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PREFACE

Coded communication that is both bandwidth and energy-efficient has traversed a
long and twisted path. As with much else, it began in Shannon’s first channel coding
paper: That work allows for any number of databits to be crammed into a unit of
bandwidth, and some important present-day formulas are there. Still, coding in its
first 30 years was viewed as a wideband technique, that made possible reduced energy
in return for extra bandwidth. In this way, we have reached the planets and beyond.

OnEarth todaywe need to save bandwidth. Coding that did not increase bandwidth
began to appear in the 1970s under the heading of coded modulation. The realization
that such was possible was a shift in our thinking. But there were puzzles. Coding led
to large energy savings in wideband transmission, but did the same savings exist at
narrowband? Intersymbol interference (ISI) problems attracted interest, and methods
for removing ISI more and more resembled decoding algorithms, but was ISI a form
of coding, and if it was not, how did it differ? How to think about bandwidth was
an ongoing puzzle and common ways of measuring it sometimes led to signaling
that seemed to violate Shannon’s capacity. What role orthogonal transmission pulses
play was another puzzle; many thought that orthogonal transmission was sufficient
to describe all interesting methods. All of this became more mysterious as signaling
bandwidth narrowed.

This book is the culmination of a long effort by the author and others to allay
these mysteries. To do so requires broadened and more careful ideas of modulation,
coding, and bandwidth. Without them the book cannot succeed, and much attention
has been given to these concepts.

There have been controversies along the way. Mazo’s idea of faster than Nyquist
signaling was not easily accepted. How could the Nyquist criterion be violated? The
way out of the paradox lay in more careful definitions. In more recent years, some

ix



x PREFACE

have objected to ideas that appeared to violate capacity. This too was resolved by
more careful definition. Let it be said at the outset that nothing in this book violates
either Shannon or Nyquist. Their ideas are safe and strong as ever.

Overall, the book seeks to resolve mysteries, then measure the performance of real
methods, then make it possible for others to repeat the tests and adapt the methods to
their own use. With regard to the last, the book has several special features. An effort
is made to list concrete, good codes. Matlab routines are given that measure minimum
distance, probability of error, and Shannon limits. ISI configurations are given that
achieve set bandwidths. Particular attention is given to receiver algorithms. These
are generally simple in principle, but there are many troublesome details in their
implementation. This is particularly true of algorithms that handle ISI, and readers
will not get the performances in the book unless most of these details are attended
to. It is often true in narrowband coding that the Devil is in the Details. As a rule,
one can ignore many if the transmission energy is raised, but coding is after all about
saving energy, and ultimate performance is thus a matter of details.

In tracing the story of bandwidth efficient coding, I have attempted to show its
historical development as well as explain its ideas. However, I am not a historian
and I apologize to the many contributors that are not referenced by name and may
have been overlooked. The priority in citations is first to establish the advent of ideas,
second to give the reader a good source of further knowledge, and only third to show
the breadth of contributors.

In this and other work, I have had the benefit of a great many research colleagues
over the years. Space limits me here to acknowledge only those who made special
contributions to the book and to the ideas of bandwidth efficient coding. I would
like to mention first some early pioneers. James Mazo of Bell Laboratories was
a fundamental contributor who 40 years ago devised the attitude behind and the
provocative name Faster than Nyquist Signaling. B, C, J, and R (Lalit Bahl, John
Cocke, Frederik Jelinek, Josef Raviv) performed early iterative decoding work and
devised the eponymous BCJR algorithm, without which decoding cannot function. I
particularly acknowledge Frederik Jelinek, who was my Ph.D. supervisor at Cornell
University; despite rumors to the contrary, he and I worked on a completely different
topic, but the BCJR and iterative decoding were near at hand. Prof. John Proakis
of Northeastern University, Boston has contributed in diverse ways to intersymbol
interference problems over the entire history of the subject and is an inventor of the
optimal detector for it. Prof. Lars Zetterberg of Royal Institute, Stockholm, believed
in bandwidth efficient coding from the 1960s and inspired many on the Swedish
scene to pursue these problems. Catherine Douillard, Claude Berrou and coworkers
proposed the turbo equalizer, which is still the basis of most really bandwidth efficient
coding. Last I acknowledge David Slepian, who was a friend and inspiration to many
of us in the years 1960–1985, and who more than anyone else straightened out the
puzzle of signal bandwidth. Both David (2007) and Frederik Jelinek (2010) have
passed away and cannot know what their work became.

In more modern times, I was fortunate to work with a number of talented research
students at Rensselaer Polytechnic Institute and Lund University whose work figures
in this book. These include Fredrik Rusek, who derived detailed capacity results
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and much else, Adnan Prlja, who carried out early iterative receiver tests, and Mehdi
Zeinali, who searched for and found good convolutional codes, sometimes after hours
and without a salary. During the 1980s and 1990s, major contributions were made
by Nambirajan Seshadri and Krishna Balachandran, who attacked the intersymbol
interference receiver issues that were then outstanding. Amir Said in 1994 finally
placed energy and bandwidth of intersymbol interference on a firm theoretical footing.

In recent years, I have had many discussions and argumentations with European
colleagues. Particularly, I would like to acknowledge Göran Lindell and Micha
Lentmaier at Lund, Nghia Pham of EUROSAT Paris, and Joachim Hagenauer at the
Technical University of Munich. Special thanks are due to my editorial colleagues at
Wiley-IEEE Press over the years and to my editor for this book Mary Hatcher.

It is a mistake to think that ideas come from a single time and place, and to the
many not cited here and whose influence was more indirect, I say a grateful thank
you.

It is a pleasure to recognize research support that played a role in thework presented
here. The Swedish National Research Agency (Vetenskapsrådet) supported the work
as part of annual grants over the years 2000–2013. The Swedish Foundation for
Strategic Research (Stiftelse för Strategisk Forskning) was instrumental with its long-
term funding of the Lund Center for High-Speed Wireless Communication starting
in 2006. I would especially like to acknowledge the L.M. Ericsson company, which
established the Chair in Digital Communication that I occupy at Lund University.
These three organizations have been mainstays of basic engineering research in
Sweden, to the great benefit of that country, and indeed the world.

Lund, Sweden JOHN B. ANDERSON



1
INTRODUCTION

PROLOGUE

How does one transmit information when bandwidth is expensive? One can explore
new wavelengths. One can use multiple antennas to distinguish more pathways. One
can design better modulation and coding for each pathway. This book is about the
last.

According to the laws of nature, sending bits of information via an electrical
medium requires two main resources: energy and bandwidth. Each bit needs energy,
and just as in soccer football, a certain energy is needed to hit the ball far enough.
Adding bandwidth to football needs new rules. Suppose every player has a ball and
all must pass through a narrow passage on the way to the goal. How difficult is it to
reach the goal?

Electrical communication is a game too, played according to nature’s laws. In
the first half of the twentieth century, several of these became clear. First, much
less energy is needed per bit if the signal bandwidth is widened. Second, a certain
type of energy pulse, called “orthogonal,” is easier to process. These facts were well
established in 1949 when Claude Shannon published something different, a formula
for the ultimate capacity of a set bandwidth and energy to carry information. The key
to approaching that limit is coding, that is, imposing clever patterns on the signals.
As much as 90% of signal energy can be saved compared to rudimentary methods,
or the information can be sent much further. In principle, whatever configuration of
energy and bandwidth was available, it could be coded.

Bandwidth Efficient Coding, First Edition. John B. Anderson.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Nonetheless, those who designed codes in the following decades thought of them,
consciously or not, as trading more bandwidth for less energy. Even with a simple
trade, a signal could travel much further if its bandwidth were scaled up. In this
way---and only this way---signals reached Mars and even Pluto. Neither was crowded
with players, so that wide bandwidth signals were practical. There will soon be
rovers from several nations on Mars, so that allotting wide bandwidth to each is not
quite so practical. Here on Earth the situation is more desperate. Such services as
cellular wireless and digital video must share a very crowded spectrum; furthermore,
governments have discovered they can force providers to pay astonishing prices
for bandwidth. Today, bandwidth costs far more than energy. Everyone needs to
minimize it.

In the 1970s, methods of signal coding were discovered that did not increase
bandwidth; signals could travel farther and easier without scaling up bandwidth.
This was clear in Shannon’s 1949 formula from the first day, but the concepts took
time to sink in. What his formula really says is that coding leads to large savings
no matter what the combination of energy and bandwidth. Today, with bandwidth
costly, we want to work at narrow bandwidth and higher energy, not the reverse. The
problem is: We know little about how to design the coding. The purpose of this book
is to take that next step. How should efficient signal coding work when very narrow
bandwidths per bit are available?

1.1 ELECTRICAL COMMUNICATION

This chapter introduces important and potentially troublesome concepts in a mostly
philosophical way. Among them are bandwidth and time, pulse shapes, modula
tion, and coding. The needed formal communication background is Chapter 2, and
Shannon’s theory appears in Chapter 3. Certain concepts need some evolution to fit
modern needs. The outcome of the book is that practical coding schemes exist that
work well in a very narrowband world.

Communication transmits messages through time and space. In this book, the
medium is electrical signals, and we will restrict ourselves to radio. For our purposes,
messages are composed of symbols, and we want to transmit these accurately and
efficiently through the physical world. In communication engineering, sending a
symbol has three basic costs, energy, bandwidth, and implementation complexity.
Each trades off against the others. Once the three costs are set the measure of good
performance is most often probability of symbol error.

Even a century ago, it was clear enough that error may be reduced by spending
more energy. A basic fact of communication, that first became evident with FM
broadcasting, is that for the same performance, energy may be traded for bandwidth.
Error-correcting codes, as first used, were thought of as amanifestation of this fact: By
transmitting extra check bits, energy could be saved overall. But Claude Shannon’s
1949 work [7] implied that energy or bandwidth or both could be reduced while
maintaining the same error performance. Each combination of energy and bandwidth
had a certain capacity to carry symbols but alas, there was no free lunch, and rapidly
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diverging “coding” complexity is required to approach this capacity. Today, energy,
bandwidth, and complexity are a three-way trade-off.

Since 1949 there have been 60 years of progress and a rich research literature, but
coding and its attendant complexity have been associated mainly with relatively low
energy and wide bandwidth on a per data bit basis. Economic necessity and some
changes in physical transmission paths are forcing changes in that thinking. Two
examples are wireless networks and satellite digital broadcasting. Successive mobile
network generations have offered more bits per second to their customers and the
upcoming fifth Generation Systems will employ a variety of methods to offer even
more. Among them are better antennas and shorter paths, both of which increase the
symbol energy, making possible narrower bandwidth. According to theory, there is
just as much to gain from coding and complexity in this narrowband/high-energy
regime as we have enjoyed in wider band applications.

We move now to fundamental concepts and a sketch of the book. Knowledge of
history helps make sense of a subject, and so we offer some high points, together
with some important published works. The prerequisites for the book are first courses
in probability, Shannon theory, signal space theory, and coding methods of the
traditional type. Our own treatment of these subjects will be to extend their results to
the new narrowband field.

Bandwidth and Coding. Coding, bandwidth, and their interaction lie at the heart of
this book.

Coding theory is built upon abstract models, nonphysical concepts such as channel
models, information, symbols, and arithmetic operations. Although it is not necessary
to its mathematics, the theory can suggest physical conclusions by starting with
signals and symbols that are avatars to physical channels and transmissions. In this
book, the physical channel is always the white noise linear channel, wherein a white
noise stochastic process with a certain power spectrum 𝑁0∕2 watts/Hz (the noise)
adds to a analog function of time (the signal). Something is needed to convert abstract
symbols to the analog domain; this is a modulator. This last is explored in Section
1.2. Amodulator---demodulator by itself has a certain probability of error. The import
of Shannon’s work is that another two boxes, the encoder---decoder, can be added
that can in principle reduce the error rate virtually to zero, provided that the energy-
bandwidth combination is sufficient. The distinction between coding and modulation
is a tricky one, taken up initially in Section 1.4, and the Shannon theory tools we
need are in Chapter 3. That chapter starts from the core result in the 1949 paper,
which is the capacity of the additive white Gaussian noise (AWGN) channel. In
this channel, an independent Gaussian-distributed noise value with mean zero and
variance𝑁0∕2 is added to a real signal value. Initially, there were no analog signals;
part of Shannon’s genius was making the critical jump from the abstract AWGN
channel to the channel with analog signals and bandwidth that we need in this book.

While it is true that the promise of narrow band/high-energy coding was already
clear in 1949, we have spent most of the time since then developing techniques in the
opposite regime. During its first 25 years, coded communication was primarily about
parity-check codes and the binary symmetric channel. Codewords contained extra



4 INTRODUCTION

“redundant” bits, there being no otherway to distinguish codeword bits from customer
bits. With such codes nearly universal, one could easily fall into the belief that coding
mostly exchanged extra bits (i.e., bandwidth) for coding gain (reduced energy). With
the advent of coded modulation in the mid 1970s, cracks appeared in this belief. New
transmission methods such as continuous-phase modulation (CPM) and set-partition
coding appeared,which reduced energywithout bandwidth expansion, and sometimes
did this without redundant bits. By the late 1970s, it was clear that codes could even be
used to reduce bandwidth, or even bandwidth and energy both.1 These new methods
eventually broke through the coding equals bandwidth-expansion belief, and doubled
or tripled the rate of coded communication in a given bandwidth. Today, we would
like to double or triple it once more.

More changed in the 1970s and 1980s than the bandwidth/energy regime. If coding
was not redundant bits, then what was it? If CPM, which seemed to be modulation,
and convolutional codes both required a trellis decoder of similar size, then were they
not both coding schemes? Set-partition codes contained a convolutional code within
them; was that the code, or was something else? Should removal of intersymbol
interference (ISI) be called decoding? It became clear that coding needed more
careful definition if there were to be reliable structure and language for our work.

So to bandwidth itself. To the philosophical, bandwidth is a measure of change
ability, referenced to a unit of time. In the popular mind, it is the number of data bits a
system such as a telephone handles, again per unit time. To a prosaic communications
engineer, it is simply the width of a Fourier transform. These views are not really
different: A signal can only convey information by changing, the more change the
more information, and a signal with a narrow Fourier spectrum is one that changes
slowly. All three views carry within them a unit of time, in MKS units the second.
These views reflect our life experience, but communication theory is based on the
product of changeability and time, the total change however accumulated. To send a
certain quantity of information requires a certain accumulation. The product unit is
the Hertz-second, a subtle concept explained more fully in Section 1.3.

This book is about more efficient transmission via coding when the relative band
width is narrow. The channel is linear and nonchanging, with simple white noise.
We can look forward to second-generation research in synchronization, fading and
nonlinear channels in the future, but they are not here yet.

1.2 MODULATION

Modulation is the conversion of symbols to physical signals. In this book, they are
analog signals. Effectively, it is digital-to-analog conversion.Wemay as well assume
that data to be transmitted arrive as bits, and the modulator then accepts these log2𝑀
bits at a time. We normally think of a modulator as accepting log2𝑀-bit groups and

1The author recalls adding some provocation to conference presentations in the 1970s by suggesting that
the coding schemes presented did not increase bandwidth. Fortunately, the result was only laughter.
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applying some process to each one. Most often the modulation process works from a
set of𝑀 alternatives; for example, it may produce𝑀 tones or phases or amplitudes.
We associate each𝑀-fold alternative with a piece of transmission time, the symbol
time, denoted 𝑇𝑠, or when no confusion can result, simply 𝑇 . The average transmitted
energy during 𝑇𝑠 is the symbol energy 𝐸𝑠.

Referring spectra and energy back to the data bits divides their values by log2𝑀 .
This leads to the soundest analytical picture, but the𝑀 that best exploits the channel
resources is often nonbinary. We will reserve transmission symbol to mean this
𝑀-ary set of alternatives.

Within this framework, a formal definition of modulator for this book is “A
conversion of all possible 𝑀-ary symbol sequences to analog signals by repeated
application of a fundamental operation to each symbol”.

Most modulators in use today are pulse modulators, meaning that they associate
each symbol with a pulse according to

√ ∑
𝑠(𝑡) = 𝐸𝑠 𝑢𝑛ℎ(𝑡 − 𝑛𝑇 ), (1.1)

𝑛

where 𝑢𝑛 is the symbol and ℎ(𝑡) is the base pulse. The symbols are pulse amplitudes
and by convention they are independent random variables with zero mean and unit
variance; consequently,𝐸𝑠 in Eq. (1.1) is the average symbol energy. The process here
is called linear modulation, because the pulses simply add. In the classic modulator,
the pulses are 𝑇 -orthogonal, meaning

ℎ(𝑡)ℎ(𝑡 − 𝑛𝑇 ) d𝑡 = 0, 𝑛 an integer, 𝑛 ≠ 0. (1.2)∫
The great majority of modulators in applications heretofore are linear and use or
thogonal pulses. Nonlinear modulators have some use, and classic examples are
frequency-shift keying and the CPM signaling in Chapter 6. There is little loss in
Shannon theory from the linearity requirement, but the same is not true with or
thogonality. There is evidence that it leads to loss in many situations and most new
methods in this book dispense with it. Its advantage is that it leads to a simple
optimum detector; this is explored in Section 2.2.

To maintain the unit variance property on 𝑢𝑛, a binary symbol alphabet needs to√
be {+1,−1}. A uniformly spaced 4-ary modulator has alphabet (1∕ 5){±3,±1} and√
an 8-ary (1∕ 21){±7,±5,±3,±1}. These three standard modulators will be referred
to by their traditional names 2PAM, 4PAM, and 8PAM, where PAM means pulse-
amplitude modulation. There can be a small advantage from nonuniform spacing,
especially in bandpass schemes, but we will not pursue this in the book.

Equation (1.1), without a sinusoidal carrier, is said to be in baseband form. The
base pulse ℎ(𝑡) and the signal 𝑠(𝑡) ordinarily have a lowpass spectrum. Most applica
tions employ carrier modulation, which is the same except that the spectrum of 𝑠(𝑡) is
translated up by the 𝑓𝑐 Hz, the carrier frequency. The translation is performed through
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multiplication by either sin 2𝜋𝑓𝑐𝑡 or cos 2𝜋𝑓𝑐𝑡, and the final signal has the form
√

𝑠(𝑡) = 2𝐸𝑠 [𝐼(𝑡) cos 2𝜋𝑓𝑐𝑡 −𝑄(𝑡) sin 2𝜋𝑓𝑐𝑡]. (1.3)

Here 𝐼(𝑡) and 𝑄(𝑡) are both baseband, that is, lowpass, signals called respectively,
the in-phase and quadrature signals, and the outcome is a signal with a narrow
spectrum centered at 𝑓𝑐 Hz. 𝐼(𝑡) and 𝑄(𝑡) satisfy

[ ]
[𝐼2(𝑡) +𝑄2(𝑡)] 𝑑𝑡 = 1,∫

𝑇

where ∫ is over a signal interval; consequently 𝐸𝑠 is the symbol energy, this time
𝑇

for a dual symbol and two signals. Equation (1.3) is said to be a passband signal,
written in the in-phase and quadrature, or I/Q, form.2 Observe that one passband
signal corresponds to two baseband signals. Each can take an independent Eq. (1.1)
and they can be detected independently if cos 2𝜋𝑓𝑐𝑡 is known. Any passband signal
can be constructed in this way.

Passband signals are essential because they allow many signals to be sent through
the same medium and the properties of different wavelengths to be exploited. But
for several reasons we will treat primarily baseband signals in this book. The chief
one is that with perfect phase synchronization, 𝐼(𝑡) and 𝑄(𝑡) are obtainable and
independent and there is no reason to add the complexity of the passband form. A
passband notation is a statement that there is imperfect synchronization or that there
exist channel distortions that affect I and Q differently. These are interesting topics,
but the schemes in this book have not yet reached that state of the art.

Pulse Properties. At first it may seem that a practical pulse is one that takes place
wholly in its own interval, but it became clear by the 1950s that not much reduction
in implementation comes from this and the bandwidth properties are far worse. The
serious study of pulse shapes began with Harry Nyquist in 1924 [5], who studied
pulses that have zeros at all integer multiples of 𝑇 . This property is now called the
Nyquist pulse criterion (NPC). He proved that a sufficient condition for a symmetric
NPC pulse is

Property 1.1 (The Spectral AntisymmetryCondition) A sufficient condition that
a symmetrical ℎ(𝑡) be NPC is that 𝐻(𝑓 ), the Fourier transform, is antisymmetric
about the points [𝐻(𝑓 ), 𝑓 ] = [𝐻(0)∕2, 1∕2𝑇 ] and [𝐻(0)∕2,−1∕2𝑇 ].

Note that a symmetric pulse has a real, symmetric transform. Later researchers
found the necessary and sufficient condition and removed the requirement that ℎ(𝑡)
be time symmetric. These issues are discussed in introductory texts ([1], Section
2.2; [2], [3]). However, there is little reason in theory or in applications to abandon

2A common alternate framework takes 𝑠(𝑡) as the real part of ℎ(𝑡) exp 𝑗2𝜋𝑓𝑡, where ℎ(𝑡) is now complex.
See, for example, the text [3]. The method is used because complex numbers mimic the needed operations,
not because there are unreal signals.
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symmetric pulses, and we will use them and the antisymmetry condition almost
exclusively.

In a later paper [6], Nyquist observed that there seemed to be a lower limit of
about 1∕2𝑇 Hz to the bandwidth of an NPC pulse. Research by others eventually
developed the following theorem and the closely allied sampling theorem:

Property 1.2 The bandwidth of any NPC pulse with zeros at 𝑛𝑇 cannot be narrower
than 1∕2𝑇 Hz, and the narrowest pulse is ℎ(𝑡) = 𝐴 sinc(𝑡∕𝑇 ), A is a real constant.

Here sinc(𝑥) is defined as sin(𝜋𝑥)∕𝜋𝑥. The pulse is clearly NPC; that no narrower
pulse has zeros at 𝑛𝑇 is shown in the text references. The sinc pulse plays a major
role in communication theory and will come back in Section 1.3.

Although the zero crossing property was important in Nyquist’s time, today it is
pulse orthogonality thatmatters, because such pulses have a simple optimum receiver.
But the two concepts are closely related. Equation (1.2) is simply a statement that
the autocorrelation of ℎ(𝑡) is itself an NPC pulse. The Fourier transform of this
autocorrelation is always |𝐻(𝑓 )|2, whether or not ℎ is symmetric. This leads to two
properties:

Property 1.3 (Nyquist Orthogonality Criterion) ℎ(𝑡) is an orthogonal pulse if
and only if its autocorrelation function is NPC.

Property 1.4 A sufficient condition thatℎ(𝑡) is orthogonal is that |𝐻(𝑓 )|2 is antisym
metric about the points [|𝐻(𝑓 )|2, 𝑓 ] = [|𝐻(0)|2∕2, 1∕2𝑇 ] and [|𝐻(0)|2∕2,−1∕2𝑇 ].
Orthogonal Pulse Examples. An obvious example is the square pulse

√
𝑣(𝑡) = 𝑇 , −𝑇 ∕2 < 𝑡 ≤ 𝑇 ∕2,

0, otherwise, (1.4)
√

shown here as a unit energy pulse. Its spectrum is 𝐻(𝑓 ) = 1∕𝑇 sinc(𝑓∕𝑇 ). This
pulse has very poor spectral properties, since |𝐻(𝑓 )| decays only as≈ 1∕𝑓𝑇 , which is
far too slowly for applications. The spectrum does not have the spectral antisymmetry
(Property 1.4), but ℎ(𝑡) is nonetheless 𝑇 -orthogonal.

An important practical example is the root-raised-cosine (rootRC) pulse, so named
because its square spectrum |(𝐻(𝑓 )|2 obeys Property 1.4 with an antisymmetric piece
of a raised-up cosine. The unit-energy time pulse is

sin[𝜋(1 − 𝛼)𝑡∕𝑇 ] + (4𝛼𝑡∕𝑇 ) cos[𝜋(1 + 𝛼)𝑡∕𝑇 ]
ℎ(𝑡) = √ , 𝑡 ≠ 0, 𝑡 ≠ ±𝑇 ∕4𝛼;

𝑇 (𝜋𝑡∕𝑇 )[1 − (4𝛼𝑡∕𝑇 )2]√
(1∕ 𝑇 )[1 − 𝛼 + 4𝛼∕𝜋], 𝑡 = 0;√
(𝛼∕ 2𝑇 )[(1 + 2∕𝜋) sin(𝜋∕4𝛼) + (1 − 2∕𝜋) cos(𝜋∕4𝛼)], 𝑡 = ±𝑇 ∕4𝛼.

(1.5)
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FIGURE 1.1 Root RC orthogonal pulses (a) and their spectra (b) with excess bandwidth
𝛼 = 0, 0.1, 0.3. Unit energy, 𝑇 = 1.

The spectrum is

|𝐻(𝑓 )|2 = 1, 0 ≤ 𝑓 ≤ (1 − 𝛼)∕2𝑇 ;
2[𝜋𝑇cos (𝑓 − 1 − 𝛼 )], (1 − 𝛼)∕2𝑇 < 𝑓 < (1 + 𝛼)∕2𝑇 ;

2𝛼 2𝑇
0, elsewhere. (1.6)

Here 𝛼 ≥ 0, the excess bandwidth factor is the fraction by which the pulse bandwidth
exceeds 1∕2𝑇 Hz. Figure 1.1 shows the pulse and spectrum for 𝛼 = 0, 0.1, 0.3, the
𝛼 = 0 case being the sinc pulse. The time main lobe does not differ much but the side
lobes rapidly diminish as 𝛼 grows. The 30% case is arguably the most common pulse
in applications, and it will be the standard pulse in most of the book.

The root RC pulse family shows a central fact about pulse design, that bandwidth
trades off against time duration. If small interferences with neighboring channels
matter, even a small change in bandwidth has amajor effect. The uncertainty principle



TIME AND BANDWIDTH 9

of Fourier analysis states that signal time and bandwidth have a constant product.
Beyond this, if ever narrower bandwidth is demanded for a fixed symbol time 𝑇 , a
point must be reached where pulses cannot be orthogonal (it is ≈ 1∕2𝑇 Hz).

The spectra of modulated signals will be taken up in the next section; the error
performance and optimum receivers are the subject of Sections 2.1--2.2.

1.3 TIME AND BANDWIDTH

Signal spectra are a crucial issue in this book. Transmission capacity is more sensitive
to bandwidth than to energy or signal complexity. Not only width matters but also
the shape of the spectrum, and particularly, the stop-band side-lobes. The sensitivity
heightens as the signal bandwidth efficiency grows. Since bandwidth efficiency is
the reason for the book, spectra are a central issue.

The Hertz-Second. Information is of itself timeless. Yet we live in a world where
activities are measured by time, and as communication engineers we measure signal
bandwidth. In the transmission of information by signals, these resources trade off
against each other. For a given parcel of information, if we want to send it faster, we
use less time and more bandwidth; if bandwidth is scarce, we take more time. Earlier
in the chapter simple modulation signals were defined. By scaling time 𝐴-fold faster
and power 𝐴-fold larger, symbols transmit in the same energy per bit, but are 𝐴-fold
faster and in 𝐴-fold wider bandwidth. If we think in terms of a joint time--bandwidth
resource, the scaling sets the latency of the transmission but nothing else changes,
at least in free space and with sufficient technology. If there are many parcels to
send through the same channel, the time--bandwidth available can be divided among
the parcels in many ways until the total resource is consumed. The time--frequency
consumed by a given transmission will be called its occupancy later in the book.

Humans are not timeless, wideband beings with no opinion about latency, but in
every application delays up to a limit are acceptable. Thus, some time--bandwidth
trade-off is possible and we often accept a time--bandwidth product view. Another
compelling reason for such a view is communication theory, which expresses itself
most fundamentally and yields its best insight in terms of this product. The view
dominates this book. Its unit is the Hertz-second (Hz-s). According to Webster, the
Hertz is a “… unit of frequency of a periodic process equal to one cycle per second.”
A Hz-s is thus dimensionless in the sense that it does not refer to an arbitrarily defined
unit like a second. An alien being will see the same quantity that we do.

A fundamental unit of efficiency in communication theory is bits perHertz-second,
abbreviated b/Hz-s. We will call this bit density to distinguish it from the more
common and more loosely used word rate, which can mean input bits per output
bit or per second depending on the context. We will avoid common measures of
bandwidth efficiency such as bits per Hertz, or its reciprocal Hertz per bit, since these
are dimensionally incorrect, and they assume that a second of time has elapsed---they
will confuse an alien friend.
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Bandwidth Criteria. To form a time--bandwidth product, one must measure band
width, but this is not straightforward. To begin with, a finite-time signal has an
infinitely wide spectrum. Second, one wishes a single-number measure, whereas the
spectrum of a signal is an entire function of frequency. As well, one wants a measure
that makes sense with both practical and theoretical signals. Several criteria have
evolved and find use in the book.

• Half-Power Frequency. Also called 3 dB down frequency; the 3 dB can be
another useful value, such as 10 dB. However, because of the spectral anti-
symmetry Property 1.1 that applies to orthogonal pulses, the 3 dB version is
particularly useful: All reasonable orthogonal pulses with the same symbol time
𝑇 have the same 3 dB down frequency.

• Power in Band (PIB). This refers to the fraction of signal power that lies in
the band [−𝑓, 𝑓 ], 𝑓 > 0, expressed usually in percent. The measure applies to
baseband signals. For example, the 99% PIB frequency is 𝑓 inside which lies
99% of the average signal power. The PIB measure is useful because 𝑓 for 99%
or 99.99%, depending on the situation, mark the bandwidths outside of which
there will be little interference with neighboring channels. The terms power and
energy are used interchangeably, but technically, power applies to an ongoing
signal and energy to a single pulse. An alternate measure is the power out of
band fraction (POB), which refers to the percent outside [−𝑓, 𝑓 ].

• The signal space distance between critical signals can be expressed as a function
of frequency and a bandwidth measure derived from that. This method will be
taken up in Section 2.5.2.

An analogous problem is measuring the diameter of the sun. The textbook value
is 1392680 km, but actually the sun declines in density and has no edge. The size of
a kilometer is not in doubt, nor is the Hz, but a density or other feature needs to be
specified. In this book, it is most often convenient to use the half-power frequency,
because for the important class of orthogonal pulses it has a fixed relation to the
symbol time, and the other criteria do not differ much. In some applications and with
some pulses, the 99% PIB is more important.

On amathematical level, all thesemeasures deal in somewaywith the fundamental
problem that a signal or its spectrum or both must lack finite support, while physical
signals and spectra clearly have finite support. In an important 1975 paper [11],
Slepian discusses this puzzle and asserts that the total bandwidth and time  that
one allocates to a signal must always be approximate. Some small fractions 𝜖𝑓 and
𝜖𝑡 of the energy must lie outside the nominal  and  . Fixing the fractions defines
an occupied bandwidth and time. This is the POB idea.

Figure 1.2 illustrates the concept for a signal that is a sequence of the ten 10% root
RC pulses with symbols [1,−1,−1,−1, 1,−1, 1,−1,−1, 1] and 𝑇 = 1. The actual
time signal and spectrum are shown. The inner 10 s × 0.5 Hz box shows the nominal
time--bandwidth occupancy of the signal, which is 5 Hz-s. The outer box shows the
occupancy that occurs when only fractions 𝜖𝑓 = 𝜖𝑡 = 0.01 are allowed outside the
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FIGURE 1.2 Time--bandwidth occupancy of a baseband transmission: Nominal (inner box)
and actual when only 1% of the pulse energy is allowed out of band (outer box). Ten binary
symbols and 10% root RC linear modulation; actual signal (solid line) and spectrum (dashed)
are sketched in the boxes.

box.3 It is clear that the time occupancy now extends far beyond the nominal 10 s, and
the occupancy increases to 8.5 Hz-s. For such a short message, a pulse with a better
trade-off of frequency and time is needed. There is a time--bandwidth optimization
problem here: Given the POB fractions 𝜖𝑡 and 𝜖𝑓 and a 10-symbol message, what
pulse shape minimizes the time--bandwidth occupancy?

We take up occupancy in Chapter 7. The chief conclusions are that the sinc pulse
is not optimum and the best pulse is close to a prolate spheroidal wave function.

Signal Spectra. For a linear modulation signal of Eq. (1.1), every set of 𝑁 bits
produces a signal with its own spectrum. Some are wider band than others. They will
interfere more with a neighboring channel, or if the channel in use has strict band
limitation, they will be damaged more by the limitation. There is a worst case under
a given band limitation; this view is taken up in Sections 2.5 and 7.2.2.

The standard view of modulation spectra is to let 𝑁 grow large and compute
the spectrum averaged over the symbol probability distribution. This is called the
average power spectral density, denoted as PSD. This need not be the spectrum of

3The calculation is performed for one 10% pulse, not for the whole waveform; see Chapter 7.
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any concrete signal, but it is easily computed and universally used. Much of its
convenience stems from the following:

Theorem 1.1 (Linear Modulation Spectrum) Suppose the same pulse ℎ(𝑡) is
used for all𝑁 symbols and the symbols 𝑢𝑛 are IID with mean zero. Then the PSD is

2(1∕𝑇 ) [|𝑢1|2] |𝐻(𝑓 )| . (1.7)

That is, the PSD of a linear modulation is the same as the spectrum of its pulse.
The proof is simple and available in most digital communication texts ([1], p. 30).
Note that the spectrum of the fixed signal in Figure 1.2 is not |𝐻(𝑓 )|2 because it is
not an average.

The ℎ(𝑡) is primarily a baseband pulse in this book, but the theorem holds if
ℎ is a carrier pulse. The IID/mean zero requirement is ordinarily true in practice:
If the mean is nonzero, energy will be wasted sending a carrier component; if the
symbols are not at least pseudorandom, synchronization will be damaged. When the
modulation is coded it is a good assumption, universally applied in this book, that
the code symbols are at least uncorrelated, so that the pulse spectrum carries over as
well to the coded case.

When the symbols are correlated or the modulation is nonlinear, the PSD is more
difficult to compute. Methods exist that are based on cyclostationary random process
theory or a random time offset to the signal; the aim is to define a stationary random
process with an autocorrelation, which has therefore a spectral density (see [4], p.
61ff). We need the calculation only for CPM coded modulation in Chapter 6.

With the PSD 3 dB bandwidth as a measure, an orthogonal𝑀-ary modulator has
time--bandwidth 𝑇 (1∕2𝑇 ) = 1∕2 Hz-s, regardless of 𝑇 and 𝑀 . The bit density is
2 log2𝑀 b/Hz-s.

The Sinc Pulse. This time pulse has appeared as the Nyquist limit to orthogonal
pulses in Section 1.2, and it will appear again in Shannon’s capacity calculation in
Chapter 3. Controversy surrounds its use, which is worth comment. The sinc and its
dual the square pulse are not physically realizable, but to the extent that they can be
approximated, they find use. A true time sinc has an attractive spectrum but many
disadvantages. Symbol timing cannot be obtained by ordinary means ([1], Section
4.7.2); if symbol timing is not perfect, the sum of the detector ISI is a divergent series.
Discrete-time models for faster than Nyquist transmission are difficult to define, and
the sinc is far from the solution to Slepian’s problem. The heart of the problem is the
side lobes in the time domain, which decay only as 1∕𝑡.

The square time pulse has a sinc-shaped spectrum with the dual outcome, that the
1% POB frequency is very large, ≈ 9.5∕𝑇 Hz.

Generally speaking, these outcomes are not acceptable. Sinc pulses are truncated
in time, which raises spectral side lobes outside the nominal [−1∕2𝑇 , 1∕2𝑇 ] Hz
bandwidth, and square pulses are truncated in frequency, which creates ISI. The
smoother a pulse is in time (the larger root RC 𝛼 it has) the easier it is to control
these effects. Still, even practical smooth pulses can suffer. Truncating a 30% root
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RC pulse to time [−2.5𝑇 , 2.5𝑇 ] throws 0.1% of its energy well outside the nominal
[−0.65∕𝑇 , 0.65∕𝑇 ] bandwidth of the pulse ([4], p. 62). The percent may seem small
but it is unacceptable interference in many systems.

Wide- andNarrowbandTransmissionMethods. Whether coded or not, transmission
methods are classed as wideband if their bit density is less than 2 b/Hz-s. This
is because they achieve their rate in b/Hz-s primarily by consuming bandwidth.
Everyday examples are space communication and high-quality FM broadcasting.
The value 2 b/Hz-s is the density of simple orthogonal pulse binary modulation,
as will be shown in Section 2.1. Methods with higher bit density are high energy,
because they depend chiefly on a high𝐸𝑏∕𝑁0. These generally need about 3 dBmore
energy per one-bit increase in density. Short-range wireless links are examples of
high energy systems. Note that the ratio𝐸𝑏∕𝑁0 is what is high, not the bit energy𝐸𝑏.
The choice of wideband or high energy depends on the relative cost of each; there is
nothing inherently wrong with either regime.

We will see this distinction in Chapter 2 for modulations, but it is also apparent
in Shannon’s capacity in Chapter 3.

1.4 CODING VERSUS MODULATION

Not all modulations produce simple pulses and the need to reduce bandwidth can lead
to rather complicated signals. It can be a subtle exercise to distinguish coding from
modulation, especially when bandwidth plays a role. Some controversy surrounds
how to do this. To avoid paradoxes and false hopes, here is a discussion.

Through the development of coding, several concepts have arisen. Coding can be

(i) the imposition of signal patterns, such as a trellis structure or those imposed by
memory;

(ii) the addition of redundancy, especially through parity check bits;

(iii) the expansion of a signaling alphabet, followed by a selection of words that
represent the data, which has a smaller alphabet; and

(iv) selection of a set of some but not all of the possible modulator sequences.

Concept (i) is not suitable for us; we will see that modulators more band limited
than orthogonal pulse schemes create trellis-structured signals and require trellis de
modulation, even though they are not encoders. Concept (ii) is troublesome because
a number of schemes we would like to call coding do not add redundant symbols; one
can say that parity check symbols are an artifact of the binary symmetric channel, in
which coding can happen no other way. Signal alphabet expansion (iii) is problemat
ical for several reasons: The modulator sets the alphabet, not the coding; the alphabet
of some channels, like the AWGN, is the whole real line. Is there a definition of
coding wide enough to include all of the schemes we would like to consider?
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In his Gaussian channel papers Shannon evolves toward concept (iv). His 1949
paper [7] that introduced Gaussian channel coding concentrates on philosophy, ca
pacity, and his “2𝑊 𝑇 ” theorem, which shows that signals over time  and bandwidth
 span 2𝑇 orthogonal dimensions. This crucial result is discussed in Section 3.1.
It makes possible the capacity theorem and the definition of a code. By 10 years later
Shannon would define a code as follows:

… a real number may be chosen at the transmitting point. This number is trans
mitted to the receiving point but is perturbed by an additive Gaussian noise, so
that the 𝑖th real number, 𝑠 , is received as 𝑠 + 𝑥 … A code word of length 𝑛 for

𝑖 𝑖 𝑖

such a channel is a sequence of numbers (𝑠1, 𝑠2,… , 𝑠
𝑛
). This may be thought of

geometrically as a point in 𝑛-dimensional Euclidean space. ([8], p. 611)

This very nearly captures concept (iv) as it will be implemented in this book.
Modulator signals have an expression in terms of orthogonal basis functions,weighted
by real numbers. Each number represents a “channel use.” The receiver seeks the
least-distant whole sequence in Euclidean space. Gallager [9] and Wozencraft and
Jacobs [10] in their classic texts essentially concur.

One hesitates to second-guess these authorities, and in any case definition (𝑖𝑣)
fits our needs. Earlier, in Section 1.2, the definition of modulator included the idea
that all𝑀-ary transmission symbols produce outputs. Building on this, we define a
channel code as a set of some but not all of the possible modulator sequences. If there
are𝑁 channel uses, the code has rate per use

𝑅 = (1∕𝑁) log2(subset cardinality) b/channel use, (1.8)

which is 𝑅∕𝑇 in bits/second with a modulator alone. Note that the modulator need
not come first in the transmitter, so long as there is some way to connect codewords
and modulator outputs.

The rate 𝑅must be less than log2𝑀 . Shannon shows that there is another smaller
rate called channel capacity, such that a set and a decoder exist that achieve arbitrarily
small error probability as𝑁 → ∞.

The codewords in the set can be selected in many ways. Shannon imagined that the
letters were chosen at random, and this turned out to be a powerful idea. In Chapter
4, we borrow a convolutional encoder to make the choice; this can be viewed as
a pseudorandom selection procedure, and just as Shannon predicted, it works very
well. Alternately, words can also be specified on a trellis or graph structure, or as the
solutions of equations, as they are in parity-check codes. However the set is selected,
some sort of block length𝑁 is essential, and it must grow large if 𝑅 is near capacity.

1.5 A TOUR OF THE BOOK

Chapter 2 introduces the communication theory needed for the book, with empha
sis on the issues that play a special role. These include error events, calculation of
minimum distance (which predicts the error rate), suitable receiver structures, the
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BCJR algorithm (essential in iterative decoding), signal phase (which affects decod
ing complexity), and the performance of modulators, both simple ones and those
producing complicated narrowband signals.

Chapter 3 introduces relevant AWGN-channel Shannon theory. The chapter de
rives the capacity of this channel and finds from it the Shannon limit to communication
as a function of the density (rate) per Hz-s, the signal PSD shape, and the signal energy
per data bit. Of these three, density plays the dominant role.

Modulators have associated with them the same three quantities, and an error
probability is computed in terms of them in Section 2.1. The simple ones provide a
benchmark for low-complexity transmission. A good rule of thumb is that their bit
error rates as a function of 𝐸𝑏∕𝑁0 lie about 10 dB from the respective capacity. The
performance of coding schemes lies in between these two limits.

Chapter 4 introduces faster than Nyquist signaling (FTN), the most successful
method of narrowband coding at present. The term has a 40-year history, and it orig
inally meant an orthogonal pulse modulator with symbol time accelerated; the pulses
were no longer orthogonal but the error performance was undiminished. Today FTN
means that modulation pulses are nonorthogonal, for whatever reason. FTN methods
can be coded, and Chapter 3 shows that they have a better Shannon limit. Chap
ter 4 explores many aspects that arise in this new technology, including simplified
receivers, design of good codes, and error performance analysis.

Classical FTN signals were accelerated in time, but the idea extends to com
pression of subcarriers in frequency. The outcome occupies less bandwidth and is
similar to orthogonal frequency division multiplex (OFDM), but with nonorthogonal
subcarriers. Chapter 5 presents this idea and a number of variations. Since OFDM
is a favored method in fourth-generation wireless telephony, this “non-OFDM” is
attracting interest for fifth-generation systems.

Chapter 6 compares these newmethods to older codedmodulationmethods. These
older ideas have bandwidth consumption in between the new ones and binary error-
correcting codes. Some FTN implementations in the literature are also reviewed,
including chip designs.

Chapter 7 explores alternate ideas about the design of the modulation base pulse
itself. One analysis, by Slepian, seeks the pulse with the least time and frequency
occupancy. The outcome is related to the IOTA pulse, a popular pulse in OFDM.
Another analysis seeks the pulse with the best modulator error performance for a
given bandwidth.

1.6 CONCLUSIONS

Where does all this lead? The evidence in this book strongly supports certain conclu
sions:

Very narrowband energy-efficient transmission cannot occurwithout both (𝑖) com
plicated modulation--demodulation and (𝑖𝑖) significant decoding complexity. These
work together.
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Nonorthogonal modulation pulses are necessary. Narrowband transmission is built
upon narrowband pulses. Their response is much longer than the data symbol time
and it leads to significant ISI.

To perform reasonably near the Shannon limit requires iterative decoding. No
other method is available today.
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2
COMMUNICATION THEORY
FOUNDATION

INTRODUCTION

Signal space theory and the communication theory that stems from it provide the
language, methods, and a great many basic results for Gaussian channel transmission.
Our purpose in this chapter is to outline the basic ideas, emphasizing those that are
important in narrowband transmission. Many good text books are available for the
details. Citations will be made to [1], Proakis [2], and the text by Wozencraft and
Jacobs [3], which was the first text to present signal space theory and remains the
best full-length introduction.

Section 2.1 presents signal space ideas and derives error probabilities of simple
modulations. Section 2.2 explores optimal detection under Gaussian noise, beginning
with trains of orthogonal pulses and continuing to detection of nonorthogonal pulse
modulation. The latter type is the key to narrowband signaling. In the front analog
part of the receiver, a simplematched-filter structure turns out to be sufficient for most
purposes, and it retains most of the advantages of orthogonal transmission. It forms
the input to the trellis detection or BCJR algorithm, and these are discussed next.
They depend on discrete-time models, developed in Section 2.4. Faster than Nyquist
signaling is introduced at this point as an example of nonorthogonal narrowband
modulation. The section concludes with model phase versions, an important concept
in theory and implementations. Section 2.5 ends the chapter with an exploration of
error events, their signal space distances, and their spectral analysis.

Bandwidth Efficient Coding, First Edition. John B. Anderson.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.

17



18 COMMUNICATION THEORY FOUNDATION

2.1 SIGNAL SPACE

The fundamental idea of signal space theory is to express a set of continuous-time
signals as vectors in a Euclidean space, with a measure of distance between them.
Probability of error is a function of this distance, and the components of the vectors
are a discrete-time expression of the signals. The first full exposition of the theory
appeared in Kotelnikov’s 1947 doctoral thesis [5]. Shannon published the theory
independently in 1949 [6] as a way to present his AWGN channel results.

The ideas of the theory can be summarized in the points that follow. Transmission
occurs via a set of continuous signals 𝑠1(𝑡),… , 𝑠 (𝑡) that represent  messages.
Each has an a priori probability 𝑃 [𝑠𝑖]. The Gaussian channel adds a Gaussian random
process outcome 𝜂(𝑡) to produce the output 𝑟(𝑡) = 𝑠(𝑡) + 𝜂(𝑡). The process is stationary
and white with power spectral density 𝑁0∕2 W/Hz at all 𝑓 that are relevant to the
discussion.1 The signals can be the 𝑀 outcomes of a simple orthogonal modulator
pulse, or they may also be a very large, complex set.

• Maximum Likelihood Receiver. The optimum receiver seeks the most likely
𝑠𝑖(𝑡) given the known information, that is, it seeks 𝑖 that maximizes 𝑃 [𝑠𝑖(𝑡)|𝑟(𝑡)].
With an application of Bayes’ rule, 𝑃 [𝑠𝑖(𝑡)|𝑟(𝑡)] may be written as

𝑃 [𝑠𝑖(𝑡)|𝑟(𝑡)] = 𝑃 [𝑟(𝑡) received | 𝑠𝑖(𝑡) sent]𝑃 [𝑠𝑖(𝑡) sent]
𝑃 [𝑟(𝑡) received]

.

If the a priori distribution is known, the receiver performs

Find 𝑖 that achieves: max
𝑖

𝑃 [𝑠𝑖(𝑡)|𝑟(𝑡)]
= max

𝑖
𝑃 [𝜂(𝑡) = 𝑟(𝑡) − 𝑠𝑖(𝑡)]𝑃 [𝑠𝑖(𝑡)], (2.1)

since 𝑃 [𝑟(𝑡) received] is a constant during the maximizing. This is called the
maximum aposteriori, or MAP, receiver. If the a priori probabilities are un-
known or the uniform distribution, the receiver performs

Find 𝑖 that achieves: max
𝑖

𝑃 [𝑠𝑖(𝑡)|𝑟(𝑡)]
= max

𝑖
𝑃 [𝜂(𝑡) = 𝑟(𝑡) − 𝑠𝑖(𝑡)], (2.2)

which is the maximum likelihood (ML) receiver.

• Orthogonal Basis. Probabilities of the form 𝑃 [𝜂(𝑡) = 𝑟(𝑡) − 𝑠𝑖(𝑡)] are not well
defined when 𝜂(𝑡) is a Gaussian random process. The solution to this problem
is to construct a set of orthonormal basis functions 𝜑1(𝑡), ..., 𝜑𝐽 (𝑡) for the 
signals. The span of these is the signal space. If the signal set is 𝑁 pulses
of an 𝑀-ary orthogonal modulation, there are 𝑁

𝑀 signals in the set and an
obvious basis is the set of delayed pulses {ℎ(𝑡), ℎ(𝑡 − 𝑇 ),… , ℎ(𝑡 − (𝑁 − 1)𝑇 )}

1This spectral density is the Fourier transform of the process autocorrelation and is not the PSD of
Chapter 1, which is the average of a set of transforms. It is unfortunate that both are called PSDs.
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with 𝐽 = 𝑁 . In other cases, the basis is a subset of the signals which happens
to span the entire set. In the general case, the Gram---Schmidt procedure sets
up the basis; a proper basis with no more than  signals is guaranteed to exist
([3], Appendix 7A; [1], Section 2.5). Once the basis is formed, each signal 𝑠𝑖(𝑡)
is expressed as the 𝐽 -component vector 𝒔𝑖 = (𝑠𝑖1, 𝑠𝑖2, ..., 𝑠𝑖𝐽 ), in which the 𝑗th
component is the inner product 𝑠𝑖𝑗 = ∫ 𝑠𝑖(𝑡)𝜑∗

𝑗
(𝑡)d𝑡. The time-domain signals

can be recovered from

𝑠𝑖(𝑡) =
𝐽∑

𝑗=1
𝑠𝑖𝑗𝜑𝑗(𝑡), all 𝑖. (2.3)

The noise waveform 𝜂(𝑡) and the received 𝑟(𝑡) are expressed respectively by
(𝜂1,… , 𝜂𝐽 , 𝜂𝐽+1,…) and (𝑟1,… , 𝑟𝐽 , 𝑟𝐽+1,…). As with 𝒔𝑖, the components are
inner products between the time function and a basis function. Extra dimensions
beyond 𝐽 are shown here because white noise has many more dimensions than
the signal set.

• Theorem of Irrelevance. Only noise in the 𝐽 dimensions of the signal set affects
the MAP and ML receiver decision. Thus the two standard receivers in vector
form become

Find 𝑖 that achieves: max
𝑖

𝑃 [𝜼 = 𝒓 − 𝒔𝑖]𝑃 [𝒔𝑖] (MAP) (2.4)

Find 𝑖 that achieves: max
𝑖

𝑃 [𝜼 = 𝒓 − 𝒔𝑖] (ML) (2.5)

in which

𝜼 = (𝜂1,… , 𝜂𝐽 )
𝒓 = (𝑟1,… , 𝑟𝐽 ).

If the 𝜼 components are real variables, as they are in the Gaussian case, 𝑃 [ ] for
𝜂 is to be interpreted as a density.

• Noise Representation. The components of 𝜼 and 𝒓 are ordinary Gaussian random
variables. Since it will be needed later, we state this as

Theorem 2.1 If 𝜂(𝑡) is a white Gaussian process with spectral density 𝑁0∕2,
its inner products with any set of orthonormal basis functions are IID Gaussian
variables 𝜂1, 𝜂2,… that satisfy

(i) {𝜂𝑗} = 0, all 𝑗
(ii) cov(𝜂𝑗 , 𝜂𝑘) = 𝑁0∕2, 𝑗 = 𝑘, and 0 otherwise.

This core theorem frees us from the quandaries of stochastic processes and
provides the basis for error rate calculations. For a proof see Reference 1,
Section 2.5.3; for further discussion of stochastic process issues see a text such
as Papoulis [7].
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• Vector Receiver. Since the 𝜼 components in Eq. (2.5) are independent Gaussian
random variables, the probability density function there is consequently

√
1∕(𝜋𝑁0)𝐽 exp

[
−

𝐽∑
𝑗=1

(𝑟𝑗 − 𝑠𝑖𝑗)2∕𝑁0

]
.

Taking the log and ignoring constants, we may write the ML receiver as

Find 𝑖 that achieves: min
𝑖

𝐽∑
𝑗=1

(𝑟𝑗 − 𝑠𝑖𝑗)2 = min
𝑖

‖𝒓 − 𝒔𝑖‖ (ML) (2.6)

and similarly the MAP receiver as

Find 𝑖 that achieves: min
𝑖

[‖𝒓 − 𝒔𝑖‖ −𝑁𝑜 ln𝑃 [𝒔𝑖]
]

(MAP). (2.7)

Many important facts in receiver design hold true because they trace back to
these two lines. Since ‖𝒓 − 𝒔𝑖‖ is the ordinary Euclidean distance between the
two vectors 𝒓 and 𝒔𝑖, the ML receiver works by finding the closest signal to 𝒓 in
Euclidean space. Furthermore, signals can be portrayed as points in the space.

• Signal Distance. By Parseval’s identity, the form ‖𝒓 − 𝒔𝑖‖2 has the value
∫ [𝑟(𝑡) − 𝑠𝑖(𝑡)]2d𝑡. The square root of either form gives 𝐷(𝒙, 𝒚), the standard
Euclidean measure of distance between 𝒙 and 𝒚. By convention the square
distance 𝐷

2(𝒙, 𝒚) is normalized by 2𝐸𝑏, where 𝐸𝑏 is the average energy per
transmitted symbol, measured bit-wise. The average energy of  equiproba-
ble signals is �̄� = (1∕ )

∑
𝑖
‖𝒔𝑖‖2 or (1∕ )

∑
𝑖
[∫ |𝑠𝑖(𝑡)|2d𝑡], and they carry

log2 bits, so that the norming factor is log2∕2�̄�. This yields the following
expression for the normalized signal space square distance between two signals:

𝑑
2(𝑠𝑖, 𝑠2) =

log2
(2∕ )

∑
𝑖
‖𝒔𝑖‖ ∫ [𝑠𝑖(𝑡) − 𝑠𝑗(𝑡)]2 d𝑡

= 1
2𝐸𝑏

∫ [𝑠𝑖(𝑡) − 𝑠𝑗(𝑡)]2 d𝑡 (2.8)

Another convention, shown here, is that lower-case 𝑑 always denotes normalized
distance; as well, calculations are generally with square distance, even though
square is often not written.

• Probability of Error. The probability 𝑝2(𝑗|𝑖) that 𝑠𝑖(𝑡) was sent, but 𝑠𝑗(𝑡) is
closer to 𝑟(𝑡), is the same as the probability that one component of 𝜼 exceeds
𝐷(𝒔𝑖, 𝒔𝑗)∕2. Because each component is an independent Gaussian, this is

𝑝2(𝑗|𝑖) = 1∕
√

𝜋𝑁𝑜 ∫
∞

𝐷∕2
exp(−𝑢

2∕𝑁𝑜) d𝑢 (2.9)
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where 𝐷 = ‖𝒓 − 𝒔𝑖‖. Gaussian integrals in communication are expressed in
terms of the tabulated unit-variance zero-mean integral, the Q function defined
by

𝑄(𝑧) = (1∕
√
2𝜋)∫

∞

𝑧

exp(−𝑢
2∕2) d𝑢. (2.10)

In terms of 𝑄( ),

𝑝2(𝑗|𝑖) = 𝑄(
√

𝐷2∕2𝑁0). (2.11)

or with the normalized 𝑑,

𝑝2(𝑗|𝑖) = 𝑄(
√

𝑑2𝐸𝑏∕𝑁0). (2.12)

• Minimum Distance. The two signals that lie closest are the ones most easily
confused with one another, and these dominate the transmission probability of
error. The quantity

𝑑
2
min = min

𝑖,𝑗
(1∕2𝐸𝑏)∫

∞

−∞
||𝑠𝑖(𝑡) − 𝑠𝑗(𝑡)||2 d𝑡, 𝑖 ≠ 𝑗 (2.13)

is the (square) minimum distance of the signal set. An approximation to the

overall probability of detection error is 𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0). This is only an esti-

mate but it does have the right exponential behavior at higher 𝐸𝑏∕𝑁0; later we
will refine this estimate. Minimum distance is unaffected by translations of the
signal set, but the average energy �̄� is. Energy is minimized when the centroid
(1∕ )

∑
𝒔𝑖 is at the origin of the signal space.

• Receiver Decision Regions. The error-minimizing receiver is the one that
chooses 𝒔𝑖 that minimizes ‖𝒓 − 𝒔𝑖‖. This divides signal space into decision
regions 1,… , , one for each 𝒔𝑖. The Euclidean geometry implies many
properties; for example, the decision boundary between two adjacent signal
points is the perpendicular bisector of the line connecting them.

Simple Modulations. The PAM 𝑇 -orthogonal modulator family in Section 1.2 is a
performance benchmark in this book and provides some initial examples of signal
space analysis.

