more amplitude. This is beneficial because the additive
noise affects the high-amplitude samples very heavily and has only a mild effect on low-
amplitude samples. The dynamics of the signal is high because the OFDM signal is well
known to have a high peak-to-average power ratio. The scaling is done according to the
amplitudes of the reconstructed signal as

_ V2%l

5.55
q No/N (5.55)

This is an (N x 1) vector of scaling factors, where |§(m|2 is a vector consisting of squared
absolute values of the elements of the vector X, and N, is the number of active subcarriers.
With this scaling, it is assumed that each active subcarrier has unit average power and that
the channel power response is also unity. The scaling indeed weights the high-amplitude
signal samples exponentially. After scaling, taking an argument and low-pass filtering, the
estimate of the phase noise (without the estimated part of the CPE) can be written as

LPF{diag(q)arg((pm)} ~ d)m _qgm.CPE (556)

Here, the arg(-) function gives the argument of a complex exponential. This is then used as
an argument of the inverse complex exponential function, and the time-domain input signal
of the algorithm y,, is sample by sample multiplied by this. The result is then discrete Fourier
transformed and the symbols are detected. The algorithm can be used iteratively by using
these now much improved symbol detection results as a basis for reconstructing a new time-
domain reference signal X,,,.
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5.4.3 Performance of the Algorithms
5.4.3.1 Parameters of the Simulation and the Simulation Setup

To compare the performance of the presented phase noise mitigation algorithms, symbol
error rate (SER) simulations are run with the following simulation setup. First, a 3GPP-LTE
downlink type OFDM signal with 1024 subcarriers is created with 15 kHz subcarrier spac-
ing, 300 active 16 QAM modulated subcarriers on the both sides of the centre subcarrier are
created and null carriers are added so that the total of 1024 subcarriers are in place. After the
signal creation the cyclic prefix of length 63 samples is added to the OFDM symbols. The
transmitter phase noise is then modelled to the signal. After this, the signal is put through a
channel, either the additive white Gaussian noise (AWGN) channel or the extended ITU-R
vehicular A multipath channel [40]. The multipath channel is assumed to be quasistatic for
the duration of 12 OFDM symbols. After the channel, receiver phase noise is modelled and
the OFDM signal is inverse discrete Fourier transformed. Then, the channel and CPE are
estimated and equalized. In the channel estimation, three cases are simulated: (1) perfect
channel information, (2) a traditional pilot subcarrier-based LS algorithm with linear interpo-
lation to estimate the missing channel frequency response and (3) the advanced channel
estimation scheme proposed in Reference [39]. For the perfect channel information case,
only 16 subcarriers are considered as pilots (for CPE estimation), and for practical channel
estimation cases 66 pilots are used. The channel and CPE equalization is then followed by
the ICI mitigation algorithms presented and proposed.

All the iterative ICI mitigation algorithms are iterated three times. For the Petrovic algo-
rithm [6], and thus for Bittner [S] and LI-TE algorithms [8, 10, 39], the parameter # = 3. For
the Bittner algorithm 70 samples and for LI-TE algorithms 155 samples at both edges of the
OFDM symbol are used for tail estimation. For the Syrjala algorithm [7, 10], the used low-
pass filters to separate the phase noise estimate from the noise are designed with the Remez
algorithm and are of the order of 200 and 350 for the AWGN channel and extended ITU-R
vehicular A channel, respectively.

5.4.3.2 Analysis of Results of Simulation

In Figures 5.10 and 5.11, the simulation results are presented for all the presented phase
noise mitigation algorithms in the additive white Gaussian noise channel case. Clearly
the performance of the Syrjala algorithm is superior to that of the other algorithms over
the simulated received SNR and phase noise 3-dB bandwidth regions. Also the LI-TE
technique does a good job in phase noise mitigation. In Figures 5.12 and 5.13, the per-
formances of two of the best algorithms are compared in the extended ITU-R vehicular A
multipath channel case with different levels of prior channel knowledge. Only two of the
best algorithms were selected because otherwise the figures would have been too busy.
Furthermore, the relative performance difference is the same compared to the AWGN
case, with one exception: the LI-TE and LI-CPE methods have very good gain when
using the proposed advanced channel estimation scheme. As depicted in the figures, LI-
TE even outperforms the Syrjala algorithm in the low-phase noise region when advanced
channel estimation is used. However, the Syrjala algorithm then regains its place as the
best performing algorithm again when the phase noise error starts to dominate at higher
phase noise regions.
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Figure 5.10 Simulated SER versus phase noise 3-dB bandwidth. The AWGN channel with a fixed
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Figure 5.11 Simulated SER versus received SNR bandwidth. The AWGN channel and a fixed phase
noise 3-dB bandwidth of 300 Hz.

5.5 Conclusions

Phase noise has a serious effect on performance of OFDM transceivers. In this chapter, the
effect was analysed in terms of the SINR and capacity. The SINR analysis was done for
arbitrary oscillators, and the result was a very simple formula that can be used in the design
of an oscillator used in OFDM receivers. The performance of OFDM systems impaired by
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Figure 5.12 Simulated SER versus phase noise 3-dB bandwidth. The extended ITU-R vehicular A
channel with a fixed received SNR of 26 dB. Three different channel estimation approaches are used.

phase noise was also characterized in terms of the link capacity. Analytical expressions of
average capacity of an OFDM radio link impaired by phase noise were presented. For a given
signal-to-noise ratio, the capacity decreases, in a nonlinear fashion, as the phase noise 3-dB
bandwidth increases. Also, phase noise mitigation algorithms for the OFDM signal were
presented and their performances were compared to each other. The phase noise mitigation
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Figure 5.13 Simulated SER versus received SNR bandwidth. The extended ITU-R vehicular A
channel and a fixed phase-noise 3-dB bandwidth of 300Hz. Three different channel estimation
approaches are used.
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algorithms, which also consider the intercarrier-interference effect provide a significant
increase in performance when compared to algorithms considering only the common phase
error effect.
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