
Automotive 
Software 
Architectures

Miroslaw Staron

An Introduction



Automotive Software Architectures



Miroslaw Staron

Automotive
Software
Architectures
An Introduction

123



Miroslaw Staron
Department of Computer Science

and Engineering
University of Gothenburg
Gothenburg, Sweden

ISBN 978-3-319-58609-0 ISBN 978-3-319-58610-6 (eBook)
DOI 10.1007/978-3-319-58610-6

Library of Congress Control Number: 2017942953

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To my family—Sylwia, Alexander, Viktoria
and Cornelia



Foreword

“Without exception, our aim must be to improve the current status; and instead of
being satisfied with what has been achieved, we must always strive to do our job
even better.” This is the direction which the famous automotive entrepreneur Robert
Bosch gave already at the dawn of the automotive age. It is still valid today, and we
are indeed never satisfied with where we are in the automotive sector.

Software and IT are the major drivers of modern cars—both literally and from
a marketing perspective. Modern vehicles have more than 50 electronic control
units (ECUs), with premium cars having more than 100 such embedded computer
systems. Some functions, such as engine control or dynamics, are hard real-time
functions, with reaction times going down to a few milliseconds. Practically all
other functions, such as infotainment, demand at least soft real-time behaviors.

Today automotive software is spearheading IT innovation. Software engineer-
ing for automotive systems today encompasses modern embedded and cloud
technologies, distributed computing, real-time systems, mixed safety and security
systems, and, last but not least, the connection of all these elements to long-term
sustainable business models. The everyday relevance of automotive software for
today’s software engineers is high, and it is the focus of this book to bring this
message to practitioners. Its main goal is to underline the convergence of embedded
software with highly complex distributed IT systems.

Each automotive area has its own requirements for computational speed, reliabil-
ity, security, safety, flexibility, and extensibility. Automotive electronic systems map
functions such as braking, powertrain, or lighting controls to individual software
systems and physical hardware. The resulting complexity has reached a limit that
demands an architectural restart. At the same time, innovative functions such as
connectivity with external infrastructures and vehicle-to-vehicle communication
demand IT backbone and cloud solutions with service-oriented architectures (SOA).

Software and IT in vehicles and their environments are evolving at a fast pace.
Multimodal mobility will connect previously separated domains like cars and public
transportation. Mobility-oriented services such as car sharing creates completely
new eco-systems and business models far away from the classic “buy your own
car” approach. Autonomous driving demands highly interactive services with multi-
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Fig. 1 Software and IT advance automotive innovations and complexity

sensor fusion, far away from currently deployed functionally isolated control units.
Connectivity and infotainment have transformed the car into a distributed IT system
with cloud access, over-the-air functional upgrades, and high-band-width access to
map services, media content, other vehicles and surrounding infrastructure. Energy
efficiency evolves the classic powertrain towards high voltage hybrid and electric
engines.

With so many software-driven innovations in vehicles and their environments,
complexity is growing fast—and in some cases beyond what can be controlled as
recent security attacks have showed. Figure 1 indicates the rapid growth of software-
driven innovations along with a forecast for the near future.

To master this fast growing complexity, automotive software needs a clear archi-
tecture. Architecture evolution today is the major focus across companies, and thus
the book arrives just at the right time. Architecture impacts are manifold, such as
systems modeling, testing and simulation with models in the loop; the combination
of several quality requirements such as safety; service-oriented advanced operating
systems with secure communication platforms such as adaptive AUTOSAR (Auto-
motive Open System Architecture); multisensor fusion and picture recognition for
ADAS (Advanced Driver Assistance Systems) and autonomous driving; distributed
end-to-end security for flexible remote software updates directly into the cars’
firmware; connectivity of cloud technologies and IT backbones with billions of
cars and their on-board devices for infotainment, online apps, remote diagnosis and
emergency call processing.

This book comprehensively introduces to automotive software architecture.
Authored by renowned expert Miroslaw Staron it provides a guided tour through
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the methodology and usage of automotive software architecture. Starting with a
brief introduction to software architecture paradigms it quickly moves to current
application domains, such as AUTOSAR. Architecture analysis with methods
such as ATAM of SEI provide hands-on guidance specifically at the current fast
paradigm change from classic networking controllers to the three-tier model of
future automotive IT.

With this book Miroslaw Staron and his co-authors target both engineers and
decision-makers in the automotive electronics and IT domain. They guide engineers,
developers and managers along the convergence of the two worlds of IT and
embedded systems. Education however has only in rare cases dedicated programs
for engineering this convergence of IT and embedded systems. Business models will
evolve towards flexible service-oriented architectures and eco-systems. Reference
points based on industry standards such as three-tier cloud architectures, adaptive
AUTOSAR, and Ethernet connectivity facilitate reuse across companies and indus-
tries. The classic functional split is replaced by a more service-oriented architecture
and delivery model. Development in the future will be a continuous process which
will fully decouple the rather stable hardware of the car from its functionality driven
by software upgrades. Hierarchic modeling of business processes, functionality
and architecture from a systems perspective allow early simulation while ensuring
robustness and security. Agile service delivery models combining DevOps, micro-
services and cloud solutions will allow functional changes far beyond the traditional
V approach.

The techniques presented in this book are not supposed to be the ultimate truth,
but provide direction in a fast evolving field. It will help you as well as your
organization to grow your maturity. Our society and each of us depend on seamless
mobility, and so we need to also trust these underlying systems of infrastructure
and vehicles. Let’s evolve the necessary technology, methods, and competences in a
good direction to stay in control of automotive software and avoid the many pitfalls
of classic IT systems. For this reason I wish this book all the best and good success.

As with all architecture independent of application domain, we should not forget
the wisdom of another great leader, Winston Churchill, who once said: “However
beautiful the strategy, you should occasionally look at the results.”

Stuttgart, Germany Christof Ebert
February 2017



Preface

Even since I’ve learned how to drive, I’ve been an enthusiast of cars and driving.
The ability to “go places” and be in charge of the machine that can take us to
these places has always been something that I’ve loved. When I entered the field
of computer science and software engineering, the software was present in cars in
very few places—basically only to control the ignition of the engine. At least that
was the case in the cars I owned at the time. However, I saw a large potential for
using computers in cars.

It is the ability to use more software in cars that triggered my interest in
automotive software architectures. In 2015 my publisher contacted me and proposed
writing a book about topics I like. I managed to convince my colleagues—Darko
Durisic from Volvo Car Group, Per Johannessen from AB Volvo and Wilhelm
Meding from Ericsson—to help in writing some of the chapters.

In 2017 we managed to finish the book and we hope that it will provide a solid
ground for our readers in designing automotive software. We hope that by writing
this book we can contribute to a more exciting, yet at the same time safer, cars. We
have enjoyed writing the book and we hope that you, our reader, will enjoy reading
our book.

The purpose of the book is to introduce the concept of software architecture as
one of the cornerstones of software in modern cars. The book is a result of my
work in the area of software engineering, with particular focus on safety systems
and software measurement. Throughout my research, I’ve worked with multiple
companies in the automotive and telecom domains and I have noticed that over time
these domains became increasingly similar. The processes and tools for developing
software in modern cars became very similar to those used in the development of
telecommunication systems. The same is very true about software architectures—
initially very different, today they are increasingly similar in terms of architectural
styles, programming paradigms and architectural patterns.

The book starts with a historical overview of the evolution of software in modern
cars and the description of the main challenges which drive the evolution. Chapter 2
describes the main architectural styles of automotive software and their use in car’s
software. In Chap. 3, the reader can find a description of software development

xi



xii Preface

processes used to develop software on the car manufacturer’s side. Chapter 4
introduces AUTOSAR—an important standard in automotive software. Chapter 5
goes beyond simple architecture and describes the process of detailed design of
automotive software with the use of Simulink, which helps us understand how
the detailed design links to the high-level design. Chapter 6 presents a method for
assessing the quality of the architecture—ATAM (Architecture Trade-off Analysis
Method)—and provides an example assessment. Chapter 7 presents an alternative
way of assessing the architecture, namely by using quantitative measures and
indicators. In Chap. 8 we dive deeper into one of the specific properties discussed in
Chap. 6—safety—and can read about the important standard in that area—ISO/IEC
26262. Finally, Chap. 9 presents a set of future trends that seem to emerge today that
have the potential to shape automotive software engineering in the coming years.