The signal set created by a single-symbol transmission with binary PAM (2PAM)
has two signal points ±

√
𝐸𝑠, one dimension, and basis function ℎ(𝑡), the same as

the unit-energy orthogonal modulation pulse. Since the two signals have difference
2
√

𝐸𝑠 and 𝐸𝑏 is 𝐸𝑠, Eqs. (2.8) and (2.12) directly give

𝑑
2
min = (1∕2𝐸𝑏)∫ [2

√
𝐸𝑏ℎ(𝑡)]2 d𝑡 = 2, (2.14)
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and the true probability of error is𝑄(
√
2𝐸𝑏∕𝑁0). The corresponding PSD is |𝐻(𝑓 )|2,

and measuring bandwidth by the half-power frequency 1∕2𝑇 Hz, we get a bit density
of log2 2∕[𝑇 (1∕2𝑇 )] = 2 b/Hz-s, 𝑇 here being the modulator symbol time. One could
instead take an 𝑁-pulse set with 2𝑁 signals, but there is no point, because detecting
pulse by pulse is an optimal procedure with independent symbols.

Transmission by 4PAM leads to the same scenario except that the space has four
points,

√
𝐸𝑠∕5 {±3,±1}. The four-point signal space is shown in Figure 2.2a, with

dashed lines locating the decision boundaries. The minimum distance between any
two adjacent points is

𝑑
2
min = (log2 4∕2𝐸𝑠)∫ [2

√
𝐸𝑠∕5ℎ(𝑡)]2 d𝑡 = 0.8 . (2.15)

This yields the symbol error probability estimate𝑄(
√
0.8𝐸𝑏∕𝑁0), which is now only

approximate. It will be useful later to have a true computation, and working from
first principles, one gets

𝑃 [Error| ± 1 Sent] = 2𝑄(
√
0.8𝐸𝑏∕𝑁0),

𝑃 [Error| ± 3 Sent] = 𝑄(
√
0.8𝐸𝑏∕𝑁0).

Weighting each case 1/4 for equiprobable symbols gives

𝑃 [Error] = (3∕2)𝑄(
√
0.8𝐸𝑏∕𝑁0) (4PAM). (2.16)

The signal PSD is as before, so that the bit density is log2 4∕[𝑇 (1∕2𝑇 )] = 4 b/Hz-s.
That is, the bit density is double that of 2PAM, and there is a 2.5-fold energy loss
(4.0 dB).

8PAM again leads to the same signal space scenario, but now 𝑑
2
min = 2∕7 ≈ 0.286.

The true symbol error rate is

𝑃 [Error] = (7∕4)𝑄(
√
0.286𝐸𝑏∕𝑁0) (8PAM) (2.17)

and the bit density is 6 b/Hz-s. This is triple that of 2PAM, with a seven-fold energy
loss (8.5 dB).

Multi Dimensional Signal Sets. When there are many signals and more than one
dimension, signal space calculations become more complicated. A general form for
error probability is

𝑝𝑒 = (1∕ )
∑
𝑖=1

𝑃 [𝒓 not in 𝑖|𝒔𝑖 sent]. (2.18)
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FIGURE 2.1 Signal space constellations for (a) 4PAM and (b) QPSK, showing decision

boundaries. For unit symbol energy, divide 4PAM points by
√
5 and QPSK points by

√
2.

An overbound to 𝑃 [𝒓 not in 𝑖|𝒔𝑖] is ∑
𝑗≠𝑖

𝑝2(𝑗|𝑖), with 𝑝2 taken from Eq. (2.11).
Placing this in Eq. (2.18) we obtain

𝑝𝑒 ≤ (1∕ )
∑
𝑖=1

∑
𝑗≠𝑖

𝑄

[‖𝒔𝑗 − 𝒔𝑖‖√
2𝑁𝑜

]
. (2.19)

This is a sum of  ( − 1) exponentials that is strongly dominated by those terms
that have the minimum distance. Let 𝐾 be the number of distinct minimum distance
terms. The sum counts each term twice so that we can write the estimate

𝑝𝑒 ≈ (2𝐾∕ )𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁𝑜). (2.20)

This sort of estimate can be quite accurate with narrowband signaling. The 𝐸𝑏∕𝑁0
is higher, which increases the dominance of 𝑑min, and the factor 2𝐾∕ refines the
estimate. In any case, Eq. (2.20) has the correct exponential behavior.

As a second multipoint example, we can estimate 𝑝𝑒 for the two-dimensional four-
point constellation in Figure 2.1b.2 There are four distinct point pairs at the square
minimum distance; Eq. (2.8) gives the normalized value

𝑑
2
min =

log2 4
(2∕4)4𝐸𝑠

(2
√

𝐸𝑠∕
√
2)2 = 2 .

2Among other schemes, the constellation describes quaternary phase-shift keying, the most common
digital carrier modulation. However, it will not figure explicitly in the book since we employ baseband
analysis.
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Equation (2.20) thus yields 2𝑄(
√
2𝐸𝑏∕𝑁0). The true value can be computed by

noting that for correct detection of 𝒔3 noise components 𝜂1 and 𝜂2 must both be less
than

√
𝐸𝑠∕2. Erroneous detection thus has probability 1 − [1 −𝑄(

√
2𝐸𝑏∕𝑁0)]2 =

2𝑄(
√
2𝐸𝑏∕𝑁0) −𝑄

2(
√
2𝐸𝑏∕𝑁0). By symmetry, this must be the error for any trans-

mitted signal. Equation (2.20) is thus too high by𝑄
2(
√
2𝐸𝑏∕𝑁0), which normally is

negligible.
As the book progresses, it will turn out that signal spaces for desirable narrowband

schemes are huge, both in dimension and number of points, so that sketches of points
and regions are not useful. Signal space insights and particularly minimum distance
and related estimates continue to hold true, but different tools are needed. These are
based on the trellis structure of bandwidth efficient modulator signals. These tools
are taken up in Section 2.5 after models for the modulators are developed.

2.2 OPTIMAL DETECTION

In the practical world, a demodulator has two aims: It converts analog signals to
discrete time and it decides 𝑀-ary symbols, both, hopefully, in an optimal manner.
The structure of this section reflects these aims. Section 2.2.1 applies continuous
signals to a matched filter and in so doing converts them to a sequence of discrete-
time samples; Section 2.2.2 detects what symbols most likely caused these samples.
These jobs need to be done in such a way that the whole procedure is mutually an
ML receiver. Section 2.2.1 begins with orthogonal linear modulation, since this is the
basis of many coded and uncoded systems, and it provides also the core of a simple
approach to nonorthogonal modulation. Nonorthogonal demodulation must deal with
intersymbol interference (ISI) as well as additive noise, both of which need to be
removed. The signal space approach allows us to convert the essential information
to discrete-time values. Section 2.2.2 then decides which symbols were sent. Several
methods are developed, including trellis decoding, the BCJR algorithm, and simple
equalization.

2.2.1 Orthogonal Modulator Detection

A 𝑇 -orthogonal pulse satisfies Eq. (1.2). From this alone we can derive a demodulator
for the simple linear modulation 𝑠(𝑡) =

√
𝐸𝑠

∑
𝑢𝑛ℎ(𝑡 − 𝑛𝑇 ) and show that it is an

ML detector for each symbol 𝑢𝑛. In the end, each 𝑢𝑛 will be taken separately, but
first consider the entire 𝑁-symbol signal. In the absence of noise, Eq. (1.2) implies
that 𝑢𝑛 = ∫ 𝑠(𝜏)ℎ(𝜏 − 𝑛𝑇 )d𝜏. The integral can be written instead as the convolution
of 𝑠(𝜏) and ℎ(−(𝜏)), evaluated at 𝑛𝑇 . Adding the white noise process 𝜂(𝑡) to 𝑠(𝑡), we
can write the receiver sample as

𝑟𝑛 = [𝑠(𝜏) + 𝜂(𝜏)] ∗ ℎ(−(𝜏))||𝑛𝑇 = 𝑢𝑛 + 𝜂𝑛, (2.21)
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where 𝜂𝑛 is a Gaussian noise variate. The successive unit-energy pulses ℎ(𝑡 −
𝑛𝑇 ), 𝑛 = 0,… , 𝑁 − 1 are a valid orthonormal basis for the signal space, and ac-
cording to Theorem 2.1, 𝜂0,… , 𝜂𝑁−1 are IID Gaussians with mean 0 and variance
𝑁0∕2. The signal space component 𝑠𝑛 is directly proportional to

√
𝐸𝑠𝑢𝑛 and the ML

receiver is given in Eq. (2.6).
Since both the modulator symbols and the noise variates are independent of

their neighbors, there is no loss detecting the symbols one at a time. The ML receiver
becomes: At time 𝑛𝑇 find the nearest modulator symbol to 𝑟𝑛. This is implemented by
the decision regions in Figure 2.1a. Furthermore, convolution by ℎ(−(𝜏)) is the same
as filtering by transfer function𝐻

∗(𝑓 ). In either case, samples at times 0, 𝑇 ,… , (𝑁 −
1)𝑇 are compared to the noise-free symbol values, and the closest one at 𝑛𝑇 is the
detected 𝑢𝑛. For binary modulation, the values are {±

√
𝐸𝑠}; for 4-ary modulation,

they are {±
√

𝐸𝑠∕5,±3
√

𝐸𝑠∕5}. The modulator/demodulator is equivalent to the
diagram in Figure 2.2. This straightforward modulation based on a 𝑇 -orthogonal ℎ(𝑡)
will be called simple modulation throughout the book.

Next we investigate the case where ℎ(𝑡) is not 𝑇 -orthogonal. Nonorthogonal linear
modulation can appear in several important ways. In faster than Nyquist signaling
(FTN), a 𝑇 ′-orthogonal ℎ(𝑡) is kept fixed while the symbol time 𝑇 is reduced, so that
more pulses are transmitted but ℎ(𝑡) is no longer 𝑇 -orthogonal; this violates Property
1.2. FTN signaling is the subject of Chapter 4. Nonorthogonality can also come
about through filtering. If a filter 𝐺(𝑓 ) is applied to the orthogonal linear modulation
𝑠(𝑡)---to reduce its bandwidth or because of channel distortions---it is equivalent to a
new linear modulation

√
𝐸𝑠

∑
𝑢𝑛𝑤(𝑡 − 𝑛𝑇 ) with 𝑤 = ℎ ∗ 𝑔.

Now time shifts of ℎ(𝑡) cannot be the orthonormal basis functions for signal space.
Much of the time the needed basis {𝜑𝑗(𝑡)} can be time shifts of a 𝑇 -orthogonal
function that is no longer ℎ(𝑡) but meets some reasonable conditions. A suitable set
can be time shifts of a root RC pulse every 𝑛𝑇 , like those used in simple modulation;
the Nyquist sampling theorem needs to be satisfied so that 𝑠(𝑡) can be obtained from
its samples. In what follows, we will call such a set a simple basis. Signal 𝑠𝑖(𝑡) then
has vector representation (𝑠𝑖1, 𝑠𝑖2, ..., 𝑠𝑖𝐽 ) as usual, with 𝑠𝑖𝑗 = ∫ 𝑠𝑖(𝑡)𝜑∗

𝑗
(𝑡)d𝑡.

But there is a more interesting presentation. The ℎ(𝑡) can be represented as the
vector (… , 𝑐−1, 𝑐0, 𝑐1, ...), where

𝑐𝑛 = ∫ ℎ(𝑡)𝜑∗
𝑛
d𝑡. (2.22)

FIGURE 2.2 Linear modulator and matched-filter demodulator.
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Let the 0th simple basis function be 𝑣(𝑡). Then since 𝑠(𝑡) =
√

𝐸𝑠

∑
𝑢𝑛ℎ(𝑡 − 𝑛𝑇 ) and

ℎ(𝑡) =
∑

𝑐𝓁𝑣(𝑡 − 𝓁𝑇 )

𝑠(𝑡) =
√

𝐸𝑠

∑
𝑏𝑛𝑣(𝑡 − 𝑛𝑇 ), 𝑏𝑛 =

∑
𝑢𝑛−𝓁𝑐𝓁 . (2.23)

The sequence {𝑏𝑛} is the convolution of the standard 𝑀-ary transmission symbols
with the sequence {𝑐𝓁}. In terms of z-transforms, Eq. (2.23) is𝑆(𝑧) = 𝐶(𝑧)𝑈 (𝑧).3 The
newmodulation in Eq. (2.23) is the previous orthogonal one, but with a large alphabet
of reals replacing the𝑀-ary values 𝑢𝑛 and the orthogonal function 𝑣(𝑡) replacing ℎ(𝑡).
The modulator/demodulator structure continues to be the one in Figure 2.2. It now
puts out 𝑏𝑛 + 𝜂𝑛, where 𝜂𝑛 as before is an IID Gaussian with mean zero and variance
𝑁0∕2.

The demodulation is actually incomplete, because it remains to find the symbols
𝑢𝑛 that most likely lead to the output, and that is the subject of Section 2.2.2. The
setup here works well for most of the schemes in the book, and to distinguish it from
others it will be called the orthonormal simple basis (OSB) detector.

Given a set of𝑀-ary symbols to bemodulated, bothEq. (2.23) and
√

𝐸𝑠

∑
𝑢𝑛ℎ(𝑡 −

𝑛𝑇 ) produce the same 𝑠(𝑡). Most often, the nonorthogonal ℎ(𝑡) is designed to reduce
bandwidth, the sampling theorem is satisfied, and Eq. (2.23) can be viewed as ac-
complishing this in discrete time.

With most basis functions that one might choose, the sequence {𝑐𝑛} is directly the
samples of ℎ(𝑡) at 𝑛𝑇 . When this is actually the case is given by

Property 2.1 (OSB Condition) Let𝐻(𝑓 ) = 0, 𝑓 > 𝑊 , with𝑊 < 1∕2𝑇 Hz, and
let the 0th pulse 𝑣(𝑡) of a simple basis set satisfy 𝑉 (𝑓 ) = 𝐶0 a constant for |𝑓 | < 𝑊 .
Then {𝑐𝑛} are the samples ℎ(𝑛𝑇 ) and Eq. (2.23) reproduces all modulated signals.

The proof uses Fourier transform properties (see Reference 8, Section 6.2.1). For
analysis purposes, the identity of 𝑣(𝑡) is of no consequence so long as 𝑣(𝑡) satisfies
the property; in an implementation along the lines of Figure 2.2, the choice sets the
analog-domain filter 𝑉 ∗(𝑓 ), the front-end matched filter in the receiver. When the
condition in the Property fails, signal 𝑠(𝑡) cannot be reproduced from its samples
each 𝑛𝑇 . There exist examples where the detection is suboptimum. However, the
motivation for ℎ(𝑡) is usually its narrow bandwidth, so that the condition holds.

Example 2.1 (Sampling a Non-orthogonal ℎ(𝑡))
Figure 2.3 shows an example where ℎ(𝑡) is the unit-energy 30% root RC pulse that
is orthogonal with reference to 1.5𝑇 , 𝑇 = 1, and is constructed from nine basis
functions, where 𝑣(𝑡) is a 12% 𝑇 -orthonormal root RC pulse. The inner products
{𝑐𝓁} work out to be the samples ℎ(𝑛𝑇 ). The error in the approximation (shown

3The z-transform of a time-discrete sequence 𝑦0, 𝑦1, 𝑦2,… , 𝑦𝐾 is 𝑌 (𝑧) = 𝑦0 + 𝑦1𝑧
−1 + 𝑦2𝑧

−2 +⋯ +
𝑦𝐾𝑧

−𝐾 . Convolution in time is multiplication in the z-domain.
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FIGURE 2.3 Construction of ℎ(𝑡) from a simple orthogonal basis. Nine 12% root RC 1-
orthogonal pulses centered on −4,−3,… ,+4 approximate a 30% 1.5-orthogonal root RC
pulse. Heavy curve is the approximation; dots show true ℎ(𝑡).

as dots) is only visible at |𝑡| > 4. When ℎ(𝑡) is a 60% root RC pulse, ℎ(𝑡) fails
Property 2.1; {𝑐1, 𝑐2, 𝑐3} are {−0.869,−1.318,−0.101}, compared to theℎ(𝑡) samples
{−0.884,−1.329,−0.080}; a slight approximation error appears as a ripple, caused
by aliasing (see Section 2.3). This error may cause no measurable difference in
detection.

The idea of convolving the symbols {𝑢𝑛} with a fixed sequence, the “generator,”
has been with us since the 1960s, mostly under the name partial response signaling
(PRS). Much can be done with this technique, and for a general view see Reference
8, Chapter 6. Some history of PRS is reviewed in Chapter 4.

Some Other Receiver Structures.

Correlator Receiver. Starting from the definition of the ML receiver Eq. (2.6), and
applying Parseval, we have

||𝒓 − 𝒔𝑖||2 = ∫ |𝑟(𝑡) − 𝑠𝑖(𝑡)|2d𝑡

= ∫ |𝑟(𝑡)|2d𝑡 + ∫ |𝑠𝑖(𝑡)|2d𝑡 − 2∫ 𝑟(𝑡)𝑠𝑖(𝑡) d𝑡.
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Minimizing the left-hand side here over 𝑖 is the same as finding

max
𝑖 ∫ 𝑟(𝑡)𝑠𝑖(𝑡) d𝑡 − 𝜀𝑖∕2, (2.24)

in which 𝜀𝑖 is the energy of the 𝑖th signal. If all signals have the same energy, 𝜀𝑖 can
be ignored. The integral is just the correlation of 𝑟(𝑡) with signal 𝑖, and Eq. (2.24) is
the correlation receiver.

Matched Filter Receivers. Equation (2.24) can be viewed as linear filtering. That is,
if 𝑔(𝜏) = 𝑠𝑖(−𝜏) is the filter impulse response, the correlation is

∫ 𝑟(𝜏)𝑠𝑖(𝜏)d𝜏 = ∫ 𝑟(𝜏)𝑔(𝑡 − 𝜏)d𝜏
||||𝑡=0 = 𝑟 ∗ 𝑔

||||𝑡=0, (2.25)

the filter output at time 0. Note that𝐺(𝑓 ) = 𝑆
∗
𝑖
(𝑓 ), and the receiver structure is again

the receiver side of Figure 2.2, with 𝑆
∗
𝑖
(𝑓 ) replacing 𝐻

∗(𝑓 ). Taking the max over
𝑖 in Eq. (2.25) is the matched filter receiver in its classical version, acting on entire
signals 𝑠𝑖(𝑡).4 Once again, energies need to be subtracted if they differ.

In another manifestation of the matched filter receiver, 𝑟(𝑡) is matched-filtered by
the full nonorthogonal ℎ(𝑡); that is, not by a signal 𝑠𝑖(𝑡) and not by an orthogonal
pulse as in Eq. (2.21). The entire modulator/demodulator model is precisely Figure
2.2, with the new ℎ(𝑡). The remainder of the receiver works with the samples of the
filtering at 𝑘𝑇 , 𝑘 = 0, 1,…, which are given by

𝑤𝑘 = 𝑟(𝜏) ∗ ℎ(−𝜏)
||||𝑡=𝑘𝑇

=
[
𝜂(𝜏) +

√
𝐸𝑠

𝑁−1∑
𝑛=0

𝑢𝑛ℎ(𝜏 − 𝑛𝑇 )
]
∗ ℎ(−𝜏)

||||𝑡=𝑘𝑇

= 𝜉𝑘 +
√

𝐸𝑠

∑
𝑢𝑘𝜌ℎ[𝑘 − 𝑛]. (2.26)

Here, 𝜌ℎ[𝑘 − 𝑛] is the autocorrelation of ℎ(𝑡) at (𝑘 − 𝑛)𝑇 and 𝜉𝑘 = 𝜂(𝜏) ∗ ℎ(−𝜏)|𝑡=𝑘𝑇

is a sample of filtered white noise.5 As z-transforms this is

𝑊 (𝑧) = 𝑈 (𝑧)𝑅ℎ(𝑧) + Ξ(𝑧), (2.27)

where 𝑅ℎ(𝑧) is the z-transform of 𝜌ℎ[𝑘]. Since ℎ(𝑡) is not 𝑇 -orthogonal, {𝜉𝑘} is a
colored noise sequence, which means that distance in the subsequent processing is
not Euclidean. This receiver was developed by a number of researchers in the 1970s.

Whitened Matched-Filter (WMF) Receiver. A so-called spectral factorization of
𝑅ℎ(𝑧) resolves the colored noise problem at least some of the time. The procedure
will be taken up in Section 2.4, along with a proof that the WMF method has optimal

4The filter as stated is noncausal. In a practical receiver, 𝑔(𝜏) is delayed a suitable 𝐾𝑇 so that 𝑔(𝜏) is
small, 𝜏 < 0, and the convolution is sampled at time 𝐾𝑇 . The same procedure needs to be followed with
Eq. (2.21) and with the WMF receiver to follow.
5Here and throughout, the bracket form [𝑘] denotes the 𝑘th value of a sequence.
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error performance, but at this point we can quote two of the outcomes. The transform
𝑅ℎ(𝑧) can be factored as 𝑅ℎ(𝑧) = 𝐺(𝑧)𝐺∗(𝑧−1) such that 1∕𝐺∗(𝑧−1) is a stable filter
and 𝑁(𝑧) = Ξ(𝑧)∕𝐺∗(𝑧−1) represents zero-mean white noise with variance 𝑁0∕2;
second, the distance structure of the signal set represented by 𝑈 (𝑧)𝑅ℎ(𝑧)∕𝐺∗(𝑧−1)
is the same as that of the original signal set {

∑
𝑢𝑛ℎ(𝑡 − 𝑛𝑇 )}. This means that the

outputs with transform

𝑈 (𝑧)𝑅ℎ(𝑧)∕𝐺∗(𝑧−1) +𝑁(𝑧) (2.28)

represents the same type of detection problem as Eq. (2.23). The filter 1∕𝐺∗(𝑧−1) is
called a whitening filter. The WMF receiver originated with Forney[9], who applied
the earlier technique of whitening to symbol detection in ISI.

TheWMF is an attractive alternative to the potentially complicatedmax operations
in the correlation and matched filter receivers, but it has fallen somewhat out of favor.
The main reason is that the whitening filter, 1∕𝐺∗(𝑧−1), is not stable when ℎ(𝑡) has
spectral zeros,which in recent years is an important case; the process of approximating
ℎ(𝑡) so that the outcome has a stable whitener is not straightforward. A second reason
is that the physical analog matched filter is not root RC or another standard model,
but is a more complicated response ℎ(𝑡) that may change. The OSB design, on the
other hand, makes it clear how to approximate a troublesome ℎ(𝑡), has no stability
problems, and relates to a simpler matched filter.

Gram-Schmidt Receiver. When the signal set is well defined, the set of basis functions
{𝜑𝑗(𝑡)} in Eq. (2.3) can be computed and a set of filters constructed that arematched to
them. Since the filter responses are orthogonal, the noise variates in their samples will
be IID Gaussians. This kind of receiver has been suggested by Kanaras, Darwazeh
et al. for use with FFT-based frequency FTN; see Section 5.3. Problems have been
observed with the stability of matrices used in this method.

Fractional Sampling Receivers. When bandwidths are such that symbol-time sam-
pling errors occur, an alternative is to sample twice or more per symbol time, a
method called fractional sampling. With many samples per symbol---3--5 are proba-
bly enough---the receiver essentially works with continuous signals.

2.2.2 Trellis Detection

When the output of the front of a demodulator has the Eq. (2.23), a more advanced
detection is required for ML detection. Equation (2.23) means that the presented
discrete-time sequence is a convolution of the desired symbols {𝑢𝑛} with a generator
{𝑐𝓁}. This convolution form applieswith ISI, with channel filtering, and for a different
number system, with convolutional coding. The optimal detection structure in all
these cases is the trellis detector: The trellis detector finds the nearest sequence {𝑏𝑛},
with 𝑏𝑛 =

∑
𝑢𝑛−𝓁𝑐𝓁 , to the input sequence {𝑟𝑛}. In more fundamental terms, it finds

the nearest outcome of a Markov process.
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The detector searches systematically through a plot of the underlying Markov
states versus time. The states in our demodulator application are the last 𝜇 values of
{𝑢𝑛} up to and including the present time 𝑛0𝑇 . The plot is called a trellis. If 𝑢𝑛 is
𝑀-ary, there are 𝑀 state “paths” out of each stage-𝑛0 state; these run through the
trellis and terminate in a state at a later stage;𝑀 paths terminate in each state at each
stage. A link from one state to the next in the path is a “branch,” and associated with
each branch is a value, or “label.”With an OSB receiver the label is a 𝑏𝑛. Specifically,
the label at stage 𝑛0 + 1, given the state 𝑢𝑛0−𝜇+1,… , 𝑢𝑛0

, is

𝑏𝑛0+1 =
𝜇∑

𝓁=1
𝑢𝑛0−𝓁+1𝑐𝓁 + 𝑢𝑛0+1𝑐0.

During detector operation the incoming value 𝑟𝑛0+1 is compared to this, and the

increment (𝑟𝑛0+1 − 𝑏𝑛0+1)
2 is added to the Euclidean distance of the path accumulated

so far up to time 𝑛0. The key to trellis detection is the trellis Principle of Optimality:
When two or more paths reach the same state at time 𝑛0 (called a “merge”), all but one
that is closest to the incoming sequence … , 𝑟𝑛0−1, 𝑟𝑛0 can be dropped from further
consideration. The step of adding the increment, comparing paths, and dropping all
but one is called an add--compare--select. When the algorithm reaches the end of
{𝑟𝑛}, it will have identified at least one most likely whole sequence {𝑢𝑛} out of the
set of possible sequences.

The common name for this algorithm type is Viterbi algorithm (VA), after Andrew
Viterbi, who first cited the Principle of Optimality in a 1967 paper on convolutional
codes. We call it trellis detection only to distinguish the usual application to convo-
lutional codes from the application here to demodulation. We assume the reader has
some familiarity with this well-known scheme.

The VA need not retain path memories indefinitely, but can instead release their
symbols as output after an observation window of width 𝐿𝐷 > 𝜇, the decision depth;
𝐿𝐷 is a function of the generator {𝑐𝓁} and can be computed by a suitable algorithm
based on a trellis search [8]. There are 𝑀

𝜇 states, potentially a large number. This
motivates schemes that reduce the states, hopefully with only slight loss of ML detec-
tion performance. Once 𝑐𝓁 falls to a small value, the remaining values 𝑐𝜇+1, 𝑐𝜇+2,…
can be ignored since they make insignificant contribution to the distance increment.
In bandwidth- or energy-efficient transmission methods, however, this is often not
enough, and 𝑀

𝜇 is still uncomfortably large.
If more reduction is needed, there are several strategies to follow. In reduced

search detection, the VA exhaustive search of the trellis is limited to those areas
where {𝑏𝑛} is observed to be reasonably close to {𝑟𝑛}. Sequential decoding and the
M-algorithm are examples (see, e.g., Reference 8, Chapters 5 and 6). It is known
that large reductions in computation are possible by these methods, and they will
be illustrated later in the book. In reduced trellis detection, also called channel
shortening, the generator is shortened but the full trellis is searched; the idea is to
give up some error performance in return for a much smaller trellis. Yet another
strategy is to split the decision depth into a more recent section where the full identity



OPTIMAL DETECTION 31

of all paths is kept and an earlier section where only a single identity is kept. This
works because the contribution of earlier symbols to the branch labels is small. Both
computation and storage are reduced.

We have only discussed trellis detectionwith reference to a discrete-time incoming
sequence, and virtually all applications are of this sort. But the method can actually
be applied to the original set of continuous functions, which contain the sameMarkov
property as do the time-discrete {𝑟𝑛}. When it is unclear how to design a matched-
filter/sampler receiver, this can be the safest procedure. Indeed, trellis detection
adapted to continuous signals is the ultimate receiver, and its minimum distance and
error performance are the benchmark for all others.

Simple Equalizers. Equalizer is an older term for a simple method, usually a filter,
designed to remove ISI. If the generator {𝑐𝓁} is simple and short enough, or if trellis
decoding is too complex, an equalizer can be an attractive replacement. The simplest
equalizers are linear filters designed to cancel ISI (zero forcing) or minimize noise
and/or ISI (minimum square error equalizers). Some include a feedback of tentative
symbol decisions (feedback equalizers). In general, equalizers become ineffective as
the zeros of 𝐶(𝑧) near the z-plane unit circle. Trellis detection is then necessary.

Successive Interference Cancellation (SIC). Iterative receivers will play an important
role in Chapters 4 and 5. In these, two processors work on the decoding and feed
information to each other; for example, one can be a trellis detector or equalizer
and the other a convolutional decoder. In SIC, the first processor removes as much
intersymbol or other interference as it can by relatively simple methods, and passes
the signal to the second processor. The second may be an error-correcting decoder
or another equalizer, for example, one that works in frequency instead of time. In
the decoder case, it decodes as well as it can, and passes an improved estimate of
the interference to the first processor, which subtracts the estimate. It then tries to
estimate the remaining interference, and the cycle repeats; the iterations continue
until some sort of convergence. The processors may pass soft information, the SIC
may subtract soft estimates, and it may be quite suboptimal (to reduce complexity).
SIC receivers play an important role in Chapter 5, where equalization of interference
is required in two dimensions: frequency and time.

Sphere Detectors. This receiver employs a search over a nearby sphere of possibil-
ities. Representative papers on the general method are References 11 and 12. An
application of the Gram-–Schmidt and sphere techniques to frequency FTN (Chapter
5) is Reference 14.

The BCJR Algorithm. This scheme is a “soft” trellis decoder that computes symbol
or trellis branch probabilities. It can also accept a priori symbol probabilities if they
are known, and in this case it is an MAP detector like Eq. (2.7), but for individual
symbols rather than entire signals. It resembles the trellis detector in that it assumes
a Markov input and is based on a trellis structure, but here the resemblance ends.
Instead of an add--compare--select, the algorithm is based on two linear recursions. By
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observing its probability outputs, one can make symbol decisions, but the importance
of BCJR is chiefly its use in iterative decoding, where the certainty of a decision
builds up over many iterations.

The algorithm was devised in the early 1970s by researchers in iterative decoding
and first appeared in a 1974 paper byBahl, Cocke, Jelinek, andRaviv [15], after whom
the algorithm is named.6 It builds upon an earlier algorithm by Baum and Petrie for
identifying Markov models; its notation comes from the earlier work. Because the
literature contains few explanations of the algorithm, it is described in some detail
here. A vector approach is taken, first given in Reference 17. Primarily, the vectors
yield a much more streamlined presentation, but concepts such as eigenvectors have
physical meaning. More BCJR details appear in References 8 and 16.

The heart of the BCJR algorithm is the calculation of two working vectors called
𝜶𝑘 and 𝜷𝑘 at each trellis stage 𝑘. At each 𝑘, the components 𝛼[0], 𝛼[1],… , 𝛼[𝑆 − 1]
and 𝛽[0], 𝛽[1],… , 𝛽[𝑆 − 1] are special probabilities for each state in an 𝑆-state
trellis. The 𝑘th row vector 𝜶𝑘 is defined by

𝛼𝑘[𝑗] ≜ 𝑃
[
Observe 𝑟(1 ∶ 𝑘), Generator in state 𝑗 at time 𝑘

]
. (2.29)

The notation 𝑟(1 ∶ 𝑘)means the incoming values 𝑟1,… , 𝑟𝑘. Each 𝑟𝑘 is the observation
at one stage; if a convolutional code places 𝑞 bits on each branch, 𝑟𝑘 comprises 𝑞

values. “Generator” refers to theMarkov process (convolution, usually) that generates
incoming values before noise, in this book either the {𝑏𝑛} or the branch symbols of
a convolutional codeword.

The column vector 𝜷𝑘 at stage 𝑘 is defined by

𝛽𝑘[𝑖] ≜ 𝑃 [Observe 𝑟(𝑘 + 1 ∶ 𝐾) | Generator in state 𝑖 at time 𝑘]. (2.30)

We also need a matrix 𝚪𝑘 at each stage 𝑘, whose 𝑖, 𝑗 element is

Γ𝑘[𝑖, 𝑗] ≜ 𝑃 [Observe 𝑟(𝑘), Generator in 𝑗 at time 𝑘 | Generator in 𝑖 at 𝑘 − 1] .
(2.31)

When AWGN adds to a single-branch label 𝑏𝑘, as it would with Eq. (2.23), the
elements of 𝚪𝑘 are simply

Γ𝑘[𝑖, 𝑗] =

{
𝑃 [𝑢′](1∕

√
𝜋𝑁0) exp(−(𝑟𝑘 − 𝑏

′
𝑘
)2), if transition 𝑖 → 𝑗 exists

0, otherwise
(2.32)

where 𝑏
′
𝑘
is a branch label, 𝑢′ is the modulation symbol corresponding to 𝑖 → 𝑗, and

𝑃 [𝑢′] is its a priori probability. If none is known, 𝑃 [𝑢′] is set to 1. In the case of
convolutional decodingwith several channel symbols on a trellis branch, theGaussian
exponential is replaced with the product of several.

6In part because the algorithm was too complex for 1970s computing, this well-written paper was mostly
ignored until the 1990s, when the BCJR became a critical element in turbo coding. Only then did it win a
paper prize in 1998.
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Note that 𝛼𝑘[𝑗] is the probability of the incoming channel observations at times
1,… , 𝑘 and at the same time state 𝑗 at time 𝑘; 𝛽𝑘[𝑗] is the probability of the ob-
servations at 𝑘 + 1,… , 𝐾 given state 𝑗 at 𝑘; 𝚪𝑘 is a modification of the usual state
transition matrix to include the outcome 𝑟𝑘. The algorithm seeks the probabilities of
states given the entire incoming {𝑟𝑛}, but since {𝑟𝑛} is fixed throughout, the algorithm
need only find the probabilities of the states and {𝑟𝑛}.

Next we define the two linear recursions. We assume that the generation starts
and ends at a known state and there are 𝐾 observations. The forward recursion of
the BCJR algorithm is

𝜶𝑘 = 𝜶𝑘−1𝚪𝑘, 𝑘 = 1,… , 𝐾 (2.33)

with 𝛼0[𝑖] set to 1 for the known start state 𝑖 and 0 otherwise. The backward recursion
is

𝜷𝑘 = 𝚪𝑘+1𝜷𝑘+1, 𝑘 = 𝐾 − 1,… , 1 (2.34)

with 𝛽𝐾 [𝑗] set similarly to 1 for the known end state. The object now is to find the
probability of the transition from state 𝑖 to state 𝑗 during stage 𝑘, having observed the
entire incoming {𝑟𝑛}. This is given the notation

𝜎𝑘[𝑖 → 𝑗] = 𝑃
[
{𝑟𝑛}, Generator in state 𝑗 at 𝑘, and state 𝑖 at 𝑘 − 1

]
. (2.35)

Then it can be shown [8,15] that

𝜎𝑘[𝑖 → 𝑗] = 𝛼𝑘−1[𝑖] Γ𝑘[𝑖, 𝑗] 𝛽𝑘[𝑗]. (2.36)

This is the core calculation of the BCJR algorithm. The proof requires some careful
Markov probability calculations; indeed, it can be said that the BCJR consists of
simple recursions that are not at all simple to explain.

The basic BCJR thus finds the trellis transition, or branch, probabilities, not the
probabilities of the driving symbols. The probability that {𝑟𝑛} occurs and the encoder
reaches state 𝑗 at time 𝑘 is, using Eq. (2.36),

∑
𝑖

𝜎𝑘[𝑖 → 𝑗] =
∑
𝑖

𝛼𝑘−1[𝑖] Γ𝑘[𝑖, 𝑗] 𝛽𝑘[𝑗] = 𝛼𝑘[𝑗]𝛽𝑘[𝑗], all 𝑗. (2.37)

This is the component-wise product of vectors 𝜶𝑘 and 𝜷𝑘 and in BCJR analysis it is
given the name 𝝀𝑘. The vector 𝝀𝑘 lists all the state node probabilities at stage 𝑘; it is
usually normalized to unit sum at each 𝑘, which removes the dependence on {𝑟𝑛}.

It remains to find the probability of a given symbol at stage 𝑘. This is the sum of
the probabilities of all transitions that imply this symbol,

𝑃 [𝑢𝑛 = 𝜈] =
∑
𝑖,𝑗

∑
𝑖𝑛 

𝜎𝑘[𝑖 → 𝑗]
/ ∑

𝑎𝑙𝑙

∑
𝑖,𝑗

𝜎𝑘[𝑖 → 𝑗] (2.38)

Here,  is the set of trellis transitions that correspond to value 𝜈. With demodulation
under ISI 𝜈 is one of the 𝑀-ary modulation symbols; in convolutional decoding it is
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a data symbol, which we assume to be 1 or 0. The denominator term normalizes the
outcome to unit sum.

This then is a brief derivation of the BCJR algorithm. What follows are some
important comments and extensions that have implications in the later chapters.

• Storage Demands. The algorithm needs to retain all 𝜶 but not all 𝜷. Having
found all the 𝜶𝑘, it can execute the 𝜷 recursion one stage at a time, find 𝜷𝑘, 𝝈𝑘,
and 𝝀𝑘 and the desired probabilities at stage 𝑘, and then drop the 𝜶𝑘+1 and 𝜷𝑘+1
that it just used.

• Short 𝛼-Block BCJR. The 𝜶 can be found in short blocks as needed, proceeding
backward through the trellis, with each short 𝜶-block discarded after use. This
avoids storage of the entire 𝜶 set. Calculation of a short block must start from a
guessed initial 𝜶𝑘, but this works well because the recursion settling time to an
accurate 𝜶 is only ≈ 𝐿𝐷, the decision depth of the generator [18].

• Use of A Priori Probabilities. If available, these are used to compute all the 𝜶
and 𝜷. Equation (2.36) then performs the core calculation that finds 𝜎𝑘[𝑖 → 𝑗]. It
employs the 𝜶 before 𝑘 and the 𝜷 after 𝑘, but the a priori probabilities at stage 𝑘
only in the factor Γ𝑘[𝑖, 𝑗]. When there are a priori probabilities, 𝜎𝑘[𝑖 → 𝑗] leads
to a MAP computational outcome.

• One-Shot MAP Versus Iterative BCJR Application. In iterative detection, two
BCJRs supply each other’s apriori information in a loop, eventually converging
to a joint solution. For example, one BCJRmay treat ISI, while the other decodes
a convolutional code. In such an application, the incoming a priori probabilities
for stage 𝑘 cannot be used to compute the output for 𝑘, because the stronger of
the two BCJRs will then dominate the loop and force a suboptimal convergence.
Accordingly, the a priori contribution 𝑃 [𝑢′] at 𝑘 to Γ𝑘[𝑖, 𝑗] is removed, by
setting it to a constant (normalizations applied in Eqs. (2.37) and (2.38) mean
the constant is arbitrary). The iterating BCJR outcome is no longer MAP.

• Log-Likelihoods. In implementations, probabilities are most often exchanged
between BCJRs as log-likehood ratios (LLRs). For an 𝑀-ary symbol 𝑢, taking
values 𝑎1,… , 𝑎𝑀 , the LLR(𝑢) is an 𝑀-tuple whose 𝑚-th value is

ln
(
𝑃 [𝑢 = 𝑎𝑚]
𝑃 [𝑢 ≠ 𝑎𝑚]

)
. (2.39)

With binary symbols, this takes the simple form

LLR(𝑢) = ln
(
𝑃 [𝑢 = +1]
𝑃 [𝑢 = −1]

)
. (2.40)

Simply checking the sign of Eq. (2.40) decides the bit 𝑢. These forms are
a compact way to exchange information, but conversions back and forth are
required since the BCJR uses probabilities in its calculations, not LLRs.

• Max-Log-MAPAlgorithms. Some of thework of passing in and out of logarithms
can be relieved by approximating logs by a piecewise linear function. The best
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known of thesemethods is theMax-Log-MAP algorithm proposed by Robertson
et al. [13]. All such algorithms exact a performance penalty.

• Precision Problems. During recursions, 𝜶𝑘 and 𝜷𝑘 continually decline in value
and need to be normalized periodically to unit sum at a stage. Because of the
later norming of Eqs. (2.37) and (2.38), this does not affect the outcome. Aswell,
probabilities very near 1 cannot be adequately represented by any reasonable
number system (since 1 + 𝜖 becomes 1 for small 𝜖). One solution to this is to
retain all𝑀 LLR components, even in the binary case. Alternately, approximate
BCJRs exist that handle the problem.

• Colored Noise. The BCJR algorithm has been adapted to the case of colored
noise, such as occurs with the matched filter receiver Eq. (2.27). A recent paper
is Reference 19.

2.3 PULSE ALIASING

When the bandwidth of a pulse exceeds 1∕2𝑇 Hz, and the signal waveform is
sampled each 𝑇 , the pulse is said to suffer aliasing. The portion of the pulse spectrum
above 1∕2𝑇 folds back about 1∕2𝑇 and adds to the portion below. Since sampling is a
fundamental part of receivers that work in discrete time, aliasing is an important issue.
Aliasing is especially important in the WMF receiver and the capacity calculation for
linear modulation in Section 3.2.

For our purposes, pulse aliasing occurs if and only if the pulse spectrum |𝐻(𝑓 )|2
fails to equal the folded spectrum |𝐻fold(𝑓 )|2 in the range [−1∕2𝑇 , 1∕2𝑇 ] Hz. The
folded spectrum appears often in communication theory and is defined by

|𝐻fold(𝑓 )|2 =
∞∑

𝑛=−∞
|𝐻(𝑓 + 𝑛∕𝑇 )|2, all 𝑓. (2.41)

It is a superposition of replicas of |𝐻(𝑓 )|2 centered on all multiples of 1∕𝑇 Hz.
Clearly, aliasing cannot occur if |𝐻(𝑓 )| = 0, 𝑓 ≥ 1∕2𝑇 , because replicas cannot
interfere with each other. The Eq. (2.41) holds for all 𝑓 , although the structure of
𝐻fold is such that the function is defined by its behavior on [0, 1∕2𝑇 ] and we will
often refer only to that.

The various degrees of pulse aliasing and how they relate to orthogonality are
shown in the folded spectra of Figure 2.4. In each case several spectral replicas are
shown and their sum, the folded spectrum, is a heavy line. The axes are multiples of
𝑇 versus multiples of 1∕𝑇 Hz (alternately, take 𝑇 = 1). Figure 2.4a illustrates the
no-aliasing case: The pulse spectrum does not exceed 1∕2𝑇 and no replicas overlap.
But the pulse fails Nyquist’s spectral antisymmetry condition (Property 1.1) and it is
not 𝑇 -orthogonal. The pulse spectrum in Figure 2.4b does satisfy the antisymmetry
condition, and because of the condition, it and its replicas add to the constant value
𝑇 . In fact, the condition |𝐻fold(𝑓 )|2 = 𝑇 , a constant, is necessary and sufficient for
pulse 𝑇 -orthogonality; it was published long after Nyquist in 1965 [20] and is called
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FIGURE 2.4 Four folded spectrum cases. (a) No aliasing, not orthogonal; (b) Aliasing,
orthogonal with antisymmetry; (c) Aliasing, orthogonal without antisymmetry; (d) Aliasing,
not orthogonal. The heavy line in (a)--(d) is the sum of all replicas. Vertical axis in multiples
of 𝑇 seconds; horizontal axis in multiples of 1∕𝑇 Hz.

the Gibby--Smith (GS) condition. Figure 2.4c shows an example of an aliasing pulse
of width 2 × 1.3 Hz that satisfies GS but not the antisymmetry condition. Figure 2.4d
shows an aliasing pulse that is not GS and therefore not 𝑇 -orthogonal. Spectra a, b,
and d are frequency scalings of a standard 30% RC spectrum by a factor 0.5, 1, and
1.5, but only b is orthogonal.

The WMF receiver in Section 2.2.1 samples its matched filter output each 𝑇 and
is well-defined only when the pulse bandwidth exceeds 1∕2𝑇 Hz. Thus, 𝐻fold(𝑓 )
plays a major role in its operation. We saw that the z-transform of the samples is Eq.
(2.27), 𝑈 (𝑧)𝑅ℎ(𝑧) plus noise, where 𝑅ℎ(𝑧) is the z-transform of the discrete-time
pulse autocorrelation, 𝜌ℎ[𝑘]. We can define the Fourier transform of 𝜌ℎ[𝑘] to be

𝑅dt,h(𝑓 ) = 𝑅ℎ(e𝑗2𝜋𝑓𝑇𝑘) =
∑
𝑘

𝜌ℎ[𝑘]e−𝑗2𝜋𝑓𝑇𝑘
, (2.42)
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where the subscript dt signifies discrete time. By the Poisson sum formula of Fourier
analysis, the right side is (1∕𝑇 )

∑
𝑛
𝑅ℎ(𝑓 + 𝑛∕𝑇 ), in which

𝑅ℎ(𝑓 ) = ∫
∞

−∞
𝜌(𝑡)e−𝑗2𝜋𝑓𝑡 d𝑡, (2.43)

which is the continuous transform of the full 𝜌ℎ(𝑡). From autocorrelation properties
this must be |𝐻(𝑓 )|2. What we have shown, therefore, is that

𝑅dt,h(𝑓 ) = (1∕𝑇 )|𝐻fold(𝑓 )|2, all 𝑓. (2.44)

TheWMF receiver acts in a sense as if themodulation pulse is aliased, and combats
the aliasing. The OSB receiver, on the other hand, works with nonaliased signals, for
which 𝑅dt,n(𝑓 ) = (1∕𝑇 )𝑅ℎ(𝑓 ) = (1∕𝑇 )|𝐻(𝑓 )|2, |𝑓 | < 1∕2𝑇 . There is no effective
difference between continuous and discrete time.

2.4 SIGNAL PHASES AND CHANNEL MODELS

The sampled matched filters in Section 2.2 convert continuous signals to discrete
time, and in so doing they also create a Markov model of the signal. In the OSB
case, the model is the convolution 𝑏𝑛 =

∑
𝑢𝑛−𝓁𝑐𝓁 with the memory-𝜇 generator, or

“taps”, 𝑐0,… , 𝑐𝜇 that are samples of the base modulator pulse. In the WMF case, a
different generator will arise, providing the sample autocorrelation z-transform has
no unit-circle zeros. In what follows, we will see that this second model is still a
convolution and has the correct distance structure. In fact, models related to a given
signal set form groups whose members are phase versions of each other. All these
versions are coupled to AWGN noise variates 𝜂1, 𝜂2,…. Yet more versions can be
produced that are coupled to colored noise, but we will not pursue them.

We first calculate the minimum distance of a channel model. Once obtained, a
model has aminimumdistance 𝑑2

min and a symbol error probability whose exponential

behavior is the same as 𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0). With a proper model, the integral form in

Eq. (2.13) converts by Parseval’s theorem to

𝑑
2
min = min

𝑖,𝑗
(1∕2𝐸𝑏)‖𝒔𝑖 − 𝒔𝑗‖2, 𝑖 ≠ 𝑗

= min
𝑖,𝑗

(1∕2𝐸𝑏)
∑
𝑛

[ 𝜇∑
𝓁=0

𝑢
(𝑖)
𝑛−𝓁𝑐𝓁 − 𝑢

(𝑗)
𝑛−𝓁𝑐𝓁

]2

= min
𝑖,𝑗

(1∕2𝐸𝑏)
∑
𝑛

[ 𝜇∑
𝓁=0

Δ𝑢𝑛−𝓁𝑐𝓁
]2
. (2.45)

Here,Δ𝑢 denotes the difference 𝑢(𝑖) − 𝑢
(𝑗) and

∑
𝑛
runs over all 𝑛 for which aΔ𝑢𝑛−𝓁 is

nonzero. The point here is that because convolution is linear only symbol differences
matter in a distance calculation.
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Calculation of minimum distance is quickly done with modern computers, and is
an important tool in signal analysis. Since the algorithms are rather technical, they
are relegated to Appendix 2A. Routines are given there for the important cases in
this book, which are binary and 4-ary trellis demodulation. In the binary case, the
symbols are ±

√
𝐸𝑠, 𝐸𝑏 = 𝐸𝑠, and Eq. (2.45) reduces to minimizing over a set of Δ𝑢

sequences the expression

(1∕2)
∑
𝑛

[∑
Δ𝑢𝑛−𝓁𝑐𝓁

]2
, (2.46)

where the Δ𝑢 take any of the values {0,±2}. The sequence Δ𝒖 is called an error
difference sequence. In the 4-ary case, the symbols are {±

√
𝐸𝑠∕5,±3

√
𝐸𝑠∕5},𝐸𝑏 =

𝐸𝑠∕2, and Eq. (2.45) reduces to minimizing

(1∕5)
∑
𝑛

[∑
Δ𝑢𝑛−𝓁𝑐𝓁

]2
(2.47)

where the Δ𝑢 take the values {0,±2,±4,±6}.
As an illustration of distance calculation, take the simple generator 6, 3, 3, 2, which

after normalizing is 𝒄 = [0.7878, 0.3939, 0.3939, 0.2629] (henceforth generators are
given in vector notation). This could represent intentional filtering or ISI, among other
things. From Example 2A.1 in Appendix 2A, the binary alphabet (square) minimum
distance is 1.72, achieved with the error difference sequences Δ𝑢0,Δ𝑢1 = 2,−2
and −2, 2. Compared to orthogonal modulation, which has 𝑑2

min = 2, this represents
an energy loss of 10 log10(2∕1.72) = 0.65 dB. With a 4-ary alphabet 𝑑2

min is 0.69,
orthogonal modulation achieves 0.8, and the loss is the same, 0.65 dB.

With the higher energies in narrowband signaling, error events leading to 𝑑min

dominate more and𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0) often provides an accurate enough estimate of

symbol error rate. More accurate estimates are can be derived by taking into account
that certain difference events are possible only with a few symbol sequences. A
priori symbol probabilities can also be taken into account. The first issue is treated
in Appendix 2A.

Model Phase Versions. An interesting fact is hidden in Eq. (2.45). As shown by Said
(see Reference 10, or 8, Section 6.3), the minimization can be recast as

𝑑
2
min = min

{Δ𝑢}
(1∕2𝐸𝑏)

∑
𝑛

∑
𝑘

Δ𝑢𝑘𝜌ℎ[𝑛 − 𝑘]Δ𝑢𝑛, (2.48)

where 𝜌ℎ is the discrete-time autocorrelation of 𝒄. This implies that 𝑑min and the
whole distance structure of the signal set are functions only of the autocorrelation
of 𝒄. There can be many 𝒄 that lead to the same 𝜌ℎ[𝑘], and these are called phase
versions of a model. They are easiest to describe in terms of 𝐶(𝑧), the z-transform of
𝒄. It is all-zero, with 𝜇 zeros in the z-domain; these occur in conjugate pairs (because
𝐶(𝑧) has real coefficients), and some are inside and some outside the unit circle.
Consider a new 𝒄 that has one or more zeros reflected about the unit circle, either
from outside to inside or vice versa. If the old zero was located at 𝑧𝑜, |𝑧𝑜| ≠ 1, the
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FIGURE2.5 Zero locations for Example 2.2, showing all four-phase versions. (a)Min phase,
(b) mid-phase version, (c) max phase, and (d) second mid phase. Discrete-time responses are
shown under plots.

new one lies at 1∕𝑧𝑜. It can be shown for 𝐶(𝑧) with real coefficients that the new
model has the same autocorrelation. These reflection models are phase versions of
each other. If 𝐶(𝑧) has 𝜈 zeros that are not on the unit circle and not reflections or
conjugates of another zero, then there are 2𝜈 distinct phase versions.

The facts are made clear by the simple model just illustrated.

Example 2.2 (Phase Versions)

Let 𝒄 = [0.7878, 0.3939, 0.3939, 0.2629]. Figure 2.5, a plots the zero locations of
this 𝐶(𝑧); there is a conjugate pair and a negative real root, all inside the unit circle.
There must be four-phase versions, since the pair can be inside or out and the real root
can be inside or out. The figure shows all four, corresponding to the 𝒄 taps [0.7878,
0.3939, 0.3939, 0.2629], [0.2629, 0.3939, 0.3939, 0.7878], [0.4397, 0.1860, 0.7421,
0.4706], and [0.4706, 0.7421, 0.1860, 0.4397].7 Versions 1 and 2 and versions 3 and
4 are reverses of each other. The minimum distance of all versions is 1.72.

7Readers wishing to find phase versions for themselves can use the MATLAB function roots on the
coefficients of 𝐶(𝑧), then reflect the roots, then use poly on the new roots to find the new phase version.
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FIGURE 2.6 Partial energy plots for the four-phase versions in Figure 2.5.

Model phase has a major effect on decoding complexity, and this is the main
reason to study it now. Phases are characterized as smaller or larger, with a smaller
phase 𝒄 being one that responds sooner, with more of its energy in the earlier taps.
Reduced search decoders work by eliminating regions of the trellis, and this is most
effectively done if the energy caused by a symbol comes earlier. A measure of this
responsiveness is the partial energy function, defined by

𝐸(𝑘) =
𝑘∑

𝓁=0
|𝑐𝓁|2, 𝑘 = 0,… , 𝜇. (2.49)

One is plotted in Figure 2.6 for each of the phase versions above. It can be seen that
one underlies all the others; this is the minimum phase model, and it is the one with
all zeros on or inside the unit circle. Another lies over all the others, has all noncircle
zeros outside, and is the maximum phase model. Two other models, the “mid” phase
models, lie in between these two.

As a rule a model of lesser phase may be converted to a model of greater phase
through multiplication of its z-transform 𝐶(𝑧) by 𝐹 (𝑧), where 𝐹 (𝑧) is an allpass
filter with poles at the (inside circle) positions to be reflected and zeros at the new
positions. This can be done on noisy samples in the midst of detection because an
allpass maintains the noise as white and a change of phase does not affect signal
set distances. The reverse process, reducing the phase, is problematic because 𝐹 (𝑧)
will have poles outside the circle and be unstable. Actually there is no need to do
this, because detecting the incoming signal backward reverses phase and converts
maximum phase to the desired minimum phase. The receivers in later chapters that
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depend onminimumphasewill convert tomaximumphase and then detect the reverse
signal.

If a model has zeros near but not on the unit circle, the different partial energy
plots will appear in several tight groups, since reflecting the near zeros hardly changes
𝐸(𝑘). For example, if there are only three conjugate pairs inside and away from the
circle, and the remaining zeros are close to the circle, there will be 23 = 8 tight 𝐸(𝑘)
groups. This phenomenon was studied by Balachandran [21], and plays a role in
Said’s optimal PRS in Chapter 7.
Spectral factorization is a method of solving for phase versions by splitting

the sample autocorrelation function of 𝒄 into two factors. The autocorrelation
𝜌𝑐[−𝜇],… , 𝜌𝑐[0],… , 𝜌𝑐[𝜇] is symmetrical. Consequently, 𝑅(𝑧) has 2𝜇 zeros that
occur in conjugate reciprocal pairs 𝑧𝑜 and 1∕𝑧∗𝑜 ; zeros on the unit circle are double. It
must be possible to factor 𝑅(𝑧) such that 𝑅(𝑧) = 𝐺(𝑧)𝐺∗(𝑧−1), where 𝐺(𝑧) has one
of each pair and and 𝐺

∗(𝑧−1) has the other. If 𝑧1,… , 𝑧𝜇 are the roots of 𝐺(𝑧), then
1∕𝑧∗1,… , 1∕𝑧∗

𝜇
are the roots of 𝐺∗(𝑧−1). The coefficients of this 𝐺(𝑧) and 𝐺

∗(𝑧−1)
are two phase versions of 𝒄, one the reverse of the other.

Before leaving model phase we take on a more advanced model.

Example 2.3 (Many Phase Versions)

Consider a 30% root RC orthogonal pulse 𝑓 (𝑡) that is scaled twice as long; that is, the
new unit energy pulse is ℎ(𝑡) =

√
1∕2𝑓 (𝑡∕2). The spectrum of ℎ(𝑡) is zero outside

1.3∕4𝑇 Hz, 𝑇 the symbol time. Pulses like this one will be important in Chapter 4.
The receiver matched filter/sampler satisfies Property 2.1. The zeros8 of the discrete-
time response ℎ(𝑛𝑇 ), 𝑇 = 1, are shown as circle markers in Figure 2.7. There are
4 zeros inside the circle and 4 reflections of these outside, plus one real zero inside
and its reflection, and 8 zeros on the unit circle. The mid-phase response is plotted
(circles) in the lower plot. If the circles strictly inside the unit circle are reflected
outside, they join those already outside, and we have the zero plot of the maximum
phase version; these zeros are marked with an “x.” In this example, the new zeros
land on old ones, giving 5 double zeros, marked with a “2,” plus the original 8 on the
unit circle. The corresponding maximum-phase response appears in the lower plot,
marked with “x.” It is clear that its energy arrives later than that of ℎ(𝑛𝑇 ).

OSB and WMF Models. For our purposes, a valid model is one that is coupled to
white noise and leads to the distance structure of the original analog signals.

