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Preface

Much has changed since the first edition of Microcontrollers and Microcomputers: Principles of
Software and Hardware Engineering. Many more microcontrollers are available, and advances
in integrated circuit technology now allow many features needed in an embedded system 0 be
integrated into the microcontroller, making system design much easier.

As the hardware has improved over the years, so has the software development environ-
ment. In earlier days, software was written in assembly (or C) and downloaded to RAM for
testing. ROM-based debugging monitor programs allowed students to run their programs.
set breakpoints, trace and inspect registers and memory to verify that the program was run-
ning correctly, and debug it if it was not. Sometimes simulators were used. but these were
limited in how they simulated input and output functions. Nowadays we implement many
software designs in a high-level language, primarily C. Development environments like
Freescale Semiconductor’s CodeWarrior® offer assembly. C, and C++ languages along with
sophisticated, high-level debugging tools. Chip manufacturers, too, have integrated into their
microcontroller chips development and debugging features such as Background Debugging
(Freescale), On-Chip Debugging (Atmel, Microchip), Embedded ICE® (Cirrus Logic), and
JTAG Debug (Maxim, TI). These hardware and software tools, along with copious amounts
of Flash program memory, have made the development of embedded applications much easier
than in the past. Nonetheless, students must have basic knowledge about the microcontrollers
and microcomputers before they can apply the new tools in embedded systems.

This edition of Microcontrollers and Microcomputers: Principles of Software and Hardware
Engineering is designed 1o be an ideal introductory text in an embedded system or micro-
controller course. It is not targeted toward, nor does it describe, any specific microcontroller
or microprocessor. While there are some assembly language code examples taken from the
Freescale HCS12 microcontroller, these serve only as an introduction to lead students into
the assembly language of their own microcontroller’s. The matenial in this book is aimed at
sophomore, junior, or senior electrical engineering, computer engineering, Or computer sci-
ence students taking a first course in embedded systems or microcontroliers. Although many
program examples are given in C and a chapter is devoted to the use of C in an embedded
application, students will benefit by having a prerequisite high-level language course, prefer-
ably C. Because the text is purposefully not processor-specific, it can be used with processor
specific material, such as manufacturers’ data sheets and reference manuals, or with texis

such as Software and Hardware Engineering: Motorola M6SHC 1 I, or Software and Hardware
Engineering: Motorola M6SHCI2.

The fundamental operation of standard microcontroller features such as paraliel and seria
1/0 interfaces, interrupts, analog-to-digital conversion, and timers is coverad. with attentios

L
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Preface xi
paid to the electrical interfaces needed. One chapter is devoted to showing how a variety of 10. Interrupts and Real-Time Events: The general principles of interrupts appropriate for
devices can be used

any microcontroller are covered. Hints for writing interrupt service routines or handlers
are given.

Memory: This chapter covers the basic principles of memory elements and memory
rganization and Features

architectures. We explain the different types of memory and discuss the interaction of
memory with the CPU.
This edition of Microcontrollers and Microcomputers: Principles of Software and Hardware 12. Serial I/O: Many engineers have a terrible time with serial interfaces, especially
Engineering includes much of the first edition, with additional chapters and material developed
in the ten years since the book was originally published.

the RS-232-C “standard,” because they do not understand how all the signals in the

standard interface are used. This chapter describes the asynchronous serial /O and
its RS-232-C standard interface. Other electrical interfaces used in serial. including

1. Introduction: The introduction contains a description of the von Neumann and RS-422, RS-423, and RS-485 VO, are described. The synchronous serial peripheral
Harvard architectures and gives definitions used throughout the text. A time line gives interface (SPI) and the inter-integrated circuit (IIC or I°C) interfaces are shown. and
a brief history of microcontroller development the controller area network (CAN) bus is introduced. Examples showing how to use

2. General Principles of Microcontrollers: The general operating principles of micro- the SPI to send data to an LCD module and the I*C to read a temperature sensor are
controllers are illustrated by means of a register-transfer design of a processor, dubbed given.
the picocontroller. Students are shown how defining a set of instructions can lead to a 13. Analog Input and Output: Because computers must read analog information and
hardware design, including the sequential controller needed in a stored program com- act upon it, this chapter considers the world of analog signals. System aspects of the
puter. The chapter also describes the software development environment students will analog-to-digital conversion process are given with design procedures. Both analog-to-
use in the laboratory digital and digital-to-analog converter types are described.

3. Structured Program Design: The principles of top-down design are presented in this 14. Counters and Timers: Many embedded applications require a timer o generate wave-
chapter. Students should be exposed to the need for software design before starting 10 forms of a specific frequency, to time external events, to count events. and to generate
write programs for their microcontroller interrupts at specific intervals. This chapter looks at the basic operation of the timer

4. Introduction to the CPU: Registers and Condition Codes: This chapter describes circuits found in modern microcontrollers.
the registers found in all microcontrollers. Students are asked to describe their own 15. Single-Chip Microcontroller Interfacing Techniques: This. the largest chapter in the
processor’s registers and condition codes in chapter exercises book, describes a variety of real-world interfaces not covered in earlier chapters. These

S. Memory Addressing Modes: This chapter, which will be useful in courses that include simple input and output devices, switches. LEDs, and keypads. Parallel VO
teach an assembly language, describes the addressing modes commonly used in expansion sometimes needed for microcontrollers with limited VO is shown. Input and
microcontrollers Pl ‘ output 1/O electronics show students how to protect the fragile microcontroller from

6. Assembly Language Programming: This chapter shows the students how they might u“_‘ cruel world. DC ‘}“d stepper motors are described, and C program stepper motor
organize an assembly language program and how to accomplish structured program- driver modules are given.
ming constructs in assembly. Although this text is processor independent, Freescale 16. Real-Time Operating Systems: Our final chapter is a brief overview of real-time
Semiconductor HCS12 assembly code is used in examples operating systems. It can serve as an introduction for students going on 1 @ more

7. C Programming for Embedded Systems: This chapter shows how programming advanced microcontroller course that will use real-time system.
in C for an embedded system differs from programming for a desktop computer The Appendix contains a review of binary codes and binary arithmetic.
application. It is not an introductory instruction in C programming. We assume that | Each chapter has a variety of relevant problems. We subscribe to POGIL, the active learni
students have learned C in another programming course, there are many programming paradigm for process oriented, guided inquiry learning. (see hitp://www.pogil.org). The pix
examples in C throughout the text |

%. Debugging Microcontroller Software and Hardware: Almost all of us download

lem set questions are grouped into those that allow students to explore the body of knowled

to stimulate their thought processes, and to challenge them 10 expand their knowledge ¢
expertise. Finally, the POGIL model asks students to look back, or reflect on what they b

Almost all of us are disappointed. Programs rarely work the first time. This chapter \ learned. The text contains answers to selected problems.

presents some debugging strategies and techniques and shows how a modern program

debugger. such as CodeWarrior, can be used. It also shows some of the common mis-

A letter or letters in [ ... ] at the end of each of the end of chapter problems signifies that

problem in some way tests that the student meets ABET accreditation criteria for Outco
: a-K as follows:

our programs, push the run button. and expect the program to work the first time.

i
takes beginning assembly and C language programmers make and gives hints on how
to find them

9. Computer Buses and Parallel /O: This chapter describes parallel VO interfaces.
microcontroller /O, and IO software synchronization

a. An ability to apply knowledge of mathematics, science, and engineering.
b. An ability to design and conduct experiments, as well as (0 analyze and interpret &
¢. An ability to design a system, component, Or process to meet desired needs.




xii Preface
d. An ability to function on multi-disciplinary teams.
¢. An ability to identify, formulate, and solve engineering problems
f. An understanding of professional and ethical responsibility.
. An ability to communicate effectively.
h. The broad education necessary to understand the impact of engineering solutions ina
global and societal context.
i. A recognition of the need for, and an ability to engage in lifelong learning
J. A knowledge of contemporary issues.
k. An ability to use the techniques, skills and modern engineering t0ols necessary for engi-
neering practice.
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Introduction

1.1 Computers, Microprocessors, Microcomputers, Microcontrollers

A computer system is shown in Figure 1-1. We see a CPU, or central processor unit, memory
(ROM and RAM), containing the program and data, an //O interface with associated input and
output ports, and three buses connecting the elements of the system together. The organization
of the program and data into a single memory block is called a von Newmann architecture. after
John von Neumann, who described this general-purpose, stored-program computer in 1945,

In Figure 1-1 the data, address, and control buses consist of many wires. for example 8, 16, 32
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Figure 1-1 Von Neumann computer architecture.
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Figure 1-2 Harvard computer architecture.

or more, that carry binary signals from one place to another in the computer system. This is
a classical computer system block diagram, and all computers discussed in this text have this
basic architecture.

There is another major computer architecture type called the Harvard architecture in which
two completely separate memories are used—one for the program and one for the data. This
architecture is often found in digital signal processing (DSP) chips and some other microcon-
troller chips such as Microchip Technology PIC microcontrollers (Figure 1-2).

Until 1971, when the Intel Corporation introduced the first micropro-

microcomputer is a Microproces-
r with added memory and 1/O.

cessor, the 4004, the CPU was constructed of many components. Indeed, in
1958 the Air Force SAGE computer required 40.000 square feet and 3 mega-
watts of power; it had 30,000 tubes with a 4K x 32 bit word magnetic core

memory. The first mass-produced minicomputer, the Digital Equipment
Company’s PDP-8, appeared in 1964. This was the start of a trend toward less expensive, smaller
computers suitable for use in nontraditional, non—data processing applications. Intel’s great con-
tribution was to integrate the functions of the many-element CPU into one (or at most a few) inte-
grated circuits. The term microprocessor first came into use at Intel in 1972" and, generally, refers
to the implementation of the central processor unit functions of a computer in a single, large scale
integrated (LSI) circuit. A microcomputer, then, is a computer built using a microprocessor and a
few other components for the memory and I/O. The Intel 4004 allowed a four-chip microcomputer
consisting of a CPU, a read-only memory (ROM) for program, read/write memory (RAM) for
data (using the Harvard architecture), and a shift register chip for output expansion.

The Intel 4004 was a 4-bit microprocessor and led the way to the development of the
8008, the first 8-bit microprocessor, introduced in 1972. This processor had 45 instructions, a
30-microsecond average instruction time, and could address 16 kilobytes of memory. Today, of
course, we have advanced far beyond these first microcomputers. Table 1-1 gives a summary
time line of many of the important developments leading to our microcontrollers of today.

' R.N. Noyce and M. E. Hoff Ir., A History of Microprocessor Development at Intel. IEEE MICRO, February 1981
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Table 1-1 Microcomputer Development Time Line

Year

Computer

Event

mid-1800s

1944

1945

1946

1947

1948
1951

1951

1958
1960

1963
1964
1964
1964

1965

1970
1970
1971
1971
1972
1972
1973

1974

1974
1975

1976
1977

1977

Charles Babbage difference

engine

IBM Automatic Sequence
Controlled Calculator

von Neumann machine
described
ENIAC

Point contact transistor
invented

Junction transistor invented

EDVAC

Magnetic core memory
invented
Integrated circuit invented

MOS transistor invented

CMOS transistor invented

First static RAM

PDP-8

Control Data Corporation
CDC 6600

Moore’s law proposed

Intel 1103

Three-state logic invented
Intel 4004

Intel 1702

Intel 8008
Hewlett-Packard HP-35
IMP-16

PACE

Intel 8080
MIT’s Altair 8800 computer

RCA 1802

Commodore Pet

Apple Il computer

A difference engine was completed in 1991 at the Science Museum in London to
Babbage's original plans. It had around 4000 parts and weighed almost 3 tons. It
successfully calculated a result to 31 digits.

Also called the Harvard Mark I computer. it introduced the Harvard architecture with
separate data and program memory. Built with switches, relays, and other mechanical
components, it had over 700,000 components, and weighed 10,000 pounds.

While working on the EDVAC computer project, John von Neumann described a
stored-program computer with data and program in the same memory.

Electronic Numerical Integrator and Computer. With over 17,000 vacuum tubes and
7200 crystal diodes, it weighed 27 tons and consumed 150 kW of power.
John Bardeen and Walter Brattain at AT&T Bell Labs.

William Shockley at AT&T Bell Labs.

The Electronic Discrete Variable Automatic Computer was a successor to ENIAC. It
computed in binary instead of decimal.

Jay Forrester at MIT based his invention on work by An Wang at Harvard University in
1949.

Jack Kilby at Texas Instruments.

John Atalla and Dawon Kahng at AT&T Bell Labs and Robert Noyce at Fairchild
Semiconductor.

C. T. Sah and Frank Wanlass; Fairchild R & D Laboratory.

64-bit memory, from Fairchild Semiconductor.

Digital Equipment Corporation’s first mass-produced minicomputer.

First reduced instruction set computer (RISC).

Gordon Moore at Fairchild Semiconductor predicted that the number of components
per chip would double every one to two years.

First dynamic RAM chip, 1 Kbit.

National Semiconductor (now identified by trademark name Tristate)

First microprocessor: 2300 transistors, 740 kHz clock.

First erasable programmable read-only memory (EPROM); 256 x 8 bits.

First 8-bit microprocessor: 3500 transistors, 800 kHz clock.

First pocket scientific calculator.

First multichip 16-bit microprocessor: from National Semiconductor. It used five
integrated circuits.

< from National Semic

First single-chip, 16-bit microp

6000 transistors, 2 MHz clock.

First hobbyist computer based on the Intel 8080. It had 4K and 8K BASIC. 4 K RAM.
and introduced the S-100 bus Jard. The complete Kit, including extra memory
and 1/0, cost $1400 ($5800 in 2008 currency adjusted for inflation).

RCA COSMAC, the first CMOS microprocessor, was used in space flights in the 1970s.

First all-in-one home computer with 4-8 K RAM, a 20 x 25 character display, and
built-in cassette for data storage. It used the Mostek 6502 processor. It cost $795
($2800 in 2008 currency adjusted for inflation).

Preceded by the Apple 1in 1976, this became Apple's highly successful home
computer. It cost $1298 with 4 K RAM and $2638 with 48K ($4680 and $9509,

respectively, in 2008 currency).

continued
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Table 1-1 Continued

Year Computer Event

1977 Radio Shack TRS-80 One of the first mass-produced home computers. It cost $600 (52030 in 2008 currency).

1978 Intel 8086 Intel’s first 16-bit microcontroller: 29,000 transistors, 4.77 MHz clock

1978 Motorola 6801 First microcontroller: 3500 transistors with 2 MHz clock. It was the first integration of
an 8-bit CPU with 128 bytes of RAM, 2 Kbyte of ROM, a 16-bit timer, and serial
1/0 interface.

1978 First EEPROM Intel 2816: 2 Kbyte.

1979 Motorola 68000 First 32-bit microprocessor: 68,000 transistors, 8 MHz clock. It had 32-bit registers but
16-bit internal and external data bus and 24-bit address bus.

1980 BELLMAC-32A First single-chip, 32-bit microprocessor at AT&T Bell Labs; 146,000 transistors.

1980 Intel 8087 Math coprocessor to do floating point arithmetic.

1981 IBM Personal Computer Intel 8088 with 4.7 MHz clock, ROM BASIC. up to 640K RAM, CGA display adapter,

introduced and cassette. A 160 Kbyte floppy was optional. Its $3000 cost in 1981 is equivalent

to $7400 in 2008.

1981 1APX432 Intel’s first 32-bit microprocessor. Three chips with a total of 200.000 transistors. It had
an 8 MHz clock.

1981 Osborne | First commercially successful portable computer. It weighed 23.5 pounds and had the
CP/M Il operating system, a S-inch display, 64K memory, and 5.25-inch floppy disk.
It cost $1795 (84460 in 2008 currency).

1982 First RISC processor Reduced instruction set computer produced by the RISC Project at the University of
California at Berkeley: 44.500 transistors.

1982 Intel 80286 16-bit microprocessor: 134,000 transistors, 6 MHz clock.

1983 Compag Portable First IBM PC compatible portable computer. It cost $3950 ($8400 in 2008 currency)
and weighed 28 pounds.

1984 Flash EEPROM developed Toshiba.

1984 First Apple Macintosh [t used an 8 MHz Motorola 68000 microprocessor. 128K RAM, and a 400 Kbyte

computer 3.5-inch floppy. It cost $2495 ($5130 in 2008 currency).

1984 Motorola 68020 32-bit version of the 68000 microprocessor fabricated in CMOS: 190,000 transistors
and 16 MHz clock.

1985 Intel 80386 32-bit microprocessor: 275,000 transistors, 16 MHz clock.

1989 Intel 80486 32-bit microprocessor: 1.2 million transistors, 25 MHz clock

1990 FCC Part 15, Subpart B Rules governing radiofrequency emissions for electronic equipment including personal
computers. These federal rules require testing and certification of electronic equipment.

1992 IBM PowerPC First single-chip PowerPC reduced instruction set computer: 32 bits 2.8 million
transistors, 68 MHz clock.

1996 DEC Alpha 21064 Digital Equipment Corporation, 64-bit pipelined processor, 9.7 million transistors,
500 MHz clock.

2000 Intel Pentium IV 64-bit microprocessor: 42 million transistors, 1.4 GHz clock

2005 AMD Athlon 64 64-bit microprocessor: 200 million transistors, 2.6 GHz clock

2008 AMD Phenom 64-bit microprocessor: 450 million transistors, 3 GHz clock

1.2 Moore’s Law

Table 1-1 shows a remarkable, exponential growth rate in the size and speed of the integrated
cireuits used in microprocessors and microcontrollers. In 1965 Intel cofounder Gordon Moore
observed this phenomenon and predicted that the growth would continue doubling every
18 to 24 months. Although some observers claim this is a self-fulfilling prophecy because

1.3 Microcontrollers 5

1.00E+09 T —_— ==
Itanium <
/ Pentium IV
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+ Celeron
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2 PowerPC 3
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1965819 7.081. 915
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Year

Figure 1-3 Growth in number of transistors in microprocessors from late 1960s to first decade of

the twenty-first century.

manufacturers concentrate on improving their technology. Moore’s now four-decade-old
observation has continued to be true, as shown in Figures 1-3 and 1-4.

1.3 Microcontrollers

A microcontroller is a computer with
CPU, memory, and I/O in one inte-
grated circuit chip.

This text primarily is about using computers in applications where the
system is dedicated to performing a single task or a single group of tasks.
These are called embedded applications, and examples are found almost
everywhereinproducts frommicrowave ovensandtoasterstoautomobiles.
These are often control applications and make use of microcontrollers. A

microcontroller is a microcomputer with its memory and /O integrated into a single chip. In
1991 the chip manufacturers delivered over 750 million 8-bit microcontrollers: by 2004 the
industry’s annual total was 6.8 billion microcontroller units.*

* http://www.instat.com/pi

ress.asp?ID=1445&sku=IN0502457S1
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Table 1-2 Notation

0x Hexadecimal numbers are denoted by a leading Ox (e.g.. OXFFFF is the hexadecimal number F
When two memory locations are to be identified, the starting and ending addresses are given as
OxFFFE:FFFF.
S Hexadecimal numbers in Freescale assembly language examples use a $ to denote a hexadecimal
number, SOF = 15.
% Binary numbers are denoted by a leading %. For example, OXF may be written %1111
@ A base-8 or octal number is preceded by @. Thus OxF = @17.

Base 10 is the default base; unlike hexadecimal, binary or octal, it has no base indicator. Thus OxF = 15.

Ob In C programs, the Ob prefix is used to signify a binary number.

X An “x" indicates a don't-care bit—that is, the bit may be zero or one
¥ The “*" indicates a pointer in a C program.

- A signal whose assertion level is low is followed by *

1.5 Notation

Throughout this text, the notation shown in Table 1-2 is used.

1.6 Study Plan

The designs of embedded application systems and other more general-purpose computers are
very similar. Our goal for this course is not to make you an expert in using a specific processor,
but to give you the knowledge and tools to be able to effectively apply any processor in any
application. We will do that by first studying the general principles necessary to understand
each part of the system. You may then turn to the user’s manual for a specific processor and be
able to more easily understand the information there and apply it in an application.

The basic operation of a stored-program, general-purpose computer is to be studied first.
You'll learn about registers, the arithmetic and logic unit, and how a computer works. Because
much of your work in an introductory microprocessor/microcontroller course is likely to be
learning the language and programming exercises, we introduce you to structured program
design in Chapter 3. Designing software before writing it is vital in developing debuggable
application software. We will guide you through an introduction to the central processor unit
and how it addresses memory in Chapters 4 and 5 and introduce assembly language program-
ming in Chapter 6. You will need to study your own processor in parallel while reading these
chapters.

Many embedded applications are written in C, which you may have learned in another
programming class. A program written in C for an embedded application, however, has some
significant differences from one written for a desktop computer. Chapter 7 will help you learn
about these differences. Chapter 8 discusses debugging techniques helpful for assembly and
C language programs.

Chapters 9 through 15 cover the basics of parallel and serial /0, interrupts, memory, analog

1/O, timers, and interfacing techniques for single-chip microcontrollers. Chapter 16 touches on
real-time operating systems.

General Principles of Microcontrollers

Objectives

This chapter introduces the principles of a stored program computer and shows how we
develop the software for an embedded microcontroller system. The material should enable you
to understand the hardware of a typical system. You will see the importance of the instruction
fetch, how the sequence controller works, and how to determine system timing. You will under-
stand how memory operates and how it affects the design of the computer. We also consider the
software needed and introduce the idea of a tool set to produce the code that ultimately resides
in the microcontroller’s read-only memory.

2.1 Introduction

In this chapter we will investigate the operation of a typical microprocessor or microcontroller.
Our goal is to have you see that a computer is not a mysterious box but, rather, a collection
of basic digital logic components that you could design. By the end of this chapter you will
appreciate that a computer works in a predictable way and that you have complete and absolute
control over what it does at all times.

2.2 ATypical Microcontroller

A typical microcontroller is shown in Figure 2-1. It consists of the following elements

« A central processor unit (CPU), that contains registers, an arithmetic and logic unit
(ALU), and a sequence controller to control all activities of the microcontroller.

* Read-only memory (ROM), to hold our program and any constant data. Modern
microcontrollers have reprogrammable types of read-only memory such as Flash
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Pal??)”el Ssga' IA/Dt Example 2-1 C Program to Print Hello World!
npu . )
Ports Ports Ports /* Example t /
#include <
8 8

o R T i B PN e e e ] SRl 1 )
I r :
i I
1
| 110 !

|
II P il sl Llnleﬂace :
i | |
1
| ? i* T 1\ i External Example 2-2 Assembly Language Hello World! Program
I 8 H
: i 3 : # 5 oy ; to print
I Data [ J I 1 , 1 16 : ata ;

- i — ; Constant equates
:I Address 1 l 1 7 i Address : e
E Control :' > Control EQU
EQU

(e i g e ¥ ot 340t v, J‘ Buses EQU

Figure 2-1 Typical microcontroller.

memory, which is a particular type of electrically erasable programmable read-only
memory (EEPROM).

Random access memory (RAM ), to store variable data.

An input/output (1/0) interface to connect the microcontroller to the real world. The
I/O interface in most microcontrollers contains other useful functions such as timers,
pulse-width modulators, and other special 1/0 functions.

* Connecting these blocks are three buses: the data bus, the address bus, and the control
bus. Often these buses are available outside the microcontroller to allow additional
memory and I/O to be used.

fine the string t

DC.B "Hello W

The Program

Any program in an embedded system, such as the famous C program that prints the message
“Hello World!” as shown in Example 2-1, must be in the memory (normally ROM). This C
program, however, hides some of the important details of what is really in the memory of i

the mif:mconlrollcr. Our microcontroller has instructions, called mnchil-lc or assembly 'lem» 2.3 The Picogontroller
guage.mslruclions, The instructions in our programs are converted to binary codes that instruct
the microcontroller whal‘to dg to execute the program, Example 2-2 shows an equivalent microcontroller. It is so simple it can be called a picocontroller.!
Hello World! program written in the assembly language of a typical microcontroller, such as ;

a Freescale HCS12. Other microcontrollers will have .\imilurl\"cncudc(l instructions. No mat-
lcnr what language you use to write your programs, they will u'll be converted to the particular
microcontroller’s instruction set to be placed into the program memory.

To understand how computer instructions work, let us consider the design of a very simple

' One picocontroller = 10~ microcontroller.



12 Chapter 2/ General Principles of Microcontrollers

Table 2-1 Picocontroller Operations and Opcodes

Operation Operation Code
ADD 00
SUB 01
IN 10
ouT 11

Arithmetic and Logic

Unit
4 A
~ 8 NS 8 ~ 8
y y
Accumulator A Accumulator B

4 4

‘\8 ‘\8
e / / Y i -
3 7 — Data Bus

Figure 2-2 Accumulator registers (A and B), arithmetic logic unit (ALU), and a data bus.

Computer Operation Codes

The first step in the design of a computer is to define the set of executable operations. Our sim-
ple computer is to be capable only of inputting and outputting 8-bit binary numbers and adding
or subtracting them. The input, output, adding, and subtracting capabilities are called r)/)('/‘(;
tions, and we encode them by using operation codes (opcodes). Because computers are digital
devices, all information is encoded in binary—1s and 0s. If there are four operations, 2 bits are
needed to provide a unique code for each. Table 2-1 shows the codes that are selected.

Basic Computer Hardware

Hardware for Addition and Subtraction

Anaccumulator is a register that may Let us look at the hardware required to add or subtract two 8-bit binary
hold one operand for an ALU s numbers. These operations require two operands—the two binary
tion and may be used for the answer, numbers that are added or subtracted. For the adder or the subtracter
S il to work, these binary numbers are held in registers while the addition

or subtraction is being carried out. Registers are arrays of memory

2.3 The Picocontroller 13

elements, usually flip-flops, which may be loaded with binary values. Two registers—
called the A and B registers—hold the operands. In your logic class you probably learned
how to design a ripple-carry full-adder to add 8-bit numbers and produce an 8-bit result
plus a carry. Similar hardware could be designed to subtract two numbers. As the design
of this computer progresses, we will probably want to add more capabilities, perhaps logic
operations like AND and OR. The hardware for these arithmetic and logic operations can be
placed into a black box called the arithmetic and logic unit (ALU). The specific hardware
within the ALU is not a concern at this time; it is sufficient to know that hardware can be
designed to do addition and subtraction. The design at this stage is shown in Figure 2-2.
where arrows show that the numbers to be added or subtracted come from a data bus and
flow from the registers to the ALU. The answer flows from the ALU back to the data bus.
The registers are called accumulators because they can accumulate answers.

At this stage of the design some details of using registers can be ignored. For example. a
register needs a clock signal, and there is a carry signal that is produced by the adder circuit in
the ALU. These design details can be postponed for now. See Example 2-3 and 2-4.

Example 2-3 8-Bit Register

Show how to use eight D-type latches to construct an 8-bit register.

Solution

See Figure 2-3.

D6 D1 DO
@ |— D) @ — o) el = T —
Latch Latch w1 18 e Latch Latch
Clock 1> Clock > Clock > Clock
Clock

Figure 2-3 An 8-bit register.
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e Figure 2-5 shows an input device, the switches, and an output device, the LEDs, added to the
Example 2-4 8-Bit Ripple-Carry Adder registers and ALU. See Examples 2-5 and 2-6.

Show how to make an 8-bit ripple-carry adder by using seven full adders and one half-adder.

Solution

See Figure 2-4. Example 2-5 Binary Switch

Show how to use a switch to produce a logic high or logic low for the two positions of

A7 B7 A6 B6 Al B1 A0 BO i
the switch.

} ¢ ¢ ¢ Solution

' F& l , FA I okt FA HA See Figure 2-6.

J ‘ / ¢ A 1 y ¢ Vop Figure 2-6 Binary input switch.
Pull-up resistors;
c7 S7 C6 S6 C1 S1 Co SO Rtypigally1—10 kQ
Figure 2-4 An 8-bit ripple-carry adder. /

Logic high with

switch open
Input and Output Hardware gprh Logic low with
e : witc ;
At this point, there are registers to hold numbers and an ALU to add or subtract them. There aWichcineed
must be a source for the numbers and a destination for the answer. Let’s use a set of eight
switches to enter the numbers and eight light-emitting diodes (LED:s) to display the result.
Arithmetic and Logic
Unit eert,
Example 2-6 Lighting an LED
A
/ Design an LED circuit that will light the LED with 10 mA of current. assuming a 3.3 V supply.

The LED is to be on when the output of a logic circuit is low.

T8 T T8 Solution
See Figure 2-7.
A y g
Accumulator A Accumulator B Voo Figure 2-7 LED driver.
é\e é 8 Current limiting
< / / y 8 R= 220_&2
/ 7—— DataBus for Vpp =5V
g T8 /\/ and /gioge = 15 MA
Input Ouu:ut Logic
Device Device 1 .to LED
(Switches) (LEDs) Light
74LS04

Figure 2-5 Adding input and output devices to the registers and ALU
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Operand Codes

The hardware to input numbers and display the results is adequate for now, but let’s look ahead
and design in some additional capabilities. Most computers have many sources of information.
For example, a binary number may be input from an analog-to-digital
A computer instruction is an opera- | converter, or the result of the addition may be transferred to a digital-to-
tion plus and operand. analog converter instead of the display LEDs. To do that, we must spec-
ify which of several devices the computer must input from or output to.
A design decision must be made. How can the computer input information from more than one
source? There are two choices. There could be separate operation codes to do the separate
operations. For example, we could define two new input operations, IN1 and TN2, where IN1
inputs information from the switches and IN2 from an analog-to-digital converter. Another
choice is to include an operand with the operation. The combination of an operation and an
operand is called a computer instruction. The instruction defines what is to be done—the
operation—and what is to be operated upon—the operand. Let us allow up to four of each of
the input and output devices. A code is needed to specify which of the four devices is to be used
for the input or output instruction. This code, called the operand code, is added to the opera-
tions previously defined. In Table 2-2, the 2-bit code for the operand is arbitrarily placed in the
last two bits of an 8-bit instruction code byte. The input device number is to be encoded with
the two bits /i and the output device number by the bits co. Dashes are bits that haven’t been

assigned yet. Almost all computer instructions consist of an operation plus one or more oper-
ands.

When the computer does an input instruction, the information comes

: from the s Swi S C i i . o

All data transfer operations have a : s!F(?f swnjc};es called input #wce #1. Where does the infor
o mation go? Figure 2-5 S e Fa T

source operand and a destination ; ion go? Figure 2-5 shows lhf“ [}.13 input dtl\’lfe sources its mtollfm.x
operand tion onto the data bus. The destination for the information can be either

Accumulator A or Accumulator B. To allow the programmer to choose
one or the other, we can simply add a destination operand code for the
input operation and, using similar arguments, a source operand to be able to choose which
accumulator contains data to be output to the output device. Table 2-3 shows our growing

instruction set and Figure 2-8 gives an updated diagram showing up to four potential input
and output devices. See Example 2-7.

Table 2-2 Adding Operands to the IN and OUT Operations

Instruction Code =

Operation Operand Opcode + Operand Code
ADD None 00

SUB None 01 .

IN Device # 10 1 I
ouT Device # Tl oo

i1 =Input device number 001 f
00 = Output device number 001 |
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Table 2-3 Adding Source and Destination Operands to the IN and OUT Operations

Instruction Code =
Operation Operand Opcode + Operand Code

ADD None 0C

None

Device # destination register 10 SR o

Source register, device#
i1 = Input device number 00-11
= Output device number 0011

rr = Register address: A =00, B =01

Arithmetic and Logic

Unit
3 L
g s Sk
\ \
Accumulator A Accumulator B
\ A
N8 3
2 8
< ‘ ‘ \ Vi -
~€ [ [ 7 #- Data Bus
I~ 8 ~8
8 T8 \ \
Input o el Input Output e Qutput
Device #0 Device #3 Device #0 Device #3

Figure 2-8 Adding multiple input and output devices.

Example 2-7 Adding I/O Devices

Suppose you needed to allow up to 256 input or output devices in your picocontroller design.
What changes would you make to your instruction codes?
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Solution Although these descriptions define what the computer instruction does, we need a shorthand

For 256 input or output devices, there must be an 8-bit /O address. You must add another byte way to succinctly describe them. A register transfer language, or notation, is commonly used.
or 256 input 0 5, st be 2

to the operation code.

For example, we can describe the ABA instruction by showing

A+B—oA

which means that the contents of A are replaced by the sum of the present contents of A and B.
Some register transfer languages reverse the order to show the replacement operation

] A<A+B

Another very useful operation will give the microcontroller the capability to transfer data

between the two accumulators. This allows us to use one for temporary storage while using

The Move Operation

We can now use the register transfer language to describe the result of each instruction (Table 2-5).
the other. Microcontroller instruction sets call these move (MOV), ' R), or load (LID) }
operations. Let’s define a MOV operation to move information from one register to another. The Adding Two Numbers
MOV operation copies the data from the source to the destination; the information in the source
register is not destroyed. Adding another operation requires another bit to be added to the oper-

Although the design is far from complete, there are enough hardware com-
ponents and computer instructions to see how a program could be written
instructs the computer what to do | toadd two numbers together. We write the program in assembly language.
by specifying each operation and | Thisisacomputer programming language that has a statement for each of
operand.

the operation codes the computer can execute. To add two numbers with
this hardware, we (and the computer) must do the following:
Arithmetic Instructions and a Register Transfer Language

5 . Y ’ An assembly
ation code in our instruction because now there are five operations, and we w 1llA.1dd ()perdnfi )
codes to specify which is the source and which the destination register. The operations and their
codes (the complete computer instruction set) are shown in Table 2-4.

language program

The microcontroller has operations that add and subtract, and other operations such as lbc logic
operations AND, OR, and Exclusive-OR can be defined. Before doing that we must decide how

> added) and 2. Let the computer input the number into the A register.
to specify the locations of the two source operands (e.g., the two numbers to be added)
where the result is to end up (the destination).

Let us define the ADD and SUB operations to mean the following:

. Set the switches (by hand) to the first number to be input.

. Set the switches to the second number.
. Let the computer input the number into the B register.
During addition: The contents of the B register will be added to the contents of A with the

result of the addition stored in A. Let us define this as an add B to A operation and give it the
mnemonic ABA,

3
4
5. Let the computer add the two numbers.

. Let the computer output the result to the LEDs.

During subtraction: The contents of the B register will be subtracted from the contents of A This sequence of steps defines what the assembly language program is to do, and therefore
i S action stored i efine this as -act B from A operation i o i > o 2o = Wi .

with l'he r'esull of the sut?lr‘lcll.nin stored in A. Let us define this as a subtract B f P what the computer is to do. For each step that starts with “Let the computer;” we need an assem-

and give it the mnemonic SEA. bly language statement. The assembly language program is shown in Table 2-6.

Table 2-4 Adding the 40V Operation to the Instruction Set

Table 2-5 The Register Transfer Language Shows How Each Instruction Operates

Instruction Code = Instruction Code =

Operation Operand Opcode + Operand Code Operation Operand Opcode + Operand Code Register Transfer
ADD None 001 A - ABA None 003 - IEEr . A+B—A

SUB None 011 N SBA None R MRS M A-B—>A

IN Device #,. destination register . idd IN Device #, destination register 101 iidd i—>dd

OUT Source register, device # 5500 OuT Source register, device # 111 ssoo Ss — 00

MOV Source register, destination register s i d MOV Source register, destination register 010 _ssdad ss—dd

11 = Input device number 00-11

i1 = Input device number 00-11
00 = Output device number 00-11

00 = Output device number 00-11

= Source register address: A = 00, B =01

s = Source register address: A = 00, B=01
dd = Destination register address: A = 00, B = 01

dd = Destination register address: A =00, B =01




B

are replaced by the contents of the switch bank.
[ ‘placed by the contents of the switch bank.
ed by the sum of the contents of A and B.
placed by the contents of A.

of an assembly language
line. First is the operation
ode for the computer oper-
field, where the operand,
eld.? Usually comments
osen to show a shorthand
tion is to do. For exam-
#1 (the bank of eight

into memory. You can
typical memory there are 8
in each memory Jocation, an 65,536 (64 kilobytes)* loca-
location in these 64Klooaﬂom,0 6-bit address, A15 ... AO, must
is is done and when certain control signals. maeﬁvated information can
Am memory.
contains binary information or data. ‘I’hmfm the program shown
ed, using the codes defined in Table 2-5. This is called assembling
hat turns the instructions into the Is and Os that go into the computer
programs, no matter the language in which they are written, must be
,into binary words called the machine code. The result of this is shown

the memory is address zero. For each memory location you can
s and, referring to Table 2-5, decode them to find out what the
o do. Before designing hardware to do just this, let us return to our
o World! program and see how it looks in a realistic microcontroller's

er field to the left of the operation field not shown in this example. This is the label field, and we will
later, in Chapter 5, and when you learn how 1o use an assembler.
how that comments that merely tell what the instruction is doing are not very useful. Comments
in of the program showing why the instruction is there wre far more valuable.
18219 = 1024 bytes.
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Table 2-7 How the Program Looks in Memory

M yl ti. C Assembly Program
Address (Machine Code) Statement

0: 1010 0100 IN 1,A

I 1010 0101 IN 1,B

2 0010 0000 ABA

31 1110 0010 QUT A,2

Table 2-8 Contents of Memory for Hello World!

Memory Addresses Instruction Code Bytes Instruction

8000 - 8002 CF OA 00 LDS #0x0A00

8003 ~ BOOS CC 80 OB LDD #0x800B

8006 - 8008 16 80 18 JSR 0x8018

8009 - BOOA 20 F8 BRA 0x8003

800B ~ 8017 48 65 6C 6C 6F 20 57 Constant data for the Hell
6F 12 6C 64 21 0D OA World! string
00

2.4 The Microcontroller’s Memory

The assembly language program in Example 2-2 is assembled and loaded into the microcon-
troller’s memory. It looks something like that shown in Table 2-8. This example illustrates that
even though you may write a program in a high-level language like C, it is converted 1o bytes
representing the operation that must be done and the operands that are being operated upon
The memory addresses shown correspond to the ROM in the embedded system. Note that all
addresses and instruction code bytes are in hexadecimal. The right-hand column shows each
instruction in the program in assembly language. Don’t worry about what these instructions are
at this stage; you will learn your particular microcontroller’s instruction set later

Look closely at the Instruction Code Bytes column in Table 2-8. In each case, the first byte i
each line (CF, CC, 16, etc.) is a unique code for each operation to be executed by the microcon
troller. For example, CF is a code for the LDS (immediate load stack pointer register) operation
This is the opcode byte.® The following two bytes (OA 00) are the bytes for the operands for this
operation. A computer instruction is the combination of an operation (what the computer is 1o do
and zero, one, or more operands (what the computer is going to do it to). For this instruction, ¢
microcontroller will load, or initialize, the stack pointer register with the value OxOAN0

Constant data also may be stored in the ROM. The data for this program is the string “Hello
World!" that is to be printed. Data constants may be defined in an assembly language progran
like you have done in other programming languages. The hine “u " in Exan
2-2 shows how this is done in the assembly program. In Table 2-8 the memony focat
0x800B-0x8017 contain the constant data used by the program. These bytes are the ASUI

NG

¥ These are Freescale HCS12 instructions. Your own microcontroller will have different ope s amd opvoosie My
" Some computer operations may need 1o be specified by more than one by
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codes for the characters in the message that will be printed on the screen by a prinif routine
See Examples 2-8 through 2-10.

For each of the instructions in Table 2-8, give the memory locations and the hexadecimal value

il
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The Memory Map

A memory map, which shows what memory addresses are used for what
A memory map shows you where | type of memory, is used to show the memory organization in a computer
each kind of memory. or no memory. | A typical microcontroller's memory map may contain RAM. EEPROM.
is located. Flash. and even spaces without memory. as shown in Figure 2-9. Notice
in Figure 2-9 that part of the memory space is used for PO control
ters. and there are some memory addresses that contain RO memory
There are two types of memory shown in Figure 2-9. The contents of the read-only memory,
ROM, are not lost when the power is removed from the microcontroller. This = »
memory. The various types of ROM include factory programmed (normally just called ROM.,
and field-programmable ROM. or PROM. PROM comes in three varieties including UV eras-
able EPROM, electrically erasable EEPROM. and Flash (sometimes called Flash EEPROM
EEPROM and Flash are very similar in that the memory can be erased and then reprogrammed
without removing it from the circuit to place in a UV PROM erasure as must be &
PROM devices. Flash and EEPROM are different in that EEPROM can be erased S d
a byte at a time. and thus can be used to store program vanables that must res
has been cycled off and then on. Flash EEPROM uses similar integrated circutt e
organized so that it can be erased and then programmed in large blocks. Flash is used
and progra N

programs because this organization allows for faster erasi
The RAM is random access memory. This terminolog
ROM can be randomly accessed. too. RAM is memory that ca

i1s somewh

making it useful for program vanable data. Most RAM is volatile. he program S
initialize it after the power has been tumed on
ROM Operation
The ROM contains the opoode, « byvtes W

ROM is nomvolatile and 1s used for ]

will not worry about how they ge

ston for a later chapter. The microco

program code and constants ‘

the opcode and operand bytes fn

program. To see how this 18 done. let us first conssder how t

the RAM
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L I
storage locations, each containing a byte of information as

Wi hm:vmmm.w memory. The bus labeled address bus
of address bits coming from the CPU. The number of bits depends on the number of
=k storage locations, For example, a 64 Khyte memory (65,536 storage locations) must
‘have 16 address bits to specify each location uniquely. The CPU provides this address. The

F

¥ This is & byfe-wide memory. Some applications may have 16 or mere Mits per lox stn
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16 Figure 2-10 Read-only memory.
Address Bus ~ ———>
8
Data Bus  —~—Ff—
ROM
or Flash

READ L. ———»¢
WRITE_L
(for Flash)

16 Figure 2-11 Random access memory
Address Bus /-

8

Data Bus ]

READ L —»q
WRRAEL —™9

line labeled READ_L is a read controi signal. and it is also asserted by the CPU. When the
memory receives an address and READ_L is asserted, the ROM places the data byte stored
that address onto the dara bus.

RAM Operation

Figure 2-11 shows the RAM, and it is very similar to the ROM shown
mal operation, the data connection 1o a RAM 1s bidirectional. This means
data bus can be written into the selected address in RAM in response 1o the WRITE 1 wena
or read from memory when READ_L s asserted. The most notable difference betwesn ROM
and RAM is that the data in RAM 1s volarile. If the power to the RAM is tumed off a1 ans o
the data will be lost

There are two uses for RAM in e

aata from: e

bedded

cadava

data storage. Forexample. if we have

1o save it for later reference. we would wiit



ROM or
Flash RAM
A A x A4
" WRITE L WRITE L
b READ L |4l READ L
L,y 8 - M
' .

the picocontroller. A memory address
necessary o address the memory

acent MW&MCPU Although the operation
-ﬁmmmmmw description of CPU opera-
s see, in principle, how a typical microcontroller CPU functions.

mCPU contains registers that you will use extensively in your assem-
bly language programs. In general, there are accumulutor registers and
registers used to access memory.

Accumulators A and B: The two % bit accumuolators, A and B.may be
A source or a destination operand for instructions that manipulae X-hy

2.5 The Central Processor Unit k)

data, For example, Accumulator A or B may be used to retrieve a byte of data from memory
The registers are called accumulators because the results of an arithmetic or logic operation
miy accumulate there,

Index register: The progrium may use an index register (o access memory. As you will see when
you find out more about your own microcontroller, there are a variety of instructions that use
this type of register 1o access memory.

Program counter: Although the program counter is usually shown in the programmer s model,
the programmer does not have direct control over it, as is the case with the other registens. The
number of bits in the program counter shows how much memory can be directly addressed. In
this example, 4 16-bit address bus is needed for a 64 Kbyte memory.

The Instruction Execution Cycle

The process by which the microcontroller executes each instruction in
Each computer instruction is com- | 4 sropram is called the instruction execution cyele. When an imnstruc
pleted during the instruction execu- | ion opcode is to be fetched from ROM, the memory must be supphied
thon cycle, which consists of one or | it the address of the opcode, and the read control signal must be
more steps. asserted, This is how the instruction eyele starts, and it continpes by
fetching the rest of the instruction bytes, doing whatever is required
by the instruction, incrementing the program counter o point (o the next opeode. and then
repeating, We can describe the full instruction execution cycle in the following way (refer
to Figure 2-13):

o The CPU's program counter contains the address of the first byte of the instruction o
be executed, We say the program counter points 1o the opeode. The CPU places tht
address into the memory address register and then onto the address bus

o The sequence controller asserts the READ L control signal on the control bus

o After a small delay, called the memory access time, the ROM places the contents of the
addressed memory location on the data bus

* The sequence controller writes this byte into the mstruction decoder

‘I'he instruction decoder holds the opeode byte and decodes it for the sequence controlles

.

s The decoded instruction causes the sequence controller 1o go through a sequence of
actions that complete the execution of the mstruction. These include fetchimg operands
from memory, loading registers, performing an anthmetic o logical operaiion oo a pas
of operands, and incrementing the program counter

s  When the instruction execution is complete, the program counter is pomting 1o the ses
opode to be fetched and executed. The instruction execution cycle then repeats

By The instruction execution cycle continues forever

A microcontroller is alwayy fetching

the power s turned off or a special mstnsction 1]
mul executng mstructions

encountered. Remember. while power s turmed on, th n

s alwayy fetching and executing msirictng
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>

ruction decoder shown in Figure 2-13
late machine, much like one you may

ed £0 run as fast as possible. The time &
S S 10 appear at the output is called the propagation
- tme. Thetotal time depends on the integrated circuit technology and the number of gates cos-
~ trbutingtothe delay. You might think that the best way 1o specify the clock frequency would be
ot 10 analyze the instructions and see which takes the longest. For this instruction sct. add and sb-
ract instructions take the longest time. If we could find out bow much time this is. we would
make sure that the program counter's clock runs no faster than this. I there 2 betier way?
_mmqﬁummmhum section can be broken it
*MJMTOR&MMM sequential state machine diagram
shown in Figure 2-14 and the timing diagram shown in Figure 2-15
""‘_‘mchkkp-ﬁmd into five different states. Each state is an cle-
ment of time long enough 1o allow an event 1o occur. In State 1, the instruction s fetched from
m-mziﬂwwﬂ!mdecakf Thea. either State 3 or State 4 &

25 The Central ProcessorUnt =~ 29

Figure 2-14 A sequential state transition diagram for the operation of the picocontrolier.

recos [ [ L[ LT LT

Register | Increment
Fetch Decode | 1 - e =

(a)

o [ | [ LT LT LT LT

ALU Register | Increment
Fetch Decode ABA e --

(b)

Figure 2-15 Instruction timing diagrams: (a) IN instruction: (b] ABA mstruction
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STD 0x1234

First read cycle to fetch the opcode

Second read cycle to fetch the high byte of the memory address (0x12)

Third read cycle to fetch the low byte of the memory address (0x34)

First write cycle to write the first byte of data into memory address 0x1234

Second write cycle to write the second byte of the data into memory
address 0x1235

Five memory cycles total.

Read Cycle

Y

2.7 The I/O Interface 35

2.7 The I/0 Interface

For simplicity, Figure 2-13 shows input and output devices connected directly to the data
bus; in practice, an I/O interface must be added to the design. The I/O interface shown in
Figure 2-19 has two components, one to input data into the microcontroller and one to output
data from it.

Through a set of three-state gates, the input interface connects an input device. such as a
bank of switches, to the data bus. The input three-state gates are activated when the address of
the input device is placed on the address bus and the READ_L control signal is asserted.

The output interface consists of a set of latches to capture data from the data bus. Like the
input interface, the correct address on the address bus asserts the address decoder output. The
CPU then asserts the WRITE_L control signal to latch the data.

CPU Clock

Clock State (ref.)

Bus Clock

e

\
i

-1 M
Bl
=

e
e

S3 ~>|
| |

Address X Address from CPU Valid I
| I |

RW_L ’ \

|
READ_L \ '
' |
Data j/; Data to CPU Valid >—

Input Output
Device Device
(Switches) (LEDs)
Y 3
| R = R 2
: E :
| 1
f i
! 1
4 1
! 1
! 1
! 1
1
i Input ~8  Output !
| Interface Imerface:
| :
IS SRR (S0 (IR a
Kol
o ADR_OK_L l ADR_OK_| 8”:‘)“1
Data Address A
Decoder
\
READ_L WRITE_L
T 16
/8 \ Data
e
18 Address
72
/ Control

Figure 2-18 Read cycle.

Figure 2-19 Input/output interface.
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which read data from or write data to memory. A particular location in memory is accessed

2.8 The Address, Data, and Control Buses by providing the memory with an address, and the various ways of generating this address are
Three structures, called buses, connect the CPU, ROM, RAM, and /O interface together ‘ c'ulled addrcfssing rm)des.lone’)oflhe:s'e 5 immediale acdees e movel:-immediate i‘nslruc-

(Figure 2-19). A bus can be defined as follows: tion shown in Table 2-11 is a 2-byte instruction, where the first byte contains the operation and

operand codes. The second byte immediately follows the instruction byte and contains the data.
Of course we must modify the instruction decoder and sequence controller to be able to decode
the instruction and generate the control signals.

A bus is a multiple wire, information pathway with multiple sources and destinations for the

information. Memory reference instructions of other types can read data from or write data into any
memory location. You will learn more about these instructions and other addressing modes in
) - 5 - : S 3 = : o S y d CESSOT.
A source places information onto a bus and a destination takes information from it. Although SR B e D
the bus has many wires, it is normally drawn on schematic diagrams as one wire with an
indicator showing how many wires are used (Figure 2-20). Control Instructions

Address bus: The address bus carries the address from the CPU to the ROM, RAM, or /O
interface to select one particular byte location in the 2'° locations in the memory map. The Branch Instruction
Control bus: The control bus has a variable number of wires depending on the particular sys-
tem. Ata minimum, at least for this example, it contains the READ_L and WRITE_L memory
read and write control signals. The control signals provide direction information (reading or
writing) and control the timing of the data transfer as described in the next section.

An example of a control instruction seen in other programming lan-
Jump or branch instructions transfer | guages is a GOTO. In assembly language, a GOTO is called a jump or
the program counter from one part of | branch instruction; it instructs the computer to branch to another place
the program to another. in memory and start executing the program at that point. For example,
Data bus: The data bus carries information to and from the CPU and the ROM, RAM, and after the program outputs the sum of the two numbers to the LEDs in the
I/O interface. program of Table 2-6, we might want to branch back to the beginning of
the program to do it again. The operand for a branch instruction is the location in memory from
which the computer must fetch its next instruction, that is, the location to which the computer
“jumps.” Table 2-12 shows an instruction known as branch always. Its mnemonic is 882, and
it is a 3-byte instruction; the first byte is the operation code, and the next two bytes specify
29§ 5 the 16-bit branch address. The sequence controller must be modified to transfer these address
s ome More Instructions bytes from the memory to the memory address register.

Chapter 9 covers buses in more detail.

Memory Reference Instructions “
Table 2-11 A 2-Byte Memory Reference Instruction: The Move-Immediate Instruction

" Our picocontroller’s hardware allows the user to get data from the input | Operati [o) d Register Transfer Descripti

e rrefere R : : o R S eration eran egister Transfer Description
emory rlnfcrmcemslrucuons allow device only. The memory of this computer serves only to store the ] E = - -
you to retrieve data from or store data
in the memory.

instructions of the program. This is a severe restriction, and we must add MVI 8-bit data, dd (memory location following the opcode) — dd
a way to retrieve data from the memory. A real instruction set contains ! dd = Destination register address: A =00, B =01
a number of these instructions, called memory reference instructions, :

| Example Memory Contents
MVI 65,A First byte: 110 _ _ _ 00 Operation plus destination operand code
) . Second byte: 001 0 0 0 01 Data
—— BitQ Figure 2-20 Computer bus notation.
———— Bit]
A S 15| 7
—_—f = Bit3 Table 2-12 A Branch Instruction Has as Its Operand
s————uBild the Address of the Next Instruction to be Executed
B!t5 Operation Operand
== Bi6

Bit7 BRA Memory branch address

B NS
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Conditional Branch Instructions

Reset Ready
The branch-always instruction is an unconditional branch because the
The status or condition code register processor always does the branch. In another type of branch instruction, T Clock
o ai 1 at are se! aset whet oxe % o . OC
contains bits thatare setorreset When | e conditional branch, the computer takes the branch if some condition, ! R READ L WRITE L 2
an ALU operation is performed - . . . < e " . o | Instruction Sequence e _L, A
an ALU operd S P i or set of conditions, is true. If the condition is false, the next instruction Decoder Controller i g
in the memory is fetched and executed. For example, in the addition
program we might want to show some error if the addition of the two 8-bit numbers results in Status + PC Clock
a number too large for the 8-bit accumulator. This can be done by attaching to the arithmetic Bits Control Signals A
and logic unit a flip-flop called the carry flag, which is set when the adder circuit generates Program |
a carry and reset when it does not. Other flip-flops can store other information such as a zero Arithmetic and Logic Counter - PC
result, negative result, two's-complement overflow, and odd or even parity. These flip-flops are Unit
contained in a register called the status, or condition code, register. The status register bits are
connected to the sequence controller. We may then design branch-if-carry, branch-if-no-carry, Memory Address
and other conditional branch instructions. REAEE
\
8-Bit Internal Data Bus Yy 8
=5 7 =
' 5 ; A A . M———
2.10 The Final Picocontroller Design | | \
Figure 2-21 shows the final design. There has been some reorganization of the information 2 B c D frdex Fl!egisler Temgorary
flow and a new address register added, so let’s briefly discuss these changes. i Address|Registe
Figure 2-21 shows two additional accumulator registers (C and D), and the registers and
the ALU are connected by an internal 8-bit data bus. Data can now flow between any of the 8
registers and ALU. Input and output interfaces as shown in Figure 2-19 are used for the /O < s DAa B =
devices. The data path to the external memory and /O devices is over an external 8-bit data ik A
bus. Information from memory can be transferred into the instruction register for instructions, L i Address Bus =
or any of the registers or ALU for data. <t = s
. . 3 > 7 -1
The status bits, which are set or reset by ALU operations, are connected to the sequence Control Bus
controller. They are used to determine whether the branch in a conditional branch instruction 3 ¥ \L 3
is to be taken.
ary Q x P - Input Input Output Output ROM or
A temporary address register has been added. This is used for branch addresses that are |me,pface |nleﬂace lme,-g,oe Imer?aoe \ Flash RAM
retrieved from memory. For example, when a BRA address is fetched from memory, it must be
done one byte at a time. The temporary address register holds the address as it is being fetched Ts 8
i 3 - | | N
before it is placed into the program counter to complete the branch instruction. 2 ©
‘ Input e Input Output « oo | Output
Device #0 Device #3 Device #0 Device #3

2.11 Software/Firmware Development

Figure 2-21 The final picocontroller.

The software developed for embedded systems is often called firmware
because, unlike programs you might have written for your computer sci-
ence classes that are loaded into RAM on a PC or other desktop system,

Embedded system software is called
firmware because it is in ROM and

software is installed. This hardware is called the target system, and itis vital to know the addresses
¢ - {
1s not so easily changed as programs

in RAM an cmbedded‘ system requires its program to be in read-only memory. ‘ u'seg o “}? \"zlmoils kln'd;(:\tr\l;e‘mgry)}l:j_lhelsvyslem. R?C;g;f;:‘ gl'p::al.m;r.r:ot\’ T_‘;p_l‘;imkbg:h"
: Thus, the “software” is more “firm” because it is retained in the computer TANCOMACCESSIEMOLY ( . )fm JEACONIVINBIHOINS SUOWR I LIS S A

memory even while the power is removed from the system.* “Software® “ may be of several types mcl}ldmg pmgmnmmble ROM (PROM), such as Fl«u!x eleclm_*all_v

developers must know something about the hardware upon which their ; erasable PROM. Flash, used in many microcontrollers, allows us to create our software using

! development tool set as described next and then to convert it to firmware by programming the
EEPROM. The program development process must take into account the physical address o
An unknown author, critical of many computer programs being written, once referred to these programs as mushware! [ each type of memory and must locate the various parts of the program correctly.
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Time

Source File 1
(module1.asm)

Source File 2
(module2.asm)

¥

Y

Relocatable Relocatable
Assembler Assembler
Object File 1 Object File 2

(module1.0bj)

(module2.0bj)

Time

Figure 2-23 Relocatable assembler.

Time
Source File 1 Source File 2
(module1.c) (module2.c)
_______________ - ST (Na—
Y el \
sl
Compiler g Compiler
1
i
Y i ! Y
Relocatable : i Relocatable
Assembler : : Assembler
TRy
________ L i | S e el Aol i SN
Y \
Object File 1 Object File 2
(module1.obj) (module2.obj)

Figure 2-24 Compiler.

o e e e |

The Linker

2.12 The Software Development Tool Set 43

A linker program takes object modules that have been assembled by a relocatable assembler or
a compiler, links them together, and locates all addresses. Figure 2-25 shows two source files.
Modulel.asm and Module2.c, which are separately assembled and compiled by a relocatable
assembler and a C compiler. The linker combines the object files to produce the executable
file. You can see in Figure 2-25 that the location information for the code and data parts of the
program is given to the linker by a linker parameter file (.prm). Figure 2-25 also shows that
object files can be linked from a library.

Creating a Relocatable Program

\

The beauty of using the relocatable method to create firmware is that the project can be par-
titioned by using top-down design techniques and allocated to separate programmers. Each
programmer is responsible for developing modules that ultimately fit into the whole program.
The modules are separately assembled by the relocatable assembler to produce object files. In
addition, C program modules may be compiled. These object modules are put together by the

( Time
Source File 1 Source File 2
(module1.asm) (module2.c)
Relocatable "
Assembler Compiler
- ; : ; Library of
Object File 1 Object File 2 Object Files
(module1.obj) (module2.0bj) (file.lib)

\

Code and Data 3
Location Information Linker

Program

Y

Absolute
File
(name.abs)

(name.prm)

Figure 2-25 Linker program.
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2.10 Discuss the difference between an absolute and a relocatable assembler. [a, k] CPU Clock ‘ ' l —I
1 1 1

2.11 How do most microcomputer systems solve the problem of multiple sources of infor-

I
e e e e
mation present on a data bus? [g] Bus Clock I} J}
2.12 Why must a three-state gate be used to interface an input device to the data bus? [a, ¢] i |
2.13 Why must a latch be used to interface an output device to the data bus? [a, c] Address 1 il L ol - Sy bl et S s S E f
[}
2.14 For a CPU performing a write cycle, why does the CPU place the data on the data bus e it '[,____11
before asserting the WRITE_L control signal? [a] ! RW_L e o S
1 I
2.15 A microcontroller memory map shows 16 Kbyte of Flash EEPROM (ROM) in memory I READ, [ T [ T o st e i it e Lo
space 0xCO00-OXFFFF and 1 Kbyte of RAM in memory space 0x1000-0x13FF. [c, k] =T £ _.__J“,,_ ___11
a. Give a range of addresses (in hex) suitable for locating code. . ;
b. Give a range of addresses (in hex) suitable for allocating variable data storage. Data i

Figure P-2-21
Challenge 2

2.16 Discuss the changes that must be made to the sequence controller to add the move-

’ ; ; 2.21 Draw a timing diagram relative to the system CPU clock shown in Figure P-2-21,
immediate instruction discussed in Section 2.9. [c, e]

which includes the address and data buses, R/W_L, and the read control signal

2.17 Design an instruction decoder as shown in Figure 2-13 using AND, OR, and inverter (READ_L = active low) and shows a read cycle. [a]
gates to decode the 3-bit opcodes and produce a control signal asserted by each of the 2.22 A CPU generates a bus clock and R/W_L signal during a write cycle as shown in

operations given in Table 2-5. Figure 2-17. Give a logic equation or show a logic diagram expressing the logic

2.18 Design the hardware required to implement a HALT instruction, which stops the CPU required for the WRITE_L control signal.
from progressing further in the program. [c]

2.23 A CPU generates a bus clock and R/W_L signal during a read cycle as shown in

’ . S 3 . . . X . . N S ennat 55 2 L CAARL k =y

2.19 Describe the instruction execution cycle of a move-immediate instruction shown in Figure 2-18. Give a logic equation or show a logic diagram expressing the logic
Table 2-11. [c, ] required for the READ_L control signal.

2.20 Draw a timing diagram relative to the CPU clock shown in Figure P-2-20, which !

includes the address and data buses, R/W_L and the write control signal Reflect on Learning

(WRITE_L = active low) and shows a write cycle. [a] | R 3 ;
. { 2.24 Create a five list of questions you would like to have answered to be able to understand
| how the microprocessor or microcontroller you are studying works.

CPU Clock i A <
| 2.25 How does what you learned in this chapter compare to what you previously knew about
| the operation of a computer?
Bus Clock ‘ R - . : S b :
I 2.26 What have you learned in this chapter that you think will make it easier for you to write
| microcontroller programs?
Address |
!
RW._L |
WRITE_L
Data

Figure P-2-20
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3.2 The Software Development Process

Developing fully designed, coded, debugged, and documented software for any real system
proceeds in several steps. These are design, coding of modules, testing and debugging of mod-
ules, system testing and verification, and documentation.

StrUCtU red Program DeSign 3 s ' T 1. Design: The design for any complex system might well take 50%
: All software development starts with | o+ more of the total effort required for a project. In the sections that

a design phase. follow we will distinguish between design methodologies and design

tools. A design methodology is a philosophy to do design. and design

tools are the mechanics used. The goal of the design phase is to understand completely the

problem and to propose a solution broken down into modules or functional elements that can

be coded, tested, and documented.

2. Coding: Coding means writing the program in the chosen programming language. We
would hope to use a high-level language for most of the code: but often, especially in time-
critical applications, assembly language programs are needed.