Gothenburg, Sweden Miroslaw Staron
January 2017
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Chapter 1
Introduction

Abstract Modern cars have evolved from mechanical devices into distributed
cyber-physical systems which rely on software to function correctly. Starting from
the 1970s the amount of electronics and software used has gradually increased from
as little as one computer (Electronic Control Unit, ECU) to as much as 150 ECUs
in 2015. The trend in the architecture, however, changes as companies look for
ways to decrease the number of central computing nodes and connect them with
the increased number of I/O nodes. In this chapter we provide an overview of the
book and the conventions used in it and introduce the examples which we will
use throughout. We describe the history of the automotive software anchoring the
events in the evolution of the market of the electronics and software in modern cars.
Towards the end of the chapter we also describe which directions can be pursued to
deepen the knowledge of automotive software.

1.1 Software and Modern Cars

The introduction of software to cars opened up plenty of opportunities—from the
optimization of cars’ performance and to exciting infotainment features. Modern
cars are full of electronics and the consumers are looking for car platforms which
fully resemble software products. A good example of this kind of car is Tesla,
which is known for innovations driven by software. The manufacturer is known
for constantly pushing new versions of software to customers, providing them with
new, exciting features almost every day.

The software intensive systems in modern cars provide plenty of new oppor-
tunities, but they also require more careful design, implementation, verification
and validation before they can be released to users. And although the practices of
software engineering include methods and tools able to fulfill the needs for safety
and reliability of the automotive software, they must be applied in an automotive-
specific manner to address these needs.

We could see the clear development of the automotive industry into a field less
dominated by mechanical engineering but with a growing component of electronic
and software engineering. We have seen the evolution of software from simple
engine control algorithms of the 1970s to the advanced safety systems of the 2000s
and the advanced connectivity of the 2010s. We can observe that the trends of using
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2 1 Introduction

the software is not going to decrease, but will increase and the amount of software
used will continue to increase.

With the growing amount and importance of software in modern cars we
can observe the increased need for professional software engineering. Rigorous
processes of software engineering lead to higher quality software with complexity
not higher than necessary and assuring that the software does not contribute to
fatalities in the traffic conditions.

One of the practices of software engineering is the high-level design of software
systems, also referred to as software architecture. The architecture of the software
provides the designers with the possibility to prescribe how the software functions
are distributed to software components and how the components are to interact with
each other. Software architecting is usually done at the early stages of software
development and serves as the basis for the allocation of software modules to
components and the distribution (called systemization) of the functions to software
components.

1.2 History of Software in the Automotive Industry

Although today it is a given that there is a lot of software in our cars, it was not
like that at the beginning of the automotive industry. The first cars did not contain
any electronics, which only entered the automotive market during the 1970s with
the introduction of electronic fuel injection as a response to the demand for fuel
efficiency [CC11].

In the 1970s the software in the cars was usually embedded deeply in the
electronics in functions related to single domains—e.g., electronic fuel injection
in the powertrain, electronic ignition in the electrical system or central locking.
Since the use of electronics was scarce in that decade, the notion of functional
safety did not relate to software and it was relatively easy to embedded mechanisms
for controlling the safety of the functions. The architectures of the software were
usually monoliths which were not communicating with other parts of the software.

It was the 1980s that brought in such innovations as the central computers which
could display basic telemetry of the vehicles—such as current fuel consumption,
average fuel consumption and distance travelled. The ability to display the infor-
mation to the drivers opened up new possibilities. On the embedded software front,
software algorithms controlled new functions such as anti-lock brakes (ABS) and
even electronic gearboxes.

The 1990s introduced even more consumer-visible electronics. The most notable
innovation was in the infotainment domain and was the navigation system—or
as it is commonly called, the GPS. Visualizing the information online required
integration of important electronic components such as powertrain control com-
puter, the dedicated GPS receiver and the infotainment display. The same decade
introduced also more electronics and software in safety-critical areas such as ACC
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Fig. 1.1 Late 1990s JECS LH-Jetronic ECU for engine control

(Adaptive Cruise Control) which controlled the speed of a vehicle based on the
speed of the vehicles in front. The introduction of this kind of functionality raised the
important questions of liability for accidents caused by malfunctioning of software.
The automotive software architecture used in the 1990s was more distributed and
software became often recognized as important factor in innovation in the car
industry. An example computer system is presented in Fig. 1.1.1

This kind of development continued into the 2000s, when software started to
dominate innovation in the car industry. It was also during the 2000s that the
notion of advanced driver support systems was coined. The “advanced” referred to
functions which integrated multiple computers in the car and made more “difficult”
decisions for the driver. One of the most notable systems in this area was the City
Safety system introduced by Volvo in its XC60 model [Ern13]. The system could
stop the car from of speed under 50 kph when an obstacle appeared in front of it
and the driver had no time to react. It was these kinds of systems that required
more control over the complex interactions and prioritizations and therefore led to
more advanced software architectures. The AUTOSAR standard was introduced to
provide the possibility to communize solutions (where possible) and make it easy
to change hardware platform with limited effort to adopt the software, and to enable
easier sharing of the components between manufacturers and introduce a common
“operating system” for the car’s computers [Dur15, DSTH14].

1Author: RB30DE via Wikipedia https://en.wikipedia.org/wiki/JECS, under the Creative Com-
mons License: http://creativecommons.org/licenses/by-sa/3.0/.

https://en.wikipedia.org/wiki/JECS
http://creativecommons.org/licenses/by-sa/3.0/
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Fig. 1.2 2014 Audi TT infotainment unit

Finally, the 2010s introduced a completely new way of designing the electronics
in cars [SLO10, RSBC13]. Departing from the distributed network of computers
in a single car, this decade introduced the concepts of wireless cars, car-2-
car communication, car-2-infrastructure communication and autonomous driving
concepts. Many new actors appeared on the market where the car was no longer
a final product, but a platform where new functions could be deployed even post-
production. Examples of such cars are Tesla cars or Google’s self-driving vehicle
[Mar10]. It was also this decade that required more advanced control over the
execution of software coming from different vendors for the possibility of adding
new functionality to cars without the need for physically modifying the cars. An
example of a focus area—infotainment—is presented in Fig. 1.2.2

Another example is the infotainment unit of Volvo XC90 as presented in Fig. 1.3.
In today’s cars the size of the software grows to over 100 million lines of code

according to Viswanathan [Vis15].

2Author: Audi, available at https://en.wikipedia.org/wiki/JECS, under the Creative Commons
License: http://creativecommons.org/licenses/by-sa/2.0/.

https://en.wikipedia.org/wiki/JECS
http://creativecommons.org/licenses/by-sa/2.0/
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Fig. 1.3 2016 Volvo XC90 infotainment unit

1.3 Trends Shaping Automotive Software Development

In 2007, Pretschner et al. [PBKS07] outlined the major trends in software develop-
ment in automotive systems. This work has been a trendsetter since then and has
foreshadowed the large increase in the amount of automotive software—in 2007
measured in megabytes and in 2016 measured in gigabytes. The five trends of
automotive software systems presented by Pretscher et al. are:

• Heterogeneity of software—the software in modern cars realizes different func-
tions in different domains. These domains range from highly safety-critical (e.g.
active safety) to user experience-centered (e.g. infotainment). This means that
the ways of specifying, designing, implementing and verifying the software vary
among domains.

• Distribution of labor—the development of the software systems is often dis-
tributed between automotive OEMs (Original Equipment Manufacturers, like
Volvo, BMW, and Audi) and suppliers. Suppliers are also often given an option
to define their own way of working as long as they comply with the requirements
of and contracts with the OEMs.

• Distribution of software—the automotive software system comprises a number
of ECUs, and each of the computers has its own software which needs to
cooperate with other ECUs to fulfill its functions. This entails more difficulty
in coordination of the software and introduces more complexity.
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• Variants and configurations—the globalized and highly competitive automotive
market requires customizations of the same car based on the requirements of the
country and the user. This means that the software in modern cars needs to be able
to work in different countries without the need for recertification and, therefore
the software needs to handle variants in multiple ways—both in the source code
and also at runtime.

• Unit-based cost models—the competitive market means that the unit price of the
car cannot be too high compared to the competition and therefore it is often the
case that automotive OEMs optimize the hardware and software in such a way
that unit costs remains low while the development costs can be higher.

A lot has happened since 2007 and the major trends in the automotive market
today can be complemented with such trends as3:

• Connectivity and cooperation [BWKC16]—the ability to use internet functions
through mobile networks enabled cars to connect to each other and/or to use
information from the infrastructure to make decisions. Research projects in
the area of intelligent transport systems explore such ideas as planning of the
speed of a bus to minimize the need for braking for “red” when approaching
intersections. The modern cars are expected to be able to connect to smartphones
via bluetooth and to use internet features such as web browsers or music services.

