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Preface 

Much has changed ,ince the first edition ofMicrtJconrrtJllersand .\f,crocomputers. PnnClplesCJJ 
Software atul Hardware E"g,"eeri"g. Many more mlCTOControllersare available. and ad"lll,e 
in integrated circuit technology no\\ allo\\ man) feature, needed in an embedded ~ tern to be 
integrated into the microcontroller. making S) tern de"gn much e3>ler. 

As the hardware has improved over the year;. so ha; the \oft\\are development emiron· 
men!. In earlier day. software wa; wriuen in alsembl~ (or C) and downloaded to RA'1 for 
testing. ROM·ba;ed debugging monnor progT3I1l' allowed student:. to run therr pr p-am • 
,et breakpoints. lface and inspecl regi"eT\ and memo~ to \ent') that the prognun "'3: run· 
ning correclly. and debug it if il wa> no!. Someume, '1mul31ors were u>cd. bul the ,.ere 
limited in how they simulated input and OUIPUI functions. ~owada), we Implement m.1I1. 

software designs in a high·le\el language. primaril) C. De\elopment en\lronment e 
Freescale Semiconduclor"s CodeWarrior® offer a.<",mbl). C. and C-Iangua,;e- al og ".:11 
sophisticated. high·le\el debugging IOOb. Chip manufactureT\. 100. have Inlegrated into therr 
microcontroller chips development and debugging feature, such", 8a ·'!!'Wnd DeOO!;gl ,; 
(Freeseale). On·Chip Debugging. (Atme\. MIcrochIp). Embedded ICE® \Clrru, up· . and 
JTAG Debug (~1a"m. T\). These hardware and software loob. along WIth ,·q,i '3Illl'Uot 
of Flash program memory. h,,·e made the de\ elopment of embedded appheau n, much e3: er 
than In the pas!. Nonethele". "uden" must ha\C b3>l, ,no\\ ledfe about the nu,ro.; 
and nucrocompule" before they can appl~ the nev\ tool, in embedded ~ tern' 

Thi,cdiuon of M,cmconrmllfl"< <It,d lI'fm<:,'mp"""" Prilld!';' of ift>. arr and Harm. 
Engineerillg is de,igned to be an tdeal tmroductol) h!'\l 10 an em~ ~'em 01 cro-
controller cour-.e. It i~ not tlrgcted to\\a.N. nor d lie' It de' :nbc . .m~ '("e\.~,fi ~ ml~ 

or nllcroproce sor While there are ,orne ",-emt>l~ langu.ge ,oJ< e amp" t en f 
Frec'cale HC I" 1111 rocontrollcr. thcse -.er" l'nl~ ., an mU1'Ju..·u n t" I 3d 
Ihe ",'cmbly language of their own ml~n><:"ntrolld, The mal na.\ m thl' 
.... ophomorc. junior, or r...emor ~lcclrical en~,"eering. to; mpuler en£'[K"('rin:;~ or ~ 
cncc 'lUUl!nl!>. taking a fir..t C(lUI'\e '" cl11bc..~ddcJ ,~,tem ... "'r mtCru~" ntrolh.: 1 
progr.ul1 c'Iampk:"l iU'e glH'n in and;l ,,~hJ.i ter i, de\ ,ted tl' th.! y, "I ... 10 an 
appli atlon. ,Iuden" w III ~netil 0) hl' Ing a r",requl\ne hl);h·\ .\<1 \an<!u 
ubi) . Bcc3u,e the te\l j, PUflX"dull) not rn""~"l r.'pt"clh-:. tl to;'1U\ boe u 
"pccific materiul. .... ueh a, lll~mutJeturt·",· dJ.\J. ,hech and reiC'f('tK· n 
... uch ~,... c!/,\\ art' (lIhf H,JnJ\\'tlll' Fngmt'« rm ": \ftlt mu,. \If). 'Hell. ",\( ,.·, ..... 'w'".,,' 
Engmt'frillg . • \fOl(Jrfl/a \fr.~~HC J 2 

The fundal11ent.11 "(,,,mHon <,1 '1.IIIJaNml,n ',ntn lIer I alUre 
1/0 interface .... Hltcrrup". J.nJh'~~h'-d'g"3.1 ~,,'n\t'''h n. and h 



Preface 

pJ.ill 10 thc: c1(!dnC~,1 tnt~rr.h:C:' nt!~lkJ. On~ ('hapta I' JCHl1\'U hl 'h,,'''ng h,)\\ Ok \ ari!.!1) of 
lIc\ ICC' Cln tx· lhed 

lrganization and Features 

Thl' l'\,htl4..ln ot \/u"rfioltJlnlllt'n (Jlltl \I/{'",( PIII/IU"'''' Prill« ,pic" til \O}I\\(tr(' (l1Il! lIarcbnm 
En\.!lIfl t rmg Includc, much llf thl.! !ir" !.!~.htl~,". \\ Ith .h.lduhll\al ch.tptt:r, Jill.! tn~tl'nal dc\\!lopcd 

IIllhe teo )l'ar-. ,inc:c thl' Nx,)k \li.h nrigmi.lll~ puhh,llI:J 

Introduction : Th~ IOln.:xiudhHlI:Onl.t1Il' a lh!,cnpttlln (\1 the \Oll 't:l1ll1ann ~lIl1.1 
H.ln.lrU .If\,:htt~l:tlln.:' .mo g1\c'" JdiOlt1on .... lhcd thrl'lI~h\,Ulllll..' lc:\.1 \ tll1\e hnc gl\C' 

.1 bncl hl'hl~ of I1lIl'ffll'(1ntrlllkr dl.!\dopl1l~nl 

Generul Principh~, of \l icrncnntrollcI"'I: The ~L'ncral \lpc:r..uil1;! pnn~lpk' ut mu.:ro­
cllntr\lll~r-. .Ife l11u,tfiJtcu t-.~ mean .... of .1 n:gt,ta·tr.m,h:r JC'lgn of .1 pnxc, ... nr. Juhtxtl 
the ph:~x1lntrolh:r lul.icnh aft:' ... htl\\ n hu\\ dt:limng .I"'c:t \\1 ,",tnsdlun'" I..,tll Ic.ld to a 
harJ\\MC uC'lgn. IOduJ,"~ the ~llUCnllJI ,:nntfulkr nt:nkd 10 ~I ,h'lrc ... 1 progr.1I11i.:0I11· 

pUler The: chapter al,o uc" .. :nhc ... the: ,olt\\ Me: dc\l'Itlpmcnt em Irnl1mc:1l1 ,Hulen" \\ III 
U'C in the: 'at"l..lr.1t\l~ 

~tructured I>rogram Ol"i~n: The pnnl..lph:, III top·th1\\ n dc'a::n .m! pn:,t:ntt:u In th" 
I.:h~,ptcr Studc:n" ,h"ulJ he t:\()(hCO to tht: nced Ipr "ltt\\~n' U(.."H.!O ~hln: ,tJ.nlllg ttl 

"nle: progmm, l\lr thclr mu.:nX:llntrolkr 

Inlroduclion 10 the CPl: Rc)!bler. lind Condition (ode : lhl' ch.lrlcr ,k,cnhc, 
the rcgl'tcr, Illuno 10 .111 mKfl)(ontrlllkr Sludt:nh .tn: a,kcd \1' Jc:~n~ thetr 0\\11 
pnxt: ... ,nr' fC).!I'lcf'. ,lOu (llnulllnn l.:o4.k, tn I.:h.lph:r (..' (,,'rl""C 
\h~mor~ \ddrc.."ing, \It)dl~: TIll' I.:h~lptcr. \\hlt..:h \\111 h..- u,c:luI1l11.:11\1f'':' thi.11 
1c~('h.1O <J,,",cmhl) bngu.l~c. Jc~nlx, the • .\lIJfI':","~ moue, \:,lnIlHtlnl} u'cJ 111 

mh.:n-,:olllrnlh:r 

h .\."embl) LnnguaJ,!l' ProgrummilllZ: lhl Ch.lph:r hn\\' the tuJcn1 ho\\ thc} 100t!ht 
or ..:anllc an \ cmhl\ liJncuagc pHlur.10l md hn\l!. hI l:llmpll h trw .. lUrcd prngr.H11· 
min' lon,tru..:h In \ ... c:mhl~, \lth\'Ul:!h thl' t.:,ll Pfl-';C If lIlo\.'pcndcnt. ~·n:c l..llc 

t;cml IrJu Dr HCS I ~ .cmhl, \".( I~ u:J 10 c amrle 

. Pro~ramming for lomhcddcd "~'Icm' : Thl (h.lp1 r hnv.. hoy. prn r,mmung 
In (tn an cmhc:ddc:d tcm Jlttcr ... tr 1m rro~rdnHl1Ing lur III de kttl(l ~o"'f!utt:r 

OJpplH': Itton it I'. no .In Illlrodu1.1llr~ III 1ructlon In C pn) ramming \\c- .1' Ul11C th.II 
tud~nl h.J\\! learneo ( In Jnut~r rrn~r.lfm1lln t.:P"~ Ihen: Irc.,' rn.Hl~ pro ·rJTl1mlOg. 

n:.Jmplc, In C lhp.lI ~hn"l th t ,1 

1)ehul!c.in~ \litru('nnlnllll'r '-.nfl\\un: nntll1ard\\nn.·: \Inu I 111 ,ll \I, d,'"nlp.hl 

'I (,,",puttr II""" and I'"r.llld I/O : I hi lhaplel Uc ,he r r Ihell I) Intert.1 e • 
u';:Ul(:lIntr lll·f' I/e) IfId III) Iftv..i.Ir \nlt-:Olml tllln 

Preface xi 

10. Interrupts and Real-Time Events: The genoral principles of intenup~' appropnate for 
any microcontroller are co,ered. Hint, for wnllng Intenupl "''' ice roulln", or handler> 
are given, 

II . I\I.mor)': Thi \ chapler co'ers the basiC princIple' of memo!) elemen~ and memo" 
archileclUre'>. Wc explain the differenllYpe' of memory and discu" the interaction of 
memory wilh IheCPU. 

12. Serial UO: Many engine." h3\e a lerrible lime "'Ith serial Interface. e pecially 
Ihe RS-232-C ""andard:' becau,>. Ihey do nOI under>land ho,," all the ignal in the 
"andard inlerface are u,cd. Thi' chapler deo,cnbe, the asynchronous ...,riall/O and 
its RS-232-C "andard Inlerface. Olher electncal interface, used in <.enal. Ineluding 
RS-4:!2. RS-423. and RS-4 5 UO. are described. The 'y nchronot1> <.erial penpheral 
interface (SPI) and Ihe inlCr-inlegraled circuil (IIC or FC) Interfac"," are ,h""n. and 
Ihe com roller area nel\\ Or' <CAN) bu, i. Introduced. Example,; ,h""'ing llO" to u'¢ 
Ihe SPI 10 ,end d3la 10 an LCD module and the Fe 10 read a temperalure n'-Of = 
ghen. 

13. Analog Input and Output: Becau,e compute" mu I read analog information and 
ael upon il. Ihi' chapler con, ide" Ihe "'orld of analog Ignai" S~<lem as!"':t ot the 
analog-Io-digital conver"on proce" are g"en \\ith de,ign procedure. Both :malog-\(>­
digllal and digllal-lo-analog omener I) pes are d.",ribed. 

14 Counters and Timers: Many embedded applicallon< require a timer 10 generale" e­
forms of;1 specific frequenc). to time external e\ent!-. to count e'enl .... and to generate 
inlcnup" al specific Inlerval,. Thi' chapler 100,"' 31 the ro, ic o!",rntion of the timer 
clrcull'" found in modern microcontrollcf' 

15. ingle-Chip ~ licrocontroller Interracing Techniques: Th". the large'l eh3pl~ In the 
book. dc\Cribe, a \anel) of rcal-\\orld Inlerface not co\ered m earlll~r haple ...... ~ 
Inelude 'imple inpul and OUIPUI de\ ICe,. ,,\ itche,. LED,. and \.eyp <1.'. Parallel LO 
cxpan,ion ,omelime. needed for microcontrolle" \\Ith hmiled LO i, llO"n.lnput 
OUIPUI UO electronICs \hO\\ qudenl\ ho\\ 10 prolecl the fragile mi 'roc >ntroller trom 

the cmel \\ orld. DC and <lep!",r mOlor. are de\Cribed. and C pn:>gram stepper rnowr 
dri\cr module" are gi\cn. 

16. Real-Time Operating ) ,terns: Our final chapter"" bnet ,"en,." 
opcraltng 'y'tem .... 11 can 'cne 3. an muoducti n for'luJeol! e- 1O£. 
ad, ~\l1ced microconln,"er COUf'c! that \\ ill u"e real-time ... ~ 'tern 
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d. An abilil) to function on 1llultH.lhcipitnal") teant'. 
c. An abilily 10 identif). formulate. and ,olve cnglOccnng problem, 
r. An underslanding of profc;,ional and elhlcal rc'pon"bdil). 
g. An ability to communicate dTecthcly. 
h. The broad education nece~~ar)' to undcr..tnmJ the imp~lct of englllccring ,ulution ... in a 

global and socielal conlex\. 
i. A recognition of the need for. and an abilil) to engage in lifelong learnlflg.. 
j. A knowledge of contcmpornl) j,:.ue" 
k. An ability to use the technique:"!. skills and modem engineering. looh nece'".lI)' for engI­

neering practice. 
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Introduction 

1.1 Computers, Microprocessors, Microcomputers, Microcontroilers 

A computer system is hown in Figure 1-1. \Ve ~ee a CPU. or censral proctHOr unll. memon 
(ROM and RAM J. containing Ihe program and dala. an 110 interfau with """",ialed input and 
output POrts. and three buses conncCling the elements of the system together. The organizauon 
oflhe program and dala into a si ngle memory block i called a "on Neumann archllect:ur<:. aft", 
John von eumann. who described this general-purpose. lored-program computer tn 1945. 
In Figure I - I the data. address. and control bu es consi I of many wires. ror e,ample . 16. ~2 

Parallel 
1/0 

Ports 

Serial 
1/0 

Ports 

AID 
Input 
Ports 

r-------------------------------------- ---------, 
I , , , , 
I , 

, , , , 
I 
I , , 
I , , , 
I , , , 
I , 
I 

Data 

Address 

Control 

16 

I 
I , , 
I , 

, , 
I 
I ' 
l ______________________________________ _ _______________ J 

Figure 1-1 Von Neumann computer an::htteclure 
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Data 
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Control 
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Jgram Memory 
Data 

Parallel 
I/O 

Ports 

Senal 
1/0 

Ports 

r------------------------------------- -
I :.------, 
I 
I 
I 
:L-,--.--.' 
I 
I 
I 

AID 
Input 
Ports 

Address ~~'--+---1----,I_'-6+-.J 
Control 

16 I 

Data Memory 
and I/O 
Data 

Address 

Control 
Buses 

I 
I I 
I I I __________________________________________ ____ J Buses 

Figure 1-2 Harvard computer architecture. 

or more. that carry binary signals from one place to another in the computer 'YSlem. This is 
a classical computer system block diagram. and all computers di scussed in this text have this 
basic architecture. 

There is another major computer architeclUfc type ca lled the Han'artl arch itecture in which 
two completely separate memories are used-one for the program and one for the data. This 
architecture is often found in digital signal processing (DS P) chips and some other microcon­
troller chips such as Microchip Technology PIC microcontrollcrs (Figure 1-2). 

Until 1971. when the Intel Corporation introduced the first micropro-
microcomplller is a microproces- cessor, the 4004. the CPU was constructed of many components. Indeed. in 

" with added memory and VO. 1958 theAir Force SAGE computer required 40.000 . quare feet and 3 mcga-
waUS of power: it had 30.000 tubes WiUl a -lK x 32 bit word magnelie corc 
memory. The first mass-produced minicomputer. the Digital Equipment 

Company's PDP-S. appeared in 1964. This was the stM or a trend toward less expen,ive. smaller 
computers suitable for use in nontraditional. non-<lata proces;ing applications. Intel's great con­
tribution was to integrate the functions of the many-element CPU into one (or al mO>l a few) inte­
grated circuits. The term microprocessor first came into use at Intel in 1972' and. generally. rerer.. 
to the implementation ofthe central processor unit runction, or a computer in a 'ingle. large scale 
integrated (LSI) circuit. A microcompiller. then. is a computer built using a microprocessor and a 
few other components rorthe memory and 1/0. The I ntel400-l allowed a four-Chip microcomputer 
consisting of a CPU. a read-only memory (ROM) ror program. readlwrite memory (RAM) ror 
data (using the Harvard arch itecture). and a shift register chi p for outpul expansion. 

The Intel 4004 was a 4-bi t microprocessor and led the way 10 the development or Ihe 
SOOS. the firstS-bit microprocessor. introduced in 1972. This procc"or had 45 instrucllon" a 
30-micro,econd average instruction time. and could add re" 16 kilobyte, of memory. Today. or 
course. we have advanced rar beyond these fim microcomputers_ Table I-I give, a ,ummary 
time line of many of the imponant developments leading to our microcontrollers or today. 

R N NoyccandM E. lloff Jr .. A IlislOrYfifMicml"rKl'HOrDt'H'/fJ/mlnlttlf b"d 11-1+ MICRO, Fchnl.lry 19HI 
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Table 1-1 Microcomputer Development Time Line 

Year Computer 

mid-1800!! Charle .. Babbage diITerenec 
engme 

t9-14 IBM Alliomatic Sequence 
COnlrollcd Calculator 

1945 von Neumann machine 
dc~cribcd 

1946 EN IAC 

1947 Point contact tran,istor 
invcnled 

1948 Junction tmn"i ... tor invented 

195t EDVAC 

t951 Magnetic core memory 
invented 

1958 Integrated circuit in ... ented 

1960 MOS tmn"istor inve nted 

1963 CMOS tran .. htor invented 

1964 FiN ... Iatie RAM 

t964 PDP-S 

1964 Control Data Corporation 
CDC 6600 

1965 Moorc's law proposed 

1970 Intel 1103 

1970 Three-"I:lle logic im'cnled 

t971 Intd -1004 

197t Intel 1702 

1972 Intel 008 

1972 He\\ 1c1l-P;II:kard HP-35 

1973 l ~tP·16 

t974 PACE 

1974 lIuclS080 

1975 ~llT\ Altair 8800 computcr 

1976 RCA 1802 

1977 Commodore Pet 

1977 A pplc II L"omputcr 

Event 

A diITerencc engine W3' completed in 1991 at the Science MU'\eum In London to 
8abbage\ original pia""" It had around.t()()() pam and weighed almost 3 tOM. It 
successfully calculated a re .. ult to 31 diglb. 

Aha called the Harvard Marl. I computer. it introduced the Harvard architecture \4ith 
separate data and progr.un memory. Built .... jth !lwilche!l. relay~ . and other mechanical 
component.s. it hud mer 700.000 component". and weighed 10.000 pounds. 

While worl-ing on the EDVAC computer project. John von Neumann described 3 

Mored-program cornpUlcr with data and progr.t.m in the same memory. 

Electronic NUTncricallnlcgrJtor and Computcr. Whh over 17.<XXl \':!cuum tu~ and 
7200 cry .. tal diode.,. it .... cighed 27to\l!'l and con<iumed 150 k W of fKJ'" er. 

John Bardccn and Walter Br.1l1ain at AT&T Bell Labs. 

William Shockley at AT&T Bell Lab .. 

The Eleclronic Discrete Variable Automatic Computer \\-as a sUCC'e\...or 10 Et'oo'1AC. It 
computed in blOary in\te ... d of dccimal. 

J ... y Forre~ter at MIT ba...ed hi ... invention on war\.; by An Wang 31 Harvard Univer;it) in 

t949. 

Jack Kilby 011 Te~a ... In\lrument ... 

John Atnlla and Dawon Kahng at AT&T Bell Labs and Roben No)ce 11t Fairchild 
Semiconductor. 

C. T. Sah and FrJnk Wanla .... 'I: Fairchild R&D Laborato£),. 

6+-bit memory. from Fairchild Semiconductor. 

Digital Equipment Corporolion's !irst ma.. ... :,-produced minicomputer. 

Fir.,1 reduced instruction "lei computer (RISC). 

Gordon Moore :11 Fairchild Semiconductor predicted Ihat the number of componenu. 
per chip \\Quld double ever) one to two years 

Fir.,t dynamic RAM chip. I Kbil. 

Natjonal Semiconductor (no\\ idenll!ied b) trademark nrune Trist3te} 

Fif"ll microproce,sor. 2300 IT'.Ul ... i\lo,.... 740 kHz dock.. 
First er.1~ble programmable read-only memory (EPRO!\I): 56 'Ii. g bIb. 

FiT'it 8·bil microproce .. "Or. 3500 tran .. I!tIO...... 00 l...Hz clod ... 

First pocket .. cienti!i('" calculator. 

Fif"lt multichip 16-bil microproce, ... or. from ~ationaJ Semiconductor.1t u.-.e'd fi\c 
integmted cio;:uih 

FiN "'Ingle-chip. 16-bit microproce~ ... or: from National SemironduclCIr 

6000 tran ... i"'tof"l. 2 MHz dock 

Fif"lt hobbyi"'l computer ba ... ed on the Inld 8080. II had -IK and SK BA Ie. J .... RA\1. 
<\nd introduced the S-Ioo bu .. !.t!mdard. The I,.'(tmplete kit. includm~ C''li.0"a ~mo~ 

anti I/O. co!!t ~1-lOO ( 5800 in 2008 curreoc) adJu ... ted for intlatlonl. 

RCA COSMAC. lhc flr'\t C~ IOS micropro.."e .... ..or. \\~ u.;ai in ,pat...~ flIght-. tn the t~-()... 

FiN all· tn-one home computc.'r \\jlh -I-S K RA~t. a 20" !5 chanh:lerl..h'p13) . .:md 
built-in ca ..... clti: lor d,IIJ "I(lm~c. It u--ed. the Mo,tel.. bS02 pn.lI."t':-"'-OT. It "-"1.,,,1 -.(t 

( :! '00 in ~OOS currenc) adJu .. loo for mnalil'lnl. 

Prccl!dcd b) the pplc I in IQ7b. thi .. bc.",,;tnte ·\rplc·~ hi~hl) 'u,,-~ .... lUt th.'m! 
L"omputcr. II,,-"(ht 11Q8\\uh4 K RA\land ~b~S\\l\hJ~K ~Oand -~S(lQ 

re",,>cctl\ d~, in ~OOS CU~IK) 1. 
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Table 1-1 Continued 

Year 

1977 
1978 
1978 

1978 
1979 

1980 
1980 
1981 

1981 

1981 

1982 

1982 
1983 

1984 
1984 

1984 

1985 
1989 
1990 

1992 

1996 

2000 

2005 

2008 

Computer 

Radio Shad. TR ·80 

Inlel8086 

1\I01oro1116S01 

Fir.! EEPROM 

Motarol.:. 68000 

BELLMAC-32A 
Inlel8087 

IBM Perional Computer 
introduced 

iAPX432 

Q ... bomc I 

Fir;1 RiSe processor 

Intel 80286 

Compaq Portable 

Rash EEPROM developed 

First Apple /l.fJcinto~h 
computer 

Motorola 68020 

1n'e180386 
1n,e18Q.186 
FCC Pan 15. Subpan B 

IB~l PO\~erPC 

DECA1ph,21Q6.1 

Intel Pentium IV 

A!\IOAthlon6-1 

AMDPhenom 

Event 

One of the Ii~t ma.'~-produc:l.'d home computeJ"\, II CO<,I 600 (S2030 in 2008 currency), 

Intel's first l6-bll microcontroller: 29.000 trnn,!.i!.lon.. 4.77 MH7 clock. 

First microcontroller: 3500 lr:m,."tol"\ \\ IIh :2 MI·b clod .. II wa. .. the fir-I integratLon of 
an 8·bll CPU with 128 byte ... of RA~I. 2 Kb)IC of ROM. a 16-bil timer, und .. crial 
ua interface. 

Intel 2816: 2 KbYlc. 

Firs:t 32-bit microprocc .. sor: 68.000 lromi .. to~, S MH7 clock , Ii h:ld 32-bit rcgi<,tcr.. but 
16-bit inlcrnal and external dolO bU"lInd 24-blt addrc~~ bUli. 

First single-chip. 32-bit microproccs"'or:ll AT&T Bcll Lab~: 146.000 tmn~i .. tol"';. 

~'Ioth coprocc')sor to do nO:l1ing poinl arithmetiC. 

Intcl 8088 with 4,7 MHI clock, RO~ 1 BASIC. up to &10K RAM. CGA di'iplny adaptcr. 
and cassctle. A 160 Kbyte noppy \\J.I, optlOnll1. IL" $3000 COSt in 1981 15 equivalent 
to 57400 in 2008. 

Intcr~ first 32·bit microproces"or. Three chip'" \\ ith :1 total of 200.000 trJ.nsl~tor\ . It had 
an 8 ~IHl clock 

Firsl commerciall) succe~sful ponablc computer It \\cighed 23.5 pounds and had the 
CP/M II opernting: sY:'lem. a 5-inch dl~pla)'. (HK mernaI'). and 5.25-mch noppy disk, 
IlCOSI 1795 (W60 in 2008 currency). 

Reduced instruction set compulcr produced by the RiSe Project at thc UOI\-ersIlY of 
California at Berkeley: 44.500 trnn.mlor.,. 

l6-bil microprocc<;sor: 134.000 trnn'il .. tol". 6 ~IHl clock. 

Fir.ilIB~1 PC comp:uiblc ponablc computer. It COSI S3950 (S8400 in 2008 currency) 
and weighed 28 pounds. 

Toshiba. 

It u5-ed nn 8 MHz Motorola 68000 microproce\sor. 128K RAM. and a 400 Kbytc 
3.5·inch OOPP) . 1t co'" S2495 (S5130 in 2008 currency). 

32-bit version of the 68000 microproce ... sor fabricated In CMOS · 190.000 tmn"i"lors 
and 16 MH£ clock, 

32-bit microproce ... \Or: 275.000 lransistors. 16 MHl clock 

32-bil microproces:!oor: 12 million Irnnsbtol". 25 MHLclock. 

Rules go\'cmmg radiofrequeOC)· emi~lons for electroOlc equlpmcnllocluding pcr\Qoal 
compulcrs.1l1e...c federJI rul~ require tOling and cenlfiC'Jlion of electronic eqUlpmenl. 

First single-chip PowerPC reduced inwucl!on !let computer. 32 blh 2.8 million 
transistors, 68 MHz.clock. 

Digital Equipmem Corporation. 64-blt plpelined proce!l"or. 9.7 million trunsi"tor;, 
500 ~'IHz clock, 

64-bll microproces ... or. -'2 million tran.,ISlor;. 1.4 GHl' clock 

64-bit microprocessor. 200 million trun ...... tol"';. 2.6 GH/l'lock 

6+bil microproce!l'>Or: 450 million U"3n" .. lor ... . 3 GBI clock. 

1.2 Moore's Law 

Table I-I shows a remarkable. exponemial grow1h rate in the >lie and speed of 1he integrated 
circuits used in microprocessors and microcontroller\. In 1965 Imel cofounder Gordon Moore 
observed this phenomenon and predicted 1hat the growth would cominu" doubling every 
18 to 24 monlhs. Although some observe" claim 1hi' i, a ,elf-fulfilling prophecy because 
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Figure 1-3 Growth in number of transistors in microprocessors from late 1960s to first decade of 
the twenty-first century. 

manufacturers concentrate on improving their technology. Moore's no\\ four-decade-old 
observation ha continued 10 be lrue. as shown in Figures 1-3 and 1--1. 

1.3 Microcontroliers 

A m;c:rocofllroller is a computer with 
CPU. memory. and liD in one inte­
grated circuit chip. 

This text primarily is about using computers in applications \\ here the 
system is dedicated to perfom1ing a . ingle task or a single group ofta>!-s. 
These are called embedded application. and examples are found almost 
every where in products from microwave ovens and toasters lonutomobiles. 
These are often cOlllmi applicalions and make use of microcontrollers. A 

mictVcomroller is a microcomputer with its memoT)! and va integrnted into a single chip. In 
1991 1he chip manufacLUrer delivered over 750 million -bit microcontrollers: b) 2QO.1 the 
induslry'S annual total was 6.8 billion microcontroller units.' 

: hllp;/lW\\ w.lnslnt.com/pre",.asp?1 D= 1-W5&"ku=lN0502457SI 
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Figure 1-4 Improvements in microprocessor clock frequency for lne same period. 

2005 2010 

1.4 Some Basic Definitions 

Throughoul Ihis le.<1 we use Ihe following digilallogic lerminology. 

Active high: U ed 10 define a signal whose assenion level is logic high. 

Active low: This lerm defines a signal whose assenion level is logic low. For example. the sig­
nal READ _L is assened low. Although many dala sheels and schemalic diagrams make use of 
an overbar or some other nOlalion. in this lexl we will den Ole aClive- low signals by adding the 
. "_ t OO suffix to the signaJ name. 

Assembly/Compile time: The lime al which our programs are assembled or compi led. Quantilies 
known allhls lime can be saved as con Slants in program memory (ROM). In an embedded sys­
lem. variable dala muSI nOI be inil ialized al assembly/compile lime. 

Assert: Logic signals. panicularly signals Ihal control a pan of Ihe syslem. are assened when 
Ihe control. or action named by Ihe signal. is being done. A signal may be low or high when it 
IS assened. For example. the sIgnal ,IRITE indicales a senion when Ihe signal is logic high. 

Byte: A bYle is 8 bits. 

1.4 Some Basic Definitions 7 

Device loading: The device loading is an indication of what is connected to a device's output. 
II delermines Ihe OUlPUI vollage and currenl requiremenls of the device. 

EEPROM: Electrically erasable programmable read-only memory-pronounced "double 
e prom". This is an EPROM Ihat can be erased by an electrical signal. eliminaling Ihe need 10 
remove Ihe chip from ils circuil and exposing il to UV light. as is the case for EPROM. 

EPROM: Erasable programmable read-only memory. First introduced by Inlel in 1971. this 
PROM could be erased by exposing ilIa ultruviolel (UV) light. Erasable PROMs have a quartz 
window 10 allow Ihe UV lighl inlo the package. 

Fan-out: Fan-ollt is the number of similar devices one device"s output can drive. 

Flash EEPROM: EEPROM may be erased and wrillen 10 one bYle al a time. Flash allows dala 
10 be erased and wrinen in blocks and is Ihus fasler Ihan EEPROM. Flash is used mostly fo r 
program memory and EEPROM for variable data Ihal mUSI be relained when Ihe power is 
removed. NOle Ihal Fla hi somelimes called Flash EEPROM. 

Logic high: The higher of the IwO voltages defining logic true and logic false . The value of a 
logic high depends on the logic family. For example. in the HCMOS family. logic high (althe 
inpul of a gale) is signified by a voltage greater than 3. 15 V. This voltage i known as V"""", 

Logic low: The lower of the IWO voltages defining logic lrue and fa lse. In HCMOS , a logic low 
(allhe inpul of a gale. V.,~) is signified by a vohage less Ihan 1.35 V. 

Logical complement: The complement of a logical signal is an operalor. We wi ll use the over­
bar 10 donale Ihe complemenlation. Thus. PUMP_ ON is the complement of the active-high signal 

PUMP_ON . 

Mixed-polarity notation: The nOlalion used by mosl manufaclurers of microcompuler compo­
nenls defines a signal by using a name. such as WRI TE. 10 indicale an action. and a polarity 
indicator to show Ihe assenion level for Ihe signal. Thus. Ihe signal WRITE indicales thaI the 
CPU is doing a wrile operalion when the signal is high. READ _ L denoles that a read operation 
is going on when Ihe signal is low. 

Nibble: A nibble is 4 bits. There are Iwo nibbles for each bYle. 

OTP EPROM: One-lime-programmable EPROM. This is an EPROM withoul the quartz 
window; Ihus it cannOI be erased after it has been programmed. 

Positive and negative edge trigger: Dala lalches may operale on a level or edge-triggered basis. 
There are posilive (rising) and negalive (falling) edge-triggered devices . 

PROM: Programmable read-only memory. Memory Ihal can be programmed by the user instead 
of at Ihe faclory, as mUSI be done for ROM. 

RAM: Random access memory. This memory can be read from and wrillen 10 and is used in 
Ihe microconlroller for variable dala slorage. The memory contents are 10 I when the po\\er is 
removed. Therefore Ihe memory is said 10 be volalile . 

ROM: Read-only memory. The conlenlS of Ihis memory is programmed once. al the time 
of manu facture. and is nonvolatile. That is. the memory contents persisl when the power i. 
removed. ROM is used in microcomrollers for program slOrage. 

Run time: This i when our program exeCUles. Any variable data with initinl value must b< 
initialized at run lime. 

Tristate or three-state: A logic signal that can neilher source nor sink current. It present a hig 
impedance load 10 any other logic device 10 which it i connecled. 

Word: A word is 16 bils. 
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1.5 Notation 

Table 1-2 Notation 

o~ He'(:ldocimaJ numbe~ are denoted by n leadmg Ox (e.g .. OxFFfF i" Lhe hexadecimal number FFFF). 

@ 

When two memory location!> are to be identified. the stlltting and cnding :Iddresses arc given as 
Q,FFFE:FFFF. 

Hc'(adccimal numbers in Freescale as'iiembly language I!xomples u~e a S 10 denote a hexadecimal 
number $OF = 15. 

Bmary numbers an= denoted by a leading %. For example. OxF may be wrinen % 1111 . 

A ba!)l!- orocl;] ) number i~ preceded by @. nlU~ O:\F = @17. 

Bu,c 10 I ~ the derault base; unlike hcudecimal. binary or octal. II has no base indicator. Thus OxF = 15. 

Ob In C progmm .. , the Db prefix is u!>cd to 'lignify a binary number. 

An "x" indicates a don't-carc bil-thtH is.lhe bll may be lCro or one . 
The ... .. indicat~ a poimcr in a C program. 

A !lignal whose asscrtJon level j,,!ow is followed by "_L." 

Throughoul this te.xt. the notal ion shown in Table 1-2 is used. 

1.6 Study Plan 

The designs of embedded application systems and other more general-purpo e computer are 
very si milar. OUf goal for thi s course is nOI to make you an expen in using a speci fic processor, 
but to give you the knowledge and tools to be able 10 effectively apply any processor in any 
application. We will do that by first studying the general principles necessary to understand 
each part of the system. You may then turn to the user's manual for a specific processor and be 
able to more eas ily understand the informal ion there and apply it in an application. 

The basic operation of a stored-program, general-purpose computer is to be studied first. 
You'lIleam aboul registers, the arithmetic and logic unit , and how a compuler works. Because 
much of your work in an introductory microprocessor/microconlroller course is likely to be 
learning the language and programming exercises. we introduce you to structured program 
design in Chapter 3. Designing software before writing it is vital in developing debuggable 
application software. We will guide you through an introduction to the central processor unit 
and how it addre ses memory in Chapters 4 and 5 and introduce assembly language program­
ming in Chapter 6. You will need to study your own processor in parallel while read ing these 
chapters. 

Many embedded applications are written in C. which you may have learned in another 
programming class. A program written in C for an embedded application. however, has some 
significant differences from one written for a deSktop computer. Chapter 7 will help you learn 
about these differences. Chapter 8 discusses debugging techniques helpful for assembly and 
C language program . 

Chapters 9 Ihrough 15 cover the basics of parallel and serial VO, interrupts, memory. analog 
VO . timers. and interfacing techniques for single-chip microcontro llers. Chapter 1610uches on 
real-time operating systems. 

Objectives 

General Principles of Microcontrollers 

This chapter introduces the principles of a 'tored program computer a nd shows how we 
develop the software for an embedded microcontroller system. The matenal should enable you 
to understand the hardware of a typical system. You will see the Imponance of the ,"structlon 
Jetch. how the sequence controller works. and how to determine sy tern timing. You wi ll, under­
stand how memory operates and how it affect. the design of the computer. We also conslderthe 
soft ware needed and introduce the idea of a tool set to produce the code that ultimately resides 
in the microconlroller's read-only memory. 

2.1 Introduction 

In this chapter we will investigate the operation of a typical microprocessor or microcontroller. 
Our goal is 10 have you see that a computer is 1101 a my terious box but. ~lher. a colleclt~n 
of basic digital logic components that you could design. By the end of thIS chapter you w!ll 
appreciate lhat a computer works in a predictable way and that you have complete and ab olute 
control over what it does at all times. 

2.2 A Typical Microcontrolier 

A typical microcont ro ller is shown in Fi gure 2-1. It consists of the following elements 

A central processor ullit (CPU). that contains registers, an arithmetic and logic unit 
(ALV). and a sequence controller to control all activities of the microcontroller. 

Re{/d-oll/\" memor\" (ROM), to hold our program and any constant data. lodem 
microco~trollers I;a"c reprogrammable types of read-onl) memo!) such as Flash 
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Figure 2-1 Typical microcontroller. 

memory. which is a particular type of electrically erasable programmable read-only 
memory (EEPROM). 

Ralldolll access lIIelllol)' (RAM ). 10 slore variable data. 

An ilipUl/OUlput (I/O) illletface to connect the microcontrollcr to the real world. The 
va interface in most microcontrollers contains other useful functions such as timers. 
pulse-width modulators. and olher special VO functions. 

Connecting these blocks are three buses: the dllla bllS, Ihe address bllS, and the cOll trol 
blls. Often these buses are available outside the microcontroller to allow additional 
memory and VO 10 be used. 

Any program in an embedded system, such as the famous C program that prints the message 
"Hello World!" as shown in Example 2-1, must be in the memory (normally ROM). This C 
program, however. hides some of the imponant detai ls of what is really in the memory of 
the microcontroller. Our microcontroller has instructions. ca lled machine or assembly lan­
guage instructions. The instruct ions in Ou r programs are converted to binary codes thal instruci 
the microcontroller what to do to exeCUle the program. Example 2-2 shows an equivalent 
Hello World' program wrillen in the a~sembl y language of a typical microcontroller. such as 
a Freescale HCSI2. Other microcOntroliers will have similarly encoded in structions. No mat­
ter what language you use to write your programs, they will all be convened to the particu lar 
microcontro ller's instruction set to be placed into the program memory. 

Example 2-1 C Program to Print Hello World! 

/ ' Example Program to prinr. "Hello \>lorld !" ""'/ 
#include <stdio . h> 

void main (void ) 
printf( " Hello World" ) ; 

2.3 The Picocontroller 11 

Example 2-2 Assembly Language Helio World! Program 

Example program to print 
"Hello World" 
Constant equates 

CR : EQU OxOd 
LF : EQU OxOa 

Carriage return 
Line feed 

EOS : EQU End of string 
; Memory map equates 
PROG : EQU Ox8000 Flash memory 
STACK : EQU OxOaOO Stack pOinter 

ORG PROG ; Locate 
Entry : 
; InitialiZe stack pointer 

ids ISTACK 
loop : 
; Print Hello World ! string 

ldd !HELLO 
jsr printf 

Do it forever 
bra loop 

Define the string to print 

program 

HELLO : DC . B ' Hello World! ' , CR, LF t EOThe Picocontroller 

2.3 The Picocontroiler 

To understand how computer instntctions work, let us consider the design of a very simpl 
microcontroller. It is so simple it can be called a picocontroller. ' 

l One picoconlrollcr= 1004> microcontroilcr. 
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Figure 2-1 Typical microcontroller. 

memory. which is a particular type of electrically erasable programmable read-only 
memory (EEPROM). 

Ralldom access memory (RAM), 10 store variable data. 

An illpurlowpur (flO) inreiface to conneCI the microcontroller 10 Ihe real world. The 
VO interface in mOSI microconlrollers comains olher useful functions such as limers. 
pul e-width modulators. and olher special VO funclions. 

Connecting Ihese blocks are three buses: Ihe data bus. the address bus, and the cOlltrol 
bus. Often these buses are available oUlside the microconlroller 10 allow additional 
memory and VO 10 be used. 

Any program in an embedded syslem. such a Ihe famous C program that prinls Ihe message 
"Hello World! " as shown in Example 2- 1. mUSI be in the memory (normally ROM). This C 
program, however, hides some of the important details of whal is really in the memory of 
the microconlroller. Our microcontroller has instructions, ca lled machine or assembly lan­
guage instructions. The instructions in Our programs are converted to binary codes that illstruct 
Ihe microcomroller whal 10 do 10 execure Ihe program. Example 2-2 shows an eq ui valent 
Hello World! program wrinen in the assembly language of a Iypical microcontroller. sllch as 
a Freesca le HCSI2. Other microcomrollers will have simi larly encoded inslrucl ions. 0 Illat­

ler whal language you use 10 wrile your programs, Ihey wi ll "II be converted 10 Ihe particular 
microconlroller's instruction sel 10 be placed inlO Ihe progralllmemory. 

Example 2-1 C Program to Print Hello World! 

/' Example Program to print "Hello World!" -/ 

'include <stdio . h> 

void main (void) 
printf("Hello World"); 

Example 2-2 Assembly Language Hello World! Program 

Example program to print 
"Hello World" 

Constant equates 
CR : EQU OxOd Carriage return 
LF : EQU OxOa Line feed 
EOS : EQU 0 End of string 
; Memory map equates 
PROG : EQU Ox8000 Flash memory 
STACK : EQU OxOaOO Stack pointer 

ORG PROG Locate program 
Entry : 
; Initialize stack pointer 

Ids ,STACK 

loop : 
; Print Hello World! string 

Idd #HELLO 
jsr printf 

Do it forever 
bra loop 

Define the string to print 
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HELLO : DC.S ' Hello World!' , CR , LF, EOThe Picocont~o!:e~ 

2.3 The Picocontroller 

'" undersland how compuler instructions work. let us con ider the design of a \e~ 
m~crocontroller. It is so simple it can be called a picocomroller.' 

lOne picoconlroller = IO-<lmicroconlrOllcr. 
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Table 2-1 Picocontroller Operations and Opcodes 

Operation 

ADD 

SUB 

IN 

OUT 

a 

Operation Code 

00 

01 

10 

11 

Arithmetic and Logic 
Unit 

a a 

Data Bus 

Figure 2-2 Accumulator registers (A and B), arithmetic logic unit (ALU), and a data bus. 

Computer Operation Codes 

The first step in the design of a computer is to define the set of executable operati ons. Our sim­
ple computer i to be capable only of inputting and outputting 8-bit binary number and add ing 
or subtracting them. The input. output. adding, and subtracting capabi lities arc called opera­

tlOIIS, and we encode them by using operatiOIl codes (opcodes). Because computers arc dioi tal 
devices, all information is encoded in binary-I s and as. If there are four operations. 2 bit: are 
needed to provide a unique code for each. Table 2-1 shows the codes that are se lected. 

Basic Computer Hardware 

Hardware for Addition and Subtraction 

An flCCllt1mlli lOr is a register that may 
hold one operand for an ALU opera­
tion and may be used for the answer. 
as well. 

Let us look at the hardware required to add or subtract two 8-bi t binary 
numbers. These operati ons requi re two operalld,-the two binary 
numbers that are added or subtracted. For the adder or the subtracter 
to work, these binary numbers arc held in register, while the addi tion 
or su btraction i; being carried out. Registers arc array, of me mory 

07 

o Q 

Latch 

Clock 
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elements, usuall y nip-fl ops, which may be loaded wi th binary values. Two register>-­
called the A and B registers-hold the operands. In your logic class you probably learned 
how to design a ri pple-carry full -adder to add 8-bit numbers and produce an 8-bit result 
plus a carry. Similar hardware cou ld be designed to subtract two numbers. As the design 
of thi s computer progresses. we will probabl y want to add more capabilities. perhaps logic 
operations like AND and OR. The hardware for these arithmetic and logic operations can be 
pl aced into a black box called the arithmetic and logic unit (ALV). The specific hardware 
within the ALU is not a co ncern at thi s time; it is sufficient to know that hardware can be 
designed to do addition and subtracti on. The design at thi stage is shown in Figure 2-2. 
whe re arrows show that the numbers to be added or subtracted come from a data bus and 
flow from the reg isters to the ALU . The answer flows from the ALU back to the data bus. 
The registers are called ace/lIIl1/lators because they can accum ulate answers. 

At this stage of the design some details of using registers can be ignored. For example. a 
register needs a clock signal, and there is a carry signal that is produced by the adder circuit in 
the ALU. These design details can be postponed for now. See Example 2-3 and 2-4. 

Example 2-3 8-Bit Register 

Show how to use eight D-type latches to construct an 8-bit regi ter. 

Solution 

See Figure 2-3 . 

06 

D Q 

Latch 

Clock 

• 

Clock 

Figure 2-3 An a-bit register. 

D1 

D Q 

Latch 

DO 

D Q 

Latch 

Clock 
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Example 2-4 8-Bit Ripple-Carry Adder 

Show how to make an B-bit ripple-carry adder by using seven full adders and one half-adder. 

Solution 

See Figure 2-4. 

A1 81 AO BO 

C7 S7 C6 S6 C1 S1 CO SO 

Figure 2-4 An 8-bit ripple-carry adder. 

Input and Output Hardware 

At this point. there are registers to hold numbers and an ALU to add or subtract them. There 
mu t be a source for the numbers and a desrillalioll for the answer. Let's use a set of eight 
switches to enter the numbers and eight light-emitting diodes (LEOs) to display the result. 

Arithmetic and Logic 
Unit 

Figure 2-5 Adding input and output devices to the registers and ALU. 

Data Bus 
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Figure 2-5 shows an input device, the switches. and an output device. the LEOs. added to the 
regis te rs and ALU. See Examples 2-5 and 2-6. 

Example 2-5 Binary Switch 

Show how to use a switch to produce a logic high or logic low for the two positions of 
the switch. 

Solution 

See Figure 2-6. 

Voo 

l: 
Pull-up resistors; 

/ Rtypically 1-10 kn 

Logic high with 
switch open 

1 
SPST 
Switch 

Logic low with 
switch closed 

Example 2-6 Lighting an LED 

Figure 2-6 Binary inpu1 switch. 

Design an LED circuit that witllight the LED with 10 m.A. ofculTent. assuming a 3.3 \. uppl~. 

The LED is to be on when the output of a logic circuit is low. 

Solution 

See Figure 2-7. 

Logic 
1 to 
Light 

Voo 

74LS04 

Current limiting 
R= 220 n 
for Voo = 5 V 
and 'diode = 15 rnA 

Figure 2-7 LED driver. 
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Operand Codes 

The hardware [0 input numbers and display the results is adequate for now, but let's look ahead 
and design in some additional capabilities. Most computers have many sources of information. 

A computer instruclioll is an opera­
lioll plu, and operalld. 

For example, a binary number may be input from an analog-to-d igital 
convener. or the result of the addition may be transferred to a digital-to­
analog converter instead of the display LEOs. To do that, we must spec­
ify which of several devices the computer must input fro m or output to. 

A design decision must be made. How can the computer input information from more than one 
source? There are two choices. There could be separate operation codes to do the separate 
operations. For example, we could defi ne two new input operations, IN1 and IN2, where IN1 
input information from the switches and IN2 from an analog-to-digi ta l convener. Another 
choice is [0 include an operolld with the operarioll . The combination of an operation and an 
operand is cal led a coli/pliler illsrmerioll . The instruction define what is to be done-the 
operation-and what is to be operated upon-the operand. Let us allow up to four of each of 
the input and output devices. A code is needed to specify which of the four devices is [0 be used 
for the input or output instruction. This code, called the operand code. is added to the opera­
tions previously defined. In Table 2-2. the 2-bi t code for the operand is arbitrari ly placed in the 
last two bits of an 8-bit instruction code byte. The input device number is to be encoded with 
the two bits ii and the output device number by the bits 00. Dashes are bits that haven ' t been 
assigned yet. Almost all computer instructions consist of an operation plus one o r more oper­
ands. 

When the computer does an input instructio n, the information comes 

All data transfer operations have a from the set of switches called input dev ice # I . Where does the info r­
mation go? Figure 2-5 shows that the input device SOl/ rces its informa­
tion onto the data bus. The desrillarion for the information can be ei ther 
Accumulator A or Accumul ator B. To allow the programmer to choose 

source operand and a destination 
operand. 

one or the other, we can si mpl y add a destination operand code for the 
input operation and, using similar arguments, a source operand to be able to choose which 
accumulator contains data to be output to the output device. Table 2-3 shows our growi ng 
instruc tion set and Figure 2-8 gives an updated diagram showing up to four potentia l input 
and output devices. See Example 2-7. 

Table 2-2 Adding Operands to the IN and OUT Operations 

Instruction Code ::: 
Operation Operand Opcode + Operand Code 

ADD None 00 
SUB None 01 
IN Device # 10 i i 
OUT Dcvice# 11 00 

ii ::: Input device number 00-11 

00 = Output device number 00-11 

2.3 The Plcocontroller 

Tabte 2-3 Adding Source and Destination Operands to the IN and OUT Operations 

Operation 

ADD 
SUB 

IN 

OUT 

8 

Operand 

None 

None 

Device # destination regi\tcr 

Source rcghtcr. device# 

i i ::: Input device number 00-11 

00;;;: Outpul device numberOO-11 

rr;;;: Regisler address: A;::: 00, B;::: 01 

Arithmetic and Logic 
Unit 

8 8 

Figure 2-8 Adding multiple input and output devices. 

Exa mple 2-7 Adding I/O Devices 

Instruction Code ::: 
Opcode + Operand Code 

00 
01 
10 i 1 r r 

11 r roo 

8 

17 

Data Bus 

Suppose you needed to allow up to 256 input or output device, in ~our pi" '\ nU'dl"1' J tgTI. 

What changes would YOlll1lake to )o"r ill>truction code,? 
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Solution 

For 256 input or output devices. there must be an S-bit VO address. You mu" add another byte 

to the operation code. 

The Move Operation 
Another very useful operation wi ll give the microconlroller the capability to transfer data 
between the two accumulators. Thi s allows us 10 use one for temporary storage while usi ng 
the OIher. Microcontroller instruction sets call these mOl'e (MOV). Irallsfer (TFR ), or load (LD) 
operations. Let's define a MOV operation to move information from one register to another. The 
MOV operation copies the data from the source to the destination; the information in the source 
register i not destroyed. Adding another operation requires another bit to be added to the oper­
ation code in our instruction because now there are five operations. and we will add operand 
codes to specify which is the source and which the destination register. The operations and their 
codes (the complete computer instnJction set) are shown in Table 2-4. 

Arithmetic Instructions and a Register Transfer Language 

The microcontroller has operations that add and subtract. and other operations such as the logic 
operations AND, OR, and Exclusive-OR can be defined. Before doing that we must decide how 
to specify the locations of the two source operand (e.g., the two numbers 10 be added) and 

where the result i to end up (the destination). 
Let us define the ADD and SUB operations to mean the followin g: 

During addition: The contents of the B register will be added to the content of A with the 
result of the addition stored in A. Let us define thi a an add B 10 A operation and give it the 

mnemonic ABA. 

During subtraction: The contents of the B register will be subtracted from the content of A 
with the result of the subtraction stored in A. Let u define this as a sllbiraci B from A operation 

and give it the mnemonic SBA. 

Table 2-4 Adding the HOV Operation to the Instruction Set 

Operation 

ADD 
SUB 
IN 
OUT 
110V 

Operand 

None 

None 

Device #. destinallon register 

Source rcgi~ler. dc\icc # 

Source rcgio;,ter. dc'tinalion register 

ii = InpUldevkenumocrOO-l1 

00 = Output device number 00-11 

Instruction Code = 
Opcode + Operand Code 

001 
011 

101 
111 
010 

i i d d 
5 S 0 0 

s s d d 

55 = Source register alldrc\''I: t\ = 00. B = 01 

dd = Deslinallon rcgi .. lcr addrc .... : A = no. B = 01 

2.3 The Picocontroller 19 

Although these descriptions define what the computer instruction does. we need a sborthand 
way to succinctly describe them. A register transfer langllage, or notation, is commonly used. 
For example, we can describe the ABA instruction by showing 

A+B-4A 

which means that the contents of A are replaced by the sum of the present contents of A and B. 
Some register transfer languages reverse the order to show the replacement operation 

A~A+B 

We can now use the register transfer language to describe the result of each instruction (Table 2-5). 

Adding Two Numbers 

An assembly lallgllage program 
instructs the computer what to do 
by specifying each operation and 
operand. 

Although the design is far from complete, there are enough hardware com­
ponents and computer instructions to see how a program could be ",tinen 
to add two numbers together. We write the program in assembly language. 
This is a computer programming language that has a statement for each of 
the operation codes the computer can execute. To add two numbers with 
this hardware, we (and the computer) must do the following: 

I. Set the switches (by hand) to the first number to be input. 

2. Let the computer input the number into the A regi ster. 

3. Set the swi tches to the second number. 

4. Let the computer input the number into the B register. 

5. Let the computer add the two numbers. 

6. Let the computer output the result to the LEOs. 

This equence of steps define what the assembly language program i to do. and therefore 
what the computer is to do. For each step that starts with "Let the computer:' we need an assem­
bly language statement. The assembly language program is hown in Table 2-6. 

Table 2-5 The Register Transfer Language Shows How Each Instruction Operates 

Operation 

ABA 
SBA 
IN 
OUT 
HOV 

Operand 

None 

None 

Device #. destination regi ... ter 

Soun:e register. device # 

Source register. de.stinalion regl!i.ter 

i i :; Input device number~ll 

00 == Output de\'ice nurnlxrOO-ll 

Instruction Code = 
Opcode + Operand Code 

001 
011 
101 i i d d 
111 S S 0 0 

010 s s d d 

55::; ouree regl~ter ai.ldre..~: A = 00. 8 :; 01 

dd = DeMinntion regi".!er addre ..... ': A:; 00. B = 01 

Register Transfer 

"~B .... " 
:\-8~A 

ii~Jd 
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Table 2-6 A Program to Input Two Numbers, Add Them Together, and Display the Result 

Step 
Operation Operand 
Field 

:N 
IN 
ABA 

OUT 

Field 

I , A 

l , B 

A, 2 

Comment Field 

• Switchc.. • A The c.:untcnh uf A nre rCll lllccd by (he cOlllcllh ollhc ... wilCh hanl 

, Swilche.. • B TIle COl1h:nl\ 01 R nre rcplucctl hy the l'OI1ll'llh ul the 'witch h:lll~ 

• A + B • A. rhc l'onlcrU, nf A un: rc:plncl''(i by the: ' 11111 oflhL' (uuten" oj A until) 

: A -- . l FO .. , The c,.-onlenl .. uf the LED, ;.1 11: replm:cd hy Ihe COIllCllh u l A. 

The formal shown in Table 2-6 is typical or an u, sembly language 
program, and Ihere arc severn I liclds on each Iinc. Firsl i, Ihe opel'll /ioll 

fi/'Id where Ihe 1Il11l'l1Io/lic, an English-like code for Ihe compuler oper­
alion, is written. Following Ihm is Ihc o(ll'l'l/lId field, where Ihe opcrand, 

if there is one, is written. A commell/ fidd may follow Ihe operand field .' Usually commenl~ 
explain the design or the purpm,e of Ihe program. Here we have cho,cn 10 , how a , horlhand 
notation that many manufaclurers use 10 slatc exaclly whal Ihe inslruclion is In do. For exam­
ple, in line 2, Ihe operalion mnemonic is IN, Ihe operands nre devicc # I (Ihe ballk of eighl 
switches) and Ihe dc"inalion rClpsler (A), and Ihe commelll shows Ihlll Ihe conlcllts of Ihe A 
register are to be replaced by Ihe conlenlS of Ihe swilches. ' 

The Program in Memory 

As you know from your own experiencc with computers, programs go inlo memory. You cun 
envision the memory us an army of nip-nop, Ihal slore data. 111 a typiclil memory Ihere are 8 
bits (a hytc), 07 , .. DO, in each memory loculion, and Ihere arc 65.536 (64 kilobyles)' locll­
lions, To access one specific localion in Ihese 64K locutiollS, a 16-bil at.ldrcss, A 15 ... AO, llIusl 
be supplied. When Ihi., i, done and when certain control signub arc aClivaled , informalion can 
be read from Ihe program mel1lory, 

The computer memory conluins binary informalion or dala, Thcrefore, Ihe rrograll1 shown 
in Table 2-6 musl be e/lcoded, u, ing Ihe codes defined in Table 2-5, This is called 1I.\·Sl'lIIiJlilig 

a program, <I proces~ Ihal lurn~ Ihe instruction, inlo Ihe Is und Os Ihal go illio Ihe com pUler 
mcmory. All compuler progrum~ , no mUlicr Ihe languagc in which Ihey arc wrillen, I11U,1 be 
a~semhlcd, orcollverted, into binary word ~ called Ihe lIIa('IIilll' ('Otll'. The resullollhis i" shown 
in Table 2-7. 

The tiN local ion in the memory is alitlre.l ,\ ~l'I'{). For each mClllory loculion you CU ll 
look at the binary code~ und , referring 10 Tanlc 2 5, dec\llic Ihel11 10 IllId oUI whal Ihe 
compuler " gOlOg to do. Before dcs lgnlllg hard wH rc III do Just Ih lS, lei U' lelurn 10 our 
more reali,lic Hello World ! program alld sec how il looks in a rea ll ' ll c nllctol'ollt ro llcr\ 
memory. 

I I hc."re 1\ Jnolher fle hltn the lell ul thl' npcrlllHlll lkltl not ,hown 1111111' t·~."lIpll· I h,\ '\ 1111' !.IIll'1 la'hl, ,HId \h' \\'111 
~c huw In U~ Ihl\ liner. III (' hil pl C'r 5, und when you Jcoilrn hlly. III U'C ,I11I"'l,'lIIhlt'r 

( 'hapu:r '" will , hnw Ihll l lUIT\IIl t'IlI\ Ihill lI1e rely Iel l what 1111' IfI\I I IU 111111 I flillfl~ .11, !Hll \t'I\o I"t'lu l ('lIlIIlI\t'OI, 

"d ated Itl Ih~ dC\lgn 01 the pm)ll ulIJ \huwlII~ why Iht' 111\11 III 11011 1\ ,h",rt' lilt' Iill 1111111' \I,tllI,lhk 

, A kliubyl< (KbYI<) ,, 2'" 1024 bYlt 

Table 2-7 How the Program Looks In Memory 

Momory Locotlon Contonts 
Addro •• (Mochlno Cod I 

() 10 I 0 oloe 
1010 0101 

!. 0010 0000 

I I 10 0010 

Tobie 2-8 Conlonts of M mory fOI 11 0110 Worldl 

Memory Addro •• o Instruction Codo Bytos 

800C 800 C\- Oli 01 

B003 800'> CC 80 OB 

80010 8008 I h eo I H 

BOoq 80011 20 HI 

800B BOl7 ~U hI) be be hF 20 
(,1,' Ii be '>1 Oil 

00 

2.4 The Microcontroller's Memory 

2.4 The Mlcrocontroll r's MIlt110tY 

'" 

A sombly Program 
Stotement 

IN , ~ 

IN I, B 

II fill 
OUT II,~ 

Instruction 

.Il! 

1.[0 !~x8 

Oil 

0 

21 

The asscl11bly language program III 1'.xa l1lplc 2 2 I' ""cl11hled and 1",lded IlItl! Ihe nll,r on 
Iwllel', I11cl11llry. II look' Mll1lellll llg like Ihal shown III lahle 2 l\ I hIS "',lIllpi<" 11111 trat' th:u 
cven Ihollgh you IIIny Wl'Ill' a program ill a Iligh level lanl!ua~,' like ( , 1\ I' ,,'mel1<: I 10 b\l 
represenling Ihe 1I1'I'm/ioll Ihnl 1\l1l,1 be dune and Ihe "I'n,lIld, 111.11 .Ir~ h<'IIl' ,'per.ll I upen 
'I he memory adllic\Ses shown corre.'pnnd IOlhe RO 1 III Ill<' ellllx'dd,'d ,)'ICm \ I t I I 
lIddrc\Se, lIno 11I,lllll' lioll cot.le bylc' arc III hC\i1de\:llllal Ill<' light h,lIId ",Iumn h \\ e 
inslruclloll in Ihe plOgrulll lli u\scilibly lallgllage DOIl'I "Oil ~ .lh"lIl \\ h,lt Ih ',,' ,",tnl:tl ~ 
allhis 'lUgc; YOll wi ll learn your pm Ilcular 1I11,'m,Onlrolkl ', 1I1'1I1I<\1<1I1 ct I •• \,'r 

Look closely lit the Inslillclilln Code Byle, ,011111111111 !;Ihl<: 2., III C,ldl ,a',,, the Ii",t 
eHch line (Cl', (,C, 1ft, cle ,) IS n llll lljllC l'ode Inr ,'a,h "/,,'111/1"'1 10 lx' ,'", u/, d h' Ih m 
lroller, For eXHll1pk, C/o'" a code 1'01 Ihe IDS (1tI1111t'dllll, h,(,,1 \/(/, ~ 1'''/11/ r 
Thi~ i, Ihe 01'('011(' byle." I'he lollowlllg Iwo byl'" (0 \ I~)) ,Ill' Ill<' ", I,', IIIf th' ,., 
operalion. A l'nl1lrulCr (1I.1I11(('/iItIII' Ihe I'Oll1hlnallnll nl ,Ill nl""1.111I1I1( \\ 11,11 th' ,mput 
lind tcro, Olle, or mure operallds (\\ hallhe l'llll1l'lIl,'1 " '0111' 1" .I .. II to, I 'r Ih I 
l1Iicroconll'll llcl williolld, 01 111111;\11"" Ih,' 'I,"'k 1"'11111'1' fl' '1,1,'1 "llh Ih' \.1\ • 

('oll,l:lnl data also Ill:ly be '\(lIed III th,' RO~I IIIl' d,ll,l "'I 1111 II 
Worlt.lI"lhlll i, 10 he Pllillcd Dalil nll1'lallb 1lI,1\ ht' dl'llll,''\ 111,111 ,\ 
like you haH' dOli,' III olhel pmgralllllllilc 1,\IIClI,I)!'" I h,' hll' 
2 2 show~ hllW Ihl' I' dom' III Ih,' a''''lIIhh 1'11\ '1,11\1 In l..hl, • 
Ox!\OOIl O,XO I 7 ,'0111,1111 IIIl' nUll/mil .1.11.1 11"'.1 \1) Ilw 1'1 "r.l1I\ 

\ 1 hl"l' ,Ill' h~'l""" l k lit 'S I "I ","!III .. h\'", "l\lf \1\\ n nih n,'Itllll,Il(,1 "III h' 
~ SlInu,'llUIlPllh'j 'll~· lllllllll'I11.t\ m't'\lh'~" I'\tIH'\lh' lIul h n,'" 1\1 
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(ode fnr lhe: charJel<7 In the """ ' c Ihal " 'I be pruned on the =n b) p"nIl routine: 
Sc< bampk ~ ". Ihrough ~ 10 

Example 2-8 Opcodes 

For -h of (he: 1O,lrudIOn..\ In T J.hfe 2 
lor. ICh op',ldc 

Solution 

Memory Opode Byte 
----

Example 2-9 Operand Codes 

For =h of"'" ,n"n! .... n In r ,hie 2 .". lhe: mcmor~ lex ,11\ n 111<1 the he, 
for each operand cndc. 

Solution 

Operand Code 
Bytes 

EumpIe 2-10 Constant Bytes 

Fer lhe: program .n T hie l II" 
con tant da b)1 In lhe tnn lIello orid ' 

unal,-alIE 

Memory 

--
aC12 

3v:3 

2024 

8015 

8IJ16 

80 : 1 

8018 

80:, 

The Memory Map 

A memon map , how", you where 
each ki nd of memory. or no memory. 
i; localed 

ROM Operation 

pnpnm Ttl .... 

Ih R \ \I 

S~f 

Constant Data Byte 

S 

€f 

~:= 

64 

2_ 

"I) 

rA 

A memon map. '" hICh 00""" oat -IDOl) 

type of memory. I' u-ed 10 hov. the me 1r!=1iz;lIKlII 

A I) pica! mlcrocontroller' memo;: map lIla) _ 

Fla,h. and e' en 'pace "'l thoul melIll.'I'} a, 

in Figure 2-9 that pan oi the memory , 

23 
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SOOOO 
1 Kbyte Control R I I r 
Register tor 110 

S03FF 
Space 

1 Kbyte EEPROM u tld fOi nonvol 
EEPROM vanabhl 81011g6 

$0800 

RAM u ad for v ,"11ll 

d la stor g ndlhe 
$OFFF 

$8000 

32 Kbyte 
Progr m code and 
conslant d ta lor 

Flash 

SFFoo 
Vectors Interrupt VIICtors 

SFFFF 

Figure 2·8 A mlCrtlCOI1troUer'. merno<y map 

TIIbIe 2·11 M8fT1OfY Content. 

--,~ 

18 
8 19 

--,C-
~ 

td 

hi 

RAM Opera lion 

16 
Address Bus 

8 
Dala Bus 

ROM 
Dr Flash 

READ L 
WRITE L 
(for Flash) 
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The sequence cOlllroller allow different instructions to be executed in different amounts 
of time. It generates control signals at the correCT lillie for a particular fu nction. For example, 
a clock signal is needed by any register to latch the data being stored there. The sequence con­
tro ller generates that signal in State 3 for whatever register is the destination. 

All computers have some kind of sequence controller. There are several ways to design one, 
but the ba~ic function and purpose remain the same. The sequence controller generates CPU 
control signals required by the currently executing instruction . at tbe correct ti me, to accom­
plish the information transfer or other operation. These control signals are shown leaving the 
sequence controller in Figure 2- 13. 

As a practical matter, these timing explanations are not comple te ly true for a ll microcon· 
rrollers, although the general principles apply. In many modern microcol1lrollers. an instruction 
pipeline. or cache memory, is kept filled with instruction opcode and operand bytes by a mecha­
nism that accesses memory while the CPU is doing other operations. This design seems to allow 
fewer CPU clock cycles to execute each instruction, depending on what is in the pipeli ne. 

Arithmetic and Logic Unit (ALU) 

The ALU contains logic to do all 
ari lhmetic and logic operations. 

[f the sequence controller is the brain of the microcontroller. the ALU 
in Figure 2·13 does the work. It contains the digital logic to operate on 
the operands as specified by the opcode. It does arithmetic (AD D. SUB, 

2.6 Timing 

. etc.), logic (AND, OR, etc.) and other operations such ill shifts, rotates, 
IIlcrement , and decrements. As Figure 2- 13 ind icated. the ALU receives its inputs from, and 
places liS outpu ts to, accumulator registers and the data bus. 

Program Execution TIme 

The lime it takes for an instruction A sequential state machine is operated by a clock, and different instruc­
ti?ns may now take different amounts of time. Normally. this time is 
given as the number of states the sequential state machine uses to com­
plete the instruction. The actual time is calculated by mUltiplyi ng the 
number of states by the time per state. Let's say that the ba ic clock 

10 execule depends on the clock 
frequency and the number of clock 
cycles needed. 

, . frequency is 8 MHz, giving 0. 125 microsecond (ms) for each state, and 
let s ana.lyze the tl~~ 11 takes to execute the program in Table 2-6 to add two numbers together. 
The tlmlllg analYSIS IS shown in Table 2-10. 

Table 2-10 Program Execution TIme 

Instruction 

IN 1,A 

IN 1,B 

ABA 

OUT A,2 

Number of States 

17s",les=2. 1 25~s 
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110 Synchronization 

The speedy CPU must be synchro­
nized to the speed of any slow VO 

It is important to understand that the computer's sequential operation and 
the time it takes to execute an instruction are controlled by the sequence 
controller. Accordingly. let us review the operation of the computer. 

operations. 

Wait States 

First, the swi tches are set for the first number to be added. Then the pro­
gram is started by pressing the reset button. The program counter starts 

at zero, and the fir t instruction is fetched and executed in 0.5 f1.s. This places the first number 
into the A registe r. The program counter is incremented, and the second instruction (the second 
IN) is fe tched and executed in the next half-microsecond. Is it possi ble for you to change the 
dara from the first number to the second between the time the program is started and the time 
the computer takes the second number from the switches? Hardly. There is a problem with 
the design. We must somehow synchronize the speedy microprocessor with the slow human 
operator of the switches. 

Here is a solution to the problem of synchronization. Figure 2-1 6 sho" an additional state. 
called a lI'ail srale, is added to the sequential state macbine. When the instruction decoder 
detects an IN instruction , the equential state machine goes into the WAlT state. "here it 
stays until an external control signal , called READY, is asserted by the u er of the computer. 
This signal is like rhe Enter bulton on your calculator: after entering the firsr number into 
the sw itches, you must assert the READY signal and allow the comp';ter ro progres to State 
3, where it does rhe register transfer. The MOV instruction is executed at full speed. and the 

Figure 2-1 6 A WAIT state is added to allow synchronlzalton With slow Input de,ices 
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program counter i incremented. When the second IN instruction is fetched and decoded. the 
sequence controller enters the WAIT tate again to wait for you to assert the READY line after 
the second number has been entered. Although we haven ' t shown it in this diagram. the output 
instruction can be designed to enter the wait state also. Then the output device must assen the 
READY line when it has received the data. Thi If 0 synchronization method. called /wllds/wk­
illg. i covered in Chapter 9. 

Bus Cycle TIming 

We mentioned in our discussion on the operation of the ROM that there 
Data must be taken from the bus or i a shon delay while the da ta is being read out of the ROM. Also, 
placed onto the bus at the correct Figures 2-14 and 2- 15 show the sequence of steps that occur in the fetch-
time. The CPU controls this timing. ing and executing of an instruction. The clock shown on Figure 2- 13 

controls the Liming of all this. 

WrifeCycle 

Two fundamenLal processes of the microcontroller during program execuLion are writing to 

and reading from the data bus. These operaLions are called the write cycle and the read cycle. 
and they are used for boLh memory and VO access. 

The CPU is the bus master and controls all information Lransfer 
A write cycle transfers data from timing. Consider transferring daLa from a CPU register La an oULput 
the CPU to an output register or to daLa latch. The CPU's timing is controlled by its clock. and this output 
memory. operation is called a IVrite cycle. Figure 2- 17 shows a typical CPU write 

cycle. 

Read Cycle 

The CPU places the address on the address bus at point A. The data bits are upplied at point 
B. and the WRlTE_L control signal i assened Iowa shan Lime later at point C. when the readl 
write (R/W _L) signal from the CPU is low and the bus clock is high . The output device inter­
face (or RAM memory) uses Lhi signal to latch the data at the correct time (after data have 
become stable on the data bus.) The data may be captured by the output latch or the memory 
on the falling edge (C) or rising edge (D) of WR1TE_L. depending on the type of latch. 

Notice that the CPU clock is fourtimes the frequency of the bu clock. This is normally the 
case. and the setup allows the CPU to generate timing intervals and control !.ignals to transfer 
and latch the data. 

Transferring information from an external source or from ROM or RAM 
A read cycle transfers data from an to the CPU is called a read cycle. A typical CPU read cycle is !.hown in 
input device or memory to the CPU. Figure 2-18. Again. an address is supplied by the CPU aL point A. The 

READ_Lcontrol signal is asserted at B (when the readfw rite signal from 
Lhe CPU is high and the bus clock is high) to enable the input interface three-!.tate gate!.. The 
input data becomes valid to the CPU a short time laler. at point C. The CPU actually laLches 
(reads) Lhis data at the falling edge of the bus clock at D. An important point La mention here is 
that the CPU reads the data bus at Lhis time whether or not the input deVice ha. IL rcndy. If it is 
not ready, we need some form of VO synchronization or a way to extend the CPU read cycle. 
See Example 2-11. 
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CPU Clock 

f- SO +S1 ·I~ S2 +S3 -1 Clock State (re!.) 

Bus Clock \ \ \ 
I 

Address ~ Address from CPU Valid ~ 
I 

RNV_L \ I 
I I 

WRITE_L \ I 
/ 

Data----t------i\'---________ -:-_-II 

~~ ~ 
Data from CPU Valid 

A 

Figure 2-17 Write cycle. 

Example 2-11 

For each of the following in tructions. describe the instruction execulion cycle In tenru. of the 

read and wri te cycles needed. assuming Lhat each read or write cycle operat" on one t>y te "".I 
Lhatthere is no pipeline for instruction bytes. 

#Ox12 Load the 8-bit A register with :~e data ~x_2 LDAA 
STD Ox1234 ; Store the 16-bit D register ,n memc"y ceat l ~ 

Solution 

LDAA Ox12: First read cycle to fetch the opcade 
Second read y Ie to read the data (0, I ~\ from th ne,t mem, ~ I ' auoo 

1\vo memory cycles total. 
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CPU Clock 

Clock State (ref.) 

Bus Clock 

Address 

RIW_L 

READ_L 

Data 

STD Ox1234 Fin;t read cycle to fetch the opcode 
Second read cycle to fetch the high byte of the memory address (Ox 12) 
Third rend cycle to fetch the low byte of the memory address (Ox34) 
Fin;t write cycle to write the fin; t byte of data into memory nddress Ox 1234 
Second write cyc le to wri te the second byte of the data into memory 

address Ox 1235 
Five memory cycles total. 

I~ Read Cycle ·1 

f- SO + S1 ---+- S2 + S3--1 

\ I I \ 
I 

~ Address from CPU Val id ~ 
I 

1 I I \ 

\ I 
I 

Data to CPU Valid 

l~ A ~ 
Figure 2-18 Read cycle. 
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2.7 The I/O Interface 

For simplicity, Figure 2- 13 shows input and output devices connected directly to the data 
bus; in practice, an 110 interface must be added to the design. The 110 interface sho"n in 
Figure 2- 19 has tWO components, one to inpllt data into the microcontroller and one to output 
data from it. 

Through a set of three-state gates, the input interface connects an input device. such as a 
bank of switches, to the data bus. The input three-state gates are acti vated when the address of 
the input device is placed on the address bus and the READ_L control signal is assened. 

The output inte rface consists of a set of latches to capture data from lhe dala bus. Like the 
input interface, the correct address on lhe address bus assens the addre decoder output. The 
CPU then assens the WRITE_L control signal to latch the data. 

Input 
Device 

(Switches) 

r-------- - --------- - - , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

: Input 
: Interface 
I 
I 
I L _ _ ___ _ _ _ 

Input 
Data 

16 

8 I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I _ _ J 

Figure 2-19 InpuVoutput interface. 
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2.8 The Address, Data, and Control Buses 

Three structures. called buses. connect the CPU. RO 1. RAM. and I/O interface together 
(Figure 2-19). A bus can be defined as follows: 

A bus is {I mUltiple wire. ill/ormalio" pmhll'Cly wir" multiple sources (llld cle.Hi1lflfiolls/or the 
;n/ormariol/. 

A source places infonnation onto a bus and a destination lakes information fro m it. Although 
lhe bus has many wires. it is normally drawn on schematic diagrams as one wire with an 
indicator showing how many wires are used (Figure 2-20). 

Address bus: The address bus carries the address from the CPU to the ROM. RAM. or UO 
interface to select one particular byte location in the 2" location in the memory map. 

Control bus: The control bus has a variable number of wire depending on the particular sys­
lem. At a minimum. at least for this example. it contains the READ_L and WRITE_L memory 
read and write control ignals. The control signals pros ide direction information (reading or 
writing) and control the liming of the data transfer as described in the next section. 

Data bus: The data bus carrie information to and from the CPU and the ROM. RAM. and 
UO interface. 

Chapter 9 cover buses in more detai I. 

2.9 Some More Instructions 

Memory Reference Instructions 

Memory reference instructions allow 
you lO retrieve data from or lore dala 
in the memory. 

} 

Our picocontroller' hardware allows the user to get data from the input 
device only. The memory of this computer serves only to store the 
instructions of the program. Thi is a severe restriction. and we must add 
a way to retrieve data from the memory. A real instruction set contains 
a number of these instructions. called memor.,. reference illslrueliolls. 

BilO Figure 2-20 Computer bus notation. 

Bit1 

Bit2 

Bit3 

Bit4 

BitS 

Bit6 

Bit? 

I 

: 

I 

I 

2.9 Some More Instructions 37 

which read data from or IVrile data to memory. A particular location in memory is acce sed 
by providing the memory with an address. and the various ways of generating this address are 
called addressillg modes. One of these is immediate addressing. The move-immediate instruc­
tion shown in Table 2-11 is a 2-byte instruction. where the first byte contain the operation and 
operand codes. The second byte immedialely follows the instruction byte and contains the data 
Of course we must modify the instruction decoder and sequence controller to be able to decode 
the instruction and generate the control signals. 

Memory reference instructions of other types can read data from or write data into any 
memory location. You will learn more about these instructions and other addressing modes in 
Chapter 5 and when you study a real processor. 

Control Instructions 

The Branch Instruction 

Jump or branch instruclions transfer 
the program counter from one part of 
the program to another. 

An example of a control instruction seen in other programming lan­
guages is a GOTO. In assembly language. a GOTO is calted ajrunp or 
brallch illslruclioll; it instructs the computer to branch to another place 
in memory and start executing the program at that point. For example_ 
after the program outputs the sum of the tWo numbers to the LED in the 
program of Table 2-6. we might want to branch back to the beginning of 

the program to do it again. The operand for a branch instruction is the location in memory from 
which the computer must fetch it next in truction. that is. the tocation to which the computer 
"jumps." Table 2- 12 shows an instruction known as bral1ch always. Its mnemonic i BRA . and 
it is a 3-byte instruction; the first byte is the operation code, and the next two bytes pecify 
the 16-bit branch address. The sequence controller must be modified to transfer the e addre 
bytes from the memory to the memory address register. 

Table 2-11 A 2-Byte Memory Reference Instruction: The Move-Immediate Instruction 

Operation 

MVI 

Example 

MVI 65 . A 

Operand Register Transfer Description 

8-bi' data. dd (memory location following the opcodel-+ dd 

dd = Destination regi~ter address: A = 00. B = 01 

Memory Contents 

First byte: 

Second byte: 
110 00 
001 0 0 0 01 

Operation plu dt:"lin:llion operand ~"OJe 

D:ltB 

Table 2-12 A Branch Instruction Has as Its Operand 
the Address of the Next Instruction to be Executed 

Operation Operand 

BRA t-.tcmol") bmnch addre~ ... 
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Conditional Branch Instructions 

The branch-always instruction is an ttl/colldiliollal brollch because the 
The Slatll.' or cOllditioll code register processor alway does the branch. In another type of branch instruction, 
contains bit.<. that are set or reset when the cOlldiliollal brallch. the computer takes the branch if some condition, 
an ALU opermion is perfomled. or set of condition, is true. If the condition is false. the next instruction 

in the memory is fetched and executed. For example, in the addition 
program we might want to show some error if the addi tion of the two 8-bit numbers results in 
a number too large for the 8-bit accumulator. This can be done by attaching to the arithmetic 
and logic unit a flip-flop called the carry flag. which is set when the adder circu it generates 
a carry and reset when it does not. Other flip-flops can store other information such as a zero 
result. negative result, two's-complemenl overflow, and odd or even parity. These flip-fl ops are 
contained in a register called the StatllS. or cOllditioll code. register. The status register bits are 
connected to the sequence controller. We may then design branch-if-carry. branch-if-no-carry, 
and other conditional branch instructions. 

2.10 The Fiflal Picocontrolier Design 

Figure 2-2 1 shows the final design. There has been some reorganization of the information 
fl ow and a new address regi ter added, so let's briefly discuss these changes. 

Figure 2-2 1 shows two additional accumulator registers (C and D). and the registers and 
Ihe ALU are connected by an intemal 8-bit data bus. Data can now flow between any of the 
registers and ALU. Input and output interfaces as hown in Figure 2- 19 are used for the 110 
devices. The data path to the external memory and 110 devices is over an external 8-bit data 
bus. Information from memory can be transferred into the instruction register for instructions, 
or any of the registers or ALU for data. 

The tatus bits. which are set or reset by ALU operations. are connected to the sequence 
controller. They are used to deternline whether the branch in a conditional branch instruction 
is to be taken. 

A temporary addre s register has been added. This i used for branch addre ses that are 
retrieved from memory. For example, when a BRA add res is fetched from memory. it must be 
done one byte at a time. The temporary address register holds the address as it is being fetc hed 
before it is placed into the program counter to complete the branch instruction. 

2.11 Software/Firmware Development 

Embedded system software is called 
firmware because it i in ROM and 
is nOI so easi ly changed as programs 
in RAM. 

The software developed for embedded systems is often called jimllvare 
because, unlike programs you might have written for your computer sci­
ence classes that are loaded into RAM on a PC or OIher desktop system, 
an embedded sy tern requires its program to be in read-ollly memory. 
Thus. the" oftware" is more "firm" becau~e it i~ rctained In Ihe computer 
memory even while the power i~ removed from the ~y'tem.· "Software" 
developers must know ~omething about the hardwarc upon which their 

• An unknown author. crilical of many computer prograrru being wnllen. once referred to Iht"w pmgnlln\ n .. l1I"tll\\"O"' 

Reset Ready 

rL-----Lf._--Clock 
Sequence 
Controller 

Figure 2-21 The final picocontroller. 
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software is installed. This hardware is called the tG/;get sysrem. and it i vital to I..no\\ the addre'>e$ 
u ed for the variou kinds of memory in the system. Recall the typicalmcllw'7' map \\ ith 1:>0 
random access memory (RAM) and read-only memo!) tRO 1) sho\\ n in Figure 2-9. The RO\ 
may be of several types including programmable ROM (PROM J. :uch as FI.lSh t'/,·crricall. 
erasable PROM. Flash, used in many microcontrollers. allows us to create our ,oft\\are u,jng 
development LOol set as described next and then to conven it to firmware b) pn'gramnung 
EEPROM. The program development proces must take into account the ph~>t ';).1 addre" \l 

each type of memory and must locme the various pans of the program correctl~ . 



40 Chapter 2 / General Principles of Microcontro\lers 

Table 2-13 RAM and ROM Memory Used in an Embedded Application 

Memory Type Program Use 

Flush 1. All program code 

2. Constants such ru, messages and lookup table~ 

3. Any other infommtion thai doe'\ nol chunge 

RAM 1. Progrnm variable:. and datil 

2. Slack dam storage 

Table 2-13 hows where the various parts of the program must be located to work in an 
embedded system. Whelher writ ing in assembly language or a high-level language such as C, 
our software development tools must allow us to comrolthis code localion process. 

2.12 The Software DevelopmentTool Set 

A oftware development tool set includes a variety of tools to develop, and sometimes debug, 
the program for your embedded system. The following chapters will cover ome of these 
tools in detai l; here we discuss how to generate and then locate the code in the appropri ate 
memory. 

In an embedded application , code is 
located in ROM and variable data in 
RAM. 

The code location question is lied to the hardware's memory map. 
Yarious parts of the program must be al located to the two different kinds 
of memory. Table 2-13 showed how to locate different parts of the pro­
gram in an embedded, ROM-based y tem where the program must exist 
in the computer after the power has been turned off and lhen on . You will 
be writing your programs in assembly language or a high-level language 

such as C, or maybe even both. An assembler (program) convert the as embly language appli­
cation program to the opcode and operand bytes in the embedded system's memory. The C 
program is simi larly converted by a compiler. usually to an intermediate file called an object 
file. [n Chapter 6 we discuss some of the details of assemblers. Chapter 7 discusses C program­
ming of our microcontrollers. Let us now consider two types of as em bier and how we can use 
each of them to locate the code and data. 

Absolute Assemblers 

When programs are written, the hardware design pecifie where the code is to be located in 
memory. A special directive called ORG provides this informal ion to Ihe assembler. All code is 

Downloading tran fers an executable 
file from the computer lhat created it 
to the computer that executes it. 

located, absoill/ely at a specific memory address. from thi s informalion. 
This is the simplest form of assembler. Ii lakes the source code file and 
produces an executable ftle that i.lransferred (dowllloaded) to the target 
system. Figure 2-22 shows an absolute assembler in u\e. 

A major disadvantage of the absolute a,sembler i, that the source file 
must contain all of the l>ource code intended to be in the program. This 

means lhat when large programs are being wrinen, all code mu\t be :I~,embled whenever any 
change IS made. Further, the project cannot be split easily into elemenl\ thut c;,n be wrillen and 
debugged by different project engineers. 

Time 

Absolute 
Assembler 
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Figure 2-22 Absolute assembler operation. 

Relocatable Assemblers 

Compilers 

A relocatable assembler can overcome the di advantages of the absolule assembler..!I.s shown 
in Figure 2-23, the assembler accepts a program. or a program segment. as a source file. The 
source fil e does not need to be the complete program, nor doe it need to contain location 
informalion or ORG directives. The a sembler produce an ourput file. called the object file. 
which contai ns the binary codes for the operations and as many operands as the assembler 
can evaluate. When an operand , uch as a branch address, cannot be evalualed. the as-embler 
adds thi s fact (that an address needs to be resolved) to the object file. making it po ible for a 
lillker program to provide the final addresses . Notice lhatlhe program can be plit into multiple 
source fi les and assembled at d ifferent time. 

Compilers allow us to write our programs in high-level languages much m re efficiently than 
in assembly languages. One high-level C program statement can replace 10 or more a: em­
bly language program tep. Nevertheles • in the final analy_is the microcontroller: memo~ 
must have the operation code and operand bytes as described earlier_ To accomp\i\h this. the 
compiler cOIIIPiles the source program. often to an intermediate 35<embl) language progr.un. 
which is then assembled into an object file. The as embler to do this ma) be hidden \\ ithin tht 
compiler. or it may be a separate program (Figure 2-~4). ome compikrs. such a, Free_cale-· 

CodcWarrio r compi ler. can supply a li sting or the assembl) language code it pn>Ju:e . Thl' 
can be very useful during the program debugging stage ' . 
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L..--____ > Time 

Time 

Figure 2-23 Relocatable assembler. 

Time 
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Figure 2-24 Compiler. 

The Linker 
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A lillker program take object modules that have been assembled by a relocatable assembler or 
a compiler,/illks them together, and locCltes all addresses. Figure 2-25 shows two ource files, 
Module I.asm and Module2.c, which are eparately assembled and compiled by a relocatable 
assembler and a C compi ler. The li nker combines the object files to produce the executable 
file. You can see in Figure 2-25 that the location information for the code and data parts of the 
program is given to the linker by a lillker parameter file (.prlll). Figure 2-25 also shows that 
object fi les can be linked from a library. 

Creating a Relocatable Program 

Time 

The beauty of using the relocatable method to create firmware is that the project can be par­
titioned by using top-down design techniques and allocated to separate programmers. Each 
programmer is responsible for developing modules that ultimately fit imo the whole program. 
The modules are separately assembled by the relocatable assembler to produce object files. In 
addition , C program modu les may be compiled. These object modules are put together by the 

'---______ > Time 

Code and Data 
Location Information 

(name.prm) 

Figure 2-25 Linker program. 
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linker. and any addre ses or operands Ihat Ihe a sembler or compile r was nOI able 10 creale are 
generated at this time. NOlice in Figure 2-25 Ihm previously assembled and compiled object 
modu les may bemai lliained in alibrary.Alibrariall program i in luded in Ihe 1001 set 10 man­
age Ihe libraries used by various projecls. 

2.13 Remaining Questions 

This chapler has covered a 101 of grou nd 10 ex plain some of Ihe basic prinCiples of the operation 
of a microcolliroller. Among Ihe many queslions and lopics thai remain for further d iscussion 
are the following. 

How does Ihe microcomIoller start executing a program when il is lirst lurned on? 
Whelllhe sTanillg address of yo III' plVgram is klloll'lI. Ihar address is placed illlo a 
special place in ROM. II'helllhe microcolllroller is powered lip. or Ihe resel sigllal is 
assened, il goes 10 Ihm special address 10 filld Ihe startillg address of yo III' program. 

How do ilierrupls work' 
ThaI is a big qlleslion! \I~ will defer answering ilIa Chapler 10. 

How does the program gel ilio the read-only memory? 
There are a I'ariel} of read-ollly melllory Iypes. A l'e1)' comlllOlI Iype is EEPROM. Mosl 
lIIicrocolIlJvllers hal'e sOllie son of illlClface Ihal 011011' .1'01/ 10 program Ihis killd of ROM. 

Whal kinds of VO fea lures do microcolirollers have? 

There are a wide varielY oflllicrocalllrollers and falllilies of microcolllrollers. each 
lI'ilh differelll fem llres and capabililies. III Ihis book we Il'ill cOI'er limers, serial 110. 
Gild analog illpltl alld Ourpllf. 

How do I learn the assembly language? 
Stand byfor Chaplers 5 alld 6. 

2.14 Conclusion and Chapter Summary Points 

In this chapler we have discussed, from the central proce>'or unit ' point o f view. how a micro. 
controller works. Our goal was for you to see that il is nOi a mysleriou, beast a l all, bUI one 
whose basic operation is understandable. 

The microcoliroller has RAM , ROM. VO ilierface . and data. address, and control 
buses withi n a single inlegrated circuit. 

Embedded system programs arc in the ROM . 

Types of ROM include electrically erasable programmable ROM (EEPROM) and 
Flash EEPROM. 

RAM is used for variable data storage and the \lack. 

An instruction is an operation plus lero. one. or more operands. 

To retrieve or read data from ROM or RAM. you must supply Ihe memory wilh the 
address and a READ con trol signal. 
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To write data into RAM you must supply the address, the data, and a WRITE control signal. 

The instruction execulion cycle repealS continuously. 

An input interface is a sel of three-stale gate connecting an input device to the data bus. 

An output interface is a set of latches into which data from the data bus is latched 
during an outpu t operation. 

The CPU controls the timing of a ll read and write operations. 

Embedded system software is often called firmware. 

A relocatab le assembler a ll ows you 10 develop applicat ion software in modules that are 
linked together to create the program 10 go into the ROM . 

2.15 Problems9 

Explore 

Stimulate 

2.1 What is the difference between an as embler and a compiler? [a. cJ 

2 .2 What is the advantage of a relocatable assembler compared to an absolute 
assembler? [a] 

2.3 What is a microcontro ller memory map? [aJ 

2.4 What is Ihe purpose of the instruction decoder? [a] 

2.5 What is Ihe purpose of the program coun ler? [a] 

2.6 What does a sequence controller do? La] 

2.7 Give short answers 10 Ihe fOllowing: [a.g] 

a. What is a data bus? 
b. Why is an address decoder used in VO interfaces? 
c. How is an informal ion source, uch as a set of witches interfaced to a data bU'7 
d. What contro l signa l are needed to latch data from the data bu into an output 

interface at the correct lime? 

e. Give the sequence of evenl that occur when a CPU does an input (or read) cycle. 

2.8 If a ll move in structions are coded in one byte \\ ith the opcode 0 I 0 and the source 
and dest ination operands a. hown in Table 2-5, how many mo\ e instTU tion can be 
defined? [a] 

2.9 Explain why a computer has ready or wait comrol signals. [c) 

\I One or more (CHen. in hrnd.ch "lgOlfie~ thtlilhe problem 10 .. orne \'.J~ nU."eh ABET 010.: :TNtt.1110n ,,"IMJ. t,'f ,:'tst­
comc~ a-~. The criteria reference abiliue .... unde"tund1l\g~. ;md habib 1,)( th\)ught th.u ~ nt."\: ~ 10 ("n~lIx~~nn$ 
and computing. omong other field ... 
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Challenge 

2.10 Discuss the difference between an absolute and a relocatable assembler. la, kJ 

2.11 How do most microcomputer systems solve the problem of multiple sources of infor-
mation present on a data bus? [g] 

2.12 Why must a three-state gate be u ed to interface an input device to the data bus? [a, cJ 

2.13 Why must a latch be u ed to interface an output device to the data bus? la, cJ 

2.14 For a CPU performing a write cycle, why does the CPU place the data on the data bus 
before asserting the WRlTE_L control signal? [a] 

2.15 A microcontroller memory map shows 16 Kbyte of Flash EEPROM (ROM) in memory 
space OxCOOO--DxFFFF and I Kbyte of RAM in memory space Ox 1000000x 13FF. [c, k] 

a. Give a range of addresses (in hex) suitable for locating code. 
b. Give a range of addre ses (in hex) suitable for allocating variable data storage. 

2.16 Discu s the changes that must be made to the sequence controller to add the move­
immediate in truction discus ed in Section 2.9. [c, eJ 

2.17 Design an instruction decoder as shown in Figure 2-13 using A D. OR. and inverter 
gates to decode the 3-bit opcodes and produce a control signal asserted by each of the 
operations given in Table 2-5. 

2.18 Design the hardware required to implement a HALT in truction, which stops the CPU 
from progressing further in the program. [c] 

2.19 Describe the instruction execution cycle of a move-immediate instruction shown in 
Table 2-11. [c, eJ 

2.20 Draw a timing diagram relative to the CPU clock shown in Figure P-2-20. which 
includes the address and data buses. R/W _L and the write control signal 
(WR1TE_L = active low) and shows a write cycle. [aJ 

Figure P-2-20 

2.15 Problems 

Figure P-2-21 

2.21 Draw a timing diagram relative to the system CPU clock shown in Figure P-2-21. 
which includes the address and data buse . RfW _L. and the read control signal 
(READ_L = active low) and shows a read cycle. [a] 

2.22 A CPU generates a bus clock and RfW _L ignal during a write cycle as shown in 
Figure 2-17. Give a logic equation or show a logic diagram expressing the logic 
required for the WR ITE_L control signal. 

2.23 A CPU generates a bus clock and RfW _L signal during a read cycle as hown in 
Figure 2-18. Give a logic equation or show a logic diagram expres ing the logic 
required for the READ_L control signal. 

Reflect on Learning 

47 

2.24 Create a five list of questions you would like to have answered to be able to understand 
how the microproces or or microcontroller you are rudying work . 

2.25 How does what you learned in this chapter compare to what you pre\ iously knew about 
the operation of a computer? 

2.26 What have you learned in this chapter that you think will make it easier for you to write 
microcontroller programs? 



Objectives 

Structured Program Design 

This chapter presents a design procedure, called top,down design, ~uitable for both hardware 
and software projects. You will learn to use tools to de ign programs following the top-down 
design procedure and the principles of structured programming. Designing before writing is 
viwllO producing good software. 

3.1 The Need for Software Design 

48 

In the design and development of many systems, the cost of producing software is higher, 
often much higher, than the cost of the hardware. Frederick Brooks. in Tlte Mytltica/ Man. 
Mall/It . I compares large-system programming thm does not use good design techniques 
with the tar pits that swallowed aber-toothed tigers. dinosaurs. and mammoths. Few of 
these system meet their goals in terms of schedules and costs. DeSigning the oft ware 
before writing the code is vital both to comrolling costs and to meeting requiremem and 
schedules. 

Software design means desigllillg the software before \Vriling the code. When you are be~II1' 
ning your studies of any processor. or any programming language. designing before wri~ing 
is difficu lt. You are wrapped up in just learning the details of the proceS\or and its inSlrucrio~ 
set or the syntax of the programming language. Soon. however. the problems get more com. 
plicated and, with your newfound ma tery of the language. you should be able to design thr 
solution lO the problem instead of just programming the solution. 

In thi chapter we assume thm you are about to learn the instruclion sct of a InicroconlrOllel 
and the operation of the assembler or high-level language complier. To prepare for thi til!>k. 
we would like you 10 learn how to design software properl) Instead O'lt"t \\nling II. We \\ill 
look at various design philosophic and at tool, l"cd to deSign so[(\\ arc. 

I Frederick P. Brooh Jr. The Mythical Mtlll .Mmtllt , Addl'fln-\\c"lc). R('.ld,"~ M \, I 'nQ 
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3.2 The Software Development Process 

Developing ful ly designed. coded. debugged. and documemed software for any real 'ystem 
proceeds in several steps. These are design , coding of modules. testing and debugging of mod­
ules. system testing and verification. and documentation. 

All software development starts with 
a design phase. 

I. Design : The design for any complex system might v. ell take 5<Y.< 
or more of the total effort required for a project. In the secllons that 
follow we will distinguish between design methodol02ies and de,i!UI 

. tools. A design methodology is a philosophy to do de;;gn. and de'ign 
too ls are the mechaniCS used. The goal of the de ign phase i to understand completely the 
problem and 10 propose a solut ion broken down into modules or functional elements that can 
be coded, tested, and documented. 

2. Coding: Coding means writing the program in the chosen programming lan!rua!!e. We 
would hope to use a high-level language for most of the code; but often. e pecially-in time­
critical applications. assembly language programs are needed. 

3. Module testi ng: A properly done design will have coded modules that can be teted 
and proven 10 work correctly. The testing and debugging tool u ed depend on ho\\ v.e hale 
done the coding. Fortunately. many high-level language have vef) po\\erful debu!!!!ers thar 
allow us 10 test and debug our software. --

4. System testin g: This step follows subsystem or module te tin!! and i nece'san to 
prove that the software and hardware work as a whole. - . 

DOCllmelllOlioJl is so important that it 
accompanies each step in the process. 

5. Documentation: Although mentioned lru.t in the Ii t of tep'. 
dOClIlllelllatioll illfact accompallies each step ofsojnmre dere/opment. 
The de ign documentation specifies what the y tern i to do and ho\\ 
the function is implemented: typically. this \\ork will form the basi of 

user manuals. Documentation effort is never wasted. Documentation begins in the design step. 
and various types of design documentation are di cu sed in later eerion, of this chapter. The 
documentation produced in the coding phase is the code itself. which includes features of the 

design as comment . Code testing phases are documented with test pl~ and re,ulb. The. 
nO! only become templates 10 show that the S) "tern meets the s~ificatton . me) a1. :Illo" 
future modifications of the software to be tested to the same standard. Documentation effortS 
include the installation and u er manuals. 

3.3 Top-Down Design 

A design methodology is a stepwise procedure for doing the design. This ,an be CL nrrn."red 
with de ign tool. whi h are the mechanical things (e.g .. pseud(l<:Lxle or tlL)\\,han, u t' 
produce the design. The top-do\\ n design (TOOl method b the de. ign PI'( :edure L,f ~h I~' By 
following the steps presellled next. we can almost ,,,"sure oursehe, that 111 the cod there v. 
a good design, meeting the system requirements. 

Understand the Problem Completely 

Understand what is required of the 
system before starting to program. 

Unfortunatel). man) programmers \ IOlate th" first pru ;:Ip.' I' 
right away becau,,~ it i, so much fun tL) program that tb,') 

the) fully understand the prohkm. F,'r e\,tmp e .. 0' "" 
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hardware and software for a digital volimeter. Questions that should be asked (and answered) 
before proceeding with the design might include the following: 

"What i the range of input voliages?"" 

"What is the resolution needed for the display?" 

"How are the analog voliages coded?'" 

"How doe the analog-to-digital converter work?" 

Understanding the problem means we must specify exactly what the software is required LO 
do. It is not necessary to understand (at lea t in the initial stages of the design) how clements of 
the proposed solution work in detail. For example, when designing a digiLal voltmeter, we do nOL 
need to know how the output display works. We jusL have to know whaL we need for the output. 

A sLudent recently suggested thaL Lhis part ofLhe design process be called "ouLside-in design" 
to emphasize Lhat the specifications for the sofLware of Len come from an outside CUSLomer. The 
pecificaLions must be written so that both the end user and the engineer of the system know 

exactly what the system is to be. 
A document that is produced during thi s phase of the design is called 

a reql/iremellls specification. This bit of jargon simply means LhaL you 
specify (write down) what the sysLem is required La do. We are nOL spec­
ifying holl' someLhing is LO be done, JUSL what is LO be done. 

The rel(uirt!meI1lS specifiea/ions tell 
exactly what Ihe program is sup­
po,ed 10 do. The design process should consider potential error conditions and 

should allow for them in the rest of the design. Often when customers 
supply specifications. they fai l to consider all error conditions. You hould make it your respon­
sibility to think about errors and error handling requirements. 

DeSign in Levels 

A statement that summarizes this firsL principle of top-down design is "Think first, program 
later:' 

Upper leve" of the design are more 
gcnl!ral: lower levels are more 
detailed. 

Once the requirements have been specified, iL is Lime La sLart designing 
a system to meet them. This is the "how" part of the design process. IL 
is natural to feel overwhelmed by the complexiLY of the problem. Often 
one cannot see a way LO the end. Do nO! worry. The design procedures 
wi ll help us through to the end. 

Designing in levels means that we recognize LhaL the whole SoluLion 
to the problem cannot be een at once. Just sLart at an upper level and propose a solution to the 
problem. As you learn more abou t the problem and how to solve it , levels Lhat are more detailed 
can be added to the de ign. A tree structure, as shown in Figure 3-1 is developed to represent a 
design that is being done in levels. The upper levels of the Lree are more general statements of 
the problem solution; as one progresses down the Lree, more detailed informaLion is shown. 

Let us look at an example. Consider designing the software for a digital vol Lmeter. The 
requirements are the following: 

The inpuL voltage ranges from 0 to 5 V. 

An analog-to-digital converter is to be used to produce an 8-bit unsigned binary code. 
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More General 

More Detailed 

Figure 3-1 Tree structure that results from designing in levels. 

Level 2 

Figure 3-2 Two-level design for a digital voltmeter. 

The voltage is to be displayed on a two-digiL, seven-segment LED di play to a resolution 
of 0.1 V. 

We will not complete this design to the final level of details needed in a real-world project. 
Our goal is to show how to stan a top-down design. The first two levels of the design are shown 
in Figure 3-2. 

The top level is a simple staLemenL of the problem, wiLh the next level providing some details 
of how that top block is to be done. This level SLarts to focus our thoughLs as we can ider \\ bat 
should be done to program the digiLal voltmeLer. The design may not be correct or complete at 
this stage, but iL is at least a start, and starting i of Len the hardest part of any project_ Notice 
Lhat the blocks in Level 2 are algorithmic. That i . by reading them from left to right. we have 
a descripLion of a sequence of things done to input the voltage and display the result. 

Ensure Correctness at Each Level 

The design started in Figure 3-2 is not necessarily correct or complete after the first p;:L">_ 

Before going on to 10IVer levels, make sure the algorithm is correct at this le\el. In going b -
over the design, Lry to think of anything el e that perhapshould be done. For e\runple. e 
might remember that we need to iniLialize some of the 110 devices in the >~ .tem. It i: e3S~ 3t 

Lhis stage to add anoLher block to the design. as shown in Figure 3-3. 
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Postpone Details 

Correction for 
Level 2 

Figure 3-3 A more correct design for Level 2. 