3. Module testing: A properly done design will have coded modules that can be tested
and proven to work correctly. The testing and debugging tools used depend on how we have

Objectives _
s . e e e dbei itable for both hard done the coding. Fortunately, many high-level languages have very powerful debuggers that
apter presents a design procedure, ca op-down design, suitable for bol g ] = % =6
e .lplc Pres enp p-coy z S L A allow us to test and debug our software.
and software projects. You will learn to use tools to design programs following the top-down . . . f !
4. System testing: This step follows subsystem or module testing and is necessary to

design procedure and the principles of structured programming. Designing before writing is f 1 hard K hol
: : o : software and hardware work as a whole.
vital to producing good software. prove that the software an -

5. Documentation: Although mentioned last in the list of steps,
Documentation is so important that it | gocymentation in fact accompanies each step of software development.

accompanies each step in the process. | The design documentation specifies what the system is to do and how

3.1 The Need for Software DESlgﬂ the function is implemented: typically, this work will form the basis of
i f i i ; i hi ser manuals. Documentation effort is never wasted. Documentation begins 1 ign step.
In the design and development of many systems, the cost of producing software is higher, PEGALEI als DU('uf - : : - : J“.‘“A‘hf design step
i st of ick Brooks. in 7, ; and various types of design documentation are discussed in later sections of this chapter. The
often much higher, than the cost of the hardware. Frederick Brooks, in The Mythical Man- e S A Y ] i _ e
| = : e . documentation produced in the coding phase is the code itself. which includes features of the
Month," compares large-system programming that does not use good design techniques : 1 S i
T 1 S 5 . S a ; design as comments. Code testing phases are documented with test plans and results. These
with the tar pits that swallowed saber-toothed tigers, dinosaurs. and mammoths. Few of S = e
i S i s of sc¢ . B not only become templates to show that the system meets the specifications, they also allow
these systems meet their goals in terms of schedules and costs. Designing the software X . 4 ) > 4 s
e iti is vi i e future modifications of the software to be tested to the same standard. Documentation efforts
before writing the code is vital both to controlling costs and to meeting requirements and ’ . ;
schedules i include the installation and user manuals.
c S.

Software design means designing the software before writing the code. When you are begin-
ning your studies of any processor, or any programming language, designing before writing
is difficult. You are wrapped up in just learning the details of the processor and its instruction

3.3 Top-Down Design

set or the syntax of the programming language. Soon, however, the problems get more com- A design methodology is a stepwise procedure for doing the design. This can be contrasted
pliched L your4newfoun¢4JAnm,ﬁlcry & lhc, language, el should be able to design the with d;sign tools. which are the mechanical things (e.g.. pseudocode or flowcharts) used to
SOIU[]O". othepronlmis ol b EORATIIEE s \“]."““”' . produce the design. The top-down design (TDD) method is the design procedure of choice. By
Inithis chapleneassume that you are abontte leam the instruction Set 0 EEIE S following the steps presented next, we can almost assure ourselves that in the end there will be
and the operation of the assembler or high-level language compiler. To prepare for this task, e dl‘\‘iﬂn meeting the system requirements
we would like you to learn how to design software properly instead of just writing it. We will | o ik 5 ¥
look at various design philosophies and at tools used to design software | Understand the Problem Completely
: : . E Unfortunately, many programmers violate this first principle of TDD
i Understand what is required of the X o e N &
e beTore St o SO Bk right away because it is so much fun to program that they start before
system before starting gram. N 3 .
] ¢ they fully understand the problem. For example, consider designing the

! Frederick P. Brooks Jr. The Mythical Man-Month. Addison-Wesley, Reading, MA, 1982

*
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hardware and software for a digital voltmeter. Questions that should be asked (and answered)
el : Level 1
before proceeding with the design might include the following: eve More General

“What is the range of input voltages?” Level 2
“What is the resolution needed for the display?”
“How are the analog voltages coded?” Level 3
“How does the analog-to-digital converter work?” 1
ceveld [j |__‘_| [:L] L | L] [ ] woreDetaied

Understanding the problem means we must specify exactly what the software is required to
do. It is not necessary to understand (at least in the initial stages of the design) how elements of
the proposed solution work in detail. For example, when designing a digital voltmeter, we do not
need to know how the output display works. We just have to know what we need for the output.

A student recently suggested that this part of the design process be called “outside-in design™
to emphasize that the specifications for the software often come from an outside customer. The Level 1
specifications must be written so that both the end user and the engineer of the system know
exactly what the system is to be.

A document that is produced during this phase of the design is called

Figure 3-1 Tree structure that results from designing in levels.

Digital Voltmeter

ALY a requirements specification. This bit of jargon simply means that you Geta Calculate Display
The requirements specifications tell : i i >
i S specify (write down) what the system is required to do. We are not spec- Level 2 Value from the the
exactly iy habiHESpIORTERSRASE ifying how something is to be done, just what is to be done. A/D Voltage Result
posed to do. The design process should consider potential error conditions and
should allow for them in the rest of the design. Often when customers Figure 3-2 Two-level design for a digital voltmeter.

supply specifications, they fail to consider all error conditions. You should make it your respon-
sibility to think about errors and error handling requirements.
A statement that summarizes this first principle of top-down design is “Think first, program

later.” The voltage is to be displayed on a two-digit, seven-segment LED display to a resolution
of 0.1 V.
Design in Levels _
Once the requirements have been specified, it is time to start designing We will not complete this design to the final level of details needed in a real-world project.
Upper levels of the design are more | a system to meet them. This is the “how” part of the design process. It Our goal is to show how to start a top-down design. The first two levels of the design are shown
veneral: lower levels are more [ is natural to feel overwhelmed by the complexity of the problem. Often in Figure 3-2.
detailed, one cannot see a way to the end. Do not worry. The design procedures The top level is a simple statement of the problem, with the next level providing some details
will help us through to the end. of how that top block is to be done. This level starts to focus our thoughts as we consider what
Designing in levels means that we recognize that the whole solution should be done to program the digital voltmeter. The design may not be correct or complete at
to the problem cannot be seen at once. Just start at an upper level and propose a solution to the this stage, but it is at least a start, and starting is often the hardest part of any project. Notice
problem. As you learn more about the problem and how to solve it, levels that are more detailed that the blocks in Level 2 are algorithmic. That is, by reading them from left to right, we have
can be added to the design. A tree structure, as shown in Figure 3-1 is developed to represent a a description of a sequence of things done to input the voltage and display the result.
design that is being done in levels. The upper levels of the tree are more general statements of
the problem solution; as one progresses down the tree, more detailed information is shown. Ensure Correctness at Each Level

Let us look at an example. Consider designing the software for a digital voltmeter. The

requirements are the following: The design started in Figure 3-2 is not necessarily correct or complete after the first pass.

Before going on to lower levels, make sure the algorithm is correct at this level. In going back
; : over the design, try to think of anything else that perhaps should be done. For example, we
The input voltage ranges from 0 to 5'V. might remember that we need to initialize some of the 1/0 devices in the system. It is easy at

An analog-to-digital converter is to be used to produce an 8-bit unsigned binary code. this stage to add another block to the design, as shown in Figure 3-3.

—
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Level 1 Digital Voltmeter Level 1 Digital Voltmeter

]
| | | | |

Geta Calculate Display . Geta Calculate Displa
Level 2 Value from the the Loyele lmtlllahze Value from the the 4
A/D Voltage Result 0 A/D Voltage Result

Correction for | Initialize
Level 2 110 I J

Start Delay Read
AD Routine AD

Level n

Figure 3-3 A more correct design for Level 2.

Other low-level drivers
Postpone Details

There will be unknown and unresolved details at all upper levels of the design. Postpone think-
ing about the details until you reach the lower levels later in the design process. For example,
when working at Level 2 of the digital voltmeter, we do not need to know in detail how we are
going to get data from the A/D converter. Nor do we need to know the details of the algorithm 3.4 Design Partitioning
to convert the 8-bit unsigned binary code to a voltage value. Thinking about and designing for
these details can be postponed. At Level 2 it is necessary to know only that this conversion
needs to be made, not the details of how to do it.

Figure 3-4 Bottom-up design.

The top-down design method allows us to partition the design into easily
handled pieces. At the upper levels, we can concentrate on more general
ideas, leaving the detailed design until later. Also, it is usually easy to see
where work at the upper levels can be divided among different people work-

Most programming problems can
be partitioned into elements that are
divided among the programmers

Successively Refine Your Design HorenE R eTOb: ing on the project. In the digital voltmeter design, it would be easy to split
As progress is made through the lower levels, more details of what is required become appar- the design at Level 2 into two parts. One engineer could work on the /O
ent. Inevitably, as this occurs, we think of something that could be done at an upper level to initialization and on getting data from the analog-to-digital converter, and another could be assigned
make the design easier at lower levels. That is OK. Since no time has been invested in program- to convert the unsigned binary data to the voltage display. Partitioning the design and allocating
D ming, it is easy to change the design. Go back to the upper level, change it, make sure it is now work to different people is part of managing a software development project.

correct at that level, and continue to work at the lower levels.

Design Without Using a Programming Language 3.5 Bottom-Up Design

The initial design should propose solutions to the problems that are independent of any pro-
gramming language. It should make no difference to the design how the machine code in the
memory of the computer is generated. We are now beginning to talk about design tools—the
tools and techniques used to write down the design. One widely used design tool is pseudo-
code. This is a programming-like language used for design. For example, a pseudocode design
for the digital voltmeter at Level 2 is shown in Table 3-1.

“Bottom up is design philosophy that some people use. They think they
In bottom-up design, low-level func- |  are doing top-down design, but they really are not. Here is how designers
tions are designed, coded, and tested | may fall into bottom-up designs. They begin with a top-down design for
before the upper levels of the design |  the first levels: for example, the digital voltmeter design could be started
are completed. just as before. So far, so good. But soon they start looking ahead to
doing some coding. After all, they are programmers, aren’t they? There
will be some low-level drivers required, such as a routine that reads the
Table 3-1 Pseudocode Design for a Digital Voltmeter A/D. Why not, they argue, take a break from this design stuff and do some programming for a
change? The design starts to look like Figure 3-4.
What is wrong with this procedure? First, by writing programs before the design has
been completed, we cast in code® how things are being done at lower levels before we have

Initialize /O devices
Get a value from the A/D
Calculate the voltage
Display the results

? Sometimes very much like concrete!

e R
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Table 3-4 Single-Sided DECISION Pseudocode Figure 3-7 WHILE-DO structure.
IF X -
THEN
BEGIN A
£ WHILE
END A True
ENDIF X
False \
Figure 3-6 Single-sided DECISION structure.
S1
IF
False True +
S2
A
 m®
S3
Table 3-5 WHILE-DO Pseudocode Table 3-6 DO-WHILE Pseudocode
WHILE X DO
DO BEGIN S1
BEGIN S1
; END S1
END S1 BEGIN S2
BEGIN S2
END S2
END S2 BEGIN §2
BEGIN S2
END S2
END S2 ENDO
ENDO WHILE X
END WHILE X DO ENDO WHILE X

i1 - Two additional definitions complete our introduction to pseudocode.
There are some other variations of the repetition structure. One particularly useful in assem-

bly language programming is the DO-WHILE, shown in Table 3-6 and Figure 3-8. Here the Indentation: Indentation is often used in pseudocode. The code statements (or design require-

processing block::. S1, §2, and S3, are done before the Boolean decision block. Thus, the code ments) for each block (bracketed by BEGIN and END) are indented to help show the structure
in the DO block is executed at least once. of the design 5 -
sign.
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Figure 3-8 DO-WHILE structure.
St
S2
S3
WHILE True
False

Table 3-7 Level-1 Design

—_—

BEGIN A
END A
BEGIN B
END B

Single-input, single-output: A principle of structured programming is to keep things simple
without many interconnections between different parts of the program. A way to do this is to
write the program so that elements of it (sequences, if-then-elses, and repetitions) have single
entry and exit points.

Using Pseudocode Structured Elements as a Design Tool

A top-down design can be done in several levels of pseudocode. For example, when you first

start the design, you might know only that A and B have to be done. The Level-1 design is
shown in Table 3-7.

Table 3-8 Level-2 Design

BEGIN A

ENDIF X
END A

Table 3-9 Level-3 Design

BEGIN A
IF X
THEN
BEGIN C
IFY
THEN
{ ENDIF Y
END C
ELSE
BEGIN D
IFZ
THEN
BEGIN G
END G
ELSE
BEGIN F
ENDF
ENDIF Z
END D
ENDIF X
END A

3.8 Design Tools
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As we start to know more about the sequence block A, we can begin to fill in its details. The

Level-2 design becomes that shown in Table 3-8.

The design goes on to Level 3 (Table 3-9), where the C and D sequence blocks can be

expanded.

In each of the design levels shown here, elements have been enclosed in boxes. This is 1o
emphasize the single-input, single-output nature of the program flow. In Table 3-7 we can see
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Example 3-1 Program Header

JARRK RN ek R ek RO Aok AR R X K ok b e o S e ok e ke e e ke

* Hex keypad scanning module

- unsigned char hex key scan( void );

* This module scans a 1l6-key keypad

* attached to Port AD. It returns an unsigned char
for the key pressed. It returns the first key pr
when scanning. It does not check for multiple ke
* at the same time and it does not debounce key st
* Author: F. M. Cady

* Source File: hex keypad.c

* Revision: 1

*

*

* Revision date: 1 February 2009

S e e e ko ke ok ok ok ok ek ok ok Kk kR Kk ko sk ek ok ko kK ko K ok ko kR ko ok kR ko kK )

Hardware Definitions

As you start to learn more of the details needed to solve your programming problems, you will
learn more about the hardware. Including these details as comments will help you remember
later how your program works. See Example 3-2.

Example 3-2 Hardware Definitions

/* Hardware Definitions */

[ KK kA KRRk KK KRk Kk Kk KKKk ok K KKK KKK KK KK K KK Rk K Kk Rk kK

* Port AD bits:

X PAD-3 - PAD-0: Output: Scan row scan codes
x PAD-7 - PAD-4: Input: Column code

X | Col3 Col2 Coll ColO

* Row | Col Code

* Row Code 1111 0111 1011 1101 1110

>0 31T 08N [iINone 1 2 3 A Key

* 2 1101 |None 4 5 6 B Pressed
* 1 1011 |[None 7 8 9 (0

* 0 0111 |None X 0 # D

kﬁ**'*'*ti*ttﬂttit'tttti*t*ttt"'th'h.-u..oo‘u..........A."cb/
/* Define Grayhill Series 96 4x4 keypad */

#define NUM_ROWS 4 /* Number of rows */
#define NUM KEYS 16 /* Number of keys */

3.11 Program Comments 65

* 2
* 3
5 6
6 7
* 7 8

Constant Definitions

Example 3-3 shows constants defined for this module. Note that it is not sufficient to merely
define the constants. You must add comments stating how the constants are used in your
program.

Example 3-3 Constant Definitions

*
o X

w o

O XA

Data Structures and Definitions

If you are using data structures in some way, document them with comments explaining their
use. See Example 3-4.

—
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Example 3-4 Constant Definitions Example 3-5 Variable Definitions

e S S R A e e e

/* Define arrays to store the scan codes, key a
* lookup table for the return value */

unsigned char Row_Codes[] = {

ROW3, /* Row 3 scan code */

ROW2, /* Row 2 scan code */

ROW1, /* Row 1 */

ROWO /* Row 0 */
}i
/k'iﬁ*(tﬁv'*(‘I‘it!*i*i'**"itﬂ*l"V*I’xt\(41v-l‘.A.<,.-..,,,,,“,*

* This lookup table contains the 8-bit scan
* keys on the keypad

T S T R S Koxkxkhk

unsigned char Good Codes[ ] = { Code Comments

COL3 | ROW3, /* "1" = 0x7e */ As you proceed to write the program code, structure it with blocks of design comments. straight
COL2 | ROW3, /* "2” = Oxbe */ from your design documentation, with code that follows implementing the design. You may
COL1 | ROW3, /* “3" = Oxde */ find it useful to include code comments that explain how the code is working to implement the
COLO | ROW3, /* “A” = Oxee */ design. See Example 3-6.

COL3 ROW2, /* "4” = 0x7d */

COL2 ROW2, /* ”5” = 0xbd */

COoL1 ROW2, /* "6” = 0xdd */

LR ROV B Example 3-6 Comments in the Code

|
|
|
|
|
|
|
|
COL3 | ROW1, /* “7” = 0x7b */
|
|
|
|
|
|
|

COL2 ROW1, /* “8" = Oxbb */
COoLl ROWl, /* ”9” = Oxdb */
COLO ROW1l, /* “C” = Oxeb */
COL3 ROW0';: /o 8= %77 %,
COL2 ROWO, /* ”0” = 0xb7 */
COL1 ROWO, /* “#" = 0xd7 */
COLO ROWO, /* “D” = 0Oxel */
END_MARK /* End marker */
}i
/t'*vﬁt'n,yer*«.gttniyﬁyt'ttavoﬁ-'-tt.ﬁ...; .............. Axrr®

* This lookup table returns the ASCII code f

R R R L L R e

/* User-defined key codes. These are ASCII. */
unsigned char Key Codes| ] = {
”123A456B789C*0#D"
bi
Variables - : , .
The comments in a program should document the design needed to implement the system as

well as details that explain how the code implements the design. An overall program structure

Every variable used in your program should include a comment defining its use. See Example 3-5.
of a well-designed and well-documented program is shown in Example 3-7.

5 S
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operator’s manual. It must be written first and accepted by the customer and the software devel-

Example 3-7 Commented Code Outline oper. As you continue with the lower levels of the design, where one starts to think about how

%R KRR KAk KK XK AR KKKk kK KKK KRRk Kk ok

ek ok h KRR kAR things are going to be done, the SRS documentation begins to define the functions required by
/*** Program Header ***/ modules in the system. You should be able to give an SRS document to a colleague and have
R R R KRR KRR KRR KRR AR AR AR Rk Sk kAR AR HA him or her code the function and return a working module to be included in the system.
/*** Hardware Definitions ***/
ARk kKR kKRR KRR KRR KRR ko kK k& Kk koh ok kR k]

Software Design Document (SDD)

/*** Constant Definitions ***/ 1 . . d ) :
s L S L e The SDD is the document produced for the detailed design of a module. It defines the logic
required to produce a particular function. You start with the SRS for the module and use a

design tool such as pseudocode, described in Section 3.8.

.OAA-AAtkﬁX/
/*** Data Structures ***/

)

/*** Variables ***/

[ kKKK K KKKk kK kK KK kXK K ok Xk kK Kk kA

Software Code
*** Desi £ Block ***/
;,, “Efffr:f?riufejtfl'ik, o ‘/ﬂ A A R i The coding phase has an element of software docurr}en[alion. This means including com-
A ments in the software. We would like the code to be written so clearly that extra comments are
: not necessary. High-level languages allow us to do some of this, but rarely should we write
a program without any extra comments describing what is going on. In assembly language
programs, comments are mandatory because the language is not as design oriented as high-
level languages. It is particularly effective to use the pseudocode produced for the SDD for the
comments in an assembly language program.

/***x** Code to implement this desigr

[ ko e ok Kok ok ok kK kXX X kK

.<..‘~.-..‘.¢4..-w/
/*** Design Comment Block ***/

[ K Rk Kk ko k X K kKX KOR KK kKKK ok ok ko K okow ok kR k)

/****xx*x Code to implement this design bl

Y e

Ty

Software Verification Plan (SVP)

The SVP is a document that describes how we are going to test and verify that a particular
module or system meets its specifications. The SVP should give the details of limiting values
to be tested and the expected results. There may be levels of SVPs associated with the various
levels of our design.

Comments in Assembly Language Programs

Many assembly language programmers tend to place comments at the end of each line of the
assembly code, or on many lines. While better than omitting comments, this is not a good
practice or commenting style. It leads to comments that are related to the line of code but
not necessarily to the design or function the code is producing. Further, these comments are
often added after the code has been written rather than before. A better way to comment an

User Manuals

The four document types just described are often treated as design documents to be used within

assembly language program is to follow the preceding strategy and use a block of comments
to describe what the following block of code is to do. You may place comments on some
lines of code to describe how they work. Comments are generally not needed on every line
of assembly code.

3.12 Software Documentation

Each of the software development phases—design, coding,

and testing—has associated
documentation.

Software Requirements Specification (SRS)

The SRS is a document or series of documents defining what is required of the software. At
the upper levels of the best-designed systems, the SRS should completely define what the user
of the system is to see, that is, the user interface. This document can form the basis of the user

the company and not delivered to the customer. Beyond these, there must be manuals for the
customer’s use. These include instructions on how to install the software (if appropriate) and
instructions on using the software.

3.13 A Top-Down Design Example

As a final exercise, let us use the top-down design approach to tackle a design problem. As a
review, the principal steps of top-down design are as follows:

« Understand the problem completely.
* Design in levels.
» Ensure correctness at each level.

* Postpone details.

PSS SNSRI SNSRI S S——@@mMm@m= SN N S S
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Table 3-11 Problem Solution Logic

Alarm Sounds
When the key is in the ignition
and the motor is not running
and the door is open
When the key is in the ignition
and the motor is running
and the driver belt is not fastened
When the key is in the ignition
and the passenger seat is occupied
and passenger belt is not fastened
When the key is not in the ignition

and the lights are on

« Successively refine your design.

+ Design without using a programming language.

Seat Belt Alarm: Problem Statement

In many cars the seat belt alarm buzzer is also used to warn against leaving the key in the ignition
or leaving the lights on. The following statement describes how such a system might operate:

The alarm is to sound if the key is in the ignition when the door is open and the motor is not
running, or if the lights are on when the key is not in the ignition, or if the driver belt is not fas-
tened when the motor is running, or if the passenger seat is occupied and the passenger belt is
not fastened when the motor is running.

The Top-Down Design

Understand the problem

It is often useful to restate the problem to understand it better. Often a tabular form, as shown
in Table 3-11, can help clarify the logic needed.

First-Level Design

By reading the problem statement and perhaps restating it, we begin to understand the problem
better; but we need a place to start the design. Table 3-11 lists circumstances under which the
alarm is to sound if the key is in the ignition and other conditions for sounding the alarm when
the key is not in the ignition. Our first cut at the design, for which we have used the pseudocode
tool and postponed details, looks like this:

IF the key is in the ignition
THEN

DO the alarms if the key is in the ignition

3.13 A Top-Down Design Example 71

ENDDO the alarms if the key is in the ignition
ELSE (the key is not in the ignition)

DO the alarms if the key is not in the i

ENDDO the alarms if the key
ENDIF (the key is in the ignition)

Second-Level Design

We have obviously left out all the details that will sound the alarm, but we do have a start-
ing structure to which we can now add details. First, though, we should look back at lhe
design to make sure it is correct. Notice that we have put comments after the ELSE

statements. These will help us keep track of where we are in the logic as we add details. There
is not much logic in the design at this stage, so we continue with the second level and start to
fill in some of the details. Details that are added in each of the following levels are shown in
bold type.

IF the key is in the ignition
THEN
DO the alarms if the key is in

IF the motor is not running
THEN

DO the alarms if the motor is not running

ENDDO the alarms if the motor is not running
ELSE (the motor is running)

DO the alarms if the motor is running

ENDDO the alarms if the motor is running
ENDIF (the motor is not running)

ENDDO the alarms if the key is in the ignition
ELSE (the y is not in the ig
DO the alarms if the key is

ENDDO the alarms if the key is not i
ENDIF (the key is in ition)

ign

Third-Level Design
Check back to ensure that the second-level design is correct, and continue adding details.

IF the key is in the ignition
THEN
DO the alarms if the key is in the ignition
IF the motor is not running
THEN
Do the alarms if the motor is not running
IF the door is open
THEN
Sound the alarm
ENDIF (the door is open)
ENDDO the alarms
ELSE (the motor 1is

..



]

—

72 Chapter 3/ Structured Program Design

DO the alarms if the motor is running
ENDDO the alarms if the motor is running
ENDIF (the motor is not running)
ENDDO the alarms if the key is in the ignition
ELSE (the key is not in the ignition)
DO the alarms if the key is not in the ignition
ENDDO the alarms if the key is not in the ignition
ENDIF (the key is in the ignition)

Fourth-Level Design
Check back to ensure that the third-level design is correct, and continue adding details. You do
not have to continue with the “key is in the ignition™ logic if it makes sense to do something
else. Let us add some details in the ELSE (the key is not in ignition) part of
the logic.

IF the key is in the ignition
THEN
DO the alarms if the key is in the ignition
IF the motor is not running
THEN
Do the alarms if the motor is
IF the door is open
THEN
Sound the alarm
ENDIF (the door is open)
ENDDO the alarms if the motor
ELSE (the motor is running)
DO the alarms if the motor is running
ENDDO the alarms if the motor is r
ENDIF (the motor is not running)
ENDDO the alarms if the key is in the ignition
ELSE (the key is not in the ignition)
DO the alarms if the key is not in the 1
IF the lights are on
Sound the alarm
ENDIF (the lights are on)
ENDDO the alarms if the key is not in the ignit
ENDIF (the key is in the ignition)

Design for Successive Levels

We continue this design process by refining the design and adding the details needed to imple-
ment the solution. You may take several more design steps to complete the design.

IF the key is in the ignition
THEN
DO the alarms if the key is in the ignit
IF the motor is not run
THEN

ining
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the a S I tr r 1s running
IF the driver’s belt is not fastened
THEN

Sound the alarm
ENDIF (the driver’s belt is not fastened)
IF the passenger seat is occupied
THEN

IF the passenger belt is not fastened

THEN

Sound the alarm

ENDIF (the passenger belt is not fastened)

ENDIF (the passenger seat is occupied)

Final Check

Table 3-11 can be used to help check the final solution for correctness. Trace through your pro-
gram logic for each of the cases that sound the alarm shown in Table 3-11. See Table 3-12.

3.14 Chapter Summary Points

It is vital that your software solutions be designed first and then written. Many problems (bugs)
can be avoided by designing before writing. You must adopt a design practice such as the top-
down methodology shown in this chapter.

This chapter has presented the following points.

* The top-down design method is our choice of design approaches.
* The top-down design steps are as follows:

Understand the problem completely before writing code.
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Table 3-12 Problem Solution Logic Final Check
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Alarm Sounds OK?
When the key is in the ignition
and the motor is not running
and the door is open Yes
When the key is in the ignition
and the motor is running
and the driver belt is not fastened Yes

When the key is in the ignition
and the passenger seat is occupied 31 6 Pr0b|ems
and passenger belt is not fastened ~ Yes

When the key is not in the ignition

and the lights are on Yes Explore
.1. List at least five principles of top-down design. [a, c]
3.2. What are the three basic elements of structured programming? [a]
Design in levels. 3.3. Write the pseudocode and draw the flowchart symbol to represent the decision IF A is

Ensure correctness at each level. TRUE THEN B ELSE C. [a, c]

Post ils. : i

o pon-e S 3.4. Write the pseudocode and draw the flowchart symbol to represent the decision IF A is

Successively refine your design. TRUE THEN B. [a. c]

Desi . s . - a0e
esign without using a programming language. 3.5. Write the pseudocode and draw the flowchart symbol to represent the repetition

* With bottom-up design and coding, decisions at lower levels may adversely affect the WHILE A is TRUE DO B. [a, ]

Uppet Yel GR ek 3.6. Write the pseudocode and draw the flowchart symbol to represent the repetition DO B
* Inthe real world, we try to follow the principles of top-down design, but we pragmati- WHILE A is TRUE. [a, ]

cally use functions that have been already designed, coded, and tested.

* The elements of structured programming can be listed: Stimulate

Use three simple structures—sequence, decision, and repetition—to write all

programs. 3.7. Use structured flowcharts or pseudocode to write a design that will implement the fol-

lowing problem description: [c]

Keep program segments small enough to be manageable. . 5 -

Prompt for and input a character from a user at the keyboard.

If the character is alphabetic and is uppercase, change it to lowercase and output it
to the screen.

If the character is alphabetic and is lowercase, change it to uppercase and output it

Organize the problem solution hierarchically (use top-down design).
Use single-input, single-output program flow.

* The pseudocode technique is an effective design tool for all levels of top-down design.

* The top-down design method can lead to a top-down debugging and testing strategy
where the structure of the design tests itself.

Software documentation is a vital part of all stages of software development and con-
sists of the following:

Software requirements specifications (SRS)

Software design documentation (SDD)

Software code with comments

Software verification plan (SVP)

Users” manuals

Challenge

38.

to the screen.
If the character is numeric, output it with no change.
If it is any other character. beep the bell.
Repeat this process until an ESC character is typed by the user.

Design a program that initializes an 8-bit data storage accumulator to 0 and then inputs
10, successive 8-bit values from an input device located at address Ox70, adding each
of them to the 8-bit data storage accumulator. If during this process an unsigned binary
overflow occurs, print an error message and repeat from the beginning. Otherwise, after

e e e e
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the 10 values have been input and added, output the result to an output device at
location 0x71. Run the process forever. Your design must be a structured design
and must show REPETITION, DECISION, and SEQUENCE. [¢]

3.9.  Use structured pseudocode to give a design that will accomplish the following: [c]
A user is to input a character to select one of three processes. Valid characters are
A, B, and C, where A, B, and C select processes A, B, or C, respectively. Process
A requires a byte of information to be input from an A/D converter, which it then
converts to a integer decimal number in the range of 0 to 5 and displays it on the
screen. Processes B and C are not defined at this stage. Prompts and error mes-
sages are to be displayed. You do not have to give details of the decimal conversion
required in Process A.

[e]

A byte of data is to be input from an analog-to-digital converter, and a critical

value is to be input from a set of switches. If the A/D value is greater than the crit-

ical value, the microcontroller is to sound an alarm. Otherwise the alarm is to be

turned off. This process is to continue forever.

3.10. Use structured pseudocode to give a design that will accomplish the following:

3.11. Design a traffic light controller. [c]
Imagine an intersection with north/south and east/west streets. There are to be six
traffic light signals:
RedE_W, YellowE_W, GreenE_W
RedN_S, YellowN_S, GreenN_S
Assume that the time elements in the table below are 10 seconds and that a timer
delay is available as a function or subroutine. Give the pseudocode structured
design for the light controller.

RedE_W o e s e I

YellowE W

GreenE_ W

RedN_S ) Y S O At O I ‘

YellowN_S | ,

GreenN_S P

Reflect on Learning

82

3.13.
3.14.

Have you ever written a program without doing enough design before programm
Describe the problems you had, and reflect on how doing more design before pro-
gramming would have made your job easier.

List five things you learned about software design from this chapter.

In no more than three sentences, summarize what you learned about top-down design




Objectives

Introduction to the CPU: Registers
and Condition Codes

This chapter starts your learning about real processors. The steps you take here will be the
same ones taken for processors you will meet in your career. We will begin with the registers,
that make up what is known as the programmer’s model, emphasizing the condition code
register.

4.1 Introduction

In learning about a microcontroller or microprocessor, you first evaluate it by looking at the
hardware resources. At the basic level, these include the registers in the CPU such as accumula-
tors, memory addressing registers, and the condition code register. For most microcontrollers,
the CPU contains other hardware resources such as timers, parallel and serial 1/0, and analog-
to-digital convertors.

4.2 CPU Registers

78

The central processor unit, the CPU, contains the registers used in your programs. Depending
on the design of the processor, the registers may have 8, 16, 32, or more bits; in any CPU there
are registers of several different types.

Accumulators: Accumulators are registers that accumulate answers, such as the A register in
the picocontroller of Chapter 2. An accumulator can serve simultaneously as the source register
for one operand and the destination for an ALU operation.

Condition code register: The condition code register is also called the flags or status register. It
holds condition code bits generated by the processor when instructions are executed

Doubled registers: The number of bits in a register depends on the general architecture of the
CPU. An 8-bit CPU generally has 8-bit data registers. Sometimes two of the data registers are
used together to double the number of bits.

4.3 Register Transfers 79

General-Purpose registers: These registers hold data: they serve as source and destination
operands for data transfer instructions, and as sources for ALU operations.

Index registers: Index registers are used to address memory also. Unlike pointer r
memory address is found by adding to the contents of the index register a constant v
called an offset. The resulting sum, called the effective address, is the address generated |
CPU to retrieve or store data. For a pointer register. the effective address is just the co
of the register.

Pointer registers: Pointer registers address memory. The register is said to “point™ to a memory
location. In most processors, pointer registers can be incremented or decremented. either
program step or automatically after their use.

Segment registers: In some machines, depending on how memory addressing is or
physical address consists of two parts: a segment part, which defines a certain area or
the memory, and an offset part, which specifies a particular place in the page.

Stack pointer register: This is a pointer register dedicated to addressing memory used for var-
iable data and subroutine return address storage.

4.3 Reqgister Transfers

mation is just transferred from one place to another, as in a

register is the source of the information and the B register is the desrinarion. Other inst

may modify the information along the way. For example. in Chapter 2 will add the con-

tents of the A and B registers and place the result in the A register. A transfer never destroys or

changes the source operand in a register transfer instructions. unless a source register is also

used as the destination, as in the &
Manufacturers provide a symbolic notation that precisely and suc-

.the A

ctions

BA instruction.

accomplishes.

A register transfer language suc-
cinctly describes what the instruction

cinctly describes the operation of each instruction. This is sometimes
called a register transfer language. Typically, a register name in paren-
theses means that the operation involves the contents of the register. A

left arrow («) denotes a replacement operation. For example. an instruc-
tion that replaces the contents of the A register with the contents of the
B register has the symbolic notation (A) «— (B). Table 4-1 shows examples of register transfer
language statements.

Table 4-1 Examples of Register Transfer

Language
Destination Regi « Source Reg
(A) « (B)
A« B

Source Register —» Destination Register

B
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An overflow indication means there

Exercise 4-1 55 :
is an error in the result.

Further, 147 — 179 = -32, and -32 cannor be represe
unsigned binary code. Thus, if we are using the unsigned bina
to represent numbers, the carry bit is set for errors such as overflow or a nega

The carry bit can be used for multiple byte addition or subtraction. Conside
two 16-bit, unsigned binary (or two’s-complement) numbers. but add them one by
time. In Example 4-2 the carry out from the addition of the least significant bytes is added
into the addition of the most significant bytes. Microcontrollers have special instructions

4.4 The Condition Code Register for this.

Turn now to the material that describes what CPU registers are available in your laboratory pro-
cessor. Be sure to note which registers are accumulators, which are general-purpose registers,
and which address memory; then return here to learn more about the condition code register.

The condition code register, also called the flags or status register, has bits
The condition code register has bits | that are modified (set or reset) when the computer executes an instruction
that are used to make decisions in | jnyolying data. Usually arithmetic and logic (ALU) operations modify
the program with condition branch | one or more of the flags. Sometimes a data transfer, like a load or move
instructions. operation, modifies the flags too: most processors have instructions that Two 16-bit numbers to be added. For example,
can directly set or reset the bits. Let us look at the bits that may be found e Ay

in a condition code register and understand how to interpret them. s o

Example 4-2 Use of the Carry Bit in Multiple-Byte Arithmetic

00011 . S

can be added with two 8-bit byte additions:

The Carry Bit
The carry bitis set if there is a carry, or borrow, out of the most significant bit during an addition Most significant byte Least significant byte (this addition is done fi
or subtraction. Consequently, this bit is sometimes called the carry/borrow bit. For example, Carry in from least significant byte
if we add or subtract the numbers shown in Example 4-1. the carry/borrow bit is set (= 1) by
each operation. 1 ~<«——— 1 — Carry out of least significant byte

Example 4-1 Addition or Subtraction of 8-Bit Unsigned Binary Numbers

Addition Subtraction Carry out of most significant byte
147 120205108011 147 10 1 ]
IS Ve et B (S e - 011
326 1 0RTER0R0S0STIR0 = 1
éan’y Barrom To use the carry bit to detect arithmetic errors, say when an overflow has occurred. as

shown in Example 4-1, your processor will have instructions that test the carry bit as part of
the instruction execution. These instructions will be similar to branch-if~carry-set and its com-

plement branch-if-carry-clear. The program flow for a conditional branch instruction is like
s iy the single-sided decision structure shown in Figure 3-6. If the condition is true. the branch is
What does the carry bit being set (nr'rescl) mean? How do we use this information ! It depends taken: otherwise, the program continues. See Example 4-3.
on the code. The meaning of any information always depends on the code. If the code is y
unsigned binary, as in Example 4-1, the presence of the carry bit = | means that an overflow

has occurred. Let us define overflow.

Example 4-3 Conditional Branching

An overflow occurs when the result of an arithmetic operation cannot be represented by the I A
. . Thi : ] Show how to branch to an error handling routine if an overflow occ when adding S-b
number of bits available. This could mean the result is too large or too small. although the latter ‘ . SRS AR > overflow occurs when adding two S-bit
; ; unsigned numbers.
is sometimes called underflow. £
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Solution

Therefore, it appears that the carry bit will allow us to detect an overflow. However, when —77
is subtracted from —109, the answer, —32, is encoded correctly (1 1 1 000 0 0 is the two's-
complement binary code for —32). No overflow has occurred even though the carry bit is set.
In one case, the carry bit indicates an overflow, and in the other it does not! We conclude that
when two’s-complement codes are used for addition or subtraction of signed numbers. the
carry bit cannot be used to indicate an overflow. Fortunately, microcomputer manufacturers
include a bit to be set if a two's-complement overflow has occurred (or reset if it has not).
There are several algorithms for overflow; probably the easiest to understand (but not the

; i easiest to do in hardware) is the following, which we use when two’s-complement numbers
- A R o AneTat] 5 > the carrv b y N M ONe & n to :

Example 4-2 :\hm\s dnlhn)u}lg ope Fd(}ﬂﬂ\ that use th rry bit to flow from ', ne addition t are being added.

another. Instructions that do this are similar to add-with-carry and subtract-with-carry. When

you are subtracting, the carry bit indicates a borrow is needed: some instruction sets call these
instructions subtract-with-borrow.

Two's-complement overflow occurs if the two operands have the same sign AND the sign of the
result is different.

Two's-complement overflow cannot occur if the two operands have opposite signs.

Exercise 4-2 When two’s-complement numbers are being subtracted, take the two’s complement of the sub-
Investigate your microcontroller’s instruction set and list the instructions that test or use the trahend and proceed as in addition.
TR, Example 4-1 and 4-4 show the binary numbers, and the results are identical for each addi-
: tion and subtraction. The hardware to do addition and subtraction is the same in each case.
This is the beauty of the two’s-complement code. The binary result and the potential for over-
flow can be interpreted correctly by the program because the hardware provides the carry
bit for unsigned numbers and the two’s-complement overflow bit to be tested when two's-
Two’s-Complement Overflow Bit complement codes are being used.

What does the carry bit mean if the numbers to be added or subtracted are encoded with an

Your microcontroller has instructions that test the two's-complement overflow bit similar to
8-bit. two’s-complement code? Look at Example 4-4.

those that test the unsigned overflow carry bit. They will likely be called branch-if-overflow-ser
and branch-if-overflow clear. You would use the branch-if-overflow-set instruction to branch
to the error handler if the data in Example 4-3 were adding two's-complement data.

Example 4-4 Addition or Subtraction of Two’s-Complement Numbers

o | b
i, 5 ) : 7 Subtraction l Exercise 4-3

1 Investigate your microcontroller’s instruction set and list the conditional branch instructions
T 1 that test the two's-complement overflow bit.

Carry Borrow [

:
! Sign Bit
|
|

The sign bit shows that an ALU (or other) operation gave a result in which
the most significant bitis a 1 (ora 0). Notice we did not say “resulted in a
negative (1) or positive (0) number,” since the meaning of the bit depends
on the code. In an unsigned binary number computation, there can be

. The binary operands and the binary result in Example 4-4 are the
Overflow that occurs when doing E - ANl ToiE le 4 ]’” f 147 and 179 is 326 |
5 5 o “ same as kExe > 4-1. b ¢ > 4-1 the sum o an 15 326, ‘e .
signed arithmetic with two's-comple- | (o Sl D, EXxampic LU R ! nificant bit of the result; it gives the
= . . which is larger than the largest 8-bit unsigned number (255). Thus, the
ment numbers is detected by a two 's- %

. carry bit indicates an overflow. In Example 4-4 the sum of - 109 and -77
complement overflow bit.

The sign bit is equal to the most sig-

sign only if signed number codes are

being used

y : no negative result because there are no codes for negative numbers. The
is more negative (larger) than the most negative number we can repre-

; 3 sign bit means negative only if ones’-complement or two's-complement
sent with a two's-complement binary code (the most negative is ~128).
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codes are being used to represent signed information. In some microcontrollers the sign bit is
called the negative bit. Instructions in your microcontroller that test the sign bit will be similar
to branch-minus and branch-plus.

Exercise 4-4

Investigate your microcontroller’s instruction set and list the conditional branch instructions
that test the sign bit.

Zero Bit
The zero bit is true, or set, if the result of an operation is equal to zero. Otherwise, it is false, or
reset. The zero bit conditional branch instructions are those similar to branch-equal(-to-zero)
and branch-not-equal(to-zero).
Exercise 4-5
Investigate your microcontroller’s instruction set and list the conditional branch instructions
that test the zero bit.
Parity Bit

Some processors have a bit that shows if a result has even or odd parity. An even parity bit
is set if the result has even parity, that is, an even number of Is. An odd parity bit is set for a
result with an odd number of 1s. The parity bit, along with conditional branching instructions
for parity-even and parity-odd, is useful for checking to see if errors have occurred in data
transmitted over long distances. We will learn more about parity when we discuss serial I/O in
Chapter 12. Not all microcontrollers have a parity bit in the condition code register. If yours
does, you may see instructions such as branch-parity-odd and branch-parity-even

Other Condition Code Register Bits
There may be other bits in the condition code register that are not directly related to conditional
branching. These typically include bits to control the interrupt capabilities. We will study these
later when we discuss interrupts.

How Do the Bits Get Set or Reset?

The condition code register bits are modified by hardware during the execution of some
instructions, usually ALU instructions that modify the data in some way. The bits are set or
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reset according to the hardware regardless of the code you are using in the computation. See
Examples 4-5 through 4-8.

Example 4-5

Give an example showing the addition of two binary numbers that result in:
(a) Overflow if the numbers are unsigned binary but no overflow if they are two’s-complement

binary.

(b) No overflow if the numbers are unsigned binary but overflow if they are two's-complement
binary.

Solution

(a) Unsigned Value Signed Value

(=
o
v
[

olo ~

0000 0 0
Overflow No overflow
Carry bit=1 Two’s-complement overflow bit =0
(b) Unsigned Value Signed Value
168 e G R L e b 127 +127
0 + <1
0 128
No overflow Overflow
Carry bit=0 Two's-complement overflow bit= 1

Example 4-6

Do the following binary additions and show what the carry (C), two's-complement overflow
(V), sign (S), and zero (Z) bits are after the addition.

10101101 1010110k 10101101
10131 100r 0 01001101 01010011
Solution

ojis E(e 10 13 I P8VIsE c00C00QO0Q
c =1, 1 r V=20 C=1, V=0
Ss=0, 2=20 :r Z2=1 S=0, =1
Example 4-7

For each of the 8-bit binary additions shown in Example 4-6, assume that the data are unsigned

binary numbers. Give the decimal equivalents of each operand and the answer, and state
whether overflow has occurred
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Notice that the answer to each of these questions must be yes or no. When we write programs,
we would like to do one thing if the answer is yes and another if the answer is no.

4.5 The Programmer’s Model

The programmer’s model is the set of registers that the programmer can manipulate and must
manage during the programming of the processor. It includes the accumulators and data r§gls-
ters, the memory addressing registers, the stack pointer register, and the condition code register.
As we will see when we learn more about assembly language programming, the programmer 1§
also responsible for selecting the memory locations used for data storage.

Exercise 4-8

Draw the programmer’s model for your microcontroller showing all registers.

4.6 Conclusion and Chapter Summary Points

The CPU contains a variety of registers. Some are data registers and accumulators, and
some are used for addressing memory.

Manufacturers use a register transfer language to describe each operation in the
instruction set.

The condition code register contains bits that are modified when various instructions,
generally ALU instructions, are executed.

Among the bits found in the condition code register are bits that indicate a carry, a
two’s-complement overflow, sign, a zero, and parity.

The condition code register bits are used by conditional branch instructions to allow
yes/no decisions to be made.

The programmer’s model includes the registers the programmer is responsible for man-
aging during the program.

4.7 Problems

Explore

4.1 List the CPU registers available in the microcontroller you are studying.

4.2 In Example 4-1, what is the decimal result of the unsigned addition? Of the subtraction? [a]

Stimulate

Challenge

43
44
45
4.6

47
48

49

4.10

4.1

4.12

4.15

4.17
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In Example 4-4, what is the 8-bit result of the two’s-complement binary addition? [a]
What is overflow? [a]
What is the meaning of sign bit = | when unsigned binary coded numbers are added? [a]

What is the meaning of sign bit = 1 when two’s-complement binary coded numbers are
added? [a]

What is the meaning of carry bit = 1 when unsigned binary coded numbers are added? [a]

What is the meaning of carry bit = 1 when two’s-complement binary coded numbers
are added? [a]

What is the meaning of zero bit = 1 when unsigned binary coded numbers are
added? [a]

What is the meaning of zero bit = 0 when two’s-complement binary coded numbers are
added? [a]

What is the meaning of two’s-complement overflow bit = 1 when unsigned binary
coded numbers are added? [a]

What is the meaning of two’s-complement overflow bit = 1 when two’s-complement
binary coded numbers are added? [a]

Show by example that two’s-complement overflow cannot occur when numbers of
opposite sign are added. [b]

Show by example that two’s-complement overflow can occur when the numbers of the
same sign are added. [b]

Do the following 8-bit binary additions, and for each case give the expected result in
the carry, zero, sign and overflow flags. [a]

e

For Problem 4.15, assume that the binary numbers are in unsigned binary code. Show

the equivalent decimal arithmetic operations and indicate whether overflow has
occurred. [a]

For Problem 4.15, assume that the binary numbers are in two's-complement binary
code. Show the equivalent decimal arithmetic operations and indicate if overflow has
occurred. [a]

3 Imagine that you have two 8-bit numbers in two registers (A7:A0 and B7:B0) that

are to be added together and that the 8-bit output of the arithmetic and logic unit
(ALU7:ALUO0) and a carry bit (ALUCY) are available. What digital combinational
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logic hardware would be needed to produce a logic signal that is asserted high for the
following conditions: [c]

a. A carry has been produced by the addition.

b. The addition results in a two’s-complement overflow.

c. The result of the addition is zero.

d. The result of the addition is a negative number.

4.19 For the multibyte addition shown in Example 4-2, state what kind of instruction you
would expect the microcontroller to have to be able to do this. [e]

Memory Addressing Modes

Reflect on Learning E—— ]

4.20 What was the most useful thing you learned from this chapter?

4.21 List three concepts that you found important in this chapter and explain what they
mean to you.

Objectives

This chapter covers the basic principles for accessing data by describing the various ways your
microcontroller instruction set addresses memory. If you are going to program your microcon-
troller in assembly language, you need to know these to be able to write efficient programs.

5.1 Introduction

The instruction set of a real processor has only a few categories of instructions, such as data
transfers, arithmetic and logic operations, and branch and control instructions. Many instruc-
tions use one or more operands in registers or memory and often have several ways to address
them. The different ways an instruction can specify operands are called addressing modes: if
you learn these, along with the few categories of instructions, you will soon be writing assem-
bly language programs.

In this chapter you will learn a variety of addressing modes that improve the efficiency of
a CPU's operation either by allowing fewer bits to encode the instruction, by letting the CPU
execute instructions faster, or both. In addition, some modes may allow instructions that can
calculate an address at the time the program is running. For example, if you know the start of
table of data and want to step through the table, you can calculate the next address by add-
ing the number of bytes for each data element to the current address. In some computers, an
address can be specified relative to the program counter. This is useful for branch instructions
that do not branch very far from the current instruction.

5.2 Addressing Terminology

Auto increment and auto decrement: In some systems, registers that address memory can be
incremented or decremented automatically during use. This feature provides very efficient
addressing for stepping through tables of data.

9
— e e e e e e ————— e
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Effective address: This term refers to an address that is calculated by the processor. The effec-
tive address may be a physical or logical address and is the actual address of the operand.
Expanded or extended addressing: Expanded or extended addressing allows you to have more

memory than is allowed by the number of bits in the memory address. This is done by blocks
of memory sharing the same address space, one block at a time.

Logical address: Sometimes the complete, or physical address, is not needed or provided by
an instruction. For example, in segmented memory architectures as discussed shortly, we need
to specify only the offset from the start of a segment to specify the address of an operand. This
offset is the logical address. The physical address is computed or generated from the logical
address and other segment information, depending on the memory architecture used.
Memory and I/0 maps: A memory or I/O map shows what addresses are used for what pur-
poses. A memory map may show which addresses contain ROM and which contain RAM, as
well as any that have no memory installed at all.

Offset address: An offset address is one that is calculated from the start of a segment of
memory or from a specified location in memory.

Physical address: The physical address is the actual address that must be supplied to the

memory. The number of bits in the physical address fixes the maximum number of memory
locations that can be addressed.

RAM: We can read from or write to random access memory.

Relative address: A relative address is found by adding an offset address to the current contents
of the program counter.

ROM: Read-only memory can only be read from.

Segment address: A segment address gives the location of a block or segment of memory that
is smaller than the full physical memory.

Stack: The stack is an area of RAM that is reserved for temporary data storage.

5.3 Memory Types

ROM.

All computers have: bt URANG N The computer system designer has available two types of memory, RAM

and ROM. Every computer system has both types: the choice of how

much of each type, and its location in the memory map, depends on
the computer system being designed. Random access memory, or RAM,
may be read from and written to. The semiconductor RAM used in systems today is volatile.
Anything stored in memory is lost when the power is removed.

ROM, on the other hand, is read-only memory. Once programmed, either at the integrated
circuit factory as part of the manufacturing process, or in the field, for field-programmable

devices, it can only be read. ROM is nonvolatile; it retains its information when the power is
turned off.

5.4 Computer Types and Memory Maps

We will distinguish between two general types of computer. These are (1) desktop or
multiple-application systems and (2) embedded systems. Both have RAM and ROM, and
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RAM is used for variable information. In desktop, multiple-application systems, variable
information can be both data used by programs and the programs themselves. ROM is used
for constant information that must be retained while the power is disconnected. ROM is
used for the complete program in embedded systems and for “boot-up” programs used to

get desktop systems going in the morning when we turn the power on or when the computer
is reset.

The amount of RAM and ROM
depends on the type of system.

You are probably most familiar with desktop multiple-application
computers like personal computers. Embedded system computers,
which do a single task or set of tasks, include microcontrollers in vend-

ing machines and the computer that controls the fuel injection system in
an automobile. These systems are very different from the desktop system even though the CPU,
memory, and I/O concepts learned in the preceding chapters apply equally to both. The amount

of RAM and ROM in these systems and their use of input and output devices distinguishes
one from another.

The Desktop Computer System

Desktop systems use ROM for the
basic I/O software and large amounts
of RAM for programs and data.

Figure 5-1 shows a desktop system. It has a powerful CPU, copious
amounts of RAM for programs, and some ROM for the boot-up code and
low-level system I/O drivers. There are disk and CD/DVD systems for

program and data storage, and human-oriented I/O such as a keyboard.
liquid crystal display, printer, and user /O ports.

Many application programs, including word processors, spread sheets, assemblers, compil-
ers, and debuggers run on these systems. All are loaded into the RAM memory from the disk
by a disk operating system. There is an additional component of software in ROM. This code
is the basic input/output software, or BIOS. It loads, or bootstraps, the operating system from
the disk before executing other programs. The memory map of a desktop system is shown

RAM

Memory

e Disk

[~ " | Drive

LCD

Display <> CDIDVD

Drive

T CPU > Bon

, s <> | Pott

Printer <= 5 o Motherboard |

e T

| Port

Keyboard > Sound

~ | Card

Figure 5-1 Desktop computer system.
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in Figure 5-2. We see that most of the memory is RAM and is used for the operating system

: s $0000
resident code and for application programs. 1 Kbyte Control Registers
Register <—
Space for 1/O
The Embedded System $03FF
! 1 Kbyte EEPROM used for nonvolatile
- An embedded system (Figure 5-3), is one in which the computer is EEPRy(;M S iabl
An embedded system contains much T : ; . . variable storage
SY designed to do some particular job or jobs. Embedded systems differ $0800
ll]{mr;l ?OZ‘ for the proiram a';_d :?5 from desktop systems in the following ways:
def:km:fmﬁ::::::gel Pl o 2::{;8 <—— RAM used for variable
* They contain the least amount of hardware to accomplish the job at FEF data/starage and the stack
the least cost. i ¢
b o e : None
« Unless it is part of the application, there is little or no human-oriented I/0 such as >
displays keyboards. $8000
* The program is in ROM. There is no disk system from which the program can be < Program code and
loaded. 32 Kbyte constant data storage
Flash
* Only data variables and the stack are in RAM.
$FFOO [~ T
SFFFF Vectors [ — Interrupt Vectors
Low Memory Figure 5-2 Desktop computer memory map. Figure 5-4 Embedded system memory map.
Address
Application
Prs%am Figure 5-4 shows the memory map for an embedded system; it includes only enough
RAM and ROM to do the job. The entire memory map does not have to be filled: if memory
is not needed, it is not included in the system. The system designer gains an additional ben-
efit from this other than just reducing the cost of the memory. Memory addresses that are
) not used can become “don’t cares,” which simplify address decoder design, as we will see
Operating in Chapter 9.
System
RAM
5.5 Memory Architectures
Two types of memory architecture are linear addressing. favored by Freescale processors, and
ROM segmented addressing, as used by Intel. The type of memory architecture directly affects how
) BIOS an instruction generates the physical memory address.
High Memory N
Address

Linear Addressing

In a linear addressing scheme, the instructions specify the full physical address. Figure 5-5
shows a memory map for a linear addressing scheme.

Linear addressing is the easiest to understand. In large systems, however, instructions that
Application Elgine 5-3' Embecided computer system directly address memory must have many bits. The Freescale ColdFire microcontroller’s 24-bit
Microcontroller (= » Specific N

address can access 16,777,216 (16 Mbyte) locations. An Intel Pentium with a 4-gigabyte
I'o address space requires a full 32-bit address.
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left 4 bits and then adding the offset. In this way the 64 Kbyte segment can be located on any
16-byte boundary. All memory reference addresses are generated as shown in Figure 5-6. Figure 5-8 Expansion memory.

Figure 5-5 Linear addressing memory map for an In this segmented architecture, segments may be any length from 16 bytes to 64 Kbyte and
RAM ishitacdress: may even overlap. This flexibility allows an efficient allocation of memory to various parts of
the program, such as for code and data. Figure 5-7 shows an example.
Segmented architectures use fewer bits in each instruction because only the offset within
No a page must be specified. A disadvantage is the need for special programming technigues or
Memory 2" ocations special instructions to cross over a page boundary or to allow data elements that are larger than
the 64 Kbyte segments.
ROM or
Flash Expansion Memory
Hundreds of kilobytes of Flash program memory are now appearing in microcontrollers
with 16-bit address buses. To accomplish this, manufacturers such as Freescale have
adopted a paged memory architecture. Figure 5-8a shows this with four 16 Kbyte pages.
Code S Figure 5-7 Variable sized segments used in a segmented
0x1000 Segment Register Segment g e e e
: 16 Kbyte
0x1000_ Segment Shifted Left 4 Bits Data o
Segment 5l
0x10000 0x0200 Offset Address ‘ g 14 Kbyte
| Stack ~
0x10200 —> gig;(r:g?t 0x10200 Physical Address = | Segment i 2 Kbyte
Segment * 16 + Offset |
OX1FFFF g
Figure 5-6 Intel segmented memory addressing.
g CPU Extended
Address Address
0x0000 PPAGE =0 | 0x00000
16 K
Segmented Addressing ‘ Page Extended
OX3FFF OX03FFF Address
Se e i As the amount of memory that the processor can address increases, I 0x4000 | PPAGE=1| 0x04000 0x1C000 [Tppage=7
gmen s ; 3 ;
s o = resfg'"g adows a1 | 50 does the number of bits needed to form the physical address. This 16 K 0x18000 [“PpAGE=6 Extended
structionto carry fewer address bits | - meang that each instruction must contain more bits, and more memo kada i
than ded for the f i 2 0x14000 [ppacE =5
- are needed for the full physical | s needed for the program. The segmented memory architecture offers OX7FFF — | GOTEREL. - o — - Ox1FFFF
SofIess one way around this dilemma. sy RadeE g Lo . paiicn 16 K— OxtBEEE
] The Intel segmented addressing scheme uses a movable segment ! Fnge vﬁ;i%ga Page Ox17FFF
architecture. For example, a total memory space of one megabyte can be organized into seg- ! L 0xOBFFF
ments, or blocks of memory. These segments may range in size from 16 bytes to 64 Kbyte. } %’;BCE’;; e R o OX13FFF
Figure 5-6 shows a one-megabyte memory. The full 20-bit physical address consists of a seg- | 16 K
ment address and an offset address. Because segment addresses are maintained in separate seg- l Page
ment registers, the program coun'ter and other memory addressing ‘rcgi\rcrx can be uql_\ 16 bits. I OXFFFF OXOFFFE
Each memory reference instruction generates a 16-bit offset that is added to a 16-bit segment ]
register. The CPU constructs the physical address by shifting the segment register contents i &) ®)
a
I
!
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Direct Addressing

In direct memory addressing, the instruction contains the address of the data. It may be the full

[ x x | ADR13-ADRO| CPU Address

I X I X I X I x] X l [ [ I PPAGE Register physical address in linear addressing architectures or an offset for segmented architectures. In
any event, the location of the data for this instruction is constant. There are two variants of this

I 17-Bit Physical Address l modc':‘(A 1) direct (nul(/re\.sing and (2) base page, or reduced (/irg’(-/ addressing. Manufacturers

| use different terminology (e.g., absolute addressing. extended direct addressing. long and short

Figure 5-9 Expansion memory address. absolute addressing). ; ; ) -
Direct addressing means that the address of the data, either the full address or an offset. is in

the instruction. Figure 5-11 shows direct addressing for a processor with a 16-bit address space
(64 Kbyte). It is a single-level addressing mode because the instruction contains the address of
the data. The 16-bit address follows the operation code in the memory.
The 16-bit CPU address is sufficient to address any location in this 64 Kbyte space. | Direct addressing is the simplest mode to understand, and many beginning students try to
Figure 5-8b shows four additional 16 Kbyte memory pages to complete a total of 128 use it exclusively. Often, however, this mode needs more bits than other addressing modes.
Kbyte. The CPU uses a register called the PPAGE register to create the 17-bit physical )
address needed for these expansion memory pages. Whenever an instruction generates
an address in the paging window, 0x8000-0xBFFF, the physical address is generated as
shown in Figure 5-9. The three least ggr_nhcunl .hnx of PPAGE extend bits ADR13-ADR0 | Figure 5-10 Immediate addressing.
from the CPU address. Usually special instructions are necessary to access the expanded
memory. Because this example is for a 128 Kbyte memory microcontroller, the higher
bits (signified by the x's) in the PPAGE register are not used. A CPU design that uses
these bits can add more memory. OPCODE
The data immediately DATA
follows the opcode

5.6 Addressing Modes

You do not have to learn many addressing modes to program most microcontrollers. The more
complex microprocessors and microcontrollers, like the Intel Pentium and Freescale ColdFire |
CPUs, will have more, and more complex, addressing modes. In this section we will explain |

some of the simple, more straight forward addressing modes | Figure 5-11 Direct memory addressing.
g i
egr Register Addressing }
- : When operands are contained within registers in the CPU, such as in The dataiaddrossis SEoRaE
Reglf/e’”ddfe-VSl"_S needs}onlyafew aMoV A, B instruction, the register addressing mode is used. Memory ;nlrhertwolsytes d Data Addr H
b"Sd’fO diﬁ’: which register(s) are | ¢ not addressed, and only a few bits are required to specify the limited e 0 Data Addr L T
LR HE G number of registers. Thus, register addressing instructions are among the
fastest to execute and use the fewest bits of any of the instructions. Some
manufacturers call register addressing by other names. For example, Freescale uses the term 1 1
inherent addressing and Intel uses implied addressing 1 \
I 1
Immediate Addressing
DATA -

You may use immediate addressing when an operand is a constant known when you write the
program. If this is the case, the data can immediately follow the instruction in the memory. 3
Figure 5-10 shows a memory map of the immediate addressing mode where the data may be § 1
bits, 16 bits, or more, depending on the size of the destination register

—
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and the location of the data addressed by the instruction is fixed. The direct mode is especially

The instruction has the address of
unsuitable for addressing elements in a table of data.

the register

Direct Base Page Addressing \
: 3 < ; Pointer Register 1
In a CPU with base page addressing, the computer designers provide instructions that specify
only the least significant bits of the full address. The processor then generates the complete Pointer Register 2 »  DATA

address by filling the most significant bits with 0s. For example, in a machine with 16 address
bits and a 256-byte base page, the base page addressing instructions specify only the 8 least
significant bits. The CPU provides the 8 most significant bits, as shown in Figure 5-12. Pointer Register 4

Base page addressing offers the advantage that the instruction has to specify only 8 bits of
the full 16-bit address. This saves program bytes and makes the instructions execute faster. The

Pointer Register 3

: 2 : The register has the address
disadvantage is that usually only a few memory locations are available for data storage. of the gata
Indirect Addressing Figure 5-13 Register indirect addressing.

Indirect addressing is a two-level addressing mechanism. The instruction provides the first-
level address, which specifies the location of the address of the data. The second level then

specifies the location of the data. There are two types of indirect addressing: register indirect Roglster indirect addreaaing with aifto Incrementend siss thecyames A e ST I
and memory indirect. ) 2

! through a table of data, the register pointing to the data must be incremented or decremented.
Some processors have an addressing mode that automatically increments or decrements the
register. You may have a choice of preincrementing or predecrementing. where the register is
incremented or decremented before it is used. In postincrementing/-decrementing. the register
is incremented/decremented after it has been used.

Reg indirect addressing: This is also called pointer register address-
ing because the register (actually the contents of the register) “points™
to the data. It is a two-level address because the instruction contains the
address of the register that has the address of the data. Figure 5-13 shows
this addressing mode.

Register indirect addressing is efficient because it uses register addressing, and thus only a
few bits, for the first-level address. Another advantage is that the address of the data can be cal-
culated at run time, as you might do when stepping through a table of data. Remember, though, !
to initialize the register with an address before using it.

A register points to the data in regis-
ter indirect addressing.

Memory indirect addressing: In memory indirect addressing, the instruc-
tion contains the memory address of the address of the data. Figure 5-14
shows this addressing mode. Memory indirect addressing is less efficient
than direct memory or register indirect addressing because the CPU first

A memory address contains the
address of the data in memory indi-
rect addressing.

reads the address of the address, then the address, and finally the data.
The advantage of this mode is that the address of the data can be calculated and stored in RAM

before it is used. This means you can change the address while your program is running.