• Autonomous functions [LKM13]—the ability of the car to brake, steer and
autonomously take over from drivers entails a large amount of complexity in
safety-critical systems, but is seen as “the next big thing” in the automotive sector.
This also means that the verification and validation methods for software in cars
will become even more stringent and even more advanced.

Autonomous driving scenarios are challenging because of the need to have an
accurate and exact model of the physical surroundings of the car. This demand
for the accuracy requires more sophisticated measurement equipment and therefore
more data to process, more decision points, and in turn more complex algorithms.
One piece of such measurement equipment which is used in autonomous driving is
LIDAR, shown in Fig. 1.4.4

Figure 1.4 shows a LIDAR mounted on the roof of an autonomous car. The device
provides a 360-degree view of the surroundings and allows the car’s software to find
objects in the vicinity of the car. A LIDAR is often a complement to a RADAR,
which is usually placed in the front of the vehicle. Figure 1.5 shows the picture of
the radar ECU of a Volvo FH16 truck.

The production cars, however, do not have LIDARs yet, but take advantage of
cameras placed in covered places. In Fig. 1.6 we can see the front camera of a Volvo
XC90.

3Based on author’s own observations.
4Author: Steve Jurvetson; available at flickr.com, under the Creative Commons License: http://
creativecommons.org/licenses/by/2.0/.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
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Fig. 1.4 Velodyne High-Def LIDAR

Fig. 1.5 Radar ECU in Volvo FH16 truck

It is interesting to observe the automotive software market today, and therefore
we believe that this book will be of use to anyone who is interested in starting to get
into automotive software engineering.
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Fig. 1.6 Front camera in Volvo XC90

1.4 Organization of Automotive Software Systems

Over the years each car manufacturer (often referred to as an OEM, Original
Equipment Manufacturer) developed its own way of organizing software systems
with the diversity in pair of the diversity of car brands today. However, many of the
car manufacturers design the software in a similar way—they use the V development
model and a similar organization of the electrical (and software) systems into
domains and subsystems. We can depict it in the model presented in Fig. 1.7.

In this view we can see that the electrical system is organized into domains,
such as infotainment and powertrain. Each of these domains has a specific set of
properties—some are safety-critical and some not, some are very user oriented and
some are realtime and embedded. Each of these domains, however, is organized into
subsystems which group a specific functionality (some OEMs call these subsystems
simply “systems”) such as active safety, and advanced driver support and similar.
These systems group a number of logical elements and realize the functionality,
which is often grouped into functions. The functions are often called end-to-end
functions, as they realize user functionality such as Adaptive Cruise Control, Line
Departure Warning and Navigation from A to B.

The functions are realized by subsystems of the electrical system and they are
orthogonal to the organization of subsystems, components and modules. Therefore
we often see the concept of “functional architecture (view)”—describing the
dependencies among functions.

Each subsystem contains a number of components which include smaller parts
of software elements that realize parts of the functionality (e.g. such a part
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Fig. 1.7 Conceptual view of the organization of the software system

could be a message broker for an infotainment system). These components are
organized into software modules, which are often source code files with a set of
classes, methods and programming language functions. The groupings of these
programming language functions or software classes are referred to as logical
software components.

The term software architecture can be used in almost all levels of this hierarchy
(except for the lowest one). We can talk about the EE architecture (Electrical
System architecture) which describes the organization of software and hardware
for the entire car. We can talk about an ECU architecture which describes the
logical organization of software subsystems, components and modules in the ECU.
Depending on the size and role of the ECU we could have modules, components or
subsystems in the ECU [DNSH13].

The methods and techniques presented in this book can be applied at any of these
levels.

1.5 Architecting as a Discipline

Software architecture is a kind of artifact in software development, but architecting
is a full-fledged discipline with its own activities and tasks. It is quite often the case
that software architects are perceived as more experienced than senior designers and
are given a larger mandate to make decisions than software designers. In order to
prevent confusion, let us briefly discuss the role of software architects in contrast to
the designers and project managers. These two roles can be perceived as overlapping
to some extent and therefore this comparison gets interesting.
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1.5.1 Architecting vs. Project Management

Being a software architect means being in a role of a kind of technology leadership.
The architects are the persons who lay the ground for the development of the entire
system—in terms of general architectural styles, but also in terms of principles
which guide the development of the system. Those principles form the boundaries
within which the designers can make their choices. It is the role of the architect to
ensure that these principles are followed during the entire lifecycle of the software
system.

In some sense, setting the frames for the system design is a technical corre-
spondent to setting the frames for the cost and scope of the project that develops
the system. However, it is the responsibility of the project manager to set and
monitor this project scope, schedule and cost. Therefore we contrast architecting
as a technical correspondent to project management in Table 1.1.

Since the discipline of architecting is practices by technical experts, it is technical
principles that are applied—how to create objects, send messages, deploy compo-
nents onto ECUs. This means that the technologies and their characteristics are in
focus. For example, the architects need to balance different quality characteristics
with each other—performance vs. safety, maintainability vs. portability and others.
Therefore the architects also focus on the quality and functionality—addressing
such challenges as “how to enable video feeds over the Flexray network without
adding new cables”. Finally the architects focus on the functionality and make sure
that the electrical system of the car can realize the functionality given the constraints
(e.g. weight of the cables, number of ECUs). All of these aspects make software
architecting seem as technical product management.

In contrast to the technical management, we have project management, where the
project leaders apply organizational theories to determine whether to work Agile
or waterfall, or how to negotiate contracts, or how to measure the progress of
the project. When applying the managerial and organizational theories the project
leaders focus on the scope of the project—addressing the questions of whether a
given functionality can be developed given the budget constraints of the project.
The focus of the project leaders is on resources, on balancing cost and resources
with the schedule of the project. All of these aspects can be seen as management of
the project rather than management of the product.

Table 1.1 Architecting vs.
project management

Architecting Project management

Done by technical experts Done by management experts

Technology in focus Scope in focus

Focus on quality Focus on cost

Focus on requirements Focus on work products

Focus on solution Focus on resources

Maximize functionality Minimize cost
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Table 1.2 Architecting vs. designing

Architecting Designing

Making rules and decisions Following rules and decisions

High level structures Low-level structures

Holistic understanding Specialistic understanding

Systems thinking Software thinking

Documentation-oriented Code and executable/detailed model-oriented

Modelling and analysis Execution and testing

Both technical and project management need to work with one another as they
develop the one and the same product! Humphrey [Hum96] in his book “Managing
Technical People: Innovation, Teamwork and the Technical process” provides a
number of useful guidelines on how to combine these two.

1.5.2 Architecting vs. Design

Similarly to contrasting the discipline of architecting to the discipline of project
management, we can also contrast architecting to designing. We could observe from
the previous contrast that technical product management is about setting principles
for the work. The discipline of designing is all about following these principles
in order to arrive at final software product. We present some of the differences in
Table 1.2.

Software architecting, being the technical management of the system, sets
the boundaries for the design in terms of principles, rules and decisions about
how to design the system. An example of such a decision is the choice of the
communication protocol between the ECUs and the number of ECUs in the system.
It’s also about which standards to follow and why. Architecting, as we will see in this
book, is a discipline operating at a high abstraction level—considering components
(e.g. groups of software classes) and execution nodes. This requires a holistic
understanding of the system—both the software and the underlying hardware used
to execute the software or provide the software with data. This kind of a “systems
thinking” makes the architects the core part of any software team because they
understand the background of “why” things happen rather than just do things.5

The discipline of architecting is also very documentation-oriented—as the
decisions, rules and principles need to be communicated, they also need to be
explained and documented to lead to consistency and enforcement of rules. This
happens often as a process of analysis and modelling of the system.

5Sinek in his book “Starting with Why: How Great Leaders Inspire Everyone to Action” [Sin11]
presents a set of examples of how this works in practice.
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In contrast, the discipline of designing is focused on realizing the principles,
decisions and rules of the architecture in software code or an executable model. The
high-level structure discussed in the architecture is now developed using lower-level
structures—components using classes and blocks, ECUs using execution processes.
This requires specialized knowledge and competence in the particular domain in
question (e.g. the infotainment or powertrain). The design is focused on the software
entities and their interaction with the underlying hardware, where the hardware
is often given (or at least the specification of the hardware is given during the
design of the software). This means that designing is focused on the code and
executable/detailed models rather than on abstract analysis and modelling. It is also
therefore the design that is the first activity where we discuss testing and execution,
whereas in the architecture we talk about assessments and evaluations (a topic which
we will return to in Chap. 6).