Different receivers lead in general to different discrete-time models of the same
analog signal set. The model 𝒄 implied by the OSB receiver is simply the modulator
pulse samples ℎ(𝑛𝑇 ) given in Eq. (2.22), provided that OSB Property 2.1 holds. Even
when it does not hold, Eq. (2.22) gives a valid model when ℎ(𝑡) is constructed as

8The response has infinite duration. Response samples smaller than 0.006 are ignored, leaving 19 samples
and an all-zero z-transform with 18 zeros. The five perfect reflections occur because ℎ(𝑡) is symmetric in
time.



42 COMMUNICATION THEORY FOUNDATION

FIGURE 2.7 Zero locations (upper plot) and model response for double-width 30% root RC
pulse (lower). “o” denotes original mid-phase pulse; “x” denotes max phase pulse version; “2”
denotes a double zero at x. The dashed response below is max phase.

ℎ(𝑡) =
∑

𝑐𝓁𝜑(𝑡 − 𝓁𝑇 ), and {𝜑(𝑡 − 𝓁𝑇 )} are an orthonormal signal space basis. In
most of the sequel, we want to convert these models to maximum-phase models,
using the procedures just discussed.

The matched filter receiver, Eq. (2.27), leads to its own length 2𝜇 + 1 model
𝑅ℎ(𝑧), which is 𝜌ℎ[𝑘] as a time sequence, but this model is coupled to colored
noise. With the WMF receiver, spectral factorization allows us to construct a white
noise model of length 𝜇 + 1. The required factorization of 𝑅ℎ(𝑧) is 𝐺(𝑧)𝐺∗(𝑧−1) in
which the roots of 𝐺(𝑧) all lie outside the unit circle and those of 𝐺∗(𝑧−1) lie inside.
The filter 𝐺∗(𝑧−1) then has a stable inverse and from Eq. (2.28), the coefficients of
𝐺(𝑧) = 𝑅ℎ(𝑧)∕𝐺∗(𝑧−1) form a time-discrete model. It is in fact maximum phase.

The fact that the model 𝐺(𝑧) has autocorrelation 𝑅ℎ(𝑧) is the key to proving
𝐺(𝑧) is optimal. All spectral factorizations of 𝑅ℎ(𝑧) lead to models 𝑈 (𝑧)𝐺(𝑧) of
the signal generation, including a 𝐺(𝑧) that might actually have been used at the
transmitter. They and the actual continuous signals all create signal sets with the
same distance structure; this can be verified by deriving the distance directly for a
difference sequence Δ𝒖, which turns out in every case to be the same function of
𝑅ℎ(𝑧) only. Since the noise variates in the WMF receiver are AWGN with variance
𝑁0∕2, its statistical behavior must be the same as the ML receiver Eq. (2.6) that
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works with continuous signals. These facts are further demonstrated in the examples
in Appendix 2A.

In applying the WMF procedure, we will require𝑅(𝑧) to have no zeros on the unit
circle, a condition that is generally true in applications when the pulse Fourier trans-
form has no zeros in the range [0, 1∕2𝑇 ) Hz. But the OSB model exists in principle
under the opposite condition, when the transform bandwidth is less than 1∕2𝑇 Hz.
Thus the OSB and WMF models complement each other; generally speaking, each
is valid when the other is invalid.

2.5 ERROR EVENTS

Codes and sophisticated modulations need to have memory from symbol to symbol,
since otherwise coding gain and narrow bandwidth are impossible to achieve. Conse-
quently, decoding and demodulation errors occur in multisymbol events. This section
explores their properties. Much insight can be gained from them. The emphasis will
be on events that occur in linear demodulation when the modulation pulse ℎ(𝑡) is
nonorthogonal and narrow band. Error events that occur in decoding trellis codes are
similar, but these will be taken up as needed in later chapters.

2.5.1 Error Events and 𝒅𝐦𝐢𝐧

Error events and minimum distance for linear modulation were introduced earlier,

together with the fact that demodulation error probability is≈ 𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0). The

event error rate (EER) is the rate of occurrence of whole events; it is driven primarily
by 𝑑min and the event multiplicity, which will be defined later in the section. The
symbol error rate (SER) counts symbols, not events, and it is larger, since one symbol
error occurs for each nonzero value in an event’s difference sequence.

Two special error events are the one leading to 𝑑min and the antipodal event. The
second is the event with the difference sequence 2; that is, if 𝒖1 is transmitted, the
erroneous 𝒖2 differs in only one place and by the least possible symbol difference.
Antipodal events cause a single-symbol error. The antipodal square distance, denoted
𝑑
2
0 , is numerically the same as the minimum distance of simple modulation, which

was found in Eqs. (2.14)--(2.17) to be 2, 0.8 and 0.286 for binary, 4-ary, and 8-ary
modulation. These values were found for orthogonal pulses, but the integrals are the
same for any unit-energy pulse. The event pair in question is shown in Figure 2.8 for
the nonorthogonal pulse in Example 2.2, ℎ(𝑡) =

√
1∕2𝑓 (𝑡∕2), 𝑓 (𝑡) the 30% root RC

pulse. For illustration, the transmitted symbols in the picture are … , 0,+1, 0,… and
… , 0,−1, 0,…, but the difference square energy is 2 for any pair of binary signals
that differ in one place.

The following property holds.

Property 2.2 (Antipodal Signal Bound) For linear modulation with any pulse
ℎ(𝑡), 𝑑2

min ≤ 𝑑
2
0 .
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FIGURE 2.8 Antipodal (top) and 𝑑min-achieving events for a root RC pulse. Both pictures
span seven symbol intervals. The antipodal difference [2] has square distance 2 and the 𝑑

2
min

difference [2 -2 2] has 1.01.

The proof is simple: 𝑑min cannot be greater than 𝑑0 because it is the minimum
of a set of events that include the antipodal one. 𝑑min is often equal to 𝑑0 even
when the generator has 𝜇 ≥ 1; this is simply a statement that the symbol ISI can
be removed by trellis detection. Unfortunately, significant band limitation normally
leads to a smaller 𝑑min---if it did not, Shannon capacity would eventually be violated.
For historical reasons, 𝑑2

0 is often called the matched filter bound.9 Whenever ℎ(𝑡) is
orthogonal on the symbol interval, 𝑑min is 𝑑0. Observe that 𝑑min for a modulation has
an upper bound, whereas 𝑑min for a class of codes can be unbounded.

The minimum distance achieving difference needs to be found by a search over
difference events. Routines to do this are presented in Appendix 2A. Figure 2.8
illustrates the minimum-achieving event for ℎ(𝑡) in Example 2.3; the difference is [2
-2 2], which is illustrated by plotting the signals for symbols {… , 0,+1,−1,+1, 0,…}

9It was called so because in detection of simple modulation with orthogonal ℎ(𝑡), the error probability

𝑄(
√

𝑑
2
0𝐸𝑏∕𝑁0) is achieved only when the receiver filter is matched to ℎ(𝑡).
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and {… , 0,−1,+1,−1, 0,…}. 𝑑2
min is 1.01 (see calculation in Example 2A.3). The

difference [2 -2 2] holds for any phase version of ℎ(𝑡).

Faster thanNyquist Pulses. In linear trellis modulation, a faster thanNyquist (FTN)
pulse ℎ(𝑡) is one that is 𝑇 -orthogonal but is employed with a shorter symbol time 𝜏𝑇 ,
𝜏 < 1, for which it is not orthogonal; that is, the modulated signal is

𝑠(𝑡) =
√

𝐸𝑠

∑
𝑢𝑛ℎ(𝑡 − 𝑛𝜏𝑇 ), 𝜏 < 1. (2.50)

The PSD of 𝑠(𝑡) is the same with all 𝜏 (as in Eq. (1.7)). This is the accelerated time
definition of FTN. An equivalent definition, the constant-interval definition, states
that the symbol interval remains 𝑇 and ℎ(𝑡) is scaled longer by 1∕𝜏:

𝑠(𝑡) =
√

𝐸𝑠

∑
𝑢𝑛

√
𝜏ℎ(𝜏𝑡 − 𝑛𝑇 ). (2.51)

This definition is sometimes more convenient.
Some history and properties of FTN signaling are given in Chapter 4. For now,

the central fact about FTN is that its 𝑑2
min continues to be the antipodal value 𝑑

2
0 for a

considerable range of 𝜏 < 1, this despite the fact that the per-databit bandwidth of the
signal set declines by the factor 𝜏. The explanation for how this can happen can be
seen in the error difference events, specifically in the ones with the second smallest
distance.

Take the ℎ(𝑡) from Example 2.3, just discussed, as an illustration. This ℎ(𝑡) is an
FTN pulse with 𝜏 = 1∕2 and Figure 2.8 shows the difference event [2 -2 2] with
distance 1.01. As 𝜏 is reduced from 1, an interesting phenomenon occurs. With 𝜏 = 1
(orthogonal ℎ), the square distance of the same difference event is 6 and the second
smallest distance is 4, occurring with difference [2 -2], among others. With 𝜏 = 0.8
the second smallest drops to 3.11 with difference [2 -2]; at 𝜏 = 0.703 it is 2, the same
as 𝑑

2
0 , with difference [2 -2 2 -2 2 -2 2]. When 𝜏 reaches 0.5, it is the value shown

in the figure, 𝑑2
min = 1.01 with difference [2 -2 2]. In summary, the second smallest

distance continually drops, andmanifests itself with several difference events, but this
has no effect on 𝑑min until 𝜏 reaches 0.703. The gain in data throughput in the same
bandwidth and the same approximate error rate is 1∕0.703, or 42%. This behavior-
--no change until a rather narrow bandwidth, then a progressive loss of distance---is
typical of all ℎ(𝑡), and roughly speaking, occurs even in nonlinear modulation. In
Chapter 4, the critical 𝜏 is called the Mazo limit. It plays a role receiver complexity
analysis as well.

As 𝜏 continues to drop, PSD bandwidth and 𝑑min fall. To a degree, it is inevitable
that these fall together since otherwise the Shannon limit will likely be exceeded.
Figure 2.9 shows the relation between 𝑑

2
min and half-power bandwidth for the 30%

root RC pulse FTN with 2-, 4-, and 8-ary modulation. The bandwidth in Hz-s/bit is
𝜏∕ log2 𝑀 , where 𝑀 is the size of the modulation alphabet. The flat part of each
curve ends at the Mazo limit and then drops off. An important observation is that 𝑀
should change as the planned bandwidth is reduced: There are regions where 4-ary
is better than binary modulation, and further to the left, regions where 8-ary is better
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FIGURE 2.9 𝑑
2
min versus half-power bandwdith for a 30% root RC FTN pulse and 2-, 4-,

and 8-ary PAM modulation. (8PAM data adapted from Rusek[23].)

than 4-ary. The energy gain can be as much as 3 dB. That modulation needs to adjust
to the bandwidth requirement is a theme throughout the book.

Despite the word Nyquist, the foregoing discussion actually has nothing to do with
orthogonality. All pulses in linear modulation have distance 𝑑2

0 with difference event
2. If initially 𝑑min is 𝑑0, and we scale ℎ(𝑡) longer, the pulse will eventually reach its
Mazo limit and 𝑑min will drop below 𝑑0. The FTN concept---𝑑min equal 𝑑0, then a
drop---thus applies to many nonorthogonal pulses. In Chapter 7, we will see cases
where the most desirable pulses are not 𝑇 -orthogonal for any 𝑇 . The case where there
is initial 𝑇 -orthogonality will be called classical FTN.

Error Event Multiplicity. The set of distances larger than 𝑑min and their difference
events play another important role. It is possible to sharpen the error probability

estimate𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0) by adding more terms for less common events. The result

will be a union bound estimate, and is therefore an upper bound, but𝐸𝑏∕𝑁0 is higher
with narrowband signals and this lessens the error in the bound. Another sharpening
of the bound takes place because of the multiplicity parameter 𝜅 of an error event.
This measures the input symbol sequences for which an error difference can possibly
occur. By definition 𝜅 is the number of nonzero elements in a difference, minus 1.

The effect of 𝜅 is best explained by an example. Taking the case in Figure 2.8, we
see that if symbols 𝒖𝑜 = 1 1 1 …were modulated andΔ𝒖 = 𝒖𝑜 − 𝒖𝑒 = [2 -2 2], 𝒖𝑒 an
erroneous sequence, there is no 𝒖𝑒 that leads to [2 -2 2]. In fact, only the modulation
symbols 1 -1 1 allow this. That is, only 1/4 of transmitted symbols, namely 2−𝜅 , can
lead to difference [2 -2 2]. If the difference were [2 0 2], only 𝒖𝑒 = 1 X -1 … would
be forbidden, where X is the same symbol to the one in 𝒖𝑜. This is half the sequences,
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FIGURE 2.10 Comparison of two EER estimates to actual performances (∗). Demodulation
with 𝜏 = 1∕2 FTN pulse response.

or again 2−𝜅 . We do not consider the first symbol because the linearity of the signal
generation means that it may always be taken as +1.

Precisely speaking, the error probability calculated here is defined to be the
probability that a decoder seeking the closest signal to 𝑟(𝑡) suffers an error event
starting at symbol 𝑛𝑜 + 1, given that detection is correct up to 𝑛𝑜. The expression
𝑄(

√
𝑑2𝐸𝑏∕𝑁0)∕2𝜅 measures the probability of a certain difference event  that has

square distance 𝑑
2. The rate of all such events is the event error rate, or EER. If 

is a 𝑑min-achieving event, we have an underbound; if a sum is formed over a few
more events, we have a larger, usually better estimate but it is not necessarily an
overbound; a sum over all significant events yields an overbound. In receiver tests,
the EER is measured by counting events and dividing by the opportunities for a new
event to start; that is, symbol times during ongoing events are subtracted from the
symbol total. Attending to this detail allows a better match to theory at high EERs,
although it matters little at small EERs.

If  occurs, there will be modulation symbol errors at its nonzero difference

positions. The expectation is (𝜅 + 1)𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0) errors. By summing such

contributions, we obtain a lower bound, then an estimate, in the manner above for
the symbol error rate (SER). The routine mlsedist2Q in Appendix 2A computes
such EER and SER bounds at a given𝐸𝑏∕𝑁0. Figure 2.10 compares the EER bounds
to the actual event rate of a near-optimal BCJR demodulator from Chapter 4 when
the pulse ℎ(𝑡) is the nonorthogonal one in Example 2.3. The estimate is constructed
from the union of all events with 𝑑

2
< 2.
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2.5.2 Error Fourier Spectra

Until now we have computed distances by integrating over time, but the calculation
can just as well be performed over frequency. The outcome gives insight into where
distance lies in the transmission bandwidth, and in particular, into how band limitation
will constrain distance.10

Let𝐷 be the non-normalized distance of an error event. From Parseval’s identity,

𝐷
2(𝑠1(𝑡), 𝑠2(𝑡)) = ∫ |𝑠1(𝑡) − 𝑠2(𝑡)|2d𝑡 = ∫ |𝑆1(𝑓 ) − 𝑆2(𝑓 )|2d𝑓. (2.52)

The last difference we can write as Δ𝑆(𝑓 ) = 𝑆1(𝑓 ) − 𝑆2(𝑓 ). The quantity |Δ𝑆(𝑓 )|2
is the difference power spectrum of the event.

The technique can be carried another step. Suppose a subsequent linear filter with
impulse response 𝑔(𝑡) limits the signal bandwidth further. Then the difference event
square distance simply converts to

∫ |𝑠1(𝑡) ⋅ 𝑔(𝑡) − 𝑠2(𝑡) ⋅ 𝑔(𝑡)|2d𝑡 = ∫ |𝑆1(𝑓 ) − 𝑆2(𝑓 )|2|𝐺(𝑓 )|2d𝑓

= ∫ |Δ𝑆(𝑓 )|2|𝐺(𝑓 )|2d𝑓. (2.53)

The old difference spectrum is just filtered to produce the new spectrum. By checking
Eq. (2.53), or by computing 𝑑min for the new pulse response 𝑔 ⋅ ℎ (by a program in
Appendix 2A), it will be clear if the filter is seriously reducing error performance. If
𝐺(𝑓 ) is an ideal low-pass filter with passband (−𝑊 ,𝑊 ), the last integral is simply
∫ 𝑊

−𝑊
|Δ𝑆(𝑓 )|2d𝑓 , and we have the distribution of distance as a function of frequency.

The convolution with 𝑔(𝑡) can also be viewed as creating a new nonorthogonal
modulation. All of these insights will be applied in later chapters.

Example 2.4 (Escaped Distance with a Narrowband Pulse)

When a pulse is very narrowband, there can be dramatic effects at the modulation
band edge. Figure 2.11 shows the difference power spectra of two error events when
ℎ(𝑡) =

√
1∕4 𝑓 (𝑡∕4) and 𝑓 (𝑡) is the 30% root RC pulse orthogonal on 𝑇 = 1. Since

the picture shows positive frequencies only, the integral of the power spectra is half
their respective distances; the events shown are the antipodal event, square distance
2, and the 𝑑min event [2 -2 -2 2 2 -2] with distance 0.218. A vertical line marks 0.125
Hz, the half-power bandwidth of the modulation. Were the signal spectrum limited
to 0.125 Hz, it would hardly affect the antipodal event, but it would remove 54% of
the 𝑑min event’s square distance, a loss equivalent to 3.3 dB in 𝐸𝑏∕𝑁0.

What happens in the preceeding example, whereby a significant part of an event’s
distance pushes outside what would seem to be the signal band edge, is called escaped
distance. Severe instances can occur, and will be noted in later chapters. They mean

10The ideas in Section 2.5.2 developed in the 1980s from the work of the author and N. Seshadri [24,25].
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FIGURE 2.11 Antipodal and 𝑑min-achieving difference event spectra with 𝜏 = 1∕4 FTN
pulse modulation. 𝑑min event is [2 -2 -2 2 2 -2]. The PSD of the modulation itself is 1/2 that of
the antipodal event.

that the difference between signals lies at a much wider bandwidth than the main
body of the signals. Often, but not always, the critical differences are the ones that
lead to 𝑑min, and if much of their distance is truly lost from the receiver’s view, the
effective 𝑑min is much degraded.

A criterion for such a critical difference is clear in Figure 2.11: Low spectrum
at low frequencies, or more specifically, a DC null in the difference spectrum. If a
null exists, distance must necessarily be forced outward in frequency; if the signaling
is very narrowband, 𝑑min is very small and can in principle lie in the stop band
of the signal spectrum. A straightforward Fourier analysis shows that a DC null is
equivalent to ∫ ∑

Δ𝑢𝑛ℎ(𝑡 − 𝑛𝑇 )d𝑡 = 0. A sufficient condition for this is the zero sum
rule

∑
𝑛

Δ𝑢𝑛 = 0. (2.54)

Nulls can also originate from an oddly shaped ℎ(𝑡), but in fact Eq. (2.54) holds almost
always for the minimum distance when bandwidth is narrow. Both the DC null and
the zero sum hold in Figure 2.11 and the zero sum rule holds in fact for almost all
near contenders for the minimum distance in Example 2.4. By limiting the search for
𝑑min to zero-sum differences, the search can be much reduced.

A summary of the 𝑑min situation is as follows. If the modulation pulse ℎ(𝑡)
is orthogonal in the symbol time, the minimum distance is the antipodal 𝑑0 and
all other difference events have square distance a multiple of 𝑑

2
0 . As ℎ(𝑡) scales

longer, and declines presumably in bandwidth, 𝑑min = 𝑑0 until the Mazo limit for the
pulse is crossed. Thereafter, 𝑑min drops and eventually is the distance of a zero-sum
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difference. Very roughly, this begins to occur at about one third of the orthogonal
pulse bandwidth. A number of bounds to 𝑑min based on these spectral ideas are to be
found in Reference 8, Chapter 6 and in Reference 10, 22, and 25.

2.6 CONCLUSIONS

Chapter 2 began with signal space theory for the white Gaussian noise channel.
This important theory expresses signals as components in a vector space and error
probability in terms of Euclidean distance. The remainder of the book is based on
this approach. The theory leads to a number of optimal receiver structures, the most
important of which in bandwidth efficient coding is the orthogonal simple basis
(OSB) receiver.

TheOSB receiver expresses interval-𝑇 linearmodulation signals asweighted sums
of simple 𝑇 -orthogonal basis signals. The linear modulation pulse is not necessarily
𝑇 -orthogonal but the basis functions are. The receiver begins with a simple matched
filter, matched to the basis function, and its 𝑇 -samples are noise plus the real-number
convolution of a generator sequence and the data. The rest of the receiver is an all-
pass filter, which produces a maximum-phase version of the samples, and a trellis
decoder.

Because strong bandwidth limitation causes strong Markov intersymbol interfer-
ence, a trellis decoder is essential in bandwidth efficient signaling. Furthermore, most
coded bandwidth efficient signals today need an iterative decoder. This consists of
two soft-output trellis decoders that feed likelihoods to each other. The BCJR soft
trellis decoder is an important such decoder.

The most important narrowband coding schemes today are in the faster than
Nyquist class. These are based on nonorthogonal linear modulation, combined with
convolutional coding. One BCJR algorithm decodes the convolutional codewords
while a second BCJR demodulates the ISI. The first BCJR is traditional and simple
but the second must be simplified; a number of methods are available.

The phase of a received sequence is an important concept in simplified iterative
decoding. Receivers with reasonable complexity require maximum phase sequences,
which they then reverse to obtain minimum phase. Spectral aliasing is another im-
portant concept in signal design.

Trellis detection produces multiple-symbol error events instead of independent
data errors. These have a minimum distance, and other properties such as multiplicity
and difference spectrum, that are useful in fine-tuning error rate predictions.

APPENDIX 2A: CALCULATING MINIMUM DISTANCE

An important tool in the analysis of codes and modulations is the calculation of
minimum distance. This appendix presents Matlab scripts for several algorithms that
find it for trellis signal structures. Examples are given that illustrate the Mazo limit
and when OBD and WMF receivers are not optimal.
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Program 2A.1: Minimum Distance of Binary Linear Modulation
The next MATLAB script finds the (square) minimum distance for binary baseband
linear modulation with a basis pulse ℎ(𝑡). It works by computing the distance for each
symbol difference sequence Δ𝐮 of length up to totsym and noting the minimum.
The last difference at each length must be nonzero and the first is fixed at 2 since
the distance of Δ𝐮 and −Δ𝐮 are the same. Technically, this enumeration does not
prove that the minimum distance is the value found, but distances grow rapidly with
difference length, and with modern computing this limited exhaustive search is a
clean, fast way to estimate the minimum. Algorithms that find a guaranteed minimum
distance are available in the literature, based for example on a trellis search.

The program can work with either continuous or discrete-time ℎ, given in both
cases in the input hh. Which is the case is specified in the sampling rate fs; setting
fs=1means ℎ is discrete-time. hh is the same sequence whether or not ℎ(𝑡) is causal,
but the routine may reach a conclusion faster if a minimum phase ℎ is given. If the
signals are filtered by a filter with impulse response gg, the input pulse response
is then hh=conv(hh,gg). If continuous, hh should begin and end at a symbol
interval boundary.

The output is the minimum distance plus all distances found less than distlim
and their difference sequences.

% mlsedist2 is a script to compute the minimum square free distance of
% binary PAM modulation with total pulse response ’hh’. It computes
% the distance for each symbol difference sequence up to length ’totsym’
% and finds the min of these. Supply the following:
% fs = sampling rate per symbol interval (set to 1 if discrete time)
% hh = total pulse response or discrete time model
% totsym = length limit of difference sequences
% distlim = limit on distance of print out

dsmap=[-2 0 2]; mindist=2; mindel=2; z=.5/fs; %Initialize
hh=hh/sqrt(sum(hh.ˆ2)/fs); %Normalize
dist=2; %Antipodal distance
% Do short sequences first. Least square distance so far is in mindist.
disp([’Error seqs and distances found inside distlim ...’])
disp([’Antipodal signal distance is 2’]); df=zeros(1,fs+1);
delta=[2-2]; df(1:fs:length(df))=delta; dist=z*sum(conv(hh,df).ˆ2);

if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, disp(dist), disp(delta), end

delta=[2 2]; df(1:fs:length(df))=delta; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, disp(dist), disp(delta), end

% Do long sequences. Enumerate middle parts of lengths kk = 1,...,totsym-2.
for kk=1:totsym-2,

pwr(1:kk)=3.ˆ(kk-1:-1:0); sym=zeros(1,kk);
df=zeros(1,(kk+1)*fs+1); ldf=length(df);
for nct=0:3ˆkk-1, tm=nct; %Enumerate middle sections
for k=1:kk, %Find difference symbols

midk=floor(tm/pwr(k));
tm=tm-midk*pwr(k);
sym(k)=dsmap(midk+1); end

% Append beginning and end symbols and check distance
delta=[2 sym -2]; df(1:fs:ldf)=delta; dist=z*sum(conv(hh,df).ˆ2);

if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, disp(dist), disp(delta), end
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delta=[2 sym 2]; df(1:fs:ldf)=delta; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, disp(dist), disp(delta), end

end, end
% Final output
disp(’Minimum square distance found and delta are ...’)
disp(mindist), disp(mindel), distlim, totsym

Example 2A.1 (Example 2.2 Continued)

The discrete-time pulse is hh = [.7878, .3939, .3939, .2629]. With distlim=2.5;
totsym=6; fs=1,mlsedist2 gives 𝑑2

min = 1.72, achievedwith error difference
sequence [2 -2]. It also finds another sequence [2 0 -2] with distance 2.34, and no
others with distance below 2.5. Large values of totsym do not change the outcome.
All phase versions give the same distribution of outcomes.

Example 2A.2 (Example 2.2 with Continuous Signals)

Now suppose ℎ(𝑡) = .7878𝑓 (𝑡) + .3939𝑓 (𝑡 − 1) + .3939𝑓 (𝑡 − 2) + .2629𝑓 (𝑡 − 3),
where 𝑓 (𝑡) is the 𝑇 = 1 orthogonal 30% root RC pulse. This is the previous discrete-
time response convolved with the root RC pulse. mlsedist2 with fs=20 and the
sampled new pulse yields the same outcome as before. This happens because 𝑓 (𝑡) is
a weighted sum of orthogonal pulses.

Example 2A.3 (Non-Orthogonal Pulse)

For a third example let ℎ(𝑡) =
√
1∕2𝑓 (𝑡∕2) from Example 2.3, where 𝑓 (𝑡) is the

root RC pulse in Example 2.2 scaled twice as wide in time. Take mlsedist2 with
distlim=1.5; totsym=8; fs=20 yields minimum distance 1.01, achieved
by difference [2 -2 2]. Eight more differences lead to distances less than 1.5. Exactly
the same outcome occurs when the continuous ℎ(𝑡) is replaced by 15 of its samples
each 𝑇 = 1 seconds, the middle seven of which are [-.109 -.053 .435 .765 .435 -.053
-.109]. This happens because ℎ(𝑡) and a simple basis set satisfy Property 2.1.

Example 2A.4 (Pulse that Fails Property 2.1)

This example has three parts. (𝑖) Change the pulse in the previous example to ℎ(𝑡) =√
2∕3 𝑓 (2𝑡∕3), where 𝑓 (𝑡) now has excess bandwidth factor 0.7. This pulse has

bandwidth 13% larger than the Nyquist bandwidth 1∕2𝑇 Hz, and fails Property 2.1
for any simple orthonormal basis. Strictly speaking, only the WMF receiver can be
used. The continuous autocorrelation 𝜌ℎ(𝛿) is ∫ ℎ(𝑥)ℎ(𝑥 + 𝛿) 𝑑𝑡 and we work with
its samples 𝜌ℎ(𝑘𝑇 ), 𝑘 an integer, 𝑇 = 1. Taking the central 29 of these, we find with
roots that there are 28 roots, 14 outside the unit circle, 14 reflected inside, and none
on the circle (the reflections are because 𝜌ℎ(𝑘𝑇 ) is symmetric in 𝑘). The 14 outside
the circle are the roots of the discrete-time maximum phase model 𝐺(𝑧), whose
coefficients (found with poly and reversed) turn out to be [.906 .413 -.093 .0046
-.0094 .0026 …]. Applying this in mlsedist2 with distlim=3; totsym=8;
fs=1, we get that that 𝑑2

min = 2, due to the antipodal difference event, with difference
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[2 -2] achieving 2.66 and [2 -2 2] achieving 2.99. Note that it is 𝜌ℎ(𝛿) that is sampled
in the WMF modeling, not ℎ(𝑡).

(𝑖𝑖) For comparison, we can compute the OSB model, which is based on the
samples ℎ(𝑘𝑇 ). Taking the middle 15 of these samples, finding again 14 roots (none
on the unit circle), reflecting those inside to the outside, and applying poly, we
compute a somewhat different model [.9265 .370 -.067 -.0155 .0076 -.0107 …]. It
also leads to 𝑑

2
min = 2, but the next-nearest difference is at distance 2.73 and a rather

different distribution exists thereafter. The OSB model is not valid here, although the
𝑑
2
min outcome is the same.
(𝑖𝑖𝑖)How can we verify that the first calculation is valid? By running mlsedist2

with the original continuous ℎ(𝑡), this is done. Setting distlim=3; totsym=8;
fs=20, one gets exactly the result in (𝑖).

Program 2A.2: Minimum Distance of 4-Level Linear Modulation
The next MATLAB script is similar to the previous one, but extends the method to 4-ary
baseband modulation. Since the modulator symbol set is now

√
1∕5 {3, 1,−1,−3},

the symbol differences to take account of are
√
1∕5 {0,±2,±4,±6}.

% mlsedist4 is a script to compute the minimum square free distance of
% 4PAM modulation with total pulse response ’hh’. It computes the
% distance for each symbol difference sequence up to length ’totsym’
% and finds the min of these. Supply the following:
% fs = sampling rate per interval (set to 1 if discrete time)
% hh = total impulse response or discrete time model
% totsym = length limit of difference sequences
% distlim = limit on distance of print out

dsmap=[-6 -4 -2 0 2 4 6]; mindist=.8; mindel=2; z=.2/fs; %Initialize
hh=hh/sqrt(sum(hh.ˆ2)/fs); %Normalize
dist=.8; %Antipodal distance
ends2=[2 -6;2 -4;2 -2;2 2;2 4;2 6;4 -6;4 -2;4 2;4 6;6 -4;6 -2;6 2;6 4];
ends=[ends2; 4 -4;4 4;6 -6;6 6];

% Do short sequences first. Least square distance so far is in mindist.
% There are 14 2-symbol differences (4 more give larger distances).
disp([’Error seqs and distances found inside distlim ...’])
disp([’Antipodal signal distance is .8’])
df=zeros(1,fs+1);

for n=1:14, del=ends2(n,:);
df(1:fs:length(df))=del; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=del; end
if dist < distlim, disp(dist), disp(del), end

end

% Do long sequences. Enumerate middle parts of lengths kk = 1,...,totsym-2.
% There are 18 end-symbol pairs for each middle part.
for kk=1:totsym-2, k1=kk+2;

pwr(1:kk)=7.ˆ(kk-1:-1:0); sym=zeros(1,kk);
df=zeros(1,(kk+1)*fs+1); ldf=length(df);
for nct=0:7ˆkk-1, %Eumerate middle sections
for k=1:kk, tm=nct; %find difference symbols

midk=floor(tm/pwr(k));
tm=tm-midk*pwr(k);
sym(k)=dsmap(midk+1); end
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% Append beginning and end symbols and find distances.
for n=1:18, del=[ends(n,1) sym ends(n,2)];

df(1:fs:ldf)=del; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=del; end
if dist < distlim, disp(dist), disp(del), end

end, end, end
% Print final output
disp(’Minimum square distance found and delta are ...’)
disp(mindist), disp(mindel), distlim, totsym

Example 2.1 may be repeated for 4-ary modulation with mlsedist4 in place of
mlsedist2, with the outcome that 𝑑2

min = .69 with difference event [2 -2]. This is
the same 1.72 as in Example 2.1, but scaled by .8∕2 to reflect the new symbol energy.

Repeating Example 2.3 with distlim=.5; totsym=10; fs=20 and the
continuous ℎ(𝑡) yields 𝑑

2
min = .154 for difference sequence [2 -4 6 -6 4 -2]. The

discrete-time ℎ there yields the same with fs=1. The difference [2 -2 2] has distance
.404, which is again the energy-scaled distance 1.01 that was found before. But
this time the 4-ary minimum distance is lower than would be predicted from the
binary case, and it occurs with a difference that definitely stems from 4-ary symbol
sequences.

Program 2A.3: BER and EER Estimates for Binary Linear Modulation
This Matlab script extends the method in Program 2A.1 to computing the event
error rate (EER) and symbol bit error rate (BER) for binary modulation, using the
multiplicity parameter 𝜅 defined in Section 2.5.1 and the Gaussian integral 𝑄( ).
Error difference events leading to square distances less than distlim count in the
estimates. Each creates a term of the form 𝑄(

√
𝑑2𝐸𝑏∕𝑁0)∕2𝜅 ; this alone counts in

the EER sum, and the BER sum includes a factor to account for the event’s symbol
errors. The 𝐸𝑏∕𝑁0 for the 𝑄 calculation is specified in snr. Otherwise, the inputs
are as in Program 2A.1, with the input fs specifying whether the pulse response is
continuous or discrete.

EER and BER will be based on the 𝑑min-achieving event alone if distlim is set
slightly above 𝑑2

min. The program employs the function qfn(x) to evaluate𝑄(𝑥). If
this is not available, use qfn(x)=.5-.5*erf(x/1.4142136) .

% mlsedist2Q is a script to compute for binary PAM modulation with total
% pulse response ’hh’ the minimum square free distance, event error rate (EER)
% and bit error rate (BER) based on event multiplicity. It computes the
% distance for each symbol difference sequence up to length ’totsym’, finds
% the min of these, and constructs estimates based on Q( ) for distances less
% than ’distlim’. Supply the following:
% fs = sampling rate per symbol interval (set to 1 if discrete time)
% hh = total pulse response or discrete time model
% totsym = length limit of difference sequence
% distlim = limit on distance of print out and Q calculation
% snr = Eb/No for Q calculation (not in dB)

dsmap=[-2 0 2]; dist=2; mindist=2; mindel=2; z=.5/fs; %Initialize
hh=hh/sqrt(sum(hh.ˆ2)/fs); %Normalize
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% Do short sequences first. Least square distance so far is in mindist.
% For each, find Q term, divide by multiplicity, find EER & BER term, sum.
disp([’Q contributions inside distlim found at SNR ’,num2str(snr)])
disp([’Distances, diff. seqs., Q term, EER & BER terms, total EER & BER’])
if distlim > 2, %Antipodal case

qtot=qfn(sqrt(snr*2)); btot=qtot;
disp([’ Distance 2, d-seq 2, ’]), disp([qtot btot qtot btot])

else qtot=0; btot=0; end
df=zeros(1,fs+1); delta=[2 -2];
df(1:fs:length(df))=delta; dist=z*sum(conv(hh,df).ˆ2);

if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, tq=qfn(sqrt(dist*snr))/2;
qtot=qtot+tq; tb=2*tq; btot=btot+tb;
disp([’ Distance ’,num2str(dist),’, d-seq ’,int2str(delta)])
disp([’ ’,num2str([tq tb qtot btot])]), end

delta=[2 2]; df(1:fs:length(df))=delta; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, tq=qfn(sqrt(dist*snr))/2;
qtot=qtot+tq; tb=2*tq; btot=btot+tb;
disp([’ Distance ’,num2str(dist),’, d-seq ’,int2str(delta)])
disp([’ ’,num2str([tq tb qtot btot])]), end

% Do long sequences. Enumerate middle parts of length kk = 1,...,totsym-2.
for kk=1:totsym-2,

pwr(1:kk)=3.ˆ(kk-1:-1:0); sym=zeros(1,kk);
df=zeros(1,(kk+1)*fs+1); ldf=length(df);
for nct=0:3ˆkk-1, tm=nct; %Enumerate middle sections
for k=1:kk, %Find difference symbols

midk=floor(tm/pwr(k));
tm=tm-midk*pwr(k);
sym(k)=dsmap(midk+1); end

% Append beginning and end symbols; find multiplicity ’mlt’ and distance
delta=[2 sym -2]; df(1:fs:ldf)=delta; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, mlt=sum(delta˜=0)-1;
tq=qfn(sqrt(dist*snr))/(2ˆmlt);
qtot=qtot+tq; tb=(mlt+1)*tq; btot=btot+tb;
disp([’ Distance ’,num2str(dist),’, d-seq ’,int2str(delta)])
disp([’ ’,num2str([tq tb qtot btot])]), end

delta=[2 sym 2]; df(1:fs:ldf)=delta; dist=z*sum(conv(hh,df).ˆ2);
if dist < mindist, mindist=dist; mindel=delta; end
if dist < distlim, mlt=sum(delta˜=0)-1;
tq=qfn(sqrt(dist*snr))/(2ˆmlt);
qtot=qtot+tq; tb=(mlt+1)*tq; btot=btot+tb;
disp([’ Distance ’,num2str(dist),’, d-seq ’,int2str(delta)])
disp([’ ’,num2str([tq tb qtot btot])]), end

end, end
% Final output
disp(’Minimum square distance found & difference are’),

disp([’ ’,num2str(mindist),’ at ’,int2str(mindel)])
disp(’EER & BER estimates at SNR are’), disp([qtot btot])
disp([’Distance limit = ’,num2str(distlim)])
disp([’Symbols searched = ’,num2str(totsym)])

The program above can be adopted to 4-ary modulation in the style of Program
2A.2, and we leave this as an exercise for the reader.
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3
GAUSSIAN CHANNEL CAPACITY

INTRODUCTION

A central outcome of Shannon information theory is limits to communication in the
form of capacity formulas. These can be written as a function of the channel structure
and the transmission symbols employed. Our purpose in this chapter is as it was in
the last, to outline basic ideas, emphasizing those that are important in narrowband
transmission over the Gaussian noise channel.

We need to redirect the classical theory in several ways. Bandwidth plays a critical
role and needs explicit expression, not in bits per second but in bits per Hertz-second.
Not only the width but also the shape of the signal PSD affect the outcome, especially
when the transmission employs nonorthogonal pulses. In the later chapters, we will
see practical systems that touch the traditional Shannon limit when they should not,
and researchers have found systems the even “exceed” limits. The problem is usually
a weak definition of bandwidth.

Second, we would like to express the Shannon limits as data bit error rate (BER)
obtainable with the data 𝐸𝑏∕𝑁0, since this is the measure of real codes and modula-
tions.

Section 3.1 reviews the standard approach to channel capacity, ending with the
capacity for the single-use AWGN channel. Section 3.2 extends that to a continuous-
signal channel with a bandwidthmeasure, an arbitrary PSD, and a specified data BER.
This creates a Shannon limit that directly compares to concrete transmission systems
in the next chapters. Section 3.3 looks at important implications for narrowband
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systems. One result is that most often orthogonal pulse transmission has a weaker
capacity for the same spectrum than nonorthogonal.

Much of the needed Shannon theory is only summarized here, and many good text
books provide details. Classic texts are Gallager [1] and Cover--Thomas [2]; the more
recent Yeung [3] emphasizes the Gaussian channel. The communication engineering
texts [4,5,7] have useful sections, and Wilson [7] is especially clear about the effect
of alphabet constraints.

3.1 CLASSICAL CHANNEL CAPACITY

We begin with the channel capacity of a single use of an AWGN channel. In the
language of Chapter 2, a value 𝑥 is transmitted, a zero-mean IID Gaussian variate 𝜂
with variance 𝑁0∕2 is added, and the received value is 𝑟 = 𝑥 + 𝜂. This constitutes
one channel use. The variable 𝑥 has average energy 𝐸cu, joules per channel use. The
rest of this section calculates the capacity of 𝑥 and then finds the number of such uses
available in a piece of time and bandwidth. The product is the capacity of the piece.

In Shannon theory the formal definition of capacity is

𝐶 = max
𝑃 [𝑋]

𝐼(𝑋;𝑅) bits/channel use, (3.1)

where

𝐼(𝑋;𝑅) =
∑
𝑥

∑
𝑦

𝑃 [𝑥, 𝑟] log 𝑃 [𝑥, 𝑟]
𝑃 [𝑥]𝑃 [𝑟]

(3.2)

is the mutual information between two random discrete variables𝑋 and𝑅.1 The idea
here is that 𝐶 is the maximum information that can pass through the relationship that
exists between 𝑋 and 𝑅. One must be free to change the alphabet and distribution
of the information source 𝑋; this is a theoretical demand but also a necessity in
practice. Shannon theory views information as probability distributions and capacity
as a function of the conditional probability between distributions at two sites. The
measure of information in a variable is the entropy of the distribution, 𝐻(𝑋) =
−
∑

𝑖
𝑃 [𝑥𝑖] log2 𝑃 [𝑥𝑖] in bits. On occasion we may want to restrict the input random

variable𝑋 to a certain distribution, for example the uniform one, or a certain alphabet,
such as the one in binary or 4-arymodulation. Then𝐶 is called a constrained capacity,
constrained to the imposed conditions.

When the channel input and output is continuous, Eq. (3.1) can be written as

𝐶 = max
𝑃 [𝑥]

{
∬ 𝑃 [𝑥]𝑃 [𝑟|𝑥] log2 𝑃 [𝑟|𝑥]

∫ 𝑃 [𝑥′]𝑃 [𝑟|𝑥′]d𝑥′ d𝑟d𝑥
}
,

= max
𝑃 [𝑥]

{
∫ 𝑃 [𝑥]∫ 𝑃 [𝑟|𝑥] log2 𝑃 [𝑟|𝑥] d𝑟 d𝑥 − ∫ 𝑃 [𝑟] log2 𝑃 [𝑟] d𝑟

}
. (3.3)

1In this chapter, upper case 𝑋 etc. denotes a random variable and lower case 𝑥 denotes an outcome of the
variable.
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We will state the AWGN capacity as a theorem and review the derivation first given
by Shannon in Reference 8.

Theorem 3.1 (AWGN Channel Capacity) The channel capacity of one indepen-
dent AWGN channel use is

𝐶 = (1∕2) log[1 + 2𝐸cu∕𝑁𝑜] bits/channel use. (3.4)

Shannon’s main steps are as follows: The Gaussian noise distribution means that
the integral over 𝑟 in the first term of Eq. (3.3) reduces to

∫ 𝑃 [𝑟|𝑥] log2 𝑃 [𝑟|𝑥] d𝑟 = ∫ [
√
1∕𝜋𝑁0 e−(𝑟−𝑥)

2∕𝑁𝑜] log2[
√
1∕𝜋𝑁0 e−(𝑟−𝑥)

2∕𝑁𝑜] d𝑟

= (−1∕2) log2(2𝜋e𝑁𝑜∕2), any 𝑥.

Thus, the first term is simply

∫ 𝑃 [𝑥](−1∕2) log2(2𝜋e𝑁𝑜∕2) d𝑥 = (−1∕2) log2(2𝜋e𝑁𝑜∕2).

In the second term, − ∫ 𝑃 [𝑟] log2 𝑃 [𝑟] d𝑟 is the entropy of𝑅 and is greater than zero;
it can be shown (see Reference [1]) that the entropy of a continuous variable with
energy 𝐸cu is maximum when the variable is Gaussian. This means that a Gaussian
𝑅 must maximize Eq. (3.3) for any 𝑋 distribution. Since 𝑋 is now the difference of
two Gaussians, it must also be Gaussian; that is, a Gaussian 𝑋 maximizes 𝐼(𝑋;𝑅).
Since 𝑋 has energy 𝐸cu, it must then have distribution

𝑃 [𝑥] =
√
1∕2𝜋𝐸cu e−𝑥

2∕2𝐸cu .

Since 𝑋 and 𝜂 are independent, the variable 𝑅 must be distributed as

𝑃 [𝑟] =
√
1∕2𝜋(𝐸cu +𝑁𝑜∕2) e−𝑟

2∕2(𝐸cu+𝑁𝑜∕2).

The second term − ∫ 𝑃 [𝑟] log2 𝑃 [𝑟] d𝑟 in Eq. (3.3) is then (1∕2) log[2𝜋e(𝐸cu +
𝑁𝑜∕2)]. The AWGN capacity is the sum of the two terms, which is Eq. (3.4).
This is the solid curve in Figure 3.1. ■

Shannon goes on to prove that codes exist at all rates less than 𝐶 bits/channel use,
whose decoding error probability tends to zero as the block length grows. These code
words are made up of random letters whose values are Gaussian distributed, by the
distribution just given for 𝑥. What if the letters mimic simple modulation, uniformly
distributed with the standard values in Section 2.2? This is a constrained capacity,
that must lie at or below the AWGN capacity. Equation (3.3) can be evaluated again,
this time with sums over 𝑥, the same 𝐸cu, no maximizing, and 𝑃 [𝑥] set to 1∕𝑀 .
The codeword letters will appear to be random 𝑀-ary modulation symbols. The
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FIGURE 3.1 AWGN channel capacity in bits/channel use versus energy per channel use,
compared to the capacity constrained to the 2-,4-, and 8 PAM alphabets. (4- and 8-ary data are
adapted from Kressel [10], p. 111).

calculation is tedious but straightforward and the outcome is shown in Figure 3.1.2

The capacity for an 𝑀-ary alphabet cannot exceed log2𝑀 bits/channel use; if the
modulation alphabet is carefully chosen,𝐶 is not much less than the AWGN capacity.
Otherwise there is a major loss. Above all, a small modulation alphabet must not be
used at large 𝐸cu∕𝑁0 !

Extension to Time--Bandwidth. Equation (3.4) is the capacity of one independent
AWGN channel. It could have come about in many ways. How many such chan-
nels exist in  seconds and  Hertz? A simple insight is provided by the pulse√
1∕𝑇 sinc(𝑡∕𝑇 ) that was introduced in Chapter 1. It is 𝑇 -orthogonal, has bandwidth

1∕2𝑇 Hz, and no narrower-band orthogonal pulse exists. Consequently, a train of sinc
pulses running in  Hz for  seconds provides about  ∕𝑇 = 2  independent
AWGN channels. In the language of Section 2.1, these each occupy a dimension of
signal space.

The sinc pulse is physically unrealizable, and a precise statement of the 2
rule needs to be hedged somewhat. A rigorous view only arrived in the 1960s with
the highly technical approach of Landau, Pollak, and Slepian [11,12]. A textbook
discussion appears in Reference 6, Section 5.1, and we will return to the subject in
Chapter 7. For now the following simplified approach will suffice.

2The same calculation is shown in Reference 13, Figure 3.18, for in-phase and quadrature modulation via
QAM. QAM is equivalent to two PAM uses.



62 GAUSSIAN CHANNEL CAPACITY

Theorem 3.2 (The 2𝑊 𝑇 Theorem) Let  be the set of all signals band limited
to (− ,) Hz and time limited to (− ∕2,  ∕2) in the sense that the true signals
and the limited signals do not differ in energy by more than 𝜖 in their spectrum
and time evolution. Let  be the dimension of  in the sense that a basis exists that
represents every function 𝑓 (𝑡) in to within energy 𝛿 in (− ∕2,  ∕2). Then for every
𝛿 > 𝜖 > 0

lim →∞


2 → 1. (3.5)

With the theorem in hand, we can write 𝐶 , the capacity in bits/s available from
 positive Hz, as

𝐶 = (1∕2) log[1+2𝐸cu∕𝑁𝑜] (bits/channel use) × 2 (uses/s)

=  log[1 + 2𝐸cu∕𝑁𝑜] bits/s. (3.6)

On a per-Hertz basis, this is

log[1 + 2𝐸cu∕𝑁𝑜] bits/Hz-s. (3.7)

The formula should be viewed as asymptotic, in the limit of time. To distinguish
it from the single-use AWGN, it will be called the bandwidth Gaussian channel
capacity.

The formula can also be expressed in terms of signal power𝑃 . In Shannon analysis,
the signal is a Gaussian random process with two-sided power spectral density𝑆𝑥𝑥(𝑓 )
watts/Hz. For now we take 𝑆𝑥𝑥(𝑓 ) to be constant in 𝑓 . The signal power in watts,
counting frequencies on [− ,], is therefore 𝑃 = 2𝑆𝑥𝑥(𝑓 ) watts. The energy
per channel use over time  is

𝐸cu =
𝑃
2 = 𝑃∕2 J.

Substitution of this into Eq. (3.6) gives the alternate capacity form

𝐶 =  log2(1 + 𝑃∕𝑁𝑜) bits/s (3.8)

for power 𝑃 uniformly distributed over [− ,] Hz. Equations (3.6) and (3.8) are
the traditional forms for Shannon capacity over a defined bandwidth. The bandwidth
 need not refer to a band centered at 0 Hz as here, but can refer to any piece of
width  positive Hz.

For our purposes, there are two shortcomings in these formulas: They do not
measure energy per databit carried (𝐸𝑏) and they are not expressed in the more
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FIGURE 3.2 The bandwidth Gaussian channel Shannon limit, expressed as databit energy
versus databit density in bits/Hz-s.

fundamental unit Hz-s. To achieve these aims, divide𝐸cu by the capacity in Eq. (3.4)
to obtain

𝐸𝑏∕𝑁𝑜 = 𝐸cu∕𝐶𝑁𝑜 =
𝐸cu∕𝑁𝑜

(1∕2) log(1 + 2𝐸cu∕𝑁𝑜)
J/databit, (3.9)

and divide  by Eq. (3.6) to obtain

𝑊𝑏 = ∕𝐶 = 1
log(1 + 2𝐸cu∕𝑁𝑜)

Hz-s/databit . (3.10)

The code rate, or bit density as we will call it, is 1∕𝑊𝑏 databits/Hz-s. Effectively, we
have here the per-databit consumption of energy and the Hz-s resource, in terms of
a common parameter 𝐸cu∕𝑁0. One can combine Eqs. (3.9) and (3.10) to get

𝐸𝑏∕𝑁0 = (21∕𝑊𝑏 − 1)𝑊𝑏. (3.11)

A plot in terms of the bit density 1∕𝑊𝑏 is Figure 3.2. This is a form of the Shannon
limit: With 𝑆xx(𝑓 ), reliable communication below and to the left of the curve is
impossible.

An interesting fact is that 𝐸𝑏∕𝑁0 tends to −1.59 dB as 𝑊𝑏 grows, and reliable
communication is not possible below this value. This can be shown by taking the
limit in Eq. (3.11). An everyday example of the Shannon limit is given by the
point (1 bit/Hz-s, 0 dB) on the curve; this states that a rate 1/2 error-correcting
code combined with sinc pulse binary modulation (a 1 bit/Hz-s combination) cannot
achieve arbitrarily small error probability below 𝐸𝑏∕𝑁0 = 0 dB.
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3.2 CAPACITY FOR AN ERROR RATE AND SPECTRUM

Physical transmission systems have a certain error rate and PSD, which form an
important part of their specification. In what follows, we extend the traditional form
of capacity to include these.

Extension to BER. Shannon and successors proved that a codeword set and receiver
exist that operate with arbitrarily small error probability at all rates less than capacity,
in the limit of many channel uses. In a 1959 paper [9], Shannon gave a method to add
the constraint that the data bit error rate (BER) need only achieve 𝑃ber > 0. Suppose
that we have available the usual error-free channel with capacity 𝐶

† bits/s. Then
Shannon’s rate--distortion theory in Reference [9] shows that source codes exist that
represent 𝐶ber bits/s with accuracy 𝑃ber . The two rates are related by

𝐶ber = 𝐶
†∕[1 − ℎ𝐵(𝑃ber)] bits/s. (3.12)

Here,𝐶ber is the nominal design rate and𝐶† is the actual rate needed in the (error-free)
channel.

By following the steps that led to Eqs. (3.9) and (3.10), we obtain the per databit
energy and bandwidth subject to the BER condition

𝐸𝑏∕𝑁𝑜
||𝑃ber =

[1 − ℎ𝐵(𝑃ber)]𝐸cu∕𝑁𝑜

(1∕2) log(1 + 2𝐸cu∕𝑁𝑜)
J/bit, (3.13)

𝑊𝑏
||𝑃ber =

[1 − ℎ𝐵(𝑃ber)]
log(1 + 2𝐸cu∕𝑁𝑜)

Hz-s/bit. (3.14)

The new 𝐸𝑏∕𝑁𝑜 and 𝑊𝑏 satisfy

𝐸𝑏∕𝑁𝑜 = (2[1−ℎ𝐵(𝑃ber )]∕𝑊𝑏 − 1)𝑊𝑏. (3.15)

At useful BER the difference in these values from those in Eqs. (3.10) and (3.11)
is small. For example, at BER 0.0001, 𝐸𝑏∕𝑁0 and 𝑊𝑏 are reduced by only 1 −
ℎ𝐵(0.0001) = 0.9985. At high BER, however, the differences are significant, and
transmission systems can appear to violate capacity if the BER correction is not
applied. The correction gives the leftward bend that appears in the next two figures.

Extension to an Arbitrary PSD. Realizable modulations do not produce signal sets
with the sinc pulses and square PSD that are envisioned in Eqs. (3.6)--(3.8). This turns
out to be a serious shortcoming. It might be expected that the square-PSD capacity
provides a sufficiently good benchmark when the square bandwidth is equated to the
set’s half-power or other bandwidth measure, but this is not so as the signal databit
density grows. A practical scheme’s capacity reference needs to be computed for the
PSD that it actually has.
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The signal PSD can be incorporated as follows. To begin we need a bandwidth
criterion, a concept that was introduced in Section 1.4. Simply measuring the largest
bandwidth does not work well, because everyday stop band characterizations, for
example, a 4-pole filter, have infinite support, at least in theory. In most of this
book we use the half-power bandwidth criterion; among other reasons, all useful
orthogonal pulses with symbol time 𝑇 have the same half-power point, namely 1∕2𝑇
Hz (Property 1.4).

A PSD with 1 Hz bandwidth will be taken to mean that the criterion measures 1
Hz. To work with bandwidth in a “per Hertz” sense, we will compute the capacity in
bits/s for the standard 1 Hz PSD, and take the units of the result as bits/Hz-s for this
PSD shape. Scaling this PSD width by a factor 𝐴 will scale the capacity in bits/s by
𝐴 but not change the capacity in bits/Hz-s.

To carry out the calculation, we return to Eq. (3.8). Let 𝑃 continue as the total
power but let the power density at 𝑓 Hz have the shape |𝐻(𝑓 )|2, an even function
with unit integral on (−∞,∞). The PSD function at 𝑓 is then 𝑃 |𝐻(𝑓 )|2 watts/Hz.
The power in a small piece of frequency Δ𝑓 is ≈ 2𝑃 |𝐻(𝑓 )|2Δ𝑓 watts, counting
negative and positive frequencies. The quantity 𝑊𝑁0 in Eq. (3.8) becomes Δ𝑓𝑁0

and the capacity that results is Δ𝐶 = Δ𝑓 log2[1 +
2𝑃
𝑁0

|𝐻(𝑓 )|2]. Passing to the limit

Δ𝑓 → d𝑓 gives the integral

𝐶psd = ∫
∞

0
log2

[
1 + 2𝑃

𝑁0
|𝐻(𝑓 )|2] d𝑓 bits/Hz-s, (3.16)

for the total capacity of the PSD.3 Henceforth, the subscript PSD will denote this full
capacity, and the capacity 𝐶 , divided by , will be denoted 𝐶sq as a reminder that
it stems from a square PSD. If the bandwidth measure is 1 in the preceding paragraph,
the units of both are bits/Hz-s. If a PSD is a factor 𝐴 scaled in frequency from the
standard PSD shape, the total power is scaled by 𝐴 and a look at Eq. (3.16) shows
that the capacity integral is scaled by 𝐴 as well. Were the power not scaled by 𝐴,
𝐸𝑏∕𝑁0 would not be constant. Thus the bits/Hz-s dimensions make sense.

If the PSD is square, Eqs. (3.16) and (3.8) with  = 1 give the same value.
Occasionally, we will need 𝐶psd and 𝐶sq for a given PSD when the PSD’s bandwidth
measure is not 1. Then the dimensions of the capacities are bits/s instead of bits/Hz-s.

Several properties of 𝐶psd are easily demonstrated. The first states that all useful
orthogonal pulse spectra lead to higher capacity.

Property 3.1 (Superiority of 𝐶psd) Let the non-square PSD satisfy the spectral
antisymmetry condition (Property 1.1) with 𝑇 . Then

𝐶psd > 𝐶sq, (3.17)

where 𝐶sq is the capacity when the PSD is uniform on [−1∕2𝑇 , 1∕2𝑇 ] with the same
total power.

3This formula appeared in Shannon’s original paper [8], but applied to a different problem.
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The property states that even though both spectra have the same power, the
symmetric relocation of power to higher frequencies increases capacity.