Sel e tCPU _?_ddsttge Address , The instruction specifies
st signfcaibye S the least significant byte Indexed and Based Addressing
isn‘ 0x00- 00 256 Byte B " y TR e e Indexed m{a'n'ssing finds a memory lL:‘C;lliOn basgd on an index.. F\"
= Has Fage Usajg ;):rgee addressing : en ; " e‘ e}'f“‘“"‘ﬂ "'“‘*. lb~t‘ = c,'\ample. if you have an array of bytes of data, you might retertthe indi-
e 0x00 FF ”‘"l" S “ “i'“’c‘r.‘“{‘. ‘ al SUns ‘?"‘ \'ldl_xal elem}’nls as DATA[O]. D.-\TAA[I] ..... D.—\T.-.\[n]. The [n] is calk\i
0x0100 value, the mode s indexed o based | he index of the array. The address of any element in the array consists of
addressing. two parts—the starting address of the array and an offset from the start-
ing address equal to n."' This sum is called the effective address and there
are two ways to form it. Each is a type of indexed addressing, although some manufacturess
-« Direct addressing call the second “based addressing™.

f used here Figure 5-15 shows indexed addressing. The instruction contains the starting address of the
array, and the index register contains the offset to the element being addressed. To step through
the array, the index register is incremented or decremented, either explicitly with a program

OxFFFF J
Figure 5-12 Base page or reduced direct addressing ' If the data elements are larger than one byte, the offset is » times the size of the clement in bytes.

*
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Opcode specifies
the index register OPCODE
to be used
i OFFSET (H) * Offset (signed) may be one or
two bytes
OFFSET (L)
] 1
I }
] I
] }
Offset = -2
Index Register 1 Ol
Offset=0 |-€— Reference address in index register
Index Register 2
Offset = +1
+ Offset Offset = +2
I—P- Offset=+3 | <€— Index + offset points to the data
Offset = +4
Figure 5-16 Based addressing.
Figure 5-17 Relative addressing.
Program Counter Branch Opcode
Offset
Program counter
plus offset = Next Opcode
address of the
nextinstruction  + Offset
> Next
Instruction
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The instruction provides
the address of the byte
and the number of the
bittobeaccessed —»{ 7 |6|5|4|3|2|1]|0

Figure 5-18 Bit addressing.

Bit addressing can save memory by
allowing eight binary variables to be
saved in one byte.

or closed. Designers provide bir addressing to read or write one bit at a
time. Usually the bit is within a byte location, either in memory or I/O,
so the instruction must supply the address of the byte plus a mask to

specify which bit within this byte is to be addressed. Figure 5-18 shows
bit addressing.

Other Addressing Combinations

In some more powerful microprocessors you may find addressing modes that are combinations
of the basic modes described in the previous sections.

Based indexed addressing: The effective address is the sum of a base register, index register,
and a displacement.

Relative addressing with index plus displacement: The effective address is the program coun-
ter plus an index register plus a displacement.

5.7 Stack Addressing

The stack contains data and return
addresses for subroutines.

The stack is an area of RAM that is reserved for temporary data storage.
It operates on a last-in, first-out (LIFO) basis. That is, the last information
stored on the stack is the first to be retrieved. The stack operates like the pile

of plates in a dining hall. You always take the plate on the top of the stack
(i.e., the last one put there). Disaster awaits those who try to remove plates from the middle of the
stack! Information is stored to and retrieved from the stack with a CPU register called the stack
pointer (SP). The stack pointer points either to the last information pushed onto the stack or to the
next available location,? and it must be initialized to point to the memory used for the stack.
Figure 5-19 shows a stack memory map. Memory maps are usually drawn as shown with
higher memory addresses at the bottom and lower at the top. Figure 5-19a shows the stack
pointer pointing at the last location that was used when information was placed onto the stack.

* Which of these design strategies is used is immaterial because the processor automatically handles the stack pointer
properly.
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Stimulate
5.9 Problems 5.12  In the movable segment architecture shown in Figure 5-6, why is the segment located
on a 16-byte boundary? [b]
Explore 5.13  Assume you are designing a CPU that is to have a 20-bit address bus with each
memory location containing 16 bits. A base page is defined that has 1024 locations.
il List the addressing modes available in the CPU you are studying. I Assume that memory indirect addressing using base page addresses is the ONLY
] ! ! | ; il . kind of memory addressing this CPU has. How many bits in the instruction must be
5.2 Briefly explain the following terms: physical address, effective address, memory allocated for a memory reference instruction? [c]
map. [g]
53 A microcontroller is to be used in an embedded system with the following memory Reflect on Learning
map: . : : F .
5.14  Of all the addressing modes in the processor you are studying, which do you have the
0x0000 most difficulty understanding?
ROM
Ox1FFF 5.15 What experiments could you try with your system to be able to learn more about the
0x2000 addressing modes.
None
0x7FFF 5.16  List five things that you learned about memory addressing modes in this chapter.
0x8000
RAM
OXHEH! S
0xFF00
ROM
OXFFFE

a. In what memory addresses must code and constant data be located? [c]
b. In what memory addresses must variable data and stack storage be located? [c]

5.4 Ifall bits in the PPAGE register shown in Figures 5-8 and 5-9 are used to generate an
expanded address, how much memory in total can be added to the
microcontroller? [a]

5.5  Name at least five ways to address an operand. [a]
5.6 Whatkind of addressing mode is used to transfer data from one register to |
another? [a] I
5.7 What are the names of the addressing modes that form the effective address from a
constant and the contents of a register? [a]

5.8 What address mode is best to use when you want to compare what is in the A register !
with a constant? - (immediate, direct, extended, or indexed)? [a] \
\

5.9  Toincrease the memory address space in a computer system, one must (a) increase
the number of data lines, (b) increase the number of read and write control bits going
to the memory, (¢) increase the number of address lines. [a]

1
5.10 A pointer is (a) an area in memory used for address storage, (b) a memory address ‘
held in a register, (c) a subroutine address held in the stack pointer. [a] |

5.11 A register indirect address instruction (a) has the address of the operand in the
instruction, (b) has the address of the operand in a register, (c) uses the program
counter to calculate the offset address of the operand. [a] |



Objectives

Assembly Language Programming

This chapter will show programming techniques and suggest an assembly language program-
ming style. An example using the Freescale CodeWarrior relocatable assembler, is given and
explained. We will also show how to write structured assembly language programs that meet
the goals of top-down software design presented in Chapter 3. Although our assembly language
examples are for the HCS12 microcontroller of Freescale Semiconductor, Inc., you should be
able to easily translate the essence of the code to your own microcontroller.

6.1 Assembly Language Programming Style

You will need to learn the syntax requirements of your assembler. Most assemblers are very
similar, however, with the fields of each program line separated by white spaces. In addition to
being aware of the syntactical requirements of each line, you should adopt a standard format
or style for the programs you write. This will make the programs more readable for colleagues
who may have to modify your code or collaborate on a software engineering project.

Source Code Style

A consistent style can make your
programs easier to read.

Any program is a sequence of program elements, from the top to the
bottom, and these elements should be organized in a readable and con-
sistent style. Adopt a standard format and use it for all assembly lan-

guage programs. Table 6-1 shows a format that can serve as an outline
for your programs. The subsections that follow provide program examples of the individual
elements; Example 6-1 then lists the completed program.

Program Header
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Table 6-1 Assembly Language Program Elements

Program Element Purpose

Program header Briefly describes the purpose of the program

External symbol definitions References for symbols defined in some other source file

Internal symbol definitions References for symbols defined in this source file

Assembler equates Definition of constants used in the program
Code section start Defines the following bytes to be in the code segment or section in ROM
Initializes the stack pointer, I/O devices, and other variables

The main program

Program initialization
Main program body
Program end Starts the main program again or terminates it in some way

Program subroutines Subroutines and functions used in the main program

Constant data section start Defines the following bytes to be in the constant data segment in ROM

Constant data definitions Definitions of constants in ROM

Variable data section start Defines the following bytes to be variable data elements in RAM

Variable data allocation Allocation of space for variable data elements

After reading the header, you should know what the program does, not in any great detail. but
at least in general. The author’s name should be here so praise (or blame) can be apportioned
correctly. The date of original code release and modification record is good information too.

The modification record should tell what has been done to the original code, when it was done.
and by whom.

Program Element Program Example

Program header
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External Symbol Definitions

When you are using a relocatable assembler, source files may reference a symbol or label that
is defined in some other source file. It is the job of the linker to evaluate the symbol and to
provide the value for it. The CodeWarrior XREF directive tells the assembler to leave the res-
olution of the symbol for the linker.

Program Element Program Example

External symbol definitions SEAR R AR AR AR KRR KRRk kKKK KRR KRR KRR KRR KA K
; External symbol definitions
XREF get AD, init AD
XREF enable LED, put LED
XREF delay X ms
XREF _ SEG_END_SSTACK

B e

Internal Symbol Definitions

Whenever there is an external symbol definition (XREF) in a source file, there must be an
accompanying definition of the symbol (XDEF) in some other source file that is part of the
project. This section of the program provides the necessary definition.

Program Element Program Example

Internal Symbol Definitions 2k kR ok kK K Rk Rk kR Rk kK ok ok ok ok ok ok kK K K ko R K Kok ko kK K Kk

; Internal symbol definitions
XDEF Entry, main

FEREKEKRIKA I KK A F KKK KR I T KKK TR KKK KKk Ak Kk dhkhkkk

Assembler Equates

Equates are like the #define statements in a C program. They are used to
define a constant value for the assembler. Some programmers put equates
at the top of the program, and some argue that it is more useful to put a
constant definition right where it is used. We suggest that all equates be in
one area in the program and that they appear before they are used.

Equates are often found at the begin-
ning of the program.

Program Element Program Example

Constant Equates B R e S L

; Constant Equates
DELAY: EQU 500 ; Used for delay
subroutine

PR R e e S

Code Section Start

Each section in a relocatable assembly language program should have a name. This allows
you to easily locate the sections with the linker parameter file. The linker provides a file
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showing where all program elements can be found, and when sections are named it is easy to
identify them in the file.

Program Element Program Example

Code Section Start B S T e

; Code Section Start
MyCode: SECTION

Program Initialization

The stack pointer must be initialized before it is used for subroutine calls, interrupts, and data stor-
age. Do it as the first instruction in the program. Variables must be initialized at run time. Put the
section of code to do this here. In a C program this is done automatically by the startup code.

Program Element Program Example

Stack Pointer Initialization Entry:

1/0 Devices Initialization main:

Variable Data Initialization ; Initializati

; Initialize

Main Program Body

The main program starts here. Typically it will be short and consist of several subroutine calls.

Program Element Program Example

Main Program Body

pulb
stab
Delay 100 mil
ldx #Delayl

1
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Program End

When you develop software on an evaluation system, such as a manufacturer’s evaluation
board, you must return control to the monitor at the end of your program. This is often done
with a software interrupt instruction. In programs that run continuously with no need to return
to the debugging monitor, make a branch or jump back to the beginning of the process loop.

Program Element Program Example

Return to the Beginning of Main Loop ; Do forever

Program Subroutines

Itis good programming practice to make the main program a sequence of calls to subroutines.
You may place subroutines anywhere in the source program, or they may be in other source
files if a relocatable assembler is used. In this program example we choose to do the latter.

Program Element Program Example

Subroutines and Functions

Constant Data Section Start

Constants will be located in the ROM memory. You do not have to create a constant data
section, but it is good programming practice to do so.

Program Element Program Example

Constant Data Section Start

Kk kE KRR RA KK

Constant Data Definitions

Constants are located in ROM. Usually, to decrease the danger of executing data, it is best to
have constants at the end of all code sections. However, some programmers group constants
with the section of code that uses them (i.e., constants used in a subroutine).

Program Element Program Example

Main Program Constants and Strings Delayl: D
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Variable Data Section Start

Variable data are located in the RAM memory. The name you give allows you to locate the
variable data with the linker.

Program Element Program Example

Variable Data Section Start ; Variable data area in RAM

MyData: SECTION

Variable Data Storage Allocation

Use the DS to allocate storage for all variable data elements.

Program Element Program Example

Allocation of Data Areas Last_Val: DS.B 1

The Completed Program

Example 6-1 shows this program as a complete assembler source file. We have not shown the
subroutines that initialize the LED display or the A/D converter or the subroutines for getting
data from the A/D and displaying it on the LEDs.

Example 6-1 The Completed Program

; MC68HCS12 Assembler Example

This program is to demonstrate a

; readable programming style.

; It initializes the A/D converter

; and a bank of LEDs. It then reads the

G os w N

; value on the A/D, displays it, and delays
; about 0.5 second. It then displays the

; last value it converted for about 0.5

; second and repeats.

Source File: M6812EX1 REL.ASM

; Author: F. M. Cady

; Created: 7/26/2007

(2 g i gy pERG) feo ST
(o3 0 5 FO e = AT CH

4. ; Modifications: None

15i ;

A6 P
ST ; External symbol definitions

18. XREF get AD, init AD

) XREF enable LED, put_ LED

20. XREF delay X ms

21. XREF _ SEG_END SSTACK

22 P
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23. ; Internal symbol definitions A Delayl: DC.W DELAY
24. XDEF Entry, main 25 String: DC.B “This is a string of constants.”
5. ;'10vv¢1'vng'otv'ﬂl(i'(**t!*ﬁwit(ttt‘i"*"&( 73. I.*ii**t*x’rk**k*kazytiA**ktﬁ*k*’yrtvv*vvt*xtﬁxw
; Constant Equates 74. ; Variable data area in RAM
DELAY: EQU 500 ; Used for delay sub 151 MyData: SECTION
I.v.-’i('-‘Q.!"'Q‘Q'!vywﬁ*w*y*ﬂ%i*lﬂ't***ﬂi\* 76. Last Val: DS_B 1

; ion Start
30. MyCode: TION
i To Indent or Not to Indent
33 i Initialization section In high-level languages, indentation shows lower levels of the design
34 i Initialize stack pointer Indentation is not used very often in | and makes the code more readable. Indentation is not generally used
35. lds #__ SEG_END_SSTACK assembly language programming. in assembly language programming. Historically, assemblers were used
36 i Initialize all I/0 devices long before high-level language compilers that allowed indentation were
1 jsr init_AD ; Init the A/D developed. Also, an assembler’s syntax is generally fixed. Often, labels
jsr  enable LED ; Enable LED port must start in the first space on the line, and there must be white space between labels, mnemon-
7 Initialize the last data value ics, operands, and comments. Assembly language programmers are used to seeing the program
40. clr Last Val with the fields all nicely lined up because it is easier to identify the operations and operands.
AL, GRRER kA XXk £ Rk Ak Rk R KRR KRR AR KA Kk However, you may want to try a few programs with indented code to see how you like it.
42. i Main process loop starts here:
i e | Upper-case and Lower case
44. ; Get value from A/D |
45 isr get AD Upper- and lowercase letters can make your code more readable. The
46 pshb - ; Save it The use of upper- and lowercase let- | goal is to be able to look at a name or label and tell what it is without
47. ; Display on LEDs ters can make your programs more | searching further. For example, uppercase labels can be used for con-
48, jsr put LED [ readable. stants and lowercase for variables. Mixed case used for multiple-word
49. ; Delay about 0.5 Seconds | labels can make them easier to read. Table 6-2 shows examples of all
50. ldx #DELAY ; Show the use of an EQU I three label types. Some assemblers are not case sensitive and some are.
51. jsr delay X ms ; Delays # ms in X |
2 S Noi
53 i Now dljpléy the last value ‘ Table 6-2 Examples of Upper-, Lower-, and Mixed-Case Labels
=Elg dab Last _Val l
54. jsr put_ZED | Case Examples
55. pulb ; Get the value t
56. .scab Last Val ; 22\/9 }Ii er next time ; Uppersace
57. A Delayiaran o sei“onds 4 & Constants defined by EQU NULL: ) EQU 0x0
ol 0 2 ] PORT H: EQU 0x24
58. ldx Delayl ; Show the use of a co ! Constants defined by DC.B, DC.W STRING: DC.B This is a string.
59. e deidy %M s Dalsye # ws in X : CRLF: DC.W OxODOA
60. ; Do forever | Assembler directives ORG, EQU, DC
61. bra loop | Lowercase
62. Pl 2 3 T 3 I O R RS ‘ Instruction mnemonics ldaa, jsr, bne
63. ; Subroutines n 2 Labels Loopaieies
64. ; (This rnlc:;i;;;f:‘;’;;blgr program does \ . D toop
e ) i £ € SRES Variables data: DS 10
65. 7 not have any subroutines in the main Mixedcase
23 ' TZT:IE Lf ol 'wan‘t to include subroutines, ‘ Multiword variables and labels PrintData:
; ver, this is the place to put them. NumChars:
68. PRSER R B 2 & 5 S R e R InputDataBuffer:
69. ; Constant data area in ROM } Multiword subroutine names Jsr PrintData
702 MyConst : SECTION l Comments ; Write complete sentences for comments.
i
!

t—
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Structured Assembly Code Line 22: The label for the ELSE part conditional branch is always here.

B GlEen Beansiih SEEEay EREC Lines 23 and 24: This is the code for the ELSE part.

2 ; IF-THEN-ELSE example.

3% ; Equates defne constants needed by the code Line 25: The IF-THEN-ELSE always ends with an END_IF label.

4. AD_PORT: EQU 0x91 ; A/D Data Port

Y MAX TEMP: EQU 128 ; Maximum temperature

6. VALVE OFF: EQU 0 ; Bits for valve off

15 VALVE ON: EQU 1 ; Bits for valve on Example 6-4

g VEDVECEORTECURIR X208 REOECIEREOCRERE valve For each of the logic statements, give the appropriate assembler code for your microcontroller
T ’ to set the condition code register and to branch to the ELSE part of an IF-THEN-ELSE. Assume
i? - ; that P and Q are 8-bit, signed numbers in memory locations P and Q.

825 ; Get the temperature A. IF P >=Q

355 ldaa AD_PORT Ble TR OR>R P!

14. ; IF Temperature > Allowed Maximum C. IFP =20

15 cmpa #MAX TEMP

16 bls ELSE PART Solution (for Freescale HCS12)

i1, ; THEN Turn the water valve off A. ;

18. ldaa VALVE OFF

19, staa VALVE_PORT

20 bra END_IF ; Br if P is 0)

21 H ELSE Turn the water valve on B. ;

22. ELSE_PART:

23 ldaa VALVE ON

24 staa VALVE_PORT ; Branch if Q is less than to P
25. END_IF: o

26 ; END IF temperature > Allowed Maximum

Explanation of Example 6-3

Lines 12, 14, 17, 21, and 26: These lines contain the pseudocode design as comments in the \ Example 6-5

b For each of the logic statements, give the appropriate assembler code for your microcontroller
| to set the condition code register and to branch to the THEN part of an IF-THEN-ELSE.
i Assume that P and Q are 8-bit, unsigned numbers in memory locations P and Q.

Line 15: Following the IF statement is code to set the condition code register for the
conditional branch in line 16 to the ELSE part.

Line 16: There will always be a conditional branch to the ELSE part, as shown here, or to [
the THEN part. When you branch to the ELSE part, the conditional branch instruction is |
the complement of the logic in the IF statement. In this example, the ELSE part is to be
executed if the temperature is lower or the same as the allowed maximum because the

l
|
THEN part is done when the temperature is higher. ‘ Solution (for Freescale HCS12)
Lines 18 and 19: This is the code for the THEN part. ' AT R
ldaa P
Line 20: The THEN part always ends with a branch-always or jump to the END-IF label. | cmpa
This branches around the ELSE part code.

bhs

7
(]



122 Chapter 6 / Assembly Language Programming 6.2 Structured Assembly Language Programming 123
Bl G IEEQ DNE

16. H DO
ldaa Q 7] ; Flash light 0.5 sec on, 0.5 sec off
cmpa P 18. ldaa LIGHT ON
bhi THEN_PART ; Branch if Q is higher than P 19, staa LIGHT PORT ;
Gl s TREPE=0) 208 JIST delay ;
ldaa B 205 ldaa LIGHT OFF
cmpa Q 22. staa LIGHT PORT ;
beq THEN_PART ; Branch if P is equal to Q 23. jsr delay
24. 7 End flashing the light
25 H Get the temperature from the A/D
26. ldaa AD_PORT
WHILE-DO Repetition 2 TERSS/SEND” 2O
28. bra WHILE START
The WHILE-DO structure is shown in Example 6-6. The elements common to all WHILE- 29. END_WHILE:
DOs are in bold. 30. ; END_WHILE the temperature > maximum allowed
Sl
3282 ; Dummy subroutine
813 delay: rts
Example 6-6 Assembly Code for a WHILE-DO
Pseudocode Design
; Get the temperature from the A/D Explanation of Example 6-6
; WHILE the temperature > maximum allowed
; DO | Lines 10, 12, 16, 17, 24, 25, 27, and 30: The pseudocode design appears as comments in the
; Flash light 0.5 sec on, 0.5 sec off | code.
: Get the temperature from the A/D |
7 END_DO

Lines 14 and 15: A WHILE-DO tests the condition at the top of the code to be repeated.

; END WHILE the temperature > maximum allowed | Thus, the conditional branch in line 15 must be preceded by code that initializes the

| variable to be tested. The A register is initialized with the A/D value in line I1.

T red A I . . ot Kl :
S RICL LTS D | Line 13: There must be a label at the start of the conditional test code. This is the address for
1 ; 68HCS12 Structured assembly code ! e BRAL e 28
2 ; WHILE - DO Example ! '

3 ; Equates needed ! Line 14: Following the WHILE statement is code to set the condition code register for the
4 AD_PORT: EQU 0x91 ; A/D Data port | subsequent conditional branch to the end of the WHILE-DO.
5. MAX ALLOWED:EQU 128 ; Maximum Temp | Line 15: A ditional b e it
6 LIGHT ON: EQU 1 ! ine 15: A conditional branch allows us to exit this structure.
7 LIGHT OFF: EQU 0 | Lines 17-26: This is the code for the DO part.
8 LIGHT PORT: EQU 0x258 ; Port P - i
9 o S Line 26: A special requirement of the WHILE-DO structure is code that changes whatever is
10. ; Get the temperature from the A/D being tested. If this were not here, the program would never leave the loop.
1. ldaa AD_PORT
174

; WHILE the temperature > maximum allowed

Line 28: The code block always ends with a branch back to the start.
13. WHILE_START:

As an assembly language programmer, you might be enough smarter than the average compiler
14. cmpa MAX_ALLOWED to realize that line 26 could be eliminated if the code to initialize the A register with the
15, bls  END WHILE

A/D value (line 11) is moved below the label WHILE_START.
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DO-WHILE Repetition

Another useful repetition is the DO-WHILE. In this structure, the DO part is executed at least /\/1
once because the test is at the bottom of the loop. An example of the DO-WHILE is shown in

Example 6-7 where, again, the parts common to all DO-WHILE:s are in bold.

call Program Flow
Subroutine

Next
Example 6-7 DO-WHILE Assembly Language Code Instruction

Information
Flow

Pseudocode Design

700 L/’—\\\___/J
i Get data from the switches

; Output the value to the LEDs
; ENDO
; WHILE Any switch is set

Subroutine

Structured Assembly Code

15 ; 6B8HCS12 Structured assembly code

2. ; DO-WHILE example Figure 6-1 Information transfer between modules.

38 ; Equates needed for this example

4. SW_PORT: EQU 0x28 ; Switches are on Port J |

S LEDS: EQU 0x24 ; The LEDs are on Port H

6. i = =D . .

Tios 11 EG ‘ 6.3 Interprocess Communication

e DOERBECING g ‘ Interprocess communication, also called parameter passing, refers to
9% 7 Get data from the switches | Most programs pass information

10. ldaa SW_PORT

information that is transferred from one part of the program to another.
between one part of the program and

Most information transfer in well-designed programs is between a sub-
bR (Lo BN G O i another. routine or function and its calling function, as shown in Figure 6-1. In
Ly SEaSRILELS “ choosing how information is transferred between modules, a goal is to
LEE g ENDRDO, | reduce the chance of the subroutine accidentally changing other data. There are several meth-
14. ; WHILE Any switch is set i e e
il tst  SW_PORT
16. bne  DO_BEGIN |
17. ; END_WHILE \

Information in Registers

The most efficient and fastest way to transfer information between parts of a program that is
being written in assembly language is to use the registers. Another advantage of this method is
that the subroutine does not access any other data areas and is thus more general. Documentation
must be provided to show what registers are used for what purpose. A typical subroutine header
describing the registers used is shown in Table 6-4. Using the registers is simple and straight-
forward (Example 6-8).

Explanation of Example 6-7

Lines 7, 9, 11, 13, and 14: The pseudocode appears as comments.

Line 8: The start of the DO block has a label for the conditional branch instruction in line 16.

Line 9-12: These are the code lines for the DO part.

Lines 15 and 16: The DO-WHILE always ends with a test and a conditional branch back to

Example 6-8 Passing Information in Registers
the beginning of the DO block.

5 KRR R KRR KR KRR
: ; Parameter passing between modules
Line 17: A comment marks the end of the WHILE test code. )

o ok ok Rk ok ok kK ok ok ok ok ok ok ok e ke kR kR ke k
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; Passing arguments in registers

SRR KRR KRR AR KR AR AR ANk

7.

; Get the input argument and pass to the subroutine
ldaa Input_Argl
jsr subl

AR KRR AR AR KR AR AR KKK KRR KR X H KK KKK

; The subroutine may be local or external

; Input: A = Input Argument

; Output: A = Output Argument

; Registers modified: A

subl:

; Push the registers used on the stack

; Use the input argument and/or modify it
asla

; Pull the registers used from the stack

; Return with the modified data
rts

SRR AR KRR R KKK AR E XA K E KKK KK

MyData: SECTION

; Place variable data here

Input Argl: DS.B 1

Table 6-4 Subroutine Header Comments

Fk ok ke ke kK ok ok Rk ok kK ek e Kk kK Kk Kk ok e Kk kK kK K Kk ok Kk kR ok K K ok K K K

*

Subroutine Name: SQRT

* Author: F. M. Cady

Date: July 19, 2009

Function: Calculate the square root of a 16
bit integer number.

Input Registers:

* D= 16 bit integer number

Output Registers:

* B = 8 bit integer square root

Carry flag = 1 if input number is negative
Carry flag = 0 if input number is positive

Registers modified:

B, condition code register

Global data modified: none

Functions called: none

*

*

*

*

*

*

*

*

*

*

B
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Module_1

odule_2
Data
Element_1
Data
Module_3 Element_2 PR

Figure 6-2 Using global data in information transfer.

Information in Global Data Areas

The main disadvantage of using registers is that although most CPUs have only a few, some

functions may need many bytes of data. Using global data areas is a solution with advantages

and potential problems. Global data are data elements that can be reached from any part of the

program. Figure 6-2 shows four modules making use of two global data elements.

The danger of maintaining global data is that a function may mod-
Using global data to pass informa- ify data that it shouldn’t have disrurbAedA For example, let’s assume that
i Ean Rlee hardotosonil robleme Module_1 shares Da.tu_Element_l with Moc?ule_'l and Module_3 shares
T, D:.Jla_Elemenl_?_.wuh l\dodulej.- Now let’s assum§ that yﬁ)u make a
mistake (a bug) in the code that is supposed to write data into Data_
Element_1 and write into Data_Element_2 instead. (This could be done
by using a 16-bit store operation instead of an 8-bit one, by having an incorrectly initialized
pointer register, or simply by writing the wrong label in the operand field.) Now Module_4 is
working with incorrect data. This is a difficult bug to find, particularly if the code in Module_1
is executed infrequently. Experienced assembly and high-level language programmers try to
avoid using global data if other methods are available. Nevertheless, global data structures are
widely used in assembly and high-level language programming. See Example 6-9.

Example 6-9 Passing Information in Global Data Area

ook ok ok ok ok Rk Kk ok ok ok Rk ok R K ke Rk R R R R K K

; Passing arguments in global data

£k R Rk Rk kR KR KRR R X

; Define the entry point for the main program
XDEF Entry, main
XREF _ SEG_END_SSTACK

; Define the data names that are external in

; a global data buffer
XREF Data Element
XREF Data_Element

’

S
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MyCode: SECTION

Entry:

main:

l.vGtt'Qktt*ﬁt**ii*ti*tﬁttxtt*tt'*

; Initialize stack pointer register
lds #_ SEG_END_SSTACK

P e R

; Module 1 puts data into Data Element 1
staa Data Element 1

P L et e it

; Module 2 gets data from Data Element 1
ldaa Data Element 1

B

; Module 3 puts data into Data Element 2
staa Data Element 2

B

i Module 4 gets data from Data Element 2
ldaa Data Element 2

P

7% K ok ok ok ok ko ok ok 3k ok ok ok ke ok ok ok

; This is the global data definition

; The data storage allocations are done

; here and all data names are XDEFed to

; make them globally available

B e
XDEF Data Element 1, Data Element 2
XDEF Data Element 3, Data Element 4

GlobalData: SECTION

; Place variable data here

Data Element 1: DS.B 1

Data Element 2: DS.B 1

Data Element 3: DS.B 1

Data Element 4: DS.B 1

Information in Local Data Areas

Local data areas invoke the principle of divide and conquer. Figure 6-3 shows modules and
their common data elements, which are separately assembled source files. When a relocatable
assembler is used, as it must be here, any names or labels are local to that source file only unless
a special assembler directive called EXTERNAL or XREF is used. Thus, the assembler will
show an error if you assemble the file with Module_1, Module_2, and Data_Element_1 and
accidentally refer to Data_Element_2. However, as you can see, the data elements are global
within these localized structures.
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Module_1

odule_2
Data
Element_1
Source File 1
Source File 2
Data
Element_2
Module_3 = Module_4

Figure 6-3 Information in local data areas.

Information on the Stack

The stack can also be used to transfer data to and from a subroutine. When this is done, the data
elements are localized on the stack, and the subroutine is designed to operate with them alone.
This reduces the chance of global data being accidentally corrupted. You must be careful when
using the stack because, in addition to the data on the stack, the return address and any bytes
pushed on the stack when the subroutine is entered are there also.

Example 6-10 and Figure 6-4 show how to use the stock to pass data to and from a subrou-
tine. Figure 6-4a shows the initial position of the stack pointer and the contents of the stack.
Line 18 in Example 6-10 pushes 16-bit data onto the stack (Figure 6-4b), and the subroutine
call is made in line 19 (Figure 6-4c). The D and X registers are pushed onto the stack in the
subroutine (lines 35 and 36, Figure 6-4d). The subroutine uses indexed addressing and the
stack pointer (lines 40 and 44) to retrieve data from the stack and return data to the stack.
The number of bytes between the current value of the stack pointer and the data to be pulled
is given by Num_B + Reg_B. After the registers have been restored (lines 47 and 48) and
after the return from subroutine (line 49), the main program can retrieve the returned data
(line 22).

Using the stack to transfer information is very powerful and very general. Most compilers
for high-level languages use this method. Programmers must be careful to make sure that stack
operations are balanced; good documentation is essential.
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N1 N—1 N1 ’—\_1
XX XX XX XX XX
XX XX XX SP =¥ $45 SP =9 $45
XX XX XX $67 $67
XX XX XX $12 $12
XX XX XX $34 $34
XX XX SP = $CO $CO $CO
0D 0D 0D
XX XX $ $ SPs $
XX SP =& §$12 $12 $12 Num_B+=—9- $12
Reg B
XX $34 $34 $34 $34
SP =1 xx XX XX XX XX
= s A L ot
(a) Initial SP (b) pshd (main) (c) jsr sub (main) (d) pshd (sub) (e) Idd Num_B+Reg_B,sp (sub)
pshx (sub)
T N—1 N1
XX XX XX XX
SP—» $45 $45 $45 $45
$67 $67 $67 $67
$12 $12 $12 $12
$34 $34 $34 $34
$Co SP =+ $CO $CO $CO
0D
Sp+ $ $0D $0D $0D
Num_B+=9~ $9A $9A SP =5 $9A $9A
Reg_B
$BC $BC $BC $B8C
XX XX XX SP—» xx
(f) std Num_B+Reg_B,sp (sub) (g) pulx (sub) (h) rts (sub) (h) puld (main)

puld (sub)

Figure 6-4 Using the stack for information transfer.

Example 6-10 Passing Information on the Stack

w N =
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Janguage programming style that uses a structure pseudocode design implemented in assembly b. Write structured assembly language code for the following design. (Assume that K1,
language. K2, and K3 have been initialized in some other part of the program.)
; IF K1 < K2
; THEN
6.7 Bibliography and Further Reading ; Set K1 to the most positive number
; ELSE

Ganssle, J. G., A Guide to Commenting. The Ganssle Group, Baltimore, February 2006. http://www.

S o o it o
panssle.com/commenting.htm et K3 to the St positive nu

; Initialize K2 to the most negat
; ENDIF K1 < K2

6.6 Insert code to implement the following structured design immediately after each design
6.8 Problems comment. Assume that the following structured design is just a small segment of an
overall program.

Assume that the following 8-bit, two’s-complement variable data allocations have been
Explore | made and have been initialized in some other part of the program. [c, k]
6.1 For each of the logic statements, give the assembly language code for your microcontroller e e
to set the condition code register and to branch to the ELSE part of an IF-THEN-ELSE. Temp2: DorBnd ;
Assume that P and Q are 8-bit unsigned numbers in memory locations P and Q. [c, k] RS AN R GRS RIS e
; IF Templ < Temp2
a. IFP>=Q | : THEN Templ = Temp2
b. IFQ>P ‘ ; ELSE Temp2 = Templ
c. IFP=Q ; ENDIF
6.2 For each of the logic statements, give the assembly language code for your microcon- | endif:
troller to set the condition code regis:ter. and to branch to the ELSE parlef an [F-THEN- | 6.7 Insert code to implement the following structured design immediately after each design
ELSE. Assume that P and Q are 8-bit signed numbers in memory locations P and Q. [c, k] 1 comment. Assume that the following structured design is just a small segment of an
a. [FP>=Q ‘ overall program.
b. IFQ>P ! Assume that the following 8-bit unsigned variable data allocations have been made and
c. [FP=Q ! have been initialized in some other part of the program. [c, k]
6.3 If you have a C compiler for your microcontroller that can produce an assembly language { Temp3: DS.B 1
list file, repeat Problems 6.1 and 6.2 and compare the compiled code with your solution. Temp4: DS.B 1
Temp5: DSTBINL
Stimulate
; Implement the following design
6.4 For each of the logic statements, give the assembly language code for your microcon- § WHERQHE TDie) & Eis
troller to set the condition code register and to branch to the ELSE part of an [F-THEN- 7 e
ELSE. Assume that P, Q, and R are 8-bit signed numbers in memory locations P, Q, and ; Temp4 = Tempd + 1
R. [c, k] 3 Temp5 = 2 * Temp5
2 TFP+Q>=1 ; ENDWHILEDO
b. IFQ>P-R L
c. IF(P>R)OR (Q<R) 6.8 Write a section of assembly language code for your microcontroller to implement the
d. IF (P>R)AND (Q <R) given design, where K1 and K2 are 8-bit unsigned numbers in memory locations K1 and
- K2. [c, k]
6.5 Assume that K1 and K2 are 8-bit signed (two’s-complement) integer variables and that
K3 is a 16-bit unsigned integer variable. [c, k] FRNGN RS
i THEN K2=K1
a. Show how to allocate storage for these variables in a relocatable assembly language : ELSE K1=64
program by using the assembler used for your microcontroller. . ENDIF K1 < K2
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Challenge

6.9

6.1

6.12

6.13

6.14

A 16-bit number is in sequential memory positions DATA1 and DATA1+1 with
the most significant byte in DATA1. Write an assembly language code segment for
your microcontroller to store the negative of this 16-bit number in DATA2 and
DATA2+1. [a, ¢, K]

Write a section of assembly language code for your microcontroller to implement the
design: [c]

IF Datal > Data2

THEN Data2 = Datal

ELSE Data2 = 64,

ENDIF Datal > Data2

Assume Datal and Data2 are memory locations containing 8-bit unsigned integer data.
Structured code must be used and comments must be included:

In Example 6-1 a constant defined by an equate is used to initialize a register with a
constant value in line 50, and a constant stored in ROM memory is used to initialize a
register in /ine 58. Comment on these two assembly language programming techniques.
Which is better? [a]

Write assembly language code for your microcontroller that will implement the C
structure [c]

Fox (4 =107 <1i0 a1 )i

}

Write assembly language code for your microcontroller for the following pseudo-
code design, assuming that K1, K2, and K3 are 8-bit signed or unsigned numbers in
memory locations K1, K2, and K3. Assume that memory has been allocated for these
data. [c, k]

; WHILE K1 does not equal 0x0d

while start:

; DO

; IF K2 = K3

; THEN

H Kl =K1 + 1
; K2 = K2 - 1
; ELSE

i Kl =K1 -1
; ENDIF K2 = K3

; ENDO

enddo:

; ENDOWHILE

Write a structured assembly language code segment for the following pseudocode
design. [c, k]
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Assume that P, Q, and R are 8-bit signed integer variables in memory locations P, Q.
and R. Insert the code needed for the design in the comments below. You may add more
comments if you wish. [c, k]

6.15 Write a section of assembly language code for your microcontroller to implement the
following design, where K1, K2, and K3 are signed 8-bit integer numbers stored at
memory locations K1, K2, and K3. [c, k]

K1<

6.16 For Problem 6.15, assume that K1=1, K2=3, and K3=-2. How many times should
the code pass through the loop, and what final values do you expect for K1, K2,
and K37 [b]

6.17 Write structured assembly language code for your microcontroller for the following
design: [c, k]

Assume that A1, B1, C1, and D1 are 16-bit unsigned-binary numbers and that memory
has been allocated in the program by the following code:
Al




Chapter 6 / Assembly Language Programming

(841 DS.B 2
D1: DS.B 2

Assume that A1, BI, C1, and D1 are initialized to some value in an other part of the
program.

6.18 For Problem 6.17, assume that A1=2, B1=2, C1=3, and D1=6. What final values do
you expect after the code has been executed? [b]

6.19 Write a structured assembly language code segment for the following pseudocode

design. [c, k]
Assume that P and Q are 8-bit unsigned integer variables in memory locations P and Q.
Also assume that function X is implemented in a subroutine named X. Insert the code
needed for the design in the comments below.

; If P = 0x1B

# THEN

; WHILE Q < 186

; DO function X

; ENDDO

; ENDWHILEDO

i ENDIF

6.20 Write a pseudocode design for the following program statement. [c, k]

The program is to prompt for a two-digit hexadecimal number and use a routine

called getchar to accept it from a user. If the two digits entered by the user signify

a printable ASCII character, the character is to be printed with an appropriate

message. Otherwise, an error message is to be printed. The program is to

continue until the user types two hex numbers that are not a code for a printable charac-
ter. Your design must show at least one example of a repetition and one decision.

(Example: If the user types a 4 and then a 1, A should be printed along with an appro-
priate message.)

Use the principles of structured programming to write structured pseudocode (do not
write assembly language code) for the following problem statement. [c]

The program is the prompt for and will accept a two-digit hexadecimal number from
a user typing characters on the keyboard. These digits are to be converted to an 8-bit
binary number and displayed on the LEDs. After a one-second

delay, the complement of the byte is to be displayed on the LEDs for one

second. After this delay, the LEDs are to be turned off and the process repeated
starting at the prompt. The program is to continue until the user types two

zeros (*007).

Your design should follow the principles of top-down design, and you may postpone
consideration of such details as how to convert the two input characters to binary, and
the details of the prompt and how it is to be printed.

6.23

6.24

6.25

O
e
)
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Write a sub program for your microcontroller to find the largest of thirty-two 8-bit
unsigned numbers in 32 successive RAM memory locations (BUF). Place the answer
in the 33rd location (Result). [c]

Write a sub program for your microcontroller to find the smallest of thirty-two 8-bit

unsigned numbers in 32 successive RAM memory locations (BUF). Place the answer
in the 33rd location (Result). [c]

Write a sub program for your microcontroller to find the largest (most positive) of
thirty-two 8-bit two’s-complement numbers in 32 successive RAM memory locations
(BUF). Place the answer in the 33rd location (Result). [c]

Write a sub program for your microcontroller to find the smallest (most negative) of
thirty-two 8-bit, two’s-complement numbers in 32 successive RAM memory locations
(BUF). Place the answer in the 33rd location (Result). [c]

Write a sub program for your microcontroller to find the address of the largest of
thirty-two 8-bit unsigned numbers in 32 successive RAM memory locations (BUF).
Place the answer in the 33rd:34th location (Res-adr). If more than one location contains
the largest number, use the lowest address as the result. [c]

Write a sub program for your microcontroller to find the address of the largest of thirty-
two 8-bit unsigned numbers in 32 successive RAM memory locations (BUF). If more
than one location contains the largest number, use the highest address as the result.
Place the answer in the 33rd:34th location (Res-Adr). [c]

There are 4 bytes of data in 4 successive RAM memory locations (BUF). Write a
structured assembly sub program to count the number of 1s in these bytes. Place the
result in the fifth memory location (Result). [¢]

Write a structured assembly sub program to reverse the order of 0x20 bytes in a buffer.
Assume that the buffer is in 32 successive RAM memory locations (BUF). [¢]

Write a structured assembly program to compute factorial 8. Store the result in a 2-byte
memory location in RAM memory (Factorial). [c]

Write a structured assembly program subroutine to search a null-terminated string
of characters for a specific substring and to return the address of the start of the
substring. The input to the subroutine is to be the starting address of the string to be
searched, the starting address of the substring to be searched for, and the number of
characters in the substring. If the substring is found, return the address of the first
character in the search string; otherwise return an address of 0x0000. [¢]

Write an assembly program showing how to transfer 4 bytes of data from the
main to a subroutine using the stack. The subroutine does not return any data to the
main. Show how the main puts data onto the stack, how the subroutine retrieves

the data, and how the main program restores the stack pointer after the return from
the subroutine. [¢]
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6.33 An 8-bit signed/magnitude number system is in use. Write assembly subroutines for the
following: [c]
a. Add two 8-bit signed/magnitude numbers.
b. Subtract two 8-bit signed/magnitude numbers.
¢. Multiply two 8-bit signed/magnitude numbers.
d. Divide two 8-bit signed/magnitude numbers.

| C Programming for Embedded Systems

6.34 What was for you the most significant new thing you learned in this chapter?

Objectives

! In this chapter we show some of the changes in thinking needed to program in C for an embedded
! system microcontroller instead of a desktop or personal computer application. We assume that

you have learned to program in C in another course and now wish to use C to create programs
; for your microcontroller.

7.1 Introduction

Although assembly language programs are still used in embedded applications, many are pro-
grammed in C because of the increased programming efficiency, portability, and documenta-
| tion provided by this high-level language. Other high-level languages, such as C++, have been
created for various microcontrollers, but C is still widely used. In this chapter we show some of
the changes needed in the C language to create programs for embedded microcontrollers.

|
|
]
|
‘ 7.2 Major Differences Between C for Embedded and Deskiop Applications

The C programming language gives system engineers a high-level lan-
C programs for embedded applica- | a0 for developing embedded system applications. This widely used
tions are different from those for | 1401 gives us the programming efficiency and portability we have come
desktop applications. to expect when comparing high-level languages with assembly language
programming. Embedded system developers, however, must pay closer
attention to the architecture of the processor and to the interface with the real world than is
required of adeveloper of an application for a desktop or personal computer. Table 7-1 lists some
of the differences found when comparing C programs written for these two applications.
One of the major differences between embedded and desktop applications is that in the former.
the read-only memory contains the executable code (giving us the term firmware) instead of the
copious RAM found in desktop system. To locate a program properly, the system engineer must

141
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7.3 Architecture of a C Program

Embedded applications have pro-
gram in ROM and use RAM for vari-
able data and the stack.

In an embedded system, as we discovered in Chapter 2, the executable
code is “burned” into read-only memory (ROM), with variable data and
stack segments located in read-write memory (RAM). Often these mem-
ory types are not contiguous, and to link and locate the final executable

code, the software or firmware engineer must know where the various
types of memory are located.

Figure 7-1 shows the memory map of a typical microcontroller. The 2 Kbyte of RAM is used
for variable data storage and the stack, which in a C program provides the storage locations
for automatic variables. Our executable program resides in the 32 Kbyte of Flash EEPROM.
In comparison to a desktop personal computer system, there is not very much RAM, and the
entire program is located in the Flash EEPROM read-only memory.

The compiler and the linker/locater for C programs written for an embedded applica-
tion must allow us to position the code in the ROM and to use the RAM for the variable
data storage. In addition, it must allow us to make specific reference to particular memory
locations to access the control registers in the | Kbyte register space shown in Figure 7-1.
The executable code consists of the code you write, starting with your main() program and

all procedures linked together, plus a section of code normally provided by the C compiler
called the srartup code.

$0000
1 Kbyte Control Registers
Register for 1/0
Space
$03FF
Nothing
$0800
Zé(Ab')ae <«— RAM used for variable
data storage and the stack
$OFFF
Nothing
XXX
$8000
Program code and
32{;:;2}?6 constant data storage
EEPROM
$FFO0 [ an=aanas
SFFFF Vectors [ Interrupt Vectors

Figure 7-1 Microcontroller memory map.
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Start-up Code

: ] ; The compiler vendor provides start-up code to initialize a variety of

Start-up code isautomatically included : 5 5 S, 54 9%
: NG : microcontroller hardware features plus any initialized program vari-

g7 e ol el nifliAlpey i ables. Typically, it will do the following initializations H

ables and hardware features before the i : & . i

main program executes.

Initialize hardware needed to run the microcontroller in a default
state.

Define register values for paged or expanded memory available in some
microcontrollers.

Initialize registers to move (remap) RAM, EEPROM, and I/O registers from their
default memory addresses to new ones if required.

Initialize to zero any static data locations allocated in RAM.

Initialize to their starting values any variables initialized by the program.

Initialize the stack pointer register.

Call the main() program to transfer control to your embedded system.

void main( void );
Your programming efforts start with the void main( void ) program segment. The last thing
the start-up code does after its initialization steps is to call your main program. The first thing

the compiler-generated code does in your main() program (and any other module) is to allo-

cate storage for variables and to initialize those that have not already been taken care of in the
start-up code.

Variables

Automatic Variables

. : Automatic variables are those declared within a procedure; no other pro-
Automatic variables are stored on | cedure has access to them, and their lifetime (accessibility and validity)
the stack during the execution of the | - ¢, when the procedure’s execution time ends. Because these variables
module in which they are used. come and go with the function, they do not retain their value from one
invocation to another.

Automatic variables are placed on the stack, and the compiler generates code to access
these in a variety of ways. Embedded system programmers must ensure that the system has
enough stack memory to accommodate the automatic variables in a function. This mechanism
for storing variable data is very efficient. RAM in most microcontrollers is a finite and scarce
resource. By using automatic variables, we make it possible for succeeding functions to reuse
these RAM locations.

Automatic variables may be initialized to some value or not. If they are not initialized, the
value is undefined.
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7.4 Assembly Language Interface 147
Static Variables

; T code) produced in support of our application program. i-
Compilers can produce a listing file : )P pport{ kb PR D Before fiearns
cation code for any function starts to execute, the compiler generates
that shows all the assembly language oy e : : s S
- code to initialize automatic variables that have initial values. This over-
code that has been generated. : .
head could degrade the execution time of our program and cause

‘ unwanted effects. Fortunately, most compilers can produce a listing file
[ showing the actual code produced.

Static variables may be declared either inside a function or outside it.
Static vadables arerallocalcaiigine They are located in RAM and are reserved for use throughout the pro-
SpEmIn RS gram. The start-up code initializes static variables either to zero or o
whatever value is specified in the program.

Example 7-2 shows the compiler-generated code to initialize variables in a main function.
Volatile Variables

The static char A_val array is initialized as part of the startup code because it is a static vari-
A volatile variable is one whose value may change as a result of outside able. The automatic char B_Vval array must be initialized before any code in main is executed.

forces. For example, an A/D converter may be loading a register with ‘ As you ca-n see from.lhe Ivisting. this m dAolne‘ by lhe_ code immediately following line 9. The
new conversion values. A variable that is being set by reading that loca- C_val array and the i variable are not initialized prior to use.

tion should be declared volatile to ensure the compiler does not eliminate

code that it considers redundant or not necessary. Example 7-1 shows two
variables, volatile static BYTE A Val andB_Val, which is nonvolatile. Depending on ) )

how your compiler optimizes code, Aja_‘; will be written twice (because it is declared volatile) Example 7-2 C Program Overhead to Initialize Variables
but 8 val only once (because the compiler eliminates what it thinks is redundant code).

Volatile variables will be on the stack
if they are automatic or in RAM if
they are static.

Source Code

Listing Showing Compiled Code
/*&*-‘&v«.**6<-(V‘*~v~ﬂv~*‘**?r/
void main (void) {
¥ < | ic A =
Example 7-1 C Volatile Variables | S Char,dﬁval =
I {2,90,53,8};
Source Code \ char B Val[] = 9: GHaT 2
| {0,7,255,34}; 0000 69a8
typedef unsigned char BYTE; i 0002 c607
BYTE PORTA; ‘ 0004 6b81
void main(void) ({ GEE
O ( AL‘} BYTE A Val: 1 0006 B86ff
volatile static BYTE A Val; | 0008 6a82 STAA 2,SP
static BYTE B Val; i 000a c622 LDAB $£34
/* Read from Port A */ ? 000c 6b83 STAB 3,SP
A Val = PORTA; /% A Val should be writtten twice */ |
A Val = BORTA; | char € Vall4l, i;
| e T S T S T TSPy
!
1 1 i=2; 12: i
cORTA R e n i oLz el yROOCe s/ C_val[i] = A Val[i]+B_Val[il; Al 1[i]+B Val{il;
= PORTA; 000e £600 A_Val:2
: 0011 eb82 2,;SP
} 0013 6b86 6,SP
0015 1b88 8,SP
} 0017 3d
7.4 Assembly Language Interface

Compiler-Produced Assembly Language Code Explanation of Example 7-2
Embedded system designers must be aware of all parts of the code and be able to understand The listing of the compiled code in Example 7-2 shows how invoking a function like main()
what the compiler is doing. In any C program, we may not be aware of code (e.g., the start-up produces code we may not see. The static A_Val has been initialized in the start-up code, but

R R
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V Figure 7-2 Hardware
Example 7-6 Bit Addressing DD configuration to demonstrate
T bit addressing.
F e L
/* Define a bitfield type as unsigned int */ é é é é
typedef unsigned int BITFIELD;
R L Yy
B7
/* Define an eight-bit field for the PORT */ o=
typedef struct { B6 9/":1
FIEL ITO : 1:
IELD ;;;? 3 i, BS ]
T ; B4
BIT2 : 1; PortA — o= ko
BIT3 : 1; o— o
BLT4: w2l 82 =
E FIE M5 H
BITFIELD BIT5 : 1; B1 — ol
BITE LD BIT6 ; BO
BITFIELD BIT7 : 1; S|
PORT; /77
/* Define PORTB to be a volatile structure of bits at 0x0001 */
#define PORTB (* (volatile PORT *) 0x0001) v
DD
B R L LT -I-
/* Define a different way to access the bits */
#define PORTB BIT1 PORTB.BIT1
" B7
void main (void) {
/* These instruction may generate bit-set and bit-clr B6
* instructions */ BS
/* Strobe PORTB bit-0 */ B4
PORTB.BITO = 1; Port B B3
PORTB.BITO = 0;
/* Strobe PORTB bit-1 */ 52
PORTB BIT1 = 1; B1
PORTB BIT1 = 0; BO
}
Byte and Bit Addressing A program to accomplish this is shown in Example 7-7. A union of two storage classes,
unsigned char and an 8-bit bit-field structure PortBits, is defined. Two reg-
It is convenient to be able to address a register as a byte in some situations and as a bit in others, isters of this type, and PORTR, are declared and located appropriately. One can access
Ff)r example, consider the hardware shown in Figure 7-2. Eight switches are connected to the register as a byte as in the statement
bits 7-0 on Port A and eight LEDs to bits 7-0 on Port B. It would be convenient to read all eight
switches at once or, perhaps, to test each one individually. Similarly, controlling all eight LEDs S $
atatime or individually can be done. or
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Locating the Interrupt Service Routine

: : - , . : 7.9 Problems
Many microcontrollers use an interrupt vector to find the correct interrupt service routine
when the interrupt request is received. The interrupt vector is simply the address of the start
of the interrupt service routine, and each interrupting source has a specific address that stores Blbie
its own vector. It is our job to provide the linker program with the starting address so it can P
be placed in the correct vector location. This can be done in a variety of ways, depending on 3 ;
P : 3 Y P 2 7.1  What ANSI C extensions are supported by your C compiler? [a]
your compiler.
As we will discuss more in Chapter 10, all interrupt vectors should be initialized to an 7.2 What assembly code does your compiler produce for the following statements? Assume
address and not left uninitialized. This allows you to catch unexpected interrupts that may that datal is unsigned char type. [a]
occur. You may wish to consider hghnpg an error condmor) LED l(? indicate \'vhen lhe§e a. datal = datal | 0x01; /* Set bit 0 */
unplanned-for interrupts occur because it means that something is going wrong in the soft- ! b. datal |= 0x01; /* Set bit 0 */
- are | : - J
ware or hardware. c. datal = datal & 0x01; /* Reset bits 7 — 1 */
d. datal &= ~0x01; /* Reset bit 0 */
e. datal ~= OxFF; /* Toggle all bits in data 1 */
: 7.3 How do you use your compiler to address a specific memory location to access a par-
Exercise 7-4 ; y oD p Ty p
ticular control register? [a]
Does your microcontroller signify an interrupt service routine or interrupt handler in your X X §
C programs? 7.4 How many bits does your compiler allocate for char, int, and long data types? [a]

7.5 What does the start-up() code do for your microcontroller? [a]

7.6 Give the memory addresses used in your microcontroller for the following: [a]
a. Data memory
b. Program memory
c. Control registers

7.7 Conclusion and Chapter Summary Points

In this chapter we have discussed the use of the C programming language for programming 7.7 What must you do for your compiler to be able to use interrupts? [a]
embedded systems by means of microcontrollers.
Stimulate
* There are two kinds of memory in a microcontroller system—RAM and ROM.
3 i T ) y : 7.8  Write a program in C to reverse the order of 0x20 bytes in a buffer. Assume the buffer
* Anembedded system’s program is in ROM with variables in RAM. is in memory locations DATA[0]-DATA[31]. [c]
* A desktop system’s program and data are in RAM. 7.9  Write a C function to search a null-terminated string of characters for a specific
* The embedded system engineer must know the microcontroller’s memory map to be substring and to return the address of the start of the substring. The input to the
able to locate the program and data correctly. subroutine is to be the starting address of the string to be searched, the starting
3 ) address of the substring to be searched for, and the number of characters in the
* The ANSI C standard does not pr‘owdc all of the fc.alllfcs needed in an embedded sys- substring. If the substring is found, return the address of the first character in
tem (e.g., direct memory access, interrupt control, in-line assembly statements). the search string; otherwise return an address of 0x0000. [¢]
» Compilers that are ANSI C compliant also offer extensions necessary for embedded
systems. Challenge
7.10 Determine how your compiler treats volatile variables by writing a program similar to
T > Example 7-1. [a]
7.8 Bibliography and Further Reading : ;
7.11 Write a program for your microcontroller in C and then in assembly (or vice versa) to
Kernighan, B. W., and D. M., Ritchie, The C Programming Language, 2nd ed. Prentice Hall, Upper find the largest of thirty-two 8-bit unsigned numbers in 32 successive memory loca-

Saddle River, NJ, 1988. tions. Place the answer in the next available location. [¢]

e
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7.12 Write a program for your microcontroller in C and then in assembly (or vice versa) !
to find the largest of thirty-two 8-bit two’s-complement numbers in 32 successive
memory locations. Place the answer in the next available location. [c]

7.13 There are 4 bytes of data in variable data array DATA[0]-DATA[1]. Write a program in
C to count the number of 1s in these bytes. Place the result in NUM_ONES. [c]

| ' | | Debugging Microcontroller Software
7.14 Write a program in C to compute factorial 8. Store the result in a 2-byte memory loca-
tion in RAM memory. [c] and Hardware

7.15 An 8-bit signed/magnitude number system is in use. Write assembly or C subroutines
or functions for the following: [c]

B

a. Add two 8-bit signed/magnitude numbers. [
b. Subtract two 8-bit signed/magnitude numbers. |
¢. Multiply two 8-bit signed/magnitude numbers.
d. Divide two 8-bit signed/magnitude numbers.

Reflect on Learning

Objectives
7.16 What have you learned about C programming for embedded systems that is different

from programming in a desktop environment? This ?‘hapler describes debugging strategies and techniques useful in helping you find prob-
lems in your programs.
7.17 List five new things you have learned about using C to program a microcontroller for

an embedded application.

8.1 Introduction

By now you will have experienced writing and running simple assembly language or C pro-
grams on your laboratory equipment. You have also probably experienced the programmer’s
nightmare: your program does not work; perhaps it does not even appear to run. It is time for
some program debugging.

8.2 Program Debugging

Program debugging is like solving a mystery. We start the program, fully expecting it to work
perfectly, and it does not. Often, when beginning students are asked, “What is your program
doing?” they respond “Nothing!” The computer cannot be doing nothing: it is doing something
all the time: fetching opcodes, executing them, incrementing the program counter, and fetching
the next opcode. Remember that you are responsible for the opcodes the computer is executing,
and you should know what every instruction does at every step along the way. You must do
some detective work to find the difference between what you expect the program to be doing
and what it is actually doing. Debugging is the process of finding the clues and interpreting
them to find the problem.

There are two approaches to fixing bugs in programs. The first is a
synthesis approach in which you try to fix the problem by changing the
code somewhere. This is wrong! You must find out what the program
is doing before you can fix it. Thus the second approach: analyzing the
problem. You first find out what is the program doing, then why it is doing
that. Probably by then you will have enough clues to be able to fix it.