Similarly to the collaboration between the architects and the project managers,
the architects need to collaborate closely with the designers in order to develop and
deliver a software system which fulfills all the requirements and quality constraints.

1.6 Content of This Book

This book addresses one of the most fundamental aspects of engineering of
software systems—software architectures. The architecture is a high-level design of
a software system which enables the architects to distribute the functionality of the
software system to multiple interacting components. The components are usually
grouped into subsystems and domains which address a set of functional and non-
functional requirements of the software system.

In this book we explore the concept of software architecture for modern cars
which is intended for both novice and advanced software designers. This book
is intended for two groups of audience—professionals working with automotive
software who need to understand concepts related to automotive architectures, and
students of software engineering or related programs who need to understand the
specifics of automotive software to be able to construct cars or their components.

The idea to support the professionals came from the author’s observations that
the automotive industry requires an individual software engineer to be able to
understand a variety of disciplines. Individuals working with the construction of
car software or hardware need to understand their counterparts in order to be able to
design safe, reliable and long-term solutions for the car industry. Software engineers
need to understand how their software is to be integrated with other software from
other vendors in order to be able to develop user functions, e.g. collision avoidance
by braking.

The idea to support the students came from the observation that many of the
graduates from software engineering programs require further education in order
to understand such advanced concepts as software and systems safety, working
with suppliers and distribution of software. During the author’s years of working
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with students it became evident that it is difficult to provide education in software
engineering in general and also focus on specific aspects such as automotive
software. This book addresses this challenge and is aimed at being both a reference
book and a potential course book for software engineering programs.

This book is structured into independent chapters which can be read separately,
although we recommend reading them in sequence. Reading the chapters in
sequence allows us to follow the motivating example throughout the book and to
gradually build up knowledge about automotive software architectures.

1.6.1 Chapter 2: Software Architectures

In this chapter we present the basics of software architecture in general as a recap
for readers who are not familiar with architecting as a discipline, and towards the
end of the chapter we describe the specificity of automotive software architectures.

In the beginning of the chapter we review the definitions of software architec-
tures, define the types of view used in automotive software design and relate them
to the architectural views in software engineering in general—the 4+1 architecture
view model.

We gradually progress in the chapter to introduce elements important for auto-
motive architectures, e.g., ECUs (Electronic Control Units), logical and physical
components, functional architectures, and topologies for automotive architectures
(physical and logical). We delve into the peculiarities of automotive software—
embedded systems with large focus on safety and dependability.

1.6.2 Chapter 3: Automotive Software Development

In this chapter we describe and elaborate on software development processes in the
automotive industry. We introduce the V-model for the entire vehicle development
and we continue to introduce modern agile software development methods for
describing the ways of working of software development teams. We also provide an
overview of a tool which is used to keep the design data consistent—SystemWeaver
by SystemIte.

In this chapter we discuss the specifics of automotive software development
such as variant management, different integration stages, testing strategies and the
methods used for these. We review methods used in practice and explain how they
should be used.
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1.6.3 Chapter 4: AUTOSAR Reference Model

In this chapter we continue on the topic of standardization and we discuss the current
standardization efforts. We describe and discuss the AUTOSAR standard, which
gets the most attention today in Europe and worldwide.

In the AUTOSAR standard we describe the main building blocks like software
components and communication buses. We also describe the evolution of the
standard from the perspective of the main concepts and their influence on the car
industry.

Towards the end of the chapter we present the AUTOSAR reference architecture
as described in the standard and discuss its evolution.

1.6.4 Chapter 5: Detailed Design of Automotive Software

In this chapter we continue to delve into the technical aspects of automotive
software architectures and we describe ways of working when designing software
within particular software components. We present the methods for modelling the
functions using Simulink modelling and we show how these methods are used in
the automotive industry.

Towards the end of the chapter we introduce the need for quality assessment
of software architectures and the challenges related to assessment of the sub-
characteristics of quality (the so-called “-ilities”).

1.6.5 Chapter 6: Evaluation of Automotive Software
Architectures

In this chapter we introduce methods for assessing the quality of software architec-
tures and we discuss ATAM. We discuss the non-functional properties of automotive
software and we review the methods used to assess such properties as dependability,
robustness and reliability. We follow the ISO/IEC 25000 series of standards when
discussing these properties.

In this chapter we also address the challenges related to the integration of
hardware and software and the impact of this integration. We review the differences
with stand-alone desktop applications and discuss examples of these differences.

Towards the end of the chapter we discuss the need to measure these properties
and introduce the need for software measurement.
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1.6.6 Chapter 7: Metrics for Software Design
and Architectures

In this chapter we describe the most commonly used metrics in software engineering
in general and in automotive software engineering, e.g. lines of code, model size,
complexity, and architectural stability or coupling [SHFMHNH13]. In particular we
present these metrics and their interpretation (what should be done, and why, based
on the values of metrics). We discuss the use of metrics based on the international
standard ISO/IEC 15939.

1.6.7 Chapter 8: Functional Safety of Automotive
Software

In this chapter we elaborate on one of the most important issues related to software
in modern cars—functional safety. We explore the safety-related concepts described
in the international standard ISO/IEC 26262 and we describe how this standard is
used in modern software development processes.

We explore such elements as verification and validation techniques mentioned in
the standard and link them to the ASIL levels and efficiency of their applications.

In the chapter we describe how the standard is to be applied on the examples of
the simple function.

1.6.8 Chapter 9: Current Trends in Automotive Software
Development

We conclude the book with the outlook on the current trends in automotive software
development and we introduce the emerging, disruptive technologies on the market
that have the potential to change the automotive industry to become more software-
oriented than it traditionally has been.

1.6.9 Motivating Examples in the Book

In this book we illustrate the concepts introduced in each chapter with a set of
examples. Each chapter has its own examples which are dedicated to extrapolating
the concepts described, and therefore:

• Chapter 2 contains a set of examples from different domains, e.g. infotainment,
powertrain and active safety.
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• Chapter 3 includes examples of requirements from AUTOSAR and requirements
for opening the car from the chassi domain.

• Chapter 4 contains examples of the AUTOSAR models and their realization for
communication between two ECUs.

• Chapter 5 includes examples of digitalization of an analog signal and the
designing of the heating of a car’s chassi from the Chassi domain.

• Chapter 6 contains examples of the parking assistance camera from the active
safety domain.

• Chapter 7 contains examples of a real software (obfuscated) published as open
source.

• Chapter 8 includes the example of a simple microcontroller demonstrating the
different ASIL levels and architectural choices used to achieve these levels.

These examples do not constitute an entire software system of a car, as these
systems are huge. As a reference, BMW in its talks at conferences showed the size
of the electrical system to be about 200 ECUs, which includes all variants of its
electrical system (meaning that there is no car with all 200 ECUs.6)

1.7 Knowledge Prerequisites

In order to understand the book one needs to understand how programming works.
We do not require any specific programming skills, but it is good to know the basics
of programming in C/C++ or Java/C#. It is also good to have the basic knowledge
of the UML notation, especially the class diagrams.

We introduce topics from the automotive domain and we require no prior
understanding of the domain nor any knowledge of software architecture.

For each chapter we provide pointers where the interested reader can find more
information or where the necessary prerequisites can be obtained.

1.8 Where to Go Next

After reading this book you will be able to understand how to architect a software
system for a modern car. You will also be prepared to understand the design
principles guiding the development of software in modern cars and be able to
understand the non-functional principles behind the design.

The next natural step is to follow your interest in the design of software
systems. We recommend focusing on the principles of continuous integration and
deployment, virtual verification and validation as well as advanced functional safety.

6Presentation from BMW at Elektronik i Fordon, Gothenburg, May 2016.
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Chapter 2
Software Architectures: Views and
Documentation

Abstract Software architecture is the foundation for automotive software design.
Being a high-level design view of the system it combines multiple views on the
software system, and provides the project teams with the possibility to communicate
and make technical decisions about the organization of the functionality of the entire
software system. It allows also us to understand and to predict the performance of
the system before it is even designed. In this chapter we introduce the definitions
related to software architectures which we will use in the reminder of the book. We
discuss the views used during the process of architectural design and discuss their
practical implications.

2.1 Introduction

As the amount of software in modern cars grows we observe the need to use more
advanced software engineering methods and tools to handle the complexity, size and
criticality of the software [Sta16, Für10]. We increase the level of automation and
increase the speed of delivery of software components. We also constantly evolve
software systems and their design in order to be able to keep up with the speed of
the changes in requirements in automotive software projects.