There will be unknown and unresolved details at all upper level of the design. Postpone think­
ing about the details until you reach the lower levels later in the design process. For example. 
when working at Level 2 of the digital voltmeter, we do not need to know in detail how we are 
going to get data from the NO converter. Nor do we need to know the details of the algorithm 
to conven the 8-bit unsigned binary code 10 a voltage value. Thinking about and designing for 
these detai ls can be postponed. At Level 2 it is necessary to know only that this conversion 
needs to be made, not the details of how to do it. 

Successively Refine Your Design 

As progress is made through the lower levels, more details of what is req uired become appar­
ent. Inevitably, as this occurs, we think of something that could be done at an upper level to 
make the design easier at lower levels. That is OK. Since no time has been invested in program­
ming, it is easy to change the design. Go back to the upper level. change it , make sure it is no" 
correct at that level. and continue to work at the lower levels. 

Design Without Using a Programming Language 

The initial design should propose solutions to the problems that are independent of any pro­
gramming language. It should make no difference 10 the design how the machine code in the 
memory of the computer is generated. We are now beginning to talk about design tools-the 
100is and techniques used to write down the design. One widely used design tool is p euda­
code. This is a programming-like language used for design. For example. a pseudocode desien 
for the digital voltmeter at Level 2 is shown in Table 3- 1. -

Table 3-1 Pseudocode Design for a Digital Voltmeter 

Inilialize UO devices 

Gel a vaJue from the NO 

CaJculaie Ihe voltage 

Display the results 
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Level 2 

Leveln ~ ~ 
Other low-level drivers 

Figure 3-4 Bottom-up design. 

3.4 Design Partitioning 

Most programming problems can 
be panitioned into elements that are 
divided among the programmers 
working on the job. 

The top-down design method allows us to partition the design into easily 
handled pieces. At the upper levels, we can concentrate on more general 
ideas, leaving the detailed design until later. AI 0, it is usually easy to see 
where work at the upper levels can be divided among different people work­
ing on the project. In the digital voltmeter design, it would be easy to split 
the design at Level 2 into two partS. One engineer could work on the VO 

initialization and on gelling data from the analog-to-digital converter, and another could be assigned 
to convert the unsigned binary data to the voltage display. Partitioning the design and allocating 
work to different people is part of managing a software development project. 

3.5 Bottom-Up Design 

In bOI/OIll -IIP desigll, low-level func­
tions are designed, coded, and tested 
before the upper levels of the design 
are completed. 

"Bottom up" is design phllosophy that some people u e. They think the) 
are doing lOp-down design, but they really are not. Here is how de igners 
may fall into bOllom-up de igns. They begin with a top-down de ign for 
the first levels: for example, the digital voltmeter design could be tarted 
just as before. So far, so good. But soon they start looking ahead to 
doing some coding. After all, they are programmers. aren't the)' ? There 
will be some low-level drivers required. such as a routine that reads the 

NO. Why not, they argue, take a break from this design stuff and do some programming for:l 
change? The design starts to look like Figure 3-4. 

What is wrong with this procedure? First, by writing programs before the de ign has 
been completed, we ca t in code' how things are being done at lower levels before we h:l\e 

~ Somelimes very much like concrcle! 
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undcr..tood the upper levels of the design. This violates the principle of postponing det~il s. 
Ideally. the lower levels hould be desiglled based on ~ well-thought-out upper leve l. destgn. 
When the lower levels are designed and coded first, deCISIOns may be made that cou ld tncrease 
the difficulty of implement ing the upper levels. This also viola.tes the principle of succeSSIve 
refinement of design. It i not a good idea to invest lime tn wnllng code untt! all d~s l.g n levels 
have been completed. By coding the low levels fir t, we do not get a chance to optlml~e lower 
level, of the de ign based on decisions made for the higher levels. 1£ the low-level deSIgn must 
be changed later. the work put into that codi ng has been wasted. . . 

Another problem with the bOllom-up approach IS that when code IS wntten for the low-level 
drive", extra code has to be wrillen to test them. This means extra work for the programmer. 
TIle top-down approach. on the other hand: g i ~es a testing s~cture that can test low-level 
program'. Top-down testing and debuggtng IS dIscussed tn Sec lion 3.9. .. . . 

BOllom-up design is not all bad, however. BOllom up can be an exercIse In tool bUl ldtng. 
In any ;y;tem, one can see functional elements that are needed. If the tool bUlldtng phase IS 
approached ;0 that the new tools are not application specific. and they do not have a great 
impact on upper levels of the design. they can be used tn several apphcatlons. ThIS may save 

work in the end, 

3.6 The Real-World Approach 

Top-down dc,ign combined wi th 
judiciou ... usc of functi on~ already 
progrummcd work, best in the rcal 
world. 

Rarely in the rea l world do we have the opponunity 10 follow the ideals 
of the top-down philosophy and complete the design 10 all levels of detai l 
before doing any coding. Often low-level functions are ava ilable that 
have been coded and tested; you can use them in your design. h makes 
sense 10 use these working functions and not have to redesign, code, and 
test them again. Most high-level languages come with libraries of func­

tion" and your company or coworkers may have useful libraries, too. Using these fu nctions 
violates the principles of lOp-down de ign but i acceptable, provided you understand why the 
principles are being compromised and what the consequences may be. Using previously writ­
ten low-level functions may impose constraints on the higher levels of the design. However, 
the time saved by u ing already working functions can offset the disadvantages of these con­
straints. Note that this is different from the bOllom-up philosophy. In bottom up, one sets out to 
write the low-level drivers, pUlling effon into their design, coding, and testing. 

In summary, the real-world approach is one in which we recogni ze the power of the top­
down method and attempt to do as much design as possible before coding, but we use previ­
ously developed and debugged functions where possible. 

3. 7 Types of Design Activity 

Fllnctiollal design is the more gen­
eral activi ty in which the required 
functional elements are defined. 

The top down design philosophy suppons two types of design activit)' 
found in any software development project. The first is oriented toward 
defining the filllctiollalit)' requi red in the software. We do not care itOII' 

the software does its thing as much as wltOI function is to be provided, 
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The design must be refined 10 a level at which the components are manageable by one person. 
That function is then assigned to someone to program. 

Detniled desigll specifies the details 
necessary for each function called for 
in the func tional design stage. 

3.8 Design Tools 

The second act ivity is arriving at the detailed design neces ary to pro­
duce the functionality required in a module. The person who is assigned 
the job of producing a module takes the requirements specified by the 
first activity level and produces a detailed design to be programmed. 

Design tools arc used by the software engineer to help with the design. Here are some qualities 
of a good design tool. 

It should be easy 10 use, and it should allow design modifications to be made easily. 

It should suppon structured programming. 

It should allow us to see easily the design at many levels. 

h should have good documentation facilities. 

Structured Programming 

In the mid-I 960s, people writing software for large systems were 
Any program can be wrillen with just appalled at the cost of these systems and at the amount of time needed 
sequence, decision. and repelition to develop them. A landmark paper by Bohm and Jacopinil. aid in 1966 

structures. mal any proper program was equivalent to a program that contains only 
three s~ctures. That is. we can construct any program with only three 

basic structures, none of which is a GOTO statement. No one paid much attention until two 
years later, when Dijkstra' wrote a provocative paper stating that the GOTO statement in a 
program i harmful. The three structures that Bohm and Jacopini ugge ted (and a few more 
that software designers could not resist addi ng) form the basi of tructured programming and 
the structured languages we know today. 

The three basic structures are a sequence, a decisioll, and a repetitioll. Beyond these. se\'eral 
general principles of structured programming can be enumerated: 

I. Use these imple structures to aid in minimizing the number of interactions and intercon­
nections between elements of the program. 

2. Keep program segments small to sustai n manageability. 

3. Organize the problem solution hierarchically. 

1 Corrado Sohlll and Giuseppi Jacopmi. "Flow diagrams. Turing machines and l:mguagC' .. "1m onl) t\\ :"I It,)(l1\;J.tioo 
rules." COl1fl1umicatio"s o/rlle ACM vol. 9. no~ 5. pp. 266-371. 1966. 
.a EdsgerW. Dij"-!tLra. "GOTO Sl:uement considered harmful:' CommwliCclfiMS()fth~ -\C\f \01 11, 00. ~ rr I~"'-I~. 
1968. Some programmers suggesl that Dijkslm c1B.im~d that GOTO IS a four·lener \\oni. 
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Pseudocode 

4. Organize each program segment to have one input and one output (in terms of the program 
now). This i~ not a data restriction but a restriction on the program now. We would like to 
draw a box around a program segment, enter that segment in only one place, and leave it at 

only one place. 

Structured programming really is not a design tool. It is a way of writing programs. However, 
because the principles of structured programming fit so well with the top-down design proce­
dure, the elements of tructured programming have been adapted for use as a design tool. With 
that in mind, let us look at the sequence, decision, and repetition structures used in structured 
programming, along with the pseudocode design tool. We will then see how pseudocode can 
be u ed in a top-down de ign exercise. 

The popular pseudocode technique is frequently used design tool because it is easy to mOdify, 
does not require special graphical tools, and fits well with the documentation required for all 
design. Further. the design text can be included in the software code as comments. 

Many texts give a complete treatment of the pseudocode design tool. Here is an abbreviated 
approach that shows how to pseudocode the three simple design structures: sequence, decision 

and repetition. 

I. Sequence: A sequence structure is a sequence of functions or operations that the 
program is to perform. A sequence usually does not show any logic. It shou ld show the func­
tion provided by a process block and must have a beginning and an end. These are explicitly 
stated to how the si ngle-input, single-output form we would like to achieve in the design. 
Thu ,a sequence of A, B, C would be as shown in Table 3-2. 

The ellipsis ( ... ) represents the elements of the design prov ided in the A, B, and C 
blocks. 

2. Decision: The decision structure is called an IF-THEN-ELSE, and Table 3-3 shows 
how to write the structure in pseudocode. The decision structure code executes one of the two 
elements in the program. IF X is true, THEN the process A is executed, otherwise (ELSE) B 
is executed. 

Another view of the IF-THEN-ELSE structure is shown in Figure 3-5. This is a structured 
nowchan sy mbol , and while nowchans are not generally used as design tools these days, they 

Table 3-2 SEQUENCE Pseudocode 

BEGIN A 

ENDA 

BEGIN B 

ENDB 

BEGINC 

ENDC 

Table 3-3 DECISION Pseudocode 

IF X 
THEN 

BEGIN A 

ENDA 

ELSE 
BEGIN B 

ENDB 

ENDtF X 
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Figure 3-5 IF-THEN-ELSE decision element. 

are useful 10 help visuali ze the proper structure of a good design. II is easier to see that only one 
process block is executed in Figure 3-5 than in the corresponding pseudocode of Table 3-3. 

Inspection of Table 3-3 and Figure 3-5 shows that a Boolean or logic deci ion is made and 
must be ei ther true or false. It doesn' t have to be a simple decision: you may use any of the 
Boolean logic learned in your logic design course. For example. the following is a Boolean 
function : 

F is TRUE if (A is TRUE AND B is FALSE) OR C is TRUE OR D is FALSE. 

The decision structure may be single sided, however. That i , there might not be an EL E 
part to the decision. Table 3-4 and Figure 3-6 show the pseudocode and the corresponding 
structure. 

Note that the IF-THEN-ELSE pseudocode block end with an ENDLF X tatemen\. The 
EN DlF, of course, signifies the end of the block. Repeating the conditional at !hi, point is 3 

good technique to help you remember what the decision wa all about. This feature is espe­
cially u efullater, when you are looking at the de ign. 

3. Repetition: The p eudocode for a repetition stru lUre is shown in Table 3-5. This 
structure is called a WHILE-DO, and as you can see in Figure 3-7. \\'HILEthe Bookan X i< 
true, the proce s elements SI , S2, and S3 are DONE. 
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Table 3-4 Single-Sided DECISION Pseudocode 

tFX 
THEN 

BEGINA 

END A 

E DIFX 

False 

Table 3-5 WHILE-DO Pseudocode 

WHILE X 

DO 

BEGIN 51 

E 'D51 

BEGIN 52 

END 52 

BEGIN 52 

END52 

ENDO 
END WHILE X DO 

Figure 3-6 Single-sided DECISION structure. 

There are some other variations ofthe repetition struclure. One particularly u efu l in assem­
bly language programming is the DO-WHILE, shown in Table 3-6 and Figure 3-8. Here Ihe 
processing blocks, S I, S2, and S3, are done before the Boolean decision block. Thus. the code 
in the DO block is executed al least once. 

True 

False 

Table 3-6 DO-WHILE Pseudocode 

DO 
BEGIN 51 

END51 

BEGIN 52 

END52 

BEGIN 52 

ENDS2 

ENDO 

WHtLEX 

ENDOWHILEX 

3.8 Design Tools 

Figure 3-7 WHILE-DO structure. 

l\vo additional definitions complete our introduction to pseudocode. 

59 

Indentation: Indentation is often used in pseudocode. The code statements (or destgn require­
ments) for each block (bracketed by BEGIN and END) are indented to help sho\\ the structure 
of the design . 
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Figure 3-8 DO-WHILE structure. 

False 

Table 3-7 Level-' Design 

Single-input, single-output: A principle of structured programming is to keep Ihings simple 
without many interconnections between different pans of the program. A way to do this is to 
write the program so lhal elemenlS of il (sequences, if-then-elses, and repetitions) have single 
entry and exil poinls. 

Using Pseudocode Structured Elements as a Design Tool 

A lop-down design can be done in several levels of pseudocode. For example, when you firsl 
sIan the design. you mighl know only lhal A and B have 10 be done. The Level- I design is 
shown in Table 3-7. 

Table 3-8 Level-2 Design 

BEGIN A 
IFX 

THENi-'=="" 

Table 3-9 Level-3 Design 

BEGIN A 
lFX 
THEN 

BEGINC 
lFY 
THEN I BEGINE 

ENDE 
ELSE I BEGIN F 

ENDF 
ENDIFY 

ENDC 

I 
J 

E~~E~~~ ________ -. 
BEGIN D 

IFZ 
THEN 

END A 

E~E 

BEGING 
ENDG 

BEGIN F 
ENDF 

ENDIFZ 
ENDD 

E DIFX 
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As we stan to know more about the equence block A, we can begin to fill in its derails. The 
Level-2 design becomes that hown in Table 3-8. 

The design goes on to Level 3 (Table 3-9), where the C and 0 equence bloc - ~:m be 
expanded. 

In each of the design levels shown here, element have been enclosed in oo"\es. Thi, i, t~ 
emphasize the single-input, single-output nature of the program 110\\ . In Table 3-~ \\ e ,:m -
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that the A and B blocks are quite separate. By the time we get to Table 3-9. the separate blocks 
for A and B are still apparent even Ihough A has been expanded. 

3.9 Top-Down Debugging and Testing 

The discussion of Ihe bottom-up design technique in Seclion 3.5 showed 
SllIbs arc dummy programs for func- that extra code is required to test the modu les. However, if the code is 
lions or subrouLines Lhat have nOI developed in a top-down fashion by wriLing the higher level modules first 
been written ye l. and postponing the detai ls of lower level modules. the program structure 

can tesl itself. The program development might progress as illustrated in 
Tables 3-7 through 3-9. The upper level of the program is coded as calls 

to the modules that provide the functions A and B. As we start to work on fu ncti on A, delaying 
our work on the others. we must have something to subslilute for function B so the top-level 
program wi ll run. Thus. any lower level module that has not yet been coded is temporarily 
coded as a s/llb . A stub is just a return with no proce sing done. Table 3-10 shows how the pro­
gram might look for the Level-2 design. Here, fun ctions B. C, and D are coded as stubs whi le 
we work on A. If a function must process some dala and relum a value. a dummy or test value 
can be returned by the stub to be used by the calling program. In Ihis way. you can delay the 
ac tual programming of the lower level functions but still develop and test the upper levels. The 
whole design becomes the test jig for itself. It allows you to design and te I program logic and 
to see how data are passed back and forth at higher levels before coding the lower levels. 

Table 3-10 Using Stubs for Unfinished Modules in Level-2 Design 

BEGIN PROGRAM 
Call Sub_A 
Call Sub_B 

END PROGRMI 

BEGL\I Sub_A 
IFX 
THEN 

Call Sub_C 
ELSE 

Call Sub_D 
E DfFX 

END Sub A 

The main program conc;islS of calls to 
subroutines only. 

This is the module we are working on. and 
it ca lls two more subroutines. 

BEGIN Sub_B We howe nOI slaned working on (hi .;; 
(Return) module yet. so it is just a SlOb. It rclUrn 

c..::E""N.::,D;,:S;,:u"'b_=:B'-____ -' without doing any proce .. smg. 

BEGIN Sub_C 
(RelUm) 

ENDSub_C 

BEGIN Sub_D 
(RelUm) 

END Sub D 

This is a slUb 100. but "'e will probably 
stan to work on it next 

Anomer siub awailing ~Htenlion. 
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3.10 Structured Programming in Assembly Language 

Structu red programming and structured languages were invented to JOcrease our efficiency a; 

programmers and to make it easier to produce software without bugs and problems. What if 
the program has to be written in assembly language? Although assembly languages are vastly 
different from hi gh-level languages and do not have built-in structured language elements_ it is 
still possible to write structured code in assembly language. You must remember the principl~ 
of structured programming, particu larly the idea of a single input and single output for a pro­
cess block. Make your process blocks small , wi th jumps that do not span over great chunks 
of code, and ensure that there are no jumps into the middle of a block of code. This is ",hat a 
compiler does fo r programs written in a high-level language. We will see some examples of 
structured assembly programming in Chapter 6. 

3.11 Program Comments 

The preceding ections describe the top-down design process and 110", 
There should be comments in the to use structured programming techniques to implement a de~ign. 
program Ihal describe the desigll of 
Ihe code needed to meel Ihe syslem 

Developers of high-level languages often claim that their language pro­
duces "self-documenting" code. Nothing could be funher than the truth. 
A language cannot document a design: it documents onl~ the implemen­
tation of the design. and poorly at that. 

requiremenlS. 

Many beginning programmers. and it is ad to >a~ experienced one. 
as well. wait until the program is completed before including an) comments. This at be>, 
produces sloppily done and incomplete comments. ,\Ie have emphasized the importance of 
completing the design of a program before any code is written. We have hown. hO\o,e\er. 
that in the real world coding may tart before all detailed de ign i complele. Thi i" ~ible 
because there ex ist previou Iy developed modules suitable for u. e in a ghen application and 
because the top-down debugging and testing scenario presented in Section 3.9 >UPPOlb therr 
u e. Nevertheless. we should alway wri te down ome of the design before any oding t, done. 
to allow us to test the design first. These de ign comments fonn the basi of a useful comment­

ing strategy. 
There shou ld be two type of comments in our programs. design comment' and ,,""O.ie 

comment . 

Design Comments 

Program Header 

The design comments convey what the program i ' to do. not ho\\ the program \\ ill d, II 

After reading the header. )OU should kno\\ \\ hat the progt':lm dt • n tin an\ cre;llokwl. 
at lea t in general. The author's name should be here_ so pr:u,e or blame i can :ll'I''ltl 

correctl y. The date of original code rele;l,e and moditication n: :.: rd h g< xl m~ rut Ii 
The modification record should give what h:u. been d ne to the l rigin;t] " '. v. h nIt 

and by whom. ee E ,ample 3-1 
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Example 3-1 Program Header 

~ Hex keypad scanning module 
unsigned char hex_xey_scan( vo i d ) ; 

This module scans a 16- key keypad 
* attached t o Port AD. It returns an unsigned char ASCII code 

f or the key pressed . It returns the first key pressed 
* when scanning. It does not check for multiple ke ys pressed 
~ at the same time and it does not debounce key strokes . 
• Author : F. M. Cady 

Source File : hex_keypad.c 
.; Revision : 1 
, Revision date: 1 February 2009 

Hardware Definitions 

As you stan to learn more of the details needed to solve your programming problems. you will 
learn more about the hardware. Including these details as comments will help you remember 
later how your program works. See Example 3-2. 

Example 3-2 Hardware Definitions 

/ - Hardware Definitions */ 

* Port AD bits: 
PAD- 3 - PAD- O: Output : Scan row scan codes 
PAD- 7 - PAD- 4: Input : Column code 

Co13 Co12 CoIl ColO 
Row I Col Code 

* Row Code 11111 0111 1011 1101 1110 

* ----------1--------------------------------
1110 INone 2 A Key 
1101 INone B Pressed 

1 1011 INone C 
o 0111 I None 0 I D 

* ----------1--------------------------------

1* Define Grayhill 
Idefine NUM_ROWS 4 
'define NUM KEYS 16 

Series 96 4x4 keypad ' I 
1* Number of r ows * 1 
1* Number of ke ys ' 1 

Constant Definitions 

3.11 Program Comments 

/~ Define where they are connected to the microcontro~ler 
* PTAD Bit Grayhill Keypad Pin 

o 1 

1 2 
2 3 
3 4 
5 6 

7 

8 
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Example 3-3 shows constants defined for this module. Note that it is nO! ufficient to merel} 
define the constants. You must add comments stating how the constants are used in your 
program. 

Example 3-3 Constant Definitions 

1* Define constants - / 
#define ROW3 OxOe /' Row 3 scan code - I 

'define RO\~2 OxOd /" Row 2 scan code -
'define ROW1 OxOb / ' Row 1 - I 

#define ROWO Ox07 1- Row 0 -
'define OUTPUTS OxOf /, Row out.put.s -/ 

~define I NPUTS OxfO /' Col inputs . / 

idefine COL3 Ox70 I' Col 3 scan code -
#define COL2 OxbO I' Col 2 -/ 

#define COLI OxdO / ' Col 'I 

#define COLO OxeO /- Col 0 01 
#define KEY_~1ASK OxfO 
Mdefine NO KEYS OxfO / - Code for no keys pressed 

~define END MARK Oxff l- End of Good_Codes array -
/***~***~~* ~ *~~**~** .~~ * , ~ ~~,~~~.~~~~.~ ~ ~. ~ '-~~~~~.~.~ ••• ~ •• ~ •• 

Data Structures and Definitions 

If you are lIsing data tructures in some wa). document them \I ith ~<)mmenb '-''Platntn,; 
use. ee Example 3-4. 

If 
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Variables 

Example 3-4 Constant Definitions 

/* Define arrays to store the scan codes, key codes , and a 
* lookup table for the return value * / 

unsigned char Row_Codes!] = ( 
ROW3 , /* Row 3 scan code *1 
ROW2 , /* Row scan code */ 

RO,Il , 1* Row 1 *1 
ROWO 1* Row a *1 

]: 

* This lookup table contains the 8-bit scan codes for all 
* keys on the keypad 

unsigned char Good_Codes! ] = ( 

COL3 I ROI'l3 , 1* "1" Ox?e *1 
COL2 I RON3, 1* "2" Oxbe *1 
COL1 ROW3 , 1* "3" Oxde */ 

COLO ROW3, I' "A" Oxee */ 

COL3 RO,/2, 1* "4" Ox?d */ 

COL2 ROv/2, 1* "5" Oxbd *1 
COL1 ROW2, 1* "6" Oxdd 'I 
COLO ROv/2 , 1* "8" axed 'I 
COL3 ROVIl , 1* "?" Ox?b *1 
COL2 ROW!, 1* "8" Oxbb *1 
COL1 ROVil , 1* "9" Oxdb 'I 
COLO ROVll, 1* "C" Oxeb . I 
COL3 ROWO, 1* Ox77 - I 
COL2 ROVIO , I' "0" Oxb? *1 
COL1 ROv/O, I' "," Oxd? . I 
COLO ROv/O . I' "D" axe? *1 
END MARK 1* End marker *1 

]: 

* This lookup table returns the ASCII code for the key pressed . 
* * * * ..- * * * * .. * * * ,r .... * * * '"' * * ... '* Ir." If * 'It'" ..... ' •••••••• ~ Jo- ........ ~ • • ~ .......... ~ •• / 

1* User-defined key codes. These are ASCII. *1 
unsigned char Key_Codes! J = ! 

"123A4s68?89C'0§D" 
) : 

Every variable used in your program should include a comment defining II, lI'c .. cc b:unple 3-5. 

Code Comments 

3.11 Program Comments 

Example 3-5 Variable Definitions 

unsigned char key_ hit ; 1- 8-bit ASCII code for :.he %ey ~~ 0 -I 
I' lf no key is pressed - I 

unsigned char col - code; I' 4-bit col code from i-:eypad sea:-. 

unsigned char scan - code; I- 8- bit col - code , ro',; - code -I 
unsigned char key code ; I' 8-bu scan - code for f-.ey pressed - f 

unsigned char i ; j- An indexing var~able • f 
19~'.~~~*rw ~ T9A~~~ •• *~*.",,,.,~'.~~"r.~-r~~-~ ~~T .W •• - • •••••• , •• , 

As you proceed to write the program code. structure it with blocks of design comments. traight 
from your design documentation. with code that follows implementing the de ign. You may 
find it usefu l to include code comments that explain ho\\ the code is \\Orlting to implement the 
design . See Example 3-6. 

Example 3-6 Comments in the Code 

- Initialize your microcontroller ' s I/O port ccnnec~ed ~o :te 

- keypad . 

/* Initialize the Port AD bits 3- 0 :or ou~p~~ • 

I- Check to see if the port has been sec ~p - f 
/ . IF the data directt0n register :s ~o~ se~ 

to output on the ROW_OUT bits -I 
if II DDRAD & OUTPUTS) != OUTPUTS ){ 

, - Then init1alize the data directioa =eg _s~e~ , 

* enable the lnput pull - ~ps and er.able ~he n:~ 

* input bits - f 
DDRAD 1= OUTPUTS ; /. Set the Data Directlor Re~_ste~ 
PERAD ,= INPUTS; I- Pull ups enabled ' 
ATDDIEN 1- INPUTS ; ,- ATD inpuos enab e, 

Th~ comments in a progl1lm shoulll do~utncutthe llc'lgn n~J 'J t,) impl 'nk'n th ,~, n 

wcll a, details that c\plain 11\)\\ the code ImplcmclIls the dc-ign \n ,)"~r..lll rn'g3m 
or a wcll-designed and \\ cll-documented pn)gmm i, 'h, \\ n in E\.lmrl' _~.-
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Example 3-7 Commented Code Outline 

/*</r" Constant Definitions H ... I 

/"'-/r'" Data Structures ... *~/ 

/...,~ ~ Variables ~*~ / 

/ '" cO..., Design Conunent Block ~.., .. / 

/"Ir~ **** Code to implement this design block ..,*~.~ ... / 

/ i+* Design Corrunent Block j "'*/ 

j' *---' Code to implement this design block " ' -'* / 

Comments in Assembly Language Programs 

Many assembl y language programmer tend to place comments at the end of each line of the 
a sembly code, or on many lines, Wh ile bener than omining comments, this is nO! a good 
practice or commenting style. It leads to comment that are related to the line of code but 
not necessarily to the design or fun ction the code is producing. Further. these comments are 
oft en added after the code has been wrinen rather than before. A bener way to comment an 
assembl y language program is to follow the preceding strategy and use a block of comments 
to describe what the following block of code is to do. You may place comments on some 
lines of code to describe how they work. Comment are generall y not needed on every line 
of assembly code . 

3.12 Software Documentation 

Each of the software development pha es-design. coding. and te'ting- has associated 
documentation. 

Software Requirements Specification (SRS) 

The SRS is a document or series of documents denning what i, required of the software. At 
the upper levels of the best-designed 'ysteml. the SRS should completely denne what the user 
of the system is to see, that is. the user interface . Thi, document can form the basi, of the user 
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operator's manual. It must be wrinen nrst and accepted by the customer and the software devel­
oper. As you continue with the lower levels of the design. where one starts to think about how 
things are going to be done, the SRS documentation begins to denne the functions required by 
modules in the system. You should be able to give an SRS document to a colleague and have 
him or her code the function and return a working module to be included in the system. 

Software Design Document (SDD) 

Software Code 

The SDD is the document produced fo r the detailed design of a module. It defines the logic 
required to produce a parti cular fun ction. You start with the SRS for the module and use a 
design tool such as pseudocode, described in Section 3.8. 

The coding phase ha an element of software documentation. This means including com­
ments in the software. We would like the code to be written so c1earl) that extra comments are 
not necessary. High-level languages allow us to do some of this. but rarely should "e write 
a program without any extra comments describing what is going on. lo assembly language 
programs, comments are mandatory becau e the language is nO! as design oriented as high­
level languages. It i particularl y effective to use the pseudocode produced for the SDD for the 
comments in an assembly language program. 

Software Verification Plan (SVP) 

User Manuals 

The SVP is a document that describes how we are going to test and verify that a particular 
module or system meets its specifications. The SVP should give the details of limiting valUe> 
to be tested and the expected results. There may be levels of SVPs associated with the \-:mow. 

level of our design. 

The four document types j ust de cribed are often treated as de ign documents to be used within 
the company and not delivered to the customer. Beyond these. there mu t be manuals for the 
customer's use. These include instruction on ho\\ to install the . oftware (if appropriate):md 

instructions on using the software. 

3.13 A Top-Down Design Example 

As a final exercise. let us use the top-down design approach to tack.le a de"ign prot-lern .. -\. a 
review. the principal steps of top-down design are as follows: 

Understand the problem complete I) . 

De ign in levels. 

Ensure correctness at each le\ el. 

Postpone detail.. 
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Table 3-11 Problem Solution Logic 

Aluml Sound ... 

When the key j" in the ignition 

and the motor is not running 

and the door is open 

When the key i, in the Ignition 

and the motor is running 

and the driver belt is nOl fastened 

When the key i ~ in the ignition 

and the passenger scal is occupied 

and passenger belt is nOI fastened 

When the key i ~ nOI in the ignition 

and the lights arc on 

Successively refine your design. 

Design wilhout using a programming language. 

Seat Belt Alarm: Problem Statement 

In many cars the eat belt alarm buzzer i also used to warn agai nst leaving the key in the ignition 
or leav ing the lights on. The followi ng statement describes how such a system might operate: 

The alarm is to sound if the key is in the ignition when the door is open and the motor is not 
running. or if the lights are on when the key is not in the ignition. or if the driver belt is not fas­
tened when the motor is running. or if the passenger seat is occupied and the passenger belt is 
not fastened when the motor is running. 

The Top-Down Design 

Understand the problem 

It is often useful to restate the problem to understand it better. Often a tabular form. as shown 
in Table 3-1 1. can help clarify the logic needed. 

First-Level DeSign 

By reading the problem statement and perhaps restating it, we begin to under tand the problem 
better; but we need a place to start the design . Table 3-1 1 li sts circumstances under which the 
alarm is to sound if the key is in the ignition and other conditions for "ounding the alarm when 
the key is not in the ignition. Our first cut at the design . for which we have u,cd the p. eudocode 
tool and postponed details, looks like this: 

If the key is in the ignition 
THEN 

DO the alarms if the key is in the ignition 

a 
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ENDDO the alarms if the key is in the ignition 
ELSE (the key is not in the ignition) 

00 the alarms if the key is nOt in the ignition 
ENDDO the alarms if the key is not in the ignition 

ENDIf (the key is in the ignition) 

Second-Level Design 
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We have obviously left out all the details that will sound the alarm. but we do have a tart­
ing structure to which we can now add details. Fir t, though. we should look back at the 
design to make su re it is correct. Notice that we have put comments after the E:'SE and :;t;:J: , 

statements. These wi ll help us keep track of where we are in the logic as we add details. There 
is not much logic in the design at this stage, so we continue with the second le\el and start to 
fill in some of the details. Details that are added in each of the fallowing le\els are sho"",, in 
bold type. 

IF the key is in the ignition 
THEN 

DO the alarms if the key is in the ignition 
IF the motor is not running 

THEN 
DO the alarms if the motor is not running 
ENDDO the alarms if the motor is not running 

ELSE (the motor is running) 
DO the alarms if the motor is running 

ENDDO the alarms if the motor is running 

ENDIF (the motor is not running) 
ENDDO the alarms if the key is in the ignition 

ELSE (the key is not in the ignition) 
DO the alarms if the key is not in the ignition 
ENDDO the alarms if the key is not in the ignitio~ 

ENDIf (the key is in the ignition) 

Third-Level Design 

Check back to ensure that the econd-Ievel de ign is correct, and continue adding detaik 

If t he key is in the ignition 
THEN 

DO t he alarms if the key is in the ignition 
IF the motor is not running 
THEN 

Do the alarms if the motor is not running 
IF the door is open 

THEN 
Sound the alarm 

ENDIF (the door is open) 
ENDDO the alarms if the motor is not lunnlr~ 

ELSE (the motor is running) 
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DO the alarms if the motor is running 
ENDDO the alarms if the motor is runn i ng 

ENDIF (the motor is not running) 
ENDDO the alarms if the key is in the ignition 

ELSE (the key is not in the ignition) 
DO the alarms if the key is not in the ignition 
ENDDO the alarms if the key is not in the ignit ion 

ENDIF (the key is in the ignition) 

Fourth-Level Design 
Check back to ensure that the third-level design is correct, and continue adding details. You do 
not have to continue with the "key is in the ignition" logic if it makes sense to do ;omething 
else. Let us add some details in the ELSE (the key is not in the igni t ion) pan of 

the logic. 

IF the key is in the ignition 

THEN 
DO the alarms if the key is in the i gnition 

IF the motor is not running 

THEN 
Do the alarms if the motor is not runn i ng 

IF the door is open 
THEN 

Sound the alarm 
ENDIF (the door is open) 

ENDDO the alarms if the motor is not running 
ELSE (the motor is running) 

DO the alarms if the motor i s runn l ng 
ENDDO the alarms if the motor is r unni ng 

ENDIF (the motor is not running) 
ENDDO the alarms if the key is in t he ignitiOn 

ELSE (the key is not in the ignition) 
DO the alarms if the key is not i n the 19n1t10n 

IF the lights are on 
Sound the alarm 

ENDIF (the lights are on) 
ENDDO the alarms if the key i s not in the 19nitlon 

ENDIF (the key is in the ignit i on) 

Design for Successive Levels 

We continue this design process by refining the dc~ign and adding the del~ll, needed tO lmple­
ment the solution. You may take severnl more de ign tep to complete the dC'Isn 

IF the key is in the ignition 
THEN 

DO the alarms if the key i s I n he Iqnl 10n 
IF the motor is not runni ng 
THEN 

7 

Final Check 
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Do the alarms if the motor is not runn!ng 
IF t he doo r is open 
TH EN 

Sound the alarm 
ENDIF (the door is open) 

ENDDO the alarms if the motor 15 not r~n~l~g 
ELSE (the motor is running) 

DO the alarms if the motor 1S runn~~g 

IF the driver' s belt is not fastened 

THEN 
Sound the alarm 

ENDIF (the driver's belt is not fastened) 
IF the passenger seat is occupied 

THEN 
IF the passenger belt is not fastened 

THEN 
Sound the alarm 

ENDIF (the passenger belt i s not fastened) 
ENDIF (the passenger seat is occupied) 

ENDDO the alarms if the IT' t.or :s ru.r:.n~:""g 

ENDIF (the motor is not. r~nn~ngJ 
ENDDO the alarms if the key is in ~he 19c.itioc. 

ELSE (the key is not in the ignltion) 
DO the alarms if the key is not. in the :;;;:':.:"0:1 

IF the lights are on 
Sound the alarm 

ENDIF (the lights are on) 
ENDDO the alarms if the key is no~ in the ~ g~_ :_ c~ 

ENDIF (the key is in he ign.tlon) 
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Table 3-1 ) can be u ed to help ched. the final olUlion for COOTe'C'moS Tr:lc\! throu~h ~ pre-
gram logic for each of the cases th3t sound the alarm sho\\ n in Table 3-11 Table _~-1: 

3.14 Chapter Summary Points 

It is \ italthat your software solution' be dC>lgned fiN and then )Hillen. \Ian~ p 
can be a\'oided b) designing before \\ riung. \ ou mtN a.k'pt a dcstgn Pr:l,'u,' 
do\\ n mcthodolog) ho\\ n in this chapter 

This chapter has presented the 1',,\1,,\\ ing r 'lOt-

The top-do\\ n deSIgn mt,th,>J is "Uf ,h,'" ' ,,( J 'sIgn appn ... h­

The top-do\\ n deSIgn steps are as 1',,\1,,\\ s' 

ndcNand the p",bklll e"lIlpktd) l>elt're \\ nllOg " xl-
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Table 3-12 Problem Solution Logic Final Check 

Alarm Sounds 

When the key is in the ignition 

and the mOlar is not running 

and the door is open 

When the key is in the ignition 

and the mOlOr is running 

and the driver bel! is nOI fastened 

When the key is in the ignition 

and the plSScnger seat is occupied 

and passenger bell is not fastened 

When the key is not in the ignition 

and the lights are on 

Design in levels. 

Ensure correctness at each level. 

Postpone details. 

Successively refine your design. 

OK" 

Yes 

Design without using a programming language. 

With bOllom-up design and coding, deci ion at lower levels may adverse ly affect the 
upper levels of the design. 

In the real world. we try to fo llow the principles of top-down desig n. bu t we pragmati­
cally use functions that have been al ready designed. coded. and tested. 

The elements of structured programming can be listed : 

Use three si mple structures- sequence, deci ion. and repeti tion-to write all 
programs. 

Keep program segments small enough to be manageable. 

Organize the problem solution hierarchical ly (use top-down de,ign). 

Use single- input. single·output program fl ow. 

The pseudocode techn ique is an effective design tool for all le\el, of top· down dc~ ign . 

The top-down design method can lead to a top·down debugging and te,ting ' tril teg) 
where the structure of the design tests itself. 

Software documentation is a vital part of all s tage~ of software de\elopment nnd con­
sists of the fo llowing: 

Software requirements , pecifications (SRS) 

Software de ign documentation (S OD) 

Software code with comments 

Software verification plan (SVP) 

Users' manuals 

• 
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3.16 Problems 

Explore 

Stimulate 

Challenge 

3. 1. Li st at least fi ve principles of top-down de ign. [a. c) 

3.2. What are the three basic elements of structured programming? [a] 

3.3. Write the pseudocode and draw the flowchan symbol to represent the decislon [f A l-' 

TRUE THE B ELSE C. [a. c) 

3.4. Write the pseudocode and draw the flowchart ymbol to represent the decilOO [f A l' 
TRUE THEN B. [a. c) 

3.5. Write the pseudocode and draw the fl owchan } mbol to represent the repeuoon 
WH ILE A is TRUE DO B. [a. c] 

3.6. Write the p eudocode and dra\\ the flowchan ymbol to represent the repeuti n DO B 
WHILE A i TRUE. [a. c) 

3.7. Use structured flowcharts or p eudocode to \Hi te 3 de ign thaI wtillmplemenl the ~ \­
lowi ng problem description: [c) 

Prompt for and in put a character from a user at the ke~ board. 
If the character i alphabetic and is uppercase. change It to 10\\el':':I> and ,'Uq:-ut \I 

to the screen. 
If the character is alphabetic and is 100\ere""e. change it to uppel\:ao :Ill.!, tpull! 

to the screen. 
If the character is numeric. output it wilh no change. 
If it is an) other character. beep the bell. 
Repeat titi" prace" until an E C ch.lI'!l~ter I' I~ ped b~ the u r. 

3.8. Design a progralll (It;ll Il1ltluli/e, an ·Nt data ,wrJ.g' J ','ulllulal 
10\\, slIcce. si \ C , -bit \ aillc. from an Il1put d '\ k ' It 'aIN.II .kI 
of thcll1 to thc '-bit data ,1Or.lge a' 'ull1l1l;It<'r. lf dunng Ih" r'\ 
overllo\\ OCClIr;. print an em'r me"agc anJ rei 'ilt fn 'll I 
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the 10 values have been input and added. output the result to an output device at 
location Ox71. Run the process forever. Your design mu" be" , tructun:d design 
and must show REPETITIO . OEC ISIO • and SEQUE CEo [el 

3.9. Use structured pseudocode to give a design that will accomplish the follow ing: [c] 

A user is to input a character to select one of three procc"cS. Valid characters are 
A. B. and C. where A. B. and C select proce ses A. B. or C. respectively. Process 
A requires a byte of infonnation to be input from an NO converter. which it then 
converts 10 a integer decimal number in the range of 0 to 5 and di"plays it on the 
creen. Processes Band C are not defined at this stnge. Promp" :lIld error mes­

sages are to be displayed. You do not have to give details of the decimal conversion 
required in Process A. 

3. 10. Use structured pseudocode to give a design that will accomplish the following: lei 
A byte of data is to be input from an analog-to-digital converter. and a cri tical 
value is to be input from a set of switches. If the NO value IS grenta than the cri t­
ical value. the microcontroller is to ound an alarm. Olhem ise the alarm is to be 
turned off. This proce sis 10 continue forever. 

3.11. Design a traffic light controller. [cJ 

Imagine an inter ection with north! outh and eru.t!\\ est qreelS. There arc 10 be ,ix 
traffic light signals: 

RedE_ W. YellowE_ W. GreenE_ W 
RedN_S. YellowN_S. GreenN_S 

Assume that the time elements in the table belo\\ are 10 seconds and th:1l a timer 
delay is avai lable as a function or subroutine. Give the pscudocooe structured 
design for the light cOnLroller. 

RedE_W 

I 
I I I I i I I I I 

I I I I n I YellowE_W I I I I 
I 

I 

GreenE_ W 

Red 

3.16 Problems n 

Reflect on Learning 

3. 12. Have you ever written a program without doing enough design before programming7 
Describe the problems you had . and reflect on bow doing more design before pro­
gramming would have made your job easier. 

3. 13. List five things you learned about software design from this chapter. 

3. 14. In no more than three sentences, summarize what you learned aboutLOp-down d~lgn. 



Objectives 

Introduction to the CPU: Registers 
and Condition Codes 

This chapler stans your learning about real proce sors. The teps you take here wi ll be the 
same ones taken for processors you will meet in your career. We will begin \\ ith the registers, 
that make up what is known as the programmer's model , emphasizing the condition code 
register. 

4,1 Introduction 

In learning about a microcontroller or microproce sor, you first evaluate it by looki ng at the 
hardware resources. At the basic level, these include the registers in the CPU such a. accumula­
tors, memory addressing registers, and the condition code register. For mOM microcomrollers, 
the CPU contains other hardware resource such as timers. pamllel and ,erial 110. and analog­
to-digital convenors. 

4.2 CPU Registers 

78 

The cemral processor unit, the CPU, contai ns the regis ters used in your progmnl', Depending 
on the design of the processor, the registers may have 8, 16,32, or more bits: III any CPU there 
are registers of several different types. 

Accumulators: Accumulators are register that accumulate an,wef\, such J' the A regl .. tcr in 
the picocontroller of Chapter 2. An accumulator can serve slmultaneou,l) ii' Ihe ,ource rcgls lcr 
for one operand and the destinalion for an ALU operation, 

Condition code register: The condition code register i, al,o called the nil);' or ,taW, rq!l\ter, It 
holds condition code bits generated by the procc."or when lIl,tnIWnn, .lfe C\cculed 

Doubled registers: The number of bits in a register depend .. on the gener.,1 ."chlleelurc 01 the 
CPU. An 8-bit CPU generally has 8-bil dara regi"cf\, Sometime, Iwn 01 the d.lt,) regl\ lef\ ure 
used together to double the number of bilS, 
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General-Purpose registers: These registers hold data: they serve as Source and de,unauon 
operands for data transfer in structions, and as sources for ALU operation,. 

tndex registers: Index registers are used to address memory also. Unlike pointer regl lef\, the 
memory address is found by adding to the contents of the index register a constant \alue. often 
called an offset. The resulti ng sum. called the effective address. is the addres, generated b} the 
CPU to retrieve or tore data. For a pointer register. the effective addres, l' ju.,t the contents 
of the register. 

Pointer registers: Pointer register address memory. The regi ter i . aid to -'point" 10 a memo" 
location, In most processor, pointer registers can be incremented or decremented. either ~ a 
program step or automaticall y after their use. 

Seg ment registers: In some machines. depending on hov. memo!) addressing I' organiLecL the 
physical address consists of two parts: a segment pan. which defines a cenain area or page in 
the memory, and an offset pan. which specifies a panicular place in the page. 

Stack pointer register: This is a pointer register dedicated to addressing memo£> u>ed for \ar­
iable data and subroutine return address storage. 

4.3 Register Transfers 

Many instructions in any computer involve the tran fer of information. Sometime<; the infor­
mation is just transferred from one place to another. as in a _~O" n,:; in,[ruction. Here, the A 
regisler is the source of the information and the B regi ter is the destina/ion , Other 1I1'UU.o n 
may modify the information along the way, For example, 1',5;' in Chapta 2 will add the c 

tents of the A and B regisler and place the result in the A regbter. A tran.,fer ne\er de-tm) , r 
changes the source opemnd in a register transfer instruction. unles, 3 sou.r>:e regi,ter i, 
used as the destination. as in the AS;' instruction, 

A register transfer language suc­
cinctl y describes what the instruction 
accomplishes, 

I\lanufaclUrers provide a s~ mbolic notation that prec!"<!I~ and, -­
cinctly de cribes the operation of each inqru..:uon Thh i, ,_ metime­
called a register transfer languoge. T~plcaJl~_ a fCgbter name in P.1reD­

theses mean that the operalion in\ 01\ e, the content, ot the reg1 'er 
left arrow (~) denOles a replacement opemtion. For e\..unpk . .ln lll'tru.:­

tion thaI replace lhe content, of the A regl'ter \\ Ith the, men!' of th 
B register has lhe symbolic notation (A) ~ (B), Table ~ l sho" , e,ample, 01 regl':cr tr.lIl, cr 
language statements. 

Table 4-1 Examples of Register Transfer 
Language 

Destination Register .- Source Register 

\AI tBI 
A B 

Source Register ~ Destination Register 

IBI • \ 

B -> \ 
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Exercise 4-1 

Tum now 10 the m3lerialthat describes whal CPU regisle" arc "vnilable in your labormory pro­
cessor. Be sure 10 nOle which regislers are accumu lators. which are general-purpose registers. 
and which address memory: then relum here 10 learn more nbolll Ihe condition code regisler. 

4.4 The Condition Code Register 

The condition code register has bits 
thal are used to make decisions in 
the program with condition branch 
instructions. 

The condition code regi ler_ also called Ihe flngs or Status register. has biLS 
thaI are modified (sel or reset) when the compuler execules an instruction 
involving data. Usually arithmelic and logic (ALU) openllions modify 
one or more of the flags. Sometimes a data Imnsfcr. like a load or mOl'e 
operation. modifies the flags 100: mo I proce sors have instructions that 
can directly sel or reselthe biLS. Let us look althe bils Ihat may be found 
in a condition code register and understand how 10 interprelthem. 

The Carry Bit 

The carry bit is set if there is a carry. or borrow. out oflhe most ignificant bit during an addition 
or subtraction. Consequently. this bit is sometimes called Ihe carrylborrow bit. For example. 
if we add or subITact the numbers shown in Example 4-1. Ihe carrylborrow bit is set (= I) by 
each operation. 

Example 4-1 Addition or Subtraction of a-Bit Unsigned Binary Numbers 

Addilion Subtraction 
147 0 147 I 0 0 I 0 0 

+ ill + 1 0 1 0 179 LJL..L 1 0 0 1 

326 0 0 32 1 1 I I 0 0 0 C ... 
I 

Carry Borrow 

What does the carry bil being set (or reset) mean? How do "c use Ihi, 11110nnatlOn" II depends 

011 fhe code. The meaning of all)' informalion 0111'0\'.1 depends on Ihe code. If the code " 
unsigned binary. as in Example 4-1. Ihe presence of Ihe calT} bit = I meal1' that .In nlonjlOIl' 

has occurred. Let us define overflow. 

All overflow occurs when Ihe result of all arithl1l~tic nptrtltu1II ftllJIIOI h, '1'!""\rtfh',1 b\' tlu· 

IIl1mber o/bils available. This could meallthe relllif il fflO 111'1/1' or /(1(/ \/11011. "If/r",/~/r t/r~ /<llia 
is somefimes called underflow. 
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An overflow indication means Ihere In Example 4-1 the addition of 179 + 147 = 326. are ultthat i too 
large for an 8-bil. un;igned binary number I"ho<,e maximum i, :!5 -i. 
Further, 147 - 179 = -32. and -32 cannot be represented ,",uh an 

is an error in the result. 

unsigned binary code. Thus. if we are using the un,igned binaI) code 
to represent numbcr;, the carry bit is et for errors such as overflow or a negau ·e re,ult. 

The carry bit can be used for multiple byte addition or subtraction. Con ider addmz 
two 16-bit, un signed binary (or two's-complement) numbers_ but add them one b\le at; 
lime. In Example 4-2 Ihe carry out from the addition of the least ignificanl b}lC i- added 
into the addition of Ihe most significant bytes. Microcontrollers have 'pecial instruction 
for Ihi 

Example 4-2 Use of the Carry Bit in Multiple-Byte Arithmetic 

Two 16-bit numbers to be added_ For example_ 

001 
000 

o 0 
o 

o o 0 o 0 

can be added wilh IWO g·bit b) te additions: 

Most significant byte Least ,ignificam b~le (thl' addiuon I' don<: 6"'1 

Carry in from lea t ignificant bYle 

0 0 1 a 0 1 _ o 
0 0 0 I 0 1 c ~ _ • 

0 0 0 0 0 o 

Carry OUI of mo'l "gnificant b) te 

To use the CaIT) bil 10 dClect arithmetic err"". S3~ \\ hen an 0\ rtl \\ lu" , -=d_ 
hown in Example -I-I. your proce"or Will h.\e m'tru~tion, thaltc't the ,-~ 1\ 'ran 

the in~truction c\eclilinn. These inslfuclions will be ,imilar h."I brwil - :u rn- t*t It .... to. ro-
plcment /1rallc/r-if-clIrry-c/£'or. The program 110\\ for a '\'nJltwnJ.! br.ul·h lo,tru 'U,){\ I' 
the si ngle-sidcd decision Imctu!\' ,h(1\\ II ill Figure J-t>. If the ,-, ndlu,'n I' tru _th 
taken: olherwi,e_ the program contillue-_ ee E,ample -1-3 

Example 4-3 Condlltonal Branching 

Sho\\ ItO\\ to hr.m..:h tll.m ~m)r h.UlJ.hng r\ Ulm\.~ If ~n ,"~rt) '\\ 
ull,ignl!o n\1mh~f',. 
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Solution 

Load the first number 
Add the second number to the rlrst 
Branch - if- ca r ry - set to the overfIot-., handler 

Othen"'ise, cont i nue with the program 

Example 4-2 shows ari lhmelic operalions Ihalll~C Ihe carry bit 10 Ilnw Imlll one addilion 10 
another. Instnlctions that do this arc similar to add-lri'h-cart:\' and .wbrr"u "';,iI -cllrr\". When 
YOLI are subtracting. the carry bit inciicale!<. a borrow i~ needed: ... 0111(: in .... tfucllnn .... ct, clllllhc~c 
instructions slIbtrac/-wi,lz-bonv\I', 

Exercise 4-2 

Investigate your microconlrolicr" .... in\lruction ... ct and li'l thl! IIhlnH:lloll ' that t(! ... t or u,e the 
carry bi!. 

Two's -Complement Overilow Bit 

Whal does the carry bit mean if Ihe number. 10 be added or ,ublr:tctcd arc cncoded II ilh nn 
8-bil. Iwo's-complemem code? Look aI Example 4-1. 

Example 4-4 Addition or Subtraction of Two's-Complement Numbers 

Addilion 
- 109 

+ - ill 
- 288 

Overnow Ihal occur~ when doing 
~igned arilhmelic with Iwo'~-complc­
menl numbers is delecled by a two '\­
complement Ol'erjlOh' bit. 

SubtfJl'linn 

0 - 109 
+ 1 0 0 0 - 1- 77) 

0 0 0 0 J2 

Carry BOITo\\ 

The binary operand, and Ihe bll1;11) rc,ull 111 I \ ample -I -I .lIe Ihe 
~al11e a, Example 4-1 111 E~al11plc 4- 1 Ihc 'um "I I 17 .lIld 179 " U6. 
which i, larger than Ihe large" R-oll un" f llco nllm lx'r 12551. 1 hu,. Ihe 
carl) bil inuicale' allll\erflOl' . In E\amplc -I-Ithc 11111 "I 10'1 and 77 
is more negallvc (larger) loan Ihe 1110'1 neg.llI\ e nurtlll\'1 Il l' r.1Il repre­
sCnt wilh a IlIo\-complcmcnt nlnar) t<xk tlhe II1 Il I ncg,lll\e " 12XI. 

Sign Bit 
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Therefore. it appears Ihallhe carry bit will allow us to detect an overflow. However. when -77 
is ~ubtracted from - 109, the answer. -32, is encoded correctly (I I 100000 is the two's­
complement bi nary code for -32). 0 overflow has occurred even though the carry bll is <et. 
In one case. the carry bit indicates an overflow, and in the other it does not! We conclude that 
when two's-complement codes are used for addition or subtraction of signed numbers. the 
carry bit call not be used 10 indicate an overflow. Forrunately. microcomputer manufacrurers 
include a bit to be sel if a Mo 's-complemelll overflow has occurred (or reset if it has not). 
There are several algorithms for overflow: probably the easiest to under;laJld (but not the 
eas iest to do in hardware) is Ihe following. which we use when two' -eomplement numbers 
are being added. 

TIl'o 's-compleme1l1 overflow occurs if the rwo operands have the same sign AND the sign oj I~ 
resul! is different. 

Two's-colllpleme1l1 o\'erj1oH' cannot occur if the 01'0 operands ho,'e opposite signs. 

When Iwo's-complement numbers are being subtracted. take the [\10' complement of the culr 
trahend and proceed as in addition. 

Example 4-1 and 4-4 how the binary numbers. and the re ult:. are identi al for each addl­
lion and subtraction. The hardware 10 do addition and ubtraction i, the same ID each case. 
This is Ihe beauty of Ihe two's-complement code. The binaf) result and the potential for O\er­
flow can be interpreted correctly by the program becau e the hardware pro\ide>. the ~ 
bil for unsigned Ilumbers and the IWO' -complement overflow bit to be te'ted when t\\o·.­
complement code are being used. 

Your microconlroll er has instructions that Ie t the two' -eomplement O\erflo\l btl -imilar to 
tho e that Ie tlhe unsigned overflow carry bit. The) wililikeiy be called branclr-if-OH!rJ7o ... -S£1 
and brallch-if-overflow clear. You would u e the branch-if-ol'elfio\\ -sel instrucn n to ranch 
10 the error handler if the data in Example 4-3 were adding (wo' -eomplement <iua. 

Exercise 4-3 

Im'e'ligate your microcontroller, in'truction ,el and 1i.1 the <ndllJ naJ r:m.:h lIbtru.: 

Ih"l 1<$1 Ih< 1\\0' '-compkmem olerflo\\ bll. 

The .Iigll Ilit ;, equal 10 Ihe 11I0,t 'ig­
nili,anl bil 01 Ihe rc,ull: II £I\C, Ihe 
"Iign 0111" II' 'Igned number code .... arc 
bclllg lI'cd 

The ,ign bit ,hOIl, that an ALL' I<)fl)ther) ('p.!r:1ti)n ;a\ 3~' 
the 010,1 "gnilicant bit" a I \<1r a 0). -(Ill,'" II e did n,\I 
negati\·e (I) nr p<Ntiw (0\ number:' ,in -e the me.mtn,:, f the 
on the code. In an un'lgneJ binJr) number" mrut ti 'Il. 

no neg311\ eo ~ ... ul1 ~(,3U'~ lhere are n,,' \,", ", If'" ne~ t1\ n 
,ign hit "1( (111.\ llt"gJ.ti\ .. tllJiy if ('111 .,' ~\ mr1"n "01 ('f t 
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Zero Bit 

Parity Bit 

codes are being used to represent signed infonnation. In some microconlroJlcr\ the -,ign bit is 
called the lIegative bit. Instructions in your microcontroller that te,t th~ ' ign bit wil l be similar 
to brallch-mill ils and brallch-plils. 

Exercise 4-4 

Investigate your microconlroller's instruction set and lisllhc conditional branch in-,tructions 
that test the sign bit. 

The zero bit is true, or set. if the result of an operation is equal to zero. Olhcrwi,e . it i, fal~e, or 
reset. The zero bit conditional branch instructions are tho e similar to brull ch-eqllal(- IO-:ero) 
and brallch-lIor-eqllal(IO-:ero). 

Exercise 4-5 

Investigate your microcontroller's instruction set and list the conditional brunch in ... tructions 
that test the zero bit. 

Some processors have a bit that how if a result has even or odd pari t). An e\ en parity bit 
is set if the result has even parity, that is, an even number of I ... An odd pan t} bit" 'et for a 
re ult wi th an odd number of Is. The parity bit, along with conditional hrJ nchll1g '"'tructions 
for parity-even and pari ty-odd, is useful for checking to <ee if erro" h,,\c occurred "' data 
transmitted over long distance. We will learn more about parity when we d,,,,,,, , erial 110 in 
Chapter 12. Not all microcontroller have a parity bit in the condition code reg i, ter If yo"" 
does. you may see instructions such as brallch-pariry-odd and hrallch-I'anrr " 1"'11 . 

Other Condition Code Register Bits 

There may be other biLS in the cond ition code regi<ter that arc not d"c~tl } related 10 COnditIOnal 
branching. These typically include bits to control the interrupt capablllliC\ . We '" II ' tud} the,e 
later when we discuss interrupts_ 

How Do the Bits Get Set or Reset? 

The condition code register biLS are modified by hardware dunn~ thl' C\C<" ut"lO 01 'ome 
instructions, usually ALU in,tructions that modify the data ," 'ol11e \\3) 1 hc hit , arc 'CI or 

4.4 The Cond~ion Code RegISt .... 85 

reset according to the hardware regardless of the code you are using in the computation. See 
Examples 4-5 through 4-8 . 

Example 4-5 

Give an example showing the addition of two binary numbers thal ",suIt in: 
<a) Overflow if the numbers are unsigned binary but no overflow if they are tv.o· -complement 

binary. 
(b) No overflow if the numbers are unsigned bin.ary bUl overflow if they are N,o's-complemenl 

binary. 

Solution 

(a) Unsigned Value Signed Value 
1 1 1 1 1 1 255 

0 0 0 0 0 0 1 .....:l -
0 0 0 0 0 0 0 0 0 0 

Overflow No o\erfl"" 
Carry bit = I T", o' -complement overt] bll = v 

(b) Un igned Value Signed Value 
0 1 1 1 1 1 1 127 - 12 -

0 0 0 0 0 0 0 1 .....:l ------=l 
0 0 0 0 0 0 0 128 - i:!6 

No overflo ... Overflo ... 
Carr} bit=O T"'o'-complemem overt "t= I 

Example 4-6 

Do the following binary additions and ho\\ what the c:lfT) (e ). tv. ·.,::omplemem -er:: 
(V), sign (S), and 1.ero (Z) bits are afte.r the addiuon 

0 0 1 1 0 1 1 0 0 0 

0 0 0 0 0 0 0 0 

Solution 

0 o 1 1 1 1 1 1 1 1 0 1 0 

C 1 , V = 1 C 0 , v = 

5 0 , Z = 0 5 - 1 , : 

Example 4-7 

For each of the -bit blOaJ) addition, 'ho", n In Eumrl 4-0_ a" n 
hinaJ) I1lllnbe". Gi\c thc Jecimal equI\3lenh <,r -h < l..."j 
whether 0\ crflO\\ ha' lX' 'urt'C\1 
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Solution 

0 0 1 0 17 3 0 1 173 1 0 173 

1 0 ill 1 77 0 1 0 0 1 1 ~ 
0 95 0 250 0 0 0 0 0 0 0 0 

Overflow No overflow Overflow 

Example 4-8 

For each of the S-bit binary additions shown in Example 4-6, assume that the data are twO's­
complement binary numbers. Give the decimal equivalents of each operand and the answer, 
and state whether two's-complement overflow has occurred. 

Solution 

0 0 1 1 0 -83 1 0 - 83 1 0 -83 

1 0 0 0 0 -79 0 77 0 0 0 1 1 ~ 
0 95 - 6 0 0 0 0 0 0 0 

Overnow No overflow No overflow 

Complex Conditional Branch Instructions 

The condi tional branch instructions illustrated so far tes t and branch based on whether a single 
condition code register bit is et or reset. More complex conditional branch instructions may be 
found also. For example. consider comparing two signed (two's-complement) binary numbers 
to determine which is the greater. This cannot be done with a simple brallch-ij-carry, -over­
jlOII'. -sigll , or zero instruction. If, however. the two numbers are subtracted (to set or reset the 
condition code register bits. usually done wi th a compare instruction). the logic that tells if the 
minuend (A, the first number) is greater than the subtrahend (B. the second) is as follows. 

Iflhe (zero bil OR (sigll bil EXCLUSIVE-OR ovel1olV bil)} = 0 Ihen Ihe millllelld is grealer lhall 

Ihe slIblrahelld (Figure 4-1). 

The conditional branch instruction that performs this logic is likely called brallch-grealer­
Ihall . Its complementary instruction is brallch-fess-Ihall-or-eqllaf. 

This logic and the conditional branch instructions work only if the data are signed numbers 
in two's-complement code. An eq uivalent set of instructions with different logic must be used 

zeroBit~ 
S ign Btt --\ = 0 if A > B 

Two's-Co mplement Overflow Bit --I 
Figure 4-1 Signed greater-than logic. 

Czarry BB it =D- = 0 if A higher than B 
erc tt 

Figure 4-2 Unsigned higher-than logic . 
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for unsigned data. The logic fix detecting which is the higher when two unsigned numbers, are 
being subtracted (or compared) is as fo llows: 

Iflhe (carr)' bil OR zero bit) = O. Ihell lhe minuelld is higher Ihan Ihe sublrahend (see Figure 4-2). 

You must use the correct conditional Your microcontroller will have instructions similar to branch-higher 
or branch-folVer-or-same to be used for unsigned numbers. Notice the 

branch instruction following signed difference in terminology to distingui sh between signed and unsigned 
or unsigned arithmetic. data conditional branches. Terms like greal-Ihan and less-Ihan are used 

for the signed numbers. Higher-Ihan and lOlVer-lhan denote unsigned 
data. You must be very careful to choose the correct instruction depending on whether you are 
doing signed or unsigned arithmetic. 

Exercise 4-6 

lnvestigate your microcontTollers instruction set and list the conditional branch instructions 
that allow you to compare signed data. 

Exercise 4-7 

Investigate your microcontroller's instruction set and list the conditional branch in tnIctions 
that allow you to compare unsigned data. 

Using the Condition Code Register 

The condition code register (or flags register) is attached to the sequence controller for use b) 
the conditional branch instructions. With these we can answer questions like the following: 

Is bit zero on the VO pon equal to one? 

Are the contents of the A register greater than those of the B register? 

Is the sign of the re ult minus? 

Ha an overflow error occurred? 
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NOIice that the answer to each of these questions must be yes or no. When we write programs, 
we would like to do one thing if the answer is ye and another if the answer is no. 

4.5 The Programmer's Model 
The programmer's model is the set of registers that the programmer can manipulate and must 
manage during the programming of the processor. It includes the accumulators and data regis­
ters. the memory addressing registers, the stack pointer register, and the condition code register. 
As we will see when we learn more about assembly language programming. the programmer is 

also responsible for selecting the memory locations used for data storage. 

Exercise 4-8 

Draw the programmer's model for your microcontroller showing all registers. 

4.6 Conclusion and Chapter Summary Points 

4.7 Problems 

Explore 

The CPU contains a variety of registers. Some are data registers and accumulators, and 

some are used for addressing memory. 

Manufacturers use a register transfer language to describe each operation in the 

instruction sel. 

The condition code register contains bits that are modified when various instructions. 

generally ALU instructions, are executed. 

Among the bi ts fou nd in the condition code register are bits that indicate a carry, a 
two's-complement overflow. sign. a zero, and parity. 

The condition code register bits are used by condit ional branch instructions to allow 

yeslno decisions to be made. 

The programmer's model includes the registers the programmer is responsible for man­

aging during the program. 

4.1 List the CPU registers available in the microcontroller you are studying. 

4.2 In Example 4-1 , what is the decimal result of the unsigned addition? Of the ,uhtmction? (a) 

Stimulate 

Challenge 

4.7 Problems 

4.3 In Example 4-4, what is the 8-bit resu lt of the two's-complement binary addition? la] 

4.4 What i overflow? [a] 
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4.5 What is the meaning of sign bi t = I when unsigned binary coded numbers are added? la] 

4.6 What is the meaning of sign bi t = I when [Wo's-complement binary coded number~ are 
added? la) 

4.7 What is the meaning of carry bit = I when unsigned binary coded numbers are added? la] 

4.8 What is the mean ing of carry bi t = I when two's-complement binary coded numbers 
are added? la] 

4.9 What is the meaning of zero bit = I when unsigned binary coded numbers are 
added? la) 

4.10 What is the meaning of zero bit = 0 when two 's-complement binaf) coded numbers are 
added? la] 

4. 11 What is the meaning of two's-complement overflow bit = I when unsi!!oed binar. 
coded numbers are added? la] - -

-1.12 What is the meaning of two 's-complement overflow bil = I "hen two 's-<:omplemeot 
binary coded numbers are added? ra) 

4. 13 Show by example thattwo's-complement overflow cannot occur when numbers of 
opposite sign are added. [b) 

4.14 Show by example that two 's-complement overflow can occur when the numbe", of the 
same sign are added . [b) 

4. 15 Do the following 8-bit binaf)' additions. and for each case gi\e the expected result in 
the carry. zero, sign and overflow flag . la] 

a. 1010 0011 b. 1111 1111 c. 0111 OOO ~ 

+0011 1011 +0000 0001 ~0100 0000 

d. 1010 0010 
+1000 0000 

e. 0111 1111 

+1000 0000 
f. 1010 10~0 

+O~O: 010:i 

-1. 16 For Problem 4. 15. a sume that the binaf) numbers are in unsigned hin~ code. ho\\ 
the equivale l1l decimal arithmetic operations and indicate whether o\erllo\\ h:l> 
occurred. La] 

4. 17 For Problem -1.15. assume that the bina,) numbers are in lwo',-compl~m~nt hm~ 
code. Show the equi,alent decimal arithmetic operatiom. and indicate if <)\ertl<,,, ha:-. 
occurred. In] 

-1.18 Imagine that you ha\e two 8-bit numhers 111 two registe", lA - ->.0 and S":SO th t 

are to be added togeth~r and that the '-bit output of the aflthm'lIc and k'gt' UOIt 
(ALU7:ALUO) and a C"IT) bit (ALUC\ ) are a\ailable. \\h,u digllal c\'mbmau llal 
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logic hardware would be needed to produce a logic signal that is asserted high for the 
following conditions: [cj 

a. A carry has been produced by the addition. 
b. The addition results in a two's-complement overflow. 
c. The result of the addition is zero. 
d. The result of the addition is a negative number. 

4.19 For the multi byte addition shown in Example 4-2, state what kind of instruction you 
would expect the microcontroller to have to be able to do this. [ej 

Reflect on Learning 

4.20 What was the most useful thing you learned from this chapter? 

4.2 1 List three concepts that you found important in this chapter and explain what they 
mean to you. 

Objectives 

This chapter covers the basic principles for accessing data by describing the various ways your 
microcontroller instruction set addresses memory. If you are going to program your microcon­
troller in assembly language, you need to lenow these to be able to write efficient programs_ 

5.1 Introduction 
The instruction set of a real processor has only a few categories of instruction. uch as data 
transfers, arithmetic and logic operations, and branch and control instructions. Many instruc­
tions use one or more operands in registers or memory and often have several way to address 
them. The different ways an instruction can specify operands are called addressing modes: if 
you learn these, along with the few categories of instructions. you will soon be writing assem­
bly language programs. 

In this chapter you will learn a variety of addressing modes that improve the efficienc\' of 
a CPU's operation either by allowing fewer bits to encode the instruction. by letting the CPL' 
execute instructions faster, or both. tn addition. some mode may allow in tructions that can 
calculate an address at the time the program is running. For example. if you lcno\\ the -tan of 
table of data and want to step through the table, you can calculate the next address by add­
ing the number of bytes for each data element to the current adtlress- tn some computers. an 
address can be specified relative to the program counter. This is useful for brunch In tru -tions 
that do not branch very far from the current instruction. 

5.2 Addressing Terminology 

Auto increment and auto decrement: In some ystem . regi. tet> that address me!tK'~ .:an be 
incremented or decremented automatically during use. This feature provid : ,~ ffi· ent 
addressing for stepping through tables of data. 

91 
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Effective address: This term refers to an address that is calculated by the processor. The effec­
tive address may be a physical or logical address and is the actual address of the operand. 

Expanded or extended addressing: Expanded or extended addressing allows you to have more 
memory than is allowed by the number of bits in the memory address. This is done by blocks 
of memory sharing the arne addres space. one block at a time. 

Logical address: Sometimes the complete, or physical address, is not needed or provided by 
an instruction. For example. in segmented memory architectures as discussed shortly, we need 
to pecify only the offset from the start of a segment to specify the address of an operand. This 
offset is the logical address. The physical address is computed or generated from the logical 
address and other segment infonnation. depending on the memory architecture u ed. 

Memory and 1/0 maps: A memory or UO map shows what addresses are used for what pur­
poses. A memory map may show which addresses contain ROM and which contain RAM , a 
well as any that have no memory installed at all. 

Offset address: An off et addres is one that is calculated from the start of a segment of 
memory or from a specified location in memory. 

Physical address: The physical address is the actual address that must be supplied to the 
memory. The number of bits in the physical addres fixes the maximum number of memory 
locations that can be addressed. 

RAM: We can read from or write to random acce s memory. 

Relative address: A relative address is found by adding an offset address to the current contents 
of the program counter. 

ROM: Read-on ly memory can only be read from. 

Segment address: A segment address gives the location of a block or segment or memory that 
is smaller than the full physical memory. 

Stack: The stack is an area of RAM that is reserved for temporary data storage. 

5.3 Memory Types 

All compUlers have both RAM and The computer system de igner has available two type, of memory. RAM 
ROM. and ROM. Every computer system has both t) pes: the choice of holV 

much of each type, and its location in the memory map. depends on 
the computer system being designed. ROlldomllcceHlllelllory. or RAM, 

may be read from and wrillen to. The semiconductor RAM used in ,ystems today is volatile. 
Anything stored in memory is lost when the power is removed. 

ROM , on the other hand, is read-ollly memo!)'. Once programmed. either at the integrated 
circuit factory as part of the manufacturing process, or in the field . for field-progra mmable 
device, it can only be read. ROM is nonvolatile; it retains its infonnation when the power i 
turned off. 

5.4 Computer Types and Memory Maps 

We will distinguish between two general types of computer. These arc (I) d".,kwfI or 
multiple-application . ystems and (2) embedded sy\lems. Both have RAM and ROM. and 
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RAM is used for variable information. In desktop, multiple-application systems. variable 
information can be both data used by programs and the programs themselves. ROM is used 
for constant information that must be retained while the power is disconnected. ROM is 
used for the complete program in embedded systems and for "boot-up" programs used to 
get desktop systems going in the morning when we turn the power on or when the computer 
is reset. 

You are probably most familiar with desktop multiple-appljcation 
The amount of RAM and ROM computers like personal computers. Embedded system computers. 
depends on the type of system. which do a single task or set of tasks, include microcontrollers in vend-

ing machines and the computer that controls the fuel injection system in 
an automobile. These systems are very different from the desktop system even though the CPU. 
memory, and UO concepts learned in the preceding chapters apply equally to both. The amount 
of RAM and ROM in the e systems and their use of input and output devices clistinguishes 
one from another. 

The Desktop Computer System 

Desktop systems use ROM for the 
basic UO software and large amounts 
of RAM for programs and data. 

Figure 5-1 shows a de kLOp system. It has a powerful CPU. copious 
amounts of RAM for programs, and some ROM for the boot-up code and 
low-level system IJO drivers. There are disk and CDIDVD systems for 
program and data storage, and human-oriented IJO such as a keyboard. 
liquid crystal display, printer. and user IJO ports. 

Many application programs. including word processors. spread heets. as emblers. compil­
ers. and debuggers run on these systems. AU are loaded into the RAM memory from the disk 
by a disk operating system. There is an additional component of software in ROM. Thi code 
is the basic illPllt/Olltflllt software, or BIOS. It loads. or boolslraps. the operating y tern from 
the disk before executing other programs. The memory map of a desktop s)' tern is sho .... ·n 

Figure 5-1 Desktop computer system. 
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in Figure 5-2. We see that most of the memory is RAM and is u ed for the operating system 
resident code and for application programs. 

The Embedded System 

An embedded system contains much 
more ROM for the program and Ie s 
RAM for data storage than we find in 
desktop computers. 

An embedded system (Figure 5-3). is one in which the computer is 
designed to do some panicular job or jobs. Embedded systems differ 
from desktop systems in the following ways: 

• They contai n the least amount of hardware to accomplish the job at 
the least cost. 

Unless it is pan of the application, there is little or no human-oriented 1/0 such as 
display keyboards. 

The program is in ROM. There is no di k system from which the program can be 
loaded. 

Only data variables and the stack are in RAM. 

Low Memory 
Address 

High Memory 
Address 

Application 
Program 

RAM 

Operating 
System 

RAM 

ROM 
BIOS 

Figure 5-2 Desktop computer memory map. 

Figure 5-3 Embedded computer system 

$0000 

$03FF 

$0800 

$OFFF 

$8000 

$FFOO 

$FFFF 

1 Kbyte 
Register 
Space 

2 Kbyte 
RAM 

32 Kbyte 
Flash 

Vectors 

Control Registers 
for 110 

5.5 Memory Archrtectures 

EEPROM used for nonvola tile 
variable storage 

RAM used for variable 
data storage and the stack 

Program code and 
constant data storage 

Interrupt Vectors 

Figure 5-4 Embedded system memory map. 
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Figure 5-4 hows the memory map for an embedded y tern; tt include_ onl) enough 
RAM and ROM to do the job. The entire memo,) map does not ha\ e to be filled: if mem l') 
is not needed. it is not incl uded in the ystem. The y tern d igner gain an additional ben­
efit from this other than ju t reducing the co I of the memol'). ~Iemol') dd=se thaI :Ire 

not used can become "don' t care : . which implifyaddres decoder de:ign. as ",e ",ill see 
in Chapter 9. 

5.5 Memory Architectures 

1\vo types of memory architeclure are tinear addressing. f-a \ orect by Free-calc prIX""-' .,mJ 
segmented addre sing. as used by Intel. The ty pe of memol') archttecture direct!) ..!l:1: " 
an instruction genemtes the physical memo,) addre. s. 

Linear Addressing 

In a lillear addrt!ssill8 scheme. the instruction, specif: the full phy,kal ad Fi;ure :-5 
shows a memo,) map for a linear addressing scheme 

Linear addressing tS Ihe easie,t to understand. In large '~'t'nb. II.: \\" r. in tru· 
directly addre" memo,) must have man~ btts. The Free,cak oldFlre nu.,-,: . n 1 
addre", can aeee', 16.777.216 ( 16 Ibyte) locati,'n", n IOld ~ntlUll \\lth a 
3ddr~ss 'rnc~ reqUIre, a full 32-0;1 addre". 
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RAM 

No 
Memory 

ROM or 
Flash 

Ox10000 f-----j 

Ox10200 64 Kbyte 
Segment 

Ox1 FFFF 1---------1 

Figure 5-5 Linear addressing memory map for an 
n-bit address. 

o X 1 0 0 0 Segment Register 

o x 1 0 0 0 Segment Shifted Left 4 Bits 

o x 0 2 0 0 Offset Address 

Ox10200 Physical Address = 
Segment' 16 + Offset 

Figure 5-6 Intel segmented memory addressing. 

Segmented Addressing 

Segmented address ing allows an 
instruclion to carry fewer address bits 
than are needed for the full physical 
address. 

As the amount of memory that the processor can address increases. 
so does the number of bits needed to form the physical address. This 
means that each instruction must contain more bits. and more memory 
is needed for the program. The segmented memory archileclure orfer 
one way around Ihis dilemma. 

The Intel segmented addressing scheme u'e~ a mOl'Uble segmel// 
archi/ec/llre. For example. a total memory space of one megabyte can be orgaOJzed Into seg­
ments, or blocks of memory. These segmenLs may range in size from 16 bytcs 10 64 Kbytc. 
Figure 5-6 shows a one-megabyte memory. The full20-bil physical addrc" con,isls of a seg­
menl address and an offse/ address. Because segmenl addresse~ are maintained 111 ,cparale .fell­
melll regis/ers, the program counler and other memory addressing regl'lc" can be only 16 bib. 
Each memory reference instruction generales a 16-bil offsetlhat IS added to a 16-bil segmenl 
register. The CPU constructs the physical add/ess by shifting Ihe segmcnl rcgl\lcr conlents 
left 4 bits and then adding the offset. In this way the 64 Kbyle ,eglncnl cun be localed on any 
16-byte boundary. All memory reference addresses are generaled ii' ,hown In FlgUfC 5-6. 
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In this segmenled architecture. segment may be any length from 16 bytes to 64 Kb)te and 
may even overl ap. This nexibility allows an efficient allocation of memory to various parts of 
the program. such as for code and data. Figure 5-7 shows an example. 

Segmented archi teclures use fewer bits in each instruction because only the offset'" ithill 
a page mUSI be specified. A disadvantage is the need for special programming technique<. or 
special instruclions to cross over a page boundary or to allow data elements that are larger than 
Ihe 64 Kbyte segments. 

Expansion Memory 

Hundreds of kilobyles of Flash program memory are now appearing in microcontroller> 
wi th 16-bit add ress buses. To accomplish this. manufacturers uch as Free cale ha\e 
adop led a paged memory archi lecture. Figure 5-8a show this ",ith four 16 Kb)te pag"". 

Code 
Segment 

16 Kbyte 
Data 

Segment 14 Kbyte 
Stack 

Segment 2 Kbyte 

CPU Extended 
Address Address 

OxOOOO ~P~P"'A-=G-=E~=""O~ OxOOOOO 

Ox3FFF 
Ox4000 

16 K 
Page 

h p"'P"'A-=G"'E"""=--:-1 ~ g~~~~ 
16 K 

Figure 5-7 Variable sized segments used l/1 a segmen-.ec 
memory architecture. 

Extended 
Address 

Ox1 COOO PPAGE = ' 
Ox18OOO I PPAGE = 6 Exter-deo 

Ox7FFF 
Ox8000 

Page Address 
Ox07FFF Ox14000 I PPAGE = 5 lFFFF 

hp"'P:-:A"'G:-:E"""=-=-2~ 'O,,08000---o-',ioooo PPAGE = 4 ~B'F' 
16 K Paging 16 k. r:-
Page Window Page 1--' v\ 17FFF 

OxBFFF .ol'Q~£L _______ L-___ --' 0 3FFF 
OxCOOO PPAGE = 3 OxOCOOO 

16 K 
Page 

OxFFFF L-___ --' O,OFFFF 

(a) (b) 

Figure 5-8 E panslon memory. 
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J X J X J ADR13 - ADRO J CPU Address 

J x J x J x J x J x JJJJ PPAGE Reglsler 

J 17 -Bit Physical Address 

Figure 5-9 Expansion memory address. 

The 16-bit CPU address is sufficient to address an) locllllon In thi' 6~ Kb)te space. 
Figure 5-8b shows four additional 16 Kbyte memory page, tn I:()mpictc a total of 11 
Kbyte. The CPU u es a regisler called the PPAGE register t~, <:reat~ the 17-bll phYSical 
address needed for these expansion memory pages. \ heneva an il1,truclion genera Ie, 
an address in the paging window. Ox8000-{lxBFFF. the physical addre" IS generaled ili 
shown in Figure 5-9. The three lea t sign ificant bits of PPAGE extend bm DR 13-ADRO 
from the CPU addres . Usually special instruction are necc"ar) 10 acee" the expanded 
memory. Because this example is for a t2 Kb}tc memory mlCfOl:llntrollcr. the higher 
bits (signified by the x's) in the PPAGE regi ter arc not used , CPU de'lgn that u'e 
these bits can add more memory. 

5.6 Addfessing Modes 

You do not have 10 learn many addre sing mode, to program mo't rnicc""nmrnllers The morr 
complex microprocessors and microcontrollers. Ilke the Intd Penttum lind rree'cale Cold Fire 
CPUs. will have more. and more comple". addre\\ing mode" In this seCII!ln \\C "Ill e'plaln 
some of the simple. more straight forward addres,;ng modc' 

Segr Register Addressing 

Seg 
inst 
that 
add 

Regisleraddressing needs only a few 
bits to define which register(s) are 
used for the data. 

When operands are comained \\lIhlO regISter In Ihe CPU. such a: in 
a MOV A. B instruction. the reg/liN ""tI"'\1I118 nlndc IS uscd . \l<mOl} 
is not addres ed. and on ly are" hlh arc rcqulred In 'J>Cuf) the limned 
number of reg; Ie". ThU\. regi\ler addreSSing 111 InlClions .Irc ,lOlong lhe 
fas test to execute and u\e Ihe fewest hit nf "11) 01 the'IINfliCIIOI1', (IDle 

manufacturers call register addressing by other names, ror c a III pie. h c,' e.k ",cs the tenr 
illiterelll addressing and Intel uses implied addrfHIfIIi. 

Immediate Addressing 

You may use immediale addreJJinli when an opemnd IS ,. enn 1.101 kno\\ 11 \ hCI1 \ 0" \\ ntc the 
program. If this is the case. the dala can 1I/IIIII"dlOl,.I\ Inll .. " Ihe 111 1'''<.11(111 111 "the 111CIll0l} 
Figure 5-10 show~ a memory mapoflhe Immedtalc .Iddr~ Ing lIlod " he. Ihe Ilat.1 rna) he 
bits. 16 bits. or more. depending on Ihe \l/C oflhe dcslin.lllon r I Ie. 

Direct Addressing 
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In direClmemory addreHlllg. the instruction contains the addres\ of the data. It rna} be the fun 
physical addre" in linear addw.;ing architectures or an off\Ct for ..egmented archnecwres. In 
any event. the location of the data for th;" instruction is con\tant. There are t"'o \ar1anlS of thIS 

mode: (I) direcI addres,lillg and (2) bale page. or reduced direcI addrefJm~. ~lanufacturer; 
u e different terminology (e.g .. ab,olute addre"ing. extended direct addre mg. long and short 
absolute addressing). 

Direct addres,ing means that the address of the data. either the full addre" or an off'>el. is in 
the instruction. Figure 5- I I shows direct addre;sing for a proce"or" ith a 16-bit addfC';' pace 
(64 Kbyte). It is a .Iillgle-Iel'el addre'5ing mode because the instruction contain; the addre 'of 
the data. The 16-bit address follows the operation code in the memoT} . 

Direci addre"ing is Ihe simplest mode 10 under;tand. and man} begmning ,rudenb t:r) to 
use it exclusively. Often. however. this mode needs more bilS than other addreo.,ing m )(\e,.. 

The dala immediately 
follOWS the opcode 

The dala address is 
in Ihe two byles 
following the opcode 

I 
I 
I 
I 

OPCODE 

DATA 

OPCODE 

Dala Addr H 

Data Addr L 

DATA 

Figure 5-10 Immediate addressJOg, 

Figure 5-11 D\TeCl memory aodressc: • 
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and the location of lhe data addressed by lhe inslruclion i. fixed. The direcl mode is e pecially 
unsuitable for addres ing elements in a table of data. 

Direct Base Page Addressing 

In a CPU wilh base page addressing.lhe compuler designer; pro\ ide inslruclions thaI specify 
only lhe leasl significant bilS of lhe full address. The processor lhen generate, lhe complele 
address by filling lhe mOSl significam bilS with 0 . For example. in a machine with 16 address 
bilS and a 256-byle base page. the base page addressing inslrucliom, specify only lhe g leasl 
significant bilS. The CPU provides lhe g mOSl significanl bilS. as shown in Figure 5-12. 

Base page addressing offers the advanlage lhallhe instnlclion has 10 >pecify only 8 bits of 
the full 16-bil address. This saves program bYles and makes lhe instruclion, e.xeCUle fasler. The 
disadvanlage is lhal usually only a few memory locations are available for dala slorage. 

Indirect Addressing 

IndireCI addressing is a two-/eI'el addressing mechanism. The inslruclion provIdes Ihe fillil­
level address, which specifies the localion of the address of the dala. The second level Ihen 
speci fi es the location of lhe data. There are lWO lypeS of indirecl addre"ing: regisler indirecl 
and memory indirect. 

Register indirect addressing: This is also called pOlllla regisler address· 
A regisler points 10 the dala in regis- ing because the regi ler (aclually Ihe conlenh of lhe regisler) "points" 
ler illdireCI addressing. 10 the dala. II is a lwo-Ievel address becau e lhe instruclion contain the 

address of lhe regisler Ihal has Ihe addres> of lhe dala. Figure 5-13 hows 
lhis addressing mode. 

Regisler indirecl addressing is efficient becau e il u 'es regi,ler addrc"lOg. and thus only a 
few bils. for the firsl-Ievel address. Another advanlage is thallhc addre" of Ihe data can be cal­
culaled al run time. as you mighl do when slepping through a table of dala Remember. though. 
10 inilialize lhe regisler with an address before u ing it. 

The C P U adds the Address The inslruction specifies 
most Significant byte '-'. / the least signIficant byte 

OxOO 00 '''' 

OxOO FF 
Ox0100 

256 Byte 
Base Page 

OxFFFF L.. ___ -l 

Figure 5-12 Base page or reduced dlrecl addr8SSlng 

~ Base page addressing 
used here 

> ~ Direct addreSSIng 
used here 

The instruction has the address of 
the register 

Pointer Register 1 

Pointer Register 2 

Pointer Register 3 

Pointer Register 4 

The register has the address 
of the data 

Figure 5-13 Register indirect addressing. 
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DATA 

Register indirect addressing with auto increment and auto decrement When you are'tepping 
Ihrough a lable of dala, lhe regisler pointing LO the data mUSl be incremented or decremented. 
Some processors have an addressing mode thaI automatically increment> or decrements the 
regisler. You may have a choice of preincrementing or predecrementing. "here the regi~er is 
incremented or decremenled before il i used. Ln po tincrementing/-decrementing. the regl'ler 
is incremented/decremenled afler il ha been u ed. 

A memory address conlains the 
address of the data in memory indi­
reel addressing. 

Memory indirect addressing : Ln memo!) indirecl addresmg. the lO,rru.:­
lion contains the memory addre of the addre" of the data. Figure 5- -
how this addre sing mode.lIlemo!) indirecl addre<.mg I. Ie--,effi, em 

than direcl memory or regisler indirecl addre"ing becau,.e the CPt: fiN 
reads the address of the addres . then the addre _ and finally the d:u3. 

The advantage of lhis mode is thaI the addres of the data can be calculated and ,tored Ln RA_\I 
before il is u ed. This mean you can change the addre" "hile y our program I' runruog. 

Indexed and Based Addressing 

Illdexed addrt'ssing finm a memo!) hxation bJ..-.ed on mde _ For 
When the effeclive address is lhe example. if you ha\'e an array of by lesofdulJ.. y u nmght referro mJI­
sum of a regisler a.nd a con,l:lIlt 
value. the mode i indexed or based 
addressing. 

vidual element a DATA[O).DATAII) . ... DATAln). The (nIl ' ,'311 
the index of the arra). The addre"of:my eiememinth =y .-,'It: t,d 
IWO pan~-the slarting address of the array and an ,'ti, t fu: m the ,tatt-
ing address eqllallo II. This ,UIllI' called Ihe ell -In' ddJre" thc:n: 

arc lWO ways to fontl it. Each is a I) p<! of inde'ed addn! 'IDg. alth 'ugh ", at .-tun: 

calilhe second "based addn!"lOg" 
Figure 5-15 sho\\, indexed addresing. Thc lIl,tru '1I\'n \'l.1m 10' lhe ,Urtlll; 

army. and lhe indc, n!gisler contum, Ihe on\ell,' Ihe <,icm<'1ll bem~ ddre ~"t ,I 'r thn: 
the array, lhe inde, rcg"ler " tIlcn!mclll'd or dt'Cremcl1lt-J. either' rh Ill- lib 

lD 
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The Instruction has the 
address of the address 
of the data 

The address in memory { 
pOints to the data r-

---.. 

OPCODE 

Address of } 
!------------i 

the address 

Data Addr H ~ 
Data Addr L 

DATA 

Figure 5-14 Memory indirect 
addressing. 

Instruc tion or automatically in processors that have the autoincrementl-decrement addressing 
mode. Some processor can at 0 scale the increment by the size of the data element. For 
exam ple. if your data array were .j bytes per element, incrementing the index register would 
add.j to point to the next element in the array. 

This I"onn of indexed address ing must have the direct address of the start of the array in the 
instruction: it uses more bytes than register indirect addressing. Consequently. manufacturers 
have included based addressing to reduce the number of bi ts carried by the insLruction. 

Based addressing: Figure 5-16 shows how based addressing works. Here the " index" or "base" 
regi,tcr has Ule tarting. or base, address of the array. The instruction provides the off et into the 
array. The CPU adds the index register and the offset to calculate effective address. This is differ­
ent from indexed ~Iddre ing described earl ier because the instruction contains the offset rather 
than the direct address of the stan of the data. This scheme can reduce the num ber of bytes in the 
instructi on when the ofTset i mailer than the full address range, say 8 bi ts instead of 16. 

Based addressi ng is almost as efficient as register indirect addressing. There is an additional 
b) te (or two) to be fetched from memory for the offset, and time is taken to add the offset to 
ule content. of the index register to create the effective address. Unfortunately, 10 add to the 

The instruction has the 
address of the index register 
and the address for the 
start of the data table 

Data Addr H:Data Addr L 

Plus ~ndex RegisterJ 

Figure 5-15 Indexed addressing. 
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OPCODE 

Data AddrH 

Data Addr L 

DATAO 

DATA1 

DATA2 

DATA3 

DATA4 

DATA5 

DATA6 

confusion of the beginning student, based addressing is cailed indexed addressing in some 
processors. 

Relative Addressing 

l Relafiveaddressillg is used forbranch-J 
ing shan distances in the program. 

Relative addressing modes calculate the effective address by adding an 
off et to the current value of the program counter. Well-written program ' 
use thi s addressing mode for branch instructions because branches jump 
over only a few bytes of code. Thus, a programmer can save memory b~ 

Bit Addressing 

using relative branch instructions. Figure 5-17 shows relative addressing. 
Theactual valueoftheoffset is calculated from the memory location labeled Next Opcode in Figure 

5-17 and is usually a two' -complement number to allow branching forward and bad:ward. 

Many microprocessors and microconLroilers input and output individual bill. For example. ~ ou 
might want to read one or more switches and act depending upon whether the switch b oren 
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Opcode specifies 
the index register 
to be used 

OPCODE 

OFFSET (H) r 
~ 

OFFSET(L) 

Offset =-2 

* Offset (signed) may be one or 
two bytes 

Offset = 0 ~ Reference address in index register 
I Index Register 11 h- Offset =-1 

1 Index Register 21 I-----~ 
. . Offset = +1 

1-------1 
+ Offset Offset = +2 

L.. 1-_0_ffs_e_t_=_+_3---1 ~ Index + offset points to the data 

Offset = +4 

Figure 5-16 Based addressing. 

1 Program Counter 

rL 
Branch Opcode 

Offset 
t--------I 

Next Opcode 
Program counter 
plus offset = 
address of the 
next instruction + Offset 

LI----------J 
Next 

Instruction 

~--

Figure 5-17 Relative addressing. 
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The instruc 
the addres 
and the nu 
bit to be ac 

tion provides 
s of the byte 
mber of the 
cessed -~ 7 6 5 4 3 2 1 0 

Figure 5-18 Bit addressing. 

Bit addressing can save memory by 
allowing eight binary variables to be 
saved in one byte. 

Other Addressing Combinations 

or closed. Des igners provide bit addressing to read or write one bit at a 
time. Usually the bit is within a byte location. ei ther in memory or 1/0. 
so the instruction must supply the address of the byte plus a mask to 
specify wh ich bit within this byte is to be addressed. Figure 5-18 show 
bit addressing. 

In some more powerful microprocessors you may find addressing modes that are combinations 
of the baSIC modes described in the prevIous sections. 

Based indexed addressing: The effective address is the sum of a base regi ter. index regi ter. 
and a displ acement. 

Relative addressing with index plus displacement: The effective add res is the program coun­
ter plus an index register plus a di splacement. 

5.7 Stack Addressing 

J 
The stack is an area of RAM that is re erved for temporary data storage. 

I 
The srack contains data and relUrn It operates on a last-in. first-out (LIFO) basis. That is. the last information 

La_d_d_re_s_se_s_f_o_r_s_ub_r_o_u_ti_n_e_s. ____ -" stored on the stack is the ftrst to be retrieved. The stack operate like the pile 
of plates in a dining hall. You always take the plate on the top of the .tack 

(i.e. , the last one put there). Disaster awaits those who try to remove plate from the middle of the 
stack! Lnfonnation is tored to and retrieved from the stack with a CPU register called the srack 
pointer (SP). The stack pointer points either to the last infonnation pu hed onto the stack or to the 
next avai lable location.' and it must be initialized to point to the memory used for the stU k. 

Figure 5- 19 shows a stack memory map. Memory maps are usually drawn as shown with 
higher memory add res es at the bottom and lower at the top. Figure 5-19a hows the st:l~k 
pointer pointing at the last location that was used when infomlation was placed onto the stack. 

I Which of Ih~c design strategies is used is immateri:ll because the processor al1tomJ.ticllt1~ hafu.llt' tht ,t.u:}.. I"'-"Imt~r 
properly. 
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t 
Lower 
Memory 
Addresses 

Stack 
POinter _______ 

Higher 
Memory 
Addresses 

t 

RAM 

Unused 

Unused 

Unused 

DATA 

DATA 

DATA 

(a) 

PULL 

Stack t 
Pointer 

Stack 
Pointer 

PUSH 

Unused 

New Data 2 

New Data 1 

DATA 

DATA 

DATA 

(d) 

Unused 

Unused 

New Data 1 

DATA 

DATA 

DATA 

(b) 

PUSH 

Stack 
Pointer 

PUSH 

Unused 

New Data 3 

New Data 1 

DATA 

DATA 

DATA 

(e) 

Unused 

New Data 2 

New Data 1 

DATA 

DATA 

DATA 

(c) 

Figure 5-19 Stack operations. (a) Stack pointer before stack operations. (b) Stack pointer after a 
push. (c) Stack pointer after a second push. (d) Stack pointer after a pull. (e) Stack pOinter after a 
third push. 

Push and Pull Operations 

Placing data onto the stack is called a push. In this example, the s tack poi mer points to the last 
memory location used and is automatically decremented by the push instruction before the new 
data byte is tored. The resul t of pushing two bytes is shown in Figure 5-19b and 5-19c. New 

Datal and Nell' Dala2 are now in memory. and the stack pointer has been decremen ted tw ice. 
The re ult of aplIlI (called a pop in some processors) is shown in Figure 5-19d: for a subsequent 
push operation see Figure 5- 1ge. 

Subroutine Call and Return Operations 

The stack saves the return address when the program branches to a subroutine. After it has 
fetched the branch opcode and Ihe subroutine address from the program memory, the program 
counter is pointing to Ihe instruction to be executed after the return from Ihe subroutine. The 
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CPU pushes this return address onto the stack before branching to the subroutine. At the end of 
the subroutine, a return instruction is executed. The return instruction pulls the return address 
from the stack, and the stack pointer is automatically incremented. 

Exercise 

Turn now to your processor and list the addressing modes available. 

5.8 Chapter Conclusion and Summary Points 

Computer systems have both RAM and ROM memory. 

• RAM is volatile: it is used for variable data in embedded systems and variable data and 
programs in desktop systems. 

ROM is nonvolatile; it is used for programs in embedded systems and the BIOS in 
desktop systems. 

Addressing modes are the different way a processor specifies the location of an 
operand. 

Different addressing modes give the programmer flexibility in accessing data 
e lements. 

The effective address is the physical or logical address of the data. 

Register addressing specifies data localed in regi ters. 

Immediate addressing is used for constant data known when you write the program. 

• A direct addressing instruction contains the address of the data. 

Indirect addressing is a two-level addressing mode: the instruction pecifies the address 
of the address of the data. 

In indexed addressing, the effective address is calculated by adding the contents of 3 

register to a direct address contained in the instruction. 

In based addressing. the effective address is calculated by adding an offset contained in 
the instruction the contents of a register. 

Based addre sing is also called indexed addressing. 

• A re lative addre sing in truction contains an offset from the current \alue of the 
program counter. Relative addre sing is used mo tl)' for branch instrU tion,. 

The Slack is nn area of RAM et aside for program use. 

The stack pointer register i used to store data nnd subroutine return :Iddre. 'es l'n the 
stack. 
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5.9 Problems 

Explore 

5.1 

5.2 

5.3 

Li t the addressing modes available in the CPU you are tudying. 

Brieny explain the following terms: physical address, effective address, memory 
map. Lg] 

A microcontroller is to be used in an embedded system with the following memory 
map: 

OxOOOO 

RO~t 
OxtFFF 
Ox2ooo 

None 
Ox7FFF 
Ox8ooo 

RAM 
OxFEFF 
OxFFOO 

ROM 
OxFFFF 

a. In what memory addresses must code and constant data be located? rei 
b. In what memory addresses must vari able data and stack storage be located? [c] 

5.4 If all bits in the PPAGE register shown in Figures 5-8 and 5-9 are used to generate an 
expanded address. how much memory in IOtal can be added to the 
microcontroller? [a] 

5.5 Name at least five ways to addre s an operand. [a] 

5.6 What kind of addressing mode is used to transfer data from one register to 
another? [a] 

5.7 What are the names of the addressing mode that form the effective address from a 
constant and the contents of a register? [a] 

5.8 What addres mode is best to use when you want 10 compare what is in the A register 
with a constant? - (immed iate. direct, extended, or indexed)? raj 

5.9 To increase the memory address space in a computer system. one must (a) increa e 
the number of data lines. (b) increase the number of read and write con trol bits go ing 
to the memory, (e) increa e the number of addre s lines. [al 

5.10 A pointer i (a) an area in memory used for address storage. (b) a memory address 
held in a register, (c) a subroutine address held in the stack pointer.lal 

5.11 A register indirect address instruction (a) has the address of the operand in the 
instruction. (b) has the address of the operand in a regiMer. (e) use, the program 
counter to calculate the off et address of the operand. ral 

Stimulate 
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5.12 [n the movable segment architecture shown in Figure 5-6, why is the segment located 
on a 16-byte boundary? [b] 

5.13 Assume you are designing a CPU that is to have a 20-bit address bus with each 
memory location containing 16 bits. A base page is defined that has 1024 locations. 
Assume that memory indirect addressing using base page addresses is the ONLY 
kind of memory addressing this CPU has. How many bits in the instruction must be 
allocated for a memory reference instruction? [c] 

Reflect on Learning 

5. 14 Of all the addressing modes in the processor you are stUdying, which do you have the 
most difficulty understanding? 

5.15 What experiments could you try with your system to be able to learn more about the 
addressing modes. 

5.16 List five things that you learned about memory addressing modes in this chapter. 



Objectives 

Assembly Language Programmi,ng 

Th is chapter wi ll show programming techniques and suggest an assembly language program­
ming sty le. An example using the Freescale CodeWarrior relocatable assembler, is given and 
explained. We will also show how to write structured assembly language programs that meet 
the goal of top-down software design presented in Chapter 3. Although our assembly language 
examples are for the HCS 12 microcontroller of Freescale Semiconductor, Inc., you should be 
able to eas ily translate the essence of the code to your own microcontroller. 

6.1 Assembly Language Programming Style 

You wi ll need to learn the syntax requirements of your assembler. Most assemblers are very 
similar, however, with the fields of each program line separated by white spaces. In addi tion to 
being aware of the syntactical requirements of each line, you shou ld adopt a standard format 
or style for the programs you wri te. This will make the programs more readable for colleagues 
who may have to modify your code or collaborate on a software engineering project. 

Source Code Style 

110 

Any program is a sequence of program elements, from the top to the 
make your bOllom, and these elements should be organi zed in a readable and con-

sistent style. Adopt a standard format and use it for all assembly lan­
guage programs. Tabl e 6- 1 shows a format that can serve as an outline 

for your programs. The subsections that fo llow provide program examples of the individual 
elements; Example 6- 1 then li sts the completed program. 
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Table 6-1 Assembly Language Program Elements 

Program Header 

Program Element 

Program he'lder 

External symbol definitions 

Internal symbol definitions 

Assembler equates 

Code section start 

Program initiali zation 

Main program body 

Program end 

Program subroutines 

Constant data section stan 

Constant data definitions 

Variable data section start 

Variable data allocation 

Purpose 

Bricny dc~cribes the purpose of the program 

References for ~ymbol s defined in ,,"orne Other source file 

References for symbols defined in this source file 

Definition of con~tanls used in the program 

Defines the following bytes to be in the code ~egment or section in ROM 

Initializes the stack pointer. I/O dev ices . and other variables 

The main program 

Starts the main program again or tenninates it in some \\ ay 

Subroutines and functions used in the main program 

Defines the following bytes to be in the constam data segmem in RO~l 
Definitions of constants in ROM 

Defines the following bytes to be variable data elements in RAM 

AlIoc;llion of ~pace for variable data elemems 

After reading the header, you should know what the program doe. not in any great detail. but 
at least in general. The author's name should be here so praise (or blame) can be apportioned 
correctly. The date of original code release and modification record is good information too. 
The modification record should teli what has been done to the original code. when it was done. 
and by whol11. 

Program Element 

Program header 

Program Example 

MC68HCS12 Assembler Example 

This program is to demonstrate a 
readable programming style . 
It initializes the AID converter 
and a bank of LEOs . It then reads the 
value on the AID , displays it , and delays 
about 0 . 5 second . It then displays the 
last value it converted for about 0 . 5 
second and repeats . 
Source File : M68l2EX1_REL . ASH 
Author : F . M. Cady 
Created : 7/26/2009 

Modifications : None 
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External Symbol Definitions 

When you arc using a relocatable assembler. source files may reference a sy mbol or label that 
is defined in some other source file. It is the job of the linker 10 evaluate the symbol and to 
provide the value for it. The Code Warrior XREF directive tells the assembler to leave the res­
o lution of the symbol for the linker. 