159

Programs that are not working prop-
erly should be analyzed to find out
what they are doing before anyone
tries to fix them,

T e e e T
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Programs have only two parts—the data and the logic. The program inputs data values, .
stores and manipulates them, and outputs the data in some form. The program’s logic deter- 8.3 Debugging Your Code
mines the sequence in which program steps are executed and how the data are manipulated.
Most program bugs are in the logic. We mean for the computer to do one thing but we have

programmed it to do another. Normally the data affect the program’s flow, and this can help Design for Debugging

us find the debugging clues. When we use the analytical debugging technique, we are trying Shortly after writing their first programs, most software developers realize
to match what we think the program should do for a particular input data set with what the Designing your code and including | - that ygyally, unless the program is very, very small, there will be some prob-
program actually is doing. comments are critical components in | o< that must be found and corrected. Projects never go as well as we would

Figure 8-1 shows analytical debugging. We choose an input data set and predict what the the creation of programs that can be | jipe ang debugging our software always takes some time and effort.

program will do with these data at each step of the program and what the program will do next. tested and debugged. To produce code that can be debugged, we must use top-down design
This is a model of what the program should do. Now run the program and, using the tools methods and structured programming techniques. Code that is disorganized
described shortly, look for data values and program steps that differ from the model. Once we oris produced by a programmer who does not understand the specifications usually hides more prob-
have found out where the program deviates from the model, we are well on our way to finding lems than can be found. Indeed, many large systems are never completely free of program bugs.
out why it is going wrong and what will be needed to fix it. Comments are critical to the development and debugging efforts. Most programmers, nov-

ice and experienced alike, do not like to comment their programs. Beginning programmers,
who may be concentrating on just learning the language, are loath take time away from pro-
ducing code. Chapter 3 shows an approach to comments that follows the top-down design
. L philosophy. Some design must be done, at least to some level, and the design statements are
What we think will happen What actually happens included comments in your program. These design comments, which tell what the code is to
do, are followed by the code that implements the design. Of course, the code itself should have

E -i comments as well explaining how the code is implementing the design.
! : After we have written our code, we turn to the debugging phase. The design comments and
i Input Input ! the code comments help us to understand what is supposed to be done (it helps us develop
i Bata Sef Data Set ! “What we think will happen™ from Figure 8-1). The code comments help us understand how
| v i | the code is supposed to work. Compare Examples 8-1 and 8-2. Which would you prefer to
i f i ! work with if you were assigned to find a problem in the code? If you find problems that require
| \ ! i 7 / changes, make sure you update the comments!
| [ ] ' J Another useful strategy is to include comments to remind you of things to test when it
i Stepwise L . Stepwise ! comes time to test and debug the code. See Example 8-3.
i Program i ! Actual !
! Model i ! Program E
| | ! ;
! : ! : Example 8-1 Code with No Design Comments
; / EDebuggingI Y i T T 1 e e S
i Stepwise [ the Data | Stepwise : * keypad scanning module
| Expected [« s Actual i *
! Outputs : ! Outputs | /4
i | i i fdefine NUM_ROWS 4
: | ! i define NUM_KEYS 16
i | Debugging i : S o S Kk Kk Rk
i / ! i / ! /
i :theEIrOQram: i /* Define constants */
: EXpeded 1 : ow : ) Actual : #define ROW3 0x0e
1o [ NS ErOCTEAMB Sy e Frogami | - #define ROW2 0x0d
! S | ! Step : fdefine ROW1 0x0b
bry o netasio g AR idgann |- #define ROWO 0x07
#define OUTPUTS OxO0f
Figure 8-1 Analytical debugging model. #define INPUTS Oxf0

—L
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#define COL3 0x70

f#define COL2 0xb0

#define COL1 0xdO

#define COLO 0xe0

#define KEY MASK 0xf0

#define NO KEYS 0xf0

#define END MARK Oxff
/'kﬂ-tvt'itt‘«tva1—:'t«i*it*t*&t*tiﬁn:*ttyttxtkt*tt-b*v*ﬁt»wx/
/* Define arrays to store the scan codes, key codes and a
* lookup table for the return value */

unsigned char Row_Codes[] = {

ROW3,

ROW2,

ROW1,

ROWO

}i

unsigned char Good Codes[ ] = {
COL3 | ROW3,
COL2 | ROW3,
COL1 | ROW3,
COLO | ROW3,
COL3 | ROW2,
COL2 | ROWZ,
COL1 | ROW2,
COLO | ROW2,
COL3 | ROW1,
COL2 | ROW1,
COL1 | ROW1,
COLO | ROW1,
COL3 | ROWO,
COL2 | ROWO,
COL1 | ROWO,
COLO | ROWO,

END_MARK

bi

/* User defined key codes. These are ASCII. */
unsigned char Key Codes[ ] = {
“123R456B789C*0%D”

}i

J R R

* Define the ports on the microcontroller to connect to the
* keypad
B e S L T T T T L Rt T T LT T TN Ly

#define DDRAD (* (volatile unsigned char *) 0x0272)
#define PERAD (* (volatile unsigned char *) 0x0274)
#define ATDDIEN (*(volatile unsigned char *) 0x008D)
#define PTAD (*(volatile unsigned char *) 0x

R e e

Jrrxknkxrxrrrr Module SEArt *Frrksrssshrbsaskrbrsrsnssin baan )

8.3 Debugging Your Code

unsigned char hex_key scan ( void ){
e e eV
unsigned char key hit;
unsigned char col code;
unsigned char scan_code;
unsigned char key code;
unsigned char i;
[ Rk kR Rk kK ok ko kR ok kR R KKK KKK KK KKK KKK KK K Kk ok koo ko ok
* Initialize your microcontroller’s I/O port connected
* to the keypad.
hokok ok ok ok ok ok k ok ke kA Kk ok ok kkk kKK KA KRR KKK h KTk KKK KX H KK ** T TR [

/* Initialize the PortAD bits 3-0 for output */

if (( DDRAD & OUTPUTS ) != OUTPUTS ) {
DDRAD |= OUTPUTS;
PERAD |= INPI ;

ATDDIEN |= INPUTS;
}

Kk ek ok ok ek ok ok K K kK ok o ok ok ke ke ok

AR R R KA A F A EFEFE

/* Output each row code and read the col code each time.*/

i=0;
col_code = NO_KEYS;
while ( (i < NUM ROWS ) & (col code == NO_KEYS)) {

/* Output the row scan code */
TAD = Row_Codes[ i ]7

d the

scan_code

col _code =

if ( col code == NO_KEYS ) {
key = 0;

iRelsent
i=10;

key code
while ((
key_code

&& (key code != scan code)) {

++1;

( key code == END MARK ) ({
= 0;
key _hit = Key Codes[ i ];

}

}
return( key_hit )i
}

163
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Example 8-2 Code with Design Comments

D e o S

Kok kK KoK K Kk

keypad scanning module
unsigned char hex key scan( void );

This module scans a 16-key keypad

tached to Port AD. It returns an unsigned

[

for the key pressed.

t returns the first key
ning, It does not check for multiple
me time and it does not debounce key
M. Cady

% ur File: hex keypad.c
1

sion date: 1 February 2009

B e e

Kok KKk kKKK

/* Hardware Definitions */

YA

t
AD-0: Output: Scan row scan co

AD-4: Input: Column code

Col3 Col2 Coll Col0
Col Code
* Row Code |1111 0111

Row

] ) |None 1
* 2 1103 |None 4
* 1 1011 |[None 7
* 0= 034 |[None *

L Er Ty

D yhill Series 96 4x4 keypad */
fin iS4 /* Number of Y
#define NUM KEYS 16 /* Number of keys */
/* Define where they are connected to the microcontr

=) 1
AR 2
NN 3
v B 4
* 5 c

o) o
*x g 7
* 7 8

Define constants */
#define ROW3 0x0e /* Row
#define ROW2 0x0d /* Row

NI
@
S
<
S
)

8.3 Debugging Your Code

#define ROW1l 0xOb /* Row 1 */

#define ROWO 0x07 /* Row 0 */

#define OUTPUTS 0x0f /* Row outputs */

#define INPUTS 0xf0 /* Col inputs */

#define COL3 0x70 /* Col 3 scan code */

#define COL2 0xb0 /it [efell /)

#define COL1 0xd0 /=R GO )

#define COLO Oxe0 /fis Tefollt =7

#define KEY MASK 0xf0

$define NO_KEYS 0xf0 /* Code for no keys pressed */
#define END MARK Oxff /* End of Good Codes array */

JRKKH KK KKK IR I KT Ik I KKK kI KRR h K KR I K IR F IR K I KX KKK KK I AKXk F KT XX [

o = N

/* Define arrays to store tl

scan C

y codes and a
* lookup table for the return value */
unsigned char Row_Codes[] = {

ROW3, /* Row 3 scan code */
ROW2, /* Row 2 scan code */
ROW1, /* Row 1 */

ROWO /* Row 0 */

}i

KRR KKK KKK KKK K KRR KK KKK KKK KK KK K Rk kxR ok
* This lookup table contains the 8-bit scan codes for all
* keys on the keypad

e e e e o o ek ok ok ok ke e S ok ok ke ok ok ok Kk ok ok ok ok ok ok ok ok Rk K o ko e
unsigned char Good Codes[ ] =

COL3 ROW3, /* “1” 0x7e */

COL2 ROW3, /* “2” 0Oxbe */

COL1 ROW3, /* “3’ Oxde */

COLO ROW3, /* “A” Oxee */

COL3 ROW2, /* “4” 0x7d */

COL2 ROWZ /5 N5 0XD A~/

COL1 ROW2, /* “6” Oxdd */

COLO ROW2, /* “B” Oxed */

COL3 ROWLY 1 /3308 05 o1y

COL2 ROWL;e /%0 S8 (Qxbbi %y

COL1 ROW,: /% S92 0xdbs

COLO ROW1l, /* “C” Oxeb */

COL3 ROWO 2 /AR 0T 7oy

COL2 ROWO, /* M0 0xb] */

COL1 ROWO, /* “#” Oxd7 */

COLO ROWO, /* “D” 0Oxe?l */

END_MARK /* End marker */

)i

e R

* This lookup table returns the ASCII code for the key.
ok ok R Sk kR R R R R R R R R R R R R R R A R R R R R R R R R
/* User defined key codes. These are ASCII. *

unsigned char Key Codes[ ] = {
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col_code = NO_KEYS;
while ( (i < NUM_ROWS ) & (col code =
/* Output the row scan code */
PTAD = Row Codes[ i ]/

++i; /* Increment the pointer.

* to cause a little del
* code before reading t
* done to give the hardw
* correct value. */
/* Read the scan code */
scan_code = PTAD;
col _code = scan_code & KEY MASK;
}
/* If the col code is NO_KEYS,
) {

if ( col_code == NO_KEYS
key hit = 0;
} else {

/* Otherwise, find the key t
/* The variable scan_code has the
/* code. Just scan through a look

/* find a match and return the user

i=0;
key_code = 0;
while ((key code != END MARK) &&

key code = Good Codes[ i

+41p

}

if ( key code == END MARK ) ({

/* Must have reached the end of the table and not
* found a match. Return zero */
key hit = 0;

[§elisesd

/* Retrieve the key */

key hit = Key Codes[ i ];

return( key hit );

Example 8-3 Comments Included to Help with Testing and Debugging

JrE AR R AR A AR AR A A AR AR AR R E AR AR IR A AR AT IR R AR AR

* This module calculates the square root of a signed 16-hit

* signed integer.

R R R s
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8.4 Debugging Tools

All debugging programs offer a variety of tools. The features in a debugger depend on the
computer on which the debugging program is run. Today, personal computer—based debug-
gers, particularly for the high-level languages, have many features that can either operate in a
simulation mode or interact directly with the microcontroller hardware. Other, older debuggers
run on simple development boards or single-board computers and offer more limited range of
features. These debuggers, called monitor programs, contain rudimentary debugging tools and
basic I/0 functions.

A Debugging Demonstration Program

Example 8-4 is a program we will use to demonstrate some debugging techniques. This pro- |
gram simply reads a byte from a source [] string and calls a function to change the case of any ‘
alphabetic character. Nonalphabetic characters are unchanged. To debug it, we need to develop

the analytical model as suggested by Figure 8-1. Array addressing is used to index through the I
array. Note that the source and destination arrays and the returned byte character are !
static arrays. This is a trick you can use to help your debugging. It makes the compiler store the |
data in RAM, where it is easy to display on your debugger memory screen. If they have been
declared automatic variables, which could have happened, it would be much harder to find them
in memory. Another trick to make debugging a little easier is to use array index addressing, as
we have done here. Code that is more efficient would probably use pointer addressing.

The change case () function checks to ensure that the input char is either uppercase
or lowercase before exclusive-ORing the character with 0x20 to change the case. Any input
that does not meet this criterion is returned unchanged.

We expect the program to transfer each byte of the source string to the destination
string one byte at a time and to change the case of each alphabetic character.

Example 8-4 Sample Program to Demonstrate Debugging

]k ke ok ko K ok ok kK o kK ok ko ok ko ok ok ok ok ok ke ok o kR K

* Sample program to demonstrate a debugger progra

* The program simply reads a null terminated string from
* one memory buffer, changes upper to lower and e O upper
* case, and stores it in another memory buffer.
Lt e T T Y
char change case( char ); /* Change the case of the input */
3 main(votd) ¢ Debugging Program Flow and Logic
static char source[]={ o v ] The first debugging task we have is to find out where the program is
“This is a string!” lrac ng and.setingbreakpoinisallow going wrong. You must follow the program flow until you find a devia-
s us to follow the program flow. ;i . ;.l_ B tl;‘ e ot I S eilicia \d IS 1
; on frc e expected flow or an unexpected data modification. There
static char destination[ 20 ]; are two ways to follow the program flow.
static char returned byte; - s =
static int i; . 1. Program trace: Tracing is stepping through the program, one statement at a time. In
e the more powerful, high-level language debuggers, you may display data elements, including

—
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the contents of memory locations and registers, while tracing the code. In less powerful,
assembly language debuggers. the register set is shown at each step, but data elements in
memory must be inspected manually.

2. Breakpoints: The program trace is a slow way to get through a program. It is quicker
to find out where problems are occurring by running the program at full speed to a break-
point. A breakpoint is a set of conditions that interrupt the program flow and return control
to the debugging program. Normally breakpoints are set at program statements, but they also
may be generated by a combination of other conditions. For example, in some debuggers,
breakpoints can be generated when a particular data element becomes some specific value. In
some systems, hardware breakpoint generators may create breakpoints when a condition or a
set of bits on the computer’s bus is detected.

Figure 8-4 shows a screen snapshot of the CodeWarrior debugger' with a breakpoint in the
program from Example 8-4. Let us say we suspect that the change_case function is not prop-
erly changing the case of the input character. A good place to set a breakpoint is right after the
function returns the r ned byte value. When the program hits the breakpoint, we can
look at the value to see if it makes sense. Later, Figure 8-5 will show that when the breakpoint
1[0] = ‘h’.

is hit after one pass through the loop, source[0] = ‘H’ and desti

Thus, we would conclude that the change_case function is working properly.’

| IC. \D;uments and Settings\HP_Owner\My Documents\1wpdocs\Book\1mm_revision\...\debug_test_1.c Line: 14

‘ void main(void) (B =
static char source[]={&
g po

destination[ 15 ]:
returned byte;

re:u:ned_byt;: = change_case( source(i] );
| destination[ j ] = returned byte;

Figure 8-4 Setting breakpoints.

! Freescale Semiconductor, Inc.

2 Well, there actually is a bug in cha case. We will ask you to find it in Problem 8.4
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Debugging Data Elements

Data:2

While you are following the flow of the program, you can observe data elements, both in the
memory and, if you are programming in assembly language, the registers.

Memory: In high-level language debuggers, one can generally inspect any of the declared
variables. Usually the display is formatted according to the type of declaration that has been
made. In assembly language debugging monitors. the display of data elements is more crude.
usually only in hexadecimal.

Figure 8-5 shows the CodeWarrior memory display. You may view memory contents as a
formatted data value either in the Data pane or as hexadecimal values in the Memory pane. In
this display we see that the program has transferred one byte from so: i
The memory display shows both hexadecimal contents of memory as well as the ASCII char-
acter for those bytes that are printable.

Registers: When you know the data input, you should know the state of the registers at each
step of an assembly language program. Assembly language debuggers usually display the
contents of all the registers, including the condition code register. in a register window. While

Ao | Symb
B source <13> array[13] of signed char =
[0} 'H' 72 signed char
[1] 'e' 101 signed char 3
12] "1' 108 signed char =
(3] '1' 108 signed char
[4] 'o' 111 signed char
[51 ' ' 32 signed char
(6] 'W' 87 signed char
[71 'o' 111 signed char
[e] 'r' 114 signed char
9] '1' 108 signed char
[10] 'd' 100 signed char
[11] '!' 33 signed char
[12] 0 signed char
B destination <15> array[15] of signed char

(0] ‘h' 104 signed char
1] 0 signed char
[2] 0 signed char
3] 0 signed char
[4] 0 signed char
[5] 0 signed char
(61 0 signed char
7] 0 signed char
8] 0 signed char
(9] 0 signed char
[10] 0 signed char
[11) 0 signed char
[12) 0 signed char
[13] 0 signed char
[14) 0 signed char

returned byte 'h' 104 signed char

2 0 int

i 0 int !

- n——

Figure 8-5 CodeWarrior memory display.
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Figure 8-6 CodeWarrior register
display.

900 CCR | SXBINZVC

tracing the program, you can watch the contents of the registers change and watch for values
that are different from those expected.

Figure 8-6 shows the register display pane from the CodeWarrior debugger for a Freescale
HCS12 microcontroller. All registers are shown including the condition code bits (CCR).
If we were expecting the change case function to return some value other than 0x68° (as
shown here in the B register), we would know that there is a problem somewhere in the func-
tion. Note that it is vital that you know what the function should return to be able to see if it
is correct or not.

The Source Code Listing

An up-to-date listing of the program is very useful. If you are debugging an assembly language
program, the listing should be the assembler list file, not the source file. The list file shows
the code the assembler has produced, and errors frequently can be spotted by using this listing
instead of just the source file. When you are debugging C programs, a source listing showing
the assembly language produced by a C compiler is often very useful, too.

8.5 Typical Assembly Language Program Bugs

Stack Problems

As you start your beginning programming assignments, you will commit many follies. Here
are some common problems that assembly language programmers encounter.

The stack is an area of RAM used for temporarily storing data and for saving the return address
for a return-from-subroutine (RTS) instruction. Here are some problems associated with using
the stack.

0x68 = 104, = ‘h"
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/\M Figure 8-7 Program variable data and stack segments grow
Lower toward each other.
Address

Program
Variable
Data
Space

U
&

Stack
Space

Higher G e

Address

1. Improper transfer to subroutines: The return address from a subroutine must be on
the stack. Use a branch-to-subroutine, a jump-to-subroutine, or a call instruction. Never use a
branch or a jump that does not put the return address on the stack.

2. Forgetting to initialize the stack pointer: You must initialize the stack pointer to
point to an area of RAM. Do this in the very first few lines of code in an assembly language
program. It must be done before any subroutine is called or the stack is used for data storage.

3. Not allocating enough memory for the stack: The data storage allocation (static
data in C) grows from the bottom of memory to the top, while the stack (used for automatic
variables in C) grows from the top of memory toward the bottom, as illustrated in Figure 8-7.
If the stack and data overlap, stack operations will write into data areas or vice versa with
unknown, and usually dire, consequences.

4. Unbalanced stack operations: Make sure the number of pulls is the same as the
number of pushes. This is particularly true in subroutines where registers are temporarily
saved on the stack. If the program does not return from a subroutine. it is likely there are
unbalanced stack operations. Set breakpoints at the beginning and the end of the subroutine
and check the stack pointer at each place. Look for errors such as unbalanced stack opera-
tions when a stack is being used inside a program loop. See Figure 8-8. Examples 8-5 and
8-6 show unbalanced stack operation.

Example 8-5 Unbalanced Stack Operation
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pula ; Restore the registers

Example 8-6 Unbalanced Stack Operation Analysis

Analyze the stack problem illustrated in Example 8-5.

Solution

This is an unbalanced stack operation because there is an extra pshb instruction in the body of
the subroutine. The subroutine will not return to the calling program properly. In Figure 8-8
we see that the stack pointer register is 0x8FE when entering the subroutine and 0x8FD when
we are about to execute the rts instruction. If the stack operations were properly balanced
these would be the same.

Finding Stack Problems

—

D g
IX B9ge

FE

Register
HC12  [CPU Cydles: 6

A program that executes properly up to a jump-to-subroutine instruction and then does not
seem to return from the subroutine often suggests that there are problems with the stack. You
can easily verify this by putting breakpoints at the subroutine jump and at the next instruction
following the jsr sub. If you never hit the second breakpoint, you know there is a problem
in the subroutine. With this simple step, you have been able to isolate where the problem is.
The next step is to look for more clues. Set a breakpoint at the start of the subroutine and at
the return-from-subroutine instruction at the end: for example, /ine 2 and line /0 in Example
8-5. Check the register display at all breakpoints to see if the stack pointer register is the same

=13
HC12  [CPU Cycles: 18 | Auto
A a D 08 A 8 B 8
IY | B8FE
PC [CO0E PPAGE

CCR | SKHINZVC

IX B9 IY |B&Fé
Ip &Q PC |COOD PPAGE | 0
CCR | SXHINZ

Figure 8-8 Register contents when entering and about to leave the subroutine
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in each case. If it is not, you know there is an unbalanced stack operation somewhere in the
subroutine, and you can continue to look for clues until you find the trouble spot (see Figure
8-8).

Other stack problems can be caused by data overwriting the stack or stack overwriting the
data. If you suspect these problems, and if your debugger allows it, you can write a specific
data pattern into the uninitialized RAM memory before running the program (a fixed patiern
might be 0x00 or OxFF). Then, when problems occur, you can view the RAM memory to see
if your data pattern is intact; if not, the stack or other data elements have used more locations
than expected.

Register Problems

Among the register problems you are likely to encounter are the following.

1. Using immediate addressing incorrectly: One of the biggest problems that beginning
assembly language programmers have is knowing how to use immediate addressing properly.
Do not confuse immediate addressing with direct memory addressing. Remember that imme-
diate addressing retrieves constant data from the memory location immediately following the
operation code. Direct memory addressing retrieves data. which may be constant or variable.
from some other memory location.

Finding problems with register contents is difficult. You must have a good program model
and know what is expected in the registers at all times. Then. using trace or breakpoints. you
watch the register display to see when a register’s contents do not match your expectations.

2. Using subroutines that wipe out registers: Well-designed subroutines for assembly
language programs do not modify registers that may be used in the calling program. Push all
registers used in the subroutine onto the stack when you enter the subroutine, and pull them
before returning to the calling program.

Example 8-7 shows subroutine code that incorrectly restores the registers when returning
to the calling program. Because the stack is a last-in, first-out operation, the registers must be
pulled in the reverse order of pushing. You can find this error easily by setting a breakpoint at
the jump to subroutine and at the instruction just following the jsr. Comparing the contents of
the registers at these two points will quickly show any problems.

Example 8-7 Improper Restoration of Register Contents
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3. Transposed registers: A difficult problem to find is one in which the operands for an
instruction have been transposed. For example, if data are to be moved from the B to the A
register, and the proper instruction is, say, mov b, a, it is very easy to transpose the register
operands and write mov a, b. To find this error, trace the program, watch the registers, and
compare them with what is expected.

4. Not initializing pointer registers: Register indirect and indexed addressing modes
must have the register initialized with the address of the data.

5. Not initializing registers and data areas: Because the contents of registers and RAM
memory are unknown when the computer’s power is turned on, always initialize registers and
data areas before using them. Do this at run time, not assembly time or load time.

6. Using a 16-bit counter in memory: Counters are used for many things in assembly
language programming. The fastest and easiest way to implement a counter is to use a CPU
register; however, when one runs out of registers, counters must be kept in memory. A typical
error occurs during the incrementing or decrementing of a 16-bit memory counter with an
8-bit memory increment or decrement instruction. Instead of changing the full 16 bits, the
programmer changes only 8 bits. You should load the 16-bit counter into a register, incre-
ment or decrement it, and store it back into memory. Make sure the store operation does not
change the flags if a conditional branch based on the increment or decrement follows.

7. Modifying a counter in a loop: Another common problem with counters is reinitial-
izing the counter inside the loop. Example 8-8 shows this problem. To fix it, move the label
1oop: below the counter initialization code at /ine 4.

Example 8-8 Improper Counter Initialization

1. COUNT: EQU 100

2. ; Initialize the counter in memory
3. loop:

Yol movb #COUNT,Counter

B’ :

6. dec Counter

e bne loop ; Whoops!

B S

9. Counter: DS.B 1 ; 8-bit counter

Finding Register Problems

S —

Register problems are difficult to find, especially because data in registers are often variable.
It is critical that you follow the analytical debugging model shown in Figure 8-1, closely mon-
itoring what you expect the register contents to be and what the program is actually doing.
When you find a deviation, you have found the area of the problem: now you must look further
to find the cause.
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Condition Code Register Problems

Almost all instructions modify the condition code register, and you must know which instruc-
tions modify which bits. Problems with the condition code register lead to problems in the
program flow. These problems, too, are hard to find, especially when variable data are used.
Two of the problems you are likely to encounter are the following:

1. Modifying condition code contents before conditional branch instructions: Be
aware of all instructions that modify the contents of the condition code register. Make sure
there are no instructions that change the condition code register between the time it is set and
the time the conditional branch is executed. See Example 8-9.

Example 8-9 Load and Store Instructions Modify the Code Condition Register
Analyze the following code for a condition code register problem.

1. COUNT: EQU 8 ; Loop

;

[

S

Solution

The programmer follows the decb instruction with an instruction to load A with Ox64.
Depending on your microcontroller hardware, the may modify the condition code
register bits so that the zero bit is zero and the bne loop instruction will always be taken.
The program will never exit from the loop.

2. Using the wrong conditional branch instruction: There are different instructions for
signed and unsigned numbers. Conditional branches with the words “greater™ or “less™ are
used for signed numbers and those with the words “higher™ or “lower™ for unsigned num-
bers. Table 8-1 shows how three different microcontrollers use different branch instructions
for signed and unsigned data. Also see Example 8-10 and Table 8-2.
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Table 8-1 Signed and Unsigned Branch Instructions
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Processor Signed Unsigned

Freescale HCS12 Greater than — BGT Higher than—-BHI, BCC
Less than - BLT Lower than-BLO, B
Greater than or equal - BGE Higher than or same
Less than or equal - BLE Lower than or same -
Minus - BMT
Plus - BPL
Overflow - BVS Overflow - BCS
No overflow - BVC No overflow — BCC
Equal - BEQ Equal - BE
Not equal - BNE Not equal

TI MSP430 Greater than or equal - JGE Lower - J
Less than — JL. Higher or same — Jc
Equal - JEQ, JZ Overflow - JC
Not equal - JNE, JNZ No overflow — JNC
Negative — JN

Atmel ATiny261 Greater than or equal - BRGE Same or higher
Less than - BRLT Lower —
Minus — BRMI Overflow
Plus - BRPL No overflow - BRCC

Overflow — BRVS
No overflow - BRVC

Example 8-10 Using the Wrong Conditional Branch

A programmer intends to compare two 8-bit unsigned data values, the first in the A register
and the second in a variable memory location Data. The program design requires a branch to
GREATER: if the value in A is greater than the value in Data. The following program segment
shows the code that was written:

What is wrong with this code, and what data values would you suggest show that it works
incorrectly?

Solution

Of course it all depends on the instruction set of your microcontroller; in general, however,
there will be an instruction, such as the bgt instruction (branch greater than) that is used for
signed, two’s-complement data, not for unsigned data. The correct conditional branch instruc-
tion to use is the bhi (branch higher than) instruction. This is a particularly hard bug to find
because sometimes it will work properly and sometimes not, as shown in Table 8-2,

Table 8-2 Data lllustrating That bgt is the Incorrect Instruction
Is A Greater Is A Higher

A Data than Data? than Data? Explanation

0x55 0x05 Yes Yes 0x55 is both greater than and higher than 0x05.

0x05 0x55 No No 0x05 is not greater than or higher than 0x55.

0x7F 0x80 Yes No Ox7F (+127) is greater than 0x80 (—128) (signed) but Ox7F (+127) is not
higher than 0x80 (+128) (unsigned). BET is the correct instruction for
unsigned data.

0x80 0x7F No Yes 0x80 (~128) is not greater than Ox7F (+127) (signed) but 0x80 (+128) is

higher than 0x7F (+127) (unsigned).
unsigned data.

I is the correct instruction for

Finding Condition Code Register Problems

Condition code register problems are similar to the register problems described earlier and are
found in a similar fashion. You must carefully watch the condition code bits. as they are mod-
ified by your program while different sets of test data are being used.

The problem shown in Example 8-10 is very difficult to find because it depends on the data
being compared. As Table 8-2 shows, for some data values the bgt gives the correct result and
for others it does not. This is why you must carefully design your test values to test as many
data cases as possible.

Test Data Strategies

Generating test data to test exhaustively your code and hardware is a complete topic itself,
and we can only give some guidelines here. It is virtually impossible to test rigorously
all possible combinations of inputs, outputs, and processing paths in our programs. Try
to be as thorough as possible, but apply some strategy and judgment to make your testing
program reasonable. Here are some suggestions for developing testing conditions for your
programs.

« Choose data values or conditions that are representative of what you expect to test
normal operation.

« Choose data values or conditions that are at the boundaries of what you expect.
For example, if your code is dealing with signed data, test the most negative and
most positive numbers. For unsigned data, be sure to test zero and the most positive
numbers.

» Choose conditions that are outside anything you would responsibly expect. This is very
important. Your program has to work with good values and bad values, too.

« If your program has user input, make sure to test all possible inputs, including more
than one key pressed at a time and keys pressed rapidiy.
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unused
unused

Figure 8-9 Background debug module interface.

The background or on-chip debugging systems include many of the following features:

* Reading and writing target memory
* Reading and writing CPU registers

» Starting and stopping application programs

Tracing application program instructions

* On-chip, in-circuit emulation that operates like an external emulator and may have the
following features:

Hardware breakpoints that can trigger on selected address and data bus activity
Real-time instruction trace buffer
Instruction tagging to allow breakpoints to be set at an instruction

Although the on-chip debugging systems are primarily intended for system development
and debugging, they are useful for other applications. They can be used to load or reload an
application program into a target system after the product has been completely assembled.
They can be used also to calibrate finished systems or perform field upgrades of operation
software. In a data logging application, the background debugging system can retrieve logged
data, thus making it unnecessary to add this function to the application software.

The PC shown in Figure 8-9 is connected to a BDM pod through a USB or serial port.
Software that runs on the PC allows you to set breakpoints, trace, display memory, and under-
take the other debugging tasks we described in Section 8.4.

8.8 Conclusion and Chapter Summary Points

In this chapter we have offered some debugging strategies to help you find those annoying bugs
in your programs. Key elements of those strategies are the following.

e e e
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* Analyze the program; do not try to synthesize new code to fix it.

« Develop a model of how you think the program should run, including data transforma-
tion, register use, and program flow.

» Compare the model of the program with what the program actually does.

« Find out where the program differs from the model.

* Use tracing and breakpoints to check the program flow.

» Use register and memory display to check the data.

* Carefully construct test cases that test the program’s behavior as thoroughly as possible.
« Do not forget to test for unexpected inputs.

» The combination of an oscilloscope and test points included in the hardware allows us
to debug both hardware and software problems.

» Modern microcontrollers may have on-chip debugging features like in-circuit emula-
tion and real-time debugging.
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8.10 Problems

Stimulate

8.1 Explain why 0x20 is exclusive-ORed with the input character in Example 8-4 to change
the case. [c, g]

Challenge
8.2 The sample program in Example 8-4 has a bug in main() so that it does not transfer the

string 100% correctly. If you have a C program debugger, find the problem and state how
would you fix it. [b]



188 Chapter 8 / Debugging Microcontroller Software and Hardware

8.3 Assume that main() in Example 8-4 is a test jig to test the change case function.
Comment on the thoroughness of the testing. What would you do to make the testing
better and more rigorous? [b]

8.4 The change case function in Example 8-4 does not work properly for all alphabetic

characters because it has a bug in it. If you have a C program debugger, find the problem
and state how you would fix it. [b]

Computer Buses and Parallel /O

Reflect on Learning

8.5 Make a list of debugging tricks and ideas that you did not know before reading this
chapter.

Objectives

Computers doing real jobs must input and output information. Two ways to do /O are many
bits at a time (in parallel) and one bit at a time (in serial). In this chapter we will explore paral-
lel bus architectures and explain how to design the interfaces between external devices and the
CPU. We will discuss the differences between memory-mapped and separate I/O and learn to
solve 1/0 synchronization problems that arise between a fast processor and a slow I/O device.
Some advanced bus ideas are covered.

9.1 Introduction

Figure 9-1 shows a computer system with CPU, memory, /O, and the
interconnecting computer buses; this is the von Neumann architecture,
where the memory and I/O interfaces share the address, data, and control
buses. An alternative architecture, known as the Harvard architecture,
has separate data, address and control buses for the data and program
memory. In this architecture (Figure 9-2), the CPU can be accessing program instructions and
data memory simultaneously. In earlier chapters we have emphasized the CPU, its resources,
and how to program it to do a particular task. We now look to the design of the rest of the
system hardware.

Many computer applications involve the transfer of information, either in parallel or in
serial, in or out of the CPU. Both parallel and serial I/O require a hardware interface between
the source or destination of the information and the CPU. Let us approach this topic by using
the top-down design principles covered in Chapter 3. The preliminary problem specification
is the following:

Parallel and serial I/O devices require
an interface between the device and
the bus.

Design the hardware interface that will use a computer bus to transfer information from multiple
sources to the CPU, and from the CPU to multiple destinations.

189
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This is a reasonable top-level statement of the problem, and our task is to go through the 9.2 The Computer Bus
hardware design, adding details and refining it, until we have a workable system. At our level
of expertise we need to know more about the computer bus and about information sources and What is the proper place to start the top-down design of the /O interface? In solving any prob-
destinations. We must also consider the timing of information transfer. The design goal is an lem, begin work where you have some knowledge or expertise and progress toward the areas
interface that is suitable for both parallel and serial I/O devices with the parallel case described about which you need to learn more, filling in the details as you come to them. This is the
in detail in this chapter. The details of serial I/O will be covered in Chapter 12. essence of top-down design for hardware. Let us start our design at the CPU and work out
toward the I/O devices.
Parallel Serial The data, address, and control buses connect the CPU to memory
arale eris AD 3 Ao and to I/O devices. In circuit diagrams, the parallel wires of the bus are
110 110 Input A bus is a parallel, bidirectional, ; . e
: By ; generally reduced to a single line as shown in Figure 9-3a. The number
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The data bus is bidirectional and transfers information (memory data and instructions, /0 74HC244 Vv
data) to and from the CPU. The address bus may be bidirectional (with more than one source of DD
information); however, because the CPU is the only source of addresses, it is most often unidirec- MC74LCX06
tional. The control bus carries all other signals required to control the operation of the system. A External

There are several levels of bus design. The component-level bus is defined by the signals on Pull-Up
the microprocessor chip, such as READ_L and WRITE_L (we will see how these signals are Resistor
used shortly). Component-level signals will be different for different manufacturers and are el
used when designing single-board computers or embedded application systems. A system-level
bus is one for which more generic signals, like MEMRD_L and MEMWR_L,, are defined. A
system-level bus is often designed for use as a backplane into which printed circuit boards are
plugged. An example of a system-level bus is the PCI bus defined for desktop computers. A
third type of bus is the intersystem bus, which allows different systems to be connected. A good
example is the IEEE 488 (GPIB) instrumentation bus. In this chapter we will be concerned with
the component-level bus.

Let us now consider the data bus in detail. Each line of the bus may have multiple sources
and destinations for the information, as shown in Figure 9-3b. According to our design speci-
fication, we must design hardware to allow multiple sources to exist on the bus.

Open-Drain

} High Impedance

(a) (b)

Information Sources: The Input Interface

Sources of binary information are usually the outputs of gates.' However,
we cannot connect the output of two gates together unless they are three-
state® or open-collector gates. A typical three-state gate and its truth table
are shown in Figure 9-4a; an open-drain gate appears in Figure 9-4b. As Clock
the truth table for the three-state gate shows, 1G_L must be asserted
(set to 0) for the output to be active; otherwise the output is in the third state, known as high
impedance. In this state the output cannot source or sink current to create logic one or zero. The 74HC574
beauty of the three-state gate is that, provided only one three-state gate is enabled at a time, two Data —— 1D Octal
or more gate outputs can be connected. ! Latch
A parallel, 8-bit input interface can be constructed with eight three-state gates whose enable :
lines are tied together. This 8-bit, three-state buffer provides the electrical interface between a 1
binary source of data, such as a set of switches, and the data bus. A typical device is the !
74HC244 octal buffer/line driver with three-state outputs. !
i
1
}
i
I
}

An input interface provides three-
state buffers between the source and
the data bus.

T
Three-state Output I:
1
1

>1C 1Q 1Q

w To seven other latches ‘}

The open-drain gate is often used for control signals such as requests
- | for interrupts. It is rarely used in place of a three-state buffer for data
Open-drain or open-collector gates A 2 . :
. . sources. Several open-drain gates tied to an external pull-up resistor is
require external pull-up resistors. s ; : S - 5
called a wired-OR (sometimes wired-AND) connection. The bus line

is low if any of the wired-OR outputs are pulled low. An MC74LCX06 :
is a typical open-drain hex inverter.

Figure 9-5 An output interface is a latch.

Input Device Examples Information Destinations: The Output Interface
See Section 15-2 in Chapter 15 for examples of simple input devices that can be connected to
a parallel, 8-bit input interface.

The interface between the data bus and a destination or output device is &
latch, as shown in Figure 9-5. A data bus line is connected to the D input,
and the Q output is used at the destination (to drive an LED display. for
' It could also be some other circuit, such as a switch, that provides logic levels for binary 1s and Os C“““p_k‘)_" A kt\‘m“‘l Slgm\l‘ gcncm(cd b'\' lo.gw m_ the !/0 Emmf' l&k‘fR‘S
* These gates are also know as Tristate gates; the term is a trademark of the National \‘cml; onductor Company. NSC's the data from the bus. The lug\c for this clock, and lht‘ enshie 0,“ (b“ mpm g stl'uee-sm pout
invention revolutionized the design of computer buses. fers, is gcncmlt‘d in part by address decoding and in part by iming sngmils. as we will see shortly.

The output interface must latch infor-
mation from the data bus.

R ==
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Table 9-1 74HC574 Truth Table

Inputs
Output:
OE L Clock D Q
L J H H
L Jr it L
L L HIE\S X No change
H X X Z

Figure 9-5 shows one latch of a 74HC574 octal positive edge-triggered latch with three-state
outputs. When the clock changes from low to high, the present data input is latched. The output
enable signal, OE_L, is low to enable the output. Table 9-1 shows the 74HC574 truth table.

Output Device Examples

Section 15-3 in Chapter 15 shows simple output display devices that can be used with these
output interfaces.

Multiple Sources and Destinations

Several basic input buffers and output latches can provide multiple input and output device
interfaces. Now consider how to select one source or destination for an information transfer.
Let us refine the original problem specification to add the next requirement:

Design the hardware interface that will use a computer bus to transfer information from multi-
ple sources to the CPU, and from the CPU to multiple destinations.

The interface must provide the ability for the CPU to select one-of-many sources or
destinations.

Addressing and address decoding can select one-out-of-many infor-
mation sources and destinations. Figure 9-6 shows that a 74HC139 dual
2- to 4-line decoder decodes two address bits, ADR_1 and ADR_0.
One decoder provides the enable lines for the three-state buffers in the
input interfaces, ensuring that only one is active at a time. For the output
devices, the address decoder selects which of the latches is the destina-
tion. There is no electrical® reason preventing information from being transfer to more than
one destination at a time. Usually this is not done, however, and the address decoder for the
destination selects only one destination.

In the I/O interface shown in Figure 9-6, address bits A1 and A0 select which of the four
input or output devices are to be used. Two control signals, WRITE_L and READ_L, are
shown also. The CPU generates these to provide timing information for the data transfer in and
out of the CPU. When READ_L is asserted, the addressed three-state gate is enabled to place
the source data on the data bus. Similarly, when WRITE_L is asserted, the CPU output data on
the data bus is latched into the output latches.

Address decoding allows us to select
which latch is the destination for, or
which three-state gate is the source
of, the information.

* Except device loading and fan-out.
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Qutput Address Decoder

74HC139
ZUnoilos ADR1:ADRO = 00
4-Line g
ADR 1 A1 Decoder 01
-~ o1
ADR_0 A0 10
02
WRITE_L —q OE 1
E 03
v a
8 8 8 & 8 8 3 8 Bias 8
Clock L 50 o L, 0o o B oo o
74HC574 74HC574 74HC574 74HC574
Octal Octal Octal Octal
Latch Latch Latch Latch
OE OE OE OE
Data 8 Data Bus
Tol/From —= + r r —
CPU - .
8 8
Information Information Information Information
Source Source Source Source
Input Address Decoder
74HC139
2:Lne oy ADR1:ADRO = 00
4-Line op p——
ADR 1 —— A1 Decoder 01
y 01
ADR_0 A0 10
< 02
READAISE—=——qRO 1
= 03

Figure 9-6 Address decoding for sources and destinations.

Timing Signals

We must add a timing requirement to the design specification:

Design the hardware interface that will use a computer bus to transfer information from mult-
ple sources to the CPU, and from the CPU to multiple destinations.

The interface must provide the ability for the CPU to select one-of-many sources or
destinations.

Provide timing and synchronization to ensure that the transfer of information occurs at the

right time.
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Data Bus

Address
Bus

READ_L
10/M_L

WRITE_L

~

ADREOKTE L. e‘ > Information
Address 5 g Destination
10 Decoder 74HC574
Octal
Latch
— Clock
Information OE

Source ;[

10_READ_L

I0_WRITE_L

Figure 9-11 1/O interface for separate I/O.

74HC139
2-Line-to-
4-Line
ADR 1 —— A1 Decoder

ADR_ 0 —— A0
IO/M_L e @2 p——
READ_L :j ) 03 p——

Figure 9-12 Using control signals to qualify the address decoder.

@i |s=——

logic circuits are together on one printed circuit board, say for a microcontroller application,
a single decoder with multiple outputs may be used. On the other hand, in a system like a per-
sonal computer, where I/0 interfaces may be on separate printed circuit boards that plug into
the motherboard, each device must use a separate address decoder. See Example 9-1.

Example 9-1 Address Decoding
Show how to use READ_L and IO/M_L to enable the output of a 74L.S139 2-line-to-4-line
decoder (Figure 9-6) for reading an input device.

Solution
See Figure 9-12.
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Address Decoding

We have seen how address decoding can select a particular device. The example of Figure
9-6 shows two address bits selecting one of four devices, but more bits are needed to decode
addresses for real I/O devices. A disadvantage of the memory-mapped scheme is that more
address bits must be decoded to select uniquely either memory or I/O. This is, of course, a more
expensive address decoder. In practical systems, the hardware designer chooses to decode only
as many address bits as the system requires.

Full Address Decoding

In a system with many I/O devices, the designer must decode enough bits to select uniquely
each device. At the upper limit, allowing the maximum number of I/O devices is full address
decoding.

A typical address decoder is the 74HC138 (1-of-8 decoder/demultiplexer) shown in
Figure 9-13. The truth table (Table 9-2) shows that the outputs are asserted low when the enable
input E1 is high and both E2_L and E3_L are low. Address bits can be used as enable inputs.
and decoders can be cascaded as shown in Figure 9-14b to decode the 10-bit address Ox3ES.

Discrete logic circuits can decode addresses. Figure 9-15 shows a 10-bit decoder for address
0x3ES; it uses a 74HC30 8-input NAND, a 74HC27 triple 3-input NOR, and one gate of a
74HCO04 hex inverter. The inverter could be eliminated if an active-high decoder output were

A2 A2 00 oo Figure 9-13 The 74HC138 1-0f-8
Al —— Al 74HC138 O1 P o1L decoder/demultiplexer.
A0 — A0 Sy |le—— Ozl
b—— 03L
Decoder o4 b—— o04L
g1 — e1 Demultiplexer os pb—— 05 L
2Ll ——=0| 5% 0 |o—— 25l
=55 (L ——=c| =& o7 o7_L

Table 9-2 Truth Table for the 74HC138

Inputs

Outputs
E1 E2L E3L A2 A1 A0 OOL O1L ©O2L O3L O4L O5L O6L O7L
I X X X X X H H H H H H H H
X H X X X X H H H H H H H H
X X H X X X H H H H H H H H
H L 1 L E 1 L H H H H H H H
H 5 L L4 1 H H L H H H H H H
H L 1 L H L H H L H H H H H
H 1 1 I H H H H H L H H H H
H 1 \ H L 1 H H H H L H H H
H L 1 H L H H H H H H L H H
H 1 1 H H L H H H H H H 1 * H
H L 1 H H H H H H H H H H k
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allowed. Notice that there are fewer chips in Figure 9-14b than in Figure 9-15 if the inverter
is needed for an active-low decoder output. Notice also that the discrete decoder provides
decoding for only one address where the 74HC138 decoders provide other addresses. See
Examples 9-2 through 9-4 and Table 9-3, which follows Example 9-3. Your design can also use
a combination of discrete logic and decoders.

Example 9-2 Design a Full Address Decoder to Decode the 10-Bit
Address 0x3E8

Solution

Starting with the most significant bit, assign address bits to decoder inputs. For the most
significant decoder, select the appropriate output to serve as an enable input for the next
decoder in the cascade. Apply the remaining address bits to decoder data and enable inputs
and then choose the correct output for the address required. See Figure 9-14 for a possible

solution.
[ao] asfa7] as[as| a4]as] a2 a1] a0
T | R T T I O B R O M )RS O S =' ()X SE8
(a)
VbD
A9 A2 00 p—
A8 Al 74HC138 O pP— A5 ———— A2 | s
il o7 o A3——— At 74HC138 O p——
1-of-8
03 p— Al —— > (B
Decoder o4 p— 1-of-8 5
A6 —— | E1 Demultiplexer o5 p—— Decher 04 b——o
[ —— e | {2 06 p—— g1 Demultiplexer o5 p—— 06 L=
A2 ———q E3 o7 p —d E2 06— L)
A0——————d E3 o7 0x3E8_L
(b)

Figure 9-14 Full 10-bit address decoder. (a) 0x3E8. (b) Cascaded 74HC138 decoders.

A9=1

A3=1
A2=0

Al=
A0=0

Figu
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74HC30
8-Input
NAND

0x3E8_L

1/3 - 74HC27
Triple 3-Input
NOR

1/6 - 74HC04
Hex Inverter

re 9-15 Discrete logic decoder.

Example 9-3 Multiple Addresses Decoded
Find the address decoded for each of the outputs of the second 74L.S138 decoder in Figure 9-14b.

Solution
The address bits to the decoder are as follows:

Fixed inputs=A9=1,A8=1,A7=1,A6=1,A4=0,A2=0,A0=0
Variable inputs = AS, A3, Al

See Table 9-3.

Table 9-3 74HC138 Decoded Addresses

A9

1
1
1
1
1
1
1
1

A8 A7 A6 A5 A4 A3 A2 Al A0 Address Decoder Output

1 1 1 0 0 0 0 0 0 0x3C0 00_L
1 1 1 0 0 0 0 1 0 0x3C2 Ol_L
1 1 1 0 0 1 0 0 0 0x3C8 02 L
1 1 1 0 0 1 0 1 0 0x3CA 03 L
1 1 1 1 0 0 0 0 0 Ox3E0 o4 L
1 1 1 1 0 0 0 1 0 O0x3E2 O5_L
| 1 1 1 0 1 0 0 0 Ox3E8 O6_L
! 1 1 1

0 1 0 1 0 Ox3EA Q7L
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Example 9-4 Other Addresses Decoded

For the address decoder in Figure 9-14b, show how to connect the first decoder to the second
and state which output will be asserted for the address 0x142. Assume that the address bits are

input as shown.

Solution

The O2_L output from the first decoder will be connected to the E2_L input of the second. The

O1_L output of the second decoder will be asserted for the required address.

Incomplete Address Decoding

When a system does not need all of the I/O address space, a designer can reduce hardware costs
by not fully decoding the addresses. There are two methods used, reduced address decoding

and linear select decoding.

Reduced address decoding results
in less complex decoders, but the
decoded signal is asserted for more

than one address.

|. Reduced address decoding: In reduced address decoding,
the higher order address bits are decoded and the lower order bits are
treated as don’t cares. Figure 9-16 shows a 74HC138 decoding address
bits A9-A4 and a 74HC30 8-input NAND gate decoding bits A9-A2.
Each of the decoder output lines in Figure 9-16a responds to the

addresses shown in Table 9-4. By not decoding the lower four bits of
the address, each decoder output line is asserted for 16 1/O addresses.

A6 A2 00 p—— 00 L
AS Al 74HC138 Ol p—— OfL
A4 by s i
1-of-8 03 b— o3l
Decoder o4 b—— 04.L
A9 —— £1 Demultiplexer os p—— 05 L
N ——3 | [ 06 p—— 06.L
| 15 o7 b— o7l
(a)

A9=1

Ab=0 ——>0—
e

0x39C_L - 0x439F L

(b)

Figure 9-16 Reduced I/0 address decoding. (a) 74HC138 decoder. (b) 74HC30 NAND

gate decoder.
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2. Linear select decoding: In very small systems with few I/O devices, each bit in the
address bus can select a device. Consider a system where there are only six I/O devices and a
10-bit I/O address, as shown in Figure 9-17. If the I/O select signal is active low, each of the
six devices can be chosen by using the addresses given in Table 9-5. You must be careful to
not generate addresses that result in more than one device is selected. For the example given
in Figure 9-17, an address such as 0x330 would select both devices 2 and 3.

Table 9-4 Reduced Address Decoding for Figure 9-16a

Address Bits

A9 A8 A7 A6 A5 A4 A3 A2 A1 AO
Decoder Inputs
Not Used by Valid Hex Decoder
E3 E2 L E1 L A2 A1l A0 the Decoder Addresses Output
1 0 0 0 0 0 0000 to 1111 200 to 20F 00_L
1 0 0 0 0 1 0000to 1111 2100 21F O1_L
1 0 0 0 1 0 0000 to 1111 220 to 22F o2L
1 0 0 0 1 1 0000to 1111 23010 23F 03_L
1 0 0 1 0 0 0000 to 1111 240 to 24F 04.L
1 0 0 1 0 1 000010 1111 250 to 25F 05_L
1 0 0 1 1 0 0000to 1111 260 to 26F 06_L
1 0 0 1 1 1 00000 1111 27010 27F 07_L
[a0] as]a7] as] as| aaf a3 2] a1] o]
\j} Device5_L
,j}k Device4 L
_<1:>>— Device3 L
_D— Device2 L
_D— Device1_L
Device0_L
10M_L D' —

Figure 9-17 Linear select addressing.
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Figure 9-21 The Freescale Flexis microcontroller.

Table 9-6 1/0 Functions Multiplexed on Port A

Multiplexed Pin Functions

Pin

0 Port A Bit-0
1 Port A Bit-1
2 Port A Bit-2
3 Port A Bit-3
4 Port A Bit-4
S Port A Bit-5
6 Port A Bit-6
7 Port A Bit-7

Keyboard Interrupt 1, Bit-0  Timer [, Ch 0

Keyboard Interrupt 1, Bit-1

Timer 2, Ch 0

Keyboard Interrupt 1, Bit-2  1IC I, SDA
Keyboard Interrupt 1, Bit-3  IIC I, SCL

Background Debug

Interrupt Request

Mode Select
Timer 1, clock
Timer 1, Ch 2

Timer 2, Ch 2

A/D ChO
A/D Ch |
A/DCh2
A/DCh3
Reset_L

A/D Ch 8

A/DCh9

Analog Comparator 1+

Analog Comparator 1-

Analog Comparator 1 Out
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Exercise 9-2

Make a list of the bidirectional data ports and any internal I/O features present in your
microcontroller.

9.6 More I/0 Ideas

Buffered I/0
The term /O buffering refers both to the temporary storage of data between the I/O device
and the CPU (data buffering) and to the conversion between different electrical characteristics
found in CPUs, data buses, and 1/O devices (electronic buffering).

Data Buffering

Data buffering is the storage of data by the I/O device either within the
I/O interface or in memory. Figure 9-22 shows a universal asynchro-
nous receiver/transmitter (UART) that is used in serial communications.
Serial data bytes are sent by the microcontroller by writing them to the
transmit data buffer. If the transmit data parallel in/serial out shift regis-
ter has completed sending the last byte, the next byte is transferred in parallel from the buffer
register to the shift register. The microcontroller may then write another byte to the transmit
data buffer. A status bit, called Transmit Data Register Empty (TDRE) may be monitored by
the microcontroller program to determine when it is safe to output new data.

On the receiving side, as soon as all serial data in bits have been received and shifted into
the serial in/parallel out shift register, they are transferred in parallel to the received data buffer.
Another serial data byte may then start. This gives the microcontroller time to process the last
data byte while a new one is being shifted in. A Received Data Register Full (RDRF) status bit
may be used by the microcontroller to tell when another byte has been received. We will learn
more about the serial I/O interface in Chapter 12.

Data buffering allows a mismatch
in the operating speeds of I/O and
the CPU.

Electronic Buffering

Electronic buffering provides voltages and currents appropriate for the devices in use. For example,
the logic levels for CMOS and TTL devices are different, and TTL/CMOS and CMOS/TTL buf-
fers provide an electronic translation between the two different levels. We will see another example
of electronic buffering when we discuss analog-to-digital conversion in Chapters 13 and 15.

9.7 1/0 Software

There are three major parts in your I/O software. First is an initialization
part to set up the function of the ports and the direction of data flow.
Second, there are data input and output sections that simply read from

1/0 software has an initialization part,
a data input/output part, and must be
synchronized with the 1/0 device.

or write to the appropriate I/O register. There is a third element, namely

software synchronization. /O software must synchronize the reading
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other direction to let the external device know that the microcontroller has taken the current Data

data and that it is safe to supply new. The solution to this problem can take two forms. First, Out
RDY_IN could activate an interrupt bit in Port C and generate an interrupt to ensure the CPU 18 -
o : : cnchi Aidise 5 ; - : PTAD[7:0] 7 L
takes the data in a timely fashion. We will discuss this procedure more completely in Chapter o
10. Second, handshaking /O can be used as discussed in the next section. Port A Port B ata
External Ing External
Output PTBD[7:0] |— Input
Device Device
Example 9-5 Using a Status Bit for Output and Input Polling
Nk R AR KA Kk ok RDY_OUT RDY_IN
xR AR KRR X R KA K PO * * * Lo# = Ready_For_ L = New Data
* Program example showing how to use a status bit PTCD-0 = New Data PTCD-1 B
Rt termine when an output device is ready to
* ac t data and when an input device has data available Port C Port C
Jeok ke ook ok ok kK ok ok kR R KRR KKK KKk kR kK kK ok kK
P
* pDefine the microcontroller I/0 ports used.
ek ok ok kKKK KKKk KKk Rk ok ok kKK kK
e PTAD (*(volatile unsigned char *) 0x0000) /* Port A */ (a) (b)
# ne PTBD (* (volatile unsigned char *) 0x0001) /* Port B */ = )
4define PTCD (* (volatile unsigned char *) 0x0004) /* Port C */ igure 9-23 (a) Output polling. (b) Input polling.
/

» Define the status bits on Port C */
define RDY OUT 1  /* bit 0 */

#define RDY IN 2 (ENDEEN IR .
T T e e Y Microcontroller Internal Polled I/0
void main(void) {

=

Most microcontroller internal 1/O devices have status bits. called flags. that allow polling
or interrupt I/O synchronization. For example, when the UART transmitter shown in Figure
9-22 is being used, one must not output any new data before the last data byte has been sent.
The UART sets a transmit data register empty flag (TDRE) when all bits have cleared the
transmit data register. Polling software should monitor this flag to tell when it can output

unsigned char out_data, in _data;
/* Initialize the microcontroller’s I/O */

e oo il

/* Output data to the external output device */
/* Wait until status bit Port

J, bit 0 is a 1 */ new data.
while ( (PTCD & RDY OUT) == 0){
} .
/* Now output the data */ Handshaking I/0
PTAD = out_data; . Handshaking I/O can solve the problem of the source device not knowing
Handshaking or flow control allows PR oy s A e <
y ) S when the destination device is ready to receive data. Handshaking is also

the source device to send data only > - "
A ° | called flow control. Figure 9-24 shows the hardware picture for output

when the destination device is ready o : e RN : <
/* Wait for data to be ready from the external * | and input handshaking. There are a variety of schemes to accomplish

* input device */ forit handshaking depending on the timing requirements of each device and
while ( (PICD & RDY_IN) == 0) { the microcontroller. One such scheme is shown Figure 9-25.
} The /O handshaking software in Example 9-6 consists of three parts: the initialization, out-
/* Data is there, read it */ put handshaking, and input handshaking.

in_data = PTBD; I. /O initialization: The initialization code must initialize all registers you are going to
use. For a bidirectional port, the data direction registers to control the direction of the bits in
the register must be set.

*
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#define PTAD (* (volatile unsigned char *) 0x0000) /* Port A */
#define PTBD (*(volatile unsigned char *) 0x0001) /* Port B */
#define PTCD (* (volatile unsigned char *) 0x0004) /* Port C */
/* Define the status bits on Port C */

4define DEV_RDY 1 /* bit 0 */
#define DATA_ RDY 2 Jeeple b L
#define RDY IN 4 i Vepie 72/

#define PORT_RDY 8 /* bit 3 %/
R e
void main(void) {

unsigned char out_data, in_data;

/* Initialize the microcontroller’s I/0 */

AANER i

/* Output data to the external output device */
/* Assert DATA RDY to let the external device that
* data are available */
PTCD |= DATA RDY;
/* Wait until the device is ready */
while ( (PTCD & DEV_RDY) == 0) {
}
/* Now output the data */
PTAD = out_data;
/* Lower DATA RDY to latch the data */
PTCD &= ~DATA RDY;

/AR

/* Get data from the external input device */
/* Assert PORT RDY to let external device know we are
* ready to receive data */
PTCD |= PORT_RDY;
/* Wait for data to be ready from the external
* input device */
while ( (PTCD & RDY_IN) == 0) {
}
/* Data is there, read it */
in_data = PTBD;
/* De-assert PORT_RDY */
PTCD &= ~PORT_RDY;

/0 Synchronization with Interrupts

Another way to synchronize 1/O and the CPU is to use interrupts. Interrupts allow an I/0O
device to signal the CPU that it is ready to be serviced. Interrupts will be covered in detail in
Chapter 10.
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9.8 Conclusion and Chapter Summary Points

In this chapter we have discovered how computer buses work and how to interface /O devices
to a bus. The key elements of the chapter are the following.

A bus is a parallel, bidirectional information pathway.

Sources transfer information to a destination over a bus.

Three-state gates allow multiple sources to be on a common bus line.
No more than one source can be active at a time.

An input interface is a set of three-state gates between an information source and a data
bus.

An output interface is a set of latches between the bus and the destination device.
One-of-many sources or destinations are chosen by addressing and address decoding.

The CPU controls the timing of data transfers by generating READ and WRITE
control signals.

/O addressing may be done with memory-mapped I/O, in which case any memory
reference instruction can access /O, or separate I/O, for which special input and output
instructions are included in the instruction set.

You may choose to decode the entire address bus (full address decoding, which leads
to more expensive decoders) or a subset of the address bus (reduced addressing, less
expensive but resulting in redundant use of addresses).

1/0 synchronization often is necessary to synchronize a fast CPU with a slow /O
device.

If multiple bus masters require the bus simultaneously, bus arbitration is required.

Modern microcontrollers have extensive I/O capabilities integrated into a single chip.

9.9 Problems

()

(%

'S

List parallel /O devices used with computers you are familiar with, either in the laboratory
or in a personal computer.

Which type of I/O addressing, separate I/O or memory mapped, uses memory reference
instructions to access 1/O devices? [a]

Which type of /O addressing, separate I/O or memory mapped, requires a control signal
called “I/O request™ to access I/O devices? [a]

Show the schematic symbol for an 8-bit data bus. [a]
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Interrupts and Real-Time Events
System System
\ \ Interrupt #1
Input Data Input Data
From Sensors From Sensors
\ \
Objectives
I Compute Compute
This chapter shows how an important external or internal event can interrupt the normal flow of OU‘D(L;tS ;\OUtp:FS
T . - S : : - According ccording
a progré /e scuss how the CPU finds out which of sever: e evices ne
a program. We w;!l discu . \ f se eral mlurupyung. duluu. needs to Control to Control
service. When an interrupt occurs, an 1n?erru;_)l service routine is executed. We will discuss how Strategy Strategy
interrupt routines work and give guidelines for writing them.
Interrupt
\ Service
; \ Routine
10.1 Introduction
Output Output
An interrupt is a way for an important asynchronous event to be recog- Data to ga‘at t°l by
An interrupt is an important asyn- | pnized and taken care of (serviced) by the CPU executing instructions in Mgc?:e:;?;m Meccl)qan?sm -
chronous event that requires imme- | 4 normal program. Consider, for example, a computer system control- |
diate attention. ling an oil refinery. It has sensors that measure the chemical composi- =
tion of the product being refined and outputs controlling the process.
Figure 10-1a shows a typical process control software loop to do this. \\
The time luke_n to go around the lnnp‘dcpcnd\ on the complexity of the Interrupt 2
An exception is an event even more | control algorithms and the speed of the processor. Now consider an
important than an interrupt. important external asynchronous event: a fire breaks out in the oil refin-
ery! If the control computer is responsible for activating fire suppres- (a) (b)
sion measures, the program should respond immediately instead of p X ,
waiting for the software to come around the loop to check on the fire Figure 10~1 Process control software. (a) Typical flow without interrupts. (b) Process control
o . software with interrupts.
. . : detection sensors. On the other hand, we do not want to write a program
An IRQ is the interrupt request sig- : . - 5 S
sl feoniad di that is checking the fire sensors all the time, or even frequently, because
a device needing some spe- i . : . ey Rware of B > g i SCUTS
- Tasi i 7 in S PE | too much checking would take time away from the control calculations. to the process control software of Figure 10-1a. When Interrupt #1 occurs, the program
cial action to be taken. N 5 i 5 . s - 3 R -
gl This is an ideal application for an interrupt. The interrupt is caused by branches to and executes the interrupt service routine and then returns to the main program at
an external device, the fire sensor, generating a signal called interrupt the point of interruption. The same sequence occurs when Interrupt #2 occurs: but notice that
request, or IRQ. The interrupt request is asynchronous. That is, it can happen at any time, not the return is to the place where the interrupt occurs. This makes interrupt service routines
necessarily corresponding to any particular time in the instruction execution sequence of the similar to subroutines or functions. Nevertheless, as we will see, there is more to the interrupt

CPU. The IRQ requests the program to take immediate action by executing an interrupt ser- service routine.
vice routine (ISR) or interrupt handler. Figure 10-1b shows an interrupt service routine added
222
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« Disable further interrupts while the first is being serviced.
« Deal with multiple sources of interrupts.

« Deal with multiple, simultaneous interrupts by enacting a prioritization system.

Asynchronous Events and Internal Processor Timing

acted upon.

The current instruction must be fin-
ished before an interrupt request is

Figure 10-3a shows a program execution time line. The ticks along the
line represent the start of each instruction that a normal program executes
in sequence. The normal program does not specify when, in a real-time

sense, an instruction is to be executed, just the sequence of instructions.
Asynchronous events, the IRQs, can occur at any time.

Figure 10-3b shows an expanded time line. Chapter 2 showed that an instruction execution
cycle consists of the instruction fetch and instruction execution parts. The sequence controller
can be modified to check for an interrupt request before it fetches the next instruction. More
states are added to sample the interrupt request and generate more control signals. This change
allows the CPU to finish the current instruction and then to service the interrupt by entering a
special interrupt processing sequence; otherwise, it fetches the next instruction.

10.2 The Interrupt Process

The Interrupt Request

All interrupts can be enabled or dis-
abled globally. Individual interrupts
can be enabled or disabled separately.

Microcontrollers have both internal and external sources of interrupts.
The internal requests come from the internal systems, such as a timer, and
from exceptions or error conditions. External requests may come from

external I/O devices like those investigated in Chapter 9. Each interrupt
must be recognized and serviced by its own interrupt service routine.
We have seen (Figure 10-2) how to connect external interrupt request signals from multiple
devices to the microcontroller. Multiple interrupting devices may use wired-OR (wired-AND),
open-drain, or open-collector gates to pull the request line low. When multiple devices share a
single interrupt request line, the microcontroller must check, or poll, each device to determine
which one generated a given interrupt request.

The Interrupt Enable

The programmer of a microcontroller must have total control over the operation of the interrupt
system. Global control is achieved with a bit that either enables or disables all interrupts or a
bit called a mask bit that masks (disallows) or unmasks (allows) all interrupts. When the enable
bit is reset or the mask bit is set, all interrupts are disabled or masked and are not acted upon.

Local control is achieved in each interrupting subsystem, such as each timer channel,
which also has an enable bit used to enable (allow) or disable (disallow) that device from
interrupting (Figures 10-4 and 10-5).

When the microcontroller is reset, the global control bit disallows all interrupts. This gives
your program time to initialize all hardware and software, particularly the stack pointer reg-
ister, before interrupts occur. As Figure 10-4 shows, interrupts must be enabled (unmasked)
globally AND enabled locally for the interrupt request to be generated
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Asynchronous Events
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Figure 10-3 Interrupts. (a) Instruction flow. (b) Expanded instruction timing.

Pending Interrupts

A pending interrupt is one that will
be taken care of after the current
interrupt is done or after interrupts
have been unmasked and enabled

For a CPU to act upon a device interrupt, we see from
Figures 10-4 and 10-5 that the interrupt enable or
interrupt mask bits must be high and low, respec-
tively. In addition, the device interrupt enable bit
must be set. If the device asserts the interrupt request
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routine if you re-enable or unmask them. Before doing this, you must disable the interrupting

‘ source or clear its interrupting flag so that it does not immediately generate another interrupt.
Interrupt resulting in an infinite loop and a locked-up program.
v P p prog
1 > Request to
Local Interrupt Control | CPU
i The Interrupt Return
1

| ‘ Before returning to the interrupted program. you must re-enable the
; If an interrupt is generated by an | jyrerrupring device's interrupt capability. This is usually done by reset-
internal source, the flag causing the | 1o the flag that caused the interrupt. If this is not done correctly, another
interrupt must be reset in the inter- | jprerrupt will immediately occur. The original machine context must be
restored and global interrupts re-enabled or unmasked. In processors that
save the machine state automatically when an interrupt occurs, the reg-
isters are restored automatically. The return from interrupt instruction returns control to the
Yea! I'min. interrupted program, and this instruction re-enables or unmasks global interrupts. You do not
have to unmask global interrupts in the interrupt service routine. and in general you should not

/ unmask them.

I
i
| Device Interrupt Enable Bit
)
1
| Device Interrupt Request
]

Figure 10-4 Global and local interrupt enable control.

rupt service routine.