Software architecture is one of the cornerstones of successful products in
general, and in particular in the automotive industry. In general, the larger the
system, the more difficult it is to obtain a good quality overview of its functions,
subsystems, components and modules—simply because of the limitations of our
human perception. In automotive software design we have more specific challenge,
related to the safety of the software embedded in the car and the distribution of the
software—both distribution in terms of the physical distribution of the computing
nodes and distribution of the development among the car manufacturers and their
suppliers.

In this chapter we discuss the concept of software architecture and explain
it with the examples of building architectures. Once we know more about what
constitutes software architecture, we go into the details of different views of
software architecture and how they come together. We then move on to describing
the most common architectural styles and explain where they can be seen in
automotive software. Finally we present the ways of describing architectures—the
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architecture modelling languages. We end the chapter with references to further
readings for readers interested in more details.

2.2 Common View on Architecture in General and in the
Automotive Industry in Particular

The concept of architecture is well rooted in our society and its natural association
is to the styles of buildings. When thinking about architecture we often recall large
cathedrals, the gothic and modern styles of churches, or other large structures. One
of the examples of such a cathedral is the “Sagrada Familia” cathedral in Barcelona
with its very characteristic style.

However, let us discuss the concept of the architecture with a considerable
smaller example—let us take the example of a pyramid. Figure 2.11 presents a
picture of the pyramids in Gizah.

The form of the pyramid is naturally based on a triangle. The fact that it is based
on a triangle is one of the architectural choices. Another choice is the type of the
triangle (e.g. using the golden number 1.619 as the ratio between the slant height to
half the base length). The decision is naturally based on mathematics and illustrated

Fig. 2.1 All Gizah pyramids: a picture represents an external view of the product

1Author: Ricardo Liberato, available at Wikipedia, under the Creative Commons License: https://
creativecommons.org/licenses/by-sa/2.0/.

https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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Fig. 2.2 Internal view of the architecture of a pyramid

Fig. 2.3 Volvo XC 90, another example of the external view of the product

using one of the views of the pyramid—call it an early design blueprint as presented
in Fig. 2.2.

Figure 2.2 shows the first design principles later on used to detail the design
of the pyramid. Instead of delving deeper into the pyramid construction, let us
now consider the notion of architecture and software architecture in the automotive
industry.

One obvious view of the architecture of the car is the external view of the product,
as with the view of the pyramid (Fig. 2.3).2

2Author: Albin Olsson, available at Wikipedia, under the Creative Commons License: https://
creativecommons.org/licenses/by-sa/4.0/deed.en.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Fig. 2.4 A blueprint of the design principles of a car

We can observe the general architectural characteristics of a car—the placement
of the lights, the shape of the lights, the shape of the front grill, the length of the car,
etc. This view has to be complemented with a view of the internal design of the car.
An example of such a blueprint is presented in Fig. 2.4.3

This blueprint shows the dimensions of the car, hiding other kinds of details.
Another blueprint can be a view of the electrical system of a car, its electronics and
its software.

2.3 Definitions

Software architecting starts with the very first requirement and ends with the last
defect fix in the product, although its most intensive period is in the early design
stage where the architects decide upon the high-level principles of the system
design. These high-level principles are documented in the form of a software
architecture document with several views included. We could therefore define the
software architecture as the high-level design, but this definition would not be just.
The definition which we use in this book is:

3Figure source: pixbay.com.

pixbay.com
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Software architecture refers to the high-level structures of a software system, the
discipline of creating such structures, and the documentation of these structures.
These structures are needed to reason about the software system

The definition is not the only one, but it reflects the right scope of the
architecture. The definition comes from Wikipedia (https://en.wikipedia.org/wiki/
Software_architecture).

2.4 High-Level Structures

The definition presented in this chapter (“Software architecture refers to the high-
level structures of a software system: : :”) talks about “high-level structures” as a
means to generalize a number of different entities used in the architectural design.
In this chapter we go into details about these structures, which are:

1. Software components/Blocks—pieces of software packaged into subsystems and
components based on their logical structure. Examples of such components could
be UML/C++ classes, C code modules, and XML configuration files.

2. Hardware components/Electronic Control Units—elements of design of the
computer system (or platform) on which the software is executed. Examples of
such elements include ECUs, communication buses, sensors and actuators.

3. Functions—elements of the logical design of the software described in terms
of functionality, which is then distributed over the software components/blocks.
Examples of such elements are software functions, properties and requirements.

All of these elements together form the electrical system of the car and its
software system. Even though the hardware components do not “belong” to the
software world, it is the often the job of the architect to make sure that they are
visible and linked to the software components. This linking is important from the
process perspective—it must be know which supplier should design the software
for the hardware. We talk more about the concept of the supplier and the process in
Chap. 3.

In the list of high-level structures, when introducing functions, we indicated
the interrelation between these entities—“functions distributed over the software
components”. This interrelation leads us to an important principle of architecting—
the use of views. An architectural view is a representation of one or more structural
aspects of an architecture that illustrates how the architecture addresses one or
more concerns held by one or more of its stakeholders [RW12].

One could see the process of architecting as a prescriptive design, the process
continuous as the design evolves. Certain aspects of design decisions influence
the architecture and are impossible to know a priori—increased processing power
required to fulfill late function requirements or safety-criticality of the designed
system. If not managed correctly the architecture has a tendency to evolve into a
descriptive documentation that needs to be kept consistent with the software itself
[EHPL15, SGSP16].

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture
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2.5 Architectural Principles

The second part of the definition of the software architecture (“: : :the discipline of
creating such structures: : :”) refers to the decisions which the software architects
make in order to set the scene for the development. The software architects create
the principles by defining such things as what components should be included in
the system, which functionality each component should have (but not how it should
be implemented—this is the role of the design discipline, which we describe in
Chap. 5) and how the components should communicate with each other.

Let us consider the coupling as an example of setting the principles. We can
consider an example of a communication between the component representing the
controller of the windshield wipers and the component representing the hardware
interface to the small engine controlling the actual windshield wiper arm. We could
have a coupling in one way, as presented in Fig. 2.5.

In the figure we can see that the line (association) between the blocks is directed
from WindshieldWiper to WndEngHW. This means that the communication can
only happen in one way—the controller can send signals to the hardware interface.
This seems logical, but it raises challenges when the controller wants to know the
status of the hardware interface without pulling the interface—it is not possible as
the hardware interface cannot communicate with the controller. If an architect sets
this principle then this has the consequences on the later design, such as the need
for extra signals on the communication bus (pulling the hardware for the status).

However, the software architect might make another decision—to allow commu-
nication both ways, which is shown in Fig. 2.6.

Fig. 2.5 An example principle—unidirectional coupling between two blocks

Fig. 2.6 An example principle—bidirectional coupling between two blocks
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The second architectural alternative allows the communication in both ways,
which solves the challenges related to pulling the hardware interface component
for the status. However, it also brings in another challenge—tight coupling between
the controller and the hardware interface. This tight coupling means that when one
of these two component changes, the other should be changed (or at least reviewed)
as the two are dependent on one another.

In the reminder of this chapter we discuss several of such principles when
discussing architectural styles.

2.6 Architecture in the Development Process

In order to put the process of architecting in context and describe the current
architectural views in automotive software architectures, let us first discuss the
V-model as shown in Fig. 2.7. The V-model represents a high-level view of a
software development process for a car from the perspective of OEMs. In the most
common scenario, where there is no OEM in-house development, component design
and verification is usually entirely done by the suppliers (i.e., OEMs send empty
software compositions to the suppliers, who populate them with the actual software
components).

The first level is the functional development level, where we encounter two types
of the architectural views—the functional view and the logical system view. Now,
let us look into the different architectural views, their purpose and the principles
of using them. When discussing the views we also discuss the elements of these
views.

Function design

System design

Component design

Implementation

OEMs

Suppliers

Functional
architecture

System
architecture

Component
architecture

Detailed
design

Fig. 2.7 V-model with focus on architectural views and evolution
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2.7 Architectural Views

As we show in the process when starting with the development from scratch,
the requirements of or ideas for functions in the car come first—the product
management has the ideas about what kind of functionality the car should have.
Therefore we start with this type of the view first and gradually move on to more
detailed views on the design of the system.

2.7.1 Functional View

The functional view, often abbreviated to functional architecture, is the view where
the focus is on the functions of the vehicle and their dependencies on one another
[VF13]. An example of such a view is shown in Fig. 2.8.