Program Element 

External ~ymbo l definitions 

Program Example 

; ~*~~~~**~.***~***** ****** *************** **** 

External symbol definitions 
XREF get_AD . in it_AD 
XREF enable_LE D. put_LED 
XREF delay_X_ms 
XREF _SEG_END_SSTACK 

Internal Symbol Definitions 

Whenever there is an external symbol definition (XREF) in a source file, there must be an 
accompanying definition of the symbol (XDEF) in some other ource file that is pan of the 
project. This section of the program provides the necessary definition. 

Program Element 

Internal Symbol Definitions 

Program Example 

; Internal symbol definitions 
XDEF Entry , main 

Assembler Equates 

Elf"'''.s arc often found at the begin­
ning of the program. 

Program Element 

Constant Eq uates 

Code Section Start 

Equates are like the #define statements in a C program. They are used to 
define a constant value for the assembler. Some programmers put equates 
at the top of the program, and some argue that it is more useful to put a 
constant definition right where it is used. We suggest that all equates be in 
one area in the program and that they appear before they are used. 

Program Example 

Constant Equates 
DELAY : EQU 500 ; Used for delay 

subroutine 

Each section in a relocatable a sembly language program should have a name. This allows 
you to eastly locate the sections with the linker parameter file. The lin ker provides a file 
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showing where all program elements can be fou nd, and when sections are named it i easy to 
identify them in the file . 

Program Element 

Code Section Stan 

Program Initialization 

Program Example 

; Code Section Start 
MyCode : SECTION 

Thesrack poil/ler must be initialized before it is used for subroutine calls, interrupts. and data stor­
age. Do it as the first instruction in the program. Variables must be initialized at run time. Put the 
section of code to do this here. In a C program this is done automatically by the tartup code. 

Program Element 

Stack Pointer Initialization 

I/O Devices Initiali z3tion 
Variable Data In itinlilation 

Main Program Body 

Program Example 

Entry : 
main : 

Initialization section 
Initialize stack pointer 

lds SEG_END_SSTACK 
Initialize all IIO devices 

jsr init AD ; Init the AID 
jsr enable_LED ; Enable LED po=t 

Initialize the last data value 
clr Last_Val 

The main program stans here. Typically it will be shan and consist of several subroutine calls. 

Program Element 

Main Program Body 

Program Example 

i Main process loop starts here : 
loop : 
; Get value from AID 

jsr get_AD 
pshb Save it 

Display on LEDs 
j sr put LED 

Delay about 0.5- seconds 
Idx ~DELAY 

jsr delay X ms 
Now display the iasc value 

Idab Last_Val 
jsr put_LED 
pulb Get the \·a 'Ue ba..:< 
stab Last Val; Save !t fo:.: nex: t~-e 

Delay 100 milliseconds 
Idx ~Dela)"l 

jsr Dela,s i ms In X re 
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Program End 

\Vhcn you develop ~onwarc on an evaluation system. sucb as a manufacturer's evaluation 
board, you mu t return control to the monitor at the end of your program. This is often done 
with a software interrupt instruction. In programs Lhat run continuously with no need to return 
to the debugging monitor. make a branch or jump back to the beginning of the process loop. 

Program Element Program Example 

Return 10 the Beginning of Main Loop ; Do forever 
bra loop 

; ........................................... . 
Program Subroutines 

It i good programming practice to make the main program a sequence of c<l 1l5 to subroutines. 
You may place ubroutines anywhere in the source program. or they may be in oLher source 
files if a re locatable assemb ler is used. In Lhis program example we choose to do the lalter. 

Program Element Program Example 

Subroulmc~3nd Functions ;.~ ............ ., * ....... * .. ........ *'1<"'*"" ..... ~~+*..,* .• ......... '" fr ......... ** ""* /r'lr'***'" 

Constant Data Section Start 

Subroutines and functions 
(This relocatable assembler program does 
not place any subroutines in the main 
module . If you want to include subroutines , 
however, this is the place to put them . ) 

Constants will be located in Ihe ROM memory. You do not have lO create a constant data 
section. but it is good programming practice to do o. 

Program Element 

Con .. tant Data Section Slart 

Constant Data Definitions 

Program Example 

; Constant data area in ROM 
MyConst: SECTION 

Constants are localed in ROM. Usually. to decrease the danger of executing data. it is best to 
have conSLanlS at the end of all code sections. However. some progra mmers grou p constants 
wilh the section of code that uses Lhem (i.e .. constanlS used in a ,ubroutinc). 

Program Element Program Example 

Main Program Constants and Strings Delayl : DC..I DELAY 
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Variable Data Section Start 

Variable data are located in the RAM memory. The name you give allows you to locate the 
variable data with the linker. 

Program Element Program Example 

Variable Data Sect ion Start ; Variable data area in RAM 
MyData : SECTION 

Variable Data Storage Allocation 

Use the OS to allocate storage for all variable data elemenLs. 

Program Element Program Example 

Allocation of Data Arcas Last Val : DS . B 

The Completed Program 

Example 6-1 shows Lhis program as a compleLe assembler source file. We have nOl shown the 
subrouLines that initialize the LED display or the NO convener or the subroutines for getting 
data from the NO and displaying it on the LEOs. 

Example 6-1 The Completed Program 

1. 

2 . 
3 . 
4 . 

5 . 
6 . 
7 . 

B. 
9 . 
10 . 
11. 
12 . 

13. 
14 . 
15 . 
16 . 
17 . 

lB . 
19. 
20 . 
21-
22 . 

MC6BHCS12 Assembler Example 

This program is to demonstrate a 
readable programming style . 
It initializes the AID converter 
and a bank of LEOs . It then reads the 
value on the A/D , displays it , and delays 
about 0 . 5 second. It then displays the 
last value it converted for about 0 . 5 
second and repeats. 
Source File : M6B12EXl REL . ASM 
Author : F . M. Cady 
Created: 7/26/2007 
Modifications : None 

External symbol definitions 
XREF get_AD, init_AD 
XREF enable_LEO , put LEO 
XREF delay_X_ms 
XREF __ SEG_ENO_SSTACK 
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23. 
24 . 
25 . 
26 . 
27 . 
28 . 

; Internal symbol definitions 
XDEF Entry , main 

Constant Equates 
DELAY : EQU 500 Used for delay sub 

29. ; Code Section Start 
30 . MyCode : SECTION 
31. 
32. 
33 . 
34 . 
35 . 
36. 
37. 

38. 
39. 
40 . 
41. 
42. 
43 . 
44. 
45 . 
46. 
47 . 
48 . 
49 . 
50 . 
51. 
52 . 
53. 
54. 
55. 
56 . 
57 . 

58 . 
59. 
60 . 
61. 

62 . 
63 . 
64 . 

65 . 
66 . 
67 . 

68 . 
69 . 
70 . 

Entry : 
main : 

Initialization section 
Initialize stack pointer 

Ids SEG_END_SSTACK 
Initialize all I/O devices 

i sr init AD ; Init the AID 

isr enable_LED ; Enable LED port 
Initialize the last data value 

clr Last Val 

i Main process loop starts here : 
loop : 

; Get value from AID 

jsr get_AD 
pshb Save it 

Display on LEDs 
jsr put_LED 

Delay about 0 . 5 seconds 
ldx I DELAY ; Show the use of an EQU 
jsr delay_X_ms ; Delays ms in X 

NOI. display the last value 
ldab 
jsr 
pulb 
stab Last_Val 

Delay about 0 . 5 seconds 
ldx Delayl 
isr delay_X_ms 

; Do forever 

bra loop 

Get the value back 
Save it for next time 

Show the use of a constant in ROM 
Delays I ms in X 

i*k~7*~***~~*~*~**.* + *****+*****~**~********* 

Subroutines and functions 

(This relocatable assembler program does 
not have any subroutines in the main 
module . If you want to include subroutines , 
however , this is the place to put them . ) 

; ***~****~******r'***~* . ~~******~***rr~****** 

; Constant data area in ROM 
MyConst : SECTION 

7 l. 
72 . 

73 . 
74 . 
75 . 
76 . 

To Indent or Not to Indent 

De l ayl : DC . W 
String : DC . B 

6.1 Assembly Language Programming Style 

DELAY 
"This is a string of constants." 

; ******************** * ********* . ******* . ***** 

; Variable data area i n RAM 
MyDa ta : SECTION 
Last Val : DS .B 1 
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In high-level languages, indentation shows lower levels of the design 
Indentation is nOI used very of len in and makes the code more readable. Indentation is not generally used 
assembly language programming. in assembly language programming. Historically, assemblers were used 

long before high-level language compilers that allowed indentation were 
developed. Also, an assembler's syntax is generally fixed. Often, labels 

must start in the first space on the line, and there must be white space between labels, mnemon-
ics, operands, and comments. Assembly language programmers are used to seeing the program 
with the fields all nicely lined up because it is easier to identify the operations and operands. 
However, you may want to try a few programs with indented code to see how you like it. 

Upper-case and Lower case 

The use of upper- and lowercase let­
ters can make your programs more 
readable. 

Upper- and lowercase letters can make your code more readable. The 
goal is to be able to look at a name or label and tell what it is without 
searching further. For example, uppercase labels can be used for con­
stants and lowercase for variahles. Mixed case used for multiple-word 
labels can make them easier to read. Table 6-2 shows examples of all 
three label types. Some assemblers are not case sensitive and some are. 

Table 6-2 Examples of Upper-. Lower-, and Mixed-Case labels 

Case 

Uppercase 
Constants defined by EQU 

ConSlanlS defined by DC.B. DC.W 

Assembler directi ves 

Lowercase 
Instruction mnemonics 
Labels 

Variables 

Mixedcnse 
Multiword variables and labels 

Multiword subroutine names 
Comments 

Examples 

NULL : EQU 
PORT_H : EQU 
STRING : DC . B 
CRLF : DC . W 
ORG , EQU , DC 

OxO 
0,,24 
This is a string . 
O"ODOA 

ldaa , jsr , bne 
loop : 

bne loop 
data : OS 10 

PrintData : 
NumChars : 
InputDataBuffer : 

Jsr PrintData 
; Write complete sentences for corr~e~ts. 
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Use Equates, Not Magic Numbers 

Equates make programs easier to read 
and easier to change in the fu ture. 

A number that just appears in the code is called a magic number. For 
example, if the program statement 

ldab 18 

appeared in the program, you would have to ask, "What sign ificance 
does the 8 have in the program?" Is it used as a counter or as an output value? You do not know. 
However, the following code 

COUNTER : EQU 
ldab ;COUNTER 

is much clearer. Funhermore, if the counter is used in several places in the program and needs 
to be changed, it is easier to change the equate than to search for and change all places it is 
used. Always u e the EQU directive to define constants in your program. 

Using Include Files 

An illcilidefilecan contain frequently 
used symbols and definitions. 

Assembly language programs often use the same equates in each pro­
gram. More powerful a semblers allow include files to be used similar 
to using #include in C programs 

Commenting Style 

There are various commenting styles. Some programmers would have a comment on each pro­
gram line. Another style is to place comments in blocks that explain what the following section 
of code i to do (i.e., on the design or function of each block). Then, within the block of code, 
place comments on lines that may call for funher explanations. Using hi gh-level, pseudocode 
design statements as comments in the program is very effective also. Table 6-3 shows useful 
information that can be included as comments in each subroutine's header. 

Table 6-3 Subroutine or Function Header 

Subroutine calling s equence or invocation 
Subroutine name 
Purpose of subroutine 
Name of file containing the source 
Author 
Date of creation or release 
Input and output variables 
Registers modified 
Global data elements modified 
Local data elements modified 
Brief description of the algorithm 
Functions or subroutines called 
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6.2 Structured Assembly Language Programming 

You can write assembly language 
program segments to do high-level 
language structures. 

Pseudocode is a tool often used in program design. After we have com­
pleted our design, we must write the assembly language code for it. 
There are two pans of the assembly language code to do structured pro­
gramming. The first is a comment. This normally can be taken from the 

Sequence 

pseudocode design document. The second pan is the code that imple­
ments the comment. Let us look at the three structured programming 

elements a they might appear in assembly language. 

The sequence is straightforward. There should be a block of comments describing what the 
next section of assembly code is to do. Remember that the flow of the program is in at the top 
and out at the bottom. We must not enter or exit the code between DO_A and ENDO_A except 
to call and return from a subroutine. Do not jump into or out of the middle of a sequence block. 
See Example 6-2. 

Example 6-2 Assembly language for sequence block 

DO A 
Comments descr ibing the f unction of this s e quence block 
. . . (Assembly language code to do the function) 
EN DO_A 
* * **** * ************************ * *~***** ~~ ***** ~ * ~~ ~* ~~ ~ ~~~~ ~ 

IF-THEN·ELSE Decision 

Example 6.3 shows a pseudocode design that u es the decision element: the associated assem­
bly language code is shown in Example 6-3 . See also Example 6-4 and 6-5 . 

The IF-THEN-ELSE code always has the same form. The bold lines in Example 6-3 will 
appear in every decision structure. Notice that in the assembly code the indentation familiar 
from our work with high-level languages is not used, although we may retain the indentation 
of the pseudocode comments. 

Example 6·3 Decision Element Assembly Language Program 

Pseudocode Design 

Get the temperatu r e 
IF Temperature > Allowed Maximum 

THEN Turn the water valve off 
ELSE Turn the water valve on 

END IF temperature > Allowed Maximum 



120 Chapter 6 f Assembly Language Programming 

Structured Assembly Code 

l. 
2 . 
3 . 
4. 

5 . 

6. 
7 . 

8. 
9 . 
10 . 
11 . 

12 . 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20 . 

2l. 
22. 
23. 

24. 
25. 
26. 

68HCS12 Structured assembly code 
; IF-THEN-ELSE example . 
; Equates defne 
AD_PORT: EQU 
HAX TEMP : EQU 
VALVE_OFF : EQU 
VALVE ON : EQU 
VALVE_PORT: EQU 

constants needed by the code 
Ox91 AID Data Port 
128 Maximum temperature 
o Bits for valve o ff 

Bits for valve on 
Ox258 ; Port P for the va lve 

Get the temperature 
ldaa AD_PORT 

IF Temperature> Allowed Maximum 

cmpa iMAX_TEMP 
bls ELSE PART 

THEN Turn the water valve off 
ldaa VALVE OFF 
staa VALVE_PORT 
bra END IF 

ELSE Turn the water valve on 
ELSE_PART : 

END IF : 

1daa VALVE_ON 
staa VALVE_PORT 

; END IF temperature> Allowed Maximum 

Explanation of Example 6-3 

Lines 12, 14, 17,21, and 26: These lines contain the pseudocode design as comments in the 
source code. 

Line 15: Following the [F statement is code to set the condition code register for the 
conditional branch in line 16to the ELSE part. 

Line 16: There will always be a conditional branch to the ELSE part, as shown here, or to 
the THEN part. When you branch to the ELSE part, the conditional branch instruction is 
the complement of the logic in the fF statement. [n this example. the ELSE part is to be 
executed if the temperature is lower or the same as the allowed maximum because the 
THEN part is done when the temperature is higher. 

Lines 18 and 19: This is the code for the THEN part. 

Line 20: The THEN part always ends with a branch-always or jump to the END-IF label. 
This branches around the ELSE part code. 

6.2 Structured Assembly Language Programming 

Lille 22: The label for the ELSE part conditional branch is always here. 

Lines 23 (llld 24: This is the code for the ELSE part. 

Lille 25: The IF-THEN-ELSE always ends with an END_IF label. 

Example 6-4 
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For each of the logic statements. give the appropriate assembler code for your microcontroller 
to set the conditi on code register and to branch to the ELSE part of an IF-THE -ELSE. Assume 
that P and Q are 8-bit. signed numbers in memory locations P and Q. 

A . IF P >= Q 

B . IF Q > P 

C . IF P = Q 

Solution (fo r Freesca le HCS12) 

A . ; IF P >= Q 
ldaa P 
cmpa Q 
blt ELSE_PART Branch if P is less than Q 

B. IF Q > P 
ldaa Q 
cmpa P 
ble ELSE - PART Branch if Q is less than or equal ~o p 

c . IF P = Q 
Idaa P 
cmpa Q 
bne ELSE PART Branch if P is not equal to 

Example 6-5 

For each of the logic statements. give the appropriate assembler code for your microcontrOlier 
to set the condition code register and to branch to the THE part of an IF-THE -ELSE. 
Assume that P and Q are 8-bit. unsigned numbers in memory locations P and Q. 

A . IF P >= Q 

B . IF Q > P 

C . IF P = Q 

Solution (fo r Free s cale HCS1 2) 

A . ; IF P >= Q 

Idaa 
cmpa 
bhs 

P 

Q 

THEN PART Branch if P is higher or the sarr.e as ~ 
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B. IF Q > P 
ldaa Q 

cmpa P 
bhi THEN PART Branch if Q is higher than P 

C. IF P Q 
ldaa P 
cmpa Q 

beq THEN - PART Branch if P is equal to Q 

WHILE-DO Repetition 

The WH ILE-DO structure is shown in Example 6-6. The elements common to all WHILE­
DO are in bold. 

Example 6-6 Assembly Code for a WHILE-DO 

Pseudocode Design 

Get the temperature fr om the AID 
\;HILE the temperature> maximum allowed 

DO 
Flash light 0 . 5 sec on , 0 . 5 sec off 
Get the temperature from the AID 

END DO 
END WHILE the temperature> maximum allowed 

Structured Assembly Code 
1. 68HCS12 Structured assembly code 
2 . ; WHILE - DO Example 
3 . ; Equates needed 
4 . AD PORT : EQU Ox91 AID Data port 
5 . MAX_ALLO~IED : EQU 128 Maximum Temp 
6 . LIGHT ON : EQU 1 
7 . LIGHT_OFF: EQU a 
8 . LIGHT PORT : EQU Ox258 ; Port P 
9 . 
10 . Get t he temperature from the AID 
11. ldaa AD PORT 
12 . WHILE tHe temperature> maximum allowed 
13 . WHILE START : 

14 . cmpa MAX_ALLOWED 
15 . bls END WHILE 

6.2 Structured Assembly Language Programming 

16 . DO 
17 . Flash light 0 . 5 sec on , 0 . 5 sec off 
18 . ldaa LIGHT_ON 
19. 
20 . 
21. 
22 . 
23 . 

24. 
25 . 
26 . 
27 . 

28 . 
29. 
30 . 
31. 

staa LIGHT_PORT Turn the light 
jsr delay 0 . 5 sec delay 
1daa LIGHT OFF 
staa LIGHT_PORT Turn the light off 
jsr delay 

End flashing the light 
Get the temperature from the AID 

ldaa AD_PORT 
END DO 

bra 
END_WHILE : 

WHILE START 

END WHILE the temperature > maximum allowed 

32 . Dummy subroutine 
33 . delay : rts 

Explanation of Example 6-6 
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Lines 10, 12, 16, 17, 24,25,27, and 30: The pseudocode design appears as comments in the 

code. 

Lines 14 and 15: A WHILE-DO tests the condition at the top of the code to be repeated. 
Thus, the conditional branch in line 15 must be preceded by code that initializes the 
variable to be tested. The A register is initi alized with the AID value in line 11 . 

Line 13: There must be a label at the start of the conditionaltesl code. This is the address for 
the BRA in line 28. 

Line 14: Following the WHILE statement is code to set the condition code register for the 
subsequent conditional branch to the end of the WHILE-DO. 

Line 15: A conditional branch allows us to exit this structure. 

Lines 17-26: This is the code for the DO part. 

Line 26: A pecial requirement of the WHILE-DO structure is code that changes \\ bate\cr is 
being tested. If thi s were not here, the program would never leave the loop. 

Line 28: The code block always end with a branch back to the stan. 

As an assembly language programmer, you might be enough smarler than the a\ erage compiler 
to realize that/ine 26 could be eliminated if the code to initialize the A register with the 
AID value (line 1 I) is moved below the label W HILE_START. 
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~O-WHILE Repetition 

Another useful repetition is the DO-WHILE. In this structure,the DO part is execu ted at least 
once because the test is at the bOllom ofthe loop. An example of the DO-WHLLE is shown in 
Example 6-7 where. again, the parts common to all DO-WHILEs are in bold . 

Example 6-7 DO-WHILE Assembly Language Code 

Pseudocode Design 

DO 
Get data from the switches 
Output the value to the LEOs 

ENDO 
WHILE Any s witch is set 

Structured Assembly Code 
1 . 68HCS12 Structured assembly code 
2 . ; DO - WHILE example 
3 . ; Equates needed for this example 
4 . SW_PORT : EQU Ox28 Switches are on Port J 

5 . LEOS : EQU Ox24 ; The LEOs are on Port H 
6 . 
7 . 
8 . 
9 . 
10 . 
11 . 
12 . 
13 . 
14 . 
15 . 
16 . 
17 . 

Explanation of Example 6-7 

; DO 
DO BEGIN : 

Get data from the switches 
ldaa SW_PORT 

Output the data to t he LEOs 
staa LEOS 

END DO 
WHILE Any switch is set 

tst SW PORT 
bne DO BEGIN 

END WHILE 

Lilies 7, 9, II , 13, alld 14: The pseudocode appears a comments. 

Lille 8: The start of the DO block has a label for the condilional branch inwucti on in lille 16. 

Lille 9- 12: These are the code lines for the DO part. 

Lilies 15 alld 16: The DO-WHILE always ends with a test and a conditional branch back to 
the beginning of the DO block. 

Lille 17: A comment marks the end of the WHILE test code . 

• 
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Figure 6-1 Information transfer between modules. 
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Subroutine 

Return 

6.3 Interprocess Communication 

Most programs pass information 
between one par1 of the program and 

Interprocess communication, also called parameter passing, refers to 
information that is transferred from one par1 of the program to another. 
Most information transfer in well-designed programs is betwee.o a sub-

another. routine or function and its calling function , as shown in Figure 6-1. 10 
choosing how information is transferred between modules. a goal is to 

reduce the chance of the subroutine accidentally changing other data. There are everal meth­
ods that can be used. 

Information in Registers 

The most efficient and fastest way to transfer information between Par1S of a program that is 
being written in assembly language is to use the registers. Another advantage of !hi method is 
III at the subroutine does not acces any other data areas and is thus more general. Documentation 
must be provided to show what registers are used for what purpose. A typical subroutine header 
describing the registers used is shown in Table 6-4. Using the registers is simple and traight­
forward (Example 6-8). 

Example 6-8 Passing Information in Registers 

; *********************** ~ ~****'* 

; Parameter passing between modules 
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; Passing arguments in registers 

; Ge t the input argument and pass to the subroutine 
ldaa Input_Argl 
jsr subl 

The subroutine may be local or external 
Input: A ~ Input Argument 
Output : A ~ Output Argument 
Registers modified : A 

subl: 
Push the registers used on the stack 

Use the i nput argument and/or modify it 
asIa 

Pull the registers used from the stack 
Return with the modified data 

rts 

MyData: SECTION 
; Place variable data here 
Input_Argl : DS.S 1 

Table 6-4 Subroutine Header Comments 

, Subroutine Name: SQRT 
* Author: F. M. Cady 
• Date: July 19 , 2009 
• Function : Calculate the square root of a 16 

; ~ bit integer number . 
* Input Registers: 

o = 16 bit integer number 
* Output Registers : 

; * S = 8 bit integer square root 
Carry flag ~ 1 if input number is negative 

; * Carry flag = 0 if input number is pos itive 
• Registers modified : 

B, condition code register 
* Global data modified: none 
* Functions called: none 

Data 
Element_1 

6.3 Interprocess Communication 

Data I ....... ~--
EI,m'o'_' ~Od""_ 4\ 
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Figure 6-2 Using global data in information transfer. 

Information in Global Data Areas 

The main disadvantage of using registers is that although most CPUs have only a few, some 
functions may need many bytes of data. Using global data area is a solution with advantages 
and potential problems. Global data are data elements that can be reached from any part of the 
program. Figure 6-2 shows four modules making use of two global data elements. 

The danger of maintaining global data is that a function may mod­

Using global data to pass informa­
tion can cause hard-to-find problems 

ify data that it shouldn' t have disturbed. For example, let's assume that 
Module_ I shares Data_Element_ I with Module_2 and Module_3 sbares 
Data_Element_2 with Module_ 4. Now let's assume that you make a 
mistake (a bug) in the code that is supposed to write data into Data_ in your programs. 

Element_I and write into Data_Element_2 instead. (This could be done 
by usi ng a 16-bit store operation instead of an 8-bit one, by having an incorrectly initialized 
pointer register, or simply by writing the wrong label in the operand field .) Now Module_ ~ is 
working with incorrect data. This is a difficult bug to fi nd. particularly if the code in Module_l 
is executed infrequently. Experienced assembly and high-level language programmers try to 
avoid using global data if other methods are available. Nevertheless. global data structures are 
widely used in as embly and high-level language programming. See Example 6-9. 

Example 6-9 Passing Information in Global Data Area 

; ****************** ~ * .* ***~*~ * ** * 

; Passing arguments in g l obal data 

Define the e ntry point for the main p r ogram 
XDEF Entry , main 
XREF __ SEG_END_SSTACK 

Define the data names that are external in 
a global data buffer 

XREF Data_Element 1, Data_Element_2 
XREF Data_Element_3, Data_Element 4 
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MyCode: SECTION 
Entry: 
main : 

; Initialize stack pointer register 
Ids ' __ SEG_END_SSTACK 

; Module_l puts data into Data_Element_ 
staa Data_Element_l 

;.**.********~********.********** 

; ~lodule_2 gets data from Data_Element_l 
ldaa Data_Element_l 

;*****~**.************+********** 

; Module_3 puts data into Data_Element_2 
staa Data_Element_2 

;********~*********************** 

; Module_4 gets data from Data_Element_2 
ldaa Data_Element_2 

i******************************** 

This is the global data definition 
The data storage allocations are done 
here and all data names are XDEFed to 
make them globally available 

;******************************** 

XDEF Data_Element_l , Data_E lement_2 
XDEF Data_Element 3 , Data_Element_4 

GlobalData: SECTION 
; Place variable data here 
Data_Element_l : DS.B 
Data_Element_2: DS . B 
Data_Element_3 : DS.B 
Data_Element_4 : DS.B 

Information in Local Data Areas 

Local data areas invoke the principle of divide and conquer. Figure 6-3 shows modu les and 
their common data elements, which are separately assembled source files . When a relocatable 
assembler is used, as it must be here, any names or labels are local to that source fi le only unless 
a special assembler directive called EXTERNAL or XREF i used. Thus, the assembler will 
show an error if you assemble the file with Module_ I, Module_2, and Data_Element_I and 
accidentally refer to Data_Element_2. However, as you can see. the data elements are global 
within these localized structures. 
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) I Module 1 . Odule 2 -- Data : .....,. Element_ 1 
Source File 1 

~ 

Source File 2 

Figure 6-3 Information in local data areas. 

Information on the Stack 

The stack can also be used to transfer data to and from a subroutine. When this is done. the data 
elements are localized on the stack, and the subroutine is designed to operate with them alone. 
This reduces the chance of global data being accidentally corrupted. You must be careful when 
using the stack because, in addition to the data on the stack. the return address and any byte 
pushed on the stack when the ubroutine is entered are there also. 

Example 6- 1 0 and Figure 6-4 show how to u e the stock to pa s data to and from a subrou­
tine. Figure 6-4a shows the initial position of the stack pointer and the contents of the ta k. 
Lille /8 in Example 6- 10 pushes 16-bit data ontO the tack (Figure 6--4b). and the ubroutine 
call is made in Iille / 9 (Figure 6-4c) . The D and X registers are pushed onto the stack in the 
subroutine (lilies 35 and 36, Figure 6-4d). The subrouti ne uses indexed addre sing and the 
stack pointer (lilies 40 and 44) to retrieve data from the stack and return data to the stack. 
The number of byte between the current value of the stack pointer and the data 10 be pulled 
is given by NIIIII_B + Reg_B. After the registers have been restored (lilies r and -I ) and 
after the return from subroutine (lille -19). the main program can retneye the returned dala 
(/ ille 22) . 

Using the stack \0 transfer infonnation is very powerful and vee) general. Mo 't compIle", 
for high-level languages use thi method. Programmers mu t be careful to make sure that stack 
operations are balanced: good documentation is essential. 
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xx xx xx xx xx 

xx xx xx SP S45 SP S45 

xx xx xx 567 567 

xx xx xx S12 S12 

xx xx xx $34 S34 

xx xx SP SCO SCO SCO 

xx xx SOD SOD 
SP+ 

SOD 

xx SP 512 S12 Num B+ $12 

xx 

xx 

(a) Initial SP 

SP 

SP+ 
Num B+ 
Reg::'B 

(b) pshd (main) 

xx 

$45 

$67 

S12 

$34 

SCO 

SOD 

S9A 

SBC 

xx 

534 

xx 

(c) jsr sub (main) 

xx 

$45 

$67 

$12 

$34 

SP seo 

SOD 

S9A 

SBC 

xx 

(f) std Num_B+Reg_B,sp (sub) (g) pulx (sub) 
puld (sub) 

S34 

xx 

(d) pshd (sub) 
pshx (sub) 

xx 

545 

$67 

S12 

534 

seo 

SOD 

SP S9A 

SBe 

xx 

(h) rts (sub) 

Figure 6-4 Using the stack for information transfer. 

Reg::'B 
$34 

xx 

(e) Idd Num_B+Reg_B,sp (sub) 

xx 

$45 

$67 

512 

$34 

SCO 

SOD 

$9A 

SBC 

SP xx 

(h) puld (main) 

Example 6-10 Passing Information on the Stack 

1 . ; * .1r ..,** ,. r "",. ~ .,.~ ~ . " r"," •• " r """,,;,. 

2 . ; Passing a rguments on the stack 
3 . ; Ir If ,. ,. Ir .. ,. ... II' , .... .. ,. * ,. • " ~ ,. .... " .... ,. .... I- ~ • " 

4 . ; De fine the entry point for the main pro'jram 

6.3 Interprocess Communication 

5 . XDEF Entry , main 
6 . XREF __ SEG_END_SSTACK 
7 . MyCode : SECTION 
8 . Entry : 
9 . main : 

11 . ; Initialize stack pointer register 
12 . Ids U __ SEG_END_SSTACK 

14 . 
15 . 
16 . 

Idd 
Idx 

UOx1234 ; Demo data 
IOx4567 

17 . Put the data to be transferred on the stack 
18 . pshd ; T>IO byees transferred 
19 . jsr sub1 
20 . Get ehe returned data and clean up ehe 
21_ stack pointer 
22 . pUld ; Two bytes returned 
23 . 
24 . ; ** • • **"*+'1r1r"Y*******'w . '. ~ w*""~ 

25 . ; .1r**********.***"*""*1r~'''.w ~ *~*" 

26 . 
27 . 

Subroutine sub 
Input : 16-bit data on the stack 

28 . Output : 16-bit data on the stack 
29 . Registers modified : CCR 
30 . ; *~w****************** ~ **w*~ww - * . 

31. 
32 . 
33 . 
34 . 
35 . 

Num_B : EQU 
Reg_B : EQU 
subl : 

Number of data bytes on stack 
; Number of register byes on stack 

; Push registers used in the subroutine onto the stack 

pshd 
36 . pshx 
37 . 
38 . Use indexed addressing to get the data passed i~ 
39 . from the stack 
40 . 
41. 
42 . 
43 . 
44 . 
45 . 
46 . 
47 . 
48 . 
49 . 
50. 
51. 

Put the return data back on the stack 
ldd iOx9ABC 
std 

Pull the used registers from the stac' 
pulx 
puld 
rts 

131 
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Using Addresses Instead of Values 

Despite the potential problems and disadvantages. the use of global data areas is common, par­
ticularly when large amounts of data are to be shared between modules. One can avoid some 
problems by using a register to pas the address of the data. This tactic is usefu l when one is 
acce sing data butTers where. perhaps. one module fi lls the buffer and another processes the 
data. The two modules can be given the tarting address of the buffer and the number of data 
element (to avoid running over the end of the buffer). 

Passing Boolean Information 

At times a Boolean. or logic. va lue must be returned to the calling program. For example, you 
might want to indicate whether a procedure was successful and then act accordingly in the 
call ing program. A register or a memory location could be allocated for thi s: but if you are pro­
gramming in assembly language, you can use a bit in the condition code register. All processor 
have the capability of selling or reselling the carry flag. This can be tested with a conditional 
branch instruc tion in the call ing program. 

6.4 Assembly Language Tricks of the Trade 

Here are ome tricks of the as embly language programmi ng trade. 

I. Do not modify registers in a subroutine: You should ensure that a subroutine in 
assembly language DOES NOT modify the contents of any of the registers unless a register 
is to relUrn a value to a call ing program. In assembly language programming we use registers 
to hold data from one instruction to another. Unseen in tructions in a subrou tine should not 
change registers. An exception to this rule may be the condition code register. 

2. Use register addressing when possible: Instructions that use internal registers execute 
faster and use less memory. 

3. Use register indirect or indexed addressing: These modes are the next most 
efficient, after register addressing. The address may be calcu lated at rUIl time. allowi ng the 
location of the data to be a variable depending on the current state of the program. Often 
data must be stored in or retrieved from a buffer. An indirect addressing mode, such as 
regi ter indirect or indexed addressing. is most efficient for this. especially if the register 
can be automatically incremented or decremented. Remember to load the register with the 
address before usi ng it. 

4. Use the stack for temporary data storage: When you arc using the stack in 
subroutines, remember to pull the registers before returning to the calling program. 

5. Do not use Ole assembler to initialize variable dat..1 areas: As,cmbler" have 
directives or pseudo-operations to initialize the contents of memory locati Olls. This work 
well when a program in the system is downloaded each time it is rUIl . However, in an 
embedded microcontroller application. where the program resides ill ROM . all variable data 
areas must be initialized at run time by the program. Use directives that a ll ocate memory 
storage locations for the variables and then initialize them in the program. 

6. Use assembler features, directives, and pseudo-opera tion~: Study and lI~e the 
assembler directives and pseUdo-operations. It is mandatory to usc labe ls ror symbolic 
addresses. Never refer to a memory location by a direct add res, . Using the a"embler to 
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evaluate expressions can make programs more readable and more eas ily transferred to other 
applications. If a macroassembler is available, use macros to make programs more readable. 

6.5 Making It Look Pretty 

Your programs will be judged by your peers, not only for how they run but also for ho,", they 
look. It does not take much extra effon to make your program listings look good. Here are 
some helpful hints. 

Adopt a consistent indentation style. Most assembly language programmer indent and 
align the opcode, the operand, and the comment fields. 

Use frequent comments. A very effective commenting style is to include your de ign 
statements as comments preceding the code that implements the commented de ign. 
There is no need to place a comment on every line of as embly code. Simply comment 
assembly lines that need some explanation . 

Place your equates in one place in the program. often at the beginning. so readers will 
know where to go to find them. 

Use whi te space-blank lines-to separate sections of code. 

Use comment lines of as terisk characters (*) to mark off sections of code. 

Don ' t try to completely box in a section of comments with asterisk characters. If the 
comment lines change, you wi ll have to spend extra time cleaning up the boxes. See 
Example 6- 1 I. 

Use upper- and lowercase writing style. Don't put comment in all uppercase or all 
lowercase. 

Use both cases for constants, variable, labels. and 0 on. Adopt a tyle that looks good. 
and be consistent with it. 

Example 6-11 

. • Even though it looks pretty , you should not 

. ~ try to box in comments with asterisk (or other 

.* c haracters . ) If the comments change , it is just 

. * more work to change the line . 

6.6 Conclusion and Chapter Summary Points 

In this chapter we have shown an e~ample of a readable program "t~ Ie ror a,' mt>l~ lan­
guage programs. We have illustrated. and strongl) urge )Oll to adopt. a ,tru.:tured :I:- 'emt>l~ 
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language programming lyle Ihat uses a SlruClUre pseudocode design implemented in assembly 
language. 

6.7 Bibliography and Further Reading 

6.8 Problems 
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Stimulate 
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gans~le.com/coml1lcnting..hlm 

6.1 For each of the logic Stalements. give Ihe assembly language code for your mierocontroller 
10 selthe condilion code regisler and 10 branch 10 the ELSE pan of an [F-THEN-ELSE. 
Assume that P and Q are 8-bit unsigned numbers in memory locations P and Q. [e, k] 

a. IFP >=Q 
b. IFQ > P 
c. IFP=Q 

6.2 For each of Ihe logic statements, give the assembly language code for your microcon­
lroller 10 sellhe condition code regisler and to branch to the ELSE part of an IF-THEN­
ELSE. Assume that P and Q are 8-bit signed numbers in memory locations P and Q. [c, k] 

a. LFP>=Q 
b. IFQ > P 
c. IFP=Q 

6.3 I f you have a C compiler for your microcontrollerthat can produce an assembly language 
Ii I file, repeat Problems 6.1 and 6.2 and compare Ihe compi led code with your solution. 

6.4 For each of the logic SlatemenlS, give the assembly language code for your microcon­
troller 10 selthe condition code register and to branch to the ELSE pan of an IF-THEN­
ELSE. Assume that P, Q, and Rare 8-bit signed numbers in memory locations P, Q, and 
R. [c, kJ 

a. IFP+Q >= I 
b. fFQ > P-R 
c. fF (P > R) OR (Q < R) 
d. IF (P> R) AND (Q < R) 

6.5 Assume that K I and K2 are 8-bit signed (two's-complement) integer variables and that 
K3 is a 16-bit unsigned integer variable. [c, k] 

a. Show how to allocate storage for the e variables in a relocatable a~sel11b ly language 
program by usi ng the assembler used for your microcontroller. 
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b. Write structured assembly language code for the fo llowing design. (Assume that K I, 
K2, and K3 have been initialized in some other pan of the program.) 

IF KI < K2 
THEN 

Set KI to the most positive number 
ELSE 

Set K3 to the most positive number 
Initialize K2 to the most negative number 

ENDIF Kl < K2 

6.6 Insen code to implement the following structured design immediately after each design 
comment. Assume that the following structured design is just a small segment of an 
overall program. 

6.7 

Assume that the following 8-bit, two's-complement variable data allocations have been 
made and have been initialized in some other pan of the program. [c, k] 

TempI : DS . B I 
Temp2 : DS . B 1 

Implement the following design 
IF TempI < Temp2 

THEN TempI Temp2 
ELSE Temp2 = TempI 

ENDIF 
endif : 

Insen code to implement the following structured design immediately after each de ign 
comment. Assume that the following structured design is just a small egmem of an 
overall program. 

Assume that the following 8-bit unsigned variable data allocations have been made and 
have been initialized in some other pan of the program. [c. k] 

Temp3 : DS . B I 
Temp4 : DS . B 
TempS : DS.B 

Implement the following design 
WHILE Temp3 > Temp4 

DO 
Temp4 = Temp4 + I 
TempS = 2 • TempS 

ENDWHILEDO 

enddo : 

6.8 Write a section of as embly language code for your mierocontroller to implement the 
given design, where K I and K2 are 8-bit unsigned numbers in memo,) location, 1\.1 and 
K2. [e, k] 

IF KI < K2 

THEN K2=KI 

ELSE KI=64 
ENDIF KI < K2 
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Challenge 

6.9 A 16-bit number is in sequential memory positions DATA I and DATA I + I with 
the most significant byte in DATA I. Write an assembly language code segment for 
your microcontraller to store the negative of this 16-bit number in DATA2 and 
DATA2+ I. [a. c, k] 

6.10 Write a section of assembly language code for your microcontroller to implement the 
design: [c] 

6.11 

I, Datal > Data2 
THEN Data2 ~ Datal 
ELSE Data2 ~ 64" 
ENDIF Datal > Data2 

Assume Data I and Data2 are memory location containing S-bit unsigned integer data. 
Structured code must be used and comments must be included: 

In Example 6-1 a constant defined by an equate is used to initialize a register wi th a 
constant value in lille 50, and a constant stored in ROM memory is used to initialize a 
register in lille 58. Comment on these two assembly language programming techniques. 
Which is better? [a] 

6.12 Write assembly language code for your microcontroller that will implement the C 
structure [c] 

for (i ~ 0; i < 10 ; ++i) ( 

6.13 Write assembly language code for your microcontroller for the following pseudo­
code design, assuming that KI, K2, and K3 are S-bit signed or unsigned numbers in 
memory locations K I, K2, and K3. Assume that memory has been allocated for these 
data. [c, k] 

; WHILE Kl does not equal OxOd 
while_start: 

DO 
IF K2 ~ K3 

THEN 
Kl 
K2 

ELSE 

Kl + 
K2 

Kl ~ Kl - 1 

ENDIF K2 ~ K3 
ENDO 

enddo: 
; ENDOWHILE 

6.14 Write a structured assembly language code segment for the following pseudocode 
design. [c, k] 

6.15 
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Assume that P, Q. and Rare S-bit signed integer variables in memory locations P, Q. 
and R. Insen the code needed for the design in the comments below. You may add more 
comments if you wish. lc, k] 

IF P does not equal Q 
THEN P~R 

ENDIF P does not equal Q 
WHILE P < R 

DO 
P = P + 1 

ENDO 
ENDWHILEDO 

end_while : 

Write a section of assembly language code for your microcontroller to implement the 
following design. where K I, K2. and K3 are signed S-bit integer numbers stored at 
memory locations K I, K2, and K3. [c. k) 

WHILE Kl < K2 
DO 

It K3 > K2 
THEN K2 ~ Kl 
ELSE K2 ~ K3 

ENDIF K3>K2 
Kl ~ Kl+l 

ENDO 
ENDWHILE Kl<K2 

6.16 For Problem 6. 15. assume that K 1= I. K2=3. and K3~2. How many times should 
the code pass through the loop, and what final values do you expect for K I . K2. 
and K3? [b] 

6.17 Write structured a embly language code for your microcontroller for the following 
design: [c. k) 

IF Al ~ Bl 
THEN 

WHILE Cl < 01 

DO 
Decrement 01 

Al = 2 ' Al 
ENDO 

ENDWHILE Cl < 01 

ELSE 
Al ~ 2 • Bl 

ENOl, Al ~ B1 

Assume that A I. B I. C I. and D I are 16-bit unsigned-bina~ number> and that memo~ 
has been allocated in the program by the follo\\ ing code: 

AI : OS. B 2 
Bl : DS.B 
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Ci : DS . B 

D1 : DS . B 

Assume that A I, B I, C I, and D I are initialized to some value in an other part of the 
program. 

6.18 For Problem 6.17, assume that A I =2. B I =2. C I =3, and D I =6. What final values do 
you expect after the code has been executed? [bl 

6. 19 Write a structured assembly language code segment for the following pseudocode 
design. [c. kl 

As ume that P and Q are 8-bit unsigned integer variables in memory locations P and Q. 
Also assume that function X is implemented in a subroutine named X. Insert the code 
needed for the design in the comments below. 

If P = OxiB 
THEN 

WHILE Q < 186 

DO function X 

ENDDO 

ENDWHILEDO 

ENDIF 

6.20 Write a pseudocode design for the fOllowing program statement. [c, kl 

The program is to prompt for a two-digit hexadecimal number and use a routine 
called getchar to accept it from a user. If the two digits entered by the user signify 
a printable ASCLl character. the character is to be printed with an appropriate 
message. Otherwise. an error message is to be printed. The program is to 
conti nue until the user types two hex numbers that are not a code for a printable charac­
ter. Your design must show at leas t one example of a repetition and one decision. 

(Example: If the user types a 4 and then a I, A should be printed along with an appro­
priate message.) 

6.21 Use the principles of structured programming to write structured pseudocode (do not 
write assembly language code) for the following problem statement. [cl 

The program is the prompt for and wi ll accept a two-digi t hexadecimal number from 
a user typing characters on the keyboard. These digits are to be converted to an 8-bit 
binary number and displayed on the LEDs. After a one-second 
delay, the co mplement of the byte is to be displayed on the LEDs for one 
second. After this delay, the LEDs are to be turned off and the process repeated 
starting at the prompt. The program is to continue until the user types two 
zeros ("00"). 

Your design should fOllow the principles of top-down design . and you may postpone 
consideration of such details as how to convert the two input characters to binary, and 
the details of the prompt and how it is to be printed. 
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6.22 Write a sub program for your microcontroller to find the largest of thirty-two 8-bit 
unsigned numbers in 32 successive RAM memory locations (BUF). Pl ace the answer 
in the 33rd location (Result). [cl 

6.23 Write a sub program for your microcontroller to find the smallest of thirty-two 8-bit 
unsigned numbers in 32 successive RAM memory locations (BUF). Place the answer 
in the 33rd location (Result) . [cl 

6.24 Write a sub program for your microcontroller to find the largest (most positive) of 
thirty-two 8-bit two's-complement numbers in 32 successive RAM memory locations 
(BUF). Place the answer in the 33rd location (Result). [cl 

6.25 Write a sub program for your microcontroller to find the smallest (most negative) of 
thirty-two 8-bit, two's-complement numbers in 32 successive RAM memory location 
(BUF). Place the answer in the 33rd location (Result). [cl 

6.26 Write a sub program for your microcontroller to find the address of the large t of 
thirty-two 8-bit unsigned numbers in 32 successive RAM memory locations (BUF). 
Place the answer in the 33rd:34th location (Res-adr). If more than one location contains 
the largest number, use the lowest address as the result. [cl 

6.27 Write a sub program for your microcontroller to find the address of the largest of thirty­
two 8-bit unsigned numbers in 32 successive RAM memory locations (BUF).If more 
than one location contains the largest number, use the highest address as the result. 
Place the answer in the 33rd:34th location (Res-Adr). [cl 

6.28 There are 4 bytes of data in 4 successive RAM memory locations (BUF). Write a 
structured assembly sub program to count the number of I s in the e bytes. Place the 
result in the fifth memory location (Result). [cl 

6.29 Write a structured assembly sub program to reverse the order of Ox20 bytes in a buffer. 
Assume that the buffer is in 32 successive RAM memory locations (BUF). [cl 

6.30 Write a structured assembly program to compute factorial 8. Store the result in a 2-b~ Ie 
memory location in RAM memory (Factorial) . [cl 

6.31 Write a structured assembly program subroutine to search a null-terminated string 
of characters for a specific substring and 10 return the addre s of the Slart of the 
substring. The input to the subroutine i to be the starting address of the string to be 
searched , the starting address of the substring to be searched for. and the number of 
characters in the substri ng . If the substring is found. return the addres of the fm\l 
character in the search string; otherwise return an address of OxOOOO. [el 

6.32 Write an assembly program showing how to transfer 4 byte of data from the 
main to a subroutine using the stack. The subroutine does not return any data 10 the 
main. Show how the main put data 01110 the stack. how the ubroutine retrie\es 
the data, and how the main program restores the stack pointer after the return from 
the subroutine. [cl 
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6.33 An 8-bit signed/magnitude number system is in use. Write assembly subrou tines for the 
following: [cl 

a. Add two 8-bi t signed/magnitude numbers. 
b. Subtract tWO 8-bit signed/magnitude numbers. 
c. Multiply two 8-bit signed/magnirude numbers. 
d. Divide two 8-bit signed/magnitude numbers. 

Reflect on Learning 

6.34 What was for you the most significant new thing you learned in thi s chapter? 

Objectives 

C Programming for Embedded Systems 

In this chapter we show some of the changes in thinking needed to program in C for an embedded 
system microcontroller instead of a desktop or personal computer application. We assume that 
you have learned to program in C in another course and now wish to use C to create programs 
for your microcontro ller. 

7.1 Introduction 

Although assembly language programs are still used in embedded applications, many are pro­
grammed in C because of the increased programming efficiency, portability, and documenta­
tion provided by this high-level language. Other high-level languages. uch as C++. have been 
created for various microcontrollers, but C is still widely used. In this chapter we sho\\ orne of 
the changes needed in the C language to create programs for embedded microcontrOlIer.;. 

7.2 Major Differences Between C for Embedded and Desktop Applications 

C programs for embedded applica­
ti ons are different from those for 
desktop applications. 

The C programming language gives system engineer.; a high-level lan­
guage for developing embedded system applications. This widel) used 
tool gives us the programming efficiency and portability we have come 
10 expect when comparing high-level language with as embl) lartguage 
programming. Embedded system developers. however. must PU) doser 

attention to the architecture of the processor and to the interface with the real \\ orld than i> 
required of a developer of an application for a desktop or personal computer. Table 7-11i5t5 som 
of the differences found when comparing C programs written for these two applications. 

One of the major differences between embedded and desktop applications is that in the former. 
the read-only memory contains the executable code (giving us the temljinlllmre) instead of the 
copious RAM found in desktop system. To locate a program properl) , the 'ystem engin~r mu<! 

141 
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Table 7-1 Embedded and Desktop Applications 

Program Feature Embedded System Desktop System 

Program location 

Av .. cmbly code in the C program 

In ROM. with dalll and stack in RAM 

Ofleo used to lake advantage of hardware 
features 

In RAM 

Rarely used 

Opcr.ltlng ~)'Icm support Rarely found in embedded systems. 
except for some real·lime operoting 
systems 

Often used to lake advantage of user-oriented 
UO such as keyboard. display. and disk 
drives 

U~C of on-chlp features (timers. Often used Rarely used 

AlD.Cle.) 
Calb to proccdurc\ wrineR in assembly Often used Sometimes used when procedures are 

available for special-purpose hardware I:lnguagc and in· line assembly 

Interrupt ~ervicc routines Of I en needed and used If needed. often provided by operating system 
support 

know where the ROM is located. Another difference is that often RAM in an embedded system 
is a scarce resource. The embedded system engineer muSI carefu lly evaluate how much RAM 
is needed for variable data storage and for Ihe slack. C programs, though. may help us conserve 
this scarce resource. This is becau e aUlomatic variables, declared inside a function, use the 
slack, and the storage space for these variables is released when the function exits. 

Because embedded applications often control some hardware in real lime, C programs can 
effectively use assembly language functions . To write these assembly language functions, you 
must know whal calling convention (how the registers are used and how data are placed on the 
stack) is being used. A programmer can also introduce assembly language statements in-line 
wi th C tatements to control directly the hardware. 

Many embedded applications use hardware-generaled interrupts to control the program 
now. The routines written for these interrupts are called interrllpt service rOlltines or ill/errupt 
handlers. They require a special retum from interrupt in truction to return to the interrupted 
pan of the program. Compilers need nonstandard ANSI C features to provide thi s capability. 

ANSI C versus Microcontrolier Implementations 

The A Sl C standard programming 
language is extended with features 
for embedded appl ications. 

The American National Standards Institute (ANSI) established a com­
mittee in 1983 to produce "an unambiguous and machine-independent 
definition of the language c." The re ult was the ANSI standard for C. 
However, ANS I C was not designed for embedded controller applica-
tions. It lacks standard ways to assign pointers to specific memory loca­

tions, such as Ihe 110 registers; it also lacks a way to implement intemlpt service routines, 
which require a return from interrupt instruclion, and extended addressing for microcontrollers 
wi th paged memory archilectures. Compiler vendors tackle these problems in different ways, 
so you must check the documentation for your compiler's language extensions. Table 7-2 
shows some typical compiler language extensions. 

Paged or Expanded Memory 

As the semiconductor manufacturing industry has matured , it ha~ become pos,ible to add far more 
memory to the microcontroller base memory than can be addres~ed by Ihe address bus. Different 

Data Types 

Portability 
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Table 7-2 ANIS C Compiler language Extensions 

Language Extension Purpose 

@address A~!tigns global variables to ~pecific addre'S'>; u<;eful for accc\,';lOg mcmoT) mapped YO 
pons 

far Allows poinlen. to access the whole memory range supponcd by (he proces~r 

neur Keyword u~d when default addressing is far and the near calling comentton h to be u .. , .. ed 

mterrupt Specific, a function to be an inierrupi ... ervicc routine 

3sm Allow\j assembly language in.,lructlon!t to be placed in the program 

Table 7-3 Compiler Data Types 

Data Range 

Data Type 

unsigned char 

signed char 

unsigned short. unsigncd int 

Signed shon. enum, signed inlcgcr 

unsigned long:, un!ligned long long 

signed long. signed long long 

Number of Bits 

16 

16 

32 
32 

Minimum 

-128 

-32.76 

o 

Maximum 

255 

en 
65535 
32.76"'; 

-1.29-1.967 .~95 

microcontrollers use different strategies for accessing this memory. A switching mechani m i, 
included for accessing purposes. and special call and return in lrUctions are implemented. 

The ize of data Iype varies from one compiler implementation to another depending on the 
target microcontroller. For example. in one microcontroller the ize of an int variable mav be 
16 bits, while in another it wi ll be 32 bits. As an example. Table 7-3 sho\\ the size of data ~-pes 
for a typical compi ler de igned for a 16-bit architecture. 

A major benefit of A SI C is the standardization that allo\\ a program to be "poned:' or 
moved, to another processor. However. it is usual for the compiler \ endor to e"\tend th C lan­
guage to support a specific microcontroller. U ing these e'lension, reduces the ponabilit~ of 
the code 10 another. different processor. It is a good design practice 10 organize ~our cooe <(l 
thaI any processor-specilic language enhancements are in ea ih idcntitied mooule<. You .:an 
then replace these if you move to a different microcontroller. \\riting Ihe re<t of the ",>de in 
ANSI C will allow in rea sed ponability. -

Exercise 7-1 

What ANSI C c\tcn,ion, do", your 'ompller P"-" Ilk" 
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7.3 Architecture of a C Program 

Embedded applications have pro­
gram in ROM and use RAM for vari­
able data and the stack. 

In an embedded system, as we discovered in Chapter 2, the executable 
code is "burned" into read-only memory (ROM), with variable data and 
stack segments located in read-write memory (RAM). Often these mem­
ory types are not contiguous. and to link and locate the final executable 
code, the software or firmware engineer must know where the various 
types of memory are located. 

Figure 7-1 shows the memory mapofa typical microcontroller. The 2 Kbyte of RAM is used 
for variable data storage and the stack, which in a C program provides the storage locations 
for (If/tolllmie variables. Our executable program resides in the 32 Kbyte of Flash EEPROM. 
In comparison to a desktop personal computer system, there is not very much RAM, and the 
entire program is located in the Flash EEPROM read-only memory. 

The compi ler and the linker/locater for C programs wrillen for an embedded applica­
tion must allow u to position the code in the ROM and to use the RAM for the variable 
data storage. [n addition, it must allow us to make specific reference to particular memory 
locations to access the control registers in the I Kbyte register space shown in Figure 7-1. 
The executable code consists of the code you write, starting with your mainO program and 
all procedures linked together, plus a section of code normally provided by the C compi ler 

called the STa rtup code. 

$0000 

$03FF 

$0800 

$OFFF 

$8000 

$FFOO 

$FFFF 

Control Registers 
for 1/0 

RAM used for variable 
data storage and the stack 

Program code and 
constant data storage 

In[errupt Vectors 

Figure 7 -1 Microcontroller memory map. 
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Start-up Code 

StarT-f/pcode is automatically included 
by the compiler and initializes vari­

ables and hardware features before the 
main program executes. 

The compiler vendor provides start-up code to initialize a variery of 
microcomroller hardware features plus any initialized program vari­
ables. Typically, it will do the following initializations. 

void main( void ); 

Variables 

Ini tialize hardware needed to run the microcontroller in a default 
state. 

Define register values for paged or expanded memory available in some 
microcontrollers. 

Initiali ze registers to move (remap) RAM. EEPROM. and VO registers from their 
default memory addresses to new ones if required. 

Initi alize to zero any stat ic data locations allocated in RAM. 

[niti alize to their starti ng values any variables initialized by the program. 

Initiali ze the stack pointer register. 

Call the mainO program to transfer control to your embedded system. 

Your programming efforts start with the void moi//( void) program segment. The last thing 
the start-up code does after its initialization steps i to call your main program. The first thing 
the compiler-generated code does in your mainO program (and any other module) i to allo­
cate storage for variables and to initialize those that have nOl already been taken care of in the 
start-up code. 

Automatic Variables 

Automatic variables are stored on 
the stack during the execution of the 
module in which they are used. 

Automatic variables are those declared within a procedure: no other pro­
cedure has acces. to them. and their lifetime (accessibilit\ and yalidit\ ) 
ends when the procedure's execution time ends. Because ~ese \'ariabl~ 
come and go with the function. the) do not retain their \'a1ue from one 
invocation to another. 

Automatic variables are placed on the stack. and the compiler generates code to aC~$S 

these in a variety of ways. Embedded system programmers must ensure thtlt tbe s\ stem ha,. 
enough Slack memory to accommodate the automatic variables in a function. This n;echani m 
for storing variable data is very efticient. RAil I in mOSt micro onlrOlIers is a finite and ,.:afl.-e 
re ource. By using automatic variabtes. we make it possible for succeeding funcuon, to neu$<! 
these RAM locations. 

Automatic v,triables may be initiatized to some \alue or not. Ifthe~ are m't illltializeJ_ the 
value is undetined. 
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Static Variables 

Static variables are allocated storage 
space in RAM. 

Stalic variables may be declared either inside a fu nc tion or outside it. 
They are located in RAM and are reserved for use throughout the pro­
gram. The tart-up code initializes static variables either to zero or to 
whatever value is specified in the program. 

Volatile Variables 

A volatile variable is one whose value may change as a result of outside 
Volatile vari ables will be on the ' tack forces. For example. an AID converter may be loading a register with 
if they are automatic or in RAM if new conversion values. A variable that is being set by reading that loca-
they are stalic. tion should be declared volati le to ensure the compi ler docs not e liminate 

code that it considers redundant or not necessary. Example 7- 1 shows two 
variables. volatile static BYTE A Val and B Val. which i nonvolatile. Depending on 
how your compiler optimizes code. A _ V';-l will be written twice (becau e it is declared volatile) 
but B _Val onl y once (because the compiler eliminates what it thinks is redundant code). 

Example 7-1 C Volatile Variables 

Source Code 

typedef unsigned char BYTE; 
BYTE PORTA; 

void main (void) ( 
volatile static BYTE A_Val; 

static BYTE B_val; 

/' Read from Port A ' / 
A Val PORTA; /' A Val should be writtten twice */ 

A Val PORTA ; 

/ * */ 
B Val PORTA ; /' B Val may be written only once '/ 

B_Val PORTA ; 

7.4 Assembly Language Intertace 

Compiler-Produced Assembly Language Code 

Embedded system designers must be aware of all pam of the code and he ahle to understand 
what the compiler is doing. In any C program. we m:ly not be aware "I coue (e.g .. the start-up 

Compilers can produce a listi ng file 
that shows all the assembly language 
code that has been generated. 
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code) produced in support of our application program. Before the appli­
cation code for any function starts to execute. the compiler generates 
code to initia lize automatic variables that have initial values. This over­
head could degrade the execution time of our program and cause 
unwanted effects. Fortunately. most compilers can produce a listing rue 

showi ng the ac tual code produced. 
Example 7-2 shows the compile r-generated code to initialize variables in a main function_ 

The static char A _Val array is initialized as part of the startup code because it is a static vari­
able. The automati c char B _Val array must be initialized before any code in main is executed. 
As you can see from the li sting, this is done by the code immediately following line 9. The 
C_val array and the i variable are not initialized prior to use. 

Example 7-2 C Program Overhead to Initialize Variables 

Source Code Listing Showing Compiled Code 

I******************~*****~~***/ 

void main (void) I 
static char A_Vall) 

12,90 , 53 , B); 
char B_Vall) = 

10 , 7 , 255,34) ; 

char C_Val[4) , i; 
/**************************~**/ 

i = 2; 
C_Val[i) 

Explanation of Example 7-2 

9 : char 
0000 69aB 
0002 c607 
0004 6bBl 
0006 B6ff 
OOOB 6aB2 
OOOa c622 
OOOc 6bB3 

12 : i = 2; 

13 : C_Val[i) 
OOOe f60000 
0011 ebB2 
0013 6bB6 

0015 lbBB 
0017 3d 

B_Val[) = 10,7,255, 34 ) ; 
CLR B, - SP 
LDAB n 
STAB 1,SP 
LDAA =255 
STAA 2 , SP 
LDAB = 34 
STAB 3,SP 

= A_Val[i)-B_Vallij; 
LDAB A_Val :2 
ADDB 2,SP 
STAB 6 , SP 

LEAS B,SP 
RTS 

The li sting of the compiled code in Example 7-"2. shows ho\\ in\"okmg!l function hke mJ.tn\ \ 
produces code we may not see. The static A _Val hus been iniualized in the start-up ",' • .le. Nt 
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the automatic variable B Val is initialized here and placed on the stack (e.g. LDAB n 7, STAB 

1 , SP). Although this ex-;;mple show code produced for mainO. similar code will be found for 
any procedure with initialized automatic variable. 

Using Assembly Language in C 

Embedded system programmers sometimes reson to assembly language functions to reduce 
the amount of ROM program memory needed or to olve some timing problem by using 
assembly modules that execute faster than a comparable C program. A frequent scenario is 
thaI an app licalion program is wrinen entirely in C and then analyzed to find the bonlenecks. 
In this procedure. called profilillg, software contributing to the bonleneck can be rewrinen in 
assembly language to improve performance. The overriding C program can call these assembly 
modules the same as any C function . 

To create an assembly module called by a compiled C program. we must know how the 
compiler transfers arguments into and back from the a embled module. Table 7-4 hows 
methods u ed by two popular compilers for the HCSl2 microcontroller. If you are using 
another vendor' compiler. you hould be sure to check its documentation to find OUI what 
calling convention is used. 

In-Line Assembly 

Assembly language statements 
may be intermixed with C program 

You can insen assembly language instructions into a C program by using 
ill-lille assembly. All compilers have slightly different syntax for imple· 
menting this u eful feature. You mu t be cautious when mixing a sem­
bly language instructions and C program statements. In general. the C SHllem e nlS. 

program does not save or restore register contents in nonnal operation. 
although some compilers allow a register type variable that is kept in a register and the regi -
ter's contents is maintained. Typically, when you use in-line assembly instructions you cannot 
rely on register contents to be preserved from one assembly instruction to another if there are 
C tatements in between. On the other hand . the C compiler will sometimes recognize when it 
can assign a variable in a register. thus maiUng the content vu lnerable to being clobbered by 
in-line assembly code. If you have a reason to write complex in-line a .. ,embly code. you should 
put the code in a separate. assembly-only function . 

Exercise 7-2 

How are function arguments passed to an assembly language program in your compiler? 

Exercise 7-3 

Does you r compiler allow in-line assembly code? If '0, ho\\o " It done'! 
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Table 7-4 C Compiler Assembly Language Interface 

Filted number of parameters 

Variable number of parameters 

Byte argument (char. unsigned char) 

16-bit argument (int. unsigned into 
pointer) 

3 bytes (far data pointer) 

32-bit argume nt (double. long. noat) 

Byte argument (char, unsigned char) 

16·bit argument (int, unsigned into 
pointer) 

3 bytes (fur data pointer) 

32-bit argumenl (double. tong. float) 

Registers on return 

CodeWarrior 

Multiple arguments passed to the function 

Pushed onto the slack in left-la-right 
order. If possible, the last argument 
is transferred in a register. If it cannot 
be, it is pushed onlo the stack (Pascal 
convention). 

Pushed onto the stack in righHo-lefl order 
up to the last argument. If possible. the 
last argument is transferred in a register. 
I f it cannot be. it is pushed onto the 
stack (C calling convention), 

Single arguments passed into the function 

Register B 

Register D 

Register B (high bYle): 

Register X (low word) 

Register X (high word): 

Register D (low word) 

COSMtCC 

All arguments pushed onto the stack. 
in righHo- left order (normal C 
convention). 

Bytes are extended to 16 bilS (shon) and 
returned in Register D 

RegisterD 

Register X (high word): 

Register D (low word) 

Single arguments returned by the function 

Register B 

Regi ster D 

Register B (high byte): 

Register X (low word) 

Register X (high word): 

Register D (low word) 

Eltcept for the return value in the registers 
defined above. registers and the 
condi tion code registers are undefined. 

Bytes are extended to t6 bilS (shon) and 
returned in Regi ler D. 

RegisterD 

RegISter X (high "Old): 

Register D (low '\\ oren 

E'{cept for the: return vulue in Registct 
D. registers and the condition c:ock 
registers are undtfined. 

7.5 Bits and Bytes: Accessing I/O Registers 

Sometimes it is beller to read or write 
a complete byte: in other cases it is 
better to access individual bits in an 
I/O pan or memory location. 

There are many control regi ters and control bits in mi rocontrollers that 
must be initialized to enable and disable hardware feature '. The choices 
for setting and resetting control register bit · in most nuem.: 'ntrollers: 
use load and store in truclion to write the \\ h Ie b) teo and bit- t and 
bit-clear instructions to set and reset bits. 

When you write to a byte with an assembl) language store m'tru '­
tion. you are writing nil bits in the byte. ·licrocontrollen- with bit-. et and bit -lear tnstruC{\ n' 
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Byte Addressing 

modify only Ihe bit. specified by the instruclion . In general . when you enable or di sable control 
bils il is beller 10 use Ihe bil-sel or bil-c1ear instruclion 0 Ihal you do nDl modify Dlher bils in 
the control regisler thaI may be SCI in some other pan of the program. 

In C Ihere are a varielY of ways 10 access specific memory locmion such as VO regislers. 
Each regisler has a specific address in memory and Ihe C code mUSI allow reading from and 
wriling 10 Ihe e addresses. The C bil-wise operalors AND. OR. and exclusive-OR (&, I. and ~) 
mayor may nOI use bil-sel or bil-c1ear instruclions. depending on your compiler. 

Example 7-3 show how 10 address a port when il is appropriate 10 access a bYle. such as when 
you are wriling 10 or reading from an VO port or reselling nags in a nag regisler. 

The line of code 

!define PORTB (- (volatile unsigned char .) Ox0001) 

declares the PORTB 10 be Ihe content of Ihe volatile unsigned char pointer OxOOO I. This line 
of code work as follows: 

volatile uns igned char 

declares Ihe unsigned char 10 be a volatile: 

(volatile unsigned char -) 

defines a pointer 10 Ihis Iype; 

(volatile unsigned char .) Ox0001 

sel the pointer value 10 OxooO I. and 

(- (volatile unsigned char -) Ox0001) 

defi nes PORTB 10 be Ihe contents of thi s memory address. 
A second, portable way 10 address a port al a fixed memory location is 10 declare a poinler 

and then use pointer addressing. See Example 7-4 . 
The line of code 

#define p_PORTB (volatile unsigned char .) Ox0001 

declares p _ PORTB 10 be a poinler to a volatile unsigned char and assigns the value OxooO I 
10 p_PORTB. 

'p_PORTB = 26 ; 

writes 26 to OxOoo I. 

Many compilers have an extension thaI allows us to a.ss ign globa l variables to specific 
addresses. Example 7-5 shows how this is done in the Code Warri or compiler. 

Example 7-3 Port Addressing for Byte Accesses in C 

f* Declare PORTB to be the contents of a memory lccotl~n 

Bit Addressing 

= 

7.5 Bits and Bytes: Accessing I/O Registers 

* pointed to by the volatile unsigned cha r pointer OxOOOl *f 
#define PORTB (*(volatile unsigned char *) OxOOOl) 

void main (void) 
PORTB = 26 ; f* Write to PORTB 'f 

Example 7-4 Using Pointer Addressing for Port Addressing for Byte Accesses 

/* Declare PORTB to be the contents of a memory location 
* pointed to by the volatile unsigned char pOinter OxOOOl - f 

#define p_PORTB (volatile unsigned char ,) OxOOOl 

void main (void) ( 
*p_PORTB = 26; f* Write to PORTB 'f 
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Example 7-5 Using a Compiler Extension to ANSI C for Port Addressing for Byte 
Accesses 

f* Define PORTB to be a volatile unsigned char 
* at address OxOOOl *f 

volatile unsigned char PORTB @OxOOOl; 

void main (void) 
PORTB = 26 ; f ' Write to PORTB ' f 

ANSI C provides a way 10 use a bit-field struClure 10 define bil fields thaI are addre>seU indi­
vidually. This is idea.l for microcontrollers with bit-set and bit-clear operntions_ E-.;anlple I-to 
shows an 8-bit field defined for the volatile variable PORTS located al 0'\0001. When -om­
piled, statement such as PORTB. BITO = 1 are convenient!) treated a: bit-set and btl -I ar 
instructions. 
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Example 7-6 Bit Addressing 

/+ Define a bitfield type as unsigned int */ 
typedef unsigned int BITFIELD ; 

I' Define an eight-bit field for the PORT °1 
typedef struct { 

BITFIELD BITO 1 ; 

BITFIELD BITI 1 ; 

BITFIELD BIT2 1; 
BITFIELD BIT3 1 ; 

BITFIELD BIT4 1; 
BITFIELD BITS 1 ; 
BITFIELD BIT6 1; 

BITFIELD BIT? 1 ; 
PORT; 

I' Define PORTB to be a volatile structure of bits at OxOOOI *1 
#define PORTB (*(volatile PORT *) OxOOOl ) 

/* Define a different way to access the bits */ 

idefine PORTB_BITI PORTB . BITI 

void main (void) ( 

/* These instruction may generate bit - set and bit - clr 
* instructions */ 

1* Strobe PORTB bit - O °1 
PORTB . BI TO ~ 1; 

PORTB . BITO ~ 0 ; 

1* Strobe PORTB bit - l *1 
PORTB BITI 1 ; 

PORTB BI T 1 ~ 0 ; 

Byte and Bit Addressing 

It is convenient to be able to address a register as a byte in some situations and as a bit in others. 
For example, consider the hardware shown in Figure 7-2. Eight switches are connected to 
bits 7-0 on Pon A and eight LEDs to bits 7-0 on Pon B. It would be convenient to read a ll eight 
switches at once or, perhaps, to test each one ind ividually. Similarly, contro lling a ll eight LEDs 
at a time or individuaJ ly can be done. 

• 

-... 

B7 

B6 

B5 

B4 
PortA 

B3 

B2 

B1 

BO 

B7 

B6 

B5 

B4 
Port B 

B3 

B2 

B1 

BO 
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--0-

'-"-0-

--0-

--0-

'-"-0-

'-"-0-

--e>-.-..-. ;'7 

Figure 7 -2 Hardware 
configuration to demonstrate 
bit addressing . 

A program to accompli sh thi s is shown in Example 7-7. A IIlIio ll of 1\\ 0 stomge das:;e,. 
unsigned char PortByte and an 8-bit /Jit:fi,' ld stntclt/r., PortE. ts . is defined. 1\\l) re-;­
isters of thi s type, PORTA and PORTB. are declared and located 3ppropriatel~ . One , an J, " . < 

the reg ister as a byte as in the statement 

S\;itches ~ PORTA. PortByte; 

or 
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PORTB . PortByte switches ; 

or 3S bits by using 

if (PT.~_BIT4 1) 

and 

0; 

or 

PORTB . PortBits . BIT3 1 ; 

Example 7-7 Byte and Bit Addressing 

/* Define a port type ~ unsigned cha r 'I 
typedef unsigned char PORT ; 
/- Define a bitfie1d type as unsigned int *1 
typedef unsigned int BITFIELD ; 

/. Define IOPort as a union of an unsigned char , 
~ PortByte , and eight bi t fields , Po r tBlts */ 

typedef union ! 
PORT PortByte ; 
struct . ! 

BITFIELD BITO : 1 ; 
BITFIELD BIT1 : 1; 
BITFIELD BIT2 : 1 ; 
BITFIELD BIT3 : 1 ; 
BITFIELD BIT4 : 1 ; 
BITFIELD BITS : 1 ; 
BITFIELD BIT6 : 1 ; 
BITFIELD BIT7 : 1 ; 
Por t Bits ; 

IOPort ; 

/* Locate two volatile registers with this union ~I 

'define PORTA ('(volatile IOPort -) OxOOOO) 
idefine PORTB (*(volatile IOPort -) OxOOOl) 

1* Define some different ways to access the registers '1 
#define PTA PORTA . PortByte I- PTA is a byte '/ 
#define PTB_BITO PORTB . PortBits . BITO I ' PTB BITO is a blt - / 
#define PTA BIT4 PORTA . PortBits . BIT4 1* PTA BIT4 i s a bit ' I 
void main (void) I 

volatile unsigned char switches ; 

/* Read from the switches on Port A" / 

switches ~ PORTA . PortByte ; 
/* Here is another v/ay to read the switches" / 

s witches ~ PTA ; 

7.6 Interrupts 

1* Output the switches as a byte to the LEDs on Port B'I 
PORTB . PortByte ~ switches; 

/w Demonstrate one bit read and write */ 

if (PTA_BIT4 ~~ 1 ) /* Read bit- 4 switch ,/ 
PTB_BITO ~ 0; 1* Turn LEDO on *1 

else PTB_BI TO ~ 1 ; 1* Turn LEDO off *1 
/* Here is another way access a bit field +/ 

PORTB . PortBits . BIT3 ~ 1; 

155 

Caution on Bit Addressing That Depends on Compiler Implementation 

7.6 Interrupts 

The order (least or most significant bit first) oflhe bit·field addressingjustdescribed is implemen· 
tation dependent. While this may not be an issue for some applications where internally defined 
structures are being maintained, the order is important for accessing the defined control bits in the 
register. In Example 7-6, bit-O, the least significant bit, is defined first. This is the default order 
for the Code Warrior compiler, although there is a compi.ler-predefined macro that can be used to 
reverse the bit order. With any compi.ler, you must determine what order is being used . 

The Interrupt Service Routine or Interrupt Handler 

Interrupts are discussed in much more detail in Chapter 10: at !hi poinL 
An illlerrtlpi is an important , asyn- it is sufficient to know that an interrupt is an important event ignaled b) 
chronous event that requires imme- some hardware mechanism. For exanlple, many microcontrollers have a 

diale anention . powerful timer system (see Chapter 14) from which periodic interrupts 

are used to generate waveforms having a specific frequency. Other hard­
ware features can generate interrupt signal or reque t . Whenever one of these events happen". 
the oft ware must branch to a routine called the ill/ernlpl sen 'ice IlJlllille (ISR) or interrupt 
handler to process the interrupt. This is a hardware function call, and it is proce sed like :lll~ 
function call except that no arguments may passed into or back from the function except for 
globally declared variables. In addition to this restriction. a pecial return from interrupt in !ruc­
tion is used instead of the return from subroutine instruction. FurthemlOfe. in some proce.SOrl' 
311 registers are pushed onto the stack before entering and pulled while lea' ing. 

An interrupt service routine function uses a keyword, such as imernlpl . to ause the com­
piler to generate the correct code when the interrupt request occurs. You ma~ use automatic 
variab les whose lifetime is the life of the functi on execution. ometimt!" however. an interrupt 
service routine must modify a variable each time the ISR is entered. [n su h a ca e. the ,mat-k 
must be declared static so that it "lives" from one interrupt to another. Finall~ , in all int rrupt 
service routines the interrupting source, often a flag or t-it in a regi. ter. must be: reset before 

one leaves the routine. 
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Locating the Interrupt Service Routine 

Many microconlrollers use an interrupt vector to find the correct interrupt service routine 
when the interrupt request is received. The interrupt vector is simply the address of the start 
of the interrupt service routine, and each interrupting source has a spec ific address that stores 
it own vector. It is our job to provide the linker program wi th the starling add ress so it can 
be placed in the correct vector location. This can be done in a variety of ways. depending on 
your compiler. 

As we wi ll discuss more in Chapter 10, all interrupt vectors should be initialized to an 
address and not left uniniti alized. This allow you to catch unexpected interrupts that may 
occ ur. You may wi sh to consider lighting an error condition LED to indicate when these 
unplanned- for interrupts occur because it means lhat something is going wrong in the soft­
ware or hardware. 

Exercise 7-4 

Does your microcontroller signify an interrupt service roOline or interrupt handler in your 

C programs? 

7.7 Conclusion and Chapter Summary Points 

In thi s chapter we have discussed the use of the C programming language for programming 
embedded systems by means of microconlrollers. 

There are two kinds of memory in a microcontroller system- RAM and ROM. 

An em bedded system's program is in ROM with variables in RAM. 

A desktop sy tem's program and data are in RAM. 

The embedded system engineer must know the microcontrolle" s memory map to be 
able to locate the program and data correctl y. 

The ANSI C standard does not provide all of the features needed in an embedded sys­
tem (e.g., direct memory access, interrupt control, in-line assembly statements). 

Compilers that are ANS I C compli ant also offer extensions necessary I'or embedded 
systems. 
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7 .1 What ANSI C extensions are supported by your C compiler? [aJ 

7.2 What assembly code does your compiler produce for the fOllowing statements? Assume 
that data I is unsigned char type. [aJ 

a. datal = datal I OxOl ; /* Set bit 0 +/ 

b. datal 1= OxOl ; /* Set bit 0 */ 

c. datal = datal & OxOl ; /* Reset bits 7 - 1 */ 
d. datal &= -OxOl; / * Reset bit 0 */ 
e. datal - OxFF ; /* Toggle all bits in data 1 */ 

7.3 How do you use your compiler to address a specific memory location to access a par­
ticular control register? [aJ 

7.4 How many bits does your compi ler allocate for char, int, and long data types? [aJ 

7.5 What does the start-upO code do for your microcontroller? [aJ 

7.6 Give the memory addresses used in your microcontroller for the fOllowing: [aJ 

a. Data memory 
b. Program memory 
c. Control registers 

7.7 What must you do for your compiler to be able to use interrupts? [aJ 

7.8 Write a program in C to rever e the order ofOx20 bytes in a buffer. Assume the buffer 
is in memory locations DATA[OJ-DATA[3IJ. [cJ 

7.9 Write a C function to search a null-terminated string of characters for a specific 
substring and to return the address of the start of the sub tring. The input to the 
subroutine is to be the starting address of the string to be searched, the starting 
address of the substring to be searched for, and the number of chara ters in the 
substring. If the substring is found, return the address of the first character in 
the search string; otherwise return an address ofOxOOOO. [cJ 

7. 10 Determine how your compiler treat volatile variabl by writing a program similar to 
Example 7-1. [aJ 

7. 11 Write a program for your microcontroller in C and then in a embl) (or " ice ,,:n;n) to 
find the largest of thi rt y-two 8-bit unsigned numbers in 32 suc essive memQry loca­
tions. Place the answer in the next avai lable location. [cJ 
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7.12 Write a program for your microcontroller in C and then in assembly (or vice versa) 
to find the larges t of thirty-two 8-bit two's-complement numbers in 32 successive 
memory locations. Place the answer in the next available location. [cj 

7.13 There are 4 byte of data in variable data array DATA[Oj-DATA[ I] . Write a program in 
C to count the number of Is in these bytes. Place the resuh in NUM_ONES. [cj 

7. 14 Write a program in C 10 compute faclOrial 8. Store the resuh in a 2-byte memory loca­
tion in RAM memory. [c] 

7.15 An 8-bi t signed/magnitude number system is in use. Write assembly or C subroutines 
or functio ns for the following: [cj 

a. Add two 8-bit signed/magnitude numbers. 
b. Subtract two 8-bit signed/magnitude numbers. 
c. MUltiply two 8-bit signed/magnitude numbers. 
d. Divide two 8-bi t signed/magnitude numbers. 

Reflect on Learning 

7. 16 What have you learned aboUl C programming fo r embedded systems that is different 
from programm ing in a desktop environment? 

7. 17 Li st five new things you have learned about using C to program a microcontroller for 
an embedded application. 

c 

Objectives 

Debugging Microcontroller Software 
and Hardware 

This chapter describe debugging strategies and techniques useful in helping you find prob­
lems in you r programs. 

8.1 Introduction 

By now you will have experienced writing and running simple assembly language or C pro­
grams on your laboratory equipment. You have also probably experienced the programmer's 
nightmare: your program does nO! work: perhaps it does nO! even appear to run. It is time for 
some program debugging. 

8.2 Program Debugging 

Program debugging is like solving a mystery. We stan the program. fully expecting it to work 
perfectly. and it does not. Often, when beginning students are asked. "What i your program 
doing?" they respond "Nothing!" The computer caTll/or be doing nothing: it i doing something 
all the time: fet ching opcodes. executing them. incrementing the program counter. and fetching 
the next opcode. Remember that YOLI are responsible for the opcades the computer is executing. 
and you shou ld know what every instruction does at every step along the wa). You mu.t do 
some detective work to find the difference between what you expect the program to be doing 
and what it is actuall y doing. Debugging is the process of finding the clues and imcrpreting 
them to find the problem. 

There are two approaches to fixing bugs in programs. The fir.;t is n 

Programs thar orc not working prop- sw,rhes;s approach in which you try to fix the problem b~ l'hanging the 
erl y shou ld be (Il/alyzed to tind out code somewhere. This is wrong! You must find out \\ hat the progr.lm 
what they are doi ng before anyone is doing before you can fi>. it. Thus the second appro3ch: an"l\'~il/~' (1),-

tries to fix them. problem. You first find out II'har is the progmm doing. then why il is dlll1g 
that. Probably by then you will have enough clue ' to be able tofi.' il 

159 
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Programs have only two parts-the data and the logic. The program inputs data values, 
stores and manipulates them, and outputs the data in some form. The program's logic deter­
mines the sequence in which program steps are executed and how the data are manipu lated. 
Most program bugs are in the logic. We mean for the computer to do one thing but we have 
programmed it to do another. Normally the data affect the program's flow, and th is can help 
us find the debugging clues. When we use the analytical debugging technique, we are trying 
to match what we think the program should do for a particular input data set with what the 
program actually is doing. 

Figure 8- 1 shows analytical debugging. We choose an input data set and predict what the 
program will do with these data at each step of the program and what the program will do next. 
This is a model of what the program should do. Now run the program and, using the tools 
described shonly, look for data values and program steps that differ from the model. Once we 
have found out where the progranl deviates from the model, we are well on our way to finding 
out why it is going wrong and what will be needed to fix it. 

What we think will happen 

Stepwise 
Program 

Model 

Stepwise 
Expected 
Outputs 

, Debugging 
, the Data , 
, , , , , , 
: Debugging 

What actually happens 

r----------------, , , 
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Figure 8-1 Analytical debugging model. 
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8.3 Debugging Your Code 

Design for Debugging 

Designing your code and including 
comments are critical components in 
the creation of programs lhm can be 
tested and debugged . 

Shortly after writing their first progranls. most software developers realize 
that usually, unless the program is very, very small, there will be some prob­
lems that must be found and corrected. Projects never go as well as we wou]d 
like, and debugging our software always takes some time and effort. 

To produce code that can be debugged. we must use top-down design 
methods and structured prograrruning techniques. Code that is disorganized 

or is produced by a programmer who does nOl understand the specifications usually hides more prob­
lems than can be found. Indeed, many large systems are never completely free of program bugs. 

Comments are cri tical to the development and debugging efforts. Most programmers . nov­
ice and experienced alike, do not li ke to comment their programs. Beginning programmers. 
who may be concentrating on just learning the language, are loath take time away from pro­
ducing code. Chapter 3 shows an approach to comments that follows the lOp-down design 
philosophy. Some design must be done, at least to some level , and the design tatements are 
included comments in your program. These design comments. which tell what the code i 10 

do, are followed by the code that implements the de ign. Of course, the code itself should ha\·e 
comments as well exp laining how the code is implementing the design. 

After we have wri tten our code, we turn to the debugging phase. The design comments and 
the code commen ts help us to understand what is supposed to be done (it helps us develop 
"What we think will happen" from Figure 8- 1). The code comments help us understand ho\\ 
the code is supposed to work. Compare Examples 8-1 and 8-2. Which would you prefer to 

work with if you were assigned to find a problem in the code? If you find problems that require 
changes, make sure you update the comments' 

Another usefu l strategy is to include comments to remind you of thing to test when it 
comes time to test and debug the code. See Example 8-3. 

Example 8-1 Coqe with No Design Comments 

* Hex keypad scanning module 

1* Define Grayhill Series 96 4x4 keypad ' , 
#define NUM_ROWS 4 1* Number of rOl'S ' / 
~define NUM_KEYS 16 /* Number of keys 'I 

1* Define constants */ 

#define ROW3 OxOe 
#define ROW2 OxOd 
#define ROIH OxOb 
#define ROWO Ox07 
#define OUTPUTS OxOf 
~define INPUTS OxfO 
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!define COL3 Ox70 
Idefine COL2 OxbO 
Ide fine COLI OxdO 
'define COLO OxeO 
'define KEY_MASK OxfO 
'define NO_KEYS OxfO 
Idefine END_MARK Oxff 

/~ Define arrays to store t he scan codes , key codes and a 
* lookup table fo r the return value */ 

unsigned char Row_Codes[] = { 
ROW3 , 
ROW2 , 
ROWL 
ROWO 

]; 

unsigned char 
COL3 ROv13 , 
COL2 ROv13 , 
COLI ROV13 , 
COLO ROv13 , 
COL3 ROW2 , 
COL2 ROV12 , 
COLI ROl'12 , 
COLO ROW2 , 
COL3 ROWI , 
COL2 ROWI, 
COLI ROWI , 
COLO ROWl , 
COL3 ROWO , 
COL2 ROWO , 
COLI ROWO , 
COLO ROWO , 
END MARK 

I ; 

Good_Codes [ 

1* User defined key codes . These are ASCII . -I 
unsigned char Key_Codes[ J = { 

"123A456B789C'OiD" 
] ; 

* Define ~he ports on the microcontroller to connec t to the 
• keypad 

#define DDRAD (>(volatile unsigned char .) Ox027 2) 
,define PERAD {'(volatile unsigned char .) Ox0274) 
idefine ATDDIEN ('(volatile unsigned char ') Ox00 8D) 
'define PTAD ('(volatile unsigned char . ) Ox0270) 

/*~.*,...,.* .. *".,.,..; Module Start ,..I>j,~ "/>./> ,,,,..j,~~,. • • j. , • ..... ' •• ",. 1>,' "f 

8.3 Debugging Your Gode 

unsigned char hex_key_scan ( void )( 
/*********~***~~.+~****~~~~.******~****.*+~?* .. * • • •• **. **~"''''~I 

unsigned char key_ hit ; 
unsigned char col - code: 
unsigned char scan - code; 
unsigned char key_ code ; 

unsigned char ii 

* Initialize your microcontroller ' s 1/0 port connected 
• to the keypad . 
***************7****"'.**k*****~**~******"'+****~*+****T ~T~/ 

/* Initialize the PortAD bits 3- 0 for output *1 
if « DDRAD & OUTPUTS) != OUTPUTS) { 

DDRAD 1= OUTPUTS ; 
PERAD 1= INPUTS; 
ATDDIEN 1= INPUTS ; 

l 

/* Output each row code and read the col code each time . ~/ 

i = 0; 
col_code = NO_KEYS ; 
while { (i < NUM_ROWS ) & (col_code 
I~ Output the row scan code */ 

PTAD = Row_Codes[ i ] ; 
++i i 

1* Read the scan code 'I 
scan_code = PTAD; 
col_code = scan_code & KEY_MASK; 

if ( col_code 
key_hit = 0 ; 

l else [ 
i = 0; 
key_code = 0 ; 

NO KEYS ) { 

NOJEYS») ( 

while «key_code != END_MARK) && (key_code != 

key_code Good_Codes [ i J; 
++i; 

if ( key_code 
key_hit = 0; 

l else ( 
- -i : 

END ~IARK ) ( 

return{ key_hit ); 
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Example 8-2 Code with Design Comments 

~ Hex keypad scanning module 
unsigned char hex_key_scan( void ) ; 

This module scans a 16-key keypad 
~ attached to Port AD . It returns an unsigned char ASCII code 
* for the key pressed . It returns the first key pressed 
~ when scanning , It does not check for multiple keys pressed 

at the same time and it does not debounce key strokes . 
, Author : F. ~1. Cady 
~ Source File : hex_keypad . c 
* Revision : 1 

Revision date : 1 February 2009 

/~ Hardware Definitions */ 

... Port AD bits : 
PAD-3 - PAD- O: Output : Scan row scan codes 
PAD-7 - PAD- 4: Input: Column code 

I Co13 Co12 Col1 ColO 
Rei' I Col Code 

* Row Code 11111 0111 1011 1101 1110 
, ---------1--------------------------------
- 3 1110 INone 3 A Key 
- 2 1101 INane B Pressed 
, 1 1011 INone C 
- 0 0111 INone 0 0 
~ --------- 1--------------------------------
*+**·*X****.~~****~ ·~. ~.*.** •• ·***.**.* •• *~.~~K*.k.*** *****/ 

1- Define Grayhill Series 96 4x4 keypad *1 
#define NUM_RO\'IS 4 1* Number of rows *1 
#define NUM_KEYS 16 1* Number of keys *1 
1* Define where they are connected to the microcontroller 

, PTAD Bit Grayhill Keypad Pin 
o 1 

1 2 
2 

3 
5 

6 7 
8 

/ I< * * ... 1t '* * ... k ~ ., ,*.o, .... -.. ;- Ir * * '-It * .. t I< I- " I< .... IY 1t If -jo , I " ;- IY 1ft • , .. ~ f.- I ~ IY I ..... ~ • , , .. ~ ~ ~ / 

I' Define constants 'I 
#define RO~13 OxOe 1* Row scan code 'I 
#define ROW2 OxOd 1* Row 2 scan code 'I 

t 

8.3 Debugging Your Code 

#define ROW1 OxOb I' ROy' 1 '/ 
#define ROWO Ox07 1* Roy, 0 'I 
#define OUTPUTS OxOf I' Row outputs 'I 
#define INPUTS OxfO 1* Col inputs *1 
#define COL3 Ox70 1* Col 3 scan code *j 

#define COL2 OxbO 1* Col 2 *1 
#define COLl OxdO 1* Col *1 
#define COLO OxeO 1* Col *1 
#define KEY MASK OxfO 
#define NO KEYS OxfO 1* Code for no keys pressed '*/ 

#define END_MARK Oxff 1* End of Good_Codes array */ 
/*******1t*,*******"*******,*.**.w*****,**w*,*""*********.~ .ww.,.",,! 

/* Define arrays to store the scan codes , key codes and a 
* lookup table for the return value */ 

unsigned char Row_Codesl] ~ { 
ROW3 , 1* Row 3 scan code *1 
ROW2 , 1* Row scan code *1 
ROW1 , 1* Row *1 
ROWO 1* Row *1 

} ; 

* This lookup table contains the 8-bit scan codes for all 
* keys on the keypad 

unsigned char Good_Codesl ] ~ 

COL3 ROW3 , 1* "1" Ox7e *1 
COL2 ROW3 , 1* "2" Oxbe *1 
COLl ROW3 , 1* "3" Oxde *1 
COLO 
COL3 
COL2 
COLl 
COLO 
COL3 
COL2 
COL1 
COLO 
COL3 
COL2 
COLl 
COLO 

ROW3 , 1* "A" Oxee *1 
ROW2 , 1* "4" Ox7d *1 
RON2 , 1* "5" Oxbd *1 
RON2 , 1* "6" Oxdd -I 
ROW2, 1* "B" Oxed * I 
ROln , 1* "7" Ox7b *1 
RON1 , 1* "8" Oxbb *1 
ROW1 , 1* "9" Oxdb '1 
ROIn , I' "C" Oxeb 'I 
ROWO , 1* Ox77 *1 
ROWO , 1* "0" Oxb7 'I 
ROWO, 1* "#" Oxd7 'I 
ROWO , 1* "0" Oxe7 'I 

1* End marker -I 

* This lookup table returns the ASCII code tor the key . 

1* User defined key codes . These are ASCII. -, 
unsigned char Key_Codes[ ] = { 
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"123A4568789C'0#D" 
}; 

~ Define the ports on the microcontroller to connect to the 
- keypad 

f- Data dir reg -/ 
#define DDRAD (. (volatile unsigned char ' ) 

/- Pullup enable '/ 
#define PERAD (. (volatile unsigned char .) 

) / ' ATD Input ,/ 

#define ATDDIEN ( - (volatile unsigned char 
f - PTAD Data ./ 

'define PTAD ('(volatile unsigned char .) 

unsigned char hex_key_scan ( void ) ( 

/' 8-bi t ASCII code for the key or 0 */ 
unsigned char key_hit; 

/' 4-bit col code ret from keypad scan ' f 
unsigned char col_code; 

/~ a-bit col_code , row_code ~/ 
unsigned char scan_code; 

f* 8-bit scan_code for the key pressed '/ 
unsigned char key_code; 

/' An indexing variable ./ 
unsigned char i; 

Ox0272) 

Ox0274) 

.) Ox008D 

Ox0270) 

/~ ·~~~~·.**·'*~.·.**~.·.*~~**·*-*.*~*****~~ •• *~r* ••• **.~ •• +./ 
/.+ .**.~.*.**.*.*.~.r.** •• _*+*~*~*_***.** ••••• ~.*~~***~ •••• 

•. Initialize your microcontroller's 1/0 port connected 
• to the keypad. 

/' Initialize the PortAD bits 3-0 for output '/ 
f' Check to see if the port has been set up '/ 
f* IF the data direction register is not set 

to output on the Rm-I_OUT bits *f 
if « DDRAD & OUTPUTS ) ! = OUTPUTS )! 
/r Then initialize the data direction register, 

, enable the input pull-ups and enable r.he ATD 
* input bits */ 

DDRAD 1= OUTPUTS; /' Set the Data Direction Reg1srer 'f 
PERAD 1- INPUTS; /' Pull ups enabled ' / 
ATDDIEN /= INPUTS;/' ATD inputs enabled ' / 

f' Output each rOl' code and read the col code ea::h l 1m€' . '/ 
i = 0; 

col_code = NO_KEYS ; 
while ( (i < NUM_ ROWS ) & (col_code 
/* Output the row scan code */ 

PTAD = Row_Codes [ i J ; 

8.3 Debugging Your Code 

++i ; 1* Increment the pointer . Note: This code is here 
* to cause a little delay after outputting che row 
* code before reading the scan code . This is often 
* done to give the hardware time to settle to ~he 
* correct value . */ 

f* Read the scan code */ 
scan_code = PTAD ; 
col code = scan_code & KEY_MASK; 

/* If the col_code is NO_KEYS , return zero *f 
if (col_code NO KEYS )! 
key_hit = 0; 

J else I 
f* Otherwise , find the key that was pressed • , 
/* The variable scan_ code has the col and row ~/ 

f* code . Just scan through a look up table to *1 

/* find a match and return the user defined code . -' 
i = 0 ; 
key_code = 0 ; 

while « key_code != END_MARK) && (key_code != scan_code)) 
key_code Good_Codes [ i J; 
++i ; 

if ( key_code == END_MARK) ( 
/ ' Must have reached the end of the table and no~ 

* found a match . Return zero *1 
key_hit = 0; 
else ( 

/* Retrieve the key *f 
-- i ; 
key_hit = Key_Codes [ i J ; 

) 

return ! key_hit) ; 

Example 8-3 Comments Included to Help with Testing and Debugging 

This module calculates the square root of d S4Qne~ Ae - ~l 

• signed integer. 
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Reminder fo r test ing : 
Test the module ' s behavior ~ ... hen a negative number is input . It 

* should return the correct error code . 

Code Walkthroughs 

Probably the single most effective debugging technique is to remove bugs before you put them 
into the firm ware. A code lI'alkrlllv lIgh is often used (although not used often enough. it seems) 
to eliminate problems before they end up in the code. 

Code walkthroughs are sometimes called peer code reviews. The code developer invites 
other technical expens, both fami liar and unfamiliar with the panicular project, to review 
the source code. The object is to look at the code line by line to develop the program model 
uggested in Figure 8- 1. and to look for problems and for bener ways to accomplish the pro-

gramming task. 
Code walkthroughs are very effective in increasing the quali ty of the code and elim inating 

problems before they occur. The developer can learn about other ways to accompli sh the tasks 
and. as a side benefit, reviewer can learn aboUitechniques that may help them in their assign­
ments. The result of a code walkthrough is bener performance of the developer. the program, 
and the application. 

Top-Down Debugging 

Top-down design is discussed in Chapter 3. If you follow these principles 
Top-down design leads to lOp down and design in levels of increasing detail , but postpone detail unt il later 
debugging. levels, the structure that Figure 8-2 hows might be the result. Let u 

assume that function_a. function_b, and function_c have been completed, 
and we are working on function_f. Other engineers on the project have been assigned to gener­
ate function_d, fu nction_e. and function...,g. By using the complete design structure to test and 
debug all functions completed to date, and including stubs fo r those functions not completed, 
we can test and debug the entire program repeatedly as we complete the functions now coded as 
stubs. A stub, then, is a dummy function that returns a value to use in te ling and debugging. For 
example, assume lhat function_d is to return a value from an analog-to-digital convener. In the 
early days of the development, we might not even have had the NO hardware, and ~o naturally 
delayed wri ting that code. The function_d_Slub, then , can serve as a pl aceholder for the aClual 
code and can return a representative value for functiol1_b and function_c. 

The Debugging Plan 

A debugging plan wi ll help isolate where the problem i, occurring and 
Your debugging plan shou ld be to then find out what is goi ng wrong. Well -dc,igncd progrolm can ist of 
first find the section or the code separate, independent sec tion~ of code wrillen to do a panicu lur func-
"here the problem IS occurring and tion . For example, a program may simply input data, procc,~ it, and out-
then find the problem. put il as shown by the nowchan in Figure 8-3. 1111\\ do you know if the 

program is performing correct ly? You mu,t choo, c tc,t data for which 
you know the correct output. Usi ng these data, you can look for the problclII . Let u' a"lImc that 

Level 2 Design 

Level 3 Design 

Level 1 Design 

mainO; 

caIUunclron_aO; 
caIUunclion_b(); 
calUunclron _ c(); 

Figure 8-2 Top-down test ing and debugging. 

8.3 DebuggIng Your Code 

Figure 8-3 Typical program flowchart 
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a problem e,ists in the program ,ome\\ here. Y"lIr tiN ,tep j, 'Imp\\ t" anJI~ l' Ill<- pn: fro 
output. This can ... ometimes g.i\t~ dlle~ about \\ here the pr\'~grJm j, gl~ing \\ 1\ ng . If n . p 
to set brea,poinh alkr each ,c,'tion and in'l"'ct the Jata t", '\\ h 're II d -)f I" fn: m , h t ' 

c\pccted. Thi, "'ill i'oiatc the probkm area. \ oll l'all 11,)\, fil,'" ~"lIrJd'ufglflg, 

the olrclllJing blo,', of code aflU ""ntifllle the PI-'X'C". 
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8.4 Debugging Tools 

All debugging programs offer a variety of tools. The features in a debugger depend on the 
computer on which the debugging program is run. Today, personal computer-based debug­
gers, particularly for the high-level languages, have many features that can either operate in a 
si mulation mode or interact directly with the microcontroller hardware. Other, older debuggers 
run on simple development boards or single-board computers and offer more limited range of 
fea tures. These debuggers, called 1II0llilOr programs, contain rudimentary debugging tools and 
basic 110 functions . 

A Debugging Demonstration Program 

Example 8-4 is a program we will u e to demonstrate some debugging tech niques. This pro­
gram simply reads a byte from a source [I string and calls a function to change the case of any 
alphabetic character. Nonalphabetic characters are unchanged. To debug it, we need to develop 
the analytical model as suggested by Figure 8-1. Array addressing is used to index through the 
array. Note that the source and destination arrays and the returned_byte character are 
static arrays. This is a trick you can use to help your debugging. It makes the compiler store the 
data in RAM. where it is easy to di play on your debugger memory screen. If they have been 
declared automatic variables, which could have happened. it would be much harder to find them 
in memory. Another trick to make debuggi ng a little easier is to use array index addressing, as 
we have done here. Code that is more efficient would probably use pointer addressing. 

The change_case () function checks to ensure that the input_char i either uppercase 
or lowercase before exci usive-ORing the character wi th Ox20 to change the case. Any input 
that doe not meet this criterion is re tu rned unchanged. 

We expect the program to transfer each byte of the source string to the destination 
string one byle at a time and to change the case of each alphabetic character. 

Example 8-4 Sample Program to Demonstrate Debugging 

, Sample program to demonstrate a debugger program. 
The program simply reads a null terminated string from 

* one memory buffer , changes upper to lower and lower to upper 
* case , and stores it in another memory buffer. 

char change_case( char ); 

void main(void) 
static char source[)=! 

uThis is a string!H 

I ; 

f* Change the case of the input 'f 

static char destination[ 20 I; 
static char returned_byte; 
static int i i 
static int j ; 
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/* Initialize the array pointers ./ 
i = 0 ; 
j = 0 ; 

/~ While the end of the source string hasn ' t been found ~/ 

while ( source [ i I ! = 0 ) ( 
/* Do move a byte from source to destination -/ 

f* Ge the byte 'f 
returned_byte = change_case( source[i] ); 
/* Put it in the dest array T/ 

destination [ j I = returned_byte; 
++i; 

++j ; 

/T Increment the array indices ~/ 

fort;;) II fO wait forever -f 
/~ please make sure that you never leave this :unction ~I 

T Demonstrate a function to change an uppercase characte~ ~o 
• lowercase and vice versa . 
• char change_case( char ); 

char change_case( char input_char) { 
char output_char ; 
/~ If the input char is an alphabetic char, cha~ge the case ~ 

f- Check uppercase Of 
if ( (input_char >= ' A') && (input_char < 'Z') 

II 
f- Check lowercase 'f 

(input_char >= 'a') && (l.nput. char < '='» ( 
output_char input_char· Ox20; 

I else 
output_char 

return( output_char ); 

Debugging Program Flow and Logic 

Tracillg and sellillg IJreakpoillls allow 
us to follow the program !low. 

The fir.;( debugging tas\- we h3\t~ is to find out ,.-I,a,' th", rn.'fr.ll11 b 
going wrong. You must follow the program Ilow until ~ ,)U finJ :l J \1:1-

tion from the e'pected flow or an une'pe<:t<!d dua m('<iifi,'lu,'o_ Tb<'n! 
are two wa) s to foll(", the program Ilow. 

I. Program trace: Tracing is stepping through the program. ')0' stat nl<'nt at a tim' In 
the more powerful. high-le\ d language debuggel'l<. ~ ou ma) dlspla) J.lla ekm 'nt'. In-I .' " 
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the contents of memory locations and registers, while traci ng the code. )n less powerful. 
assembly language debuggers. the register set is shown at ench step. but data elements ill 
memory must be inspected manu all y. 