BOINK! The Interrupt Sequence

| q Figure 10-6 is a flowchart illustrating the complete interrupt process.
/ / The current state of the microcon- [ The following events take place when interrupts have been enabled or
troller, also called the machine state, | unmasked and an interrupt request has been generated.
Interrupt Interrupt including all registers and the condi- e ” | :
Request Request tion code or status register, must be 1 As shO\\'.n 1n‘F1gure lO-‘_ﬁ. the CPL waits !.mnl the cun‘_emly exe-
b) saved before the interrupt service cuting instruction finishes _betore servicing t_he mterrupl, This compo-
@ ( routine is executed. The machine | Rentofinterrupt latency will depend on the instruction being executed.
Figure 10-5 Global interrupt mask control. (a) Mask bit = 1 to mask. (b) I-bit = 0 to unmask. state is normally saved on the stack. If global interrupts i enableq or unmasked ﬁ“_‘j ‘h‘? local IHERUR LS
enabled, the CPU will determine the address of the interrupt service
routine.

. Global interrupts are disabled or masked.
(and keeps it asserted) when these conditions are not met, the interrupt request is said to be

pending.

A pending interrupt can cause a problem. Consider the following scenario. An interrupt has
occurred—say the timer module has set a flag that generates the local interrupt request. Let's
assume that all is well and the interrupt service routine is entered and executed. Even so, the
interrupting flag may still be set when the interrupt service routine is finished and if so, it is
understood as a pending interrupt. The pending interrupt, in turn, will be asserted immediately

3. The CPU pushes the return address onto the stack.

4. The current state of all registers including the condition code or status register must be
saved. In some processors all registers are saved on the stack automatically. In others. only
the return address is saved and the interrupt service routine must save the machine context.
It is vital that when control returns to the interrupted program. all registers and status bits be
restored to their original state.

. . : A F 5. . ] branches to the interrupt service routine. : service routi s
when interrupts are re-enabled at the end of the interrupt service routine, and the ISR will be X lTh'“ CPU branches tc "“A"“‘lm"“ SELES L “““; The ““‘"‘f“p“;e““'“d“t;:“m deals
executed continuously. Your software, therefore, must reset the interrupting flag in the interrupt WIS ;p“”_'“ requirements for the interrupt, resets the intcrruptng HASy SRE S EREE
service routine, (if it is not reset by some other hardware mechanism) before returning to the LTSI TOIHINEEUDEIE S AR

interrupted program.

The Interrupt Disable Exercise 10-1

When an interrupt occurs, global interrupts are disabled so that further interrupts cannot occur, Determine if your microcontroller saves all registers on the stack when an interrupt occurs.
Although you should avoid nested interrupts, they can be allowed in the interrupt service
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Figure 10-6 Interrupt process flowchart.
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10.3 Multiple Sources of Interrupts

The interrupt system must deal with multiple devices generating interrupts. Allowing for these
requires the system to do the following:

* Determine which of the multiple devices has generated the IRQ to be able to execute
the correct interrupt service routine.

» Resolve simultaneous requests for interrupts with a prioritization scheme.

A system with three external and three internal interrupting devices
is shown in Figure 10-7. All internal and external 1/O devices are con-
nected to the CPU with standard input or output interfaces like those
designed in Chapter 9. The interrupt request signals generated by each
of the interrupt sources are input to the CPU. The CPU responds to the

When there are multiple interrupting
devices, the CPU must resolve each
interrupt event by determining which
device has generated the interrupt

request. 2 s e 2 =
interrupt request by transferring program control to the interrupt service
routine. There are two methods of finding out which of many devices
may have generated the interrupt request: vectoring and polling.
Microcontroller Vb
. Serial 10kQ Pull-Up
Timer ||| -AD 110 (Typically)
Internal Interrupt IRQT IRQA IRQS
Requests \ 3 IRQ_L
Interrupt Processin l<—
y Flash E g
| |
Mstmiony Flash |
T Memory IRQO IRQ1 IRQ2 74HCO5
ISR Timer Vector: Open-Drain Gates
< A/D Vector
A/D ISR Serial Vector
Vector
o s e Table |[IRQ Vector Interrupt Interrupt | | Interrupt
! i 0 Status Status Status
\ \
10 l[e} l[e]
Interface | | Interface | | Interface
\ A L A A L A A
y Address
\ Data \ \ Y
\ Control

Figure 10-7 Multiple interrupts.
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Vectored Interrupts

The interrupting processing hardware
detects which device interrupted and
then uses a vector to transfer to the
interrupt service routine in vecrored

interrupts.

A vectored interrupt is the most common way to resolve which of sev-
eral interrupting devices has generated the interrupt request. A vector
is simply an address: in this case, it is the starting address of the inter-
rupt service routine. In modern microcontrollers, a specific area of non
volatile memory is dedicated to the vectors (addresses) for all possible
interrupting devices (timer, analog-to-digital converter, external inter-
rupting devices, etc). This memory is called the interrupt vector table. As

Figure 10-7 shows, the vectors point to the correct interrupt service routine. The interrupt
processing hardware in Figure 10-7 detects which of the interrupt request lines, IQRT, IRQA,
IRQS, or IRQ_L, is being asserted and, provided everything is enabled properly, the CPU
fetches the address of the interrupt service routine from the vector location and branches to that
address to start executing the interrupt service routine.

Polled Interrupts

The interrupting device is found with
software in a polled interrupt system.

Whenever multiple devices share an interrupt request line, like the three
external devices shown in Figure 10-7, you may use a polling strategy to
determine which device needs servicing. Polling is a software process in
which the CPU reads each of the potential interrupting device’s interrupt

status registers in turn. The device must have logic to generate the interrupt request signal and
to set an *I did it” bit in a status register that is read by the CPU. When a register is found with
the bit set, the software then knows which device generated the interrupt. The CPU must reset
this bit during the interrupt service routine. The interrupt service routine accessed by the IRQ
vector contains the polling routines.

10.4 Simultaneous Interrupts: Priorities

Simultaneous interrupls require a

prioritization scheme.

Software Priority Resolution

When interrupting devices are polled,
the order in which they are polled
fixes the priority.

Hardware Priority Resolution

If two interrupting devices generate an interrupt request (INTRQ) simul-
taneously (or at least within one instruction execution cycle), as shown in
Figure 10-3, the system must resolve which of the simultaneous requests
has the highest priority. There are both software and hardware priority
resolution methods.

The polled interrupt system just described which determines the device that
generated the interrupt, may be used for prioritization as well. One simply
writes the polling software to check the highest priority device first. The
hardware in the interrupting device must be designed so that a lower prior-
ity device continues to assert its interrupt request until it receives service.

In systems that use vectored interrupts, hardware prioritization is needed. The prioritization
may be fixed by the design of the CPU, or you may have some limited capability to define the
priority levels in your software.
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Figure 10-8 Simultaneous interrupts.
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The flowchart in Figure 10-8 is useful for understanding how your microcontroller resolves
interrupts that occur simultaneously. After a check to see if global interrupts are enabled (or e e o
unmasked), the highest priority interrupting source is found by a hardware or software priori-
tization process. If that device's local interrupt is enabled, then the interrupt service routine is
executed. After this, the other interrupts are still pending, and so the process is repeated until
all have been serviced.

IF

False There Are

True

Higher Priority
Interrupts?
Reset This
Interrupt's
10.5 Nested Interrupts Fle[ag
: - An interrupting system can resolve many interrupting sources by using Disabla
Nested interrupts are interrupts inter- | my|tiple interrupting signals and vectors for determining where the cor- Lower
rupting interrupts. rect interrupt service routine is located. If a subsequent interrupt occurs Priority
while another is being serviced (i.e., when the interrupt service routine Your Interrupts
code is being executed), the programmer may control whether the first interrupt service routine Interrupt T
is interrupted by the second request. The interrupting system automatically globally disables Service Enable
or masks further interrupts just before entering the interrupt service routine. As Figure 10-4 Routine Global
shows, this stops the second interrupt request from being passed to the CPU for service. The Code Interrupts
programmer may re-enable or unmask interrupts in the interrupt service routine if there are
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over and over again until the dedicated stack space is overrun. If interrupts are not re-enabled Specific
or unmasked in the interrupt service routine, the second interrupt remains pending until the Code
interrupt service routine completes and returns to the interrupted program. At the end of the |
interrupt service routine, either as part of the return-from-interrupt instruction or by an explicit Disable
CPU instruction, the global interrupt control bit re-enables further interrupts. The CPU can Global
now service the pending interrupt. lnter;upts

i ; Enable

Hardware/Software Priority Resolution

Lower
T Although the resolution of simultaneous interrupts shown in Figure 10-3 Priority
Hardware and software prioritization ; e 4 : ) Interrupts
el g requires prioritization hardware, the system gives us total control over
can allow higher priority interrupts to ST 5 : R ; !
e prioritization of nested interrupts. This is done in the following way. +
interrupt a lower priority one.
e ; R ’ Return
*  When the first interrupt service routine is entered, global interrupts From
are disabled or masked. Interrupt

» If another interrupt does occur while the interrupt service routine is executing, itwill. ¢~ TTTTTTTmEEEEEmEmEEmEm T t """"""""""""
remain pending until the current ISR is finished and control has returned to the inter-
rupted program.

Figure 10-9 Software prioritization nested interrupts.
If higher priority interrupts must be allowed, the programmer must do the following, as

shown in Figure 10-9.
Clear any interrupt flag associated with the current interrupt.

Re-enable or unmask interrupts.
Disable the interrupt enable bits in all lower priority interrupting devices, leaving

higher priority interrupts enabled. (Note that you may leave the current interrupt When the current interrupt service routine is completed, disable or mask global
enabled, or not. If you do leave it enabled, you must allow it to interrupt itself.) interrupts and re-enable the lower priority interrupts that were disabled.

R

Proceed with the interrupt service routine for the current interrupt.
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Execute the return from interrupt instruction that re-enables or unmasks interrupts
again and allows any pending interrupts to be serviced.

Exercise 10-2

How does your microcontroller resolve simultaneous interrupts? If there is a prioritization
order, what is it? Can it be changed in your program?

10.6 Other Interrupts

Nonmaskable Interrupts
In any system there are events that are so important that they should never be masked. These
are sometimes called exceptions, and a good example is the reset signal. When this is asserted,
everything stops and the processor is reset. These very important events are called nonmask-
able interrupts.

System Reset

System reset is the hardware power-on reset (POR) normally done when
powering up the microcontroller. The reset signal has the highest prior-
ity of all.

The system reset vector is in a mem-

ory location in the vector table.

Unimplemented Instruction Opcode Trap

If the program somehow gets lost and starts executing data, it is likely to encounter an unimple-
mented opcode. Executing data is a disaster, and executing an illegal opcode even worse. The
CPU can detect an unimplemented opcode and will vector itself to the address specified in the
vector table.

Software Interrupt

The software interrupt is, in effect, a one-byte, indirect branch to a subroutine whose address
is in the vector table. Because it operates like the rest of the interrupt system, it is often used to
implement debugging breakpoints.

Nonmaskable Interrupt Request

To detect important external events, such as loss of power, an external, nonmaskable inter-
rupt input may be used. Once this interrupt source has been enabled. it cannot be disabled or
masked.
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Exercise 10-3

Does your microcontroller have nonmaskable interrupts like those just listed? If so, what
are they?

10.7 The Interrupt Service Routine or Interrupt Handler

The interrupt service routine, or interrupt handler, is executed when the
i ) vector has been initialized properly, interrupts have been unmasked and
pIpoR n gssciblyiant s enabled, an interrupt has occurred, and the vector has been fetched. Here
feideninG are some hints for your interrupt service routines.

The interrupt service routine is called

Interrupt Service Routine Hints

1. Save the machine context: If your microcontroller does not automatically save the
machine context, you must do it in the ISR before doing anything else.

2. Re-enable interrupts in the ISR only if you need to: You must re-enable or unmask
global interrupts if there are higher priority interrupts that must be serviced.

3. Do not allow nested interrupts: Unless you have to.

4. Reset any interrupt generating flags in I/O devices: All devices are different. and
each requires somewhat different procedures. If you do not reset the flag, interrupts will be
generated continuously.

5. Do not assume any register contents: Never assume that the registers contain &
value needed in the interrupt service routine unless you have full control over the whole
program and can guarantee that the contents of a register never change in the program that is
interrupted.

6. Keep it simple to start: Learning how to use an interrupt can be frustrating if you try
to do too much in the ISR. The first step should be to see if the interrupts are occurring and
if the interrupt service routine is being entered properly. After you have found affirmative
answers in both cases, you can make the ISR do what it is supposed to do.

7. Keep it short: Do as little as possible in the ISR. This reduces the latency in servicing
other interrupts should they occur during the current ISR.

8. If necessary, restore the machine context before returning: Some processors do this
automatically, some do not.

Interprocess Communication

Frequently, an interrupt service routine and another part of the program must exchange
information. For example, an ISR may be incrementing a counter each time a product goes
by on an assembly line. Another part of the program may be monitoring this counter
package the product when the counter reaches a certain value. The only interprocess data
exchange technique appropriate for interrupt service routines uses a global data element.

*
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Interrupted
Module

Global
Data

Interrupt Service
Routine

/* Read data 1 */

[* Read data 1*/
/* Process data 1 */

/* Write data 1 */

/[* Process data 1 */
/* Write data 1 */

Figure 10-10 Using global data in Information transfer.

Interrupted
Module
Global .
/* Disable interrupt */ Data interiptSevice

Routine
/* Read data 1 */

/* Read data 1 */
/* Process data 1 */

[* Write data 1 */

I* Process data 1 */

[* Write data 1*/
/* Re-enable interrupt */

Figure 10-11 Protecting critical code.

Clearly, except for the very simplest programs, registers cannot pass information back and
forth. See Figure 10-10.

In addition to the method of data transfer, we must be concerned about the timing of the
data exchange. In normal program flow, we have some control over when we write data
elements. With interrupts, however, the interrupt can occur at any time, and we must ensure
that data are not changed while being used. Consider the situation in Figure 10-10, where
both the main program and the interrupt service routine must read, modify, and write the
data. There is no problem if the interrupt does not occur while the main program is reading,
modifying, and writing the data. If it does occur at these times, the data modification that
the ISR produced may be lost. A critical region in a program is one in which the interrupted
program takes more than one instruction to read, modify, and write data. Figure 10-11 shows
that a solution to this problem is to disable the interrupt just before the critical region and
re-enable it just after.

10.8 An Interrupt Program Template

All interrupt programs can start with the same basic format. You can use the template given in
Example 10-1 for your interrupt programs,
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Example 10-1 Interrupt Template
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10.9 Advanced Interrupts

areduced power consumption, standby state, which may be important in battery-powered
applications.

3. Stop-clocks: A stop-clocks instruction operates like the wait-for-interrupt instruction,
but it goes even further in reducing the power consumption by stopping all clocks not neces-
sary for the microcontroller’s standby operation.

Selecting Edge or Level Triggering

The external interrupt request is normally a low-level-sensitive input. Low sensitivity is suit-
: for systems with sever: /ices whose interrupt request lines may be tied in a wired-OR .
able for sy:slun.s with se\.eml ldenue ptrequest | ay e : Initilizing Unused Interrupt Vectors
configuration, as shown in Figure 10-7. The reason for this is that if more than one device

interrupts, each device after the first can keep its interrupt request asserted and thus will be a

pending interrupt when another is finished. You may be able to choose to have a negative-edge-
sensitive interrupt request. An edge-sensitive interrupt is appropriate only if there is only one
interrupt source connected to the interrupt request line.

Whenever you enable or unmask interrupts, you risk getting interrupts from any interrupting
source. To prevent unfortunate things from happening, should an unexpected interrupt occur.
always initialize all interrupt vectors to point to a dummy interrupt service routine. This routine

should at least reset the flag that caused the interrupt, and it should ensure that the interrupt is
indeed disabled. You may wish to add some diagnostics to your software by turning on an LED
to indicate that an unexpected interrupt has occurred. See Example 10-3.

What to Do While Waiting for an Interrupt

There are three ways to make your microcontroller spin its wheels while waiting for an interrupt
to occur. These are spin loops, a wait-for-interrupt instruction, and a stop-clocks instruction.

1. Spin loop: The simplest way to make the CPU wait is the spin loop. You use the code
shown in Example 10-2 to make the processor branch to itself.

When an interrupt occurs, the CPU will finish executing the instruction, which is a branch
to the same instruction. Before the instruction is executed again, the interrupt will be acknowl-
edged and the interrupt service routine executed. The program will fall back into the spin
loop when it returns. When the spin loop is used, the interrupt service routines do all the
processing.

Example 10-3 Default Interrupt Service Routine for an Unused Interrupt Source

It is useful to use a spin loop when you are working on the interrupt service routine during
the debugging phase of your software development.

Example 10-2 Using a Spin Loop to Wait for an Interrupt

e

ok ® XA KRRERR ] Exercise 10-4

in the

Does your microcontroller have wait-for-interrupt and stop-clocks instructions?

interrupt t

/% Wait

10.10 Watchdog Timer or Computer Operating Properly (COP)

== " P ' e | ; asong A watchdog timer, or COP, is a vital part of computers used in embedded
2. Wait-for-interrupt: A wait-for-interrupt instruction, if your microcontroller has one, The computer operating properly applications. The system: mnst have Some Basia ittt
. . . Ay sRATE sauent inte ) » machine ‘ e “ A 3 > S ) -

performs two functions. First, it prepares for a subsequent interrupt by saving the machine function is a watchdog timer. Tt can | o occur unexpectedly. Power suges o piogtatisal el I RE

context.' This in turn reduces the delay (the arency) in executing the interrupt service rou- reset the microcontroller if the pro- | . program “to get lost” and to lose control of the system. This could

ine. This ¢ e ant in time-critical applications. Seco “an place the CPU into o~ R G e ok S

tine. This could be important in time-critical applications. Second, it can place the gram gets lost be disastrous, and o the wachdog fiser iS inchaded 0 R AR

gram recover. When in operation, the program is responsible for pulsing
the watchdog at specific intervals. This is accomplished by choosing a place in the program

If your processor automatically saves the machine context at the start of an interrupt 1o pulse the watchdog timer regularly. Then, if the program fails to do this, the watchdog

e
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Figure 10-12 Real-time interrupt hardware.

automatically provides a hardware reset to begin the processing again.” It is not a good idea
to put the watchdog “tickle” in an interrupt routine accessed by a timer interrupt. If the entire
program were to be corrupted with the timer interrupt still running, the watchdog would not
time out. Place the watchdog timer reset in the main process loop.

10.11 Real-Time Interrupt

The expression “real time” in a microcontroller embedded application generally does not mean
“real” time in the sense of the hours, minutes, and seconds of a clock. Instead. it refers to an
interval of time whose length is accurately specified and generated by hardware in the micro-
controller. In a system using a real-time operating system (RTOS), interrupts are generated at
intervals, sometimes called ricks, to control the operation of the RTOS.

Figure 10-12 shows a real-time interrupt generator. The clock is divided by a programmable
divider, which then drives a counter. When the counter overflows. the real-time interrupt flag
is set, and if the global interrupt enable and the real-time interrupt enable bits are set, a real-
time interrupt request is generated. The program can control the intervals between interrupts
by controlling the programmable divider and sometimes the number of bits in the counter. The
interrupt service routine for the RTI must reset the flag.

10.12 Conclusion and Chapter Summary Points

The interrupt capabilities of a processor are important and should be considered very early in
your evaluation of a microcontroller for an embedded application. Interrupts can synchronize
the operation of the program with real-time events. Interrupts can allow the CPU to continue
processing while waiting for /O devices to become ready for data transfer. Interrupts can also
be internally generated when errors or exceptions occur. Most processors also have a software

A particularly good article on watchdog timers can be found at http://www.ganssle.com/watchdogs. htm
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interrupt instruction that is useful for debugging. The important points in this chapter are as
follows.

Interrupts are important asynchronous events that require immediate attention.
« Interrupts are disabled when the CPU is reset.

« Interrupts may be enabled and disabled by the programmer.

« Interrupts are globally enabled/disabled, masked/ unmasked by a control bit.

* Masking means to disallow interrupts, unmasking means allowing them.

* Interrupts may be selectively enabled and disabled by individual bits in control
registers.

The routine that is executed when an interrupt occurs is called an interrupt service
routine or interrupt handler.

A watchdog timer, or COP (for computer operating properly). can reset the CPU if the
program misbehaves and runs away.

There are a variety of interrupting sources. including externally generated ones on /O
ports and internally generated ones such as from the timer subsystem.

A wait-for-interrupt instruction and a stop-clocks instruction can put the microcon-
troller into a power-saving mode until an interrupt occurs to wake the processor up.

Interrupts are asynchronous: they may occur at any time.

Some interrupt systems use polling and some use vectors to resolve the question of
which of many devices has generated an interrupt request.

Simultaneous interrupt priorities may be resolved by software in polling systems and
with hardware in vectored systems.

+ Systems with multiple interrupting devices have enable bits to control individually
each one.

The machine context must be saved before you enter the interrupt service routine.
The machine context must be restored before you return to the interrupted program.
Interrupts are disabled when the interrupt service routine is entered.

Interrupt service routines should be kept as simple and short as possible.

* Avoid nested interrupts if possible.

Use global data elements for interprocess data communications.

Re-enable interrupts before leaving the interrupt service routine, if the CPU does not
do this automatically.

Disable interrupts in the main program in critical areas.

“Real time™ does not mean hours, minutes and seconds. It means real time intervals.
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10.13 Problems

Explore

10.1
10.2

10.4
10.5

10.6
10.7
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10.9
10.10
10.11
10.12
10.13

10.14

10.15
Stimulate

10.16
10.17
10.18
10.19

10.20

*

List five possible applications for interrupts. [a]

Describe the actions your microcontroller takes between the time an interrupt request
occurs and when the interrupt service routine is entered. [a]

Why, in most processors with interrupts, are further interrupts disabled when the pro-
cessor reaches the interrupt service routine? [a, k]

What is a pending interrupt? [a]

Name two methods by which a CPU can determine which of several devices has gen-
erated an interrupt. [a]

What are vectored interrupts? [a]
What are polled interrupts? [a]

Which type of interrupt, vectored or polled, requires hardware for priority
resolution? [a]

Define “interrupt latency”. [a]

What does interrupt latency depend upon? [a]

Give at least two components of interrupt latency. [a]
What is a critical region in a program? [a]

Does your microcontroller automatically save the machine context when an interrupt
occurs, or must that be done in the interrupt service routine by the program?

Does your microcontroller have a wait-for-interrupt instruction? If so, what does it do
(other than wait for the interrupt)?

Does your microcontroller have a stop-clocks instruction?

Compare the polling and vectored methods for determining which of many interrupt
sources has generated the interrupt request. [a]

For a processor with 10 interrupting devices, which type of architecture, polled or
vectored, provides the faster transfer of control to the interrupt service routine for a
specific interrupt? [a]

What is an advantage of polled interrupts over vectored interrupts? [a]

What must be done to solve the problem of two devices generating simultaneous
interrupts in a system with polled interrupts? [a]

What must be done to solve the problem of two devices generating simultaneous
interrupts in a system with vectored interrupts? [a]

10.21

Challenge

10.22

10.23

10.24

10.25

10.26

Reflect on Learning

10.27
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A real-time interrupt generator as shown in Figure 10-12 is driven by an 8 MHz

clock. A programmable divider is followed by a 10-bit counter to generate overflow

interrupts. [b, c].

a. How should the programmable divider be set to generate interrupts approximately
once every millisecond?

b. How close to 1 ms can you get?

“An interrupt system must allow asynchronous events to interrupt an ongoing pro-
cess.” Give five more hardware and software attributes of an interrupt system. [a]

Design the hardware for an input interrupting device in a polled interrupt system.
Assume an 8-bit switch register for data, a one-bit status register for an “I did it” bit.
and a push-button switch to generate a wired-OR IRQ_L signal. The status regis-
ter and switch register are each to occupy an address in the 8-bit I/O address space.
Assume separate [/O with control signals READ_L and WRITE_L. [c]

Discuss the differences and similarities between a subroutine and an interrupt service
routine. [a]

Write a complete program for your microcontroller for an interrupt occurring on an

external interrupt source. When the interrupt occurs, the ISR is to increment an 8-bit
memory location “COUNT” starting from 0x00. The foreground job is to be a “spin
loop.” doing nothing else. [c, k]

Describe how you could measure interrupt latency in the lab using a lab processor
board and other lab instrumentation. [c]

Summarize what you learned about interrupts in this chapter that you did not know
before.
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This chapter covers the basic principles of memory elements and memory architectures. We
explain the different types of memory and discuss the interaction of memory with the CPU.

11.1 Introduction

As discussed in Chapter 5, every computer system has two types of
memory, RAM and ROM, and the choice of how much and the location
in the memory map of each type depends on the computer system being
designed. Desktop systems have copious amounts of RAM to load pro-
grams into, with little ROM used for the BIOS. On the other hand, an embedded system often
has a limited amount of RAM available for variable data storage but significant amounts of
ROM for the embedded application’s program.

All computers have both RAM and
ROM.

Definitions

Random access: This term applies to memory that can be accessed in any order by supplying it
with the address of the memory location and other control signals. Both today’s RAM (memory
able to be read and written) and ROM (read-only memory) are random access types.

Serial access: In serial access memory, data are stored in sequential locations but must be
accessed by starting at the beginning and reading until the required data location has been
reached. Disk drive systems, are serial access systems, as were the magnetic tape systems of
the olden days.

11.2 A Short History of Random Access Memory

The stored program computer in use today relies on random access memory for program and
data storage. This has not always been the case in computer memories. One of the earliest
246
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“computer” memories can be seen in the abacus, which dates back two millennia Bc. The
Babbage analytical engine of the 1850s was designed to use punched cards based on those
developed by Joseph Jacquard in 1801 to control weaving loom. Unfortunately. the Babbage
machine was never built; but Herman Hollerith later adopted Jacquard’s punched card system
to speed up the computation needed for the U.S. census of 1890. The Hollerith punched card
remained a staple for program storage until the 1970s, when magnetic tape and disk storage
became more affordable.

Many early computers used serial access memories, where a rotating drum storage medium
stored the data, similar to the operation of today’s hard disk storage system. Another serial access
memory was an acoustic delay line, where pulses propagating though a dense medium formed the
serial memory storage element. The EDSAC computer. developed in England in the late 1940s,
stored 1024 eighteen-bit words in 32 mercury-filled tubes. Another type of serial access memory.
based on the operating principle of a storage oscilloscope, was called the Williams-Kilburn tube.
This device, developed in the late 1940s in England, could store 500 to 1000 bits. It shared a trait
with today’s dynamic random access memory in that it needed to be refreshed because the infor-
mation was an electronic charge stored at a location on the oscilloscope tube.

In 1951 the magnetic core memory, based on work by An Wang at Harvard University in
1949, was used in the Whirlwind computer developed at MIT. The core memory was the first
widely successful random access memory, and unlike the semiconductor RAM used in systems
today, it was nonvolatile. The memory could retain its data when the power was removed. Figure
11-1 shows two bits of a magnetic core memory. The donut-shaped core. on the order of 1 mm in
diameter, had three wires threaded though it. The magnetic flux in the core was set in one direc-
tion or the other by current flowing in the X and Y lines. A logic one could be stored if the flux
was in one direction, say counterclockwise. and a zero when the flux was clockwise. The bits
could be addressed individually, and the currents in the X and Y lines were set so that both X and
Y currents were needed to change the direction of flux in the core. To write a bit into a core. the
bit had to be addressed, which was accomplished by selecting its X and Y lines. Then the current

JW/( 14
Magnetic Core Magnetic Core
Sense Line Sense Line
Y Line Y Line

Figure 11-1 Magnetic core memory.
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Figure 11-2 Part of a 4096 x 16-bit magnetic core memory.

in the X and Y lines was driven in the direction needed to set the flux in the proper direction for
a one or a zero. A read operation was actually a read-write. Again, the bit was addressed and
the X and Y lines driven with sufficient current to change the flux direction. If the flux changed,
say from the one direction to the zero direction, a current was induced in the sense line that was
detected by the memory system. The flux in cores that were in the zero direction did not change
and thus induced no current in the sense line. Bits that were changed by the read operation had to
be restored, hence the read-followed-by-write operation. Figure 11-2 shows a 16-bit, 4096-word
magnetic core memory; a common straight pin indicates the relative sizes of the cores.

The magnetic core memory was the mainstay technology for computer memory until the
early 1970s, when semiconductor memory was developed. The first static RAM memory was
a 64-bit device done at Fairchild Semiconductor in 1964; a I Kbit dynamic RAM with half the
die size of previous efforts allowed Intel to challenge the dominance of magnetic core mem-
ories starting in 1971. The exponential growth in dynamic RAM (DRAM) capacity since its
beginnings (Figure 11-3) shows that Moore’s law applies for the development of memory.

11.3 Semiconductor Memory

The memories used in computer systems are semiconductor integrated circuits, A random
access memory chip consists of an array of memory cells, decoders for addressing a particular
cell or group of cells, and signals to control the direction of data flow (Figure 11-4). Each of
the 22, M-bit memory locations is addressed by the 2N-bit address bus. The CPU supplies the
required address and asserts the READ_L or WRITE_L control signal for reading or writing.
A larger memory can be created by means of the chip enable control signal, CE_L when the
memory chip is used with others.

Bytes

100 K -

10 K

1K

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Data Bus —= 4

Address Bus

Year

Figure 11-3 DRAM capacity.
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Figure 11-4 Memory chip array
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Data Memory (RAM)

Static RAM (SRAM)

There are two kinds RAM memory cell, static memory ( SRAM) and dynamic
IT”"’i" memory cell is a flip-flop. memory (DRAM). A typical static memory cell is a flip-flop, as shown in
Figure 11-5. Figure 11-5a shows a two-CMOS transistor inverter and Figure
11-5b shows how two cross-coupled inverters form a flip-flop and, when combined with two
access transistors, create the basic six-transistor SRAM cell. The flip-flop operates as follows.
Assume the output of 12 is high, which makes I1 low. This is a stable state, and the flip-flop
remains in this condition as long as V,/ power is maintained. To read the cell, the Word_Select
line is raised, turning on both T1 and T2. Because I1 is low, Bit_Line_L is low. Meanwhile,
Bit_Line is high because of 12’s high output. To write into the bit, Bit_Line is set with the value
to be written and Bit_Line_L its complement. When Word_Select is asserted, the Bit_Lines
overpower the present state of the inverters and “write” the new value into the flip-flop.

Dynamic RAM (DRAM)

The static cell in Figure 11-5 consists of six transistors. A much sim-
pler memory, which therefore is capable of storing more bits per area,
is dynamic memory. This cell is a capacitor in which the presence or
absence of charge denotes a stored one or zero. Figure 11-6 shows a typical dynamic memory
cell. The MOS capacitor can be written to by activating the word line to turn the transistor on
and charge the MOS capacitor through the bit line. Turning the transistor on and sensing a
voltage on the Bit_Line reads the cell.

A problem with dynamic memory is that the charge stored on the capacitor leaks away to
the substrate. Thus, dynamic memory must be refreshed at periodic intervals by activating the

’T\ dynamic memory cell is a capacitor.

Bit_Line Bit_Line_L
VbD :
T1 T2
TH
A A
TL
Word_Select

(a) (b)

Figure 11-5 Static RAM (SRAM) cell. (a) CMOS inverter, (b) Cross-coupled inverters
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Figure 11-6 Dynamic RAM (DRAM,) cell.

Word_Select
T

MOS

Capacitor /J;

Bit_Line

Word_Select line while holding all column lines at a particular voltage level. All cells in the
row can have the capacitor’s charge (or lack of charge) refreshed at once.

Pseudostatic RAM (PSRAM)

A comparison of SRAM and DRAM shows the following:

* SRAM generally is faster than DRAM.

An SRAM cell requires six transistors versus one transistor and a capacitor for the
DRAM. Thus, a DRAM can store more bits per chip than SRAM.

Because the DRAM storage element is a capacitor. it requires periodic refreshing. The
SRAM storage cell is a flip-flop, which does not need refreshing.

If a DRAM is refreshing, the CPU may have to wait until the process is complete
before accessing a storage site.

« The SRAM is easier to use because it does not need to be refreshed.

A memory technology that combines the advantages of high storage density of DRAM with
the simplicity of use of SRAM is pseudostatic RAM (PSRAM). PSRAM uses DRAM-like stor-
age cells for high storage density and includes refresh circuitry on the integrated circuit chip.
The refresh process is designed carefully. to ensure that it is transparent to the user and thus
gives an SRAM-like user interface.

Manufacturers are constantly introducing new ways to improve the speed and the amount
of storage of the memory, as shown in Table 11-1.

Program Memory: ROM

ROM memory chips come in varnious types. Mask-programmable
ROMs are programmed during the manufacturing stage. To use these,
production runs is mask programmed | the system designer decides what is 10 g0 into the ROM and then speci-
at the factory. For system develop- | fies the mask to be used by the manufacturer. There is usually a mast
ment and small production runs, field- | charge for this service, which may be several thousand dollars: but the

The least expensive ROM for large

programmable ROMs are preferred cost of an individual chip after that is low, often only pennies. Thus,

mask-programmed devices are suitable for high-volume applications.




252 Chapter 11 / Memory

Table 11-1 RAM Memory Types

SRAM Static RAM Figure 11-5

DRAM Dynamic RAM Figure 11-6

BSRAM Burst or SynchBurst static RAM RAM access synchronized with the system clock to speed up access
FPM DRAM Fast page mode DRAM DRAM with fast access to a memory row

EDRAM Enhanced DRAM A combination of SRAM and DRAM in one package

EDO RAM Extended data output DRAM 25% faster than standard DRAM

NVRAM Nonvolatile RAM RAM that does not lose its contents when the power is turned off
SDRAM Synchronous DRAM Various types of DRAM synchronized with the processor clock
DDR SDRAM Double data rate SDRAM Actiyates output on both rising and falling edges of the clock
ESDRAM Enhanced SDRAM A combination of SRAM and SDRAM

PSRAM Pseudostatic RAM

DRAM cells with on-chip refresh circuitry

Gate No Gate Gate

= A

Word_Select

0 1 0
Bit_Line Bit_Line Bit_Line

Figure 11-7 ROM cells.

Figure 11-7 shows a mask-programmed ROM. A bit is either 1 or 0, depending on whether the
transistor gate is or is not integrated.

EPROM

Other ROM devices are field programmable and may be programmed
by the user. These so-called programmable read-only memories include
UV-erasable PROMs (EPROMS), and one-time-programmable (OTP)
EPROMs (Figure 11-8). The first EPROM was the Intel 1702, intro-
duced in 1971. This memory was a 256 word, 8-bit chip and could be

Field-programmable ROMs are used
for system development and in low-
volume applications.
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UV Light
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1\ '/ Quartz Window
[ { ]
Source Drain
Field sio Field
Oxide =2 Oxide
o/ ot/
Electronics injected Si Floating Gate
to program

p-Substrate

Figure 11-8 EPROM storage cell.

programmed, erased, and reprogrammed during the development cycle. These characteristics
greatly speeded up the development process and reduced the cost because the part did not have
to be thrown away if the program had to be changed. EPROMs are electrically programmable
and erased by irradiating the chip through a quartz window with ultraviolet light. The cell in
an EPROM is a MOS transistor without a connection to the gate. This is called a floating-
gate, avalanche-injection, charge storage device. Figure 11-8 shows a model. To program the
EPROM, the silicon chip is placed into a PROM programmer, and during the programming
cycle, the address and data are sent to the chip and the programming voltage is applied. To
change the state of the gate, electrons either are or are not injected by an avalanche mechanism
into the silicon floating gate . Thus, after programming, the channel between the source and the
drain either conducts or does not. If the chip needs to be erased. it must be removed from its
circuit and placed into a PROM eraser; where it is irradiated with UV light at a wavelength less
than 400 nm (0.4 pm). This disperses back into the substrate any charge stored in the floating
gate and erases the memory. Sunlight and fluorescent lamps of some types contain energy in
this wavelength region, and manufacturers caution users that an EPROM can become erased
by direct exposure to the sun for one week and by exposure to fluorescent lamps for 3 years. In
applications where this danger exists, you should place an opaque cover over the quartz win-
dow. An OTP EPROM is an EPROM without the window; this means that once programmed.
the memory cannot be erased.

EEPROM and Flash Memory

Figure 11-9 shows an electrically erasable PROM (EEPROM). Note its similarity to Figure 11-8.
A second polysilicon gate, called the control gate, is added above the floating gate. A control
voltage may be applied to this gate to program and erase the cell by injecting or dispersing
electrons in the floating gate.

A Flash memory chip is similar to the EEPROM. Although it can be programmed faster than
the standard EEPROM (hence the name Flash), it has the drawback that the entire memory or

a block of memory must be erased, where as single locations can be erased and reprogrammed
in the EEPROM devices.
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11.4 Memory Timing Requirements

Remember from Chapter 2 that the CPU is controlling the information transfer in the system. (a)
It generates the control signals, such as READ_L and WRITE_L, and takes data from or puts
data onto the bus at specific times, as shown Figures 2-17 and 2-18. The CPU clock controls

the overall timing.

Let us now look at the memory system timing from the point of view of the memory. It is tWC
casiest to start the discussion with the timing of a static memory chip. Figure 11-10a shows 3
e T 3 O P BETLE s Address Address Valid
typical read cycle timing diagrams for static RAM and defines the basic times listed in the fol- Y

lowing sections on memory read and write cycles.
_\ tow /_

e L —
The Memory Read Cycle

ol s 5 < t
t.., read cycle: This is the total time for the read cycle. AS ‘ — tMwE _>1

" . i . WRITE_L —
t,..» chip select access: The maximum time required by the memory for the CS_L to be >
asserted before the data are available. ¢
e y . . . — taw WDHE
t,,, address access: This is the maximum time required by the memory for the address to be I<_t
present before the data are available. WDS
t o ead data hold after address: The time the memory may hold the data at the output after
the address is changed.
t.ono read data hold after chip select: The minimum time the chip will hold the data after being ®)
deselected.
t.., output enable access: On chips that have an output enable, this parameter gives the maxi- Figure 11-10 (a) Memory read cycle. (b) Memory write cycle.
mum time for the chip to respond with the data.
t,,.» output enable to output high Z: On chips that have an output enable, this parameter speci-
fies how long the data will remain valid before going into three-state (high impedance, Z). The Memory Write Cycle

The memory write cycle timing diagram is shown in Figure 11-10b, and we can define the

Two times for reading data are important to memory system designers. The read cycle o P
4 5 following times:

time, f,, is the minimum time that the addresses must be stable (unchanging) at the chip. The

address access time, 7, ,, is the maximum time required by the memory before the data are Lo wrn\e cycle: This is the minimum total time required t.\_\ the memory to complete a write
available. Although most manufacturers draw the timing diagrams showing 7, and 7, , looking cycle. This may or may not be the same as the read cycle time 7.

different, they are usually the same. t..» chip selection to end of write: The minimum time the CS_L signal must be asserted.
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Adrs
’ - 9 8
t,, address setup: The minimum time the address must be valid before the WRITE_L signal /—{ 256K x 16 Bit Input/ <€/ Upper Byte
is asserted. (‘8‘ Refres) DRAM Output
; : e ime WRITE L b A1T:0] oniel 9 Memory R Mux and 8
t,,we, Write enable: The minimum time _L must be asserted. Logic T Array Buffers Lowes Byt
t,,, address valid to end of write: The minimum time the address must be valid. [ Col [
t,s Write data setup: The minimum time the data must be valid before the end of write enable. Adrs
t,wone, Write data hold after enable: The minimum time the data must be valid after the Chip_Enable_L
WRITE_L signal is deasserted. i -
S Write_Enable L —»]
Again, there is a minimum time, the write cycle time, f,, that the address must be present Output_Enable_L —®Control
and stable at the chip. for some memories, the chip §elecl signal must go low, at least ., (chip Upper. Byte L —>] Logic
selection to end of write) nanoseconds, before the time the CPU takes the data away. In other
; S R ! ; E ; Lower_Byte L —
memories, this is not an important parameter. The write enable signal, WRITE_L, may be
asserted 7, (address setup time) once the addresses are valid. The data being written into the Sleep_Enable_L —
memory must be valid at least £, ¢ (write data setup) nanoseconds and must be held for the
data hold time, #, ... after the WRITE_L goes high. Table 11-2 shows the timing for a Micron Figure 11-11 PSRAM.
MT45V256KW16PEGA 4-megabit pseudostatic RAM shown in Figure 11-11.
Arrays of Memory Chips AEE 8
s A . PEREE e
Figure 11-12 shows a 64 Kbyte memory array. Sixteen address bits, generated by the CPU, 18
address any memory location in this 2'¢ memory location array. Memory arrays are constructed Address Bus —7
e Hok A15yA14y A13-A0
of smaller blocks of memory, in this case four 16 Kbyte blocks. Each 2'* memory location is o
addressed by address bits A13—A0. Each of the four 16 Kbyte blocks is selected by a chip D 2.4d 73 Adr 54
enable (CE) signal generated by using the 2-4 decoder to decode the two highest significant Soocsr - - 2
7 Memory
» RW Locations
Table 11-2 Micron 4 Mega bit PSRAM Timing »d CE
Timing (ns) 14
i A Adr
Symbol Parameter Min Max = /! Data 214
Memory
Read cycle
B » R/W Locations
Lo Read cycle time 55
LS Chip select access time 55 s
1k Address access time 55 14
o Read data hold after address 5 75| Adr
- Read data hold after chip select 8 < /—» Data ot
: cessii Memory
Toe Output enable access time 20 » RW .
(s Output enable to output high Z 8 i ERGRIOE
»q CE
Write cycle
[ Write cycle time 55 114 Adr
Iy Chip selection to end of write 45 o 115 ol4
e Address setup time 0 —.: 7— Data
i Write enable width 35 » RW Locations
L Address valid to end of write 45 »q CE
[ Write data setup time 23
Write datz -
wore g o e \ Figure 11-12 64 Kbyte memory.
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Table 11-3 Memory Sizes

Stimulate
o N’;mbef of 11.2 Use Figure 11-3 to estimate the rate at which DRAM capacity is doubling. Does it
mol - s 5
A::]re:;;its 1 e, Add follow Moore’s law?
16 65,536 64 K
20 1,048,576 1M Cha“enge
22 4,194.304 4M 11.3 A CPU reads from the data bus 150 ns after it has supplied the address to the address
24 16,777,216 16M bus. Which memory access time specification would be best to use for RAM memory
32 4.294,967,296 4G in this system? Justify your decision in terms of cost and system reliability. [c]
a. 10ns
address bits A15 and A14. The R/W_L control signal determines the direction of data flow, b. 110 ns
reading from or writing to the memory. c. 150 ns
Figure 11-12 can represent a memory of any size. The maximum directly addressed is lim- d. 200 ns
ited by the number of address bits the CPU uses, as Table 11-3 shows. Even more memory than 3 S 5
this can be addressed in processors with expansion memory, as discussed in Chapter 4. 11.4 Compare the memory read cycles shown in Figures 11-10a and 2-18. For the memory

timing shown in Table 11-2, answer the following.

a. What is the maximum CPU clock frequency that would be allowed?
11.5 Chapter Conclusion and Summary Points b. What memory read cycle time corresponds to the time between points A and C in
Figure 2-18?
¢. What memory read cycle time corresponds to the time between points B and C in
* RAM is volatile and is used for variable data in embedded systems and variable data Figure 2-18?
and programs in desktop systems.

» Computer systems have memory of both RAM and ROM types.

11.5 Compare the memory write cycles shown in Figures 11-10b and 2-17. For the memory
: - £ S s 3 s PO Y 9 . £ =
» ROM is nonvolatile and is used for programs in embedded systems and the BIOS in timing shown in Table 11-2, answer the following.

desktop systems. a. What is the maximum CPU clock frequency that would be allowed?

« RAM can be static (SRAM) or dynamic (DRAM) b. Assuming a positive-edge-triggered output device, what memory write cycle time
i i i corresponds to the time between points A and D in Figure 2-177
¢ SRAM is faster than DRAM.

* DRAM can store more bits per chip area than SRAM. Reflect on Learning

* DRAM requires refreshing. 11.6 List five things that you learned about memories in this chapter.
* A combination of SRAM and DRAM is pseudostatic RAM (PSRAM).

* PSRAM combines the high bit density of DRAM with the easy interface of SRAM.
* EEPROM can be programmed electrically in the application system.

* EEPROM cells can be programmed individually.

» Flash EEPROM is faster than EEPROM but must be programmed in blocks.

11.6 Problems

Explore

11.1 List the type of memory and the amount of each available in the computer system you
are studying.

.S
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Serial 1/0

In this chapter we dispel the mysteries and myths of the asynchronous serial interface. Nearly
everybody who has connected a serial device to a computer has had trouble of some kind. In the
personal computer world, the serial interface is called the com port, and many PCs have one or
more of these, although the universal serial bus (USB) is taking over many of the jobs the serial
com port used to do in desktop computers. Nonetheless, in embedded applications, asynchronous
serial /O is a useful method of transporting data over long distances using only three wires (at
a minimum). We will see that interfacing serial devices is not difficult once we understand the
basics of serial data transmission and how to use the handshaking signals defined for the RS-232-C
interface. In this chapter we will also describe the synchronous serial peripheral interface (SPI),
and, briefly, the inter-integrated circuit (I°C) and controller area network (CAN) buses.

12.1 Introduction

Chapter 9 discussed parallel I/O interfaces to input and output data. A disadvantage of parallel
I/O is that a wire is needed for each bit, and a parallel cable can be bulky and expensive when
source and destination are more than a few feet apart. In addition, long runs of parallel wires
can act as a transmission line that is susceptible to reflections and induced noise. Serial 1/0
techniques can offer a solution to these problems. Data are sent one bit at a time, using fewer
wires. By defining appropriate standards for the logic levels, we can both reduce the effects of
long transmission lines and combat noise problems.

12.2 The Asynchronous Serial Communication System

260

Figure 12-1 shows a serial communication system connecting two microcontrollers. In many
microcontrollers the serial interface is called the serial communications interface, or SCI. The
interface’s job is to convert the parallel data transfer within each microcontroller to a serial
data transfer between them. Handshaking signals are defined for the serial interface operation

Microcontroller

SCI
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Serial Microcontroller
TxD Transmitted Data > TxD
Electrical Serial Electrical scl
D) Interface | gReceived Data | interface B -~
Handshaking Handshaking | )| Handshaking i

77

Figure 12-1 Serial communication system.

to accomplish the I/O synchronization described in Chapter, Section 9.7. An electrical inter-
face is required to convert the CMOS or TTL logic levels of the microcontroller to other signal
levels more suited to the external environment. The design of this system must consider the
following questions:

* How do you encode the data?

» If the data are sent in serial, which bit is sent first?

» How is the receiver synchronized with the transmitter?
*  What is the data rate?

« How are the electrical signals for logic values defined?

« How does the system provide for handshaking?

The Serial Communications Interface (SCI)

A UART is a parallel-to-serial plus a
serial-to-parallel data converter.

The serial interface in the microcontroller is called a universal asynchro-
nous receiver/transmitter, or UART (Figure 12-2). The microcontroller
sends data through its internal parallel /O interface to the transmit data

bufffer. These data are transferred to the parallel in/serial out shift reg-
ister, and the clock shifts the data out on the transmitted data (TxD) signal line. Serial data
bits are received on the received data (RxD) signal line and shifted into the serial infparaliel
out shift register. After all data bits have been shifted, they are transferred to a received data
buffer, where the microcontroller can use an input operation to read them. Although you can
buy UARTS as individual chips, these days most microcontrollers have them as an integral
pm-'L Besides the data bus and clock signals shown in Figure 12-2. there are other s'\gnals_ for
handshaking and control, such as transmitted data register empty and received data register
full. We discuss the need for these in the next sections.

Data Coding and Transmission

data transfer,

Any data code can be used for serial

Any binary code that both ends agree upon can be used. Serial data trans-
fer is frequently used to send data between a terminal and a computer. In
this case, the information is the alphanumeric key pressed on the
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Figure 12-2 Serial communication UART.

keyboard or the character displayed on the screen. Of the several codes used for alphanumeric
information, the most common in microcomputer work is the American Standard Code for
Information Interchange, or ASCII. The ASCII code, shown in Section 12.5, uses 7 bits to
encode 96 printable characters and 32 control characters.

We have two choices for the order of data transmission. The designers

Serial data bits are synchronized at | of the UARTS have chosen to send the least significant bit first. Sending
the receiver by first sending a starr | characters in this way is called asynchronous serial communications
bit, then the data, and then a stop bit.

because the characters can be sent at any time and do not need to be syn-

chronized with any process in either the sending or receiving unit. For
example, characters typed on a keyboard are sent when you type them. The designers provided

Mark
Space
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Figure 12-3 Asynchronous serial character transmission.

a way to synchronize the receiver shift register with the transmitter shift register to cope with

t

he asynchronous transmissions. Two other bits, known as the start bir and the stop bit, encap-

sulate the data bits. Figure 12-3 shows the format of the data and several terms used in serial
data communications. Here are the basic definitions.

1. Mark and space: The logic one and zero levels are called mark and space. When the

transmitter is not sending anything, it holds the line at the mark level (i.e., logic one). This is
also called the idle level.

2. Start bit: When the transmitter has data to send. it first changes the line from the mark

to the space level for one bit time. This synchronizes the receiver with the transmitter. When
the receiver detects the start bit, it knows to start clocking in the serial data bits.

3. Data bits: Almost any number of data bits can be sent between the start and stop bits,

depending on the length of the transmit and receive shift registers. Typically, eight or nine are

used.

4. Parity bit: Only 7 bits are needed to encode ASCII characters. Most UARTSs allow up
to 8 (and sometimes 9) bits to be sent between the start and stop bits, and so a parity bit may
be included. The parity bit is added to the data to make the total number of ones odd (odd
parity) or even (even parity). The parity bit may be used to detect errors in the data. A parity
bit is used frequently when 7-bit ASCII codes are being transferred.

5. Stop bit: The stop bit is added at the end of the data bits. This gives at least one-bit
time between successive characters. Some systems require more than one stop bit.

Data Transmission Rate

per second.

S @ mis-

The rate at which bits are sent is often called the baud rate. This

The baud rate is the number of bits | yged term because a baud is a unit of signaling speed and signifies the

number of times per second the state of the line is changed. Itis the recipro-

cal of the length of the shortest element in the code and is given in bits per
second. Baud is a contraction of the surname of an early pioneer in serial data communications,
1. M. E. Baudot.! The data rate can be any value, and standard data rates are shown in Table 12-1.

' J. M. E. Baudot (1845-1903) invented a 5-bit code for sending data in a telegraph system. It was adopted by the
| telegraph ¢ .

French telegraph system in 1877 and became one of the standards used for intern
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Table 12-1 Data Rates Used in Serial Communications

Standard Data Rates (baud)

110, 150, 300, 600, 900. 1200, 2400, 4800, 9600, 14,400, 19,200, 38,400, 57,800

12.3 Standards for the Asynchronous Serial I/0 Interface

Several standards have been developed to define the interface between two SCIs in a serial com-
munication system. In interface standards, which are necessary to allow different manufactur-
ers’ equipment to be interconnected, the following elements must be defined:

* Handshaking signals

+ Direction of signal flow

* Types of communication devices

» Connectors and interface mechanical considerations

* Electrical signal levels

The RS-232-C standard of the Electronic Industries Association® is used in most asynchro-
nous serial interfaces. For signals that must be transmitted farther than 50 feet or at greater than
20 Kbit/s, however, another electrical interface standard, such as RS-422, RS-423, or RS-485,
should be chosen. For each of these, handshaking, direction of signal flow, and types of com-
munication device are based on the RS-232-C standard.

Handshaking Signals

Serial data transfer requires handshaking signals for synchronization and control of the trans-
mitter and receiver. All signals in the RS-232-C interface other than the transmitted and
received data are for handshaking. To understand these, we must first look at communication
system types and at modems.

Data Terminal Equipment and Data Communication Equipment

The EIA standard defines two kinds of device serving as the electrical interface shown in
Figure 12-1. Modems?, also called data communications equipment (DCE), connect the SCI

* The Electronic Industries Association (EIA) publishes engineering standards to serve the public interest by eliminating
misunderstandings between manufacturers and purchasers. EIA standards can be purchased from the organization:
EIA Engineering Department
Standards Sales
2001 I Street, NW
Washington, DC 20006
(200) 457-4966
* A modem, or “MOdulator/DEModulator,” converts binary signals (logic levels) to and from the tones sent over the
telephone line.
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to a telephone line. The terminals or computers to which they are attached are called data ter-
minal equipment (DTE).

The signal flow directions defined in Figure 12-4 and Table 12-2 are based on the signal
flow defined for a DTE device. You will find that computers often are configured as data termi-
nal equipment devices. For example the transmitted data pin TxD is being sourced by a DTE

TxD » TxD
Data RxD | RxD  Data
Tomeal < S5 Copmnkstos
RTS » RTS
CTS = GITS
Serial
(@) Cable
TxD TxD
Data RxD RxD  Data
Ezizg]rlr?:rl\t sG sSG ETer'mlnal
RTS RSO ERER
CTS CTS
Null Modem
(b) Cable

Figure 12-4 Serial communications. (a) DTE-DCE; (b) DTE-DTE.

Table 12-2 RS-232-C Signal Definitions

DE9 DB25 Signal Purpose

1 PG Protective ground. This is usually the shield in a shielded cable. It is designed to be connected to
the equipment frame and may be connected to external grounds.

3 2 TxD Transmitted data. Sourced by DTE and received by DCE. Data terminal equipment cannot send
unless RTS, CTS, DSR, and DTR are asserted.

2 3 RxD Received data. Received by the DTE, sourced by DCE.

7 4 RTS Request 1o send. Sourced by DTE, received by DCE. RTS is asserted by the DTE when it wants o
send data. The DCE responds by asserting CTS.

8 5 CTS Clear to send. Sourced by DCE. received by DTE. CTS must be asserted before the DTE can
transmit data

6 6 DSR Data set ready. Sourced by DCE, received by DTE. Indicates that the DCE has made a connection
on the telephone line and is ready to receive data from the terminal. The DTE must see this
asserted before it can transmit data.

5 7 SG Signal ground. Ground reference for the signal is separate from pin 1, protective ground.

1 8 DCD Data carrier detect. Sourced by DCE, received by DTE. Indicates that a DCE has detected the
carrier on the telephone line. Originally it was used in half-duplex systems but can be used in
full-duplex systems too.

4 20 DTR Data terminal ready. Sourced by DTE, received by DCE. Indicates the DTE is ready for sending
Or receving

9 22 Rl

Ring indicator. Sourced by DCE, received by DTE. Indicates that a ringing signal is detected.

—
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12.4 Asynchronous Serial Hardware Interfaces 267

3. Data terminal ready (DTR): This signal from the DTE informs the modem that it is
ready to operate. This is usually just an indication that the power is turned on in the terminal.
but the signal could be controlled by a computer. An intelligent answer modem can use it to
answer a call automatically only when the computer or terminal is ready.

4. Data carrier detect (DCD): The DCD signal is asserted when the carrier (the tone
defined for a mark) is being generated by the modem on the other end. DCD was used orig-
inally in systems where data could be sent in only one direction at a time; these are called
half-duplex systems. When one end wanted to transmit, it first asserted the RTS line. The
modem then checked the DCD bit. If it found it asserted, it knew the other end was sending.

When DCD was deasserted, CTS was asserted allowing transmission from the requesting
terminal.

The complete RS-232-C standard defines all signals and signal directions for DTE and DCE
devices. There are three schemes for labeling the signals: mnemonic acronyms, alphabetic
circuit codes, and CCITT (International Telegraph and Telephone Consultative Committee®)
numeric codes. The most descriptive and most frequently used are the signal acronyms listed
in Table 12-2. Also shown are the RS-232-C standard pin numbers for the DB2S connector and
the pins that have been defined for the DE9 connector used on IBM personal computers and
compatibles. The signals given in Table 12.2 are the main ones used in serial interfaces. The
RS-232-C standard also defines another set of signals that are used for secondary data trans-
mission. These are very rarely used.

6
&

882
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Figure 12-5 RS-232-C tester. RS-232-C Interconnections

When two serial ports are connected. the data rate, the number of data
2 o : = : 5 2 A null modem cable is used to con- its other parity is use o of parity. r of sto
device. Data communication equipment (DCE) devices include modems and some printers. riect oo DITE computers thgethes :’!L\ W h“ht:r parity 1s UTd~ “:; ‘(; pe }t lliim'“& J“dhlhéi‘;f_;1b:_ou mus
. : ; 5 5 : L = gether. st be & N g sallv on e ART. St
The signal flow and signal names used for DCE devices are often incorrectly specified. For DILS HMUS EADe S e L P T

example, the TxD signal is actually received by the DCE device. It is incorrect to call this signal
RxD. When connecting one device to another, we must be sure what kinds of device are being
used, and we must select the proper cable.

A very useful tool to have when working with RS-232-C interface devices is the RS-232-C

also have the proper cables: depending on the devices to be intercon-

nected, there are four kinds of cable from which to choose. These are the full DTE-DCE cable

(Figure 12-6), a DTE-DTE null modem cable (Figure 12-7), and a minimal DTE-DCE cable

that works in many applications (Figure 12-8). A minimal null modem cable for DTE-DTE
tester (Figure 12-5). This tester shows what serial lines are active and allows us to determine connections also may hc_ Coll\'ll'llCl(‘d‘(FH:‘\lI-rL‘ lZ.-Q), W

easily if we are connecting to a DTE or DCE device. When first encountering the RS».’.,\J»( interface, many users have troub]F recong_*llmg the

) o direction of data flow with the signal name. Look at the directions shown for the signals on

the DTE device in Figure 12-6. Notice that pin 2, transmit data (TxD), is a data output. On

Modem Handshaking Signals the other side. TxD for a DCE device is an input! Unfortunately, many manufacturers do not

i inci i i i { etails in their documentati s K if a signal is an 1 or output.
The principal signals used in modem handshaking are as follows. provide enough details in their documentation to let us know if a signal is an input or outp

You cannot tell by the name alone. You must also know if you have a DTE or DCE device. To
1. Ring indicator (RI): The telephone company transmits a special tone that rings the provide the PI‘\‘P;‘I‘ cable, you may have to resort to inspecting the schematic diagram, mea-
phone. The modem can detect this and assert the RI signal. The terminal or computer can use suring voltages, or using the RS-232-C tester shown in Figure 12-5 to find out which pin is
RI to start some special process, such as notifying the user that the other end is calling or to an output.
answer the telephone in an answer modem.

2. Data set ready (DSR): This signal tells the DTE that the modem (also called a data
set) has established a connection over the telephone line to the far end.

* This organization is known by its French acronym, CCITT.

R R NSNS
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DTE Device DCE Device Figure 12-6 Full DTE-DCE cable DTE Device DTE Device Figbl.llre 12-9 Minimal null modem
(straight serial cable). cable.
DE9 DB25 DB25 DE9 B DE9 DB25 DB25 DE9
TxD 3 Pl T 3 TxD ™D 3 2 2 3" TxD
RxD 2 Sl =& 2 RxD RxD 2 3 DC 3 2 RxD
SG 5 7 7 5 SG SG 5 7 7 5 SG
RTS 7 L = ——— 7 RTS RTS 7 4 4 7 RTS
CTS 8 H ———— 8§ 8 CTS CiTs8 5§ 5 8 CTS
DCD 1 [} ——r= 1 DCD DCD 1 8 8 1 DCD
DSR 6 @ == 6 DSR DSR 6 6 6 6 DSR
DTR 4 20—>»—20 4 DTR DTR 4 20 20 4 DTR
DTE Device DTE Device Fiilllre 12-7 DTE-DTE null modem Table 12-3 RS-232-C Logic Levels
cable.
DES DB25 DB25 DE9 RS-232-C Signal Voltage Logic State Logic Level
IXDE32 2 SENEXD Mark -2510-3V 1 Low
RxD 2 3 DC 3 2 RxD Space +3t0+25V 0 High
SG 5 7 7 5 SG
RTS 7 4 4 7 RTS v v
CTS 8 5§ 5 8 CTS DD DD
DCD 1 8 8 1 DCD RSL-232-C
DSR 6 6 6 6 DSR CMOS ogic CcMOS
[ Levels [
DTR 4 20 :><:20 4 DTR Logic D R Logic
Levels ‘/( \/( Levels
DTE Device DCE Device Figbllxre12—8 Minimal three-wire serial ([ ; j /
cable.
DES DB25 DB25 DE9 Figure 12-10 RS-232-C interface.

TxD 3 P = P 3 TxD

RxD 2 3 ——=— 3 2 RxD F The RS-232-C interface driver (D) and receiver (R) pair is shown in
RS-232-C signal levels have been : 5 =5 5 g 5
SG 5 T e 5SE " i . i Figure 12-10. The driver and receiver are called single ended because the
defined to give a large noise margin. % a2l LE A )
RTS 7 4 4 7 RTS S signal line is referenced to the ground. The driver and receiver convert
cTS 8 5 5 8 CTS CMOS or TTL logic levels to the RS-232-C levels, which provide much
DCD 1 8 8 1 DCD greater noise margin. RS-232-C drivers can be used effectively if the distance does not exceed
50 feet and the data rate is not higher than 20 Kbit/s. As the line distances get longer or the data
DSR 6 6 6 6 DSR rate higher, another signaling standard should be chosen. The electrical characteristics of the
DTR 4 20 20N 4RDIR RS-232-C standard will be given shortly, in Table 12-4.
Standard Electrical Signal Levels RS-423 Standard

The RS-423 interface is shown in Figure 12-11. It, too. is a single-
ended system, but the drivers are especially matched and tuned to one
another to allow the longer distances and higher data rates shown later in
Table 12-4, along with the electrical specifications for RS-423 signaling.
T (o e R RS-423 also allows a driver to broadcast data to 10 receivers.

The RS-423 interface can transmit
RS-232-C Standard

at higher data rates and over longer
distances than RS-232-C.