Property 3.2 (Asymptotic 𝐶psd) Capacities for the foregoing two PSD shapes
satisfy

lim
𝑃→∞

𝐶psd

𝐶sq
= (1 + 𝛼), (3.18)

where 𝑃 is total power and 𝛼 is the spectrum excess bandwidth factor (as in, e.g.,
Eq. (1.5)).

The final property asserts that for a fixed bandwidth the square PSD is still best.

Property 3.3 For PSDs with the same total power on a fixed bandwidth [−𝑊 ,𝑊 ],
capacity is maximized by the constant PSD.

Calculating the Shannon Limit. Appendix 3A gives MATLAB routines for calculat-
ing the capacities and other useful quantities in this section.

Example 3.1 (30% RC Capacities at High and Low Power)

For a PSD that has a 30% RC shape and a half-power measure of bandwidth, we can
calculate constrained capacities for total power ratio 𝑃∕𝑁0 equal to 1 and 10,000; the
last is roughly that which occurs in a local twisted-pair telephone line. The capacities
are 1.001 and 16.1 bits/Hz-s (computed with gcaph in Appendix 3A). For a square
PSD shape, the values are 1 and 13.3, a reduction of 2.8 bits/Hz-s at the higher
power. The capacities at 𝑃∕𝑁0 = 10, 000 have ratio 1.21, which will grow at higher
power to 1.3 according to Property 3.2. To achieve the rate 16.1 with a square PSD
would require 𝑃∕𝑁0 = 69, 800, higher by 8.4 dB than the 30% case (found with
gcapinv). This difference grows without limit as 𝑃∕𝑁0 grows.

The standardmeasure of a practical system is a plot of data BER against the databit
SNR, 𝐸𝑏∕𝑁0. A Shannon limit in this style is obtained as follows. The PSD and the
desired overall system density 𝜌 in bits/Hz-s are fixed in advance. Repeat for each
BER:

i. For a BER, find the actual channel rate 𝐶† in bits/Hz-s. From Eq. (3.12), this
is the reduced value 𝐶† = 𝜌[1 − ℎ𝐵(𝑃ber)].

ii. Solve the inverse capacity equation for 𝑃∕𝑁0. For𝐶psd = 𝐶
†, solve Eq. (3.16)

for the total power ratio 𝑃∕𝑁0 that gives 𝐶
†.

iii. Find 𝐸𝑏∕𝑁0. This is simply 𝑃∕𝑁0𝐶
†.

It is also possible to solve in the reverse direction, starting with a list of 𝑃 values.
This is demonstrated in Appendix 3A.

Figure 3.3 plots the outcome of procedure (𝑖)--(𝑖𝑖𝑖) when the density 𝜌 is 2 and 6
bits/Hz-s with respect to the half-power criterion and the PSD has the raised-cosine
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FIGURE 3.3 Shannon limit expressed as data BER versus data𝐸
𝑏
∕𝑁0, when the design data

density is 2 and 6 bits/Hz-s. RC spectrumPSDwith excess bandwidth factor 𝛼 = 0, 0.1,… , 0.5.

shape with excess bandwidth 𝛼 = 0, 0.1, 0.2,… , 0.5. The case 𝛼 = 0 is the square
(sinc pulse) spectrum. There is little difference in the Shannon limits when the density
is fixed at 2 bits/Hz-s, but 3 dB difference at 6 bits/Hz-s. Figure 3.4 fixes the RC
spectrum 𝛼 at 0.3, the value it will have in many examples in the book, and plots
BER against 𝐸𝑏∕𝑁0 at the data densities shown. The square-PSD Shannon limit is
shown for the comparison. Once again, there is considerable separation between the
RC and the square PSDs as the density grows.

Another bandwidth criterion such as 99% power out of band could have been
used. If so, the Shannon limit in BER versus𝐸𝑏∕𝑁0 will not change, since it depends
on the whole PSD, but a new databit density must be used in the calculation. How to
make this change is treated in Appendix 3A and Section 6.2.

Capacity as a Limit Theorem. The Shannon theorems in this section are limit theo-
rems: Given any spectrum shape we choose, they tell what capacity it has per second
in the limit of time. Shannon capacity always contains such a limit. We could as well
devise an alternate theory by fixing a distribution of power over time and letting
bandwidth grow. We seek not to minimize time and bandwidth, but to find what flow
of bits can be carried by a distribution of one in the limit of the other. In principle,
one can apply the Gram--Schmidt process to a signal set occupying a certain time
and bandwidth, and then find the Gaussian capacity in each dimension, but a mean-
ingful computation would be horrendous. The “2WT” theorem leads to a way around



68 GAUSSIAN CHANNEL CAPACITY

FIGURE 3.4 Shannon limit expressed as data BER versus data 𝐸
𝑏
∕𝑁0, when 𝛼 = 0.3 with

an RC spectrum. The design data density is 2--10 bits/Hz-s.

this---but it gives only an approximate answer when the time--bandwidth is finite.
Still, the answer has proven good enough in a great many applications.

Anotherway to think about the information-carrying ability of time and bandwidth,
this time not in a limit sense, is the Slepian theory in Chapter 7.

3.3 LINEAR MODULATION CAPACITY

A major issue in the Shannon theory for narrowband coding is whether restricting to
simple orthogonal modulations and to the linear modulation format incurs a penalty.
We would like to keep both if we can. This section will show that we should give up
orthogonal transmission, but that linear modulation can reach the relevant Shannon
limit when its pulse ℎ(𝑡) is narrowband.

LinearModulation Capacity. Once it is modeled in discrete time, a linear modulator
produces a sequence of values 𝑏1, 𝑏2,… by convolving modulator symbols 𝑢1, 𝑢2,…
with a generator sequence 𝒄. How this comes to be is described in Sections 2.2--2.4.
We take a communication code to be a set of some but not all of the possible sequences
𝒃 and the codeword letters are the values 𝑏𝑛. The next theorem, originally due to Hirt
and Massey [14,15], gives the Gaussian-channel information rate---hereafter called
the capacity---of these signals in bits per use of the discrete-time channel, when the
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total power is 𝑃 and the white Gaussian noise density is 𝑁0∕2. Recall that both the
pulse and the modulation symbols are unit energy.

Theorem 3.3 (ISI AWGN Capacity) Over an AWGN channel with noise density
𝑁0∕2, the maximum information rate of linear modulation with pulse ℎ(𝑡) is

𝐶lin = ∫
1∕2𝑇

0
log2[1 +

2𝑃
𝑁0

|𝐻fold(𝑓 )|2] d𝑓 bits/s, (3.19)

where the folded spectrum is defined from the pulse spectrum |𝐻(𝑓 )|2 by Eq. (2.41)
and 𝑇 is the linear modulation symbol time.

Proof Sketch: Let 𝑃 (𝒖) be the distribution of the modulator symbols, subject to the
unit variance requirement, and take blocks of 𝑁 symbols. From first principles, the
constrained capacity (the maximum information rate) is

𝐶lin = sup
𝑃 (𝒖)

lim
𝑁→∞

(1∕𝑁)𝐼(𝒃𝑁 ; 𝒖𝑁 )

= sup
𝑃 (𝒖)

lim
𝑁→∞

(1∕𝑁)[𝐻(𝒃𝑁 ) −𝐻(𝒃𝑁 |𝒖𝑁 )] bits/channel use.

Here𝐻(⋅) is the differential entropy function. Hirt-Massey then show that the maxi-
mizing distribution 𝑃 (𝒖) is Gaussian, which leads to

𝐶lin = 𝑇 ∫
1∕2𝑇

0
log2

[
1 + 2𝑃𝑇

𝑁0
𝐺(2𝜋𝑓𝑇 )

]
d𝑓 bits/channel use, (3.20)

in which 𝐺(⋅) is the Fourier transform of the autocorrelation sequence of the pulse
shape ℎ(𝑡). From the discussion at the end of Section 2.3 and Eqs. 2.42--2.44,
𝐺(2𝜋𝑓𝑇 ) = (1∕𝑇 )|𝐻fold(𝑓 )|2. Making this substitution and dividing (3.20) by the
symbol time gives (3.19). Note that the modulator alphabet is not necessarily the
values of 2-ary, 4-ary,… simple modulation; were these used, 𝐶lin would be lower.
Note further that when ℎ(𝑡) is 𝑇 -orthogonal, the linear modulation reverts to the
bandwidth Gaussian channel envisioned in Eqs. (3.6)--(3.8).

Observe that the spectrum of the transmission is the original pulse spectrum
|𝐻(𝑓 )|2, but the constrained capacity stems from the folded spectrum. We have
immediately the following corollary:

Corollary For a pulse bandlimited to 𝑊 < 1∕2𝑇 , the capacity in Eq. (3.19) is
the same form as 𝐶psd, Eq. (3.16).

This follows because |𝐻fold(𝑓 )|2 = |𝐻(𝑓 )|2 in the range of integration in Eq.
(3.19). In making the calculation in Eq. (3.16), the PSD |𝐻(𝑓 )|2 is the one that
actually applies to the linear modulation, not the one calibrated to unit bandwidth.
The dimension thus becomes bits/s instead of bits/Hz-s.
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The corollary shows that linear modulation achieves the PSD capacity when its
pulse spectrum has width less than 1∕2𝑇 Hz. The OSB model applies to precisely
this case, if we are willing when necessary to make up the simple basis from pulses
close to sinc pulses.

Example 3.2 (30% Linear Modulation Capacity with Aliasing)

Consider three linear modulations based on the same 30% root RC pulse ℎ(𝑡);
the pulse is orthogonal on the interval 1/2. The modulations have three sym-
bol times, 𝑇 = 5∕14, 5∕11, 1∕2 s. These lead to first aliasing replicas centered at
1∕𝑇 = 14∕5, 11∕5, 2Hz, and folding frequencies 7∕5, 11∕10, 1Hz in the |𝐻fold(𝑓 )|2
calculation. Figure 3.5 shows the folded spectra |𝐻fold(𝑓 )|2 in the respective ranges
[0, 1∕2𝑇 ] Hz that result: For folding frequency 1.4 Hz, |𝐻fold(𝑓 )|2 on [0, 1.3] Hz
is the undamaged RC spectrum; with folding at 1.1 Hz, |𝐻fold(𝑓 )|2 on [0, 1.1]
Hz shows some aliasing; for folding at 1 Hz, |𝐻fold(𝑓 )|2 is a square spectrum on
[0, 1] Hz. The square spectrum means that ℎ(𝑡) is orthogonal for symbol time 1/2
s. The geometry is such that all three PSDs have the same total power 1 W over
[−1∕2𝑇 , 1∕2𝑇 ]Hz. Applying the three folded PSDs to program gcaph in Appendix
3A with 𝑃∕𝑁0 = 10, 000 and the original unscaled spectra gives the capacities in Eq.
(3.19): They are 16.1, 14.4, and 13.3 bits/s. 𝐶psd for the original PSD, now expressed
in bits/s, is the first number 16.1. As the linear modulation employs longer symbol
times for the same ℎ(𝑡), the available capacity drops, reaching finally the capacity
corresponding to orthogonal transmission, 13.3 bits/s. It is not straighforward here
to apply a consistent bandwidth criterion to all three spectra. If one arbitrarily takes
the half-power bandwidth, the bandwidths in the figure are 1, 1.1, 1 Hz. After scaling
these PSDs so that they align with 1 Hz, gcaph gives capacities 16.1,13.1, and
13.3 bits/Hz-s. Taking the max bandwidth criterion, one gets bandwidths 1.3, 1.1, 1
Hz, and aligning these with 1 Hz leads to capacities 12.4,13.1, and 13.3 bits/Hz-s.
Observe that in both cases the product of the bandwidths and the capacities per Hz-s
is the three values of 𝐶lin previously found:

{1, 1.1, 1} × {16.1, 13.1, 13.3} = {1.3, 1.1, 1} × {12.4, 13.1, 13.3}
= {16.1, 14.4, 13.3} bits/s

When Linear Modulation Does Not Achieve Capacity. The linear modulation cases
in the example are all based a pulse that is 𝑇 -orthogonal for 𝑇 = 1∕2. The modulation
symbol times 5∕14, 5∕11, 1∕2 can be thought of as shortenings of an orthogonal
symbol time 𝑇 = 1∕2 to 𝜏𝑇 , with 𝜏 = 5∕7, 10∕11, 1. In Section 2.5.1, this concept
was called classical FTN.When the corollary to Theorem 3.3 does not hold, a number
of results are known for classical FTN. The important issues are whether the capacity
for a pulse nonetheless reaches 𝐶psd, whether it exceeds the square PSD value 𝐶sq
as in Property 3.1, and how much is lost with a simple 𝑀-ary modulation alphabet.
These results can be summarized as follows. Details appear in References 16 and 17.
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FIGURE 3.5 The 30% RC spectrum of the 1∕2-orthogonal ℎ(𝑡) (heavy line), compared to
two degrees of aliasing. Dotted lines show aliasing replicas.

In all cases, ℎ(𝑡) is a 𝑇 -orthogonal pulse applied with a shorter symbol interval 𝜏𝑇 ,
𝜏 < 1.

• Aliased Classical FTN. For some 𝜏 the linear modulation capacity 𝐶lin in Eq.
(3.19) exceeds𝐶sq unless ℎ(𝑡) is a sinc pulse; if ℎ is a sinc the capacities are equal
for all 𝜏. 𝐶sq in bits/s is taken here as the square-PSD capacity on bandwidth
[−1∕𝜏𝑇 , 1∕𝜏𝑇 ] Hz with the same total power 𝑃 .

• There exist 𝜏 < 1 and pulses ℎ(𝑡) for which 𝐶lin < 𝐶sq. An example is given in
Reference [17]. Typically, however, 𝐶lin is greater than 𝐶sq and nondecreasing
with decreasing 𝜏.

• For ℎ(𝑡) with infinite bandwidth, 𝐶lin → 𝐶psd > 𝐶sq as 𝜏 → 0. For ℎ(𝑡) with
finite time support, there exists a power 𝑃0 such that 𝐶lin > 𝐶sq for all total
powers 𝑃 > 𝑃0.

• Let ℎ(𝑡) be bandlimited to𝑊 Hz, with𝑊 > 1∕2𝑇 , 𝑇 the symbol time; there is
thus excess bandwidth. Nevertheless,

𝐶lin∕𝑊
2𝑇𝐶sq

→ 1 as 𝑃 → ∞.

• Simple Modulation Alphabets. For classical FTN, a number of techniques have
been developed to bound 𝐶lin constrained to these alphabets [16,17]. It is known
for example that the binary modulation 𝐶lin can exceed 𝐶sq with any alphabet
for a range of practical 𝜏 and ℎ(𝑡).

Suboptimality of Orthogonal Linear Modulation. Orthogonal modulation means
that modulation symbol values are carried by 𝑇 -orthogonal pulses, namely ℎ(𝑡). By
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the Gibby--Smith condition, the folded spectrum of such a pulse is a constant 𝑇 on
[−1∕2𝑇 , 1∕2𝑇 ]Hz. Therefore, the capacity in Eq. (3.19) constrained to orthogonality
is 𝐶sq bits/s. When ℎ(𝑡) is not a sinc and has excess bandwidth, the capacity con-
strained only to the transmitted PSD is𝐶psd bits/s, which is usually larger, and always
larger when |𝐻(𝑓 )|2 satisfies the spectral antisymmetry condition (Property 1.1). As
𝑃 grows, 𝐶psd becomes much larger. In a capacity sense, orthogonal modulation can
be decidedly suboptimal.

An alternate way to see the same result is to consider modulation with sinc pulses.
If these carry codeword letter values, the code performance is limited to𝐶sq. Suppose
the receiver and decoding are based on orthogonality. This means that only symbol-
time samples of a filter matched to the orthogonal pulse are employed. Now consider
an orthogonal pulse with excess bandwidth. The governing capacity is that of the new
pulse,𝐶psd, but the decoder error performance cannot differ because the filter samples
still have the same Gaussian statistics. The decoding must act as if the capacity
is 𝐶sq.

The fact that a significantly larger capacity can exist when ℎ(𝑡) is not a sinc
has major implications. Almost all coding schemes until now---including parity-
check, convolutional, LDPC and TCM coding, whether based on binary or 𝑀-ary
modulation---are based on orthogonal pulses. We need to find ways to create codes
and decoders that are limited by the higher capacity. This is the aim of the next three
chapters.

3.4 CONCLUSIONS

Chapter 3 has developed the Shannon capacity theory background needed for
bandwidth efficient coding. The chapter began with Shannon’s coding theorem and
capacity for a single use of the additive white Gaussian noise channel that was in-
troduced in Chapter 2. It broadened this result to a channel with a certain bandwidth
 Hz.

The chapter expanded capacity calculation in two ways that are essential for
narrowband communication: The shape of the PSD and the design data error rate
were introduced as variables. These are required for a useful Shannon benchmark in
the later chapters. Practical pulses have spectral sidelobes and these have a strong
effect on the Shannon limit as the density of bits transmitted per Hertz and second
grows.

A number of results were given for linear modulation with orthogonal and
nonorthogonal pulses. For useful applications, linear modulation does not have a
poorer Shannon limit in the nonorthogonal case. Orthogonal pulses often lead to sig-
nificant loss and coding schemes based on them cannot achieve full capacity except
with sinc pulses.

The most important results of the chapter for bandwidth efficient transmission are
that orthogonal pulses should be avoided and the full PSD including side lobes must
be considered.
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APPENDIX 3A: CALCULATING SHANNON LIMITS

This appendix presents MATLAB functions needed for calculation of Shannon limits
and capacities for the bandwidth Gaussian channel that has a given PSD, databit
rate in bits/Hz-s, and databit error rate (BER). Function rate=gcaph(p,h,f)
computes the capacity denominated in bits/Hz-s for a channel with total power
p and PSD shape h that takes values on uniformly spaced non-negative frequen-
cies f Hz, beginning at 0. The inverse function p=gcapinv(rate,h,f) finds
the total power p that corresponds to capacity rate, for PSD h on f. Function
[eb,ber]=gbercap(rate,h,f) solves for a list of 80 (BER, 𝐸𝑏∕𝑁0) pairs
suitable for plotting the Shannon limit that corresponds to rate and PSD h on f.
Function [eb,ber]=gbercapfr(rate) extends this to the Shannon limit for
the frequency FTN in Chapter 5.

Some functions are given in case they are unavailable elsewhere. These are the
binary entropy function y=hbin(x), its inverse function x=hbinv(y), and a
simple integration function dumint(g,t). The last integrates 𝑔(𝑡), which takes
values g on the uniformly spaced times t.

The PSD shape h should integrate to 1, or equivalently, to 1/2 on positive frequen-
cies, but this is enforced in the program. Without loss of generality, 𝑁0 is set to 1,
and the total power 𝑃 is numerically the same as 𝑃∕𝑁0. The measure of bandwidth
is determined by some feature of the PSD such as the half-power frequency—see the
discussion in Chapter 1—and this feature must be aligned with 1 Hz. The rate in
databits/Hz-s depends on the feature choice and is scaled accordingly to reflect 1 Hz
alignment.

The choice of feature is arbitrary so long as it is consistently used, and all choices
lead to the same Shannon limit. For example, a 30% root cosine spectrum can be
measured by its half power frequency 1∕2𝑇 Hz or by its highest frequency 1.3∕2𝑇 .
These align 1 Hz respectively with the half-power point or the right end of the stop
band. In a calculation of the Shannon limit when 2 bits are to be carried in each
Hz-s, the first case requires the spectrum created by 𝑇 = 1∕2 and the rate is 2
bits/Hz-s; in the second case 𝑇 must be 1.3∕2 and rate is 2∕1.3 bits/Hz-s. The
rate variable reduces because the physical PSD width in the calculation is reduced
by 1∕1.3; alternately, the measurement of bandwidth for each bit is inflated by 30%.
Both calculations lead to the same Shannon limit plot. Examples with less simple
pulses are given in Section 6.2.

Because capacity depends on the log of power, the PSD can be relatively loosely
specified. However, more care with sidelobes is needed as rate grows.

Program 3A.1: Generate Points to Plot the Shannon Limit
The MATLAB function [eb,ber]=gbercap(rate,h,f) generates for a given
design rate 𝜌 bits/Hz-s and PSD h on f a list of BER and the corresponding 𝐸𝑏∕𝑁0
in dB below which reliable communication is not possible at the BER. The function
calls all the remaining functions in Appendix 3A, except Program 3A.4. The function
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first computes the BER=0 power bymeans of the inverse capacity functiongcapinv
applied to 𝜌. The powers for the remainingBER > 0 are smaller. Rather than proceed
in the inverse direction given by (𝑖)–(𝑖𝑖𝑖) in Section 3.2, the program forms a list of
smaller power values and works forward from these, first finding a set of error-free
channel capacities𝐶†

< 𝜌 using function gcaph. These map to a BER by the inverse
formula BER = ℎ

−1
𝐵
(1 − 𝐶

†∕𝜌), which is performed by hbinv. The SNR 𝐸𝑏∕𝑁0 is
simply 𝑃∕𝜌. This strategy reduces the number of integrals that are evaluated.

function [eb,ber]=gbercap(rate,h,f)
% Function [eb,ber]=gbercap(rate,h,f) finds the Shannon limit to BER vs Eb/No
% for signals carrying a given ’rate’ bits/Hz-s, with PSD ’h’ at frequencies
% ’f’=[0,...,fmax]. h is normed by the program. Calibrate h by aligning a PSD
% feature (e.g. 3 dB bandwidth) with f=1 Hz.
% Outputs are Eb/No ’eb’ in dB and achieved ’ber’
% Requires gcaph, gcapinv, hbin, hbinv, dumint
%
pts=80; %Set number of points > 20
h=h*(.5/dumint(h,f)); %Normalize pos. PSD to 1/2
% Find p0, highest allowed power at the nominal rate and PSD. This power
% achieves BER=0. Uses inverse capacity function.
p0=gcapinv(rate,h,f);

disp([’Power for BER=0 for this PSD = ’,num2str(p0)])
disp([’Eb/No(dB) for target rate = ’,num2str(10*log10(p0/rate))])

% Setup list of powers in descending tenths of a dB
p=p0*10.ˆ(-[.0001.0003 linspace (.0007,.015,20) .01+.01*[1:(pts-21)]]);
% At each power in the list find the reduced ’rch’ in the channel that
% achieves BER overall. p<p0 sets rch < nominal rate; this sets BER and Eb.
rch=gcaph(p,h,f);
eb=10*log10(p./rate); %Eb/No for data at BER and ’rate’
ber=hbinv(1-rch/rate); %BER sustained by rch

Example 3A.1 (Shannon limit for data rate 4 bits/Hz-s)

For design rate 𝜌 = 4 bits/Hz-s and a 30% RC spectrum, set the frequency frame
to f=0:.01:1.7. The total power p for BER=0 is 11.7, numerically the same as
𝑃∕𝑁0, which corresponds to 𝐸𝑏∕𝑁0 = 𝑃∕4𝑁0 = 2.93 (4.7 dB). The plot of BER
against 𝐸𝑏∕𝑁0 appears in Figure 3.4.

Programs 3A.2: Capacity Integral and Inverse
The function rate=gcaph(p,h,f) computes the capacity at 𝑃∕𝑁0 ratio p and
PSD shape h on f. As before, f is non-negative, uniformly spaced and starts from
0. The function sets 𝑁0 = 1. If h is rescaled so that the adopted bandwidth criterion
(e.g., half-power frequency) lies at 1 Hz, capacity is in units of bits/Hz-s; otherwise
it is in bits/s. Integration is performed by dumint.

function rate=gcaph(p,h,f)
% Function gcaph(p,h,f) computes the Gaussian capacity (bits/Hz-s) of a channel
% with total power ’p’ and noise density No=1. ’f’ is the pos. frequency frame
% [0,...,fmax ] and ’h’ is the PSD on f with integral 1/2 and bandwidth measure 1.
% ’h’ is rescaled to have power p. p and ’rate’ can be can be vectors.
% Supply dumint.
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%
rate=zeros(1,length(p));
h=h/dumint(h,f); %Unit normalize 1-sided PSD
for i=1:length(p), %PSD capacity integral

rate(i)=dumint(log2(1+p(i)*h),f); end

The function p=gcapinv(r,h,f) computes the inverse function; that is, given
the capacity r it finds p. It uses gcaph in a series of iterations.

function p=gcapinv(r,h,f)
% Function p=gcapinv(r,h,f) performs the inverse capacity calculation. It finds
% the total power p that leads to to Gaussian capacity r bits/Hz-s with signal
% PSD h. ’f’ is the frequency frame [0,...,fmax ] and ’h’ is the PSD on f with
% integral 1/2 and bandwidth measure 1.
% Supply gcaph, hbin, dumint
%
p=1; tr=gcaph(p,h,f); %Initial trial; p=1
% Find rough lower and upper bounds [xd,xu] to p. ’tr’ is trial
% capacity with p.
if tr<r, %p too small. Increase

while tr<r, xd=p;
p=2*p; tr=gcaph(p,h,f); xu=p; end

else
while tr>=r, xu=p; %p too big. Reduce.
p=.5*p; tr=gcaph(p,h,f); xd=p; end

end
%
% Converge on correct p by refining lower and upper bounds.
while abs(tr-r) > .0001, %Test against desired rate

p=(xd+xu)*.5; tr=gcaph(p,h,f);
if tr>r, xu=p; %p too big
else xd=p; end %p too small

end
if tr>r, p=.9999*p; end %Be sure p is slightly small

Example 3A.2 (Capacity and Its Inverse)

With the 30% RC spectrum from Example 3.1 and total power 11.7, find capacity
4.00=gcaph(11.7,h,f). The power 11.7 corresponds to BER=0 in that ex-
ample. The inverse calculation is 11.7=gcapinv(4.00,h,f). To perform the
same calculations with a square PSD and the same 𝑃∕𝑁0, set h to 1/2 on the interval
[0, 1) and 0 thereafter. Then capacity is 3.675=gcaph(11.7,h,f) bits/Hz-s, a
smaller rate; Eq. (3.8) yields the same with  = 1 and 𝑃∕𝑁0 = 11.7. The inverse
calculation is 11.7=gcapinv(3.675,h,f).

Programs 3A.3: Utilities
The utilities that follow are needed in the foregoing calculations. They are given in
case suitable routines are not available. y=hbin(x) computes the binary entropy
function ℎB(𝑥) = −𝑥 log2 𝑥 − (1 − 𝑥) log2(1 − 𝑥).x=hbinv(y) is the inverse func-
tion value lying in the interval [0, 1∕2]. Function int=dumint(g,t) integrates
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the function 𝑔(𝑡) by a simple application of Simpson’s Rule. int is the value of the
integral.

function y=hbin(x)
% Function y=hbin(x) finds the binary entropy function at x. x can be
% a vector. Illegal values of x are skipped.
%
ok=find(x>0 & x<1); y=zeros(1,length(x));
if any(x<0)|any(x>1), disp([’INPUT p OUT OF RANGE IN HBIN(x)’]), end
pp=x(ok); y(ok)=-pp.*log2(pp)-(1-pp).*log2(1-pp);

function x=hbinv(y)
% Function x=hbinv(y) finds the value x in [0,.5] for which the binary
% entropy function hbin(x) is y. Precision is 10ˆ-7. y can be a vector.
% Supply binary entropy function ’hbin’.
%
x=zeros(1,length(y));
for k=1:length(y), yy=y(k); %Repeat for each y

if yy>1 | yy<0, disp([’INPUT y OUT OF RANGE IN hbinv(y)’]), return, end
xu=.5; xd=0; tst=yy; val=hbin(tst); %Initialize

% Iterate until hbin(x) is close to y.
while abs(val-yy)>.0000001,
if val>yy, xx=xd; xu=tst; %hbin(x) above yy?
else xx=xu; xd=tst; end
tst=tst+(yy-val)*(xx-tst)/(hbin(xx)-val+eps); %Project next test value
val=hbin(tst); %Next trial value of x

end
if tst<.5, x(k)=tst; else x(k)=1-tst; end

end

function int = dumint(g,t)
% Function int=dumint(g,t) performs a simple integral of g by summing
% up a Simpson’s Rule approximation. The function is supplied by the
% values ’g’ taken at evenly spaced time points ’t’. The limits of
% integration are the first time point and the last.
%
n=length(g);
del=(t(n)-t(1))/(n-1); %Integration subinterval
if 2*floor(n/2)==n
% Number of values is even. Go to trapezoidal rule.

int=del*(sum(g)-(g(1)+g(n))/2);
% Number of values is odd. Use Simpson’s Rule.
else int=(del/3)*(g(1)+g(n)+4*sum(g(2:2:n))+2*sum(g(3:2:(n-2))));
end

Program 3A.4: Shannon Limit for Time–Frequency FTN
For an FTN parameter combination giving rate, the MATLAB function
[eb,ber]=gbercapfr(rate) estimates a list of BER and the correspond-
ing databit 𝐸𝑏∕𝑁0 in dB below which reliable communication is not possible for
time–frequency FTN. This signaling is the subject of Chapter 5 and the capacity
calculation method is introduced in Section 5.1. The input rate is 2𝑟cc∕𝜏𝜙, where 𝜏
is the time-FTN acceleration parameter, 𝜙 is the frequency FTN squeeze factor, and
𝑟cc is the coding rate applied to the modulator in databits/𝑀-ary modulator symbol.
The program calls gbercap as a subroutine. An example is given in Section 5.1.
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function [eb,ber]=gbercapfr(rate)
% Function [eb,ber]=gbercapfr(rate) finds the Shannon limit to BER vs Eb/No for
% frequency FTN signals with parameter combination 2(rcc)/(tau)(phi). Set parameter
% ’rate’ to this. rcc here is the coding rate in databits/M-ary modulator symbol;
% set rcc to log2 M if no coding. If no time FTN, set tau=1. Program works by calling
% gbercap for an equivalent square PSD.
% Outputs are Eb/No ’eb’ in dB and achieved ’ber’.
% Requires gbercap, gcaph, gcapinv, hbin, hbinv, dumint

disp([’ Target C = ’,num2str(rate),’ b/Hz-s’])
f=0:.01:1.1; %Frequency base
h=ones(1,length(f)); h(find(f>1))=0; %Set h to square PSD
[eb,ber]=gbercap(rate,h,f); %Equivalent baseband calculation
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4
FASTER THAN NYQUIST SIGNALING

INTRODUCTION

With the fundamentals in Chapters 2 and 3 in place, it is time to look at coded faster
than Nyquist signaling (FTN), the most successful coded system that works at high
bits/Hz-s. The method began in the 1970s with Mazo [17], and after a slow start
began to develop rapidly in the last 10–15 years. FTN is thus not at all new, but it
would not have happened or even been understandable without 40 years of parallel
research in Shannon capacity, equalization, coded modulation, and trellis decoding.

Coded FTN is marked by a modulator that produces a high level of intersymbol
interference (ISI), an encoder such as a convolutional encoder that forms a set of
code words from the modulator signals, and an iterative, or “turbo,” decoder. The
FTN name refers to a system of speeding up the symbol rate while keeping the same
modulation pulse and spectrum, but the ideas apply to any method based on pulses
with strong ISI. Chapters 2 and 3 showed that bandwidth efficiency means ISI, and
that a consistent 10-dB energy saving exists between the Shannon limit and simple
PAM (pulse-amplitude modulation) extremes, even at high bits/Hz-s densities. This
chapter will show that practical coding schemes exist that work with the ISI and
achieve most of the saving.

Section 4.1 introduces the history and notions of FTN signals. Most of the time
the receiver needs to be iterative, a step up in complexity that is the penalty for
near-Shannon performance. Two BCJR algorithms work together, one removing the
ISI and the other decoding the code words. Since the ISI trellis description is large,

Bandwidth Efficient Coding, First Edition. John B. Anderson.
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some way of reducing it is necessary and Section 4.2 explores a number of these.
Section 4.3 studies good convolutional codes for FTN; some ideas carry over from
binary coding but some are new. Section 4.4 combines the two previous sections to
form a good encoder–decoder system, and looks at decoding performance. Error rate
lies several dB in energy from the true FTN Shannon limit, but occasionally touches
the traditional Shannon limit for orthogonal-pulse methods. The iterative decoder’s
LLRs are strongly Gaussian, and by assuming that they are so, an analytical picture
can be obtained in which the decoder behavior derives from the distance structure of
the convolutional code and the modulator ISI.

4.1 CLASSICAL FTN

4.1.1 Origins of FTN

The faster than Nyquist approach can be said to have begun with the work of Lender
and Kretzmer [5,6], which came to be called partial-response signaling (PRS). Their
concept was introduction of intentional ISI in order to achieve some desired outcome,
such as a more easily detected pulse or spectral zeros at critical spots, such as DC
or a pilot tone location. The schemes convolved the data stream with a generator,
just as in Section 2.2, but the generator taps were integers. There was no real gain
in bandwidth or energy efficiency. Matters became more sophisticated in the early
1970s with the realization that ISI from whatever source could be modeled as a trellis
structure [7--9].

A parallel development that began in the 1960s was the development of equalizers,
that is, simple processors for removing ISI, based on filters and feedback of corrected
symbols. The many variations of these are well described in communication engi-
neering texts [1,2].With the ISI trellis idea, it became clear that a trellis decoder could
“decode” ISI just as it could its original target, convolutional codes; furthermore, it

could achieve the least possible error rate, 𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0) as derived in Chapter

2. The common name for this approach was Viterbi equalizer, and a more technical
name is maximum-likelihood sequence estimator (MLSE). Over the next 20 years,
it became clear that the ISI trellis decoder performed far too much work, and that
much reduction was possible without losing significant error rate. Apparently, the
first work in this direction was Vermeulen and Hellman [12], who applied a variant
of the earlier M-algorithm to the trellis. There followed many papers, but notably
[11,13–16]. These investigated various aspects, and in particular Seshadri in the mid
1980s demonstrated major reductions in the decoding of severe ISI combined with
coded modulations.

Classical FTN itself is a special form of PRS, and its history began in 1975 with
Mazo [17]. He explored binary sinc pulse modulation, and found the surprising result
that 𝑑min, hence the error rate, does not change when the symbol time 𝑇 is reduced to
𝜏𝑇 , for 𝜏 in the range [0.802, 1]. The spectrum remains the same, a square shape on
[−1∕2𝑇 , 1∕2𝑇 ] Hz, so that this is a data throughput increase of 25% above the 1∕2𝑇
bits/s that was thought to apply. The result seemed to contradict the Nyquist limit
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1∕2𝑇 Hz and was controversial because readers confused that limit, which applies
to orthogonal pulses, with 0.802∕2𝑇 Hz, which is the minimum bandwidth of sinc
pulses with 𝑑

2
min = 2 (details of this are in Section 2.5). The result lay mostly quiet

until the 1990s, although supporting results appeared in References 18 and 19.
Nonetheless, contemporaneous studies as far back as 1979 [10] showed the va-

riety of PRS bandwidths and minimum distances that were available with PRS and
made the FTN phenomenon entirely reasonable. This work culminated with the full
treatment of the problem by Said [21,22], which will be featured in Chapter 7. FTN
underwent a rebirth in the late 1990s. The idea was extended to non-sinc pulses in
Reference 23. A similar phenomenon applies to nonbinary transmission, to pulses
that are not orthogonal for any symbol time, and roughly speaking even to nonlinear
modulations[15]. A second controversy arose in the 2000s when it was discovered
that the Shannon capacity of some FTN signals exceeded the traditional capacity
measure then in use. This was resolved when the latter was shown to be the wrong
capacity to apply; details of this are in Chapter 3.

4.1.2 Definition of FTN Signaling

In classical FTN, we start with a 𝑇 -orthogonal function ℎ(𝑡) and linear modulation√
𝐸𝑠

∑
𝑢𝑛ℎ(𝑡 − 𝑛𝑇 ), and accelerate the appearance of new pulses by 𝜏 < 1, to obtain

the signal

𝑠(𝑡) =
√

𝐸𝑠

∑
𝑢𝑛ℎ(𝑡 − 𝑛𝜏𝑇 ). (4.1)

As introduced in Section 2.5.1, this is the “accelerated pulse” definition of FTN
because the pulses come earlier but are otherwise unchanged. It will be the pre-
ferred view in the rest of the book. It produces a trellis-structured set of signals
with a minimum distance 𝑑min that satisfies 𝑑min ≤ 𝑑0, where 𝑑0 is the minimum
distance when 𝜏 = 1. The symbol time is 𝜏𝑇 . Ordinarily, 𝜏 can drop considerably
below 1 before 𝑑min drops below 𝑑0; the minimum 𝜏 giving 𝑑min = 𝑑0 is called the
Mazo limit.

An alternate definition of FTN, the “stretched pulse” view, fixes the symbol
interval 𝑇 but scales ℎ(𝑡) longer in time by 1∕𝜏. The modulator’s base pulse is then√

𝜏ℎ(𝜏𝑡). Either way, the bit density of the transmission is log2 𝑀∕𝜏𝑇𝑊 bits/Hz-s,
where𝑊 is the positive-Hz bandwidth measure of the unstretched ℎ(𝑡) and𝑀 is the
alphabet size of {𝑢𝑛}.1 From Section 1.2, all 𝑇 -orthogonal pulses have half-power
bandwidth 1∕2𝑇 , and taking this measure of bandwidth, we can simply write

Bit density = 2 log2 𝑀∕𝜏 (4.2)

for classical FTN. Both binary and 4-ary alphabets play a role in this chapter.
Discrete-time models for the transmission in Eq. (4.1) are developed in Section

2.4: When the original ℎ(𝑡) has bandwidth 𝑊 and 𝑊 < 1∕2𝜏𝑇 , there is no aliasing

1The bit density concept is introduced in Section 1.3.
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and the OSB model applies, otherwise another method in Chapter 2 is applied. In this
chapter, we assume no aliasing and use the OSB model. This means that ℎ(𝑡) leads
to model 2.23, namely the simple form

𝑠(𝑡) =
√

𝐸𝑠

∑
𝑏𝑛𝜑(𝑡 − 𝑛𝜏𝑇 ), 𝑏𝑛 =

∑
𝑢𝑛−𝓁𝑐𝓁 , (4.3)

where {𝑐𝓁} are samples of ℎ(𝑡), each 𝜏𝑇 and {𝜑(𝑡 − 𝑛𝜏𝑇 )} is a set of suitable
basis functions orthonormal on 𝜏𝑇 . The aliasing requirement means that the OSB
Condition, Property 2.1, holds; in addition, it is convenient to require Nyquist’s
spectral antisymmetry, Property 1.1. The matched filter front end of the receiver is
still Figure 2.2, with the difference that instead of the 𝑢𝑛 + 𝜂𝑛 in 2.2, the filter outputs
are now 𝑏𝑛 + 𝜂𝑛. As discussed in Section 2.4, these will need to be allpass filtered
in order to convert the OSB model phase to maximum phase. The output of that
filter is time-reversed to form a minimum-phase sequence, and there is therefore a
modified 𝑏

′
𝑛
+ 𝜂𝑛 that is the input to the discrete-time detector. The noise 𝜂𝑛 is still

IID Gaussian with mean zero and variance 𝑁0∕2.
Figure 4.1 shows the example of binary symbols… , 0, 0, 1,−1, 1, 1, 1, 0,… trans-

mitted by ordinary linear modulation with a 1-orthogonal 30% excess bandwidth root
RC pulse ℎ(𝑡), and the same symbols sent with 𝜏 = 0.703, that is, the pulse

√
𝜏ℎ(𝜏𝑡).

This 𝜏 is the Mazo limit for ℎ(𝑡), so that 𝑑2
min = 2 in both cases. The 30% pulses are

shown dashed. In the ordinary case, these occur each integer 𝑛 seconds, and in the
FTN case each 0.703𝑛, making a waveform that is 29.7% shorter. Yet the waveforms
have a similar general appearance, reflecting the fact that their long-term PSDs are
the same.

Coded FTN and Iterative Receivers. FTN can be uncoded or coded, meaning that all
modulated signals can be in play, or a subset of them. Some mechanism is needed to
select the subset. In this chapter, it will be a convolutional code of rate 𝑟cc incoming
databits per𝑀-ary symbol out. In principle, any code can be used, although virtually
all encoders used with FTN-like transmission have been convolutional. The details
of code selection are in Section 4.3.

Figure 4.2 shows a discrete-time diagramof coded FTN.Across the top is the signal
generation: A convolutional encoder puts out symbols, converted to𝑀-ary if needed;
next comes a long interleaver; finally, the symbols are convolved with a generator
𝒄 that effects Eq. (4.3). The top structure has been standard practice for many years
with ISI channels, but across the bottom is something new, an iterative decoder, or
“turbo equalizer,” first proposed in 1995 by Douillard et al. [24]. It consists of two
BCJR algorithms in feedback configuration, with interleaver and deinterleaver, so
placed that one BCJR, the CC-BCJR, sees convolutional code words and the other,
the ISI-BCJR, sees a sequence with ISI. (The BCJR algorithm is introduced in Section
2.2.2.) Each BCJR informs the other about its respective progress. The genius of this
structure is that each BCJR has a rather simple trellis detection to perform. After some
iterations, each BCJR helping the other, the two converge to a common solution that
both removes the ISI and decodes the databits. In principle one could decode the
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FIGURE 4.1 Comparison of ordinary linear modulation with 30% root RC pulses (a) and
FTN with acceleration 𝜏 = 0.703 (b). Symbol time is 1 and 0.703, respectively. Small squares
show modulated values; pulses (dashed) sum to transmitted signals (heavy lines).

FIGURE 4.2 Discrete-time block diagram for coded FTN. Uncoded FTN includes only
those parts inside the light dotted box.
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signals by a traditional, hopefully ML, decoding method, but no one has yet found a
way as efficient as this iterative scheme.

A critical fact about iterative decoding is that soft information is passed between
the BCJRs, not hard symbol decisions.2 Most often, the information is in the form
of the log-likelihood ratios (LLRs) that were defined in Eqs. 2.39 and 2.40. These
are essentially the probabilities of the circulating 𝑀-ary symbols. Some sort of
soft processor like the BCJR is therefore required. The ISI-BCJR sees the noisy
channel outputs and the soft output from the CC-BCJR; the CC-BCJR sees only
the soft output of the ISI-BCJR. Another important fact is that in forming its 𝑛th
output, each BCJR must de-emphasize its 𝑛th input from the other BCJR. It should
focus more on inputs at other symbol positions, the so-called “extrinsic” information
at position 𝑛. This is shown in Figure 4.2 as dashed line subtractions, since the
job has most often been performed by subtracting the input LLR at 𝑛 from the
𝑛th output LLR. This expedient is not always sufficient, but the principle holds:
Proper convergence cannot occur if the BCJRs work in their strict MAP mode
(Cf. Section 2.2.2).

A high-level picture of the iterative decoding is this: Convergence cannot occur
until a certain minimum data 𝐸𝑏∕𝑁0 is reached, called the threshold. Above that, the
databit error rate follows that of the convolutional code applied to a no-ISI channel
with the same 𝐸𝑏∕𝑁0. But the code is working in a much narrower band channel
than this, so that performance is moved much closer to the Shannon limit. This
convolutional BER versus 𝐸𝑏∕𝑁0 is called the CC line; it can be plotted by the usual
methods based on code minimum distance and white noise.

Figure 4.2 is a discrete-time picture of the world as seen from the receiver. It
includes the continuous-signal picture Figure 2.2, followed by any allpass filtering
and a time-reversal. The choice of simple basis {𝜑(𝑡 − 𝜏𝑇 )} does not appear; this
appears only in Figure 2.2. 𝑀-ary modulation symbols are what circulate in the
iterations. Only in the last iteration is the data decoded and presented as the receiver
output. In this last iteration, both BCJRs are in strict MAP mode.

The progress of the iterations is neatly presented by a log–log plot of the 𝑀-ary
symbol error probability (SER) at two points in the feedback loop, like Figure 4.3.
These are the input and output error probabilities SER𝑖 and SER𝑜 from the CC-
BCJR’s point of view (for the ISI-BCJR these are simply reversed). The result is
two trajectories that show all needed dynamics of the loop and are straightforward to
derive from theory.3 The first is theCC characteristic; it plots SER𝑜 coming out of the
CC-BCJR (the x-axis) as a function of SER𝑖 coming into it (the y-axis). This shows
the improvement in error rate realized in the convolutional decoder. The second is

2An early generation of research on iterative decoders by Jelinek and coworkers failed around 1970
primarily because feedback was not soft. This work studied concatenated codes much like the concatenated
convolutions in FTN. Lack of powerful processors was also a factor. An outcome of the work was the
basic BCJR paper [4].
3An earlier way to plot iterative decoding progress was the EXIT (“extrinsic information transfer”) plot of
ten Brink, which plotted symbol mutual informations instead of probabilities; for turbo equalization these
are harder to compute and less informative.
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FIGURE 4.3 A typical input–output symbol error plot, showing the CC and ISI characteris-
tics. A 100k block length leads to an iteration progress inside the heavy dotted trajectory. The
CC characteristic is that of the (74,54) rate 1/2 convolutional code; the ISI characteristic is for
30% root RC, 𝜏 = .35, 𝐸

𝑏,mod∕𝑁0 = 3 dB. (Both are discussed in succeeding sections.)

the ISI characteristic; it plots SER coming out of the ISI-BCJR (y-axis), that is,
SER𝑖, as a function of SER coming in (x-axis). This is the improvement realized
in the ISI decoder. The iterative process begins at the upper right in the “tunnel,”
and bounces from one characteristic to the other as shown in the picture until the
characteristics cross, at which point the iterations stop. As interleaver block length
grows, a weak law of probability applies to the characteristics and the process more
and more accurately tracks a set pattern. The narrower the tunnel, the more iterations
are needed to leave it, and the more are needed to reach the final cross point. If the
tunnel is closed, decoding will normally fail.

There is much insight in such a plot. The CC characteristic is a straight line that
depends on the code minimum distance, and a good convolutional code is one with
a less negative slope, so that iterations stop at a smaller SER𝑜. Above all, a good
code must lead to an open tunnel. The ISI characteristic can be derived from the
distance structure of the ISI. It, too, should lie as far from the other characteristic
as possible, with an open tunnel. There will be a new ISI characteristic for each 𝜏

and 𝐸𝑏,mod∕𝑁0, where 𝐸𝑏,mod is the per-bit energy of the modulator symbols. The
horizontal part intersects the y-axis at the no-ISI-channel modulator performance
with 𝐸𝑏,mod∕𝑁0. As an aid to understanding, the plot shows a 45𝑜 light dotted line
on which SER𝑖 = SER𝑜. It can be seen that both characteristics cross this line, which
means that there are some iterations during which each BCJR actually makes the
SER worse; the CC-BCJR does this in early iterations and the ISI-BCJR does so in
late ones. In Sections 4.2 and 4.3, we will justify all these statements.
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FIGURE 4.4 Discrete model regions. Lowest indexed model taps are to the right. The
receiver is viewing stage 𝑛. The main model memory is 𝑚.

4.1.3 Discrete-Time Models

Because the linear modulation pulses are sufficiently narrowband, all models 𝒄 in
this chapter are the simple OSB type, and the base pulse is always 30% root RC. The
models are listed for reference in Appendix 4A.

The modeling begins with the samples of ℎ(𝑡) taken at 𝑛𝜏, 𝑛 an integer. As
explained in Section 2.4, these are converted to maximum phase by reflecting outside
the unit circle the z-plane zeros that lie inside. The reflection is performed by allpass-
filtering the samples, and we are in fact free to apply any concatenation of allpasses
to the samples. This is because an allpass preserves the sample autocorrelation, hence
the signal spectrum and distance structure, and it keeps the noise white Gaussian with
variance 𝑁0∕2. Finally, the sequence is reversed in time to produce the minimum-
phase model. Because of the reduced ISI-BCJR, there can in fact exist a better allpass
than the max-phase producing one. Once reduced, what the BCJR needs most is a
steep initial rise in the tap energy, even if this must be traded for an initial section of
low-energy taps. The algorithm can ignore these taps if they are less than 0.005–0.01
in absolute value and apply itself only to the main part of the pulse, which is now
more tractable. The model is nearly minimum phase but not strictly so. To distinguish
it from the strict case, this kind of model is called super minimum phase. More details
and a sample calculation are given in Appendix 4A.

The outcome is a model consisting of a low-energy precursor with several taps,
a high-energy main part, and a long decaying tail. Tail and precursor taps less than
0.005–0.01 can be ignored in the receiver and what remains is the convolutional
generator model seen by the trellis detector. As a rule, very small taps can affect
the signal spectrum but BCJR calculations are unaffected by them; thus they may be
needed at the transmitter but they are not at the receiver.

The small-tap properties of theBCJR and themodifications that theymake possible
are studied in detail in Section 4.2. For the purposes there, the model can be broken
down as shown in Figure 4.4 into beginning and ending regions with very small taps
that can be ignored (the lengths may be zero), a precursor (whose length may also be
zero), a high energy main part, and a tail. The last two will grow long as bandwidth
drops. The front of the model is to the right, as it is seen by a trellis detector that
traverses rightward through the trellis, and timing is shown for some trellis functions.
The decision depth parameter 𝐿𝐷 for the full-model ISI was defined in Section 2.2.2,
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FIGURE 4.5 Some FTN discrete-time models used by the receivers in this chapter. 30%
root RC base pulse. FTN accelerations are 𝜏 = 1∕2, 4∕9, 1∕3, 1∕4.

and if 𝑚 + 1 + 𝑚tail ≥ 𝐿𝐷, there should be no error performance loss at high 𝐸𝑏∕𝑁0
from dropping the “ignore” taps on the left.

Figure 4.5 shows the tap response of some of the book’smodels, using the stretched
pulse view of FTN. They have roughly the same form because they all have an RC
spectrum, but they scale outward in length as 𝜏 drops. Very small precursor and tail
taps are deleted in this picture so that what remains are the super minimum phase
models seen at the receiver. All models have unit energy.

Figure 4.6 shows the power spectra of the full models, including the precursor taps
and tail taps larger than ≈ 0.008. Frequency is normalized to the modulation symbol
time and spectra have unit power. All spectra are very close in shape to RC. A log
scale is used in order to show stopband side lobes, which are occasionally as large as
35 dB below the passband; they are due to truncation of the infinite response

√
𝜏ℎ(𝜏𝑡)

and can be lowered at the transmitter by a longer model. Some care is needed with
transmitter side lobes: Lobes that build up above −20 dB can lead to misleadingly
good error performance, since there is significant distance and capacity in them when
bandwidth is narrow and energy is high.

4.2 REDUCED ISI-BCJR ALGORITHMS

The purpose of detection is to decide data symbols. This it will do iteratively bymeans
of two soft-output trellis detectors that apply themselves to two trellis structures, the
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FIGURE 4.6 RC power spectra in dB versus Hz-s for discrete-time models in the chapter.
𝜏 is 1∕4–2∕3. The RC shape is not apparent with a dB scale.

convolutional code and the ISI. The object of this section to find ways to reduce
the complexity of the ISI BCJR detector. About these detectors we can make the
following general comments:

• The transmission can be coded or not. If not, there is only one application of
the ISI detector. It can be a BCJR, but can as well be Viterbi algorithm (VA),
equalizer, or other hard-output detector.

• The object of the ISI-BCJR is to produce decisions or LLRs about 𝑀-ary
modulation symbols.

• When the transmission is coded, the convolutional memory is short and the
CC-BCJR is a straightforward BCJR like that in Section 2.2.2. We will not say
much more about the CC-BCJR.

• The standard ISI-BCJR has forward and backward recursions, but there are
simpler one-way variants and there are soft-output VAs, for example, the SOVA
and Sikora/Costello algorithms [29,30].

• Almost all BCJRs in the literature work with reference to a binary-branching
trellis, but both the CC-BCJR and ISI-BCJR need to be adapted to 4- and 8-
branching trellises for narrowband coding. LLRs, input LLR subtraction and the
backward recursion need to change.

• Some ISI models are more difficult than others. As a rule, a difficult model
is one with a long length, a small 𝑑min, or zeros on/near the unit circle, or a
combination of these. Truly narrowband transmission models are difficult to
very difficult. The methods in this section are not needed with easy models.
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• Computational complexity depends foremost on the number of trellis paths
processed per trellis stage and their length, and much less on model length per
se. The first object of a reduced-complexity BCJR is to reduce path numbers.

As introduced in Section 2.2.2, three major strategies for BCJR reduction are to
reduce the region of calculation in the full trellis, reduce the trellis itself, or employ
successive interference calculation. The nature of narrowband signals is such that
all of these are effective with FTN. Only the first two are pursued here. For them,
minimum phase is essential.

4.2.1 Reduced Trellis Methods: The Tail Offset BCJR

We begin with the reduced trellis approach, with reference to Figure 4.4. One can
always make a hard truncation of the model. For the VA hard-decision case, the VA
is applied to the trellis defined by 𝑚 + 1 main taps only. For the BCJR soft-decision
case, the standard calculation in Section 2.2.2 is applied to the same. This approach,
however, ignores a certain reality: Experience shows that the size of the trellis and
the accuracy of the branch labels make separate contributions to performance. Low
complexity ways exist to take account of this while retaining a small trellis.

In tail offset methods, the trellis branch labels—𝑏
′
𝑛
in the BCJR Γ computation

2.32—are offset by a contribution from the tail taps, while the trellis size continues
to be 𝑀𝑚. When calculation reaches trellis stage 𝑛, we write branch labels at 𝑛 as

𝑏
′
𝑛
=

𝑚∑
𝓁=0

𝑢𝑛−𝓁 𝑐𝓁 +
𝑚+𝑚tail∑
𝓁=𝑚+1

𝑢𝑛−𝓁 𝑐𝓁 , (4.4)

where {𝑢𝑛} are𝑀-arymodulation symbols and the second sum is the label offset. The
offset is computed from tentatively decided symbols. In narrowband signaling, even
a small offset can be significant, but the trellis calculation can provide reliable LLRs
or hard decisions with relatively short main taps if the labels are accurate enough.
The tail offset idea originated in the 1970s [25]. It was applied to VA detection of ISI
by several authors in the 1980s, the best known being Duel-Hallen and Heegard [16].
They also derived a minimum distance that provides an estimate of the method’s loss.

Application to VA Detection. In its work at stage 𝑛, the VA now needs to decide an
earlier tentative symbol 𝑢𝑛−𝑚 that is subsequently applied to the offset generation for
all trellis labels in front of it. The best procedure for the VA, used in what follows, is
to associate a decision with each state at stage 𝑛 − 𝑚; one of these is associated with
each survivor after the stage 𝑛 trellis extension finishes, and each leads to its own
future offsets. The final symbol decision is delayed until time 𝑛 − 𝑚 − 𝑚tail, and if
𝑚 + 𝑚tail ≥ 𝐿𝐷 there is hope that the VA performance is little affected by the trellis
reduction. Since the main source of VA complexity is the size of its trellis, not much
is added by these associations and extra tap calculations. A tentative decision symbol
is not part of the trellis state.
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FIGURE 4.7 Tail offset VA decoding of uncoded FTN; 𝜏 = 1∕2 with trellis reduced to
memory 2,3,7. Q-function estimate based on 𝑑DH (heavy) and AWGN channel tests (circles).

Figure 4.7 shows the event error rate4 (EER) for tail offsetVAdecoding of uncoded
FTN transmitted over an AWGN channel. Data are taken in part from Reference [31].
The acceleration 𝜏 is 1/2 and the taps are near-minimum phase, similar to those in
Appendix 4A but without the precursor. This 𝜏 causes severe ISI with 8–12 significant
taps, yet major reduction in the VA computation is possible; with only 8 states (trellis
memory 3) there is 0.6–0.8 dB loss in 𝐸𝑏∕𝑁0 compared to a full VA.

The heavy lines in the figure show the Q-function estimate based on the Duel-
Hallen–Heegard distance calculation for a state-reduced VA decoder. Their method
is modified here to include the event multiplicity concept.5 For the 𝑚 = 3, 7 cases,
the least-distant error difference event is [2,−2, 2] at square distance 𝑑2

DH = 0.83 and

0.98, and the Q-function estimate has the form𝑄(
√

𝑑
2
DH𝐸𝑏∕𝑁0)∕4; the full-memory

trellis has distance 1.01 and the same event. The estimate is strikingly accurate. The
figure shows that much trellis reduction is possible if the labels are preserved. An
insight into why is the fact that 90% of the tap energy lies in the first 4 taps, and this
directs the VA search, but many more taps are needed to generate labels.

The outcome when 𝜏 is the Mazo limit 0.703 is similar, but the full minimum
distance (namely 2) is reached already at 𝑚 = 2. At 𝜏 = 1∕4 the distance is reached

4Techniques for EER measurement are explained in Section 4.4. The SER in the tests here is three to five
times the EER. Test measurements in this chapter are based on 20–100 independent error events.
5Details of the DH method are in References 16 and 31. The method is similar to Program 2A.1 in
Appendix 2A, but only state merges at the reduced 𝑚 are considered. Multiplicity is explained in Section
2.5.1 and is employed hereafter in Q estimates.
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only at about 𝑚 = 9, which is 512 states. The VA size needs to be much larger if the
model phase is not converted close to minimum phase.