2. Breakpoints: The program lrace is a slow way to gctthrough a progra m. [I is quicker 
to r,nd out where problems are occurring by running the program at fu ll speed to a break­
point. A breakpoint is a set of conditi ons that interrupt the program flow and return control 
10 the debuggi ng program. Normally breakpoints are set at progra m statements . but they also 
may be generated by a comb inati on of other cond iti ons. For example. in some debuggers, 
breakpoints can be generated when a particular data element becomes some specific va lue. In 
some systems, hardware breakpoiOl generators may create breakpoints when a condition or a 
set of bits on the compu ter's bus is detected. 

Figu re 8--1 shows a scree n snapshot of the Code Warrior debugger' with a breakpoint in the 
program from Example 8-4. Let uS say we suspect that the change_case functio n is nOi prop­
erly changi ng the case of the input character. A good place to set a breakpoint is right after the 
function returns the returned byte value. When the program hits the breakpoint. we can 
look at the value to see if it mak~s sense. Later. Figure 8-5 will show that when the breakpo int 
is hit afler one pass lhrough the loop. source [0) = 'Wand destination [0 ) = 'h'. 
Thus. we would conclude that the change_case fu nction is working prope rly.' 

C:\Documents and Selllngs\HP _Ownel\My Documents\1 wpdOC$\Book\1nm..levision\ .. \de~lest 1.c 

void main (v oid) (~ 

une t4 

s"tatlc char :source[l:::{ ~ 

"Hello Wo rld ! " 
EI ) ; 
3t:atl.C char de!ltlllet.ioD [ 15 1; 
:sunc char returned_byte; 
!It.at.lC wt i; 
!It.atic 1. nt. J; 

° I:l.!tlall.ze the ar:-ay po1.Dter, ' / 
1. ::: 0: 
J = 0; 

, i\1u1e "the end of ~he !lource !ltrinq hasn't. been !ound ' / 
wh1. le ( :source[ 1. J ! ::: 0 ){ ~ 

, . Jo ::..ove a byte tree , ouree to de!l tl.nBtlon 0' 
returned byte:; change ca!le( !lource[1] ); / ' C--!:t. "t he byte "' 
de~t.ina"t;on[ J ] "" ret.~Ded byte; • Put. l.t. 1.n th~ d~st arrlJj' " 

~ "1.; I'" Inc~nt the array l.Odices t, 
E1 ) 

f or (:; I {IE Bl } , . .... a l "t ! orever . , 
plea !Ie n:.alce !lure that :Iou never leave th.l.!I !unctio!l 0' 

E1) 

Figure 8-4 Setting breakpoints. 

I Frcc\caJe Semicondul.:tor. Inc. 
~ Well, there aClUally is ,I bug in change case. We v.dJ a ... ~ YOlilO rind II In Pruhk m M·I 
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Debugging Data Elements 

13 3Duree 
[OJ 
[1) 
[2) 
[31 
[4) 
[5) 
[6J 
[7) 
[B) 
[9) 
[10] 
[11) 
[12] 

While you are following the fl ow of the program, you can observe data elements, both in the 
memory and , if you are programming in assembly language. the registers. 

Memory: In high-level language debuggers. one can generally inspect any of the declared 
vari ables. Usually the display is formatted according to the type of declaration mat has been 
made. In assembly language debugging monitors, the display of data elements is more crude. 
usually only in hexadecimal. 

Figure 8-5 shows the Code Warrior memory display. You may view memory contents 35, a 
formalled data val ue either in the Data pane or as hexadecimal values in me Memory pane. In 
this display we see that the program has transferred one byte from sou r c e to ::ies~_ "a~_ c -_ 

The memory display shows both hexadecima l contents of memory as well as the ASCI] char­
acter for those bytes that are printable. 

Registers: When you know the data input, you should know the state of the registers at eacb 
step of an assembly language program. Assembly language debuggers u ually di play me 
contents of all the registers. including the condition code register. in a register window. While 

mom Auto S,..ro Local k.o 
<13> array[!3] of S.lgned char 

'8 ' 12 :'Signed char 
'.' 101 :'Signed char 
, l' 10e signed char 
'1' lOB sl.qned char 
'0' 111 Signed char 

, 32 signed char 
'1/' B7 signed char 

'0' 111 ,i qned c.ha.r 
'r' 114 slgned char 
' 1 ' 108 .5iqned char 
'd' 100 :nqned char 
'!' 33 ~uqned char 

signed char 
8 destination <15> array (15] of Slqned char 

000900 4.8 65 6C 6C 6: 20 S'7 6:-
000908 72 6C 64 21 00 6~ DC! n: 
000910 00 00 00 00 OC 00 0: DC 
00091e 00 00 00 00 H r: : !: :' ~: 

000920 00 6E - - -- - - -
000928 - - - - - - -- --
000930 - - -- - - - - - -
000938 -- - - -- - - - --
000940 - - - - -- - - -
000948 - - - - -- - - -
000950 - - - - - - - --
000958 - - -- -- -- - -- -
000960 - - - - - -- - --
000968 - - - - - - - -
000970 - - -- -- -- -- - -
000978 -- - -- -- -- -- - --[0) 'h' 104 :'Siqned char 

[1] 0 Slqned char 
[2) Sl.qned char 
[3) signed char 
[4) siqned char 
[5) slqned char 
[6) .signed. char 
[7) 3iqned chl!lr 
[8) !l.qne<! char 
[9) signed cha.r 
[10) "iqned cha.r 
[l1J Sl.qn.ed char 
[12) siqned. char 
[13) Signed char 
[14) uqned char 

returned_byte ' h' 104 Sloned. char 
0 int 

lnt 

Figure 8-5 CodeWarrior memory dlsp[ay 

000980 - -- - - -
000988 - -- - - -
000990 -- -- -- - -
0009ge - -- -- -- -
0009AO - - -- -- -- - - -
Doone - - - - -- - -- --
00091lO -- - -- -- -- -- -- -­
OOQ95! - - - -- - - - -

0009CO - - -- -- -- -- -- --
0009CS 
000900 -- - -- -- --
00091)8 -- -- -- --
0009£0 -- -- -- -- --
0009£9 -- -- -- -- --
0009FO -- -- -- -- --
0009f8 
OOilACO -- -- -- -- --
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~---- --.- - LJ(gJ[8] Figure 8-6 CodeWarrior register 
display. 

HC12 CPU Cycles: 382 I Auto 

4868 A f48 B f6S 
IX 0 I Y I90C 
IP C052 PC IC052 PPAGE ro 
SP r 900 CCR I SXHI NZ",,lC 

tracing the program, you can watch the contents of the registers change and watch for values 
that are different from those expected. 

Figure 8-6 shows the register display pane from the Code Warrior debugger for a Freescale 
HCS 12 microcontroller. All regis ters are shown including the condition code bits (CCR). 
If we were expecting the change case function to return some val ue other than Ox68' (as 
shown here in the B register), we ,;;-ould know that there is a problem somewhere in the func­
tion. NOle that it is vital that you know what the function should return ro be able to see if it 
is correc t or not. 

The Source Code listing 

An up-to-date li sting of the program is very useful. If you are debugging an a sembly language 
program, the listing should be the assembler list fil e, not the source fi le. The list fi le shows 
the code the assembler has produced, and errors frequently can be spotted by usi ng this listing 
instead of just the source file. When you are debugging C programs, a source listing showi ng 
the assembly language produced by a C compiler is often very useful , too. 

8.5 Typical Assembly Language Program Bugs 

Stack Problems 

As you stan your beginning programming assignments, you wi ll commit many follies . Here 
are some common prOblems that assembl y language programmers encounter. 

The stack is an area of RAM used for temporarily storing data and for saving the return address 
for a return-from-subroutine (RTS) instruction. Here are some problems associated with using 
the stack. 

, 0. 68 = 104" = 'h' . 

s 

Lower 
Address 

Higher 
Address 

Program 
Variable 

Data 
Space 

Stack 
Space 
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Figure 8-7 Program variable data and stack segmen1s grow 
toward each other. 

I. Improper transfer to subroutines: The return address from a subroutine mu,t be on 
the stack. Use a branch-to-subroutine. a jump-to- ubroutine. or a call in,{rUction. :-;e\er use a 
branch or a jump that does not put the return addre s on the stack. 

2. Forgetting to initialize the stack pointer: You must initialize the stack pointer to 
point to an area of RAM. Do this in the very firs t fe" lines of code in an a.sembh lan!!u3£e 
program. It must be done before any subroutine is called or the stack is used for cbta ,~o~ge. 

3. Not allocating eno ugh memory for the stack: The data :>rorage allocation static 
data in C) grows from the bonom of memory to the top. "hile the "tack \lLsed for automatic 
vari ables in C) grows from the lOp of memorS' toward the bonom. as illu,trated in Figure, -­
If the stack and data overlap. stack operalions will ",rite into data are", or \ ice \e!"a \\ nh 
unknown. and usually dire. on, equences. 

4. Unba lanced stack operation: lake ure the number of pull i_ the ,arne a,. the 
number of pushes. This is panicularl) lrue in subroutine, "here regi,tef' are temporaril~ 
saved on the tack. If the program does not return from a subrouune_ it i, Iil..el~ there are 
unbalanced 'tack operations. et breakpotnts at the beginning and the end l f the ,ulm:'uu.,e 
and check the stack pointer at ea h plcll'e. Lool.. for eITOf' such as unbalanced ,t.lC ,'per.!­
tions when a stack is being used inside it progmm loop. ee Figure t-,. E~:nnrk, ,-5.i1k) 
8-6 show unbalanced . tucl.. opemtion. 

Example 8-5 Unbalanced Stack Operation 

1. sub : 
2 . pshx ; Sav th rei~St. rs 
3 . psha 
4. 
5. pshb s s 
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6 . 

7 . 

8 . 
9 . 
10 . 

pul a 
pulx 
rt s 

Res to re the regis t e rs 

Example 8-6 Unbalanced Stack Operation Analysis 

Analyze Ihe slack problem illuslraled in Example 8-5. 

Solution 

This is an unbalanced slack operation because there is an extra pshb in,lruclion in Ihe body of 
Ihe ubrauline. The subroutine wi ll nO! return 10 the calling program properly. In Figure 8·8 
we see thaI the Slack poinler regis ler is Ox8FE when enlering the subroutine and Ox8FD when 
we are aboul 10 execule the r t s instruclion. If the Slack operation; were properly balanced 

Ihese wou ld be the same. 

Finding Stack Problems 

A program that execules properly up to a jump-Io-subroutine instruclion and then does not 
seem to return from Ihe subroutine often suggests thal there are problem; with the stack. You 
can easily verify this by putting breakpoints at the subroutine jump and at the nexI instrucl ion 
followi ng the j sr s ub. If you never hil the second breakpoint. you know Ihere is a problem 
in the subroutine. With this simple step, you have been able 10 bolate ",here the problem is. 
The nexl step is to look for more clues. Sel a breakpoinl allhe slart of Ihe subrouline and al 
Ihe relurn-from-subrouline inStruclion at Ihe end: for example. line 2 and line 10 in Example 
8-5. Check the regisler di play al all breakpoints to ee if the s tack pOlOter regi~ter is the same 

EI Register [g[QJ~ EI Register [][QI(gj 
-- - -- -- ~- - -

HC12 CPU ' Cycles: 6 Auto HC1 2 CPU Cycles 18 Auto 

D e A a 6 D 808 A e 6 8 

IX 6988 IY 68F8 IX 69 IY 68F8 

PC cooe PPAGE a G PC cor,!) PPAGE 0 

CCR 5XSIN2' : P 8FO CCR 5X I 

Figure 8-8 Register contents when entering and about 10 leave the subroutlno. 
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in each case. If it is not. you know there is an unbalanced tack operation somewhere to the 
subrouti ne. and you can continue to look for clues until you find the trouble spot (<>ee Figure 
8-8). 

Other stack problems can be cau ed by data overwriting the tack or stack o\ernritina the 
data. If you suspect these problems. and if your debugger allows it. you can write a s~ific 
data pattern into the uninitialized RAM memory before running the program (a fixed panem 
might be OxOO or OxFF). Then, when problems occur. you can view the RAM memo!) to see 
if your data pattern is intact; if not, the stack or other data elements have u ed more locatioru. 
than expected. 

Reg ister Problems 

Among the register problems you are likely to encounLer are the follow ing. 

I. Using immediate addressi ng incorrectly: One of the biggest problems that be!!innin!! 
assembly language programmer have is knowing how to use immediate addres iog p~perl~~ 
Do not confuse immediale addressing with direct memo!) addressing. Remember that imme­
diate addres ing retrieve. constant data from the memo,> location immediate" foUowin2 the 
operation code. Direct memory addressing retrieves data. \\ hich may be con't~t or \an~le. 
from some other memory location. 

Finding problems wi th register contents i difficult. You mUSt have a good program model 
and know what is expected in the regi ters at all time. Then. u ing trace or brear..:point>. ~ou 
watch the register di splay lO ee when a regislers contents do nOt match your expectatiolb. 

2. Using subroutines that wipe o ut registers: Well-designed subroutines for assembl\ 
language progra ms do not modify registers that rna) be used in the calling program. Pu,h :UI 
registers used in the subroutine onto the stack when you enter the subroutine. and pull them 
before relUrning lO the calling program. 

Example 8-7 shows subroutine code that incorrect" reSlOre, the registers when retumm2 
to the calling program. Becau e the stack is a last-in. first-out operatio;. the reg.,tel' ml1>t r;: 
pulled in the reverse order of pushing. You can find this error easily b~ setting a bre 'point I 

Ihe jump to >ubroutine and at the in,truclion ju I following the jsr. Comparing the content> of 
the register 31 these two points will quickl) 5hO\\ an) problem,. 

Example 8-7 Improper Restoration of Register Contents 

1 . sub : 
2 . pshx ; Save the reg~sters 
3 . psha 
4 . pshb 
5 . 
6 . 

pulx Restore the reglst~:S 
8 . pula 
9 . pull:-
le . rts 
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3. Transposed registers: A difficult problem to find is one in wh ich Ihe operands for an 
inslIUction have been transposed. For ex.lmple. if data are to be moved from the B to the A 
register, and the proper instruction is. say. mov b , a . it is very easy to transpose the register 
operands and wri te mov a , b. To find this error, trace the program. watch the registers. and 
compare them with what is expected. 

4. Not iniUalizing pointer registers: Register indirect and indexed addressing modes 
must have the register initial ized with the address of the data. 

5. Not initializing registers and data a reas: Because the content of registers and RAM 
memory are unknown when the computer's power is turned on, always initia lize registers and 
data areas before using them. Do thi at run time. not assembly time or load time. 

6. Using a 16·bit counter in memory: Counters are used for many things in assembly 
language programming. The fastest and easiest way 10 implement a counter is to use a CPU 
regi ter; however, when one runs out of registers. counter mu t be kept in memory. A typical 
error occurs during the incrementing or decrementing of a 16-bit memory counter with an 
8-bil memory increment or decrement instruction. Instead of Changing the full 16 bits, the 
programmer changes only 8 bits. You should load the 16-bit counter into a regi sler. incre­
ment or decrement it, and store it back into memory. Make sure the store operation does not 
change the flags if a conditional branch based on the increment or decrement follows. 

7. Modifying a counter in a loop: Another common problem with counters is reinitial­
izing the counter inside the loop. Example 8-8 shows this problem. To fi x il. move the label 
loop: below the counter initiali zation code at fille 4. 

Example 8-8 Improper Counter Initialization 

1 . COUNT : EQU 100 
2 . i Initialize the coun t er in memory 
3 . loop : 
4 . rnovb #COUNT , Counter 
5 . 
6 . dec Counter 
7 . bne loop I'lhoops ! 

8 . 
9 . Counter : DS . B 1 ; a - bit counter 

Finding Register Problems 

Register problems are difficult to find, especially becau\e data 10 rClll,tc" arc o lten variable. 
It is critical that you follow the analytical debugging model shown 10 hgu rc 8- I, ciosely mOn· 
itoring what you expect the regi\ter content; to be and whm Ihe program i, actually doing. 
When you find a deviation, you have found the area of the problem: nn\\ you I11U , t I,Xll, fun her 

to find the cause. 
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Condition Code Register Problems 

Almost all instructions modify the condition code regi ter. and you mus t1cnow which instruc­
tions modify which bits. Problems with the condition code register lead to problems in the 
program flow. These problems, too, are hard 10 find, especially when variable data are used. 
Two of the problems you are likely to encounter are the following: 

I. Modifying condition code contents before conditional brancb instructions: Be 
aware of al l in structions that modify the contents of the condition code register. Make sure 
there are no instructions that change the condition code regi ter between the Lime it is set and 
the lime the conditional branch is executed. See Example 8-9. 

Example 8-9 Load and Store Instructions Modify the Code Condition Register 

Analyze the following code for a condition code register problem. 

1 . COUNT : E U 
2 . 

; Loop counter 

3 . 
4 . 

5 . loop : 

Idab ~COUNT ; Initiali ze loop counter 

6 . Here is the code for whatever has to be 
7 . done in a loop . At the end of the loop , ~e 

8 . decrement the loop counter and branch back 
9 . if the counter hasn ' t been decre mented to =ero . 
10 . ; . 
11 . 

12 . 
13 . 
14 . 

Solution 

decb 

ldaa ~S64 
bne loop 

Decrement B r egister 
and branch back i: nat zer o 
But fi rst load A ~ith sorr.e da~a 

The programmer follow the decb in lJUction with an inslJU tion 10 load A ",tb 
Depending on j our microcontroller hardware. the ldaa m3~ modi~ the ndiuon code 
regi ster bit so that the zero bil is zero and the bne locp In lJUction \\.11 al\\a~, be en. 
The program will never .xil from the loop. 

_. U ing the wrong conditional branch instrucUon: There are ditlerent in,lJU:ti){l, f:>r 
igned and unsigned numben.. ConditlOnal branches \\ ith the \\ oob "greater" or "I 

used for signed numbers and those with the WoNs "higher" or "k)\\er~ f, r un . • gna! nllffi­
ben.. Table ' - I sho\\, ho\\ three different microconm.;l1en. u", dIfferent t>r:lIh:h-m'tnK't} 
for ,igned and unsigned data. Also ,ee E"mlple 8- 10 anJ Table ' -2 
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Table 8-1 Signee and Unsigned Branch Instruclions 

Processor 

Frccscalc HCS 12 

TI MSP430 

Atmel Aliny261 

Signed 

Grc:lter than - BGT 
Less than - 8L T 
Greater than or equal- BGE 
Less than or equal- BLE 
Minus-8MI 
Plus - BPL 
Overflow - BVS 
No overflow - ave 
Equal- BEQ 
Not equal- BNE 

Greater than or cqual - JGE 
Less than - JL 
Equal- JEQ, JZ 
Not equal - JNE , IN Z 
Negau\'c- IN 

Gremer than or equal- BRGE 
Less than - BRL T 
Minus-BRM! 
Plus-BRPL 
Overflow - BRVS 
No O\'crflow - BRVC 

Example 8-10 Using the Wrong Conditional Branch 

Unsigned 

Higherlhun - BH r. Bee 
Lower than - 8LO , BCS 
Higher than or same - BHS 
Lower than or !;:lme - BLS 

Overnow - Be s 
No overflow - Bee 
Eq"ul - BEQ 
Not cquul- BNE 

Lower - JNC, JLO 
Higher or s'lIne - JHS I JC 
Ovcrflow -JC 
No overnow - JNC 

Same or higher - BRSH 
Lower-BRLO 
O,crflO\\ - BRCS 

o o\CrflO\~ - BRCC 

A programmer inlends 10 compare IWO 8-bil unsigned dala values. Ihe firsl in Ihe A regisler 
and the econd in a variable memory location Data. The program design require, a branch 10 
GREATER : ir Ihe value in A is grealenhan Ihe value in Da tao The rollowing program segment 
shows the code that was written: 

cmpa Data 
bgt GREATER 

What i wrong with this code. and what dala values would you , ugge'l ,how Ihal il works 
incorrecil y? 

Solution 

or cou rse il all depends on Ihe inslruclion sel or you r microcontrollcr: In genera l. however. 
there wi ll be an instruclion. such as Ihe bgt inslruction (branch greater Ih:lIl) Ihal " u,ed ror 
signed. lwo·s-complement data. nOI ror unsigned data. The correci comlillnn"1 hmnch inslruc­
lion 10 use is the bhi (branch higher than) inslruclion. This is a particularly hard bug 10 find 
because somelimes il will work properly and sometimes nOI . a, shu\\ n 111 T.lhk 8-2 

8.5 Typical Assembly Language Program Bugs 181 

Table 8-2 Data IlIuslrating That bgt is the Incorrect Instruction 

IsA Greater 
A Data than Data? 

0.55 0.05 Yes 

0.05 0.55 No 

0.7F 0.80 Yc; 

0.80 Ox7F No 

Is A Higher 
than Data? 

Yes 

No 

No 

Yes 

Explanation 

Ox55 is both greater than and higher than fu05. 

Ox05 i~ not greater than or higher than Ox55. 

Ox7F (+127) IS greater than Ox80 (-128) (signed) but Ox7F ' ..... 127, b DOt 

higher than Ox80 (+128) (unsignedJ. BHI is the correct lO'olIUCU( n for 
unsigned data. 

Ox80 (-128) is nOI greater than Ox7F (+ 117) (signed) but 0:<110 (-1~8IlS 

higher than Ox1F (+127) (unsigned). BHI is the correct m!.trucl!on for 
unsigned data. 

Finding Condition Code Register Problems 

Condition code register problems are similar to the register problem de cribed earlier and are 
round in a simi lar fashion. You mu I carefull) watch the condition code bit>. as the, are mod-
ified by your program while different sets of te t data are being used. . 

The problem shown in Example 8-10 is very difficult to find because It depend" on the data 
being compared. A Table 8-2 shows. for some dala values the bgt gi\es the correct re ull and 
for others it does not. This is why you must carefull) de ign your test value to test as man~ 
data cases as possible. 

Test Data Strategies 

Generating lest data 10 lest exhausti"el) your code and hardware i. a complete topic It,eli. 
and we can only give some guidelines here. It is virtualt) impos:ible 10 te,1 rigorou_l) 
all possible combinations of input. output. and proce. ing path' in our program, T~ 
to be a thorough as po ible. but apply ome sLr:lteg) and judgment to make your le,ring 
program reasonable. Here are orne suggestions for de\eloping Ie-ring condiuons ior yuur 

programs. 

Choose dala value or condition that are represeOlali\e of what you ewect to te>-l 

nomml operation. 

• Choose d31u values or conditions that are at the boundaries of what you e'peet. 
For example. if Ollr code is dealing \\ ith .igned dat:L lesl the m,"t negan\e:md 
most po,iti\ e number.:. For unsigned dala. be sure 10 lest zero:md the m, 'I r< <ime 

number.:. 

Choose condilions Ihat are oUlside any thing you would re'p<'n'INy e'~·I.llu, I' of) 

Important. Your program hil-' 10 \""\.. with g,xxl \ alue, and t-.ld \:llue I, . 

If )our program h:l~ Ii'.r input . make sure III tC'1 all p<'",hl- InpUl'. mdudm; 
than one I.e) pres,ed al J time ;tnd key s pres' J rapidly 
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8.7 Other Debugg ing Techniques 

Eliminating Code 

Sometime the debugging strategies suggested thus far do not lead to a problem sol ution. There 
may be interacting problems or code that obscures the problem. A technique that can help in 
these cases is 10 stan eliminating sections of code to simplify the problem. Code to be elim­
inated can be commented out to allow you to reSlOre it later. Thi s i useful at times when the 
compiler is giving you an error and you cannot decide where the error is. 

Hardware Additions 

When doing your hardware de ign. reserve an VO bit or two for testing the software. This bit 
can be connected to an LED or 10 a pin to which you wou ld connect an oscilloscope. When 
you test the hardware and software of your system. an output to this pin can test a variety of 
software events uch as enteri ng or leavi ng subroutine and interrupt service routines. By set­
ting the bit when a section of code is entered and resetting it upon leaving. you can measure 
the execution time. 

Another hardware design consideration that wi ll greatly help in system debugging is to add 
a liberal amount of test points to which you can connect an osci lloscope to observe ignals. 
CPU timing signals such as read. wri te, and bu clock allow you to check other system tim­
ing relative to the e fundamental signals. Be sure to include mUltiple places to ground the 
osci Iloscope. 

A common addition to many embedded systems i a "heartbeat" LED. When the code i 
operating normally. it fl ashes the LED at some rate, say 2 Hz. You can easi ly look at the hean­
beat LED to see if the code is hung up or delayed. 

If your microcontroller has VO capabil ities that your application b not u ing. such as an 
unu ed serial VO port. con ider connecting the VO pins out to your printed circuit board. This 
can give you a spare debug port. If you have room on the PC board. it i, very useful to leave 
space for interface chips that can be added during attempts to solve difficult debug problems. 
The chips can be removed or not installed for the delivered product. 

If your microcontroller supports an in-circuit emulator or on-chip debugger. as described 
shortly, install the debug connector on the board. These are usually only one or two pi ns. or at 
most five for JTAG debuggers. 

Using an Oscilloscope or Logic Analyzer 

Because embedded systems usually connect to ex ternal device,. an mcillo'Copc i, n critical 
piece of test equipment ; you can use it to verify that your system" operating properly and 
to look for bugs. The oscilloscope mea ures and displays voltage waveform, as a func tion of 
ti me. The various USeS for an osci lloscope in your testing and debugging phase Include the 
following. 

Mea uring the execution time of a function. You can mCil,ure the tlllle 'pen t III the 
module by putting some tes t code at the beginning of the function that 'CI\ UII output 
bit on a port and resetting it at the end of the function . 
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Checking that a pulse-width modulation waveform is being generated correctly. 

Mea uring the time between assertion of an interrupt signal and entrance into the inter­
rupt service routine. (With a dual-channel oscilloscope. you trigger the sweep ",ith 
the interrupt signal and then. in the interrupt service routine. set and resetltoggle, an 
ou tput bit on a pOri. See Chapter 10 for more information on interrupts.) 

If your system fails to start, the fir tthings to check with your 0 cilloscope are the 
power supply to the chip and the clock oscillator. 

In a system with external addre • data. and control buses. you can check that con­
Lrol signals are operating properly and that the data and address buse do not have an} 
fa ul ts such as being stuck on zero (grounded) or stuck on one (connected to the posi­
tive supply). 

Another u efu ltool is a logic analyzer. While most oscillo cope have only [\\.0. or at mo,t 
four. channels. a logic analyzer can di play lIlany more channels of logic ignal _ Be 3.\\are_ 
though. that the logic analyzer is not like the oscillo cope because it doesn't ho" you the 
actllal voltage levels. 

In-Circuit Emulator or Background Debugger 

The early microprocessors. such as the [ntel 080. and 80 5. the Zilog Z O. and the ~IOlOrola 
6800. were much smaller than tho e of today. with far fewer VO pins. In addition_ the~ "ere 
much less powerful. with few if any integrated VO capabilitie . and the~ operated" ith far 
lower frequency clocks. Development systems were manufactured that allowed the >~ 'tern 
developer to replace the microprocessor CPU" ith a pecial plug and cable that connected to 
the target sy,tem under development. The e deyelopment s~stems. called in-cirellit emWilWr5. 
enabled the developer to run the target y tem to exercise all its hardware and _ ftware" bIle 
using debugging tools like tracing. break-poinb. and inspe ling and modifying memo~ The 
development of these j>tems was a great leap forward and ga\ e ) ,tern deSlgne!"':1 "onderful 
tool to teo t and debug their oftware and hard" are_ 

Now fa_t forward to the microcontroller "orld of tooa) _ It i, no longer fea>ible to 0.," 

in-circuit emulator". The chip have far too man) pins. ha\e far tOO many internal de i 
that lack direct connection to VO pin ' . and operate at much higher dock irequen.:ie- tbn 
before. A ne" debugging ,trateg) ha. been de\eloped. The ne" "heme i> callN &1<' ... 
Debllggillg (Freeseale). Oil-ChiI' Debuggillg (Atmel. ~licrochip), Eml>,d,f.d IC CIml-' 
Logic). or JTAG Dellllg (l\ I:L\im. TI. and others). 

Figure 8-9 hows a Free,cale background debug mooule \BD;\\1 pod. \\hl.:h j, ",'nn -tN 
10 the printed circuit board (PCB) of the target minocontroller Other m.lOufa -tun,> - rn" 
comparable dcbugglllg capabilit~. uch device ",110" a..:ce., to the internal, 
target 5)SICm and UCI nol intcrt-ere "ith the application hard" are ,'r "'it"= ,'Ii'an 
\\ rile.! to target !->~ ,tem mentor) IOC3ti"lOS wllhoUl 'h,~pping the;! runmng ..lrrh~;lt\\'f' Ff\::­

Bac~gfl)und dcbugging ,) 'Iem, II'C a ,eparJtc <erial 1'0 tntert;l,-e .lOJ n, urn 'ttl ~ •• 
u,c a 'l'P:lrJtc ,,'rtal 1/0 inl<'rfa e \\ ith onl) t\\" ,)f thl't'c plll'_ \\ hl~h III '30' ~ :>U ..: 

add the bac~gmund debug capabiht) to )our pftxluct "Ith,>ut mu-h :.: , t. Th ,hI 
the JT G (J\llllt Tc,t .1\ ""I) .",up) IIlterf"ce I't"llllf'e a 5-pm IIltcrta', It JT \ • 
ClIlI do 'ophi,t1clItcu OIl-c1ul' tc,ting "'lied B,>und,~ _ ,'ao te'llng 1\1 adJltl '11 t , 

ucbugglllg. 
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PC 

TARGET PCB 

Figure 8-9 Background debug module interface. 

1 

BKGD~. GND 
unused o. Reset 

unused o. V dd 

The background or on-chip debugging systems include many of the following feat ures: 

Reading and writing target memory 

Reading and writing CPU registers 

Starting and SlOpping application programs 

Tracing application program instructions 

On-chip, in-circuit emulation that operates like an external emulator and may have the 
following features: 

Hardware breakpoints that can trigger on selected address and data bus activi ty 

Real-time instruction trace buffer 

Instruction tagging to al low breakpoints to be set at an instruction 

Although the on-chip debugging systems are primarily intended for system development 
and debugging, they are useful for other applications. They can be used to load or reload an 
application program into a target system after the product has been completely assembled. 
They can be used also to calibrate finished systems or perform fie ld upgrades of operation 
software. In a data logging application, the background debugg ing system can retrieve logged 
data, thus making it unnecessary to add this function to the application software. 

The PC shown in Figure 8-9 is connected to a BDM pod through a USB or eria l port. 
Software that runs on the PC allows you to set breakpoi nt , trace, display memory, and under­
take the other debugging tasks we described in Section 8.4. 

B.B Conclusion and Chapter Summary Points 

In this chapter we have offered some debuggi ng stra tegies to help you find tho\c JI1110ylllg bugs 
in your programs. Key elements of those strategies "re the foll ow ing. 

8.1 0 Problems 187 

Analyze the program; do not try 10 synthesize new code to fix it. 

Develop a model of how you think the program should run, including data transforma­
tion , register use. and erograrn flow. 

Compare the model of the program with what the program actually does. 

Find out where the program differs from the model. 

Use tracing and breakpoints to check the program flow. 

Use register and memory display to check the data 

Carefully construct test cases that test the program's behavior as thoroughly as possible. 

Do not forget to test for unexpected inputs . 

The combination of an oscilloscope and test points included in the hardware allow us 
10 debug both hardware and software problem . 

Modern microcontroller may have on-chip debugging features like in-circuit emula­
lion and real-time debugging. 
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8.10 Problems 

Stimulate 

Challenge 

8.1 Explain why 0\_0 i e\c!ui\e-ORed with the input chJ.mcter tn Example, -4 t) .:-han", 
the ca e. Ie. gl 

8.~ The ,nmple progrJrn m Example, -4 ha,. il bug m m,unl) ,) that tl d, ,th.)( tr:llhj r 
'tring 100'" l·om'cII~ . If ~Oll hJ"~ a progr.lnt debugg 'r. find th' pn>t-I 'nt.utJ ,ta' , 
wou ld )Oll fix Il.lbl 
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8.3 Assume that mainO in Example 8-4 is a test jig to test the change case functio n. 
Comment on the thoroughness of the testing. What wou ld you do i;; make the testi ng 
beller and more rigorous? [b] 

8.4 The change_case fu nction in Example 8-4 does not work properly for ali alphabetic 
characters because it has a bug in il. If you have a C program debugger, find the problem 
and state how you wou ld fix il. [b] 

Reflect on Learning 

8.5 Make a lis t of debuggi ng tricks and ideas that you did not know be fore rcading this 
chapter. 

Objectives 
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Compu ters doing real jobs must input and output information. Two way to do YO are man} 
bits at a time (in parallel) and one bit at a time (in serial). In!hi chapter we will explore paral­
lel bu archi tectures and explai n how to design the interfaces berween external de\ices and the 
CPU. We wi ll discuss the differences between memory-mapped and eparate YO and learn 10 

solve YO synchron ization problems that arise belween a fast proces or and a low YO de\·ice. 
Some advanced bus ideas are covered. 

9.1 Introduction 

Figure 9-1 how a computer system with CPU. memory. La. and the 
Parallel and serial VO devices require interconnecting computer buses: thi is the \"On Seumann archilecrure_ 
an illteiface between the device and where the memory and YO interface hare the addre: . data. and control 

the bus. buse . An alternative architecture. know n as the Han-ani arrhit"cTUI? 
has separate data. addre and control buS<!' for the data and progr:un 

memory. In this architecture (Figure 9-2). the CPU can be acce<ing program LD rru-tion: and 
data memory simultaneou Iy. In earlier chapters we haye empha;.ized the CPt:. Its resource. 
and how to program it to do a panicular tu. k. We now look lO the de_ign of the re,.1 of the 
system hardware. 

Many computer applications inyolve the transfer of information. eIther 10 p.u:Ulel ,)£ in 
serial. in or Oll! of the CPU. Both parallel and erial YO require :\ hantw:lre interfa ~ bel\\ 0 

the Ollrce or destination of the infomlation and the CPU. LeI u, appf\X\ch thl' K'PIC b~ u'iog 
the top-dow n design principles coy ~red In Chapler 3. The prelimin~ pf\-.t>km '~lfi -an:>n 
is the following: 
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This is a reasonable top-level statement of the problem, and our task is to go through the 
hardware design, add ing deta ils and refining it , until we have a workable system. At our level 
of expenise we need to know more about the computer bus and about information sources and 
destinations. We must also consider the timing of infomlation transfer. The design goal is an 
in terface that is suitable for both parallel and serial VO devices wi th the parallel case described 
in detail in th is chapter. The detai ls of serial VO will be covered in Chapter 12. 

Parallel 
110 

Ports 

Serial 
110 

Ports 

NO 
Input 
Ports 

r--------------------------------------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
: Data 16 

: Addres s 
I 

: Control 
I 
I L __ _ ____________________ ___________________ ___________ _ J 

Figure 9-1 Von Neumann computer architecture. 

Parallel 
I/O 

Ports 

Senal 
I/O 

Ports 

r------------------------------- ------ -
I 

: r----, 

AID 
Input 
Ports 

External 

Data 

Address 

Control 

Buses 

Program Memory 
Data 

I 
I 
I 
I 
I 
I 
I 
I 

Data Memory 
and 110 
Data 

Address ~_+--+_I-_ _I_'-6_+-.J 
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16 

Buses I I 
I I 
I I - -------- - -------------------- _ _ _ _ ___ _________ J 

Figure 9-2 Harvard computer architecture. 
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9.2 The Computer Bus 

What is the proper place to tan the top-down design of the VO interface? In solving an} prob­
lem. begin work where you have some knowledge or expenise and progress toward the areas 
about which you need to learn more. filling in the details as you come to them. Thi is the 
essence of top-down design for hardware. Let us stan our design at the CPU and "'ork out 
toward the 1/0 devices. 

A blls is a parallel. bidirectional, 
bi nary information pathway with 
multiple sources and deslinations. 

The dora, address. and cOlllroi buses connect the CPU to memory 
and to VO devices. [n circuit diagram. the parallel wires of the bus are 
generally reduced to a si ngle line as hown in Figure 9-3a. The number 
of bit in each bus depends on the design of the sy tern. and more data 
bits means that the system can tran fer data at a higher rate: ha\iog more 
addre s bits allows more memory to be addre sed. 

(a) 

BitO 

Bit1 

Bit2 

Bit3 

Bit4 

BitS 

Bit6 

Bit? 

Multiple De s tinations 

Multiple Sources 

(b) 

8 

Figure 9-3 The computer bus. (a) Schemaltc nolal.on. (b) Bus IlOe "'ttl moltt 
destinations 
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The data bus is bidirectional and transfers infonnation (memory dala and instruc lions, VO 
dala) 10 and from the CPU. The addres bus may be bidirectional (with more Ihan one source of 
infonnation); however, because the CPU is the only source of addresse . il is mosl often unidirec­
tional. The control bus carries all other signals required 10 control the operalion of the ystem. 

There are several levels of bus design. The compol/em-Ievel blls is defined by the signals on 
the microprocessor chip. such as READ_L and WR ITE_L (we will see how Ihese signals are 
used shortly). Component-level signalS will be differenl for diffe rent manufacturers and are 
used when designing single-board computers or embedded application syslems. A syslem-Ievel 
bus is one for which more generic signals, like MEMRD_L and MEMWR_L, are defined. A 
system-level bus is often designed for use as a bockplol/e into which printed c ircuil boards are 
plugged. An example of a syslem-Ievel bus is the PCI bus defined for desklop compulers. A 
th ird Iype of bus is Ihe il/lersyslem bus, which allows different syslems 10 be con nected. A good 
example is the IEEE 488 (GPI B) instrumentation bus. In this chapter we will be concerned wi th 
the component-level bus. 

Lei us now consider the data bus in detail. Each line of the bus may have mu lt ip le sources 
and deSlinations for Ihe information, a hown in Figure 9-3b. According to our design speci­
fica tion, we must design hardware to allow multiple sources 10 exist on the bus. 

Information Sources: The Input Interface 

Sources of binary information are usually the Outpu lS of gates. I However, 
An illplll inrerfoce provides three- we cannol conneCI the OUIPUI of two gates together unless they are Ihree-
tate buffers between the source and s/{Ile' or opel/-colleclor gates. A typical three-Slate gate and its truth lable 

the data bus. are shown in Figure 9-4a; an open-drain gate appears in Figure 9-4b. As 

the truth table for the three-stale gate shows, I G_L must be asserted 
(sel to 0) for the oUlput to be active; otherwise the output is in the th ird Slate, known as high 
impedance. In this stale the oUlput cannol source or sink current to create logic one or zero. The 
beauty of Ihe three-Slate gale is thai, provided only one Ihree-stale gate is enabled at a ti me, two 
or more gate outputs can be connecled. 

A paralle l, 8-bil input interface can be construcled with eight three-state gates whose enable 
lines are tied together. This 8-bit, three-state bu ffer provides the electrical interface between a 
binary source of data, such as a set of switches, and the data bu . A Iypical device is the 
74HC244 oclal bufferll ine driver with three-Slate outputs. 

Open-drail/ or opel/-colleclor gales 
require eXlemal pull-up resislors. 

The opell -drail/ gate is often used for control signals such as requests 
for interrupts. It is rarely used in place of a three-state buffer for dala 
sources. Several open-drain gate tied to an externa l pull-up resis tor is 
call ed a wired-OR (sometimes wired-A ND) connection. The bus li ne 
is low if any of Ihe wired-OR OUIPUIS are pulled low. An MC74 LCX06 

is a typical open-drain hex inverter. 

Input Device Examples 

See Section 15-2 in Chapler 15 for examples of simple input device, Ihat can he connected 10 

a parallel. 8-bit input interface, 

I It could also be some other circuit. such as a switch. thai provide\ logiC IC\icl\ for htn'lI), I, .mel (l\ 

! These gales are also know as Trislale gale-;; Ihe term is II trademar~ of the N:lllOnal ScnllCnm.hU:lnr romp.my. NSC\, 
Invenlion revolutionized Ihe design of com pUler bu\e'i . 
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74HC244 

1G_L A Y 

0 0 0 

0 1 

0 ~ } 

(a) 

y 

High Impedance 

(b) 

Extemal 
Pull-Up 
Resistor 

Figure 9-4 Typical bus interface gates. (a) Three-state gate. (b) Open-drain gate. 
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Figure 9-5 An output interface IS a latch. 

Information Destinations: The Output Interface 

1Q 

11le int~rf3l'e ~t\\ ""n th~ data bus and a d~,rinati,'n (If ''lUtpUt de .. 
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The (11111'111 ,lIIer!ace must latch infor- latch, 3> <ho\\ n in Figure 9-:. A data bu.., Ime ","<'Iln.: 'too t" D n 

mation from Ihe data bu,. and the Q output I> usoo at the de, unau,'n (I<' Un\ ' ,n LEO J"r ,I 

e~"lllple), l'Ontrol signal. gener::uoo h~ k'glc III the l 101 r" ',I ~ 

the daw fmlll Ihe bu,. The logl~ f,'rthl> ck,,'1... and the ~n3hle on the IOpUt tnlClf ,', thre..~ 

fen., b gCllcmtL'tI In pan b) adllre", lkcoding and in p;.\J'l h~ tlllung 'Igmb. ;\., \\ \\ II 
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Table 9-1 74HC574 Truth Table 

Inputs 
Output: 

OE_L Clock D a 

L f H H 

L f L L 

L L.H.\.- X No change 

H X X Z 

Figure 9-S shows one latch of a 74HCS74 octal positive edge-triggered latch with Ihree-state 
outputs. When the clock changes from low to high. the present data input is latched . The output 
enable signal. OE_L. is low to enable the output. Table 9-1 shows the 74HCS74 truth table. 

Output Device Examples 

Section IS-3 in Chapter IS shows simple output display devices that can be used with these 
output interfaces. 

Multiple Sources and Destinations 

Several basic input buffers and output latches can provide multiple input and output device 
interfaces. Now consider how to select one source or destination for an information transfer. 
Let us refine the original problem specification to add the next requirement: 

Design the hardware interface that will use a computer bus to transfer infomlation from multi­
ple sources to the CPU. and from the CPU to multiple destinations. 

The inrer!ace 1I/l1St provide the abilityJor the CPU to select one-aI-many ,O/lrces or 
destinations. 

Address decoding allows us to seleci 
which latch is the destination for, or 
which three-state gale is the source 
of. the information. 

Addressing and address decoding can select one-out-of-many infor­
mation sources and destinations. Figure 9-6 shows Ihat a 74HC 139 dual 
2- to 4-line decoder decodes two address bits. ADR_ I and ADR_O. 
One decoder provides the enable lines for the three-\late buffers in the 
input interface. ensuring that only one is active;1I a time. For the output 
devices, the address decoder selects which of the latches is Ihe destina­

tion . There is no electrical' reason preventing information from being transfer to 1110re than 
one destination at a time. Usually thi is not done, however. and the addr.", decoder for the 
destination selects only one destination . 

In the VO interface shown in Figure 9-6, address bits A I and AO sclcct which of Ihe four 
input or output devices are to be used. Two control signal s. WRITE_L and READ_ L. arc 
hown also. The CPU generates these to provide timing information for the data transfer in and 

out of the CPU. When READ_L is asserted. the addressed three-state gale is c lwhlcd to place 
the source data on the data bus. Similarly. when WRITE_L is asserted. Ihc CPU OUlput data on 
the data bus is latched into the output latches. 

J Except device loading and fan-out 

ADR_ 1 

ADR_O 

WRITE_L 

Output Address Decoder 

74HC139 
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2-lIne·to- ADR1.ADRO = 00 
4-lme 00 \,...:.=:..:.::=.::......:::.~----------------, 

A 1 Decoder 01 
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01 
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02 b---------, 
11 

T~~~m_*--_;~---J-----~-L-----_,-~-----r_~--~~~r_~ 
CPU 

ADR_1 

ADR_O 

READ_L 

Timing Signals 

Input Address Decoder 

74HC139 
2-lIne-to- ADR 1 :ADRO = 00 

4-Une 00 
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01 
AO 10 

02 
DE 11 

03 

Figure 9-6 Address decoding for sources and destinations. 
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I~ Write Cycle 

CPU Clock 

Clock State (ref.) f- SO + S1 + S2 + S3 ---1 

Bus Clock \ I jr------,\L--_ 
I 

Address 
__________ ~~~------------A-dd-r-e~ss-f-ro-m--c-p-U-V-a-li-d---------------,~L ______ _ 

I I I 

-'-------------,\L--_--lj.------

Data -----------if----------( Data from CPU Valid 

A 

Figure 9-7 Typical CPU write cycle. 

Data must be taken from the bus or The CPU, as the bu master. cOnlrols the timing of information trans-
fer. Consider transferring data from a CPU regi ster to an output data 

placed onto the bus at the correct latch. The CPU's timing is cOnlrolled by its clock. and this output opera-
time. The CPU controls thi s timing. tion is called a write cycle. Figure 9-7 shows a typical CPU wri te cyclc. 

TheCPU places the address on the address bus at point A. The data bits 
are supplied at point B, and the CPU asserl WRITE_L a shorltime later at poinl C. This signal 
creates the latch clock to latch the data althe correct lime. Depending on both the type of latch 
and when WRITE_L is asserted, the data may be captured on the falling or rising edge. 

Transferring information from an external source to the CPU is called 

The CPU provides READ_L and a read cycle. The CPU reads the data from Ihc input dcvice. and a typi-
WRITE_L control signals to define ca l CPU read cycle is shown in Figure 9-8. Again. the PU supplie. an 
when read or write actions are tak- address al point A. The control signal READ_L i, a"erlcd at poi nl B to 
ing place. signa llhe external device lhatlhe CPU i, ready to 1l1ke Ihe dHta from the 

dma bus. which il does al point D. READ_L t, used wi th the dccoded 
address signal to enable the three-'tatc buffc" ;11 the correct lime for 

the correCI device. An imporlanl point 10 menti on now i, that the P rend, the dma bu~ at 
poinl D regardless of whelher the input device has il ready. If it i, not read). SOI11C form of VO 

9.3 1/0 Addressing 197 

I~ Read Cycle ~ I 
CPU Clock 

f- SO + S1 ·I~ S2 + S3---1 Clock State (ref.) 

Bus Clock \ I I \ 
I 

Address t Address from CPU Valid ~ 
I 

\L---_-----' 
I 

Data ------------AI----------------~-B-{ ~ •• '0 "" V." 

Figure 9-8 Typical CPU read cycle. 

synchronization is needed. \i e \I ill as ume. for the moment. that the data is there and del.l~ 
discu sion on this problem until eelion 9.7. 

Figure 9-6 sho\\'s the addition of READ_L and WRITE_L control signal> 10 the inpul and 
output interfa es. In each case. READ_L and WR1TE_L control the output enable OE_L input 
on the address decoder. Thu • . the three-state enable and the latch ckx:k signal> = not ~'eneJ 
until the correct addre s is on the address bus. D the COrre.:1 time in me "Ole or re:1d ~~ - e 
has am\ed. Notice that the address for both the tnpUI and output de\ i es ~an be the -.ll1 • nu, 
i possible because the CP does n t read and \\ rile stmult;lJleousl~. ant! the READ_L .md 
WR1TE_L comrol ignals ensure thaI onl) one device is a 11\e. 

9.3 I/O Addressing 

I/O addrc,,~c"" Illay he either mt'mon' 

mnpl'l'd or \(',mrcJlc' fmm the: 1nt.'!11-

ory'pnce. 

The address bus 'ho\\ n tn Figure 'l-l "dn:,>Jc'(\ b~ both ntetlli~ :u t! 1 
t" sdl'l't :1 parli<:ubr men",!) Ie -at,,'n l'r 1 0 d '\ i'''' \\ It 'n an II ' 
tlon !'Clrie\e, data 1'(\'01 memo!), th' .tddre , fn'm "hi - th' Jal 
C0111e b rbero ,>n the ,Iddres. bit, I" Ill' (Pl \lth,'u,:h \\ ' 
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OxOOOO OxOOOO 
1024 
1/0 

Addresses 
Ox03FF 
Ox0400 65.536 

64.512 
Memory 

Addresses 
Memory 

Addresses 

OxFFFF OxFFFF 

(a) 

Figure 9-9 (a) Memory-mapped 110. (b) Separate 110. 

OxOOO 

Ox3FF 

(b) 

1024 
I/O 

Addresses 

yet discussed bow the memory works. address decoders. mucb like those shown in Figure 9-6. 
are used in tbe memory circuits. The question that arises now is. "1 f the same address bus is 
used for both memory and 1/0. bow sbould the bardware be designed to differentiate between 
memory reads and writes and 1/0 reads and wri tes?" Tbere are two solutions to tbis problem: 
lIIellloly-lIIapped I/O and isolated or separate I/O. Tbese two choices affect bow our programs 
access tbe 1/0 devices. In memory-mapped 1/0. any instruction tbat reads or writes memory 
can also read or write I/O. For isolated I/O. the CPU designers must include separate input and 
ou tput instructions. 

Memory-Mapped lID 

Tbe simplest I/O addressing cherne' is called lIIemory-mapped I/O. 
MeIllOlY-III(/(iped I/O may require Address decoders work equall y wel l decoding memory or I/O addres es. 
that the full address bus be decoded. and tbe control signals for timing the memory data transfers are avail-
but any memory reference in truc- able. Tbus. the CPU designer doe not have to add any special capabi l-
tion can access I/O data. ities to the CPU. The entire address space is used by botb memory and 

I/O addresses. This i shown in Figure 9-9a. 
Tbis design was popular in early minicomputers. sucb as tbe Digital 

Equipment Corporation PDP-B. and many microcontrollers use it today. It offers tbe advantage 
of a simpler CPU hardware design and all ows any memory reference instruction to access any 
I/O device. There are two disadvantages. First. as shown in Figure 9-9a. 1/0 devices reduce the 
amount of memory available for application programs. Second . the I/O address decoders must 
decode the full address bus to avoid conn ict with memory addresses. Thi s makes them more 
expensive than decoder operating on fewer bils. 

~ Frorn the poilU of view of the CPU designer. 
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Isolated or Separate lID 

The second method to resolve the dual use of the address bus is called isolated or separate I/O. 
Here. two maps, as shown in Figure 9-9b. represent the memory and VO spaces. Notice that 
the I/O map is smaller than the memory map because most systems need far fewer I/O devices 
than memory. Fewer bits need to be decoded, resulting in less expensive address decoders than 
those needed for memory-mapped 110. 

In a separate 110 design, cheaper 
address decoders may be used. but 
an additional control signal must be 
provided by the CPU. 

Separate I/O requires that the CPU be enhanced with additional 
hardware features. The address bus is used for both memory and I/O 
addresses, and because of this, the CPU must generate an additional con­
trol signal. This signal, called IO/M_L, prevents memory and I/O from 
trying to place data on the bus simultaneously. This signal is high for VO 
use and low for memory, 

The second change to the CPU hardware design is in the instruction 
decoder and sequence controller. Computers with separate I/O. and consequently the IOIM_L 
control signal. have lIO instructions that are separate from memory reference instructions. An 
easy way to decide if your computer has separate or memory-mapped 110 i to look for separate 
input and output instructions. 

Figures 9-10 and 9-11. respectively, show lIO interfaces for memory-mapped lIO and ep­
arate I/O. Compare Figures 9-10 and 9-6 and notice that they are logically the same except the 
ADR_OK_L signals are ANDed with READ_L and WRITE_L ignals external to the addre s 
decoder. This allows a single address decoder to be used for both reading and writing. 

Figure 9-11 shows the additional logic required in a separate VO interface. The 10IM_Lcon­
trol signal isANDed with READ_L and WRlTE_L to create 10_READ_L and 10_\\'RITE_L 
In some processors the CPU generates 10_READ_L and 10_ WRlTE_L An alternative to the 
design shown in Figure 9-11 is to use 101M_L a an enable input to the addre decoder. The 
object is to qualify the three-state enable and the latch clock so that they are assened ani} when 
lIO addresses are present. 

Figure 9-6 shows separate address decoders for each of the input and output de\ices. Thi 
configuration mayor may not exist. depending on the way the s)' tern is put together. If the 

Data Bus ~------------fc--------,------, 

Address _-,~'_6~ 
Bus 

Address 
Decoder 

READ_L -------------------~ 

WRITE_L ------------------------<1 

Figure 9-10 I/O interface for memory-mapped VO. 
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Figure 9-11 110 intertace for separate 110 . 
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Figure 9-12 Using control signals to qualify the address decoder. 

OE 

logic circuits are together on one printed circuit board, say for a microcomroller application, 
a single decoder with multiple outputs may be u ed. On the other hand, in a system like a per­
sonal computer, where I/O interfaces may be on separate printed circuit boards that plug into 
the motherboard, each device must use a separate address decoder. See Example 9- 1. 

Example 9-1 Address Decoding 

Show how to u e READ_L and 101M_L to enable the output of a 74LS 139 2-line-to-4-line 
decoder (Figure 9-6) for reading an input device. 

Solution 
Sec Figure 9-12. 
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Address Decoding 

We have seen how address decoding can select a panicular device. The example of Figure 
9-6 shows two address bits selecting one of four devices. but more bits are needed to decode 
addresses for real I/O devices. A disadvantage of the memory-mapped scheme is that more 
address bits must be decoded to select uniquely either memory or I/O. This i~. of course. a more 
expensive address decoder. In practical systems. the hardware de igner chooses to decode only 
as many address bits as the sy tem requires. 

Full Address Decoding 

In a system wi th many I/O devices. the designer must decode enough bits to select uniquel) 
each device. At the upper limi!. allowing the maximum number of I/O devices is/till address 
decodil/g. 

A typical address decoder is the 74HC 138 (l-of-8 decoder/demultiplexer) shown in 
Figure 9-13. The truth table (Table 9-2) shows that the outputs are assened low when the enable 
input E I is high and both E2_L and E3_L are low. Address bits can be used as enable inputs. 
and decoders can be cascaded as shown in Figure 9-I-lb 10 decode the 10-bit addre Ox3E. 

Discrete logic circuits can decode addresse . Figure 9-15 show a I O-bit decoder for addres 
Ox3E8; it uses a 7-lHC30 8-input NAND. a 74HC27 triple 3-input NOR. and one gale of a 
74 HC04 hex invener. The inverter could be eliminated if an active-high decoder output were 
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AO 

A2 00 
A1 74HC138 01 
AO 1-01-8 02 

Decoder ~ 
E1 Demultiplexer 05 
E2 06 
E3 07 

Table 9-2 Truth Table for the 74HC138 
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E1 E2_L E3_L A2 A1 AO 

L X X X X X 

X H X X X X 

X X H X X X 

H L L L L L 

H L L L L H 

H L L L II L 

II L L L H H 

II L L H L 1 
II L L II L H 

II L L II H L 

II L II II 1\ 

OO_L 

H 

H 

H 

L 

H 

H 

H 

H 

H 

II 

1\ 

01_L 

H 

H 

H 

H 

L 

H 

H 

H 

H 

H 

H 

Figure 9-13 The 74HC138 1-of-8 
decoder/demultiplexer. 
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allowed. NOlice lhat lhere are fewer chips in Figure 9-14b lhan in Figure 9- 15 if the inverter 
is needed for an active- low decoder OUlpU!. otice also that the discrete decoder provides 
decoding for on ly one address where the 74HC I38 decoders provide other addresses. See 
Examples 9-2 through 9-4 and Table 9-3. which follows Example 9-3. Your design can also use 
a comb ination of discrete logic and decoders. 

1<2 
A1 
AO 

Example 9-2 Design a Full Address Decoder to Decode the 10-Bit 

Address Ox3E8 

Solution 
Stan ing with the most significant bit. assign address bits to decoder inputs. For the most 
significant decoder. select the appropriate output to serve as an enable input for the next 
decoder in the ca cade. Apply the remaining address bits to decoder data and enable inputs 
and lhen choose the correct output for the address required. See Figure 9- 14 for a possible 

solution. 

74HC138 
1-01-8 

Decoder 

I A9 1A81A7 1A6 1ASIA41 A3 1A2 1A11AOI 

00 
01 
02 
03 
04 

o 1 0 0 0 = Ox3E8 

(a) 

VOO 

AS 
A3 
A1 

1<2 
A1 74HC138 
AO 1-01-8 

00 
01 
02 
03 

E1 Demultiplexer 05 Decoder 04 
E2 06 E1 Demultiplexer 05 
E3 07 E2 06 

AD E3 07 

(b) 

Figure 9-14 Fulll0-bit address decoder. (a) Ox3E8. (b) Cascaded 74HC138 decoders. 
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A9=1 
A8=1 
A7=1 
A6=1 
AS=1 

A1=O 

AO=O 

Figure 9-15 Discrete logic decoder. 

113 -74HC27 
Triple 3-lnput 

NOR 

Example 9-3 Multiple Addresses Decoded 

116 - 74HC04 
Hex Inverter 

Find the address decoded for each of the outputs of the second 7.JLS 138 decoder in Figure 9-1~b. 

Solution 

The address bits to the decoder are a follows: 

Fixed inputs =A9 = I , AS = I. A7 = I , A6 = I . A4 = O. A2 = O. AO = 0 
Variable inputs = AS. A3. A I 

See Table 9-3 . 

Table 9-3 74HC138 Decoded Addresses 

A9 AS A7 A6 AS A4 A3 A2 Al AO Address 

0 0 0 0 0 0 0,3(1) 

0 0 0 0 0 o 3C~ 
0 0 0 0 0,3(8 

0 0 t 0 I 0 O.3CA 

0 0 0 0 0 O,3EO 

° 0 ° I 0 O,3E~ 

0 0 0 0 Ox3E: 
0 ° 0 O"!!.,, 

Decoder output 

OO_L 

Ot_L 
O~_L 

03_L 
O-l_L 

05_.L 
Ot>L 
O-_L 
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Example 9-4 Other Addresses Decoded 

For the addrc~s decoder in Figure 9-14b. show how to connect the first decoder 10 the second 
and "ale which oUlpulwili be as>erled for Ihe address Ox 142. Assume Ihat Ihe address bils arc 

input as ~hown. 

Solution 
The 02_L OUlpul fromlhc om decoder will be connecled 10 Ihe E2_L inpul of Ihe second. The 
OI_L OUIPUI of Ihe second decoder will be asserted for Ihe required address. 

Incomplete Address Decoding 

When a syslem does nOlneed all oflhe 110 address space, a designer can reduce hardware COSIS 
by nOI fully decoding Ihe addresses. There are IWO methods used. reduced address decoding 

and Iiuenr seleel decoding. 

I . Reduced address decoding: In reduced address decoding, 

Redllced mlt/ren decoding rcsult~ 

in Ic~:, complex decoders. but lhe 
decoded signal i::-. asscncd for more 

Ihe higher order address bils are decoded and Ihe lower order bits are 
Ireated as don'l cares. Figure 9-16 shows a 74HC 138 decoding address 

bils A9-A-I and a 74HC30 8-inpul NAND gate decoding bits A9-A2. 

than one address. 

A6 
AS 
A4 

A9 
A8 
A7 

A9=1 
A8=1 
A7=1 
A6=O 
AS=O 
A4=1 
A3=1 
A2=1 

A2 
A1 
AO 

Each of Ihe decoder outpullines in Figure 9-16a responds 10 the 

addresses shown in Table 9-4. By nol decoding Ihe lower four bi ts of 
Ihe address, each decoder OUIPUI line is asserted for 16 I/O addresses. 

00 00 L 
74HC138 01 01-L 

1-01-8 02 02-L 
03 03-L 

Decoder 04 04-L 
E1 Demultiplexer 05 05-L 

06-L E2 
E3 

(a) 

--Da>---l 74HC30 
8-lnput 
NAND 

(b) 

06 
07 07=L 

Figure 9-16 Reduced I/O address decoding. (a) 74HC138 decoder. (b) 74HC30 NAND 
gate decoder. 
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2. Linear sel ect decoding: In very small syslems with few lIO device. each bit in the 
address bus can selecl a device. Consider a system where there are only six lIO devices and a 

iQ·billlO address, as shown in Figure 9-17. If the lIO select ignal is active low. each of tbe 
six devices can be chosen by using the addresses given in Table 9-5. You mu t be carefulLO 
not generale addresses Ihat result in more than one device i selected. For the example given 
in Figure 9-17, an address such as Ox330 would select bOlh devices 2 and 3. 

Table 9-4 Reduced Address Decoding for Figure 9-16a 

Address Bits 

A9 AS A7 A6 AS A4 A3A2A1 AO 

Decoder Inputs 
Not Used by Valid Hex Decoder 

E3 E2_L E1_L A2 A1 AO the Decoder Addresses Output 

0 0 0 ()()()()'O I11I 200 to 20F OO_L 
0 0 ()()()() 101111 2101021F OI_L 
0 0 0 ()()()()IO I1II :noto 22F O~_L 

0 I ()()()()'O II11 230 lo23F 03_L 
0 0 0 ()()()(),olill 240 '0 24F ().I_L 
0 0 ()()()()'olill 250 to:b""F 05_L 
0 ()()()()[OIIII 260 (0 26F 06_L 

0 ()()()()lollll 270 [0 27F 07_L 

Figure 9-17 Linear select addressing. 
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Table 9-5 linear Select Addressing 

Address Bits 

A9 AS A7 A6 AS A4 A3 A2 A1 AO I/O Address 

DcviccO I X X X X IFO - tFF 

Device I 0 X X X X 2FO-2FF 

Dc\ ice 2 X X X X 3FO- 3FF 

Dc\icc 3 X X X X 3BO- 3BF 

Device 4 X X X X 3DO-3DF 

Device 5 X X X X 3EO- 3EF 

Harvard Architecture Addressing 

In memory and I/O address ing. the Harvard architecture (Figure 9-2) is simi lar to the von 
cumann architectu re just described. Address decoding is needed to select the I/O device 

or the memory location. and timing signals are needed to latch the data at the correct time 
for input and output. The difference in the two architecture is that the Harvard archi tecture 
has two completely separate buses for data. address. and control. The data and address buses 
can be customized to the number of bits needed. depending on the two different memory 
requirement. Separate control signals are required for reading and writing data and program 
memory. This allows the performance to be greatly enhanced and is used often in digital signal 

processors. 

Exercise 9-1 
Does your microcontroller or microprocessor use memory-mapped or separate I/O? 

9.4 More Bus Ideas 

Multiplexed Bus 

Some microcontrollers have a 11111/_ Many processors have too few pins to allow all the desired signals to be 
tip/exed extenw/ hilS to reduce Ihe available. although the number of pins on integrated circuits has been 

numberof pin~ needed on the chip for 
accessing extemal1JO and memory. 

tead ily increasing. A solution to this problem is to time-mu lti plex bus 
and control signals. Time multiplexing means that the use of any pin 
may change as a function of time. A common example is a multiplexed 
address bus. Consider a 16-bit address where the CPU is designed to 

provide only 8 bits at a time. a savings of eight pins that can be used for other functions. Figure 
9-18a i a timing diagram showing how the CPU provides the address information. The higher 
eight bits. ADR 15-ADR8. appear first (at A) followed by the lower eight bits (AD R7-ADRO) 
at B. The CPU provides a control signal , called Address_Strobe (AS) or Address_Larch_Enable 
(ALE), to latch the upper eight bits of Ihe address as hown in Figure 9-18b. 
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A B 

I I 
CPU Multiplexed ---v ADR15 _ ADR8 X ADR7 _ ADRO v---

Address Bus --.l\ . '-. _________ "--

Address Strobe 

Latch Output ___ x ADR15-ADR8 

(a) 

16 
Address ADR7-ADRO 

C PU 

Address 
Strobe 

D a 
Latch 

f--------{> Clock 

(b) 

Figure 9-1 B Multiplexed address bus. (a) Bus timing. (b) Bus demultiplexer. 

ADR15 - ADR8 

Many modem microcontrollers use the multiplexed pin idea for more than jusl multiplexing 
an address bus. The microcontrollers have many internal function that share I/O pin b) mul­
tiplexing their use depending on what function is enabled. Chapter 15 ( ection 1--41 hows 
how to use these 110 pins to create external address. data. and control bu.es. 

Bidirectional Bus Transceiver 

The data bus is bidirectional because data mu t flow into and out of the CPU. In rna", ,\ ,tems. 
a bidirectional data bus buffer. or bus transceiver. such as that sholl n in Figure Q- i9.-i. u,ed 
between the CPU and the rest of the system. The OE_L mu t be k)\, to enable the three-state 
buffers. and DI R controls the direction of data flo\\,. The bus transceiver provide> additional 
cun-ent to drive morc devices on the dma bu . . 

Synchronous and Asynchronous Buses 

5YIIClll'OII0IIS and a .\I·IIc1mll/OIIS refer to bus timing protocols that define h,)\\ and \\ hen de,ice, 
nre to respond to duta transfer>. In ection 9 . ~. the READ_L and WRITE_L comn,1 "~nab 
show ho\\ the CPU informs e;l,tcmal devices that data are either n<,\\ 'I' ailable ,)n the Jat; bu" 
in an output operation. or about to be tuken. in an input opemtlon. The PL ',)mrl te, the bu, 
transfer in one C) cie of the bus clock. anti allM, Ices ml"t res1"nd \\ IIlun thi' tllne Tn" " 
an e,ample of a ",vllelmll/Oll,' bus protocol. The c1lX'k ma) (\r lila) nl'! ~ p.1n "I' the 'I.:nah 
included in the control bus. The problem \\ ilh the » nchn)n\lu, bt" I, that th "k', t~u,n-) 
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L L 

L 

H 

B 

Figure 9-19 One section of 74AC245 octal bus transceiver. 

H 

X 

Output 

Bus B data to Bus A 

Bus A data to Bus B 

Bus A isolated from Bus B 

must be based on the slowest device in the system. In a system with a mixture of devices that 
respond in different times, we would li ke the design to respond to fast devices quickly and to 
slow the CPU down for the slower device. A solution lO this problem is the handshaking lID. 
This is an aSYllchrollolls bus protocol and addi tional control signals are requ ired. We discuss 
the e in more detail in Section 9.7. 

Bus Masters and Slaves 

Bus Arbitration 

Control in buses i. designated by reference to bus masters and slaves. In the computer system 
, hown in Figure 9-1, the CPU i the only bus master. All memory. VO imerfaces, and other 
device on the bu e are slave . They take their orders fro m the CPU master. Figure 9-20 shows 
a scheme called directlllelllorl' access (DMA). Suppose we must retrieve a block of data from 
a fast VO device. In the nom;al, programmed VO sequence. the data must be input and then 
lOred in memory. usi ng several program steps and clock cycles. If the system includes a OMA 

controller. the block of data can be transferred directly to memory, bypassi ng the CPU alto­
gether. Comrol signals. such as Hold and Hold_Ackllowledge in Intel systems and Blls_Reqllest 
and Blls_Grallt in Freescale systems, a llow the second bus master, the OMA controller. lO sus­
pend the operation of the CPU. The DMA controller generates addresses and control signals 
lO transfer the data from the 110 device to the memory. 

Bus arbitra ti on is required in systems wi th mulLiple (more than two) 
Blls arbitratioll is needed if more bus masters when more than one master wants to control the bus at the 
than one bu master requests the bus same time. In advanced and powerfu l proces. ors such as the Freescale 
at the same time. ColdFire family and the Intel Pentium processors. control signals added 

to the control bus allow multiple processor to share bus resources. Serial 
bu imerfaces such as the imer-integrated circuit (PC) and controller area network (CA N) 
buses use other bu arbitration schemes. See Chapter 12 for a description of these bus arbitra­

tion schemes. 

Control 

Parallel 
110 

Ports 

Serial 
110 

Ports 

AID 
Input 
Ports 

9.5 Microcontroller 1/0 

Figure 9-20 Using multiple bus masters for direct memory access. 
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Additional Bus Control Signals 

We have discussed many of the comrol signals generated by the CPU to help with the timing 
of reading and writing data. You may find some of the following ignals as well. 

Clock: Some systems provide the CPU clock as pan of the control bu . 

Interrupt_Request and Interrupt_Acknowledge: The e signals activate the intenupt proce~ ing 
of the CPU. Interrupts will be discu sed in detail in Chapter 10. 

Reset: The CPU RESET is ometimes provided as a bus ignal to reset switChing circuit, in 
liD devices. 

9.5 Microcontrolier liD 

Modern microcomrollers package into a single chip a variet) of lIO de\ ice>. such as analog­
to-digital converters. timers. and parallel and serial input and output interfaces. Figure 9-21 
shows a Flexis microcontroller from Freescale Senlicondu tor. Like man~ 11\, 'rocontn)\ler;. 
the Flexis contains liD device that must connect to the outside \\orld. In this CJ...' • there are 
178 lIO functions that need a pin. far too man) for reasonable-,ize lC package, lthe large't 
Flexis package ha, 80 pins). The Free cale de igners hme cho,en to multirk'\ UO fun,'u,)n, 
onto the port liD pin, (Table 9-6). 

Because parallel und serial liD are built inw the microcontroller tbelf. embeddeJ '~'te' 1 

designers do not have to design the input and output intert'ace, ,-""ered in the rre",Jing 
tions. and connecting the microcontroller to e'\tcmal dc\ ice, " much ea,ier. In Chart r 15 
we will learn 11l0f\.~ ahout interfacing single-I.'h1p mil·n:lComrr~lkr..:. t\) e'tenul J", i~"', '-lk-h ,,-, 

$\\ itches. LEOs. and expanding par.tlld UO tcchmque,. 
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BKGD 

CPU Core 
and System 

Control 
(HCS080r 

Cold Fire V1) 

Program 
Memory 
(Flash) 

Data 
Memory 
(RAM) 

Figure 9-21 The Freescale Flexis microcontroller. 

Table 9-6 lID Functions Multiplexed on Port A 

Pin Multiplexed Pin Functions 

PonA Bil·O Keyboard Inlcrru pt I. Bi l-O limer I .ChO N O ChO 

Pon A Bit-! Keyboard hllcrruPI I . Bit- I Timer 2. eh 0 N O Ch I 

Pon A Bil-2 Keyboard Interrupt I. BII-2 IIC I.SOA NOCh! 

Pon A Bil-3 Keyboard IflIcrrupt l. Bil-3 IIC I. SCL NOCh) 

4 Pon A Bil-4 Background Debug Mode Selcct Rc\cl. L 

5 PonA SII-5 Interrupt Rcquc\, Timer 1. clock NOChK 

6 PonA BII-6 limer I. Ch 2 

PonA Bil-7 Timer 2. eh 2 NDCh9 

Analog COmptlr:Jlor 1 + 
Anr1 log Comparator 1-

Analog Compamtor lOut 
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Exercise 9-2 

Make a list of the bidirectional data pons and any intemal I/O features present in your 
microcontroller. 

9.6 More liD Ideas 

Buffered I/O 

Data Buffering 

The term 110 buffering refers both to the temporary storage of data between the lIO device 
and the CPU (data buffering ) and to the conversion between different electrical characteristics 
found in CPUs, data buses, and I/O devices (electrollic buffering). 

Data buffe rillg allows a mismatch 
in the operating speeds of I/O and 
the CPU. 

Data buffering is the storage of data by the lIO device either within the 
I/O interface or in memory. Figure 9-22 shows a universal asynchro­
nous receiver/transmitter (UART) that i used in serial communications. 
Serial data bytes are sent by the microcontroller by writing them to the 
transmit data buffer. If the transmit data parallel inlserial out shift regis­

ter has completed sending the last byte, the next byte is transferred in parallel from the buffer 
register to the shift register. The microcontroller may then write another byte to the transmit 
data buffer. A status bit, called Trallsmit Data Register Empty (TDRE) may be monitored by 
the microcontroller program to determine when it is safe to output new data. 

On the receiving side. as soon as all serial data in bits have been received and shifted into 
the serial in/parallel out shift register, they are transferred in parallel to the received data buffer. 
Another serial data byte may then stan. This gives the microcontroller Lime to process the last 
data byte while a new one is being hifted in. A Receil'ed Data Register Full (RDRF) starus bit 
may be used by the microcontroller to tell when another byte has been received. We will learn 
more about the serial lIO interface in Chapter 12. 

Electronic Buffering 

Electrollic bl!tJerillg provides voltages and currents appropriate for the devices in use. For e.~ample. 
the logic levels for CMOS and TTL devices are different. and TTUCI\IO and CMO !TTL buf­
fers provide an electronic translation between the two different level . We will see another example 
of electronic buffering when we discu s analog-ta-digital com'ersion in Chapters 13 and 15. 

9.7 liD Software 

I/O oft w"re has an illitiali:mioll part. 
:1 dOla illflll tlollll'lIl pan. and must be 
JyllC'I,,"'(m ;~ed with the 110 device. 

There are three major pans in your VO soft\\ are. First is an illiri"lbuI<>n 
pan to , et up the function of the port.' and the direction of datl 11, \\ . 

ccond. there are data illr"t alld (llItl'lII section ' that stmpl~ read fn m 
or write to the appropriate VO regbter There is a third element. n;m t_ 
soJtmll"t' ~Yllc"roli:ClIi,,". VO ,oft\\ are mu<t ,ynchn.'nile the reaJmg 
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Clock 

Transmit Data 
Register Empty 

UART 
--------------------------, 
I I 
I I 

: Transmit Data Register : 
I I 

: TxD : 
I I 

Data Bus tolfrom ...... -+-+-4---!---< 
Microcontroller #1 

Received Data 
Register Full 

RxD 

Receive Data Register 
Gnd 

Figure 9-22 Input and ou put data buffering. 

Serial Data Out 

Serial Data In 

and writing of the data with the timing requirements of the lIO device. Typically, microcon­
trollers are much faster than the lIO devices they serve and must be synchroni zed by using soft­
ware and/or hardware techniques. Hardware handshaking techniques for the microcontroller 
are discussed next, and there are two software 1/0 synchronization methods . In Chapter lOwe 
wi ll discuss the interrupts that are used for lIO synchroni zation. 

liD Synchronization 

lIO operations must be sYlichrollized 
with the CPU. 

The external lJO device and the CPU must be synchroni zed in three itua­
tions. First, and most common, the CPU may be faster than the 1/0 device. 
The design of the interface in Section 9.3 assumes that the output device 
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(for a CPU write cycle) is ready to receive the data from the CPU by point D in Figure 9-7. For 
a read cycle, the input device must have placed the data on the bus by point D in Figure 9-8. 
When these timing requirements are not met, software or hardware must synchronize the fast 
CPU and the slow 1/0. Another synchronization problem occurs when the lIO device needs to 
transfer data at unpredictable intervals. For example, a CPU that has started an analog-tn-digital 
conversion may have to wait some time for the conversion to be completed before reading the 
data. A third problem occurs when the lIO device is faster than the CPU, although this is rare. 
The soft ware and hardware methods shown here can solve the first two problems, although 
unpredictable transfer times are bener synchronized by using interrupts, which we will cover 
in Chapter 10. The third problem is often solved with a technique called direct memory access 
CDMA ). which avoids the CPU altogether. DMA data transfer was shown in Figure 9-20. 

Real-Time Synchronization 

Real-time synchronizatioll uses a 
software timing loop. 

Real-time synchronization uses a software delay to match the timing 
requirements of the software and hardware. For example. consider out­
putting characters to a parallel pon at a rate no faster than 1000 charac-

Poll ed 110 

ters per second . if we assume that negligible time is spent in getting and 
outputting each character. a delay of one millisecond is required after each output operation. 
This could be done with a pair of subroutines: one gets and outputs the characters. and one 
delays a millisecond before returning. 

Real-time ynchronization has its problems. [t is dependent on the CPU's clock frequency. 
and it usually has some overhead cycles that cause errors. with the result that the timing is not 
exact. Thus. depending on the requirements of the application. software timing loop may not 
be accurate enough. In Chapter 14 we will see how to use the microcontroller timer sy tern to 
generate highly accurate tinung delays. These are far better than software delays. although they 
also depend on the clock frequency. 

Polled lIO software uses additional 110 bits as stalUS bits for 110 devices. 
Polled 110 allows the CPU to do other A device receiving data from the microcontroller via Pon A could use 
things while it is wai ting for the VO Pon C, bit-O as 3 status bit. PTCD-O will be assened by the external 
device to become ready. device when it is ready for new data and deas ened when it i not. 

Figure 9-23a diagrams the hardware used. Obviously. hardware logi i 
required in the external device to assen and deassen this bit. The polling oftware monitors 
the status bit and outputs data only when the external device is ready. Example 9-5 shows a 
program segment that polls Pon C. bit-O to determine when it is afe to output more dam to 
PortA. 

Polled input software (and hardware) is similar to polled output software. When the soft­
ware is ready to input new data from the external input de"ice. it check the ROY _ll signal 
on PTCD- I and waits until it is asserted by the external de"ice before inputting the datu. 
The pol ling software can be doing other things while it is waiting for the external de' ice to 
supply new data . Figure 9-23b shows the signals needed for input and output polling. and 
Example 9-5 gives a sample of program code. 

At this point you might reasonably ask. " In the polled input cenario. ho\\ does the e'tc!ffiaJ 
device know whcnthe CPU has taken its data?" The RDY _1 I bit i infornMlWnftnm the e,ter­
nal devicc 10 the microcontroller. There is nO cOm!sponding liming infornlation g\)ing in the 
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other direction to let the external device know that the microcontro ller has taken the current 
data and that it is safe to supply new. The solution to this problem can take two forms. First, 
RDY _IN could activate an illferrupt bit in Pon C and generate an interrupt to ensure the CPU 
takes the data in a limely fa hion. We will discu s th is procedure more completely in Chapter 
10. Second, halldslwkillg 110 can be used as di scussed in the neXI section . 

Example 9-5 Using a Status Bit for Output and Input Polling 

~ Program example showing how to use a status bit 
~ to determine when an output device is ready to 
* accept data and when an input device has data available 

~ Define the microcontroller I/O ports used . 

#define PTAO ( - (volatile unsigned char - ) OxOOOO) 
,define PTBO (- (volatile unsigned char ' ) OxOO01) 
#define PTCO (* (volatile unsig ned char . ) Ox0004 ) 
/* Define the status bits on Po rt C */ 
Idefine ROY_OUT 1 / . bi to' / 

Idefine ROY_IN 2 /* bit 1 */ 

void main (void) 
unsigned char out_data , in_data : 
/* Initialize the microcontroller ' $ 1/0 ~/ 

/+ . . . * / 
/* Output data to the external output device ~/ 

/* Wait until status bit Port J , bit 0 is a 1 +/ 

while ( (PTCO & ROY_OUT) ~~ 0) ( 

) 

/- Now output the data ' / 
PTAO out_data ; 

/* * / 

/ ' Wait for data to be ready from the external 
~ input device ~ / 

while ( (PTCO & ROY_IN) 0) ( 

/* Data is there , read it . / 
in data ~ PTBO ; 

1- Port 

/* Port 

/* Port 

A , / 

B * / 
C +/ 
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Data 
Out 

8 

PTAD[7:0] 

PortA 
External 
Output 
Device 

Port B Data 
In External 8 

PTBD[7:0] Input 
Device 

RDY_OUT 
Ready_For_ 

PTCD-O New_Data 

RDY_IN 
New Data PTCD-1 
Ready 

-

PortC PortC 

(a) (b) 

Figure 9-23 (a) Output polling . (b) Input polling. 

Microcontroller Internal Polled 110 

Handshaking liD 

Most microcontro ller internal I/O device have starns bit . called flags. that allo\\ polling 
or interrupt I/O synchronization. For example. when the UART transmiller hown in Figure 
9-22 is being used. one musl not output an) new data before the last data byte has been sem. 
The UART seLS a transmit dow register empty flag (TDRE) \\hen all bit>. ha\'e cleared the 
transmit data register. Polling oftware should monitor this nag to tell \\ hen it can output 
new data. 

fiwil/s/wk.ing or floH' cOllfroi a llow~ 

Ihe source device 10 send data onl y 

Handshaking I/O can soh'e the probkm of the ,ouree de, Ice not kno\\ ing 
\\ hen the de>lination device i ready to recei", data. Hand,holking i, a1,0 
called floll' COli/m i . Figure 9-~4 shows the hardware picture fl)r output 
and input hand_ haking. There are a variet) of >cheme, It' ;k'>:,)mpli,h 

when the deslination de\icc is reau) 
for il. 

handshaking depending on the timing requirement' of en -h de\'i .. ", and 
the microcontroller. One such scheme is ,he\\\ n Figure Q-_:. 

The I/O handshaking software in Example 9-6 consist, of three pan,; the initializatil n . .. 'tIt­
put handshaking. and inl'lIl handshaking. 

I. I/O initialization : The initiali zation code must initialize all regl-tel' you are pmg t 
use. For a bidirectionat ron. the data dIrection registen- to conll\)t the diR'\:tll)nl)j the hIt- III 

the reg. ister mll!-l Oe ~C't. 
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D t aa 
Oul 

8 

PTAD[7:0] Data 
PortA External 

Port B In
8 External 

Output PTBD[7:0] Input 
Device Device 

DEV RDY RDY IN New Data ReadLFor_ 
PTCD-O New_Data PTCD-2 Ready -

PortC DATA RDY 
PortC 

PORT RDY 
PTCD-1 PTCD-3 

New Data 
Ready 

-

(a) 

ReadyJor_ 
New_Data 

(b) 

Figure 9-24 Hardware handshaking I/O. (a) Output. (b) Input. 

2. Output handshaking: When the program is ready to output new data, it starts the 
handshaking process by asserting the DATA_RDY signal on Port C, bit- I. It then waits until 
the external device is ready fo r new data by polling the DEV _RDY bit on Port C, bit-O. When 
DEY _ROY is asserted (there must be hardware in the external output device that asserts 
this signal when it is ready to receive data), the program knows that the external device has 
processed the last data and is ready for new. It then outputs the new data to Port A[7:0] and 
deasserts the DATA_ROY signa\. Often the external device can use this DATA_ROY neg­
ative edge to latch the output data. The external device then deasserts DEY _ROY until it is 
ready for new data again. Figure 9-25a shows the timing diagram associated with this output 
handshaking transfer of data. 

3. Input handshaking: lnput handshaking (Figure 9-24b) is very similar to output 
handshaking. When the microcontroller is ready to receive new data, it as erts the PORT_ 
RDY control signal on Port C, bit-3, and begins polling ROY _IN on Port C, bi t-2. When 
the external device has new data ready, it places it on Port B[7:0] and asserts ROY _IN. 
The microcontroller takes the data and deasserts its handshaking signal PORT _RDY. The 
external device then deasserts ROY _IN, and the cycle repeats. Figure 9-25b shows a timi ng 
diagram for this process. 

A common variation on both input and output handshaking themes is that the DEY _RDY 
and ROY _IN status bits generate interrupts in the microcontroller. This is a good scheme to 
implement if there are timing issues to be resolved, and it allows the program to go about 
other business while waiting for the data to be ready. 

PTAD[7:0] 

Data is taken by 
the output device 

/ 
)I 

t 1'----1 I 
=:1 ==::=x x~--
cp/u · D' · ." . IS eVlce IS Data IS 

ready ready for output by 
to output the data the CPU 
data 

(a) CPU reads J the data 

PORT_RDy~r--------, 

PTBD[7:0] 

CPU is 
ready for 
new data 

(b) 

External 
device 
puts dala 
on port 

External 
device 
Tells CPU 
dala is Ihere 

Figure 9-25 Handshaking liming. (a) Output. (b) Input. 

Example 9-6 Handshaking I/O Software 

9.7 I/O Software 

.. Program example shO\.;ing ho\oo" t.o use status blts for 
• handshaking I/O synchroni:atio:1 . 

. Define ~he mlcrocontrollet I p0rts ..lsed. . 
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#define PTAD (*(volatile unsigned char *) OxOOOO) /* Port A */ 
Idefine PTBD ('(volatile unsigned char *) OxOOOl) /* Port B */ 
.define PTCD (*(volatile unsigned char *) Ox0004) /* Port C */ 

/* Define the status bits on Port C ~/ 
#define DEV_RDY 1 
Idefine DATA_RDY 2 
!define RDY IN 4 
Idefine PORT RDY 

void main(void) 

/* 
/ , 

/ ' 
/* 

bit * / 
bit */ 

bit */ 
bit 3 '/ 

unsigned char out_data , in_data; 
/~ Initialize the microcontroller's 1/0 ~I 

/ * . . . * / 

/~ Output data to the external output device */ 
/* Assert DATA_RDY to let the external device that 
~ data are available ~/ 

PTCD I~ DATA_RDY; 
/* Wait until the device is ready */ 

while ( (PTCD & DEV_RDY) ~~ 0)( 
} 

/* Now output the data */ 

PTAD ~ out_data ; 
/* Lower DATA_RDY to latch the data */ 

PTCD &~ -DATA_RDY; 

/* . * / 

/* Get data from the external input device ~/ 

/~ Assert PORT_ROY to let external device know we are 
* ready to receive data * / 

PTCD I~ PORT_RDY; 
/* Wait for data to be ready from the external 

* input device */ 
while ( (PTCD & RDY_IN) 0) { 

/.,. Data is there , read it . / 
in_data ~ PTBD; 

/ * De - assert PORT_RDY */ 
PTCD &~ -PORT_RDY; 

1/0 Synchronization with Interrupts 

Another way to synchronize VO and the CPU is to use interrupt ~. Interrupts allow an I/O 
device to signnl the CPU that it is ready to be serviced . Interrupts will be covered in detail in 
Chapter to. 
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9.B Conclusion and Chapter SummClrY Points 

9.9 Problems 

Explore 

In this chapter we have discovered how computer buses work and how to interface I/O devices 
to a bus. The key elements of the chapter are the following. 

A bus is a parallel, bidirectional information pathway. 

Sources transfer information to a desti nation over a bus. 

Three-state gates allow multiple sources to be on a common bus line. 

No more than one source can be active at a lime. 

An input interface is a set of three-state gales between an information source and a data 
bus. 

An output interface is a set of latches between the bus and the destination device. 

One-of-many sources or destinations are chosen by addressing and address decoding. 

The CPU controls the timing of data transfers by generating READ and WRITE 
control signals. 

110 addressing may be done with memory-mapped 110. in which case any memory 
reference instruclion can access I/O, or separate 110, for which pecial input and output 
instruclions are included in the instruction set. 

You may choose to decode the entire address bus (full address decoding. which leads 
to more expensive decoders) or a subset of the address bus (reduced addres ing. Ie 
expensive but re ulting in redundant use of addresses). 

I/O synchronization often is necessary to synchronize a fast CPU with a 10 .... 110 
device. 

if multiple bus masters require the bu simultaneou I), bu arbitration is required. 

Modem microcontrollers have exten ive 110 capabilitie integrated into 3 single chip. 

9.1 List parallel I/O devices used with omputers you are familiar with. either III the labornt~ 
or in a personal compu ter. 

9.2 Which type of VO addre sing. separate 110 or memo~ mapped. uses memo!) referenc.!" 
instructions to access 110 devices? [a] 

9.3 Which type of I/O addressing . . eparate 110 or memo~ mapped. requires a :cnlrol sign 
called "I/O request" to access I/O de\lces'? La] 

9.4 Show the schematic ,ymbol for nn -bit dam bus. La] 
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Stimulate 

Challenge 

9.5 Describe the advantages of the three-state gate over the open-collector gate when the 
application entails multiple sources on a data bus. La, g] 

9.6 Describe the advantages of the open-collector gate over the three-state gate when the 
app lication entails multiple sources on a control signal. [a, g i 

9.7 Why are three-state gates used in an input interface? [a] 

9.8 The following control signals are associated with a CPU in a microcontroller. 

MEMRQ: asserted when a memory operation is ongoing 
10RQ: asserted when an VO operation is ongoi ng 
WR: asserted when a write operation is ongoing 
RD: asserted when a read operation is ongoing 
ADROK: asserted output from an address decoder 
Write logic equations for the following: [c] 

a. A correctly timed latch signal for an output port. 
b. A correctly timed three-state control signal for an input port. 
c. A correctly timed signal to select memory for reading or writing. 

9.9 In a parallel output operation, how is the synchronization of the data transfer between 
CPU and a data latch consisting of eight, D-type flip-flop accompli shed? [a] 

9.1 D Briefly explain the difference between separate and memory-mapped I/O. la I 

9.11 Discuss the consequences of a CPU designer's decision to implement memory-mapped 
VO instead of separate VO. What does it mean to the CPU designer, and what does it 
mean to you, the system designer using the CPU? [el 

9.12 Design a decoder using a 74HCI38 decoder to produce BLOCK_SELECT _L signal 
to enable memory and VO devices to the following specifications: [c i 

The microcontroller has a 16-bit address bus 
The memory is to be addressed in eight, 8K byte blocks in which 
I block is to be used for I/O 
I block is to be used for future I/O expansion 
I block is to be u ed for ROM in the highest memory addresses 
I block is to be used for future ROM expansion 
I block is to be used for RAM in the lowest memory addresses 
I block is to be used for future RAM expansion 
2 blocks will never be used 

9.13 A 74HCI38 decoder has the following address bits as igned to it, inputs: 

ADR 74HC138 Pin 

A7 A2 

A6 AI 

AS AD 

ADR 

A4 

A3 

A2 

74HC138 Pin 

A I and AD are don't cares. 

9.9 Problems 

Assume an 8-bi t address and make a table similar to Table 9-4 showing what 
address each output responds to. [b] 
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9. 14 Given the reduced address decoder shown in Figure 9-163, what decoder output should 
be chosen for address 599,0? [b] 

9.15 Example 9-5 shows a segment of code that waits until a status bit assened by the out­
put device is ready to accept new data before writing the data to the port. What can go 
wrong with this arrangement, and what might you do to make the system bener' [b_ c] 

9.16 Adapt Figure 9-24 and Example 9-6 to allow two microcontrollers to trartsfer data back 
and forth . Assume Microcontroller # I outputs data on Pon A, inputs data on Pon B. 
and uses Port C for its VO handshaking bits. Assume Microcontroller #2 inputs data 

Reflect on Learning 

on Port A, outputs data on Port B, and uses Pon C for its handshaking bits. Show your 
hardware design, and write programs for each of the microcontrollers to transfer the 
data. Your programs should not hang up waiting for data from one or the other. [e] 

9.17 Compare software polling with hardware handshaking VO S)'Ilchronizing_ 

9.18 Discus the relative merits of software and hardware switch debouncing_ 

9.19 List five thing that you learned while studying !hi chapter. 

9.20 Why are timing signalS necessary for the input and output of dataq 



Objectives 

Interrupts and Real-Time Events 

Thi chapter shows how an important external or internal event can interrupt the normal flow of 
a program. We will discuss how the CPU finds out which of several interrupting devices needs 
service. When an interrupt occurs, an interrupt service routine is executed. We will discuss how 
interrupt routines work and give guidelines for wriling them. 

10.1 Introduction 

An ime,.,-upr is an important asyn­
chronous event that requires imme­

diate attention. 

An exceptioll is an event even more 

important than an interrupt. 

An IRQ is Lhe illterrllpt request sig­
nal from a device needing some spe­
cial action to be taken. 

An interrupt is a way for an important asynchrOIlOus el'ent to be recog­
nized and taken care of (se n /iced) by the CPU executing in lructions in 
a normal program. Consider. for example. a computer system comrol-
ling an oi l refinery. It has senSors that measure the chemical composi­
tion of the product being refined and outputs controlling the process. 
Figure 10-1 a shows a typical proces conlrol software loop to do this. 
The time taken to go around the loop depends on Ihe complexi ty of the 
colUrol algorithms and the peed of the processor. Now consider an 
important ex ternal asynchronous event: a fire breaks ou t in the oil refin­
ery! If the control computer is responsible for aCll vat ing fire suppres-
sion measures, the program should respond immediately instead of 
waiting for the software to come around the loop to check on Ihe fire 
detection sensors. On the other hand. we do not want to wri te a program 
th at is checking the fire sensors all the time. or even frequent ly. because 
too much checking would take time away fromthc control cal culm ions. 
This is an ideal applicati on for an interrupt. The 1Iltcrrupt i .. caused by 
an external device. the fire sensor. ge ncrat111g a 'Ignal ca lled interrupt 

reqllest. or fRQ. The interrupt request is asy nchronous. That is, it can happen at any time , not 
necessarily corresponding to any panicular time in the in,truction execullon ,equence of the 
CPU. The IRQ requests the program to take immediate action by e.xccutlllg an IIllermpl ser­
vice rOliline (ISR) or illlerrupt handler. Figure 10- 1 b show .. an intcrrupi ,ervicc rOUllne added 
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Initialize I System 
Initialize 
System 

Input Data Input Data 
From Sensors F rom Sensors 

Compute Compute 
Outputs Outputs 

According According 
to Control to Control 
Strategy Strategy 

r 
Output Output 
Data to Data to 
Control Control 

Mechanism Mechanism 

(a) (b) 
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Figure 10-1 Process control software. (a) Typical flow WIthout interrupts. (bl Process control 
software with interrupts. 

to the pro ess control software of Fig.ure 10-ln. When Interrupt "I , "U"'_ the progr:tm 
branches to and e,ecutes the interrupt sen ice routine and then return, to th m:un pre gr.l!ll I 
the point of interruption. The same ,equence 0<: ·un. \\ hen Interrupt"~' '~u"' . Nt nNj, - WI 
the return is to the place \\ here the intemlpt Q( ' urs. This make, Interrul'l en I, l'\'UIl.-' 

similar to ~ubroutlncs or function" le\ erthdess. a~ \\e \\ ill ~ee . there i m\ re h..' th,. im.:"m.lpt 
I\cnic:c routine. 
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Some events that interrupt a processor's normal program flow are called exceptions. This 
terminology indicate that a higher priority is assigned to these events. An example of an 

exception is the system reset. 
Interrupts also can synchronize the operation of the computer with an 

A rea/-time system uses interrupts external process. Consider sending data to a printer. Typically, comput-
ers are much faster than printers. so the data output must be synchro­

to control when things are done in a program. nized to the speed of the printer. In addition to the VO synchronization 
techniques such as polling, handshaking, and delay loops discussed in 
Chapter 9. interrupts may be used. Thus a printer generates an interrupt 

to signify that it is ready for the next character or, perhaps more likely. the next block of char-
acters. Input data transfer can be synchronized, too. For example, an analog-to-digital (AID) 
converter can generate an interrupt when the conversion is complete to signal the CPU that it 

may read the data. 
A term used to describe these systems is rea/tillle. A real-time system is one that does some 

process, ei ther at a specific time (say midnight), or at specific intervals (say every 10 millisec­
onds), or at a time required by some external device or event. 

Interrupt Glossary 

Asynchronous event: An asynchronous event is one that is not synchronized with the system 
clock. It can happen at any time relative to the system clock. 

Critical region: A critical region is code that must not be interrupted. 

Foreground and background: The foreground job is usually the "main" program that i inter­
rupted by the background job. In some real-time systems, these definitions are reversed. 

Global interrupt control: A control bit that enables all interrupts. 

Interrupt enable: A bit that controls a specific, single interrupting ervice. 

Interrupt flag: A device that generates an IRQ may set an interrupt flag to identify which device 

has the interrupt request. 

Interrupt handler: Another narne for the interrupt service routine in a high-level language pro­

gram like C. 

IRQ: Interrupt request. A signal generated by a device to interrupt the currently executing 

program. 

Interrupt service routine: The software executed in response to an interrupt request. 

Interrupt vector: The starting address of the interrupt ervice routine. 

Interrupt vector table: A table in memory that contains the in terrupt vectors for all interrupt 

service routines. 

Latency: Interrupt latency is the time delay from the initiation of the interntpt request by the 
hardware to the start of the interrupt service routine. Elements contributing to interntpt latency 
are the time to complete the current instruction, the time to save the machine context and return 
address on the stack, and the time to find the correct interrupt service routine. 

Machine state or context: The state of the registers and the condllion code or "UltuS bits at any 
ttme. 

Pending interrupt: An interrupt that has occurred but has not yet been ,ervtced. 
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Interrupt System Specifications 

Figure 10-2 shows a microcontroller with three internal and three external sources of interrupt 
requests. Each of these requires a separate interrupt service routine. For example. the timer 
interrupt may be generating a particular waveform at specific intervals, while the AID con­
verter module's interrupt is signaling the end of a conversion. The embedded system software 
engineer develops the interrupt service routine or handler for each of the interrupt requests and 
then uses the features built into the microcontroller to be able to execute the correct one when 
an interrupt request occurs. The microcontroiJer designers have created an interrupt system in 
the microcontroller that will react to an IRQ and transfer control to the correct interrupt service 
routine. To understand the hardware features of most microcontroiJers, let us list some of the 
general specifications for an interrupt system. The system is to do the following: 

Allow asynchronous events to occur and be recognized. 

Wait for the current instruction to finish before taking care of any interrupL 

Branch to the correct interrupt service routine to service the interrupting device. 

Return to the interrupted program at the point it was interrupted. 

Allow for a variety of interrupting ignals. including levels and edges. 

Allow the programmer to globally enable and disable all interrupts. 

Allow the programmer to selectively enable and r1isable individual interrupts. 

Microcontroller 

Internal Interrupt 
Requests 

10kn Pull-Up 
(Typically) 

External Interrupt Requests 

IRQO IRQ1 IRQ2 

Figure 10-2 Internal and e>.ternall11terrupt requests. 

74HC05 
Open-Dram Gates 



226 Chapter 10 I Interrupts and Real-lime Events 

Disable fu n her interrupts while the first is being serviced. 

Deal with multiple sources of interrupts. 

Deal with mu ltiple, si multaneous interrupts by enacting a prioritization system. 

Asynchronous Events and Internal Processor Timing 

Figure 10-3a shows a program execution time line. The ticks along the 
The current instruction must be fin- line represenlthe sian of each instruction thai a normal program execules 
ished before an inlerrupl requesl is in sequence. The normal program does nOI specify whell, in a real-time 
acted upon. sense, an instruction is to be executed, just Ihe sequellce of instructions. 

Asynchronous evenl , the IRQs, can occur al any time. 
Figure I 0-3b shows an expanded lime line. Chapter 2 showed that an instruclion execution 

cycle consists of the instruclion felch and inslruction execulion pans. The sequence comroller 
can be modi fi ed to check for an interrupt request before it fetches Ihe next instruction. More 
stales are added LD sample the interrupt request and generate more control signals. This change 
allows the CPU to finish the current instruction and then LD service the interrupt by entering a 
special interrupt processing sequence: otherwise, it fetches the next instruction . 

10.2 The Interrupt Process 

The Interrupt Request 

All inlerrupls can be enabled or dis­
abled globally. Individual inlerrupls 
can be enabled or disabled separmely. 

Microcontrollers have both internal and eXlemal sources of inlerrupls. 
The internal requests come from the internal systems. such a~ a limer, and 
from exceptions or error conditions. EXlernal requesls may come from 
eXlernal VO devices li ke those investigated in Chapler 9. Each inierrupi 
must be recognized and serviced by its own imernlpi service routine. 

We have seen (Figure 10-2) how to conneCI external interrupt reque I signalS from multiple 
devices to the microcontroller. Multiple interrupting devices may use wired-OR (wired-AND), 
open-drain, or open-collecLDr gales to pullihe request line low. When mUltiple devices share a 
single interrupt request line, the microcontroller must check, or poll , each device 10 determine 
which one generated a given interrupt reques!. 

The Interrupt Enable 

The programmer of a microcontroller musl have 10lal control over Ihe operation oflhe interrupi 
system. Global cOll/rol is achieved wilh a bilthat either ellobles or disables all interrupls or a 
bit called a mask bit that masks (d isallows) or llllmasks (all ows) all interrupts. When the enable 
bit is reset or the mask bil is set, all interrupls are disabled or masked and arc nol lIcled upon. 

Local control is achieved in each interrupting subsystem, such as each timer channel. 
which also has an enable bil used to enable (allow) or disable (d isa ll ow) Ih(ll device from 
interrupling (Figures 10-4 and 10-5). 

When the microcontroller is reset, the global control bit disa llOWS all 1I11errupts. This gives 
your program time 10 initialize all hardware and software, partlcu lurly Ihe sluck poinler reg­
ister, before interrupts occur. As Figure 10-4 shows, interrupts mt"t be enabled (unmasked) 
globally AND enabled locally for the inlerrupl requeM 10 be genermed. 

~ 
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Cycle 

Instruction 
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~/ 
IRQ 

~ ~ ~ • 

Simultaneous Interrupts 

Nested Interrupt 

Interrupt ServIce Raubne - ISR 

(bl 

Figure 10-3 Interrupts. (a) Instruction flow. (b) Expanded IIlstruction timing. 

Pending Interrupts 
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r---------------- - - --- I 

, Global Interrupt Control : 
: . I I'L __ 
~~g~i~r£~~~~r:==B=t=-=-=+::--------------: .. u---
! Device Interrupt Enable Bit j r:D1-----
: Device Interrupt Request - .... , __ ...J 
L _________ ___ ___ _____ _ J 

Figure 10-4 Global and local interrupt enable control. 

Interrupt 
Request to 
CPU 

Yea! I'm in. 

Interrupt 
Request 

Interrupt 
Requesl 

(a) (b) 

Figure 10-5 Global interrupt mask control. (a) Mask bit = 1 to mask. (b) I-bit = 0 to unmask. 

(and keeps it asserted) when these conditions are not met, the interrupt request is sa id to be 

pellding. 
A pending interrupt can cause a problem. Consider the following scenario. An interrupt has 

occurred- ay the timer module has set a nag that generates the local interrupt req uest. Let 's 
assume thai all is well and the interrupt service routine is entered and executed. Even so. the 
interrupting nag may still be set when the interrupt ervice routine is finished and if so, it i 
understood as a pending interrupt. The pending interrupt , in turn , will be a,serted immediately 
when interrupts are re-enabled at the end of the interrupt service rOllt ine. and the ISR wi ll be 
executed continuously. Your soft ware, therefore, must reset the interrupting nag in the interrupt 
service rou tine. (if it is not reset by some other hardware l11echani,l11) before returning to the 
interrupted program. 

The Interrupt Disable 

When an interrupt occur;, global interrupt> are disabled so that further interrup" cannot occur. 
Although you should avoid nested interrupts. they can be allowed In the IIltcrrupt ~en' ice 
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routine if you re-enable or unmask them. Before doing this. you must disable the interrupting 
source or clear its interrupting nag so that it does not immediately generate another intenupL 
resulting in an infinite loop and a locked-up program. 