As we can see from the example, there are three elements in this diagram—the
functions (plotted as rounded-edge rectangles), the domains (plotted as sharp-edged
rectangles) and the dependency relations (plotted as dashed lines), as the functions
can depend on each other and they can easily be grouped into “domains” such as
Powertrain and Active Safety. The usual domains are:

1. Powertrain—grouping the elements related to the powertrain of the car—engine,
engine ECU, gearbox and exhaust.

2. Active Safety—grouping the elements related to safety of the car—ADAS
(Advanced Driver Assistance Systems), ABS (Anti-lock Braking System) and
similar.

Fig. 2.8 Example of a functional architecture—or a functional view
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3. Chassi and body—grouping the elements related to the interior of the car—
seats, windows and other (which also contain electronics and software actua-
tors/sensors).

4. Electronic systems—grouping the elements related to the functioning of the car’s
electronic system—main ECU, communication buses and related.

In modern cars the number of functions can reach more than 1000 and is
constantly growing. The largest growth in the number of functions is related to new
types of functionality in the cars—autonomous driving and electrification. Examples
of functions from the autonomous driving area are:

1. Adaptive Cruise Control—basic function to automatically keep a distance from
the preceding vehicle while maintaining a constant maximum velocity.

2. Lane Keeping Assistance—basic function to warn the driver when the vehicle is
crossing the parallel line on the road without the turn indicator.

3. Active Traffic Light Assistance—medium advanced function to warn the driver
of a red light ahead.

4. Traffic Jam Chauffeur—medium/advanced function to autonomously drive dur-
ing traffic jam conditions.

5. Highway Chauffeur/pilot—medium/advanced function to autonomously drive
during high-speed driving.

6. Platooning—advanced function to align a number of vehicles to drive
autonomously in a so-called platoon.

7. Overtaking Pilot—advanced function to autonomously drive during an overtake
situation.

These advanced functions build on top of the more basic functionality of the car,
such as the ABS (Anti-lock Braking System), warning lights and blinkers. The basic
functions that are used by the above functions can be exemplified by:

1. Anti-lock Braking System (ABS)—preventing the car from locking the brakes
on slippery roads

2. Engine cut-off—shutting down the engine in situations such as after crash
3. Distance warning—warning the driver about too little distance from the vehicle

in front.

The functional view provides the architects with the possibility to cluster
functions, and distribute them to the right department to develop and to reason about
these kinds of functionality. An example of such reasoning is the use of methods
such as the Pareto front [DST15].

2.7.1.1 How-To

The process of functional architecture design starts with the development of the
list of functions of the vehicle and their dependencies, which can be documented
in block diagrams, use case diagrams or SysML requirements diagrams [JT13,
SSBH14].
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Once the list and dependencies are found, we move to organizing the functions
to the domains. In the normal case these domains are known and given. The
organization of the functions is based on how they are dependent on each other with
the principle that the number of dependencies that cross-cut the domains should be
minimized. The result of this process is the development of the diagram as shown
in Fig. 2.8.

2.7.2 Physical System View

Another view is the system view on the architecture, usually portrayed as a view of
the entire electrical system at the top level with accompanying lower-level diagrams
(e.g. class diagrams in UML). Such an overview level is presented in Fig. 2.9. In
this view we could see the ECUs (rounded rectangles) of different sizes placed on
two physical buses (lines). This view of the architecture provides the possibility to
present the topology of the electrical system of the car and provides the architects
with a way to reason about the placement of the computers on the communication
buses.

In the early days of automotive software engineering (up until the late 1990s)
this view was quite simple and static as there were only a few ECUs and a
few communication buses. However, in the modern software design, this view
gets increased importance as the number of ECUs grows and the ability to
give an overview becomes more important. The number of communication buses
also increases and therefore the topologies of the components in the physical
architectures have evolved from the typical star topologies (as in Fig. 2.9) to more
linked architectures with over 100 active nodes. The modern view on the topology

Fig. 2.9 Example of a
system architecture—or a
system view

Main
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HMI

Steering

Display

Keypad
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also includes information about the processing power and the operating system (and
its version) of each ECU.

2.7.2.1 How-To

Designing this view is usually straightforward as it is dictated by the physical
architecture of the car, where the set of ECUs is often given. The most important
ECUs are often predetermined from the previous projects—usually the main
computer, the active safety node, the engine node, and similar. A list of the most
common ECUs present in almost all modern cars is (https://en.wikipedia.org/wiki/
Electronic_control_unit):

• Engine control unit (EnCU)
• Electric power steering control unit (PSCU)
• Human-machine interface (HMI)
• Powertrain control module (PCM)
• Telematic control unit (TCU)
• Transmission control unit (TCU)
• Brake control module (BCM; ABS or ESC)
• Battery management system

Depending on the car manufacturer, the other control modules can differ
significantly. It is also the case that many of the additional control units are part
of the electrical system, meaning that they are included only in certain car models
or instances, depending on the customer order.

2.7.3 Logical View

The focus of the view is on the topology of the system. This view is often
accompanied by the logical component architecture as presented in Fig. 2.10. The
rationale behind the logical view of the system is to focus solely on the software of
the car. In the logical view we show which classes, modules, and components are
used in the car’s software and how they are related to each other. The notation used
for this model is often UML (Unified Modelling Language) and its subling SysML
(Systems Modelling Language).

For the logical view, the architects often use a variety of diagrams (e.g. commu-
nication diagrams, class diagrams, component diagrams) to show various levels of
abstraction of the software of the car—usually in its context. For the detailed design,
these architectural models are complemented with low-level executable models such
as Matlab/Simulink defining the behaviour of the software [Fri06].

https://en.wikipedia.org/wiki/Electronic_control_unit
https://en.wikipedia.org/wiki/Electronic_control_unit
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2.7.3.1 How-To

The first step in describing the logical view of the software is to identify the
components—these are modelled as UML classes. Once they are identified we
should add the relationships between these components in the form of associations.
It is important to keep the directionality of the associations correct as these will
determine the communication between the components added during the detailed
design.

The logical architecture should be refined and evolved during the entire project
of the automotive software development.

2.7.4 Relation to the 4+1 View Model

The above-mentioned three views presently used in automotive software engineer-
ing evolved from the widely known principles of 4+1 view architecture model
presented in 1995 by Kruchten [Kru95]. The 4+1 view model postulates describing
software architectures from the following perspectives:

• logical view—describing the design model of the system, including entities such
as components and connectors

• process view—describing the execution process view of the architecture, thus
allowing us to reason about non-functional properties of the software under
construction

• physical view—describing the hardware architecture of the system and the
mapping of the software components on the hardware platform (deployment)

• development view—describing the organization of software modules within the
software components

• scenario view—describing the interactions of the system with the external actors
and internal interactions between components.

These views are perceived as connected with the scenario view overlapping the
other four, as presented in Fig. 2.11, adapted from [Kru95].

The 4+1 view model has been used in the telecommunication domain, the
aviation domain and almost all other domains. Its close relation to the early
version of UML (1.1–1.4) and other software development notations of the 1990s
contributed to its wide spread and success.

In the automotive domain, however, the use of UML is rather limited to
class/object diagrams and therefore this view is not as common as in the telecom-
munication domain.
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Fig. 2.11 4+1 view model of
architecture

Development viewLogical view

Process view Physical view

Scenario view 

2.8 Architectural Styles

As the architecture describes the high-level design principles of the system, we can
often observe how these design decisions shape the system. In this case we can
talk about the so-called architectural styles. The architectural styles form principles
of software design in the same way as building architecture shapes the style of a
building (e.g. thick walls in gothic style).

In software design we distinguish between a number of styles in general, but
in the automotive systems we can only see a number of those, as the automotive
software has harder requirements on reliability and robustness than, for example,
web servers. Therefore some of the styles are not applicable.

In this section, let us dive deeper into architectural styles and their examples.

2.8.1 Layered Architecture

This architectural style postulates that components of the system are placed in a
hierarchy on top of each other and function calls (API usage) are made only from
higher to lower levels, as shown in Fig. 2.12.

We can often see this type of layered architecture in the design of microcon-
trollers and in the upcoming AUTOSAR standard where the software components
are given specific functions such as communication. An example of this kind of
architecture is presented in Fig. 2.13.

A special variant of this kind of style is the two-tier style as presented by Steppe
et al. [SBGC04], with one layer for the abstract components and the other one for
the middleware details. One example of middleware can be found in Chap. 4 in the
description of the AUTOSAR standard. Examples of the functionality implemented
by the middleware are logging diagnostic events, handling communication on the
buses, securing data and data encryption.