Application to BCJRDetection. VAdetection is hard-decision and cannot be applied
to coded FTN. The BCJR produces LLR outputs and can be computed from a reduced
trellis just as theVAwas, with labels suitably corrected by tentative symbol decisions.
A difference is that much better LLRs are produced if there is a single tail offset and
it is an expected value computed as follows. The forward BCJR recursion at stage
𝑛 produces 𝛼𝑛(𝑗). From Eq. (2.29), this is the probability that the first 𝑛 channel
outputs are observed and the ISI generation is in (reduced) state 𝑗. Let 𝑛−𝑚

+1 be the
set of states that have entering symbol +1 at stage 𝑛 − 𝑚, and similarly for the other
symbols. Then

𝜗+1 ≜
∑

𝑗∈𝑛−𝑚
+1

𝛼𝑛[𝑗] (4.5)

is the probability that the outputs are observed and +1 was transmitted at 𝑛 − 𝑚.
Thus the probability that the oldest main symbol is +1 for binary symbols is 𝑃+1 =
𝜗+1∕(𝜗+1 + 𝜗−1) and similarly for𝑃−1. Furthermore, the expected value of the symbol
is

{𝑢𝑛−𝑚} = (+1)𝑃+1 + (−1)𝑃−1 = 𝑃+1 − 𝑃−1. (4.6)

This can be thought of as a soft symbol. The tail offset is computed as usual but from
soft symbols, and there is only one set of tentative symbols for all surviving state
paths. When 𝑢𝑛−𝑚 is very likely, its soft value is ±1; when 𝑢𝑛−𝑚 is very uncertain the
value is ≈ 0 and makes no contribution to the label offset.

A few details complete the description of this BCJR. In the forward recursion, no
estimate of the precursor symbols is available, and the offset that might come from
there is ignored. In the backward recursion, there are tentative 𝛼-based estimates,
namely those in Eq. (4.5), and these can be made use of. In particular, the tail taps
lie in front of the recursion and no other symbol estimates are available there. The
precursor taps lie behind and can use final decisions from the BCJR 𝜆 instead. (But
as a rule precursors contribute little to LLR quality). What remains is to calculate the
symbol probabilities at each stage using Eq. (2.38). In uncoded FTN, the output is
the most likely symbol. In iterative decoding, a somewhat modified 𝜎𝑘[𝑖 → 𝑗] must
be used in Eq. (2.38), which will be taken up at the end of this section.

Figure 4.8 compares VA to BCJR tail offset detection of uncoded binary FTNwith
two accelerations, 𝜏 = 0.35 and 1/2, and label offset computed from Eq. (4.6). The
tap phase has a major effect on this sort of plot, and both tap sets are super minimum
phase, with the phase chosen to give good SER with short memory.6 Heavy lines
show the Q-function EER estimate based on the full tap sets. As a rule, the BCJR

6The 𝜏 = 1∕2 set is found as in Appendix 4A. The 𝜏 = 0.35, set is [0.191, 0.464, 0.623, 0.506, 0.176,
–0.123, –0.196, –0.075, 0.060, 0.080, 0.013, –0.035, –0.022]; 𝑑2

min = 0.56.
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FIGURE 4.8 Tail offset BCJR decoding of uncoded FTN, with VA comparison, for 𝜏 = 1∕2
(squares) and 0.35 (circles). Digit shown next to VA or BCJR is the reduced state memory 𝑚.
Q-function estimate (heavy line), BCJR (dash-dot), VA (thin solid line). (Data adapted from
Reference 34).

needs 2–3 more memory stages than the VA to achieve the same SER when 𝑚 is
small. Eventually there is no further gain with𝑚 and they both approach the estimate.
The least 𝑚 for full BCJR performance is about 5 for 𝜏 = 1∕2, 6–7 for 𝜏 = 0.35,
and 12–13 for 𝜏 = 1∕4 (i.e., 4000–8000 states). These memories are the same or
longer for 4-ary modulation, and the state sizes, being 4-ary, are squared. Thus the
reduced-trellis approach can be attractive for binary but not for 4-ary modulation.

Other Trellis Reduction Techniques

Time Offset BCJR. We have already introduced the idea of a precursor, whose taps
are ignored at the receiver. The effect is to offset the time keeping in the trellis detector
by 𝑚pre, so the BCJR forward recursion first observes stage 𝑛 channel outputs when
the output at 𝑛 + 𝑚pre arrives. This idea of observing at a delay can be generalized to
finding the optimum offset for a given model and main observation width𝑚 + 1. One
wants to place the main model part in the most effective trellis calculation position.
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However, with a strongly minimum-phase model, the delay will be close to 𝑚pre.
One can also search among allpass filters to find a good combination of precursor
and main part phase, which is to a degree the same problem.

Channel Shortening. Working with the first 𝑚′ taps, where 𝑚′ is less than the model
order, without retention of an offset or other summary of earlier activity, is simple
truncation of the channel model. In this scenario, it is likely that some other 𝑚′ taps
will work better. Channel shortening is the name that has arisen for this approach.
The method began with Falconer and Magee [26] in the 1970s and has seen periodic
interest since then. Better taps can be derived fromminimum square-error, maximum
information, minimum error rate, and other principles. Most methods place a filter
or other linear processor before the receiver. The receiver is now intentionally mis-
matched, and so the mismatched receiver branch of coding theory leads to interesting
results. A modern paper that applies prefiltering and lies relatively close to FTN
signaling is Reference [27]. Direct application to coded FTN has been done by Rusek
and Prlja [28,37]. A mismatched ISI model cannot ordinarily lead to ML symbol
estimation, but for a given 𝐸𝑏∕𝑁0 penalty one can hope for a simpler receiver, and
in iterative detection one can switch to a more optimal approach late in the iterations.
At this writing, it is not yet clear how the complexity of channel shortening compares
to its main competitor, which is the reduced searching that comes next.

4.2.2 Reduced-Search Methods: The M-BCJR

Rather than reduce the ISI trellis size, one can search only a small part of it in the
VA case or use a small part of it to calculate BCJR variables. Narrow bandwidth
inevitably means high energy, and that means the contributions of almost all the
trellis are vanishingly small. We begin with a review of the hard-decision uncoded
PRS case, and then proceed to the soft decision BCJR, since that work is newer and
iterative decoding has greater potential.

Hard Decision Reduced Searching. Reduced-search trellis decoding began with the
Fano algorithm in the early 1960s and continued with various schemes to curtail the
search, the best known being the M-algorithm.7 (Note than the VA is exhaustive,
not reduced.) The M-algorithm simply retains the best  trellis paths at each stage
before continuing to the next. M-algorithm application to PRS signaling is explored
in Reference [3], Section 6.6.2, and references therein; References [20] and [22]
present PRS test results. For most binary PRS or ISI signals, great reduction in
trellis computation is possible, often to as little as 2–3 paths, providing that the
signal model is minimum phase. It is essential to so convert the signal. Analytical

7Alternate names for the M-algorithm are list decoding and beam search. In computer science, a list has
an ordering, but the M-algorithm does not order paths; it retains the best  out of 𝑞 paths, where 𝑞

is the branching factor of the trellis. This has order  computation, while maintaining a list has order
 log. The difference is important in the sequel.
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FIGURE 4.9 M-BCJR hard decoding of uncoded FTN: EER at  against 𝐸
𝑏
∕𝑁0 in dB

(shown dashed). From left to right, 𝜏 is 1∕2 (circles), 0.35, (squares), 1∕4 (stars). 16PAM SER
is shown at the right. Q-function estimate is heavy line. (Data adapted from Reference 35.)

methods are available that relate the needed for near-MLSE error performance to
the distribution of signal neighbor distances. Unfortunately, the required tends to
grow as the PRS/ISI signal becomes more narrowband.

AnM-algorithm reduced-searchBCJRcan be implemented by limiting the forward
and backward recursions to the most promising 𝑞 states at each stage, where 𝑞 is
the trellis branching factor; only branches out of the best are employed at the next
stage. This will be called the M-BCJR algorithm. A useful view is that very small
components are set to zero and the M-BCJR performs a sparse matrix calculation
of Eqs. (2.33), (2.34), and (2.36). A hard-decision detector is then implemented by
observing the retained set of 𝜶𝑛 and the retained set of 𝜷𝑛 if they overlap.8 The
calculation is easy enough with hard decisions, but challenging with soft decisions,
as will be taken up presently.

Figure 4.9 shows EER versus 𝐸𝑏∕𝑁0 for several  for uncoded FTN with
𝜏 = 1∕2, 0.35, and 1/4. As before,

√
𝜏ℎ(𝜏𝑡) is 30% root RC and Q-function estimates

are given. The maximum needed for essentially MLSE error performance is only

8Specifically, if only one modulation symbol at stage 𝑛 − 𝑚 leads to retained 𝛼𝑛(𝑗), this is the decision. If
there is no overlap of 𝜶𝑛 and 𝜷𝑛 at stage 𝑛, this 𝛼 decision is used; if there is overlap, the usual calculation
with 𝜎𝑘[𝑖 → 𝑗] in Eq. (2.36) is made.
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3, 7, and 20 paths, respectively (the closest tests to the estimates). This is considerably
fewer states than the earlier reduced trellis ideas need—the 𝜏 = 1∕4 trellis states were
more than 4000! For this case, the databit density is 2∕𝜏 = 8 bits/Hz-s, and the figure
compares SER (the same as EER) for the simple modulation 16PAM, which has
the same density. The uncoded FTN scheme has about 4-dB gain over 16PAM. VA
performance is essentially the same as the largest  value’s.

With the M-BCJR, the main model length can include the full tail, since the
computational complexity is not much affected.

The ISI-BCJR Above the Mazo Limit. When the FTN 𝜏 lies above the Mazo limit,
the BCJR or M-BCJR removes all the ISI in a single application in the sense that the

symbol error rate is≈ 𝑄(
√

𝑑
2
0𝐸𝑠∕𝑁0), where 𝑑2

0 is the antipodal square distance (2 in

the binary case; see Section 2.5). In an iterative receiver with intrinsic subtraction, not
even perfect knowledge of other symbols can improve this. Thus only one iteration
is required: One ISI-BCJR application removes the ISI, and the CC-BCJR, if any,
performs decoding. The Mazo limit is therefore a boundary between two regions
of receiver complexity, a single iteration being enough above the limit and full
iterative decoding being needed below. In actuality, two iterations can be helpful in

coded FTN, because the first leads only to error rate 𝐴𝑄(
√

𝑑
2
0𝐸𝑠∕𝑁0), where 𝐴 > 1

depends on other error events with distance near 𝑑2
0 . Experiment shows that feeding

the first iteration’s CC-BCJR output to the ISI-BCJR reduces 𝐴 to 1, which in turn
improves the second CC-BCJR’s data decoder output.9

Soft Decision M-BCJR. There are four challenging problems in the design of an
M-BCJR-type algorithm that puts out accurate LLRs.

i. It easily happens that the retained 𝛼𝑛[𝑗] at stage 𝑛 do not contain any values that
trace back to some of the symbols at stage 𝑛 − 𝑚. In fact, as 𝐸𝑏∕𝑁0 grows this
becomes certain, since the algorithm is rightfully sure of its choice of survivors.
This will force an infinite value for some of the LLRs, corresponding to a 0 or
1 probability. While a probability may be very small, iterative decoding does
require values that are neither 1 nor 0. Some sort of backup value is necessary.

ii. Even if proper 𝛼 values survive, it may happen that the retained 𝛼 trellis states
do not overlap the retained 𝛽 states at some stages. Calculation of meaningful
dual recursion probabilities is then impossible.

iii. A minimum-phase model is essential for efficient 𝛼 computation, but to the 𝛽

computation it appears as maximum phase.

iv. If the M-BCJR is part of an iterative decoder, the effect of the input a priori
probability (AP) at stage 𝑛 must be removed during the final calculation of

9The reason is that the ISI-BCJR sees essentially an antipodal decision on its second pass; see Section
4.2.3.
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the stage 𝑛 LLR output, the so-called intrinsic subtraction.10 This amounts to
simple subtraction of input from output LLR with binary modulation (proved
at Eq. 4.9) but not with higher modulation.

All of these difficulties become more severe with narrower band signals, because
energy is higher and LLRs more extreme. A simple way to solve problem (𝑖𝑖) is to
eliminate the backward recursion, which creates a one-way BCJR. This generally
leads to a weaker iterative decoder, but it is simpler and can be useful.

Solutions to (𝑖). An effective way to insure that all symbols at stage 𝑛 − 𝑚 have
some probability is to distribute to them the residue 𝛼-weight that occurs when the
 best 𝛼 survivors are selected during the extension to 𝑞 during stage 𝑛. The
forward recursion on the 𝑞 extensions of the paths retained after 𝑛 − 1 produces 𝑞
normalized 𝛼𝑛[𝑗] values, of which a smaller sum remains after the selection. The
residue is

𝑛 =
∑
𝑗∈

𝛼𝑛[𝑗] −
∑

𝑗∈
𝛼𝑛[𝑗], (4.7)

where and are the sets of indices before and after the selection. The 𝑛th residual
is generally very small and is a rough estimate of probabilities of events other than
the ones selected by the forward recursion; it can be distributed as needed later in the
M-BCJR. The method works well with both 2- and 4-ary trellises.

Another method, described in Reference [36], carries forward a second backup
recursion in case the main M-algorithm fails to include legitimate 𝛼 values for all
symbols. A record is kept of the tentative symbol decision path during the forward
M-algorithm. In a second forward pass, all symbol extensions are forced to occur at
each tentative stage and a small -search extends from their descendants for a few
stages. Three stages and = 2 are usually enough. This procedure produces small,
rough 𝛼-values that serve as backups. This method has so far not been shown to work
with 4-ary trellises.

Solutions to (ii)–(iii). As the backward recursion progresses, the calculation (2.36)
can be performed, which at stage 𝑛 produces

𝜎𝑛[𝑖 → 𝑗] = 𝛼𝑛−1[𝑖] Γ𝑛[𝑖, 𝑗] 𝛽𝑛[𝑗], (4.8)

from which the LLRs may be found. The indices 𝑖 and 𝑗 now run over the selected
values. One of the above expedients will assure legal 𝛼-values for all symbols {𝑢𝑛},
but it is still not guaranteed that the sets of  𝛼 and 𝛽 states intersect, or if they do,
that they will produce legal outcomes for all symbols.

There have been many attempts to relieve the intersect problem; see especially
References 32–34. Among procedures that do not work well are the following:

10In the terminology of turbo decoding, intrinsic information about stage 𝑛 is said to come from the AP for
that stage, while extrinsic information comes from AP for the other stages.
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Assigning a fixed probability 𝜖 when no outcome is produced for a symbol; separate
forward and backward searches after which the two regions are merged into a joint
structure; and employing a tail offset in the style of Duel-Hallen–Heegard instead of
the expectation offset of Eq. (4.6). In early work a major shortcoming was failure
to convert to minimum phase with an allpass filter; this is essential to any form of
reduced search.

The first methods [35,36] that gave difficult-model results like those to come
in Section 4.4 worked as follows. They performed (𝑎) a forward 𝛼 recursion with
tentative symbol decisions, (𝑏) a second forward backup recursion, and then (𝑐)
a backward 𝛽 recursion. Forward recursion paths are saved for the backward
recursion. The backward recursion is constrained to follow and retain all paths that
it encounters whose state and stage overlap that of a stored 𝛼 path, and the rest
of the  backward paths is filled out with paths freely chosen by that recursion.
The 𝛼 tentative decision path is retained, and failed intersections for some symbols
are repaired from backup values if necessary. Typically, there are finally only 1–3
overlaps during the backward recursion.

The description here shows some subtleties in reduced BCJR design: The 𝛽

recursion lacks the direction of a minimum-phase model and must be coerced by
some other means; some sort of backup is needed to supply unlikely but necessary
values; the BCJR should measure good paths but it cannot simply reject bad. The
scheme here will still not work well with 4-ary modulation because the natural spread
in the signal probabilities is too large.

A new method proposed in Reference [38] replaces the backup recursion with the
residual idea in Eq. (4.7). The residual 𝛼 value is used where saved 𝛼 information
is insufficient. Second, the 𝛽 recursion is forced to follow all the 𝛼 paths, not just
the tentative decision ones. At first this seems impossible, because the 𝛼 recursion
drops a fraction (𝑞 − 1)∕𝑞 of its paths at each stage, and the 𝛽 recursion has no proper
𝛽-value to start up its recursion at the dropped trellis path ends. A way needs to be
found, since all such startups do lead back to the correct trellis path. Fortunately, the
BCJR recursions have the property that they rapidly “heal” an incorrect insertion.
Any reasonable 𝛽-value, such as 0.01, can be placed at the dead path end, and nearly
correct 𝛽-values will appear in a few stages at all  state nodes.11 The  in the
algorithm should be somewhat larger than what is needed for a forward recursion
working alone. Each recursion to some degree repairs failures by the other, so that
the backward recursion needs freedom to divert from what a proper smaller forward
recursion would see.

Solutions to (𝑖𝑣). In an iterative loop with two BCJRs, experience has shown that
incoming APs at stage 𝑛 must not be used directly to produce the LLR outputs at
the same stage. Simple subtraction of the input LLRs from the output LLRs achieves
this with binary trellises for the following reason. An examination of the BCJR
description in Section 2.2.2 shows that the algorithm eventually finds 𝑃 [±1 sent|𝑟(𝑡)]

11The heal phenomenon is studied and measured in Reference [39]. Accurate values appear ≈ 𝐿𝐷 stages
later, where 𝐿𝐷 is the decision depth of the convolutional or ISI trellis.
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by evaluating Eq. (4.8) and summing over state transitions that imply±1. The notation
“𝑟(𝑡)” refers to any and all observations that occur. The factor Γ𝑛[𝑖, 𝑗] in Eq. (4.8),
defined in Eq. (2.32), takes into account the channel observation, branch label and the
AP, if there is one. This AP appends an additional factor 𝑃 [𝑢′] in Eq. (2.32), either
𝑃 [+1] or 𝑃 [−1], and all 𝜎𝑛[𝑖 → 𝑗] that correspond to the same symbol have the same
factor. Therefore, the LLRs ln

(
𝑃 [+1 sent|𝑟(𝑡)]/𝑃 [−1 sent|𝑟(𝑡)]) in the full MAP

and no-AP cases differ in that MAP appends a factor 𝑃 [+1]∕𝑃 [−1]. The incoming
AP-only LLR is ln(𝑃 [+1]∕𝑃 [−1]), and so in summary it must be true that

LLRnoAP = LLRMAP − ln(𝑃 [+1]∕𝑃 [−1]) = LLRMAP − LLRAP. (4.9)

The argument actually does not quite hold in a working receiver because incoming
LLRs may be scaled there, but this “intrinsic subtraction” has proven to be a simple
and effective way to prevent excessive AP propagation. Because the LLR has a
different form with 4-ary symbols, subtraction does not work, and a more direct
approach is needed. For a no-AP LLR, the factor 𝑃 [𝑢′] is simply removed from Eq.
(2.32) when Γ[𝑖, 𝑗] is used to calculate 𝜎𝑛[𝑖 → 𝑗]. On the contrary, during the forward
and backward recursions it is present.

To keep with established terminology, the proper removal of the 𝑛th AP at the final
calculation of the 𝑛th LLR output will be called AP removal, intrinsic subtraction, or
AP subtraction, even when there is no subtraction.

These features will construct a working M-BCJR but some theory and practice
from algorithm science can make it more efficient.

• The M-algorithm has linear complexity in  and should be implemented as
such, since  can be hundreds for schemes near the Shannon limit. The algo-
rithm amounts to a search for the median of a list, a useful discussion of which
appears in Knuth [40], p. 216.

• During the recursions, trellis paths in a set of  can have merged to the same
state, and these should be combined to one path that has the sum of the respective
𝛼 or 𝛽 values. Merging can be ignored but the M-BCJR will act like it has a
somewhat smaller. Linear-complexity algorithms exist to perform merging,
as well as all other M-BCJR functions, and these should be used in order to
preserve linear computation in the M-BCJR as a whole.

• Precision problems can destroy performance, especially with higher modulation
alphabets. The heart of the matter is a computer science fact, that probabilities
near 1 cannot be well enough expressed in conventional number systems (see
Hayes[41]). One solution is to carry along both 1 and 1 − 𝑝 in calculations,
which is the same as carrying two LLRs instead of one (4 instead of 3 in the
4-ary case).

• As in other forms of turbo coding, the sets {𝜶𝑛} and {𝜷𝑛} need to be normalized
occasionally to unit sum, otherwise they will eventually exceed any precision.

• Rather than compute trellis branch labels during recursions, they should be
precomputed in a table and looked up, using the path symbols as an address.
With higher alphabets this becomes clumsy and lookups to partial tables can be
combined.
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4.2.3 The ISI Characteristic

Over an AWGN channel the input–output characteristic of the ISI-BCJR, reduced or
not, will be similar to the dashed line in Figure 4.3. The line is determined by the ISI
model and the modulator symbol energy 𝐸𝑠. In what follows we use ML detection
and a distance analysis to show how the line arises. Two assumptions are made, that
the ISI-BCJRmimics theML detection and that the a priori LLRs from the CC-BCJR
are approximately Gaussian. For simplicity, only binary modulation is discussed.

In coded FTN, the ISI-BCJR has as inputs the observed channel output 𝑟(𝑡) and
APs from the CC-BCJR. Many researchers have observed that when represented as
LLRs, these APs are roughly Gaussian in the first receiver iterations and are strongly
Gaussian thereafter; the fact is easily observed by collecting statistics. Furthermore,
the LLR values are independent of each other because of the interleavers. Similar
conclusions hold for the CC-BCJR input. It will develop in Section 4.3.1 that these
two sets of IID Gaussian AP inputs are equivalent to a second AWGN channel
working on the respective code or modulator outputs. For the ISI-BCJR, it means
that the BCJR sees two independent AWGN channels. Its behavior depends on the
𝐸𝑠∕𝑁0 in the actual channel and an equivalent SNR in the AP channel.

Since the noise is assumed white Gaussian in both channels, analysis can be
performed in terms of the Q-function, distance, and SNR. For the AP contribution,
the BER in pictures like Figure 4.3 then translates directly to distance and SNR:

𝑄(
√
2𝐸′∕𝑁0) = BER = 𝑄(

√
𝑑2
eq𝐸𝑠∕𝑁0);

or 𝑑
2
eq = [𝑄−1(BER)]2

𝐸𝑠∕𝑁0
= 2𝐸′∕𝐸𝑠. (4.10)

Here the first term in line one represents binary code word letters arriving over the AP
channel with an equivalent 𝐸′∕𝑁0 and a normalized square distance 2 between two

symbol values ±
√

𝐸′. The second term equates the operand 𝐸
′∕𝑁0 to 𝑑

2
eq𝐸𝑠∕𝑁0,

where 𝑑
2
eq is an equivalent distance with respect to the actual transmission channel

and its 𝐸𝑠; that is, 𝑑
2
eq = 2𝐸′∕𝐸𝑠.

It remains to adapt ML symbol detection under ISI to this two-observation sit-
uation. As developed in Section 2.5, the behavior of ML detection depends on the
neighbor structure of the modulator ISI trellis, and in particular it is set asymptoti-
cally in 𝐸𝑠∕𝑁0 by the distance to the nearest neighbor of the transmitted trellis path.
The difference now is that trellis distances are set by the composite observation of
two channels. Consider a binary-alphabet error difference event Δ𝒖 having 𝐿 sym-
bols, 𝓁 + 1 of which are nonzero, having first symbol nonzero, and lying at square
distance 𝑑

2
ev. The probability of deciding the entire wrong path is set by the sum of

contributions from all the independent dimensions, in both channels. It is

𝑄(
√

(𝑑2
ev + 𝓁𝑑2

eq)𝐸𝑠∕𝑁0). (4.11)
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FIGURE 4.10 Construction of the ISI characteristic from difference event asymptotes, for
30% RC spectrum, FTN 𝜏 = 1∕3 and two 𝐸

𝑠
∕𝑁0. Axes are standard from Figure 4.3, for

which the x-axis is the a priori BER. The solid line is ML detection estimate composed from
the significant events. Asymptotes are dashed. Points are the actual ISI characteristic with an
M-BCJR and rate 2/3 convolutional code.

In constructing the AP part of Eq. (4.11), we ignore symbols where Δ𝒖 is zero,
since these do not contribute to the decision, and ignore its first symbol, since the
iterative detector does not consider the present AP (consequently the antipodal event
probability remains 𝑄(

√
2𝐸𝑠∕𝑁0)).

The form of Eq. (4.11) is of great interest, because it implies that the effect
of AP may be characterized as a change in distance structure. Different a priori
BERs can lead to different minimum-distance events. When BER ≈ 0, 𝑑2

eq is large
and all difference events except the antipodal one lead to tiny probability. Hence
the antipodal event has the minimum distance and the detection error probability
is 𝑄(

√
2𝐸𝑠∕𝑁0); this flat line is the value of the ISI characteristic as the a pri-

ori BER (denoted CCSER𝑜 in Figure 4.3) tends to zero. The form 𝑄(
√
2𝐸𝑠∕𝑁0)

states that the AP information has cleared the ISI, leaving only an antipodal
decision.

A routine similar to Program 2A.3 in Appendix 2A evaluates SER and BER for
a given BER in the a priori input. The program can use multiplicity (see Section
2.5.1) in the same way as 2A.3; the only change is the new distance in Eq. (4.11).
Figure 4.10 plots the estimated ISI characteristic when the ISI stems from 30% root
RC FTN with 𝜏 = 1∕3 and the two 𝐸𝑠∕𝑁0 values 4.2 and 8.2 dB; with a rate 2/3
convolutional code these correspond to databit 𝐸𝑏∕𝑁0 = log10(3𝐸𝑠∕2𝑁0) = 6 and
10 dB. The solid lines are the union-bound-sum estimates that significant events make
to the ML-detection symbol error probability, at each a priori BER (the CCSER𝑜

axis).
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Taking the 8.2 dB case, we see that the small-BER horizontal asymptote lies at
CCSER𝑖 = 𝑄(

√
2𝐸𝑠∕𝑁0) = 0.00014. As the a priori BER input rises above 0.002,

a new dashed asymptotic line comes into play, this one due to the difference event [2
–2]. The line is a plot of Eq. (4.11) for [2 –2] as a function of the apriori BER. At BER
0.01, the normalized square distance for [2 –2] in Eq. (4.11) is 1.54, compared to 0.72
without the help of AP information. The other error events all have higher distance
than 1.54, so that event [2 –2] dominates the ML error estimate and contributes
𝑄(

√
1.54𝐸𝑠∕𝑁0) = .00071 to the total 0.0008. As the a priori BER grows beyond

0.1 a new event [2–2 0 0 2 –2] has distance near to that of [2 –2] and begins to
contribute. There are other lines nearby its line, and together they move the total ML
estimate away from the [2 –2] line. The points are the true ISI characteristic with rate
2/3 binary code (iii) in Appendix 4B.12

The upper part of the figure shows the situation at 𝐸𝑠∕𝑁0 = 4.2 dB, and once
again error difference [2 –2] dominates at first as BER grows.

Many years’ experience with reduced trellis searches like the M-algorithm show
that the required  depends on the trellis structure’s minimum distance.13 The
analysis just given shows that a priori BER may be characterized as a distance shift.
A good BER leads to a larger minimum distance, which should lead to a small ,
and this is indeed the case. In fact,  can be very small in later receiver iterations,
as small as 4 with the FTN 𝜏 in the range 0.4–1 and 6–8 with smaller 𝜏.

4.3 GOOD CONVOLUTIONAL CODES

The behavior of a convolutional code during iterative decoding is specified by a
straight line CC characteristic like that in Figure 4.3. The line depends to a first
approximation only on the code. It can be located in the same manner as the ISI
characteristic, by analyzing code behavior over an AWGN channel. The reason is
the same, the input LLRs from stage to stage are nearly IID Gaussians so that the
BCJR decoder acts as if it sees a certain no-ISI white Gaussian channel. This section
performs the analysis and gives procedures for finding good codes for use with binary
and 4-ary modulation. Those who wish only a good code can skip to the good code
lists in Appendix 4B.

As in Section 4.2.3, 𝐸𝑠∕𝑁0 denotes the modulator SNR, with 𝐸𝑠 the average
energy per𝑀-ary modulation symbol. The notation𝐸𝑏∕𝑁0 is reserved for the databit
SNR; with a code of rate 𝑟cc databits/modulator symbol,𝐸𝑠 = 𝑟cc𝐸𝑏. We remind also
that the CC-BCJR sees only the AP information from the ISI-BCJR, and not the
channel output.

12This is rate 2/3 encoder [4 0 5; 0 4 7]. In the tests, the iteration loop is broken and CCSER𝑖 fixed at the
values in the plot by means of an equivalent AWGN channel with the same error rate. The M-BCJR in
Section 4.4 is employed with  in the range 10–60. Block length is 150k.
13Such results for convolutional codes are given in Reference 44, and later in Reference 45. This behavior
for the M-BCJR with FTN was first observed by Prlja [37].
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In selecting a good code, there are three issues.

1. The Usual Distance Structure. When the last iteration is reached, at the inter-
section of the two characteristics in Figure 4.3, the two BCJRs switch to true
MAP mode and use APs and channel observations to produce the most likely
databits. Decoding is driven in the traditional way by code minimum distance
and convolutional code word neighbors.

2. The Tunnel. No code can perform if the tunnel is closed in Figure 4.3, since
decoding cannot get started. It needs to be open, and the higher the ISI
characteristic, the harder this is to achieve.

3. The Effect of AP Subtraction. Removal of the input LLRs from the CC-BCJR
output LLRs has a major effect on code behavior. Without subtraction the
iterations will not converge properly, but with it decoder error is considerably
worse. Other issues being equal, the code should suffer as little as possible
from AP removal.

Only the first point is important in traditional decoding. The interplay of the
three points depends on channel SNR, since a higher modulator 𝐸𝑠∕𝑁0 pulls the ISI
characteristic downward, opening the tunnel and allowing a different tradeoff of the
three points. As well, points 1 and 3 combine to set the slope of the CC characteristic;
the flatter the slope, the fewer the iterations and the lower the data error rate.

4.3.1 Binary CC Slope Analysis

It is possible to derive the CC characteristic slope from two code parameters, the
usual free distance and a parameter 𝜌 that measures the correlation between the
code’s input and output. The analysis is based on the fact that the LLRs that circulate
in an iterative detector are nearly Gaussian. The slope is also easily measured from
decoded data.

To start, we show that an AWGN channel is equivalent to a set of independent
Gaussian LLRs. Modulate the binary convolutional code word symbols and let the
modulator values be ±

√
𝐸𝑠. These are sent over an AWGN channel whose output is

𝑦. The decoder can observe the channel in the usual way, or it can observe the same
𝑦 in the form of Λ𝑖, the LLR of some a priori information. In the second case, the
LLR would be

Λ𝑖(𝑦) = ln
[√1∕𝜋𝑁0 exp(−(𝑦 −

√
𝐸𝑠)2∕𝑁0)√

1∕𝜋𝑁0 exp(−(𝑦 +
√

𝐸𝑠)2∕𝑁0)

]
= 4𝑦

√
𝐸𝑠∕𝑁0. (4.12)

Either 𝑦 or Λ𝑖 provide the same information and both are Gaussian; Λ𝑖 has mean and
variance 𝜇𝑖 = ±4𝐸𝑠∕𝑁0 and 𝜎𝑖 =

√
8𝐸𝑠∕𝑁0. Conversely, if a set of APs are IID

Gaussian, they are equivalent to an AWGN channel.
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FIGURE 4.11 Definition of input, output, and AP-included LLRs.

Concerning the CC-BCJR detection, the following can be said. Whether or not
its output LLR is precisely Gaussian, its SER over the AWGN channel has the
asymptotic form

log SER
log𝑄(

√
2𝑑𝐻𝐸𝑠∕𝑁0)

→ 1 as 𝐸𝑠∕𝑁0 → ∞, (4.13)

where 𝑑𝐻 is the code Hamming free distance. This expression holds forML decoding
of the first symbol and asymptotically it must be the same for the CC-BCJR decision.
Another fact is that as the receiver iterations come to an end, the ISI-BCJR LLR
output to the CC-BCJR is Gaussian: This is because the ISI-BCJR has virtually
certain knowledge of all but the present channel symbol, and the remaining symbol
becomes a binary decision in Gaussian noise. The CC-BCJR is thus essentially
Gaussian in its detection behavior, but it is nonetheless not certain that its output
LLRs are exactly Gaussian. Still, it is widely observed during iterative decoding that
input and output LLRs are nearly Gaussian. As in Section 4.2.3, we assume that they
are Gaussian and investigate the consequences.

Define two more LLRs, Λ𝑜, the output with APs removed, and Λ𝑥, the output
with APs present (see Figure 4.11). They are Gaussians with means and variances
𝜇𝑜, 𝜇𝑥 and 𝜎𝑜, 𝜎𝑥. The relation Λ𝑜 = Λ𝑥 − Λ𝑖 holds, all three being Gaussian. In
BCJR detection of a binary symbol, either Λ𝑥 or Λ𝑜 is compared to zero, and with
the Gaussian assumption, the error probability is the standard form 𝑄(𝜇∕𝜎). This
converts to a distance formulation by the substitution 𝜇∕𝜎 =

√
2𝑑2𝐸𝑠∕𝑁0 , where

𝑑 functions as a equivalent operating distance that in general depends on 𝐸𝑠∕𝑁0.
In what follows, 𝛿 signifies the operating distance that applies with a traditional
decoder that observes AP, and 𝛿𝑠 denotes the distance with AP absent. The subscript
𝑠 signifies slope, 𝛿𝑠 being the inverse slope of the CC characteristic.

We also make the assumption that the covariance cov(Λ𝑖,Λ𝑜) is zero; this, too, is
an observed fact, for all the convolutional codes in the chapter. Finally, we define the
new code parameter 𝜌, the correlation coefficient between Λ𝑥 and Λ𝑖:

𝜌 =
[Λ𝑥Λ𝑖] − [Λ𝑥][Λ𝑖]

𝜎𝑥𝜎𝑖

. (4.14)

In ordinary decoding, 𝜌 is not close to zero because the decoding performance depends
on both the present symbol position (the “intrinsic information”) and surrounding
positions (the “extrinsic information”), and the first is significant.
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Now we can prove the following:

Lemma 4.1 Under the assumptions just given,

(𝑖) SER = 𝑄(
√

2𝛿2(𝐸𝑠∕𝑁0)𝐸𝑠∕𝑁0) AP allowed,

and
log SER

log𝑄(
√
2𝑑𝐻𝐸𝑠∕𝑁0)

→ 1, as 𝐸𝑠∕𝑁0 → ∞, (4.15)

(𝑖𝑖) SER = 𝑄(
√

2𝛿2
𝑠
𝐸𝑠∕𝑁0), No AP,

where 𝛿
2
𝑠
=
[√𝛿2(𝐸𝑠∕𝑁0) − 𝜌√

1 − 𝜌2

]2
. (4.16)

Furthermore, 𝛿
2
𝑠
≥ 𝛿

2(𝐸𝑠∕𝑁0) − 1. (4.17)

Proof: (i) follows from Eq. (4.13) and the assumption that Λ𝑥 is IID Gaussian.
Moving to (ii), we note that since Λ𝑥 is Λ𝑜 + Λ𝑖 and Λ𝑜,Λ𝑖 are assumed uncorre-

lated, 𝜇𝑜 = 𝜇𝑥 − 𝜇𝑖, 𝜎
2
𝑜
= 𝜎

2
𝑥
− 𝜎

2
𝑖
, and

𝜌 =
𝜎𝑖

𝜎𝑥

+ cov(Λ𝑖Λ𝑜)
𝜎𝑜

𝜎𝑥

=
𝜎𝑖

𝜎𝑥

=
𝜎𝑖√

𝜎2
𝑜
+ 𝜎

2
𝑖

. (4.18)

We need an expression for 𝜎𝑜 and 𝜇𝑜, since the ratio of these together with the
Gaussian assumption gives the SER Eq. (4.16). From Eqs. (4.15) and (4.18), it must
be that

𝜇𝑥 =
√

2𝛿2𝐸𝑠∕𝑁0 𝜎𝑥 =
√

2𝛿2𝐸𝑠∕𝑁0 𝜎𝑖∕𝜌 =
4
√

𝛿2𝐸𝑠∕𝑁0
𝜌

.

Since 𝜎𝑖 =
√
8𝐸𝑠∕𝑁0, Eq. (4.18) means that

𝜎𝑜 =
√
1 − 𝜌2

𝜌

√
8𝐸𝑠∕𝑁0.

Therefore,

𝜇𝑜∕𝜎𝑜 =
𝜇𝑥 − 𝜇𝑖

𝜎𝑜

=
√

𝛿2 − 𝜌√
1 − 𝜌2

√
2𝐸𝑠∕𝑁0, (4.19)

so that Eq. (4.16) must hold. Calculus shows that the minimum of Eq. (4.19) with
respect to 𝜌 occurs at 𝜌 = 1∕

√
𝛿2(𝐸𝑠∕𝑁0), which yields Eq. (4.17).

The lemma shows that there is an equivalent square-minimum distance 𝛿
2 at

each 𝐸𝑠∕𝑁0, and since the lower bound (4.17) is rather tight, removing apriori
information costs about 1 unit of Hamming distance. With the above results, the
slope of the CC characteristic in Figure 4.3 is close to 1∕𝛿2

𝑠
: The log of the in-
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FIGURE 4.12 Plots of the CC characteristic for several rate 1/2 convolutional codes when a
CC-BCJR acts alone over an AWGN channel. Shown here are actual code word symbol error
rates (dashed), predicted rates based on the Gaussian LLR assumption (dotted), the same but
assuming the code’s 𝑑

𝐻
(solid). Code generators are defined in Appendix 4B.

coming SER𝑖 is ln𝑄(
√
2𝐸𝑠∕𝑁0) ≈ 𝐸𝑠∕𝑁0, while the log of the outgoing SER𝑜 is

ln𝑄(
√

2𝛿2
𝑠
𝐸𝑠∕𝑁0) ≈ 𝛿

2
𝑠
𝐸𝑠∕𝑁0, and so their ratio is 1∕𝛿2

𝑠
.

Figure 4.12 plots output SER versus input SER from anAWGN channel computed
in three ways for some rate 1/2 convolutional codes. First, 𝑄(𝜇∕𝜎) is plotted from
experimental input 𝜇𝑖∕𝜎𝑖 and output 𝜇𝑜∕𝜎𝑜 measured at a number of 𝐸𝑠∕𝑁0 (the
dotted lines). Second, the actual error rates for the BCJR decoder are plotted (dashed),
and third, asymptotic SER𝑜 versus SER𝑖 from Eqs. (4.15) and (4.16) are plotted when
𝛿
2(𝐸𝑠∕𝑁0) is set to 𝑑𝐻 , the code Hamming distance (solid lines). The last are straight

lines, but the others are not quite, since 𝛿
2(𝐸𝑠∕𝑁0) varies somewhat with 𝐸𝑠∕𝑁0.

Nonetheless, all the lines in the figure are very nearly straight, a fact that simplifies
searches for good codes.

The figure shows a CC-BCJR decoder working alone. When the CC-BCJR works
as part of an iterative detector, its characteristic is very similar, with some variation
in the upper right corner. This is a critical region, because a closed tunnel will stop
the detection. To sketch the tunnel precisely enough requires a full iterative detector
test, but just of the small tunnel region.

4.3.2 Good Binary Modulation Codes

This section finds good binary convolutional codes for use in FTN signaling when the
code rate 𝑟cc is 1/2, 2/3, and 3/4. The dimensions of 𝑟cc are databits/binary modulator
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symbol, so the rates are numerically the same as in ordinary error-correcting coding.
A higher rate generally means less complex ISI for the same transmission density in
databits/Hz-s, but a more complex convolutional code.

Good codes for ordinary error correction are ones with highest Hamming free
distance 𝑑𝐻 , but codes for FTN and iterative detection have an additional parameter
𝜌 to consider. Also, they need good tunnel performance, which is to say that they need
to perform well in very bad channels; this conflicts to a degree with the best 𝑑𝐻 and
𝜌. What follows is a systematic procedure to deal with these conflicting requirements,
and the lists of good codes are in Appendix 4B.

The next sections assume a basic knowledge of convolutional codes at the level
of Reference [1], Chapter 6. The generator notation is similar to Matlab and to the
controller canonical form of Johannesson and Zigangirov [45]; that is, 2, 3, or more
tapped shift register sets of length 𝑚 + 1, whose outputs, respectively, form 2, 3, or
more code word symbols (the notation is reviewed with each code rate in Appendix
4B). Minimum Hamming distances can be found using textbook methods [1,45] or
standard Matlab routines. Early turbo equalization studies mostly used the rate 1/2
feed forward encoder (7,5) and sometimes the recursive systematic encoder (46,72),
neither with much justification.14 An early study of good codes was Reference [46].

First we summarize the outcome of the code searches to date. The code memory
is 𝑚 and the shift register(s) have 𝑚 + 1 taps.

• To achieve a more open tunnel, 𝑚 must be short and the encoder should be
systematic.

• Two factors affect the CC characteristic slope, 𝑑𝐻 and 𝜌. To achieve a better
(i.e., smaller) slope 1∕𝛿2

𝑠
, encoders should be nonsystematic, feed forward, and

have larger 𝑚.

• Once detection converges, the databit BER depends on 𝑑𝐻 and the code
column distance function. The asymptotic databit error rate has the form
𝑄(

√
2𝑑𝐻𝐸𝑠∕𝑁0) = 𝑄(

√
2𝑑𝐻𝑟cc𝐸𝑏∕𝑁0). From encoders with the best achiev-

able slope at 𝑚, there normally exists one with the best 𝑑𝐻 available at 𝑚.

• The higher code rates 2/3 and 3/4 not only reduce ISI complexity, but offer
attractive structural options and in particular, more ways to achieve a systematic
encoder.

There is a degree of conflict in these requirements. Much of it can be relieved by
specifying the operating 𝐸𝑠∕𝑁0. If it is high, the tunnel will be wide open and the
best encoders are likely ones that are nonsystematic and feed forward; if it is low, a
systematic encoder and a short memory will be necessary. There is also some conflict
in this section with the widely held belief that convolutional encoders in turbo coding
should be recursive systematic. While this may be true in ordinary turbo coding, it
has not proven true in coded FTN, and recursive encoder results will not be given.

14The right-justified notation for (46,72) is (23,35), where the first entry “23” is the feedback taps; this
encoder often appeared in binary turbo coding in the 1990s.
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ASearch Scheme. The straight line behavior of the CC characteristic makes possible
an efficient search for good codes. Because long memory leads to poor tunnels, it
is enough to focus on 𝑚 ≤ 4. For each type of encoder—feed forward, systematic,
recursive, and so on the steps are as follows:

i. At each 𝑚, perform an exhaustive search of code generators. Form a short list
of those with good slope 1∕𝛿2

𝑠
. Generators can be tested automatically by a

short SER measurement with 𝐸𝑠∕𝑁0 that gives SER near 0.01 and 0.08. This
establishes a reliable approximate slope in a short time.

ii. Study the best-slope encoders in more detail. Using the intended ISI charac-
teristic, check the tunnels.

iii. From the encoders with best slope, choose the generators with best 𝑑𝐻 , best
column distance, and acceptable tunnel.

Zeinali [42,43] has performed such a search of systematic and nonsystematic
encoders with 𝑚 ≤ 4 at rates 1/2, 2/3, 3/4; he searched for recursive systematic
encoders at rate 1/2 as well. His best encoders and some others of interest appear in
Appendix 4B. We can summarize the outcome here.
Rate 1/2. At each 𝑚, the best feed forward encoders usually have better slope

1∕𝛿2
𝑠
than the best recursive systematic ones. Extra memory often does not lead to a

better CC characteristic. Systematic feed forward encoders have more open tunnels
and may approach the Shannon limit more closely in its higher BER range (see
Section 4.4).
Rate 2/3. Systematicity is essential for a reasonable tunnel. At rates 2/3 and 3/4,

semisystematic encoders are available; in these some but not all of the data bits
appear on the trellis branches (either 1 or 2 can appear at rate 2/3, either 1, 2, or 3 at
rate 3/4). Semisystematic encoders offer an attractive combination of tunnel, slope,
and 𝑑𝐻 .
Rate 3/4. Encoders and decoders are quite complex, with memory intensive tables.

The search was restricted to several hundred feed forward systematic encoders, semi
and not, with good tunnel and 𝑑𝐻 and short memory. Overall, rate 3/4 coded FTN
does not perform better than rate 2/3 at the same databit density.

4.3.3 Good Convolutional Codes for 4-ary Modulation

While not what one is used to in error correction, these codes are important because
tests of many code rate and FTN acceleration combinations show that 4-ary modu-
lation is essential when many bits/Hz-s are transmitted. The code word symbols of
binary convolutional codes can be collected into 4-ary modulation symbols in the
obvious way, but we will show here a simpler, more direct way that at the same
time has better error performance. The codes developed have rates 𝑟cc = 1 and 4/3
databits/4-ary modulator symbol; their structures correspond to binary convolutional
cousins with rates 1/2 and 2/3. As before, we need to evaluate CC characteristic
slope, code minimum distance, and the tunnel size.
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In order to transmit ordinary convolutional code bits by 4-ary or highermodulation,
a Gray map to the 4-ary symbols is normally used. The situation is now more
complicated than this simple map, because the modulator–ISI–demodulator chain
and ISI-BCJR work with 4-ary symbols, denoted here {3, 1,−1,−3}, not with binary
symbols. Coming out of the ISI-BCJR to a binary CC-BCJR there would need to
be a 4-ary to binary LLR map; out of the CC-BCJR the reverse is needed. The
mathematical conversions can be made, but there is likely to be an information loss.
For example, a decision on a 4-ary symbol followed by the inverse Gray map can
lead to different bits than 4-ary to binary LLR conversion followed by a decision
based on the new binary LLRs.

Fortunately, there is a simple solution: The 2-bit trellis branch labels can be
replaced by their corresponding Gray-mapped 4-ary symbols.15 The result will be
a convolutional code with labels taken from {3, 1,−1,−3}. Trellis decoding is the
same as before except for distance, which is now Euclidean square distance, and a
CC-BCJR decoder now works with 4-ary LLRs. Databits drive the encoder in the

same way as before. The data BER is ≈ 𝑄(
√

𝑑
2
𝑓
𝐸𝑏∕𝑁0) = 𝑄(

√
(𝑑2

𝑓
∕𝑟cc)𝐸𝑠∕𝑁0),

where 𝑑𝑓 is the Euclidean square free distance of the code and 𝐸𝑏 is the energy
expended per databit.

A good code of this type can be found by methods similar to those mentioned in
Section 4.3.2. Now the trellis start state as well as the Gray map can affect the free
distance evaluation; there are 24 possible Gray maps and 2𝑚 start states. But longer
𝑚 close the tunnel, as in Section 4.3.2, and an effective strategy is to create a short
list of encoders with good 𝑑𝑓 as in Section 4.3.2, and then evaluate CC characteristic
slopes and tunnels with short tests over an AWGN channel.

An interesting property that aids in tunnel evaluation is the following. At very
low databit 𝐸𝑏∕𝑁0, say 1–2 dB, the convolutional decoder databit BER after 2–3
iterations is strongly predictive of how well an iterative FTN decoder will converge
at this and higher 𝐸𝑏∕𝑁0. This despite the fact that it is the LLR of 4-ary symbols
(whose CC-BCJR error is SER𝑜 in the figures) that circulates in the FTN decoder.
Evidently, the data BER is a better indication of the robustness of the code structure in
poor channels. As before, good tunnel behavior correlates with poorer good-channel
BER: A strong 4-ary code in a good channel tends to be a weak code in a bad channel.
In summary, an indication of convolutional code quality in a coded FTN application
can be obtained from two tests of the code alone, one in a good channel and one at
𝐸𝑏∕𝑁0 = 1–2 dB. The two 4-ary symbol SERs show the CC characteristic slope and
the weak-channel databit BER predicts the tunnel behavior.

Lists of good encoders found this way appear in Appendix 4B. An input–output
correlation 𝜌 and a lemma in the form 4.1 are problematical, because the LLR is
four-dimensional and correlation depends on which of four symbols are modulated.

15Gray map hereafter means a map from 𝑞 binaries to 2𝑞-ary modulation symbols that optimizes code
Euclidean free distance. Technically, Gray map means a map with the property that a demodulator error
to an adjacent 2𝑞-ary value causes only one databit error. This sort of map is often not optimal in coded
FTN.
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FIGURE 4.13 Plots of the CC characteristic for several rate 1 convolutional codes for use
with 4-ary modulation when a CC-BCJR acts alone over an AWGN channel. Generator and
Gray map notation are given in Appendix 4B.

Instead, the operating minimum distance with and without a priori information is
given, together with the CC characteristic slope. As with binary convolutional codes,
the LLRs in and out of the CC-BCJR are strongly Gaussian.

A summary of the outcome is the following:
Rate 1 Databit/4-ary Symbol Codes. Figure 4.13 shows CC characteristics of some

of these encoders, measured with a CC-BCJR alone over an AWGN test channel. As
appears there, the tunnel region is less favorable when the slope is better. As part of
an iterative detector, the CC-BCJR has a closely matching characteristic except in the
tunnel region, which is somewhat worse (lower). Input LLRs are less Gaussian there,
and perhaps for this reason, the tunnel characteristic degrades. At rate 1, systematic
encoders do not seem to offer improvement over nonsystematic.
Rate 4/3 Codes. The construction of these appears in Appendix 4B. By the same

technique of Gray-mapping trellis branch bits directly to 4-ary symbols, rate 2/3
binary encoders can be converted to rate 4/3 databits/4-ary symbol encoders. This
time the binary encoder puts out bit triples, which do not map to 4PAM directly,
but two instigations of the encoder produce 6 bits, which convert to three 4-ary
symbols. At high databit densities, the higher code rate is essential. For example, 6
databits/Hz-s with a rate 1 encoder requires FTN with 𝜏 = 1∕3, but 𝜏 = 4∕9 with a
rate 4/3 encoder; the ISI from 𝜏 = 4∕9 is much easier to deal with in the ISI-BCJR.
This and other rate–𝜏 tradeoffs will be made clear in Section 4.4. The rate 4/3 codes
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make possible semisystematic encoders—one of each databit pair appears as a code
word symbol—and these prove to be a good code type.

4.4 ITERATIVE DECODING RESULTS

In this section, we combine the previous two sections to construct an iterative decoder
for coded FTN transmissions. Several major issues arise:

• How can the CC-BCJR and ISI-BCJR be best combined into a decoder? Because
of intrinsic subtraction, they do not produce a posteriori likelihoods. On the
contrary, their output LLRs are severely damaged by subtraction, and some sort
of scaling or other modification is likely to aid convergence.

• As is clear in Figure 4.3, the ISI-BCJR is stronger in the early iterations, while
the CC-BCJR output SER is often worse than its input SER; in the late iterations,
the ISI-BCJR saturates andmost of the error rate gain comes from the CC-BCJR.
How should scaling reflect this?

• Different combinations of code rate 𝑟cc and modulator FTN 𝜏 achieve the same
transmission databits/Hz-s. Which is best?

• An FTN code/receiver combination can aim to approach the Shannon limit,
which means it requires a wide open tunnel and many iterations. Or it can seek
a very low data BER, which means it requires a strong code free distance, a
higher 𝐸𝑏∕𝑁0, and few iterations. How should the receiver design change in
these two scenarios? What is the minimum computation for a given BER? How
close can a combination come to Shannon?

Much research has gone into resolving these issues. Enough signal energy will
make a poor design work, but what is a good design? The author, students, and
colleagues have tested at least 50 receiver variations, is a process that might best be
called trial and error. A consensus, however, has arisen.

A fundamental heuristic is this: LLRs should be scaled so that they appear to come
from an AWGN channel. The motivation for this is that LLRs from stage to stage
are independent (because of the interleavers) and they are evidently Gaussian. The
BCJRs “think” they see an AWGN channel. But there is only one LLR scaling whose
mean and variance match an AWGN channel’s. This should best present the LLRs
to the other BCJR.

Such an AWGN scaling factor can be derived as follows: Consider first binary
modulation with values ±

√
𝐸𝑠; the received value 𝑦 = ±

√
𝐸𝑠 + 𝜂 itself is Gaussian

with mean 𝜇 = ±
√

𝐸𝑠 and variance 𝜎
2 = 𝑁0∕2. Now suppose the LLR mean and

variance are observed to be 𝜇𝑜 and 𝜎𝑜. If these were due to an AWGN channel,
LLR expression (2.40) gives the LLR value 4𝑦𝐸𝑠∕𝑁0, which has 𝜇 = ±4𝐸𝑠∕𝑁0
and 𝜎

2 = (4
√

𝐸𝑠∕𝑁0)2𝑁0∕2 = 8𝐸𝑠∕𝑁0. Thus |𝜎2∕𝜇| = 2 always, for an AWGN
channel-produced LLR. Only one LLR scaling factor 𝜅 gives |𝜅2

𝜎
2∕𝜅𝜇| = 2, namely
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FIGURE 4.14 Shannon limits, coded binary FTN, convolutional coding + 4PAM, and
uncoded 2PAM modulation, all at databit density 2 bits/Hz-s. Data BER versus data 𝐸

𝑏
∕𝑁0.

𝐸
𝑏
is the databit energy. All systems have the same PSD.

𝜅 = 2𝜇𝑜∕𝜎2
𝑜
. The 4-arymodulation argument ismore complex and requires numerical

integration, but the outcome is approximately the same.
As the iterations progress, 𝜎2

𝑜
shrinks, 𝜅 grows, and the BCJR with the larger 𝜅

dominates more. Two issues remain: LLRs are not Gaussian in the first iterations,
and it is still true that one BCJR may contribute more than the other to the circulating
SER. Experiment shows that both can be addressed by allowing 𝜅 to divert from
its Gaussian-derived value. The best modification depends on the code and 𝐸𝑏∕𝑁0,
but generally speaking, 𝜅 in the first 1–3 iterations should be 1 after the ISI-BCJR
(usually a higher scaling than 2𝜇𝑜∕𝜎2

𝑜
) and 0.4–0.8 × 2𝜇𝑜∕𝜎2

𝑜
after the CC-BCJR

(since its outputs are of poor quality).16

We now describe iterative receiver performance at three bit densities: 2,4, and
6 databits/Hz-s. As the density grows the outcome is markedly different: Density
determines behavior. Some of the performance data have appeared in References 34–
36,38,42, and 43. All ISI-BCJRs are the final M-BCJR of Section 4.2.2 with LLR
scaling just discussed.
2 bits/Hz-s. Figure 4.14 compares coded FTN to other coding methods at 2

bits/Hz-s. All schemes have the same PSD. Two benchmarks delimit the figure, the
Shannon limits on the left and the simple binary modulator performance on the right.

16Two further comments about scaling are (i) LLRs can scale quite large, and imposing an upper limit to
the mean LLR size leads to a more stable algorithm, and (ii) scaling is more complex when 𝐸𝑏∕𝑁0 nears
the Shannon limit because convergence occurs in the early diagonal part of the ISI characteristic instead
of the flat part.
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FIGURE 4.15 Shannon limits, coded and uncoded FTN, and 4PAM modulation at density
4 bits/Hz-s. Data BER versus data 𝐸

𝑏
∕𝑁0. All systems have the same PSD.