The Interrupt Return 

If an interrupt is generated by an 
internal source, the flag causi ng the 

Before returning to the intenupted program. you must re-enable the 
illterruptillg device's interrupt capability. This is usually done b) reset­
tillg theflag that caused the interrupt. [fthi i nO! donecorrectl). another 

interru pt must be reset in the inter- interrupt will immediately occur. The original machine context must be 
rupl service routine. re tored and global interrupts re-enabled or unmasked. [n processors that 

save the machine state automatically when an interrupt occurs. the reg­
isters are restored automaticall y. The return from interrupt instruction returru; control 10 the 
interrupted program. and this instruction re-enable or unmasks global interrupts. You do nOI 
have to unmask global interrupts in the interrupt ervice routine. and in general you should nO! 
unma k them. 

The Interrupt Sequence 

The current ~ Iatc of the microcon­
troller. also called the lIIaciJilie tate. 
including all registers and the condi­
tion code or status register, must be 

s3ved before the interrupt service 
routine is executed. The machine 
state is nonnally saved on the stack. 

Figure 10-6 is a nowchart illu trating the complete interrupt proce '. 
The following events take place when interrupt;; ha\ e been enabled or 
unma ked and an interrupt request has been generated. 

I. As shown in Figure 10-3. the CP \\ ai t until the currently e'<e­
cuting instruction finishes before en'icing the inlenupL This compo­
nent ~f interrupt latency \\ ill depend on the instruction being e,ccUled. 
If global intenupts are enabled or unmasked and the local tnlenupl is 
enabled. the CPU will determine the addres of the intenupt <en ice 
rouline. 

2. Global interrupts are disabled or masked. 

J. The CP pushes the return address onto the 'tack. 

·t The current ,tale of all registers including the condition code or ,tJtu' regbter mu,l be 
sa\cd. In SOme proces,or< all registers are ."ed on the ,tac" automaticall~. In othe!". 'nl~ 
the return address i, sa\ed and the intenupt sen ice mUline must ,a\e the ma.:hme ,,'Ille't. 
It is vital that when control retums to the intemtpted program. all regi,te!" and 'tatu' t-ir, be 
restored to their original lotale . 

5. The CPU bran he. t the intemlpt sen ice routine. The interrupt 'en i,~ lI.)uon<" deal. 
with the speci fic requirements for the interrupt. resets the tnterrupting nag. and th 'n e, 'ut 
a return-from-intemtpt In>!ruction. 

Exercise 10-1 

DClcnninc If Y('Iur 11l1l'roc,,'Illtf\'Illcr ~~l\~~ .1I1 reg.b.tcr- 1 • .'0 the." 'ta~\... \\ hen .In tnt 'm.lpt \ -... 
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10.3 Multiple Sources of Interrupts 

The interrupt system must deal with multiple devices generating interrupts. Allowing for these 

requires the system to do the following: 

Determine which of the multiple devices has generated the IRQ to be able to execute 

the correct interrupt service routine. 

Resolve simultaneous requests for interrupts with a prioritiz.ation scheme. 

A system with three external and three internal interrupting devices 
When there are multiple interrupting is shown in Figure 10·7. All internal and external 110 devices are con· 
devices. the CPU must resolve each nected to the CPU with standard input or output interfaces like those 

interrupt event by determining which designed in Chapter 9. The interrupt request signals generated by each 
device has generated the interrupt of the interrupt sources are input to the CPU. The CPU responds to the 

request. interrupt request by transferring program control to the interrupt service 

routine. There are two methods of finding out which of many devices 

may have generated the interrupt request: vectoring and polling. 

Microcontroller 

10kn Pull·Up 
(Typically) 

Internal Interrupt 
Requests 

Flash 
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Timer 
ISR 

AID ISR 
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Timer Vector 

AID Vector 

Serial Vector 
Vector 
Table IRQ Vector 

Address 

Data 
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Figure 10·7 Multiple interrupts. 
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Vectored Interrupts 

The interrupting processing hardware 
detects which device interrupted and 
then u~c~ a \'el'lOr to transfer to the 

A vectored inrerrupl is the most common way to resolve which of sev­
eral interrupting devices has generated the interrupt request. A vector 
is simply an address; in this case. it is the starting address of the inter­
rupi service rouline. In modem microcontrollers, a specific area of non 

inlcmlpl service roul ine in vee/ored volatile memory is dedicaled 10 the veclors (addresses) for all possible 
illlerruplJ. 

Polled Interrupts 

interrupling devices (timer, analog-la-di gital converter, external inter-
rupling devices, elc). This memory is called Ihe inrerrup/ vector table. As 

Figure 10-7 shows, the veClOrs point 10 the correct inlerrupt service routine. The interrupl 
processing hardware in Figure 10-7 delects which of lhe interrupt request lines. IQRT, lRQA, 
IRQS. or IRQ_L. is being asserted and, provided everything is enabled properly, the CPU 
fetches the address of the interrupt service routine fr01111he veclor locat ion and branches to thai 
address to start executing the interrupt service routine. 

Whenever mult iple devices hare an inlerrUpl request line, like the three 
The inlerrupting device is found wilh external devices shown in Figure 10-7, you may use a polling strategy to 
software in n polled imermpl system, determine which device needs servicing. Polling is a software process in 

which the CPU reads each of the potenti al interrupting device's interrupt 
Slatus register in lurn . The device must have logic 10 generate the interrupl request signal and 
to sel an " I did it" bit in a status register that is read by Ihe CPU. When a register is found with 
Ihe bit set. Ihe soft ware then knows which device genera led the inlerrupt. The CPU must reset 
th is bi l during the interrupl service rouline. The interrupt service routine accessed by the IRQ 
vector cOlllains the poll ing roulines. 

10.4 Simultaneous Interrupts: Priorities 

Simultaneous illferrupls require a 
priori tizati on scheme. 

Software Priori ty Resolution 

When interrupting devices are polled, 
the order in which they are polled 
fixes the priority. 

Hardware Priority Resolution 

If two inlerrupt ing devices generate an inlerrupt request (INTRQ) simul­
taneously (or at least within one instruction execution cycle), as shown in 
Figure 10-3. the system must resolve whi ch of the simultaneous requests 
has the hi ghest priorily. There are both soft ware and hardware priority 
resolution methods. 

The polled interrupt system just descri bed which determines the device that 
generated the interrupt, may be used for prioritization as well. One simply 
write the polling software to check the highest priori ty dev ice firs!. The 
hardware in the interrupting device must be designed so that a lower prior­
ity device continues to a~set1 its interrupt request until it receives service. 

In systems that use veclOred interrupts, hardware priori ti zation is needed. The prioritization 
may be fi xed by the design of the CPU, or you may have some limited capabi lity to define the 
priority levels in your software. 

False 

False 

False 

Continue 

True 

IF 
Local Interru pt 

Enabled 

Interrupt 
Pending 

Figure 10-8 Simultaneous interrupts. 

True 
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The nowchart in Figure 10-8 is usefu l for understanding how your microcontroller resolves 
interrupts that occur simultaneously. After a check to see if global interrupts are enabled (or 
unmasked). the highest priority interrupting source is found by a hardware or software priori­
tization process. If that device's local interrupt is enabled, then the interrupt service routine is 
executed. After this, the other intemlpts are sti ll pending, and so the process is repeated until 
all have been serviced. 

10.5 Nested Interrupts 

An interrupting system can resolve many interrupting sources by usi ng 
Nested illler",pts arc interrupts inter- multiple interrupting signals and vectors fo r determining where the cor-
rupting interrupts. rect interrupt service routine is located. If a subsequent interrupt occurs 

while another is being serviced (i.e., when the interrupt service routine 
code i being executed). the programmer may control whether the fir t interrupt service routine 
is interrupted by the econd request. The interrupting system automatically globally disables 
or masks further interrupts just before entering the interrupt service routine. As Figure 10-4 
shows. this stops the second interrupt request from bei ng passed to the CPU for service. The 
programmer may re-enable or unmask interrupts in the interrupt service routine if there are 
interru pts of higher importance than the first. This is optional unless there are more important 
interrupts that can occur. Before you do this in an interrupt service routine, be sure to clear the 
nag associated with that interrupt. Fai lure to do so will cause an interrupt to interrupt itself 
over and over again until the dedicated stack space is overrun . If interrupts are not re-enabled 
or unmasked in the interrupt service routi ne, the second interrupt remains pending unt il the 
interrupt service routine completes and re turns to the interrupted program. At the end of the 
interrupt serv ice rourine, either as part of the return-from-interrupt instruction or by an explicit 
CPU instruction. the global interrupt control bit re-enables further interrupts. The CPU can 
now ervice the pending interrupt. 

Hardware/Software Priority Resolution 

Hardware and software priorit;;.arion 
can allow higher priority interrupts to 

interrupt a lower priority one. 

Although the resolution of simultal1eous interrupts shown in Figure 10-3 
requires prioritization hardware, the system gives us total control over 
prioritization of nested interrupts. Th is is done in the following way. 

When the first interrupt service routine is entered, g lobal interrupt 
are disabled or masked. 

If another interrupt does occur whi le the intelTupt service routine is executing, it will 
remain pending until the current rSR is fin ished and control has returned to the illler­
rupted program. 

If higher priority interrupts must be allowed, the programmer must do the following, as 
shown in Figure 10-9. 

Clear any interrupt nag associated with the current interrupt. 

Disable the interrupt enable bits in all lower priority inte rrupting devices, leaving 
higher priority interrupts enabled. (Note that you may leave the current interrupt 
enabled, or not. If you do leave it enabled. you must allow it to interrupt itself.) 

10.5 Nested Interrupts 
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Figure 10-9 Software priOritization nested interrupts. 

Re-ennble or unmask intemlpt •. 

Proceed with the intemlpt service routine for the current interrupt. 
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When the current interrupt service routine is completed. disable or 013> gk'bal 
intemlpts and re-enable the lower priorit) interrupt< that \\ere disabled. 
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Execute the return fro m interrupt instruction that re-enables or unmasks interrupts 
again and allows any pending interrupts 10 be serviced. 

Exercise 10-2 

How does your microcontroller resolve simuhaneous intemtpls? If there is a priori ti zation 

order. what is it? Can it be changed in your program? 

10.6 Other Interrupts 

Nonmaskable Interrupts 

System Reset 

In any system there are events that are so imponant that they should never be masked. These 
are sometimes called exceptiolls. and a good example is the reset signal. When this is assened. 
everything stops and the processor is reset. These very imponant events are ca lled 1I0/lIl1ask­

able ;11Ierrupts. 

The system reset vector is in a mem­
ory location in the vector table. 

System reset is the hardware power-oil reset (POR) nornla lly done when 
powering up the microcontroller. The reset signal has the hi ghest prior­
ity of all. 

Unimplemented Instruction Opcode Trap 

If the program somehow gets lost and stans executing data, it is likely 10 encounter an unimple­
mented opcode. Executing data is a disaster. and executing an illegal opcode even worse. The 
CPU can detect an unimplemel1led opcode and wi ll vector itself to the addrc" specified in the 
vector table. 

Software Interrupt 

The software interrupt is, in effect, a one-byte. indirect branch to a subroutine who>e address 
is in the vector table. Because it operates like the rest of the interrupt system. It is often u,ed to 
implement debugging breakpoints. 

Nonmaskable Interrupt Request 

To detect imponant external evenlS. such a, los, of power. an external, n(\nl11as~ah l e Inter­
rupt input may be used. Once th is interrupt source has been cnahled. it cannnt he ""ahled or 
masked. 
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Exercise 10-3 

Does your microcontrollcr have nonmaskable interrupts like those Just Ii'ted? If o. "hat 
are they? 

10.7 The Interrupt Service Routine or Interrupt Handler 

The interrupt service routine is called 
an ISR in a~sembly and an illlerrllpl 

halldler in C. 

Interrupt Service Routine Hints 

The interrupt service routine. or interrupt handler. IS executed" hen the 
veclOr has been initialized properly. interrupts have been unmasked and 
enabled. an interrupt ha occurred. and the vector has been fetched. Here 
are some hint for your interrupt service routines. 

I. Save the machine context: If your microcontroller doe not aUlOmau aJl~ ",ve the 
machine context. you mu t do it in the ISR before doing an~ thing el",. 

2. Re-enablc interrupts in the I R only if )OU need to: You mu,t re-enable or Unm:l>' 
global interrupts if there are higher priorit) interrupts that mu t be ,en·iced. 

3. Do not allo\\ nested interrupts: Unle ) ou have to. 

4. Reset any interrupt generating nags in I/O de"ices: All de, ice, are different. and 
each require; somewhat different procedure .. If)ou do nO! fC<;et the nag. interrupt;. will be 
generated continuousl). 

5. Do not assume any register contents: l\e\'er assume that the regi tel'\ contain" 
value needed in the interrupt enice routine unless )OU have full control o'er the "hole 
program and can guamntee that the COntents of a register ne' er change m the progr:un tIut i. 
interrupted. 

6. Keep it imple to start: Learning ho\\ to ill e an interrupt 'an ~ fru.tr:umg If ~ou ~ 
to do too much in the I R. The li"'t ,tep ,hould be to ,ee if the interrupt' are oc -urnn,; :mJ 
if the intemlpt sen ice routllle i, being entered properl~. After )OU h3,e lound affirmati, 
answers in both ca'es. you can l11a~e the l R do \\ hat 11 is .uppo,n1ll1 d,>. 

7. Keep it hort: Do II' hnle a;. p<.",ibk in the I R. Thi, redu,...,. th Iaten"~ in --en ,ing 
other interruph should the} occur during the current I R. 

8. If nece. Rr), restore the mOI'hine context before returning: ',>tn' P" ~" d,) thl' 
automaticall). 'ome do nOlo 

Inter process Communication 

Frequentl). an intcmlpt ,en ICC ,,'UlIIlC .md an,>th,'r r,U1 1>1 th r"'gr,lIll n u, t "\ 'han ' 
II1fOrl11all('ln. I'llr clample"l11 ISR ma, be lIlcfCmenll!lg :h'I'Unt r '""h tnt,." ,~" ~ ~ 
h~ on an ,,"cmbl~ hnc \Ul"'th~r ran ~)f thl..~ rr 'gr:Ull m;J~ ~, m 'nlll.. nng tb.!, ,-. u t -r t 
pacKagc thc pr,,,tuet "hcn tlw countcr rc.ldlc, a ,','n.l1n ,alll' Th",.,h lilt '11" 
c\('hungc tcchniquC' .\ppn'pn.\h .. ' t~'r tnt 'rrupt ,\,.'f\ t\,.o. l\'utlll~ ' u,' , .l ~h. I J t l-- .... 
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Interrupted 
Module 

I' Read data 1 ., 

I' Process data 1 " 

I' Write data 1 " 

Global 
Data ... ~ . 
~, 

Figure 10·1 0 Using global data in Information transfer. 
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Module 

I' Disable interrupt ., 

I' Read data 1 " 

I' Process data 1 " 

I' Write data 1 " 

I' Re·enable interrupt " 

Global 
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Figure 10·11 Protecting critical code. 

Interrupt Service 
Routine 

I' Read data 1 " 

I' Process data 1 '1 

I' Write data 1 " 

Interrupt Service 
Routine 

I' Read data 1 ., 

r Process data 1 ., 

I' Write data 1 ., 

Clearl y, except for the very simplest programs, registers cannot pa s informal ion back and 

forth . See Figure 10·10. 
[n addit ion to the meth od of data transfer. we must be concerned about the timing of the 

data exchange. In normal program flow. we have ome cont rol over when we write data 
elements. With interrupts. however. the interrupt can occur at any time. and we muSt ensure 
that data are not changed while being used. Consider the silli at ion in Figure 10· 10. where 
both the main program and the interrupt service routine must read, modi fy. and write the 
data. There is no prob lem i f the interrupt does not occur while the main program is reading, 
modifying. and writi ng the data. I f it docs occur at these times. the data modi fica tion that 
the ISR produced may be losl. A critica l region in a program is one In which thc interrupted 
program takes more than one instruction to read. modify. and wri tc data. Figure 10· 11 shows 
Ihat a solu tion to thi s problem is to disable the interrupt j ust before the cri t ical region and 

re·enable i t j ust after. 

10.8 An Interrupt Program Template 

A ll interrupt programs can stan with Ihe same basic formal. You can u'c thc template given in 
Example 10· 1 for your interrupt program, . 

10.B An Interrupt Program Template 

Example 10·1 Interrupt Template 

~ Interrupt Template 

1" 1 
main() ( 

I 

I· · ·· ····· · ·· ·· ·················· · ···· · ··············· .. / 
I ' 1 . Initialize all 110 - I 
I· · · ····· ························· · ··············· · ··· .. 
I~ 2 . Clear any flags or interrupt stacu5 bi t s ~ha: co~:d 

cause an interrupt ~ / 
j •••• • • • •••• • •••••••• •• •••••••• • ••• • •• • ••••••••••••••• •• , 

I T 3 . Enable the speci : ic interrupt source . , , •• ... . ..•••.••••. •.••.•..•........ .. ......... . •........ 
/" 4 . Enable or unmask global interrup~s ~ I 
j . •• ••• • ••. • ••• • •.••••••••••••• • •••••••••• , ••••••••••• •• 

j. 5 . Do the foreground job ' 1 
for ( ;; ) I 
I I' Forever ' I 

I · ···· ············· · ···· · ·· · ········ · ·············· · ·· .. 
t · 6 . Here ~s the int.errupt. se rvice rou t i:-.e . ~ I 
I· ·· · ·· · · ·· ·················· · ········ · ·········· · ·· · · .• 
void interrupt isr( void) t 

I ···· .... · · .... ····· .. ··· .. · · ······ .. ······ .... · ··•••··• 
/ . 6A . Save ~he ~achine context ~~ ~ : ~ s ~o t s ave j 

automatically . ' 1 
/- 68 . Reset the interrupt flag · , ............... , ....... .... .............. ............. . 
t · 6C . Enable h:.gher priorit.y l.n t e !" =upt. s _: "" ee ced _y 

disabling lower priorlt.y ones and tl..e:: !"e - e ::at ... :::g 
or unmasKlng glcbal i~te r r~pt.s . ' 

I ··· .. · ··· .. ··· .. · .. .. · ...... · .. · .... · .. ·• .. · ·· ··· ...... 
J ' 60 . Do the ~:errupt ' s spec::lc t ask ' 
/ . .. ........ .......................... .... .. .......... .. 
/ - b~. DIsable or mask globa! i~te ::c?: s • 

/ " ~G . Res re the .... chlne CC!lte x t ... f 

b~' the t :~[n fI m nter:.cr 

H. R I ltn fr m Intt:!rlcp~ 

t J ne ut .at. ... 

239 
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10.9 Advanced Interrupts 

Selecting Edge or Level Triggering 

The extemal interrupt request is normally a low-level-sensi tive input. Low sensi tivity is suit­
able for systems with several device whose intemlpt request lines may be tied in a wired-OR 
configuration. as shown in Figure 10-7. The reason for this is that if more than one device 
intemlpts. each device after the first can keep its interrupt request asserted and thus will be a 
pending interrupt when another is fi nished. You may be able to choo e to have a negative-edge­
sensi ti ve interrupt request. An edge-sensitive interrupt is appropriate on ly if there is on ly one 
interrupt source con nected to the interrupt request line. 

What to Do While Waiting for an Interrupt 

There are three ways to make your microcontroller spin its wheels while wailing for an interrupt 
to occur. These are spill loops, a lI'aitjor-illlerrupt instruction. and a SlOp-docks instruclion. 

I. Spin loop: The implest way to make lhe CPU wait i the spin loop. You use lhe code 
shown in Example 10-2 to make lhe processor branch to itself. 

When an interrupt occurs. the CPU wi ll finish executing the instruction, which is a branch 
to lhe same inslruction. BeFore the inslruction is executed again. the interrupt will be acknowl­
edged and the interrupt service routine execu ted. The program will fa ll back in to the spin 
loop when it retu rns. When the spin loop is used, the interrupt service routines do all the 

processing. 
It is useful to use a spin loop when you are working on the interrupt service routine during 

lhe debugging phase of your software development. 

Example 10-2 Using a Spin Loop to Wait for an Interrupt 

f - The main program does nothing . All processing lS done in the 
interrupt service routine . / 

/. Wait for the interrupt to occur * / 
for ( ; ; ) (I f' Wait forever ' f 

2. Wail-for-i nterrupt : A wait-for-interrupt in"ruction , if your mlcrocnntroller has one, 
performs two function . . First. it prepare, for a subsequent interrupt by ,a\lIlg the machine 
context. I This in turn reduces the delay (the latellcy) in executing the IIltcrrupt , crvice rou­
line. This could be important in time-critical applications. Second, it cttn place lhe PU into 

Ir your procc\,or aUlomatlcull y , ,,\ie, the machine cnnlc:<1 ill the "I,ln of an lOlemlpl 

10.10 Watchdog Timer or Computer Operabng Property (COP) 

a reduced power con~umption. standby Mate. which may be important 111 battery-powered 
applications. 
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3. Stop-clOCks: A stop-c locks inslruction operates like the wait-for-Interrupt instruction. 
but it goe even further in reducing the power consumption by stopping all clocks not nece' ­
sary for the microcontroller's standby operation. 

Initializing Unused Interrupt Vectors 

Whenever you enable or unmask interruplS. you risk getting interrupts from any interrupting 
source. To prevent unfortunate thi ngs from happening. hould an unexpected IIlterrupt occur. 
always init ialize all interrupt veCtor to point to a dummy interrupt service routine. This routine 
should at least reset the nag lhat caused the interrupt. and it hould en ure that the interrupt i< 
indeed di abled. You may wi h to add ome diagnostic to your <ofiware b~ turning on an LED 
to indicate that an unexpected interrupt has occurred. See Example 10-3. 

Example 10-3 Default Interrupt Service Routine for an Unused Interrupt Source 

. This is the default ISR for an ~nused :!-er ~~a~~e~. 

/ . Reset he timer interrupt flag . / 
t · Disable the tlmer interrup~ enable bit ~ I 

/ - Se the interrupt fault ~ED on i : the ~e :s one ava __ ab:e . 
I"~ Return trem 1n errupt 
f ·"'·· - ..... -. - .. , .... _ ...... _ •••. - .... _ ... - - •• -- ...... - _ .•• _ .• 

Exercise 10-4 

Doc your mH:nxontrolier h3\e \\ ait-for-tnterrupt and ~top-c:l(lrd,,!\ tn,lru..:tion.:' 

10,10 Watchdog Timer or Computer Operating Properly (COP) 

The romp"/f'r t1P('fcllwg /HlIfJt,,.h 
functton 1\ a h'mdulm: ',,,,rr It can 
rc!\ct the mlcfl~()ntft)ll cr 11 thl! pn."I­
gnlln gCh h.1\{ 

A \\ ;u,' hdog timer, or 

gram f\~~("~r \Vhc;."n m "J:~T:.\lh'n. th" rl\'~r •. un , .... rt:"l''Cl'l "'.)f 

tlw \\,u,hd,'g ilt '1"'(11k tnt~f\,lh Thl' t' .lc<'lllph,h,-J t>~ 'h hill': 1'1, • tll t ' I 
tll 1'\l1'~ th,' \\ .tI,hd,'g 1I111,'r r"gularl~ 111 'n, If th,' l't\l~r:\111 f.lIl, t" I 1 !hI', t • \\ 
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Figure 10-12 Real-time interrupt hardware. 
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Reset Flag 

Divider Control Bits 

automatically provides a hardware reset to begin the processing again.- Il i\ not a good idea 
to put the watchdog "tick le" in an interrupt routine acces.ed by a timer interrupt. Ir the entire 
program were to be corrupted with the timer interrupt , till running. the watchdog would not 
time out. Place the watchdog timer re et in the main proces loop. 

1 0.11 Real-Time Interrupt 

The expression " rea l time" in a microcontrollerembedded application generall y docs not mean 
"real " lime in the sense of the hours. minlltes, and second, of a clock . In'tead, it rerers to an 
interval of time whose lenglh is accurately speci fied and gencraled by hardware in the micro­
conlroller. In a system using a real-time operating system (RTOS). intcmlpt' arc generated at 

intervals. sometimes called licks. to control the operation or the RTOS . 
Figure 10-12 shows a real-time interrupt generator. The clock" divided by a program mable 

divider. which then drives a counter. When the cou nter merno"" the real-time interrupt nag 
is set. and ir the global intemlpt enable and the real-time interrupt cnahle bit, arc ,et. a real­
time interrupt request is generated. The program can con trol the Inter,,", bet\\ een interrupts 
by contrOlling the programmable divider and sometime the number or hlh In thc counter. The 
interrupt service routine ror the RTI must re,etlhe nag. 

10.12 Conclusion and Chapter Summary Points 

The interrupt capabilities or a proce"or are imponant and ,hould be coll,idcrcd vcr) carl) in 
your eva luation or a microcontroller ror an embedded :lppllcall(Jll . Interruph can ,ynchroni/c 
the operation or the program with real-time event'. Int~rruph can alit", the ("lito conunue 
processing while wait ing for 1/0 de\ icc, 10 become rcady for data tran,lel Interrupt, can also 

be internally generated when error, orexception, occur. ~I"'t proce"",' "1,,, h'l\c a softw are 

A punu;ul:uly gCKKJ anu:lc on wal<.:hdulllUJ1er'- c.1n he fUlIm!.1I http l/v. ". "' ~.IIl \' I ~ I.nm/ .... . tll,. hdn " tUIIl 
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interrupt instruction that is userul ror debugging. The imponant POll1ts in this chapter are as 
rollows. 

Interrupts are imponant a<,ynchronou events that require immediate anention. 

InterrupL~ are disabled when the CPU is re el. 

I nterrupLs may be enabled and disabled by the programmer_ 

Interrupts are globally enabled!disabled. masked! unmasked by a contrOl bit. 

Masking means to disallow interrupts. unmasking means allow ing them. 

Interrupts may be selectively enabled and di abled by individual bits in contrOl 
registers. 

The routine that is executed when an interrupt occurs i called an interrupt sen-ice 
routine or interrupt handler. 

A "atchdog timer. or COP (ror computer operating properly). can reset the CPC if the 
program misbehaves and runs awa). 

There are a ,ariet} or interrupling source. including externall} generated ones on L'O 
pons and internally generated ones su has rrom the timer ,ub,~ tern. 

A \\ ait-for-interrupt instruction and a top-clock.> instruction can put the microcon­
troller II1to a power- a\'ing mode until an interrupt occurs to wake the proce"or up_ 

Interrupts are as} nchronous: lhe) mal occur at an) time. 

SOll1e interrupt system, use polling and orne use' ector; to re olve the quellon of 
which or man) de' ices has generated an interrupt request. 

imultancous interrupt priorities may be resolved b) ,0rt\\3fC in polling »,tem_ and 
with hardware in '-ectored "yo;;tems. 

) ,tet1l' wtlh multIple interrupling dc, ices have enable btl> to contrOl indl\ iduall) 

each one. 

The machllle conte\t mu, t be ,a,ed before) ou enter the interrupt 'en ice routine. 

The machlll~ conte\t mu't be re,tored before )OU return to the tnterrupted program_ 

Intemlph are disabled \\ hen the interrupt 'en ice rouline i, entered. 

Interrupt SCI" I'e routine, ,hOll!d be l..ept:lS sImple and ,h,'n "" p<-,_,tbk. 

A'old nc,ted II1terrurt, II IX"'lble 

U,e glnb~\I d.H~' dement' 10f lnl~f1'n.:'Cc" dJta ct'lOlIllllni(,311\ n, 

Re-cnC\bk intemlrh l>.:fore lea, m~ the tnterrupt -en i n.'utln, it th' tTL' 
d" thl' automJtlc,lIl, 

Dt-"Jhh: 11lt~mlpt' IIllhl~ l\MIO rl\'~r..lm 10 ,,'nll('.lI.ll\"a' 

"Rc:~,l (nUl"" I..k~c, I\(\l Illl'"U\ h\"uf'. nn1lm ", an,! '('\"~\'nJ, It III .... Ul' n~3.llul ~ un\.: 
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10.13 Problems 

Explore 

Stimulate 

10. I List five possible applications for interrupts. faJ 

10.2 Describe the actions your microcontroller takes between the time an interrupt request 
occurs and when the interrupt service routine is entered . fa] 

10.3 Why. in most processors wi th interrupts. are further interrupts disabled when the pro­
cessor reaches the interrupt service routine? [a. kJ 

10.4 What is a pending interrupt? [a] 

10.5 Name two methods by which a CPU can determine which of several device has gen-
erated an interrupt. [aJ 

10.6 What are vectored interrupts? [a] 

10.7 What are polled interrupts? [a] 

10.8 Which type of interrupt. vectored or polled. requires hardware for priority 
resolution? [aj 

10.9 Define " interrupt latency". [aj 

10.10 What does interrupt latency depend upon? [a] 

10. 11 Give at least two components of interrupt latency. [a] 

10.12 What is a cri tical region in a program? fa] 

10.13 Does your microcontroller automatically save the machine context when an interrupt 
occurs. or must that be done in the interrupt service routine by the program? 

10.14 Does your microcontroller have a wait-for-interrupt instruction? If so. what doe!> it do 
(other than wai t for the interrupt)? 

10. I 5 Does your microcontroller have a stop-clocks instruction? 

10.16 Compare the polling and vectored methods for determining which of many intemlpt 
sources has generated the interrupt request. laj 

10. I 7 For a processor with 10 interrupting devices. which type of architecture. polled or 
vectored. provides the faster transfer of control to the interrupt \erVlce routine for a 
speci fic interrupt? [aj 

10.18 What is an advantage of polled interrupts over vectored intcmlpt") lal 
10.19 What must be done to solve the problem of two devicc\ generating "l1Iulianeou­

interrupts in a system with polled interrupts? [ai 

10.20 What must be done to solve the problem of two device, genera"ng "mllitaneou, 
interrupts in a system WI th vectored interrupts? lal 
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10.21 A real-time interrupt generator as shown in Figure 10-12 is driven by an 8 MHz 
clock. A programmable divider is followed by a I O-bit counter to generate overflow 
interrupts. lb. c]. 

a. How should the programmable divider be set to generate interrupts approximately 
once every millisecond? 

b. How close to I ms can you get? 

10.22 "An interrupt system must allow asynchronous events to interrupt an ongoing pro­
ce ." Give five more hardware and software attribute of an interrupt sy tem. [a] 

10.23 Design the hardware for an input interrupting device in a polled interrupt system. 
Assume an 8-bit switch register for data. a one-bit tatus register for an "I did if' biL 
and a push-button switch to generate a wired-OR LR~L signal. The statu regis­
ter and witch register are each to occupy an address in the 8-bit UO address space. 
As ume separate UO with control ignal READ_L and WRITE_L [c] 

10.24 Discuss the difference and similaritie bet'\\een a subroutine and an interrupl sef';ce 
rou tine. fal 

10.25 Write a complete program for your microcontroller for an interrupt oc urring on an 
extemal interrupt source. When the interrupt occurs. the ISR i to increment an -bl! 
memory location "COUNT' tarting from 0,,-00. The foreground job is 10 be a ",pin 
loop," doing nothing else. lc. k] 

10.26 Describe how you could measure inrerruptlatenc) in the lab u ing a lab proce"or 
board and other lab inslrumemation. leI 

Reflect on Learning 

10.27 Summarize \\ hat you learned about imerruptl> in !hi chapter that ~ou did nOl 

before. 
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Memory 

This chapter covers the basic principles of memory elements and memory architectures. We 
explain the different types of memory and discuss the interaction of memory with the CPU. 

11 .1 Introduction 

As discussed in Chapter 5. every computer system has two types of 
All computers have both RAM and memory. RAM and ROM. and the choice of how much and the location 

ROM. in the memory map of each type depends on the computer ~ystem bei ng 

Definitions 

designed. Desktop systems have copious amounts of RAM to load pro­
grams into, with little ROM used for the BIOS. On the other hand. an embedded 'ystem often 
has a limited amount of RAM available for variable data storage but significant umounts of 
ROM for the embedded application's program. 

Random access: This term applies to memory that can be acceS\ed in any order by supplying it 
with the address of the memory location and other control signals. Both today's RAM (memory 
able to be read and wri tten) and ROM (rcad-only memory) arc random accc" types. 

Se rial access: In serial access memory. data are stored in sequential location, but mu't be 
accessed by staning at the beginn ing and reading until the required data locution has been 

reached. Disk drive systems. are serial access systems. as were the magnetic tape systems of 
the olden days. 

11 .2 A Short History of Random Access Memory 

246 

The stored program computer in u .. e loday relic, on random aCC~" mcn"", Inr program and 
data storage. This ha .. not alway .. been the ca,c In computa rnelllnnc, One nl the carlie,t 
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"computer" memories can be ,een in the abacus. which dates back t\\.o millennia sc. The 
Babbage analytical engine of the 18505 was designed to use punched cards based on thIN! 
developed by Joseph Jacquard in 180 I to control Wea\ ing loom. Unfortunatelv. the Babba~e 
machine was never built; but Herman Hollerith later adopted Jacquard's punch~d card y\te-m 
to speed up the computation needed for the U.S. census of 1890. The Hollerith punched card 
remained a staple for program .. torage until the 19705. "hen magnetic tape and di k 51Ora2e 
became more affordable. -

Many early computer\ u,ed ~erial access memories. where a rotating drum storage medium 
>tored the data. imilar to the operation oftoday"5 hard di k storage 5} tern. Another serial acces 
memory was an acoustic delay line. where pulses propagming though a deru;e medium formed the 
serial memory storage element. The EDSAC computer. developed in England in the late 19-1Os, 
tored 1024 eighteen-bl! words in 32 mercury-filled tube . Another type of <;orial acce memon. 

based on the operating principle of a storage oscilloscope. was called the \\'illiarn -Kilburn ru~. 
This device. developed in the late 19,w" in England. could store 500 to 1000 bits. It shared a trait 
with today', dy namic random access memory in that it needed to be refre. hed because the infor­
mation was an electrOnic charge Stored at a location on the oscilloscope rube. 

In 1951 the magnetic core memory. hased on work b~ An Wang at Hanard L'ni\e",i~ in 
19-19. was u,ed in the Whirlwind computer developed at MIT. The core memol) "'" the fiN 
widely uccc"rul random access memo,). and unlike the <;omiconductor RA_\I u\Cd III '~">terns 
tOllay. it wa.\ nonvolatile. The memol) could retain ill data "hen the po"erwas remo\ed. Figure 
11-1 show> t\\O bits ofa magnetic core memo,). The donut-shaped core. on the order of 1 mm in 
diameter. had three wires threaded though it. The magnetic flu"" in the core" a" 'Ct in one dlfCC­
tion or the other by current flowing in the X and Y lines. A logic one could be ,tored if the t1lL~ 
was in one direction. sa) counterclockw. e . and a zero \\hen the fllL' \\as clockwi",. The bib 
could be addres\cd indi, Idllnll~. and the currents in the X and Y line, \\ere 'et so that both X.md 
Y currents \\ere needed to change the direction of flux in the core. To \\ rite 3 bit into 3 core. the 
bit had to be addre"ed. \\ hieh \\ U! accompli'hed by electing it> X and Y line>. Thcn the .:current 

Sense Une 

, Ltne L. e 

Flgu", 11-1 MaQneltc core I n 
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Figure 11-2 Part of a 4096 x 16-bit magnetic core memory. 

in the X and Y lines was driven in the direction needed to et the \lux in the proper direction for 
a one or a zero. A read operation was actually a read-write. Again. the bit was addressed and 
the X and Y lines driven with sufficient current to change the nux direction. If the nux changed, 
say from the one direction to the zero direction, a current wa induced in the sense line that was 
detected by the memory system. The nux in cores that were in the zero direction did not change 
and thus induced no current in the sense line. Bits that were changed by the read operation had to 
be restored, hence the read-followed-by-write operation. Figure 11-2 shows a 16-bil. 4096-word 
magnetic core memory: a common straight pin indicate the relative sizes of the cores. 

The magnetic core memory was the mainstay technology for computer memory until the 
early 1970s. when semiconductor memory was developed . The first static RAM memory was 
a 64-bit device done at Fairchild Semiconductor in 1964; a I Kbit dynamic RAM with half the 
die size of previous effons allowed Intel to challenge the dominance of magnetic core mem­
ories staning in 1971 . The exponential growth in dynamic RAM (DRAM) capacity si nce its 
begi nnings (Figure 11-3) shows that Moore's law applies for the development of memory. 

11 .3 Semiconductor Memory 

The memories used in computer systems are semiconductor integrated CtrcUIIS. A random 
access memory chip consists of an array of memory cells. decoders for lIddrcs"ng a panicular 
cell or group of cells, and signals to control the direction of d<lta now ( hgur~ 11 -4). Each of 
the 2lJoi

, M-bit memory locations is addressed by the 2N-bit addre" bus The CP supplies the 
required address and assens the READ_L or WRITE_L control Si gnal for readtng or writing. 
A larger memory can be created by means of the chIp enable control signal. CF l when the 
memory chip is used with others. 
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Data Memory (RAM) 

Static RAM (SRAM) 

There are two kinds RAM memory cell, static memO/)' (SRAM) and dYllamic 
A static memory cell is a flip-flop. memo I)' (DRAM). A typical static memory cell is a flip-flop, as hown in 

Figure 11 -5. Figure 11-5a shows a two-CMOS trans istor inverter and Figure 
11-5b shows how two cross-coupled inverters form a flip-flop and, when combined with two 
access transi tors, create the bas ic six-transistor SRAM cell. The flip-flop operates a fo llows. 
Assume the output of 12 is high, which makes II low. This is a stable state. and the flip-flop 
remains in this condition as long as Voo power is maintained. To read the cell . the Word_Select 
line is raised, turning on both TI and T2. Because II is low, Bit_ Line_L is low. Meanwhile, 
Bit_ Line is high because of 12 's high output. To wri te into the bit. Bit_ Line is set with the value 
to be written and Bit_Line_ L its complement. When Word_Select is asserted. the Bit_Lines 
overpower the present state of the inverters and "write" the new value in to the flip-flop. 

Dynamic RAM (DRAM) 

The static cell in Figure 11-5 consists of six transistors. A much sim-
A dYllamic memory cell is a capacilOr. pier memory, which therefore is capable of storing more bits per area, 

is dynamic memol},. This cell is a capacitor in which the presence or 
absence of charge denotes a stored one or zero. Figure 11-6 shows a typical dynamic memory 
cell . The MOS capac itor can be wrillen to by ac tivating the word li ne to turn the transistor on 
and charge the MOS capacitor through the bit line. Turning the transistor on and sensi ng a 
voltage on the Bit_ Line reads the cell. 

A problem with dynamic memory is that the charge stored on the capacitor leaks away to 
the substrate. Thus. dynamic memory must be refreshed at periodic intervals by ac tivati ng the 

Bit_Line 

VOO 

T1 

A~ A I Word_Select 

(a) (b) 

Figure 11-5 Static RAM (SRAMj cell. (aj CMOS Inverter. (bj Cross-coupled Inverters. 
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Figure 11-6 Oynamlc RAM (ORAM) cell. 

T1 

MOS 
Capacitor ;f; 

Word_Select li ne while holding all column lines at a panicular \oltage le\el. All cells in the 
row can have the capacitor' charge (or lack of charge) refreshed at once. 

Pseudostatic RAM (PSRAM) 

A comparison of SRAM and DRAM haws the following: 

SRAM generally i faster than DRAM. 

An SRA I cell require ix transistors versu one transi tor and a capacitor for the 
DRAM . Thus. a DRAM can tore more bilS per chip than R.'\'\l. 

Becau e the DRAM storage element i a capacitor. it require periodic refreshing. 'The 
SRA 1 storage cell i a flip-flop. \\ hich does not need refreshing. 

If a DRAl\1 is refrc hing. the CPU mal have to \\ait until the proce" is complete 
before acces,ing a storage site . 

The SRAl\1 is easier to u. e because it does not need to be refreshed. 

A memo!,) te hnolog) that combine the advantages of high storage den"t) ofDR.-\"\\ \\1m 

the simplicit) ofu,e of R 1\1 i. pselldoslmic R.4..1f lPSR.4..lfl . P R.-\~I uses DR.-\..\\-lt e ,wc­
age cells for high storage densit) and in ludes refresh drcultJ: on the integrnto."li ~ll1:Ull .:hip. 
The refre.h process is de'lgned carefull). to ensure that it is transparent to the u.-er :mJ thu, 

give, an RAl\ I·ltke user interface. 
Manufa ture" are constantl) introducing ne\\ \\ 3), 10 improve the ,peed and the .lITh.'Uot 

of stornge of the memo!) . a' sho\\ n m Table II· 1. 

Program Memory: ROM 

The lea.s! C\pe,,,I\O ROM for la')!c 

production nil"" " ",,, _\~ pn)gnmmlfd 

31 the fadOr) h)f ,) 'h,'1ll dc:' l'h.lp· 
ment i\nll ' mall prnducltl"'11\ ntn'. tid,/· 
pmgrrmlmahh' RO~I, arc prefertcd. 

RO~1 ll1~mo~ ('hlp .... ~I...)nlt.! in \aril.."Ilh t)~, \1 ... :..\ ~pn"\-"'."""''T'"'' 

RO~" are progr,lnlllled dtlnng the lllallul,l'runng ,t.1g' , T\ U ' 

the '~'l~m ut' .... igner dl~(.·Hje' \\ h~\t i ... h.' ~\' inh.' lh ~ RO\\ ..tIl!.l 
fic' the ttld' h,' tx u,nt ~~ tht' mJ.lluf.,,,:turcr. 11k~n~ l' U' U3 \ ~ 

dhll'\!t" tl'r lhl' ... a'\ l~l·. \\ hh .. ~h 1l\.\~ lx- '':' 'rj,lth )U....aIlJ 

c\"t "I' ,Ill Illdl\' idu.II chip .1ft " th.ll " 1,\\\. "tt '0 \ nb 
lll,lsl.-pr,'gr.ll11111,'\1 J '\ t\~, ,lre ,ultabl' I" hIgh·, -I 
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Table 11 -1 RAM Memory Types 

SRAM 

DRAM 

BSRAM 

FPMDRAM 

EDRAM 

EDO RAM 

NVRAM 

SDRAM 

DDRSDRAM 

ESDRAM 

PSRAM 

EPROM 

SUllie RAM 

Dynamic RAM 

Burst or SynchBursl slatic RAM 

Fast page mode DRAM 

Enhanced DRAM 

Extended data output DRAM 

Nonvolatile RAM 

Synchronous DRAM 

Double data "lie SDRAM 

Enhanced SDRAM 

Pseudostatic RAM 

Figure 11·5 

Figure 11-6 
RAM access synchronized with the lIY\ICm clock to 'peed up acces~ 

DRAM with fllSl access 10 a memory row 

A combination ofSRAM and ORAl\l," onc package 

25% faster than standard DRAM 

RAM that does nOt lose its conlcm~ \\ hen the power I'> turned ofT 

Various types of DRAM synchroni/cd with the procco:"sor clock 

ActivDlcs output on born ri s,ing and falling cdge~ of the clock 

A combination of SRAM and SDRAM 

DRAM cells with on·chip refresh circuitry 

Word_ S elect ---T"--t------1I--r--t--

o o 

Figure 11 -7 ROM cells. 

Figure 11-7 shows a mask-programmed ROM. A bit is eilher I or O. depellding 011 whelher Ihe 
transislor gale is or i not integrated. 

Field-programmable ROMs are used 
for 'ySiem developmenl and in low­
volume applicalions. 

Other ROM devices are field prograllllllabl,' and may he programmed 
by Ihe user. These so-called programmable ,,'ad'IIIIII" IIIt'IIII1"".' include 
UV-erasable PROMs (EPROMs), and Ollc-tlllU'.pmgrrlllllllol.lc (OTP) 
EPROMs (Figure 11 -8). The Ii"'t EPROM ,'<" Ihe Intel 1702. I11lro­
duced in 1971. This memory wa, a 256 word. X·hl! chl[l ;tlld cou ld he 

Source 

Field 
Oxide 

UV Light 
to Erase 

Figure 11-8 EPROM storage cell. 
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programmed. erased. and reprogrammed during the developmenl cycle. These characteristi 
greally speeded up the devetopmenl proces and reduced the co I because the pan did nol have 
10 be Ihrown away if the program had to be changed. EPROMs are electricall~ programmable 
and erased by irradialing Ihe chip through a quanz window with ultraviolet lighL The ceU in 
an EPROM i, aMOS lransislor withoul a connection to the gale. lll.i i called a /10011" -
gate. aralallche-illjectiall. charge storage device. Figure 11- how. a model. To program the 
EPROM. the ilicoll chip is placed inlo a PROM programmer. and during the progran:urung 
cycle. the address and dala are senl 10 the chip and the programming \oltage i applied. To 
change the Slate of the gate. electron either are or are nOl inJecled b) an a\a1anche mechanism 
into the silicon floaling gale. Thus. after progrnmming. the channel between the = and the 
drain eilher conducl, or does not tf the chip need_ 10 be era..se<l it mU-I be removed from 115 

circuit and placed inlo a PROM eraser. "here il is irradiated".th L 'light at a wa,elength l""s 
lhan -lOOnm lOA I-l.1n).111is dl per-e, ba l into the , ub. trale any charge >tored in the tloaxing 
gale and era!.e' the memo!) . Sunlighl and fluoresce 111 lamp. of some ~pes contain en~ in 
Ihis "a' elenglh reg.on. and manufaclurers .:"uuon lISen; that an EPRO\\ can me er:l..~ 
b) direcI c\po,ure 10 Ihe ,un for one week and by e\po"ure to tluore'Cellllamp< for:' ~e3I'. In 
applicalion, where lhi> danger e\isb. ~ ou <hould place an opaque cover over the quanz. "111-
dow. An OTP EPRO~ \ " an EPROllt w ithoUl the '\lndow: thi> mean, that c'nee pn:gr:unme.i 
the memo!) cannOI be cra;.ed. 

EEPROM and Flash Memory 

Figure t t -9 ,how "111 c/.·ctricaIlH'IU\C/J./,' PRO\( \EEPRO.\fl. '>;ote '1"IIl11tan~ P Figure t­
A ',econd pol),.lie,'n g,lte. ,' alk,l the c'<'nt!\,1 gate. I, adJe-J at>.."c the thatlOg gat .-\ ,-,; m: 
'ohage Illa) be JPplled til th., gJte I" rrogram anJ era,e th" II h~ 10J 'ung ('r J, "10; 
ekctron, .n Ihe il"'lllll)! g.lIc 

\ /-"I",h Illen,,'!) ch'r" ,.milar I" lh' FErRO\\ \1th,'ugh It ,-an 
the ,tand.trJ l[PRO\ \ Ih,'nce the name n",h t. It h,,' th' J{'J\\ hac 
~, hk~:k ,)r Il\l'I\1('n l\1\ht ~ I..'r,"""o. \\ h 'l\.' ;1., ... 'm~tl'll · .. \th. n ... ,,'J.Il ~ tOm,:-J 
.n Ill\' F,PRO\\ .I,', .,'" 
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Figure 11-9 EEPROM storage cel l. 
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11.4 Memory Timing Requirements 

Remember from Chapter 2 that the CPU is controlling the information transfer in the system. 
It generates the control signals. such as READ_L and WRlTE_L. and takes data from or pULS 
data onto the bus at specific times. as shown Figures 2- 17 and 2-18. The CPU clock controls 
the overall liming. 

Let us now look at the memory system timing from the point of view of the memory. It is 
easiest lO stan Ihe discu sian with the liming of a static memory ch ip. Figure II - lOa shows 
typical read cycle timing di agrams for static RAM and defines Ihe basic times li sted in the fo l­
lowing seclions on memory read and wrile cycles. 

The Memory Read Cycle 

t
RC

' read cycle: This is the tOlal time for the read cycle. 

t. cs' chip select access: The maximum time required by the memory for the CS_L lO be 
assened before the data are ava ilable. 

tAA, address access: Thi s is the maximum time required by the memory for the add res to be 
present before Ihe data are available. 

t ROHA' read data hold after address: The time the memory may hold the data at the output after 
the address is changed. 

tROHC' read data hold after chip select: The minimum time the chip will hold the data afte r being 
deselected. 

tOE' output enable access: On chips Ihat have an OU lput enable, this parameter gives Ihe maxi ­
mum lime for the ch ip to respond wilh the data. 

tOHZ' output enable to output high Z: On chips thai have an output enable. 11* paramete r speci­
fies how long the data will remain valid before going into three-state (high impedance. Z). 

Two times for reading data are imponanl to memory ,y\tem dc,ignc". The read cycle 
time. IRC' is the minimum time that the addre,ses mu t be 'table (unchanging) al the chip. The 
address access lime. I AA' is the maximum time required by the memory before the data are 
available. Although most manufacturers draw the timing diagram, ,hnwlOg I.r and lA' looking 
different. they are usually the ,arne. 

11.4 Memory TIming RecUirements 

I
RC ~ I 

'~ 

Addres s Address Valid 

\ ~I 
~ I~ ~ --- IAA IRDHC ~ 

Data Data Valid 

~ IOE r- ~ 10HZ ~ 
\ j 

(a) 

I WC -----l~~1 
Address Valid Address 

--~------------------~\---

tcw ----~'"il I .. 

WRITE_L -+------\ 

(b) 

Figure 11-10 (a) Memory read cycle. (b) Memory write cycle. 

The Memory Write Cycle 

RDHA 

255 

The melllor) \\nte c)c1c tlllung diagr.lI11 i, ,ho\\n in Figure I I-lOt>. and \\ 'an J'fin !b­
follo\\ ing times: 

twe, write cycle: Thl' I' th~ 1lI11lilllUIII total tiO\~ reqUIred t>~ th' 111'0\ \~ t,\, \mrk-t~ ~ nt~ 

cycle. Thl' 11l"~ or l1"l~ 1101 tx- th~ ,alll~ .1' th~ read.:~ 'k lime I" 

feW' chip selection to end of write: Th~ minimum time th' (,,' L ,ignal IllU,t tx- .1'~ 
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t"" address setup: The minimum time the address must be valid before Ihe WRITE_L signal 
is assened. 

tM"'- write enable: The minimum time WRlTE_L musl be a sened. 

tAW. address valid to end of write: The minimum time the address musl be valid. 

twos. write data setup: The minimum time the data must be valid before the end of write enable. 

tMWOH~ write data hold after enable: The minimum time the data must be valid after the 
WRITE_L signal is deassened. 

Again, there is a minimum lime, the wrile cycle time, twO' that the address must be present 
and stable at the chip. For some memories, the chip select signal mUSI go low, at least tew (chip 
selection 10 end of wrile) nanoseconds, before the time the CPU takes Ihe data away. In other 
memories, this is not an imponant parameter. The wri te enable signal. WRITE_L, may be 
assened t

AS 
(address setup time) once the addresses are valid. The data being wrinen into the 

memory mu I be valid at least twos (wrile data setup) nanoseconds and musl be held for the 
data hold time, {"WDHE' afterthe WRITE_L goes high. Table I I -2 show the timing for a Micron 
MT45V256KW I 6PEGA 4-megabit pseudostatic RAM shown in Figure I I - I I. 

Arrays of Memory Chips 

Figure 11-12 shows a 64 Kbyte memory array. Sixteen address bits, generated by the CPU, 
address any memory location in this 216 memory location array. M emory arrays are constructed 
of smaller blocks of memory, in this case four 16 Kbyte blocks. Each 21J memory location is 
addressed by address bits A 13-AO. Each of the four 16 Kbyte blocks is selected by a chip 
enable (CE) signal generated by using the 2-4 decoder to decode the two highest significant 

Table 11-2 Micron 4 Mega bit PSRAM TIming 

Timing (ns) 

Symbol Parameter Min Max 

Read cycle 

'F«: Read cycle time 55 

'"" Chip se lect access time 55 

' .. Address access lime 55 

' RotlA Read data hold after address 5 

'RotlC Read data hold after chip select 8 

'0< Output enable access lime 20 

'011. OUtPUt enable to outpul high Z 8 

WriteC)'cle 

'.e Write cycle lime 55 

'co Chip selection to end of write 45 

'AS Address setup Lime 0 

' MWE Write enable width 35 

' AW Address valid to end of wri te 45 

' IItOS Write data setup lime 23 

''Ilo OHE Write data hold lime 0 
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Figure 11-11 PSRAM. 
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Figure 11 -12 64 Kbyte me01OlY. 
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Table 11-3 Memory Sizes 

Number of 
Number of Memory 
Address Bits Locations 

t6 65.536 

20 t.Q.lS.576 

22 4.t94.3Q.l 

24 16.777.216 

32 4.294.967.296 

Addresses 

64K 
1 M 

4M 
16M 

4G 

address bits A 15 and A 14. The R/W _L control signal determine the direction of data fl ow. 
reading from or writing to the memory. 

Figure 11-12 can represent a memory of any size. The maximum directly addressed is lim­
ited by the number of address bi ts the CPU uses, as Table 11-3 shows. Even more memory than 
this can be addressed in processors with expansion memory, as discussed in Chapter 4. 

11 .5 Chapter Conclusion and Summary Points 

Computer systems have memory of both RA M and ROM types. 

RAM is volati le and is used for variable data in embedded systems and variable data 
and programs in desktop systems. 

ROM i nonvolatile and is used fo r programs in embedded systems and the BIOS in 
desktop systems. 

RAM can be static (SRAM) or dynamic (DRAM). 

SRAM is faster than DRAM. 

DRAM can store more bi ts per chip area than SRAM . 

DRAM requires refreshing. 

A combination of SRAM and DRAM is pseudostat ic RAM (PSRAM). 

PSRAM combines the high bit density of DRAM with the easy interface of SRAM. 

EEPROM can be programmed electrically in the application system. 

EEPROM cells can be programmed individuall y. 

Flash EEPROM is faster than EEPROM but musl be programmed in blocks. 

11 .6 Problems 

Explore 

J 1.1 List the type of memory and Ihe amount of each available in Ihe com pUler system you 
are st udying. 

Stimulate 

Challenge 

11.6 Problems 

11 .2 Use Figure 11-3 to estimate the rate at which DRAM capacity is doubling. Does it 
follow Moore's law? 
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11 .3 A CPU reads from the data bus 150 ns after it has supplied the address to the address 
bus. Which memory access time specification would be best to use for RAM memory 
in this system? Justify your decision in terms of cost and system reliability. [c] 

a. 10 ns 
b. 110 ns 
c. 150 ns 
d. 200 ns 

I 1.4 Compare the memory read cycles shown in Figures II-IDa and 2-18. For the memory 
timing shown in Table 11-2. answer the following . 

a. What is the maximum CPU clock frequency that would be allowed? 
b. What memory read cycle time corresponds to the time between points A and C in 

Figure 2-IS? 
c. What memory read cycle time corresponds to the time between points B and C in 

Figure 2-18? 

11.5 Compare the memory write cycles hown in Figure II-lOb and 2-17. For the memory 
timing shown in Table 11-2. answer the following . 

a. What is the max imum CPU clock frequency that would be allowed? 
b. Assuming a po itive-edge-triggered output de"ice. what memo£) write cycle time 

corresponds to the time between points A and D in Figure 2-17? 

Reflect on Learning 

11 .6 List five things that you learned about memories in this chapter. 



Objectives 

Serial 1/0 

In lhis chapler we dispel the mysleries and myths of the asynchronous serial interface. Nearly 
everybody who has connected a serial device 10 a compUler has had trouble of Some kind. In the 
personal com pUler world. Ihe serial imerface is called the COlli pan. and many PCs have one or 
more of these. although the universal erial bus (USB) is taking over many of the jobs Ihe serial 
com pan used to do in desklOp compulers. Nonetheless. in embedded applicalions, asynchronous 
serial I/O is a useful method of transponing data over long distances using only three wires (al 
a minimum). We wi ll see Ihal imerfacing serial devices is nOl dirticull once we undersland the 
basics of serial data lransmission and how to use the handshaking signals defined for the RS-232-C 
imerface. In this chapter we will al a describe the synchronous serial peripheral imerface (S PI), 
and. briefly. the imer-imegraled circuil (rC) and controller area network (CAN) buses. 

12.1 Introduction 

Chapter 9 discussed parallel I/O interfaces to input and OUIPUI dala. A disadvantage of parallel 
I/O is thaI a wire is needed for each bil, and a parallel cable can be bulky and expensive when 
source and destinalion are more Ihan a few feet apan. In addilion, long runs of parallel wires 
can act as a Iransmission line that is susceptible 10 renections and induced noise. Serial I/O 
techniques can offer a soluli on 10 these problems. Dala are scm one bit at a lime. using fewer 
wires. By defining appropriate slandards for Ihe logic levels. we can both reduce the effects of 
long transmission lines and combat noise problem. 

12.2 The Asynchronous Serial Communication System 
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Figure 12-1 shows a serial communicalion system connecling two mlcrocomro llcrs. In many 
microcontrollers the serial imerface i, ca lled the serial COllllllllllicwio/ll illleiface. or SCI. The 
inlerface's job is to convert Ihe parallel data transfer wilhin each microc011lrollcr to a serial 
data Iransfer between them. Handshaking signal; arc defined for the 'Crill I imerface operalion 

Microcontroller 
#1 -

SCI 

~ 
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Serial Mic(()controller 

TxD Transmitted Data TxD #2 -
Electrical Serial Electrical RxD Interface Received Data Interface RxD SCI 

Handshaking Handshaking Handshaking 

m 
Figure 12-1 Serial communication system. 

10 accomplish the I/O synchronization described in Chapter, Section 9.7. An elecmcal inter­
face is required 10 convert the CMOS or TTL logic levels of the microcontroller 10 other signal 
levels more suited 10 the eXlemal environmem. The design of this system must consider the 
following questions: 

How do you encode the data? 

If the dala are sem in serial. which bit is sem first? 

How is the receiver synchronized with the transminer? 

Whal is the data rale? 

How are the electrical signalS for logic values defined? 

How doe the ystem provide for handshaking? 

The Serial Communications Interface (SCI) 

The erial imerface in the microcomroller is called a uni\'ersal aSYllchro-
A UART is a parallel-Io-serial plus a 110115 receil·er/lrallsmitler. or UART (Figure l2-2\' The microcontroller 
serial-lo-parallel daw convener. sends data through its internal paraliellJO interface to the lransmil d.n<1 

bllffer. These dala are transfeIred to the parallel ill/serial our shiN /?g­

iSleI'. and the clock hifts the dam out on the lransmilled dara ITtDJ sign:ll line. eri:ll d:lIa 
bits are received on the receil'ed dora (RxDJ signal line and shifted into the serial i,.parallel 
0111 shift regisler. After all dma bit have been shifled. the) are transferred 10 a receil't'J d"ra 
bllffer. where Ihe microcontroller can use an inpUl operation 10 read them. Although you can 
buy UARTs as individual chips. th<!se days mast microcontrolle" ha\e them a, an imegrnl 
pan. Be. ides Ihe data bus and clock signals sho\\ n in Figure 12-2. there are other >1gnah lix 
handshaking and control. su h as transmitted data regi. ler ('IIIJlt)' and n.·cein·d dtll~1. n Ister 

filII. We discllss Ihe need for these in the next section .. 

Data Coding and Transmission 

Any dnw code can he u,ed for ,erial 
daw lran,fer 

An~ b1l1al') cOlle that both ends agree u!,,'ncan ~u,ed. :en3l dal.l tr.U1'­

fer I' freque11l1~ u. ed to send della t'<'t\\U'n a tenlllnal anJ a 'mrut'r.ln 
Ihl' C:be. the inf"nl13110n is Ihe alrhanumenc \.e~ rre",'\! ,'11 t ' 



262 Chapter 12 I Serial t/O 

Clock 

Transmit Data 
Register Empty 

UART 
--------- - -------- -------, , , 

Transmit Data Register : , 
TxD : , 

Data Bus tolfrom ...... --+-+-4-+---< 
Microcontroller #1 

Received Data 
Register Full 

RxD 

Receive Data Register 
Gnd 

, , , 
----------- - ------- --- - _ _ _ 1 

Figure 12-2 Serial communication UART. 

Serial Data Out 

Serial Data In 

keyboard or the characLer di splayed on the screen. Of the several codes used for alphanumeric 
information , the mosl common in microcomputer work is Ihe Americall Stalldard Code for 
Informarioll IlIIercilallge, or ASCII. The ASCII code, shown in SecLion 12.5 , u~es 7 bits to 
encode 96 printab le characters and 32 control characLers. 

Seria l data bits are synchronized at 
the receiver by first sending a Slart 

bit. Lhen the daLa. and then a SlOp bit. 

We have two choices fonhe order of data Inlllsmi" ion. The de;igners 
of the UART have chosen to send the leasL ;ignificant bit first. Sending 
characters in thi s way is called aSYlicilronous seria l communications 
because the characters can be sent al any Lime and do not need to be syn­
chronized with any process in ei lher the sending or receiving unit. For 

example. characters typed on a keyboard are sent when you Lype them . The dc"gnc" provided 

Mark 

Space 

12.2 The Asynchronous Serial Communication System 

Variable time 
between bytes 
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---LJlL---i_+-;--t- +--+--+1 -

N ('I") v 1.0 
a:J a:J a:J a:J 

8 Data Bits 

'" I"-
a:J a:J 

Data Byte #1 = 0100 0110 

iii 
c-
o 
iii 

Figure 12· 3 Asynchronous serial character transmission. 

N ('I") ~ l() 
a:J a:J a:J a:J 

8 Data Bits 

Data Byte #2 = 11100010 

a way 1O synchronize the receiver shift register with the transmitter shifL regisLer La cope "ith 
the asynchronous transmi ssions. Two other bits. known as the sian bit and the SlOp bil. encap­
sulate the data biLs. Figure 12-3 shows the fonnat of the data and everaJ tenn used in serial 
data communications. Here are the basic definitions. 

I. Mark and space: The logic one and zero levels are called mark and space. When the 
transminer is not sending anything. it holds the line at the mark level (i.e .. logic one). This i 
also called the idle level. 

2. Stan bit : When the Lransminer has data to send. it first changes the line from the mark 
to the space level for one bit time. This synchronizes the receiver with the tran miner. When 
the receiver detects the stan bit. it knows 1O stan clocking in the serial data bits. 

3. Data bits: Almost any number of data bits can be sent between the tan and lOp bits. 
depending on the length of the transmit and receive shift registers. Typicall) . eight or rune are 
used. 

~ . Parity bit: Only 7 bits are needed to encode ASCU characters. IIi0st UART allow up 
1O 8 (and sometime., 9) bits to be sent between the tan and lOp bits. and so a parity bit may 
be included. The pari t) bit is added 1O the data to make the lOtal number of one, odd lodd 
parity) or even (even parity). The parity bit ma) be used to dete t erron. in the data. A pari~ 
bit is used frequently \\hen 7-bit A CII codes are being transferred. 

5. SlOP bit: The top bit is added at the end of the data bits. Thi, give, at least one-bit 
time between suc es,i,e characters. ome systems require more than one top bll. 

Oata Transmission Rate 

The rate at \\ hich bilS are sent is often called the /'<lJ/d 1'(1/,' Thi' I, a DlI'-

The balld /'lite i. the number of bib used term because a 1'£lIIti i, a unit of ,ignaling ,~ and ,ignifi ~ 
per second . number of times per _ econd the state of the line is changed It i, the ",,,,ipn).. 

cal of the length of the shonest clement in the (,>de and., ~I\cn III bib per 
,econd. Baud i, a cOlllr.lction of the ,umame of an earl) pioneer III 'crial d.U:l" )lllnmni,·:m(>Il'. 
J . I. E. Baudo!. ' The delta r.ll,· can be ;lI1) \ alue. and 'tandard data rate' are ~,,\ n III Tabl 12- t 

I J ~I F B;}ud(\, t 1~4:5 IQ(H\ m\c:ntc:J a 5'~lt Io.'(xk Il\( ..enJln~ ..Lt.1 tn ,1. td"~~rarh .. , .. Ie,". It,, .. 
Prelll'h 1c1('~r.\rh ... , .. \cm til 1~7'" .tnt! ho.."\'JJlIt: (lne ~"\Ilhc: ,!anJ.mh u .. r:J It" mtl."mJh\ 1\J.11 k~r.arb .. ;1((\J'Dun:~: 
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Table 12-1 Data Rates Used in Serial Communications 

Standard Data Rates (baud) 

110.150.300.600,900.1200.2400.4800.9600.14.400.19.200. 38.400.57.800 

12.3 Standards for the Asynchronous Serial 1/0 Interface 

Several standards have been developed to define the interface between two SCls in a seri al com­
munication system. In interface standards, which are necessary to a llow different manufactur­
ers' equipment to be interconnected, the followin g elements must be defined: 

Handshaking signals 

Direction of signal flow 

Types of communication devices 

Connectors and interface mechanical considerations 

Electrical signal levels 

The RS-232-C standard of the Electronic Industries Association' is used in most asynchro­
nous serial interfaces . For signals that must be transmitted farther than 50 feet or at greater than 
20 Kbitls, however, another electrical interface standard. such as RS-422, RS-423 , or RS-485, 
should be chosen. For each of these, handshaking. direction of signal flow, and types of com­
munication device are based on the RS-232-C standard. 

Handshaking Signals 

Serial data transfer requires handshaking signals for synchronization and control of the trans­
mitter and receiver. All signals in the RS-232-C interface other than the transmitted and 
received data are for handshaking . To understand these, we must first look at communication 
system types and at modems. 

Data Terminal Equipment and Data Communication Equipment 

The EIA standard defines two kinds of device serving as the electrical interface shown in 
Figure 12-1. Modems', al so called data comllllmicatiol/s eqllipmelll (DC£) . connect the SCI 

1 The Electronic Industries Association (EIA) publishescngineering silindards lo scrvc the public l/lle re.\! by eliminating 
misunderstandings between manufaclUrers and purchasers. EIA standard~ can be purchn.\cd from the organization: 

EIA Engineering Department 
Standards Sales 
200 I I Street. NW 
Washington. DC 20006 
(200) 457-4966 

) A modem. or "MOdulator/DEModulator," converts binary ~igna l c, (logic level ... , to and frollllhc: lonc" ~el\l over the 
lelephone line. 
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10 a telephone line. The terminals or computers to which they are attached are called dnra teT­
millal equipmelll (DT£). 

The signal now directions defll1 ed in Figure 12-4 and Table 12-2 are based on the signal 
now defin ed for a DTE device. You wi ll find that computers often are configured as data termi­
nal equipmenl devices. For example the tran mitted data pin TxD is being SaUTeed by a DTE 

TxD TxD 
Data RxD RxD Data 

Terminal SG SG Communications 
Equipment 

RTS 
RTS Equipment 

CTS CTS 

Serial 
(a) Cable 

TxD TxD 
Data RxD RxD Data 

Terminal SG SG Terminal 
Equipment 

RTS RTS Equipment 

CTS CTS 

(b) 
Null Modem 

Cable 

Figure 12-4 Serial communications. (a) DTE-DCE; (b) DTE-DTE. 

Table 12-2 RS-232-C Signal Definitions 

OE9 OB25 Signal 

PG 

TxD 

R\D 
RTS 

CTS 

DSR 

SG 
DCD 

!O OTR 

" RI 

Purpose 

Pmlt!ctfl'e grolttld, Thb i~ usuaU~ the ::-hidd in a shielded cable. It jc;. de"igned 10 tx- ronne..1.ed to 
the equipment frame and 11\30) be connected lO e'h~mal groun<b. 

Trall\"lItt~d data, Sourced by DTE and recei\ ed by DCE. Dal3 terminal I!'qUlpment cannot ~nd 
un l e~~ RTS, CTS, DSR. and DTR 3.re J~-.cned. 

Recc'i\'rd dow. Recci'l'<i by lhe DTE, sourced b) DeE, 

ReC/llt"t If) .'\I!ntl, SOUrt'ed by DTE. f't'"('ein~d b) IX'E, RTS io;, :b~ed b~ the DTE y, hen it \\ .lOt' t('l 

.. end dam, The DeE rc"pond .. b) J!-:-.enmg CIS 

O('ar tn ulld. ou("'("cd b) DeE. re«hed b) DTE. CI mu,l be!' ;L~ned t'letllre th(' OTE ~"3n 
tnuNlludula 

D"ta .'l't r('(/(/\ Sourced b~ DeE. rec-ehrd h) OTE. lndk:ltc' th.u thc OCE tLb m~ .h.'\."101le\.."1l\."'Il 

on the tclcphl)l1C hne anJ j, re3d~ to n.'1."'Ci, c dat:\ fn'\m the temlinal. Tlle DTE mu· .. t ~ thi'> 
a::- .. c,.'ned bel('~ It ,,'.111 trnn .. nut "bt3. 

igllulllnJlllld. Ground rer¢rcn\"~ fl.ll' the 'Ignal i .. ~rar.lte fn,1tl rin t. rn"\("'~ti\C' gt\.~nJ. 
Dma ,'drna dt'f('ct Soul"'t'Nl h) DeE. l"'t.'f.'1.'.h t'd b~ DTE lndll.'ate--.. th.u J DC'E ~ Jl!'t 'IN m,.­

carrier on thl' l~"krlh\tll' lme Origin:lll) it \\~ u,t"d in h.tli-durl .... ' ... ) ... ' .... m' Nt \.'.m ~ u .... -J U\ 

lul1~durlc \ .. ~ '1c.'I1\ ... 1(1<\, 

nllfe' It'I1",IIal,ntd\' Stllll"('('(t h~ 0 fF, t"\.'('('h ... d b\ neE. lndKJtl.·' tht" nn I' ~;W~ h\f '" 
l)II\·~·t'I\ Ill!! 

RIfI~ i"dlt"iltilr SOUi"Cl'<i h\ lX"E.. n"t.'1.'.hl'(l \'I) DTE lnJt.:.uc, thJ.t J. nng.u\~ 't~n.tl J'I.!ct<.'\: 
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Figure 12-5 RS-232-C tester. 

device. Dma communicat ion equipment (DCE) devices include modems and some printers. 
The ignal now and ignal names used for DCE devices are often incorrectly speci fied. For 
example. the TxD signal is actually recei, 'ed by the DCE device. It is incorrect to call this signal 
RxD. When connecting one device to another. we must be sure what kinds of device are being 
used. and we must select the proper cable. 

A very useful 1001 to have when working with RS-232-C interface devices i the RS-232-C 
tester (Figure 12-5). Thi s tester shows what serial lines are active and allows us to determine 
easily if we are connecting to a DTE or DCE device. 

Modem Handshaking Signals 

Thc principal signals used in modem handshaking are as follows. 

I. Ring indica tor (RI): The telephone company transmits a ,peciallonc that rings the 
phone. The modem can detect this and a,sen the RI signa l. The terminal or computer can use 
Rlto stan some spec ial process. such as notifying the user th at the other end i, ca lling or to 
answer the telephone in an answer modem. 

2. Data sct rcady (DS R): This signalte lb the DTE that the modem (also culled a dl/ta 

.\el) has established a conneclion over the lelephone line to the rar end. 
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3. Data tcrmina l ready (DTR): This signal from the DTE informs the modem that it i 
ready to operate. This is usuall y just an indication that the power is turned on in the terminal. 
but the signal could be controlled by a computer. An intelligent answer modem can use it to 
answer a call automatically only when the computer or terminal is read). 

4. Data carrier detect (DC D): The DCD signal is assened when the carrier ([he tone 
defined for a mark) is being generated by the modem on the other end. DCD was used orie­
inally in systems where data could be sent in only one direction at a time: these are called­
half-duplex systems. When one end wanted 10 transmit, it first as ened the RTS line. The 
modem then checked the DCD bit. If it found it assened, it knew the other end was sendine. 
When DCD wa, deas erted. CTS was assened allowing transmission from the requesting -
terminal. 

The complete RS-232-C standard defines all signals and ignal directions for DTE and DCE 
devices. There are three schemes for labeling the signals: mnemonic acronyms. alphabetic 
circuit codes. and CCITT (international Telegraph and Telephone Con. ultatiye Col1Ultinee-) 
numeric codes. The 1110st descriptiYe and most frequentl) used are the signal acron) rns listed 
in Table 12-2. Also shown are the RS-232-C standard pin number for the DB25 connector and 
the pins that have been defined for the DE9 connector used on lB I personal computers and 
compatibles. The signals given in Table 12.2 are the main one u ed in serial interfaces. The 
RS-232-C standard also defines another <et of sienals that are u ed for ,econdan data trans-
mission. These are very rarel) used. - -

12.4 Asynchronous Serial Hardware Interfaces 

RS-232-C Interconnections 

When twO serial pons are connected. the data r~te. the number 01' data 
A lillI/modem cable is used to con- bits. whether parit) is u -ed. the t) pe of parit). and the number of ,LOP 
necttwo DTE computers together. bih mu,t be set properl) and identical I) on each CART. You mu.t 

abo h3\ e the proper cables: depending on the de, ,ce, to be intercon­
nected. there are four kinds of cable frol11 \\ hich to choose. These are the full DTE-DCE cable 
(Figure 12-6). a DTE-DTE lillI/modem cable (Figure 1~-71. and a minimal DTE-DCE cable 
lhat works in many applications (Figure 12- ). A minimal null modem cable for DTE-DTE 
connection also ma) be constructed (Figure 12-9). 

When first en ountering the R -232-C interface. l11an) u,e" ha\e trouble recC'nciling the 
direClilll/ of data 110\\ \\ ith the si~!Ii,,1 ''''/lit'. Look 3tthe direction, ,ho\\ n i,>[ the ,ignah, n 
the DTE de< icc in Figure 12-6. 'otice that pin _. rran<mit data IT\D'- b a data ,'utput. l' 

the other side. T\D for a DCE de, i,'c " an input! Unfonunatd). man) manufacture" d,> n" 
provide enough detail, ,n thcir documentat,on to let us knl'\\ ,fa ,'gnJ.1 i, J.n input ,'r utput. 
You cannottcll b) the name alone . You must also I-n<>\\ ,f )OU ha,e a DTE l'f DCE de\ ic' T" 
pro, ide the proper cable. you m,l) h,l\ e to reson to in,pecting the, -h,'n1-l1l,' d,agrJ.m, mea­
:-.uring \'o1tag~ .... or u-.ing thl.! R <!32·C te"t~r ,h(\\\ n in Flgl1r~ I ~-5 h..' tlnJ \,'ut \\ hh .. -h r n l' 
an output. 
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DTE Device DCE Device 

DE9 D825 D825 DE9 

TxD 3 
RxD 2 

SG 5 
RTS 7 
CTS 8 
DCD 1 

DS R 6 

DTR 4 

2 . 2 
3 ... 3 
7 7 
4 . 4 

5 ... 5 
8 --....... 1- 8 

6 ... 6 

20 . 20 

3 TxD 
2 RxD 

5 SG 
7 RTS 

8 CTS 
DCD 

6 DSR 

4 DTR 

DTE Device DTE Device 

DE9 D825 D825 DE9 

TxD 3 
RxD 2 

SG 5 

RTS 7 
CTS 8 
DCD 1 

DS R 6 

DTR 4 

7 ----7 

:32: 
6 ----....;-- 6 
20~~20 

3 TxD 

2 RxD 

5 SG 

7 RTS 
8 CTS 

1 DCD 

6 DSR 

4 DTR 

DTE Device DCE Device 

DE9 D825 D825 DE9 

TxD 3 

RxD 2 

SG 5 
RTS 7 
CTS 8 
DCD 1 

DS R 6 

DTR 4 

2 • 2 

... 3 

7 
3 
7---

l ~E l 
20 20 

3 TxD 

2 RxD 

5 SG 

7 RTS 

8 CTS 

1 DCD 

6 DS R 

4 DTR 

Standard Electrical Signal Levels 

RS-232-C Standard 

Figure 12-6 Full DTE-DCE cable 
(straight serial cable). 

Figure 12-7 DTE-DTE null modem 
cable. 

Figure 12-8 Minimal three-wire serial 
cable. 

The signal levels for RS-232-C mark and ~pace are hown in Tab le 12-3. NOlicc Ihat the signal 
level for a mark i low. 
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DTE Device DTE Device 

DE9 D825 D825 DE9 

TxD 3 
~~ 

2 3 

RxD 2 3 2 

SG 5 7 7 5 

RTS 7 4 

~E 
4 7 

CTS 8 5 5 8 

DCD 1 8 8 1 

DS R 6 6 6 6 
DTR 4 20 20 4 

Table 12-3 RS-232-C Logic Levels 

RS-232-C Signal 

Mark 
Space 

Voltage 

-25 10 -3 v 
+3 10 +25 V 

TxD 

RxD 

SG 
RTS 
CTS 

DCD 
DSR 
DTR 

Figure 12-9 Minimal null modem 
cable. 

Logic State Logic Level 

Lo~ 

High 

~ 
RS-232-C 

Logic ~ CMOS Levels CMOS 
Logic D R Logic 
Levels Leve ls 

~---------4 

Figure 12-10 RS-232-C interlace. 
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RS-232-C signal levels have been The RS-232-C interface dri'er (0) and recei'-er (R) pair i_ sho\\ n in 
Figure 12-10. The driver and receiver are called sillgle elided because the 

defined 10 give a large noise margin. 
ignnl line is referenced to the ground. The driver and receiver con'en 

CMOS or TTL logic le'els to the R -232-C le,els. \\ h.ich pro,-ide mu h 
grcalcr noi se margin. R -23_-C dri,ers can be used effectivel) if the distance does not e-,-ceed 
50 reet and the data rate is not higher lhan 20 Kbitls. As the line distances get longer or the data 
rate higher. another signaling standard hould be chosen. The electrical ~hamc;;'mti:-; of the 
RS-232-C standard will be gi,en shonl~. in Table 12-1. 

RS-423 Standard 

The RS-423 interrace can transmit 
al higher dOl;' ralC~ and O\er longer 
dislance, than R. -232-C 

111e R -123 interface i. Shll\\ n in Figure I ~-I1. It. t\Xl. 1$ J. 'U\g\ ,­
ended system. hut the dri,ers are espe ial1~ mat -hed .md run ,.j t" \ • 
anoth~r to a1l0\\ the longer distan,"es elml hIgher dat.\ mte, ,h \\ n 1.\1 'r in 
Tahle 12-4. ailing \\ ith the e1cXtri~al ,p.:,ilk.ItK'n< f,'r R, -I~_\ '\~nelhn>! 
R, -423 "bo al111\\' a <lri, ert" brt)3d~a't data tll lOre "II . - , 
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FIgure 12·11 RS·4231n rla-e 

\ rr,.l>klll" J 'm'n 'e,1 \luh the "ngle·ended dli,er; nnd rccei,cn. of RS-232-C and RS--I23 's 
th, t ','r I, Il~ hne l'll~th', Illl", and cnllmd <hilh can cause error, in the received data. oise 
,111.1 ~n'"IlJ' lull, JI'p., ... r ,', (\'mm"~-m\>dc ,ignal,: lhm i<, lhe} affect each line equally. The 
RS-l~~ hnc limel' and r ~'e"cl' "rerJlc \\lth d,fferential amplifier, as shown in Figure 12-12. 
Th' 'Jnlel' d,mlnJtc mu 'h III the Cl'"lnlOn-mode noise experienced with long transmis­
,1t'l1 Itn" Th ',r ',llll\:e .lnd load ll11red,lO.:e, match t"i sted-pair transmi,sion lines': the line 
kll~th, ,IOJ JJt.t r.tte, thJt can t>e Jeh,e'cd \\ III be ,hown in Table 12--1. along with the RS--I22 
d' ·tn.:.tl pc '"kJIl,'n, 

\rrr '" rei II n. 
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Figure 12-12 RS-422 Interlace. 
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Up to Ten 
Receivers 
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">--- logic 

levels 

The RS-485 ,tandard is similar to RS-422 ,nlh:.t itll,es dillcrcnti"llinc 
The RS--I85 standard allow, abu, dri'e" and rece,vers. However, '" shown '" I-'gure 12- llthc st:lI1dard 
."h,tec,uro w,lh Illuiliplo 'ourcc, provide, for Illultiple dnve" and receIVe" III :, busscd cnv,wnl11cnt. Up 
and rccc,'ers. to 32 driver/rece,ver P'llrs can be u,ed together. I'or the RS ·4K5 srecin­

cations, scc Table 12-4. 

Serial Interface Electrical Specifications 

There are four electrical ,pecification, in "'e for tOterconnecting senal intcrfucC'. Thcse arc 
"hown in Table 12-4. The two mo" widely used are RS-232-C and RS-4R5. The laller, which 
offers much higher daw rates over longer di"ances than the RS-232-C ,wndard, i, less wide­
spread. however. 

Each of the electrical standards shown in Table 12-4 requires a level convener 1<) translate 
the TTL or CMOS logic levels of the microconlrollcr's ,erial dat:, input and output lines to 
the voltages specified by the standard. Figure 12-14 ,how, the SCI connected to a MAX3232 
CMOS-to-RS-232 level convener. 

Low-VOltage Differential Signaling (LVDS) 

Another electrical interface being used for higher ~peed serial data networks in both onboard 
and offboard applications i, {ow,,'o{tage differell1ia{ sigllalillg (LVDS). This interface" 'Imilar 
to RS-485 because differential tran,miners and receivers are u,ed. Differential hnednvers can 
operate at much higher speeds because the differential line pair is relatively immune to com­
mon-mode noise. Data rates up to 2 gigabi t> per second are po.,,,ible with this technology. 
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Up to 32 
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Figure 12-13 RS-485 interface. 
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Figure 12-14 SCI with RS-232-C Interface. 
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Figure 12-15 Low-voltage differential signaling (LVDS) Interface. 
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The LVDS is a standard promoted as ANSlffIAlEIA-6+1-A'. Unlike R -232-C. the t:l1J­

dard doe~ not include functional specifications. protocol. or cable haracteri<tic'. It doe-. <pee­
if) a differential line driYer and recei\erconfiguration. 3l hown in Figure 12-15. 

12.5 ASCII Data and Control Codes 

The most commonly used code for ,ending data bemeen a terminal dey ice fa ke~boJJ"d and 
display) and acomputer is theAlllc'rican tcmdani Codelor Infamlation buen:hQ/l e.or.-\ Cll. 
TIle ASCII code use, 7 bit- to encode 96 printable and 32 contn,l chara -tef'. "" ho\\ n in 

Table 12-5: the printable charnctef'. in the right-mo,t <i, columns. ha\e the '(>de-. O,~()"'{),,- E. 

The control code' (columns 0 and I) are u,ed b~ ,erial dey tces to prO\" tde some ""ntn.,1 of \\ ~t 
is being tmn,ferred For c\ample. the CR code (0,001 i, ,ent to cau'e the priming temunal or 
display to p.:rform ,1 Cam,l!!C return. The delinition, for the other ,:oOlrol \" ~" .Ire ';1\.::n LO 
Table 12-6. 

COntrot code, :tre often u,ed b) ,011"= W pro\ tde 'I"-",al fune-

A cOIllml (neil' ma~ 1:><: ,cnt by hold. liom, For e\;.lmplc. in ,ome ... ~ 'tem ... ~ l'U ('an 'tl)P and ,tJJ1 ~ \."'Ulpllt t 

ing do\\n the tcnlllnal', cnntml ke) a tcnlllnal b~ t) plllg Ihe DC3 (0, Ul and DCI \0,111. ""1""'11\ I: •. Th. 

and t) ping another pnntanle kc~ . 
cont",1 ke) l'n the I.e) h<'.m) of ~ Ollr Icnninal,'r PC all,,\\. ~" t 'nJ 
cont,,>1 <"odc,. \\h 'n the "'ntrol ke~ i, pre"n1 nJ helJ "h I> -lIk'lh'r, 
print.lble character i, t~ p.:d. the elh'.:t " t" map ,,-'Iumn' -I J t- LOt 

column 0 and: and 7 1I1In ,'"llImn I F,'r c"unple, t" ','nd the DC'_~ .:h=el 'r."o" J pre , 
and hold the cont",1 I.e) anJ t\ pc ellha. ,'r , . This control- ') rnnt"N • ') • mrtn I n I' 
~11()\\ 11 <1' ('\)lltn,I-.... "l" I \"Ulll'lc:, I:! 1 thrl)ugh 12·3 

\,,1 \Ilk"n\.m JII(\I\ I I 11\l,lh'lll\lr~~. Tl\.hl:\;lQlmunl, 
lndu'lnc' \ '" .11\1'0 

1{ U\aE 
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Tab le 12-5 ASCII 7 -bit Codes for Alphanumeric Characters 

MSOigit 

LS Oigit 5 

NUL DLE SP @ P 

SOH DCI A Q 

STX DC2 B R 

ETX DC) C S 

EOT DC4 4 D T 

ENQ NAK % 5 E U 

ACK SYN & F V 

BEL ETB G IV " 
BS CAN H X 

HT EM Y 

A LF SUB J Z 

B VT ESC + K 

C FF FS L 

D CR GS ~I m 

E SO RS > N 

F SI US 0 DEL 

Example 12-1 Finding the ASCII Code for a Character 

Use Table 12-5 to find the hexadecimal ASC II codes for the characlc" A. a. and j . 

Solution 

A = Ox41 , a = Ox61. j = Ox50 

Example 12-2 Finding the ASCII Code for a Character 

Use Table 12-5 to find the hexadecimal ASC II codes for Ihe conlrol churacler> CR. BEL. 
and LF. 

Solution 

CR = OxOO. BEL = Ox07. LF = OxOA 

Table 12-6 ASCII Control Codes 

00 NUL Null 

01 SOH Stan of Header 

02 STX Stan of Text 

03 ETX End of Text 

04 EOT End of Transmission 

05 ENQ Enquiry 

06 ACK Acknowledge 

07 BEL Bell 

0 BS Back Space 

09 HT Horizontal Tab 

OA LF Line Feed 

OB VT Vertical Tab 

OC FF Form feed 
OD CR Carriage Return 

OE SO Sh,fIOUI 

OF SI Shift In 

10 DLE Dalll Link Escape 

I I DCI Del. ice Conlroh 
12 DC! 

J3 DC} 

14 DC4 

15 NAK e~3U\ e Ad..n(l\\ ledge 

16 y ) nchronou' Idle 

17 ETB End (II Trano"ml'\ll)n Block 

18 CA' Cnn\.'(':l 
19 EM End (If 1edIUm 

IA SUS Sub"tllUlc 

IB ESC E-.(apc 

IC I'l; hie Srpar.u r 

10 GS GT\\Up ~ epar.tt(lr 

IE R\ Rt'((\fU S<"p.1r.i.tf1r 

IF l :S rOil Scr-~rat~v 
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Character With alll...erO!rl 

Used al the begmmng of a sequence of charac~ that constJtutes a machine-­
readable address of routmg information; the header is terminated b) the 
STX character 

Character that precedes a sequence of character\ to be uuted ti an enuty: 
may be used to terminate a sequence of characters started by SOH 

Character used to terminate a sequence of characters swted with STX 

Indlca~ the conclusion of a traru..mi Ion 

Used ali 3 request ror a response. from a remote sr..ation 

Character transmmed b) a recet .. er as an affinnati· .. e ~ponsc to the !lending 
station 

Charactcr used to control an alarm or attention dc·.icc 

Controls the mo"'ement or the printing mechanism back ODe space 

Controls the mmemenl of the printing mechanism to the next predefined t3b 
posluon 

Mo\'e the prinung mechanism to the next hoe: In some S)'!W.eIIb. thu. ma~ be 
Interpreted as a "new line~ (1\'1.). \\-here the pnnt roechanti,m [oo\"cs to me 
beginning or the ne..'({ line 

Control~ the mo"emenl or the pnnung mecb3nis:m to the next predefined 
pnnung line position 

Mo" e\ the printing mechanism to the tan of the ne:<t page 

MO\e~ the printing mech:1l\ism to the sun of the line 

Indlcat~ that the code combinations fotl0'0'1ng lre outside the characu1-~ of 
the standard ASCU tllble until a Shm l.n ch.a.racter i recelvcd 

I.ndJCllle, thai the code characten; roll<l"'ing are to be interpr'Cled 3ICCCfdulg: t.) 

!he <!andnnJ ASCU table 

Changes the meamng or a limited number of rolJ<l"'lJIg ch.lf"lCU:rS~ Dl£ u. 
uiouaJl) tenmn:ued b~ a SbJft In char.lcter 

Chancte~ u~ [0 control ancil1~ dc\ 1C'e~ :i." wed VI \lh dig pro..'"'CS'Ulg 

Tran'mllted b~ a ~tvtt:b a fle£3the rt"'J'."\Q...e to the-.eoJer 

Ch:lDCter u'>OJ b~ .1 \YOl..ilronou~ ~1, ... tOO '~'Iem Ul the ~~ ~ ~ 
~r Charoclef' 10 numtam ... ~ tk'hroOl,m ~ cen l~ tr.u'I au.ttrr aDd 
n!\."CI"cr 

L'-.ed ll't ,ndl~3te tht cnd .. ,f a bl,,~\, ,,'I dlu 

IndlC'"ate. thaI thtdau "\Im v.hK'"h It , ... ~l "10 em.Y (If l' I' t--cJi~~ 

c."nt v.,m d313to ~r~nl the rh)'lC.:U oJ ,-'I the nk'\bwn 

Ch.&ra...'1.~r that mJ.~ t't ,ub--Ututt'd iOT a ~hM:k"1.er tb.st h In' iJ ('If In aror 

I)nm,1 ,-haDCtl!r mlC:nJtU t(~ pn.'" l&e ,,""\"'oJ( (\k'n,.on; ~,IlOlll) l ret· \ 
att 'IIn~ the mtC1'pR'utl(tQ III J hmltN Qumm- '-'" .... ~"':'U., \ t 

t.:h"r:tt.:fC' 
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Example 12-3 Finding the ASCII Code for a Character 

How would YOll send the BEL character from a teoninal keyboard? 

Solution 

BEL is a control character that can be senl by holding down Ihe "CLrl" key on the keyboard 
while pressing the "G" key. 

12.6 Asynchronous Data Flow Control 

Flow control refers to a higherlevel of handshaking needed to control the software transferring 
data via serial ports. For example, in the transfer of dala from one computer to another. if the 
receiving computer cannot deal with the incoming data fast enough. data may be 10 t. If this 
happens. the receiving computer must send a message 10 the other computer to stop sending 
data until it is ready to receive some more. There are two way; 10 achieve flow control. 

Hardware flow control: The request-to-send (RTS) and clear-to- end (CTS) hand haking sig­
nals are used in hardware flow control. The sending and receiving computer> must control and 
sense these bits in the communication oftware. 

Software flow control: Software flow control i called Ihe XONIXOFF protocol. The XOFF 
character (ASCI I DC3, Ox 14, CLrl-S) is sent by the receiving tation to turn the transmission 
off. The XON character (ASC II DCI, Ox II. Ctrl-Q) !Urns it on again . The communication 
software must detect these characters being sent. 

12.7 Debugging and Trouble Shooting 

The serial interface has caused problems for many computer u ers. The major problems stem 
from a lack of documentation about what hardware has been implemented and from failure to 
et up the UART data transmission parameter correctly. The following procedure is sugge ted 

to help solve your serial interfacing problems. 

Choose the Correct Cable 

The cable to be used depends on Ihe types of interface to be inlerconnected. YOLI mu;tlind out 
if the devices are DTE or DCE. If the documentation does not show thi,. disconnect all cables 
and check for a negative voltage at pin DB25-2 or DE9-3. If a negative voltage exim when 
no characters are being sent. the interface is a DTE; otherwtse. it i, a 0 E. When one device 
is a DTE and the other DCE, a DTE-DCE cable is required. If hath arc DTE or both DCE 
(unlikely), a null modem cable is required. 

The number of wires in the cable depends on the hand\ha~JOg <lnd nnw cnntrol u,cd in the 
system. Hardware handshaking and flow control require a full DTE-DCE or null modem cable 
as shown, respectively, in Figures 12-6 and 12-7. If \oftware now control or no flow conlrol is 
used, a minimal cable (Figure 12-8 or 12-9) can be u,ed. 

A very ulefullOollO have when working with RS-232- Intcrfatc dc, ltC' " the R -232-C 
tester ,hown earlier (Figure 12-5). 

12.8 Asynchronous Senal VO Software 

Table 12-7 Serial I/O drivers 

C FUnction Function Purpose 

Void init_sci( void ) ; Initiahze me microcontroller SCI to 8 dala bl~. I \.top bu. no panty~ 

void put_char ( char OULput ) ; 

char get chart void); 
int char_ready( void ); 

Choose the Correct Communication Parameters 

and 9600 baud: enable the SCI tran mllt.er and rccel1;et 

Wait until the transmn data regiSter is empty and outpn the: cbaracu:r 

Wait until 3. character IS recei\ed and return It 

Check if 3. character hlb been received: return TRL"E rfso: odJe:r'I4i.se 
return FALSE 

After you have connected the twO interfaces with the correct cable. make sure that the softv .. are 
at each end i; u ing the same parameters. The data rate (baud rate). number of data bits. type 
of parity. and the number of stop bits must be specified. In orne communication sy terns. the 
type of flow control can be chosen. 

12.8 Asynchronous Serial 110 Software 

It is useful to \\ rite serial I/O oftware in the form of general-purpose I/O dri\ers that can be 
used by an) application program. The needed drivers include an initialization routine to set up 
the microcontroller's communications interface and routine to input and output characters. 
See Table 12-7 and Example 12-4. 

Example 12-4 Serial 110 Drivers 

.. SerIal 1/0 Drn'er So:t.;are DeSign 

· You mus insert. code ~or your o· ... ·n r:l!.c ::' occn::::-clle= 

I ' .••• - • - • - - ..... - . - - - .• _ .. _. - - •• - - .• - •••••.• - •. - - - -" . - •... -

· Inltia11~e the SCI :0 S data b~ts, 1 step C!t, ~~ ?a=~t. 

- and 9600 baud (9600, S , N, 1) 

void ln1 SCi ( \'oid ) { 
/- Set C Iltrol reg1sters ~or S data. 
I '" Enable rz.ansrni~ter and Rece1ve::: .. 
1- s the baud rate -
rettlLn; 

r· _·-·······-_·_····················-··-·············· .. -... 
· 'hoc' to se if a 
• RC.Ul" TRuE f so, 

11' 

it 

ara~ter has ~e ~ recelve~ . 

herw.se re ~~n FALSE 

s er Fut l.~ se" .. 
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return ( TRUE) ; 
else 

/~ Else no character has been received oj 

return( FALSE) ; 

~ Put a character 

vo,d put chart char send_data) ( 
f* Wait until the Transmit Data Register Empty flag is set of 
while ( TDRE ~~ 0 ); 
I"' The last data has gone, nO\4 output the new byte . / 
TX_DATA ~ send_data; 
I- Reset the Transmit Data Register Empty flag if needed ~/ 

return ; 

~ Get a character 

char get_char ( void) ( 
char temp_char ; 
/~ Wait until a character has been received of 

while ( char_ready() ~~ FALSE ); 
I-r Now a character has been received , read it and return >/ 
temp_char ~ RX_DATA ; 
return( temp_char) ; 

12.9 Synchronous Serial Peripheral Interface (SPI) 

A synchronous serial peri pheral 
inlerrace includes a clock signal. 

SPI Characteristics 

A imple sy"cllro"OIl.! serial interrace is the serial peripheral imerrace 
(SPI ). It is synch ronous because the dc\ ice that is sending Ihe data also 
supp l ie~ a clock ,ignal. The receiver uses thb a' a shift clock to , hiftthe 
data into its receivi ng sh ift regi ter. 

The SPI is a simple seria l inlerrace. Unlike Ihe in ler-in tegraled circuil (IIC).the con lro ller area 
network (CAN). and some or the olher serial data inlerraces. Ihere " no deli ned da", prolocol 
that includes device addressing or error checking. There can be only one de\ icc. ca lled the 
master, controlli ng Ihe data transrer. Ir Ihere arc 10 be multIple rcceJ\c" of Ihe 111ror111alion, 
called sim'es. they must be ~elecled with hardware. as we will dc,cnOc . 

Figure 12- I 6 shows Ihat an SPI system consi,,, of a fill/It'" til'I'ICC and a .I!{I\'" ,it'I'in'. Some 
systems allow multiple masters wilh addillonal control "gnals . hUI onl) nne del ICC can be a 
master 31 a time. Anolher Ihing 10 nOlice i, Ihal the IWO ,hlft regi'lc" all In~clher. \\ IIh data 
being shirled out or each one in lo Ihe olher si111u ltancou,ly. Th" nwall' Ihal II Ihe ,11I\e has 

Data Bus 
to/from 
Master 
Micro-

controller 

l.{ Shift RegIster 

TI L 
I Buffer Register I 

• J 
SPI MASTER DEVICE 

/fi 

12.9 Synchronous Senal Penpherallnterface (SPO 

Master OUtISlave In 
(MOSI) 

or 
Senal Data Out (SOO) 

Master IrJSlave Out 
(MlSO) 

or 
Senal Data In (501) 

Shift C10ck (SCK) 

Stave_Seled_L (SS_L) 
or 

Ch,p_Seled_L (CS_L) 

Shdi RegISter I-
,-1 11 

I BulferReglSler I 
t • 

SPI SLAVE DEVICE 

rh 
Figure 12-16 Serial penpheral interface. 
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data 10 send to the m3\ter. the masler must control the transfer. a requirement that make> thIS 
somewhat imple device more complicated for bidirectional data transfer operations. 

Conligurations with mUltiple slave device can be found. as \\ ell. Figure 12-1 - <ho\\ a in­
gle master wilh multiple la\ e~. Since onl) one slave ma~ be aCIJ\e at a time. a decoder cin."U\l 
allows the maSierto chooe the la\c thai i, 10 be active. In this case. the la\e de\ ice mll>t hale 
an open drain or three-"ate outpUI. 

Figure 12- 18 shows a ,ingle m3\ler with 3 dai ~ -<:hain connecuon of the multiple <Ia,eo­
orl\\are in the ma,terl,,11 control ho\\ man) <hift clock are to be ~ ened to <hift the ohu to 

Ihe proper destinalJon mice thm all ,Iavc data shift registers \\ ill be shifting thelf d3u~ ~our 
SPI control sor", are mu" consider Ihi,. 

Clocking the SPI Data 

As Figure 12- I 6 \ho\\ ,. the ,hlft clod. " u,ed to ,hlft the data in and out of the -PI', d3r:t 
re!l"lers . Because no uni l ers3.1 ,t3ndanl for PI devi~, 'FCCifie. the rre-'i , e time that a shift 
clock cd!!c mu" Oc relnlJ\C 10 \ alld dala. mOIl PI ma,ter dCI tee, rn." Ide a u r- ,eI -lab Ie 
clocking "ignal. Figure I 2- I Q , ho\\ , the clock, 3 \ ailable 10 a I~ p,,,,ll nllen: ~"'\ln: lIer ,u.:h .l> 

Ihe Free,cale He 12.1\10 bi" control <'ne of four ell", 109 ' 'heme, Ta"k I::· , h\l\\ . ')13 

you ma~ chome odd. c\ cn. n,ing. or f;llhng edg""o detennine \\ hen the Ie'el, l n the' n -m 
or ,en ai-out Imc' are ,ampkd e.: E\ 3mple 12-5. 

Example 12-5 Choosing the SPI Clock 

Tht' 7411C. 9. , "" ,hilt "'~I'I<r ,h,'" n lat 'r \hgure L.2tl) ""lUlTl:' I' 'I 
dock 1" ,1111t Ihe 'en,11 data 1111<' Ih,' "')!I'ler \\ hl.:h ,I,' I'" 'tTH \ 

POI 1 \~,Iue, (,mid ~"u \I'~ 1 
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Solution 

Either CPHA = 0, CPOL = 0 or CPHA = I. CPOL = I. 

MOSI MOSI 

SPIMASTER SPI SLAVE 

DEVICE 
MISO DEVICE MISO f-----

SCK SCK 

I SS_L 

~ 
---4 ~ MOSI 1/0 2-4 

ort Decoder SPI SLAVE 
DEVICE MISO ~ p--

P 

SCK 

I SS_L 

~ MOSI 

SPI SLAVE 
DEVICE MISO ~ 

SCK 

I SS_L 

~ MOSI 

SPI SLAVE 
DEVICE MISO ~ 

SCK 

I SS_L 

Figure 12-17 Single master, multiple slaves. 

The Software SPI 
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MOSI MOSI 

SPI SLAVE SPIMASTER 
DEVICE MISO DEVICE MISO ~ 

SCK SCK 

~SS_L 

L- MOSI 

SPI SLAVE 
~ DEVICE MISO 

SCK 

~SS_L 

L- MOSI 

SPI SLAVE 
DEVICE MISO r-

SCK 

~SS_L 

L- MOSI 

SPISLAVE 
DEVICE ISO r---

SCK 

~SS_L 

Figure 12-18 Single master. daisy-chain sla,es. 

If \our IllICnx'ol1trolkr <I,""" Ill't h.l\~ an 1111 ·gr.ucl PI. ~"u .:an imut.lt~ J',,,' \ 
,:o;,lrolhng hit, ,'11 ;1 p.lrJlkl I 0 P<'" Thl\ pn: ~" . .:all ~ #>, 
ate ,ai,11 1"0 h'lIr hit, \\ 111 h<: 11<,<'Jcl II' ,illllll.lt~ the \ 10:1. \11:0 , • . J 

PI\.~~l,,: 1l11l1ll~ I' n,'l m: "Jl.'ti .1' h'lng 3' ~ I.. U "n~ure lhJt ltl· '''''rial JatJ. .. It 1 
eI,,,, the d,lhl into the, 'rial'lIl ,hilt re!!I'I~r 111 JPpn: \.:h J, " !\.'lUU" , 11\\ 
\\ ,'ul<l Ill>! I . ne~d~d It th Illl'!\. "'nt!\.,11 'r h,lJ In '1'1 
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.... IDLE ____ of-ooIf------- DATA TRANSMISSION -------~..-IDLE ~ 

o o .. 
Sample 

.. 
Sample 

.. 
Sample 

.. 
Sample 

t t t t 
o 

Master OuVSlave In ...Jj\-__ .....JL __ -'L 

o .. 
Sample 

.. 
Sample 

.. 
Sample 

.. 
Sample 

.. 
Sample 

t t t t t 

Master OuVSlave In 
-+----"L-__ /L-_ 

Figure 12-19 SPI clock signals. 