An example of such an architecture can be seen in the area of autonomous driving
when dividing decisions into a number of layers, as shown in Fig. 2.14 extended
from [BCLS16].
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Fig. 2.12 Layered architectural style—boxes symbolize components and lines symbolize API
usage/method calls

Fig. 2.13 An example of a layered architecture
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Fig. 2.14 Layered architecture example—decision layers in autonomous driving

In this figure we can see that the functionality is distributed in different layers and
the higher layers are responsible for mission/route planning while the lower levels
are responsible for steering the car. This kind of modular layered architecture allows
the architects to distribute competence into the vertical domains. The blue arrows
indicate that this architecture is abstract and that these layers can be connected either
directly or indirectly (i.e. there may be other layers in-between).

We quickly realize the this kind of architectural style has limitations caused by
the fact that the layers can communicate only in one way. The components within
the same layer are often not supposed to communicate. Therefore, there is another
style which is often used—component-based.

2.8.2 Component-Based

This architectural style is more flexible than the layered architecture style and
postulates the principle that all components can be interchangeable and independent
of each other. All communication should go through well-defined public interfaces
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Fig. 2.15 Component-based architectural style

and each component should implement a simple interface, allowing for queries
about which interfaces are implemented by the component. In the non-automotive
domain this kind of architecture has been populated by Microsoft in its Windows OS
through the usage of DLLs (Dynamic Linked Libraries) and the IUnknown interface.

An abstract view of this kind of style is presented in Fig. 2.15.
The component-based style is often used together with the design-by-contract

principle, which postulates that the components should have contracts for their
interfaces—what the API functions can and cannot do. This component-based
style is often well suited when describing the functional architecture of the car’s
functionality.

In contemporary cars we can see this architectural style in the Infotainment
domain, where the system is divided into the platform and the application layer
(thus having layered architecture), and for the application layer all the apps which
can be downloaded onto the system are designed according to component-based
principles. These principles mean that each app can use another one as long as the
apps have the right interface. For example a GPS app can use the app for music to
play sound in the background without leaving the GPS. As long as the music app
exposes the right interface, it makes no difference to the GPS app which music app
is used.
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Fig. 2.16 Monolithic architectural style

2.8.3 Monolithic

This style is the opposite of that of component-based architecture as it postulates
that the entire system is one large component and that all modules within the system
can use each other. This style is often used in low-maturity systems as it leads to high
coupling and high complexity of the system. An abstract representation in shown in
Fig. 2.16.

The monolithic architecture is often used for implementing parts of the safety-
critical system, where the communication between components needs to be done in
real time with as little communication overhead as possible. Typical mechanisms in
the monolithic architectures are the “safe” mechanisms of programming languages
such as use of static variables, no memory management and no dynamic structures.

2.8.4 Microkernel

Starting in the late 1980s, software engineers started to use microkernel architecture
when designing operating systems. Many of the modern operating systems are built
in this architectural style. In short, this architectural style can be seen as a special
case of the layered architecture with two layers:

• Kernel—a limited set of components with the higher execution privileges, such
as task scheduler, memory manager, and basic interprocess communication
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Fig. 2.17 Microkernel architectural style

manager. These components have the precedence over the application layer
components.

• Application—components such as user application processes, device drivers, or
file servers. These components can have different privilege levels, but always
lower than that of the kernel processes.

The graphical overview of such an architectural style is show in Fig. 2.17.
In this architectural style it is quite common that applications (or components)

communicate with each other over interprocess communications. This type of
communication allows the operating system (or the platform) to maintain control
over the communications.

In the automotive domain, the microkernel architecture is used in certain
components which require high security. It is argued that the minimality of the
kernel allows us to apply the principles of least privilege, and therefore remain
in control of the security of the system at all times. It is also sometimes argued
that hypervisors of the virtualized operating systems are build according to this
principle. In the automotive domain the use of virtualization is currently in the
research stage, but seems to be very promising as it would allow us to minimize
the costs of hardware while at the same time retain the flexibility of the electrical
system (imagine all cars had the same hardware and one could only use different
virtual OSs and applications for each brand or type of car!).
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Fig. 2.18 Pipes and filters architectural style

2.8.5 Pipes and Filters

Pipes and filters is another well-known architectural style which fits well for
systems that operate based on data processing (thus making its “comeback” as
Big Data enters the automotive market). This architectural style postulates that
the components are connected along the flow of the data processing, which is
conceptually shown in Fig. 2.18.

In contemporary automotive software, this architectural style is visible in such
areas as image recognition in active safety, where large quantities of video data
need to be processed in multiple stages and each component has to be independent
of the other (as shown in Fig. 2.18) [San96].

2.8.6 Client–Server

In client-server architectural style the principles of the design of such systems
prescribe the decoupling between components with designated roles—servers which
provide resources upon the request of the clients, as shown in Fig. 2.19. These
requests can be done in either the pull or the push manner. Pulled requests mean that
the responsibility for querying the server lies with the client, which means that the
clients need to monitor changes in resources provided by the server. Pushed requests
mean that the server notifies the relevant clients about changes in the resources (as
in the event-driven architectural style and the published subscriber style).

In the automotive domain, this style is seen in specific forms like publisher-
subscriber style or event-driven style. We can see the client-server style in such
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Fig. 2.19 Client-server architectural style

components as telemetry, where the telematics components provide the information
to the external and internal servers [Nat01, VS02].

2.8.7 Publisher–Subscriber

The publisher–subscriber architectural style can be seen as a special case of the
client–server style, although it is often perceived as a different style. This style
postulates the principle of loose coupling between providers (publishers) of the
information and users (subscribers) of the information. Subscribers subscribe to
a central storage of information in order to get notifications about changes in the
information. The publisher does not know the subscribers and the responsibility of
the publisher is only to update the information. This is in clear contrast to the client–
server architecture, where the server sends the information directly to a known client
(known as it is the client that sends the request). The publisher–subscriber style is
illustrated in Fig. 2.20.

In automotive software, this kind of architectural style is used when distributing
information about changes in the status of the vehicle, e.g. the speed status or the
tire pressure status [KM99, KB02]. The advantage of this style is the decoupling
of information providers from information subscribers so that the information
providers do not get overloaded as the number of subscribers increases. However,
the disadvantage is the fact that the information providers do not have control of
which components use the information and what information they possess at any
given time (as the components do not have to receive updates synchronously).
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Fig. 2.20 Publisher–subscriber architectural style

2.8.8 Event-Driven

The event-driven architectural style has been popularized in software engineering
together with graphical user interfaces and the use of buttons, text fields, labels and
other graphical elements. This architectural style postulates that the components
listen for (hook into) the events that are sent from the component to the operating
system. The listener components react upon receipt of the event and process the data
which has been sent together with the event (e.g. position of the mouse pointer on
the screen when clicked). This is conceptually presented in Fig. 2.21.

The event driven architectural style is present in a number of parts of the
automotive software system. Its natural placement with the user interface of the
infotainment or the driver assist systems (e.g. voice control), which is also present
in the aviation industry [Sar00] is obvious. Another use is diagnostics and storage of
the error codes [SKMC10]. Using Simulink to design software systems and using
stimuli and responses, or sensors and actuators, shows that event-driven style has
been incorporated.

2.8.9 Middleware

The middleware architectural style postulates the existence of a common request
broker which mediates the usage of resources between different components. The
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concept has been introduced into software engineering together with the initiative
of CORBA (Common Object Request Broker Architecture) by Object Management
Group [OPR96, Cor95]. Although the CORBA standard itself is not relevant for
the automotive domain, its principles are present in the design of the AUTOSAR
standard with its meta-model to describe the common elements of automotive
software. The conceptual view of middleware style is shown in Fig. 2.22.
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In automotive software, the middleware architecture is visible in the design of the
AUTOSAR standard, which is discussed in detail later on in this book. The usage of
middleware becomes increasingly important in automotive software’s mechanisms
of adaptation [ARCC07] and fault tolerance [JPR08, PKYH06].

2.8.10 Service-Oriented

Service-oriented architectural style postulates loose coupling between component
using internet-based protocols. The architectural style puts emphasis on interfaces
which can be accessed as web services and is often depicted as in Fig. 2.23.

Here the services can be added and changed on-demand during the runtime of
the system.

In automotive software, this kind of architecture style is not widely used, but
there are areas where the on-demand or ad hoc services are needed. One examples
is vehicle platooning which has such an architecture [FA16], and is presented in
Fig. 2.24.

Since vehicle platooning is done “spontaneously” during driving, the architecture
needs to be flexible and needs to allow vehicles to link to and unlink from each other
without the need to recompile or restart the system. The lack of available interfaces
can lead to change in the vehicle operation mode, but not to disturbance in the
software operation.