The signal levels for RS-232-C mark and space are shown in Table 12-3. Notice that the signal

*
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Table 12-4 s of RS RS-423, RS-422, and RS-485 Standards Vbbp RS-422-C Vbop
Specification RS-292-C RS-423 RS-422 t:\?éfs
00 mV to 212 V 2200 mV to 27 V CMOS CMOS
21025V . Logic Logic
0 K 10 Mbitss 10 Mbit/s Levels Levels
000 t 4000 feet 1000fect = S B 00 maE T R 7" ==
5401 |
} .
s 1 . Up to Ten
f s ! \ . Receivers | |
|
]
™ |
- e—— ]
E
! CMOS
Logic
Yoo VoD E Levgels
L

—_— RS-423
CMOS \l ll:w; 4[{ CMOS
. vels
| D r) S— R

Log D > Logic Figure 12-12 RS-422 interface.
Levels ',/[ [/( Levels
(77 177
. Up to Ten RS-485 Standard
. S The RS-485 standard is similar to RS-422 in that it uses differential line
VDD The RS-485 standard allows a bus | drivers and receivers. However, as shown in Figure 12-13, the standard
architecture with multiple sources | provides for multiple drivers and receivers in a bussed environment. Up
and receivers. to 32 driver/receiver pairs can be used together. For the RS-485 specifi-
CMOS cations, see Table 12-4,
Logic
Levels
Serial Interface Electrical Specifications
There are four electrical specifications in use for interconnecting serial interfaces. These are
Figure 12-11 RS-423 interface shown in Table 12-4. The two most widely used are RS-232-C and RS-485. The latter, which
offers much higher data rates over longer distances than the RS-232-C standard, is less wide-
spread, however.
Each of the electrical standards shown in Table 12-4 requires a level converter (o translate
g ) y the TTL or CMOS logic levels of the microcontroller’s serial data input and output lines to
A problem experienced with the single-ended drivers and receivers of RS-232-C and RS—-123. is the voltages specified by the standard. Figure 12-14 shows the SCI connected to a MAX3232
that for long line lengths, noise and ground shifts can cause errors in the received data. Noise

: i ! CMOS-t0-RS-232 level converter.
and ground shifts appear as common-mode signals; that is, they affect each line equally. The

RS-422 line drivers and receivers operate with differential amplifiers as shown in Figure 12-12.

These drivers eliminate much of the common-mode noise experienced with long transmis- Low-Voltage Differential Signaling (LVDS) :
sion lines. Their source and load m\pcd.mcc.\ match (\\isvled-puir transmission Fines‘: the line Another electrical interface being used for higher speed serial data networks in both onboard L
lengths and data rates that can be achieved will be shown in Table 12-4, along with the RS-422 and offboard applications is low-voltage differential signaling (LVDS). This interface is similar

electrical specifications

to RS-485 because differential transmitters and receivers are used. Differential line drivers can
operate at much higher speeds because the differential line pair is relatively immune to com-
mon-mode noise. Data rates up to 2 gigabits per second are possible with this technology.

mately 100 )
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Up to 32
Drivers

SCI

RXD

TXD
CTS

RTS
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DS90LV047A

. : 1000  DS90LVO48A

DireTe e Differential

Line Driver Terminating | = "2 =0
Resistor Ine ~eceiver

Dout+

Rin+

TTL or TTLor
CMOS CMOS
logic logic

Twisted pair or
100 Q balanced
transmission line  EN
EN_L

EN
EN_L

Figure 12-15 Low-voltage differential signaling (LVDS) interface.

The LVDS is a standard promoted as ANSUTIA/EIA-644-A%. Unlike RS-232-C. the stan-
dard does not include functional specifications, protocol. or cable characteristics. It does spec-
ify a differential line driver and receiver configuration, as shown in Figure 12-15.

12.5 ASCII Data and Control Codes

The most commonly used code for sending data between a terminal device (a keyboard and a
display) and a computer is the American Standard Code for Information Interchange, or ASCH.
The ASCII code uses 7 bits to encode 96 printable and 32 conrrol characters, as shown in
Table 12-5: the printable characters, in the right-most six columns, have the codes 0x20-Ox7E.
The control codes (columns 0 and 1) are used by serial devices to proyvide some control of what
is being transferred. For example, the CR code (0x0OD) is sent to cause the printing terminal or
display to perform a carriage return. The definitions for the other control codes are given in
Table 12-6.

Control codes are often used by software to provide special func-
tions. For example, in some systems you can stop and start the output to
aterminal by typing the DC3 (0x13) and DC1 (0x11), respectively. The
control key on the keyboard of your terminal or PC allows you to send

A control code may be sent by hold-
ing down the terminal’s control key
and typing another printable key.

VDD RS-485 VDD
Logic
Levels
CMOS CMOS
Logic Logic
Levels Levels
______ ) L
I
S |
. Vv
& DD i Up to 32
; Receivers
|
CMOS :
Logic |
Levels
""" CMOS
Logic
Levels
Figure 12-13 RS-485 interface.
1%
MAx32s2 DD
1
Vce
Aoy |
0.1 uF /-E 5 V+ 2
C1- v 6 0.1pF [01puF|0.1uF Data
4 cor L Terminal
[y Equipment
0.1 uF
Ls Cc2- Hﬁ 6
< 12 piour Rin H2—RXD £ ,
3
> 1l N Trour HA—TXD o g
< 91 RoourT R2N [ al i Lg‘
> 100 a8 T20UT [ 5_(./._
15 CTS DE9
GND -
7 RTS
>

Figure 12-14 SCI with RS-232-C interface.

control codes. When the control key is pressed and held while another.
printable character is typed, the effect is to map columns 4 and 6 into
column 0 and 5 and 7 into column 1. For example, to send the DC3 character, one would press
and hold the control key and type either S or s. This control-key/printable-key combination is
known as control-S. See Examples 12-1 through 12-3.

ANSI = Amencan National Standards Institute, TIA = Telecommunications Industry Association, EIA = Electronic
Industries Association
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Table 12-5 ASCII 7-bit Codes for Alphanumeric Characters

MS Digit
LS Digit 0 1 2 3 4 5 6 7
0 NUL DLE sp 0 @ P p
1 SOH DCI ! 1 A Q a q
2 STX DC2 2 B R b L
3 ETX DC3 # 3 G S c s
4 EOT DC4 S 4 D T d t
5 ENQ NAK % 5 E u e u
6 ACK SYN & 6 F v f v
7 BEL ETB 7 G W g w
8 BS CAN ( 8 H X h X
9 HT EM ) 9 1 Y i y
A LF SUB * J z i z
B VT ESC + K [ k {
C FF FS < L \ 1 |
D CR GS = M | m }
E SO RS > N o n ~
F SI us / 2 (0] s 0 DEL

Example 12-1 Finding the ASCII Code for a Character

Use Table 12-5 to find the hexadecimal ASCII codes for the characters A. a, and |.

Solution
A=0x41,a=0x61, ] =0x5D

Example 12-2 Finding the ASCII Code for a Character

Use Table 12-5 to find the hexadecimal ASCII codes for the control characters CR, BEL,

and LF.

Solution
CR = 0x0D, BEL = 0x07, LF = 0x0A

Table 12-6 ASCII Control Codes
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00
01

07
08
09

0A

0B

0D
O0E

OF

11
12
13
14
15

16

17
18
19
1A
IB

1D

Us

NUL
SOH

STX

ETX
EOT
ENQ
ACK

VT

FF
CR
SO

SI

DLE

DCI
DC2
DC3
DC4
NAK
SYN

ETB
CAN
EM

SUB
ESC

S
GS
RS

Null
Start of Header

Start of Text

End of Text
End of Transmission
Enquiry

Acknowledge

Bell
Back Space
Horizontal Tab

Line Feed

Vertical Tab

Form Feed
Carriage Return
Shift Out

Shift In
Data Link Escape

Device Controls

Negative Acknowledge

Synchronous Idle

End of Transmission Block
Cancel

End of Medium

Substitute

Escape

File Separator
Group Separator
Record Separator

Unit Separator

Character with all zeros

Used at the beginning of a sequence of characters that constitutes a machine-
readable address of routing information; the header is terminated by the
STX character

Character that precedes a sequence of characters to be treated as an eatity;
may be used to terminate a sequence of characters started by SOH

Character used to terminate a sequence of characters started with STX

Indicates the conclusion of a transmission

Used as a request for a response from a remote station

Character transmitted by a receiver as an affirmative response to the sending
station

Character used to control an alarm or attention device
Controls the movement of the printing mechanism back one space

Controls the movement of the printing mechanism to the next predefined tab
position

Moves the printing mechanism to the next line; in some systems, this may be

interpreted as a “new line” (NL), where the print mechanism moves to the
beginning of the next line

Controls the movement of the printing mechanism to the next predefined
printing line position

Moves the printing mechanism to the start of the next page
Moves the printing mechanism to the start of the line

Indicates that the code combinations following are outside the character set of
the standard ASCII table until a Shift In character is received

Indicates that the code characters following are to be interpreted according t©
the standard ASCII table

Changes the meaning of a limited number of following characters; DLE is
usually terminated by a Shift In character

Characters used to control ancillary devices associated with data processing

Transmitted by a receiver as a negative response to the sender

Character used by a synchronous transmission system in the absence of any
other characters to maintain synchronism between the transmitter and
receiver

Used to indicate the end of a block of data

Indicates that the data with which it is sent is in emor or is to be disregarded

Sent with data to represent the physical end of the medium

Character that may be substituted for a character that is invalid or in emor

Control character intended to provide code extension; usually a prefix

affecting the interpretation of a limited number of contigucusly following
characters

Information separators that may be used within data

$
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Example 12-3 Finding the ASCII Code for a Character

12.8 Asynchronous Serial /O Software 277

Table 12-7 Serial I/O drivers

C Function Function Purpose
How would you send the BEL character from a terminal keyboard? =
Void init sci( void ); Initialize the microcontroller SCI to 8 data bits, | stop bit. no parity.
] and 9600 baud; enable the SCI transmitter and receiver
Solution : pr oS
void put_ )i Wait until the transmit data register is empty and output the character
BEL is a control character that can be sent by holding down the “Ctrl” key on the keyboard char get Wait until a character is received and return it

while pressing the “G” key.

12.6 Asynchronous Data Flow Control

Flow control refers to a higher level of handshaking needed to control the software transferring
data via serial ports. For example, in the transfer of data from one computer to another, if the
receiving computer cannot deal with the incoming data fast enough, data may be lost. If this
happens, the receiving computer must send a message to the other computer to stop sending
data until it is ready to receive some more. There are two ways to achieve flow control.

Hardware flow control: The request-to-send (RTS) and clear-to-send (CTS) handshaking sig-
nals are used in hardware flow control. The sending and receiving computers must control and
sense these bits in the communication software.

Software flow control: Software flow control is called the XON/XOFF protocol. The XOFF
character (ASCII DC3, 0x14, Ctrl-S) is sent by the receiving station to turn the transmission

Check if a character has been received; return TRUE if so; otherwise
return FALSE

Choose the Correct Communication Parameters

After you have connected the two interfaces with the correct cable, make sure that the software
at each end is using the same parameters. The data rate (baud rate). number of data bits, type
of parity, and the number of stop bits must be specified. In some communication systems. the
type of flow control can be chosen.

12.8 Asynchronous Serial I/0 Software

It is useful to write serial I/O software in the form of general-purpose /O drivers that can be
used by any application program. The needed drivers include an initialization routine to set up
the microcontroller's communications interface and routines to input and output characters.
See Table 12-7 and Example 12-4.

off. The XON character (ASCII DCI, 0x11, Ctrl-Q) turns it on again. The communication
software must detect these characters being sent.

Example 12-4 Serial I/O Drivers

12.7 Debugging and Trouble Shooting

The serial interface has caused problems for many computer users. The major problems stem
from a lack of documentation about what hardware has been implemented and from failure to
set up the UART data transmission parameters correctly. The following procedure is suggested
to help solve your serial interfacing problems.

Choose the Correct Cable

The cable to be used depends on the types of interface to be interconnected. You must find out
if the devices are DTE or DCE. If the documentation does not show this, disconnect all cables
and check for a negative voltage at pin DB25-2 or DE9-3. If a negative voltage exists when
no characters are being sent, the interface is a DTE; otherwise, it is a DCE. When one device
is a DTE and the other DCE, a DTE-DCE cable is required. If both are DTE or both DCE
(unlikely), a null modem cable is required.

The number of wires in the cable depends on the handshaking and flow control used in the
system. Hardware handshaking and flow control require a full DTE-DCE or null modem cable
as shown, respectively, in Figures 12-6 and 12-7. If software flow control or no flow control is
used, a minimal cable (Figure 12-8 or 12-9) can be used.

A very useful tool to have when working with RS-232-C interface devices is the RS-232-C
tester shown earlier (Figure 12-5). Then & Chaxactel L61LRaLS

$
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else
/* Else no character has been received */
return( FALSE );

% KR K K ok kKK KK kK Rk K K Kk Kk Rk Kk

* Put a charac

Cex

Kok ok kR Rk ok ok ok ok ok ok kK K K Rk kK Kk ok K ko ko kR Rk R X

void put char( char send data ) ({
/* Wait until the Transmit Data Regi

while ( TDRE == 0 );

last data has gone,

= send data;

Reset the T

12.9 Synchronous Serial Peripheral Interface (SPI)

A simple synchronous serial interface is the serial peripheral interface
(SPI). It is synchronous because the device that is sending the data also
supplies a clock signal. The receiver uses this as a shift clock to shift the
data into its receiving shift register.

A synchronous serial peripheral
interface includes a clock signal.

SPI Characteristics

The SPI is a simple serial interface. Unlike the inter-integrated circuit (IIC), the controller area
network (CAN), and some of the other serial data interfaces, there is no defined data protocol
that includes device addressing or error checking. There can be only one device, called the
master, controlling the data transfer. If there are to be multiple receivers of the information,
called slaves, they must be selected with hardware, as we will describe.

Figure 12-16 shows that an SPI system consists of a master device and a slave device. Some
systems allow multiple masters with additional control signals, but only one device can be a
master at a time. Another thing to notice is that the two shift registers act together, with data
being shifted out of each one into the other simultaneously. This means that if the slave has
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Figure 12-16 Serial peripheral interface.

data to send to the master, the master must control the transfer, a requirement that makes this
somewhat simple device more complicated for bidirectional data transfer operations.

Configurations with multiple slave devices can be found, as well. Figure 12-17 shows a sin-
gle master with multiple slaves. Since only one slave may be active at a time, a decoder circuit
allows the master to choose the slave that is to be active. In this case. the slave device must have
an open drain or three-state output.

Figure 12-18 shows a single master with a daisy-chain connection of the multiple slaves.
Software in the master will control how many shift clocks are to be asserted to shift the data to
the proper destination. Notice that all slave data shift registers will be shifting their data: your
SPI control software must consider this.

Clocking the SPI Data

As Figure 12-16 shows, the shift clock is used to shift the data in and out of the SPI's data
registers. Because no universal standard for SPI devices specifies the precise time that a shift
clock edge must be relative to valid data, most SPI master devices provide a user-selectable
clocking signal. Figure 12-19 shows the clocks available in a typical microcontroller such as
the Freescale HCS12. Two bits control one of four clocking schemes. Table 12-8 shows that
you may choose odd, even, rising, or falling edges to determine when the levels on the senal-in
or serial-out lines are sampled. See Example 12

Example 12-5 Choosing the SPI Clock

The 74HCS95 $-bit shift register shown later (Figure 12-20) requires a positive-going-edge
clock to shift the serial data into the register. Which clock phase (CPHA) and clock polanity

(CPOL) values could you use?

*
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Solution

Either CPHA = 0, CPOL =0 or CPHA = 1, CPOL = 1.

MOSI

SPI MASTER
DEVICE MISO
SCK

Y

110

MOSI

SPI SLAVE
DEVICE MISO

SCK

T sst

2
Ly 2-4
Port

Decoder

Figure 12-17 Single master, multiple slaves.
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The Software SPI

\
MOSI > MOSI
SPI SLAVE
SPI MASTER Y
DEVICE MISO DEVICE MISO [
SCK » SCK
Ss L
MOSI
SPI SLAVE
DEVICE MISO
» SCK
] SS_L
‘—»— MoOSI
SPI SLAVE
DEVICE MISO

Y

SCK

SS_L
l—ﬂ MOSI

SPI SLAVE
DEVICE MISO

i SS L

» SCK

Figure 12-18 Single master, daisy-chain slaves.

If your microcontroller does not have an integrated SPI, you can simulate device operation by
controlling bits on a parallel /O port. This process, called bir banging, can be used to gener-
ate serial I/O. Four bits will be needed to simulate the MOSI, MISO, SCK, and SS_L signals.
Precise timing is not needed as long as you ensure that the serial data out is stable when you
clock the data into the serial-in shift register. The approach does require software overhead that
would not be needed if the microcontroller had an SPL.
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~— IDLE—»l<———— DATA TRANSMISSION »|<— IDLE = Table 128 Typical SETESHipUSS
Analog-to-digital converter LED display driver
SS L Analog switch High voltage display driver
CPHA CPOL Lo /\.udm mixer Microcom.mller
Controller area network (CAN) controller Multimedia card
0 0 _M___ _\___/_\_/_\__ Digital potentiometer Multiplexer pressure sensor
Digital signal processor Real-time clock
Sample Sample Sample Sample Digital-to-analog converter Temperature sensor
* v v v EEPROM Touch screen controller

— - e Flash memory UART
g ! _—\_/—_\_[ / \ ’ \ ’ LCD controller USB controller

- Table 12-10 Manufacturers of SPI Devices
_/——\__/_\- -—-m_/—L AKM Semiconductor Maxim
1 0 _ - - Altera Microchip Technology
Analog Devices National Semiconductor (Microwire)
Sample Sample Sample Sample Sample Atmel ON Semiconductor

Y Y v v v Cirrus Logic Ramtron International
— - L Fairchild Semiconductor SanDisk
1 1 _\_/—\_/— _/_\__/-_\_/—— Freescale Semiconductor STMicroelectronics

Infineon Technologies Texas Instruments
[ == Intel Winbond Electronics
Master Out/Slave In ‘ x X I Inersil Xilinx
Lattice Semiconductor Zilog

Linear Technology

Figure 12-19 SPI clock signals.

Table 12-8 Shift Clock (SCK) Polarity and Phase 12.10 SPI Interface Examples
CPHA CPOL Clock Polarity Sample Time Sample Edge SCK Idle State
v Y AR ORI Rising Low Expanding Parallel I/0 with the SPI and Shift Registers
0 1 Active low Odd edges Falling High
1 0 Active low Even edges Falling LW You do not have to use SPI devices to take advantage of a microcontroller’s SPL. Figures 12-20
1 | Active high Even edges Riding High and 12-21 show how to use the SPI to add parallel input and output to your microcontroller.
In Figure 12-20 a 74HC395 8-bit serial-in/serial-or-parallel-out shift register is used for addi-
tional output lines. Although this example shows only 8 bits, the serial-out pin (Q7°) can be
used as the serial input for another, cascaded 8-bit port. In another configuration, you can
: y S e 8- s in parallel by using a decoder for the SLAVE SELECT_L
SPI Typical Devi expand multiple 8-bit output ports in paral \ g o
¥ ces and Manufacturers signal to select which of the 74HCS95s are to receive the data.
SPI devices first appeared in Freescale (Motorola) microcontrollers. The Microwire devices of Figure 12-21 shows the adding of 8 input bits with a 74HC163 parallel-in/serial-out 8-bit

National Semiconductor are similar. Table 12-9 shows the range of SPI devices available, and shift register. It too can be expanded to provide more input bits by cascading additional
Table 12-10 lists some of the manufacturers offering these devices. chips

*
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VbD oD
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Figure 12-20 Adding parallel output with the SPI. Digital-to-Analog Output
While many microcontrollers have an analog-to-digital converter input port, often they do not
have a corresponding digital-to-analog converter for analog output signals. Figure 12-22 shows
a MAXS512’, three-channel, digital-to-analog converter. It interfaces to the SPI and, as shown.
outputs two analog channels on OUTA and OUTB. The third channel, OUTC, and the latched
VDD digital output, LOUT, are not used in this application. See Example 12-6.
MASTER IN/SLAVE OUT (SHEICO
MISO =
SHIFT CLOCK 10 16 Exam igital-to- i
ple 12-6 Digital-to-Analog Converter with C
SPI MASTER SCK — Gt Voo
DEVICE  mosi ——21 SERIN aH 2
SLAVE SELECT_L 15 6
CLK INH D7 —t——o
D6 5—<—¢
1/O Port Bit [:,L 1] SHFTI 4 o o
SOAD s Parallel
2 et Input
14 Data
D3 p——wt—e
D2 ——4—-‘13
D1 L(——O
/717L GND 00 e
Figure 12-21 Adding parallel input with the SPI. ”\T:.‘n':‘n:\ \l‘“\‘\il_‘ MAXS13 Low-Cost, Triple. 8-bit Voltage-Output DACs with Serial Interface. hitpifivww
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SPI Control */

efine SPICR1 (*(volatile unsigned char *) 0x00D8
i Rate */

(* (volatile unsigned char *) 0x00DA)

(* (volatile unsigned char *) 0x00DB)
Reg */
(* (volatile unsigned char *) 0x00DD)

/* Slave Select, Port M bit 3 */

/* Output A enabled */

e T R R T P’

..... B T Y

R R e e T

* Initialize your microcontroller’s I/O

sk kK ke e e e e e e e e e e e e e e e e ek LR Y

L output */

/% Set M direction to be able

KhkkkE k)
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Liquid Crystal Display

Many inexpensive liquid crystal displays make excellent display devices for embedded sys-
tems. Most can interface to the microcontroller in at least two ways., including 4-bit and 8-bit
parallel connections.

Figure 12-23 shows an LCD module. To reduce the parallel I/O bits needed to drive the
LCD, a 74HC395 serial-in/parallel shift register is connected to the SPI port on the micro-

controller. Figure 12-24 illustrates the hardware design, and Example 12-7 shows software to

display characters on the LCD.

it Montang
Universit

Figure 12-23 LCD module.
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Figure 12-24 SPI and liquid crystal display.

Example 12-7 Liquid Crystal Display Drivers
e T T L R e e * %

* LCD Display Program

SPISR (*(volatile unsigned char *) 0x00DB)
Reg */

DR (*(volatile unsigned char *)

12.10 SPI Interface Examples
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1 EHRERAEME0 STi2 C3 Ot RN OLE) i

e_cursor( 2,1 ); /*Line 2: %/
Microcontrollers *\0” );

)i /* Line 3 */
ROCK at Montana **\0” );

d move cursor( 4,1 ); /* Line 4 */

lcd print( State University *\0”);
¥ f

In cursor o
ut_command( FSET_CUR OFF );

ii) |

} /* wait forever */

e KKk KKK KK KRRk Rk ok ke ok ok ok K Kk kA Xk ok
* Initialize the SPI
o e e K KRR KKk kK kKK ok ko ko ko Kok ok e ok ke e K kxxER )

init spi( void ) ({

R L i i T T KRk ko kR ko k *xw/

PE_MASK|SP

MODFEN MASK;

init( void ) {

e R R R R e e e e e Kk ok xw ]
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.'.qnq1'1-v~v~rvt’!,l'pﬁntkvr~~x*t-vtwlAbi*'.***/
mmand ( unsigned char character ) {
1ar msn, lsn;

ok kKK KR Kok ok ok ok ok ok Kk ok ok ok kK ok ok K Kk ok ko ok Kk ok

ASCII character to display */

nibbles and send the ms nibble first */

ificant nibble */
)i
EN ); /* Set the enable high */

significant nibble */
e( 1sn );
e( lsn | EN );

Xk kR ke Kk ek ek Kk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok kK Kk ok ok ok ok ok e kK
Print a null terminated string on the LCD
R R ey

str pointer ) {

-"‘Ivﬁ(hwixyl,ﬂ""--yvv’l'yA-'x’\ﬁH**"}“**/
t a null terminated string on the display */

*Str_poi 1= 0){
1 put data( *str pointer++ );

cursor to a line, column.

the line number 1 - 4, column number 1 - 20

e is not 1 - 4, line is set to 1.

column is not 1 - 20, column is set to 1
i’ct*tvﬁw'h'v*i*?v""*!l"'&bv1'(-(1},,1'#7"****7*'?"H?ﬂ’k}f‘ﬁ/
void lcd move cursor (unsigned char line,unsigned char column) {

[ KKk kKK kK kK KKk XKk KKk KK kK kKK kXK KKKk kK Kk Kk KKKk KKKk [

line 1-4 */

1 || line > 4) line = 0;
lse line = line - 1;
/* Check for column 1 - 20 */
B ( || column > 20) column = 0;
column - 1;

lcd put command (LINE[line] [column] | DB7) ;
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12.11 Inter-Integrated Circuit (/IC or I°C)

This section briefly explains another option for serial data transfer. As in all serial data inter-
faces, the number of signal lines between the sources and destinations for information is
reduced in comparison to parallel data transfer. This comes at the expense of reduced data
transfer speed. The two systems described in this chapter; inter-integrated circuit (1IC or FC)
bus and the controller area network (CAN) bus, allow a network of sources and destinations
for information with data synchronization, multiple master/slave organization, error checking.
and addressing of devices on the network.

Some Common Terms

Address: A code to specify a device on the serial bus. The address codes used in the I*C and
the CAN buses assist in arbitration.

Arbitration: Process that allows only one master to send data if more than one tries to control
the bus at the same time.

Master/Slave: A master device is one that controls the transfer of data in a system. It initiates
the data transfer and provides the needed timing. A slave device is controlled by the master to
receive (and in some cases send) the data.

Multiple-master system: A system in which multiple devices may act as masters.
Receiver: The device that receives the data.
Synchronization: Providing a clock to synchronize the data transfer between two devices.

Transmitter: The device that sends the data.

Inter-Integrated Circuit (IIC or I?C) Serial Bus

The I°C serial bus can be seen in Figure 12-25. This bus was devel-

The I'C uses two-wires (plus ground) | gped by the Philips Semiconductor Company in the early 1980s.
for data and clock signals.

The current specification supports data rates of 100 kbits (standard

Microcontroller Temperature Microcontroller
Sensor
\ \ \ \ \ A
SDA (Serial Data)‘ Y \ \ &
- [ [ >
SCL (Serial CIockL \ \ \
= ; Y —
\ \ A \
Analog-to- Liquid
Digital Crystal
Converter Display

Figure 12-25 I°C serial bus.
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I>C Bit Transfer

mode), 400 kbit/s (fast mode) and 3.4 Mbit/s (high-speed mode). It is a multiple-master bus,
and more than one device is capable of controlling the bus and sending data. There are two
wires (plus a ground reference). Both SDA and SCK, the serial data and the serial clock,
respectively, are bidirectional lines. Because there may be more than one device trying to
transmit data simultaneously, open-drain transistors are used, as shown in Figure 12-26. When
either bus line is idle (i.e., where no device is transmitting clock or data), the bus line is pulled
high by the pull-up resistors.

Figure 12-27 shows three conditions necessary to send data on the I°C bus. The start condition
occurs when a master wants to send data. The master first checks to see that the SDA line is
idle (high) and then lowers SDA while SCL is high. This is the start condition. The master then
clocks data out by ensuring that SDA is stable (high or low) and then raises and then lowers
SCL. The stop condition occurs at the end of the data message by changing SDA from low to
high while SCL is high. All masters generate their own clock and data are valid only when the
clock is high.

12.11 Inter-Integrated Circuit (IIC or I?C) 295

Data Transfer
All data sent on the IC bus are 8-bit bytes. The number of bytes sent in a message is unre-
stricted, but each byte must be followed by an acknowledgment bit sent by the slave. The mes-
sage transfer starts with the start condition and ends with the stop condition (Figure 12-27).
Figure 12-28 shows how a byte is transferred. The master transmitter generates the start
condition and then clocks out eight data bits. Following the eighth bit, it releases the SDA line
and waits for the receiver to pull its SDA line low; this constitutes acknowledgment that the
receiver has received all 8 bits. If the receiver does not generate the ACK bit, the transmitter
can generate a stop condition and abort the data transfer.
SDA
SDA Data | Data
Stable Can
Change
SDASe==c=== 3 - > e 1
| | : L
1
| \ | / \ R
! : - ! |
! 1
: ! 1 L
SCL ! - a0 ! N
: ! : ,
i ! 1 1
| | 1 1
: i : i
lhis S ! b Bl
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| i i
| ! 1 i
: SCL1 SDA1 : : SCL2 SDA2 :
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1 ! I !
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Figure 12-26 I°C serial bus interfaces.

Figure 12-27 I°C start and stop and bit transfer timing.
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Figure 12-28 I°C data transfer with acknowledge.
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can also generate interrupts to notify your program that an I’C message has been received. In
microcontrollers without an I°C interface, clever programmers can bit-bang the I’C signals.

I°C Interface Example

Figure 12-32 shows an LM92 temperature sensor with an I*°C microcontroller interface. The
chip contains a 12-bit plus sign temperature-to-digital converter, and the microcontroller can
read the temperature at any time by interrogating the chip on the I*C bus. The two address bits,
A1-AQ, select up to four devices. With both grounded, the device will respond to address 00.
The LM92 can also be set up to act as a comparator that will generate an interrupt when the
temperature exceeds a programmable set value. The amount of hysteresis that temperature
changes impose before the alarm condition resets is programmable as well.

12.12 The Controller Area Network (CAN) Bus

CAN Definitions

Robert Bosch introduced the controller area network, or CAN, serial bus at the Society of
Automotive Engineers congress in February 1986. The CAN bus can handle reliably short
messages (up to 8 bytes) with multiple-master access. Although originally developed for auto-
motive markets, this bus is finding uses in many other applications.

The CAN serial interface has its own jargon and terms. Here are a few definitions to help you
understand some of the CAN descriptions that follow.

Acceptance filter: A digital keyword that incoming messages must match before the receiver
accepts them.

VbD

—L 0.1 uF

100kQ / ; ;

100kQ
Interrupt Request T_CRIT_A
INT Interrupt Request
A0
- 5 .
A1 LM92 SDA Microcontroller 12C
7 sc. j¢—on—— Port

77

Figure 12-32 LM92 temperature sensor with I°C interface.
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Basic CAN: Basic CAN devices implement in hardware only the basic functions of the pro-
tocol, such as generation and checking of the bit stream. All message management, such as
accepting the message, must be done in software. See Full CAN.

Baud rate: Number of bits per second for data transmitted on the CAN bus. See Time
quantum.

CRC: Cyclic redundancy check. A 15-bit error checking word used to detect bit errors in the
preceding data and in itself.

CSMA/CD: Carrier sense, multiple-access collision detection. A method for avoiding or resolv-
ing errors when multiple devices try to send messages at the same time.

Data frame: CAN uses data frames when the node wants to send data. Remote frames are a
request for information. A frame with the RTR (remote transmission request) bit set means that
the transmitting node is requesting information of the type specified by the identifier.
Dominant level: A logic low level.

EOF (end-of-frame): A recessive (logic high) bit, similar to a stop bit in an asynchronous serial
interface, that signifies the end of the current message buffer.

Extended frame: A data frame defined by CAN 2.0B with a 29-bit identifier.

Frame: A message consisting of the start-of-frame (SOF). arbitration. control. data, CRC.
acknowledge (ACK), and end-of-frame (EOF) fields.

Full CAN: A full CAN device implements the whole bus protocol in hardware, including accep-
tance filtering and the message management. See Basic CAN.

Idle bus: A bus in the recessive mode (logic high) for more than three bit times.

Initialization mode: A mode that allows system initialization to be done because the CAN is
disconnected from the CAN bus.

Recessive level: A logic high level.
Remote frame: See data frame.

SOF (start-of-frame): A dominant (logic low) bit used like the start bit in an asynchronous serial
communications system.

Standard frame: A data frame defined by CAN 2.0A with an 1 1-bit identifier.
Synchronization jump: An increment of time quanta used to synchronize a receiver's bit sam-
pling time with the incoming data.

Time quantum: A time interval less than the bit time. There may be 8 to 25 time quanta
per bit.

CAN Serial Communications

The CAN bus is a serial bus system with each of the CAN devices, called nodes. connected to
the bus capable of being a master. A master device can initiate data transmission to any of the
other nodes on the bus, unlike the SPL, which allows only one master at a time with multiple
slaves, The bus uses a single wire (actually two) to reduce the amount of wiring needed in its
applications. The bus provides clock synchronization based on the data stream. These concepts
require the clever design that Robert Bosch introduced in 1986,
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CAN Serial Bus Basics

Figure 12-33 shows a CAN bus. It may have two or more nodes. Because
these nodes can be widely separated, by as much as 1000 meters, no
individual node has no knowledge of the other nodes. This can lead to
a collision of data bits if two or more start to transmit at the same time.
The CAN design overcomes this problem by defining the electrical characteristics of the bus
to be a wired-AND type, as shown in Figure 12-33. Each of the CAN nodes has a transmitter
and a receiver. The transmitter uses an open-drain connection to the CAN bus, and a pull-up
resistor establishes the logic levels on the bus. A logic high is called a recessive bit. The high
is active because none of the nodes are pulling the bus low. (This is why it is called a wired-
AND.) A logic low is called a dominant bit because one node can dominate all other nodes that
are sourcing a recessive bit.

Recessive bits are logic high, and

dominant bits are logic low.

CAN Serial Bus Collision Detection and Arbitration

The problem of two or more nodes starting to transmit at the same time is solved in the fol-
lowing way

» Each of the nodes continuously monitors the bus with its received data line.

Each bus transmission is started with a dominant (low) bit, called the start-of-frame
(SOF) and proceeds with a multiple bit identifier (11 or 29 bits long) that defines the
type of message data that is to follow.

If two or more nodes are transmitting at the same time, eventually one of the identifiers
will be different, with a low (dominant) bit in place of a high (recessive) bit.

Figure 12-33 Basic CAN bus.
VbD

Open
Drain
Transmit Data
CAN
Node 1 Receive Data
CAN
L]
Open Bus
.
¥ Transmit Data
CAN
Node N | Receive Data
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Because the low is dominant, and because each of the nodes is monitoring the bus

while it is transmitting, a node transmitting a recessive bit will recognize that another
node is out there transmitting.

Nodes with a recessive bit stop transmitting and allow other nodes to continue.

» Eventually only one node is left.

Any node that stops waits until bus activity ceases and tries to send its message again.

This scheme is called carrier sense, multiple-access with collision detect (CSMA/CD)
because nodes are able to detect other transmitters. A prioritization scheme is in effect because
the node with the lower binary number for its identifier wins control of the bus. The message
that follows contains up to 8 bytes of data and a 15-bit error checking code. The system is able
to detect a variety of errors: and because it provides an acknowledgment bit. the receiving node
can let the transmitting node know that the message was received without errors. As you might
expect, the protocol to manage this consists of many more details. You will have to study vour
own microcontroller's CAN bus documentation to learn more.

CAN Serial Bus Interface

While the single-ended bus shown in Figure 12-33 explains the concept of the dominant and
recessive bits, often in practice a differential. twisted-pair bus is used. The twisted-pair cable
provides a transmission line with well-behaved characteristic impedance. This allows it to be
terminated with a resistance to reduce reflections. It also has noise reduction properties to pre-
serve data quality in noisy industrial environments.

A CAN bus transceiver, such as a Linear Technology LT1796. converts the CAN node’s
single-ended transmit and receive data lines to the balanced, differential CAN system signals
CAN_H and CAN_L, as shown in Figure 12-34. The performance of the system in noise is
greatly enhanced by the common-mode rejection of the differential receivers. The bus may be
twisted-pair wires, either unshielded or shielded for additional noise rejection. The data bits
are sent with start and stop bits, similar to the SCI described in Section 12.2. with additional
characters to define the data frame.

Non-return-to-zero (NRZ) signaling encodes the data bits. Each node has its own clock
and synchronizes it with the incoming data by detecting bit transitions. To assist clock syn-
chronization, a bir-stuffing scheme is used. The receiver may lose bit synchronization if a
number of consecutive bits of the same polarity are transmitted. To combat this, the trans-
mitter will insert an additional bit of the opposite polarity into the bit stream after five con-

secutive ones or zeros. The receiver automatically detects the stuffed bit and removes it from
the data.

The CAN Message

The CAN bus protocol includes address information, called the identifier, in the message
frame. This is not a node address. Instead, it identifies the type of information being transmit-
ted. For example, in an automotive application, nodes on the CAN bus may be sending engine
rpm. coolant temperature, fuel level, and so on. Each node that needs a particular piece of

information has a matching identifier filter and can pick off messages that are relevant to s
job and discard others
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STANDARD MESSAGE FRAME

CAN 1

RXCAN TXCAN

CAN 2

RXCAN TXCAN

A A A
CAN Y Tl ol
Transceiver
A A A A A
y CAN_H CAN_LY y CAN_H

) ; CAN_L
1200 CAN Bus (Twisted-Pair) 120Q
Termination Termination

Figure 12-34 The CAN serial bus system.

The formats for standard and extended CAN frames are shown in Figure 12-35 and
Table 12-11.

CAN Data Transmission

Each node on the system is responsible for broadcasting information to the system about its
sensors. This means that the transmitter does not necessarily know which node is to be the
receiver. When a node has information to send, it checks the CAN bus and if the bus is idle
(recessive), it starts sending a data packet by asserting the start-of-frame bit. The 11- or 29-bit
identifier identifies the type of information to come. The data length code (DLC), contains the
number of data bytes in the message, zero to eight, and this is followed by the data and a 15-bit
cyclic redundancy check (CRC) error detection word.

CAN Bus Clock

The clocking of the data on the CAN bus is derived from the data itself. The CAN hardware is
able to synchronize its bit-sampling time with the incoming data stream. Each bit time is sub-
divided into smaller time elements called time quanta. When a message transmission starts, the
first bit is the dominant SOF bit shown in Figure 12-35. The receiver detects this high-to-low
transition and then looks for the low-to-high in the middle of the bit time. It can then adjust its
internal timing quanta to be able to sample the following bits at the correct time

If the oscillators in two nodes are slightly different and the bits in the frame continue to
arrive, the bit changes relative to the sample point may drift around. If this occurs, and the
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Table 12-11 CAN Message Frame Bits
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hardware detects a bit change outside its limits, it can adjust the sample point by adding or
subtracting time quanta.

CAN Message Receiving

The CAN receiver detects the start-of-frame bit and starts to clock message bits in a manner
similar to that of the SCI receiver described earlier. The identifier bits in the message are used
by the receiver to determine if it is a message for itself or if it should be ignored. Figure 12-36
shows how the receiver accepts or ignores CAN messages.

Although there are 11 or 29 identifier bits in the arbitration field of the message, the receiver
may use 8-, 16-, or 32-bit patterns to identify its messages. As the message arrives, it is shifted
into a message buffer and the identifier (shown here as 8 bits) is compared with an identifier
acceptance pattern. When they match, all outputs of the exclusive-NOR gates in Figure 12-36
and the filter hit signal will be asserted. For added flexibility in identifying messages, an iden-
tifier mask pattern can allow some of the bits in the identifier to be don't cares. A one in the
identifier mask pattern sets the acceptance bit to be a don’t care. When the filter hit signal is
asserted, the rest of the message is accepted by the receiver.

The receiver checks the 15-bit CRC code to make sure there were no errors in the transmis-
sion and then, at the correct time in the message (see Figure 12-35), asserts the acknowledge
(ACK) bit to let the transmitter know the message was received correctly.

Message Frame =|

8-Bit Identifier

[ [lels[alal=l o] . !

o« e e

. s e . e e

[]eseTs 2] 1]o] rfels[ea]2]1]o]

8-Bit Identifier Acceptance Pattern 8-Bit Identifier Mask Pattern
(0 = Match, 1 = Don't Care)

Figure 12-36 Receiver acceptance filtering.
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CAN Message Transmission Speeds and Distances

The transmission bit rates and distances are interrelated and depend on the implementation of
the physical layers. Table 12-12 shows bit rates and distances for typical CAN bus applications
using terminated, twisted-pair bus wires.

12.13 Conclusion and Chapter Summary Points

Asynchronous Serial Communications

A UART is a universal asynchronous receiver/transmitter. It sends and receives serial data.
In microcontrollers a UART is often called an SCI (serial communications interface).
The two logic states in asynchronous serial communication are called mark and space.
* The data sent starts with a start bit and ends with a stop bit.

« The start bit synchronizes the receiver with the transmitted data.

The ASCII code is most often used for serial I/O when the data are alphanumeric
characters.

* Any data rate may be used, but there are standard ones used for character VO.
» Handshaking signals are defined for the RS-232-C interface.

* Data terminal equipment (DTE) and data communication equipment (DCE) are
defined in the RS-232-C standard.

Modems modulate and demodulate tones for telephone line communication.
* A null modem cable can connect two DTE devices.

* Control codes may be sent from a terminal by holding down the control key while typ-
ing another printable key

Synchronous Serial Peripheral Interface

+ The SPI provides a simple interface that allows 1/O expansion to be easily
accomplished

Table 12-12 CAN Bus Length vs. Data Rate

Bus Length (m) Bit Rate
40 1 Mbavs

10-300 S00 kbiv's
0-600 100 Kbiv's

6001000 SO kbits
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« The SPI is a master/slave interface system. 12.2 An SCI is transmitting data at the baud rates given. The format is 8 data bits, no par-
« The master controls all data transfer between the master and the slave. ity, and one stop bit. For ef"Ch case, what is the maximum number of characters per
second that can be transmitted? [a]
« The master generates a clock for the data transfer. a, 56 kbaud
+ Multiple slaves may be used as long as only one is selected by the SS_L signal at a time. b. 9600 baud
12.3 A serial I/O port sends the following waveform: [a]
I°C Interface
» I°C stands for inter-integrated circuit.
» The I*C bus is a two-wire bus (three with ground reference); the data line is called SDA ; : :
and the clock SCL {{free 3 3 s peascle a. What is the ASCII character being sent?
n S s : EREEAL
b. What type of parity is being used?
 The interface supports multiple-master/multiple-slave architecture. = .
PP p p G 12.4  Find a web-based ASCII code table. [a]
» A master controls all data transfer. s :
= 12.5 To initiate a serial data transfer, a UART first [a]
« Slaves have an address that is the first byte of any message that is transmitted by a a. sends the least significant bit.
master. b. sends the start bit.
+ An arbitration scheme operating on a bit-by-bit basis can resolve competition between ¢. sends the stop bit.
two masters trying to access the bus at the same time. d. sends the parity bit.
X A . e. None of these.
« Although each I’C device can have its own clock, a clock synchronization scheme
. . . . . 7 - > avef QOO > 17 - 1 ] 1 e 3 Bl
allows the slowest device to control the low time and the fastest device the high time of 12.6  Draw the waveform seen on the serial-data-out line when a UART uses 7 bits of data
the SCL clock. plus odd parity to send the ASCII character *L". [a]
12.7 How many bits per second (baud) is a serial port sending when the character rate is
Controller Area Network (CAN) Bus 120 characters per second? Assume ASCII characters with even parity. [a]
3 ey 12.8  If the data rate is 9600 baud. at what rate can ASCII characters be sent, assuming 7
* The CAN bus was developed for automotive applications. data bits and 1 parity bit? [a]
* Itis a multiple-master/multiple-slave bus. 12.9  Define the following terms used in the CAN bus: [g, k]
» The bus clock and bus clock synchronization are derived from the data. a. Acceptance filter
: Ll - . b. CRC
» A message contains an identifier that specifies where the message should be received. e o
- c. CSMA/CD
* A message filter allows receivers to accept only the messages destined for them. d. Dominant level
— ; : 4 . k e. Recessive level
¢ The arbitration scheme to resolve which of two simultaneously active masters is to ; \‘:\IL ;\ 5 ; lk S
w15 . s Synchromzatol
be allowed to transmit is called carrier sense, multiple-access with collision detection (;\; hlu Jump
g. CAN bus
(CSMA/CD). >
12.10 Two computers are to be connected by means of their COM ports: [¢]
a. For this to work, what operational parameters need to be specified?
4P b. In this application, what is meant by “data flow"™ synchronization?
12.1 roblems ¢. What are two ways of achieving data flow synchronization?
Explore Stimulate
12.1  How does an asynchronous serial port achieve synchronization of the bits it is sending 12.11 You are to define a serial cable to connect two PCs configured as RS-232 DTE
or receiving? [a] devices. Each PC has a DEOP connector on its back panel. The software used in cach
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PC for file transfer uses hardware (RTS/CTS) flow control. Draw an appropriate cable
using the minimum number of wires. Be sure to show each connection, give the signal
name, tell the data flow directions, and state what connectors are to be used on each
end of the cable. [c]

How does the receiver in a UART maintain its synchronization with the transmitter in
asynchronous operation? [a]

Draw a cable used to connect DTE to DCE RS-232 serial devices. Show pins 1-9 with
signal names and signal direction flows. Assume that 9-pin connectors are used. [a]

Draw a cable used to connect DTE to DTE RS-232 serial devices. Show pins 1-9 with
signal names and signal direction flows. Assume that 9-pin connectors are used. [a]

Why is the RS-232 voltage specification for mark and space logic levels used for
serial communications voltage levels instead of TTL? [a]

How does a slave station SPI send data to the master station? [g]

An SCl is transmitting data at 19.2 kbaud. The format is seven data bits, even parity,
one stop bit. How long does it take to send a document that is one megabyte long? [a]

The clock shown Figure 12-2 connecting to the receiver serial-in/parallel-out shift
register is often 16 or 64 times the basic baud rate. Why do you suppose this is so? [a]

You are to define a serial cable to connect a PC configured as an RS-232 DTE device
to a microcontroller system configured as a DCE device. The PC has a DE9P con-
nector on its back panel, and the embedded system uses a DE9S connector. There is
no flow control for the data transfer between the two computers. Draw an appropriate
cable using the minimum number of wires. Be sure to show each connection, give the
signal name, tell the data flow direction, and state what connectors are to be used on
each end of the cable. [c]

A system is to be designed to transfer serial data from one place to another over a dis-
tance of 200 feet. Data is to be transferred in one direction only. and there is no data
flow problem. Data transfer rate is to be a minimum of 100 kbit/s. You are to com-
pare an asynchronous serial port approach (SCI) with a synchronous serial port (SPI)
approach. [b, c]
a. How many wires will be needed to connect the two systems (including the

ground wire)?
b. For this distance and data rate, what signaling interface standard would you propose?

What questions do you still have about asynchronous serial communications?
What questions do you still have about the synchronous peripheral interface?
What questions do you still have about the 12C serial bus?

What questions do you still have about the CAN bus”

Objectives

Analog Input and Output

In this chapter we consider the world of analog signals. Computers must read analog informa-
tion and act upon it in many applications. This requires an analog-to-digital converter. In other
situations, an analog output signal may be required: this calls for a digital-to-analog converter.
In this chapter we will discuss both devices and learn how to specify the correct one for the
job to be done

13.1 Introduction

Analog input and output converters allow us to process continuous signals as functions of time.
There are many reasons to do this. One of the numerous advantages of digital signal processing
over analog is that once an analog signal has been converted to digital values, it is generally free
from additional noise. Audiophiles recognize this feature when playing their CDs. The music is
recorded digitally and is converted to an analog signal for playback. Dust and dirt do not cormupt
the digital signal as with LP records or audiotape. Another reason for converting to the digi-
tal domain is that once signals have been digitized, they can be manipulated by the computer.
often to produce effects that are unachievable by means of analog signal processing. In medical
imaging, computerized tomography. or CT, scans are produced by manipulating digital images.
Today, we are seeing a great migration away from analog delivery of information. Digital tele-
vision and digital telephone services are now readily available. With the increased availability of
broadband networks, such as optical fibers, even more digital data will be at our fingertips.

Digitizing signals does have drawbacks. We can never exactly represent or reconstruct the
analog signal. There will always be some error, but it can be minimized with good system
design. A digitized signal, when transmitted over a communication channel, requires a greater
bandwidth than the original channel. For example, a normal analog voice telephone circuit
channel requires a bandwidth of about 4 kHz. The equivalent digital channel is 64 Kbiv'S. The
extra bandwidth is justified by the ability to enhance the signal, to repeat it over long distances
without degradation, and by the opening of the communication channel to other digital services
such as data transfer between computers
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This chapter covers analog-to-digital (A/D) and digital-to-analog (D/A) conversion. We
will learn how to specify a converter for a particular application and how a variety of A/Ds and
D/As work.

13.2 Data Acquisition and Conversion

Figure 13-1 shows a data acquisition system to input analog data. It receives analog informa-
tion from a physical variable, such as temperature, and uses a rransducer to convert the infor-
mation to an electrical signal, either voltage or current. Following the transducer is a block
labeled signal conditioning to provide the following functions:

Amplification: Rarely does the transducer produce the voltage or current needed by the A/D.
The amplifier is designed so that the full-scale signal from the analog input results in a full-
scale signal to the A/D.

Bandwidth limiting: The signal conditioning provides a low-pass filter to limit the range of
frequencies that can be digitized. To understand why this is so, we will consider the sampling
theorem and learn about aliasing in Section 13.3.

Isolation and buffering: The input to the A/D may need to be protected from dangerous voltages
such as static discharges or reversed polarity voltages.

An analog multiplexer follows the signal conditioning in applications that call for the digiti-
zation of several analog inputs. This computer-controlled switch allows multiple analog inputs,
each with its own signal conditioning for different transducers, to be switched into a single A/D.
The CPU generates an address on the multiplexer select lines to select the multiplexer channel.

Data Acquisition System Operation

The operation of the system shown in Figure 13-1 can be described as follows.

~«— External to the Microcontroller —»—€——————— Inside the Microcontroller ——————

Physical
Signal

Trans- Signal

Three- n-bit
Analog-to n r

Sample- State Digital
and-Hold = Digital [ e

ducer Conditioning o e Input Output

Interface Data
A A

Oties { Three-State
Analog Enable
Inputs
5 End Of_
Convert

Start_
Convert

Analog
Multiplexer

Sample

Multiplexer
Address

)

Figure 13-1 Data acquisition system
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» The program selects the analog signal to be digitized by outputting an address to the
analog multiplexer.

* As we will discuss shortly, a sample-and-hold circuit may be needed to hold the
analog signal constant while the analog-to-digital converter is working. In such
cases, the program asserts the sample signal to take a quick snapshot of the analog
signal.

+ Following the sample-and-hold action, the program asserts the Start_Convert signal to
start the A/D.

*  When the A/D finishes the conversion, it asserts the End_Of_Convert signal. which
allows the program to input the data through the three-state input interface.

Let us define some of the terms you will encounter as you learn about the analog-to-digital
conversion. We begin with a fundamental concept and illustrate it in Example 13-1.

Resolution: The resolution is the smallest change in the input analog signal that will produce
a change in the output digital code:

Resolution is also stated in terms of the number of bits in the output digital code, or as
one part in 2". Sometimes the resolution is given as a percentage of maximum or full-scale
value:

V ioiee = — X 100% of full-scale value

ra

Example 13-1 A/D Resolution

An 8-bit A/D converter is to digitize a 5 volt. full-scale signal. What is the resolution?

Solution

The resolution is 5/256 = 19.5 mV. Another way of stating the resolution is | part in 256, or
0.4% of the full-scale value

Additional definitions follow.

Accuracy: Accuracy is often confused with resolution. Resolution relates the smallest signal
(or noise) to the full-scale value. Accuracy relates the smallest signal to the measured signal.
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Figure 13-3 Sinusoidal waveform sampled at twice the signal frequency. Figure 13-4 Sampled waveform.

the problem that digital signal processors must solve when reconstructing a waveform from 15
sampled data, is this: ‘

|
Given the two samples A and B as shown in Figure 13-4, find a sinusoidal waveform to fit. U ; 7 \ - N
You may adjust the frequency, the amplitude, and the phase, and you may assume that when (eSS s X f(t) ‘/ \\ fi()
the samples were taken, the sampling criteria were satisfied. That is, there are no frequencies / e \ S /
higher than halff,,, . 0.5 7 T \\“ 5
/ Sho
By observing that the two samples are equal in magnitude and opposite in sign, we can con- k= ) \ /’~\
vince ourselves that the frequency we are trying to reconstruct is foump/2- By adjusting the ‘\ JEPE
amplitude and the phase, we can find the correct solution f{1) = X sin 2n(f,,e/2)t = X sin 2nf 1. \ /
If there are more than two samples per period, the reconstruction is easier. We conclude that in -0.5 \ / .
digitizing signals according to Shannon’s sampling theorem, the input signal can be recon- \ /
structed from the digital values. ‘ \ R
Now consider the following scenario. Assume that we are sampling g 4\7
Signals that are undersampled cause | the input signal at the sample frequency -f;..mu- and that the signal f(f) =
aliasing. Y'sin 2nf, . t (Figure 13-5 solid line), which is a little higher in frequency

than (1), is present. Because f,(1) is undersampled, that is, not sampled -1.5- g

fast enough, our digital signal processor has a dilemma. The digital values are again A and B,
equal in magnitude and opposite in sign. Working only from the digital values, the digital signal
processor must assume that the sampling criterion has been met, and so f{7) is reconstructed, not
£,(1). This is an example of aliasing. The second signal, f,(1) is higher frequency than f__ /2

: = L i 3 ample’ <
and undersampling a waveform makes it appear as if it were a lower frequency. The mgnalfl(r)

Figure 13-5 Undersampled waveform.

signal. The signal conditioning stage in Figure 13-1 must contain what is called an antialias-
ing filter, to pass only low frequencies and attenuate frequencies above one-half the sampling

is an alias for f(t), and this causes an error in the signal reconstruction. To avoid aliasing in
all A/D converters, the sampling frequency must be at least twice the highest frequency in the

frequency. The maximum frequency that one can sample without aliasing, f_ /2, is called the
Nyquist frequency. See Example 13-3.
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Example 13-3 A/D Conversion Time

An A/D converter has a conversion time of 100 ps. What is the maximum frequency that can
be converted without aliasing?

Solution

The maximum sampling frequency (10 kHz) is the reciprocal of the conversion time. The max-
imum signal frequency that can be converted is 5 kHz.

13.4 A/D Errors

The quantization error; the fundamental error in A/D conversion, is due to the resolution of the
converter; it can be no less than =0.5 LSB. Quantization levels are illustrated in Figure 13-2,
where the output code changes at discrete levels and are at best within 0.5 of the A/D reso-
lution of the true value.

There are three other sources of errors in A/D conversion. These are noise, aliasing, and
aperture error. We would like all of these to be less than the basic quantization error.

Quantization Error

Figure 13-6 shows a sinusoid and its quantized (digitized) values for a 3-bit quantizer. We can
see that for a given binary value, the actual analog value, is within =0.5 LSB.

Electronic Noise

Electronic noise includes shot noise, quantum effects in electro-optical systems, electromag-
netic interference (EMI), and noise induced in the analog electronics by the digital switching
circuits. Figure 13-7 shows a 2.5 V constant signal with additive electronic noise. The peak-to-
peak noise should be less than £0.5 least significant bit (LSB).

Aliasing Noise

We discussed aliasing as an error created by undersampling in connection with Figure 13-5.
Aliasing can be considered to be a noise source because when it occurs, the digital values from
the A/D will not accurately represent the actual analog value. Since these effects are difficult
to quantify, you must include effective low-pass filtering to eliminate frequency components
above the Nyquist frequency.

Aperture Error

A significant error in a digitizing system is due to signal variation during the time the sig-
nal is sampled. This period, called the aperture time, limits the maximum frequency that
can be sampled. Aperture error is shown in Figure 13-8, where the signal is changing when
the aperture is open. A good design will attempt to have the uncertainty Av be less than one
least significant bit. We can derive a design equation for the aperture time 1, in terms of the

4.5

3.5
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Figure 13-6 Quantized sinusoid.

maximum signal frequency f__and n, the number of bits in the A/D converter, by observing
the following:

V(1) = Vo, Sin 271 f

max

Av =277 £, Virsx€OS 27 fronet) AL =20 £, Vira COS (2 froge )ty
for 1 = 0 (worst case slope)
Av =27 [, Ve,

max " max“ap

and for Av to be less than one LSB,

Av 1
=— =27 frul
K P
Vo 2"
Solving for the aperture time, we write
1

b
0 Dagf o
The maximum frequency that can be converted with aperture errors less than £0.5 least
significant bit is given by
1

2 9
_TT!W-

Jos =

Table 13-1 shows this effect. See Example 13-4.

$
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Figure 13-8 Aperture time error.
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Example 13-4 Aperture Time
A | kHz sinusoidal signal is to be digitized to 8 bits.

(a) Find the maximum conversion time that can be used and still avoid aliasing.
(b) Find the aperture time so that the aperture error is less than = 0.5 LSB.

Solution

(a) There must be at least two samples per period; so the maximum conversion time is
0.5 ms.
(b) The aperture time is

t,, = W@m)(107)(256) = 0.62 s

Sample-and-Hold

In many A/D converters, the aperture time is the same as the conversion time. The A/D is
“looking™ at the signal while it is converting it. In Example 13-4 the conversion time for a
1 kHz signal is 0.5 ms, while the aperture time is 0.62 ps. The aperture time is the more restric-
tive specification; it would be much more expensive, however, to buy a converter with a con-
version time of 0.62 ps just to satisfy the aperture time requirements. A sample-and-hold (S/H)
circuit, also called a track-and-hold circuit (Figure 13-9), was included in the design shown in
Figure 13-1. Such a circuit can achieve the short aperture time while allowing a less expensive
converter to satisfy the conversion time.

Table 13-1 Effect of Aperture Time

e n i

1 ps 8 622 Hz

1 ps 10 155 Hz

I ms 8 0.622 Hz

1 ms 10 0.155 Hz

1 ns 8 622 kHz

1 ns 10 155 kHz

1 ns 12 38.9 kHz
Analog Held
Input Analog

l‘ Signal
Sample A
C

Figure 13-9 Sample-and-hold circuit.
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Choosing the A/D Conversion Time

The A/D conversion time is chosen by considering potential signal aliasing. The highest fre-

13.5 Choosing the A/D Converter

The designer must choose the number of bits, or resolution, and the speed, or conversion quency component in the signal must be sampled at least twice in a period. A design equation
time, of the converter. The type of digital code output from the converter may be chosen. The for conversion time is given by

aperture time must be calculated and a decision made to include a sample-and-hold and an
antialiasing filter in the system.

A/D conversion time =

< J max

Choosing the A/D Resolution See Example 13-6.

There are two ways to find the resolution needed in the A/D. The first is to find the dynamic
range of the input signal and to choose the number of bits based on this. The dynamic range
of any signal is given by

Example 13-6 Choosing the Conversion Time

Dynamic range = ‘”i Find the maximum conversion time for an A/D converter to digitize the following signals:
e | kHz sinusoid, 1 Hz sinusoid, 1 MHz sinusoid, a video signal with a bandwidth limited to
. - 5 = . . " o SM
where V_is the maximum input signal and V., __is the noise. We would like the noise to be M
within =0.5 LSB, as shown in Figure 13-7, and for this to be true, the number of bits is :
Solution

1 kHz — 500 ps: 1 Hz — 500 ms; | MHz — 500 ns; 5 MHz video — 100 ns

Vv
N=log,—

noise

This is the best one can do unless signal processing, such as averaging, can reduce the
noise.

Another way to choose the number of bits is based on the resolution required in the signal. Choosing the Output Code
Here, V. is the required resolution, and it determines the number of bits by means of the fol-

lowing relation (see Example 13-5): The output code may be chosen at the time of specifying the A/D. Different codes are available.

depending on the input signal. For unipolar devices, unsigned binary or complement binary
codes are available, as shown in Table 13-2.

N = log, ™=~ A bipolar-input A/D must encode negative and positive signals. Table 13-3 shows a variety
v ~ .
Viin of coding schemes.

Choosing a Sample-and-Hold

Example 13-5 Choosing the A/D Resolution The specification for the aperture time usually requires a sample-and-hold if the signal has any

A transducer is to be used to find the temperature over a range of zero to 100°C. We are required time varying components. A separate sample-and-hold may be used. although some sampling
iy ) 4
to read and display the temperature to a resolution of = 1°C. The transducer produces a voltage A/D converters have the sample-and-hold built in. See Example 13-7.

from 0 to 5 V over this temperature range with 5 MV of noise. Specify the number of bits in
the A/D converter (a) based on the dynamic range of the signal and (b) based on the required

resolution: Table 13-2 8-Bit Binary Codes for Unipolar A/D

Solution Percentage of Full-Scale +10 V Full-Scale Unsigned Binary One's-Complement Binary
(a) The dynamic range is (5 V)/(0.005 V) = 1000. Thus a 10-bit A/D converter is required if the 0 0.000 0000 0000 1

noise is to be < =0.5 LSB. 0+1LSB +0.039 0000 0001 1111 1110

(b) The required resolution is 1°C in 100°C, or 100:1. A 7-bit converter will meet these speci- 25% +2.500 0100 0000 1011 1111
fications. In practice, an 8-bit converter would be chosen in a microcontroller-based system. 50% +5.000 1000 0000 o1t i

The least significant bit can be thrown away or used for signal processing. 75% +7.5000 1100 0000 (LUBRRRE

Full scale - 1 LSB +9.961 1111 0000 0000

$
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13.7 Analog-to-Digital Converter Types

There are a number of analog-to-digital converter types. The one chosen depends on the appli-
cation and on the performance required.

Successive Approximation A/D

Perhaps the most widely used A/D converter is the successive approximation type shown in
Figures 13-11 and 13-12. Each bit in the successive approximation register is tested, starting
at the most significant and working toward the least significant. As each bit is set, the output
of the digital-to-analog (D/A) converter is compared with the input. If the D/A output is lower
than the input signal, the bit remains set and the next bit is tried. Bits that make the D/A output

Analog Digital-to-Analog
Input Converter Ref
Vil kKK i
Comparator + Digital
MSB [ |||+ LSB » Output
Successive
Approximation
Register

Figure 13-11 Successive approximation A/D.
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Figure 13-12 Successive approximation D/A output: solid lines D/A output;
dashed lines, 14.6 V (a) and 2.8 V (b).

Tracking A/D
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higher than the analog input are reset. Setting and testing each bit in the successive approxi-
mation register requires N bit times.

The tracking A/D converter is shown in Figures 13-13 and 13-14. This close cousin of the suc-
cessive approximation converter has an up/down counter controlled by the comparator. If the
input signal is higher or lower than the output of the D/A converter, the counter counts up or
down, respectively. This converter may quickly converge to the correct digital value when the
signal is not changing rapidly. If there are large, rapid input changes, the counter may have to
count through its full range before reaching the final value.

Analog Digital-to-Analog Ref
Input Converter
L G5, W N
Comparator ; Digital
MSB | *|=*|*|*| LSB * Output
Track/ Up
Hold_L Up/Down

Counter

Figure 13-13 Tracking A/D.

el

Figure 13-14 Tracking converter D/A output: dashed line, signal; solid line,
D/A output.
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Sigma-Delta A/D

A popular high-performance A/D is the sigma-delta converter (Figure 13-18). This converter
oversamples the analog signal at a much higher rate, perhaps 64 times higher, than a conven-
tional A/D’s Nyquist frequency. This makes the antialiasing filter much easier to design and
implement without degrading its ability to perform the antialiasing function. The comparator
is a 1-bit digitizer, and for each sample, the preceding sample’s analog value is subtracted from
the current analog input. The final digital filter and decimator performs another low-pass filter
operation. It averages the 64 1-bit samples (in a digital filter) and produces the final N-bit digi-
tal output. This process is called decimation. Decimation trades high-frequency, 1-bit samples
for lower frequency, N-bit values.