Table 12-8 Shift Clock (SCK) Polarity and Phase 

CPHA CPOL Clock Polarity Sample Time Sample Edge SCK Idle State 

0 0 Active high Odd edge; Rlo;,ing Low 
0 I Active low Odd edgc\ Failing High 

0 ACIlve low Even edge.; Failing Low 
ACllve high Even edgc~ Rlo;,ing II lgh 

SPI Typical Devices and Manufacturers 

SPI devices first appeared in Freesca le (Motorola) microcontrol lct'.. The Mlcro""c devices of 
National Semiconductor are sim ilar. Table 12-9 show, the range of SPI dc, ICCS mailab le. and 
Table 12-10 Ii ts some of the manufacturers offering these devices. 

Table 12-9 Typical SPI Peripherals 

Analog-to-(ilgital con\'cfter 

Analog witch 

Audio mixer 

Controller area network (CAN) controller 

Digital potentiometer 

Digital '>Igoal processor 

Dlgltal-to-analog convener 

EEPROM 

Rash memory 

LCD controller 

12.10 SPI Interface Examples 

LED display dri\'er 

High \'oltage display dri"er 

Microcomroller 

Multimedia card 

Muluplexer pressure sensor 

Real-ume clock 

Temperature sensor 

Touch screen controller 

UART 

USB controller 

Table 12-10 Manufacturers of SPI Devices 

AK.:\1 Semiconductor 

Altern 

Analog Devices 

Atmel 

Clrru~ Logic 

Fairchild Semiconductor 

Freesca1e Semiconductor 

lofincon Technologies 

Inlel 

Intertil 

Lauice Semiconductor 

Ltnear Tcchnolog} 
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Expanding Parallel 110 with the SPI and Shift Registers 

~'1axim 

~tJcrochip Technolog) 
N3tional Semiconductor (~ I ICllJ\,\lte) 

ON Semiconductor 

Ramtron International 

SanDl5k 

TMlcnxtectrOOlc-;. 

Tex~ lnsuumenb 
Win bond El«troDlcs 
'ihnx 

Ztlog 

You do nol hU\c 10 U'" PI de' i e, to lake ad, an"lge of a mlcrtX"Onln.'ller 
and I:!-~I , ho\\ ho\\ to u,e the PI to add pJJ1l11d mpul and ,'urpul It' ),'ur mi:ro.: 
In Figure I ~-~O a 74HC595 '-bu ,,,rial-iru,erial-or-par.lliel-out ,hifl regl t'r h U i 
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tlonal output hnc' !though thl' e,ampk 'h \\ S onl~ , bl~. the> nal-out pm ~ _. wn 
u'cd as the 'cnal Input tor another. ca,,'aded 8-blt ron. In :m,,,-her 'nfigur.ttDn .. ~ , 
"'pand l\1utlll'lc ,-bit output I"'n. In p,=llel b~ u,mg a d ','<I r it r the ,'L-\YE :ELECl_L 
'1£nalto ,elect \\ hlch 01 th' 14H • Q5, are t\) re :el'" th dat.1 

Figure I ~ II ,hl'\\' the clddlO£ 01 " Input bu. \\ uh,l -4HC'Ic>.- 1'=11-1'11\. 'n.ll 
,hilt reg"ter It tl'" can lx' ",p.md'd t" rro\\de 1\1, re mrut bu, b) C:b, tng 

chll" 
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74HC595 

MASTER OUTISLAVE IN 14 
MOSI Os voo 

SHIFT CLOCK 11 
SPIMASTER SCK SHCP 07' 

DEVICE MISO 
SLAVE SELECT_L 12 STCp 07 

V DD 06 

10 05 
MR 

10 k!"! 04 

03 

02 
13 

DE 01 

GNo 00 15 

Figure 12-20 Adding parallel output with the SPI. 

-~ 
MASTER IN/SLAVE OUT 74HC165 

MISO 
SHIFT CLOCK 10 voo~ SPI MASTER SCK CLK 

DEVICE MOSI 
2 

SER IN QH 9 
SLAVE SELECT_L 15 CLK INH 07 

6 

06 
5 

1/0 Port Bit 
1 SHIFTI 4 

LOAo_L D5 

D4 
3 

D3 
14 

D2 
13 

Dl 
12 

rt GNo DO 
11 

Figure 12-21 Adding parallel Input with the SPI. 

To Other 
74HC595 D 
Inputs 

Parallel 
Input 
Data 

SPI 

MASTER IN/SLAVE OUT 
MISO ~--------­

SLAVE SELECT 
SS_L 

MASTER OUT/SLAVE IN 
MOSI 

SHIFT CLOCK 
SCK 

10k!"! 

Figure 12-22 SPI With Maxim 512 DIA converter. 
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MAX512 
VOO 

CS_L VDD 

DIN REFAB 

SClI< REFC 
11 

OUTA 
8 

OUTS 
9 

RESET_L 10 

~O"F 
OUTC 

GND 14 
LOUT 

Vss 

Digital-to-Analog Output 

While many microcontrollers have an analog-to-digital com'ener input pon. often the~ do nOl 
have a corre. ponding digital-lo-analog convener for analog output signal. Figure I_-~_ sho ..... 
a MAX512' . three-channel. digital-to-analog convener. It interface to the SPI and. 3.> shown. 
outputs lWO analog channels on OUTA and OUTS. The third channel. OL Ie. and the latched 
digilal output. LOUT. are nOl used in thi application. See Example 11-6. 

Example 12-6 Digital-to-Analog Converter with C 

Sample Serial Peripheral rnte ~face Exa-p~e 
· ThlS program contlnuously O\.i~puts a Sd,,'tco:.h ..... ·ave ";c :.r.l? S?: 
· port connected 0 a Maxi:n ~!A.X512 serla::' :- ;" conve=:.e:-

/ - ...... . " ................................................... . 
.. DeLine he mlcrocontroller s;:-ecific ::: I". pC':-:.s used. en. a 
· Freescale MC9S1~C32 

/ . Pan ! . / 

':ie.flne r!~: ( . (\' la He unslGned -"13:: 'j " ,,~ ) 

/ . Da 
1 tll u'1s.i.Jned ch c ' ) 

' \1."lm \1\\ 1 ... "\\ Ill~"'-(\hl. fnrk. ~ ·t'ttt \ "ll ~ trul 0-\(."' .. Vt,llb" 
11\3\III"'fo,' ""Ill 
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/* SPI Control '/ 
#define SPICR1 ('(volatile unsigned char ,) OxOOD8) 
/- SPI Baud Rate '/ 
.define SPIBR (. (volatile unsigned char ,) OxOODA) 
/' SPI Control ' / 
#define SPISR (. (volatile unsigned char .) OxOODB) 
/ ' SPI Data Reg '/ 
'define SPIDR ( . (volatile unsigned char ,) OxOODD) 
/, Slave Select, Port M bit 3 ,/ 
'define SS_L 8 
/* SPI Busy flag '/ 
.define SPIF 128 
/ . Initialization bits for the SPI ' / 
,define SPICR1_SPE_MASK 64 
.define SPICR1_MSTR_MASK 16 
/* Maxim D/A Setup ,/ 
#define DA_SETUP OblOll0001 

void main (void) ( 
volatile char temp ; 
unsigned char sawtooth ; 

/ . Output A enabled -/ 

* Initialize your microcontroller ' s I/O 

/* Set Port M direction to be able to control SS L output ' / 
DDRM 1= SS_L; 

/' Enable SPI and set master mode '/ 
SPICRl = (SPICR1_SPE_MASK SPICR1_MSTR_MASK) ; 

/' Set the SCK to 4 MHz */ 
SPIBR = 0 ; 

/ ' Initialize the sawtooth data . / 
sawtooth = 0 ; 

/, DO ' / 
for (; ; ) ( 
/- Set SS_L low to select the D/A ' / 

PT11 .= -SS_L ; 
/, Send the first byte to the D/A 

* vlrite an 8-bi control word to the senal D/A 
. converter before ' .... riting he data ' / 
SPIDR = DA SETUP; 

/' Wait until the byte is shifted out ,/ 
while ( (SPISP • SPIn =- 0 ) I I; /. ilai' f<>r 5PIF ' / 

/ - Send the second byte to '.he D/ A and 
~ increment the value "; 

Liquid Crystal Display 
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SPIDR = saw~ooth+~ ; 

/. t'la~ t unti..l.. the byte is sh~:ted Ol..lt r / 

'dhile ( (SPISR & SPIF) == 0 ) I I ; 

/- Clear the SPI flags - / 
temp = SPISR ; 
temp = SPIDP ; 

/~ Raise the 55.L line to tell Lhe O/h 
. to output the data ~/ 

PTM 1 = S5_L ; 

/* wait forever - / 

t-Ian) inexpen,ive liquid cl') ~tal di pia) make excellent di pia) deVICe" for embedded ,~ ,­

tem •. !'vIo,t can interface to the microcontroller in at least t"o wa) •. including .l-bit and ·bit 
parallel connections. 

Figure 12-23 sho", an LCD module. To reduce the parallel VO bit:) needed to drive the 
LCD~ a 74HC595 ,erial-in/parallel ~hift regi ter i. connected to the PI port on the micro­
controller. Figu re I ~·14 illustrate. the hardware de ign. and Example 11-" ,ho" oftware to 
di spla) characters on the LCD. 

Figure 12-23 LCD modu1 . 
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MISO 

SS_ L 

MOSI 

SCK 

Voo LCD 
Connector 

MASTER IN/SLAVE OUT 74HC595 VSS 1 

SLAVE SELECT 14 VDD 
VDD 2 

STCp 
MASTER OUT/SLAVE IN 11 

DS 07' 
LCD Contrast 3 

SHIFT CLOCK 12 RS 4 
SHCp 07 

VOO 06 
R1W_L 5 

05 
EN 6 

10 10kQ MR_L DBO 7 
10kQ 04 

03 
DB1 8 

02 
DB29 

13 
OE_L 01 

DB3 10 

DB4 11 
GND 00 

DBS 12 

DB6 13 

DBl 14 

Figure 12-24 SPI and liquid crystal display. 

Example 12-7 Liquid Crystal Display Drivers 

• LCD Display Program 
~~~~~,p~*, * ~*·.~, • • ,~ ~ ,· ~. ,.· *~ ··- • . ,.~ • .. • ~ , ... - . • ... ~ ~ .~ . • / 

/ .K'~*~*'***' * ~ * '**.' * .*"""."~.~* •• '~' •• " *. _' . '" •. * . , * •• 
* De f i ne the microcontroller specific I/O ports used on a 
* free scale MC9S12C32 

f * SPI Control 1 ' f 
#define SPI CRI (. (volatile unsigned char . ) OxOOD8 ) 
f ' SPI Contro l 2 *f 
#defi ne SPICR2 (. (volatile unsigned char -) OxOOD9) 
/ , SPI Baud Rate - f 
ide fi ne SPIBR (* (vola tile unsigned char . ) OxOODA) 
f ' SPI Cont r ol *f 
idefine SPISR (* (volatile unsigned char . ) OxOODB) 
/ * SPI Data Reg ' / 
'define SPIDR ('( volatile unsigned char . ) OxOODO) 
f ' SPI Busy flag ' f 

Idefine SPlf 128 
/ ' Inicialization bits for the . / 
#define SPICRl_SPE_I1ASK 64 
f ' SPI . / 
,define SPICRl_HSTR_I1ASK 16 
, define SPICR2_HODFEN_I1ASK 16 
.define SPICRl _SS0E_I1J'.SK 2 
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f -- -- .............. --''' ' .... ' .. -- .......... . - .•• - •••.•••••••• 

, Define the commands to be sent to the LCD 

'define EN Ox80 
¥define RS Ox40 
¥define DB7 Ox80 
ifdefine FSET _8_ BIT Ox03 
=define FSET _4_ BIT Ox02 
!deflne FSET 4 LINE Ox28 
!!defl.ne FSET _D_OFF Ox08 
=define FSET_CLEAR OxOl 
=define FSET ENTRY Ox06 -
~ define FSET_D_ON O"OE 
=define FSET_CUR_OFF OxOC 
.define HO~1E Ox02 
f · .... ··•··•··•• .... ·· .. · .......... · .... ,· ................ · .. 

~ Define an array to be used fo r addreSSing each li~e 

unsigned char LINE[4J [20J = { 
{0 , 1 , 2 . 3 , 4 , 5 , 6, 7 , 8 . 9,10 , 1l , 12 , 13 , 14, :S . 16 . 1', lS , 09 , 
{64 , 6S , 66 , 67 , 68 . 69 . 70 , 71 , 72 ,' 3,-4,'S,-6 , - .-S,- 9, a' , S:,2:,o3 
(20 , 21 , 22 , 23 . 24 , 25 , 26 , 27 . 28 , 29 . 30 , 31 . 32 . 33 , 34, 35 . 3E . 3'.3:, 3? 
{84 , 85 . 80 , 87 . 88 , 89 , 90, 91, 92 . 93, 9 ~, 95 , 96 , 9' . 98 , 99 . : J 0,: :.: Q:. 
103 JI; 

/ ... .......................... , ... ., .................. ... ., .. 
void ·elay_X_ms( unslgned int. ) ; ... Va:r iab_ €: ::e_ ay .. 
vOl.d sp~_send_byte( unslgne d cha :::- } ; ... Send a r-yt.e ... 
vOld led ~t._command( unsigned char ) ; .. Sera a c --a~d ~ 

void lnit Spl( void ); ... I~ l ~ _a :l =e :~e S?: 
vo.d lcd_initt vOld ); .. _ n !~la __ =e : ~e ~~~ ... 
vo>d lcd_printl char ' str_po:ncer ) ; 
, - l-love cursor .. 

\'oid led _move_cursor ( unsiQr.ed char , unsl ,:;ned ..:ha!" 
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, . ............................................................................................. .................. .. 

./ 

SPl nd the !.. 

e • 1 w 
1,1 I; 
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lcd_print ( "."''''. MC9S12C32 "*1r·"'*,O") ; 
lCd_move_cursor( 2 , 1 ) ; /. Line 
lcdyrint( II ... Microcontrollers *\0" ); 
lcd_move_cursor ( 3 , 1 ) ; /* Line 
lcd_print ("> ROCK at Montana *' \0" ) ; 
lcd_move_cursor( 4,1 ) ; /* Line 
lcdyrint( ",;/> State University 1- \0") ; 

/* Turn cursor off ~/ 

lcd_put_command( FSET_CUR_OFF ) ; 
fort ;; ) ! 

} 1* wait forever */ 

.. Initialize the SPI 

void init_spi! void) ! 

I' Initialize the SPI *1 
1* Enable SPI in master mode ' 1 

'1 

. I 

SPICRl = SPICRl_SPE_MASKISPICRI_MSTR_f1ASKISPICRI_SS0E_MASK; 
SPICR2 = SPICR2_MODFEN_MASK; 

1* Set the SCK to 4 MHz - I 
SPIBR = 0 ; 

* Initialize the LCD 

void lcd_init( void )! 

I' Initilize the SPI '1 
init_spi () ; 

1* Initialize the LCD *1 
I- Delay 15 ms in case the power just came on · f 

delay_X_ms( 15 ) ; 

1* Send the first command ' I 
lcd_put_command! FSET_8_BIT ) ; 

1* Delay 5 ms ' 1 
delay_X_ms( 5 ) ; 

1* Send the first command again 'I 
lcd-put_command( FSET_8_BIT ) ; 

I' Delay> 100 us 'I 
delay_X_ms( 1 ); 

1* Send the first command again ' 1 
lcd-put_command( FSET_8_BIT ); 

I' Set the interface to 4 bits '1 
lcd_put_command( FSET_4_BIT I ; 

1* Set interface to 4 line. 5x7 chars '1 

I 

lcd-pu command! FSET_4_LINE ) ; 
I' Set display off '1 

lcd_put_command! FSET_D_OFF ); 
I' Clear display ' 1 

lcd_put_command( FSET_CLE~~ ) ; 
I' Set entry mode ' 1 

lcd_put_command( FSET_ENTRY ) ; 
I ' Turn display on '1 

lcd_put_command( FSET_D_ON ) ; 

12.10 SPllnterface Examples 

I······ · ·· · ···· · · · · ·· ······· · ····· ·· ·· · ···· ·· · ····· ··· .. . ... . . 
• Send a byte to the SPI 
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0." . ... ....... . ..... .. ... .. . ..... ... . . ..... ..... . . . .. ....... , 

void spi_send_byte( unsigned char spidata ){ 

volatile unsigned char status , da~a; 

I····· · ···· · · · · ·· ·· ··· ·· · ···· ·· · ··· ·· ···· ··········· ·· ••.•. • .. 
SPIDR = spldata ; 

t o Nait until t.he dat.a has shift.ed out. ....- / 
while( (SPISR & SPIF) == 0 ); 

/ ~ Clear the flag by reading t.he st.atus =eg~st.e~ 
and then the data register ~I 

status = SPISR; 
data = SPIDR; 

/ ... ,.~ .. , .... ~ ... ~ ......... .......... ' ...... " ........... ..... .. ... ............ ... . . ., ........ , .......... ,. .. ... 
. Send byte to display to the ~CD 

void lcd_put_data( unsigned char charac~er I( 

static unsigned char msn, Isn; 
I· ·· ··· ·· ····· ······ ··· ·· ······ ······ .... ·· .. ····· .. ···· .... .. 

/, Inpu~ is an ASCII character to display '" 
/ .. Split int.o t·","O n.lbbles and send t.he -'5 nibb ... e =_rs':. .. 

msn - (charac:er » 4) IRS; .. Set~~~g ':.~e ~S ~:g~ " 

lsn - (character & OxOf) RS; 
/ ' Send he most slgni:ica~t nibble 

spi send bytet msn ); 
spi_send bjte( msn I EN ); 
spl_send byte( ms~ ); 
de 1 ay_X_ms( 1 ); 

/ . Send the least s19nlflcant ~lbble . 
spi send hj' e ( Isn ); 
sri_send by u ( Isn I E,' ); 

sr,_send byte ( Is' ); 
iay ,'_ms ( 1 ); 

............ 4 .... , .... . ...... .. .... .. "'II ... .... ~ ..... . .. .. .. 'II .. 'II .. .. ............. .. .............. .. ........ .. 
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void lcd_put_command( unsigned char character) { 
static unsigned char msn , 1sn; 

/ .. ~ •. ~ •... ~t.~ .•..• t'~~.R.'*.~**~**W******.*****~**** .*******/ 
/' Input is an ASCII character to display '/ 
/ ' Spli into two nibbles and send t he ms nibble first *f 

msn = (character » 4) ; 
lsn = (character & OxOf) ; 

1* Send the most significant nibble *f 
spi_send_byte( msn ); 
spi_send_byte( msn I EN ) ; 
sp, send_byte( msn ); 
delay_X_ms( 2 ); 

1* Set the enable high */ 

/* Send the least significant nibble '/ 
spi_send_byte( lsn ); 
spi_send_byte( lsn I EN ); 
spi_send_byte( lsn ) ; 
delay_X_ms( 2 ); 

• Print a null terminated string on the LCD 
·~******~'******~*·***·*-*~**·**.*******P*******.***** *******/ 

void lcd_print ( char *str_pointer ) { 
/P***.*A~* .p .*p* , ~*w~~*****p***.*********.************ •••• ****/ 

/* Print a null terminated string on the display */ 

while ('str_pointer ! = 0 ) I 
lcd_put_data( ' str_pointer++ ) ; 

return ; 

• Move cursor to a line , column . 
* Input is the line number 1 - 4 , column number 1 - 20 

If line is not 1 - 4 , line is set to 1 . 
• If column is not 1 - 20 , column is set to 1 
*****+**~¥~~***~****+**********~.************************ *~*/ 

void lcd_move_cursor(unsigned char line , unsigned char column) { 
/***.~********.** .***~*.** *******+**r********+***r**** ****** */ 

/' Check for line 1-4 ' I 
if (line < 1 II line> 4) line = 0 ; 
else line = line - I i 

/0 Check for column 1 - 20 ' / 
if (column < 1 I I column> 20 ) column = 0 ; 
else column = column - 1 ; 
lcd_put_command(LINE[line] [column] I DB7); 
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12.11 Inter-Integrated Circuit (IIC or 12C) 

This section brieny explains another option for serial data transfer. As in all serial data inter­
faces , the number of signal lines between the sources and destinations for infonnation is 
reduced in comparison to parallel data transfer. This comes at the expense of reduced data 
transfer speed. The two systems described in this chapter: illler-illlegrated circuit (IlC or PC) 
bus and the COlli roller areClllellVork (CAN) bus, allow a network of sources and destinalions 
for infonnation with data synchronizati on. mUl tiple master/slave organization. error checking, 
and addressing of devices on the network. 

Some Common Terms 

Address: A code to specify a device on the serial bus. The addres code used in the PC and 
the CAN buses assist in arbitration. 

Arbitration: Process that allows only one master to send data if more than one tries to control 
the bus at the same time. 

MasterlSlave: A master device is one that controls the transfer of data in a system. It initiate 
the data transfer and provides the needed timing. A slave device is controlled by the master to 

receive (and in some cases send) the data . 

Multiple -master system: A system in which multiple devices may act as masters. 

Receiver: The device that receives the data. 

Synchronization: Providing a clock to synchronize the data transfer between two devices. 

Transmitter: The device that sends the data. 

Inter-Integrated Circuit (IIC or I'C) Serial Bus 

The FC uses two-wires (plus ground) 
for data and clock signals. 

The I'C serial bu can be seen in Figure 12-25. Thi bus was de"el­
oped by the Philips Semiconductor Company in the early 19 0 . 
The current specification upport data rate of 100 kbitl (standard 

SDA (Serial Data.:.) ___ -..L.---I--r--L---+---r----I:....--+-~ 

SCL (Serial Clock) 
~-------L--+_---r--~--~--._~~~ 

Figure 12-25 I'C senal bus. 
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Fe Bit Transfer 

SOA 

SCl 

I 
I 
I 
I 
I 
I 
I 

SCll 

~ 

mode). 400 kbitls (fast mode) and 3.4 Mbitls (h igh·speed mode). It is a multiple-master bus, 
and more than one device is capable of controlling the bus and sending data. There are two 
wires (p lus a ground reference). Both SDA and SCK. the serial dara and the serial clock, 
respectively, are bidirectional lines. Because there may be more than one device trying to 
transmi t data simultaneously, open-drain transi stors are used. as shown in Figure 12-26. When 
either bus line is idle (i.e .. where no device is transmitting clock or data). the bus line is pu lled 
high by the pull-up resistor.. 

Figure 12-27 shows three conditions necessary to send data on the I'C bus. The staft condition 
occurs when a master wants to send data. The master first checks to sec that the SDA line is 
idle (high) and then lowers SDA while SCL is high . This is the start cOllditioll. The master then 
clocks data out by ensuring that SDA is stable (high or low) and then raises and then lowers 
SCL. The stop cOllditioll occurs at the end of the data message by changing SDA from low to 
high while SCL is high . All masters generate their own clock and data are valid only when the 
clock is high. 

SOAl 

~ 
SOAl 

Pull-Up 
Resistors 

~-------- ----------------

SCL2 SDA2 

~ ~ 
SCl2 SDA2 

----- - , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~------------------------ -- ______ I ~------------------------------ __ I 

Device 1 Device 2 

Figure 12-26 I' C serial bus interfaces. 
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Data Transfer 

SCL 

All data sent on the I' C bus are 8-bit bytes. The number of bytes sent in a message is unre­
stricted, but each byte must be followed by an acknowledgment bit sent by the slave. The mes­
sage transfer starts with the start condition and ends with the stop condition (Figure 12-27). 

Figure 12-28 show how a byte is transferred. The master transmitter generates the start 
condition and then clocks out eight data bits. Following the eighth bit, it releases the SDA line 
and waits for the receiver to pull its SDA li ne low; this constitutes acknowledgment that the 
receiver has received all 8 bits. If the receiver does not generate the ACK bit. the Iran miner 
can generate a stop condition and aboft the data transfer. 

SDA Data 
Stable 

SOA 
Data 
Can 

Change 

r-- - - -- ., 
I I 
I I 

\ ! ;--r---
I I 
I I 

~I----~ ---~; : --I 
I 
I 
I 

L __ ~ ___ J 

Start 
Condition 

Figure 12-27 I'C start and stop and bit transfer timing. 
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Figure 12-28 FC data transfer WIth acknowledge. 
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Slave Addressing 

The I'C Message 

Arbitration 

Slave devices are selected by an address that is sent at the start of a message. The specification 
allows for 7-bit and IO-bit add resses. We wi ll describe the 7-bit address operation here. The 
10-bit address operation is s imilar. 

The 7-bit address occupies the most sign ificant bits of a byte with the least significant bit an 
R/W _L bit. (Figure 12-29). If R/\\'_L is low, the master will be transmitting to the slave (the 
s lave is wri ting data): when the master is 10 read data from the slave. this LSB will be high. 

Figure 12-30 shows the I'C message format for the case of a master sending data 10 the slave. 
The master generates the start condition and sends the slave address. The slave with an address 
that matche the message generates the acknowledge bit, a llowing the master to send the rest 
of the message. The message end is s ignified by the stop condition bit. When the master wishes 
to receive data from a slave, the process is sim ilar except that after the slave has acknow ledged 
it. address, the master generates subsequent clock signa ls and the s lave puts its data onto the 
SDA line. The slave still generates the acknowledge bit and, after the last byte has been sent , 
it does not send the ACK. The master interprets this as the end of the message and generates 
the slOp condition. 

If multiple ma ters try 10 send data 
at the same lime. the arbitration 

scheme will cause all but one to stop 
transmiLLing. 

Because there may be multiple masters on the PC bus, and because a 
master may start a transfer only if the bus is free. an arbitration scheme 
is needed if multiple masters start to transmit at the same time (within 
the minimum hold time of the start condition). Arbitration takes place on 
a bit-wise basis in the following way. 

MSB 

Figure 12-29 Slave address byte. 

~ Sent by Master to Slave 

o Sent by Slave to Master 

Figure 12-30 I'C message format. 

LSB 

S = Start Condition 
ACK = Acknowledge 
P = Stop Condition 

Device 1 
Clock (SCL 1) 

SCL 

Device 2 
Clock (SCL2) 

ABC D 

Figure 12-31 I' C clock synchronization. 
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EF GH 

OIice in Fi~ure 12-26 that the driver for the SDA bu line is an open-collector tran i tor. A 
high level is achieved when the transistor is nOl being driven and the pull-up resistor pulls the 
line high . Thus. for SDA to be low, a transmitter must actively pull the line low. Thi allow the 
arbitration scheme to work. When a transmitter i transmitting data onto the SDA line. it al 0 

monitors the line level. If more than one tran mitter are transmitting at the arne time. the one 
that pulls the SDA line low will "win" the arbitration battle. If a tran mitter ees that the SDA 
line is different from what it is sending. it will top sending. allo\\ ing the other device to con­
tinue . This establishe a priority scheme according to which a lower slave addre< (\\ ith more 
zeros) has higher priority than a higher address. Even if the multiple masters are addres ing the 
same slave. eventually a data bit will be different and one of the masters will discontinue. 

Clock Synchronization 

The I' C bus is designed to allow different de\'ices to have different clock rates. Beeaue the 
arbitration scheme ~Iies on a bit-by-bit comparison of the SDA line. bowever. all devices must 
have a clock rate synchroni zed to the ,10\\ e t device. The clock synchronization process \\OID 

like this. 
Assume that Device I in Figure 12-31 ha. a shorter clock period than De\ ice ~. The "yn­

chronizmion starts when De\'i~c I pull> Sell 10\\ at point A and CL follo\\ s 3t pomt B: 
Del'ice 2 detect this lransition and pull> its clock (SCL2) 10\\ at point C. Both device, stan 
counting their clock 101\ period. and at point D Del'ice I raise_ CL 1. Becau,e De\ ice 2 i' the 
510\\er orthc tWO. it does not rai,e SCL until point E. SCL transition, high at point F. and both 
del'ices start counting their clock high period. De\ ice 1 is the faster of the 1\\0 and at point G 
pulb SCll (and CLl iL)\\ . In this \\3). the amount of time CL i, held 10\\ i> controlled b) 
the slowe,t device und the time it i, high b) the fastest de\ ice. This docl. S) nchronilution t, e, 

place during c\ ery docl- pube. 

Your Microcontroller's I'C Interface 

lnny mlCfocontrolkr, tolin) hu,,' a buih·in FC interfllt'e il,,'orporallog ,lft'llI;1tI0n hani\\are 
and ~ tattP\ bit~ that alh.l\\ )lltl to dt:'l~nnine "hen tnes.$ag~~ hu,t.~ bt~t.~n ' Ol!'U "'''fillt~. It. 
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can also generate interrupts to notify your program that an FC message has been received. In 
microcontrollers wi thout an FC interface, clever programmers can bit-bang the FC signals. 

I'C Interface Example 

Figure 12-32 shows an LM92 temperature sensor with an FC microcontroller interface. The 
chip contains a 12-bit plus sign temperature-to-digital converter. and the microcontroIJer can 
read the temperature at any time by interrogating the chip on the FC bus. The two address bits, 
A I-AO. select up to four devices. With both grounded. the device will respond to address 00. 
The LM92 can also be set up to act as a comparator that will generate an interrupt when the 
temperature exceeds a programmable set value. The amount of hysteresis that temperature 
changes impose before the alarm condi tion resets is program mable as well. 

12.12 The Controller Area Network (CAN) Bus 

CAN Definitions 

Robert Bosch introduced the COli/ roller area network, or CAN. erial bus at the Society of 
Automotive Engineers congress in February 1986. The CA bu can handle reli ably short 
mes ages (up to 8 bytes) with multipl e-master access. Although origi nally developed for auto­
motive market. this bus is finding uses in many other applications. 

The CAN seri al interface has its own jargon and terms. Here are a few definitions to help you 
understand some of the CAN descriptions that follow. 

Acceptance filter: A digital keyword that incoming messages mUSt match before the receiver 
accepts them. 

0 .11lF 

100kQ ri; 
100kQ 

Interrupt Request ..... ;.--~---, T_CRIT_A 
Interrupt Request 

Microcontroller 12C 
Port 

INT 
AD 

LM92 SDA ~-----... 
A1 

SCL ~------

Figure 12-32 LM92 temperature sensor with I' C interface. 
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Basic CAN: Basic CAN devices implement in hardware only the basic function, of the pr(}­
tocol, such as generation and checking of the bit stream. All message management. such a, 
accepti ng the message, must be done in software. See Full CA . 

Baud rate: Number of bits per second for data transmitted on the CA.-\j bus. See Time 
quantum. 

CRC: Cyclic redundancy check. A IS-bit error checking word used to detect bit errors in the 
preceding data and in itself. 

CSMAlCD: Carrier sense. multiple-access collision detection. A method for avoiding or re'o"­
ing errorS when multiple devices try to send messages at the same time. 

Data frame: CAN uses data frame when the node wants to end data. Remote frames are a 
request for information. A frame with the RTR (remote tran mi sion reque t) bit set means that 
the transmitting node is requesting information of the IYpe pecified by the identifier. 

Dominant level: A logic low level. 

EOF (end-of-frame): A recessive (logic high) bit. similar to a stop bit in an asynchronom. ",rial 
interface. that signifies the end of the current message buffer. 

Extended frame: A data frame defined by C 2.0B with a 29-bit identifier. 

Frame: A message consisting of the start-of-frame (SO F). arbitration. control. data. CRe. 
acknowledge (ACK). and end-of-frame (EOF) field. 

Full CAN: A full CA device implements the whole bu protocol in hardware. including accep­
tance fi ltering and the mes age management. See Basic e.-\.l\. 

Idle bus: A bus in the recessive mode (logic high) for more than three bit times. 

Initialization mode: A mode that allo\\, s, tem initialization to be dODe beeau=><! the CA. '\ i> 
disconnected from the CAN bus. 

Recessive level: A logic high level. 

Remote frame: See data frame. 

SOF (start-at-frame): A dominant (logic low) bit used like the stan bit in an as~ nchronous senal 
communications ),stem. 

Standard frame: A data frame defined b~ CAN 2.0A with an II-bit identifier. 

Synchronization jump: An Increment of time quanta used to s~ nchronize:l reC'el\er\ \:>u ,;un­

piing time with the incoming data. 

Time quantum: A time II1tol'\al Ie" than the bit time. There m3~ be ~ to _5 nme qu:ult:l 
p.!r bit. 

CAN Serial Communications 

The A bu\ i, 3 ,erial bus ,~,tem \\ nh each "f the -\:-; J ,tC'e'. call d /, •• '. ,,<'nn.: .( ~ I 
the bu, capable of Oem!; a 1IIt/1/< r. \ ma>lcr J<\ I,"" can mlthlte data tnUl IIlI"'1 n t,.m~ f . 
ot her 1I0<1e\ 011 the bu,. ullilke the PI. \\ hkh ,Ill,,,,, ,)nl~ "II' IIl3-'t 'r at a nlll \\ nh multt ' 
... lines. 'Jlw htl' u,~~ J "'lIlgk \\ ire (~ll'tU~lH) t\\\') h.' reJlh .... C' th,-~ lll\,'unt ",t \\ Iring n t.."J lU ll'''' 
applicaltoll" 11,C bu' pm\lde,d, 'k ') neh .. ,'ni .uII'n h,1.' ~ ,'n lh,' J,lta 'm:.Ul1. Th.: e, "l't 
requIre the ,1e"'1 Jc't~n lh.1l Ret 'rt B,,,,'h IIlt,,'<!U(,J 111 I~ '(> 
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CAN Serial Bus Basics 

Figure 12-33 , hows a CAl bu,. Ii may have IWO or more node,. Because 
and these nodes can be widely separated. b)' '" much a, I 000 meters. no 

individual node has no knowledge of the ot her nodes. Thi" can lead to 
a coll ision of dma bits if two or more start to l ran~mit at the same time. 

The CA design overcomes this problem by defini ng the e lectrica l characteri,tics of the bus 
to be a wired-A '0 type. as shown in Figure 12-33. Each of the CAN node. has a transmiller 
and a rece iver. The transm ille r uses an open-dra in connection to the CAN bu". and a pull-up 
resistor establishe the logic levels on the bus. A logic high is called a recessive bit. The high 
is active because none of the nodes are pulling the bu, low. (Thi, is why it is ca lled a wired­
AND.) A logic low is called a domillallT bit because one node can dominate all other node that 
are sourcing a recessive bit. 

CAN Serial Bus Collision Detection and Arbitration 

The problem of two or more nodes staning 10 tran.mit at the same time i, sol\ed in the fol­
lowing way 

Each of the nodes continuously monitors the bus with it, received data line . 

Each bus transmission is staned with a dominant (low) bit. called the ,rarr-o/frame 
(SOF) and proceeds with a multiple bit idelllifier (II or 29 bit, long) that defines the 
type of message data that is to follow. 

If two or more nodes are transmitting at the ,ame time. eventmtlly one of the identi fier 
wi ll be different. with a low (dominant) bit in place of a high (rece"i"e) bit. 

CAN 
Node 1 

CAN 
Node N 

Transmit Dala 

Receive Dala 

Transmit Data 

Receive Dala 

Open 
Drain 

CAN 

Open Bus 
Drain 

Figure 12-33 Basic CAN bus. 
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Because the low is dominant, and because each of the nodes is monitoring the bus 
while it i, transmilling. a node transmitting a rece"i'e bit will recognize that another 
node is out there tran,milLing. 

ode, with a rece"ive bit StOP transmitting and allow other node, to continue. 

Eventually only one node is left. 

Any node that StOp. waits until bus acti\it} cease, and trie 10 send il.> meso;age again. 

Thi, ,cheme is called carrier sellse, multiple-access ,,"II" col/iIion detect TCSJ/AICD, 
becau,e node, are able to detect other Iran miller'>. A prioritizallon scheme is in effecl becau"", 
the node \\ ith the lower binary number for its identifier \\ in comrol of the bu . . The mes-:lze 
tllat follow, contain, up to bytes of data and a I S-bit error checking code. The ~ 'tem i, able 
to detect a variety of error'>: and becau e it provide. an aclillo\\ ledemem bit. the recei, in~ node 
can let the uan,mllllng node kno\\ that the mes-.age \\as recehed ~,thout errors. As ,ou-miclll 

expect. the protocol to manage this con",1.> of many more detail .. You will ha"e 10 ~d' '~UT 
own microcomralle", CA . bu, documentation to learn more. . . 

CAN Serial Bus Interface 

While the ,ingle-cnded bus ,ho\\ n in Figure 12-33 explain, the concept of the donu[l;lIlt :mJ 
rcce"i,e bll'. often III practice a differential. t\\ i ted-pair bu i u:.ed. The (\\;'ted-pair" hIe 
pro' ide, a tran'mi"ion hne \\ ith \\ ell-beha\ed characteristic impedance. Th" allo\\ ,I to be 
terminated \\ Ith a rc'''tance to reduce reflection .. It abo ha. noi", reducuon Prop.!rtie- to pre­
~c" e data qual it) III no,s) IIldu trial en' ironment,. 

A CAl' bu, tran,ccl\er. ,uch as a LIIle:u- Technolog~ LTI i%. COl1\en, the CX' nod,,', 

single-ended tran . mil Jnd rece,ve data lines to the balance<l dHlerennal CA.' "'tern 'i~, 
CAN_ H and CAN_L. a' ,ho\\n III Figure 1:!-34. The P<'rforman.:e of the '~'I~m i" noT t, 
greatl) enhanced b~ the common-moJe rejection of the dllleremial re.--ei,er. The bu rna' toe 
twi,ted-pair \\ ires. either unshielded or . hielded for add,tional no, rejecti, n. The J.lr . ,t> 

are <Cnt \\ Ilh ,tan and stop bth. stm,lar to the CI de :Tit>.:d in ecu n I: 2. '" th addinonaJ 
character. to define the data frame 

I on-retum-tO-/CCO t'lRZl Signaling enc,'lle, the data b'b 8,'h n "k hJ.' it- 0"" n -I 
and ,) nchroni/c\ it \\ ith the inconllng data b~ dele 110£ hit lr.1I1- iUl'n .... TD;) 'l,t d ' '''8-

chromlaticm, a 1"(- HlttJ;lI~ "heme is u-ed . The re.'<!l\er ma' "" l>1! "n.:hronizan n d- a 
number of conseClItl\ ~ b,ts of the ,ame p<-'Iant~ = lran, mi;ted To x)~bal tru, . tT3Il,­

miller \\ ,II 'lisen ,In "dJIlIOnal bll of the ,'pP<-"lle p<-)Iaril~ inll'th bl! '!ream att'r II' , n­
'eCUl!\C ,ltlC' or ICW, . Thc ~ccJ\cr a\tlo11lati':311~ d 'te,h Ihe 'Iutled l>tt:mJ ~11l\"" It from 

the d"ta. 

The CAN Message 
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1200 
Termination 

CAN 1 CAN 2 

RXCAN TXCAN RXCAN TXCAN 

CAN Bus (Twisled-Pair) 

Figure 12-34 The CAN serial bus system. 

CAN n 

RXCAN TXCAN 

1200 
Termination 

The formats for standard and extended CAN frames are shown in Figure 12-35 and 
Table 12-11. 

CAN Data Transmission 

CAN Bus Clock 

Each node on the system is responsible for broadcnstil/g infonnation to the ,>ystcm about its 
sensors. This means that the transmiller doe, not necessari ly know \\hich node i, to be the 
receiver. When a node has information to send. it checks the CAN bu, and If the bu, i, idle 
(recessive). it tarts sending a data packet by asscning the stan-of-frame bll TI,e 11 - or 29-bit 
identifier idenlifies the type of information to come. The data length code (DLe>. contains the 
number of data bytes in Ihe message. lero to eight. and thi , IS followed b} the daw and a IS-bit 
cyclic redundancy check (CRC) error detection word. 

The clocking of the data on the CAN bu '> b derived from Ihe data lI\ell . TI,e CA hardware i 
able 10 synchronize it s bit-sampling time with the incoming dala ,!ream Each hllillne i, ,ub­
divided into smaller time element, ca lled time qual/Ill. When a me"agc tra"'01""on ' lam. the 
fir,t bit is the dominant SOF bit shown 111 Figure 12-35. The recel\er detect' thl' hlgh-to-Io\\ 
transition and then look' for the low-to-high in the middle 01 the hil lime It ,,111 then adJu't ll 
1I1tcrnaltiming quanta to be able to ,ample the 1'0110w1I1£ hlh al Ihe enrre, I lime 

If Ihe oscillator, 111 two node, arc '>hgllll y d,flerent and Ihe l11t' In Ihe Irillne en,,"nuc 10 

arrive. the bil change,> rcl:lllvC 10 the ,ample poin l may drill "rmllitl It II", on'll", ,111e1 Ihe 

12.12 The Controller Area Netllor1< ICAN) Bus 

STANDARD MESSAGE FRAME 

BUS ARBITRATION BUS 
IDLE FIELD IOLE 

. ~+-------~~----~~--~.---~~~~~~~ 

(al 

r---T-------T-----
I DLC I0-8ByteSDa",,'5-botCRC 

DELIMfTER 7~ 
SLOT 

DELIMITER 

EXTENDED MESSAGE FRAME 
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BUS ARBITRATION s,-,s 
IDLE FIELD DLE 
~-~.-------------------~~----~~----~.-----~~~~ .. ~~ 
SOF~ G'~'~~~~Jr :_l~_-_-_~_~_:-~-~~~~~~~--~~~~~~~~CCJ 

IDE J r1 

(bl rO 

Figure 12-35 CAN message lrames. (a) Standard . V2.0. Ib) Extended. V2.0B. 

Table 12-11 CAN Message Frame B,Is 

BIt 

II·hl! hknuticr 
RTR 

RR 

rl,rU 

Inl 

I. ~II hknhflt'"' 

TlIl 

l'.II,lltdd 

14i hllCN:l 

\1 ~ 

1(11 

II 

Name 

I nlJl1C'1blh 

R('- te lr;n'\nl.l "u..lf1 rC'\l~ 

11) ('\tC'llJnt 

IJrnl1fin hll' 

".ll.ll~thc(~ 

n I ~\lC 
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hardware detects a bit change outside its limits. it can adjust the "ample point by addi ng or 
subtracting lime quanta. 

CAN Message Receiving 

The CA receiver detects the lan-of-frame bit and Slarts 10 clock message bils in a manner 
similar 10 thai of the SCI receiver described earlier. The identifier bi l, in Ihe me"age are used 
by Ihe receiver to dele rmine if il is a me sage for ibelf or if il should be ignored. Figure 12-36 
show how the receiver accepts or ignores CA messages. 

Although Ihere are II or29 identifier bils in Ihe arbi tral ion fidd of Ihe mc"age. the receiver 
may use 8-. 16-. or 32-bit pallerns 10 identify ils mes ages. As Ihe message arrh·es. il is shifted 
into a message buffer and the identifier (shown here as 8 bils) i" compared with an idelllifier 
aceeptallce pallerl/. When they match. all OUlPUI of the exclusive-NOR gales in Figu re 12-36 
and theft/rer hir signal wi ll be assened. For added Ilexibility in idenlifying meS\ages. an iden­
rifier lIlask pallem can allow some of the bits in the identifier 10 be don'l cares. A one in the 
identifier mask pallern sets the acceptance bi lto be a don'l care. When Ihe filter hil signal i 
assened. the reSI of Ihe message is accepled by the receiver. 

The rece iver checks the IS-bit CRC code 10 make sure Ihere wer< no crro" in Ihe lransmi -
sion and then. at Ihe correct li me in Ihe message (see Figure I ~-35). a"en, Ihe acknowledge 
lACK) billO lei the transmiller know the message was received correcll). 

I
_ Message Frame .\ 

8-Bit Identifier 

r-------r--r-.r-~_r--r_,_~--r ----------------------------, 
I I l_______ _ _________________________ __ ~ 

8-Blt Idenhfier Acceplance Pallern 8-Bllldenllfier Mask Pallorn 
(0 = Match. 1 = Don't Care) 

Figure 12-36 Receiver acceptance flltenng 
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CAN Message Transmission Speeds and Distances 

The transmi"ion btl rales and di,tance~ are IIlterrelated and depend on the implemeotauon of 
the physicallaye". Table 12-12 shows btl rates and distance for t) pical CA:-'· bus appltcaUoll> 
U>lIlg lenninatcd . 1\\ !Sted-pair bu> wire>. 

12.13 Conclusion and Chapter Summary Points 

Asynchronous Serial Communications 

A UART" a unl\cr;a1 as) nchronous receher/transmmer.1t <;eods and rece""" ~ d.:ua 

In microcontroller; a A RT is often called an SCI (serial commuOJ ation. interiace). 

The 1\\0 logiC Slate, III 3»nchronous erial communication are called mark and ,pace. 

The dala ,ent stan, WIth a ,Ian bit and end;, with a top biL 

The "art bil ,~nchroIlt7es the recei'er with the t:r:m'rrutted cWUL 

The ASCII codc " mo,t often u,ed for enal VO \\ hen the data are alphanumeric 
characler;. 

An) data rate mal be used. bUlthere are tandard ooe, Q..ed for char.!cter LO. 

Handshaktng ,ignals are defined for the R -232-C interface. 

DJla lermlllal eqUIpment (DTE) and data communiCJlion equip~nt, OCEI..re 
deli ned 10 the R -23~-C standard. 

\ loden" modulate and demodulate lone' fortelephone line communi -:mon. 

A null modem ca~le an -onneCI t\\O DTE de,ice,. 

ontrol co<k, tna) be ,cnt from J tcmlina! b~ holdlO£ d w n the :antId C) \\ h ~ 1"­
mg another pnnlabJe ke~ 

Synchronous Serial Penpherallntertace 

The PI pro, Idc' ;) '''npJe lI11er1·a.:e that all, \\ , 1 0 "P-Ul'" n I 
.lcc<'lllph,hcd 

Table 12-12 CA Bus Length' s Data Rate 

Bus Length 1m) 

JI\ 

.II) \t \ 

'l(l~-'.l 

tt4.Xllf_1 

Bot Ret 

I 'lOll, 
~, 

1\) 
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12C Interface 

The SPI is a master/slave interface system. 

The master controls al l data transfer between the master and the s lave. 

The master generates a clock for the data transfer. 

Multiple s laves may be used as long as only one is selected by the SS_L signal at a time. 

FC stands for inter-integrated circuit. 

The PC bus i a two-wire bus (three with ground reference): the data line is called SDA 

and the clock SCL. 

The interface supports multiple-master/multiple-slave architecture. 

A master controls all data transfer. 

Slaves have an address that is the firs t byte of any message that is transmitted by a 

master. 

An arbitration scheme operating on a bit-by-bit basis can resol ve competition between 
two masters tryi ng to access the bus at the same time. 

Al though each PC device can have its own clock. a clock sy nchroniLation scheme 
allows the slowest device to control the low time and the fa test device the high time of 

the SCL clock. 

Controller Area Network (CAN) Bus 

The CAN bus was developed for automotive applications. 

It is a multiple-master/multiple-slave bu . 

The bus clock and bus clock synchronization are derived from the data. 

A message contai ns an identifier that specifies where the me\\age should be received. 

A message filter allows receivers to accept only the messages destined for them. 

The arbitration scheme to resolve which of two simultaneously active master~ is to 
be allowed to transmit is called carrier sense, multiple-acce" with collision detection 

(CSMAlCD). 

12.14 Problems 

Explore 

12. 1 How does an asynChronous serial pon achlcve 'ynchrnlllJalinn of Ihe hit' It " sending 

or receiving '! lal 

Stimulate 
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12.2 An SCI is transmiuing data at the baud rates given. The format is 8 data bits. no par­
ity, and one stop bit. For each case, what is the maximum number of characters per 
second that can be transmitted? lal 

a. 56 kbaud 
b. 9600 baud 

12.3 A serial IJO pon sends the following waveform: [a] 

a. What is the ASC II character being ent? 
b. What type of parit} is being used? 

12... Find a \\eb·based ASCII code table. [a] 

12.5 To initiate a serial data tran fer, a UART first la] 

a. sends the least significant bit. 
b. ends the stan biL 
c. sends the top bit. 
d. sends the parit) bit. 
e. None of these. 

12.6 Dra\\ the \\ a,eform seen on the erial-data-out line wheo a UART uses bits of d:n:l 
plus odd pant} to send the ASCn character 'L', [al 

12.7 Ho\\ man) biL>- per ,e.:ond (baudl is 3. serial pon :.ending \\ hen the haracter rate ;, 
110 character.. per econd" Ahloume ASCn character.; with e\en pari!). [a] 

I L I f the data rate " 9600 baud. at "hat rate an A ClI haracte.r.; be <ent. as umim: -
data bih and I parit) bit' [a] -

12.9 Define the following ten", lJ>oed In the CA." bus: [g. kl 

u. Acceptance filler 
b. RC 
c. C CD 
d. Dominant Ie\cl 
c. Rece"l\c le\el 
r. ) nchronWllJ(ln Jump 
g. CAt\ bu, 

12, 10 1\\<' ,"'II'utersaret"Oe '"nll ·tedb) mean, ftheir O\\ p.:rb 

a, h'r th" t" ""rl.. \\hat ,'p.:r~tt,'n.11 parameters n«'J t" he 'r«lned" 
\l In th" ,'rph~.ltll'n. "hat I' n!eant b) "data tl, \\" ,) n 'hnm'l t, n' 
c \\" hal.\J''C t\\ (\ \\ ~,~ .... l,t .IChH?\ 109 d.313.11\.,,, ... ~ Ih:hn: nU3tl n' 

I ~ II "'ll ,Ire \" J 'tin' ,I ,,'n,11 ,.lbl'I,' ~,lnn ·,t tw, 
<IC\ ,,:c' I ,I,h I'\. h,,, ,I DEllI', "0.:,1, r, 0 It 
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Challenge 

PC for file transfer u es hardware (RTS/CTS) Ilow cOlllrol. Draw an appropriate cable 
lIsing the minimum number of wires. Be Slife 10 show each connection. give the signal 
name. tell the data flow directions. and state what connectOr> are to be used on each 
end of the cable. r c I 

12. 12 How does the rece iver in a UART maintain its synchronilat ion with the transminer in 
asynchronous operation? [a) 

12. I 3 Draw a cable used 10 connect DTE to DCE RS-232 serial device,. Show pins I -9 with 
signal names and signal direction nows. Assume that 9-pin connecto" are u;,ed. la] 

12. I -l Draw a cable u cd 10 connect DTE to DTE RS-232 serial device<. Show pins 1-9 Wi lh 
signal names and signal direction nows. Assume that 9-pin con nector> arc used. [al 

12.15 Why is the RS-232 voltage specification for mark and space log.c level, used for 
seri al communications voltage levels instead of TTL ? ta l 

12. I 6 How does a slave station SPI send data to the master station? [gl 

12. I 7 An SCI is lransmining data at 19.2 kbaud. The format i; seven data bih. even parity. 
one stop bit. How long does it take 10 send a document that i<; one megabyte long? [a) 

12. I 8 The clock shown Figure 12-2 connecting to the receiver <;erial-in/parallel-out shift 
register is often 16 or 64 times the basic baud rate. Why do you suppose thi;, is o? [al 

12. 19 You are to define a serial cable 10 connect a PC configured a, an RS -232 DTE device 
10 a microcontroller system confi gured as a DCE device. The PC ha< a DE9P con­
nector on its back panel. and the embedded ystem u<;e a DE9 conneclor. n,ere i. 
no now control for the data transfer between the two computef'. Draw an appropriate 
cable using the minimum number of wires. Be lire to show each connection. give lhe 
signal name. tell the data now direction, and state what connecto" arc to be med on 
each end of the cable. r c) 

12.20 A system is 10 be designed to transfer serial data from one place to another over a di,­
tance of 200 feel. Data is to be transferred in onc direction onl). and Ihere i., no data 
now problem. Data transfer rate is to be a minimul11 of I 00 ~bit/, . You arc to COI11-

pare an asynchronous serial pOri approach (SCI) with a 'ynchronous ,erial pOri (S PI) 
approach. lb. cl 

a. How many wires will be needed to conne,lthe IWO ') "CI11' (includmg the 
ground wi re)? 

b. For th is distance and data rate. what ~ignaJing interface ,tnndmd \\lluld you propo,e" 

Reflect on Learning 

12.2 1 What que<;tions do you sti ll have about a'ynchronou, 'erwl tnl1ll11u","lIl<1n, " 

12.22 What question~ do you st ill have about the 'ynchronou, perll'hcr." tnterlace') 

12.23 What question, do you ,t ill have abollltlic 12C 'eria l hu, " 

12.24 What questions do you \1.11 have ahout Ihe ('AN h",'1 

Objectives 

Analog Input and Output 

In this chapter \Ie consider the world of analog signal .. ComputeI'< mu,t read analog informa­
lion and act upon II in many application. This require an analog-to-digital COll\ertO'. In oIher 
,ilUation<;. all analog output ignal may be required: this call for 3 ,hgital-to-analog con\eneT_ 
In this chapter \lC \I ill discu" both dc\ icc, and learn hO\l to -peel!) the correct one for the 
Job to he done 

13.1 Introduction 

\I .till'"1 d<'l!r.ld.lln'" .• 111,1 b) th," 1 'n,"~ "tth', ,'111111Ull' 
'lh:h .. " d.'I~1 1r.lO h:r l 'l\\ 'n '\'l1lrUI t" 
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This c hapter covers analog-to-digital (AID) and digital-to-analog (D/A) convc"ion . We 
wi ll learn how 10 specify a convener for a panicul.r application and how a ,anety of AIDs ,md 
DIAs work. 

13. 2 Data Acquisition and Conversion 

Figure 13-1 shows a data acquisition system to input analog data. It reCl!iH!'-. analog informa­
tio .... n from a physical variabl e. ~uch as tcmperaLure. and u:-.es. a Iraustllle'er to convert the infor­
mation to an electrical signal. ci ther voltage or current. Fo llowi ng the transducer i~ a block 
labeled siglllli cOllditiollillg to provide the following function<: 

Amplificat ion: Rarely does the transducer produce the voltage or current nceded by the AID. 
The amplifier is de igned so that the full-scale signal from Ihe analog input rcsu lts in a full­
scale signal 10 the AID. 

Ba ndwidth limiting : The signal condi tioning provide a low-pa" lilter to limit the range of 
frequencies that can be digitilcd. To understand why this is so. \\e will con,ider Ihe sampling 
theorem and learn abou t aliasing in Section 13.3. 

Isolation and buffering: The input to the AID may need to be protected from dangerous voltages 
such as static discharges or reversed polarity voltages. 

An allalog II/I/Itiplexer follows the signal conditioning in applications tha t call for the digiti-
7.lltion of several analog inputs. This computer-controlled switch a llow\ multiple ana log inpuls. 
each wi th its own signal conditioning for different transducer.. to be ""tched Into a single AID. 
The CPU generates an address on the multiplexer select lines to sclectthe multiple er channe l. 

Data Acquisition System Operation 

The operation of the sy tem , hown in Figure 13-1 can be described as follow, . 

_ Extemal to the MIClocontrolier - - ...... !------

Physical 
Signal 

Figure 13-1 Data acqulsllton system. 

Instde the MtCrocontroiler -----~ 

n-blt 
Digital 
Output 
Dala 

Three-State 
Enable 

End Of 
Conve~-

Sta~ 
Conve~ 

Sample 

Muiliplexer 
Address 

Definitions 
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The program ..elects the analog signal to be digluzed by outpuuing an addre to the 
analog multiplexer. 

As we \\ill d,scu" shonly. a sample-and-hold circuit rna, be needed to hold the 
analog signal constant while the analog-to-digital convener i "'ork.lOg. In such 
case ... the program assens the sample signalLO take a quick snap. hOI of the analog 
signal. 

Following the ,ample-and-hold action. the program as",ns the Stan_Com'en signal to 
stan thcND. 

When the AID finishes the conversion. it as.ens the End_OLConren signal. w hicb 
allow' the program \0 IOput the data through the three-,tate input interface. 

Let us deline some of the ICons you wlil encounter as ~ou learn about the analog-to-<Iignal 
conversion. We begin '\lth a fundamental concept and illo. trate it in E'tample 13-\. 

Resolution: The re,olullon " the smalleq change In the IOpUI analog "gnal that w,lI produce 
a change 10 the output digital code: 

I:'" - I' ," 
Resolullon is also stated 10 term, of the number of bit> to the output digital code_ or :..' 

one pan III 2" omellme' the resolullon IS gi,en 3.> a percentage of rna\,rnurn or full-'Cale 
\aluc: 

I 
I;"""" =~XIOO'"' of full- 'a1e,a1ue 

Example 13-1 AID Resolul1on 

.'\ 11 , -hI!. 0 c<'n'enerl, to ,hpUI 3. 5, It. tull- -al "fnal Wh.1I', the '" utt 

S olution 

The rl:'(liU\I(l1l " 5 25~ = 1 Q.~ T1\ \ \ n,,-.lh(r \'.l~ l'l 'tJ.un~ th" rt' lut1 m " t ran I :: or 
04 <,t the [1111-,(,,10 ',llu,' 

Accuracy: \\.(U(";1·~ "\'I\\~n \ nlu,C'J \\lth re, ,lut) m R " lutl 
lor n<'I'el '" tht' 11111·, ai' , .. Ill' \ ,ur. 'l'\'bt" t 'l1Iali '\' 
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Accuracy is given as a percentage and describes how close the measurement is to Ihe aClual 
value. We say Ihe dig ita l representation of our s ignal is accurate to wi thin 

See Example 13-2. 

\I ruoluuon X I 00 0/0 
VSignal 

AID transfer function : The AID tran sfer function shows the digital outpul code as a func­
tion of the input voltage. Figure 13-2 shows a transfer fun c ti o n for a 3-bit AID. As the 
voltage increases from zero. the output code steps up o ne bit at a time, ranging from 000 
to I I I. 

Example 13-2 AID Accuracy 

An 8-bit AID converter digitizes a 5-voh, full-scale signal. What is the accuracy wi th which the 
AID can digitize the followi ng signals? 
50 mV, I V, 2.5 V. 4.9 V 

Solutio n 

The resolution is 5 V/256 = 19.5 mY. Each measurement will be accurate to wi thin the listed 
percentage value: 

50mV 
I V 
2.5 V 
4.9V 

(19.5 mV/50 mY) = 39% 
( 19.5 mVII V) = 1.9% 
( 19.5 mV/2.5 V) = 0.8% 
( 19.5 mV/4.9 V) = 0.4% 

Aperture time: This is the time that the ND converte r is looking at the inpu t signal. It is usually 
equal to the conversion time. We wi ll see in the next section how any change in the input signal 
during this time may cause an error in the output code. 

Conversion time: The conversion time is the time required to complete a conversion of the input 
signal. It establishes the upper s ignal frequency limit that can be sampled w ithout aliasing : 

I 
1m" = 2 X conversion ti me 

Dynamic range: The dynamic range of a signal is the ratio of the maximum signal to the small­
est, or noise level, signal. 

V ... , 
Dynamic range = 

V J1()I1.C 
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Q) 101 

6 
1 X I 

~ r 
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0 
u 

I-- Missing Code - ..... L.{' I 

--- . 
I :; 100 

c. 
:; 
0 011 
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001 

000 

~ 1 J 
/ ~ I 

~ V I , 
I 

L.,.t I I 
, 

o 0.5 1.5 2 2 .5 3 3.5 4 4.5 5 

Input Voltage 

Figure 13-2 A 3-bit AID transfer function. 

Dynamic range may also be stated ih decibels. 

I' 
Dynamic range = 20 log ~ dB 

- .... \/1'0": 

Linearity: Linearity is the deviation in output codes from a straight line drawn through zero 
a nd full, ale. The best that can be achieved is :::0.- of the least significant bitl=O':L B ). al 

~hown in Figure 13-2. 

Missing codes: The transfer function for a converter with a mis'ing ode I> sho\\ n in 

Figure 13-2. An internal error might be the cause of a rni sing code. 

13.3 Shannon 's Sampl ing Theorem and AliaSing 

The frequen c)' al \\ IlIeh >igl1nb are 
sampled I1lU .... l be 3t le:l"t t\\O ti1l1c~ 

Ihe high">! frcqucl1c) 111 the ,igl1"l. 

Claude hannon showed that" hen a ignal. ]tl) = X SIR 2" . I, b to 
be sampled (digitized). the lIIillimlllll .<((lIIl'lill~ frt'qll"IIC\ III'I'( 1>. n.-i,-. 
1/'" sigllal j'n'qllell(,.\'. Consider the \\u\efonn III Figure 13-.; \\ho.­

frcquenl') is f .. ,' \\'hen the >:Impling frcquenc~ f ,'" t\\;,~ l . tho 
wa\cfonn i, >umpied.n point>..\ 311\1 B. The pwblem \\e nl'" 1""' . .UlJ 
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1.5 

0.5 

o 

-0.5 

-1 

-1 .5 

A 

/./ ~ f(t) 

1/ \ 
\ / 
~ /V 

B 

Figure 13-3 Sinusoidal waveform sampled at twice the signal frequency. 

the problem that d igital signal processors must solve when recollslruclillg a waveform from 
sampled data, is this: 

Give" 'he two samples A and B as show/l ill Figure 13-4, fillt/ a sinusoidal waveform IOfi r. 
YOll may adjus! the!requellcy, the amplilIIde. alld the phase, alld YOli may assume that when 
the samples were laken, the sampling criteria were satisfied. ThaI is, there are 110 frequencies 

higher Ihall half J _" 

By observi ng that the two samples are equal in magnitude and opposite in sign, we can con­
vinc~ ourselves that the frequency we are trying to reconstruct is f~,,/2. By adj usting the 
amplitude and the phase, we can find the c?rrect solutionitl) = X sin 2n(l,=,,/2)1 = X sin 2rrf"l 
If there are more than two samples per penod, the reconstruction is eas ier. We conclude that in 
digitizing signals according to Shannon 's sampling theorem, the input signal can be recon­
structed from the digital values. 

Signals ,hat are IIndersampled cause 
aliaSing. 

Now consider the following scenario. Assume that we are sampling 
the input signal at the sample frequency f~nor" and that the signal 1,(1) = 
Y Sill 2n!, ,,/ (F'gure 13-5 solid line), which is a little higher in frequency 
thanitl), is present. Because!,(t) is IIl1dersampled. that is, not sampled 

fast enough, our digital signal processor has a dilemma. The digital values are agai n A and B, 
equal in magnitude and oppo ite in sign. Working only from the digital values. the digital signal 
processor muSI assume that the sampling criterion ha been met, and soitr) is reconstructed, not 

1,(/). This is an example of aliasillg. The second signal .!,(r) is higher frequency thanf~r"l2, 

and undersampling a waveform makes it appear as if it were a IOll'erjreqllellcy. The signalf,( /) 
is an alias for it/) , and this causes an error in the signal reconstruct ion. To avoid alia ing in 
all ND conveners, the sampling frequency must be at least twice the highest frequency in the 
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1.5.,.-------------------------

A 

0.5 +-----l------------------------j 

o+-------~----------------------------~----~ 

-0.5+--------------------------------------------+----~ 

-1 +-----------------------~ 

_1 .5 .l..-_______________________ ---l 

Figure 13-4 Sampled waveform. 

1.5 ,--------------------------

0.5 +--!-,....:....-.J-..!'<----....:..,.,----+----\---------

O +-----~--~---------+--------~~~-----.---

" 
-0.5 +-------\----+--.-....:.-:----~_t___c,...._---,-

_1 +-------------~-L----------~~~~~~-------

_1.5 .1....---------------------------

Figure 13-5 Undersampled waveform. 

ignal. The signal cond itioning stage in Figure 13-1 must contain \\ hat is called an antiu/ias­
illg filtcr. to pass only low frequencies and attenuate frequencies abo\e one-half the sampling 
frequency. The maximum frequency that one an • ample without a1i3..<ing.f_:~. is -alled th 
Nyqllisl frequency. ee Example 13-3. 



316 Chapter 13/ Analog Input and Output 

Example 13-3 AID Conversion Time 

An AiD converter has a conversion lime of 100 I1s. What is the maximum frequency lhat can 
be converted wilhout al iasing? 

Solution 

The maximum sampling frequency ( 10kHz) is the reciproca l of the conversion tj me. The max· 
imum signal frequency lhat can be converted is 5 kHz. 

13.4 ND Errors 

The qualllizalion errOl: Ihe fundamenlal error in AID convers ion. is due 10 the resolulion of Ihe 
converter: il can be no less Ihan ±O.S LSB. Quantization levels are illustrated in Figure 13-2, 
where the OUIPUI code changes al discrele levels and are at besl wilhin ±O.5 of Ihe AID reso­
IUli on of Ihe lrue va lue. 

There are three other sources of errors in AID conversion. These are lIoise, aliasi llg, and 
aperture error. We would like all of Ihese to be less than the basic quantizat ion error. 

Quantization Error 

Electronic Noise 

Aliasing Noise 

Aperture Error 

Figure 13-6 shows a si nusoid and ils quanlized (digilized) values for a 3-bil quantizer. We can 
see thai for a given binary value, Ihe aClual analog value, is wilhin ±O.5 LSB. 

Eleclronic noise includes shol noise, quanrum effecls in electro-oplical systems, electromag­
nelic iJ1lerference (EM I). and noise induced in Ihe analog electron ics by the digital switching 
circuits. Figure 13-7 shows a 2.5 V conslant signal with additive electronic noi . e. The peak-Io­
peak noise should be less than ±O.5 leasl signi fi can l bil (LSB). 

We discussed aliasing as an error crealed by undersanlpling in connection wilh Figure 13-5. 
Aliasing can be considered to be a noise source because when il occurs, Ihe digital va lues from 
the NO will nOi accuralely represeJ1l the aClua l analog value. Si nce Ihese effects are difficuli 
10 quanlify, you must include effective low-pass filiering to eliminate frequency componenls 
above the Nyqu ist frequency. 

A significant error in a digitizing system is due to signal variation during Ihe lime Ihe sig­
nal is sampled. This period, ca ll ed the aperture lillie, limilS the maximum frequency Ihal 
can be sampled. Apertu re error is shown in Figure 13-8, where the signa l is Changing when 
the aperture is open. A good design wi ll allempt lo have Ihe uncertainly 61' be less Ihan one 
least significant bi!. We can derive a design equation for the aperlure time I,p in terms of Ihe 
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1.5 

0.5 

0 

13.4 AID Errors 317 

/ ~ 
----- ----- - ---- -- ---- ----- ------------ ---- 111 

V \l 
~ ~--------------------------------------- 110 

rJJ 
vr 

~ ------- - ----- ---- --- ------- --------- 101 

't\ 100 

1 1 , £ 011 

~ ~---. 010 

~ ~------ 001 

~ A 000 

Figure 13-6 Quantized sinusoid. 

maximum signal frequency I"" and II, the number of bilS in the AID converter, by observing 
the fo llowing: 

V(I) = V"",sin 27T I_I 
Lll' = 27T Imu Vmucos (27T 1=1) LlI = 27T 1= V=cos (27T 1-.1)1 .. 

for I = 0 (worst case slope) 

and for 6v to be less than one LSB. 

Llv I 
--=-=27Tf, I 
Vmu 2'" ma. .. ap 

Solving for the aperture lime, we write 

r =----
lp 27i 1m1&., 2" 

The maximum frequency thai can be converted with aperture errors Ie than ±O.5 least 
significant bit is given by 

Table 13- 1 shows this effect. ee Example 13--1. 
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Figure 13-7 Analog signal plus noise . 
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\./~t ~0.5 LSB 

/ 

Figure 13-8 Aperture time error. 

Sample-and-Hold 

13.4 AID Errors 

Example 13-4 Aperture Time 

A I kHz sinusoidal signal is to be digitized to 8 bilS. 

(a) Find the max imulll conversion time that can be u ed and still avoid aliasing. 
(b) Find the apenure time so that the apenure error is less than ± 0.5 LSB. 

Solution 

319 

(a) There Illust be at least two samples per period; so the maximum conversion time is 
0.5 ms. 
(b) The apenure time is 

t = IJ(2Tr)(IO' }(256) = 0.62 I-'S 
'P 

In many AID converters. the apenure time is the same as the conversion lime. The NO is 
"looking" atlhe signal while it is convening it. In Example 13--1 the conversion time for a 
I kHz s ignal is 0.5 ms. whi le the apenure time is 0.62 J.ls. The apenure time is the more restric­
live speci ficati on; it would be much more expensive. however. to buy a convener with a con­
vers ion time o f 0.62 J.lS just to satisfy the apenure time requirements. A sample-and-hold (SIH) 

circu it . a lso called a track-a lid-hold circuit (Figure 13-9), was included in the design shown in 
Figure 13- 1. Such a circuit can achieve the han apenure time while allowing a Ie s expensive 
convener to satisfy the conversion time. 

Table 13-1 

t., 
I ~s 

I ~s 

I ms 

I ms 

I ns 

I ns 

I n~ 

Analog 
Input 

Sample 

Effect of Aperture TIme 

n I_ 

8 622 H7 

10 155 Hz 

8 0.622 Hz 

10 0. 155 Hz 

8 622 ~Hz 

10 155kHz 

12 38.9 ~HI 

Figure 13-9 Sample-and-hold Circuit. 

Held 
Analog 
Signal 
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13.5 Choosing the AJD Converter 

The de igner mu t choose the number of bi ts, or resolulion. and lhe speed. or conversion 
time. of the convener. The type of digital code output from the convener may be chosen. The 
apenure time must be calculated and a decision made to include a sample-and-hold and an 
anti aliasing filter in the system. 

Choosing the AID Resolution 

There are two ways to find the resol ution needed in the AID. The first is to find the dynam ic 
range of the input s ignal and to choose the number of bits based on this. The dYllamic rallge 
of any signal is given by 

Dynamic range = V"", 
Vnoise 

where V is the maximum input signal and V is the noise. We wou ld like the noise to be 
within :to.5 LSB, as hown in Figure 13-7. an.ribr this 10 be lrue, the number of bits is 

This is the be t one can do unless signal processing, such as averaging, can reduce the 
noise. 

Another way to choose the number of bits is based on the re olution required in the signal. 
Here, V . is the required resolution, and it determines the number of bi ts by means of the fol­
lowing ~~lation (see Example 13-5): 

Example 13-5 Choosing the NO Resolution 

A transducer is to be used to find the temperature over a range of zero to 100°C. We are required 
to read and display the temperature to a resolution of ± 1°C. The transducer produces a voltage 
from 0 to 5 Y over thi s temperature range with 5 MY of noise. Specify the number of bits in 
the AID converter (a) based on the dynamic range of the signal and (b) based on the required 
resolution. 

Solution 

(a) The dynamic range is (5 Y)/(0.005 Y) = 1000. Thus a I O-bit AID convener is required if the 
noise is to be < ±0.5 LSB. 

(b) The required re olu tion is 1°C in 100°C, or 100: I. A 7-bit converter will meet these speci­
fications. [n practice, an 8-bit convener wou ld be chosen in a microcontroller-based system. 
The least significant bit can be thrown away or used for signal processing. 
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Choosing the AID Conversion Time 

The AID conversion time is chosen by considering pOlential signal aliasing. The highest fre­
quency component in the signal must be sampled at least twice in a period. A design equation 

for conversion time is given by 

See Example 13-6, 

I 
AID conversion time:S;--

2f"~ 

Example 13-6 Choosing the Conversion Time 

Find Lhe maximum conversion lime for an AID converter to digitize the following signal: 
I kHz sinusoid, I Hz sinusoid. I MHz sinusoid. a video signal with a bandwidth limited to 

5 MHz 

Solution 

I kHz - 500 fls: I Hz - 500 ms: I MHz - 500 ns: 5 MHz video - lOOns 

Choosing the Output Code 

The output code may be chosen at the time of specifying the AID. Different codes are available. 
depending on the input signal. For unipolar devices, unsigned binary or complement binary 

codes are available, a shown in Table 13-2. 
A bipolar-input AID must encode negative and posi tive signal. Table 13-3 shows a "ariet) 

of coding schemes. 

Choosing a Sample-and-Hold 

The speci fication for the apenure lime usually requires a sample-and-hold if the signal has an) 
time varying components. A separate sample-and-hold may be u ed. although some sampling 
AID converters have lhe sample-and-hold built in. See Example 13-7. 

Table 13-2 8-Bit Binary Codes for Unipolar ND 

Percentage of Full-Scale +10 V Full-Scale Unsigned Binary One's-Complement Binary 

0 0.000 00000000 I tilt II t 

0+ t LSB +0.039 OOOOOOOt II I t 1110 

25% +:! )00 01000000 lOt t I II 1 

50C"," +5.000 tOOOOOOO 01lt tlll 

75<1- +75000 11000000 t1o.llt 1111 

Full ",c~llc - I LSB +Q.%t tit lit It 1'IOl1o.)(\ )[l 
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Table 13-3 8-Bit Binary Codes for Bipolar N D 

Percentage of Full~Scale ~5 V Full·Scale Two's Complement Signed M agnitude Offset Binary 

-(Full -scale) -5.00 10000000 None 00000000 

-(Full -!.colc) + I LSB -4.96 10000001 11111111 0000000 1 

- 75 'k - 3.75 1010 0000 1110 0000 00 100000 

- 50% - 2.50 11000000 11 000000 01000000 

- 25% - 1.25 1110 0000 101 00000 0 1100000 

- I LSB -{t.04 11111111 10000001 01 1111 11 

0 00000000 1000 0000 and 0000 0000 10000000 

+1 LSD +0.04 0000000 1 0000000 1 1000000 1 

+25% + 1.15 00 100000 00 100000 1010 0000 

+50'k +2.50 0 1000000 0 1000000 11 00 0000 

+75% +3.75 0110 0000 0 11 00000 111 00000 

Full .;calc - I LS B +4.96 01111111 0 11 11111 11111111 

Example 13-7 Choosing the Sample-and-Hold 

For each of the signal in Example 13-6. give the required apenure time for an 8-bit AID convener. 

Solution 

I kHz - 0.62 ~s: I Hz - 0.62 ms: I MHz - 0.62 ns; 5 MHz video - 0.12 ns 

Choosing the Antialiasing Filter 

The cutoff frequency (-3dB poinl) should be set to either the maximum freque ncy expected 
in the signal or to one-half the sampling frequency, whichever is lower. The order of the fil­
ter (the number of poles). which specifies the anenuation in decibels per decade, depends on 
Ihe nature of the input signal and on how much energy is above the Nyqui st frequency. See 
Example 13-8. 

Example 13-8 Specifying the Complete ND 

Specify the AID converter maxi mum conversion time, number of bits. cutoff frequency for the 
antialias ing filter. and the apenure time 10 digitize the following signal: 

:t 5 V peak-to-peak, 5 mV peak-to-peak no ise.f~ = 3 kHz 

Solutio n 

The dynamic range is ( IOV/5 mY) = 2000. ThereforeN ~ log, 2000 ~ 10.9. and the number of bit 
N = II . The maximum conversion time to prevent aliasing is 11(2 X 3000) = 170 ~s. n ,e antialiasing 
fil ter should have a cutoff frequency of3 kHz. The apenure time of the sample-and-hold is 26 ns. 
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13.6 The Analog-to-Digital Converter Interface 

Analog 
input 

Fi gure 13- 10 shows a typical NO interface circuit. This particular circui t is for a sensor that 
produces a voltage in the range of 0 to 2.9 V. The Texas Instruments OPA4344 is a quad (there 
are four operational amplifiers in one package), rail-to-rail amplifier. This means it can operate 
on a single 5-volt power supply and still achieve an output voltage of nearly 5 V. The gain of 

this noninverting amplifier is 

Ay = R, + R, =2.8 
R, 

The gai n of the input voltage divider is 

0.62 
R,+ R,+ R. 

giving an overall gain of 1.7 for dc. A two-pole, low-pass filter is given by R., C, and R" R •. 
C We can treat the twO filter sections independently because the coupling resistor, R,. is suf­
fi ~'i ently high to isolate the second filter from the first. 

The cutoff frequency of the R" C , is 

fc, = -_1- = 723 Hz 
21TR, C, 

The cutoff frequency of R" R" and C, is 

I 
fn = = 775 Hz 

21T(R, I R. )C, 

o-~---~-~-~r--~---~---~ + R3 : 1k!l 

C2 : 2700 pF 

R, : 110k!l 

Figure 13-1 0 Analog-ta-digital converter electroniCS. 

OPA4344 '>-_--.ilJ'/v---o 
ToND 
converter 
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13.7 Analog-to-Digital Converter Types 

Th~re are a number of analog-to-digital converter types. The one chosen depends on Lhe appli­
callan and on the performance required. 

Successive Approximation AID 

Perhaps the most widely used ND converter is the successive approxil/laTion type shown in 
F,gures 13- 1.1 a~ld 13- 12. Each bit in Lhe successive approx imation register is tested, starting 
at the most Igndicant and IVoriung toward the least significant. As each bit is set, the output 
ofthc dlgltal- to-ana log (D/A) cO I~ ve rt er is compared wi th the input. If the DIA output is lower 
than Lhe mput SIgnal , the bit remams set and the next bit is tried . Bits that make the DIA output 

Analog 
Input 

Comparator 

Digital-to-Analog 
Converter 

Successive 
Approximation 

Register 

Figure 13-" Successive approximation NO . 
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-

Figure 13-12 Successive approximation DIA output: solid lines DIA output · 
dashed lines, 14.6 V (a) and 2.8 V (b). ' 

Digital 
Output 

Tracking AID 
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higher than the analog input are reset. Setting and testing each bit in the succes ive approxi­
mation register requires N bit times. 

The Tracking NO converrer is shown in Figures 13-13 and 13- 14. This close cousin of the suc­
cessive approximation convener has an upldown counter controlled by the comparator. If the 
input signal is higher or lower than the output of the DIA converter, the counter counts up or 
down, respectively. This converter may quickly converge to the correct digital value when the 
signal is not changing rapidly. If there are large, rapid input changes, the counter may have to 
count through its full range before reaching the final value. 

Analog 
Input 

Comparator 

Figure 13-13 Tracking NO . 
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Figure 13-14 Tracking converter DIA output: dashed line. SIgnal: solid line, 
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Dual-Slope AID 

An interesting and useful converter is the dllal-slope or il/tegrating AID 
A cllIlI/-J/0l'" AID can have \ery high COl/verter (Figure 13- 15.) The converter integrates the input signal for 
rejection of periodic noh.c. a fixed lime. T

1
• with higher input signals integrating to higher values. 

During the second period. T,. the swi tch is changed to the minus refer· 
ence voltage and the integrator discharges to zero at a constant rale. The lime needed to dis­
charge. Tr gives the digital value. 

(a) 

Integrate 

C 

Digital 
Output 

Discharge 

Full-scale conversion 

Half-scale conversion 

Quarter-scale conversion 

r: T1T T2 j 
Fixed Time Measured ime 

(b) 

Figure 13-15 Dual-slope ND. 
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The dual-slope integrating AID is remarkably efficient at recovering signals from periodic 
noise. A common problem in many applications is 60 Hz noise from power lines. By making 
T, equal to the period of the interference (Jl60th of a second) the po itive half-cycle of inter­
ference is canceled by the negative half-cycle. 

Parallel or Flash AID 

Figure 13-16 shows a parallel , or fla sh, AID convener. This array of2N-1 comparators pro­
duces an output code in the propagation time of the comparators and the output decoder. Thus 
it i very fa t, but also more costly in comparison to other designs. 

Two-Stage Parallel AID 

The two-stage parallel AID convener (Figure 13-17) has nearly the performance of the par­
allel converter but without the complexity of 2"_1 comparators. This de ign is also called a 
sllbral/gil/g or lIIultistep converter. The input signal is convened in two pieces. First. a coarse 
estimate is found by the first parallel AID. This digital value is sent to the DIA and the sum­
mer, where it i subtracted from original signal. The difference i convened by the second 
parallel converter and the result combined with the first AID to give the digitized value. These 
converters offer hi gh resolution and high-speed conversion for applications like video signal 
processing. 

Analog 2N_1 
Input Comparators 

Figure 13-16 Parallel or nash NO. 

2N _to_ 
N-Bit 

Encoder 

Digital 
Output 
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Analog 
Input 

N12-Bit 
Flash 
ND 

Figure 13-17 Two-stage paraliel AID. 

N12-Bit 
D/A 

Digital Output 

N12-Bit 
Flash 
ND 

Sigma-Delta AID 

A popular high-performance AID is the sigma-delta convener (Figure 13- 18). This convener 
oversamples the analog signal at a much higher rate, perhaps 64 times higher, than a conven­
tional AID's Nyquist frequency. This makes the antialiasing filter much easier to design and 
implement without degrading its ability to perform the antialiasing function. The comparator 
is a I-bit digitizer, and for each sample, the preceding sample's analog value is subtracted from 
the current analog input. The final digital filter and decimator performs another low-pass filter 
operation. It averages the 64 I-bit samples (in a digi tal fi lter) and produces the fi nal N-bit digi­
tal output. Thi process is called decimatiol/ . Decimation trades high-frequency, I-bit samples 
for lower frequency, N-bit values. 

13.8 Digital-to-Analog Conversion 

Figure 13- 19 shows the digital-to-al/alog COl/verter. Few microcontrollers have an integrated 
D/A convener, and so an externa l device is usually used. A parallel ou tput interface con­
nects the D/A to the CPU. The latches may be pan of the D/A , or an output interface like that 
designed in Chapter 9 may be chosen. The analog output signal from the D/A is quantized as 
shown in Figure 13-6. A signal condi tioning block may be used as a filter to smooth the quan­
tized nature of the output. The signal condit ioning block also provides isolation, buffering, and 
voltage amplificati on if needed. 

Buffer Amplifer and 
Antialiasing Low-Pass Filter 

Analog 
Input 

+ 

Figure 13-18 Sigma-Delta AID. 
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N 
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Figure 13-19 Digital-to-analog converter. 

D/A Converter Specifications 
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Comparator 

Digital-to­
Analog 

Converter 

1 BiVSample 

Signal 
Conditioning 

Digita l 
Output 

Analog 
Output 

The fo llowing concept, are essential for developing D/A convener specifications. 

I. Resolution and linearity: The resollllion is determined by the number of bits and i 
given as the output voltage corresponding to the mallest digital step (i.e .. I LSB). The lin­
earity shows how closely the output voltage follows a traightline dra\\ n through zero and 
full-scale. 

2. Settling time: This is the time taken for the output voltage to ,ettk to \\ ithin a ~peci­
lied error band. usuall) :to.S LSB. Settling time is sho\\n in Figure 13-20. 

3. Glitches: High-speed D/A comeners have glitches as well as settling time problem>. 
A gl itch is caused by asymmetrical switching in the DI switches. If a '" itch change, from 
a one to a 7em fastcr than from a lero to a one, a glitch may occur. COtbider changing the 
output code of an S-bit D/A from 10000000 to 011111 111. These code< are adjacent. and we 
wou ld c\pect thc output to go from one-half full-scale to one re olution ,alue Ie ,than that. 
However. if the switches can switch faster from a one to a 7ero than from a zero to;} one. the 
output code will go through" transitory <tatc sequence 10000000 to 00000000 to 01111111. 
This results in" shon but sometime, noticeable glit h in the output 'ignaI.1Figu~ U·21). 
Glitches are espcciall noticeable in ,ideo displa~,. 

D/A comener gli tche, can he dinunateu b~ folio" ing the D/A "ith a ,ample-anJ-h\)IJ.:1.' 
shown in Figure 1 3-2~. The /H i, ,[ft)bed to ,ample the data after the ghtch he\' \ :cum'd and 
after the D/A ,ett ling tuuc. 
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I .. 
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Figure 13-20 D/A settling time. 
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Figure 13-21 D/A output glitch. 
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Figure 13-22 Deglitched D/A. 
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D/A Converter Types 

We mention briefly three widely used 01 A converter designs. 

I. Binary-weighted : The most basic circuit is the biliary-weighted register DIA 
(Figu re 13-23a). As the switches ror the bits are c losed. a weighted current is supplied to the 
summing junction of the amplifier. For high-resolution O/A converters. the binary-weighted 
type must have a wide range of resistors. This can lead to temperature Slnbi lity and difficu l­
ties in swi tching. 

13.8 Digital-to-Analog Conversion 331 

BO 100kQ 

B1 50kQ 6.25kQ 

B2 25kQ Analog 
Output 

B3 12.5kQ 

(a) 

r---<>--- Analog 
Output 

(b) 

Figure 13-23 D/A converters. (a) Binary weighted. (b) R-2R ladder network. 

2. R-2R ladder O/A: Figure 13-:!3b shows another popular design. Here. a \\ ide range of 
resistor values is not required; it is relatively easy to create highly accurate RI'2R resistan -e 
ra tios. However. single-pole. double-throw switches are needed. As the switches are changed 
from the grounded to the referen e position. a bin:u: -weighted current i> supplied to the 
summingjullction. 

3. Multiplying O/A: The R-2R ladder O/A can serve as a 1II11/li,,/yillg D,A if the refer­
ence voltag~ is lIsed as nn input. The reference vollage can vary oyer the maximum \1.11tag.e 
range of the amplifier and is multiplied by the digital code. 
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Analog 
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LM 331 Frequency.----___ _ 
___ ~ VOltage_to_ I--_O_u_tp_u-lt ~ 

Frequency 
Converter 

Figure 13-24 Voltage-to-frequency AID conversion. 
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13.9 Other Analog liD Methods 

Before closing this analog 1/0 chapter. let us look at three nontraditi onal ways to achieve ana­
log input and output. 

I. Voltage-Io-frequency converters: A vo!wge-IO-!req/le/l cy (V-F) converter or vo!wge­
COlli rolled oscillalor (\leO), produces an output frequency proportional to the input voltage. 
A typical device is shown in Figure 13-24. The counler is set to zero at the start of the con­
version cycle and is read by the CPU a predetermined time later. The number in the counter 
gives the di gital value. but the microconlroller must wa it for the prescribed amount of time, 
no more. no less. This technique is good ror slowly varying signals or when an average value 
over a lime is required. If your microcol1lroller can measure the period of the frequency out­
put from the V-F converter you can eliminate the counter. 

2. Pulse-widlh-modulated analog input: In some cases. the position of a potentiometer 
may be the desired in fomlation. For example. a user may vary a comrol parameter by tuming a 