They lie about 10 dB apart at useful BER. The two Shannon limits are for classical
Nyquist and nonorthogonal signaling, as introduced in Section 3.2. FTN is not really
intended for densities as low as 2, but competing methods have their best appearance
there and the comparison provides valuable insight. Density 2 cannot be reached
by binary modulation and ordinary error-correcting codes so that higher alphabet
modulation is required with them. The least-alphabet practical example is 4PAM
combined with a rate 1/2 convolutional code. The figure shows the (7,5) feed forward
code, which gains 2–3 dB over the 2PAM baseline depending on the 𝐸𝑏∕𝑁0; longer
memory codes gain another 0.5–1 dB. Combining (7,5) with 𝜏 = 1∕2 FTN gains
about 2 dB over over the (7,5) + 4PAM combination. Note that the coded FTN has
threshold around 𝐸𝑏∕𝑁0 = 2 dB and thereafter follows the CC line for (7,5).
4 bits/Hz-s. Figure 4.15 shows behavior at twice the previous bit density. Once

again the two baselines lie about 10 dB apart at useful BER. But now the tradi-
tional Nyquist-pulse Shannon limit is 1.3 dB worse than the limit achievable with
nonorthogonal pulses and the 30% RC spectrum. The two limits lie much closer
at density 2; their growing separation is because more information can be carried
in the PSD sidelobes. Uncoded binary FTN requires 𝜏 = 1∕2 and it gains about 2
dB over simple 4-ary modulation. Several coded FTN configurations are possible,
for example, 𝑟cc = 1∕2, 𝜏 = 1∕4 or 𝑟cc = 2∕3, 𝜏 = 1∕3 or 𝑟cc = 3∕4, 𝜏 = 3∕8. Tests
show that the second is the better combination, with the third a little worse. The
𝜏 = 1∕3 configuration touches the traditional Shannon limit and can approach the
FTN limit as closely as 1–2 dB. An explanation for the 𝜏 = 1∕3 superiority is that
the 2/3 convolutional rate is inherently stronger when both bandwidth and energy
are considered and the more severe ISI with 𝜏 = 1∕4 is hard to equalize; as well, the
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FIGURE 4.16 Shannon limits, coded FTN, and 8PAM modulation at density 6 bits/Hz-s.
Data BER versus data 𝐸

𝑏
∕𝑁0. Triangles denote approximate threshold. All systems have the

same PSD.

higher rates offer more systematic and semisystematic encoder possibilities. But the
easier equalization is to a degree counterbalanced by the more complex CC-BCJR.
Near threshold (the leftmost point on a curve) the coded FTN systems in the figure
require an M-BCJR with  = 40–100 to start, declining to 4–8 in later iterations,
and 30–80 iterations. The required block length is around 100,000. At 1–2 dB higher
𝐸𝑏∕𝑁0, the are much less, error rate is two decades better, and 3–6 iterations and
block length 4000–8000 suffice. If there is no reason to approach capacity, the higher
𝐸𝑏∕𝑁0 are much more practical.
6 bits/Hz-s. Figure 4.16 shows three 4-ary modulation coded FTN systems at

the extreme density 6 bits/Hz-s. These employ 𝑟cc = 4∕3, 𝜏 = 4∕9; no schemes with
the 𝑟cc = 1, 𝜏 = 1∕3 combination are known that converge at reasonable 𝐸𝑏∕𝑁0.
The 8PAM simple modulation baseline (equivalently, 64QAM) is still about 10 dB
distant but the Nyquist and FTN Shannon limits are nowmore than 2-dB apart. There
are no competing schemes to compare to coded FTN at this density. At such high
𝐸𝑏∕𝑁0 coded FTN has rather different behavior: convergence suddenly occurs at an
𝐸𝑏∕𝑁0 threshold of 10–13 dB, denoted by a triangle, and the scheme then follows
the CC line at a very small BER.17 The CC lines cannot be directly tested, and instead

17The threshold and nearby performance shown is the best achieved by the 3:2 map/Graymap combinations
in Appendix 4B. As with ordinary binary convolutional codes, different 𝐸𝑏∕𝑁0 can lead to different best
encoder designs. The CC lines themselves employ the best known maps at high 𝐸𝑏∕𝑁0.
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the lines are plotted from minimum distance and trellis neighbor measurements. The
iteration and block length numbers are roughly those in Figure 4.15, but  is about
twice as large.

4.5 CONCLUSIONS

Chapter 4 has introduced the faster than Nyquist signaling method. It is based on
linear modulation with a strongly nonorthogonal pulse; such a pulse is essential to
the narrowband signal character.

Simple modulation and the Shannon limit provide essential upper and lower
benchmarks to performance of practical schemes.

While uncoded FTN can reach several dB closer to the Shannon limit than simple
modulation plus coding, performance close to the limit requires coded FTN, that is,
transmission with a select subset of the linear modulation signals.

Iterative decoding is essential with coded FTN, and it is necessary to reduce
the complexity of the BCJR or other soft decoder that performs ISI demodulation.
A number of techniques are available, the most successful of which appear to be
M-BCJR algorithms and channel shortening of one kind or another.

Effective coding schemes based on convolutional coding are available, and these
lead to reasonably simple decoders at 4–6 bits/Hz-s whose performance lies a few dB
from the true Shannon limit. This data density is four to six times that of rate 1/2 con-
volutional decoding combined with binary simple modulation. Good convolutional
encoders are known.

Theoretical analysis based on distance predict both the CC and ISI charac-
teristics.

Some further comparison of FTN and earlier coding schemes will be given
in Chapter 6. What can be concluded so far about coded FTN as a transmission
method?

+ Coded FTN provides a method of coded transmission at 4–6 bits/Hz-s, much
higher than densities commonly associated with coding.

+ The range of𝐸𝑏∕𝑁0 available between the Shannon limit and simplemodulation
at high densities is roughly the same as it is at more traditional densities,
approximately 10 dB, and coded FTN works over most of this range.

+ The Gaussian LLR assumption provides a straighforward distance-based anal-
ysis of both the convolutional code BCJR and the ISI BCJR behavior. The
analysis is not sharp enough in the tunnel region, but once the receiver leaves
that region, it predicts the rest of the receiver progress.

+ Iterative decoding is essential for major 𝐸𝑏∕𝑁0 gains but trellis decoding of the
ISI alone is enough for gains in the 2–4 dB range.

+ Coding and complicated modulation both appear to be necessary for transmis-
sion that is both energy and bandwidth efficient.
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APPENDIX 4A: SUPER MINIMUM-PHASE FTN MODELS

This appendix lists orthogonal simple basis (OSB) discrete-time models for most of
the FTN linear modulation pulses that are used in the book. The models are obtained
by sampling 30% root RC pulses

√
𝜏ℎ(𝜏𝑡) for which ℎ(𝑡) is orthogonal on the unit

interval; samples smaller than≈ 0.005 are ignored. In a process described in Sections
2.4 and 4.1, the samples are converted to a near-maximum phase sequence and then
reversed to obtain a minimum-phase model.

As introduced in Sections 4.1 and 4.2, reduced-computation ISI-BCJR algorithms
attain a better LLR output for a given computation size by employing a model that
trades a more rapidly rising main section for a longer low-energy precursor. The
BCJR ignores the precursor. Ignoring it slightly degrades the LLR quality but the
main taps with energy more toward the front improve quality for a given computation
limit. The trade is implemented by an allpass filter at the trellis detector input. Finding
the best trade is a difficult optimization, and the models given here are only an initial
suggestion. These models are said to be super minimum phase.

The small initial taps, if any, make up a precursor and are shown first in italics.
The precursor is needed at the transmitter to insure an accurate FTN power spec-
trum. Figures 4.5 and 4.6 show the models and their power spectra. 𝑑2

min for binary
modulation is found by program mlsedist2; 𝑚 is the model memory without the
precursor; 𝑚ahd is the length of the precursor and the precursor itself is shown in
italics.

(i) 𝝉 = 𝟏∕𝟒 𝑚 = 23, 𝑚ahd = 8, 𝑑
2
min ≈ .19:

𝒄=[–.010, –.013, –.007, .005, .011, .004, –.008, .001;
.060, .181, .339, .473, .520, .443, .262, .047, –.120, –.182,

–.138, –.037, .055, .092, .070, .018, –.025, –.037, –.021, .003,
.016, .012, .0004, –.008]

(ii) 𝝉 = 𝟏∕𝟑 𝑚 = 14, 𝑚ahd = 5, 𝑑
2
min = .52:

𝒄=[.016, .033, .011, –.028, .008;
.184, .443, .606, .527, .238, –.066, –.194, –.124, .013, .076,
.042, –.017, –.031, –.006, .013]

(iii) 𝝉 = 𝟑∕𝟖 𝑚 = 15, 𝑚ahd = 6, 𝑑
2
min = .58:

𝒄=[–.009, –.018, –.002, .013, –.003, –.002;
.132, .407, .624, .549, .198, –.140, –.210, –.049, .098, .087,

–.005, –.044, –.011, .018, .008, –.009]
(iv) 𝝉 = 𝟒∕𝟗 𝑚 = 17, 𝑚ahd = 0, 𝑑

2
min = .86 (2-ary), .137 (4-ary):

𝒄=[.120, .428, .671, .496, .010, –.259, –.099, .122, .083, –.056,
–.049, .028, .022, –.019, –.006, .017, .001, –.012]

(v) 𝝉 = 𝟏∕𝟐 𝑚 = 9, 𝑚ahd = 8, 𝑑
2
min = 1.01 (2-ary), .154 (4-ary):

𝒄=[–.005, –.003, .007, –.011, –.001, .034, –.019, .003;
.375, .741, .499, –.070, –.214, .019, .087, –.020, –.027, .017]

(vi) 𝝉 = 𝟐∕𝟑 𝑚 = 12, 𝑚ahd = 0, 𝑑
2
min = 1.70 (2-ary), .68 (4-ary):

𝒄=[.459, .827, .100, –.272, .124, .021, –.060, .041, –.021, .012, .003, –.009, .009]
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Example 4A.1 (Super Min-Phase Model for 𝜏 = 1∕2)
Let ℎ(𝑡) be the 30% root RC pulse. Sampling

√
1∕2ℎ(𝑡∕2) at 𝑡 = −20,−19,… ,+20

yields 41 samples, the centermost of which are

{… , .040. − .109,−.053, .435, .765, .435,−.053,−.109, .040,…}. (4.20)

This middle phase sequence has 40 zeros total, including 19 inside the unit circle,
occurring as 9 conjugate pairs, and one real zero. Reflecting these outside and time-
reversing the corresponding sequence18 produces the strict minimum-phase sequence
{0.098,0.408,0.689,0.472,–0.089,–0.279,…}, which is plotted in Figure 4A.1. A su-
per min-phase receiver model that leads to lower eventual error rate can be found in
the following way. Find the max-phase version of a special sequence made out of
just the 9 centermost samples (the values actually shown in Eq. (4.20)). The allpass
that creates the new max-phase version is the second-order filter

𝐵(𝑧) = 0.107 − 0.561𝑧−1 + 𝑧
−2

1 − 0.561𝑧−1 + 0.107𝑧−2
(4.21)

and the time-reversedmin-phase sequence is {0.375,0.742,0.500,–0.070, –0.216,…}.
This special sequence does not have an acceptable spectrum, but filtering the original
sequence Eq. (4.20) with 𝐵(𝑧), or any other allpass, does produce a sequence with
correct spectrum. This new time-reversed sequence has length 61; the first 18 values
are very small and the next 8 are taken as the precursor; the remaining taps show
a more rapid rise than the original strict min-phase sequence, as can be seen in the
figure. With some small tail values deleted, the new sequence is the model in the
list for 𝜏 = 1∕2. The point of the derivation here is to produce a new, more suitable
allpass 𝐵(𝑧) for the reduced detector.

APPENDIX 4B: GOOD CONVOLUTIONAL CODES FOR FTN SIGNALING

This appendix lists good encoders at rates 1/2, 2/3, 3/4 databits/modulator symbol
for binary FTN modulation and rates 1 and 4/3 for 4-ary modulation, intended
for use with iterative detection in coded FTN transmission. They are found by the
search method in Section 4.3.2, either by an exhaustive search for each memory and
encoder type, or in the case of binary rate 3/4 and 4-ary codes, by an opportunistic
random search over thousands of candidates. Code types at memory𝑚 are abbreviated
by FF (feed forward), FFsys (feed-forward systematic), and FFsemi (feed-forward
semisystematic). Given for each encoder are the CC characteristic slope (which drives
the number of detector iterations) and the square Euclidean free distance19 𝑑2

𝑓
relative

to 𝐸𝑏 (which drives the data BER through 𝑄(
√

𝑑
2
𝑓
𝐸𝑏∕𝑁0)). This 𝑑2

𝑓
can be directly

18The sequence is found by Matlab function poly; roots are found by roots.
19The free distance of a code is the minimum distance when there is no limit to code word length. See
Reference 45.
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FIGURE A.1 Strict and super minimum-phase models as seen at the trellis detector. 30%
root RC base pulse, 𝜏 = 1∕2 FTN.

compared to distances of other coding methods that lead to the same Q-function
form. As always, the 𝑀-ary modulator symbol energy is 𝐸𝑠 = 𝑟cc𝐸𝑏, and 𝑟cc is the
convolutional code rate in databits/𝑀-ary symbol. In the various measurements, in
this appendix, it is assumed that a CC-BCJR sees Gaussian LLRs when it works in
an iterative detector and an AWGN channel when it stands alone.

For binary modulation codes, the input–output correlation parameter 𝜌, the CC-
BCJR equivalent square distance parameter 𝛿

2
𝑠
, and the ordinary code Hamming

distance 𝑑𝐻 are given; these are interrelated by Eqs. (4.15)–(4.17). The values of 𝛿2
𝑠

and 𝜌 are taken from SERs (rates 1/2, 2/3) or Gaussian 𝜇∕𝜎 (rate 3/4), measured in
the middle of the CC characteristic, corresponding to an SER of 0.001–0.01.

For 4-ary modulation, 𝜌 is not available and code evaluation depends on the
measured CC slope and data BER alone. The convolutional rate 𝑟cc is 1 or 4/3
databits/4-ary symbol.

Binary Rate 1/2. One databit at a time creates 2 code word bits by means of two
length 𝑚 tapped shift registers. Generators are written as two left-justified octals
(𝑔1, 𝑔2), where 𝑔1 creates the first code word bit and 𝑔2 the second; in the trellis
description, these two bits form a branch label pair. For example, (46, 72) means
(10011, 11101), where the left-most bits multiply mod-2 the present databit, the
next-left bits multiply the previous databit, and so on, until the right-hand bits, which
multiply the 𝑚th databit before the present. At rate 1/2, 𝑑𝐻 is numerically the same
as 𝑑2

𝑓
, and the CC characteristic slope is 1∕𝑑2

𝑠
given in Eq. (4.16). The data BER is

≈ 𝑄(
√

𝑑
2
𝑓
𝐸𝑏∕𝑁0) and the code word symbol SER (no AP) is ≈ 𝑄(

√
2𝑑2

𝑠
𝐸𝑠∕𝑁0).
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(i) FF, 𝑚 = 2:
(7,5). Slope 1∕3.9, 𝜌 ≈ .51, 𝑑𝐻 = 𝑑

2
𝑓
= 5. This is the only useful 𝑚 = 2

encoder.

(ii) FF, 𝑚 = 3:
(74,54), (64,54). Slope 1∕5.2, 𝜌 ≈ .51, 𝑑𝐻 = 6.

(iii) FF, 𝑚 = 4:
(46,72), (66,62). Slope 1∕5.2, 𝜌 ≈ .50, 𝑑𝐻 = 7. The larger 𝑚 and 𝑑𝐻 here do
not give better slope than (ii)

(v) FF, 𝑚 = 5:
(62,57). Slope 1∕6.5, 𝑑𝐻 = 8. Others are as good.

Binary Rate 2/3. Two databits at a time create 3 code word bits by means of six
length 𝑚 shift registers. Generators are written as six left-justified octals in the form[
𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23

]
. Here 𝑔𝑖𝑗 are the shift register taps that create the contribution to

code word branch bit 𝑗 from databit 𝑖. From each trellis node stem 22 = 4 branches,
and the 3 bits in each trellis label are the mod-2 sum of contributions from databits 1

and 2. At rate 2/3, BER and SER are ≈ 𝑄(
√

𝑑
2
𝑓
𝐸𝑏∕𝑁0) and ≈ 𝑄(

√
2𝑑2

𝑠
𝐸𝑠∕𝑁0) as

before, but now 𝑑
2
𝑓
= 4𝑑𝐻∕3.

(i) FFsys, 𝑚 = 1:
[4 0 6
0 4 6

]
Slope 1∕1.1, 𝜌 ≈ .68, 𝑑𝐻 = 2, 𝑑2

𝑓
= 4𝑑𝐻∕3 = 8∕3. Best tunnel and

best 𝑑𝐻 for code type and memory.

(ii) FF, 𝑚 = 2:
[0 1 7
5 6 1

]
,

[5 1 6
1 2 3

]
. Slope 1∕3.5, 𝜌 ≈ .60, 𝑑𝐻 = 4, 𝑑2

𝑓
= 16∕3. Many en-

coders have these parameters.
[3 4 5
4 3 7

]
. Slope 1∕4.2, 𝜌 ≈ .61, 𝑑𝐻 = 5, 𝑑2

𝑓
= 20∕3. Best slope and 𝑑𝐻 for

code type and 𝑚.

(iii) FFsys, 𝑚 = 2:
[4 0 5
0 4 7

]
. Slope 1∕2.0, 𝜌 ≈ .65, 𝑑𝐻 = 3, 𝑑2

𝑓
= 4. Best slope encoder for type

and 𝑚.

(iv) FFsemisys, 𝑚 = 2:
[0 1 7
4 6 1

]
. Slope 1∕3.2, 𝜌 ≈ .62, 𝑑𝐻 = 4, 𝑑2

𝑓
= 16∕3. Good 𝑑𝐻 for type and 𝑚.
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(v) FFsys, 𝑚 = 3:
[40 0 64
0 40 74

]
,

[40 0 54
0 40 64

]
. Slope 1∕3.8, 𝜌 ≈ .63, 𝑑𝐻 = 4, 𝑑2

𝑓
= 16∕3. Two

of best slope encoders for code type and 𝑚.

(vi) FFsys, 𝑚 = 4:
[40 0 62
0 40 72

]
,

[40 0 56
0 40 62

]
. Slope 1∕5.2, 𝜌 ≈ .62, 𝑑𝐻 = 4, 𝑑2

𝑓
= 16∕3. Two

of best slope encoders for type and 𝑚.

Binary Rate 3/4. Three databits at a time create 4 code word bits by means of 12
length-𝑚 shift registers. Generators are written as 12 left-justified octals in the form

⎡⎢⎢⎢⎣

𝑔11 𝑔12 𝑔13 𝑔14
𝑔21 𝑔22 𝑔23 𝑔24
𝑔31 𝑔32 𝑔33 𝑔34

⎤⎥⎥⎥⎦
.

Here, 𝑔𝑖𝑗 are defined as before, but with databit 𝑖 = 1, 2, 3. From each trellis node stem
23 = 8 branches, and the 4 bits in each trellis label are the mod-2 sum of contributions
from databits 1, 2, and 3. At rate 3/4, BER and SER are the same Q forms as before,
but 𝑑2

𝑓
= 3𝑑𝐻∕2.

(i) FFsys, 𝑚 = 1:

⎡⎢⎢⎢⎣

4 0 0 6
0 4 0 4
0 0 4 6

⎤⎥⎥⎥⎦
. Slope 1∕1.0, 𝜌 ≈ .74, 𝑑𝐻 = 2, 𝑑2

𝑓
= 3𝑑𝐻∕2 = 3. Good tunnel

and best 𝑑𝐻 for code type and 𝑚.

(ii) FFsemisys, 𝑚 = 1:

⎡⎢⎢⎢⎣

4 0 2 6
0 4 0 6
0 0 6 4

⎤⎥⎥⎥⎦
. Slope 1∕2.1, 𝜌 ≈ .70, 𝑑𝐻 = 3, 𝑑2

𝑓
= 3. Good tunnel and best 𝑑𝐻

for type and 𝑚.

(iii) FF, 𝑚 = 2:

⎡⎢⎢⎢⎣

6 2 2 6
1 6 0 7
0 2 5 5

⎤⎥⎥⎥⎦
. Slope 1∕4.2, 𝜌 ≈ .62, 𝑑𝐻 = 5, 𝑑2

𝑓
= 15∕2. Poor tunnel; best 𝑑𝐻

known for type and 𝑚.
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(iv) FFsys, 𝑚 = 3:

⎡⎢⎢⎢⎣

40 0 0 64
0 40 0 70
0 0 40 54

⎤⎥⎥⎥⎦
. Slope 1∕3.2, 𝜌 ≈ .68, 𝑑𝐻 = 4, 𝑑2

𝑓
= 6. Good tunnel and

best 𝑑𝐻 for type.

4-ary Rate 1. As with binary rate 1/2, one databit at a time creates 2 code word bits
by means of two length 𝑚 tapped shift registers. Generators are written as the same
two left-justified octals (𝑔1, 𝑔2) as before, where 𝑔1 creates the first code word bit
and 𝑔2 the second in a branch label pair. This bit pair is mapped to 4-ary modulation
values by

{00, 01, 10, 11} ⟶ {𝑊 ,𝑋, 𝑌 ,𝑍}, (4.22)

where 𝑊 ,𝑋, 𝑌 , and𝑍 take values in the set {3, 1 − 1,−3} (take the second bit in a
pair as the LSB). For example, [3 -1 1 -3]means 00 → 3, 01 → −1, 10 → 1, 11 → −3.
Hereafter, this will be called the Gray map. All encoders are feed forward. The CC
characteristic of most of these encoders is plotted in Figure 4.13, and the slope is
listed here.

Asymptotically, the linear CC slope is the same as saying that the code symbol

SER is ≈ 𝑄(
√

𝑑2
𝑠
𝐸𝑠∕𝑁0), in which 𝑑

2
𝑠
is the operating Euclidean square distance

relative to 𝐸𝑠 under the condition that intrinsic subtraction is applied. For 4-ary
modulation, the relation between the slope and 𝑑

2
𝑠
is derived as follows. Let the slope

be determined by two points measured over an AWGN channel at SNRs 𝐸
(1)
𝑠 ∕𝑁0

and 𝐸
(2)
𝑠 ∕𝑁0. The input to the CC-BCJR is the four-dimensional LLRs of the 4-ary

modulation symbols, which can be seen as an equivalent 4-ary modulator over an
AWGN channel at these two SNRs. The AWGN-channel SER of such a modulator
is ≈ 1.5𝑄(

√
0.4𝐸𝑠∕𝑁0), and the code word letter SER at the CC-BCJR output is

≈ 𝑄(
√

𝑑2
𝑠
𝐸𝑠∕𝑁0). We then have that the measured slope should be

slope ≈
log𝑄(

√
0.4𝐸(1)

𝑠 ∕𝑁0) − log𝑄(
√

0.4𝐸(2)
𝑠 ∕𝑁0)

log𝑄(
√

𝑑2
𝑠
𝐸

(1)
𝑠 ∕𝑁0) − log𝑄(

√
𝑑2
𝑠
𝐸

(2)
𝑠 ∕𝑁0)

≈ 0.4∕𝑑2
𝑠
. (4.23)

The operating 𝑑
2
𝑠
is thus close to the value 0.4∕slope.

With no instrinsic subtraction (“with AP”), an operating Euclidean square distance
𝑑
2 of the decodingwith respect to𝐸𝑠 can bemeasured in the sameway. The codeword

letter SER is≈ 𝑄(
√

𝑑2𝐸𝑠∕𝑁0), which can equallywell bewritten𝑄(
√

𝑑2𝑟cc𝐸𝑏∕𝑁0),
where 𝑟cc = 1 now has dimensions databits/4-ary symbol. In effect, such an operating
distance is found by solving the inverse Q function to find the 𝑑 that leads to the
observed SER. Because it includes instrinsic subtraction, we can expect 𝑑2

𝑠
to lie

somewhat below 𝑑
2.
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One can compute the classical square free distance 𝑑
2
𝑓
by a program similar to

Program 2A.2 or estimate it by 𝑑
2
𝑟cc observed at a high𝐸𝑏∕𝑁0. This distance is with

respect to the databit𝐸𝑏, and the databit error rate is asymptotically𝑄(
√

𝑑
2
𝑓
𝐸𝑏∕𝑁0).

It assumes that there is no intrinsic subtraction. Although 𝑑
2 applies to the code

word letter error rates and 𝑑
2
𝑓
applies to the databit rate, both are driven by the same

underlying mechanism, and 𝑑
2
𝑓
can be observed to lie near 𝑑2

𝑟cc.
Listed below is the result of a code search performed for this book. Several

thousand random encoder tap set and Gray map combinations are evaluated in the
manner given in Section 4.3.3, wherein the convolutional code behavior in FTN
iterative decoding is predicted from tests of the decoder working alone over an
AWGN channel at two 𝐸𝑏∕𝑁0, 1 and 5 dB, the first chosen to lie in the tunnel and
the second chosen in the middle of the CC slope. The data BER at 1 dB indicates
the tunnel quality (see Section 4.3.3), and the SER and BER at 5 dB indicate the
quality of the overall CC characteristic. In a first pass, convolutional encoders are
short-listed that have a chance of good performance. In a second pass for the short
list, all 24 Gray maps are evaluated to find the best. Finally, a full test at a range of
𝐸𝑠∕𝑁0 is run for good candidates in order to measure actual parameters.

Shown with each code generator are the CC slope and 𝑑
2
𝑓
, together with the

probability that a start state chosen at random leads to this 𝑑2
𝑓
(with other starts 𝑑2

𝑓

is higher); 𝑑2
𝑓
and the probabilities are found by a minimum distance program. After

these follows the observed operating 𝑑
2 near convergence (with AP) and 𝑑

2
𝑠
(from

the slope, no AP). Note that the values 𝑑2
𝑓
, 𝑑

2
, 𝑑

2
𝑠
can be directly compared because

the code rate is 1.
It was observed that good generators are not systematic and removal of AP

information costs about 1.3 in 𝑑
2, compared to about 1 with binary-modulation

codes.

(i) (7,5), Map [-3 3 -1 1], FF, 𝑚 = 2. Slope 0.21, 𝑑2
𝑓
= 3.6 with prob. 1.

𝑑
2 ≈ 3.3, 𝑑2

𝑠
≈ 1.9.

(ii) (54,44), Map [-3 3 -1 1], FF, 𝑚 = 3. Slope 0.21, 𝑑𝑓 = 3.6 with prob. 1.
𝑑
2 ≈ 3.1, 𝑑2

𝑠
≈ 1.9.

(iii) (54,44), Map [-3 -1 3 1], FF, 𝑚 = 3. Slope 0.21, 𝑑𝑓 = 3.6 with prob. 0.5 and
𝑑𝑓 = 4.4 with prob. 0.25.
𝑑
2 ≈ 3.5, 𝑑2

𝑠
≈ 1.9. The new Gray map leads to better 𝑑𝑓 but a worse tunnel.

(iv) (74,54), Map [3 -3 1 -1], FF, 𝑚 = 3. Slope 0.16, 𝑑𝑓 = 4 with prob. 0.25.
𝑑
2 ≈ 3.7, 𝑑2

𝑠
≈ 2.5. Better 𝑑𝑓 but weaker tunnel than (54,44).

(v) (52,76), Map [3 1 -3 -1], FF, 𝑚 = 4. Slope 0.18, 𝑑𝑓 = 4 with prob. 1.
𝑑
2 ≈ 3.5, 𝑑2

𝑠
≈ 2.2. Better tunnel than (74,54).

(vi) (612,224), Map [3 1 -1 -3], FF, 𝑚 = 7. Slope 0.098, 𝑑𝑓 = 5.6 with prob. 0.06.
𝑑
2 ≈ 4.1, 𝑑2

𝑠
≈ 2.7. Example of strong code with weak tunnel; full minimum

distance available only at very high 𝐸𝑏∕𝑁0.
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4-aryRate 4/3. Figure 4B.1 shows amethod of rate 4/3 convolutional code generation
based on the usual rate 2/3 feed forward binary encoder. Pairs of data bits drive six
tapped shift registers, which produce triples of bits; for 𝑛 = 1, 2,…, the rate 2/3
structure is applied twice, to produce two triples. These six bits are mapped to three
4-ary symbols as follows: First, bits A,…,F in the two 3-tuples are mapped in some
way to bits 1,… , 6 in the three 2-tuples that will serve as Gray map inputs; this is
called the 3:2 map. Second, each 2-tuple maps to {3, 1,−1,−3} in the manner defined
at Eq. (4.22). The six shift registers have taps 𝑔𝑖𝑗 as defined above for binary rate 2/3
encoders. The end result is that four databits map to three 4-ary symbols.

The six tap sets and two maps need to be jointly optimized to produce the best
combinations of minimum distance and tunnel. In a search performed for this book,
the 3:2 maps were confined to 5 fundamentally different ones, of which the most
successful were

Map “s”: A,B,…,F → [1, 3, 5, 2, 4, 6] (4.24)

Map “t”: A,B,…,F → [1, 2, 3, 5, 6, 4] (4.25)

Map “n”: A,B,…,F → [1, 2, 3, 4, 5, 6] (4.26)

These maps have various properties; for example, map “s” preserves systematicity
if it exists in the binary encoder.

As with rate 1, several thousand random encoder tap sets and Gray map combina-
tions are evaluated over an AWGN channel at two𝐸𝑏∕𝑁0 for each 3:2 map; for good
candidates all 24 Gray maps are tested. The evaluation𝐸𝑏∕𝑁0 during the code search
are 2 and 6 dB. Slope and 𝑑

2
𝑓
, 𝑑

2
, 𝑑

2
𝑠
are given as with rate 1, with 𝑑𝑓 is with respect

to databit energy, but now 𝐸𝑏 = 3𝐸𝑠∕4. As a rule longer memory encoders perform
more poorly. Systematic and semisystematic encoders perform best; a search over
general FF encoders usually leads to these.

It was observed that 𝑑𝑓 is reduced at the same memory compared to 𝑟cc = 1 codes,
as one would expect, and AP removal costs roughly (4∕3) × 0.5 of the value of 𝑑2.

(i)
[ 4 0 6
0 4 4

]
. FFsys, 𝑚 = 1, 3:2 map t, Gray [1 -1 3 -3]. Slope 1.02, 𝑑𝑓 ≈ 0.97.

𝑑
2 ≈ 0.72, 𝑑2

𝑠
≈ 0.39. Good at very low SNR; otherwise a poor code.

Another good map combination is 3:2 map t, Gray [1 3 -3 -1].

(ii)
[4 0 7
0 4 5

]
. FFsys, 𝑚 = 2, Map n, Gray [1 -1 3 -3]. Slope 0.87, 𝑑𝑓 ≈ 1.6.

𝑑
2 ≈ 1.2, 𝑑2

𝑠
≈ .48. Best for code type and memory.

Another combination, good at low SNR, is 3:2 map t, Gray [1 -3 -1 3].

(iii)
[3 4 5
4 3 7

]
. FF, 𝑚 = 2, Map n, Gray [3 -3 -1 1]. Slope 0.34, 𝑑𝑓 ≈ 2.7.
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FIGURE B.1 Generation of rate 4/3 databits/4-ary symbol code words from the traditional rate 2/3 binary encoder structure. Notation: SR = shift
register, GR = Gray map, CW = code word, L = least significant bit.
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𝑑
2 ≈ 1.6, 𝑑2

𝑠
≈ 1.2. Good at moderate SNR.

Another good map combination is 3:2 map n, Gray [3 -1 -3 1].

(iv)
[3 4 5
4 3 7

]
. FF, 𝑚 = 2, Map n, Gray [1 -1 3 -3]. Good at high SNR only; Cf.

previous code.

(v)
[ 4 0 56
0 4 72

]
. FFsys, 𝑚 = 4, Map n, Gray [-1 -3 1 3]. Slope 0.46, 𝑑𝑓 ≈ 1.9.

𝑑
2 ≈ 1.4, 𝑑2

𝑠
≈ 0.87. Typical longer-𝑚 encoder for low SNR.
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5
MULTICARRIER FTN

INTRODUCTION

Chapter 5 extends the previous chapter to the case where a transmission has many
closely spaced subcarriers, each of which can be a classical time-accelerated FTN
signal. More is possible than time acceleration. The subcarriers, which in a standard
system would be nominally orthogonal to each other, can be spaced much more
closely in frequency. This is frequency FTN. Just as with pulses accelerated in time,
subcarriers can be “frequency squeezed” to some degree before a distance loss occurs.
There is a Mazo limit in frequency squeeze alone, and a two-dimensional limit in
both time and frequency, above which the error performance is asymptotically that of
isolated orthogonal pulses. Furthermore, the gains from these two sources are more
or less separate. Whereas a bandwidth reduction of about 30% was available from
time acceleration alone, as much as 50% is available in this chapter.

Frequency FTN is more challenging than time FTN. Subcarriers have a phase
relationship, and it affects signal distance. As if time and frequency spacing were
not variables enough, there are many ways to improve distance with the phase
variable. Being carrier transmission, the signals have I and Q components. Detection
is more difficult because frequency cochannel interference (CCI) needs equalization
in addition to time ISI. When added to codeword detection, this can lead to a three-
dimensional BCJR receiver.

The subcarrier FTN problem began with References 3 and 4, and that line is
followed here. The subject has seen less development than time FTN, but there are

Bandwidth Efficient Coding, First Edition. John B. Anderson.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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software and hardware receivers to report. There are also other lines of research,
which are not our classical approach, but which hint at the gains available when
one gives up orthogonal subcarriers. There are also many similarities to magnetic
tape recording and particularly to OFDM (orthogonal frequency division multiplex),
important technologies in their own right. One can view frequency-squeezed FTN as
an enhanced OFDM; for an introduction to OFDM we can recommend [1,2].

Section 5.1 presents classical frequency FTN, comments on capacity, and defines
a spacing variable 𝜙, the frequency analog to the acceleration parameter 𝜏. The
complex subject of minimum distance is Section 5.2. The section suggests good
signal configurations and it estimates the two-dimensional Mazo limit. Section 5.3
recounts some receiver test results and presents some cousins to the classical scheme.

5.1 CLASSICAL MULTICARRIER FTN

A good place to start is the “2𝑊 𝑇 ” result of Theorem 3.2: Signals with bandwidth
running for  seconds can sustain about 2 orthogonal dimensions. The original
theorem required that these signals be made of sinc(𝑡∕𝑇 ) pulses, which exist only in
the limit of physical pulses, but they provide a useful framework for understanding
time--frequency FTN. A way to view the signal set is Figure 5.1. It is a framework,
with a sinc pulse associated with each point in a 𝐾 ×𝑁 point array. The rows
represent subcarriers at 𝑓𝑘 = 𝑘∕𝑇 Hz, 𝑘 = 0,… , 𝐾 − 1, and the columns are the
centers of sinc pulses at 𝑛𝑇 seconds, 𝑛 = 0,… , 𝑁 − 1. No matter what 𝑇 is, the area
of the array is (𝐾∕𝑇 )𝑁𝑇 = 𝐾𝑁 Hz-s, half the available orthogonal dimensions. The
number in fact does not depend on 𝑇 , and we will often let 𝑇 be 1. However, the
value of 𝑇 gives the physical frequencies 𝑓𝑘 and the times 𝜏𝑇 .

The array will serve as a reference for time--frequency FTN systems. As before,
we will base the signals on linear modulation with a unit-energy base pulse ℎ(𝑡). Now
the signal is made up of subcarriers, each of which can be a time-FTN signal in the
“accelerated” formulation Eq. (2.50); the outcome is

𝑠(𝑡) =
√
2𝐸𝑠

𝐾−1∑
𝑘=0

𝑁−1∑
𝑛=0

𝑢
𝐼

𝑘,𝑛
ℎ(𝑡 − 𝑛𝜏𝑇 ) cos 2𝜋(𝑓𝑐 + 𝑓𝑘)𝑡 −

𝑢
𝑄

𝑘,𝑛
ℎ(𝑡 − 𝑛𝜏𝑇 ) sin 2𝜋(𝑓𝑐 + 𝑓𝑘)𝑡. (5.1)

There are now in-phase (I) and quadrature (Q) PAM modulator symbols 𝑢𝐼 and 𝑢
𝑄,

and 𝐸𝑠 is the average symbol energy of each. A carrier is required and it is 𝑓𝑐 Hz.
1

When ℎ(𝑡) is a sinc pulse and 𝜏 = 1, the time--bandwidth occupied is [−𝑇 ∕2, 𝑁𝑇 −
1∕2] × [𝑓𝑐 − 1∕2𝑇 , 𝑓𝑐 + (𝐾 − 1∕2)∕𝑇 ] Hz-s, counting positive frequencies. When
ℎ(𝑡) is a general 𝑇 -orthogonal pulse and 𝜏 = 1, the time and bandwidth are somewhat
larger---but the physical-world product, divided by𝐾𝑁 , still tends to 1 as𝐾,𝑁 → ∞.

1Another common notation uses complex numbers. The signal is the real part of
√
2𝐸𝑠∕𝑇

∑
𝑘

∑
𝑛
𝑢𝑘,𝑛ℎ(𝑡 −

𝑛𝜏𝑇 ) exp(𝚥2𝜋(𝑓𝑐 + 𝑓𝑘)𝑡), in which 𝑢 is the complex symbol 𝑢𝐼 + 𝚥𝑢
𝑄.
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FIGURE 5.1 Reference framework for time--frequency FTN, based on sinc-pulse signaling.
Under FTN signaling, the spacing will become 𝜏𝑇 and 𝜙∕𝑇 .

In time-only FTN, we have 𝜏 < 1 and the time occupancy reduces asymptotically
in 𝑁 to 𝜏𝑁𝑇 . In frequency FTN, we can define a frequency squeeze factor 𝜙 to be
the subcarrier spacing 𝜙∕𝑇 in terms of 1∕𝑇 Hz. The frequency occupancy is now
𝜙𝐾∕𝑇 , asymptotically in 𝐾 . A new reference framework in the style of Figure 5.1
represents the signals, with horizontal point spacing 𝜏𝑇 and vertical spacing 𝜙∕𝑇 .
The symbol density of the signal becomes altogether 2∕𝜙𝜏 symbols/Hz-s.2 The factor
“2” here arises because of the independent I and Q signals.

A difficulty remains, namely, that the subcarriers are unlikely to be strictly orthog-
onal when ℎ(𝑡) is not a sinc, even when 𝜙 ≥ 1. The problem is that ∫ 𝐻(𝑓 )𝐻 ′(𝑓 ) d𝑓
is not necessarily zero when 𝐻(𝑓 ) and 𝐻

′(𝑓 ) are transforms of pulses at parallel
times but on subcarriers spaced 1∕𝑇 Hz; that is, the subcarrier signals are not or-
thogonal. For example, the frequency dual of the spectral antisymmetry condition
(Property 1.1) asserts that a sufficient condition would be that ℎ(𝑡) is antisymmetric
about the point (ℎ(0)∕2, 𝑇 ). This is inconvenient, and it is easily verified that favorite
pulses fail strict orthogonality. However, reasonable 𝑇 -orthogonal time pulses are
very nearly orthogonal when they appear on subcarriers separated 1∕𝑇 Hz, enough
so that the error can be ignored. Whether it is or not, CCI will become a definite
feature when frequency squeezing is applied.

Incorporating 𝜙 and 𝜏 and rewriting Eq. (5.1) into a form with a single I and Q,
we get

√
2𝐸𝑠

[
𝐼(𝑡) cos 2𝜋𝑓𝑐 −𝑄(𝑡) sin 2𝜋𝑓𝑐

]
,

2An older name in physics for this “tiling” of time--frequency is Weil-Heisenberg system. An early
exploration from a communication point of view is Reference 11.
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where

𝐼(𝑡) =
𝐾−1∑
𝑘=0

𝑁−1∑
𝑛=0

[
𝑢
𝐼

𝑘,𝑛
ℎ(𝑡 − 𝑛𝜏𝑇 ) cos 2𝜋𝑘𝜙𝑡∕𝑇 − 𝑢

𝑄

𝑘,𝑛
ℎ(𝑡 − 𝑛𝜏𝑇 ) sin 2𝜋𝑘𝜙𝑡∕𝑇

]
and

𝑄(𝑡) =
𝐾−1∑
𝑘=0

𝑁−1∑
𝑛=0

[
𝑢
𝑄

𝑘,𝑛
ℎ(𝑡 − 𝑛𝜏𝑇 ) cos 2𝜋𝑘𝜙𝑡∕𝑇 + 𝑢

𝐼

𝑘,𝑛
ℎ(𝑡 − 𝑛𝜏𝑇 ) sin 2𝜋𝑘𝜙𝑡∕𝑇

]
.

(5.2)

The signals cos 2𝜋𝑘𝜙𝑡∕𝑇 and sin 2𝜋𝑘𝜙𝑡∕𝑇 can be thought of as the quadrature
subcarriers, although they do not exist as physical sine waves. The normalized square
Euclidean distance between two signals 𝑠(1)(𝑡) and 𝑠

(2)(𝑡) is 𝑑2 = (1∕2𝐸𝑏) ∫ |𝑠(1)(𝑡) −
𝑠
(2)(𝑡)|2d𝑡. In the limit of 𝑓𝑐 only the difference in I and Q matters, and that depends
only on the differences Δ𝑢

𝐼 and Δ𝑢
𝑄. The normalized square distance in the binary

case may then be written3

(1∕2)∫
[|Δ𝐼(𝑡)|2 + |Δ𝑄(𝑡)|2] d𝑡, (5.3)

Δ𝐼(𝑡) and Δ𝑄(𝑡) are defined just as 𝐼 and 𝑄 in Eq. (5.2) but with Δ𝑢
𝐼

𝑘,𝑛
and Δ𝑢

𝑄

𝑘,𝑛

instead of 𝑢𝐼
𝑘,𝑛

and 𝑢
𝑄

𝑘,𝑛
.

Some Multicarrier Signals. Because of the subcarrier structure, it is challenging to
visualize the I and Q components of a time-frequency FTN signal. The next three
figures show an example of the signals in a binary 3-subcarrier system. The three
in-phase signals are 𝐼0, 𝐼1, and 𝐼2, the quadrature signals are 𝑄0, 𝑄1, 𝑄2, and the
totals of each in Eq. (5.2) are 𝐼tot and 𝑄tot . When quadrature modulated at carrier 𝑓𝑐

Hz, these represent the signals from all six 𝑢 streams. For clarity, all the 𝑢
𝑄 symbols

are zero, and the 𝑢
𝐼 symbols are zero except for 𝑢𝐼

𝑘,0 = 1 and 𝑢
𝐼

𝑘,5 = 1 on all three
subcarriers. This makes it clear what subcarrier transmission does to each symbol.
The x-axis is in symbol times.

Figure 5.2 shows the case when 𝜙 = 0.8. Even though all 𝑢𝑄 are 0, both I and
Q responses appear everywhere except 𝑄0. Observe that when time advances 𝓁𝜏𝑇 ,
the sin and cos phase advances 2𝜋𝑘𝓁𝜙𝜏, so that if the pulses are narrow enough, the
responses to two pulses 𝓁𝜏𝑇 apart will be almost identical when 𝑘𝓁𝜙𝜏 is an integer
for each 𝑘 in use. This is evident in Figure 5.2, where 5 × 𝜙𝜏 is 4. The ripple in I and
Q grows in frequency with the subcarrier number 𝑘.

Figure 5.3 shows the same, but now 𝜙 = 0.3 with 𝜏 still 1. The ripples are slower,
reflecting the smaller subcarrier frequencies, and because 5𝜙𝜏 = 1.5 is an odd mul-
tiple of 1∕2, the pulses in 𝐼1 and in 𝑄1 have opposing symmetry and in 𝐼2 and 𝑄2
they are the same. Figure 5.4 repeats Figure 5.3, but with 𝜙 = 0.6 and 𝜏 = 0.5. The
𝜏 = 0.5 doubles the width of all time responses, but once again 5𝜙𝜏 = 1.5 so that the

3When 𝑢 is 𝑀-ary, the factor in front is log2 𝑀∕2. This chapter treats only the binary case.
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FIGURE 5.2 I and Q signals in time--frequency FTN with three subcarriers (𝐼), 𝜙 = 0.8,
and 𝜏 = 1. 𝑢𝐼

0,0, 𝑢
𝐼

0,5, 𝑢
𝐼

1,0𝑢
𝐼

1,5𝑢
𝐼

2,0𝑢
𝐼

2,5 are 1; all other symbols are 0.

same symmetries hold as in Figure 5.3. The wider pulses damage the symmetries but
they are still evident.

All the Q symbols here were 0. In a full transmission, all the 𝑢
𝐼 and 𝑢

𝑄 symbols
would take ±1 values and the Q symbols would lead to their own similar behavior.
The composite I and Q would not be easily disentangled by eye.

OFDM; Slepian’s Problem. OFDM, a method of stacking subcarriers that is similar
in form to frequency FTN, avoids the not-quite-orthogonal problem by means of a
fast Fourier transform that produces I andQ. Frequency-alone FTN can be viewed as
an extension of OFDM to subcarriers that are significantly nonorthogonal. One can
also employ pulses that are not orthogonal for any 𝑇 . Such pulses can be solutions
to Slepian’s problem, which asks what pulse minimizes time--bandwidth for a fixed-
length message when a given fraction of the pulse energy is allowed to escape the
 ×  box. These pulses are taken up in Chapter 7.

The Shannon Limit. A useful Shannon limit is less complicated to estimate for
subcarrier FTN than it is for time FTN. The subcarriers more or less fill a time-
-bandwidth block of size 𝜙𝐾∕𝑇 Hz and 𝜏𝑁𝑇 seconds with uniform power, and
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FIGURE 5.3 I and Q signals in time--frequency FTN with three subcarriers (𝐼𝐼). As Figure
5.2 but 𝜙 = 0.3, 𝜏 = 1.

spectral side lobes play little role when 𝐾 and 𝑁 are not small. The Gaussian-
noise capacity of the block is approximately 𝐶sq in Section 3.2 per Hz-s. From the
discussion there and Eq. (3.6), this is log2(1 + 2𝐸cu∕𝑁0) bits/Hz-s, where 𝐸cu is the
available energy per channel use (dimension) in the capacity calculation (note that
Eq. (3.6) applies at both passband and baseband).

With these assumptions in place, we can calculate 𝐸cu and the transmission rate
in bits/Hz-s implied by the coding and modulation parameters. The energy expended
by the modulator is 2𝑁𝐾𝐸𝑠 J per block, and there are about 2𝜙𝜏𝐾𝑁 channel uses
in the block. Therefore

𝐸cu =
2𝐾𝑁𝐸𝑠

2𝜙𝜏𝐾𝑁
= 𝐸𝑠∕𝜙𝜏 = 𝐸𝑏𝑟cc∕𝜙𝜏, or (5.4)

𝐸𝑏 = 𝜙𝜏𝐸cu∕𝑟cc = 𝐸𝑠∕𝑟cc, (5.5)

where 𝐸𝑏 as always is the databit energy. Here for future use is the coding rate 𝑟cc
from Chapter 4 applied to the modulator, in databits/𝑀-ary modulator symbol; if
there is no coding, 𝑟cc = log2 𝑀 .
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FIGURE 5.4 I andQ signals in time--frequency FTNwith three subcarriers (𝐼𝐼𝐼). As Figure
5.2 but 𝜙 = 0.6, 𝜏 = 0.5.

To find the Shannon limit, we require the rate at which the system works, in
bits/Hz-s. Find first that the databits per block are 2𝐾𝑁𝑟cc. Then the capacity per Hz
and second over the block needs to be

2𝐾𝑁𝑟cc bits

𝜙𝜏𝐾𝑁 Hz-s
= 2𝑟cc∕𝜙𝜏 bits/Hz-s. (5.6)

This is the time-only FTN bit density in Eq. (4.2), with an added factor 1∕𝜙 for
the frequency squeeze. The last step is to apply the procedures in Section 3.2 and
Appendix 3A to calculate the Shannon limit relation between BER and the databit
𝐸𝑏∕𝑁0. The needed capacity at BER=0 is 2𝑟cc∕𝜙𝜏 bits/Hz-s and Program 3A.4
computes the relation, with the input rate set to 2𝑟cc∕𝜙𝜏.

Example 5.1 (Shannon Limit When 𝜙𝜏∕𝑟cc = 0.5)
In Section 5.2, it will develop that the Mazo limit may lie as low as 𝜙𝜏 = 0.5
for uncoded time--frequency FTN. This value, which corresponds to 4 bits/Hz-s,
allows some interesting comparisons. Applying Program 3A.4 with rate = 0.5, one
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estimates the Shannon limit to lie at 𝐸𝑏∕𝑁0 ≈ 5.7 dB when the databit BER ≈ 10−5.
The BER of the physical FTN system at the Mazo limit is ≈ 𝐴𝑄(

√
2𝐸𝑏∕𝑁0); taking

𝐴 ≈ 2 yields BER 10−5 at about 9.8 dB, about 4 dB from the limit. Simple 4PAM
modulation works in the same 4 bits/Hz-s and requires 13.7 dB. Thus the uncoded
FTN system gains about 4 dB in energy over 4PAM. A comparison can be made
to Figure 4.15, which shows time-only uncoded FTN with 𝜏 = 1∕2 and the same
4 bits/Hz-s; this gains 2 dB over 4PAM. The added complexity of time--frequency
FTN thus gains an additional 2 dB.

Amuchmore difficult capacity calculation is to include the details of the signaling,
rather than just the overall PSD shape as we have done here. A start on that calculation
appears in Reference 22.

5.2 DISTANCES

Because there are I andQ symbols, dimensions of time and frequency, and phase off-
sets to contend with, time--frequency FTN distances are a challenge.While distances-
--hence asymptotic error performance---can be found, there are a great many design
combinations, and it is difficult to know that the best one has been discovered. In what
follows, we first set up the distance problem and then find optimal signal minimum
distances and Mazo limits under certain design strategies. These are a guarantee that
signal sets at least this good exist, but better ones may yet be discovered.

5.2.1 Finding Distances

In principle, normalized square distance between two signals is given by Eq. (5.3), in
which 𝐼(𝑡) and 𝑄(𝑡) are given by Eq. (5.2). The symbols 𝑢 in Eq. (5.2) are replaced
wherever they appear by symbol differences Δ𝑢, and these are of two types: Δ𝑢

𝐼

and Δ𝑢
𝑄. The set of differences defines an error difference event in the style of

Section 2.5.1, but now I and Q and subcarriers as well as the event’s start time play
a role. In what follows, we describe events by two 𝐾

′ ×𝑁
′ matrices, 𝚫𝐼 for the

in-phase symbol differences and 𝚫𝑄 for the quadrature differences. Symbols over𝐾 ′

subcarriers and 𝑁
′ intervals affect the event and all other differences are zero.

As an example, consider 𝜙 = 0.8, 𝜏 = 0.7 and a 30% root RC pulse, with error
event differences

𝚫𝐼 =
[ 2 −2 0
−2 2 0

]
, 𝚫𝑄 =

[0 2 −2
0 2 −2

]
. (5.7)

If all subcarriers start from phase 0 and time 0, the outcome is normalized square
distance 6.96. However, one soon notices that the outcome depends on the start time
of the event. For example, starting at time 1.25 symbol intervals leads to distance
almost 20, and starting at 0.34 yields only ≈ 1.13. The underlying problem here is
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FIGURE 5.5 Square distance versus start time in symbol times modulo 1∕𝜙𝜏 for event Eq.
(5.7). Parameters are 𝜙 = 0.8, 𝜏 = 0.7. Distance can take only 25 values.

that the symbols are not necessarily synchronized with the subcarrier phases, and
there is a global best and worst time for an error event to start.

The problem is shown in more detail in Figure 5.5. The x-axis is the event start
in symbol times. The worst case square distance occurs at ≈ 0.34 and a pattern
repeats each 1∕𝜙𝜏 symbols. The pattern occurs because from Eq. (5.2) a time delay
of 𝑡𝑜 = 𝓁𝑇 ∕𝜙, 𝓁 an integer, will lead to the same sin and cos phases modulo 2𝜋.
In accelerated symbol times (see Eq. (2.50)), this is 𝑡𝑜∕𝜏𝑇 = 1∕𝜙𝜏 symbols, taking
the smallest 𝓁. In the example, 1∕𝜙𝜏 = 1∕.56 ≈ 1.79. When only two subcarriers
contribute to an error event, the pattern is in fact a sine for any 𝜙 and 𝜏, which means
that the entire pattern can be constructed from three points.4

When there is no control of phase offsets among the subcarriers, any distance
in the figure can occur, and the worst case sets the receiver asymptotic error rate.
Although that case is unlikely, it is clear that the scenario should be avoided. When
𝜙𝜏 = 𝑖∕𝑗, 𝑖 and 𝑗 positive integers without a common factor, the system returns to
its time-0 phase and the distances that occur are only those at multiples of (1∕𝜙𝜏)∕𝑗.
This is called synchronous time--frequency FTN. Now the worst-case distance is the
minimum of only the 𝑗 allowed distances. In Figure 5.5, 𝜙𝜏 = 0.56 = 14∕25 and
there are 25 points (shown by circles, when phase is 0 at time 0). The picture repeats
in 25 steps of 1/14 symbol.

If 𝑖 and 𝑗 are small, it should be possible to avoid a poor global minimum. Some
experiment shows that 𝑗 = 2 or 3 are good choices.

At least two other phase and delay tactics can be applied. First, a pattern of pulse
delays 𝛿𝑘 can be implemented across the subcarrier streams. Each can be delayed in
a step pattern, for example, 𝛿𝑘 = 0.1𝑘 for stream 𝑘 = 0, 1, 2,…; or delays can cycle,
for example, 0, 0.5, 0, 0.5,…. Second, subcarrier delays can be applied, for example,
phase steps of size 2𝜋𝑘𝜖. Combinations of all of these can be applied. To a large
degree, they accomplish the same aim, to avoid placing the strong part of a pulse at
a weak spot in a subcarrier.

4A proof of the sine shape by F. Rusek appears in Reference 4.
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FIGURE 5.6 Trajectories in 𝜏--𝜙 space for which 𝑑
2
min = 2, for the three event families in Eq.

(5.8). 30% root RC time--frequency FTN. Dotted lines show contours of constant 𝜙𝜏 product.

5.2.2 Minimum Distances and the Mazo Limit

We turn now to finding the minimum-distant error event. Because there are I and Q
difference symbols, the search effort is the square of time-only FTN. As well, there
are the many FTN variants to consider. Finding a good system is thus a complex
undertaking, but a number of simplifications also exist.

The end result of this subsection is estimation of the binary Mazo limit, that is, the
location of 𝜙𝜏 products leading to square distance 2, and in particular, the smallest
such product. Nonbinary systems and systems with 𝑑

2
min < 2 are promising subjects

for future work. Some individual tests of the latter appear later in Section 5.3.
The Mazo limit is now a boundary in 𝜙--𝜏 space. Figures 5.6 and 5.7 are both

plots over this space. Figure 5.6 shows the 𝑑2
min = 2 achieving trajectories of the three

individual error events

1 ∶ 𝚫𝐼 =
⎡⎢⎢⎢⎣

−2 0
2 −2
0 −2

⎤⎥⎥⎥⎦
, 𝚫𝑄 =

⎡⎢⎢⎢⎣

0 −2
2 −2
−2 0

⎤⎥⎥⎥⎦
,

2 ∶ 𝚫𝐼 =
[−2 0 2

2 −2 0

]
, 𝚫𝑄 =

[0 −2 0
0 −2 2

]
,

3 ∶ 𝚫𝐼 =
[−2 2 0

2 −2 0

]
, 𝚫𝑄 =

[0 −2 2
0 −2 2

]
. (5.8)

Each is obtained by finding the subcarrier spacing 𝜙 yielding 𝑑
2
min = 2 for each of a

set of time accelerations 𝜏. The base pulse is 30% root RC. Interesting properties can
be observed in the calculations.
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• Many difference error events lead to an identical outcome, because of symme-
tries in time and phase. The set of these is called an error family. The events
1, 2, 3 are each the “head” of a family. It is only necessary to calculate for
one such head.

• For each event family, there can exist a 𝜙 value below which no 𝜏 leads to
𝑑
2
min = 2, or a 𝜏 below which no 𝜙 leads to 2; the subcarrier spacing or time

acceleration alone precludes 2. These points are indicated by boxes in Figure
5.6. For an error event with box coordinates (𝜏𝑜, 𝜙𝑜), no 𝜏 > 𝜏𝑜 allows 2 when
𝜙 < 𝜙𝑜, or the transposed statement, or both. There is a 𝑑

2
min associated with

these (𝜙, 𝜏), but it is less than 2.

• When sufficiently many families have been plotted, the Mazo limit points are
the largest 𝜙 for a given 𝜏 or the largest 𝜏 for a given 𝜙, unless these conflict, in
which case the point with the largest product is taken.

• Usually, but not always, (𝜏𝑜, 𝜙𝑜) that achieves 𝑑
2
min = 2 implies that 𝜙𝑜 and

𝜏 > 𝜏𝑜 satisfy 𝑑
2
min ≥ 2, and similarly for 𝜏𝑜 and 𝜙 > 𝜙𝑜.

Underlying these comments is the fact that there is a kind of distance continuity
from point to point in the plane: The 𝑑min-causing event at a (𝜏, 𝜙) point will lead to
nearly the same 𝑑min in a region around the point. The distance of other events will
change some, but not fall below this 𝑑min. With enough displacement of (𝜙, 𝜏), a new
event leads to a new 𝑑min. Finding 𝑑min can be viewed as tracking a small number of
critical events.