13.8 Digital-to-Analog Conversion

Figure 13-19 shows the digital-to-analog converter. Few microcontrollers have an integrated
D/A converter, and so an external device is usually used. A parallel output interface con-
nects the D/A to the CPU. The latches may be part of the D/A, or an output interface like that
designed in Chapter 9 may be chosen. The analog output signal from the D/A is quantized as
shown in Figure 13-6. A signal conditioning block may be used as a filter to smooth the quan-
tized nature of the output. The signal conditioning block also provides isolation, buffering, and
voltage amplification if needed.

Figure 13-19 Digital-to-analog converter.

D/A Converter Specifications

The following concepts are essential for developing D/A converter specifications.

1. Resolution and linearity: The resolution is determined by the number of bits and is
given as the output voltage corresponding to the smallest digital step (i.e.. | LSB). The lin-
earity shows how closely the output voltage follows a straight line drawn through zero and
full-scale.

2. Settling time: This is the time taken for the output voltage to settle to within a speci-
fied error band, usually =0.5 LSB. Settling time is shown in Figure 13-20.

3. Glitches: High-speed D/A converters have glitches as well as settling time problems.

A glitch is caused by asymmetrical switching in the D/A switches. If a switch changes from
a one to a zero faster than from a zero to a one, a glitch may occur. Consider changing the
output code of an 8-bit D/A from 10000000 to 01111111 1. These codes are adjacent, and we
would expect the output to go from one-half full-scale to one resolution value less than that.
However, if the switches can switch faster from a one to a zero than from a zero to a one, the
output code will go through a transitory state sequence 10000000 to 00000000 to OLTLLILL
This results in a short but sometimes noticeable glitch in the output signal. (Figure 13-21).
Glitches are especially noticeable in video displays.

D/A converter glitches can be eliminated by following the D/A with a sample-and-hold, as
shown in Figure 13-22. The S/H is strobed to sample the data after the glitch has occurred and
after the D/A settling time.
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Figure 13-24 Voltage-to-frequency A/D conversion.

13.9 Other Analog I/0 Methods

Before closing this analog I/O chapter, let us look at three nontraditional ways to achieve ana-
log input and output.

1. Voltage-to-frequency converters: A voltage-to-frequency (V-F) converter or voltage-
controlled oscillator (VCO), produces an output frequency proportional to the input voltage.
A typical device is shown in Figure 13-24. The counter is set to zero at the start of the con-
version cycle and is read by the CPU a predetermined time later. The number in the counter
gives the digital value, but the microcontroller must wait for the prescribed amount of time,
no more, no less. This technique is good for slowly varying signals or when an average value
over a time is required. If your microcontroller can measure the period of the frequency out-
put from the V-F converter you can eliminate the counter.

2. Pulse-width-modulated analog input: In some cases, the position of a potentiometer
may be the desired information. For example, a user may vary a control parameter by turning a
knob on the front panel. If the potentiometer is not needed for another purpose—say, to control
some analog circuit—it can control the width of an output pulse of a monostable multivibrator.
shows this circuit. The microcontroller must measure the width of the output pulse.

Figure 13-25

3. Pulse-width-modulated analog output: Figure 13-26 shows a pulse waveform. The
pulse width is 7 and the period is 7. When the pulse train is low-pass-filtered with a cutoff
frequency of less than 1/7 hertz, the output voltage is A * /7. Pulse-width-modulated (PWM)
waveforms are frequently used to control the speed of dc motors.
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13.10 Conclusion and Chapter Summary Points

» A data acquisition system consists of transducers, signal conditioning, an analog multi-
plexer, a sample-and-hold, an analog-to-digital converter, and a parallel input interface
to the CPU.

« Transducers convert physical processes to electrical signals.

* Signal conditioning provides isolation and buffering, low-pass filtering, and
amplification.

+ Shannon’s theorem specifies the maximum frequency that can be sampled for a given
sampling frequency.

> To Microcontroller Pulse-
+ Width Measurement
Monostable

Trigger
Input

Start_Convert

Figure 13-25 Analog input with pulse-width modulation.

- t '4_ Figure 13-26 Analog output with

A pulse-width modulation.

Pulse - Width

. Low- DC Analog
Modulation »! Pass »Output =
OUtpuiirom Filter AT

Microcontroller

* The maximum frequency that can be sampled, called the Nyquist frequency. is equal to
one-half the sampling frequency.

* Anundersampled waveform can cause aliasing.

+ Aliasing causes errors in the digitized values.

* Other error sources include electronic noise, aperture error, and quantization ermor.

* Inawell-designed system, all noise sources should be less than the quantization error.

* The successive approximation A/D is probably the most common.
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The tracking A/D can quickly respond to small changes in the input but requires more
time for large changes.

A dual-slope integrating A/D should be used where there is periodic noise, such as 60
Hz line noise.

Parallel and two-stage parallel A/D converters have the shortest conversion time and
are used for high-speed applications.

The number of bits determines the resolution of an A/D.

The aperture time is the most restrictive specification, and a sample-and-hold is gener-
ally used to meet it.

Digital-to-analog converters have a settling time specification. This is the time taken
for the output to settle within 0.5 LSB of the final value.

High-speed D/A converters may have glitches in the output caused by asymmetrical
switching.

13.11 Problems

Explore

w

W W W W
b B W o

Stimulate

13.6

1339

Briefly explain the following terms: aperture time, conversion time, aliasing, Nyquist
frequency. [a]

What is Shannon’s sampling criterion? [a]
How does a successive approximation A/D converter work? [a]
How does a dual-slope A/D converter work? [a]

How does a flash converter work? [a]

A 10V (maximum) signal is to be digitized to a resolution of at most 0.01 V. How
many bits are needed in an A/D converter to do this? [b, ¢]

The A/D converter conversion time is 100 ps. What is the maximum frequency that can
be digitized without the occurrence of aliasing? [b, c]

An A/D converter is required to digitize a | kHz sinusoidal waveform. What is the
maximum allowable conversion time for the A/D? Assume that a sample-and-hold cir-
cuit is being used to give the correct aperture time. [b, ¢]

An A/D converter is to digitize a 10 V full-scale signal to a resolution of 1 part in
1024. [b, c]

a. How many bits are required?

b. When a 9V signal is being digitized, what is the accuracy of the measurement?

¢. What is the accuracy when a 1 V signal is digitized?

Challenge
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13.10 A transducer is to be used to find the temperature over a range of —100 to 100°C. We

13.11

Reflect on Learning

are required to read and display the temperature to a resolution of =1°C. The trans-
ducer produces a voltage from —5 to +5 V over this temperature range with 5 mV of
noise. Specify the number of bits in the A/D converter based on (a) the dynamic range
and (b) the required resolution. [b, c]

For an A/D converter, specify (1) maximum conversion time, (2) number of bits, (3)
cutoff frequency for the antialiasing filter, and (4) the aperture time to digitize each of
the following signals: [b, ¢]

a. =5V peak-to-peak, 5 mV peak-to-peak noise, f =3 kHz

b. 0to 10V peak, 5 mV peak-to-peak noise, f =100 kHz

c. £1V peak-to-peak, 5 mV peak-to-peak noise, f__=1kHz

d. 1V peak RS-170 video signal with maximum bandwidth of 5 MHz with a required
resolution of 1 part in 256

An A/D converter is to be specified for the following measurement: the signal will not
vary during the conversion time; the signal range is 0 to 10 V; there is 1 mV of noise:

when a one volt signal is being measured, the measurement is to be within =0.5% of

the true value; samples are to be taken every second. [b, c]

a. How many bits are required?

b. How would you specify the conversion time and aperture time?

What do you feel is the most significant new information you learned from this
chapter?

Why is it important for designers of analog-to-digital converter systems to understand
Shannon’s theorem?

List five things that you learned about analog-to-digital conversion while studying
this chapter.



Counters and Timers

Objectives
Many embedded applications require a timer to generate waveforms of a specific frequency, to
time external events, to count events, and to generate interrupts at specific intervals. In this chap-
ter we will look at the basic operation of the timer circuits found in modern microcontrollers.

14.1 Introduction

Designers of embedded systems often refer to “real-time” events, or real-time control. Real time
does not mean time in hours, minutes, and seconds. Instead, the term usually refers to gener-
ating time intervals to create waveforms of a specific frequency for driving stepper motors,
for example, or for generating interrupts to acquire data from an external source such as an
analog-to-digital converter. The timer module in your microcontroller can do the following
functions:

» Generate accurate timing signals and waveforms.
¢ Measure time intervals.
» Generate interrupts at specific intervals.

O Cuplurc and count external events.

14.2 The Timer/Counter

The Timer Overflow

The heart of the timer module is actually a counter, as shown in Figure 14-1. A programma-
ble (in some microcontrollers but not in others) divider or prescaler reduces the bus clock
336
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TOF
8/16-Bit Input Reset
Bus Clock T
Counter
Clock
Timer Programmable o .
Enable Divider 8/16-Bit Counter
8/16 Timer To Interrupt
Overflow Circuit
Interrupt
8/16-Bit Output Enable
Global
Interrupt
Enable/Disable
(a)
Timer Enable
Counter | 0x0000 « -+ - oxFFFF] 0x0000 - + + OxFFFF| 0x0000
TOF |
TOF Reset |—I I L
(b)

Figure 14-1 A16-bit timer/counter. (a) Timer overflow. (b) TOF timing.

The heart of a timer system is a

counter.

frequency to increment an 8- or 16-bit counter. The counter is free run-
ning and counts from 0x0000 to OxFFFF. When it reaches the maxi-
mum it rolls over (overflows) to 0x0000 and sets a hardware bit called

the timer overflow flag (TOF). Your software must enable the timer by
setting the timer enable bit, and it can either poll the timer overflow flag or use the flag to
generate an interrupt. You can also read the 8/16-bit counter output. The timer overflow gives
us our first level of (fairly crude) timing intervals. See Example 14-1. After the timer over-
flow flag has been set by the hardware, you must reset it in your software. Each microcon-
troller will have a different way to do this. Figure 14-1b shows the timing sequence for timer
overflows.

In another version of the basic timer function, you are allowed to initialize the 16-bit counter
with a value. Then, when the timer enable bit is asserted. you will have a fixed time given by
the count and the counter clock frequency to wait until the TOF is set.

Figure 14-2 shows yet another version of the basic counter: here the timer overflow flag
reloads the counter from a register. This feature is very useful when you are generating square
waves. Another vanation in the basic timer that some microcontrollers offer is the ability t©
allow the counter to count up or count down.

*
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8/16
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Clock A Flag
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sne Timer
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Figure 14-2 Automatic reload counter. (a) Hardware design. (b) TOF reload timing.

Example 14-1 Timer Overflow Intervals

Calculate the time intervals between timer overflows for a 16-bit counter like the one shown in
Figure 14-1, assuming the following counter clock frequency input to the counter:

(a) 8 MHz

(b) 4 MHz

(c) 100 kHz

Solution

(a) 2'9/8 x 10°=8.192 ms
(b) 16.384 ms
(c) 0.65536 s
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Timer Output Compare

The timing resolution offered by the timer overflow shown in Figure 14-1
may not be accurate enough for your application. We can add hardware
to the basic timer/counter to improve this, as shown in Figure 14-3. A
16-bit comparator and a comparison register are added.

Better timing resolution can be
achieved with an output compare
circuit.

Bus Clock
Counter
Timer Programmable s
Enable Divider —F*‘ 16-Bit Counter To Interrupt Circuit
16 16 COF Reset
To the Program ~——/——— Tawisee
A Flag
16-Bit A S
Comparator To Interrupt Circuit
his
Y
From the Program i Comparison
g Register
(a)
Timer Enable
Counter XOxOOOO LR OxaFFFXOx-tOOO' LR 0x7FFF10xaoooo . °0xBFFFl 0xCO00 * » » O FFFFlc 0
Comparison
Register I 0x4000 I 0x8000 1 0xC000 1 0x0000 l 0x4000

ML [

COF Reset I [ 1 M
TOF B =

TOF Reset L

(b)

Figure 14-3 Timer output compare. (a) Hardware. (b) Output compare timing.

R
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The timing diagram in Figure 14-3b shows how the output compare circuit works. The
comparison register is initialized to 0x4000, and when the counter reaches this value, the
comparison flag, COF, is set. The program detects this, either by polling the bit or with an
interrupt, and then changes the comparison register to the new value, 0x4000 clock cycles
away (0x8000) and resets the COF bit. Each time the comparison is made, the next compari-
son value is written and the COF reset.

This hardware can generate time intervals to the accuracy of the counter’s clock. Any time
delay (up to the maximum of 2'® counter clock cycles) can be added to the current value
of the 16-bit counter and stored in the comparison register. After the comparison flag has
been reset, your program can wait for it to be set again to accomplish the required delay. See
Example 14-2.

Example 14-2 Using a Timer/Comparator to Generate Time Intervals

Give pseudocode showing how to generate a delay equal to 1000 16-bit counter clock
periods.

Solution

Timing External Events

Figures 14-4 and 14-5 show two ways to time such external events to
give, for example, the duration of a pulse or the period of a waveform.
The first, Figure 14-4, is a gated clock counter. The counter can be reset
by the program, after which an external signal, whose pulse duration is
to be measured, is gated through to the counter after the Enable_Count signal is asserted. The
external signal may be either a positive or a negative pulse as selected by the High_To_Count

A gated clock counter or an input cap-
ture latch can time external events.

bit. The counter increments for each counter clock pulse while the counter enable is asserted.
The hardware can set a gated counter flag (GCF) or generate an interrupt so your program can
read the value in the counter when the external signal is deasserted. Figure 14-4b shows a tim-
ing diagram. See Example 14-3.

In a typical input capture system (Figure 14-5), the rising edge, falling edge, or both
edges of the external signal latch the current 16-bit counter value into a 16-bit latch. An
interrupt can be generated, and the program can read the latch value. Two successive
captures allow you to calculate the length of the pulse or period. See Figure 14-5b and
Example 14-4.
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Figure 14-4 Gated clock counter. (a) Hardware. (b) Timing.

Example 14-3 Measuring a Pulse with a Gated Clock Counter

Give pseudocode showing how to find the time that the external signal in Figure 144 is high.

Solution

$
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Figure 14-5 Timing input capture. (a) Hardware. (b) Timing.
Example 14-4 Measuring the Period of a Waveform
Give pseudocode showing how to find the period of the external signal in Figure 14-5.
Solution
/* der f rogrammable bu lock divider */
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Load Accumulator

16
Accumulator
Overflow Flag
External ==
-Bi - -
Signal ——{16-Bit Accumulator AOF To Interrupt Circuit
16

AOF Reset

Read Accumulator

Figure 14-6 Timer pulse accumulator.

Counting External Events: Pulse Accumulator

Figure 14-6 shows a timer accumulator that counts pulses on the external signal. The accumulator
can be initialized with a count value, say —24, and then an interrupt can be generated when the accu-
mulator overflows. Your program can also read the accumulator to keep track of the count value.

14.3 Pulse-Width Modulation (PWM) Waveforms

Pulse-width modulation waveforms are used in many embedded appli-
cations. For example, a PWM waveform can control the speed of a
dc motor. Figure 14-7 shows a pulse-width-modulated waveform. Two
time intervals must be specified and controlled. These are the period

If PWM hardware is included in the
microcontroller, you can generate
PWM waveforms with no software
overhead.

(1) and the time the output is high (7, ). A term that describes a
pulse-width-modulated waveform is dury cycle. Duty cycle is the ratio
ofr, tor andis usually given as a percentage:
duty period 4 & <
I
Duty cycle = —2-X100%
oetion
You can generate a PWM waveform by using the timer/comparator hardware shown in
Figure 14-3. Your software must keep track of the delay — the number of clock cyeles it must
wait until the next change in the output.
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DS3234 14.4  Assuming a 2 MHz counter clock frequency, what is the interval between timer over-
Real-Time Clock V) flows in Figure 14-2b? [b)
MASTER IN/SLAVE OUT 19
MISO = DOUT 14.5 Assuming a 2 MHz counter clock frequency, what is the period of the external signal
SPI SLAVE SELECT ¥ vl | I in Figure 14-5b7 [b]
St ASTER OUT/SLAVE IN e & ; .
M ] -
MOSI e »—1"1 DIN 14.6  Explain why the timer/counter comparison circuit in Figure 14-3 can wait for a com-
SHIFT CLOCK 18 0.1 uF arison up to 2'® counter clock cycles away even though the counter overflows and
SCK > SCLK p
resets to zero when it reaches the maximum count. [a, b]
INT_Usaw}=2 CPU Interrupt Request

147 A timing circuit is needed that can generate a time delay longer than 2'® counter clock
cycles of the timer/counter comparison circuit shown in Figure 14-3. Use pseudocode

B 1 B ESED i i
CPU Reset EC to describe a strategy to do this.

VBaTi

NC s — Backup
Battery Challenge

14.8  Write a pseudocode program that could generate a PWM waveform that uses the
A timer output compare circuit shown in Figure 14-3. [c]

149 Write a pseudocode program to implement a real-time clock with binary coded deci-
Figure 14-9 Real-time clock with SPI interface. mal output, assuming a timer output compare as shown in Figure 14-3. The clock is to
display hh:mm in 24-hour format. [c]

14.10 What might occur during use of the gated clock counter shown in Figure 14-4 that
would give you an erroneous value for the duration of a pulse? What strategy could
you use to guard against this problem? [b, c]

+ When PWM hardware is added, PWM waveforms can be automatically generated
without software overhead.

+ To keep track of hours, minutes, and seconds (“real” time), you can add a real-time 14.11

A Assume you are to use the timer in Figure 14-2 to generate a 50 Hz square wave.
clock circuit.

Assume that the bus clock is 8 MHz and the programmable divider factors are 1. 2, 4,
8, 16, or 32. Write a pseudocode design that will allow you to output required square
wave. [c]

14.6 Problems

14.12 For Problem 14.11, what limits the highest frequency you can generate with your
strategy? What limits the lowest? [a, b]

Explore :
P Reflect on Learning
14.1 Usi eb-based s h tool, make a lis anufacturers of real-ti c i . g e < <
Chsimgg TR R s e S L s L B st 14.13 Make a list of as many applications as you can think of in which one of the timer
ps- circuits described in this chapter would be useful.
14.2 Assume the bus clock in Figure 14-1 is 8 MHz and that your choices for the program- AR A a g - s
mable divider are to divide by 1, 2, 4, 8, 16, or 32. [b, c] 14.14 List five things you learned about timers in this chapter.
a. For each of these divider values, find the period of the counter clock.
b. For each of these divider values, find the period of the timer overflow, assuming an
8-bit and then a 16-bit counter.
Stimulate

14.3 Describe how to use the timer/counter circuit in Figure 14-2 to generate a 10 kHz square
wave. Assume a counter clock frequency of 8 MHz. [c]
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Objectives WgrtircT:a:rog
The single-chip microcontroller you use in an embedded system must be connected to the
outside world to be useful. In earlier chapters we covered a variety of the 1/0 capabilities such Figure 15-1 Atmel ATtiny261 microcontroller.
as the analog-to-digital converter and serial and parallel I/O. This chapter will give examples
showing how to connect external devices such as keypads, LCD displays, LEDs, and dc and
stepper motors to your microcontroller. Timer s ,6‘ e = g
CPU Core BRREAF e
and System
15.1 Microcontroller Chip I/0 Control IN 8
Basic Timer S
Modern microcontrollers package a variety of I/O devices, such as analog-to-digital converters, =
timers, and parallel and serial input and output interfaces into a single IC chip. Typical exam-
ples of modern microcontrollers are the Atmel ATtiny256 (Figure 15-1), the Texas Instruments Program RN, [ < 2 .
MSP430 (Figure 15-2), and the Freescale Semiconductor Flexis microcontroller (Figure 15-3). Memory Comparator [€—»1<> S
They all contain I/O devices that must connect to switches, LEDs, and so on in the outside (e
world. Typically, the microcontroller’s internal need to connect to external devices is greater < 8
than the number of pins or port bits available. For example, in the case of the Freescale Flexis, Data [l)-riczr </ > 5
there are 178 I/O functions that need a pin, far too many for reasonable size IC packages (the ’\?sz]&? % 55
largest Flexis package is 80 pins). The Freescale designers have chosen to multiplex I/O func- Sl 4 = 8
tions onto the port I/O pins (Table 15-1). Smaller microcontrollers such as the Atmel (24 pins) Peripheral < > 15
and the Texas Instruments (64 pins) devices face similar problems. Real-Time Interface o
Because parallel and serial I/O are built into the microcontroller itself, the input and output Counter
interfaces covered in Chapter 9 do not have to be designed. Connecting the microcontroller to Serial 12‘ oty - 2
external devices is much easier, as we will see in this chapter. 5 E 4 Communications <1< §_
JTAG —~e—> mulation Interface
Module
Microcontroller Initialization

Chapter 7 showed that a C program’s start-up code usually initializes the microcontroller’s hard- Watchdog

ware before it begins to execute your program. Typically the stack pointer register is initialized Timer

to point to RAM, and a watchdog timer that will allow your program to recover if it gets lost may

be started. In C programs the start-up code also may initialize RAM data areas with zero. Figure 15-2 Texas Instruments MSP430 microcontrolier.
348
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I 14‘ — Before we can use the microcontroller’s I/O ports, we must set them up for use. Often the I/O
CPU Core Two 3-Channel [~ 7 7| o <é 8 port is bidirectional; that is, it is capable of operating as an input or output port. Bidirectional
and System Timer/PWMs | A e 7~ ports are initially configured as input ports when the microcontroller is reset. In some micro-
Control 3 p— controllers, you may choose to control the direction of individual bits in the port. In these
(HCSQB or Two Analog 7> m 8 bidirectional ports, a data direction control register must be initialized to set the direction of
ColdFire V1) Comparato?s A nsals - its associated data port.
[ i All the internal devices in the microcontroller—timers, analog-to-digital converters. serial
Program e L= ,,z= il ? 5 1/0 interfaces, and so on—require initialization before they can be used.
’\(A;S‘S%? Modules |/ 5 P :? 7
7 el & 15.2 Simple Input Devices
Data 6-Channel = | g/ gl 3| € | ; . : sq
Memory Timer/PWM o The 1/O interfaces shown in Chapter 9 and a microcontroller’s integrated ports can connect
(RAM) — parallel devices to the system buses. Let us look at some simple devices that use these ports.
S;-zrial 44; Fak ué 8
Real-Time F;ﬁ{ﬂgg Neaamia s Input Switches
Eotnter Serial 2 o) 8 The switch is the most basic of all binary input devices. Figure 15-4a shows a single-pole.
Communications <~/ £ l<rf» single-throw (SPST) switch and a pull-up resistor. The switch output |< high or low depending
BKGD ~<—> Background Interface a on the switch position. Figure 15-4b shows a multiple pole, rotary switch. Pull-up resistors are
Debug — necessary for each of these switches to provide a high logic level when the switch is open. The
24-Chaqnel, ,21 e o S input ports in most microcontrollers often have an internal pull-up resistor on all inputs; in such
Watchdog 1;8“ /s § = cases the external resistors are not qceded. but you may ne'ed to enable them on some ports.
Timer 8 — Check with your microcontroller reference manual for details of the port you are using.
Two 8-bit gt G 8 A problem with all switches is switch bounce. When a switch makes
Keyboard <> T [ The switch bounce problem must be | CORtact; its mechanical springiness will cause the contact to bounce, or
Interrupt | 8 et i " L l,“ o e *“| make and break, for a few milliseconds, as shown in Figure 15-4c. In
Modules /> = solved if you are using mechanical el , T EaBL ; T
= 5 Switohes: some cases, you may o_bser\e SW itch bounce when the W itch is opene(!.
<> T |t If a program is counting switch closures and the software is fast, it
a may count several bounces and thus return more counts than are real.
T Depending on the application, therefore, switch debouncing may be necessary. There are sev-
Figure 15-3 Freescale Flexis microcontroller. eral software and hardware methods to debounce switches.'
Software Debouncing
Table 15-1 1/0 Functions Multiplexed on Port A by Freeescale Here are two strategies for debouncing a switch in software. The first may be called “wair and
— R see.” Switch bouncing usually l;l:\l,\‘ onl}' Sto 10 ms. If the software deteFts a low logic le‘vel.
indicating the switch has closed., it can simply wait for longer than the switch bounce duration.
0 Port A Bit-0 Keyboard Interrupt 1, Bit-0 Timer 1, Ch 0 A/D Ch 0 Analog Comparator 1+ say 20 to 100 ms. Another approach is an integrating debouncer, which debounces both switch
1 Port A Bit-1 Keyboard Interrupt 1, Bit-1 Timer 2, Ch 0 A/DCh | Analog Comparator |- closing and opening. We initialize a counter with a value of 10 and, after the first logic low
2 Port A Bit-2 Keyboard Interrupt 1, Bit-2 1IC 1, SDA A/D Ch 2 level is detected. poll the switch every millisecond or so. If the switch output is low, we dec-
3 Port A Bit-3 Keyboard Interrupt 1, Bit-3 IIC 1, SCL A/DCh3 rement the counter. If the switch output is high, we increment the counter. When the counter
4 Port A Bit-4 Background Debug Mode Select Analog Comparator 1 Out reaches zero, we know that the switch output has been low for at least 10 ms. If, on the other
5 Port A Bit-5 Interrupt Request Timer I, clock Reset_| hand. the counter reaches 20, we know that the switch has been open for at least 10 ms. The
6 Port A Bit-6 Timer 1, Ch 2 A/DCh§
7 Port A Bit-7 Timer 2, Ch 2 A/D Ch9
- = For a good review of switch bouncing and hardware and software methods for debouncing, see Jack G. Ganssle. A
Guide 1o Debouncing (2004), hup//www.ganssle.com/debouncing. pdf.
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V[)D IF Count
VoD
Pull-up resistors ) L
/ R typically 1-10kQ > ENDIE
Logic high with =

switch open — Example 15-2 C Program Debouncer
SP_ST Logic low with — Write a C program that implements the debouncer algorithm shown in Example 15-1.
Switch switch closed o > .
Solution
o >
(a) (b)
5to
—» 10ms e
Switch bounce when closing Switch bounce when opening

(c)

Figure 15-4 Switches used for binary input: (a) single-pole, single-throw (SPST) switch; (b)
multiple pole switch; (c) switch bounce.

initial value of the counter is set longer than the expected bounce time. Example 15-1 shows
the pseudocode for this algorithm, and a C program is given in Example 15-2.

Example 15-1 Pseudocode Design for Integrating Switch Debouncer

NITIALIZE Count = 10 int bounce length/2; . :
((Count > 0) and (Count < 20)) e (( count > ) && ( count < bounce length )){
DO o
Delay 1 millisecond lelay X ms(l); :

1
1

Get Switch

I

ncrement Count
ENDIF Switch Closed

ENDO

*
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VDD Example 15-5 C Code for Scanning Switches
A
Pull-up resistors !
typically 1-10kQ :
!
S0l e :E 10
$1 4o—"0 >i 11
3 L= > 2 74HC151
S3 $o—"0 >E 13 Muslt::I;xer
84 40— 0 :E 14 -
S5 {o—"0 :E 5
S6 40— o >~ 16
S7 40— 00— =; 4
| E
! S2 S1 S0
/;7 |
i

Select inputs
from output port

Figure 15-6 Linear array of switches.

Example 15-4

For the linear array of switches in Figure 15-6, give a truth table showing which switch is read
for each scan code output by the processor.

Solution

Scan Code Switch Scan Code Switch
000 SO 100 S4
001 S1 101 S5
010 S2 110 S6

011 S3 111 ST




B
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== s A ~a
//// \\\\\
} /'/ N
return( switch data ); ,/'No connection \\
} ’ N
/ )
! \
i \
t 1
Explanation of Example 15-5 \‘\ ,,'
A three-bit scan code is output on Port T, bits 2-0. For an MC9S12C32 microcontroller, the ‘\\ ,’,
port dill.‘d dx_rccmm register I.nll.\’l be mnmh/_cd 50 that 1hc:sc bits can be used as outputs. B'ccause v ‘\\\\ // Switch connects vertical
an '..lp]')hl.'i‘lllﬂll might be using the other blll.\ in Po.rl."l" lfvr some other use, we would |‘|ke the DD \ \\ / and horizontal traces
initialization code to modify only these bits. The initialization code shows us that ORing the AT SE
current value of the port (*p_DDRT) with 0x07 accomplishes this. Similarly, when outputting T \ s ,_——":/
the 3-bit scan code on Port T, we read the port data first, reset bits 2-0, and then add in the cur- \ o
rent scan code (port_data ). Each time we read the multiplexer Pull-up resistors é\ é 7
we shift the last reading lef _da h_data) and then OR it with 0x01 may be internal = f'_\"\ a2 e
if the output of the multiplexer is 1. in Port AD Row 3 L_1J Lij Li,l L_,i,l PAD-0
A e, 2 S
[Btatinad Grayhill R°W2L : L d tﬁJ LEJ Ve :
A keypad is an array of switches arranged in a two-dimensional matrix as shown in Figure 4x4 Keypad (I G ) Gl RS € PAD-2
15-7. A switch and a diode connect each intersection of the vertical and horizontal lines as ol L LEJL : L e
shown by the blow-up view, and closing the switch connects the horizontal line to the vertical. [ W ) D ¥ 4 o 1) — PAD3
You can connect a 4 x 4 keypad directly to four output and four input bits. For Port AD, bits Row 0 :J L 0 LLJL D Port AD
3-0 are outputs and bits 74 are inputs. Software can scan the keyboard by outputting the 4-bit g
“ring” counter code as shown in Table 15-2 and then, for each of these codes, reading the val- 5 5 7 8 PAD-4
ues on input bits PAD7-4. The combination of the 4-bit output and input scan codes identifies Col 3|Col 2|Col 1 Col 0
which switch is closed. A lookup table can then convert the 8-bit code to a more convenient PAD-5
code, such as the ASCII character code, for the hexadecimal keypad. See Example 15-6.
A problem that occurs when a keypad user hits more than one key at once, or rapidly rolls a PAD-6
finger from one key to another. is called n-key rollover. Keyboard interfaces commonly provide
PAD-7
Table 15-2 Keyboard Scanning Codes Figure 15-7 A 16-key keypad.
Values Input on P7 P6 P5 P4
Outpieaca S P o 1’ P M !‘nr t u-kg) r_ollm'cr. T_hu: key b‘?ixrd thrd\\'urc and software store t-he rapidly depressed keys
Valieasn = = in a first-in, first-out (FIFO) buffer for later readout. In an alternative strategy. n-key lockous,
P3 P2 P1 PO Key Pressed only the first or last of the sequence of keys depressed within some short period is recorded.
e T — | SaE *’ﬁ qufmrd encoder ch.ips incmpn‘ruling all thcf scann.in;%. deboquncing. di’xwfies. n-key r?llO\tr.
G {1701 (045) s 4 2 & - and interrupt generation urc‘u\".nlu.blc. A typical chip is the /4(7922‘ Using lhest cl:ups can
eliminate the need for scanning software and hardware and provide a keyboard interface that
Row 1 101 1(0xB) None Iy 8 9 v < k
R oo Noas ) a4 f 5 is 111}1&*!\ L‘;l\u‘l'_h\ implement. ‘ ‘ : :
e i G4 Gl l‘.\;unplf 15-7 shows a keypad input ruulm_c written in C that calls lhe‘ke'\pad scanner of
- s B e Example 15-6. H&I-cuu.\c lﬁc c.odc in Example l)-(_\ does not dcbouqce t.he swuct.\. the C program
L= IE T enters a debouncing routine in case the Key was just pressed and is still bouncing.
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Example 15-6 Hex Keypad Scanner

* 2 1101 |None 4
* 1 1011 |[None 7
AR ORS0TI T None § 0

/4 % &k ok kKKK kR K Kk ok Kok kK Kk kR ko ok ok K K

* ok ok ok ok Kk Kk

Sk kK ke kK Kk Kk

KKk kK Kk ]
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the keys. In this case we have chosen to return the ASCII character code. The definition section
also includes microcontroller-specific definitions for the ports used by the scanner.
The program first initializes the microcontroller’s I/O ports and then scans through the rows
and reads the column codes returned. If no keys are pressed, col code NO_KEYS so the
d des [] array
code that was returned when a kw S was
detected. The index into this array is used to return the ASCII code from the
array. If no match was found, indicating keys in two columns were pressed, the return value

return value is zero (key hit = 0;). If a key ha\ been pressed, the

is scanned, to look for a match for the scan

is zero.

Let us say we press the 9 key. This key is inrow | and column 1. When the row | code (0x0b)
is output, reading Port AD will return where the most significant nibble
(0xd ) the row code (when a port on this
microcontroller is read, the output bits are read too). The scar de byte is used with the two
lookup tables to find the key code. First, the Good Codes [] array is scanned to find a match
The match is found for the index value of 10. This index is then used

for =
to return ( llhn ASCI[ code for 9) from the Key Codes table.

) is the column code and the least ¢

Example 15-7 C Routine to Get a Keycode With Switch Debouncing
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15.3 Simple Display Devices

The most simple display device is a single light-emitting diode (LED). An LED lights when
current of 10 to 20 mA is passed in the forward direction. Figure 15-8 shows how to drive a
single LED. In designing an LED driver, you must determine the output current capability
(sourcing or sinking) of the device turning on the LED. In Figure 15-8a. a low-power Schottky
74L.S04 can sink up to 16 mA but can source only 400 pA. Therefore, by using the inverter,
logic | at the inverter’s input will turn the LED on. The current-limiting resistor. R, is designed
to limit the current through the diode. In Figure 15-8b a latch is used as an output device to latch

/oD o))
Current limiting
R=220Q 1 Bit of Output E;ﬁgt
/\/ 5 VDD == - resistor
ad ldiode i Logic
Logic 1ip Lol DERER, o
1to LED Light )
Light
74L.S04 —1> Clock
Logic Current-
o limiting
Light resistor
74AC04 /\/
LED
(c)

Figure 15-8 Single LED driver circuits
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BcD D —
digit
output
from B —
port

A —

Latch Enable —

MC14513
BCD-to-
Seven-
Segment
Latch
Decoder/
Driver

(P A ] 2

Eaw -t
| i1 b

(a)

Anodes

-

TrreYYy

(b)

Common
Cathodes

Figure 15-9 (a) Common anode seven-segment display. (b) LED showing anodes and cathodes.

Current limiting
resistor network

a

Figure 15-10 Multiplexed LED display.

EA e a el a |4 a 2 a
I I'p b _——— b E———— b fe=——]
PPO —A MC14513 i ic |f bc_f bT b—:fl Ib
PP1—{B Seven- | ! Id S q | < d g d J
pp2 —c Segment T WYY e | N (e e |
Latch -—-:—/W\,—:—e cf—e Cf_ cf—*e c
PP3 —D Decoder/| | i f d L d d | d
pp4 —]Le Driver A ig lo | o Lo | (o= S o | =
o=y
RN330
ooﬁ
74HC139
PP5 — A0 1i0fdl Ol P
PP6 — a1 Decoder/ o2
Demultlplexeb3 =
EGENP
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Is and Os to keep the LED on or off. In Figure 15-8c a 74AC04 with = 24 mA drive capability
can drive the LED connected to the ground. To use an LED in this configuration. you must
make sure that the device can source sufficient current to turn on the LED.

A seven-segment LED display shows numeric characters. LED displays come in two vari-
eties, common anode and common cathode. Figure 15-9a is a common cathode display using
a MC14513 BCD-to-seven-segment decoder/driver. A BCD number is output by the CPU
to the MC14513, and its active-high outputs turn on the appropriate segments to display the
number.

Sometimes more than one display is required. Figure 15-10 shows how to multiplex a
four-digit display by using only one decoder/driver and common cathode LEDs. Four bits
from an output port or a decoder illuminates each of the four digits in turn. The information
on each display is output on the seven segment lines from a port or an active-high. seven-
segment decoder such as an MC14513. This is called a refreshed display, and if each display
is turned on at a greater rate than about 20 Hz. our eyes will not detect any flickering. See
Example 15-8.

If your microcontroller has sufficient I/O lines. you can eliminate the MC14513 in Figure
15-9a and the MC14513 and 74HC139 chips in Figure 15-10.

Example 15-8 C Multiplexed LED Display Driver




368 Chapter 15 / Single-Chip Microcontroller Interfacing Techniques 15.4 Parallel /O Expansion 360

5 ( unsigned int X); /* X millisecond delay */ 8-bit

L output

thousands,BCD hundreds, BCD tens,BCD ones) { port

ke Kk R Kk ok K AR A KA A KA KK KRR AR KKK KA K AR K KK AR 8 8
e 3¢ 3 o e ok ok ek ok ok o ok ok ok ok ok ook o e ok >/ 1{p A a
Latch #0
Clock 8
Hohk Ak K KRR KRR A KK KKK = QL
5 */
rection register bits for output */ 8-bit
/* Set bits 5 - 0 */ ‘PORT AD' output
port
/* Output the thousands digit */ PADO 8 8
nds + DISP_1000; = £ >/ {p =/
A2 A Latch #1
Clock 8
T QL
'PORT T'
PTO &b
-bit
PT1 input
PT2 Hois
8 8
PT3 #2
A
8-bit
= input
15.4 Parallel I/0 Expansion port
8 8
Although microcontrollers have many parallel /O lines, you may have an application that #3
requires more I/O bits or some specialized I/O devices. One solution is to build an expanded
mode system with external address, data and control buses, and external I/O devices; or you

might chose a different microcontroller with more I/O. Figure 15-11 shows another solution
useful for simpler systems without a requirement for high-speed I/0.

One bidirectional port, such as Port AD, can be used to emulate an external bidirec-
tional data bus. Device selection, normally done by decoding an address, can be done in
this case with bits from a second, output port, such as Port T. We saw in Chapter 9 that the
fundamental component of an output port is a latch; for an input port, it is a three-state gate. Expanded I/0 Routines in C
Figure 15-11 shows two 8-bit output latches and two 8-bit input three-state gates. You can
expand the number of these input and output interfaces depending on the number of select

Figure 15-11 Parallel I/O expansion.

signals available in Port T. If more devices are needed, a decoder can be added to the Example 15-9 E ded 1/0 | inG
output on Port T. Examples 15-9 and 15-10 shows modules to use for inputting and output- P R gl

ting data. Write a function to input data from either of the two input interfaces shown in Figure 15-11.
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Solution case 2: {

x/

w

g

PTT &= ~PORT3; /* Ac low enable */
.... PR e port data = PTAD; /* Read the data */
on a v 4
ok Kk KRR Disable the three-state gates */
|= (PORT2 | PORT3):;
urn( port data );
Example 15-10 Expanded |/O Output in C
Write a function to output data to either of the two output interfaces shown in Figure 15-11.
Solution
.“."‘*‘*/ ok ok ok ok ok ok ok ok R R R e R R R R R R R R
* o the expanded I/O port
i g ort ( char data, unsigned char Port Num);
* ) * puts an 8-bit value to the expanded I/O port.
¥ L e d port numbers (Port Num) are 0 and 1

R T
* KRRk KKK [

e

c I/0 ports used on a

KK KKK KK R KKK KK KKk kKK [
)
Fokokok ok ok ok ok koK k ok ok kK

a
\D (*(volatile unsigned char *) 0x0270)

...... KoKk kK KKKk kKKK Kk K [

(* (volatile unsigned char *) 0x0272

............ L

high

PORT3; X =
* fine bits enables and clocks */
L Iy i 3 ,
/ #define PORTO for device 0 latch */
* 11red port * 3 S AT c 3 s 1
I #defi PORT1 for device 1 latch */
i/ ort number 1s gi

PORT2

state enable for device 2 */

tate enable for device 3 */

*
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ek ke ek kK Kk e ek e

ned char

*ok ok kK Kk Kokokk ok ko Rk K )

s high

gnal active and K/

/% Give the 1

)

/* Do a little time */

15.5 Parallel I/0 Electronics

We need some additional design to interface our somewhat fragile electronics to the real,
sometimes cruel, world. We must take care to protect our electronics from overvoltages and
static discharges and to provide signal levels compatible with the logic circuits we are using.
Although good printed circuit board design, shielding, and power supply design are outside
the scope of this text, we present here some simple interface circuits for digital input and
output.

Input Electronics

15.5 Parallel I/O Electronics 373

Figure 15-12 shows a simple input interface. The two 1N4001 (or similar) diodes limit the
voltage excursion on the digital input signal to a maximum of a diode drop higher than V,  and
to a minimum of one diode drop below ground. If the input signal contains high frequencies
with fast rise and fall times, resistor R, can provide an impedance match to the driving circuit.
It may be eliminated for low-frequency signals. The 1 k() series resistor provides some current
limiting and further protection for the microcontroller’s input pin.

Figure 15-13 shows a transient voltage suppression (TVS) diode, also called a rransorb.
This device, which is available in unipolar and bipolar styles, is designed to clamp high-voltage
transients. It operates much like a zener diode but reacts very quickly to high-speed voltage
spikes. The device does have some internal capacitance, which may degrade high-frequency
signals.

Transient voltage protection may not be needed where voltage excursions are not extreme.
For such situations, a rail-to-rail amplifier voltage follower, such as the OPA4344 shown in
Figure 15-14, can be used. The voltage follower ensures that even though the input voltage may

exceed V. the output to the microcontroller will not be greater than this limit.

VbD

1N4001

Digital i
irll?)lu? _To microcontroller
signal input port

Ri 1N4001
Figure 15-12 Digital input.

100 100
Input OW Microcontroller
Transorb Unipolar Bipolar
(a) (b) (©)

Figure 15-13 (a) Transient voltage suppression diode; (b) Unipolar; (c) Bipolar.

¢
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VDD

10 kQ

1kQ
——AMWW\——o Microcontroller

Input

OPA4344

Figure 15-14 Voltage follower.

Current- Pull-up resistor
limiting Typically 1-10kQ
resistor

To microcontroller
input port

-
Voltage
source >

Optocoupler

Figure 15-15 Optocoupler digital input.

Figure 15-15 shows a circuit to use when the input signal is from a high-voltage source.
The optocoupler is a light-emitting diode with a phototransistor. The current-limiting resistor is
designed to provide the correct current for the LED. Notice that there is no physical connection
between the signal voltage source and the microcontroller. This is a big advantage when you
are interfacing to high-voltage, high-power, and noisy circuits. You can use the optocoupler as
an output interface as well by simply turning it around and connecting the LED to the micro-
controller output port.

Output Electronics

Figures 15-16 and 15-17 show how to use a bipolar junction transistor (2N2222) and a field
effect transistor (2N7000) to output digital values. In each of these cases, the output is an open
collector or open drain. If you wish to have a logic level at this output, you will have to add a
pull-up resistor.

Microcontrollers often have to drive relays. Figure 15-18 shows a relay driver using the
2N2222 transistor. Relays often have multiple contacts, some of them normally open (NO)

15.5 Parallel I/O Electronics 375

and some normally closed (NC), where normally refers to the relay not being energized. The
IN4001 clamp diode across the relay coil, an important addition to this circuit, limits the volt-
age spike produced by the coil to one diode drop greater than V when the relay is de-energized.
A voltage spike greater than 100V can be generated in the course of switching off a 12V relay.
Make sure you include the clamp diode in all your circuits that drive an inductive load!

To output
device

Typically 1-3.3kQ

From
microcontroller
output port

2N2222

Figure 15-16 Transistor output buffer.

To output
device
Typically 10-100kQ 2N7000
From G
microcontroller
output port
Figure 15-17 FET output buffer.
vV
NO NC NO NC
1N4001
clamp M . =
diode

Typically 1-3.3kQ
From ypIcaly

microcontroller
output port

2N2222

Figure 15-18 Transistor relay driver.
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15.6 Temperature Measurements

read the temperature at any time by interrogating the chip on the I*C bus. The two address bits,

- : ERRET Ak ; ; : A1-AO0, select up to four devices. With both grounded, the device will respond to address 00.
There are a variety of device for measuring temperature, including thermistors, thermocouples, The [ MOZ can als0 b6 SeriIn o act e T e e TR
and solid-state temperature sensors. Figure 15-19 shows an LM 19 solid-state sensor. When V, e ccanasoe N P 2 e D
: i DD, temperature exceeds a programmable set value. The amount of hysteresis that the temperature

- e . . ~ CId % S b . b SIS
of 2.4 to 5.5 V is applied, the output voltage ranges between 2.4 and 0.3 V for temperatures : : Prog 0% g o P

A < o : H ; e ; can change before the alarm condition resets is programmable as well.

ranging from —55 to +130°C. By following the sensor with an amplifier whose gain, (R, +R,)/

R, is 2, the analog-to-digital converter will see a full-scale voltage of 4.8 V which can conve-
niently be represented by 8 bits.

Figure 15-20 shows an LM92 temperature sensor with an I’C microcontroller interface. 15.7 Motor Control
The chip contains a 12-bit plus sign analog-to-digital converter, and the microcontroller can

Direct-Current Motors

Your embedded application may need to control the speed and direction of a dc motor.
Figure 15-21 shows a common dc motor drive circuit called an H-bridge. Four switches are
R3 = 1kQ used, and although they are shown here as switches, in most applications they are transistors.
To As shown, with switches A and D closed and B and C open, the current direction flows through
A/D the dec motor from left to right, causing the motor to rotate clockwise. Upon opening A and D
and closing B and C, the current direction and the motor rotation reverse. Because the motor
v+ § £ %Ground winding is inductive, and because an induc!Qr generates a voltage to try to keep the current
out flowing (remember V, = L dildt), the clamp diodes are needed across each switch to reduce or

limit the voltage spike that occurs when the switches open.
(b) When an H-bridge is controlling a dc motor, there are five operating states, as shown in
Table 15-3. When switches A and D are closed, the motor rotates in one direction; when B and

LM19 OPA4344

Gnd

VDD
1 v+ Vout
77

Ry = 100kQ R = 100k

o V+
() | <4 ¢
Figure 15-19 LM19 temperature sensor. (a) Sensor with amplifier. (b) TO92 case. | /—I%
VbD :
s B Clamp
\' Diodes

100kQ Il
100k
Interrupt Request T_CRIT_A 5 Dc motor -
% INT Interrupt Request
L v
Al Liee sl Microcontroller I2C
[ sclle———————  Pot

77

Figure 15-20 LM92 temperature sensor with |°C interface.

Ground

Figure 15-21 Simplified motor control H-bridge.
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Table 15-3 H-Bridge Motor Control

A B [ D Motor
1 Open Open Open Open Free wheeling
2 Closed Open Open Closed Rotate right
3 Open Closed Closed Open Rotate left
4 Closed Closed Open Open Braking
5 Open Open Closed Closed Breaking
6 Closed Don’t care Closed Don’t care DO NOT DO!
7 Don’t care Closed Don’t care Closed DO NOT DO!
¢ Duty

"—‘ ! Period ——_‘.{
a)

Average Value

Figure 15-22 Pulse-width modulation (PWM) waveforms. (a) Definition of duty cycle. (b) 50% duty
cycle. (c) 25% duty cycle.

C are closed, it rotates the other. If A and B or C and D are closed, the motor is shorted. This
creates a braking action because the inductively induced voltage (sometimes called the back
EMF) generates a current that acts to force the motor in the opposite direction.

The bottom two rows in Table 15-3 are conditions to be avoided at all costs. Closing A
and C or B and D shorts out the voltage supply and generally causes damage to the switching
transistors or the power supply.

The dc voltage supplied (V+) controls the rotational speed of the de motor. In Figure 15-21
a constant voltage, V+, is applied, and so we would expect the motor to turn at a constant rpm.
A useful way to control the speed of a dc motor with a microcontroller is to generate a pulse-
width modulation (PWM) waveform, as shown in Figure 15-22. This is so common that many
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VbD +12V

i

1
Bootstrap 1 ——:L
Microcontroller ° | Thermal Flag 10 nF
Interrupt Request Output 2
Output 1
LMD18200
3 Dc motor
— Direction
Microcontroller 4
/0 Port g i 4
—> PWM Output 2
10 nF
Rl
Bootstrap 2
Current Sense | &

OUtpU[ I

(7

Microcontroller
-

Figure 15-23 Motor control with LMD18200.

microcontrollers have a dedicated PWM module to generate automatically PWM waveforms,
as discussed in Chapter 14.
A PWM waveform is defined by its duty cycle.

duzy

Duty cycle =
period

Figure 15-22 shows 50 and 25% duty cycle waveforms. As you probably learned in your cir-
cuits classes, the average, or dc, value of these is 0.5 and 0.25 V. respectively. Thus, applying
a PWM waveform to the switch the transistors on the H-bridge can control the speed of the
dc motor.

You can build the H-bridge from discrete circuits, but this is a significant electronics design
exercise. You will find references on the web showing how to design a discrete H-bridge.
Integrated circuits are available from a variety of manufacturers, and Figure 15-23 shows an
LMD18200 3A, 55 V, H-bridge. The H-bridge contains thermal sensing circuits, as well as
undervoltage and overcurrent detection circuits that can shut down the motor to protect it. A
current sense output and a thermal flag output allow the microcontroller to monitor these error

$
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Phase A

Phase B —»¢ Phase A

Phase B

Stator ¥~

(a)

Winding

Figure 15-25 (a) Permanent magnet stepper motor. (b) Permanent magnetic “canstack.”

Figure 15-26 Hybrid stepper motor.

Stepper Motor Windings

Stepper motor windings are designed
sothecurrentdirectioncanbereversed
to reverse the rotation direction.
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To energize the stator’s electromagnetic poles, a coil must be wound on
the two poles that make the magnetic pole pair. As current flows in the
coil, a magnetic field is formed, and the direction of the magnetic field

depends on the direction of the current flow. Figure 15-27a shows the

north pole that results from the current direction shown. To reverse the
direction of the field, as shown in the stepper motor rotation sequence in Figure 15-24, we
must reverse the direction of the current in the stator winding. Compare Figure 15-24b and
15-24d. There are two ways the stator field windings are constructed: unipolar winding (Figure
15-27b) and bipolar winding (Figure 15-27c). As we will see, the unipolar winding is simpler
to drive by using two output bits from our microcontroller. The bipolar winding requires an
H-bridge, as shown in Figure 15-21.

Stepper motor windings are also classed as bifilar or unifilar. A bifilar winding is one in
which the coil is wound with two wires instead of one. This eliminates the need for a center
tap on the winding and allows the motor to operate either as bipolar or unipolar. However, the
bifilar winding requires more space in the stator.

Most stepper motors have two winding phases, although there are motors with three or five
phases. The number of phases refers to the number of signals used to drive the stepper motor.
Figure 15-28a shows an eight-pole (four pole pairs), two-phase motor. Figure 15-28b shows
one phase of a unipolar winding. Two-phase motors that use these windings are sometimes
referred to as four-phase motors because each phase actually has two drive signals.

-
fl\f\l\f\l\l\l\/\f\l\

(@)

Figure 15-27 (a) Magnetic field direction depends on the current direction. (b) Unipolar
winding. (c) Bipolar winding.
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/ 120° rotation. Windings A1-B1-A2-B2 are energized in the sequence shown in Table 15-5.
\ This sequence is also called full-step, full-torque. Table 15-6 shows a full-step, low-torque
sequence, where only one winding is excited at a time. Table 15-5 also shows the winding
designations when the unipolar stepper is said to have four phases.
Half-step sequence: A half-step sequence is shown in Table 15-7 and Figure 15-30. As you
might expect, each step now is 15° and is produced by the excitation sequence shown. The half-
step sequence will produce a smoother operation of the stepper but with less motor torque.
Microstep sequence: Both the full-step and half-step sequences produce motion that is not
a smooth rotation because the step size is finite. The steppers with smaller step sizes are
smoother. Microstepping increases the step resolution beyond that limited by the number of

i > ' poles. Figure 15-31 shows two phases being driven by stepped sinusoids that are 90° out of
E phase. Controllers for microstepping motors can produce up to 500 microsteps per full step,

resulting in a much smoother stepper motor rotation.

Table 15-5 Full-Step, Full-Torque Sequence

Part of Figure 15-29

-
Phase B / N @ (b (c) (d) (e)
!
| | Four Two
""" o~ Phase Phase 30°. 60° _L90* 120°
Phase | Al 1 0 0 1 1
© @ o Phase 2 Bl 1 1 0 0 1
Phase 3 A2 0 1 1 0 0
(@) ) Phase 4 B2 0 0 1 1 0
Figure 15-28 Motor winding phases. (a) Eight poles, two phases. (b) One phase of a unipolar winding.
Table 15-6 Full-Step, Full-Torque Sequence
Four Two
; Ph 30°  60°  90°  120°
Stepping Angles Phase ase
Phase 1 Al 1 0 0 0 1
The angle the stepper motor turns for each step depends on the number of rotor and stator poles. Phase 2 Bl 0 1 0 0 0
. 9 hase 2
With more stator and rotor poles in a permanent magnet stepper, and finer tooth pitch in the Phase 3 A2 0 0 1 0 0
B ; N i ase 3 A2
hybrid stepper, the stepper has better (smaller) step sizes. Commonly found step sizes are 0.9°
° 340 750 ° ’ Phase 4 B2 0 0 0 1 0
1.8°,3.6°, 7.5° and 15° per step.
Stepping Modes Table 15-7 Half-Step Sequence
Let us now consider the signals needed to control the stepper motor. The device generat- Part of Figure 15-30
ing these signals is often called an indexer, which may be a specially developed integrated @ (b (© () (e)
circuit and printed circuit board with all drive electronics necessary to run the stepper motor. Four Two
We can also use a microcontroller with additional drive electronics to generate control Phase Phase 150 30" 45% 60T 76N e0E e
signals.
Phase 1 Al 1 0 0 0 0 0 1 1 1
: 3 _ Phase 2 Bl | 1 1 0 0 0 0 0 1
Full-Step Sequence: Figure 15-29 shows a permanent magnet stepper with a six-pole rotor Phase 3 A2 0 0 1 1 1 0 0 0 0
1 . . . . ase 3 Al
and four-pole stator. This steps 30° per step. The sequence starts with unipolar windings Al Phase 4 B2 0 0 0 0 1 1 1 \ 0
{SC « -

and B1 energized (Figure 15-29a). A sequence of four full steps (Figure 15-29b-¢) results in

*
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B1
Phase B

B2

B1

B2

Figure 15-29 Full-step, full-torque sequence.
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Phase A

A1l A2 A1l l A2
5

-IEPE IYE

Figure 15-30 Half-step sequence
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Phase A

Phase B

Figure 15-31 Microstep sequence.

Stepper Motor Drive Circuits

Stepper motor phases present an inductive load to the driver circuit, and so we must be careful
not to connect a stepper motor coil directly to our microcontroller. The relay driver circuit of
Figure 15-18 must be used for unipolar steppers, and an H-bridge as shown in Figure 15-23
should be used for a bipolar stepper.

Figure 15-32a shows a Darlington transistor with a clamp diode. The
Stepper motor drive circuits must [ ULN2003 shown in Figure 15-

32b contains an array of seven Darlington
include a clamp diode to reduce the

transistors, each capable of driving up to a maximum of 500 mA collec-
inductive voltage spike. tor current.

Stepper Motor Torque and Speed

Torque is the force on the shaft of the motor produced by changing, or stepping, the magnetic
field from one position to another. The amount of torque depends on the current in the wind-
ings, the step rate, the step sequence chosen, and the type of stepper motor. Stepper motor
manufacturers provide torque information and characteristics, and you must choose a motor to
meet the torque requirements for a given load. Once you have chosen a type and size of motor
for your application, you have control over the step sequence (full-step or half-step) and step
rate (steps per second). In general, a full-step sequence generates more torque than a half-step
sequence at the expense of less smooth motor rotation.

After choosing a stepping sequence, we are left with controlling the stepping rate. Figure 15-33
shows a typical stepper motor torque versus step rate characteristic. The pull-out torque curye
defines the maximum torque the motor can develop at a given step rate. For a given motor load,
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Com
Out
In
(a)
VbD
ULN2003
PT2 —— In1  Out1
PTO —— In2 Out2 Phase A

B ————| &l ©iE
PT3 —— In4 Out4

In5 Outs |—

In6 Outé [—

Ini7 *Outits =

F Gnd Com

(b)

Figure 15-32 (a) Darlington transistor. (b) ULN2003 transistor array.

if you attempt to step faster than this, the motor will stall. Pull-in torgue is the maximum torque
the stepper can develop instantaneously for starting or stopping. The area below the pull-in
torque curve is called the start and stop region. For a given motor load, you can start and stop
the motor at any step rate below the maximum start rate. To achieve a higher step rate, you
must slew, or ramp, the step rate into the slew region between the pull-in and pull-out torque
curves. Example 15-11 shows C functions that can drive a stepper motor at a constant rate and
ramp the motor speed up and down. Examples 15-12 through 15-13 show how components of
the test bed can be programmed.

$
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] =

unsigned char forward half s [ {
10, 0b0100, 0ob1100, 0b1l000,

Stepper Motor _st
0b0001, 0b0011l, 0b0010, ObO

Torque
A Maximum Stopped Torque

unsigned char
0b1001, Obl
D

r se_half step[] = {
000, 0b1100, 0b0100, 0b0110, 0b0010, 0bOO11,
0b0001, END | }

Oz in, Pull-In Torque (Starting)
g.cm, ! :
AR Pull-Out Torque (Stalling)
Motor Load Maximum timer_ct 1t upt_initialization();
Step Rate it I/0 port that drives stepper */
(No Load) output signals 0 */

/ l / < C\‘
" Rate
Steps/Second

Maximum Maximum  Maximum

Start Rate Start Rate  Step Rate i
(Loaded) (NoLoad) (Loaded)
Figure 15-33 Stepper motor torque characteristic.
at low

Example 15-11 Stepper Motor Test Bed

ep low torque );

low torque */
Kokkk Rk k)
st
1 timer */

r motor */

tep_full torque );:

p_low tor

0b0100, 0b1000, END |

{ Example 15-12 Stepper_1.h

AR A A R A A E A AR R A A A A A AR A H A F T AR AT AR R AR C R R AR AR

finitions for the stepper motors

)011, END AR AR AR R R A AR AR AR R AR AR IR RRRARRRRRC R AR ]

—
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output bits */
L

he stepper */

for the step seg

............k,......‘«.‘...,~.xi.vA....‘..;‘~.<..,.-,x,.;x*,/

i run( unsigned int steps per sec,

ned int number of steps,

unsigned char * p s

r from start_s

nd then run a

steps steps using the st

R S e S S e e

run(unsigned int start steps |

unsigned int final steps pe
unsigned int number of steps,
unsigned char * p_ sequence);

[ Rk kR Kk kK kK Kk kKK KKk ok kK kKK kK KKk Kk kK kKR kKK Kk Kk

* Timer initialization to enable interr

pt

R S S e

void timer ch_interrupt initialization( void );

15.7 Motor Control

OCK/1000 /* Bus cl
VA
o

/> &
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Example 15-13 Timer_ticks.h

[ ok ek ek K K kK K oK K kK Kk ke kK ko ok ok K R K kK Rk K ok Kk Kk Kk kK kK ROk K K

* Define the bus clock frequency

ys_clock that

ond intervals

hok Kk ko kK ko k ok ok kk ok kkk ke ok kkhhkkkkkkkkhkkkkkkhkkkk kk kA Kk kK KKk KK kK /

/* Define the

Example 15-14 Stepper Motor Run: run.c

S R

ant speed

KEEEEEEE I AT AR |

rrrkrrErEErEan )

to move */
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of clock ticks needed in sys clock and waits for that time to output the step sequence at the 15.9 Bibliography and Further Reading
correct rate.
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» Microcontrollers have internal I/O devices such as analog-to-digital converters, timers, River, NJ, 2000.
and serial and parallel I/O.

* Most often, external I/O devices can be connected to a microcontroller’s internal

parallel 1/O. 15.10 Problems

» Switches are used to input binary information.

* Mechanical switches bounce when contact is made, and in some applications software Explore
or hardware debouncing must be used.
15.1 Design an output circuit with eight LEDs connected to a port on your microcontroller.
The LED:s are to be on when bits in a byte stored in location DATA1 are 1s. Show the
hardware and software required. [c]

*  Pull-up (or pull-down) resistors must be used with switch inputs to avoid floating
inputs.

+ Internal pull-up (or pull-down) resistors may be enabled in the microcontroller’s 152 Design an input circuit to input the states of eighE SWitehes T et rs
1/0 port. - G2 ' S 1

P microcontroller. [c]

» Keypads and keyboards are switches and diodes that connect an output from
a I/O port to an input line. The keypad is scanned to determine what key is Stimulate
being pressed.

w
(%]

* When an LED is interfaced, the circuit designer must make sure the output device can 1 A mythical microprocessor has two 8-bit output ports (P and Q) and two 8-bit input
supply enough current to light the LED. ports (R and S). Assume that a set of eight switches is connected to Port S and a set of
eight LEDs is connected to Port P. Describe (a diagram would be nice) how you would

* LEDs require a current of several milliamperes to light. use these resources (plus any others you would like: more switches, buffers, latches,

+ Parallel I/O expansion can be done with a bidirectional port acting as a data bus. etc.) to implement a scheme that would allow you to input data from the switches only
after the user has completed entering new data, and then to display the 8-bit data on
* Parallel I/O expansion can be done also with the SPI and serial/parallel shift registers. the LEDs. The hardware is to be as simple and cheap as possible. Describe how your

o o o system will i ata from the switches EDs. [ck
* Integrated circuit temperature transducers with linear characteristics make temperature system will input data from the ShatCes RIS SRR ekl

measurements easy. 15.4 Now, assuming the hardware you have proposed for Problem 15.3. describe, from a

. - . high-level using pseudocode, how you would do the following.
¢ A dc motor can be controlled by an H-bridge circuit and a PWM waveform. S el * S

\ ; ol r a. Input data from the switches
+ Stepper motors allow you to precisely control the position and speed of the motor. b. Output data to the LEDs

$
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15.5 An eight-digit LED display is multiplexed, with each digit being refreshed at 100
Hz, by an interrupt service routine. The ISR changes the display to the next digit and
requires 8 s to refresh each digit. [b]

a. If the interrupt service routine is started by an interrupt from the timer system, |
what interrupt rate would allow us to refresh each digit in the display at 100 Hz?
b. What percentage of the processor’s time is spent refreshing the eight-digit display?