knob on the front panel. If the potemiometer is not needed for another purpose-say, 10 control 
some analog circuit- it can comrolthe width of an output pulse of a monostable mlliti vibrator. 
Figure 13-25 hows this circuit. The microcontroller must measure the width of the OUlpul pulse. 

3. Pulse-width-modulated analog output : Figure 13-26 shows a pulse waveform. The 
pulse width is I and the period is T. When the pulse train is low- pass- li ltered with a cutoff 
frequency of less than liT hertz, the output voltage is A * liT. Pulse-width-modulaled (PWM) 
waveforms are frequenll y used to cOnlrol the speed of dc Illotors. 

13.10 Conclusion and Chapter Summary Points 

A data acq ui sition system consists of transducers. signal conditioning. an analog mu lti ­
plexer. a sample-and-hold. an analog-to-digital converter. and a para llel input inlerface 
to the CPU. 

Transducers convert physical processes 10 electrical signal,. 

Signal cond itioning provides i. olation and bu frering. low-pass fi ltering. and 
amplifi cati on. 

Shannon' theorem specifics the max imum rrequcncy thai can be " "np lcd 1'0 1' a givcn 
sampling frequency. 
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13.10 Conclusion and Chapter Summary Points 

R 

Potentiometer 

c 
Pulse Output 

~ 
To Microcontrolier Pulse­
Width Measurement 

Figure 13-25 Analog input with pulse-width modulation. 
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Figure 13-26 Analog output wrth 
pulse-width modulation. 
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• The maxi mum frequency that can be sampled. called the yquist frequenc~. b equallQ 
one-hall' the sampling frequency. 

An undcrsampled wavefonn can cause aliasing. 

Ali asing causes elTOrs in the digitized \alues. 

Other clTOr. Ollrces include electronic noise. apenure error. and quantilation error. 

In a well-designed S) stem. ull noise ,oun:e : should be less than the quanlil an, n em'!'. 

The slIcce,sh e uppro:-.imution AID i. probuhl. the mo't common. 
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The Lracking AID can quickly respond to small changes in the input but requires more 
time for large changes. 

A dual-slope integrating AID shou ld be used where there is periodic noise, such as 60 
Hz line noise. 

Parallel and two-stage parallel AID conveners have the shortest conversion time and 
are used for high-speed applications. 

The number of bits determines the resolu tion of an AID. 

The apenure time is the most resLrictive specification, and a sample-and-hold is gener­
ally used to meet it. 

Digi tal-to-analog conveners have a settling time specification . This is the time taken 
for the output to setlie within :to.5 LSB of the final value. 

High-speed DIA conveners may have glitches in the omput caused by asymmetrical 
switching. 

13.11 Problems 

Explore 

Stimulate 

13. 1 Briefly explain the fo llowing terms: aperture time, conversion time. aliasing, Nyquist 

frequency. ra] 

13.2 What is Shannon 's sampling criterion? ra] 

13.3 How does a successive approximation AID converter work? ra] 

13.4 How does a dual-. lope AID converter work? ra] 

13.5 How does a flash convener work? lal 

13.6 A lOY (maximum) signal is to be digitized to a resoluLion of at most 0.0 I Y. How 
many bits are needed in an AID converter to do thi s? [b. c] 

13.7 The AID converter conversion time is 100 lis. What is the maximum frequency that can 
be digitized without the occurrence of aliasing? [b, c] 

13.8 An AID converter is required to digitize a I kHz sinusoidal waveform. What is the 
maximum allowable conversion time for LheAlD? Assume Lhat a sample-and-hold eir­
cu it is being used to give the correct aperture time. lb. c l 

13.9 An AID convener is to digitize a 10 Y full-scale signa l to a resolution of I part in 

J 024. rb, cJ 

a. How many bits are required? 
b. When a 9 Y signal is being digitized. what is the accuracy of thc measurcment? 
c. What is the accuracy when a I Y signal is digitized? 

Challenge 
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13. 10 A Lransducer is to be u ed to find the temperature over a range of -I 00 to 100°C. We 
are required to read and display the temperature to a resolution of = 1°C. The trans­
ducer produces a voltage from -5 to +5 Y over this temperature range with 5 mY of 
noise. Specify the number of bits in the AID convener based on (a) the dynamic range 
and (b) the required resoluLion. [b. c] 

13. II For an AID convener, specify (I) maximum conversion lime. (2) number of bits. (3) 
cutoff frequency for the antialiasing filter. and (4) the apenure time to digitize each of 
the following signals: rb. c] 

a. :t5 Y peak-to-peak. 5 mY peak-to-peak noise. f= = 3 kHz 
b. 0 to 10 Y peak, 5 mY peak-to-peak noise. f= = 100 kHz 
c. :t I Y peak-to-peak. 5 mY peak-to-peak noise. f= = I kHz 
d. I Y peak RS- 170 video signal wiLh maximum bandwidth of 5 MHz with a required 

resolution of I pan in 256 

13.12 An AID converter is to be specified for the following measurement: the signal will not 
vary during the conversion time: the signal range is 0 to 10 Y: there is I mY of noise: 
when a one volt signal is being measured. the measurement i to be within =0.5'k of 
the true value; samples are to be taken every second. [b. c] 

a. How many bit are required? 
b. How would you specify the conversion rime and aperture time~ 

Reflect on Learning 

13.13 What do you feel is the most ignificant new information you learned from mi, 
chapter? 

13.1-\ Why i. it imponant for designers of analog-to-digital convener y tems to understand 
Shannon' theorem? 

13. 15 List five things that you learned about analog-ta-digital cOIl\'ersion \\ hile srudying 
this chapter. 



Objectives 

Counters and Timers 

Many embedded applications requ ire a timer (Q generate waveform of a speci fic frequency, to 
time external events. to count events. and to generate interrupts at specific interval . In this chap­
ter we wi ll look at the basic operat ion of the timer circuits found in modern microcontrollers. 

14.1 Introduction 

Designers of embedded ystems often refer to "real-time" events. or real-time control. Real time 
does not mean time in hours. minutes, and seconds. Instead, the term usua ll y refers to gener­
ating time interva ls to create waveforms of a specific frequency for driving stepper motors, 
for example. or for generating interrupts to acq uire data from an external ource such as an 
analog-to-d igital converter. The timer modu le in your microcontroller can do the fo llowing 
functions: 

Generate accurate tim ing signal and waveforms. 

Measure time intervals. 

Generate in terrupts at specific intervals. 

Capture and coun t external events. 

14.2 The Timer/Counter 

The Timer Overflow 

336 

The heart of the timer module is actually a counter, as ~hown in Figure 14-1. A programma­
ble (in some microcontrollers but not in o thers) divider or pre,caicr reduce, the bus clock 

nmer 
Enable 

8/16-Bit Input 

(a) 

TOF 
Reset 
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Global 
Interrupt 

Enable1Disable 

Timer Enable ~ 

Counter ~ OxOOOO ••• OXFFFF I OxOOOO •• • OXFFFF~ 

TOF 

TOF Reset 

_ ___ ---ln L..-__ 1L 
___ ---'n fL 

(b) 

Figure 14-1 A 16-blt timer/counter. (a) nmer over1low. (b) TOF timing. 

frequenc) to increment an 8- or 16-bit oumer. The counter is free run-
The heart or 3 timer ~)~tel11 i\ a ning and CQUnb from 0,,0000 to OxFFFF. \\nen it reache~ the ma:~j-
counter. mum it rolls oyer {o\'ertlows) to 0\.0000 and sets a hard\\are bit ~alled 

the lilller ""crj1ol\'f1ag (TOFt Your ,ofmare mu.t enable the lImer b~ 
selting the timer enable bit. and it an either poll the timer o\ert10\\ nag or u,e the nag to 

generate an intclTllpt. You can abo read the '/l6-bit coumeroutpul. The timero\ert10\\ give, 
u, our tir;t Ie\el of (fai rl) crude) timing inter,.ls. ee Example 14-1 After the limer o\er­
now nag has been ,et b) the hard\\"re. you must reset il in your sofmare. Each microc-..'n­
troller \\ ill have :I ditTaent \\ 3) to do thi,. Figure 14-lb ,ho\\ s the liming ,cquenee fortimer 
ovcrl1ows. 

In another \er,ion of the b",ic timer function.) ou are allo\\ed to initialize the ltrt>it ;'1.lUnter 
\\ ith a \alue. Then. \\ hen the timer enable bit b ;I>,ertN. ~ <'U \\ ill have a 6 , cd tim gl\ n t>~ 
the coum "nd the counter ell><:k r!'l'quenc~ to \\ ait until the TOF " >ct. 

Figure 14-2 ,h()\\!'o ~ t!t another \«:('..ion of the ba'l\: .... \.'untt·r: here th' tin~r \"."'\~rtl\."\\ "J.g 
reload ... the counter from a re£,bter. Th,' feature l' \ l'~ l1~eful \\ hen ~ l)U ~ g "neratlOg U.lR· 

\\ ,\\(!'. Another \ ,matton til the ba:.tt..- 1111ll'r that ~\)me mi('-nX'l)ntn: lie" \)tl"r 1, th lb It\ t\" 

3110\\ tht' COUIlh..'r (() Ct..lllllt up \lr \,.'I.,"lunt dl.,)\\ n. 
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Timer 
Enable 
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Timer Enable ~ 

(a) 

Global 
Interrupt 

Enable/Disable 

Counter ~ OxFOOO ' •• OxFFFFl oxFooo , •• OXFFFFI OxFOOD ' •• 

TOF/Reload 
______ ~n~ ____ ~ 

TOF Reset ___ ---'n ~ 
(b) 

Figure 14-2 Automatic reload counter. (a) Hardware design. (b) TOF reload timing. 

Example 14-1 Timer Overflow Intervals 

Calculate the time intervals between timer overnows for a 16-bit counter like the one shown in 

Figure 14-1 , assuming the following counter clock frequency input to the counter: 

(a) 8 MHz 
(b) 4 MHz 

(c) 100 kHz 

Solution 

(a) 21'/8 x 10'= 8.192 ms 

(b) 16.384 inS 

(c) 0.65536 s 

Timer Output Compare 

Better timing resolution can be 
achieved with an ompUl compare 

circuit. 
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The timing resolution offered by the timer overnow shown in Figure 14- I 
may not be accurate enough for your application. We can add hardware 
to the basic timer/counter to improve this, as shown in Figure 14-3. A 
I 6-bi t comparator and a comparison register are added. 

TOF 
Reset 

To Interrupt Cirru~ 

COF Reset 
To the Program ~---,f---I 

To Interrupt Clrrurt 

From the Program 

(a) 

TImer Enable ~ 

Counter ~ Oxoooo ·· • Ox3FFF I Ox4()()() ' •• Ox7FFF~8OQ()o' • OxBFFFI 0xC000 '" 0xFFFF10x0000 
Comparison :=J 

Register Ox4000 I Ox8000 l oxcooo I 0x0000 I Ox4000 

COF n n n ~ 
COF Reset n n n rL 

TOF ~ 
TOF Reset rL 

(b) 

Figure 14-3 TImer output compare. (8) Hardware. (b) Output compare t"rung 
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The timing di agram in Figure 14-3b show how the output compare c ircuit works. The 
comparison register is initi alized to Ox4000. and when the counter reaches this value, the 
compari on nag. COF. is set. The program detects this. either by poll ing the bit or with an 
interrupt. and then changes the comparison register to the new va lue. Ox4000 clock cycles 
away (Ox8000) and resets the COF bit. Each time the compari son is made, the nex t compari­
son value is written and the COF reset. 

This hardware can ge nerate time intervals to the accuracy of the counter's cloc k. Any lime 
delay (up to the max imum of 2" counter clock cycles) can be added to the current value 
of the 16-bit counter and stored in the compari son register. After the comparison nag has 
been reset, your program can wait for it to be set again to accompli sh the required delay. See 
Exa mple 14-2. 

Example 14-2 Using a Timer/Comparator to Generate Time Intervals 

Give pseudocode showing how to generate a delay eq ual to 1000 16-bit counter clock 
periods. 

Solution 

/' Choose the proper divider for the programmable bus clock divider ' / 
/ ~ Read the current value of the 16- bit counter 0/ 

/* Add the r equi r ed delay i n clock cycles (1000) - / 
/. Store this value in the 16- bit comparison register ~/ 

/* Reset the comparison flag ~ / 

/ - Wait until t he comparison flag is set '/ 

Timing External Events 

Figures 14-4 and 14-5 show two way' to time such ex ternal events to 
A gated clock COlllller or an i llp lI lcap- give, for example, the du ration of a pul se or the pe ri od of a waveform. 
Illre lalch can time ex ternal events. The first, Figure 14-4, is a gated clock counter. The cou nter can be reset 

by the program. after which an extern al signa l, whose pulse duration is 
to be measured. is gated through to the counter after the Enable_Cou nt signal is asserted . The 
external signal may be either a pos itive or a negati ve pulse as selected by tile High_ To_Cou nt 
bit. The counter increments for each counter clock pul se while the counter enab le is asserted. 
The hard ware can set a gated counter nag (GCF) or generale an interrupt so your program can 
read the value in the counter when Lhe external signal is deas Cried . Figure 14-4b show, a tim­
ing diagram. See Example 14-3. 

In a typica l input captu re system (Figure 14-5), the ri s ing ed ge, fa ll ing edge, or both 
edges of the eX lern al signal latch the current 16- bi t coun ter value into a 16-bi t latch. An 
in terrupt ca n be generated, and the program ca n read the latch value . Two sucees; il'e 
caplUres a ll ow you to calcu late the length of Lhe pu lse o r perlnd ')ee Figure 14-5 b and 
Example 14-4. 
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Reset_Counter ------------------~ 

Enable_Count 

Exlernal Signal 

GCF 
Reset 

High_To_Count - ....... --+--~ 

Galed Clock Flag 

Failing Edge 
Generates 
Interrupt 

(a) 

Timer Enable .-J 
Counter ==:J OxOOOO OxOOO l ' • • Ox4CF 

Reset_ Countel ---.Sl~======== 
Enable_Count _____ ---1 

External Signal L 
Gated Clock Flag _______________ IL 

GCF Resel ---------------~ 
(b) 

Figure 14-4 Gated clock counter. (a) Hardware. (b) Timing. 

Example 14-3 Measuring a Pulse with a Gated Clock Counter 

Give pseudocode showing hoI' to find the time that the external ignal in Figure 14-4 i> high. 

Solution 

/ . Choose t he pr ope r d iv i der for t.he p=ograt'!'_~able b\!s ..:loc<. c.:'\·lder .. 

/ . En able the interrupt system ' I 

I ' Reset the 16-b i t coun t er ' 

/ " Enable interrupts " ' 
/ " Set the High_To_Count con~rol bit 
, ~ Wait for the lrter rupt to occur ~ 

I ~ Read the 1 tI-bi t. counter v.a lue and calcu!.ate :be FU se ..:l_!"at ........ :- .. 
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Bus Clock 

Timer 
Enable 

Rising , 

External -~---4~ Fa~irng, I--.--l~ 
Signal Both 

Timer Enable ~ 

Counter 

External Signal 

Edges 

Program 
Control 

(a) 

16 

16 

Input Capture Flag 

16-Bit Latch l OxOEFF I 0x2476 

Input Capture Flag 
______ ~Il~ __ ~Il~ __ _ 

ICF Reset __ ---'n ~ 

(b) 

Figure 14-5 Timing input capture. (a) Hardware. (b) Timing . 

Example 14-4 Measuring the Period of a Waveform 

To Interrupt 

ICF Reset 

Give pseudocode showing how to find the period of thc extcmnl , ignal in Figure 14-5. 

Solution 

I' Choose the proper divider Eor the programmahle hus clock divider ' I 
I' Enable rising edges to latch the 16-bl coun Dr '/ 
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External~ 
Signal 

Load Accumulator 

16 

16-Bit Accumulator 

16 

Read Accumulator 

Figure 14-6 Timer pulse accumulator. 

/. Enable interrupts */ 

Accumulator 
Overflow Flag 

/* Wait for the first interrupt ~ / 

To Interrupt Circuit 

AOF Reset 

/~ Read the 16 - bit latch and save the value as the beginning coc~~ . / 
/1< Nait for the second interrupt. ~ I 

/-. Read t.he 16- bit latch and subt.ract the beginning count. f::o:r. ':'t. 

to calculat.e the period ~ / 

Counting External Events: Pulse Accumulator 

Figure 14-6 show a timer accwnulator that counts pul es on the e.xtemal signal. The accumulator 
can be initialized with a count value. say -2·t and then an interrupt can be generated "hen the accu­
mulator overflows. Your program can aI 0 read the accumulator to keep track of the count value. 

14.3 Pulse-Width Modulation (PWM) Waveforms 

Pulse-width modulation w3wform are u ed in man) embedded appli-
If PWM hardware is included in the cations. For example. a P\\' 1 w3\eform can control tbe speed of a 
microcontrollcr. you an generate dc motor. Figure 14-7 sho\\ n pulse-\\idth-modulated \\3\efonn. Two 
PWM waveforms with no >oft"'''rc time inter\'uls must be ,pecified and cOLltrolkd. The;.e are the period 

overhead. (/""",,) and the time the output is high 11 ). A term that de".:rit>e~ a 
pub.e-\\ idth-modulated \\3\donn is dllry <,,-de. Out) c~de l> the ratio 

of Idlll~ to trm,~ and i. usunll) gi\'en as a percentage: 

r 
Out\ C\ck = -- IOOc-c 

•• 1 ~ 

You can gencmte a P\\ ~I \""efonn b~ using the timeril'ompar.lll'r hw\\,trc ,h,'\\n III 

Figure 1-1 -3. Your 'oft\\ are Illu'tl.eep tmel. <,r the dela~ - the numt>er of ck' '~d >, It mu.,t 
wuit until th.: nc\tl'hange til the <,utput. 
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H 
PWM Port I 

Pin ~ 

~ (Period 

Figure 14-7 Pulse-widlh modulalion waveform. 

Figure 14-8 is a block diagram of hardware found in some microconlfollers to generate 
PWM waveforms without software intervention once the system has been initiaUzed. The bus 
clock di vided by the programmable divider drives the 16-bit counter. The counter stans at 

OxOOOO. and the output of the flip-flop is hi gh. As the counter COunts up. it reaches the value in 
the dlllY cycle register. and the dllty cycle comparator resets the flip-flop. The counter contin­
ues to count until it reaches the value in the period register when the period comparator resets 
the counter to OxOOOO and sets the output flip-fl op to stan the PWM again . 

14.4 "Real " Real -Time Clock: Clock Time 

As mentioned in Section 14.1. the timer/counter in your microcontroller does not give you 
"clock" time. that is. hours. minutes. and seconds. at least not unless you have wrinen an appli­
cation usi ng the timer. 

To generate "real" Lime (hours. min­
utes. seconds). you can add a real­
time clock peripheral. 

Figure 14-9 shows a typical external rea l-time clock (RTC). The 
Dallas SemiconductorlMaxim DS3234 has an accurate on-chip oscil­
laror for keeping the time. and it counts seconds. min utes. hours. day. 
date. month. and year with leap year campen alion. The data output is 
in binary coded decimal (BCD). which makes it easy to display the time 

information without having ro conven from binary to BCD. It can generate two alarms at 

times you set. and it has 256 bytes of user RAM. As you can see. a battery can be used to keep 
the RTC powered up to maintai n its time when Voo is lost. This particu lar chip has a voltage 
monitoring circuit and can assenthe RESET _L signal when Voo drop below a power-fai lure 
voltage Vpl" The microcontroller in terface for the DS3234 uses the serial peripheral interface 
(SPI. described in Chapter 12). Other chips from Dallas Semiconductor/Maxim and other 
manufacturers offer PC and parallel bus interfaces. 

14.5 Conclusion and Chapter Summary Points 

In this chapter we have presented a variety of fea tu res found in microcontrollertimers. Although 
your microcontroller 's timer may have a variety of additional features and controls. Ihe funda­
mentals follow what we have presented here. 

The hean of the timer is a counter clock, driven by a derivalive of an internnl clock . 

• The internal clock frequency may be divided by n progrnrnmablc divider or prescnler. 

Duty Cycle Register; Oxl000 
Period Register; Ox8000 

PWM Enable J 

(a) 
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PWM 
Output 

16-Bit Counter =:Jr'o-xOOOO- -'-"-O-xa- F- F-F"I-ax- l-000------ax- 7-F-F-F 1"-0x0000--'-'-' -oxa- FFF---.lrax- '-ooo-----

Duty Cycle Comparator ________ .JnL _______________ --.Jn
L 
_____ _ 

Period comparator ____ _ _______ _____ ---..JnL. ____________ _ 

PWMOutput J 

(b) 

Figure 14-8 Block diagram of a pulse-width modulator. (a) Hardware. (b) Timing. 

The counter o\crllo\\, \\ hcn 11 reache. the ma,inmm count (O,FF (lr O~fFFF).mJ I' 

n tIlller 0' crllo\\ nag. 

The timer o\crtl(l\\ nag C;Hl be u,ed to generate timing imenJ." 

~ h)f(' prcCl'C timing imen abo ,,-'~1Il be gcncl"3tcJ \\ ith 3 tim r output \..",\'"'rare dn:Ult 

,"'tl'mllle'\ent' can be Illc;twrt'd \\ IIh;t )!,lIcd de 'k e'oltnter e'r;ln tnput capture "lfI.-Ull. 

E\tC11Iull'\ l'It" calt be '(lumed \\ Ilh ;\ IImer pub' ;Ie 'umulate'r. 



346 Chapter 14 I Counters and Timers 

MISO 
SPI 

SS_L 

MOSI 

SCK 

MASTER IN/SLAVE OUT 19 

SLAVE SELECT 1 

MASTER OUT/SLAVE IN 17 

SHIFT CLOCK 18 

CPU Reset 

DS3234 
Real-Time Clock V DO 

DOUT 

CS_L V
DD 

DIN 

SCLK 

INT_usaw 

RESET_L v
BA 

NC 

GND 

15 1 

~ 
4 

5 

~ 

Jo. 11lF 

CPU Interrupt Request 

J--- Backup 
Battery 

Figure 14-9 Real-time clock with SPI interface. 

• When PwM h:.rdware is added, PWM waveforms can be automatically generated 
without softw~e overhead. 

• To keep lrack of hours, minutes, and seconds ("real" time), you can add a real-time 
clock circuit. 

14.6 Problems 

Explore 

Stimulate 

14.1 Using your web-based search tool , make a list of manufacturers of real-time clock 
chips. 

14.2 Assume the bus clock in Figure 14- 1 is 8 MHz and that your choices for the program­
mable divider are to divide by 1,2.4,8, 16, or 32. rb, cJ 

a. For each of these divider values, find the period of the counter clock. 
b. For each of these divider values, find the period of the timer overnow, assuming an 

8-bi t and then a 16-bit counter. 

14.3 Describe how to use the timer/counter circuit in Figure 14-2 to generate a 10 kHz square 
wave. Assume a counter clock frequency of 8 MHz. tc] 

Challenge 
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14.4 Assuming a 2 MHz counter clock frequency, what is the interval between timer over­
nows in Figure 14-2b? [b] 

14.5 Assuming a 2 MHz counter clock frequency, what is the period of the external signal 
in Figure 14-5b? [b] 

14.6 Explain why the timer/counter compari.son circuit in Figure 14-3 can wait for a com­
parison up to 2" counter clock cycles away even though the counter overnows and 
resets to zero when it reaches the maximum count. [a, bj 

14.7 A timing circuit is needed that can generate a time delay longer than 2 '• counter clock 
cycles of the timer/counter comparison circuit shown in Figure 14-3. Use pseudocode 
to describe a strategy to do this. 

14.8 Write a pseudocode program that could generate a PWM waveform that uses the 
timer output compare circuit shown in Figure 14-3. [c] 

14.9 Write a pseudocode program to implement a real-rime clock with bioary coded deci­
mal output, assuming a timer output compare as shown in Figure 14-3. The clock is to 
display hh:mm in 24-hour format. [c] 

14.10 What might occur du.ring use of the gated clock counter shown io Figure 14-4 that 
would give you an erroneous value for the duration of a pulse? What strategy could 
you use to guard against this problem? lb. cj 

14.11 Assume you are to use the timer in Figure 14-2 to generate a 50 Hz square wa\'e. 
Assume that the bus clock is 8 MHz and the programmable divider factors are 1. 2. 4. 
8. 16, or 32. Write a p eudocode design that will allow you to output required square 
wave. [c] 

14.12 For Problem 14.11. what limits the highest frequency you can generate ,,;th ~our 
strategy? What limits the lowest? [a. b] 

Reflect on Learning 

14. 13 Make a list of as many application as you can think of in which one of the timer 
circuits described in this chapter would be usefuL 

14.14 Li t five things you learned about timers in this chapter. 



II 
Objectives 

Single-Chip Microcontroller 
Interfacing Techniques 

The single-chip microcontroller you use in an embedded sy tem mu,t be connected to the 
outside world to be useful. In earlier chapters we covered a variety of the 110 capabilities such 
as the analog-to-digital convener and serial and parallel lIO. This chapter will give examples 
showing how to connect external devices such as keypads, LCD displays, LEOs, and dc and 
stepper motors to your microcolllroller. 

15,1 Microcontroller Chip 110 

Modern microcontro ll ers package a variety of lIO devices, such as ana log-to-digi tal conveners, 
timers, and parallel and serial input and output interfaces into a single IC chip. Typical exam­
ples of modern microcontrollers are theAtmel ATliny256 (Figure 15- 1), the Texas Instruments 
MSP430 (Figure 15-2), and the Freescale Semiconductor Flex is microcontroller (Figure 15-3). 
They all contain lIO devices that must connect to switches, LEOs, and so on in the outside 
world. Typically, the microcontroller's internal need to connect to external devices i greater 
than the number of pins or port bits available. For example. in the case of the Freescale Flexis, 
there are 178 lIO func tions that need a pin , far too many for reasonable . ile IC packages (the 
largest Flexis package is 80 pins). The FreescaJe designers have chosen to mUltiplex 110 func­
tions onto the pon 110 pins (Table 15-1). Smaller microcontrollers such as the Atmel (24 pins) 
and the Texas Instruments (64 pins) devices face similar problems. 

Because parallel and serial 110 are built into the microcontroller itself, the input and output 
interfaces covered in Chapter 9 do not have to be designed. Connecting the microcomroller to 
external devices is much easier, as we will sec in this chapter. 

Microcontrolier Initialization 

348 

Chapter 7 showed that a C program's stan-up code usually initiali/cs the micf()(;ontroller's hard­
ware before it begins to execu te your program. Typically the stack pointer register is initiuli/ed 
to point to RAM, and a watchdog timer that will allow your progf(ll11tn ,cemer II it gCts 10M may 
be started. In C programs the stan-up code ahn may mitiali/c RAM data arcas with lero. 

Debug/Reset_L 

CPU Core 
and System 

Control 

Program 
Memory 
(Flash) 

Figure 15-1 Atmet ATliny261 microcontroller. 

JTAG 

CPU Core 
and System 

Control 

Program 
Memory 
(Flash) 

Data 
Memory 
(RAM) 

Figure 15-2 Texas Instruments MSP430 microcontroller 
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BKGD 

CPU Core 
and System 

Control 
(HCS080r 

Cold Fire V1) 

Program 
Memory 
(Flash) 

Data 
Memory 
(RAM) 

Figure 15-3 Freescale Flexis microcontroller. 

Table 15-1 I/O Functions Multiplexed on Port A by Freeescale 

Pin Pin Functions 

0 PortA Bil-O Keyboard Imerrupt I . Bir-O TImer I. Ch 0 

PortA Bil-l Keyboard Interrupt I. Bit-I Timer 2. Ch 0 

Port A Bit-2 Keyboard Interrupt I. Bil-2 IIC t.SDA 

PonA Bit-3 Keyboard Interrupt I. Bit-3 IIC I.SCL 

Port A 811-4 Background Debug Mode Select 

PonA Bit-5 Inlcrrupl Request Timer I. clock 

PonA Bit·6 'limer I . Ch 2 

PonA Bit-7 1imer2. Ch 2 

AlDCh 0 Analog Comparator 1+ 

AlDCh I Annlog Compnralor 1-

AlDCh 2 

AlDCh 3 

Analog Companltor I OUI 

Rcsct_L 

AlDCh K 

AID Ch <) 
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Before we can use the microcontroller's 1/0 pons, we must etthem up for use. Often the 110 
pOri is bidirect ional; that is, it is capable of operating as an input or OUtpUt port. Bidirectional 
ports are ini ti ally configured as input ports when the microcontroller is reset. In some micro­
controllers, you may choose to control the direction of individual bits in the port. In these 
bidirecti onal ports, a data direction control register must be initialized to set the direction of 
its associated data port. 

All the internal devices in the microcontroller-timers, analog-to-digital converters. serial 
I/O interfaces, and so on-require initialization before they can be used. 

15.2 Simple Input Devices 

Input Switches 

The 110 interfaces shown in Chapter 9 and a microcontroller' integrated pons can connect 
parallel devices to the system buses. Let us look at some simple deyices that use these ports. 

The switch is the mOSt basic of all binary input devices. Figure 15-4a shows a single-pole. 
single-throw (SPST) switch and a pull-up resi tor. The switch output is high or low depending 
on the switch position. Figure 15-4b shows a mUltiple pole. rotary witch. Pull-up resi tors are 
necessary for each of these witches to provide a high logic leyel when the switch i open. The 
input pariS in most microconu-ollers often have an internal pull-up resi tor on all inputs: in uch 
ca es the external resistors are not needed. but you may need to enable them on orne ports. 
Check with your microcontroller reference manual for detail of the port you are using. 

A problem with all switches is swirch bOI/Jlce. Wben a switch make 

The switch bounce problem must be 
solved if you are using mechanical 
switches. 

contact. its mechanical springine s will cause the conlact to boUD e. or 
make and break. for a few milli econds. as ho\\ n in Figure 15-k. In 
ome cases. you may ob erve witch bounce when the witch i opened. 

If a program i counting witch cia ures and the ofNare is fast. it 
may count several bounces and thus renu-n more count- than are real. 

Depending on the application. therefore. witch debouncing rna) be necessary. There are sev­
eral software and hardware method to debounce . witches. t 

Software Debouncing 

Here are two ·trmegie for debouncing a switch in software. The first ma~ be called ""air and 
see." Switch bouncing usually la;ts onl~ : to 10 ms. If the software detects a 10\\ logic Ie\e!. 
indicating the switch has closed. it can simply \\ ait for longer than the switch boun('e duration. 
say ~O to lOOms. Another approach i< an integrating debouncer. \\ hich deboun 'es both :witch 
closing and opening. We initiali7e a cuunter \\ ith a \ alue of 10 and. after the first lop.:- k \\ 
level is detected. poll the '" itch '" et) millisecond or so. If the '" itch output IS 10\\. \\ e dec­
rement the counter If the .\\ itch ourput is high. \\ e increment the c unter. Wben the,:>I1ot r 
n~ache, Lcro. \\e \..no\\ th'lttho ",itch output hclS been 10\\ for atlea.<t 10 Ill • . If. on the Nher 
hand. Ule COlltlter readlc' ~O. \\ e \..no\\ that the '" itch has been ,'~n t<>r at le3.>t III lfu. The 

1'4.11 ,I t!,,,xll'C'\ le\\ l't \\\ lh . .-h tx'unl~mF- .mJ h;.tN\\ .Ire .\OJ ,\,11'\\ .\re nl!.!tht....t:-. h.'r ~tx"ll.n.:ln~ . x~ las.. 
(;/l/t'" III ill/,>()WI{ /fig (~('I(\Il. http.! \\ \\ \\,~.II1"k.~'\\n\tde~\uth."ng('lt'. 
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SPST 
Switch 

(a) 

T: 
Pull-up resistors 

/ R typically 1-10kQ 

Logic high with 
switch open 

1 Logic low with 
switch closed 

Switch bounce when closing 

(c) 

(b) 

Switch bounce when opening 

Figure 15-4 Switches used for binary input: (a) single-pole, single-throw (SPST) switch; (b) 
multiple pole switch; (c) switch bounce. 

initial value of the counter is set longer than the expected bounce time. Example 15-1 shows 
the pseudocode for this algorithm, and a C program is given in Example 15-2. 

Example 15-1 Pseudocode Design for Integrating Switch Debouncer 

INITIALIZE Count = 10 
WHILE «Count > 0) and (Count < 20 )) 

DO 

Delay 1 millisecond 
Get Switch Input 
IF Switch Closed 

THEN Decrement Count 
ELSE Increment Count 

ENDIF Switch Closed 
ENDO 

ENDWHILE « Count> 0 ) and (Count < 20)) 
IF Count = 0 

THEN Switch is closed 
ELSE Switch is open 

ENDIF Count = 0 

Example 15-2 C Program Debouncer 

15.2 Simple Inpu1 Devices 

Write a C program that implements the debouncer algorithm shown in Example 15-1 . 

Solution 

~ Debounce routine using integrating debouncer . 
~ Calls delay_X_ms which generates an X millisecond delay. 

Checks the switch defined below 
, Calling : 
7 unsigned char debounce( unsigned inc length ) ; 

353 

where length is the time in milliseconds for swi:ch bo~ace 

t.o last . 
The return is the final value of the sw~tch (0 0= :). 

~ Define the switch port locat.ion 
~ Put your own definition here 

/ ~ Pointer to switch - , 
,define p_SwPort (volatile unsigned char ,) 0 ,, 02 58 

~define SwBit 0,,20 I ' Bit 5 ' I 
1-·· ·-······ ·······,·····-···--,·············,········ ...... . 
void delay_X_ms( unsigned int X ); / '" Varl.able de:ay ..... 

unsigned char debounce(unsigned int bounce_length) 
I""" '" ••. " .• •. •.. , .•. - ............... _." ......... - .... -

unsigned int count ; 
unsigned char s\oo'itch_val ; 

I ' initiali~e count ' 1 
count - bounce length/:; 
wrile {( count. ...... 0 ) && ( cocnt: '" bO\;nce_~tmgt.h ) ( 

J' Delay a millisecond ' 
d·lay X ms(l) ; 

/ ~ .LI: sWl:.ch -= 0, de,:::.ement ":('Iur~t e':se .a..n..:::. .. e~ent !t .. 

,t' (C'p_S","Por & S",,'Slt) w;. 
--~ount; 

else ++count; 
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if (count == 0) switch_val 0 ; 
else switch_ val = 1; 
return ( switch_val ); 

Hardware Debouncing 

Figure 15-5 shows two hardware debouncing schemes. In Figure 15-4a, a NAND latch 
debounces a single-po le, double-throw (SPOT) switch. NOR gates can be used also for the 

(a) 

(c) 

(d) 

(e) 

RTypically 
1-10kQ 

Logic high with 
switch up 

Logic high with 
switch down 

L 

Time constant 
RC typically 
5tol0ms 

(b) 

74HC14 Schmitl Trigger 
R 

Logic low with 
switch open 

Logic high with 
switch closed 

Figure 15-5 Hardware debouncing methods: (a) NAND latch debouncer; (b) Schmitt trigger; 
(c) switch bounce waveform; (d) Schmitt input voltage (Ve); (e) Schmitt output. 
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latch. A disadvantage of this debouncer if> the requirement for a single-pole. double-thro ... 
sw itch. a type of switch that i~ more expensive and bulky than the single-pole. ingle-thro\\' 
(S PST) shown in Figure 15-4a. Figure IS-Sb shows an integrating debouncer with a Schmitt 
tri gger gate. Before the switch ciose . the capacitor is charged and the output of the gate 
is low. When the switch closes. the capacitor discharges and the gate output SWitches high_ 
Because of the gate 's built -i n hysteresis. it will not switch low agai n until the input voltage 
exceeds a thre5hold V

T 
•. The RC time constant of the ci rcuit should be designed to prevent 

the gate 's input voltage from exceeding the threshold while the switch is bouncing. See 
Example 15-3. 

Arrays of Switches 

Example 15-3 Schmitt Trigger Debouncer 

For the Schmintrigger debouncer ,hown in Figure 15-5. assume Lhe following: 
R = 10 kO. V

T
• = 1.7 V (po5i tive-goi ng threshold for the chmin trigger when \ ",,=.\ 5 V). and 

switch bounce (Figure 15-4) 1""1> no more than 10 ms. 
Calculate a ,·alue for Lhe capacitor C so that Lhe Schmin trigger output will nOl switch during 

the switch bounce period. 

Solution 

The Schmin trigger input ,oltage is gi\·en b) 

1/ = I' [1-",,7] , no 

Sening ~ = 1.7 V and lening (= 10 ms. soh'ing for C give, ~ f1I'. 

Swilche~ can be organi7ed 3\ linear or matrh array:..: a linear 3.ml~ i ..... ho\\ n in Figu.re 
15-6. A variet) of '\\ itches can be found. including dual on-line package lDlPl\\ltch 
arrays. The , \\ itch bounce problem mJ) need \0 be , olved. and the arr.t) of ,\\ itches mu,t 
be ,canned to lind out \\ hirh onc, are closed or open. The output of the ,,\ itch arr.t~ could 
be interfaced directl) to an 8-bi t inpLlt port (a t point A). To '3'e , ome L'O hne,. a -4HC 15 l 
e ight-input multiple\er can be u,ed. oft\\are i, required to ,can the arra~ ,h,'\\n in 
Figure 15-6. , the ,oft\\ Jrc oLltpUh a 3-bit ,.quen e from 000 to Ill. the multlpkl.er 
,elects each of the '" IIch inputs. The ,oft\\are SCJnner then re;ld, one btl at an onput ('<'rt. 

ee E\ample 15-~ . 
Figure 15-6 ,ho\\, pull-up ,.,i,to" cllllnectro to the P. T ,\\ IIc-he, . If ~ our mkn -,'nmlller 

ha~ intcmnl pull-up ... enahled. ~ou 111:.1) not ha\e to u"e th~~1.:' re~i'h)'" \\hen the ,\\ it"hr:-,.m!' 
connecteu . 1 f) llU u ... c an 8-11,)-1 11111ltlple\~r. )OU ,hl1uld U't.~ the, ~ reM'h.)I'. 
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Pull-up resistors 
typically 1-10kQ 

Figure 15·6 Unear array of switches. 

Example 15·4 

A 

10 

11 

12 

13 

14 

15 

16 

17 

E 

74HC151 
8 to 1 

Multiplexer 

Z 

S2 S1 SO 

Select inputs 
from output port 

For the linear array of swilches in Figure 15·6. give a truth table showing which switch is read 
for each can code output by the processor. 

Solution 

Scan Code Switch Scan Code Switch 

()()() 50 100 S4 
001 SI lOt 55 
010 S2 ttO 56 
011 S3 It I S7 
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Example 15·5 C Code for Scanning Switches 

~ Example code segment showing how to output a 3- bit scan 

+ code to select the multiplexer and to input the switen 

~ position . The code scans all eight switches and returns 
* the switch positions as an unsigned char value . 

1+ Define the port locations for the microcontroller in use ~/ 
/' The following ar e for the MC9Sl2C32 ./ 
#define p_DDRT (volatile unsigned char .) Ox0242 
#define p_PTT (volatile unsigned char . ) Ox0240 
#define p_PTA (volaeile unsigned char . ) OxOOOO 

uns'gned char gee switches (vo,d) ( 
unsigned char switch_data ; 
unsigned char mux_sel , port_data i 
unsigned char ddrt ; 

• Initialize your microcontroller ' s OUtPUt bits for the 
• port being used to scan the multiplexer . 

The code below is used on a Freescale MC9S~2C32 micro 
* where Port T bits - 2 , 1 , and a are the scan code bits . 
* The multiplexer output is connected to Po~t A bit- O 
. ... •..•••• . •.• . •. •. ...•.•. •... -.. • ••• •..••............... , 

/ ~ Set Port T, 2 , 1 and 0 as outputs ~ / 

/. Make 2- 0 outpue bits • 

'p_DDRT = OxO?; 

) 

I···· · · · ···· ····· · ····· · ·········· · ····· · ············· ..... 
switch_data = 0; I~ !nitialize the retcrn value . 

/. Now scan the multiplexer and read the oU~Fu~ of ~he ~~x ~ 

for (mux_sel = 0; mux_sel < S ; +-~ux_sel) l 

I" Output the mux scan code (Port 7 blts 2-0) 
I ~ Ge the current value on Port 7 and rese: C~ts z­
port data - 'p PTT 6 Ox:S ; 
port data - port_data + ~ux_sel ; • Add the S~d~ cvj~ 
·p_PTT - port_data ; ~ 0~tFut to ~~e p~r~ ~ 

, .. No\-.· t"ea the bit selec eo on ?or~ .~ r-lt - an\l shl.ft 
.. it lnto s\\itch_dat.a. 
. Shirt the dat~ firs~ ~ 

sWitch_dd a - 2·sw~tch_dat 

" If he bi is ne. 'R in "" 1 • 
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if(('p_PTA&OxOl) 1) 

sNitch_data 1= OxOl; 

return ( switch_data ); 

Explanation of Example 15-5 

16-Key Keypad 

A three-bil scan code is output on Port T, bits 2-0. For an MC9S 12C32 microcontroller, the 
port data direction register must be initiali led so that these bits can be used as outputs. Because 
an application might be using the other bits in Port T for some other use. we wou ld li ke the 
initialization code to modify only these bits. The initialization code shows us that ORing the 
current value of the port ('p_DDRT) with Ox07 accompli shes this. Similarly, when outpu tting 
Lhe 3-bit scan code on Port T, we read the port data first. reset bits 2-0, and then add in the cur­
rent scan code (port_data = port_data + mux_sel ). Each time we read the mu ltiplexer 
we shift Lhe last reading left (SWitch_data 2*switch_data) and then OR it wi th OxO I 
if the output of the multiplexer is I . 

A keypad is an array of switches arranged in a two-dimensional maLri x as shown in Figure 
15-7. A switch and a diode connect each intersection of the vertical and horizontal lines as 
. hown by Lhe blow-up view, and closing the swi tch connects the hori70ntalline to the vertical. 
You can connect a 4 x 4 keypad directly to four output and four input bits. For Port AD. bits 
3-0 are outputs and bits 7-4 are inputs. Software can scan the keyboard by outputting the 4-bit 
"ring" counter code as shown in Table 15-2 and Lhen. for each of these codes. reading the val­
ues on input bits PAD7-4. The combination of the 4-bi t output and input scan code identifies 
which switch is closed. A lookup table can then convert the 8-bit code to a more convenient 
code. such as the ASCI I character code, for the hexadecima l keypad. See Example 15-6. 

A problem that occurs when a keypad user hits more Lh an one key at once, or rapidly rolls a 
finger from one key to anoLher. is called II-key rol/over. Keyboard interfaces com monly provide 

Table 15-2 Keyboard Scanning Codes 

Values Input on P7 P6 P5 P4 

Output Scan 1111 0111 1011 1101 1110 
Values on 

P3 P2 PI PO Key Pressed 

Row3 I I I o (Ox E) None A 

Ro\\ 2 I 101 (Ox D) None B 

Row J 101 I (Ox 6) None C 
RowO o I I I (Ox7) Nnnc D 

Cnl3 Cnl2 Coil ColO 

11<7 0\11 Ihl) O,E 

, , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

///-­

,/No connection , 

, 
I' 
I' 
I' 
I " I , 

I " \ .......... 
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/ Switch connects vertical 
,/ and horizontal traces 

' I ------:.' 
,/,,/ 

/ 
Pull-up resistors 
may be internal 
in Port AD Row 3 ++-:--1I+-1""":'H-II-;,-++-ht+-o-J'---~-i PAD-O 

Grayhill 
4x4 Keypad 

2 
H--41-+::+l-HrH-+::-+--O---+-i PAD-1 

++~++;::-\-t+.:;-t1f-t-;:;-t--<>'''---'''' PAD-2 

4 
PAD-3 Port AD 

6------i~ PAD-4 
5 6 7 8 
Col 3 Col 2 Col 1 ColO L--______ ~ PAD-5 

L--------~PAD~ 

L-------------l~ PAD-7 

Figure 15-7 A 16-key keypad. 

for two-kc) rollover. The kc) board hanl\l(lre and software <tore the rapid!) depre:;sed e), 
in a lir't-in. first-oUl(FIFO) butTer for later readout. In :to alternati,e ,Ofateg). n-~,,,·I<) ... ,"'r. 
only the first or la,t of Ihe ,equence of keys depre,sl."<l \\ithin some ,han penod" m.-.:rued. 
Keyboard encoder chip, incorporat.ing all the ,canning. deboundng. diode,. n-ke) ",Ik'ler. 
and interrupt genermion are u"nlabk. . 1) pical chip" the -~01':~ . L'<ing the~ chip, C3I' 

eliminate the need for ,cemning ,oft\\ a", and hard\\ are ,lI1d 1''''' Ide a e) b,.,ard intcrf that 
is 111\1 h e~l\ier tl1l1npkmenL 

Example 15-7 "ho\\, a kc) pa,l IIll'lIt ,,'uttne \\ ntten ill C thai calh I~ kc) 1',1.1 ,,-anncr ,f 
EXlIIllplc 15-6. Because Ihecode \1\ E"'ll1pl' 15-(l.1l~' 11<'1 Jeb,.'un:-e th' ," It,·h.l~r rfl. <!rnm 
cntc~ a debouncing n)utinC,.' 111 "'''''to th" \...c:~ \\ ~\' .1ll~l pf\.·~'l'\i .UlJ i, 'lill tx'lun 'mg. 
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Example 15-6 Hex Keypad Scanner 

~ Hex keypad scanning module 
unsigned char hex_key_scan( void) ; 

, This module scans a 16-key keypad 
attached to Port AD . 

* Port AD bits : 
PAD- 3 - PAD-O : Output : Scan row scan codes 
PAD- 7 - PAD- 4 : Input : Column code 

I Co13 Co12 Coll ColO 
Row I Col Code 

• Row Code 11111 0111 1011 1101 1110 

----------1------------------------- -------
1110 INone 
1101 I None 
1011 I None 

3 A Key 
B Pressed 
C 

o 0111 INone 0 D 

* ----------1--------------------------------
**** w~ ~***~**~.***~**~*~****~***~***********.~******** ~~ .**. / 

1* Define Grayhil1 Series 96 4x4 keypad *1 
#define NUM RONS 4 I' Number of rows' I 
#define NUM_KEYS 16 1* Number of keys 'I 
1* Define where they are connected to the microcontroller 

• PTAD Bit Grayhill Keypad Pin 
o 1 

1 2 
2 3 
3 
5 

6 

****T ~~ ***. ~ **** ·** **~**~*.j~~~*~~********.*~~~******* ***** ~ / 

/********************* . *~*~~~T***+*~******.~.** ••• * •. * ***.*** 

* This module returns the first key pressed 
* when scanning . It does not check for 
* multiple col keys pressed at once . 
*******************.****.*.*********w**********~~~ " *' **~ . *'I 

/********'*********.**.***********+*~*******.w •• *.t ••• ~'k*'* ~ / 

1* Define constants ' 1 
#define ROW3 OxOe 
#define ROVJ2 OxOd 
idefine RO~Jl OxOb 
#define ROI~O Ox07 
#define OUTPUTS OxOf 
#define INPUTS OxfO 
#define COL3 Ox70 

I' Row 3 scan code 'I 
I- Row 2 scan code 'I 

Row 'I I ' 
I ' 
I· 
I' 
I' 

Row 0 'I 
Row outputs 'I 
Col inputs 'I 
Col 3 scan code ·1 

15.2 Simple Input Devices 

'define COL2 OxbO I ' Col '1 
sdefine CaLl OxdO I' Col ' I 
iidefine COLO OxeO I· Col ' I 
'define KEY_MASK OxfO 
,define NO_KEYS OxfO I · Code for no r.eys pressed '1 
=de fine END_HARK Oxff I' End of Good_Codes array 'I 
I· ·· ·· .. · .. ·· · ..•.. , . .•.... · .. •· .. ·•· .. " .... ··· .... •• .. ·• · .. 1 
/~ Define arrays to store the scan codes, ~ey codes and a 

.. lookup table for the return value ~/ 

unsigned char Row_Codes[] = ! 

I ; 

RO~I3, I' Row 3 scan code • I 
ROvJ2, I' Row scan code • I 
RON1 , I' Row 1 ' 1 
RO~lO I' Row 0 • I 

I· .. •·• .................................................... .. 

~ This lookup table contains the a-bit scan codes :o~ al~ 

~ keys on the keypad 

uns~gned char Good_Codes [ ] = { 

COL3 I RON3 , I' "1" 0,,7e *1 
COL2 ROI·i3 , I - "2" Oxbe · 1 
COLI ROVI3 , I ' "3" Oxde ' 1 
COLO ROI~3 , I' "A" Oxee -I 
COL3 RON2, I' "4" Ox7d -I 

COL2 ROW2 , "5" Oxbd '1 
CaLl ROI·;2 , I · "6" O"dd . / 
COLO ROI·J2 , I- "B" Oxed - / 
COL3 ROI·;l , /. "7" 0,,7b '1 
COL2 ROI·n , I- "8" O"bb . I 

COLI ROi-:l, / - "9" Oxcib -/ 
COLO ROIH , / . "C" "'Ixeb ' 1 
COL3 ROI·;O, /, "I x77 ' 1 
COL2 ROh~, I - "C" O"b-
CaLl ROI,O , /. "=" 0,,-;-
COLO ROI,O , I' "D" Oxe"' 
END MARK End ::-Jarke.r -

}; 
I" · ....•. - ••. - ••.••• - •.• - •. _ .• - _ ••.• - -. - -" . ...... . ... ,. _ ••• 

.. Tfiis 10\,..,\KUP ~a 1 returns the .;S(,ll ..:-o-dto fc:: the ,e~. 

~~ese a~~ 5'11. ~ 

I; 

t 
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the keys. In this case we have chosen to relum the ASCI I character code. The definition section 
also includes microcolllroller-specilic definiti ons for the pons used by the scanner. 

The program first initializes the microcontroller I/O pons and then scans through the rows 
and reads the column codes returned. If no keys are pressed. col code ~ NO KEYS so the 
return value is I.ero (key_hi t ~ 0 ;). If a key has been pressed:-the Good_C';des [I array 
is scanned. 10 look for a match for the scan_code that was returned when a key press was 
detected. The index inlO this array is used 10 return the ASC II code from the Key Codes [I 
array. I f no match was found. indicating keys in two columns were pressed. the rcturn value 
is zero. 

Letu. say we press the 9 key. Thi s key is in row I and column I . When the row I code (OxOb) 
is output . readi ng Pon AD will return scan_code ~ Oxdb where the most sign ificant nibble 
(Oxd) is the column code and the least significant nibble (Oxb) the row code (when a pon on this 
microcontroller is read. the output bits are read too). The scan_code byte is used with the two 
lookup tables to find the key code. First. the Good_Codes [1 array is scanned to find a match 
for scan code ~ Oxdb. The malch is fou nd for the index value of 10. This index is then u ed 
10 return Ox39 (the ASCII code for 9) from the KeL Codes table. 

Example 15-7 C Routine to Get a Keycode With Switch Debouncing 

Sample program for debouncing the keys 
• on a 16 key Grayhill keypad 

Calling : 
unsigned char keypad_debou nce (unsigned int bounce_length ) ; 

t- where 
bounce length 15 the bounce duratlon in milliseconds 
It returns the key valid at the end of the debounce time 

uns1gned char hex key scan( v01d) ; f' 4x4 keypad scanner ' f 
• Variable millisecond delay ' f 

f' Debouncer for the keypad 'f 
unSigned char keypad_debounce (unsigned int bounce_length)! 

int count ; 
unsigned char get_key , new_key ; 

f ' Get a key from the keypad 'f 
get_key ~ hex_key_scan (); 
f - Debounce the keypad in case we caugh it bouncing ' f 
count ~ bounce_lengthf2 ; f ' initializ~ count ' f 
while ( (count> 0) && (count < bounce .ength) ) ( 

delay_X_ms (l ); f ' Delay a m1.l'5E ond 'f 
new_key ~ hex_key ,can (); f' Read th~ keyb ,rd again . / 
if (new key =- 9'3>t key) f.+CQunt ; 

else --count ; 

15.3 Simple Display Devices 

;* I F cou nt ~= bounce_length then get_key has been read 
long e no ugh to quit bouncing so return i ? / 

if (cou nt == bounce_length) return(get_Key); 
/ ? Othe rw ise , the new_ key was read s o retu rn i~ ~ / 

else retu rn(new_key) ; 
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Logic 
1 to 
Light 

The most si l11ple display device is a ingle light-emitting diode (LED). An LED li!!hlS when 
current of ) 0 to 20 mA is passed in the forward direction. Figure 15-8 hows how -10 drive a 
single LED. In de igning an LED driver, you must detennine the output current capability 
(sourcing or sinking) of the device turning on the LED. In Figure 15-8a. a low-power Scboru.:y 
74LS04 can sink up to ) 6 mA but can source only 400 IJA . Therefore. b) using the inverter. 
logic I at the inverter' input will lUm the LED on. The current-limiting resistor. R. is desi!med 
to li mit the current through the diode. In Figure 15-8b a latch i used as an ollfpllldt!l';ce 10 latch 

74LS04 

(a) 

Current limiting 
R= 220 n 
for V

DD 
= 5 V 

;V' and 'd' d = 15 rnA to e 

LED 

Logic 
o to 
Light 

74AC04 

(e) 

Figure 15·8 Single LED dn,er CircUits. 
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Latch 

(b) 



366 Chapter 151 Single-Chip Microcontroller Interfacing Techniques 

BCD D 
digit C 
output 
from 
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Latch Enable 
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BCD-to-
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Segment 
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Driver 

Current-limiting 
resistor network 

r-----l a 
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I I b 
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a 

b 

c 

Anodes d 

e 

g 

(b) 

Common 
Cathodes 

Figure 15-9 (a) Common anode seven-segment display. (b) LED showing anodes and cathodes. 
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Demultiplexe031>-_________________ --' 

E OE P 

Figure 15-10 Multiplexed LED display. 
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I s and Os to keep the LED on or off. In Figure IS-8c a 74AC04 with ± 24 rnA drive capability 
can drive the LED connected to the ground. To use an LED in this configuration. you mu t 
make ,ure that the device can source sufficient current to tum on the LED. 

A seven-segment LED display shows numeric character. LED displays come in two vari­
eties . common anode and common cathode. Figure 15-9a is a common cathode di play u ing 
a MC 14513 BCD-to-seven-segment decoder/driver. A BCD number i output by the CPU 
to the MC 14513. and it, active-high output tum on the appropriate segmenls to display the 
number. 

Sometimes more than one display is required. Figure 15-10 shows how to multiplex a 
four-digit display by u!>ing only one decoder/driver and common cathode LEOs. Four bill> 

from an output port or a decoder illuminates each of the four digits in tum. The information 
on each display is output on the seven egment lines from a port or an active-high. seven­
segment decoder ,uch as an MC 14513. This is called a refreshed di pia}. and if each di pia) 

is turned on at a greater rate than about 20 Hz. our eye \\ ill not detect any flickering. See 
Example 15-8. 

I f your microcontroller has ufficient va lines. you can eliminate the ~ICI4 '13 in Figure 
15-9a and the 1C 14513 and 74HC 139 chips in Figure 15-10. 

Example 15-8 C Multiplexed LED Display Driver 

/ .... , . . •.. ....•... . .......•.••••.•.....••..•..............•.• 
This sample program drives a f ou r-digit multiplexed 
BCD LED display . 
Port P, bits 0 , I , 2 , and 3 are ~he BCD d-9-: o~:pc : 

to the NC14513 seven- seg;nen t decode r d!': i ·~·e:r. 

Port P, bl ts .; ana 5 is a t· .... o -b i :. code to :-.u :' t:.!,-ex 
the dlsplay . 

... The lnput to '" he dlsp lay !:'Olit:ne i s :. he ':;- ,:hg:: 3':~ 

number - housands , hundreds , :.e~s , c~es. 

This functi~n ~epds :'0 be called repet:.tlVe_y :.c 
re:resh th~ isplay . 

typed,,: unsianed char BCD; 
/ . Oefipe ,he decc'er inpt;.:s 
.define DISP leOe O x ~O i.'lspla~· ~he • s .,JHJ:':' 

#de fin" DISP lev Ox "!' Displav ,h" 
Mefl.n DISP 10 ex: !)lsp~ay t he 
~d0flne DISP Ox3 l.'is ~! .iY he 

. 

I ··· ___ " .. · .. · .. " .... · .. "·· .... ·,, .. · .. ·~····· .. ··~·······'l···· ... ···· ... " ......... 
f ic 1 p :ts ' 5ed 

" .. .. . . ................... . .. ........ ................................................................... . 
hi ne 
Ii f ne 
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void delay_X_ms( unsigned int XI; /* X millisecond delay */ 

void led_mux( BCD thousands , BCD hundreds,BCD tens , BCD ones) { 
/ -~.~~, •• **.~.?+ •• ~~ •• ~*.***?**+**.****************** *******/ 

/**~,.~ ••• *' •. *.*+.+*.*************************~****** **** * 

~ Initialize your microcontroller ' s 1/0 port connected 
• to the multiplexed LEDs . 

/* Check to see if Port P, bits a - 5 are output */ 
if ((DDRP & Ox3FI != Ox3FI I 
/* THEN set the data direction register bits for output */ 

DDRP = DDRP I Ox3F ; /* Set bits 5 - 0 */ 

/+ Output the thousands digit */ 

PTP = thousands + DISP_IOOO ; 
delay_X_msl 50 I ; 

/ * Output the hundreds digit */ 

PTP = hundreds + DISP_IOO; 
delay_X_ms( 50 I; 

/* etc for the rest of the digits */ 
PTP = tens + DISP_IO ; 
delay_X_ms ( 50); 
PTP = ones + DISP_l; 
delay_X_msl 50 I ; 

15.4 Parallel 110 Expansion 

Although microcontrollers have many parallel 110 lines, you may have an application that 
requires more 110 bits or some spec ialized 110 devices. One solution is to build an expanded 
mode system with external address, data and control buses. and external 110 devices; or you 
might chose a different microcontroller with more 110. Figure 15-11 shows another solution 
useful for simpler systems without a requirement for hi gh-speed I/O. 

One bidirectiona l pon, such as Pon AD, can be used to em ul ate an ex ternal bidirec­
tional data bus. Device select ion, normally done by decoding an address, can be done in 
this case with bits from a second , outpu t port. such as Port T. We saw in Chapter 9 that the 
fundamental component of an output pon is a latch; for an input POrl , it is a three-state gate. 
Figure 15-1 1 shows two 8-bit ou tpu t latches and two 8-bit input three-state gates. You can 
expand the number of these input and output interfaces depending on the number of select 
signals available in Pon T. If more devices are needed . a decoder ca n be added to the 
output on Pon T. Examples 15-9 and 15- 10 shows modules to use for inpuuing and output­
ting data. 

'PORT AD' 

PADO 

PAD? 

PTO 1-----' 

PT1 1------' 

PT2 1-----, 

PT3 1-----, 

8-bit 
output 
port 

r--~+- D 

Clock 

8-bit 
output 
port 

8-bit 

8-bit 
input 
port 

Figure 15-11 Parallel 1/0 expansion. 

Expanded 110 Routines in C 

Example 15-9 Expanded I/O Input in C 

15.4 Parallel 110 Expansion 369 

#0 

#2 

#3 

Write a function to input data from dth~r of the t\\O IIlpUl imerl·Jce. ,ho\\ n in Figu~ t5-11. 
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Solution 

Get data from the expanded 1/0 port 
char get_port ( uns~gned char Port_Num ); 
This function gets the a-bit value from the expanded 
1/0 port. The valid port numbers (Port_Num) are 2 and 

• ~ .... ~., ir/r. ,.~ ...... ;, ............ ', ....... ....... '*'" ......... - .. ",,,. ... -/r .. ** .... ....... -t ,,~+,,* "" ... 1<-1..***'11/ 

/ .. ..... I< ;. ................ A <I" 11 ..... ;, ...... . ...... ., .. -0, 1:" .. " * "" ... f * * 1t Ie "'" " .. ~ .... ": '* ..... * ': * .. Ie * * ... * 
• Define the microcontroller specific I/O ports used on a 
• Freescale MC9S12C32 

I' PTAD data 'I 
!define PTAD (. (volatile unsigned char . ) Oxono) 
1- Data dlr reg 01 

~define DDRAD (- (volatile unsigned char * ) Ox0272) 
1- ATD Input 'I 
~define ATDDIEN (-(volatile unsigned char *) Ox008D) 
1 - Port T data -I 
Idefine PTT (' (volatile unsigned char 0) Ox0240) 
I- Port T dir reg *1 
Idefine DDRT ('(volatile unsigned char *) Ox0242) 

1- Define bits used for the enables and clocks *1 
Ide fine PORTO I 1* Clock for device 0 latch *1 
'define PORTI I- Clock for device I latch *1 
.define PORT2 1* Three- state enable for device 

!define PORT3 I- Three-state enable for device 

char get_port ( unsigned char Port_Num) { 
volatile char port_data; 

2 
3 

*1 
'I 

, .......... " •• .. -**'*y+++** ... *** ... **.**.** ... ****-**--*******.*******/ 

/.*~* ... * .. *~+.r_""""_""+""*~-_~Kk*_**WW**'*~****~~**** ***** 
• Initialize your microcontroller ' s 1/0 

I- Make Port AD an input port 'I 
DDRAD ~ 0 ; 
ATDDIEN ~ OxFF; 

I*~I_.****'.****~**~*.****+~**W******.+***.~*~******** *****1 

1* Make Port T an output port . Set the Port T bits high 
,..- first before setting the direction '-1 

PTT ~ PORTO { PORTI I PORT2 I PORT3 ; 
I' Set the direction bits in DDRT *1 

DDRT ~ PORTO { PORT I I PORT2 { PORT3 ; 

I- Get the data from the required port *f 
I- Make sure a valid port number is given -I 

switch ( Port_Num ) { 

15.4 Parallel 110 Expansion 

case 2 : { 
I' Enable the three-state gate and get the data *1 
PTT &~ -PORT2 ; 1* Active low enable *1 
port_data ~ PTAD ; 1* Read the data *1 

case 3 : { 
PTT &~ -PORT3 ; 
port_data ~ PTAD ; 

I~ Active low enable ~I 

1* Read the data *1 

1* Disable the three - state gates *1 

PTT I~ (PORT2 I PORT3) ; 
return( port_data ); 

Examp{e 15-10 Expanded I/O Output in C 
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Wrile a funclion to OU IPUI dala 10 either of the IwO outpul inlerfaces shown in Figure 15-1 L 

Solution 

Put data 0 the expanded 1/0 port 
* void put_port ( char data, unsigned char Port Num); 

, This function puts an 8-bit value to the exp;nded 1/0 

+ the valid port numbers (Port_Num) are 0 and I 
port. 

***.**+~***-*.~*.*~*W*** W**~******~*··**********W*~*~. ~.* . ~.I 

I*************w*w****** *** ** **.***********~*********** ******* 

• Define the microcontroller specific 1/0 ports used on a 
, rreescale MC9S12C32 
·**-*****_** · **~**~ *******_·*·*****.+***W**********.~~ .*~*** I 

1* PTAD data *1 
#define PTAD (*(volatile unsigned char *) Ox0270) 
I' Data dir reg * f 
Wdefine DDRAD ('(volatile unsigned char *) Ox0212) 
1* ATD Input *1 
#define ATDDIEN (*(volatile unsigned char *) Ox008D) 
I' Port T data 01 
#define PTT {'(volatile unsigned char *) Ox0240) 
1* Port T dir reg 'I 
#define DDRT {'(volatile unsigned char *) Ox0242) 
I*~*~~~~****;~**~~*~~;**** ·**~~*··~~;*·*;*~*;***;***~* ***** •• 

I' Define bits used for the enables and clocks ' / 
#define PORTO I / ' Clock for device 0 latch ' / 
#define PORTI 2 /' Clock for de\-ice 1 latch' 
#define PORT2 /' Three-state enable for device 2 
#define PORT) f' Three-state enable for devi.::e 3 • 
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void put_port ( char data , unsigned char Port_Num ) { 
/.'~ ~ • • 9 . r ' ~ _ •••• * . kr ~~ *.~+_~ • • * 9 ••• *~~ •• **.~~*.*.***~ *~~.* _ */ 

/ . 7 ~' •• - •• ".' •• * • • * •• ~~** · * - * ·- •• *. ~ *~*+ ' ** •••• ' • • ' * ••• * .* 
• Initialize your microcontroller ' s I/O 

,e Make sure Port AD is an output port */ 

DDRAD = OxFF ; 
/ ' Make Port T an output port . Set the Port T bits high 

• first before setting the direction */ 

PTT = PORTO I PORTI I PORT2 I PORT3 ; 
/* Set the direction bits i n DDRT *1 

DDRT = PORTO I PORTI I PORT2 I PORT3 ; 

/ . Make sure a valid port number is given */ 
switch ( Port_Num ) ( 

case 0 : ( 
j ' output the data to the port 'j 
PTAD = data ; 
/" Strobe the latch signal active low and then high - / 
PTT &= - PORTO ; 
PTT &= -PORTO ; /+ Give the latch time to settle '/ 
PTT 1= PORTO ; 

case I : I 
PTAD = data ; 
/, Strobe the latch signal active low and then high */ 

PTT &= - PORT1; 
PTT &= -PORTI ; 
PTT I = PORT 1; 

/' Do a little time '/ 

j - Make PTAD an input port again */ 

DDRAD = 0 ; 

15.5 Parallel 110 Electronics 

We need some addilional design to interface our somewhat fragile e lectronics 10 the real. 
someti mes cruel, world. We must take care to protect our e lectronics from ovcrvolt ages and 
stati c discharges and to provide signal levels compatible wi th the logic c ircuits we are usi ng. 
Although good prin ted circu il board design, shie lding. and power supp ly design are outside 
the scope of thi s text, we present here some simple interface c ircuits for digi tal input and 

output. 

Input Electronics 

15.5 Parallel I/O Electronics 373 

Figure 15-12 show a simple input interface. The two I N400 I (or similar) diodes limit the 
voltage excursion on the digital input signal to a maximum of a diode drop higherthan Voo and 
to a minimum of one diode drop below ground. If the input signal contains high frequencies 
wi th fast rise and fall times, resistor R, can provide an impedance match to the driving circuit. 
It may be e liminated for low-frequency signals. The I kO series resistor provides some current 
limiting and further proteclion for the microcontroller's input pin. 

Figure 15- 13 shows a lransient voltage suppression (TVS) diode, al 0 called a rransorb. 
This device. which is available in unipolar and bipolar styles. is designed lO clamp high-voltage 
transients. It operates much like a zener diode but reacts very quickly to high-speed voltage 
spikes. The device does have some internal capacilance, which may degrade high-frequency 
signals. 

Transient voltage prolection may not be needed where vollage excursions are not extreme. 
For such situations, a rail-to-rail amplifier voltage follower, such as the OPA4344 shown in 
Figure 15-1 4. can be used. The voltage follower ensures thal even though the inpul voltage may 
exceed Voo' the output to the microcontroller will not be greater than this limit. 

VDD 
-~ 

1N4001 

Digital 
:,jj ~ 1kO 

To microeontroller 
input - VYV -<> input port 
signal 

R1 : :;j ~ .. 1N4001 

Figure 15-12 Digital input. 

100 100 

Input~ 

Transorb ~ 

Mieroeontroller 

Unipolar '*' 
(a) (b) 

BiPOlar * 

(e) 

Figure 15-13 (a) Transient voltage suppression diode; (b) Unipolar. (c) Bipolar. 

I 
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10 kQ 

Input 

Figure 15-14 Voltage follower. 

Current­
limiting 
resistor 

Optocoupler 

Figure 15-15 Optocoupler digital input. 

1 kQ 

Microcontroller 

Pull-up resistor 
Typically 1- 10kQ 

To microcontroller 
input port 

Figure 15- 15 show a circuit to use when the input signal is from a high-voltage source. 
The optocoupler is a light-emirting diode with a phototransistor. The current- limiting resistor is 
designed to provide the correct current for the LED. NOlice that there is no physical connection 
between the signal vOltage source and the microcontroller. Thi s is a big advantage when you 
are interfacing to high-voltage, high-power, and noisy ci rcuits. You can use the optocoupler as 
an output interface as well by simply turning it around and connecting the LED to the micro­
controller output pon . 

Output Electronics 

Figures 15-16 and 15- 17 show how to use a bipolar junction transistor (2N2222) and a field 
effecttransi tor (2N7000) to output digital values. In each of these cases, the output is an open 

collector or open drain. If you wish to have a logic leve l at this output. you w ill have to add a 
pull-up resi tor. 

Microcont rollers often have to drive relays. Figurc 15- I 8 shows a rc lay driver using the 

2N2222 transistor. Relays often have mUltiple con tacts, some of thcm normally open (NO) 
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and some normally closed (NC), where normally refers to the relay not being energized. The 
J N400 I clamp diode across the relay coil, an imponant addition to this circui t. limits the volt­
age spike produced by the coil to one diode drop greater than V when the relay is de-energized. 
A voltage spike greater than 100 V can be generated in the course of switching off a 12 V relay. 
M ake sure you include the clamp diode in all your circuits that drive an inductive load! 

Typically 1-3.3kQ 

From 
microcontroller 

output port 

Figure 15-16 Transistor output buffer. 

Typically 10-100kQ 

From G 
microcontroller 

output port 

Figure 15-17 FET output buffer. 

microcontroller 
output port 

1N4001 
clamp 
diode 

Figure 15-18 Transistor relay dnver. 

v 

To output 
device 

To output 
device 

2N7000 

NO NC NO NC 

--------~----~ 
Relay 
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15.6 Temperature Measurements 

There are a variety of device for measuring temperature. including Lhermistors. thermocouples, 
and solid-state temperature sensors. Figure 15-19 shows an LM 19 solid-state sensor. When V

DD 
of 2.4 to 5.5 V is applied. the outpu t vohage range between 2.4 and 0.3 V for temperatures 
ranging from -55 to + 130°C. By following the sensor wiLh an amplifier whose gain , (R

I 
+ R.,)I 

R
I
• is 2. the analog- to-digital converter will see a full- scale vohage of 4.8 V which can conve­

niently be represented by 8 bits. 
Figure 15-20 shows an LM92 temperature sensor with an I'e microcontroller interface. 

The ch ip contain a 12-bit pillS sign analog-to-digiLal converter. and the microcolllroller can 

V+ Vout 

LM19 

Gnd 

Rl = 100kf.! 

(a) 

To 
AID ;;;; 

V+ Vout Ground 

(b) 

Figure 15-19 LM19 temperature sensor. (a) Sensor with amplifier. (b) T092 case. 

0.11lF 

100kf.! 
;;; 

Interrupt Request ~-~--l T_CRIT_A 
tNT 

AO 
LM92 SDA 

Al 
SCL 

Figure 15-20 LM92 temperature sensor with I' C interface. 

100kf.! 

Interrupt Request 

Microcontroller 12C 
Port 
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read the temperature at any time by interrogating the chip on the Fe bus. The two address bits. 
A I- AO. select up to four devices. With both grounded. the device will respond to address 00. 
The LM92 can also be set up to act as a comparator and can generate an interrupt when the 
temperature exceeds a programmable set value. The amount of hysteresis that the temperarure 
can change before the alarm condition resets is programmable as well. 

15.7 Motor Control 

Direct-Current Motors 

Your embedded applica ti on may need to control the speed and direction of a dc motor. 
Figure 15-21 shows n common dc motor drive circuit called an H-bridge. Four switches are 
used , and although they are shown here as switches. in most applications they are transi tors. 

As shown. with sw itches A and D closed and B and e open, the current direction flows through 
the dc motor from left to right. causing the motor to rotate clockwise. Upon opening A and D 
and closing B and e. the current direction and the motor rotation reverse. Because the motor 
winding is inductive. and because an inductor generates a voltage to try to keep the current 
nowing (remember liL = L dildr). the clamp diodes are needed across each witch to reduce or 
limit the vohage spike that occurs when the switches open. 

When an H-bridge is controlling a dc motor, there are five operating tates. as hown in 
Table 15-3. When switches A and D are closed. the motor rotates in one direction; when B and 

V+ 

C 

B 

o 

Ground 

Figure 15-21 Simplified motor control H-bridge. 

Clamp 
Diodes 
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Table 15-3 H-Sridge Motor Control 

A B C 0 Motor 

Open Open Open Open Free wheel ing 

Closed Open Open Closed Rotate right 

Open Closed Closed Open Rotnte lefl 

Closed Closed Open Open Braking 

Open Open Closed Closed Breaking 

Closed Don'[ care Closed Don't care DO NOT DO! 

Don'l care Closed Don't cafe Closed DO NOT DO! 

~ 
~ L--I _I L---_I 
~ tperiod4 

(a) 

50% Duty Cycle 

Average Value ~----------t----------f----------t----------r== · 
(b) 

25% Duty Cycle 

Average Value --------------- ---- ----------------

(c) 

Figure 15-22 Pulse-width modulation (PWM) waveforms. (a) Definition of duty cycle. (b) 50% duty 
cycle. (c) 25% duty cycle. 

C are closed, il rotales Ihe other. If A and B or C and D are closed, the molOr is shorted. This 
creates a braking action because the inductively induced voltage (sometimes called the back 
EMF) generales a current that acts 10 force the motor in the opposite direction. 

The bottom IWO rows in Table 15-3 are conditions to be avoided at all costs. C losing A 
and Cor Band D shorts out the voltage supply and generally causes damage to the switching 
transistors or the power supply. 

The de voltage supplied (V+) contro ls the rotational speed of the dc motor. In Figure 15-2 1 
a constanl voltage, V+, is applied, and so we would expect the motor to turn at a constant rplll. 
A u efu l way tp control the speed of a de mOlOr with a microcontroller is 10 generate a pulse­
width modulalion (PWM) waveform, as shown in Figure 15-22. This is so common that many 

Microcontroller 
Interrupt Request 

Microcontroller 
I/O Port 

Microcontroller 
AiD 

Voo + 12V 

Bootstrap 1 
Thermal Flag 
Output 

Output 1 

LMD18200 

Direction 

Brake 

PWM Output 2 

Figure 15-23 Motor control with LMD18200. 
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2 

Dc motor 

10 

10 nF 
11 

0.1 >IF 

microcontrollers have a dedicated PWM module to generate automatically PWM wavefonns. 

as discussed in Chapler 14. 
A PWM wavefoml is defined by it duty cycle. 

I"," 
Duty cycle = -­

I",,,,,,, 

Figure 15-22 shows 50 and 25% duty cycle wavefomls. A you probably learned in your cir­
cuits classes. the average. or dc. value of the e is 0.5 and 0.25 V. respectivel). Thus. applying 
a PWM wavefoml 10 Ihe switch the tran istors on the H-bridge can contrOl the speed of the 

dc motor. 
You can build the H-bridge from discrete circuit. but this is a ignificllnt electrOnics design 

exercise. You will find referen es on the web showi ng how to design a discrete H-bridge. 
Integrated circuits nre a ailable from a vnnety of manufacturers. and Figure 15-_3 shows an 
LMDI8200 3A. 55 V. H-bridge. The H-bridge contain, thennal , ensing circuiL~ as \\ell as 
undervoltnge and overcurrent detection ircuits that can shut do" n the motor !(I protect it. 
current sense output and a thermal flag output till 0" the microcontrOUer to monitor these error 
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Stepper Motors 

conditions. The pins labeled BOOlstrap I and Bootsu'ap 2 increase the switching speed of the 
transistor when the PWM waveform is greater than I kHz and less than 500 kH z. A 10 nF 
capacitor is used. a hown in Figure 15-23. The current sense output produces 377 !lA/A , so 
the 2.7 kfl resistor will give approx imately 3 V full-scale for the 3 A max imum motor current. 
The microcomroller output pan controls the direction and braking and ule speed of the motor 
with the PWM waveform: you may use the thermal nag output to generate an interrupt when 
an error condition occurs. 

Stepper motors are used in a wide variety of applications that call for precise positioning and 
speed control without feedback sensors. The . tepper motor's shaft can move a precise amount 
each time control signals are output from an indexer or a microcontroller. [n this way you can 
comrol the position and speed of the mOlar. Table 15-4 shows stepper motor design consider­
ations to be eva luated when choosing a tepper motor. 

Types of Stepper Motor 

There are three basic types of stepper. Figure 15-24a shows a variable 
Three types of stepper motor are var- relllcTallce mOlar. The rotor is a soft iron, high-permeability material 
iable reluc /Clllce. permanellt mag· and has multiple teeth , in this case six. The stator has four poles and two 
lI.tic. and hybrid motors. excitation windings. [n Figure 15-24b the excitat ion current is applied 

to the stator windings and the rOtor aligns the teeth as shown. This is 
the mini mum reluctance path for the N-S magnetic fi eld. Fi gure 15-24c shows the next stator 
excitation. achieved by applying the current to the other stator pole-pa ir winding. It pulls the 
cia e t teeUl to ali gn as shown and produces a 30· rotation of the rotor. Each of the following 
steps (Figure 15-24d-f), also produces a 30· rotation for a total rotation of 120·. The sequence 
i repeated three times for a full rotation. If you look carefully at Figure 15-24. you might won­
der how the rotor knows which way to rotate when the applied field changes from (b) to (c). In 
practice, the teeth are aligned so that clockwise and counterclockwise rotation of the applied 
fie ld wi ll produce rotation in opposite directi ons. The variable reluctance motor has fairly low 
torque and so is used in small-equipment-positioning applications. 

The perlllGllelll lllagllet stepper u es permanent magnets for the rotor. In principle. it looks 
like Figure 15-25a and operates with a rotat ing exci tation fie ld as described for the variable 
reluctance motor. Figure 15-25b shows a more reali stic view of the permanent magnet rotor. It 
can have many more magnets than shown in Figure 15-25n. and with more stator poles. it can 
make much smaller steps than the 30· shown in this example. The permanent magnet motor is 
also ca lled a callsrack 11/0101'. 

Table 15-4 Stepper Motor Design Considerations 

Stepper .ype 

Winding lype 

Excitation type 

Phases 

Degrees/step 

Sleppmg mode!' 

Torque 

Variable reluctance. permanent magnet ic. hybrid 

Bifilar, unifilar 

Unipolar. bipolar 
Two or more 

0.9. 1.8.3.6,7.5. t5 
Fu ll-step. hair-step. microstep 

Starting torque, start and SlOp region 

15.7 Motor Control 

Stator Pole 

(a) (b) 

(c) (d) 

(e) (I) 

Figure 15-24 Stepper motor operation. (a) Variable reluctance motor. (b) StartIng 
position. (c) First step. 30'. (d) Second step, 60'. (e) Third step. 90'. (I) Fourth 
step, 120'. 
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A 'n'brid stepper 1I/0tor combines the attributes of the pemlanent magnet and the \'ariable 
reluctance 1110tor. Figure 15-::!6 is u cross sectional vie\\ of a hybrid -tepper motor. The rotor 
has a tine-pitch tooth structure as sho\\ n. and it can fonn one pole of a magnet. The teeth in 
the rot r line lip with teeth on the stalor, minimizing the magnetic reluctan e path. The teeth 
are offset" small amount on the nc'\t stator \\ iniling to be energized. Typical step siz~ range 
from 0.9·/stcp to 3.6°/step. 
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Phase A 

Rotor 

Phase B 

(a) (b) 

Figure 15-25 (a) Permanent magnet stepper motor. (b) Permanent magnetic "cans tack. " 

Figure 15-26 Hybrid stepper motor. 
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Stepper Motor Windings 

To energize the stator's electromagnetic poles, a coil must be wound on 
Stepper motor windings are designed the two poles that make the magnetic pole pair. As current fl ows in the 
so thecurrentdirectioncanbereversed coil, a magnetic field is formed, and the direction of the magnetic field 
to reverse the rotation direction. depends on the direction of the current fl ow. Figure 15-27a shows the 

north pole that results from the current direction shown. To reverse the 
direction of the field , as shown in the stepper motor rotation sequence in Figure 15-24. we 
must reverse the direct ion of the current in the tator winding. Compare Figure 15-24b and 
15-24d. There are two ways the stator field windings are constructed: unipolar winding (Figure 
15-27b) and bipolar winding (Figure 15-27c). As we will see, the unipolar winding is simpler 
to drive by using two output bits from our microcontroller. The bipolar winding requires an 
H-bridge. as shown in Figure 15-21. 

Stepper motor windings are also classed as bifilar or unifilar. A bifilar winding is one in 
which the coi l is wound wi th two wi res instead of one. This eliminates the need for a center 
tap on the winding and allows the motor to operate either as bipolar or unipolar. However, the 
bifi lar winding requires more space in the stator. 

Most stepper motors have two wi nding phases, al though there are motors with three or five 
phases. The number of phases refers to the number of signals used to drive the stepper motor. 
Figure 15-28a shows an eight-pole (four pole pairs). two-phase motor. Figure 15-28b shows 
one phase of a unipOlar winding. l\vo-phase motors that use these windings are sometimes 
referred to asJour-plwse motor because each phase actual ly has two drive signals. 

N ----------~ 

!-----l 11 
I I 
I 
I 

1 t V+ 2 

(b) 

----------~ 

i-Gl------------i I I 
I I 
I I 

: (c) : 

: f2 
(a) 

Figure 15-27 (a) Magnetic field direction depends on the current dIrection. (b) Unipolar 
winding. (c) Bipolar wInding. 
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Phase A 

-~­

Phase B 

Stepping Angles 

Stepping Modes 

----- r----. 
p 
I-' 
P 
P 
P 

r--- p 

p 
p 

........ -I-- L-----

(a) (b) 

Figure 15-28 Motor winding phases. (a) Eight poles, two phases. (b) One phase of a unipolar winding. 

The angle the stepper motor turns for each step depends on the number of rotor and stator poles. 
With more stator and rotor poles in a permanent magnet stepper, and finer tooth pitch in the 
hybrid stepper. the stepper has better (smaller) step sizes. Commonly found step sizes are 0.9°, 
1.8°,3.6°, 7.5°, and 15° per step. 

Let us now consider the signal s needed to control the stepper motor. The device generat­
ing these signal s is often called an illdexer, which may be a spec iall y developed inlegrated 
ci rcuit and primed circuit board with all drive electronics necessary to run the stepper motor. 
We can also use a microcomroller with additional drive e lectron ics to generate control 
signals. 

Full-Step Sequence: Figure 15-29 shows a permanent magnet stepper with a six-pole rotor 
and four-pole stator. This steps 30° per step. The sequence starts wit h unipolar wi ndings A I 
and B I energized (Figure 15-29a). A seq uence of four full steps (Figure 15-29b-e) result in 
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120° rota ti on. Windings A I- B I-A2-B2 are energized in the sequence shown in Table 15-5. 
This sequence is also called full-step , full-torque. Table 15-6 shows a full-step. low-torque 
sequence. where onl y one winding is excited at a time. Table 15-5 also shows the winding 
designations when the unipolar stepper is said to have four phases. 

Half-step sequence: A half-step sequence is shown in Table 15-7 and Figure 15-30. As you 
might expect. each step now is 15° and is produced by the excitation sequence shown. The half­
tep sequence will produce a smoother operation of the tepper but with Ie s motorlorque. 

Microstep sequence: Both the full-step and half-step sequences produce motion that is not 
a smooth rotat ion because the step size is finite. The steppers with smaller step sizes are 
smoother. Microsteppi ng increases the step re olution beyond that limited by the number of 
poles. Figure 15-3 1 shows two phases being driven by stepped sinusoids that are 90° out of 
phase. Controllers for microstepping motors can produce up to 500 microsteps per full step. 
resulting in a much smoother stepper mOlor rOlation. 

Table 15-5 Full-Step, Full-Torque Sequence 

Part of Figure 15-29 

(a) (b) (e) (eI) (e) 

Four Two 
Phase Phase 30' 60' 90' 120' 

Phase 1 At 0 

Phase 2 61 I 0 t 

Pha'i;e 3 A2 0 I 0 0 

Phase 4 62 0 0 

Table 15-6 Full-Step. Full-Torque Sequence 

Four Two 
Phase Phase 30' 60' 90' 120' 

PhlliiC I AI I 0 0 I 

Phase :2 61 0 I 0 0 

Plu~c 3 A2 0 0 t 0 0 

Pha'i\! 4 62 0 0 0 

Table 15-7 Half-Step Sequence 

Part of Figure 15-30 

(a) (b) (e) (d) (e) 

Four Two 
Phase Phase 15' 30' 45" 60' 75' 90' 11l5' 120' 

Ph""c I \ 1 I 0 0 0 () 0 I I 

Phll\C 2 BI I I 0 0 0 0 0 I 

Pha ... c .3 A~ 0 0 [) 0 [) 0 

PhiN:4 B~ 0 0 0 0 I I 0 0 
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Phase A 

A1 LL A2 

"~~' Phase B =j N \ S ~ 
B2 B2 

N 

A1fr A2 

(a) 

A1 JJA2 

N 1 A2. B21 

:3 ,~, E: 
B2 ~ B2 

S 

A1rvrlA2 

A1 JJA2 

N 1 B1 ·A21 

~'~' f 
S 

A1 rvrlA2 

(b) 

A1LLA2 

S 1 B2.A1 1 

:3 ,~, E: 
B2 ~ B2 

N 

A1frA2 

(d) (c) 

A1 LL A2 

S ~ 