Plotting the Mazo limit is thus a matter of tracking a few event family heads.
Most often the families are those that play a role with other FTN parameter values as
well. One can track through points in the plane a family thought to lead to the limit,
and occasionally verify that assumption with an extensive search over many times
and frequencies; if the present family no longer leads to 𝑑min a new family has been
discovered. The final result will be a good estimate of the limit location, even if the
precise (𝜏, 𝜙) are not found. Some advanced distance-finding algorithms appear in
Reference 4. Events that extend over many symbols and subcarriers have a smaller
multiplicity factor and make progressively less contribution to the receiver error rate.
The total effect of such extreme events can only be measured by receiver tests.

Figure 5.7 shows the approximateMazo limit location for uncoded time--frequency
FTN based on 10% and 30% root RC pulses. The dashed lines represent nonsyn-
chronous systems with no imposed pattern of phase or time offsets; the distances
are the worst case of curves like Figure 5.5. Typically three to five event families
determine the whole Mazo line. The figure was confirmed by events out to 4 × 7
and 7 × 4 subcarriers × symbols, but the contributing critical events were smaller,
typically 3 × 3, 2 × 4, or 4 × 2. The solid curve represents 10% root RC for which
the subcarrier pulse trains are delayed 0, 0.5, 0, 0.5, 0,… symbol intervals.

The 30% root RC pulse achieves 𝜙𝜏 nonsynchronous products as low as 0.6, with
𝜙 ≈ 0.67 and 𝜏 ≈ 0.88. This can be compared to the time-onlyMazo limit, which lies
at 𝜏 = 0.703 and the frequency-only limit, which is ≥ 0.64. The 10% pulse achieves
𝜙𝜏 = 0.55, and nearly 0.53 with the delay pattern; such patterns improve the 30%
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FIGURE 5.7 Three estimated Mazo limit positions in 𝜙--𝜏 space for uncoded FTN: 30%
and 10% root RC pulse nonsynchronous (dashed), and 10% FTN with pulse trains delayed
0, 0.5, 0, 0.5, ,… (solid line). (Data taken from Reference 4 and private sources.)

case similarly. Synchronous 10% systems have been reported with 𝜙𝜏 as low as 1/2.
This is a doubling in bits/Hz-s compared toOFDM,without loss of error performance.

5.3 ALTERNATIVE METHODS AND IMPLEMENTATIONS

Receiver performance is not as well researched for classical time--frequency FTN as
the time-only case, but there are nonetheless interesting methods to report and even
working chips. The design principles are the same: An iterative design with several
processors is often required, and if convergence occurs, coded FTN achieves the
convolutional CC line defined in Section 4.1.2. The CC line is reached even when
(𝜙, 𝜏) lie far below the Mazo limit, but convergence occurs at progressively higher
𝐸𝑏∕𝑁0 as the 𝜙𝜏 product falls. Most of the methods in this section use successive
interference cancellation (SIC), which was introduced in Section 2.2.2. All are binary
and the majority are not coded, in which case they usually seek to reach the above-
Mazo-limit BER 𝑄(

√
2𝐸𝑏∕𝑁0).

Receiver design becomes much more challenging when the 𝜙𝜏 product is small.
Practical designs have assumed that either 𝜙 or 𝜏 are in the range 0.9--1 so that
respectively CCI or ISI can almost be ignored. When both are smaller than 0.8 or so,
interference removal becomes strongly two dimensional andmuchmore difficult, and
designs for coded FTNmust iterate in some sense among three ormore processors. For
example, the first implementation presented below includes a time-BCJR SIC, and a
convolutional decoder BCJR. The two-dimensional interference problem resembles
two-dimensional equalization for magnetic recording, and this field provides some
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FIGURE 5.8 SIC-based time--frequency coded FTN receiver performance. (7,5) convolu-
tional coding. 1000 blocks, length 10k. 30% root RC pulse. (Data adapted from Reference
5.)

inspiration. Here too one would like to employ an added coding dimension. Some
relevant papers in magnetic recording are References 6--9.

An ISI-BCJR -- FFT Combination. Figure 5.8 shows the performance of a receiver
devised by Rusek [4,5] for coded time--frequency FTN. Two (𝜙, 𝜏) combinations are
shown, (1.17, 0.46), which has product 0.54 and 1.85 bits/Hz-s, and (0.568, 0.88),
which has product 0.5 and 2 bits/Hz-s, both with no time or phase offsets or subcarrier
synchrony. The iterative receiver is an outgrowth from [10] and has several features
that have not appeared in the book. It breaks the modulation symbols in a given set
of iterations into two groups, one,dec, that it is estimating, andint that it treats as
interference. A natural strategy is to focus the attack on whichever of the ISI or ICI
is strongest, and to treat the other as noise. Thus, if ICI from neighboring subcarriers
is relatively minor,dec includes only symbols along one subcarrier. A soft estimate
of the interference from the int symbols is subtracted from the received signal,
likelihoods of the time symbols in dec are estimated, and the entire procedure
is repeated for each subcarrier. A second new feature is that this last estimate is
performed by an ISI-BCJR that operates with colored noise (see Section 2.2.2). The
colored noise comes about, among other reasons, because there are filters matched to
nonorthogonal modulation pulses ℎ(𝑡), which produce colored noise. The ISI-BCJR
is a limited-trellis model with memory 5 (Section 4.2.1).
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The outcome of this symbol estimation feeds the usual CC-BCJR, which decodes
the (7,5) rate 1/2 convolutional code. The receiver limits itself to seven global itera-
tions in all cases, and its error performance stabilizes at about the values shown for
7 or more subcarriers, a feature not present in some of the methods that follow. This
performance is comparable to the time-only BER shown in Figure 4.14. The figure’s
parameter combinations lie below the Mazo limit in Figure 5.6, yet the performance
reaches the CC line (were they above the limit it would mean in theory that only
1--2 ISI-BCJR iterations were needed). Rusek shows that CC line performance can
actually be reached with more extreme (𝜙, 𝜏), as low as 𝜙𝜏 = 0.45with the (7,5) cod-
ing and 0.43 with (74,54). Future research may show that even lower products may
be reached with more complex detection.5 The Shannon limit for these bit densities
can be estimated from Figure 3.4, the dashed “square PSD” curves; at BER 10−4 the
plots are 2--3 dB from the limit. We can conclude from the work that attractive FTN
schemes are available when the communication scenario favors stacked subcarriers,
but high-performance receivers are not yet explored.

An ISI-BCJR--FFT Combination and an FTN Chip. Figure 5.10 shows coded FTN
results from the Ph.D. thesis of Dasalukunte [12,13]. The receiver is again SIC-based,
but it contains several innovations. The design follows the lines of OFDM as much
as possible: The transmitter uses an inverse fast Fourier transform (IFFT) and the
receiver an FFT; the work primarily uses the usual 𝜙 in OFDM, namely 𝜙 = 1,
together with 𝜏 < 1; the time-FTN causes ISI in the receiver FFT streams, which
are SIC-equalized. The FTN pulse ℎ(𝑡) is not a root RC, but is instead the IOTA
pulse6 that is preferred in OFDM. The object is to explore FTN as an enhancement
for OFDM.

Another advance is construction and test of a receiver chip in 65 nm CMOS,
apparently the first FTN chip to be implemented. The IOTA pulse implementation
and the many details of the chip development are traced in the thesis and a following
book [12]. Figure 5.9 is a die photograph of the receiver chip. Figure 5.10 shows
the measured chip performance when 𝜏 = 1 (traditional OFDM) and 0.6. The chip
supply voltage ranges over 0.7--1.2 V, depending on the desired clock speed. At the
maximum 100MHz speed, the databit throughput is 1 Mb/s with power consumption
9.6 mW.

We turn next to methods that have developed in parallel with classical time--
frequency FTN.

The SEFDM Method. The spectrally efficient frequency-division multiplex
(SEFDM) family of methods was introduced in its present form by Darwazeh and
coworkers in 2009 [17]. Some further papers are References 18--20 and a hardware

5But threshold likely occurs at higher 𝐸𝑏∕𝑁0 with smaller products; this is visible in Figure 5.8.
6IOTA = isotropic orthogonal transform algorithm. See Chapter 7. The pulse is a compromise between the
Gaussian pulse and orthogonality, which achieves the time and frequency compactness of a nearly Gauss
shape in an orthogonal form. See Reference 14--16.
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FIGURE 5.9 An FTN chip layout, fabricated by Dasalukunte. (Reproduced by permission
of D. Dasalukunte, Intel Corp.)

FIGURE 5.10 An FTN chip: SIC-based coded FTN receiver performance for FTN based
on OFDM. (7,5) convolutional coding. IOTA pulse. (Data adapted from Reference 12.)

paper is Reference 21. These papers extend the FFT and SIC ideas in one way or
another to form the receiver, and they are 4QAM frequency-only FTN. Reference
17 is a Gram-Schmidt--sphere detector design, without coding; BER performance
at the theoretical 𝑄(

√
2𝐸𝑏∕𝑁0) is demonstrated with frequency squeeze down to
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𝜙 = 0.7. Reference 19 is an FFT--SIC design with full performance to 𝜙 = 0.67;
a full exposition of the FFT method is given. Reference 20 explores FFT---sphere
decoder and FFT---ISI-BCJR turbo designs; the second is tested over a frequency-
and time-dispersive channel.

The GFDMMethod. Generalized frequency division multiplexing (GFDM)was pro-
posed by Fettweis et al. [23]. This method does not make explicit use of subcarrier
squeezing, but the transmission base pulse is mildly nonorthogonal so that some of
the receiver techniques of FTN are needed.

Frequency-Domain Methods. Equalization of interference is performed in the time
domain in this book, but interesting methods are available that perform it in the
frequency domain, especially when subcarrier transmission is employed. A recent
paper that applies such methods to FTN, coupled with an M-BCJR-like approach, is
Reference 24. The paper also treats compensation of time and frequency dispersion
in the channel.

LDPC and Two Staggered Signal Sets. Barbieri, Fertonani, and Colavolpe in Refer-
ence 22 propose a time--frequency FTN system, where the 𝜙𝜏-compressed reference
framework of pulses in the style of Figure 5.1 is split into two staggered lattices. Each
separately represents either an array of orthogonal signals or at least ones that are
more nearly orthogonal. Each is treated as interference to the other, and an iterative
soft SIC scheme removes the interference. There is no explicit FFT.

The system is tested only with binary symbols and at a low 1--2 bits/Hz-s, but
there are a number of innovations. A Gauss pulse is evaluated, since this shape
simultaneously minimizes time and frequency interference, even though it is not
time-orthogonal (more about the Gauss pulse in Chapter 7). The setup is explicitly
4QAM, although specifically quadrature issues are not addressed. Finally, coded
FTN tests are performed with LDPC (low-density parity check) codes, a popular
method that approaches closely to the Shannon limit when employed with 2PAM
or 4QAM modulation, but which has significant complexity. LDPC replaces the
convolutional coding that dominates earlier in the book, and there is good reason to
suspect that it will perform better. It is, of course, interesting what happens when
LDPC is combined with FTN whose 𝜙𝜏 is significantly less than 1. At LDPC rate
1/2, essentially orthogonal transmission and 1 bit/Hz-s, the authors show BERs that
lie only 1.2 dB from the Shannon limit7 at BER 10−5. When 𝜙𝜏 drops to around 0.8,
performance is 2--3 dB from the limit.

The question remains open how much LDPC codes need redesign for FTN, or for
that matter, large-alphabet modulation. Just as convolutional codes need redesign,
so also will LDPC codes. A group at EUROSAT in Paris found evidence in 2013
that major gains are available [25,26]. A recent paper with many references that

7The traditional Nyquist capacity 𝐶sq in Section 3.2 is employed here but 𝐶sq and 𝐶PSD are very close at
this low bit density. The relevant limit value at low BER is the point (𝑅𝑎𝑡𝑒, 𝐸𝑏∕𝑁0) = (1, 1) in Figure 3.2.
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focuses on the combination of nonbinary LDPC with 16QAM and 64QAM simple
modulation is Zhu et al. [27]. Schemes are reported in the 3--4 bits/Hz-s range that
lie a few dB from the Nyquist--Shannon limit.

5.4 CONCLUSIONS

In a dual method to time FTN, subcarriers can be squeezed together in frequency,
with a squeeze factor 𝜙.

Finding distances is more challenging because of I and Q signals and phase
relations among the subcarriers.

The Mazo limit becomes two-dimensional in 𝜏 and 𝜙. As much as twice the
bits/Hz-s can be achieved without error rate loss.

Many frequency squeeze variants have been proposed.Many are related toOFDM.
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6
CODED MODULATION
PERFORMANCE

INTRODUCTION

It is important to compare FTN-style schemes to competing methods. Chapter 6
reviews several older coded modulations that achieve moderate bit densities in the
range 2--4 bits/Hz-s. In the time of their development---the period 1975--1990---they
were the most bandwidth efficient coding methods available, and the insight that
coding could reduce energy without bandwidth expansion arose with them. Although
these methods will not achieve the bit densities seen in the earlier chapters, they reach
good energy efficiency for their densities and their receivers are usually simpler. They
are thus still valuable.

A coded modulation is a scheme that encodes actual signal amplitudes and phases,
rather than abstract symbol streams. Section 6.1 explores set-partition codes. These
encode sequences of QAM carrier modulation symbols (QAM is introduced in Chap-
ter 2). The set partition idea means that the QAM constellation is first broken into
subsets. An encoder chooses which one; some databits select the subset and some
are sent in the chosen subset without further coding. This innovation is important be-
cause it simplifies the coding and it gives a means to achieve higher bit densities. The
method is often called TCM (trellis-coded modulation), but this term embraces older
methods as well, including simple concatenation of a convolutional or other trellis
code with QAM modulation. This direct approach has greater potential in theory but
has seen less success in the narrowband scenario.

Bandwidth Efficient Coding, First Edition. John B. Anderson.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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Section 6.2 explores CPM (continuous phase modulation) codes. Also based on
carrier modulation, CPM is an older method that adds a far reaching constraint: the
transmitted signal has a constant envelope. The data is therefore sent only in the
phase of the signals, and CPM adds the constraint that the phase must be continuous.
Originally this was to reduce spectral sidelobes, but by adding further continuity
constraints CPM can be attractive at quite narrow bandwidths however measured.
Like FTN, CPM can be coded or uncoded. A more natural bandwidth measure for
CPM is 99% or higher power-in-band (PIB), and the section introduces how to
convert signal bit densities from one bandwidth criterion to another. The modulator
pulses in FTN and set-partition coding have almost no spectral sidelobes, and the
half power criterion is more useful for them, but separate design of sidelobes is an
important part of CPM signaling.

6.1 SET-PARTITION CODING

The set partition concept divides a constellation of signal points into disjoint subsets.
At each symbol interval, a subset is selected by a scheme such as a convolutional
encoder. Some databits drive the selection and others are sent via the choice of a
point in the subset. The idea of sequencing through subsets under the direction of a
convolutional encoder was formally published by Ungerboeck [7] in 1982, although
the paper was delayed and the idea appeared in earlier papers with attribution to
Ungerboeck. Much research occurred in the 1980s and is summarized in the survey
paper [8], and the textbooks by Proakis [3], Biglieri et al. [4], Schlegel and Perez
[5,6], and in Reference 2, among other places.

This code-driven partition concept found extensive practical use, notably in
telephone-line modems. The idea applies to lattices, PAM, and phase-shift key-
ing (PSK) constellations, but almost all implementations work with straightforward
QAM or PSK constellations. We de-emphasize the PSK schemes because they do
not lend themselves to bandwidth efficient coding.

6.1.1 Set-Partition Basics

QAM itself is simple linear modulation. It requires the in-phase and quadrature signal
description first given in Chapter 5, but without time or frequency FTN. This is

√
2𝐸𝑠

[
𝐼(𝑡) cos 2𝜋𝑓𝑐 −𝑄(𝑡) sin 2𝜋𝑓𝑐

]
,

where

𝐼(𝑡) = 𝐶0

𝑁−1∑
𝑛=0

𝑢
𝐼

𝑛
ℎ(𝑡 − 𝑛𝑇 )
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and

𝑄(𝑡) = 𝐶0

𝑁−1∑
𝑛=0

𝑢
𝑄

𝑛
ℎ(𝑡 − 𝑛𝑇 ), (6.1)

in which ℎ(𝑡) is a unit-energy 𝑇 -orthogonal pulse, 𝑇 is the symbol time, the
2-tuples (𝑢𝐼

𝑛
, 𝑢
𝑄

𝑛 ) are𝑀-ary valued, and 𝐶0 is a normalizing constant that satisfies

𝐶0 =
[
(1∕𝑀)

∑
𝑢𝐼 ,𝑢𝑄

[(𝑢𝐼 )2 + (𝑢𝑄)2]
]−1∕2

. (6.2)

Because of 𝐶0, the expected value of ∫ [𝐼2(𝑡) +𝑄2(𝑡)] d𝑡 is always 1 and 𝐸𝑠 is the
QAM symbol average energy. Each QAM symbol is a point in a two-dimensional
constellation formed from independent I and Q dimensions. For the only time in the
book,𝑀 counts the values of a 2-tuple. The set of all 2-tuples that can appear in the
codewords is called themaster constellation. By convention, 𝑢𝐼 and 𝑢𝑄 take values in
the usual PAM alphabet {±1,±3,… ,±𝜇}, but all 𝜇2 possibilities may not be present
in the master constellation. If they are, the constellation is rectangular QAM, and the
MQAM transmission can then be viewed as two independent 𝜇PAM transmissions

of the type in the earlier chapters, where 𝜇 =
√
𝑀 .

The normalized Euclidean square distance between two MQAM signals 𝑠1(𝑡) and
𝑠2(𝑡) remains the form in Eq. (2.8), (1∕2𝐸𝑏) ∫ [𝑠1(𝑡) − 𝑠2(𝑡)]2 d𝑡, which for large
carrier frequency 𝑓𝑐 may be written as

log2𝑀
2 ∫ [(Δ𝐼(𝑡))2 + (Δ𝑄(𝑡))2] d𝑡, (6.3)

which may in turn be written

log2𝑀
2

𝐶
2
0

∑
𝑛

[(Δ𝑢𝐼
𝑛
)2 + (Δ𝑢𝑄

𝑛
)2]. (6.4)

As in previous chapters, the notation Δ𝑋 means the difference between two 𝑋.
Design of a set-partition code comprises three parts: Choosing the master con-

stellation, forming the subsets, and designing the subset selector mechanism. Some
databits drive the subset selection and the rest are carried in the chosen subset. Almost
all QAM-based practical codes are based on a rectangular QAM master constella-
tion, or a subset of one, which contains 𝑀𝑐 = 2𝜅 points, 𝜅 an integer. Rounding
and compacting the QAM constellation, replacing it with a lattice, or extending the
constellation over more than two dimensions can reduce 𝐸𝑏∕𝑁0 up to 1 dB, but
complexity rises steeply. These measures are seldom employed in practice and will
not be discussed.

An effective method to form the subsets was given by Ungerboeck in Reference 7
and is illustrated in Figure 6.1 for 16QAM. Beginning with the master constellation,
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FIGURE6.1 Set partitioning by theUngerboeck rules, using 16QAMas an example. Squares
indicate subset points. Each row has half the subset points. The “0” and “1” symbols are the
subset selector outputs.

each subset is split to form two; effectively, each two children have alternate points
from their mother. It is clear from the figure that 𝐽 rows of splits produces 2𝐽 subsets,
each with 𝑀𝑐∕2𝐽 points. Some examination will show that the square minimum
distance in the subsets doubles each row, to become 2𝐽 times the distance in the
master constellation. The first partition does not lead to a useful result, so we have
that 1 < 𝐽 < log2𝑀𝑐 .

For a code that carries 𝑅 bits per two dimensions, 𝑅 − 𝑏 bits are carried in
the subset and the remaining 𝑏 bits select which subset it is. Many methods can
be used, but virtually all set-partition codes utilize a rate 𝑏∕𝑐 binary convolutional
encoder. The parameter 𝑐 must satisfy𝑅 − 𝑏 + 𝑐 = log2𝑀𝑐 . Figure 6.2 shows the six
configurations that are available when𝑀𝑐 = 32.1 A similar chart with log2𝑀𝑐 − 2
levels exists for each𝑀𝑐 that is a power of 2. There is one column for each databit rate
𝑅. Down each column the selector rate grows, the convolutional code becomes more
complex, and there are more subsets with fewer points and higher minimum distance.
The rightmost column, with 𝑅 = log2𝑀𝑐 − 1 bits per two dimensions, generally
leads to the most satisfactory codes. Furthermore, for any 𝑀𝑐 , the convolutional
codes there are the familiar ones with rates 1∕2, 2∕3, 3∕4,… .

The 𝑑min of a set partition code is the minimum of two distances, the minimum
distance of a subset, called 𝑑ss, and the intersubset minimum distance, the worst case

1The standard 32-point constellation, called 32 Cross, is formed from rectangular 36QAM by removing
one point from each corner. Similarly, 128 Cross is formed from 144QAM by removing 4 points from
each corner. Since 32 and 128 lack integer square roots, these cannot be realized by the product of two
PAMs.
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FIGURE 6.2 Six possible configurations for set-partition coding that is based on a 32-point
master constellation. Parameter notation is as shown in the center.

between two sequences that start with different subsets. Each partitioning of subsets
doubles 𝑑2ss; for example, 𝑑2ss down the right-hand column of Figure 6.2 is 1.6,3.2, and
6.4. With a sufficiently complex subset selector, the intersubset square distance can
always be driven larger than 𝑑ss, so that the game of code design is to set a selector
complexity and split subsets until 𝑑ss exceeds the selector capability. Good selectors
for one𝑀𝑐 tend to be good for a range of𝑀𝑐 .

A final complication is that the mapping from the log2𝑀𝑐 bits to QAM points
needs to be optimized. The search for a good code thus comprises finding a good
master constellation, subset configuration, selector, and mapping. Outcomes of this
complex search are discussed in Reference 2 and references therein.

In the definitions of Chapter 1, the mapping from𝑅 bits to the master constellation
is the𝑀𝑐-ary modulator, and a set-partition code is a true code since it works to select
some but not all of the possible modulator outputs. It is clear that the performance
potential grows as the subset size reduces. Conversely, it is also clear that the set
partition idea limits performance, to that obtainable from 𝑑ss. To remove the limit,
one must drop the idea of subsets and feed all databits to an “encoder” block.
This is simply a convolutional or other encoded QAM with a mapper. Nonetheless,
set partitioning has solid advantages. It transfers some of the coding effort to the
fixed subset arrangement, rather than placing it all, for example, on complicated
convolutional coding. It also provides an avenue to reach very high bit density: Keep
the convolutional code fixed and simply increase all the point sets.
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Virtually all receivers for set-partition codes employ an adaptation of the Viterbi
algorithm.

Spectrum and Bit Density. As with FTN coding, the baseband spectrum of a set-
partition code is simply the power spectrum of the modulation pulse ℎ(𝑡), subject to
the usual assumption that the coding does not correlate the QAM symbols. Unlike
FTN and the CPM in the next section, the only way to reduce spectrum is to increase
the modulator alphabet. QAM is a passband modulation, so that the positive-Hz oc-
cupied spectrum corresponds to the left and right sides of the baseband spectrum,
and this fact divides the databits per Hz-s by 2 (alternately, the I and Q dimen-
sions must be accounted for). Using the half-power criterion, the databit density
becomes

𝑅

2𝑇𝐵3
= 1

2𝑇𝑏𝐵3
bits/Hz-s, (6.5)

where 𝑅 databits are carried per two-dimensional QAM symbol, 𝑇 is the symbol
time, 𝑇𝑏 is the bit time, and 𝐵3 is the baseband positive 3 dB down bandwidth of ℎ(𝑡).
As always, the last is 1∕2𝑇 Hz for orthogonal pulses, which further simplifies the bit
density to 𝑅∕(2𝑇 ∕2𝑇 ) = 𝑅 bits/Hz-s.

The ℎ(𝑡) in applications have rapid spectral rolloff and so we continue to use
half-power bandwidth as a bandwidth criterion. For the 30% root RC pulse, the
99% power in band frequency is 0.567∕𝑇 , which is 13% larger than 𝐵3. With the
99% criterion, therefore, bit densities are 88% of their values with the half-power
criterion.

6.1.2 Shannon Limit and Coding Performance

The ultimate Shannon limit for set-partition codes---or for methods without
partitioning---stems from the PSD capacity 𝐶psd found in Section 3.2. This limit
appears on the performance plots to come. Several more constrained Shannon limits
have received study as well, and are interesting because they give insight into the
cost of restrictions on the coding design.

The traditional square-spectrum capacity 𝐶sq leads to the Shannon limit for
schemes based on orthogonal modulation pulses, which is the case in set-partition
coding. This limit also appears on the performance plots. It can make schemes seem
several dB closer to Shannon performance than they really are. Another approach to
capacity calculation is illustrated in Figure 3.1: Capacity can be computed for codes
constrained to the QAM master constellation points, with or without a requirement
for uniform probabilities on the points. The figure shows the values applicable to
16QAM (i.e., two 4PAMs) and 64QAM (two 8PAMs) with no uniform probability
requirement, with comparison to the square-spectrum capacity. There is some loss
of capacity evident, and in particular, an 𝑀𝑐-point QAM constellation cannot have
capacity larger than log2𝑀𝑐 bits per two dimensions.
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FIGURE 6.3 Rate 3 bits/Hz-s set-partition coding, compared to binary FTN with 𝜏 = 1∕3.
The set-partition scheme has rate 2/3 memory 6 subset selection, 8 2-point subsets, 16QAM
master constellation. Actual decoder test data adapted from Zhang [9]. Shannon limits at left;
optimal 8-point QAM simple modulation performance at right.

To summarize, the capacity to which set-partition codes approach is reduced by
pulse orthogonality, the QAMmodulation, and the assumption of uniform points. The
effect is to pull to the right the Shannon limit to the BER versus 𝐸𝑏∕𝑁0 performance
of the coding. The most significant source of loss is pulse orthogonality.

Error Performances. What follows is the BER performance of two set-partition
codes, one at the moderate rate 3 databits/Hz-s and one at the high rate 6. Both
work at rate log2𝑀𝑐 − 1 databits per Hz-s and use complicated rate 2/3 recursive
systematic convolutional subset selectors with many states. These features are chosen
so that the codes represent the approximate best performance available. Substituting
rate 1/2 selectors for the rate 2/3 moves error performance about 3 dB to the right, 3
dB further from the Shannon limit.

Figure 6.3 shows actual test results for a 16QAM master constellation, 8 sub-
sets of 2 points each, and the 64-state rate 2/3 recursive systematic selector
(𝒉0,𝒉1,𝒉2) = (101, 016, 064).2 This configuration represents the most complex and
highest performing set-partition code at 3 bits/Hz-s. On the left are the PSD and
orthogonal-pulse (“Nyq.”) Shannon limits, and on the right is the of the optimal

2The right-justified observer-form notation here for a rate 2/3 recursive systematic encoder is standard in
the field. See Reference 2, p. 153, [5], Chapter 3, or Reference 6, Chapter 3.
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FIGURE 6.4 Rate 6 bits/Hz-s set-partition coding. Rate 2/3 memory 9 subset selection,
8 16-point subsets, 128 Cross master constellation. Estimated BER based on 𝑑min and error
event studies. Shannon limits at left; rectangular 64QAM simple modulation at right. Compare
Figure 4.16.

8-point simple QAM modulator.3 The set-partition scheme lies ≈ 4.7 dB from the
PSD Shannon limit at BER 10−5 and improves on the simple modulation benchmark
by≈ 4.3 dB. Shown for comparison is a test of binary time-FTNwith 𝜏 = 1∕3 and the
(7,5) rate 1/2 convolutional encoder, a scheme with the same bits/Hz-s. It performs
about 1.5 dB better. Its 4-state encoder is much simpler than the subset selector, but
the FTN requires iterative decoding. We can assume that the complexity of the two
schemes is roughly the same.

Figure 6.4 shows a very high rate, 6 bits/Hz-s. The master constellation is 128
Cross (see footnote after Eq. (6.4)), there are 8 subsets of size 16, and the selector is
the rate 2/3 recursive systematic encoder (𝒉0,𝒉1,𝒉2) = (1001, 0346, 0510). Actual
test results for such a complex scheme and high rate are difficult to come by, and 𝑑2min
(which is 1.17) produces a veryweakBERestimate, caused by amultitude of long trel-
lis decoding error events that lie at or near 𝑑min. Nonetheless, it is important to attempt
a comparison to themain competitor, 4-ary FTN. Schlegel and Zhang (see References
5 and 9) have made a study of such error events, and based on their findings, we
can estimate the BER to be ≈ 45𝑄(

√
1.17𝐸𝑏∕𝑁0). This produces an outcome about

3No rectangular QAM has 8 points. The benchmark here has points at {(±1,±1), (0,±(1 +
√
3)), (±(1 +√

3), 0)}, symbol error rate ≈ 3.5𝑄(
√
1.27𝐸𝑏∕𝑁0), and BER a little higher.
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5 dB from the PSD Shannon limit and 5 dB better than the 64QAM simple
modulation benchmark, not too different from the rate 3 bits/Hz-s tests. Three FTN
schemes at this rate are shown in Figure 4.16. The middle of these reaches BER 10−8
at𝐸𝑏∕𝑁0 = 12 dB, about 3 dB closer to the Shannon limit than the set-partition code.

Observe that fully 2 dB is lost at 6 bits/Hz-s by basing the Shannon limit on
orthogonal pulses. Researchers continue to search for better combinations of subset,
selectors, and mappings; see for example Reference 6, Chapter 3.

The ultimate problem, trellis-coded QAM and PSK without subsets, has attracted
attention since the 1960s. Codes are known at only relatively low rates. Many rate 3
16QAM and rate 2 8PSK codes are due to Zhang [6,9] and to Porath [14].

6.2 CONTINUOUS PHASE MODULATION

CPM arose in the 1970s and was the first coded modulation to be extensively re-
searched. It was here that the idea of narrowband coding and practical coding gains
without bandwidth expansion first arose. Single-chapter expositions about CPM ap-
pear in References 2, 3, and 1 is a book-length treatise. The early history of CPM is
recounted in Reference 2, Chapter 5.

Like set-partition schemes, CPM schemes are bandpass, with a carrier frequency.
They differ from the other methods in the book in that they are strictly constant-
envelope: They encode data in the phase of a signal. They also employ nonlinear
modulation. This adds complexity to energy and bandwidth calculations. Unlike
linear modulation, there is no pulse that sets the spectrum; spectrum and energy effi-
ciencies interact and only general rules can be given. The standard CPM transmitter
convolves data with a generator to obtain its phasemuch like a convolutional encoder,
and CPM is often considered a type of coding, but we will consider it as a modulator.
The signals so modulated can be coded or not; some would consider coded CPM to
be a form of concatenated coding.

The first application of CPMwas satellite communication but focus soon shifted to
mobile radio. Early digital satellites and the 2nd Generation GSM cellular telephone
system both featured simple CPM systems. In these applications, the aim was to
reduce spectral sidelobes and thus reduce cochannel interference,while not sacrificing
energy efficiency.

6.2.1 CPM Basics

As in set-partition coding, CPM signals take the I and Q form in Eq. (6.1), but since
data is carried in the phase only, a more convenient form is

𝑠(𝑡) =
√
2𝐸𝑠∕𝑇 cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝒖)], (6.6)

in which the excess phase 𝜙(𝑡, 𝒖) carries the databits in the sequence of 𝑀-ary
modulation symbols 𝒖. Here 𝑇 is the symbol time and 𝐸𝑠 is the energy devoted to
each 𝑢 for large 𝑓𝑐 , not the energy in a 2-tuple as in Section 6.1; this can be verified by
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FIGURE 6.5 Standard modulator for CPM signaling.

finding ∫ 𝑇0 𝑠
2(𝑡) d𝑡. The signal 𝑠(𝑡) has I and Q components and the distance between

two signals satisfies Eq. (6.3), but a more convenient distance formula in terms of
phase only is

𝑑
2 =

log2𝑀
𝑇 ∫[1 − cos𝜙(𝑡,Δ𝒖)] d𝑡, (6.7)

where  is the interval over which the phase signals differ, and Δ denotes the
difference of two streams. The constant-envelope condition means that 𝐼2(𝑡) +𝑄2(𝑡)
is a constant for all 𝑡.

A block diagram of CPM is shown in Figure 6.5. A CPM method is specified by
its excess phase function 𝜙(𝑡, 𝒖). This is in turn specified by a phase response 𝑞(𝑡),
modulation index ℎ, and modulation alphabet of size𝑀 . In standard CPM, these are
subject to the following conditions:

(i) The excess phase satisfies the convolution

𝜙(𝑡, 𝒖) = 2𝜋ℎ
∑
𝑛

𝑢[𝑛]𝑞(𝑡 − 𝑛𝑇 ) (6.8)

in which

(ii) The phase response is continuous and satisfies 𝑞(𝑡) = 0, 𝑡 < 0 and 𝑞(𝑡) = 1∕2,
𝑡 > 𝐿𝑇 , where 𝐿 ≥ 1 is an integer and 𝑇 is the𝑀-ary symbol time; and

(iii) The symbols 𝑢[𝑛] take values in the set {±1,±3,… ,±𝑀}.

The function 𝑞(𝑡) is the generator in a convolution. The quantity 2𝜋ℎ is the total
eventual phase change caused by a shift of 𝑢 to a neighboring value. When 𝐿 = 1,
the CPM is called full response, and all such phase change occurs in one symbol
interval; when 𝐿 > 1, the CPM is partial response.

The derivative of 𝑞(𝑡) is the instantaneous frequency offset to the carrier. The
conditions on 𝑞(𝑡) guarantee phase continuity, an essential requirement for a good
spectrum. Some important phase responses are shown in Figure 6.6. Example (a)
has the common name CPFSK (continuous-phase frequency-shift keying), since the
linear phase corresponds to a constant frequency shift ℎ𝑢[𝑛]∕2 Hz from the carrier.
Figure 6.6b is the same 𝑞(𝑡) but partial response, covering 𝐿 = 2 intervals; Figure
6.6c is a full-response 𝑞(𝑡) called 1RC, meaning a raised-cosine response shape
on one interval; Figure 6.6d is called 3RC, the same shape but spread over three
intervals.
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FIGURE 6.6 Four examples of the phase response function 𝑞(𝑡): (a) full response CPFSK;
(b) partial response CPFSK, two intervals; (c) full response RC; (d) partial response RC, three
intervals.

FIGURE 6.7 Baseband power spectral densities of selected CPM schemes versus databit
normalized frequency. (a) CPFSK with 𝑀 = 2, ℎ = 0.5; (b) CPFSK with 𝑀 = 4, ℎ = 0.25;
(𝑐) 3RCwith𝑀 = 4, ℎ = 0.3. Triangles are 99% PIB bandwidths; circles are 3 dB bandwidths.
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Achieving a narrowPSDbreaks into two problems: a narrowmain lobe and rapidly
declining sidelobes. The first is achieved primarily by a longer partial response width
𝐿, and secondarily by a larger modulation size𝑀 . The rate of decline of the sidelobes
is set by Baker’s Rule, which states that the PSD rolls off as |(𝑓 − 𝑓𝑐)𝑇 |−2𝜁−4,
where 𝜁 is the number of continuous derivatives in 𝑞(𝑡) (see Reference 2, p. 65). The
smoothness of 𝑞(𝑡) is thus critical to spectral measures like the 99% PIB. CPFSK
with any 𝐿 or 𝑀 obeys |(𝑓 − 𝑓𝑐)𝑇 |−4, which is 12 dB/octave. The RC phase
pulse schemes obey |(𝑓 − 𝑓𝑐)𝑇 |−8. The difference is obvious in Figure 6.7, which
compares the PSDs of three representative CPM schemes, namely binary CPFSK,4

4-ary CPFSK, and 4-ary 3RC: The first two have similar sidelobe spectra, while 3RC
rolls off much faster. The spectra here5 are normalized to the databit time 𝑇𝑏, and
99% PIB values are shown by triangles and half-power bandwidths by circles. The
long partial response in the 3RC system leads to a very narrow main lobe.

As with any signal set, the receiver error rate of a CPM scheme is given approx-

imately by 𝑄(
√
𝑑
2
min𝐸𝑏∕𝑁0), where 𝑑min is the minimum distance of the signal set

and 𝐸𝑏 is the average energy per databit. Distance does not have a simple relation to
𝑞, 𝐿, ℎ,𝑀 , although it can be said that distance generally grows with the response
length 𝐿 and shrinks with the index ℎ. From a combined energy--bandwidth point of
view, the best modulation 𝑀 lies in the range 4--8. For CPFSK with reasonable ℎ
(ℎ log2𝑀 < 1), a simple relation holds:

𝑑
2
min = 2 log2𝑀

[
1 − sin 2𝜋ℎ

2𝜋ℎ
]
. (6.9)

Otherwise, the calculation is more complex (see References 1 and 2) and 𝑑2min can
lie considerably above and below the benchmark QPSK value of 2, depending on the
bandwidth. Because of nonlinearities, distance can depend on past symbol history. But
this can be a benefit since 𝑑min applies only after certain histories, and consequently
the receiver BER generally lies in the range 0.5--2 times the Q-function.

CPM is a trellis modulation and is most often decoded by the Viterbi algorithm.
Reduced-search algorithms (Section 4.2.2) work well; see Reference 2, Section 5.3.3.
Within the framework of the book, CPM is a modulation, since it produces signals
from all possible𝑀-ary inputs. We will look at coded CPM, which transmits some
but not all of these in an encoded pattern. Nonetheless, uncoded CPM includes the
phase convolution, and to many it thus seems coded.

4A popular system in constant-envelope applications, binary CPFSK with ℎ = 0.5 is also known as MSK
(minimum-shift keying) or fast FSK. It is relatively wide band, but much narrower than square pulse
QPSK, which has 99% PIB some five times larger. Formulas for the CPFSK PSD appear in Reference 1,
p. 167, Reference 2, p. 64, and Proakis [3].
5In this section, the PSD is taken as the baseband average power spectrum of a bandpass signal, see
Reference 3. The full bandpass PSD at positive Hz can be taken as the positive and negative sides of the
baseband spectrum.
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6.2.2 Bits per Hz-s and the Shannon Limit in CPM

As with set-partition codes, CPM is a double-dimension passband signal. Its databit
density satisfies Eq. (6.5), except that its (uncoded) rate 𝑅 is now log2𝑀 , where𝑀
is the size of the phase modulation in Eq. (6.6). The density becomes

log2𝑀
2𝑇𝐵crit

= 1
2𝑇𝑏𝐵crit

bits/Hz-s, (6.10)

where 𝑇 is the CPM 𝑀-ary symbol time and 𝐵crit is with respect to a bandwidth
criterion such as half power or 99% PIB. Since 𝑀 is single dimensional, it is the
square root of the QAM point count, and the density expression has a handicap of
more or less a factor log2𝑀 relative to one based on QAM. However, the spectrum
shape is part of the CPM design process, and the PSD can be designed to be more
narrow than that of QAM.

A subtlety in this discussion is the fact that CPM signals are constant envelope.
Class C and similar power amplifiers for constant-envelope carrier signals are 2--4 dB
more efficient than the Class A or B that are needed for set-partition and FTN signals.
When there is a limited battery supply, as with satellites and handheld terminals,
power amplifier efficiency dominates and this 2--4 dB should really be subtracted from
the 𝐸𝑏∕𝑁0 required for CPM. This approximately cancels the single-dimensionality
loss, or alternately, the loss due to the constant envelope requirement.

Unlike FTN and set-partition coding, the 99% PIB frequencies for CPM are much
larger than the half-power values. Instead of the 13% extra that applies to 30% root
RC pulses, Figure 6.7 shows 99% PIBs that are two to four times larger. It needs
to be emphasized that no matter what bandwidth criterion is chosen, the Shannon
limit is the same, because it depends on the entire spectrum. What changes is the rate
parameter applied to the limit calculation, since this is in bits per Hz and second, and
the Hz value depends on the criterion. The point is subtle, and we give an example
of how to convert from one criterion to another.

Example 6.1 (Bandwidth Criterion Conversion)

From Figure 6.7, 4-ary CPFSK with ℎ = 0.25 has half power (3 dB down) and
99% baseband bandwidths 𝐵3𝑇𝑏 = 0.315 and 𝐵99𝑇𝑏 = 0.775 Hz-s, normalized to
the databit time. The signals are considered to carry log2𝑀 = 2 bits per symbol
in twice these positive bandwidths. Take first the 3 dB criterion. Program gber-
cap(rate,h,f) in Appendix 3A computes the Shannon limit for signals having
rate bits/Hz-s and PSD h on positive frequencies f. However, the program as-
sumes that the rate parameter and the PSD are with reference to the applicable 𝐵crit
set to 1 Hz. This is enforced by scaling up both by a factor 1∕0.315; the rate be-
comes log2𝑀∕2𝑇𝐵3 = 2∕2(0.315) = 3.174 bits/Hz-s andf is expanded by 1∕0.315.
gbercap(rate,h,f) finds that𝐸𝑏∕𝑁0 = 1.5 dB for BER = 0, and gives the BER
versus 𝐸𝑏∕𝑁0 Shannon limit shown in Figure 6.8a. The total 𝑃∕𝑁0 required when
𝐵3 is scaled up to 1 Hz is 4.52. Note that both rate and total power are expanded by
the same factor, so that 𝐸𝑏 is unchanged. If instead we take the 99% criterion, the
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scale-up factor is 1∕0.775 and rate becomes 2∕2(0.775) = 1.290 bits/Hz-s. This
time gbercap(rate,h,f) finds again that 𝐸𝑏∕𝑁0 = 1.5 dB for BER = 0 and
computes the same Shannon limit. This will be true whenever rate and f are scaled
by the same factor.

CPM Capacity. The ultimate Shannon capacity against which CPM signals can be
compared is𝐶psd in Chapter 3, the capacity computed for their PSD, and this capacity
is used in the Shannon limit program gbercap(rate,h,f). This comparison is
perhaps too strenuous, since 𝐶psd does not take into account constraints such as
constant envelope, the phase pulse shape 𝑞(𝑡), and the alphabet𝑀 , among others. A
full calculation is challenging because the signals areMarkov chains and the effective
channel is not memoryless.

Nevertheless, a related quantity, the computational cutoff rate𝑅0 can be computed
using a special eignevalue technique (first applied in Reference 10 and summarized
in Reference 1, Section 5.6, and Appendix B). The utility of 𝑅0 here is that it is
a rather good lower bound to capacity. The details of the method are beyond our
scope but the outcomes can be summarized. The cutoff rate, and very likely capacity,
depends, on the modulation index ℎ, with different ℎ optimal in different ranges of
the (𝐸𝑏∕𝑁0, 2𝐵𝑇𝑏) plane.6 Longer phase pulses and larger 𝑀 have higher cutoff
rates than smaller ones.

6.2.3 Error Performance of CPM

Figure 6.8 shows the BER of two uncoded 4-ary CPM schemes, along with their
respective Shannon limits, plotted on the same scales. Both BERs are taken as

≈ 1.5𝑄(
√
𝑑
2
min𝐸𝑏∕𝑁0); the small leading coefficient is typical of actual decoder

tests. The phase pulses and spectra of the CPMs appear in Figures 6.6 and 6.7.
Figure 6.8a shows CPFSK plot, ℎ = 0.25, which has 𝑑2min = 1.45, 𝐵3𝑇𝑏 = 0.315

Hz-s, and 𝐵99𝑇𝑏 = 0.775. Its error performance lies quite far from the Shannon limit
for its bit density, which is 3.17 bits/Hz-s relative to 𝐵3 and 1.29 relative to 𝐵99. The
position may be due to the simplicity of CPFSK, which acts like a simple modulator.

Figure 6.8b is a much more complex CPM, a 3RC phase pulse with ℎ = 0.3,
𝑑
2
min = 1.4,𝐵3𝑇𝑏 = 0.082, and𝐵99𝑇𝑏 = 0.322. Its error performance lies much closer

to the Shannon limit for its bit density, which is 12.2 bits/Hz-s relative to 𝐵3 and
3.11 relative to 𝐵99. These densities and the rightward position of the limit reflect
the very narrowband nature of the signaling. This CPM has a phase response that is
both three times longer and much smoother than the first one. Its performance and
Shannon limit do not differ much from the density 6 set-partition code in Figure 6.4.

Coded CPM. CPM was exhaustively studied in the period 1975--1990, and some
of this work investigated convolutional coding and single-interval CPFSK. This

6A version of this plane and an unconstrained capacity appear in Figure 3.2.
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FIGURE 6.8 BER versus 𝐸
𝑏
∕𝑁0 for two uncoded CPM schemes, compared to Shannon

limits derived from their PSDs. (a) 4-ary CPFSK, ℎ = 0.25, 𝑑2
min = 1.45; (b) 4-ary 3RC,

ℎ = 0.3, 𝑑2
min = 1.4. Axis scales are the same in both.

combination was meant to compete with early MSK-like systems and the outcomes
are not striking from a modern combined energy--bandwidth point of view. But
there were a few studies reported by Lindell et al. [11,12] which studied longer and
much smoother phase response functions. When these are combined with a small
modulation index, a large phase alphabet, and a high-rate convolutional code, the
result can be an energy-efficient narrowband coding system with a bit density near 4
bits/Hz-s.

A BER estimate for one such system is shown in Figure 6.9, together with the
Shannon limit that corresponds to its spectrum. The CPM modulation here uses a
phase response 𝑞(𝑡) with a raised-cosine shape spread over two symbol intervals,
combined with a small modulation index ℎ = 1∕11 and a large 8-ary modulation
alphabet. The databits drive a feedforward semisystematic rate 2/3 convolutional
encoder followed by an octal mapper that selects the modulation symbol. Both
encoder and mapper were chosen after much searching, and together with the CPM
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FIGURE 6.9 BER versus 𝐸
𝑏
∕𝑁0 for a coded CPM scheme, compared to Shannon limit

derived from its PSD. Convolutional encoder rate is 2/3, memory 4. CPM is 𝐿 = 2 raised-
cosine 𝑞(𝑡),𝑀 = 8, ℎ = 1∕11, with 𝐵99𝑇𝑏 = 0.275 Hz-s. Scheme bit density is 3.6 bits/Hz-s
relative to 99% PIB criterion.

modulator they create a transmitted signal set with square minimum distance 2.12
[12]. The 99% PIB normalized to the databit rate is 𝐵99𝑇𝑏 = 0.275 Hz-s/bit, which
is 3.6 bits/Hz-s. Using the left justified notation in Appendix 4B, the encoder matrix

is

[40 00 00
00 10 66

]
. Very few receiver tests are available for non-CPFSK systems, and so

we must estimate BER performance by means of 𝐴𝑄(
√
𝑑
2
min𝐸𝑏∕𝑁0) .7

The result is Figure 6.9. It can be compared to the time-FTN tests in Figure 4.15.
That figure shows 4 bits/Hz-s systems, relative to the half-power bandwidth criterion;
for the 30% RC spectrum there, the 99% PIB criterion implies a 13% higher measure
of bandwidth, which gives ≈ 3.5 bits/Hz-s, about the same density value as the CPM
scheme. The FTN performance requires 𝐸𝑏∕𝑁0 in the range 6--7.5 dB, 1--2 dB less
than the CPM scheme. The 3 bits/Hz-s set-partition code in Figure 6.3 has roughly
similar performance to the CPM when one accounts for the difference in bit density.
These comparisons are the more attractive for coded CPM when one remembers that
the CPM is constant-envelope.

It is interesting to compare this coded CPM system to Figure 6.8b, which has a
roughly similar bit density (3.1 bits/Hz-s) but requires 1--2 dB more 𝐸𝑏∕𝑁0, despite
its somewhat lower bit density. We can view this 1--2 dB as coding gain.

7From the tests that are available [12,13], we can set 𝐴 ≈ 10 when the BER is 10−2--10−4, declining to
𝐴 ≈ 1 at 10−6. The coding, small ℎ, large𝑀 and 𝐿 = 2 create quite a large 𝐴 at middle BER.
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6.3 CONCLUSIONS FOR CODED MODULATION;
HIGHLIGHTS

The results collected in this chapter show that coded modulation can perform rather
well in a combined energy--bandwidth sense, although it is most versatile in the
3--4 bits/Hz-s bit density range. Careful design is needed so that the parameter
choices promote bandwidth efficiency: CPM requires high-rate coding, partial-phase
response, a large alphabet, and a small modulation index; set-partition coding requires
a complex, high-rate subset selector. CPM is special because it is constant envelope,
and in some applications this is worth several dB in 𝐸𝑏∕𝑁0, but in an application
where a linear channel is a given, the constant envelope just wastes bandwidth
efficiency. It appears that set-partition coding at high bit densities suffers several dB
loss because it does notwork toward the full nonorthogonal pulse capacity𝐶psd; CPM,
on the other hand, does not necessarily lose this advantage. It would be interesting in
future work to investigate set-partition codes based on nonorthogonal pulses.

It is difficult tomake precise comparisons among codingmethods that employ such
different computations. FTN methods today are based mostly on iterative decoding.
Set-partition coding avoids this complication, but competitive subset selectors are
quite complex, and large-alphabet QAM is required, while FTN works well with a
four-letter alphabet. CPM signals demand more careful synchronization.

More evaluation needs to be performed for some of the newer coding methods,
including especially LDPC and BICM (bit-interleaved coded modulation). LDPC
has been compared somewhat (see Section 5.3). Until now these have been low
energy---wideband methods, but they may have interesting narrowband extensions.
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7
OPTIMAL MODULATION PULSES

INTRODUCTION

Chapters 4 and 5 dealt with classical FTN, in which the linear modulator pulse ℎ(𝑡)
was an accelerated version of a 𝑇 -orthogonal pulse with the new symbol time 𝜏𝑇 ,
𝜏 < 1. The favored pulse was a root RC with 10--30% excess bandwidth and the
criterion for bandwidth measure was half power. While many applications would
prefer a bandwidth criterion like 99 or 99.9% power in band, the RC spectrum does
have a sharp cutoff and consequently these criteria are not much different.

Even so, this classical approach leaves at least three issues open.

• Are there significantly better base pulses than those that are 𝑇 -orthogonal for
some 𝑇 , like the root RC pulse? While some pulses are not orthogonal, all
linear modulation signal sets have the attractive Mazo limit property, even if no
scaling of the base ℎ(𝑡) satisfies orthogonality. The limit occurs because under
increasing acceleration another error event eventually has distance less than the
antipodal signal distance 𝑑0, a value that upper bounds the minimum distance of
any 𝑀-ary modulation signal set. An important example is the Gaussian pulse,
which has attractive time and frequency properties but is not 𝑇 -orthogonal for
any 𝑇 .

• Which base pulses and encoders are best for a power in band (PIB) criterion,
such as 99%? Are they much different from pulses designed for a half-power
criterion? Not only is the PIB criterion the important one in some applications,

Bandwidth Efficient Coding, First Edition. John B. Anderson.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
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but also a sharp cutoff pulse like the root RC has unavoidable spectral side-
lobes in a practical implementation, which can move a real-life PIB bandwidth
considerably outward. Does this outward migration of energy have a significant
effect?

• Every real symmetrical pulse ℎ(𝑡) has a symmetrical Fourier transform 𝐻(𝑓 ).
By Fourier transform duality, there is thus a dual-time pulse 𝐻(𝑡) that has
transform ℎ(𝑓 ). What is offered by these base pulses?

This chapter explores several ways to place these questions on a more secure
footing. Section 7.1 treats Slepian’s Problem: Given that all realizable pulses ℎ(𝑡)
must have a little energy outside of any given time and bandwidth interval, what
pulse minimizes this energy? The answer is a prolate spheroidal wave pulse, and it
has attractive modulation properties, in addition to its time--bandwidth optimality.
An interesting outcome is that when a finite packet of data is transmitted, sinc and
other orthogonal pulses with very small excess bandwidth are not optimal. Another
outcome is that the Gaussian pulse is close to the prolate pulse; since it has good FTN
properties as well, it is an important pulse to consider.

A second view of optimality, in Section 7.2, has been developed by Said: For an
amount of power, say 1 or 0.1%, outside of a given bandwidth, which ℎ(𝑡)maximizes
the minimum distance? This distance 𝑑min is important because it plays a primary
role in how quickly the ISI due to ℎ(𝑡) is reduced. Said’s pulses are more practical
to implement than root RC, and they have noticeably higher 𝑑min. However, they do
not necessarily lead to better narrowband coding, because other quantities than 𝑑min
affect performance.

The PSWF, Gauss and Said pulses will be applied to FTN transmission.

7.1 SLEPIAN’S PROBLEM

We think of physical signals as occupying finite time and bandwidth. Yet a signal or
pulse with finite duration must have infinite spectrum width, and a finite spectrum
must lead to infinite duration. Here lies a contradiction in our thinking. David Slepian
thought long about this puzzle, and in a landmark 1976 paper [1] proposed the
following resolution. Whether as humans or machines, we perceive signals only
when they lie above a certain threshold, and their time and bandwidth should be
measured relative to that. Let 𝛾 designate this fraction of the signal’s energy. The
signal time and bandwidth are the values outside which lie the fraction 𝛾 .

This is power-out-of-band (POB) thinking, first introduced in Section 1.3. It is
further argued there that the more fundamental resource is the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 of time and
bandwidth in Hz-s, what we call the signal occupancy Υ. This follows because a
signal’s time and bandwidth can in principle be traded at will, by simply scaling
time, and if time and bandwidth are measured by similar principles, Υ remains fixed.

For a modulation pulse ℎ(𝑡), Slepian’s problem becomes: For a fraction 𝛾 , which
pulse minimizes occupancy? The answer is the prolate spheroidal wave function
(PSWF). The body of mathematics supporting this forms a rich and subtle theory.
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FIGURE 7.1 Definition of 
𝛾
and 

𝛾
that lead to 𝛾 out of band power for a pulse centered

at time 0.

It developed in a series of papers by Slepian, Landau, and Pollak [2]--[7], of which
the first two and the last are most germaine. We have space to mention only a
few highlights and give some concrete results, the most important of which is the
minimizing pulse. The PSWF was first applied to FTN in Reference 8.

7.1.1 PSWF Pulse Solution

The goal is to minimize the occupancy Υ. There are in reality two problems: Which
pulse ℎ(𝑡) has least Υ, and once pulses are combined in a linear modulation, possibly
with FTN accelerations, what minimizes the Υ of the whole transmission? We take
up the second problem in Section 7.1.3.

For the isolated pulse, we can assume that dual pulses have the same occupancy,
since the frequency band for one is the time band for the other. Furthermore, scaling
ℎ(𝑡) in time scales 𝐻(𝑓 ) in frequency by the reciprocal factor, so that Υ and the
fundamental shapes are unchanged. In much of Gaussian-noise communication and
Shannon theory, onlyΥmatters, and scaled pulses are in a sense equivalent. In practi-
cal applications, of course, time and frequency can have rather different implications.
One may wish to consume more of one than the other, or retain certain properties in
one. Root RC pulses, for example, can be orthogonal in time, and they are confined in
frequency but widely spread in time. If one wished the opposite, spread in frequency
but confined in time, the dual to the root RC would be more attractive.

The task is then to derive the least-occupancy isolated ℎ(𝑡) that is centered in
the time--frequency box in Figure 7.1. The time and bandwidth of interest are
[−𝛾∕2, 𝛾∕2] seconds and [−𝛾 ,𝛾 ]Hz, the values that lead to the energy fraction
𝛾 out of band, including that above and below in frequency and left and right in time.
Because ℎ(𝑡) is symmetric, the energy is split 𝛾∕2 on the respective sides.
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The plan is to find PSWFs, then find the one that corresponds to the out of band
fraction 𝛾 , then derive the pulse from that PSWF.By convention PSWFs are defined in
terms of the centered time duration [−𝛾∕2, 𝛾∕2] seconds and the positive bandwidth
[0,𝛾 ]Hz, and the occupancy is taken as . For any  and , a PSWF is defined
to be an eigenfunction of the integral

𝜆𝑖𝜓𝑖(𝑡) = ∫
 ∕2

− ∕2

sin 2𝜋(𝑡 − 𝑠)
𝜋(𝑡 − 𝑠)

𝜓𝑖(𝑠) d𝑠, all 𝑡, 𝑖 = 0, 1,… (7.1)

Here the set {𝜓𝑖} are eigenfunctions of the integral operator in the formula and {𝜆𝑖}
are their eigenvalues. We are interested only in 𝜓0(𝑡), the principal eigenvector (the
one with largest eigenvalue). It leads to the desired pulse shape and 𝜆0 to the in-
band power. Important properties of 𝜓0(𝑡) include the following. Proofs are given in
Reference 2, p. 45ff, Reference 3, p. 65--80, and Reference 7.