Real-Time Operating Systems

15.6 Why do bidirectional data ports on a microcontroller default to the input direction
when the microcontroller is reset? [a]

P
e

Challenge
15.7 Use a 74HC138 1-of-8 decoder and a 74HC151 8-to-1 multiplexer to design a key-
board scanner that will scan an 8 x 8 keyboard matrix. Show your hardware, and give
a software scanning algorithm to scan the keyboard and return a 6-bit keycode. [c]
15.8 The 16-key keypad scanner program shown in Example 15-6 does not debounce the
switch. You may not have to implement a debouncing routine depending on your Objectives
hardware (although you probably will). Propose a strategy and write a program, either
in pseudocode, in the programming language of your microcontroller, or in C, that In this chapter we give a brief overview of real-time operating systems (
p prog g languag y p g p g systems (RTOSs). We define
will test whether your keypad switches bounce when pressed. terms and show how an RTOS works. Using and applying any RTOS for y i
’ I g pplying any your microcontroller
o ; S R is far outside what we can acc ish in this ¢ /ou wi s
15.9 Several of the program examples in this chapter call a function called delay_X_ms( i : \|'( L1 itl o lvz]Tl(L)tSOmbh\h in this chapter. You will need to refer to the documenta:
e " S " . . ; . ion supplied with your s
int X). Write a function that will run on your microcontroller that will provide this ; PpAec YUl
variable delay, where X specifies the number of milliseconds to delay.
15.10 Find a data sheet for the LM 19 temperature sensor shown in Figure 15-19, and use a 16.1 Introduction
spreadsheet and the transfer characteristic equations relating output voltage to tem- X
perature to develop an 8-bit lookup table that will allow an application program to A real-time operating system is software that operates in the backeround. or behind, the appli-
AT A Rye TITATIO F R 2) . S . i Epishy . . X
display the temperature as a number ranging from —55 to +127. cation software, and manages the execution of the application software. Your application is
partitioned into rasks that are usually independent of one another and thus can be developed
Reflect on Learning and implemented independently.
15.11 List five things you learned about interfacing to a microcomputer from this chapter. Advantages of Using an RTOS

15.12 What discovery or insight about input interfacing have you gained from this chapter?

) ) . * Inareal-time system the tasks are isolated from and independent of one another.

15.13 What discovery or insight about output interfacing have you gained from this chapter? X B

» Data structures, also, can be associated with a task and separated from other
structures.

* Event-driven tasks are relatively easy to implement.

* Tasks that require periodic servicing are relatively easy to implement.

Disadvantages of Using an RTOS

* The RTOS consumes ROM, RAM, and CPU time.

* Each task requires its own stack, and therefore more RAM is needed in a real-time
system.

$
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Starvation: Starvation can occur when a lower priority task is blocked from running by higher
priority tasks that never relinquish the processor. Under these conditions, a task never receives
a resource for which it is waiting.

Task scheduling: In a multitasking system, a variety of scheduling algorithms must be used in
scheduling the tasks to run.

Task: A task is a program or function that uses the CPU and system resources. Tasks are writ-
ten to be run independently of all other tasks, and multiple tasks are needed in an application.
Tasks are also called threads.

Thread: A thread is a task or unit of program execution.

Time-Sharing Systems

In the early to mid-1960s computers were large, expensive mainframes.

Time-sharing systems are multiuser | Multiple users could use the computer simultaneously in multiuser, or

systems.

time-sharing. systems. These systems allocated the CPU to each user in

Time-Sharing
Operating System

a time-multiplexed sequence. Figure 16-2 shows three users of a time-
sharing system. Each user received the full resources of the CPU during its time slice and,
unless there were many users, it seemed to each one that it had the computer full time.

We can see in Figure 16-2 that an operating system manages the switching between users at
the beginning of each time slice. This is called task or context switching. Every time a user or
task switches, the context is saved, to be restored the next time the task runs.

Figure 16-3 shows the architecture of a time-sharing or multiuser system. Each time the
operating system receives an interrupt, it switches to the next user by saving the user’s context

Operating
system
switches to

next task CPU Time Slices

|LT1|T2|T3IT4|T5|T6IT7

R R3] R R B33 R R o» e

User/Task #1 22X | S | B 3 R
User/Task #2 [REEEEEEEEE85E | % oo, R e tets |
User/Task #3 (X% o R LXXRRRARR g al R

[ CPU allocated to the task
B2 CPU allocated to another task

Figure 16-2 Time-sharing system.
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and, depending on how much main memory is installed, swaps the current program out to disk
storage and brings in the next user’s program. Users were often located remote from the main-
frame computer, which they accessed through modems and dial-up or dedicated lines. Users
who needed system 1/O, say to print a program listing or program output, had to physically go
to the computer center where the system was located.

Event-Driven, Real-Time System

switching.

The RTOS kernel manages the task

The time-sharing system of Figure 16-2 is the grandparent of today’s
real-time systems. Instead of users of the system, we now have tasks that
run when required by the application. Our multiuser system has become

a multitasking system. Figure 16-4 shows a multitasking system that is
event driven. Again, an operating system, the real-time operating system (RTOS), manages the
task switching. Notice that the tasks do not necessarily run in sequence, nor are they allocated
the same amount of CPU time.

The portion of the RTOS that manages the task switching is called the kernel. In Figure 16-4
the kernel prepares Task #1 to run (1, 2). At some point, either Task #1 finishes or an event
occurs that requires Task #2 and the kernel prepares and runs it (3, 4). Following Task #2 the

Main
Memory Real-
Time
User #1 Interrupt System
Context 110
User #2
Context
User #3
Context | - e ; ] SRR BES
Time-Sharing Operating System <=4+ St
Program \ \ \
Swap
Area
\ \ \
User #1 User #2 User #3
\ A \
\ \ \
Local Local Local
110 /0 l{e}

Figure 16-3 Time-sharing system architecture.
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|
|
i

(1) Kernel (3) Kernel  (5) Kernel (7) Kernel (9) Kernel (11) Kernel Real-
prepares prepares  prepares prepares prepares  prepares e Task #1 Task #N
Task #1 Task #2 Task #1 Task #3 Task #2 Task #3 Interrupt Interrupt Interrupt
to run to run to run to run to run to run
. <> Shared
. . <>
Resource
RTOS Kernel
.
Task #1 R PR e S S S R ey | RTOS Kernel <> e
.
Task #2 ] R \ A A
) <»| Shared
Task #3 R 355 SRSty I o Resource
Intertask Communications
Semaphores, etc.
(2) Task #1  (4) Task#2  (6) Task #1 (8) Task #3 (10) Task #2 (12) Task #3
runs runs runs runs runs runs Y \
[ cPU allocated to the task
=T Task #1 Task #N
CPUallocated to another task e e e
Figure 16-4 Event driven, multitasking system. ‘\ “
N X . Task #1 PR = Task #N
kernel determines that Task #1 should be run again (5, 6), following by Task #3 (7, 8), Task #2 Data Data
(9, 10), Task #3 (11, 12), and so forth.
1 c -5 1S c ¢ di ara a real-ti system. g as a i c . .
Figure 16-5 is the block dmf_'r'”km of a real-time sy stem Allhm!gh tasks are independent Figure 16-5 RTOS structure.
they do work together to accomplish the application. They can pass information to one another
and share system resources. The RTOS manages all this while receiving interrupts from timers
and other I/O devices and tasks. Table 16-1 Scheduling Algorithms
Algorithm Task to Be Run Next
RTOS Kernel
First-come, first-served Task that requested to be run first
= ; The kernel is the central component of the real-time operating system. It Shortest job first Task with the shortest run time
ic kernel is the heart of the RTOS. | schedules the execution of all tasks and saves each task’s context during Fixed-priority The waiting task with the highest priority; priorities are set by the application
switching. programmer but may be changed as time goes by
The scheduler or dispatcher accomplishes the scheduling function of the kernel. There is Round robin Each task is scheduled in sequence without regard to priority
a variety of algorithms to help choose which task to execute at any time. In the time-sharing Rate monotonic Task with the highest execution rate given the highest priority
system shown in Figures 16-2 and 16-3, the scheduler allocates each task or user an increment Deadline Task with the closest completion time
of time. Depending on how fast the CPU can switch between users and how many users are
currently on the system, each user thinks that all of the CPU’s resources are dedicated to that
task and no delay in execution is experienced. As the number of users grows, each may expe- Tasks
Hence dcluyﬁ i pROSIE execunon,' . _ & is an ind ; B 1 Good software design always calls for the program code to be partitioned,
In a real-time system the scheduling is more complex. There may be a need for a task to exe- A ;"5 h‘«‘ an ind kfl" ne U“l“\““" l‘“ designed. and developed in modules that are as independent of one another
1 ardis ACH; a ¢ o T o te P e < a2 ke - 9 t S 'CVET. H DC . .
cute immediately based ona set of condluons‘-FQr Lxur?]pla". a task that scans a keyboard should o that |TU"‘. “““‘”l “ 'T“i ¢ | aspossible. Forexample. considera program thatallows auserto press one
Fxccu(e \vhcn‘u keypress is delecle(! so the key mIormz_mon is not lost. (‘)lhurluxk.\ such as upfizll- interrupted to allow other tasks 10 | - v cwitdhes to selectone OE tWe input analog voltages to digitize and
ing ap'LCQ display, may not be as important. The chmgncr.s of a I’L‘l.l]—lllﬂc system !nusl consider be run. display on an LCD screen. Following the design principles we espoused
[}rmrl{les ot_lhc tasks, and the RTOS 1111{51 allow a v%xrlcly O,t sch.cdulmg processes. See Table 16-1 in Chapter 3, we might develop at least one level of design as shown in
for a few of the many scheduling algorithms used in multitasking operating systems. Example 16-1. We could identify at least three functions, or tasks, the software must have to
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display the voltage. These could be GetSwitch, DigitizeChannel, and UpDateDisplay.
Each of these functions could be developed independently and designed to transfer information
from one to another. Get Swi t ch passes the switch numberto DigitizeChannel, which then
passes the digital value to UpDateDisplay.

Let us assume now that the LCD screen must be refreshed periodically so that it does not

Example 16-3 Real-Time DigitizeChannel Task

flicker. Will the design shown in Example 16-1 do this fast enough? We don’t really know. b
For example, at this stage we do not know the conversion time of the A/D or whether the
GetSwitch function will wait in the function until a switch is pressed. Thus, we see that there |
are some priorities of processing. Since UpDateDisplay needs to run often enough to prevent
flickering, it probably has the highest priority of all. On the other hand, depending on how long
UpDateDisplay runs, GetSwitch will need to act promptly when a switch is pressed to be
able to capture the switch while we are still pressing it. DigitizeChannel is the lowest pri-
ority of all because it does not matter if it is interrupted to permit the display to be updated or
if we need to read another switch while waiting for the conversion to be completed.
These are examples of real-time tasks that can be managed under an RTOS. As we can see
in Example 16-2 through 16-4, each task is a separate, complete function that executes forever. 1ot
Each “thinks” it is the only program running, but each transfers information to a data area to
be used by another task.
Example 16-1 A/D Display Example
/* Initialize all I/0 */
/* Do Forever */
sk EREs P Task Execution States
/2 If Switch 1 pressed
/* Then */ Each task in the real-time system may be in one of the following execution states:
/* Digitize channel 1 */ 1. Sleeping: A task may choose to delay its execution for a fixed time: during this time, it
/> Update: LCD is said to be sleeping.
/%, Blseli Switch 2 pucssed 2. Suspended: A suspended task is not available for scheduling. The RTOS can suspend
/> Ther_ﬁ T/ ) or resume a task.
o [?lg.ltlze S 3. Blocked: A task that is blocked is not running because it is waiting for some exter-
Vi Update Display */ S <

nal event to occur. For example, it may be waiting for a time period to elapse or a shared
resource to become available. When tasks are blocked. they usually have some timeout
period specifying the maximum time they can remain blocked.

hE Else do nothing */
/* End Do forever */

4. Waiting or ready: A task that is not blocked or suspended, and is not running because
another task with higher priority is running, is in a waiting or ready state.

5. Executing or running: The task is using the CPU.
Example 16-2 Real-Time GetSwitch Task

/* Do Forever */ Task Switching
/* Wait for a switch closure */ ) = . S <

: In the multitasking system shown in Figure 16-2, each user is allocated a unit of CPU time. A
/2% h switch is closed */ e ¥

timer interrupt, as we described in Chapter 14, controls the task switching. This type of system

/3 £ WhichSwitchClosed information */ ;
is called a round robin system.

v Another multitasking design strategy is called event-driven or priority scheduling. In this
case, tasks are switched only when a task with higher priority needs service. Event-driven task
switching can be nonpreemptive or preemptive.

—
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In Figure 16-6a, a nonpreemptive kernel starts the low-priority task (1, 2) and then detects
an interrupt that indicates that a high-priority task needs to run (3). The low-priority task com-
pletes its execution (4) and then relinquishes control of the CPU. The kernel does a context
switch (5) and allows the high-priority task to run (6).

Figure 16-6b shows a preemptive kernel. As before, the low-priority task is running (1, 2)
and an interrupt signals the need for the higher priority task (3). Now the kernel suspends the
low-priority task (4), performs the context switch, and allows the high-priority task to run (5).
When that task is completed, the kernel allows the low-priority task to resume (6, 7).

(1) Kernel starts  (3) Interrupt  (5) Kernel does  (7) Kernel runs idle
low-priority task prepares high- context switch  task until another
as scheduled  priority task to run high- task needs to run
to run priority task

Kernel

Low-Priority Task RN

High-Priority Task

(2) Low- (4) Low-priority (6) High-priority
priority task finishes task runs
task is

running

[ CPU allocated to the task

(@)
B2 CPU allocated to another task

(1) Kernel starts  (3) Interrupt  (4) Kernel does (6) Kernel does (8) Kernel runs idle
low-priority task prepares high- context switch context switch task until another
as scheduled  priority task  to run high- to run low- task needs

to run priority task priority task to run

Kernel

Low-Priority Task

High-Priority Task i R

/ T

(2) Low-priority  (5) High-priority (7) Low-priority
task is task runs task finishes
running

(b)

Figure 16-6 Task switching. (a) Nonpreemptive. (b) Preemptive.
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The Context Switch

The context switch saves the current
task’s CPU registers.

Each time a task is switched, either into or out of execution, the machine’s
context must be restored or saved. Figure 16-7 shows the situation fac-
ing the designer of the context switching portion of the RTOS kernel.

For each task that executes, the CPU contains a program counter, a stack
pointer, and registers with values specific for that task. When a task switch is made, these
values must be saved and then restored when the task runs again. An interrupt often signals a
task switch; as we know, the program counter, and in some processors all other registers, are
saved on the stack. This arrangement saves the interrupted task’s context, and the RTOS then
switches to the next task by first restoring its context and then starting it up again.

Each task must have an area of RAM for a task control block or process control block, as
shown in Figure 16-8. The task state is the execution state of the task (running, waiting, etc.)
The priority establishes the task in the pecking order of all the tasks in the system. The stack
pointer contains the current value of the task’s stack pointer, and the timing parameter contains
timing information needed to schedule the task.

Let us say Task #2 is running, with its program counter pointing to the next instruction
to be executed, its registers holding with values that are being used, and the stack pointer
pointing to the last (or next) used location on its stack. Now assume an interrupt that transfers

ROM RAM
e |
1 1
Task #1 - Program Counter TCaSI:J # ; Task #1
Program : ; Program
i 7 i
Code :I IReglsters l F’Stack POInteLl—p* DSat;acsl
M e
T T T T T T O i e : Task #2
B | Program Counter Task #2 ! Data &
G "lR't ] [ stack Point }-vl: St
inter
| | Registers ack Po ! T
T s e Program
Taskin | T
Code ! Task #n :
s RTOS
:I I Registers ‘ Stack Pointer [ Program
B IR e Data &
Code | |7 i it . St
CPU \
! RTOS :
1 1
3 ¥ 1
Interrupt :l rRegxsters I lStack Pointer }—:J-»
Vectors 1 1

Figure 16-7 RTOS context switching.
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Figure 16-8 RTOS task control block.
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!
!

Task #1 Figure 16-9 (a) Semaphore requested by
Task State requests Task #1. (b) Semaphore denied to Task #2.
semaphore
= Task #1 = Semaphore = 1
= | Shared
Stack Pointer | Resource
|
Task #2
(a)
control to the kernel to do a task and context switch if needed. The program counter and the
registers are pushed onto Task #2’s stack, saving its context. The kernel saves Task #2’s stack Task #1
pointer in the task control block and then determines the next task to be switched in and run. acquires
It loads the stack pointer register from that task’s control block and executes a return from Task #1 | resource
interrupt instruction, which reloads the new task’s context from its stack, where it had been i
saved earlier.
« | Shared

Real-Time Timing: The Clock Tick

" | Resource
(of
Many of the tasks in a real-time system need to keep track of time intervals \ Semanhore =0
for time delays and time-outs. For example, the UpDateDisplay task Task #2 |=— P
in Example 16-4 will need to update the display at something over 20 to

A clock tick allows tasks to be run at
specific intervals or to be delayed a

= Task #2
specific time. 30 Hz to avoid flickering. Thus, a timer must be used to ensure that this denied the
high-priority task runs at appropriate intervals. Many microcontrollers have semaphore

a timer with a real-time interrupt feature, as we described in Chapter 10. This can generate a (b)
clock tick to be used for all system timing. When the clock tick interrupt occurs, the RTOS kernel
checks to see if the waiting time for any of the tasks has elapsed and schedules them to run.

There are three types of semaphore. A binary semaphore is used for a single resource, such

Sharing Resources as the serial port just described . The resource is either available or not. A counting ssmaphore is

Because tasks are independently developed, they have no knowledge of F"‘_Cfl \.\'hcn there are multip}c. idcmiql resources to be shared. A counting semaphore could be
A semaphore is used to control | any other task, except to operate on information transferred from zm:lher initialized to the number of blocks of n.\cmor_\‘ that tasks can NQ‘JES( for temporary storage. For
access to shared resources. task. Even then, their internal working should be totally transparent to g\nmplc. R HIY T N.Mk of MEMOE) Nt successH\'ev.A’-\/D VRS B e
; : ing the average of one channel of data. Another task may need a similar block for another analog
. guctis u.‘Sk' Nay CO_nS'der o depend?n% s L e USRS channel. Each time a memory block is allocated to a task, the counting semaphore is decremented
tem resource, such as the s_enal port, to SF”.d messages to a system user. One task may be and then incremented, when the memory is released by the task. If the semaphore has decre-
reporltl'ng AU T unulog-lo-dlgllu_l convqmon, ,Whllc i ‘mhcr LEPOILS SOMCICHOT mented to zero, a task must wait until a block is released before it can continue. The third type of

'condmlon that may have occurred. We would like neither of these to interrupt the other or to semaphore, the mutex or mutual exclusion semaphore, is used to reduce priority inversions.

intermix the messages.

The RTOS kernel provides a way to manage exclusive access to a resource by providing
a semaphore. When a task is using a resource, it sets the semaphore to exclude others. A task Priority Inversions
that needs the resource must wait until the other task finishes and releases the semaphore. In
Figure 16-9a, Task #1 requests the semaphore to use the shared resource. In Figure 16-9b, it has
been granted access, and the semaphore is reset to block Task #2's access to the resource.

A priority inversion can occur in a preemptive RTOS when a shared resource is being used by
a task and a higher priority task wishes to use the resource. In this scenario, (Figure 16-10),
assume that Task #1 is the highest and Task #3 the lowest priority. Assume that Task #3 is

*
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Task #1

Task #2

Semaphore

Task #3

’4— Priority Inversion —>-1

(3) (5) (6) (12) (13)

e e ——
R R R R,

Jmesar s mulf

(1) (4) (7) (9) (10) (11)
[ CPU allocated to the task

BEE]  CPU allocated to another task

Figure 16-10 Priority inversion.

A priority inversion occurs when a
lower priority task prevents a higher
priority task from running.

running (1), and it acquires the semaphore for the resource it shares with
Task #1 (2). Assume that an event occurs (3) that blocks Task #3 (4) and
runs Task #1, which tries to acquire the semaphore (5). Because Task #3
controls the semaphore, Task #1 is blocked (6), so Task #3 resumes run-

ning (7). At (8) an event occurs that causes Task #2 to run. Because Task
#2 is higher priority than Task #3, and does require the shared resource, Task #3 is blocked (9)
until Task #2 finishes (10). Finally, Task #3 is allowed to complete when it releases the sema-
phore (11). Task #1 can now run to completion (12, 13). During the time Task #1 was blocked
by the lower priority Task #3, Task #3’s priority was effectively inverted to the same priority
as Task #1. This is called priority inversion. Note that although Task #3’s priority seems to be
higher than Task #1°s, it remains lower than Task #2s because Task #2 blocks Task #3 at (8).
Table 16-2 summarizes the priority inversion case.

Figure 16-11 shows the same scenario, but now a mutual exclusion (mutex) semaphore with
priority inheritance is used. When two tasks with different priorities need the same resource,
the mutex semaphore is, again, a binary semaphore; when the higher priority task requests the
resource, however, the lower priority task’s priority is raised above that of higher priority task
so that it continues to run to complete its use of the resource. In this way, Task #2's execution
is delayed until both Task #3 and Task #1 complete. See Table 16-3.

Passing Information

As we saw in Examples 16-2 through 16-4, tasks are self-contained functions that run
forever. Yet we must have some way to pass information between tasks. The GetSwitch
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Table 16-2 Priority Inversion

Task
(1) Task #3 is running and Tasks #1 and #2 are waiting.
(2) Task #3 is running and acquires the semaphore for the shared resource.
3) An event causes Task #1 to run and blocks #3.
(4) Task #3 is blocked by #1
(5) Task #1 attempts to acquire the semaphore and fails.
(6) Task #1 is blocked while waiting for the semaphore, even though it has higher priority than Task #3. This allows #3 to resume.
(7) Task #3 resumes
(8) An event occurs that causes Task #2 to preempt #3
©) Task #3 is blocked by #2
(10) Task #2 finishes, allowing #3 to resume.
(11) Task #3 finishes, releases the semaphore, and goes to waiting.
(12) Task #1 acquires the semaphore and resumes execution.
(13) Task #1 finishes, releases the semaphore, and goes to waiting.
’4— Priority Inversion —ﬁl
(3) (5)(6) (10) (11)
Task #1 XX
Task #2
Mutex
Semaphore
Task #3 X B ]

[
(1) @ (@) ©)

[ CPU allocated to the task
B CPU allocated to another task

Figure 16-11 Priority inversion with priority inheritance.

task must indicate that a switch closure has been made, and it mu
pass the switch that was activated to the DigitizeChannel task s
that it can convert the correct analog channel. DigitizeChanne
then passes this digital value to the UpdateDisplay task,

Global data should not be used to
pass information between tasks.

$
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Table 16-3 Priority Inversion with Priority Inheritance

Task

(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
9)
(10)
()

(12)

Task #3 is running and Tasks #1 and #2 are waiting.

Task #3 is running and acquires the semaphore for the shared resource.

An event causes Task #1 to run and blocks #3.

Task #3 is blocked by #1.

Task #1 attempts to acquire the semaphore and fails.

Task #1 is blocked while waiting for the semaphore, even though it has higher priority than Task #3. This allows #3 to resume.
Task #3's priority is raised to be higher than #1, and #3 resumes execution.

An event occurs that requires Task #2, but because #3 now has the higher priority, #2 is blocked and #3 continues.

Task #3 finishes, releases the semaphore, and goes to waiting.

Task #1 acquires the semaphore and resumes execution. Task #2 remains blocked because #1 has higher priority.

Task #1 finishes, releases the semaphore, and goes to waiting, allowing #2 to execute.

Task #2 finishes and goes to waiting.

Task #1 Create Task #2
Mailbox #1
Query
Mailbox #2
Task #1 Task #2
Data pTaskiData Data
Mailbox #4
Mailbox #5

Figure 16-12 RTOS mailbox.

Itis tempting for beginning programmers to use global data for this information transfer. As
we suggested in Chapter 6, this can lead to interaction problems between functions, especially
in the case of real-time systems. Therefore, the RTOS kernel will provide a way to pass infor-
mation through data structures that are not globally known.

Mailboxes and Message Queues

Mailboxes and message queues are used in real-time systems to pass information between
tasks. Figure 16-12 shows mailboxes, which are in an area of system RAM. Each mailbox will
contain a pointer to data in a task. The task creates the mailbox, and the kernel allocates stor-
age for the mailbox and returns a pointer to the mailbox to the task. The task can then post the
pointer to its data (pTask1Data), which may be any data structure, in the mailbox with system
function calls. The receiving task can query the mailbox to get the data pointer. The operating
system allows handshaking between the two tasks and usually has a time-out feature so that if
Task #2 is trying to query the mailbox for the data and Task #1 has not posted it yet, Task #2
will not be held up indefinitely.
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Task #1 Create Task #2
Post
Delete

Data Query
Block 1

Task#1 | @ ______ A Data Task #2
Data Block 2 Data

Data

Next Available Block — Block 3

Data
Block 4

Data
Block 5

Figure 16-13 RTOS message queue.

A message queue is very similar to a mailbox except a queue allows blocks of data to be
transferred. Often a first-in first-out (FIFO) circular buffer, the queue offers the advantage over
amailbox in that Task #2 might get behind Task #1 when #2 is reading #1s data. If it does, Task
#1 can simply ask to use the next data block in the buffer (Figure 16-13).

16.3 Conclusion and Chapter Summary Points

In this chapter we have barely scratched the surface of real-time operating systems. There is
much more to learn, and the best way to learn itis to start a project using an RTOS. Most RTOS
vendors supply a demonstration program that will get you started. Important points from this
chapter are the following.

A soft real-time system may operate with soft time constraints. If task deadlines are not
met, the system can survive.

« Hard real-time systems must maintain strict time performance and must meet task
deadlines to avoid system faults.

+ A task is a function that executes independently of other tasks in the application.
* An application consists of multiple tasks.

+ A task may be sleeping, suspended, blocked, waiting, or running.

* The RTOS kernel provides task switching.

+ Time-sharing systems share the CPU equally with all users and are the antecedents of
today’s real-time systems.
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* Real-time systems are multitasking systems that are event driven.
* The context switch saves all CPU registers to be used the next time the task runs.

* Tasks can share resources by using a semaphore to block another task when one task
has acquired the resource.

* Mailboxes and message queues are used to pass information between tasks; global data
structures should not be used.
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16.5 Problems

Explore

Stimulate

Challenge

16.1 Use the documentation supplied with your RTOS, to make a table showing the system
calls and the place in your documentation that gives details for the following functions:
a. task management functions
b. time management functions
¢. semaphore management functions
d. mailbox management functions
€. message queue management functions

16.2° Does the operating system you are studying offer preemptive or nonpreemptive
scheduling?

16.3 List at least five soft real-time system applications.

16.4 List at least five hard real-time system applications.

16.5 Assume that an interrupt has just occurred, signaling a task switch. Your operating sys-
tem maintains a pointer to the currently executing task’s control block (Figure 16-8),
rentTCB, and uses a function GetNextTCB () to request a pointer to the next

16.5 Problems

task’s control block. Write a pseudocode function that would run on your microcon-
troller to accomplish the context switch.

16.6 Assume that the interrupt in Problem 16.5 is a clock tick signaling that it is time to
check if any waiting tasks are higher priority than the currently running task. What
must you add to the pseudocode?
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Appendix Binary Codes

A.1 Binary Codes Review

Coding is a two-part process consisting of encoding and decoding. Encoding means converting
information into a form that can be used in the microcontroller, generally into a binary code.
Decoding allows us to convert the coded information back to its original form. Whenever we
choose a binary code, we consider the following.

The type of information to be encoded: Is the information numerical? Are there negative and
positive numbers? Are there fractional or just integer numbers? If the information is not numer-
| ical, is there a standard code to be used? How much information is there? What is its range of
values? To what resolution do we need to know and encode the information?
The number of bits needed to represent the information: The number of bits needed depends

‘ on the amount of information to be encoded and the resolution to which we need to know the
“ information.

Number of bits = log, (number of information elements)

or

e full-scale value
Number of bits=log, —————
resolution value

When we know the number of bits required. we can calculate the number of code words
1
available.
Number of code words = 2% o0

See Examples A-1 and A-2.

Example A-1
A binary code is needed to identify each of the 83 students in a class. How many bils are required

4
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i Number of codes = 27*¢
Solution
N = log, (number of information elements) 2 log, (83) ! The range of numerical information that can be represented in a code word with p intege
log, 83 = 6.375; therefore, N =7 and g fractional bits is

. aroer o a o]+ - ; s £ 5 o ar bit 1 coded?
How much larger can the class grow before another bit is needed? Range = zero to 2 — 2
Solution The resolution is the value of the least significant bit. In this case,
=

Since 27 = 128, the class can grow by 45 students.

Resolution = 27

See Examples A-3 through A-5.

The unsigned binary code can represent only positive information, but there are sever:
other codes used for negative information. The three used most commonly in the microcor
troller world are the signed/magnitude, radix-1-complement (ones’-complement), and radi>
complement (two’s-complement) codes.

Example A-2

A binary code is needed to encode an analog voltage converted to a digital value by an ana-
log-to-digital converter. The maximum voltage is 5.0 V and the resolution required is 0.01 V.
How many bits are required? !

:
Solution i
N 2 log, (full-scale value/resolution required) = log, (5.0/0.01) = 8.9; therefore, N = 9. | Example A-3 - -

: ; An unsigned binary code has four integer bits (p =4) and two fractional bits (¢ =2). How ma
codes are there? What is the range of numbers that can be encoded? What is the smallest nu
ber that can be encoded?

| .
Binary Codes for Numerical Information Solution
r > 5 B : . A y o f codes is 2777 = 25 = 64.
We use several codes for numerical information. The five that are most important to microcon- e s : - 25—
troller u (1) igned bi 2) signed/magnitude. (3 ’ 1 4 ) The range of numbers is from 0 to 27 — 24 =16 — 0.25 = 15.75.
e 2I'S are one ary, (2) sienei - o o5’ ¢ AT e 4 /0’S = - 3
oller users are (1) unsigned binary, (. ) signed/magnitude, (3) ones’ complement, (4) two’s The smallest number that can be encoded is the resolution = 2¥=2- = 0.25.
complement, and (5) binary coded decimal.
.
Unsigned Binary Code
The unsigned binary code is a positive weighted code; each bit in the code word has a weight | =

(or value) according to its position. Each digit is assigned a position starting at the binary point
with zero, increasing to the left, and decreasing to the right. The weight of each position is the | : . : ; i

h L - e e bR e [.k cighic i l%l.] D ! What are the weights of each of the bits p through w in an unsigned binary code word pgrst.uy
base raised to the power of the digit position. The left-most bit is the most significant bit (MSB) | y:

Example A-4

and the right-most bit the least significant (LSB). See Table A-1. Solution
The unsigned binary code uses all positive weights and represents only ! 5
. N G G . S S o S . u J
Unsigned binary codes are used for | positive information. The number of bits, and therefore the number of Code: P q 5 :I lw et 0 13
= ok . ; s ; ~iohtes 24 23 22 2 2 ¢ 2 2= 2
positive numerical information. codes, determines how much information can be encoded. In a code Weights: g7 g e % 1 05 025 0125
word with p integer and ¢ fractional bits, the number of codes is 16 8 4 2 8 - y .
=
Table A-1 Binary Word Bit Positions
Bits b, b b, b b, b biy =
Bit position 3 2 1 0 4 -1 -2 -3
Bit weight . 23 2 2 20 . 21 92 24 Example A-5
Weights : 8 4 2 1 ] 0.5 0.25 0125 How many codes are there, what is the range of numbers that can be represented. and wl
MSB Binary Point LSB the resolution of an unsigned binary code word pgrst.uvw?

*
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Solution
Number of codes = 2% = 256
Range =0102°-2"=01031.875

)
).125

Resolution =2 =

Signed/Magnitude Binary Code

The signed/magnitude binary code is similar to our decimal num-
ber system. The decimal code word for “plus twelve” is written +12
or just 12. “Minus twelve” is encoded —12. Two additional sym-
bols, + and —, are added to the front of the digits used for the magni-
tude. These symbols double the number of code words to be able to
represent both positive and negative numbers. Notice that there are two codes for zero, +0
and -0. By convention, we never use the code for minus zero.

Signed/magnitude, ones’-complement,
and two's-complement binary codes are

used for positive and negative numbers.

In the binary system, an additional bit to encode the sign is added to the binary digits encod-
ing the magnitude. A zero is used for positive numbers and a one for negative. Table A-2 shows
the layout for a signed/magnitude binary code. Example A-6 shows a 7-bit binary code with
one bit used as a sign and 6 bits to encode the magnitude.

The range of information that can be represented with p integer bits (including the sign bit)
plus ¢ fractional bits is

—(2-1'=29)to + (2 = 279)

For Example A-6, the range is —15.75 to +15.75. Again, there is a code for plus and minus
zero. See Example A-7.

Example A-6 Signed/Magnitude Binary Code Examples

0 1 0 1 1 . 1 1 = +11.75
1 1 0 1 1 : 1 1 = -11.75
Sign code Magnitude code

The left-most bit is the sign bit, and the magnitude is encoded with a 6-bit unsigned binary
code.

Table A-2 Signed/Magnitude Code Bits

Bits b, b, b, b, b, b b,
Bit position p-1 2 1 0 -1 -2 —-q
Bit weight Sign 2 o 20 2+ 29
Weights 0=+ 4 2 1 0.5
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Example A-7

How many codes are there, what is the range of numbers that can be represented, and what is
the resolution of a signed/magnitude binary code word pgrst.uvw, where p is the sign bit?

Solution

Number of codes = 2% =256 (but two are used for zero)
Range = —(2*-27) to (2*—2%) =-15.875 to 15.875
0.125

Resolution =2

Ones’-Complement Code
The definition of the radix-1 or ones’-complement of a number X is
Ones’ complement = 29 — X — 24

where p is the number of integer bits and g the number of fractional bits.

Example A-8 shows how to form the ones’-complement code for 6.25. The left-most bi
is an indicator (called the sign bit) for the sign of the number, with 0 representing positive an
1 negative. The range and the resolution of the ones’-complement code are the same as th
signed/magnitude code and, again, there are two codes for zero. The ones’-complement cod
is not a weighted code.

Example A-8

Find the ones’-complement code for —6.25, assuming a code of the form pgrst.uvw.

Solution

Find the unsigned binary code for +6.25 and add a sign bit in the most significant bit positic
Then, to find the code for —6.25 complement all bits.

6.25 1 1 0 . 0 1 0 Unsigned binarycode for6.25
4625 =0 1 1 0 . 0 1 0 Ones-complementbinarycode for+6.25
625 =1 0 0 1 . 1 0 1 Ones-complementbinary code for—6.25

=

Two’s-Complement Code

In the binary number system, the radix complement is the nwe
complement binary code. The definition of p-integer bit, twi
complement of number X is

Two's-complement binary codes are
used for negative numbers in micro-
controller systems.

Two's complement = 27 — X

$
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Table A-3 Two's-Complement Code Bits Solution
Bits, O or | b, b, b, b, . b b, r b Number of codes = 2*
> | : v
Bitposition  p-I 2 1 0 - =) = - —q Range = —(2*) to (24 —2) =—16.000 to 15.875
Bit weight o 2 2! 20 2 2 24 Resolution =22 =0.125
Weights 4 2 0.5 025
=
This is a negatively weighted code because the most significant bit has a negative weight, The Sign of the Number

as shown in Table A-3 and Examples A-9 and A-10.

There is only one code for zero in the two's-complement scheme. The code word used for |
minus zero in the signed/magnitude code is used for the most negative number. We can see this !‘
by looking at the range of the two's-complement binary code. For a number with p integer and |
¢ fractional bits, the range is

! In the signed/magnitude, ones™-complement, and two’s-complement codes, the most significant
gives the sign of the number, although the sign bit for signed/magnitude code could be placed a
where in the code word. In two’s-complement codes the sign bit carries a negative weight. In sigr
magnitude and ones™-complement codes the sign bit does not carry a weight: it indicates the sig

Range =— (2/') to + (20! = 279)

Finding the Code for the Negative
The range of the binary number in Example A-9 is -8.00 to +7.875. The resolution is 2% = |

z ! In decimal, when we want the code for the negative of a number, we “take the negative of it
0.125. See Examples A-9 through A-11.

simply changing the sign. For a signed/magnitude binary code, the same is true. The sign b
complemented to change a positive to a negative and vice versa. See Example A-6.

The ones’-complement code for a negative number is found by complementing each of
bits in the code for the positive number. This process is called ones’-complementing, or

Example A-9 complementing the bits. See Examples A-8 and A-12.

Show the weights of a two’s-complement binary number, 101 1.01 1. ! Finding the code for the negative i_“ a two’s-complement number system involves an e
step. We find the code for the negative by taking the two's complement of the code for

Solution positive. This is analogous to “taking the negative™ of a signed/magnitude code. The t

! ement of any number is found as follows:
101 1.011=1x(2)+0x2*+1x2'+1x2°40x2"'+1x22+1x22=-8+2+1+ complemer ) e
0.25 + 0.125 = 4.625 ’ )
i e Two’s-complement code = Ones’~Complement code + 2%

Taking the two’s complement to find the negative is a three-step process:

Example A-10 ‘ 1. Find the two’s-complement code for the positive number.
What are the weights of each of the bits in a two’s-complement binary code word pqrst.uvw? 2. Complement each of the bits (one’s complement).
Solution 3. Add one to the least significant bit position.
Code: P q r s t u v W . . = 1 :
Weights: —2¢ 23 22 2! 20 27t 22 -3 This procedure is shown in Examples A-13 through A-15.
= - = L’ ~ ~ - “~ ~
-16 8 4 2 1 0.5 025 0.125

Example A-12 Ones’-Complement Binary Code Example

0101 1.1 Ii==%11.75

Example A-11 Complement each bit to find the code for =11.75.
How many codes are there, what is the range of numbers that can be represented, and what is 10100.00=-11.75

the resolution of a two's-complement binary code word pgrst.uyw? I

$
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Example A-13 Taking the Two's Complement

325 = 00 1 1 . 01 O O Two'scomplement code for +3.25
Ones' complement = 1 1 0 0 . 1 0 I 1
Add 2+ 000O0. 0O0O0°1

325 = 11 00 . 1 1 0 0 Two'scomplement code for —3.25

Example A-14

Find the two’s-complement binary code for —6.25 assuming a code of the form pqrst.uvw.

Solution
+625 = 0 0 1 1 0 0 1 0 Two's-complement code for +6.25
Ones' complement = 1 1 0 0 1 . 1 0 1
Add 2+ 000O0O0. O0O0°1
625 = 1 1 00 1 . 1 1 0 Two's-complement code for—6.25

Example A-15

Take the two’s complement of the code for —6.25 to find the code for +6.25.

Solution
=625 =S IN QS 0SINE IS0
Ones' complement = 0 0 I 1 0 . 0 0 1
Add 2 000O0O0. O0O01
+625 = 001 10. 010
Binary Coded Decimal

A 4-bit, unsigned binary code is sometimes used to encode the ten decimal digits 0-9. This
natural binary coded decimal is used so frequently that it is usually just called binary coded
decimal or BCD. Table A-4, presented shortly, shows the natural BCD code. Because only
4 bits are used for each of the decimal digits, it is convenient to pack two BCD digits into one
8-bit byte. See Example A-16.

A.1 Binary Codes Review 4

Example A-16 Packed BCD

Use an 8-bit packed BCD code to, give the code for the decimal numbers 23, 45, 99.

Solution

A packed BCD code has 4 bits for each decimal digit in one-half of each byte. The most :
nificant nibble has the most significant digit’s code.

231 = ()0 S () R O R R 1
45: = 001 0 S0 R  (—]
9 = 1 0 0 1 1/ O R O RT

Hexadecimal Codes

The hexadecimal, or base-16, number system is shorthand for strings of binary digits. Like
BCD code, the 16 hexadecimal digits, 0-9, A-F, are encoded by using an unsigned binary c:
The hexadecimal digits and their binary codes will be shown in Table A-4. See Example A-

Example A-17 Hexadecimal Codes

Covert the binary number 1 0110 1 0 1 to hexadecimal.

Solution

Start with the four least significant bits (0 1 0 1) = 5: the most significant four bits (10 1 1)
The hexadecimal number is B5.

You Have to Know the Code

If given a binary number and asked what it means, you cannot answer unless you know
code is being used. Table A-4 shows the different information that is decoded from a 4-bit
word by using the different codes covered in this section.

Binary Arithmetic

Unsigned Binary Arithmetic
Adding and subtracting unsigned binary numbers are done just as we add and subtra
magnitudes of decimal numbers. In each case we keep track of carries into or borrows
the next-most-significant digit position. See Examples A-18 and A-19.

*
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Table A-4 Four-Bit Binary Code Comparison Overflow
Code Word  Unsigned Binary  Ones’' Compl.  Two's Compl.  Signed/Mag.  BCD Hex B L2 an ortox condition that : An OV:cr_I](?w occurs if the res.ul[ of adding or §ub[mc(ing (or multipli-
0 ot o anih||I2nefor dividing) two numbers is a nurpber (')umde !he allowable range.
0000 0 0 0 9 2 S et In Example A-20 we try to use a 4-bit unsigned binary code to add 9
0001 1 ! 1 1 1 ! meticoperation cannot berepresented | ; . : :
9 > ) 3 2 ) it avaiilable. and I(): Thc expec.te'd r§su|l. 19, requires 5 bits. Thg carry pu out of the
0010 2 ; YA @ most significant bit indicates an overflow of the available bits. In micro-
0011 3 3 3 3 : ; controller systems, this error in unsigned arithmetic is detected with a
0100 4 & " 4 4 ¢ special flag called the carry flag.
0101 5 5 5 5 5 5 S
0110 6 6 6 6 6 6
0111 1 7 7 7 7 7
1000 8 -7 -8 -0 8 8 | ‘
1001 9 -6 -1 -1 9 9 | Example A-20 Unsigned Overflow
1010 10 =) -6 2 NA A | Add the 4-bit binary codes for 9 and 10. The result must be 4 bits also.
1011 11 — -5 -3 NA B
1100 12 -3 = 4 NA C Solution
101 o = = =2 pGs D | Carry = overflow 1 0 0 0
1110 14 ! 2 =2 D = | +9 = I
1 15 -0 b =/ pe 5 HIOMIN= 1 S0
Range 0-15 -71-+7 -8 —+7 -7-+7 0-9 0-F 4
- + 3? 0/ S0 S
Example A-18 Unsigned Binary Addition ‘
Add the 4-bit binary codes for 6 and 3. Two’s-Complement Binary Arithmetic
Solution | The beauty of using the two’s-complement code for signed numbers is that the hardware to do
I addition and subtraction is the same as the hardware for unsigned binary coded arithmetic.
Carries | 1 0

Further, one can easily subtract two numbers by adding the two’s complement of the subtra-
hend to the minuend. This is shown in Example A-21 for a 6-bit, two's-complement code and
in Example A-22 for an 8-bit code.

O I [ ) () S| : A two’s-complement overflow occurs when the result of an addition
A microcontroller sets a bit called | or subtraction is outside the allowable range of numbers for the number
the nwo's-complement overflow flag | of bits available. When two’s-complement numbers are added or sub-
when overflow occurs in two's- | tracted, a carry out of the most significant bit position does not indicate
complement arithmetic. an overflow as it does in unsigned binary arithmetic. See Example A-23.
There are various algorithms for detecting a two’s-complement over-
flow. One of the easiest to understand is the following:

6 = 0 1 1 0
3= 0RO ] 1

Example A-19 Unsigned Binary Subtraction

Subtract the 4-bit binary code 3 from 6.

A two's-complement overflow occurs if adding or subtracting two numbers of the same sign
Solution o ORI LR yields a result with a different sign.
=2l 7()7 ol r ] Tivo's-complement overflow cannot occur when one is adding or subtracting two numbers of
. 0 i @l opposite sign.
Partial difference = ey
Borrows E :
Difference i USRS G

$
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Example A-21 Subtraction by the Addition of the Two’s Complement
Subtraction by Adding the

Binary Subtraction Two's Complement

LSRR () ()T () ] +5 = @ @ o 1 i
-3 0o 0 0 0 1 | +(=3) = 1 1 1 1 0 |
+2 = 0 0° "0 0 1 0 +2 = RO ()R () SN S ()

Example A-22

Use 8-bit, two's-complement binary codes (5 integer and 3 fractional bits) to compute
8.75-10.5.

Solution
875 = 01 0 0 0 . 1 1 O Two's-complement binary code for 8.75
1050 = 01 01 0. 1 0 0 Two's-complement binary code for 10.5
1050 = 1 0 1 0 1 . 1 0 O Two's-complement binary code for—10.5
Therefore
875 = 0 1 0 0 0 . 1 1 0 Two's-complementbinary code for 8.75
+ -1050 = 1 01 0 1 . 1 0 0 Two's-complement binary code for-10.5
=750 = I S ORS00 510

The result is negative. To find the magnitude of the result, take the two’s complement.

(0 ) 0 o ot el [ =il

Example A-23 Two’s-Complement Overflow

Add the 4-bit, two’s-complement numbers +6 and +3 and detect if an overflow occurs. The
result is to be 4 bits.

Solution
Carry does not = overflow 0O 1 1 0
16, = o) 3 il ()
+3 = [ ) O
77 = IRONOIN

Two's-complement overflow has occurred because the sign of the result is different from the
sign of the two numbers.

BCD Arithmetic

A.1 Binary Codes Review 431

As shown earlier, BCD codes encode the 10 decimal digits, each with 4

BCD numbers can be added, but the | bits. Often two 4-bit BCD digits are packed into a single 8-bit byte for
binary result must be adjusted with a | convenient storage. The microcontroller can add these bytes like any

decimal adjust for addition instruc- | normal, binary addition; when the data are BCD numbers. however, a
tion to achieve the correct result.

special adjustment must be added to correct the binary result to BCD.

Binary Codes for

The ASCII Code

Consider adding 34, t0 29, . where 34 and 29 are encoded in BCD.

+34 = 00110100
+29 = 0010100 1
5D? OO T T
+ Adjustment 000O0O0OT1T1O0
+64 01100100

The result, 5D, achieved by the microcontroller’s binary arithmetic add instruction. is not cor:
rect in either binary (5D, =93, ) or BCD (1101 is not a valid BCD digit). The microcontrolles
has a special instruction that, if executed immediately after adding the two BCD numbers
automatically adds an adjustment to correct the result to BCD. This instruction is often calle

decimal adjust for addition.

Non numerical Information

Sometimes encoded (or decoded) information is not a number. A common example is th
alphanumeric information sent from a keyboard to a computer or from a computer to a display
Codes used for this application are called unweighted codes because, unlike the numerica
codes, there is not a weight associated with a bit’s position. To find out what a code means
you must look it up in a table.

The American Standard Code for Information Interchange (ASCII) is used to encode alpha
numeric information: for example. keys on a keyboard or letters displayed on a terminal. Th
ASCII codes for alphanumeric information are shown in Table A-5. See Example A-24. Th
two left-most columns (MS digit = 0 and 1) are control codes that have been defined for seri:
data communications. These are shown in Table A-6.

e
Example A-24 ASCII Code
Find the ASCII code for the letter H.
Solution
H is in the MS digit column 4" and the LS digit row "8". Thus H=48 .
S
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Table A-6 ASCII Control Codes
Table A-5 ASCII 7-Bit Codes for Alphanumeric Characters

00 NUL Null Character with all zeros

MS Digit 01 SOH Start of header Used

at the beginning of a sequence of characters that constitutes a machine-readable
address of routing information; the header is terminated by the STX character

- 2 3 4 5 6 7 y

LS Digit 0 1 02 STX Start of text

Character that precedes a sequence of characters 1o be treated as an entity; STX may

0 NUL DLE S 0 @ P 1Y be used to terminate a sequence of characters started by SOH
i SOH DCI | 1 A Q a q 03 ETX End of text Character used to terminate an STX sequence of characters
5 STX DC2 2 B R b r 04 EOT End of transmission Indicates the conclusion of a transmission
3 ETX DC3 4 3 C S © s 05 ENQ Enquiry Used as a request for a response from a remote station
4 EOT DC4 $ 4 D a1 d t 06 ACK Acknowledge Ch: ter transmitted by a receiver as an affirmative response
5 ENQ NAK % 5 E U e u 07 BEL Bell Character used to control an alarm or attention device
6 ACK SYN & 6 F \Y% f v 08 BS Back space Controls the movement of the printing mechanism back one space
2 BEI ETB . 7 G W g w 09 HT Horizontal tab Controls the movement of the printing mechanism to the next predefined tab position
8 BS CAN ( 8 H Xa h X 0A LF Line feed Moves the printing mechanism to the next line; in some systems this may be
: ™ EM ) 9 I Y i y interpreted as a “New Line™ (NL), where the print mechanism moves to the
9 HI» 5 : : = : - beginning of the next line
A ” S_L_‘B K l‘ k { 0B VT Vertical tab Controls the movement of the printing mechanism to the next predefined printing line
B VI ESC * » : ; position
C FF ES 2 5 L ) ) 0C "~ FB Form feed Moves the printing mechanism to the start of the next page
D CR GS . = M | m 0D CR Carriage return Moves the printing mechanism to the start of the line
3 I A = .
E SO RS = = 4! " 0E SO Shift out Indicates that the code combinations follow ing are outside the character set of the
F sI us / » O _ o DEL standard ASCII table until a Shift In character is received
OF SI Shift in Indicates that the code characters following are to be interpreted according to the
standard ASCII table
10 DLE Data Link Escape Changes the meaning of a limited number of following characters. DLE is usually
terminated by a Shift In character
A.2 Problems ntol Sl e e ——
11 DC1 Device controls Characters used to control ancillary devices associated with data p ing
12 DC2
13 DC3
Explore 4 Ded
A-1 Use the ASCII code to encode your name. [a] 15 NAK Negative acknowledge Transmitted by a receiver as a negative n:~pon\e 1) xhevsender
i o 963 72 16 SYN Synchronous idle Character used by a synchronous transmission system in the absence ott:ny other
A-2 Decode the ASCII message 44 65 73 69 67 6e 69 6e 67 20 77 69 74 68 20 6d 6 characters to maintain synchronism between the transmitter and receiver
6f70 72 6f 63 65 73 73 6 7273 20 69 73 20 46 55 4e 21. [a] 170" ETB End of transmission block Used to indicate the end of a block of data
i decimal value of the following binary code words assuming (i) unsigned 18 CAN  Cancel Indicates that the data with which it is sent is in error or is to be disregarded
i G'Ivc [he" u—lm"d’ , lement binar :nd (iii) signed/magnitude codes. [a] 19 EM End of medium Sent with data to represent the physical end of the medium
binary, (ii) two’s-complem Y o ° 1A SUB Substitute Character that may be substituted for a character that is invalid or in error
a. 10101010 1B ESC Escape Control character intended to provide code extension; it is usually a prefix affecting

b. 01010101
11001100

the interpretation of a limited number of contiguously following characters

C IC ES File separator Information separators that may be used within data
d. 00110011 ID GS Group separator
e. 10000000 IE RS Record separator
f. O1111111 IF us Unit separator
A-4 Find the two’s-complement binary code for the following decimal numbers: [a]
a. 26
b. =26

c. 32.125
d. -32.125

*



434 Appendix Binary Codes

A-5

A-8

A-9

Stimulate

A-10

Challenge

A-11

Find the decimal equivalent of the following two’s-complement numbers: [a]
a. 0101101.1

b. 1010010.1

c. 1000

d. 1010.1101

A 6-bit, two's-complement binary code is to be used for integer numbers. What is the
range of information? What is the resolution? How many codes are there? [a]

How many bits are required to encode the decimal number 238 by means of a BCD
code? How many by means of an unsigned binary code? How many by means of a
two’s-complement binary code?

Find the binary code words for the following hexadecimal numbers: [a]

Cc

d. FOOD

Find the hexadecimal code words for the following binary code words: [a]
a. 01011010

b. 11110101

c. 110101

d. 101

Prove that two's-complement overflow cannot occur when two numbers of different

al

signs are added.

For 4-bit-number, two’s-complement addition, choose four examples to demonstrate
the following: [a, b]

a. Addition with no carry out and no two’s-complement overflow.

b. Addition with no carry out and two’s-complement overflow.

c¢. Addition with carry out and no two’s-complement overflow.

d. Addition with carry out and two’s-complement overflow.

Solutions to Selected Problems

Solutions to Chapter 2 Problems

2.1 What is the difference between an assembler and a compiler? [a. c]

[35)
(%]

5]
w

~

An assembler converts an assembly language program consisting of operations and
their operands into the machine language (1s and Os) for the microcontroller.

A compiler converts a high-level language, such as C, first into the assembly
language needed for the line of C code, and then into the machine language

for the microcontroller.

What is a microcontroller memory map? [a]

A graphic representation showing what kind of memory is located in what address space.
What is the purpose of the program counter? [a]

The program counter points to the location in memory from which the CPU is fetching

instructions.

Give short answers to the following: [a. g]

a. What is a data bus?

A parallel, bidirectional, binary information pathway with multiple sources and
destinations.

c. How is an information source, such as a set of switches, interfaced to a data bus?
With three-state gates whose enable is controlled by an Address_OK signal and a
READ control signal.

. Give the sequence of events that occur when a CPU does an input (or read) cycle.
CPU puts address on the address bus
Address decoder generates ADR_OK
CPU asserts READ control signal
Input device puts data on the data bus

a

CPU reads the data
CPU deasserts READ control signal

*
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2.9 Explain why a computer has ready or wait control signals. [c]
The ready control signal allows the speedy microcontroller to be synchronized with
slower I/0, such as a human setting data on switches.
2.11 How do most microcomputer systems solve the problem of multiple sources of
information present on a data bus? [g]

Multiple sources can exist as long as addressing and address decoding are used to

Solutions to Chapter 3 Problems 437

2.19 Describe the instruction execution cycle of a move-immediate instruction shown in

Table 2-11. [c, e]

The program counter points to the instruction to be executed; this address is applied

to the memory; the opcode from this address is transferred 1o the instruction decoder;
the sequence controller recognizes the MVI instruction and increments the program
counter to point to the next byte (the data); the memory data addresses is transferred to

the memory address register and applied to the memory; the sequence controller gener-
ates timed control signals required to transfer data from the memory to the destination
register; the program counter is incremented to the next instruction to be executed.

enable one and only one source through three-state gates at any one time.

2.13 Why must a latch be used to interface an output device to the data bus? [a, c]

The data bus is active all the time, with data flowing to and from memory and I/O

2.21 Draw a timing diagram relative to the system CPU clock shown in Figure P_2-21, !
devices. To be able to output specific data to an output device at a specific time, which includes the address and data buses, R/-W_L, and the read control signal
a latch must be used that is clocked by the write control signal and the correct (READ_L = active low) and shows a read cycle. [a]
address.
2.15

memory space 0xC000-OxFFFF and 1 Kbyte of RAM in memory space | w i

0x1000-0x13FF. [c, k]

a. Give a range of addresses (in hex) suitable for locating code:
0xCO000-OxFFFF doress

b. Give a range of addresses (in hex) suitable for allocating variable data storage.
0x10000-0x13FF

r
5 A microcontroller memory map shows 16 Kbyte of Flash EEPROM (ROM) in CPU Clock ! I r ] l l [ l I |
:

Bus Clock

3.1 List at least five principles of top-down design. [a, ¢]

B5

R/W_L
2.17 Design an instruction decoder as shown in Figure 2-13 using AND, OR, and inverter
gates to decode the 3-bit opcodes and produce a control signal asserted by each of the
2 y e 5 READ_L
operations given in Table 2-5. £l
Data
B7
B6 ADD Figure S-2-21.
B5 2.23 A CPU generates a bus clock and R/W_L signal during a read cycle as shown in Figure
2-18. Give a logic equation or show a logic diagram expressing the logic required for
B7 L by 2
the READ_L control signal.
B6 SUB T :
BS READ_L = ADDRESS_OK and R/W_L
=71 ADDRESS_OK
= READ_L
B6 IN RW_L ﬂ -
B5 !
| Figure S-2-23.
B7 :
B6 ouT i
57 | Solutions to Chapter 3 Problems
B7 |
B6 MOV

Understand the problem completely; design in levels: ensure correciness at each level:
postpone details; successively refine your design; design without ¥sing @ programming
Figure S-2-17. language.
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3.3 Write the pseudocode and draw the flowchart symbol to represent the decision IF A is
TRUE THEN B ELSE C. [a, c]

False True

Figure S-3-3.

w
w

Write the pseudocode and draw the flowchart symbol to represent the repetition WHILE
A is TRUE DO B. [a, ¢]
WHILE A
DO
Begin B
End B
ENDO
ENDWHILE A DO

WHILE True

False \

Figure S-3-5.
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3.7 Use structured flowcharts or pseudocode to write a design that will implement the
following problem description: [c]

Prompt for and input a character from a user at the keyboard.

If the character is alphabetic and is uppercase, change it to lowercase and output it to
the screen.

If the character is alphabetic and is lowercase, change it to uppercase and output it to
the screen.

If the character is numeric, output it with no change.

If it is any other character, beep the bell.

Repeat this process until an ESC character is typed by the user.

DO

3.9 Use structured pseudocode to give a design that will accomplish the following: [c]
A user is to input a character to select one of three processes. Valid characters are A, B,
and C, where A, B, and C select processes A, B, or C, respectively. Process A requires
a byte of information to be input from an A/D converter, which it then converts o a
integer decimal number in the range of 0 to 5 and displays it on the screen. Processes
B and C are not defined at this stage. Prompts and error messages are to be displayed.
You do not have to give details of the decimal conversion required in Process A

acter A, 8, Oor L




3.11 Design a traffic light controller: [¢]

Imagine an intersection with north/south and east/west streets. There are to be six
traffic light signals

RedE_W, YellowE_W, GreenE_W
RedN_S, YellowN_S, GreenN_S

Assume the time elements in the table below are 10 seconds and that a timer delay is
available as a function or subroutine. Give the pseudocode structured design for the
light controller

RedE W

YellowE W

GreenE_ W

RedN S

YellowN S

GreenN_S
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Turn YellowN S and RedE W on and GreenN S off
Wait 10 seconds )
Turn RedN S and RedE W on and YellowN S off
Wait 10 seconds
Turn RedE W off and GreenE W and RedN S on
Wait 40 seconds n
Turn YellowE W and RedN S on and GreenE W off
Wait 10 seconds
Turn RedE W and RedN S on and YellowE W off
Wait 10 seconds

FOREVER

Solutions to Chapter 4 Problems

4.1
43

45

4.7

4.9

List the CPU registers available in the microcontroller you are studying.

In Example 4-34, what is the decimal result of the two’s-complement binary addition? [a]
70

10°
What is the meaning of sign bit = 1 when unsigned binary coded numbers are added? [a]
Merely that the most significant bit is 1.

What is the meaning of carry bit = 1 when unsigned binary coded numbers are
added? [a]

An overflow has occurred.

What is the meaning of zero bit = | when unsigned binary coded numbers are
added? [a]

The result is zero.

What is the meaning of two’s-complement overflow bit = 1 when unsigned binary
coded numbers are added? [a]
It has no meaning in unsigned binary code arithmetic.

Do the following 8-bit binary additions and for each case give the expected result in the
carry, zero, sign and overflow flags.

a. 1010 0011 I e I 15 B b c. 0111 0001
+0011 1011 +0000 0001 +0100 0000
101811610 0000 0000 1011 0001

C=0, Z=0, S=1, OV=0 C=1,Z=1, S=0, OV=0 C=0, Z=0, S=1. OV=l

d. 1010 0010 e f. 1010 1010
+1000 0000 +0101

0010 0010
C=1, Z=0, S=0, OV=1

C=0, Z=0, S=1, OV=0
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1.17 For problem 4.15, assume that the binary numbers are in two's-complement binary 5.13 Assume you are designing a CPU that is to have a 20-bit address bus with each

ode. Show the equivalent decimal arithmetic operations and indicate if overflow has memory location containing 16 bits. A base page is defined that has 1024 locations.

occurred. [a) Assume that memory indirect addressing using base page addresses is the ONLY kind
\ 93 +59=-34 b. -1 +1=0 c. 113+64=-79 of memory addressing this CPU has. How many bits in the instruction must be

No overflow No Overflow Overflow allocated for a memory reference instruction? [c]
4. =04 =108 =34 e. 127+-128 =1 f. —86+85=-1 10 bits to address the 1024 locations in the base page

Overflow No overflow No overflow

1.19 For the multibyte addition shown in Example 4-2, state what kind of instruction you
would expect the microcontroller to have to be able to do this. [e]

Solutions to Chapter 6 Problems

\n add-with-carry instruction is needed.

6.11 In Example 6-1 a constant defined by an equate is used to initialize a register with a

constant value in line 50 and a constant stored in ROM memory is used to initialize a
Solutions to Chapter 5 Problems register in line 58. Comment on these two assembly language programming techniques.
5.1  List the addressing modes available in the CPU you are studying. Which is better? [a]
= . . Because you are initializing a register with a constant known at the time you are
5.3 A microcontroller is to be used in an embedded system with the following memory map: e ) : E S
: ’ writing the program (assembly time), there is no need to allocate and use a memory
L } location to do this. Use the equate for these constants.
::: ["_'_}l [ ol 6.21 Use the principles of structured programming to write structured pseudocode (do not
) None ‘ write assembly language code) for the following problem statement: [c]
:::“'l’;" . The program is the prompt for and will accept a two-digit hexadecimal number from
RAM ‘ a user typing characters on the keyboard. These are to be converted to an 8-bit binary
OxFEFF | | number and displayed on the LEDs. After a one-second delay. the complement of the
Lt byte is to be displayed on the LEDs for one second. After this delay, the »LED< areto be
ONFFFE| | turned off and the process repeated starting at the prompt. The program is to continue

until the user types two zeros (*00™).
a. In what memory addresses must code and constant data be located? [c]

LRI o E e AR R Your design should follow the principles of top-down design, and you may postpone
OxIFFF or OxFFOO-OxFFFF . . . - .
Ox000-0x or OxFF00-0x consideration of such details as how to convert the two input characters to binary, and

b. In what memory addresses must variable data and storage be located [c] the details of the prompt and how it is to be printed.

0x8000-0xFEFF Initiali
nitiali

o
v

Name at least five ways to address an operand. [a] Initializ

Enable L

register; indexed; memory indirect; register indirect; direct; immediate; relative

5.7 What are the names of the addressing modes that form the effective address from a
constant and the contents of a register? [a]

Based: indexed

5.9 To increase the memory address space in a computer system, one must (a) increase the '
number of data lines, (b) increase the number of read and write control bits going to the e
memory, (¢) increase the number of address lines. [a] 1 i
. ; Output
(c) increase the number of address lines ; Delay ond
5.11 A register indirect address instruction (a) has the address of the operand in the instruc- 7 Blank
tion, (b) has the address of the operand in a register, (c) uses the program counter to 7 e b
calculate the offset address of the operand. [a] s WHILE

(b) has the address of the operan