~~~ 
N 

A1 fr A2 

(e) 

Figure 15-29 Full-step. full-torque sequence. 

B1 
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Phase A 

A1LL A2 A1 L--W A2 

s ~ N 0 

'~'E: ~ '~f B2 

N S 

A1frA2 A1 rvrlA2 

(a) (b) 

A1 JJA2 

N 0 

~~~ 
S 

A1rvrlA2 A1 rr0 

(d) (c) 

A1 JJA2 

N 1 A2. B2\ 

:3~'E: 
B2 ~ B2 

S 

A1 rvrlA2 

(e) 

Figure 15-30 Half-step sequence 
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Phase A 

Figure 15-31 Microstep sequence. 

Stepper Motor Drive Circuits 

Stepper motor phases present an inductive load to the driver circuit. and so we must be careful 
not to connect a stepper motor coil directl y to our microcont roller. The relay driver circuit of 
Figure 15-18 must be used for unipolar steppers, and an H-bridge as shown in Figure 15-23 
should be u ed for a bipolar stepper. 

Stepper motor drive circuits must 
include a clamp diode to reduce the 
inductJle voltage ,pike. 

Stepper Motor Torque and Speed 

Figure 15-32a shows a Darlington transistor with a clamp diode. The 
ULN2003 shown in Figure 15-32b contains an array of seven Darlington 
transistors. each capable of drivi ng up to a max imum of 500 mA collec-
tor current. 

Torque is the force on the shaft of the motor produced by changing, or stepping, the magnetic 
fi eld from one positi on to anot her. The amount of torque depends on the current in the wind­
ings, the step rate. the step sequence chosen. and the type of stepper motor. Stepper 1110tor 
manufacturers provide torque information and characteri stics. and you must choose a motor to 
meet the torque requirements for a given load. Once you have chosen a type and size of motor 
for your application. you have control over the step sequence (full-,tep or half-step) and step 
rate (steps per second). In genera l, a full -step sequence generates more torque than a half-step 
equence at the ex pense of less smooth motor rotation. 

After choosing a stepping sequence. we are left with controll ing the 'tepping rate. Figure 15-33 
shows a typical stepper motor torque versus step rate characteristic. The !,1I11-01l1 IOrqlle curve 
defines the maximum torque the motor can develop at a given step rate. For a given motor load, 

In 

PT2 

PTO 

PT1 

PT3 

ULN2003 

In 1 Out 1 

In 2 Out 2 

(a) 

A1 

15.7 Motor Control 

Phase A 
A2 

In 3 Out 3 J---+--, 

i): E In 4 Out 4 

L-4---B
J

2 ~ B2 

Phase B N 

In 5 Out 5 

In 6 Out 6 

In 7 Out 7 A 1 ("'T") A2 

Gnd Com 

(b) 

Figure 15-32 (a) Darlington transistor. (b) ULN2003 transistor array. 
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if you attempt to step faster than thi>. the motor\\ ill stall. PIIII-IIIlOrqlle is the ma_,imum torque 
the stepper can develop instantaneousl) for stnning or stopping. The area belo\\ the pull-in 
torque curve is called the slart alld SIO{' "'8;011. For a given motor load. you can stnn and qOP 

the motor at an) ;.tep rate belo\\ the ma,imum stnn r:lle. To achie\e a higher 'tep rute. you 
must <Jew. or ramp. the step rute into the sk\\' /'t'g;"" bet\\ cen the pun-in and pull-out torque 
curves. Example 15- 11 ~ho\\;. C functions that can dri, e a 'tepper m01l'r at a con, tant rate and 
ramp the motor speed uJl and down. Examples 15-1_ through IS-IS Shl'" ho\\ l'OmIX'nenb of 
the test bed can he programmed. 
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Stepper Motor 
Torque 

Maximum Stopped Torque 

Pull-In Torque (Starting) Oz- in, 
g - em, 
mN-m Pull-Out Torque (Stalling) 

Motor Load 

Maximum Maximum 
Start Rate Start Rate 
(Loaded) (No Load) 

Figure 15-33 Stepper motor torque characteristic. 

Example 15-11 Stepper Motor Test Bed 

* Stepper motor test bed 

Maximum 
Step Rate 
(Loaded) 

Step 
Rate 

#include "timer_ticks . h" 
#include "stepper_l . h lt 

/r Values for the interval timer ~/ 

1* Defs for the stepper motor *1 

1* Global data definitions *1 
I' Define the system clock ticking at TICKS millisecond 'I 
unsigned int sys_clock; 
unsigned int tick_counter; 

1* Define the step seguences 'I 
1* B2 A2 Bl Al *1 
1* 0 0 0 0 marks the end of the sequence '1 
unsigned char forward full step low torque[] = [ 

ObOOOl , ObOOIO , Ob0100 , OblOOO, END_MARK }; 
unsigned char fonlard_full_step_full_torque[} = [ 

ObOOll , ObOllO , ObllOO , ObIOOl, END_MARK }; 
unsigned char reverse_full_step_Iow_torque[} = ( 

OblOOO , ObOlOO , ObOOlO , ObOOOl , END_MARK ); 
unsigned char reverse_full step_full torque [} = ( 

ObIOOl , ObllOO , ObOllO , ObOOll, END_MARK); 

15.7 Motor Control 

unsigned char forward_half_step() = ( 
ObOOOl , ObOOll , ObOOlO , ObOllO , ObOlOO , ObIIOO, OblOOO , 
OblOOl ,END_MARK I; 

unsigned char reverse_half_step[) = ( 
ObIOOl , OblOOO, ObIIOO , ObOlOO , ObOllO , ObOOlO , ObOOll , 
ObOOOl , END_MARK ); 

void main (void) ( 
It Initialize the timer to create the sys_clock 
~ interval timer */ 

timer_ch_interrupt_initialization{) ; 
1* Initialize the 4-bit 110 port that drives the stepper *1 
1* Initialize the phase output signals a *1 
PHASE_A_l 0; 
PHASE_B_l 0 ; 
PHASE_A_2 0; 
PHASE_B_2 0; 
/* Set the data direction register */ 
PHASE_DDR 1= PHASE_OUTPUTS; 
Enable Interrupts ; 
/* Initialize the system clock and the tick counter ~I 

/* Number of ms incrementing sys_clock * 1 
tick_counter = TICKS; 
sys_clock = 0; 

for (; ; ) ( 
1* Test all the step sequences ' 1 
1* Run the stepper at 100 steps/sec for 300 steps at low 

,.. torque .... / 

runt 100 , 300 , forward_full_step_low_torque I; 
1- Test the reverse_full_step_low torque -
slew_run ( 0 , 100, 300 , reverse_full_step_low_torque) ; 
1* Test the forward_full_step_full_torque ' 
slew_rune 50, 160, 300 , forward_full_s ep_full_torque ); 
1- Test the reverse_full_step_full_torque " 
slew_run( 0 , 160, 400, reverse_full_step_full_torque ); 
I' Test the forward_half_step -
runt 200 , 300 , forward_half_step I; 
I' Test the reverse_half_step • 
run t 200 , 300 , reverse_halt_step ); 

/'" \ ... ait forever ,,' 

Example 15-12 Stepper_1.h 

.. Definitions tot' the stepper motors 

391 
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/- Define the stepper motor output bits */ 
/, Port T outpu bits to use . / 
Ii< Port T is used to drive the stepper '/ 
#define PHASES PTT 
#define PHASE_A_ I PTT PTTO /- Phase Al (Phase l) ./ 

'define PHASE_B_1 PTT_PTT1 /- Phase B1 (Phase 2) -/ 
'define PHASE_A_2 PTT_PTT2 /* Phase A2 (Phase 3) */ 

'define PHASE_B_2 PTT - PTT3 /* Phase B2 (Phase 4 ) */ 

'define PHASE DDR DDRT /- Data direction register 
'define PHASE_OUTPUTS OxOf /* Four bits on port 

Ii Define the end mark for the step sequences */ 

'define END_HARK 0 

/. Function prototypes */ 

T */ 

*/ 

· Run the stepper at steps_per_sec , for number_ot_steps steps , 
• and use the step sequence pointed to by p_sequence . 

void run( unsigned int steps_per_sec , 
unsigned int number_of_steps, 
unsigned char * p_sequence) ; 

* Sle\\' the st.epper from start_steps_per_sec to 
* final_steps~er_sec and then run at steps_per_sec , for 
• number_of_steps steps using the step sequence pointed to 
- by p_sequence . 

void slew_fun (unsigned int start_steps_per_sec , 
unsigned int final_steps_per_sec, 
unsigned int number_of_steps, 
unsigned char * p_sequence) ; 

~ Timer initialization to enable interrupt 

void timer_ch_interrupt_initialization( void) ; 

Example 15-13 TimeUicks.h 

* Define the bus clock frequency and interval needed 
* to generate the sys_clock that updates at TICKS 
k millisecond intervals 

/* Define the timer interval value */ 
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~define BUS_CLOCK 8000000 /. Bus clOCK freq -/ 
adefine HS_CLOCK. TICKS BUS_CLOCK/lOOO/' Bus clocks in ms '/ 
#define TICKS /- # milliseconds for a 

sys clock tlmer tick . / 
#define TICKS_PER SEC lOOO/TICKS /- = timer ticF.s per sec - / 

Example 15-14 Stepper Motor Run: run.c 

~ Stepper drivers -- run the motor at a constant speed 

#include "timer_ticks . h" 
#include "stepper_I . h" 
/- Global data definitions '/ 
/~ Define the system clock ticking every TICKS milliseconds. 

- TICKS is defined in stepper_l . h ./ 
extern unsigned int sys_clock ; /. System clock updated by the 

timer every TICKS ms '/ 

* Run the motor at a constan speed 
* void run( unsigned int steps_per_sec , 

unSigned int number_of_steps , 
unsigned char· p_sequence) i 

void run( 
unsigned int steps_per_sec, / " t-tator ra~e deSired ·"' 1 

unsigned int number_or_steps , ,. Number steps to move . , 
unsigned char ~ p_sequence) { I ~ Po~nter to ~he step 

sequence ... , 

unsigned int wait t~mei 

unsigned char . p_sequence_used ; 

p_sequence used = p sequence; 

I ~ Time ~o wait unti~ 
• the next Step ~ I 

Pointer to step seq 

/" The sys_clock is incrementing at TICKS milliseconds .. 
/' The number of TICKS to wal~ is 

, TICKS PER SEC steps_per_sec • 
wait_timt TICKS_~ER_SEC/steps_pe"_sec ; 

/. "'hile the number i steps taken !.s ..... pumber_ ..... :_steps 
while ("umber of steps" 0 ){ 

/' Outpu a s ep ~dttel"u to the po.rt 
PHASES -p sequt"lc" t!seJ+ 
sys c cs. 0; 
/' Res t the r • t I 1f 1t 1S P ,nt1 q ~t ,e e-~ 
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of clock licks needed in sys_clock and waits for that time to outplltthe step sequence at the 
correct rate. 

Example 15- 14 shows a function to run the stepper at a constant speed (s teps _pe r _sec) 
for number_of_steps steps in the direction and with the type of step seq uence pointed 
to by the p_sequence pointer. The time between steps is calc ulated by " ai t _time ~ 

TICKS_PER_SEC/steps_per sec. 
Example 15- 15 shows a function that slews, or ramps. the stepper motor from an initial 

start_steps_per_sec 10 a final_steps_per_sec . The molor starts off at s tart_ 
steps_per_sec and inc reases one step per second per step to fi nal_stepsyer _s ec. It 
then runs althat speed until the total number_ot_steps have occurred. 

15.8 Conclusion and Chapter Summary Points 

In lhis chapter we have shown a wide variety of applicalion examples lIsing a microcontroller. 

Microcontrollers have internal I/O devices such as ana log-to-d igital converters. timers, 
and seria l and parallel I/O. 

Most often. ex ternal I/O devices can be connected to a microcontroller 's internal 
paralle l I/O. 

Switches are used to input binary information. 

Mechanical witches bounce when contact is made. and in some applications software 
or hardware debouncing must be used . 

Pull-up (or pull-down) resistors must be used with swi tch inputs to avoid noating 
inputs. 

Internal pull-up (or pull-down) re istors may be enabled in the microcontroller's 
I/O port. 

Keypad and keyboards are switches and diode that connect an ou tput from 
a I/O port to an input line. The keypad is scanned to determine what key is 
bei ng pressed. 

When an LED is interfaced. the circuit designer must make sure the output device can 
supply enough current to light the LED. 

LEOs require a current of several mil liamperes to light. 

Para lle l I/O expansion can be done with a bidirectional port ac ting as a data bus. 

Parallel I/O ex pansion can be done also with the SPI and erial/para lle l shift regis ters. 

Integrated circuit tcmperature transducers with linear cha racterist ics make temperature 
measurement easy. 

A dc motor can be controlled by an H-bridge c ircuil and a PWM waveform . 

S teppe r motors aliow you to precisely control the position and speed of the motor. 
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15.10 Problems 

Explore 

Stimulate 

15. 1 Design an output circuit with eight LEDs connected to a port on your microcontroller. 
The LEOs are to be on when bilS in a byte stored in location DATA I are I . Show the 
hardware and software required. [c) 

15.2 Design an input ircuit to input the states of eight switches to a pon on your 
microcomroller. [c) 

15.3 A mythical microproces or has two S-bit output poru (p and Q) and two -bit input 
ports (R and S). As ume that a et of eight swit he - is conne ted to Pon and a set of 
eight LED. is connected to Pa n P. Describe (a diagram would be nice) ho\\ you would 

use these resources (plus any other ),ou would like: more switches. buffers. latches. 
etc.) to implement a scheme that would allo\\ you to input data from the ,witches onl~ 
after the user hos completed emering new data. and then to displa~ the -bit data on 
the LEOs. The hardll are i, to be as s imple and heap"" possible. De,cribe ho\\ your 

system II iii input data fro m the '" itches and output to the LEDs_ [c.kl 

15.-1 NOli. assuming the hunJware you htl'. prop<',ed for Problem 1-.,3, de<cnbe. from a 
high-bel UStlll) pseudocode. ho\\ you \\ould do the following. 

tI . I nput data from the '" itch., 
h. Output data to the LED, 



398 Chapter 151 Single-Chip Microcontroller Interfacing Techniques 

Challenge 

15.5 An eight-digi t LED display is multiplexed. with each digi t being refreshed at 100 
HL. by an interrupt service routine. The ISR changes the display to the next digit and 
requires 8 ~s to refresh each digil. [bl 

a. If the intemlpt service routine is staned by an interrupt from the timer system, 
what interrupt rale would allow us to refTesh each digit in the display at 100Hz? 

b. Wh at percentage of the processor's time is spent refreshing the eight-digit display? 

15.6 Why do bidirectional data ports on a microcontroller default to the input direction 
when Ihe microcontroller is reset? [a] 

15.7 Use a 74 HC 138 l -of-8 decoder and a 74HC 151 8-to-1 multiplexer to design a key­
board scanner that will scan an 8 x 8 keyboard matrix . Show your hardware. and give 
a software scanning algorithm 10 scan the keyboard and rerum a 6-bit keyeode. re] 

15.8 The 16-key keypad scanner program hown in Example 15-6 does not debounce the 
switch. You may nOl have to implement a debouncing routine depending on your 
hardware (although you probably will). Propose a strategy and write a program, either 
in pseudocode. in the programming language of your microcontroller. or in C, that 
will test whether your keypad switches bounce when pressed. 

15.9 Several of the program examples in this chapter call a function called delay_X_ms( 
int X). Write a fun ction th at wi ll run on your microcontroller that will provide this 
variable delay. where X specifies the number of milliseconds to delay. 

15. 10 Find a data sheet for the LM 19 temperature ensor shown in Fi gure 15-19, and use a 
spreadshee t and the tran sfer characteri sti c equations relating output voltage to tem­
perature to develop an 8-bit lookup table that wi ll allow an application program 10 

display the temperature a a number ranging from -55 to + 127. 

Reflect on Learning 

15. 11 List five things you learned about interfaci ng to a microcomputer from this chapter. 

15.12 What discovery or insight about input interfacing have you gained from this chapter? 

15. 13 What discovery or insight about output interfacing have you gained from this chapter? 

Objectives 

Real-Time Operating Systems 

In thi chapter we give a brief overview of real-time operating )' tems (RTOSs). We define 
terms and show how an RTOS works. Using and applying an) RTOS for your rnicrocontroller 
is far outside what we can accomplish in thi s chapter. You will need to refer to the documenta­
tion suppl ied wi th your RTOS. 

16.1 Introduction 

A real-time operating S) Mcm is ,oft ware that operates in the background. or behind_ the appli­
cation software. and manages the execution of the appli ation oft\\ are. Your application i. 
partitioned into tasks that are usuall) independent of one another and thus an be developed 
and implemented independentl). 

Advantages of USing an RIDS 

In a real-tllnc S) ,tcmthe ta,h are isolated from and independent of one another. 

Data struc tures. al,o. can be ""ocimcd \\ ith a task and separateu from other 
structures. 

Eve nl -drin:n ta:-.k .... are relati\"t~I) ens) to implement. 

Ta,,, that r~qllire p~riodlc '~f\ icing. are relat1\d~ «,,~ to implement. 

Disadvantages of Using an RIDS 

The RTO (OI!>lIme' RO~1. R\\1. and CPl tlln' 

Each tll\~ l'CqlHrC' 11' u\\ n ,t 'I<·~ .• md th~ref,'!\: n,,'!\: R \~II' n< 'd,'\Im" real-om 
.... ~ ... tc:m 
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There is li kely a cost for using an RTOS. If you have to purchase the RTOS commer­
cially. the vendor may charge a royalty fee for each product deli vered with the RTOS. 

Debugging a system contro lled by an RTOS may be difficult. 

The RTOS may degrade the time-critica l operation of the system. 

The learning curve for new RTOS users is very steep. 

16.2 The Real-Time Operating System (RTOS) 

RTOS Glossary 

Clock tick: A real-ti me operati ng system maintains an internal clock that interrupts 

periodically. 

Context: The context of a task is the current sta te of the CPU registers when the task is 

runn ing. 

Critical section: A section of code thal cannot be interrupted by another process is said to be 
critical. A typical example is a section consisting of reading, changing, and writing to a data 
variable that another task may be using too. The Dlher task should be prevented fro m accessing 
the data while it is be ing read, changed, and written to by the first. 

Deadlock: In this cond ition. a lso called deadly embrace, processes wait for resources that may 
never become available .. In Figure 16-1 Task # I is using Resource # I but needs Resource #2 
to complete. Task #2 is u ing Resource #2, so it blocks # I from acquiring the second resource. 
In addition. Task #2 needs Resource # 1 to complete. but Resource # 1 is blocked by Task # 1. 
To avoid deadlock, tasks should acqu ire a ll resources needed befo re running. 

Deterministic: Often events must occur in real-ti me systems at precise inte rvals or within some 
time constraint. To achieve thi s. we would like the time taken by our tasks to be known or 
deternl inable. Elements contributing to nondeterministic behavior in fu nc tions include inter­
rupt latency, unequal processing time in conditional loops. and the impact of higher priority 
tasks that might execute. An RTOS is deterministi c if the executi on time of the system calls is 
ca lculable. 

Hard real time: A hard real-time system is one in which the task must be com pleted in 
ti ghtly contro lled peri ods; otherwise. a seri ous system erro r may occur. For examp le. a fl ight 
control system must recognize that an aircraft is approaching a sta ll before the o nset of the 
stall. Hard real-time systems have dead lines for task comple ti on that must be met. See soft 
rea ltime. 

Idle task: An id le task is one that runs when there are no other tasks to run. 

Interrupt latency: This period, also called dispatch latellcy, is the time between the ini tiation of 
an interrupt req uest and entering o f the interrupt service routine. In a real-t ime system, latency 
can refer to the time from between request of a task and the ac tual running of the task. 

Kernel: The RTOS kernel is responsible for managing how the C PU executes tasks in a mul­
tilasking system. The kernel contains a schedu ler or dispatcher that decides which lask is to 
be executed nex t. as well as a way to preserve the CPU's registers, ca lled the context, during 
sw itching between tasks. 
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Figure 16-1 Deadlock. 

Mailbox: A mailbox i a nong lobal data tructure to al low tasks to exchange information. 

Mul titasking: A si ngle CPU switching belween several task i said to be multitasking. 

Preemption: Preemption refer to how a kernel witches between tasks in a multitaskin2 vs­
tem. With a nonpreemptive switch. the currently runni ng task gives up its control of tbe-CPU 
vol untarily: Ihat is. the lask has been completed. With a preemptive witch. the kernel forces 
the currentl y running task to give up the CPU for a higher priori ty task_ 

Priorities: The kerne l must run only one tru.k even if more than one are ready. Thus a priority is 
ass igned to each la k. Of all the ready tasks. the highe I priority task is picked. Priori ties aI 0 

a ll ow the kernel to decide what tasks hould interrupt other tasks. 

Priority inversion: A priority inversion can occur if a higher priorit) task is blocked from run­
ning by a lower priority task. This can happen when two tasks hare a resource. 

Real-time system: It is difficult to tate a defini tion fo r real time that all agree upon. In an 
embedded ystem. real 1;/111' lend 10 designate an application or sv. tem in which the 5\' 5-

tem performs ils task on a time cale Ihat the user considers 10 be hon . For e,<ample. when 
pressing a key to effeci an action. the user should gel a response in a few tens of miIJiseconds: 
ot herwi e the user notice the delay and may become impatient and push the ke} again. In tbe 
con text of this chapter. and when discu. sing real -time operating sy tem . a real-time system b 
one in which multiple lasks are execuled to accomplish the objecthe of the application. The 
taloks' execulions are controlled by their priorities. b) timing. or b} eVent . and are O\ erseen 
by the real-lime operating ')5Iel11. The execution of the tasks is said to be ""em dri,·en. Man\ 
system designer ' distinguish between soft and hard ,,'al-tillle systems. -

Reentrant functions: A reentrant function is one that can be interrupted and then entered again 
without losing data from the firM entr). 

Resource: A resource 's a prO<.'ess or 1/0 capubilit) that i, used b} a t3J>k. 

Safety critical: This term de,crillC, an RTO cenitied b\ a cenifil-ation body to be safe to use 
in 'ystcm where human life is;1I stake. - . 

Sca lability: ca l,hilit} refers to hO\l eastl} ;1 small S} stem ,'an be e\ panded to a large S} ;tem. 

Semaphore: A sellIuphol\- " a medU","ll that :llll''' ' multiple lask.< to , h.1re ~soun: s. When a 
la~l... b lhing a ('c\(lut\:'c. II :-Ct~;l :-t'l11aph\.)(\.' W , ign~\11..1lhl~r l a;..k~ lhac the.' n.~\.'U{'('e j, in u~ :-. "'l."lte 
olha rc"'urcc, mll\t "all ul1IiI the 'cllIal'hore hob Ieal\'" bef"rt" the, ,-an j<-qui~ the rt"'c'un:e. 

Soft real time: In a 'l,1i ""tl-tlllle,~ 'tclll.ta,~ c\ -utton " nOt Oil a mict tim" 'heJule: iLl ta" 
is Illlll'Plllpletcd I'I\'ci,cl~ l'll ,c-ht'llulc. Ill' greatlli",l>,lit} ''<.'''lll' E\ ,lInpk, of ,oft real-lim,'­

'Y'lcm, 'I1c1Ulk d"l'la~ '. pnntcl'. ,\lid <'ther n,llH'I11C-cnt,cal arpltcJtton' 
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Starvation: Starvalion can occur when a lower priority task is blocked from running by higher 
priority lasks lhat never re linqu ish the prote<sor. Under lhese conditions. a task never receives 
a resource for which it j, wHit ing. 

Task scheduling: In a mu lt itasking system. a variety of cheduling a lgorithms must be used in 

schedul ing the tasks to ru n. 

Task: A task is a program or functi on that uses the CPU a nd syste m resources. Tasks are wril­
ten to be run indepe ndentl y of all Olher tasks. and multiple tasks are needed in an appli cation. 
Ta;ks are a lso call ed threads. 

Thread: A thread is a l'-1lik or unit of program execution. 

Time-Sharing Systems 

Time-:-.haring ~YMcm~ arc 11lUlr; IISer 

s)stcm~. 

In the early to mid- 1960s computers were large. ex pe n ivc ma inframes. 
Multiple use rs could use the compute r s imultaneously in lIIultiuser. or 
tillle-sill/rill [!. . syste ms. These syste ms allocated the CPU to each user in 
a time-mult iplexed sequence. Figure 16-2 shows three users of a lime­

shari ng system. Each user received the full resources of the CPU during its time slice and. 
unless there were many users. it seemed to each one lhat it had the compute r full ti me. 

We can see in Figure 16-2 that an operating system manages the switching between users at 
the begi nning of each time slice. Th is i\ called task or contex t sw itching . Every time a user or 
task switches. the context is saved. to be res tored the nex t lime the task runs. 

Figure 16-3 shows the architecture o f a time-sharing or mult iuser syste m. Each ti me the 
operating system receives an interrupt. il switches to the next user by sav ing the user's context 

Operaling 
syste m 
switches to 
next task CPU Time S lices 

Time-Sharing 
Opera ting Sys te m 

T2 

UserlTask #2 ~ 

UserlTask#3 ~ 

T3 

c::=:J CPU a lloca ted to the task 

~ CPU allocated to another task 

Figure 16-2 Time-sharing system. 

T4 T5 T6 T7 
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and . depending on how much main me mory is inslalled, swaps the current program out to disk 
storage a nd brings in the next user's program. Users were often localed remote from the main­
fra me computer. which they accessed lhrough modems and dial-up or dedicated line . Users 
who needed syste m I/O, say to print a program listing or program output. had to physically go 
to the computer center whe re the syslem was located. 

Event-Driven, Real-Time System 

The lime-sharing system of Figure 16-2 is the grandparent of today 's 
The RTOS kemel manages the task real-time systems. Instead of users of the system, we now have tasks that 

switching. run whe n required by the applicalion. Our multiuser system has become 
a lIIulTitaskillg system. Figure 16-4 shows a multilasking system that is 

evelll drivell . Again . an operating system. the real-time operating system (RTOS). manages the 
task switChing. otice thatlhe lasks do not necessarily run in sequence, nor are they allocated 
the same amount of CPU lime. 

The pan ion of the RTOS lhat manages the task switching is called thekemel. In Figure 1M 
lhe kerne l prepares Task # I to run ( I. 2 ). At some point. either Task # I finishes or an event 
occurs lhat requires Ta k #2 and the kernel prepare and runs it (3, -4). Following Task #2 the 

Main 
Memory 

User #1 
Context 

User#2 
Context 

User #3 
Context 

Program 
Swap 
Area 

Real­
Time 

Interrupt 

Time-Sharing Operating System 

Figure 16-3 Tlme-sha""9 system architecture. 
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RTOS Kernel 

Task #1 

Task #2 

Task #3 

RTOS Kernel 

(1) Kernel (3) Kernel (5) Kernel (7) Kernel (g) Kernel (11) Kernel 
prepares prepares prepares prepares prepares prepares 
Task #1 Task #2 Task #1 Task #3 Task #2 Task #3 
to run to run to run to run to run to run 

t t t t ! t 
I>O<XX)<I ~ t>6MIS<I 1:)66(1 

ISISISISIS<I 

(2) Task #1 
runs 

(4) Task #2 
runs 

(6) Task #1 
runs 

c=:J CPU allocated to the task 

~ CPUaliocated to another task 

Figure 16-4 Event driven, multitasking system. 

i i 
(8) Task #3 (10) Task #2 (12) Task #3 

runs runs runs 

kernel determines that Ta k # I shou ld be run again (5,6) , following by Task #3 (7, 8). Ta k #2 
(9, 10), Task #3 ( II , 12), and so forth . 

Figure 16-5 is the block diagram of a real-ti me system. Although tasks are independent. 
they do work together to accompli h the app li cat ion. They can pass in Formation to one another 
and share system resources. The RTOS manages a ll this while receiving interrupts from timers 
and other 110 devices and task . 

The kernel is the central component of the real-time operating system. It I The kernel is the heart of the RTOS. schedu les the execution of all tasks and save each task's con text during 

switching. 
The scheduler or dispatcher accomplishes the scheduling functio n of the kernel. There is 

a variety of algori thms to help choose which task to execute at any time. In the time-sharing 
system shown in Figures 16-2 and 16-3, the scheduler a llocates each ta k or user an increment 
of time. Depending on how fast the CPU can switch between users and how many users are 
currently on the system, each user thinks that a ll of the CPU's resources are dedicated to lhat 
task and no delay in execution is expe rienced. As the number of users grows, each may expe­
rience delays in program executi on. 

In a real-ti me system the scheduling is more complex. There may be a need for a task to exe­
cute immediately based on a set of cond itions. For example, a task that scans a keyboard shou ld 
execute when a keypre s is detected so the key information is not 10M. Other tasks. such as updat­
ing an LCD display. may not be as important. The designers of a real-time ~ys tem must consider 
priorities of the tasks. and the RTOS must allow a variety of schedu ling processes. See Table 16-1 
for a few of the many ched uli ng algorithms used in multitask ing operating systems. 

Real­
Time 

Interrupt 
Task #1 
Interrupt 

16.2 The Real-Time Operating Sys1em (RTOS) 405 

Figure 16-5 RTOS structure, 

Table 16-1 Scheduling Algorithms 

Tasks 

Algorithm 

Firsl<ome. first·~e"ed 
Shortest job first 

Fixed-prioril) 

Round robm 

Ratc monotonic 

Deadline 

A task i. nn independent ,cetton of 
code that runs fore' er. It lila) be 

Task to 8e Run Next 

Ta...,L thai requ~led to be run first 

Tao'l,. with tht: shol1e~t run lime 

The \\ allmg uc,l.. with lhe hig.h~t priority: priorin~ lltt ~I b~ the application 
programmer bUl ma~ be ch;1t1gcd as nrne goes b) 

Each In,}. i\ ",heduled in ... equence \\ ithoul rqmJ to prion~ 

Tol"l.. \\ Ith the highc':'.l c\e\:ution rate gl\cn the hlghe,t pnoot) 

Ta~k with the do~ ... t complel1on lime 

Good software design alw:!) s alb for the program ~1de to be partitioned.. 
de,igncd. and de, doped in modules that are 3. independent of one another 
m, pos,ihk, F,,, c, ample, consider a program that all \\ s a userto pre~ • one 

interrupted to ollow other (U," to of two s\' itche, to select ,'ne of 1\'" input analog voltages to digitize and 

be run . di'pI3) on an L 0 screen, Follo\\ ing the design prinCIples we <,spoused 
111 hapta 3. \\ e might dc' ek'p ,It \e,\lot one level of Msign 3S ,how n in 

Example 16-1 . \\e could Identtf) ,It k.\lot three funettl'n,. ,'r t3.>b, the ,<,f!w3re must have II 
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di play the voltage. These could be Ge t Swi tch. DigitizeChannel , and UpDateDisp l ay. 
Each of these functions could be developed independently and designed to transfer in fo rmation 
from one 10 another. GetS" i tch passes the switch number to Digi ti zeChannel, which then 

passes the digital value to UpDa t e Di splay. 
Let liS assume now that the LCD screen must be refreshed pe riodically 0 th at it does not 

fli cke r. Will the design shown in Example 16-1 do this fas t enough? We don' t rea lly know. 
For example. at this stage we do not know the conversion time of the NO or whether the 
GetSwi tch function will wait in the function until a switch is pressed. T hus, we see that there 
are some priorities of processing. Since UpDateDisplay needs to rll n often enollgh to prevent 
fli ckering. it probably has the highest priority of all. On the other hand, depend ing on how long 
UpDateDisplay runs. GetSwi tch will need to ac t promptly when a switch is pressed to be 
able to capture the switch whi le we are still pressing it. Digi tizeChannel is the lowest pri­
ority of all because it does not matter if it is interrupted to permit the d isplay to be updated or 
if we need to read another switch while waiting for the conversion to be completed. 

These are examples of real-time tasks that can be managed under an RTOS. As we can see 
in Example 16-2 th rough 16-4, each task is a separate, comple te function that executes forever. 
Each "thinks" it is the only program running, but each transfers information to a data area to 
be used by another task. 

Example 16-1 ND Display Example 

I' Initialize all 1/0 *1 
I'"' Do Forever * / 
1* 
I' 
I' 
I' 
1* 
I' 
1* 

Get s witches */ 

If Switch 1 p r essed 

Then *1 
Digitize channell */ 

Upda t e LCD 
ElseIf Switch 2 press ed 

The n *1 
1* Digi t ize channel 2 *1 
1* Update Display *1 
1* Else do nothing *1 
1* End Do f ore ver *1 

Exam ple 16-2 Real-Time Ge t Switch Task 

/* Do Forever * / 
/* Wait f or a switch closure */ 

I * Get which ",itch is closed * I 
1* Set ;lhichSwitchClosed information *1 
I' 
1* End Do forever *1 
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Example 16-3 Real-Time DigitizeChannel Task 

/* Do Forever *1 
I' Wait until WhichSwitchClosed cha nges 
/* Start AID conversion of the required channel ? { 

/* Wait for the conversion to be complete ~ / 

1* Update CurrentADValue *1 
I' End Do forever *1 

Examp le 16-4 Real-Time UpDa teDispla y Task 

lit: Do Forever -../ 
/... Put task to sleep to wait for 50 ms since the l ast 

display update 'I 
I ' Convert CurrentADValue to DisplayValue ' / 
1* Send DisplayValue to LCD ' I 
1* End Do forever 'I 
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Task Execution States 

Task Switching 

Each task in the real-time system may be in one of the following execution tates: 

I . S leeping: A task may choose to delay its execution for a fixed time: during thi rime. it 
is said to be sleeping . 

2. Suspended : A suspended ta k i not available for cheduling. The RTOS can suspend 

or resume a ta~ k. 

3. Blocked : A task lhat is blocked i not running becau e it is waiting for some exter­

nal event to occur. For example. it may be waiting for a time period to elapse or a shared 
resource to become available. When ta_ k are blocked. the~ u ual ly bave orne timeout 
period pecifying the maximum time the)' can remain blocked. 

-I . Waiting or read y: A task thm is not blocked or suspended. and is not running be<.-ause 
another ta~k with higher priority is running. is in a lI"ailillg or 1"r!ady state. 

5. Executing or r unning: The task is using the CPU. 

In the multitaSking. )ste m sho\\ n in Figure 16-~. each user is allocated a unit of CPU time .. -\ 

timer intemlpl. as \\e de>t"ibed in Chupter 1-1. controls the tasl. '\\ itching. This type of s~ stem 
i. called a mlllul /YIbill s, stem. 

Anothe r lllultiW,I-ing deSIgn 'trJteg~ " '"II d ""elll-dri"OI c'r pri!,rity sch,·Juling. In this 
ca,e. ta,ks 31" , witched onl~ \\ hen a t"sl- \\ nh Illght'r pri\lrit~ net"I, ,ervke. E, ent-drl, en!:lSI­

~ \\ ilchlllg can hI.! 1l01l/JJ"l't''''f,t;\'t' or /'I\,(,,,,pl;\'t" 
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In Figure 16-6a, a nonpreemptive kernel starts the low-priority task ( I , 2) and then detects 
an interrupt that indicates that a high-priority task needs 10 run (3). The low-priority task com­
pletes its execution (4) and then relinquishes control of the CPU. The kernel does a context 
switch (5) and allows the high-priority task 10 run (6). 

Figure 16-6b shows a preemptive kernel. As before, the low-priority task is running ( 1, 2) 
and an interrupt signals the need for the higher priority task (3). Now the kernel suspends the 
low-priority task (4), performs the context witch, and allows the high-priori ty task to run (5). 
When that task is completed, the kernel allows the low-priority task to resume (6, 7). 

(1) Kernel starts (3) Interrupt (5) Kernel does (7) Kernel runs idle 
task until another 
task needs to run 

low-priority task prepares high-
as scheduled priority task 

Kernel 

Low-Priority Task 

High-Priority Task 

(a) 

(2) Low­
priority 
task is 

running 

to run 

(4) Low-priority (6) High-priority 
task finishes task runs 

~ CPU allocated to the task 

~ CPU allocated to another task 

(1) Kernel starts (3) Interrupt (4) Kernel does (6) Kernel does (8) Kernel runs idle 
low-priority task prepares high- context switch context switch task until another 
as scheduled priority task to run high- to run low- task needs 

Kernel 

Low-Priority Task 

High-Priority Task 

1 to rui ;riOrity task 7rity task jto run 

1 
I 

(2) Low-priority 
task is 

running 

(b) 

'1 
(5) High-priority 

task runs 
(7) Low-priority 

task fin ishes 

Figure 16-6 Task switching. (a) Nonpreemptive. (b) Preemptive. 
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The Context Switch 

Each time a task is switched, either into or out of execution, the machine's 
The Colllex' switch saves the current con text must be restored or saved. Figure 16-7 shows the ituation fac-

task's CPU registers. ing the designer of the context switching portion of the RTOS kernel. 

For each task that executes. the CPU contains a program counter. a stack 
pointer, and registers w ith values specific for that task. When a task switch is made. these 
va lues must be saved and then restored when the task runs again. An interrupt often signals a 
task switch; as we know, the program counter, and in some processors all other registers, are 
saved on the stack. This arrangement saves the interrupted task's context. and the RTOS then 
switches to the next task by fi rst restoring i ts context and then starring it up again. 

Each task must have an area of RAM for a task control block or process control block. as 
shown in Figure 16-8. The task state is the execution state of the task (running, waiting. etc.) 
The priority establishes the task in the pecking order of all the tasks in the system. The stack 
pointer comains the currem value of the task' stack pointer, and the timing pararnetercoOlains 
timing information needed to chedule the task. 

Let us say Task #2 is running. wi th its program coumer pointing 10 the next in truction 
10 be executed, its registers holding with values that are being used. and the stack pointer 
poiming 10 the last (or next) used location on its stack. ow assume an interrupt that transfers 

Figure 16-7 RTOS context sw.tchlng. 
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Figure 16-8 RTOS task control block. 

Task State 

Priority 

Stack Pointer 

Timing 

conlrolto the kernel to do a task and context switch if needed. The program counter and the 
registers are pushed onto Task #2's stack, saving its context. The kernel saves Task #2's stack 
pointer in the task control block and then determines the next task to be switched in and run. 
It loads the stack pointer register from that task's control block and executes a return from 
interrupt inslruction, which reloads the new task's context from its stack, where it had been 
saved earlier. 

Real-TIme Timing: The Clock TIck 

Many of the tasks in a real-time system need to keep track of time intervals 
A clock lick allows tasks to be run at for time delays and time-outs. For example, the UpDateDisplay task 
specific intervals or to be delayed a 
specific time. 

in Example 16-4 will need to update the display at something over 20 to 
30 Hz to avoid flickering. Thus, a timer must be used to ensure that this 
high-priori ty task runs at appropriate intervals. Many microcontrollers have 

a timer with a real-time interrupt feature , as we described in Chapter 10. This can generate a 
clock lick to be used for all system timing. When the clock tick interrupt occurs, the RTOS kernel 
checks to see if the waiting time for any of the tasks has elapsed and schedules them to run. 

Sharing Resources 

Because tasks are independentl y developed , they have no knowledge of 
A semaphore is used to control any other task, except to operate on information transferred from another 
access to shared resources. task. Even then. their internal working should be tota ll y transparent to 

another task. Now consider two independent tasks that must share a sys­
tem resource, such as the serial port , to send messages to a system user. One task may be 
reporting the result of a routine analog-to-d igita l conversion, wh ile the other reports some error 
condi ti on that may have occurred. We would like neither of these to interrupt the other or to 
intermix the messages. 

The RTOS kernel provides a way to manage exclus ive access to a resource by providing 
a semaphore. When a task is using a resource, it sets the semaphore to excl ude others. A lask 
that needs the resource must wait until the other task finishe. and releases the semaphore. In 
Figure 16-9a, Task # I requests the semaphore to use the shared resource. In Figure 16-9b, it has 
been granted access, and the semaphore is reset to block Task #2's access to Ihe resource. 

Task #1 
requests 

~----, semaphore 

(a) 

(b) 

Semaphore = 1 

Task #1 
acquires 
resource 

Task #2 
denied the 
semaphore 
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Figure 16-9 (aJ Semaphore requested by 
Task #1 . (b) Semaphore denied to Task #2. 

n,ere are three types of semaphore. A biliary semaphore is used for a ingle resource. uch 
as the serial port just described. The re ' ouree is either 3,·aiIable or not. A cowmng semaphore is 
used when there are multiple. identical re ources to be shared. A counting semaphore could be 
initialized 10 the number of blocks of memo,) that tasks can request for tempo~ torage. For 
example. a task may request a block of memo,) 10 tore 'uccessive AID values before calculat­
ing the average of onc channel of data. Another task may nt~ a similar bloc\" for another analog 
cl;;"lIlel. E:lch time a memo" block is allocmoo to a task. the counting semaphore i decremented 
and then incremented. whe~ the memo,) i, relea;:oo b~ the task. If the semaphore has decre­
mented to lero. a task mu,t wait until a block IS released before it an continue. The third type of 
semaphore. the 111111('.\ or mlllilal exclusioll semaphore. is usoo to reduce I,rioriry ill\·t'rsi()fL.~. 

Priority Inversions 

A priorit) in' ersion call occur in a preemptl\<' RTO \\ hen a shan-d resoUl'l'<! is being used b~ 
a tusk and" higher prillnt) t"sK \\ i,he, to the the res,)"ncc. In thiS ,c-enario. \Figure Itt-IO • 
",,"me that T:". # I is the 11Ighest an,1 Tas. #~ th,' IIl\\cst rn"ril~ . ssume that Task #3 i, 
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'"'1 .. ..---- Priority Inversion ---•• -11 

(3) (5) (6) (12) (13) 

tit t t 
Task #1 

Task #2 

Semaphore 

Task #3 

t t t t t t 
(1) (4) (7) (9) (10) (11) 

c::::=J CPU allocated to the task 

~ CPU allocated to another task 

Figure 16-10 Priority inversion. 

A prioriry iI/ version occurs when a 
lower priorilY task prevenls a higher 
priorilY lask from running. 

running ( I), and it acquires the semaphore for the resource it shares with 
Task # 1 (2). Assume that an event occurs (3) Ihat blocks Task #3 (4) and 
runs Task # I, which tries to acquire Ihe semaphore (5). Because Task #3 
controls the semaphore, Task # J i blocked (6), so Task #3 resumes run-
ning (7). At (8) an event occurs that causes Task #2 to run . Because Task 

#2 is higher priorily than Task #3, and does require the shared resource. Task #3 is blocked (9) 
umil Task #2 finishes ( 10). Finally, Task #3 is allowed to complete when il releases the sema­
phore ( I I). Task # I can now run 10 completion ( 12. 13). During the lime Tas k # I was blocked 
by the IOlller priority Task #3. Task #3's priority was effectively inverted 10 the same priority 
as Task # 1. This is called prioriTY inversion. Note that although Task #3's priority seems to be 
higher than Task # 1 's, it remains lower than Task #2's because Task #2 blocks Task #3 at (8). 
Table 16-2 summari zes the priority inversion case. 

Figure 16- I I shows the same scenario, but now a mutual excl usion (mutex) semaphore with 
priority inheritance is used. When two tasks with differem priorities need Ihe same resource, 
the mutex semaphore is, again, a binary semaphore; when the higher priorily ta k requests the 
resource, however, the lower priority task's priority is raised above that or higher priority task 
so that it continues to run to complete its use or the resource. In Ihi s way. Tas k #2's execution 
is delayed until both Task #3 and Task # I complete. See Table 16-3. 

Passing Information 

As we saw in Examples 16-2 through 16-4 , tasks arc el r-co nt a ined runctions Ihat rlln 
rorever. Yet we must have some way to pass inrormati on between tasks . The GetSwi tch 
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Table 16-2 Priority Inversion 

( I ) 

(2) 

(3) 

Task 

Task #3 is running and Ta~ks "1 and #2 are waiting. 

Task #3 is running and acquires the semaphore for the shared resource. 

An evem causes Tusk # I to run and blocks #3. 

(4) Task #3 is blocked by #1. 

Task # 1 attempts to acquire tht: semaphore and fails. 
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(5) 

(6) Task # I is blocked while waiting for the semaphore. even though it has higher priority than Task #3. This allows #3 to resume. 

(7) Task #3 resumes. 

(8) An event occurs that C3U!~es Ta.!.k #2 to preempt #3. 

(9) Task #3 is blocked by #2. 

(10) Task #2 finishes. allowing #3 to re~ume. 

( II ) Task #3 finishes. releases the semaphore. and goe.!. to waiting. 

(12) Task # I acquires the ~emaphore and resumes execution. 

(13) Task #1 fi ni shes. releases the semaphore. and goes to waiting. 

~ Priority Inversion ~ 

Task #1 

Task #2 

Mutex 
Semaphore 

Task #3 

(3) (5)(6) (10) 

tit t 

t t t t 
(1 ) (4) (7) (9) 

C=::J CPU allocated to the task 

~ CPU allocated to another task 

Figure 16-11 Priority Lnversion WIth priority Inhentance. 

(11) 

t 

t 
(12) 

Global data should 1101 he lI,cd 10 

pass information b~twccn ta .... k"l , 

task tl1l1~t indicate thell a S\\ II,-h closure hu~ b~n made. and II mu, 
pa>s Ihe switch thell \\3' aCll\ateuto the L'lolu:eChan:>el task s 
that II can COn\crt the -otTert analog cho.nnd. D:gn i:"Cha~~e 
Ihen po"e, Ihl' ,ligital \ ,{lliC to the "pctat"D1Sl'~a\' task. 
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Table 16-3 Priority Inversion with Priori1y Inheritance 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(M) 

(9) 

(10) 

(II) 

Task 

TU!i1i. #3 i\ runmng and Task~ # I and #2 are wniting. 

T3.!1k #3 j, running and ncqulre.~ the semaphore for the shared resource. 

An c\'cnl C:lU\CC, Task #I I to run and block" #3. 

Tl.I' .. k #3 ." blockcd by II I. 
"rJ .. k #I I aucmpt .. to acquire the scmaphore and fails. 

Ta ... k #I I ie; blockc!d while wailing for the semaphore. even though il has higher priori ty than Task #3. This allows #3 to re!)ume. 

Task #3 's priority b mi\cd (0 be higher than II I. and #3 resumes execution. 

An event ocell" Ihal requires Task #2. but bccau~e #3 now has the higher priority. #2 is blocked and #3 conti nues. 

TII,k #3 finhhcs. releases the semaphore. and goes 10 wai ting. 

Tn\k II I at:quires Ihe semaphore and resumes e;~eculion. Task #2 remains blocked because # I has higher priority. 

Tu,~ # I finis.hes. releases lhe semaphore. lind goc~ to wai ling. allowing #2 to execute. 

(12) Ta,~ #2 fini!-hc\ and goes 10 wUlling. 

Task #1 Create 
Post 

i-
T
-
a
-
sk
-#1----lS 

Data 

Figure 16-12 RTOS mailbox. 

Mailbox #1 

Mailbox #2 

pTask1Data 

Mailbox #4 

Mailbox #5 

Task #2 

Que~~ ____ ~ 

______ Task #2 

Data 

II is templing for begin ning programmers to use globaJ data for this information transfer. As 
we suggested in Chapter 6. this can lead to interaction problems belween functions , especiaJly 
in the case of real-time systems. Therefore, the RTOS kernel will provide a way to pa s infor­
mation through data structures that are nOl g loball y known. 

Mailboxes and Message Queues 

Mai lboxes and message queues are used in real-time systems to pass infornlat ion between 
tasks. Figure 16-12 shows mai lboxes, which are in an area of system RAM. Each mailbox wi ll 
contain a pointer to data in a task. The task creates the mailbox. and the kernel a llocates stor­
age for the mailbox and returns a pointer to the mailbox to the task. The task can then post the 
pointerto its data (pTasklData), which may be any data s tructure, in the mailbox with system 
functi on calls. The receiving task can query the mailbox to get the data pointer. The operating 
system allows handshaking between Ihe two task and usually has a time-out feature so that if 
Task #2 is trying to query the mailbox for the data and Task # I has not posted it yet, Task #2 
will not be held up indefinitely. 

Task #1 

Task #1 
Data 

Create 
Post 

Delete 

Next Available Block ~ 

Figure 16-13 RTOS message queue. 

16.3 Conclusion and Chapter Summary Points 

Data 
Block 1 

Data 
Block 2 

Data 
Block 3 

Data 
Block 4 

Data 
Block 5 

Query 

Task #2 

Task #2 
Data 
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A message queue is very similar to a mailbox except a queue allows blocks of data to be 

transferred. Often a firsl-in first-oul (FIFO) circular buffer. the queue offers the advantage over 
a mailbox in thai Task #2 might gel behind Task #1 when #2 is reading #I's data. Uit does. Task 
# I can simply ask to u e the next data block in the buffer (Figure 16-13). 

16.3 Conclusion and Chapter Summary Points 

In this chapter we have barely scratched the surface of real-time operating y tems. There is 
much more to learn. and the best way to learn it is to start a project using an RTOS. Most RTOS 
vendors supply a demonstration program that will get you started. Imponant points from this 
chapter are the following. 

A soft real-time system may operate with soft lime constraints. If task deadline are not 
mel. the sy tem can survive. 

Hard real-time systems must maintain strict time perfonnance and mu t meet task 
deadlines to avoid system faults. 

• A task is a funclion that executes indeIJ<!ndently of other tasks in the application. 

An application consists of multiple tasks. 

A task may be sleeping. susIJ<!nded. blocked. waiting. or running. 

The RTOS kernd pro, ides task ,witching. 

• Time-,haring s~'tem' shal't' the CP eqllall~ with all usen; and are the antecedents of 
today'~ I'c.!ai-timc ~y~lcnh. 
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Real-time systems are multitasking sy tems that are event driven. 

The context swi tch ave all CPU registers to be used the next time the task runs. 

Tasks can share resources by using a semaphore to block another task when one ta k 
has acq uired the resource. 

Mailboxes and message queues are used to pass information between tasks; global data 
structures should not be used. 
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16.5 Problems 

Explore 

Stimulate 

Challenge 

16. I Use the documentation supplied with your RTOS, to make a table showing the system 
calls and the place in your documentation that gives detai ls for the following fu nctions: 

a. task management functions 
b. time management functions 
c. semaphore management functions 
d. mailbox management functions 
e. message queue management functions 

16.2 Does the operating ystem you are studying offer preemptive or nonpreemptive 
scheduling? 

16.3 List at least five soft real-time system application. 

16.4 List at least five hard real-time system applications. 

16.5 Assume that an interrupt has just occurred, signaling a task switch. Your operating sys­
tem maintains a pointer to the currently executing task's control block (Figure 16-8), 
pCurrentTCB, and uses a function GetNextTCB () to request a pointer to the next 

16.5 Problems 

task 's contro l block. Write a pseudocode function that would run on your microcon­
troller to accomplish the context swi tch. 

16.6 Assume that the interrupt in Problem 16.5 is a clock tick signaling that it is time to 
check if any waiting tasks are higher priority than the currently running task. What 
must you add to the pseudocode? 

417 



Appendix Binary Codes 

A.1 Binary Codes Review 

Coding is a two-part process consisti ng of encoding and decoding. Encoding mean convening 
in formation into a form that can be used in the microcontroller. generally into a binary code. 
Decoding a llows us to convert the coded infomlation back to its original form. Whenever we 
choose a bi nary code. we consider the Following. 

The type of information to be encoded: Is the infomlation numerical? Are there negative and 
positi ve numbers? Arc there fractional or just integer numbers" If the information is not numer­
ical. is there a standard code to be used? How much infomlation i there? What is its range of 
values? To what resolution do \\ e need to know and encode the information? 

The number of bits needed to represent the information: The number of bits needed depend 
on the amount of information to be encoded and the resolution to which we need to know the 

information. 

Number of bits 2: log, (number of infommtion element) 

or 

Number of bi t ~ 2: log, ~f~u.::I1-.:- ::c.::al::e~\~·a.::lu:.:.e 
-- resolution value 

When we know the number of bits required. we can calculate the number of code wa 

avai lable. 

timber of code words = 2"~""'''' "", 

ee Example, A- I and A-2 . 

Example A-1 

4 
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Solution 

N ~ log, (nu mber of information elements) ~ log, (83) 
log, 83 = 6.375; therefore. N = 7 -
Ho\\ much larger can the class grow before another bit is needed? 

Solution 

Si llce 2' = 128. the class can grow by 45 siudents. 

ExampleA-2 

A binary code is needed to encode an analog voltage converted 10 a digital va lue by an ana­
log-la-digital converter. The max imum vohage is 5.0 V and the resolulion req uired is 0.0 I V. 
How mnny bi ls arc required? 

Solution 

N ~ log, (full -scale valuelresolulion requ ired) = log, (5.010.0 I) = 8.9; Iherefore, N = 9. 

Binary Codes for Numerical Information 

We use several code for numerical informat ion. The fi ve Ihat are most important to mi crocon­
troller user are ( I) un igned binary. (2) signed/magnitude, (3) ones' complement, (4) two 's 
complement. and (5) bin ary coded decimal. 

UnSigned Binary Code 

The unsigned binary code is a positi ve weighted code; each bit in the code word has a weight 
(o.r value) ~ccordtng to its position. Each digit is assigned a po ition starting at the binary point 
With zero. tncrea tng to the le ft. and decreasing to the right. The weight of each position is the 
base ral ed to the power of the digit position. The left -most bit is the 1II0St sig ll ificallt bit (MSB) 
and the fi ght-most blithe least sig ll ificClI/I (LSB). See Table A- I. 

I 
. . The unsigned bin ary code uses all positive weights and represents only 

Ullslglled bIlW/" codes are used for I po itive infor~a tion . The number of bits, and therefore the number of 
postllve numcfl cal,nformallon. codes, determines how much informati on can be encoded. In a code 

word with p integer and q frac ti ona l bits, the number of codes is 

Table A-l Binary Word Bit Posi tions 

IIi", b, b, b, b" b., b , b_, 
Bit position 3 I - t -2 -3 
Bil \\cighl 2' 22 2' 2' 2-1 2 ' 2 ' 
Weights 0.5 0.25 0. 125 

MSB Bi nary Point LSB 
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Number of codes = 2p·, 

The range of numerical information that can be represented in a code word with p intege 
and q frac tional bits is 

Range = zero to 2P - 2-<1 

The resolution is the value of the least significant bit. In this case, 

Resolution = 2-</ 

See Examples A-3 through A-5 . 
The unsigned binary code can represent only positive information, but there are seven 

other codes used for negative information . The three used most commonly in the microcor 
troller world are the signed/magnitude, radix- I-complement (ones' -complement), and radi) 
complement (two's-complement) codes. 

ExampleA-3 

An unsigned binary code has four integer bits (p = 4) and two fractional bits (q = 2). How mru 
codes are there? What i the range of numbers that can be encoded? Whal is the smallest nUl 
ber that can be encoded? 

Solution 

The number of codes is 2"" = 2' = 64. 
The range of numbers is from 0 to 2p 

- 2" = 16 - 0.25 = 15.75. 
The smallest number that can be encoded is the resolution = 2" = 2-' = 0.25. 

ExampleA-4 

What are the weights of each of the bi lS p through w in an unsigned binary code word pqrslu 

Solution 

Code: p q r u v w 

Weights: 2' 2' 2' :!. 2-1 2~ 2-) 

16 8 4 2 0.5 0.25 0.125 

ExampleA-5 

How many codes are there. \\ hat is the range of numbel'.< that can be represented. and " 
the resolution of an un, igncd binary code \\ord pql'.<t.U\ w') 
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Solution 

I umber of codes = 2' = 256 
Range = 0 to 2' - 2 1 = 0 to 3 1.875 
Rc,olution = 2 1 = 0. 125 

Signed/Magnitude Binary Code 

SigncdlmagnilUde. one ... · -complement. 
and 1\\O\-COlllp lcl11cl1I binmy codes arc 
u\Cd 16r pc.., ... ilivl! and ncgalivc number.-;. 

The signed/magnitude biliary code is similar to our decimal num­
ber sy tem. The deci mnl code word for "plus twelve" is wri nen + 12 
or just 12. "Minus twelve" is encoded - 12. Two add iti onal sym­
bols. + and -. are added 10 the frolll of the digits used for the magni-
IUde. These sy mbols double the number of code words to be able 10 

rcpre"cnt both po"i tive and negative numbers. Notice that there are two codes for zero, +0 
and -0. By convclllion. we never use the code for minus zero. 

In the binary system. an additional bit 10 encode the sign is added to the binary digits encod­
ing the magn itude. A lero i" used for positive numbers and a one for negative. TableA-2 show 
the layout for a signed/magnitude binary code. Example A-6 shows a 7-bit binary code with 
one bit used as a sign and 6 bits to encode the magnitude. 

The range of information that can be repre enled with p integer bits (including the sign bit) 
plus q fractiona l bits is 

-(2'~' - 2-") 10 + (2'~ 1 - 2-</) 

For Example A-6. the range is - 15.75 to + 15.75. Again. there is a code l'or pillS and minus 
lero. See Example A-7. 

Example A-6 Signed/Magnitude Binary Code Examples 

o I 0 I I I I 
o 

Sign code Magnitude code 

+11.75 
-11.75 

The left-most bit is the sign bit , and the magnilUde is encoded with a 6-bit unsigned bi nary 
code. 

Table A-2 Signed/Magnitude Code Bits 

Bu ... h" h, h, h, h., b , h .. 
Bit po"illon p_1 I 0 -I -2 -<i 
Bil weight Sign 2l 2' 2 !) 2-' 2" 2" 
WcighL~ 0=+ 0.5 0.25 

1=-

o 
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ExampleA-7 

How many codes are there, what is the range of numbers that can be represented. and whal i 
the resolution of a signed/magnitude binary code word pqrsI.UVW, where p is the sign bit? 

Solution 

Number of codes = 2' = 256 (but two are used for zero) 
Range = -(2' - 2-') to (2' - 2-') = -15.875 10 15.875 
Resolution = 2-' = 0.125 

Ones'-Complement Code 

The definition of the radix-} or olles'-complemellt of a number X is 

Ones' complement = 2P - X - 2-< 

where p is the number of integer bits and q the number of fractional biLS. 
Example A-8 shows how to form the ones' -complement code for ±6.25. The left-most bi 

is an illdicaTor (called the sign biT) for the sign of the number. with 0 representing positive all< 
I negative. The range and the resolution of the ones'-complemel1l code are the same as th 
signed/magnitude code and, again. there are two codes for zero. The ones' -complemel1l cod 

is not a weighted code. 

Example A-a 

Find the ones' -complemenl code for -6.15, assuming a code of the form pqrsl.Uvw. 

Solution 

Find the unsigned binary code for +6.25 and add a ign bit in the mOSI significant bit positio 
Then, to find the code for -6.25 complement all biLS. 

6.25 
+6.25 
-6.25 

Two's-Complement Code 

o 

Two's-complement binary codes are 
u ed for negalive numbas in micro­
COl1lroller systems. 

I 

o 

o 
I 0 
o 

o 
o 

o 
I 0 
o 

Unsigned binary code for 6.25 
Ones' -complemel1l binary code for +6.15 
Ones' -complemel1l binary code for -6.15 

In the binar) number 8) tem. the rodi\ complement is the 01'( 

cOlllpit' lIIellt binar) ode. The definition of I,-integer bit, tW( 

complement of number X is 

1\\'0 's complement = 2' -.'i 
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Table A-3 Two's-Complement Code Bits 

BIL .... Onr I b~, b, b, b, b_, b , 

SII po\llion p-I I 0 - I - 2 

BII weigh I _2r- 2' 2' 2' 2-1 2-2 

\\'elght!'> 0=+ 0.5 0,25 

1= -

This is a lIegmivel)' weigh ted code because the most significan t bit has a negative weighl , 
as ,hown in TableA-3 and ExamplesA-9 and A- IO. 

There is only one code for lero in the two's-complement scheme. The code word used for 
minus Icro in the signed/magnitude code is used for the most negative number. We can see this 
by looking at the range of the two' -complement binary code. For a number with p integer and 
q fractional bits. the range is 

Range = - (21'-1) to + (2p-1 - 2--') 

The range of the binary number in Example A-9 is -8.00 to +7.875. The resolution is 2-<1 = 
0.125. See Examples A-9 through A- II . 

Example A-9 

Show the weights of a two's-complement binary number, I 0 1 1 .0 I I. 

Solution 

1 0 1 1 . 0 1 I = I X (_2' ) + 0 x 2' + 1 X 2' + I x 2' + 0 X 2-1 + 1 X 2-' + 1 X 2-' = -8 + 2 + I + 
0.25 + 0.125 = -4.625 

Example A-10 

What are the weights of each of the bi ts in a two's-complement binary code word pqrst.uvw? 

Solution 

Code: p q r s v w 
Weights: _24 2' 2' 2' 2' 2-1 2-' 2-' 

-16 8 4 2 0.5 0.25 0. 125 

Example A-11 

How many codes are there, what is the range of numbers that can be represented. and what is 
the resolution of a two's-complement binary code word pqrst.uvw? 

Solution 

Number of codes = 2' = 256 
Range = -(2') to (2' - 2 ') = -16.000 to 15.875 
Resolution = 2-' = 0.125 

The Sign of the Number 

A.1 Binary Codes ReView 4 

[n the signed/magnitude. ones '-complemenL and two 's-complement codes. the most significant 
gives the sign of the number. although the sign bit for signed/magnitude code could be placed a 
where in the code word. In two's-complementcodes the sign bit carries a negative weight.ln sign 
magnitude and ones-complement codes the sign bit does not canry a weight: it indicates the si~ 

Finding the Code for the Negative 

In decimal, when we want the code forthe negative ofa number, we "take the negative of it' 
simply changing the sign. For a signed/magnitude binary code, the same is true. The sign b 
complemellted to change a positive to a negative and vice ver a. See Example A-6. 

The ones' -complement code for a negative number is found by complementing each 01 
bits in the code for the positive number. Thi process is called olles' -complemelllillg. or 
complemelltillg the bits. See Examples A-8 and A-12. 

Finding the code for the negative in a two's-complement number system involves an e 
step. We find the code for the negative by rakillg tile /1I'O'S complemeJ1l of the code for 
positive. This is analogous to "taking the negative" of a igned/magnitude code. The 11 

complement of any number is found as follows: 

Two's-complement code = Ones-Complement code + 2"' 

Taking the two's complement to find the negative is a three- tep proce 

I. Find the two's-complement code for the po,iti\,e number. 

2. Complement each of the bits (one's complement). 

3. Add one to the least ,ignific3m bit po ·ition. 

Thi procedure is shown in Examples A-13 through A-IS. 

Example A-12 Ones' -Complement Binary Code Example 

o 1 a 1 1 . I 1 = + 11.75 

Complement each bit 10 lind the code r,,, _11.7:. 
I 0 I 00 . 00 = - 11.75 
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Example A-13 Taking the Two's Complement 
3.25 0 0 I I 0 I 0 0 Two's complement code for +3.25 

Ones' complement I I 0 0 I 0 I 
Add2~ 0 0 0 0 0 0 0 I 

- 3.25 1 0 0 0 0 Two's complement code for -3.25 

Example A-14 

Find the Lwo's-complemenL binary code for -6.25 assuming a code of the form pqrsL.uvw. 

Solution 

+6.25 0 0 I I 0 0 I 0 Two's-complement code for +6.25 
Ones ' complement I I 0 0 I I 0 

Add 2 ' 0 0 0 0 0 0 0 I 
-6.25 0 0 0 Two's-complemenL code for-6.25 

Example A-15 

Take the LWO 'S complement of the code for -6.25 La find the code for +6.25 . 

Solution 

-6.25 I I 0 0 I I I 0 
Ones complemenL 0 0 I I 0 0 0 

Add 2-' 0 0 0 0 0 0 0 I 
+6.25 0 0 0 0 0 

Binary Coded Decimal 

A 4-bit, unsigned binary code is someLimes used to encode the Len decimal digi Ls 0-9. This 
1I0lllrai billa/)' coded decimal is used so frequently that it is usually just called biliary coded 
decimal or BCD. Table A-4, presen ted shortly, shows the natura l BCD code. Because only 
4 bits are used for each of the decimal di gits. it is conven ient to pack two BCD digits into one 
8-bit byte. See Example A- 16. 

A.1 Binary Codes Review 

Example A-16 Packed BCD 

Use an 8-bit packed BCD code to. give the code for the deci mal numbers 23, 45, 99. 

Solution 

A packed BCD code has 4 bits for each decimal digit in one-half of each byte. The most ' 
nifican t nibble has the most significant digit's code. 

23 
45 

99 

o 
o 

o I 0 0 
I 000 

o 0 

o I 
I 0 

o 0 

Hexadecimal Codes 

The hexadecimal. or base-I 6. number system is shorthand for strings of binary digits. Like 
BCD code, the 16 hexadecimal digits, 0--9. A-F, are encoded by using an unsigned binary c, 
The hexadecimal digi ts and their binary codes will be shown in Table A-4. See Example A· 

Example A-17 Hexadecimal Codes 

Coven the binary number I 0 I I 0 I 0 I to hexadecimal. 

Solution 

Stan wi th the fourleast significant bits (0 I 0 I) = 5: the most significant four bits (10 I I) 
The hexadecimal number is B5. 

You Have to Know the Code 

Binary Arithmetic 

If given a binary number and asked what it means. you cannot answer unless you know 
code is bein2 used. Table A-4 shows the different infoffilation that is decoded from a 4-bit 
word by usi;'g the different codes covered in this section. 

UnSigned Binary Arithmetic 

Adding and subtracting un igned binal) numbers are done just as we add and ubtrlll 
magnitudes of decima l numbers. In each case we keep track of carries into or OOtTOWS 
the next-t11ost-signilicant digit position. ee Examples A-IS and A-19. 
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Table A-4 Four-Bit Binary Code Comparison 

Code Word Unsigned Binary Ones' Compl. 

0000 0 0 

000 1 

00 10 

001 1 

01 00 

0 10 1 

0 110 

0 111 

1000 -7 

100 1 -6 

1010 10 -5 

10 11 II -l 

11 00 12 -3 

11 0 1 13 -2 

111 0 14 - I 

1111 15 - 0 

Range 0-15 -7- +7 

Example A-18 Unsigned Binary Addition 

Add the 4-bit binary codes for 6 and 3. 

Solution 

Carries I 0 
6 0 I 0 

+3 0 0 

9 0 0 

Two's Compl. 

7 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

- I 

-8-+7 

Example A-19 Unsigned Binary Subtraction 

Sublmctthe 4-bit binary code 3 from 6. 

Solution 6 0 I 0 
-3 0 0 

0 0 
Partial difference 

0 
80rrow 
Difference 3 0 0 

Signed/Mag. BCD Hex 

0 

4 4 4 

5 5 5 

6 6 6 

7 
-{) 

- I 

-2 NA A 
-3 A B 

-4 NA c 
-5 NA D 

-6 NA E 
-7 NA 

-7 - +7 0-9 O-F 
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Overt/ow 

An overflow is an error condilion that 
An overflow OCcurs if the resull of adding or sublracting (or multipli-

ying Or dividing) two numbers is a number oULSide lhe allowable range. 
occurs when the result of an arith-

In Example A-20 we lry to use a 4-bit unsigned binary code 10 add 9 
metic operation cannot be represented 

and 10. The expected result, 19, requires 5 biLS. The carry bit out of the 
by the number of bits available. 

most significant bit indicates an overnow of the available biLS. In micro-
controller systems, this error in unsigned arithmetic is detected with a 

special flag called the carry fl ag. 

Example A-20 Unsigned Overflow 

Add the 4-bil binary codes for 9 and 10. The result must be 4 bits also. 

Solution 

Carry = overflow 0 0 0 
+ 9 I 0 0 I 
+10 I 0 0 

+ 3? 0 0 

Two 's-Comp/ement Binary Arithmetic 

The beauty o f using the [Wo 's-complement code for signed numbers is that the hardware to do 
additio n and subtractio n is lhe same as the hardware for unsigned binary coded arithmetic. 
Further, one can easily subtrac t two numbers by adding the two's complement of the subtra­
hend to the minuend. This is shown in Example A-2 I for a 6-bil. two's-complement code and 
in Example A-22 for an 8-bit code. 

A two 's-complement overnow occurs when the result of an addition 
A microcontroller sets a bit called or subtraction is outside the allowable range of numbers for the number 
the (Wo 's-complement overflow flag of bits available. When two's-complement numbers are added or sub-

in two's- tracted, a carry out of the most significant bit position does not indicate when overflow OCClIrs 

complement arithmetic. an overflow as it does in unsigned binary arithmetic. See Example A-23. 
There are various a1gorilhm for detecting a two' -complemeot over­

flow. One o f the easiest to understand i the following: 

A (11'0 's-colI/plell/em OI'eljlOlI' occ"rs if addillg or sll/1Imc(illg IWO lIumbers oflhe same sign 
yields (I resu/, 1I';th a different sigll. 

1\\'0 's-compleme,,1 Ol'e lj1ou' COflllOI occur wilt'" Olll' ;s adding or subtmcting (WO llIunbers of 
OPPo.Ii(f "Iigll. 
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Example A-21 Subtraction by the Addition of the Two's Complement 

Subtraction by Adding the 
Binary Subtraction Two's Complement 

+5 a a a I a +5 0 a a I a 
-3 0 0 0 a +(-3) I 0 

+2 a a a a 0 +2 0 0 0 0 0 

Example A-22 

Use 8-bit. two's-complement binary codes (5 integer and 3 fractional bits) to compute 
8.75 - 10.5. 

Solution 

8.75 0 0 0 a I 0 Two's-complement binary code for 8.75 
10.50 0 I 0 I a a 0 Two's-complement binary code for 10.5 

- 10.50 0 0 a a Two's-complement binary code for -I 0.5 
Therefore 

8.75 0 I a 0 a I a Two's-complement binary code for 8.75 
+ -10.50 0 0 a a Two's-complement binary code fo r - 10.5 

-1.75 0 a 0 

The result is negative. To find the magnitude of the result , take the two's complement. 

a 0 a a I I 0 = 1.75 

Example A-23 Two's-Complement Overflow 

Add the 4-bit. two's-complement numbers +6 and +3 and detect if an overflow occurs. The 
result is to be 4 bits. 

Solution 

Carry does not = overnow 0 I I 0 
+6 0 I 0 
+3 0 0 I 

-77 0 0 

Two's-complement overflow ha occurred because the sign of the result is different from the 
ign of the two numbers. 

• 
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BCD Arithmetic 

BCD numbers can be added. but the 
binary result must be adjusted with a 
decimal adjust for additioll insLruc­
(jon to achieve the correct result. 

As shown earlier, BCD codes encode the 10 decimal digits, each with 4 
bits. Often two 4-bit BCD digits are packed into a single 8-bit byte for 
convenient storage. The microcontroller can add these bytes like any 
normal , binary addition; when the data are BCD numben.. however. a 
special adjustment must be added to correct the binary result to BCD. 
Consider adding 3410 to 29

10
, where 34 and 29 are encoded in BCD. 

+34 0 0 I 0 I 0 0 
+29 0 0 0 I 0 0 

50? 0 I 0 I I 0 I 
+ Adjustment 0 0 0 0 0 I 0 

+64 0 0 0 0 0 

The result, 5016, achieved by the microcontrollers billary arithmetic add instruction. is not cor· 
rect in either binary (SOlO = 93 1.l or BCD (110 I i not a valid BCD digit). The microcomrollet 
has a special instruction that. if executed immediately after adding the two BCD numbers 
automatically adds an adjustment to correct the result to BCD. This instruction is often callec 
decimal adjlls/ for addilioll. 

Binary Codes for Non numerical Information 

The ASCII Code 

Sometimes encoded (or decoded) infomlation is not a number. A common example is 
alphanumeric information sent from a keyboard to a computer or from a computerto a <lispla 
Codes used for this application are called unweighted codes because. unlike the numerica 
codes, there is not a weight associated with a bit's po ition. To find out \\hat a code m 
you must look it up in a table. 

The Americall SWlltiaro Code for Iliformarioll IlIlerchallge (ASCII) is used to encode alph 
numeric infonn3tion: for example, keys on a keyboard or letters displayed on a terminal. 
ASCII code for alphanumeric infomlation are ' hown in Table A-:. See Example A-~-\. 
two left-J11ost colul11ns (M digit = 0 and I) are comrol code thm ha\e been defined for se . 
data cOI11J11unications. These are ,hown in Table A-6. 

Example A-24 ASCII Code 

Find the A ell code for the letter H. 

Solution 

Hi, In the ~IS dlgJl ",11111111 '-\' Jnd the LS digt! 1\)\\ '8'. Thu, H =-\' 
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A.2 Problems 

Explore 

Table A-S ASCII 7 -Bit Codes for Alphanumeric Characters 

MS Digit 

LSOigit 

A 

B 

C 

D 

E 
F 

A- I 

A-2 

A-3 

NUL DLE SP @ P 

SOH DCI A Q 

STX DC2 2 B R 

ETX DC3 3 C S 

EOT DC. • D T 

ENQ NAK % 5 E U 

ACK SYN & F V 

BEL ETB a IV 

BS CAN H Xa 

HT EM Y 

LF SUB Z 

VT ESC + K [ 

FF FS < L 

CR as M m 

SO R5 > N 

51 US 0 DEL 

Use the ASCII code 10 encode your name. fa] 

Decode Ihe ASCn message 44 65 73 69 67 6e 69 6e 67 20 77 69 74 68 20 6d 69 63 72 
6f 7072 6f 63 65 73 73 6f 72 73 20 69 73 204655 4e 2 1. [a] 

Gi ve the decimal value of the following binary code words assuming (i) unsigned 
binary. (i i) tWO's-complement binary, and (i ii) signed/magnitude codes. [a) 

a. 10101010 
b. 0[010101 
c. 11 001100 
d.OOIIOOII 

e. 10000000 
f. OIlIlIlI 

A-4 Find the tWO's-complement binary code for the following decimal numbers: [a] 

a. 26 
b. -26 
c. 32.125 
d. -32.[25 

Table A-6 ASCII Control Codes 

00 UL 
01 SOH 

02 STX 

03 ETX 

04 EOT 

05 ENQ 

06 ACK 

07 BEL 

08 BS 

09 HT 

OA LF 

OB VT 

OC FF 
OD CR 

OE SO 

OF 51 

10 DLE 

II DCI 

12 DC2 

IJ DC3 

14 DC4 

15 NAK 

16 5YN 

17 ETB 

18 CAN 

19 EM 

IA 5UB 

18 ESC 

Ie F5 

10 a5 

IE R5 

IF U5 

Null 

SWrt of header 

Slart oftcxl 

End of lex I 

End of transmission 

Enquiry 

Acknowledge 

Bell 

Back space 

Hori zontal lab 

Line feed 

Vcrticalt3b 

Fonn feed 

Carriage return 

Shift OU I 

Shift in 

0 :1t3 Link Escape 

Device cOlllrols 

Negati,c acknowledge 

Synchronous idle 

End of IrJn~mb~ion block 

Cancel 

End of medium 

SubSlilUIC 

Escape 

File ~cpar.lIor 

Group'lcparmor 

Record ~Cp;H1I1llr 

Unit'iCpar.llor 

A.2 Problems 433 

CharaclCr with all zeros 

U~ed at the beginning of a sequence of characters that constitutes a machine-readable 
address of routing information; the header is lenninalcd by Ihe STX character 

Charactcr thai precedes a sequence of characters to be treated as an entity; STX may 
be used 10 terminate a sequence of characters Started by SOH 

Character used to tcrminate an STX sequence of characlers 

Indicates thc conclusion of a lfansmission 

Used as a request for a response from a remote station 

Chamcter tr...tn~m ilted by a receiver as an affirmative response 

Character uc;ed 10 control an alann or attention device 

Controls thc mm'cment of the printing mechanism back one space 

Controls the movemcnt of the printing mechanism to lbe next predefined tab position 

Move!. the printing mechanism to the next line: in some systems this rna) be 
intcrpreted as a "New Line" (NL). where the print mechanism moves to the. 
beginning of the next line 

Controls the movement of the printing mechanism to the next predefined printing line 
position 

lI.lo\'c~ the printing mechanism to the Sllln of the nexl page 

Moves the printing mechanism to the stan of Ihe line 

Indicates that the code combinations following are outside lbe character set of the 
standard ASC II table until a Shift In charneter is received 

Indicale~ thnllhe code characlers follo\\'ing are to be interpreted according to the 
standard ASCII labie 

Changes the meaning of a limited number of following characten.. OLE is usuall} 
tennmated by a Shift In chameter 

Char.lclcrs used to control ancillary de, ices associated \\ith dlra processing 

Transmitted by :1 recci\cr Jl<! a ncga[l\e response to the ~nde:r 

Character u~ed by a synchronous lransmi~.sion ~)~tem in the absence of an) othef 
character-. 10 maintain synchronism between the lr.lnsminer 3!ld re('l!1\cr 

U~ed to indicatc the end of a blOl..'l of datn 

Indic;ncs lhnt the- d:lt:l \\ ith \\ hich It b !)tnt h in elTOr or is to be disreg:mjed 

Scnt with d:uJ 10 repre"cnt the ph)~l('al end of the mooium 

Character thai rna) be ~ub"'[ltuled for a chJ.rocter thJllS Imalid or 10 error 

Control character mtC'mlt.-d to pn)\;de code c\.h:n\ion: ill~ u$U3JI~ 3 prefi, 3ffecting 
the interpretation of J limited number of C\.lnt1guou~l) foUQ\\ing l.'i1at"3('lm 

Infomlation 'l·par.ll~'''' that ma~ be u...ru "ithln data 
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Stimulate 

Challenge 

A-S Find the decimal equivalenl of the following two' -complement numbers: raj 

a.OIO II OI. I 
b. 10100 10. 1 
c. 1000 
d. 1010. 11 0 1 

A-6 A 6-bit. two's-comple ment binary code is to be used for in teger numbers. What is the 
range of in formation') Whal i, the re;olut ion" How many codes are there? [al 

A-7 How many bits are req uired to encode the decimal number 238 by mean s o f a BCD 
code? How many by mea ns of an unsigned binary code? How many by means of a 
IWO's-compkment binary code? 

A-S Find the binary code word, for the following hexadecimal numbers: [al 

a, BEEF 
b. FEED 
c. COFFEE 
d. FOOD 

A-9 Find the hexadecimal code words for the fo llowing bi nary code words: raj 

a. 010 11010 
b. 11110101 
c. 11 0101 
d. 101 

A-IO Prove that IWO·. -complement overfl ow cannot occur when two numbers of different 
signs are added. lal 

A-II For 4-bit-number. two's-complemenl addilion. choo e four examples to demonstrate 
the following: [a, bl 

a. Addition with no carry out and no two's-complement overfl ow. 
b. Addition with no carry out and Iwo's-complement overflow. 
c. Addition wit h carry OUI and no Iwo's-complemenl overflow. 
d. Addition wit h carry oul and Iwo's-complement overflow. 

• 

Solutions to Selected Problems 

Solutions to Chapter 2 Problems 

2. 1 What is the difference bem een an as em bier and a compiler? la. c) 

All assembler COIII'errs (II! assembly lallguage program consisting of operarions and 
Iheir operallds illlo Ihe machille language (Is anti Os} for lhe microconrroller. 

A compiler COIII'erlS a high-Iel'ellanguage. such as C, firsl in/a IiiI.' assembly 
lallguage Ileededfor Ihe lille ofC code, anti Ihen in/a Ihe machine language 
fo r Ihe microcolllroller. 

2.3 What i a microcontroller memol') map' [a) 

A graphic represenlalioll shOl";III1"hal killd of menwl)' is localed in "hal addrt'ss spau. 

2.5 What is the purpose of the program counter~ [a) 

The program COll/ller poillls 10 Ihe loearion in memol)'from which Ihe CPr.; is jelchin, 
instrllcrions. 

2.7 Give shon answers to the followmg: [a. g) 

a. What is a data bus' 
A parallel. /Jitiirecliollal. /Jmar\' !/((OrTl"'I;'l/l palh" "." ,,"h mulilrl~ _ ('u~-~ anJ 
deslillariolls. 

c. Hm\ i~ an inform311on :-.ource. ,u\,"h a ... J. :-et of ~\\ ih:hl.!' .... lnterfa,,"'e'd to J dlu ro~'" 

lVilil lilree-Hare gel/(' , "Iio.'( t'/whlt /.\ cOlI/mlled bl' ,m , ~d.lrr_' __ 01-: i'..,u" " 
READ c(lIlIfCll,<igIlOI. 

e. Give the .equence of c,cnl, that ('<'cur w hen a CPL d,~, an inrut (x !\".ld l .:~ -I 

CPU pI/II add/,'I' 011 II,,' "cldl'l'" hll,' 
A"tin',\" dt'c(~I<'f g,'Il('f(!/,' I[lR_Ol-. 
CPU (/.\.\fm RF I f) .. el/!tn.I'!~Il'" 

I"PUI dfrin' 1'111\ d,lId (III Ille d,U,ll'u\ 

CPU ,.·"d, II" dell" 

CPt dflll,'ffll RL In ,"<'IlIll"" '/101' 



436 Solutions to Selected Problems 

2.9 Explain why a compuler has ready or wait control signals. [c] 

The ready COlllrol sigllal allo",s Ihe speedy lIIicrocolllrolier 10 be sy"chro"ized \IIilh 
slower /10. such as a 11IIIIum setting data 011 switches. 

2.11 How do most microcomputer system solve the problem of multiple sources of 
information present on a data bus? [g] 

Mlliliple SOllrces call exisl as 10llg as addressillg alld address decoding are L/sed 10 
enable (jlle and Dilly Olle source through ,hree·stare gales (lI anyone time. 

2.13 Why must a latch be lIsed to interface an output device 10 the data bus? [a , cJ 

The data blls is aClive alilhe lillie, wilh data flo\llillg 10 and frollllllelllory alld 110 
devices. To be able 10 Oll lplll specijic data 10 an Olllplll device al a specijic lime, 
liialch IIIL/Sl be IIsed Ihal is clocked by Ih e wrile colll rol sigllal alld Ihe correcl 

address. 

2. 15 A microcontroller memory map shows 16 Kbyte of Flash EEPROM (ROM) in 
memory space OxCOOO-OxFFFF and I Kbyte of RAM in memory pace 
Ox 100000x 13FF. [c, kJ 

a. Give a range of addresses (in hex) suitable for locating code: 

OxCOOO-OxFFFF 
b. Give a range of addres es (in hex) uitable for allocating variable data storage. 

Ox I OOOO-Ox 13 FF 

2.17 Design an in struction decoder as shown in Figure 2-13 using AND, OR, and inverter 
gates 10 decode the 3-bit opcodes and prod uce a control signal asserted by each of the 
operations given in Table 2-5 . 

87 =D-86 ADD 

85 

87 =D-86 SU8 

85 

87 =D-8 6 IN 

8 5 

8 7 =D-86 O UT 

85 

87 =n-B6 MOV 

B5 

Figure 5-2-17. 

Solutions to Chapter 3 Problems 

2.19 Describe the instruction execution cycle of a move-immediate instruction shown in 
Table 2-11. [c, eJ 
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The program cowller poiflls 10 Ihe inslruclion 10 be executed; Ihis address IS applied 
10 Ihe lIIemory; Ihe opcode from Ihis address is Iransferred 10 Ihe inslruclion decoder: 
Ihe seqllence call/roller recognizes Ihe MVI inslnlclion and increments Ihe program 
COWlierlO poillllO Ihe next byte (the dala); the memory dala addresses is Iransferred to 
Ihe lIIemOIY address regisler and applied 10 Ihe memory: Ihe sequence controller gener­
CItes limed cOl11rol sigllals required 10 lransferdala/rom Ihe meltlQr) to the destination 
regisrer; the program coulller is incremented 10 rhe next instruction to be execUled. 

2.21 Draw a timing diagram relative to the system CPU clock hown in Figure P _2-21. 
which includes the addre s and data bu es. R/W _L. and the read control ignal 
(READ_L = active low) and shows a read cycle. [a] 

CPU Clock 

Bus Clock 

Address 1 i Add~s from CPU Valid 

i ____ L ____ ~-----~---------______ ~ 
I : ~ 

READ L ---r---- I 
-------- --, 

Data 

Figure 5-2-21 . 

2.23 A CPU generate, a bu, clock and Rf\\ ' _L ,.ign:ll dunng a read .~ de 3> ,./)own m Figure 
2-1 . Gi\e a logic equation or 'ho\\ a logic diagram npre .ing the logi- required foe 
the READ_L control signal. 

READ_L=ADDRE _OKulldR/1\_L 

Figure 5-2-23. 

Solutions to Chapter 3 Problems 

3.1 List m lea,t ti,e pnnclpk. of t,'p-d, \\ n d -'I):n ,:l. .) 

Ulld{'r~"m,,1 tilt' 1'",/1/('III t (lItll'/' tc 1\. l~t ' 

pOH/>eJl/t elf/ml., : _'tic\ {\\l\ "d," rr ~ 1 

Icm8I1dg(: 
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3.3 Write the pseudocode and draw the nowchan symbol to represent the decision IF A is 
TRUE THEN B ELSE C. fa, c] 

IF A 

THEN 
Begin B 

End B 
ELSE 

Begin C 

End C 
ENDIF A 

Figure~-3. 

tF 

3.5 Write the pseudocode and draw the nowchan symbol to represent the repeti tion WHILE 
A is TRUE DO B. [a, c] 

WHILE A 
DO 

Begin B 

End B 
ENDO 
ENDWHILE A DO 

Figure~-5. 

Solutions to Chapter 3 Problems 

3.7 Use structured nowchans or pseudocode to write a design that will implement the 
following problem description: [c] 

Prompt for and input a character from a user at the keyboard. 

439 

If the character is alphabetic and is uppercase, change it to lowercase and output it to 
the screen. 

DO 

If the character is alphabetic and is lowercase, change it to uppercase and output it to 
the screen. 

U the character is numeric, output it with no change. 
If it is any other character, beep the bell. 
Repeat this process until an ESC character i typed by the user. 

Ou cpu c a prompt 
Input a character 
IF the character is alphabetic 
THEN 

IF the character is uppercase 

THEN 
Change the character co lo~erca se 

ELSE 
Change the character co uppercase 

ENDIF the character is upperca se 

Output the character to he scr eer. 
ELSE 

IF the character is numeric 
THEN 

Output the character to th e sc~ee~ 

ELSE 
Outpu a bell to the scree~ 

ENDIF it is nUmeric 
ENDIF the character is a~phabet~ c 

ENDO 
I"HILE The character '5 no: a" ESC 

3.9 Use structured pseudocode to give a design that \\iIla-complbh the fo\lowtng: lei 
A u er is to input a hara tcr to clcct one of ~ pro.: , \'ahJ ,har.Kter< = A. B. 
and C. where . B. and C <ele<.' ( proce~~ A. B. or C. re pe...-u\el~ Pro.: '-\ mj 

a byte of infon113tion to be IOput from an 'D CQ",ener. \\ ludl It ~n :><1\ rt>" a 
integer decimal number in the range of 0 (0:; and JI-P!J.~, It 00 the :rttn. fu 
Band C are not defined at thi, 'tage. Promp'" and em1f ~ g t' Ji, 
You do not hu\'c to gl\c det:ub of the de 'Imal ' .... 'n\ r-j n reqUlI"e\i .n fu -\ 

Prompt user rOI· '-~~.r ~ ~t 

Get the chd'8~te, 
, P, r 

IF the chala - er is 
THEN 

Get "'put fro"" 
Conve!"t • t t 

Displ 'l t~ 
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!e! .. ,. r 1 B 

r 
p: 

'f. 

F 'h hJrl 

THEN 
pr 

J:;r J:; 

Pr n' er. 'DOSS ),.10 that user did not enter A, B, or C 

Eli ,F -he hHd tee lS r 

F' IF ,/' I'H "fJ:. lS B 

II"IF 'h 

1 II i>"'lgn,1 tralli, Ioght cnntrulkr: (el 

In1d!!IIlt: Jil intcr",c<..:tHln \\-l lh northl""oUlh i.md eu,t/wC\l , trect"', There arc to be !)ix 
tr.lllk Ioght Ignal, 

RedE. W, Ye llo" E_ W. GrcenE_ W 

Red _ , Ye lll", N_S. Green _$ 

l\"un1\' the time ekmc",s on the table be lo" are 10 seconds and that a timer delay is 
""allahle 'I' a function or subrou tine. G i\c the pseudocode structured des ign for the 
Ioght controller. 

RodE w I ,I I I I I I I 
\\ I I I I I I 

-
Ydlo\\1 I , I 

I I I I I I I 
I I i 

I I II Gr<cnE_ \\ I , 
I 

I 

I I 
I I I 

I r-Red'! II I 
I 

11 

I 

I I I I I I I I 
I - r-

Ycllo\\1 - I : I I I 

I I 
I 

II 
I 

I I 
-

H~cn . - ! I I 
I I I I I I I r-I- I I I I I I I 

Sta~t wito GreenN_S coming on : 

In tla 1 condi "lons : Turn RedE_~v on and RedN 5 on. All 

others 0:: . 
DO 

TUrn ,qedN 5 otf and GreenN_S and RedE W on 

.'t'ai t 40 seconds 

• 

Solutions to Chapter 4 Problems 

Turn YellowN_S and RedE_W on and GreenN_S off 
Wa it 10 seconds 

Turn RedN_S and RedE_W on and YellowN_S off 

Wa it 10 seconds 

Turn RedE_ W off and GreenE_Wand RedN_ S on 
Wai t 40 seconds 

Turn YellowE_W and RedN_S on and GreenE_ W off 

Wai t 10 seconds 

Turn RedE_W and RedN_S on and YellowE_W off 

Wai t 10 seconds 

FOREVER 

Solutions to Chapter 4 Problems 

4.1 List the CPU registers available in the microcontroller you are tudying. 
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4.3 In Example 4-34, what is [he decimal result of tbe [Wo's-complement binary addition? tal 

70'0' 

4.5 What is the meaning of sign bit = I when unsigned binary coded numbers are added? [aj 

Merely rhar the most sigllificarll bit is I. 

4.7 What is the mean ing of carry bit = I when unsigned binary coded numbers are 
added? [aj 

All ove/jIow has occurred. 

4.9 What is the meaning of zero bit = I when unsigned binary coded numbers are 
added? [aj 

The resllit is ~ero. 

4.11 What is rhe meaning of two's-complement overflow bit = I when un igned bin:lr) 
coded numbers are added? [aj 

It has 110 meaning in IIllsigned binary code arirhmeric. 

4.15 Do the following 8-bit binary addition and for each case give tbe expected re ult in the 
carry, zero, sign and overflow flags . 

a. 1010 0011 b. 1111 1111 c. 0:11 OOOi 

+0011 1011 +0000 0001 ·010 000 

1101 1110 0000 0000 :"0_: 0JJ: 

C=O, Z=O. $=\' OV=O C=I.Z=I. =O,O\'=O C=O, Z=O. -I. 0\'=1 

d. 1010 0010 e. 0111 1111 f. . , -, 
+1000 0000 +1000 0000 

0010 0010 1111 1111 

C= I, Z=O. S=O, OV= I =0. Z=O. =1. 0 \'=0 C=<!, Z=O, '=1 0 \ =0 
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I 17 I Ilr pflll>ltm .1 I'." 'ume Ih.llihe blna,) numbe" arc In ,,'o',-complement bina!") 
w<l' Sho,", Ihe C<jui\.knt Jeul1l.1l.tnthmellC ol"'rdllon and indicate If memo,", ha, 
,>!. curred . 1.1) 

')J ·.511= ~·I b 
~n u\crtlu", 

d 91 • 1211 = ' ·1 e 
(hall"" 

- I + I =() 

'"O'crt1n" 

127 + 12. = 
~(l u\crtlo\l. 

113+6-1= 79 
O,ernO\, 

- 86 + 85 = - 1 
o o\crnoV. 

1 I II I or Ihe III li III b) Ie "ddltilln ,hm' n in r,ample ..1-2. 'late .... hal kind of lIl'trucllon you 
",,,uld e,I"''' Ihe 11lICfIlC(lntrllllcr to h."e l(l be able to do thl'.le) 

"" mltJ·h IIh ·rllrn i",/rrl( /10111\ "et'ded 

Solutions to Chapter 5 Problems 

, .1 1.1,llhe .,ddcc"rng 1I11>J~, ."aliable IIllhe CP you arc "udyrng. 

,1 \ IIlICfllCulIlflllkr " ((1 be ",cd rn an embedded ')'t~m \\ ith the folio .... Ing memo!")' map: 

0,1 .... 1 
ROM 

(1,1111 

(h~flnn 

"('Inc' 
Ih7l11 
IhSf)(X) 

R.\\t 
Il\llll 

II,HIXl 
R()\t 

IhlfH 

a In .... hJtmcm<1!") addrc"c' IlIU,t codc and con,tant data be located? [c) 

/hOOO fhIUForll.,FH)()- (J,FI-FF 

b. III .... hm meml") addrc"c' mu,t variable dala and storage be located Ic] 
IhS()(Hl-(hFhFF 

.lIne al lea't live wa), to address an operand. la) 

n·g;\'/t·r. ItUft'Wc/; IIll'IIU"'" ;mJirco: register indirect: direct; immediate; relalive 

5.7 What are the names of thc addres<ing mode, that form the effective address from a 
con tJIlI and Ihe Cl,ntcnh of a register? la] 

8a.\t·c1; IIldeXl'c1 

5.1) Tn rncrease the mcmor) addrc" space in a computer system. one must (a) increase the 
number (If data line,. (b) mcrea'c the number of read and write control bits going to the 
memo!"). (cl tncrca'e the number of addre s lines. [a] 

(e) IIIcrease the III1T11berofacldrcss lilies 

5. II .-\ register indireci addre" instruction (a) has the address of the operand in the instruc­
lion. (bl hm. the addre" of the operand in a register. (c) uses the program counter to 
calculat~ the olTset addre,s of the operand. raj 

OJ! has tire addreu nftlre operalld;1I a register 

Solutions to Chapter 6 Problems 443 

5.13 Assume you are designing a CPU that is to have a 20-bit address bus with each 
memory location containing 16 bilS. A base page is defmed that has 1024 locations. 
Assume that memory indirect addressing using base page addresses is the O~LY kind 
of memory addressing this CPU has. How many bilS in the instruction must be 
allocated for a memory reference instruction? [c] 

10 bits to address the 1024 locations i/l the base page 

Solutions to Chapter 6 Problems 

6.11 In Example 6-1 a constant defined by an equate is used to initialize a register with a 
constant value in line 50 and a constant stored in ROM memory i used to Initialize a 
register in line 58. Comment on these two a sembI) language programming techniques. 
Which is betler? [a] 

Because you are initializing a register with Q constant known at lire time .YOU are 
IVritillg the program (assembly time). there is no need to allocate and use a memnry 
location to do this. Use the equate/or these constants. 

6.21 Use the principles of structured programming to write structured pseudocode Ido nO! 
write assembly language code) for the following problem statement: [c] 

The program is the prompt for and will accept a two-digit hex.adecimal number from 
a user typing characters on the keyboard. These are to be con'ened to an -bl! bin3f) 
number and displayed on the LEOs. After a one- econd dela~. the complement of the 
byte is to be displayed on the LEOs for one second. After this dela~. the LED, are 10 be 
turned off and the process repeated starting at the prompt. The program i, to contmue 
until the user types two zeros ("00" ). 

Your design should follow the principle of top-down de Ign. and you may p<htp.: ne 
consideration of such detail 3l how to conven the t\\O IOpUI characlef' to bin3f). and 
the details of the prompt and how it is to be primed. 

Initialize stack pointer 
Ini tialize I '0 

Enable LEOs 

DO 
Prompt for an input 
Get two characters from the <eyb~a:u 
Convert t o b i nary 

Output to LEDs 

Delay 1 second 

Complement the data 

Output to LED" 

Delay 1 seca.od 

Blank LEOs 

ENDDO 
WHILE User has 11 e red • 
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7 II Write 3 program for your microconlro ller in C and then in assembly (or vice versa) to 
find the largest of thirty-two 8-bit unsigned numbers in 32 succe ive memory loca­
tion . Place the answer in the next available location . [cJ 

Problem 7 . 11 
Find the largest unsigned char byte in a 32 - byte buffer 

Put the result in the next memory location following the 
buffer . 

unsigned char DATAI32} , result ; 

void main (void) 

inc i; 

char tempI; 

1* Initialize the data buffer ,,-lith some test data xl 
tempI = OxFO ; 

for Ii = 0 ; i < 32 ; ++ i ) I 
DATAli] : templ++; 

result = 0 ,. /~ initialize the result = smallest tt l 
for Ii = 0 ; i < 32 ; ++i) ( 

if {DATAli} > result) result: DATAli} ; 

for (; ; ) () ;* l1ai t forever *; 

7.13 There are 4 bytes of data in variable data array DATA[Oj-DATA[I]. Write a program in 
C to count the number of Is in these 4 bytes. Pl ace the result in Nml_ONES. [cj 

, Problem 7 . 13 
• Count the number of l' s in a 4 byte, (2 word) buf:e::. 

; ' Test data ,; 

int DATAI2} : ( 

Oxffff , Ox OOOO 

) ; 

int NUM_ ONES ; 

void main (void) { 

int i, j ; 

unsigned int tempi, temp2: 

NUM_ ONES: 0 ; ;* initialize the result: 0 • 

for (i : 0 ; i < 2 ; ++~) { 

tempI DATA[i} ; 

temp2 = OxOI ; ; , Scan pat tern 0,,01, 0.,02, ~c. 
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SoluliOns to Chapter 8 Problems 

1/ r I\( ",'ftde. "or rh .. "II'/r"hfl/ .Iwr(/. It'" .II If.., tin" In hll 5. f ior "\(/IIII,ft, rh,' 
1\( '1/ ,,~ft' far I ' u 11.4/ 1m.! lor ',,'/\ filM 'tI~~/III~ /111 5, 1I/11('h 1\ (lct'{lml'l"hccl h,' 

t'.tdIH'"'' t JHm . Ihr' tle/,- ",Ih Ih20. (/uwen lilt: n"f'~ 

S \ \ lin"" Ih,u IIIdlll( lilli' ,"l1pk ~.-I "J le,1 JIg ItIIC,1 Ihe han 1 • funellon 
('PIlIIII ilion Ih' IhprIlu 'hlle nllhe I,' ling , \\ h,l\ "uuld }IlU dutel ma~c Ihe le,I,ng 

t>c-tta ,111" lIl"re rlgoruu 'Ihl 

Iht" tt1t trfll~ U~h .",/\ aJf'u «hard( tC:r\. \ "t'lff'r tnt \I,:ouhl ht' 10 UUIIl1/':'l' WI ar'(lr 
,"/It ,,/I I;. I \( /I .. ",I" "".I, 111'( k /(1 ,<,,'/10<11 (1//1, tilt" <l1{'lwh,'r;e rloa",cl~" (Ire 
chmol/",J ", rlt jlltt,'lltlll 

Solul1ons to Chapter 9 Problems 

U \ \\ hldl I) pc (11 ~o ,IJdrc"lng, 'cpamlC Ii ,,, memo!,) mapped, requIres a control Ignal 
,,111',1' 1·0 Ft:quC,I" 1\1 ,I,'~e" 110 UC\,Il'C ~ lal 

I'/""'/t" 0 

<l I ,,'nl>c Ih' ,IJ, nl~gc "llhe three·,lale gale ovcr the open-collector gale when the 
,lprl"',lIhlR ,'nl,lIl, l1Iultlpk ,ource, on a dala hu, la, gl 

flIt' /Im·,"'/,II, ~,I(, h,/\ (/" "filii' {,1I11·It{' ww r/ull does nOl reqll"e all exremal resisror 
1'111/ "I' Th, Ih"',"«,I(,' t'llIIhlt' al.w {l1/(/\IS rh,' III{'III of rhe gare /0 he {IllY logic lel'ef. 
1\ "h rllt' tI{,"II-I'tll/"Cltlr ~tl"'. rlll'lo~;e II/I/sr """'''' the aliiI'm is high ... IIell rhe gare is ro 
he ,I ",hr.·a /" odJI//(I// "rrqlli,,'{ ,III c.ttenwl {,1I1/'1I{, result>r. 

Q ~ \\ h\ ,1Ft: Ih=·,I,UC gale' u,cd in an Input interface~ lal 

Ilil, " II /II,,','·,/(Ir,' 'art' (111/1'111 i, di "hlt'd,;r {,restllls a high IlIIpedallce /0 rhe blls. This 
,,1/011' mlllll{'I,' "'"'''," It> he "olllleclt'li It> /Ioc bus. 

• 

Solutions to Chapter 9 Problems 447 

9.9 In a parallel OUIPUI operalion. how is the synchronization of the data lran,fer belwcen 
CPU and a dala latch consisling of eighl D·IYpe nip·nops accomplished? lal 

The CPU places rhe address ofrhe dora larch 0 1110 rhe address bll.folloll'ed hI' rhe clara 
to be 0 1111'111. Ir rhell asse,.,s rhe WR COllI/v i sigllal afld rhe 10RQ sigllal. if I/('~ded. 

9.11 Discu s Ihe con equences of a CPU designer's decision 10 implemenl memory-mapped 
JlO inslead of separate JlO. What does il mean 10 the CPU designer, and what doc, il 
mean 10 you. the syslem designer using Ihe CPU? [el 

To rhe CPU desigllel; memOly ·mapped I/O resLllrs ill a simpler desigll for rhe ,e'lLlellce 
cOlllrolleJ: Separare I/O ill.l'rl'llcriolls do liar lIeed to be provided beeallse allY lIIemo/'\' 
referellee illsrl'llcrioll call access I/O. For rhe sysrem desigller IIsillg rhe CPU, lIIem(l/'\'­
mapped I/O meallS rhar rhe address decoders lIeeded for each I/O device mllsr decode 
rhefl/II address bl/s illsread of a smaller address, as gellerally IIsed ill separme I/O, 
Also, less memory lVill be available for program alld dara lise. 

9.13 A 74HC 138 decoder has Ihe following address bils assigned 10 ilS inpuls: 

ADR 74HC138 Pin 

A7 A2 

A6 AI 

AS AO 

A4 EI 

A3 E2_L 

A2 E3_L 

A I and AO are don ' I care. 

Assume an 8-bil address and make a table imilar 10 Table 9-4 showing whal address 
each outpu l responds 10. Ibl 

Table 5-9-13 Reduced Address Decoding 

Address Bits 
A7 A6 AS A4 A3 A2 A1 AO 

Decoder Inputs Not Used by Valid Hex Decoder 
A2 A1 AO E3 E2_L E1_L Decoder Addresses Output 

0 0 0 (lOIO II 0,10-0,13 (XU 
0 0 0 0 (lOlo 11 0,30-0,33 OI_L 
0 0 0 (lOIO II 0,50-0,53 02_L 

I I 0 0 (lOIO II 0,70-0.73 03_L 
0 0 (lO 10 II 0.90-0,93 Q.l_L 
0 I 0 0 (lOIO II 0,BO-OxB3 05_L 

0 0 0 (lO,O II 0,00-0.\03 06_L 

0 (lOlo II O,FQ-OxF3 07_L 

9.IS Example 9-S shows a segmenl of code Ihal waiLS until a Slatus bil assened by the OUl­
put device is ready 10 accepl new data before writing the dala 10 Ihe pon. What can go 
wrong wilh this arrangement, and whal mighl you do 10 make il beller' Ib, cl 
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I} th.· \/11/1/\ brt /\ I//'I"<'f (I "<'ftn/. th., pm.~ralll hang", "I'. While Ihis 1IIC1)' be OK. 
''''I'('/U/U,,: Oil 'he appltcclllOll. II migh, be ht'({l!r to Jun'e a limer r/ral "'ill let you 
nUl/time: \\ lIlr ,ht, ,nt oj lIlt· prugrum. Allother lll,eflllll;\'t! '.f /0 lise lin interrupt. 

SolutIons to Chapter 10 Problems 

111 .1 U,tlhe I"""hle appl iellllon, for Interrupt'.lal 

11ft' \('Il\on: co"",illg. lINalog {'om't'nio" cnmplel(!l/; riming: generating 
\nIH/orm,\ 

1(1.1 Why. In n""t pnlCc"o" \\ ith interrupt'. are rurthcr interrupts disabled when the 
pnlCc"'Jr rc;)ehe' the Interrupt 'Of' ice routine? la. kJ 
/(J gin' lilt, pr()~rtl"''''t'r COllIroi m'er further ilJlerruprs alld 10 keep olle ilJlerrllpr from 
""t'rrllptllll.! Ollot}/(.'I"-

1f).5 ame t\\" method, b) \\ hlch a CPU can determine which or ,everal devices has 

gcm:rateu an Illterrupl.{al 

Pol/n/ (11111 \'t'ClOrl'(1 UJlerrupt'io 

10.7 What arc polled lIt1crruph" [al 

II/Ier,."ptl il/ ",hkh Ihe CPU /111111 do (/ sequellce oj liD reads (ill a progralll. this is 
COl/l'tI p{}lIi" .~) 10 determine Hol/ieh dedce gel/era/ell the illlerrupt request. 

10.<) Dcline "interrupt latency."lai 

The time ht'IW(,l'll tht! inll'rrllpi requeolil (llld the slart of execution of the illlerrltpt 
H'n'l("(.' n)llIl11('. 

10. 11 Gi,·c at kast two components or interrupt latency. [a] 

Tilllt' tC1kclllOjill;.~h Ihe currelll illslruclioll; time taken (0 sal'e the system registers: 
1It1/L' takell /() Jl'lch the l'eclOr or pall the itllerruptillg del'ices. 

10.17 For a prore"or with I 0 interrupting devices. which type or architecture, polled or 
vectored. provides the faster lransfer or control to the interrupt service routine for a 

speCIfic interrupt"? [al 

Vectored itllerrupls. 

10.19 What must be done to solve the problem or two devices generati ng si multaneous 
interrupts in a system wi th polled interrupts? [aj 

Poll Ihe del'ices ill the order oj priority. 

10.21 A rcal-time intcrrupt gcnerator as shown in Figure 10--12 is driven by an 8 MHz 
clock. A programmable divider i, rollowed by a I O-bit counter to generate overflow 

interrupts. lb. cl 

a. How should the programmable divider be set to generate interrupts at approximately 

once e"ery milli econd? 
For Ihe 10-bil (,Ollllter 10 ol"eif/ow every I illS, ils clock 1II11S1 be ( 1024 cOIllI1s110-' s) = 
1.02-1 x I(f' H:.. ThereJore Ihe programlllable divider shollid be sel at (8 x 1(Jl H~)I 

(1.02-1 x I(f' H~I = 7.812. The lIearest illlegerdivider is 8. 

• 

10.23 

Figure 8-10-23. 
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Design the hardware ror an input interrupting device in a polled interrupt sy\tem. 
Assume an 8-bll sWlLch register ror data, a one-bit status register ror an "I did it" 
blLand a push-button switch to generate a wi red-OR IRQ..L signal. The Slatus 
regIster and SWllch regi ter are each to occupy an address in the 8-bit JlO address 
space. Assume separate lIO with control signals READ_L and WRITE.J-. [c] 

Data Bus 

R 

D Q 

8 

Switch Register 

"I did it." 

Solutions to Chapter 11 Problems 

1 1.3 A CPU reads rrom the data bus 15011. after it has supplied the address to the addrec< 
bus. Which memo!,) a ce s time pecification would be best to u,e for R.-\:'I mem ~ 
in this ystem" Ju lir) your decision in tenn. of o<t and s~'tel11 reli;lbili!~. (d 

(a) 10 ns: (b) 110 ns: (c) 150 n : \d)200 ns: 

(bl AlthoLlgh 11 appear.< thm 150 liS wOllld do Ihe job. Ih..,.1' I." tl<' md~in ('fan Tit 

accolIIJrfor lllJc(mrn.J/led l'ariables .~lIch as (lpt'rlilion (Wt'r t(·Ill('t"n.uUn" (H 

alld \'Griable propagmioll .1.'/(/\'5 dill' «1 boaro 1.1\"(11/1. nIt no ,''''. I /() I.' 

lIil1 be the beII c/",i t·. Tills ClI/(lII.\ filr Ilrt'/,<rg.lli.", J. I.", I". 
the IIIl'lIIory COlI/t'II/S Cll"ailabi. "II Ih,' data />11' w/I< IIlh, CPt 
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II 5 Compar~ Ihe memory wnlc cycle, ,hown in Figures II - lOa and 2-17. For the memory 
liming .. how n In T"ble 11 ·2. an,wer the fOllowing. 

a What" Ihe ma\imum CPU clock frequency that would be allowed? 

TIl< otidreuJrolll Ihe CPU is "(didJor JOl/r CPU clock cycles = 55 liS lIIilli/lll/lII. The 
IIUWII/I/III CPU c/oekJreqllellc)" I~ 

4 clock cycles X I read cycle = 72.72 MH< 
read eye/,· 55 liS 

b. A .. ,uming a positive·edge·triggered output device. what memory wrile cycle time 
correspond .. to the tlmc between point A and D in Figure 2-17? 

,,,-, adtlres.\ setup time pillS I \,"L wr;le enable width 

Solutions to Chapter 12 Problems 

12.1 Ho'" doe, an a~ynchronou .. seri al port achieve synchronization of the bits it is sending 
or receiving? [al 
By starrillg each characler lI'ilh a starr bil. 

12.3 A serinll/O port sends Ihe following waveform: [a] 

- - - - .,. - - - - r - - - -, - - - -r---.--, , . , 

Space 

:I . What is the A Cll characlcr being scm? 
'a ' 

b. Whallype of parily is being used? 

oddparily 

12.5 To initiale a erial data transfer. a UART firsl [a] 

b. sellds Ihe swrr bil. 

12.7 How many bils per second (baud) is a serial port sending when Ihe characler rale is 
120 characlers per second? Assume ASCII characlers with even parity. [a) 

1200 bilsls 

12.11 You are 10 dcfine a serial cable 10 conneci IWO PCs configured as RS 232 DTE 
devices. Each PC has a DE9P conneclor on its back panel. The software used in each 
PC for file transfer uses hardware (RTS/CTS) flow control. Draw an appropriate cable 
using the minimum number of wires. Be sure 10 show each connection. give the signal 
nam~. leU the data flow direction. and stale what connectors are 10 be used on each 
end of the cable. I c) 

See Figllre 12-1. Use DE9S COlll/ectors all each elld oflhe cable. 

• 

Solutions to Chapter 13 Problems 

12. 15 Why is the RS·2 32 voltage specification for mark and space logic levels used for 
serial communications voilage levels instead of TTL? raj 

To have increased Iloise margin. 
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12.17 An SCI is transmi lling dala at 19.2 kbaud. The formal is seven data bits. even pan~. 
one stop bit. How long doe it take to send a document Ihal is one megabyte long7 [a] 

19.200 bilsls • 1 c/llIraclerll O bils = 1920 choraclersls 

1.048.576 c/w/"{/clersIMbyle * Isl1920 characlers = 546s1MbYle' 1 min/60s = 9.1 nun 

(Nole: There are 7 daw bils (bils 6-0) pillS paril}" (bil 7). olle sIan bil. and one <lap bil. 

12. 19 You are 10 define a seri al cable 10 connect a PC configured as an RS·232 DTE device 
to a microcontroller syslem configured as a DCE device. The PC has a DE9P con· 
nector on its back panel. and the embedded syslem uses a DE9S connector There is 
no flow control for Ihe data transfer between the IwO compute~. Dra", an appropriate 
cable usi ng Ihe minimum number of \\ ire. Be ure to ,ho'" each connection. ghe the 
signal name. telilhe data flO\\ direction. and late \\ hal connecto~ are to be u..-ed on 
each end of Ihe cable. [c] 

DE9S DE9P 

RxD RxD 
2 .. .. 2 Microcontroller PC TxD TxD 

DTE 3 • ~ 3 
Device SG SG 

5 5 

Figure 5-12· 19. 

Solutions to Chapter 13 Problems 

13.1 Briefly explain Ihe fo llO\\il1g lem',: aperrure time. com <,,,,ion time, 
frequency. [a] 

Apertllre lillie: The lilll<' Ihe AID or salllple·alld·hoid 1.\ Mi<~ . m~" I 

DeE 
DeV1ce 

COl/l'ersiol/ lillie: The lilll<' I)('(weel/ T-\RT_CO\\ ERTlmd £ \O_OF_CO\"\ERT 

Aliasing: All effecl ecwsi'd hyfn'tJlu'"cin in the ~lpiri::t'd ." ~n 
twice tlte sampling /n.'CfJU'"CY. 

Nyquist f requency: The' II/(I.\;m"m /n'cjUt'lll \' ;Iz,,"'., t ,m Pt.. in Ih 
aliasillg. 

13.3 How doe, a 'lIeee>,i\ c "PP")\ll1laIiOn \ 0 C,)I1\ 'rtcr \\.'{ 'I ] 
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13 5 I h'" un,,, u nash con\ crtcr work" I a I 
\ 17e,," ("otlrt'rtt" CfJII\iH.\ 0/2'· J comp"YrltOrs. The output code is produce ill aJ1aslz 

ill fir" h'U\" 

11.7 The AID convcrter con\er-ion lIIne is 100 11'. Whal is Ihe maximum frequency Ihal can 
be ulgHl/cd ,,,thoul Ihe occurrence of alia,ing? lb. cl 

f ___ I_-=5kH-
_. 2 X 100/-L' ' 

13.9 An NO comerter" 10 digltl/c a 10 V. fu lheale signal to a resolution of I part in 1024. [b. cj 

" II"" many bi" arc required" 

D . II 

101m, 

c. What is the accumc) when a I V Signal i, digitized' 

A('('/Iran' = 9.77mV x 100'70 = 0.977% 
IV 

For an AID COll\crtcr. 'pecify (I) maximum conversion lime. (2) number of bils. 
(3) cUlOfr frequency for the antiuliasing filler. and (4) the apenure time to digitize 
each oflhe fol\o\\lOg '!gnal, . lb. cl 

a. :!:5 V. peak-to-peak. 5 m V peak-to-peak noise.f = 3 kHL 
( I ) f~/a_\lImm' cmn'£'rsioll lime = 167 JIS mou 

(2) 8il, = II 
rJ) CUloff freque llc)' = J kH: 
(.J) Aperlllre time = 25.911.1' 

c. :!: IV. peak-w-peak . 5 mV peak-to-peak noise.!,,,, = I kHz 
(I) MfUlmum 1'OI/I'er.<ioll time = 500 l 'S 

(2) 8ils = 9 
(3) Cutofffrequellc\' = I kH: 
(.J) Apertllre lime = 0.31 l'S 

Solutions to Chapter 14 Problems 

1-1 .3 Describe how to usc Ihe timer/coumer circuit in 
Figure 1-1 -2 to generate a 10 kHL square wave. Assume a counter c lock frequency 
o f 8 r-IHL.[cj 

All illlerrupt is lIeeded el'er), 50 l'S. Olle oplioll \IIollld be 10 set Ihe programmable 
dil 'ider to tiil'ide by 8 and Ihell to illitiali:e Ihe coulller wilh -50. The COllll ler \IIollld 
Ihell ol·erf/all'. gelleratillg Ihe illlerrllpt alld alllomalica/ly reloadillg Ihe inilialization 
,'a/ue, 

1-1.5 A .. suming a 2 '1Hz counter clock frequency. what is the period of the external ignal in 
Figure 1-I-5b? [bj 

The ill/en'al belween two successive rising edges is Ox2476-0xOEFF = Ox 1577 = 5495/(/ 

Period = 5-19512 X ()'> = 2.748 illS 
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14.7 A lirrung circuit is needed that can generate a time delay longer than 2'· counter clock 
cycles of the timer/countercompanson circuit shown in Figure 14-3. Use pseudocode 
to descnbe a strategy to do thi . [c] 

14.9 

Divide Ihe required delay aT inlo N smaller interval.s, and calculale lhe number of 
cOli/iter clock cycles for Ihis imerval. say M, so lhal Mis <2"'. 

aT 
M = Ii x clock frequency 

/* Initialize the timer for output compare opera: ;cn ; / 
1* *1 

I ' Delay Delta T 'I 
1 * Read 16-bit counter 'I 
1 * AddM*1 

/ * Store in 16-bit comparator ~I 

1 * Reset COF *1 

/ * Initialize Counter = N 
1 * DO *1 

/ * Wai t for COF co be set (de2ay ".' cy:::"es) .". 

1 * Add M to 16-bi t co,-"para tor - / 

1 * Reset COF '1 

/ * Decrement Counter ~/ 

1 * WHILE (Counter> 0) ~ I 

I ' END DOfVHILE ' I 

Write a p eudocode program to implement a real-time doc!- with blnan coded 
decimal output assuming a timer ourput compare as shown in Figure Ii" The 
clock is to displa) hh:mm in 24-hour format . [ ] 

1 * Initia lize timer =or output cC~Fa=e cFera:~ =~ 

/ * Initialize all clock var;.ab:'es ::0 e-
I ' 
1* 

I ' 
I ' 
I ' 

h_ tens 
h_ones 
m_ tens 
m ones 

DO - I 

0 ' / 
0 -/ 
0 

0 -/ 

I · Delay one m~nu:e ~ 

1* Increment m ones . 

1 * IF m_ones = 10 THE;>; 

I ~ /* m ones = 0 .. 
I ~ ~ Increment ~ te~s 

1 * ENDIFm_o.'1es - 11,.1 · 

1* IF m tens - 6 THEN • 

I ' " m_~e;,s - 0 • 
I ' I ' In':"ement h_ res 

I ' ENDIF m ~ens - 6 • 
/ ' IF h orles - l' ::'RE - , 

I " J - h ores -

/ ' / ' Inc!'emen h' s 



454 Solutions to Selected Problems 

I ' E'IDIF h n .... - 10 ' / 
/ ' 'F h - 4 and r tens - 2 have reached 24 : 00 THEN . / 
/ ' / ' h t ns - ? ' / 
/ ' / ' t nes - q ' / 

/ . ENDIF hones - 4 and h_,ens = 2 -/ 
/ . Updare the ciOc;i< dlsplay . j 

REVER' 

14. 11 A, ume you are to use the timer in Figure 14-2 generate a 50 Hz square wave. Assume 
thnt the bu, clock i, 8 Nt HI and the programmable divider factors arc 1.2. 4. 8. 16, or 
32. Write a p,eudocodc de"gn Ihm will allow you to OUlptll required square wave. [cl 

Wi,h {/II 8 MH~ clock lIlIll Ihe prograllllllllble di"ider .leI 10 divide by 32, Ihe COL/Iller 
clocl.;\ 2501.H;.. To geller(J(e a deft,,· oj 10 illS (halflhe period oJ50 Hz). a 2500 
clod cyde dela-" is rleeded. 

In t.d iz~ thf tLmer for automatic reload operation 
dnd set the programmable divider to divide by 32 ' / 

/ ' Inltla.lze the 8/16-bit register with - 2500 - / 

I ' Reset he TvF ' / 
I - DO ' 1 

/ , '~ai t for the TOF ' / 
/ . Toqgle the output bi t ' / 
/ , Reset the TOF '/ 
I ' FOREVER '/ 

Solutions to Chapter 15 Problems 

IS. I Design an outpul circuil Wilh eighl LEOs connecled 10 a pon on your microcontroller. 
The LED5 are 10 be on when bils in a byle slored in location DATA I Ole I s. Show Ihe 
hardwmc and software required. lc] 

Port 

B7 

B6 

B1 

BO 1---------------' 

Figure 5-15-1. 
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/* Get DATAl ' / 
1* Complement it ~/ 

/' Output it to the port */ 

15.3 A mythical microprocessor has IWO 8-bil output pons (P and Q) and two 8-bil inpul 
pons (R and S). Assume Ihal a sel of eighl switches is connected 10 Pan S and a set of 
eighl LEOs is connecled 10 Pon P. Describe (a diagram would be nice) how you would 
use these resources (plus any olhers you would like: more switches. buffers. latche>. 
elc.) 10 implement a scheme thai would allow you to input data from the switche only 
after Ihe user has compleled entering new data, and then to display the 8-bil data on the 
LEOs. The hOld ware is 10 be as simple and cheap as possible. Describe how your ys­
lem will inpul dala from the swilches and outpullO the LEOs. [c. kl 

8 LEOs 

Voo 

I 8 Switches 

J-...,L-----4--~'fh 

Figure 5-15-3. 

Data Ready 
Switch 

Eighl LEOs are cOf/necled 10 Pon P. lI'II;ell IIIItSI ~ illllitlli~t!d "-' Gil l'urpw: pc n_ -\" 
Olllplll oj "era TO a bil 0" Port P illllmil/aIl' Ihe LED_ Ei, II, .,,,·itches Wt' cud 
POri S. A data ready $1I 'iICil is e<ll"'t'Clt'd W a blf (<' . .' .. 1>il - j, n 1'1.," R. 

15.5 An eight-digil LED t1isplu} is muillplexed_ \\ ith e.l,-h di£.it ~Hlg re!Te 
Hz by an imemlpi >enice routine . Thl' I R chanf,e, the dl'rIa} ll' ~ (Ie\! dIp! 

requires 8 !IS 10 refre,h each dgil Ibl 
n. If Ihe imem'pi ,en ice rollline I' "Ianed b} an illlerrurl tn: m til<- Ol 

imerrupl rale \\ "uld alll", us l\1 ref",'h each ,itgll In Ill<- di'pl \ I 

lI'ilh t'iglll dig/I.' b"lIIg n'j"n.'.,IIfd ,1/ 100 H:. th inT mil 
or 0.0012:\,'f(l",/I I"" II/It rntl'1. 
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B7 Row 
Scan B6 

B5 

Port 

B4 

Col B3 
Scan 

B2 

Z BO 

b. IV/WI percelll"~" "fll,,· pmceHor'sllllle is spe/ll refresllillg Ill e eigil l-digil 
d"plav ') 

/1I,' lOW/lillie betllel'll III/uruflts i< 1.250/11 alld tile lillie 10 refresll is 8f/s. 
rllaej'm'. 8I125U = U.6-I"'c 

15 .7 U,c" 7411 138 l-of-8 decoder and" 74HC 151 8-10- 1 multiplexe r 10 design a 
keyboard 'canner that will 'Can nn 8 x 8 keyboard matrix . Show YOllr hardware. 
and g ive a ,oftwarc ,cannlllg algonlhm to 'can the keyboard and re turn a 6-bi t 
kcycodc . Icl 

--
~ ~ ~ 

2>-
A2 00 
AI 74HC138 01 8 AO 1-of-8 02 

Key 
Decoder 

03 
04 

- E1 Demultiplexer 05 

rF 
E2 06 
E3 07 

SO 10 11 12 13 14 15 16 17 

S1 74HC151 8 to 1 Multiplexer 

S2 
Z E 

I rh 
Figure S-15-7. 

x8 
board 

rI key ,witcll {/( eaell of the 64 locatiolls COllllects a row line. drivell by Ill e 74HC 138 
decoder. 10 a COIIlIlIlI line. wllicll is illpllllO the 74HC 151 IIIl1ltiplexel: Witll 110 keys 
pr~ssed. eacll of the COIIlIllIlS is higll. IVil ell a key is pressed. alit! II/hell Illat row line is 
asserted IO Il ~ the associaled col 11111 II is loll'. 

FOR Row_Scan: 0 to 7 */ 
/ ' FOR Col_Scan = 0 to 7 ' / 

/ * IF Z = 0 THEN Break ' / 
/ ' ENDFOR Col_Scan = 0 to 7 */ 
/ ' IF Z = 0 THEN Break */ 
/ - ENDFOR Row_Scan = 0 to 7 - / 

/ - Looi< Up the keycode based on the present Row Scan and 
• Col Scan -/ 
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Solutions to Chapter 16 Problems 

16.3 Li st alleast five sofl real-time sy tern applications. 

LCD display dril·er. CD music player. ke\'boord drher. airlme resermllon S\stt!m. 
prilller dril·er. cell pllolle. etc.' • 

16.5 Assume that an interrupt hasju t occurred ignaling a tmk s\\itch. ¥ouroperaung '. 
tern maintains a pointer 10 the currentl) executing taSk's control bloc (Figure I~ J. 
pCurrentTCB, and use a function Ge~:;ex~:C3 to reque,t a pointer to the De\! 

lask's control block. Wrile a pseudocode function that \\ ould run on 'our mlcrocon-
troller to accompli h the contexi \\ ilch. -

/- Save current tas~'s s~ac~ pOl~~e= :~ :te =;==e~· :-3 . 
t o- Use Ge~t.TCB () to ret.!'ie·:e :"''1e ;x:::......-.:.e!' :.0 :..!"'.e :-.ex:. :..asr.1 S "i":3 
/ ~ Execute return - :ro~-_~:err~pt . / 

Solutions to Appendix Problems 

A-2. Decode the ASCII me age 

44 65 73 69 67 6e 69 6e 6- 20 -- 69 , O;:~ :: C~ 

6f 70 72 6f 63 65 73 -3 

D e s i 9 n n 9 '" - :: - :-
0 p r 0 c e s s 

6f 72 73 20 69 73 20 ~6 55 4e " - . -.c. 
0 r s i s - ~ 

A-3. Give the decimal value of the follo\\lng bm~ .:ode "oni.- ""unun; II 
(ii ) two's complement binary. and (iii) signedimagrutude code, [al 

a. 10101010 ( i ) r o (1I)...J6 (llil-l~ 

c. 110011 00 Ii) 2().1 (il) -52 (iii) -76 

e. 10000000 [iJ 1_ (iil-12 (i1l1...{J 

A-S. Find the decimal equivalent of the folk\\\ 109 t",,', ~omrl m 'n! num 

a. 0101101.1 --.5 

c. 1000 -8 

A-7 . Ho\\ man) bit, are required to en ode the de 'imal num~r : ' 
Ho\\ man~ using an un .... igned-btn~ c,,,,k ~ Hf'\\ m.lll~ u w!! a l\\ 
binUf) ode~ 

BCD = 12 hits; L'1I."~n,,1 B'lltln = 
A-9. Find the heud''Clnul.:<xie '\\1,,1- h r th' t, 11,\\\10: bID 

a. 01011010 5.\ 

c. 110101 35 

-- 63 

;: = 
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1\ · 11 For rour·bll numocr 1\\'" complement addilion. choose rour examples 10 
demon'trale the follo\\lOg: [a. bl 

a Addilll'n \\ lIh no carry OUI nnd no IWO', complement overnow. 

0111 + lOOIJ = 1111 I/O carr ... //011 OI'etjloli 

c Addllion \\ lIh carry nUl and no IWO\ complement ovcrnow. 

1111 + 1111 = 1110 lI'i,h C(lrn', //oOl'crjloll' Index 

$, 8 

%.8 

*, 8 

@. 8 

_L. 8 

Ox, 8 

ND. 309-328 

accuracy. 311 

alia ing. 313- 31' 

anti·alia ing fil ter. 3~ I 

aperture error. 3 I 7-3 19 

aperture rime. 31:!. 

316-319 

bandwidth limiting. 310 

buffering. 310 

choosing. 3.0-3::!~ 

conver ion time. 31~ . :.1 
dynamic range. 31. 

electronic interfaC'. : ~3 

eiemonic noise. 316 

end·of-coO\ en. 311 

errors. 31 6-319 

i olation. 31 n 

lineam~. 31': 

muluple\er. 3 \0 

outpul od .. :::1 

QU.1l1tiz 

re oluu 

--amphng' U ICUlt::"". 

:tarl_" n\ n. '11 



A 

\ lUlllul .. hlr. 11.26.7' 

\ 111,1 ~.t\ln, 111 

\ me III -h. h 

\ 11\': hl\\. /, 

\d.llI: 

hll • II> 

1>1'" Ill . 1)2 

Addre ,d':clkhng. II)-I - II)~ . 

~(X) 2()6 

III( I IX I • d':\.\ld.:r. ~n 1- 204 

"111 1( IN 2·-1 det.:'kkr. I (Ie;. 

'Oil. lbb 

III ,rCI': hl~I':. 2m 
11111 ,Idllr.:". llli 

Im:tlmpklt:. _O-! 2116 

hn,:.tr ,.:h:t:1. 2()~ 

redllrnl. 204 205 

\dllfl:"in~ 

.l 1'>11 in . 151 155 

,I 1'»IC tn 149 151 

hne,lr. q: 
''''gmenled. 96 

\ddre"tng moll ... ,. 36.91. 

1)7- 105 

h.tw page. 100 

ha'ell. In2 

1'>tl . 10.1.1:1-\55 

dlrecl. 99 

Immcdiale. I}' 

implied. 9< 

IIldc'\cd. 101. 102 

IIldlrCI. 100 

tnhercnl. 9 

m.:m0f) indir.:.:!. I () I 

Illhel addr.: . 96 

redllt:ed tltre':l. 99 

reg I ,It: r. 9, 

re~i'ler indirecl. 100 

n:lall\c. 10) 

Inglc h:\cl. 1)9 

'lad.. 105 107 

I\\ll- Ic\.:l. 100 

\lta mg. IIJ 315 

\1 . 12.30 

Analog-to-digilal '!'(' I\/D 

\ I C. 1-12- 1-13 

Anll-alta'lng lilt.:r. 322 

ApalUre crror. 317- 319 

Ap.:rture lImc. 312.316-319 

Arhltrallon 

bu .... 209 

C I . 300 

IIC . 296 

rithlm:tic 

BCD. 426.431 

,igned. 2. 5 

IWO' -complement, 429 

two',-complement overOow, 429 

un igned. 2. 5.427 

un igned overnow. 429 

rithmetic and logic unil. 12. 30 

ASCII. 262.273-275.431 

. embler 

ab -oiutc. 40 

relocatable. 41. 112 

Assembly language 

C interface. 146-149 

commenting style. 118 

comparison with C. 141 

constant data. I 14 

equates, 112, 118 

fields , 20 

indentation, 117 

interprocess communication. See 

Parameter pa sing 

listing, 147 

making it look pretty. 133 

mnemonic. 20 

operand field. 20 

operation field. 20 

parameter passing. See Parameter 

passing 

program body. 114 

program end. 114 

program example. lIS-II 

program header. III 

program initialization. 114 

programming style. llG-11 

structured assembly. See 

Structured assembl) language 

subroutine . 114 

symbol definition. 112 

tricks of the trade. 13_ 

typical bug . 17~1 

variable data. I I -

Assembly time. 6 

As enion level. 6 

As) nchronou event. 22.1 

A ynchronou !>erial VO . See CI 

ATD.See AID 

Auto-increment. -decrement 

addre -ing. 101 

Automatic variable. 14: 

Background 

debugger. 1 -

taSk. _2.1 

Base page addre· jng. 

Based addre ing. IL_ 

Baud rate. _6. 

BaudoL 263 

Bm1. 1 ~ 

Bidire tional traIl' i\er. _ 

Binary coded decimal. BCD • .:: 

431 

Binary ode 

. .\ Cll. :6:. :-3-:-:; -31 

BCD. bina!) ~ 

de-imai. ·Ct> ... 31 

finding the n g li\ 

he'\ de'imal. -_­

non-numen I ... ~ 1 



Ot)OlIllUnl bil. 299-300 

loemilier. 299.30 I 

LTI796C I bu. 

lransedler. 29 . 30 I 

111:t.,lerh,lavc. 299 

Ole " age frame. 30 I 

rc,cjYing. 304 

rc.:c"ilc bil. 299-300 

'erial bus. 299-30 I 

OF. 299-300 

IrJn,mbsion. 302 

'lIT) bil. 0 

CR. ee Condition code 

regi ler 

entrJI proce sor unil. 

eeCPU 

Chip 

2 2222 tran iSlor, 375 

2 7000 transistor, 375 

74ACV245 octal bus 

transceiver, 208 

74 HC05 hex open drain 

Inverter, 225 

74HC 138 3-8 decoder, 201-204 

74HCI 39 2-4 decoder, 195, 

200,366 

74HCI4 Schmin trigger, 354 

74HCI65 shift register, 284 

74HC244 hex three-state 

buffer, 193 

74HC573 octal latch, 193, 

199 

Index 46 

74HC595 shift register, 284, 

287 

DS90LV047 A LVDS 

driver, 273 

LM 19 temperature 

sensor, 376 

LM331 voltage-to-frequency 

converter, 332 

LM92 llC temperature 

sensor, 298,376 

LMD 18200 H-bridge motor 

controller, 379 

LT 1796 CAN bus 

transceiver, 298,301 

MAX3232 RS-232-C 

interface, 272 

MAX512 serial D/A, 285 

MC14513 BCD-to-seven 

segment decoder, 366 

MC74LCX06 open drain hex 

inverter, 193 

OPA4344 rail-to-rail 

amplifier, 374, 376 

optocoupler. 374 

ULN2003 Darlington transistOi 

array, 389 

Code comments. 67 

Code walkthrough. 168 

CodeWarrior debugger. 17'2 

Comments. 63-68. II 

Compile time. 6 

Compiler. -+ I 



'hlllln,lllll!! " k. 1.'4 

h',n~,IIII'l, 1.'4 

III 'lI'llll '1IllllaIN, 1,'5 

1'1,111 It" 

1'1,111\ 11,,\\, 171 

I "I't 1'1"bkm" 177-17,' 

I, I- 1'1,'bkm" 174 ·177 

lUI", h~, I h, 

It, I d,Il,1 'Ir;lIq,!I~' for, I, I 

It .1 , 170 174 

hlp do\\ n. I hll 

I ,I .', 171 

II In' an n,ullo copt: , I 4 

\II Illg (nlH,hIlOnal 

hl,lI1~h, 179 I I 

Ix I 10n'lruclUr.:, 56-58, 119-

I ~ ()c,ign 

am, I () 

,I 'mil) I~p<!', 54 

ClIl11l11Cnlo, for, 63 

dl:CI'llIn o,truclure. -6-58, 

119 - 111 

for debugging 161 

DO·WHILE. 59-60.114 

IF·THEN·ELSE, 56-58. 

119-122 

Indentation. 59 

repetition ~tructure. 57-60. 

122-134 

cquence. 56 

\inglc·inpuL single·output. 

tools, 55 

WHILE·DO. 57-59,122-1 



l'Il' nt~ r~' )IUlion. 232 

· lllr~ . 2. 

ee CI 

Lill. 1-

ntroller. 209- 210 

Jple del Ice. 17 

t electronics. 374 

II. I 9 

lei e\pansion. 368--372 

er-. 149-152 

~ll. St'c Serial 110 

bll.,. 214 

pper mOlors. 380--396 

t h. 15.351-365 

nchrunous erial. See SPI 

ICmpefollUre measurement, 298, 

3 6 

t.iming. 195-197 

wail Slales. 31 

110 addre ing 

lr 

i olaled. 199 

memory-mapped 110. I' 

separale. 199-200 

110 i merface. 35 

110 software. 211-21 

delay loops. 213 

flow control. 21 -

hand haking 110. 215-: 

initialization. 21-

polled 110. 213-21-
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Since the text does not focus on a particular processor, it can be used with 

processor-specific material-such as manufacturer's data sheets and 

reference manuals-or with texts, including author Fredrick M. Cady's Software 

and Hardware Engineering: Motorola M68HGll or Software and Hardware 

Engineering: Motorola M68HG12. Now fully updated, the second edition covers 

the fundamental operation of standard microcontroller features, including 

parallel and serial I/O interfaces, interrupts, analog-to-digital conversion, and 

timers, focusing on the electrical interfaces as needed. It devotes one chapter 

to showing how a variety of devices can be used, and emphasizes C program 

software development. design, and debugging. 
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