• 𝜆0 depends only on the product . 𝜓0(𝑡) depends only on the product in the
sense that scaling  by a constant scales 𝜓0(𝑡) in time by the same, and scales
 and the Fourier transform Ψ0(𝑓 ) in frequency by the inverse constant.

• As  grows, 𝜓0(𝑡) tends to the Gauss pulse

𝑔(𝑡) = (1∕
√
2𝜋𝑎2) exp(−𝑡2∕2𝑎2), 𝑎

2 =  ∕4𝜋 (7.2)

in the region [− ∕2,  ∕2]. The Fourier transform is

𝐺(𝑓 ) = (1∕
√
2𝜋𝜎2) exp(−𝑡2∕2𝜎2), 𝜎

2 = ∕𝜋 . (7.3)

• Because 𝜓0(𝑡) is the principal eigenfunction, iteration of Eq. (7.1) in principle
solves for 𝜓0(𝑡); that is, an approximate 𝜓(𝑡) in the right-hand integral leads to
a closer approximation on the left and so on, until a satisfactory convergence
occurs.

Figure 7.2 plots the principle eigenfunctions when  = 1 for the products
 = 0.86, 1.28, 2.06, which have eigenvalues near 0.9604, 0.9960, and 0.99996.
The Gaussian approximation Eq. (7.2) is shown for the  = 0.86 case, and the
approximation is reasonable in [−1∕2, 1∕2]. It is much more accurate for the other
 (and invisible to see) because the product is larger. We will return to these
solutions in Example 7.1.

It remains to derive the pulse shape and the out of band energy from 𝜓0(𝑡) and 𝜆0.
This requires a careful argument first given in Reference 3, pp. 65--80, which we can
only summarize here. We take the special case where 1 − 𝛾 is the fractional energy
inside both [− ∕2,  ∕2] and [− ,]. Then the required eigenvalue is

𝜆0 =
[
cos

(
2 cos−1(

√
1 − 𝛾)

)]2
. (7.4)
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FIGURE 7.2 Eigenfunctions of the integral operator in Eq. (7.1) when takes the values
0.86, 1.28, 2.06 and  = 1. If  is not 1, the time axis is scaled by  .

The inverse relationship is often more useful:

𝛾 = 1 −
[
cos

(
[cos−1(

√
𝜆0)]∕2

)]2 ≈ (1 − 𝜆0)∕4. (7.5)

By trial and error, we next find the eigenfunction for  and eigenvalue for which
Eq. (7.5) gives the required 𝛾 value. Then, the optimal base pulse is given by

ℎopt (𝑡) =
√

𝛾

1 − 𝜆0
𝜓0(𝑡) ≈ 𝜓0(𝑡)∕2, |𝑡| > 

=

√
1 − 𝛾

𝜆0
𝜓0(𝑡) ≈ [1 + 3𝛾∕2]𝜓0(𝑡), |𝑡| ≤  . (7.6)

The approximations hold for 𝛾 ≤ 0.02. A program to find the eigenfunction, pulse
and 𝛾 for a and  appears in Appendix A.

Example 7.1 (ℎopt for 99, 99.9, and 99.999% PIB)

PSWF eigenfunctions are found by the Appendix program until the 𝛾 produced by
Eq. (7.5) takes the respective values 0.01, 0.001, 0.00001. Because 𝛾 is monotone
decreasing as  grows, this is not difficult, and the eigenfunctions are given in
Figure 7.2. Figure 7.3 gives the corresponding optimal ℎ(𝑡) pulses and their spectra,
found with the aid of Eq. (7.6). It can be verified that the time side lobes outside
[−1∕2, 1∕2] sum to the required 𝛾 (i.e., 𝛾∕2 on each side), and the same for the
spectral side lobes outside || ≈ 0.86, 1.28, 2.06. Changing to a new time interval
[− ∕2,  ∕2] scales the pulses wider by  and the spectra narrower by 1∕ .
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FIGURE 7.3 Optimal standard pulses and their spectra for 𝛾 = 0.01, 0.001, 0.00001 frac-
tional POB in both time and frequency. To convert to a symbol time 𝑇 ≠ 1 multiply or divide
to remove the 𝑇 factors shown.

Standard Pulses. Since PSWF pulses are not generally orthogonal for a  , the
question arises which one should be associated with the modulator symbol time 𝑇 .
In principle, there is no difference between scaling a  to fit 𝑇 and another type of
scaling, such as an FTN 𝜏; only the product really matters. The pulses just found
in the example are a good fit to a width-1 symbol interval when 𝛾 is a reasonable size,
and we will take them to be a standard PSWF modulation pulse at the . The figure
shows symbol time 1; for time 𝑇 the standard pulse can be scaled by 𝑇 as suggested
in the figure.

Duality

For a given POB fraction 𝛾 , only the corresponding product matters, in the sense
that scaling  scales the PSWF pulse ℎ(𝑡) the same in time and the transform 𝐻(𝑓 )
(and also ) in frequency by the inverse. Furthermore, if ℎ(𝑡) is a PSWF pulse, its
transform𝐻(𝑓 ) is also a time PSWF pulse𝐻(𝑡), whose transform is ℎ(𝑓 ). The time
functions ℎ(𝑡) and 𝐻(𝑡) form a dual pair. But duality does not discover new pulses,
since the Fourier transform of the pulse for time width  and frequency width 
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FIGURE 7.4 Time--frequency occupancy Υ as a function of two-sided POB fraction 𝛾 .
PSWF, Gauss, 10 and 30% root RC isolated pulses. Some IOTA pulse points are shown as
squares.

turns out to be the same as the pulse for time 2 and frequency  ∕2. Both pulses
have the same occupancy, namely .

Each time and frequency fraction 𝛾 corresponds to its own occupancy. The rela-
tionship is plotted in Figure 7.4. The PSWF curve has the least occupancy of any
isolated pulse at each POB fraction.

When  is set to  ∕2, the dual of the pulse is equal to itself, or alternately, the
pulse is its own transform. The time duration then satisfies

 = 2 =
√
2Υ. (7.7)

This is easily verified with the pulse computation program in Appendix A.

7.1.2 Gauss and Gauss-Like Pulses

Since the the PSWF pulse main lobe is closely related to the Gauss pulse, this is a
good place to look at that shape. The unit-energy Gauss pulse is given by

ℎ(𝑡) = 1
𝜋1∕4

√
𝑎

exp(−𝑡2∕2𝑎2), all 𝑡, 𝑎 > 0. (7.8)

The Fourier transform, also unit energy, is

𝐻(𝑓 ) = 𝜋
1∕4

√
2𝑎 exp(−2𝜋2

𝑓
2
𝑎
2), all 𝑓. (7.9)
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The parameter 𝑎 is the standard deviation of the pulse; by setting 𝑎 to 𝜂𝑇 , one can be
said to have a pulse on symbol interval 𝑇 with deviation 𝜂; by setting 𝑎 = 𝜂𝜏𝑇 , the
pulse takes on FTN time definition (2.51).

The Gauss pulse has the property that the pulse and its transform have the same

shape, namely Gaussian. An interesting example occurs when 𝑎 = 1∕
√
2𝜋 ≈ 0.399,

for which ℎ(𝑡) and 𝐻(𝑓 ) are the same function. As with the PSWF pulse, there is a
need for a standard Gauss pulse to associate with symbol time 𝑇 = 1, and we will
take this one.

Some further calculations relate the POB fraction 𝛾 to time and bandwidth intervals
for this standard pulse. With reference to Figure 7.1, we can set 𝛾∕2 equal to the

integral of ℎ2(𝑡) over [𝛾∕2,∞). Some calculation shows that this is 𝑄(𝛾∕
√
2𝑎),

where 𝑄(⋅) is the unit Gaussian tail integral defined in Eq. (2.10). Similarly, we set

𝛾∕2 equal the integral of𝐻2(𝑓 ) over (𝛾 ,∞), and find that this tail is𝑄(𝛾

√
8𝜋𝑎).

The outcome is that the consumed time and frequency for POB fraction 𝛾 are

𝛾 =
√
2𝑎𝑄−1(𝛾∕2)

𝛾 = (1∕
√
8𝜋𝑎)𝑄−1(𝛾∕2), (7.10)

where 𝑄
−1(⋅) is the inverse Q function. When 𝑎 = 1∕

√
2𝜋, both 𝛾 and 2𝛾 are

(1∕
√
𝜋)𝑄−1(𝛾∕2).

The product of 𝛾 and 𝛾 is the occupancy of the Gauss pulse, and for any time
scaling, that is, for any variance 𝑎2, it is

Υ = 𝛾𝛾 = (1∕2𝜋) [𝑄−1(𝛾∕2)]2. (7.11)

Figure 7.4 plots Υ as a function of 𝛾 .

The IOTA Pulse. The isotropic orthogonal transform algorithm, or IOTA, pulse 𝜄(𝑡)
is a modification of the Gauss pulse that is orthogonal. As with the PSWF pulse,
there exists a scaling that equals its own Fourier transform. That version is shown in
Figure 7.5; the Gauss pulse that was modified to make 𝜄(𝑡) appears dotted. Because
of the similarity to the Gauss standard pulse, we will take this 𝜄(𝑡) as the IOTA
standard pulse, meaning this 𝜄(𝑡) is associated with modulation symbol time 𝑇 = 1.
It is actually orthogonal, but with respect to intervals of length

√
2.

The IOTA occupancy tracks that of the Gauss pulse at larger POB fractions 𝛾

because it closely resembles that pulse. For example, at 𝛾 = 0.01 the IOTA, Gauss,
and PSWF occupancies are respectively 1.07, 1.06, and 0.86. Some other values are
shown in Figure 7.4. Below 𝛾 = 0.005, the IOTA occupancy is much larger than the
Gauss, because of the forced orthogonality.

The IOTA pulse arose in Reference 9 and a rather mathematical tutorial about the
subject appears in Reference 10. We can give an overview here. The critical aspect
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FIGURE7.5 The IOTA pulse, compared to the originatingGauss pulse (dotted). The Fourier
transform is the same, with x-axis 𝑓 in Hz.

is the orthogonalization operator

𝑥(𝑡) = 𝑥(𝑡)√
𝜎
∑∞

𝑘=−∞ |𝑥(𝑡 − 𝑘𝜎)|2
, 𝜎 > 0. (7.12)

To start the process, let 𝑥(𝑡) be the Gauss pulse in Eq. (7.8) with 𝑎 = 1∕
√
2𝜋.

The operation 𝑦(𝑡) = 𝑥(𝑡) on 𝑥(𝑡) with 𝜎 = 𝜎𝑓 creates a new function 𝑦(𝑡) with
the property that its transform 𝑌 (𝑓 ) is orthogonal to frequency shifts of 1∕𝜎𝑓 Hz.
However, 𝑦(𝑡) is not yet orthogonal to time shifts. To accomplish that, the operator
with 𝜎 = 𝜎𝑡 is applied to the transform 𝑌 (𝑓 ), with the outcome that 𝐼(𝑓 ) = 𝑌 (𝑓 )
has inverse transform 𝜄(𝑡) that is orthogonal to time shifts of 1∕𝜎𝑡 s. Dual orthogonality
usually requires that 𝜎𝑓𝜎𝑡 = 1∕2.1 It may be helpful to picture the process in operator
notation: 𝜄(𝑡) = −1𝜎𝑡

𝜎𝑓
𝑥(𝑡), where  is the Fourier transform.

When the orthogonality intervals are the same, namely
√
2, we obtain the standard

base pulse in Figure 7.5. A unit symbol interval pulse is produced by scaling the pulse

narrower by the factor 1∕
√
2. The IOTA pulse is attracting much interest in future

wireless communication because of its advantages in OFDM transmission: It packs
pulses relatively well in frequency and time, it has the orthogonality advantage, it
resists time and frequency dispersion more equally, and it does not require a cyclic
prefix.

1Under various conditions and start pulses, the procedure can produce orthogonalities of no interest in
communication, or it can fail entirely.
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Comparison of Occupancies. We are now in a position to compare the occupancy
of the PSWF and Gauss pulses to that of the commonly used orthogonal root RC
pulses. This is done in Figure 7.4. The Gauss pulse occupancy is surprisingly larger
than the PSWF; at 10% POB it is 17% larger, but at POB fraction 0.0001 this grows
to 50%, and the IOTA occupancy is four times larger than the PSWF. The reason is
that these three pulses are similar only in the main time lobe, and although they differ
little in absolute terms in the side lobes, the difference affects the POB at small out
of band fractions.

For the familiar 30% root RC orthogonal pulse, occupancy is 42% larger than the
optimum at 10% POB and more than three times as much for fractions smaller than
0.0001. This is because a heavy time support penalty must be paid for the pulse’s
rapid spectral rolloff. The 10% root RC pulse penalty is larger still. This bloated
occupancy grows as the pulse excess bandwidth factor drops to zero, and the sinc
pulse (factor 0) is unacceptable.

To summarize the situation for an isolated modulation pulse, if power out of band
is the criterion, orthogonality exacts a significant occupancy penalty and the sinc
pulse is useless. But as the next section shows, when many pulses are optimally
combined by linear modulation, pulse time--frequency occupancy is important only
with relatively small blocks.

7.1.3 Occupancy of Linear Modulation with FTN

We turn now from the occupancy of an isolated pulse ℎ(𝑡) to the occupancy of an
entire modulated signal constructed from ℎ(𝑡). The signal can consist of subcarriers
stacked in frequency, and we need to account for this as well as time and frequency
scalings of the FTN type. A simple occupancy example with a single subcarrier and
10% root RC modulation was given in Figure 1.2. It shows two time--frequency
boxes, an inner one that represents the time and spectral main lobes and an outer one
that includes the side-lobe energies (energy inside 99% PIB in the example). The
outer box is of interest now; it can be thought of as the time--frequency denied to
others.

The analysis that follows takes the “accelerated pulse” view of FTN in Eq. (2.50),
not the “stretched pulse” view (these are contrasted in Section 4.1.2). “Accelerated”
here means that pulses come faster by the factor 𝜏 and do not change otherwise.
Their spectrum is unchanged, but subcarriers may be compacted by some factor 𝜙.
A reference framework based on 𝑇 -orthogonal pulses without 𝜏 and 𝜙 was given in
Chapter 5, Figure 5.1. It was assumed that there is a 𝑇 -orthogonal base pulse ℎ(𝑡),
and the framework was calibrated in steps of 𝑇 seconds and 1∕𝑇 Hz.

Figure 7.6 now extends Figure 5.1 to FTN and side lobes. It accounts for 𝜏 and
𝜙, and the pulse spacings are now 𝜏𝑇 and 𝜙∕𝑇 . If there are 𝑁 pulses in time and
𝐾 subcarriers, the inner box has size 𝑁𝜏𝑇 ×𝐾𝜙∕𝑇 , an occupancy 𝜏𝜙𝑁𝐾 Hz-s.
The outer box is wider by 2𝜀𝑡𝑇 and 2𝜀𝑓∕𝑇 , where 𝜀𝑡 and 𝜀𝑓 are respectively the
one-sided extra width needed for an isolated ℎ(𝑡) to meet the PIB criterion when
𝑇 = 1. The factor 2 accounts for two sides. When the symbol time is not 1, these
extra widths directly scale by 𝑇 and 1∕𝑇 . The ℎ(𝑡) in the 𝜀 calculation is a “standard”
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FIGURE 7.6 Reference framework for power out of band (POB) with time and frequency
FTN having 𝜏 and 𝜙 squeeze factors.

ℎ(𝑡) with unit symbol time and no FTN scaling. Standard pulses were defined for
PSWF, Gauss, and IOTA pulses in Sections 7.1.1 and 7.1.2.

A few assumptions simplify the way forward with little change to the outcome.

(i) Only peripheral pulses around the inner box contribute to the outer box. This
means that the next row inward falls off fast enough that it can be ignored.

(ii) The base pulse ℎ(𝑡) is symmetric. Its Fourier transform𝐻(𝑓 ) is thus real and
symmetric, and behavior left and right of the inner box as well as above and
below is symmetric as well.

(iii) The same energy fraction 𝛾 applies to both the frequency POB and the time
POB.

(iv) The base pulse ℎ(𝑡) can have infinite support (but the part with energy fraction
𝛾 is not perceived).

With these simplifying assumptions, it is only the properties of a single standard
base pulse that matter. When the symbol time is 𝑇 instead of 1, the extension to
the inner box to the right in Figure 7.6 depends on the standard pulse’s right hand
time side lobes, and is 𝑇 times the interval [1∕2, 𝑡𝑜] such that the standard pulse’s
POB after 𝑡𝑜 is 𝛾∕2; the extension on the left depends on its left-side lobes and is the
same size. The upper extension of the box depends on the standard pulse’s positive-
frequency side lobes, and is 1∕𝑇 times the frequency interval [1∕2, 𝑓𝑜] Hz such that
the pulse’s POB after 𝑓𝑜 is again 𝛾∕2; the lower extension depends on the negative
side lobes and is again the same.
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The occupancy of the larger box in Figure 7.6 is now

(𝑁𝜏𝑇 + 2𝜀𝑡𝑇 ) (𝐾𝜙∕𝑇 + 2𝜀𝑓∕𝑇 ) = (𝑁𝜏 + 2𝜀𝑡) (𝐾𝜙 + 2𝜀𝑓 ) Hz-s. (7.13)

This is independent of 𝑇 . We can measure occupancy in numbers of symbols instead
of seconds and Hz by recalibrating 𝜀𝑡 and 𝜀𝑓 . Let 𝜀

𝜏

𝑡
= 𝜀𝑡∕𝜏 and 𝜀

𝜙

𝑓
= 𝜀𝑓∕𝜙. Then

the occupancy becomes

𝜙𝜏 (𝑁 + 2𝜀𝜏
𝑡
)(𝐾 + 2𝜀𝜙

𝑓
) Hz-s. (7.14)

Note that independent I and Q signals occupy this same time--bandwidth, so that
altogether there can be 2𝑁𝐾 𝑀-ary symbols. The occupancy on a per-symbol basis
is thus only half the values just given. Consequently, the occupancy created by ℎ(𝑡)
modulating at baseband, which counts only positive frequencies, is numerically the
same as the occupancy created in an I/Q modulation with the factor 1/2 included.
The factor is normally applied in what follows.

For a given bit packet sizeΩ = 𝑁𝐾 , the configuration𝑁 and𝐾 can be optimized.
This perhaps surprising result stems from Eq. (7.14). If the base pulse has wider
side lobes in time, its duration should be longer so that the extra is less per symbol
time, and similarly for frequency spread. The outcome will be less occupancy per
modulation symbol. Minimization of Eq. (7.14) by simple calculus gives that the
minimum occupancy of Ω symbols is

𝜙𝜏 (1∕2) (
√
Ω + 2𝜀𝜏

𝑡
𝜀
𝜙

𝑓
)2 Hz-s, (7.15)

where

𝑁∕𝐾 = 𝜀
𝜏

𝑡
∕𝜀𝜙

𝑓
or 𝑁 =

√
Ω𝜀

𝜏

𝑡
∕𝜀𝜙

𝑓
or 𝐾 =

√
Ω𝜀

𝜙

𝑓
∕𝜀𝜏

𝑡
. (7.16)

and the factor of 1/2 accounts for I/Q. For pulses with extreme 𝜀, either 𝑁 or 𝐾 is
1. As Ω → ∞, all ratios 𝑁∕𝐾 lead to the same occupancy per symbol, since only
the inner box in Figure 7.6 matters. If there are no subcarriers, the occupancy is
simply (1∕2)(𝑁𝜏 + 2𝜀𝑡)(1 + 2𝜀𝑓 ). Among finite packets and orthogonal pulses, the
sinc pulse does not minimize occupancy, as will be clear in the next subsection.

Example 7.2 (Occupancy of 30% Root RC Modulation)

This commonly used orthogonal pulse has excellent bandwidth properties but a rather
long-time extent. This means subcarrier transmission should extend over more time
than frequency.

(a) Consider first the no-FTN case. With 𝛾 = 0.01 (99% PIB) and without FTN
scaling, the unit symbol time ℎ(𝑡) has 𝜀𝑡 = 1.06 and 𝜀𝑓 = 0.0672 (a total time
extent 3.13 s and single-sided frequency width 0.5672 Hz). The ratio 𝜀𝑡∕𝜀𝑓
is 15.8, and this is the optimal ratio 𝐾∕𝑁 of subcarriers to symbol times.

For a packet of size Ω = 100, the minimum occupancy is 1 × 1∕2 × (
√
100 +

2 × 0.0672 × 1.06)2 = 51 Hz-s, compared to 61 if 𝐾 = 𝑁 = 10, which is
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about 20% more. (The factor 1/2 accounts for I/Q). For packet size 10000,
these numbers are only 2% apart. With 𝛾 = 0.001 (99.9% PIB), 𝜀𝑓 = 0.112,
and 𝜀𝑡 = 2.45, and the savings grow. The optimal ratio 𝐾∕𝑁 is 21.9, and
packet size 100 has minimal occupancy 56 compared to 76. With packet size
10000, the minimal occupancy is about 5050, about 3% less than the 𝐾 = 𝑁

occupancy.

(b) Next consider the case then 𝜏 = 𝜙 = 0.7. With FTN applied, differences are
more dramatic. The𝑁∕𝐾 ratio is the same, but both 𝜀𝜏

𝑡
and 𝜀𝜏

𝑓
grow by 1∕0.7.

For packet size 100 and 99.9% PIB, the minimum and the𝐾 = 𝑁 occupancies

are 0.72 × 1∕2 × (
√
100 + 2 × 0.1119 × 2.45∕0.72)2 = 32 and 43 Hz-s. With

packet size 10000, these numbers are 2500 and 2630 Hz-s.

7.1.4 PSWF and Gauss Linear Modulation with FTN

The attractive pulses derived earlier can be accelerated in time and squeezed in
frequency just as were themore traditional orthogonal pulses. The subject is relatively
undeveloped at this writing but Mazo limits have been computed and a few practical
applications have been reported.

Interesting areas remain to be explored. Some thoughts and predictions are as
follows:

(i) In thinking about receivers, it is good to keep in mind that FTN distance
behavior is set mostly by the pulse main lobe, while the side lobes primarily
affect the signal occupancy. The main lobes of root RC, PSWF, and Gauss
pulses are all similar, and their FTN behavior will not vary much.

(ii) Gauss and PSWF pulses have a better balance of time and frequency; con-
sequently, they are narrower in time but wider in frequency than RC pulses.
The optimal simple basis (OSB) receiver structure, which works so well for
root RC pulses, requires that symbol-time sampling reconstruct the pulse
with reasonable accuracy (Section 2.2.1). A PSWF pulse with POB fraction
𝛾 equal, say, 0.01 can be taken to have a practical bandwidth of about 0.86∕𝑇
Hz, considerably more than the nominal bandwidth 0.5∕𝑇 of a root RC pulse.
Thus, the sampling interval in time FTN, that is, 𝜏𝑇 , needs to be about 𝑇 ∕2
or less with an OSB receiver. If this is inconvenient, new receiver designs
can be explored, especially fractional sampling methods.

(iii) The Gauss and PSWF pulse are mid phase, but FTN reception, with its strong
ISI, prefers minimum phase (Section 4.1.2). Minimum phase versions can
be obtained from these pulses by the MATLAB program recps or another
method, and then transmitted. By definition, all phase versions have the same
spectrum (Section 2.4), but their duration in the Slepian sense is somewhat
extended. A better alternative is to transmit the usual mid-phase pulses in the
channel and reduce them to minimum phase before the receiver by an allpass
filter (actually, extend them to maximum phase and reverse them).
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FIGURE 7.7 Estimated Mazo limit positions in the 𝜙--𝜏 plane for the standard Gauss pulse.
Solid limit is for general case, dashed limit is for alternate subcarriers delayed 0.5 symbol.
Contours of constant 𝜙𝜏 product are dotted. (Data taken from Reference 11 and private
sources.)

Mazo Limit for Gauss Pulses. For binary modulation symbols and time-only FTN
acceleration, the Mazo limit for the standard Gauss base pulse, Eq. (7.8) with 𝑎 =
1∕

√
2𝜋, is 𝜏 = 0.665.2 That is, 𝑑2

min = 2 for the signals generated by
√
𝜏ℎ(𝜏𝑡), for

all 𝜏 ≥ 0.665. The limit is the same with 4-ary modulation. The critical error event
difference in both cases is [2 -2]. The IOTA pulse, which has a very similar main
lobe, has limit 0.653 in both cases and the same event difference.

The occupancy Υ of the base pulse alone for POB fraction 𝛾 = 0.01 is 1.06, no
matter what the time scaling. With the standard base pulse (𝑇 = 1), Υ is divided into
a pulse time and frequency widths

 = (1∕
√
𝜋)𝑄−1(0.01∕2) = 1.453 seconds

 =  ∕2 = 0.727 Hz

for a product 1.06. Scaling the pulse twice as wide, for symbol time 2 or for FTN
reasons, gives 2.90 s and 0.364 Hz, with the same product.

For time--frequency FTN with subcarriers, the two-dimensional Mazo limit in the
𝜏--𝜙 plane has been computed [11] and some of the data appears in Figure 7.7 (the
calculation technique is in Section 5.2). The figure can be compared to Figure 5.7,
which is for root RCpulses. Aswith those pulses, the limit improves if attention is paid

2This can be computed easily with program mlsedist2 in Appendix 2A. Note that the calculation must
work with samples of the continuous pulse; a sampling rate fs equal 10 is sufficient. The calculation first
appeared in [8].
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TABLE 7.1 Best Known FTN Products on the Mazo Limit
Curve for Four Standard Base Pulses

ℎ(𝑡) 𝜙 𝜏 𝜙𝜏

Gauss 0.706 0.86 0.607
PSWF 1.15 0.52 0.598
30% rtRC 0.674 0.89 0.600
10% rtRC 0.660 0.84 0.556

to phase in the subcarriers. The dashed-line limit applies when alternate subcarriers
are delayed a half symbol time; its least 𝜙𝜏 product, and hence least occupancy,
improves by 10%. Overall, the Mazo limits for Gauss pulses are similar to root RC
limits, although the best Gauss limits are about 5% improved. The different parts of
the limit curves stem from different event families (Section 5.2.2), and some of the
component curves are extended to show this more clearly.

Comparison to Root RC Pulses. Table 7.1 compares the binary optimal time--
frequencyMazo limit configuration for root RC, Gauss, and PSWF pulses, that is, the
point on the limit with least product 𝜏𝜙. The values there are based on searches by the
author over difference error events at many combinations of 𝜏 and 𝜙. The modulation
base functions ℎ(𝑡) compared are 10 and 30% root RC, Gauss with 𝜎 = 0.399 and
the PSWF for POB fraction 𝛾 = 0.001. The standard ℎ(𝑡) are employed, and since
custom scales these rather differently, there is a wide variation in the optimal 𝜏 and 𝜙.
However, the product 𝜏𝜙 is independent of the particular scaling, and it interesting to
observe that the optimal product---the smallest product for which all difference events
apparently lead to 𝑑2 ≥ 2---is quite similar and near 0.6. This leads to the transmission
density 2∕0.6 = 3.33 bits/Hz-s. The reason for the similar behavior is likely that the
pulse main lobes are similar, and these dominate the Mazo limit outcome.

7.2 SAID’S OPTIMUM DISTANCE PULSES

Another line of analysis based on power out of band seeks to maximize the minimum
distance 𝑑min of the modulator’s ISI. This distance and its relation to ISI were
introduced in Section 2.5, and the central result there is that the symbol error rate of

an optimal demodulator is≈ 𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0), with𝐸𝑏 here the energy per bit of the

modulator symbols. The problem in this section can be stated: For𝑀-ary modulation
pulse ℎ(𝑡) and POB fraction 𝛾 , what ℎ(𝑡) maximizes 𝑑min?

This question was primarily studied by A. Said [12,13]. His key discovery was
that the solution can be found by linear programming. The array of techniques in
that field lead quickly to answers. The outcome is tap sequences of the form {𝑐𝓁}
introduced for root RC pulses in Sections 2.4 and 2.5 and used throughout the book.
But the new pulses have higher 𝑑min for their POB than we have seen so far. Said’s
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method is the subject of Section 7.2.1 and some of his optimal tap sets are discussed
in Section 7.2.2.

The new tap sets {𝑐𝓁} are designed to be used just as those for root RC pulses
were in earlier chapters: The analog modulator base pulse is created from ℎ(𝑡) =∑

𝑐𝓁𝜑(𝑡 − 𝓁𝑇 ), where 𝑇 is the modulator symbol interval and 𝜑(𝑡) is a suitable 𝑇 -
orthogonal interpolation pulse. Because the taps have bandwidthmuch less than 1∕2𝑇
Hz, the simple OSB receiver structure in Section 2.2 is suitable, with its filter matched
to 𝜑(𝑡). Asymptotically in 𝐸𝑏∕𝑁0, the new pulses lead to better demodulation at a
given POB. Of this there is no doubt. Their behavior with BCJR soft demodulation
and poor 𝐸𝑏∕𝑁0 in the early stages of iterative decoding is another question that
needs investigation. Some surprises await: Some of the good minimum distance can
reside in the out-of-band power, a phenomenon called escaped minimum distance.

7.2.1 Linear Programming Solution

What follows are the high points of Said’s linear programming (LP) solution for best
pulse ℎ(𝑡) at a fractional POB 𝛾 . The method is widely applicable and more details
can be found [14], Chapter 6; full details appear in Said’s thesis [12].

The key to the method is that distance and spectrum are both linear functions of
the pulse autocorrelation. The method solves for that, then finds a tap set from the
zeros of the autocorrelation. Let us focus on the case where ℎ(𝑡) can be reproduced
by its symbol--time samples 𝑐𝓁 = ℎ(𝓁𝑇 ).

(i) That the minimum distance of the tap set is a linear function of the autocorrela-
tion of {𝑐𝓁}was introduced in Section 2.4. The normalized Euclidean distance
between two signals with modulator symbol differences {Δ𝑢𝓁} is in fact

𝑑
2 = (1∕2𝐸𝑏)∫ ||

∑
𝑛

Δ𝑢𝑛ℎ(𝑡 − 𝑛𝑇 )||2 d𝑡 = (1∕2𝐸𝑏)
∑
𝑛

∑
𝑘

Δ𝑢𝑘𝜌ℎ[𝑛 − 𝑘]Δ𝑢∗
𝑛
,

(7.17)

with 𝜌[⋅] the discrete-time autocorrelation.

(ii) The PSD of the modulated signal 𝑠(𝑡) is given by

|𝑆(𝑓 )|2 = |||
{∑

𝓁

𝑐𝓁ℎ(𝑡 − 𝓁𝑇 )
}|||

2
= |𝐻(𝑓 )|2 ||

∑
𝓁

𝑐𝓁 exp(−𝑗2𝜋𝓁𝑓𝑇 )||2

= |𝐻(𝑓 )|2∑
𝑘

𝜌[𝑘] exp(−𝑗2𝜋𝑘𝑓𝑇 ). (7.18)

This again is a linear function of 𝜌[⋅].
(iii) Since the fractional POB 𝛾 will be the constraint, we wish to express that in

terms of 𝜌[⋅]. By the POB definition,

𝛾 = ∫|𝑓 |>𝑊 (1∕𝑇 )|𝑆(𝑓 )|2 d𝑓 (7.19)
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(assume the entire integral is unity). Define the discrete-time working variable

𝜒[𝑘] = ∫
𝑊

−𝑊
|𝐻(𝑓 )|2 exp(−𝑗2𝜋𝑘𝑓𝑇 ) d𝑓. (7.20)

After some manipulation, the POB constraint becomes

1 − 𝛾 =
∑
𝑘

𝜌[𝑘]𝜒∗[𝑘]. (7.21)

This expresses 𝛾 as a function of a bandwidth [0,𝑊 ]. It may be necessary to solve
the LP several times to find the 𝑊 that connects to a desired 𝛾 .

The following semi-infinite dual-form LP now solves for the largest 𝑑min for the
given error difference:

Find 𝑑
2
opt = max

𝜌
𝑑
2(𝝆,Δ𝒖), (7.22)

in which 𝑑
2(𝝆,Δ𝒖) is Eq. (7.17), subject to the linear constraints

∑
𝑘

𝜌[𝑘]𝜒[𝑘]∗ = 1 − 𝛾 Bandwidth [Eq. (7.21)]

𝜌[0] = 1 Total energy∑
𝑘

𝜌[𝑘] exp(−𝑗2𝜋𝑘𝑓𝑇 ) ≥ 0, 𝑓 ∈ [0, 1) Admissibility [Eq. (7.18)]

The third constraint means the PSD is positive real. In the LP solution, the constraint
≥ 0 is replaced by ≥ 𝜖, 𝜖 small, to guard against numerical errors. There are actually
infinitely many constraints here.

The search for the optimal 𝜌[𝑘] is not complete because we must optimize over the
error sequences Δ𝒖 that may present themselves. It is usually the case that only a few
sequences can affect the ultimate minimum distance, for example, short sequences
or zero-sum sequences or a set known from a previous optimization. These may be
placed in a set  of suspicious differences and the following strategy adopted. Define
a new 𝛿 and require that 𝑑2 = 𝑑

2(𝝆,Δ𝒖) ≥ 𝛿 for a given Δ𝒖. Modify the LP to

Find 𝑑
2
opt = max

𝜌
min
𝛿

𝛿 (7.23)

with the new constraints

𝑑
2(𝝆,Δ𝒖) ≥ 𝛿, all Δ𝒖 ∈  ,

in addition to the constraints in Eq. (7.22).
We have now the optimum 𝝆, provided that the error sequence that actually leads

to the minimum distance for 𝝆 is in  . That can be tested by finding the minimum
distance for 𝝆, with no restriction on Δ𝒖. Several efficient algorithms exist for this
purpose, and a summary of these can be found in References 12 or 14, Section 6.3.2.
If a sequence not in  turns out to cause a smaller distance than 𝛿, the new error
sequence is added to  and the LP is repeated.
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FIGURE 7.8 Bandwidth 𝑊 𝑇 versus 𝑑2
min for optimal PIB binary and 4-ary modulator tap

sets found by Said; 99 and 99.9% (dashed) PIB. Quadratic approximation to 𝑑
2 is shown

dotted. (Data abstracted from Reference 14, Appendix 6A).

In actuality, finding a minimum distance and solving an LP are each an art in
themselves. The fine points and some generalizations are omitted here and can be
found in References 12 or 14 and elsewhere.

7.2.2 Optimal Modulation Tap Sets

Results of the foregoing LP calculation are shown in Figure 7.8 as𝑊 𝑇 (Hz-s) versus
𝑑
2
min, for 15-tap binary and 4-arymodulation with 99 and 99.9%PIB. For comparison,

binary sinc pulse modulation has 𝑊 𝑇 = 0.5 at 𝑑2
min = 2, the upper left corner. Said

proved lower and upper bounds to the optimal tap set minimum distance, which all
track (𝜋𝑊 𝑇 )2 for small 𝑊 𝑇 . An approximate fit of this relationship to the data is
shown in the figure; the accuracy is striking. Results are available for shorter tap sets
and for 4QAM modulation [12,14,15]. In the last, the taps are complex valued and
cross-dependencies are allowed between I and Q components; the outcome is similar
to 4PAM, although the modulator input is now two-channel binary.

Figure 7.9 compares the discrete-time responses of several optimal tap sets at
different bandwidths. The spectra of these responses have sharp cutoffs at the respec-
tive bandwidths. They function in effect as lowpass filters on the simple modulator
output, which can be seen from their successively longer responses. All the tap sets
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FIGURE 7.9 Optimal modulator tap sets for the 2PAM, 99.9% PIB points at 𝑊 𝑇 =
0.09, 0.20, 0.30 in Figure 7.8. Taps are symbol time 𝑇 spaced.

have much smaller bandwidth than 1∕2𝑇 Hz, so the full modulator base function ℎ(𝑡)
can be obtained from these samples with a suitable 𝑇 -orthogonal interpolation pulse.

A selection of tap sets is listed in Appendix B.

Escaped Distance. Because the escaped distance phenomenon often occurs in nar-
rowband signaling, it is worth a side trip to investigate it here. The concept was
introduced in Section 2.5.2 and Figure 2.11. By finding the Fourier transform of
a difference event signal, we can see how the event’s distance is distributed in
frequency. It may seem odd that significant distance can exist outside the design
bandwidth of a signal set, but signals with narrow bandwidth have high symbol en-
ergy and small distance, and a significant part of the distance can fall in the out of
band fraction 𝛾 even when it is small.

Example 7.3 (Escaped Distance with a 99% PIB Pulse)

A rather extreme example occurs with the 15-tap optimal pulse for bandwidth
𝑊 𝑇 = 0.12, binary modulation and 99% PIB. The taps 𝑐𝓁 ,𝓁 = 0,… , 14 are given
in Appendix B. Using program mlsedist2 in Appendix 2A, it turns out that
𝑑
2
min = 0.255 with difference error sequence Δ𝒖 = [2 -2 -2 2 2 -2] (use fs = 1 and

see Section 2.5.2 for an explanation of error differences). From Eq. (2.53), the power
spectrum of the signal error difference is

|𝑆1(𝑓 ) − 𝑆2(𝑓 )|2 = ||{∑
𝑘

Δ𝑢[𝑘]ℎ(𝑡 − 𝑘𝑇 )
}||2

= |𝐻(𝑓 )|2 ||
∑
𝑘

Δ𝑢[𝑘] exp(−𝑗2𝜋𝑘𝑓𝑇 )||2, (7.24)
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FIGURE 7.10 Power spectral density of the 𝑑min-causing error difference event (solid line)
for the optimum 15-tap set at 𝑊 𝑇 = 0.12 Hz-s and 99% PIB. Full signal PSD is dotted line.
Only the positive frequency half of PSDs is shown.

in which ℎ(𝑡) =
∑

𝓁 𝑐𝓁𝜑(𝑡 − 𝓁𝑇 ) is constructed from the taps with a suitable 𝑇 -
orthogonal interpolation function 𝜑(𝑡). The integral over all 𝑓 here is 𝑑

2
min and

the integral over |𝑓 | > 𝑊 𝑇 is the escaped square distance. Figure 7.10 plots the
square distance distribution over frequency, together with the much larger signal
PSD |𝑆(𝑓 )|2. The square distance that escapes bandwidth 𝑊 𝑇 = 0.12 Hz is 0.200,
which is 78% of 𝑑2

min.
The example shows a dramatic case, because the band limitation is extreme, the

POB fraction 𝛾 is rather generous and the event multiplicity factor is small. Reducing
𝛾 to 0.001 forces more of the minimum distance inside the bandwidth constraint; for
𝑊 𝑇 = 0.12 Hz-s, 𝑑2

min becomes 0.053, a small number, but most of this lies inside
[−0.12, 0.12] Hz-s. It is approximately equal the square distance that does not escape
in the 99% case. The effect of escaped distance can be included in the LP optimization
and in a search for minimum distance for a tap set by replacing the ordinary distance
measure with the spectral one.

Whether escaped distance is a problem depends on what happens to signal com-
ponents outside the PIB bandwidth constraint. If there is a severe channel filter at
that bandwidth, or if there is heavy interference, the signaling will indeed act like its
minimum distance lacks the escaped part.

7.2.3 Coded and Uncoded Error Performance

Both earlier chapters and Section 7.2.2 offer methods to reduce modulator spectrum
and energy. The goal of this section is to compare Section 7.2.2 signals to the earlier
ones. It is challenging to do so because spectrum in this chapter is measured by the
POB criterion, whereas earlier spectra utilize the half-power method. One strategy is
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TABLE 7.2 𝒅𝟐
𝐦𝐢𝐧 at Nominal 2 and 4 Bits/Hz-s for PAM Modulation Reference, 30%

Root RC Pulse with 𝝉 = 𝟏∕𝟐, and the Optimal-Distance Pulse. POB fraction 0.01 and
0.001. Parentheses Indicate dB Gain Over Reference.

ℎ(𝑡) 2 b/Hz-s (0.01) 4 b/Hz-s (0.01) 2 b/Hz-s (0.001) 4 b/Hz-s (0.001)

PAM Ref. 0.8 0.094 0.8 0.094
30% rtRC 1.01 (1.0) 0.154 (2.1) 1.01 (1.0) 0.154 (2.1)
Optimum 1.30 (2.1) 0.503 (7.3) 1.19 (1.7) 0.28 (4.8)

to equate POBs. The 30% root RC pulse measures 0.567 𝜏∕𝑇 and 0.612 𝜏∕𝑇 Hz at
𝛾 = 0.01 and 0.001 fractional out of band power and time-FTN 𝜏, taking the constant
symbol view of Eq. (2.51). Given a 𝜏, one can match up an optimal tap set that has
the corresponding bandwidth and POB.

Uncoded Transmission. For POB fraction 0.01, a convenient match in parameters
occurs when the 30% root RC pulse has FTN 𝜏 = 1∕2 and the optimal tap set
is designed for 0.283∕𝑇 Hz (that is, 0.283 Hz-s). The FTN case has bandwidth
1∕2 × 0.567∕𝑇 = 0.283∕𝑇 at POB 0.01. Minimum distances can then be compared;

they predict the error performance ≈ 𝑄(
√

𝑑
2
min𝐸𝑏∕𝑁0) in uncoded transmission, and

affect the speed of convergence in the coded case. (How to calulate distance appears
in Appendix 2A and Example 2A.3).

As was done in Chapter 4, these modulations can be compared to the simple
modulation reference that has the same bits/Hz-s. For the 2- and 4-ary cases, these
are 4PAM at 4 bits/Hz-s and 16PAM at 8 bits/Hz-s; coupled to a 30% root RC pulse,
they have the same 0.567∕𝑇 Hz bandwidth at POB 0.01.3 (A full 4PAM reference
line can be seen in Figure 4.15) A comparison of all these distances is shown in Table
7.2. Decibel gain over the reference is shown in parentheses; this is the dB reduction
in the asymptotic 𝐸𝑏∕𝑁0 required to achieve a symbol error rate (SER).

For POB 0.001, the 𝜏 = 1∕2 root RC pulse has bandwidth ≈ 0.305∕𝑇 Hz and the
optimal tap set is designed for the same. The root RC and reference distances are
unchanged. Distances and gains appear in the table.

Table 7.2 shows that moderate but significant gains are available from uncoded
optimal tap sets at 2 bits/Hz-s, both over simple modulation and over traditional root
RC pulses that are FTN-accelerated. At 4 bits/Hz-s, the gains grow much larger. One
canmake comparisons at other FTN 𝜏, with roughly similar results. This improvement
at higher bit densities is similar to that shown in Figures 4.14 and 4.15.

Figure 7.11 compares measured SER of the 4-ary modulation with base pulse
ℎ(𝑡) =

√
4∕9 𝑓 (4𝑡∕9), 𝑓 (𝑡) the 30% root RC pulse, to the SER of the optimal pulse

for POB 0.01 and bandwidth 0.250∕𝑇 . These two pulses have approximately the

3The bit densities given here and in the table are kept nominal for easier comparison to earlier chapters.
The true densities at POB 0.01 are 4 and 8 × (0.5∕0.567), or 3.53 and 7.05 bits/Hz-s; at POB 0.001 they
are 3.27 and 6.54 bits/Hz-s.
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FIGURE 7.11 4-ary modulation SER versus 𝐸
𝑏
∕𝑁0 in dB for the optimum 15-tap set

and the set derived from 30% root RC with FTN 𝜏 = 4∕9. Both have POB 0.01 bandwidth
𝑊 = 0.250∕𝑇 Hz.

same 1% POB bandwidth, and respectively 𝑑
2
min = 0.137 and 0.342. These distances

lie nearly 4 dB apart asymptotically and the performance difference is obvious in the
figure.

Mazo Limits. A measurement in this spirit can be performed by finding the least
bandwidth at which optimal tap sets achieve the matched filter bound distance 𝑑0.
For POB 0.01, it is about 0.36∕𝑇 Hz for both 2- and 4-ary modulation (compare
to 0.567∕𝑇 for 30% root RC simple modulation). For POB 0.001, it is 0.39∕𝑇 and
0.40∕𝑇 Hz, respectively (compare to 0.612∕𝑇 ).

Coded Transmission. Recall from Chapter 4 that the progress of iterative decoding
breaks into three phases, an initial threshold, which is set by the modulator ISI---
convolutional code interaction over a very poor channel, a convergence phase, set
mostly by the modulator ISI distance distribution, and a final outcome, set by the
convolutional code’s error rate on an ISI-free channel with the same 𝐸𝑏∕𝑁0. The
optimal-distance modulator ℎ(𝑡) in this section can at most speed the second phase,
the convergence. The first stage depends on more subtle properties than minimum
distance.

In order to compare coded time-FTN transmission, we match up root RC and
optimal distance tap sets by the same procedure as before. A mid-range parameter
choice with excellent bandwidth efficiency is 4-ary time FTN with 𝜏 = 4∕9 applied
to a 30% root RC pulse on the one hand, and Said’s optimal pulse at𝑊 𝑇 = 0.250 on
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the other. This is the same comparison as shown in Figure 7.11. Both modulations
achieve nominal 6 bits/Hz-s, and have the same 1% POB bandwidth, ≈ 0.250 Hz-s.
The root-RC ISI has 𝑑

2
min = 0.137 and the optimal taps have 0.342, a 4 dB gain.

With the same convolutional codes and maps as in Chapter 4, Figure 4.16, the error
preformance turns out to be similar to that figure, but about 0.3 dB worse in the
threshold region, that is, the needed 𝐸𝑏∕𝑁0 there moves rightward. The reason is
that the optimal taps have a poorer overall distance distribution. The improved 𝑑min
value leads to a somewhat improved decoder BER when 𝐸𝑏∕𝑁0 is high enough to
drive the BER below 10−4.

7.3 CONCLUSIONS

Slepian PSWF base pulses have optimal time--frequency occupancy, which is much
lower than competing pulses. Some of this carries over into subcarrier linear modu-
lation, especially if it makes use of FTN techniques.

Gauss and IOTA pulses are similar in their time main lobes and lead to good
savings unless the power out of band fraction 𝛾 is very small.

Said’s optimal 𝑑min pulses can lead to several decibels’ improvement in modulator
error performance at higher SNR values. The price paid for Gauss, PSWF, and Said
pulses is loss of base pulse orthogonality. IOTA pulses retain this.

The escaped distance phenomenon occurs because the difference energy between
signals lies outside the nominal design bandwidth. The loss can be a serious factor.

APPENDIX 7A: CALCULATING THE PSWF

Program 7A.1 PSWF and Allied Quantities

Pulses that minimize time--frequency occupancy are related to prolate spheroidal
wave functions (PSWFs). This appendix presents a MATLAB function that solves for
the PSWF that stems from the time and bandwidth limits  seconds and  Hz. In
the program, these are called𝑊 and 𝐿, the latter chosen to avoid confusion with the
modulation symbol time 𝑇 . The program goes on to compute needed parameters, and
in particular it calculates the related standard modulation base function ℎ(𝑡).

As developed in Section 7.1.1, a PSWF in our context is the principal eigenfunction
of the linear integral operator in Eq. (7.1). It depends only on the product  in
the sense that solutions with the same product but 𝐴 are simply scaled in time
by 𝐴. The function [gam,ev,ef,pulse]=pswfpuls(L,W,t) computes the
eigenfunction ef and its eigenvalue ev when  and  are L and W and the desired
time base for the eigenfunction is t. It also computes the modulation pulse for
which the minimal energy fraction gam in time and frequency (𝛾 in Section 7.1.1)
lies outside time [−𝐿∕2, 𝐿∕2] and [−𝑊 ,𝑊 ]. The fraction 𝛾 is a consequence of
the choice of L and W; if a certain fraction is desired, solutions for successive L
and W must be performed until 𝛾 is reached. Higher products lead to smaller 𝛾 . The
computation of 𝛾 uses Eq. (7.5).
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By setting L to 1, the standard base pulse is obtained, that is, the modulation pulse
ℎ(𝑡) that corresponds to symbol time 𝑇 = 1 when there is no FTN time modification.
The time base tmust be uniform and must include the interval [−𝐿∕2, 𝐿∕2]. Larger
𝛾 require longer time bases.

The routine works by iterating the operator (7.1) to find the PSWF. The iterations
beginwith theGaussian approximation Eq. (7.2), applied to the times in [−𝐿∕2, 𝐿∕2].
Because of the nature of the operator’s eigenvalues, the convergence slows as the
product 𝐿𝑊 grows, but then the Gaussian start function becomes very accurate.
The outcome is that convergence occurs in 1--3 iterations for useful values of 𝛾 . An
alternate way to find a PSWF is with the MATLAB function dpss, which expresses
the problem in discrete time and then finds the eigenfunctions of a certain matrix.
Only a part of the modulation pulse can be found this way, but the outcome can be
used to initiate the linear operator iterations.

Example calculations appear in Section 7.1.1.

function [gam,ev,ef,pulse]=pswfpuls(L,W,t)
% Function [ev,gam,ef,pulse]=pswfpuls(L,W,t) finds the PSWF ’ef’ for time
% [-L/2,L/2] and bandwidth [-W,W]. It finds also the corresponding unit-energy
% ’pulse’, the time & spectral POB fraction gamma ’gam’ and the eigenvalue ’ev’.
% Specify desired uniform time base ’t’ as a row; it must include [-L/2,L/2]
% and time 0.

int=t(2)-t(1); pts=length(t); %Initialize
ef=zeros(1,pts); pulse=ef;
if t(1)>-L/2 | t(end)<L/2, %Illegal timebase?

disp(’ILLEGAL TIMEBASE’), return, end
rg=find(t>=-L/2 & t<=L/2); tr=t(rg); lg=length(rg); %Times in [-L/2,L/2]
lt=rg(1)-1; rt=rg(end)+1; ctr=floor((lg+1)/2); %Element locations
if abs(tr(ctr))>1e-6, %Check consistency

disp(’INCONSISTENT CENTER TIME’), return, end
disp([’W,L,WL = ’,num2str([W L W*L])])

% Initialize recursion with Gaussian
sg2=2*L/(4*pi*W); %2*variance
y=exp(-(tr.ˆ2)/sg2)/sqrt(pi*sg2); %Gauss fn.
y=y/sqrt(int*sum(y.ˆ2)); %Unit energy
%plot(tr,y,’g’) %Show Gauss fn.
% Iterate PSWF operator on full ’t’ until EV converges.
evold=2; ev=1; nm=0; w2=2*W;
while abs(evold-ev)>.000001, nm=nm+1; %Recursion loop

for k=1:pts,
ef(k)=int*sum(w2*sinc(w2*(t(k)-tr)).*y); end %PSWF integral

evold=ev; ev=sqrt(int*sum(ef.ˆ2));
disp([’Iter. ’,num2str(nm),’ EV = ’,num2str(ev)]) %Display EV
ef=ef/ev; y=ef(rg); %Re-normalize

end
gam=1-cos(acos(sqrt(ev))/2)ˆ2; %Gamma for EV
disp([’Gamma fraction is ’,num2str(gam)])

% Find pulse from full PSWF and gamma fraction.
% ’gam’ is fractional time & frequency POB for this EV and pulse.
% If it is unacceptable, raise/lower it by lower/raising WL product
% and run again.
co=sqrt(gam/(1-ev)); ci=sqrt((1-gam)/ev); pulse(1:lt)=co*ef(1:lt);
pulse(rt:end)=co*ef(rt:end); pulse(lt+1:rt-1)=ci*ef(lt+1:rt-1);
pulse=pulse/sqrt(int*sum(pulse.ˆ2)); %Norm to unit energy
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TABLE 7B.1 Optimal Tap Sets with the PIB Constraint

2PAM, 99% PIB

𝑊 𝑇 = 0.30, 𝑑2 = 1.56 0.410 0.580 0.366 -0.082 -0.040 -0.049 -0.272 -0.403 -0.040 0.168 -0.054 -0.185 0.009 0.200 0.080
0.26, 1.14 0.352 0.631 0.505 0.132 -0.124 -0.018 0.258 0.145 -0.057 -0.067 -0.012 -0.035 -0.154 -0.243 -0.096
0.20, 0.711 0.270 0.487 0.575 0.444 0.180 -0.138 -0.215 -0.140 -0.011 -0.023 -0.051 -0.129 -0.138 -0.065 0.044
0.15, 0.376 0.208 0.331 0.414 0.393 0.266 0.080 -0.182 -0.353 -0.387 -0.309 -0.139 -0.041 0.077 0.106 0.058
0.12, 0.253 0.157 0.251 0.299 0.339 0.348 0.276 0.147 -0.023 -0.185 -0.299 -0.349 -0.323 -0.276 -0.221 -0.119
0.09, 0.132 0.142 0.105 0.194 0.284 0.290 0.378 0.372 0.372 0.346 0.327 0.242 0.188 0.131 0.085 0.044

2PAM, 99.9% PIB

𝑊 𝑇 = 0.36, 𝑑2 = 1.60 0.390 0.538 -0.211 -0.596 0.015 0.225 -0.074 0.030 0.019 -0.247 -0.065 0.150 -0.035 -0.110 -0.008
0.30, 1.17 0.294 0.663 0.605 0.136 -0.118 -0.007 0.014 -0.154 -0.142 0.048 0.051 -0.109 -0.113 0.009 0.045
0.26, 0.840 0.218 0.541 0.630 0.303 -0.150 -0.295 -0.109 0.044 -0.034 -0.159 -0.119 0.019 0.073 0.025 -0.007
0.20, 0.454 0.143 0.345 0.527 0.548 0.364 0.070 -0.175 -0.255 -0.186 -0.073 -0.014 -0.029 -0.060 -0.060 -0.032
0.15, 0.118 0.090 0.197 0.312 0.385 0.377 0.269 0.084 -0.124 -0.293 -0.375 -0.362 -0.280 -0.170 -0.072 -0.016
0.12, 0.052 0.079 0.142 0.219 0.308 0.375 0.417 0.421 0.384 0.320 0.238 0.154 0.085 0.035 0.001 -0.007

4PAM, 99% PIB

𝑊 𝑇 = 0.15, 𝑑2 = 0.551 0.429 0.610 0.368 -0.034 -0.040 0.006 -0.189 -0.241 -0.010 0.025 -0.242 -0.177 0.125 0.319 0.085
0.12, 0.315 0.315 0.446 0.448 0.041 -0.263 -0.316 -0.093 0.012 -0.057 -0.125 0.035 0.289 0.371 0.277 0.055
0.09, 0.193 0.262 0.406 0.509 0.421 0.140 -0.167 -0.331 -0.342 -0.157 0.003 0.093 0.033 -0.032 -0.105 -0.097
0.065, 0.103 0.179 0.209 0.303 0.354 0.387 0.239 0.121 -0.042 -0.199 -0.337 -0.352 -0.323 -0.260 -0.160 -0.095
0.045, 0.053 0.142 0.106 0.195 0.284 0.290 0.380 0.373 0.371 0.347 0.326 0.240 0.187 0.133 0.084 0.041

4PAM, 99.9% PIB

𝑊 𝑇 = 0.15, 𝑑2 = 0.254 0.269 0.543 0.405 -0.118 -0.336 -0.095 0.022 -0.254 -0.418 -0.182 0.112 0.155 0.109 0.082 0.066
0.12, 0.109 0.181 0.413 0.547 0.387 0.036 -0.267 -0.334 -0.242 -0.167 -0.149 -0.094 0.018 0.137 0.142 0.080
0.09, 0.044 0.122 0.277 0.439 0.529 0.489 0.299 0.078 -0.101 -0.142 -0.068 0.061 0.140 0.163 0.117 0.052
0.065, 0.017 0.081 0.149 0.246 0.346 0.423 0.449 0.430 0.359 0.258 0.153 0.056 -0.005 -0.032 -0.035 -0.031
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APPENDIX 7B: OPTIMUM DISTANCE TAP SETS

What appears in Table 7B.1 are length-15 optimal-𝑑min tap sets 𝑐𝓁 , 𝓁 = 0,… , 14
computed by A. Said. These are for use in 2PAM and 4PAM modulation with a PIB
constraint. They provide the best 𝑑min sets for constraints 99 and 99.9% power inside
a bandwidth [−𝑊 𝑇 ,𝑊 𝑇 ] specified in Hz-s, or alternately in Hz with symbol time
𝑇 = 1 s. The modulation base function is ℎ(𝑡) =

∑
𝑘
𝑐𝓁𝜑(𝑡 − 𝓁𝑇 ), where 𝜑(𝑡) is a

suitable 𝑇 -orthogonal interpolation function, that is, one with flat spectrum in the
frequency range of interest.

All shown tap sets are minimum phase. Many further sets, including shorter ones
and sets designed for 4QAM modulation, are available in References 13 and 15.
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