Now that we have introduced the most popular architectural styles, let us discuss
the languages used to describe software architectures.
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Fig. 2.23 Service-oriented architectural style
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Fig. 2.24 An example of a service-oriented architecture—vehicle platooning

2.9 Describing the Architectures

In this book we have seen multiple ways of drawing architectural diagrams
depending on the purpose of the diagram. We used the formal UML notation in
Fig. 2.10 when describing the logical components of the software. In Fig. 2.8 we
used boxes and lines, which are different from the boxes and lines used in Figs. 2.12,
2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, and 2.22. It all has a purpose.

By using different notations we could see that there is no unified formalism
describing a software architecture and that software architecture is a means of
communication. It allows architects to describe the principles guiding the design
of their system and discuss the implications of the principles on the components.
Each of these notations could be called ADL—Architecture Description Language.
In this section we introduce the most relevant ADLs which are available for soft-
ware architects, with the focus on two formalisms—SySML (Systems Modelling
Language, [HRM07, HP08]) and EAST-ADL [CCGC07, LSNT04].

2.9.1 SysML

SySML is a general-purpose language based on Unified Modelling Language
(UML). It is built as an extension of a subset of UML to include more diagrams
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(e.g. Requirements Diagram) and reuse a number of UML symbols with the profile
mechanism. The diagrams (views) included in SySML are:

• Block definition diagram—an extended class diagram from UML 2.0 using
stereotyped classes to model blocks, activities, their attributes and similar. As the
“block” is the main building block in SySML, it is reused quite often to represent
both software and hardware blocks, components and modules.

• Internal block diagram—similar to the block definition diagram, but used to
define the elements of a block itself

• Package diagram—the same as the package diagram from UML 2.0, used to
group model elements into packages and namespaces

• Parametric diagram—diagram which is a special case of the internal block
diagram and allows us to add constraints to the elements of the internal block
diagram (e.g. logical constraints on the values of data processed).

• Requirement diagram—contains user requirements for the system and allows us
to model and link them to the other model elements (e.g. blocks). It is one of the
diagrams that adds a lot of expressiveness to SySML models, compared to the
standard Use Case diagrams of UML.

• Activity diagram—describes the behaviour of the system as an activity flow.
• Sequence diagram—describes the interaction between block instances in a nota-

tion based on MSC (Message Sequence Charts) from the telecommunications
domain.

• State machine diagram—describes the state machines of the system or its
components.

• Use case diagram—describes the interaction of the system with its external actors
(users and other systems).

An example of a requirement diagram is presented in Fig. 2.25 from [SSBH14].
The diagram presents two requirements related to each other (Maximum Accel-

eration and Engine Power) with the dependency between them. Blocks like the
“6-Cylinder Engine” are linked to these requirements with the dependency “satisfy”
to show where these requirements are implemented.

As we can quickly see from this example, the requirements diagram can be used
very effectively to model the functional architecture of the electrical system of a car.

The block diagram was presented when discussing the logical view of the
architecture (Fig. 2.10) and it can be further refined into a detailed diagram for a
particular block, as shown in Fig. 2.26.

The diagram fulfills a similar purpose as the detailed design of the block, which
is often done using the Simulink modelling language. In this book we look into the
details of Simulink design in Chap. 6.

The behavioral diagrams of SySML are important for the detailed design of
automotive systems, but they are out of the scope of this chapter as the architecture
model is supposed to focus on the structure of the system and therefore kept on a
high abstraction level.
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Fig. 2.25 Example requirements diagram

Fig. 2.26 Internal block diagram

2.9.2 EAST ADL

EAST ADL is another modelling language based on UML which is intended
to model automotive software architectures [CCGC07, LSNT04]. In contrast to
SySML, which was designed by an industrial consortium, EAST ADL is the result
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of a number of European Union-financed projects which included both research and
development components.

The principles of EAST ADL are similar to those of SySML in the sense that
it also allows us to model automotive software architecture in different abstraction
levels. The abstraction levels of EAST ADL are:

• Vehicle level—architectural model describing the vehicle functionality from an
external perspective. It is the highest abstraction level in EAST ADL, which is
then refined in the Analysis model.

• Analysis level—architectural model describing the functionality of the vehicle
in an abstract model, including dependencies between the functions. It is an
example of a functional architecture, as discussed in Sect. 2.7.1.

• Design level—architectural model describing the logical architecture of the
software, including its mapping to hardware. It is similar to the logical view from
Fig. 2.10.

• Implementation level—detailed design of the automotive software; here EAST
ADL reuses the concepts from the AUTOSAR standard.

The vehicle level can be seen as a use case level of the specification where the
functionality is designed from a high abstraction level and then gradually refined
into the implementation.

Since EAST ADL is based on UML, the visual representation of models in EAST
ADL is very similar to the models already presented in this chapter. However, there
are some differences in the structure of the models and therefore the concepts used
in SySML and EAST ADL may differ. Let us illustrate one of the differences with
the requirements model in Fig. 2.27.

Fig. 2.27 Feature (requirements) diagram in EAST ADL
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The important difference here is the link of the requirement—in EAST ADL the
requirements can be linked to Features, a concept which does not exist in SySML.

In general, EAST ADL is a modelling notation more aligned with the characteris-
tics of the automotive domain and makes it easier to structure models for a software
engineer. However, EAST ADL is not as widely spread as SySML and therefore not
as widely adopted in industry.

2.10 Next Steps

After the architecture is designed in the different diagrams, it should be transferred
to the product development database and linked to all the other elements of
the electrical system of the car. The product development database contains the
design details of all software and hardware components, the relationships between
them and the deployment of the logical software components onto the physical
components of the electrical system.

2.11 Further Reading

The architectural views, styles and modelling languages, discussed in this section,
are the most popular one used in the software industry today. However, there are
also others, which we encourage the interested reader to explore.

Alternative modelling languages which are used in industry are the UML
MARTE profile [OMG05, DTAC08]. The MARTE profile has been designed to
support modelling of real-time systems in all domains where they are applicable.
Therefore there is a significant body of knowledge from using this profile, including
executable variants of it [MAD09].

Readers interested in extending modelling languages can find more information
in our previous work on language customization [SW06, SKT05, KS02, SKW04]
and the way in which these extension can be taught [KS05].

An interesting review of future directions of architectures in general has been
conducted by Kruchten et al. [KOS06]. Although the review was conducted over a
decade ago, most of its results are valid today.

2.12 Summary

In this chapter we presented the concept of software architecture, its different
viewpoints, and its architectural styles and introduced two notations used in
automotive software engineering—SySML and EAST ADL.
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An interesting aspect of automotive software architectures is that they usually
mix a number of styles. The overall style of the architecture can be layered
architecture within an ECU, but the architecture of each of the components in the
ECU can be service-oriented, pipes and filters or layered. A concrete example is the
AUTOSAR architecture. AUTOSAR provides a reference three layer architecture
where the first “application” layer can implement service-oriented architecture, the
second layer can implement a monolithic architecture (just RTE) and the third,
“middleware”, layer can implement component-based architecture.

The reasons for mixing these styles is that the software within a modern car
has to fulfill many functions and each function has its own characteristics. For the
telematics it is the connectivity which is important and therefore client-server style
is the most appropriate. Now that we have discussed the basics of architectures,
let us dive deeper into other activities in automotive software development, to
understand why architecture is so important and what comes before and next.

References

ARCC07. Richard Anthony, Achim Rettberg, Dejiu Chen, Isabell Jahnich, Gerrit de Boer, and
Cecilia Ekelin. Towards a dynamically reconfigurable automotive control system
architecture. In Embedded System Design: Topics, Techniques and Trends, pages 71–
84. Springer, 2007.

BCLS16. Manel Brini, Paul Crubillé, Benjamin Lussier, and Walter Schön. Risk reduction of
experimental autonomous vehicles: The safety-bag approach. In CARS 2016 workshop,
4th International Workshop on Critical Automotive Applications: Robustness and
Safety, 2016.

CCGC07. Philippe Cuenot, DeJiu Chen, Sebastien Gerard, Henrik Lonn, Mark-Oliver Reiser,
David Servat, Carl-Johan Sjostedt, Ramin Tavakoli Kolagari, Martin Torngren, and
Matthias Weber. Managing complexity of automotive electronics using the EAST-
ADL. In 12th IEEE International Conference on Engineering Complex Computer
Systems (ICECCS 2007), pages 353–358. IEEE, 2007.

Cor95. OMG Corba. The common object request broker: Architecture and specification, 1995.
DST15. Darko Durisic, Miroslaw Staron, and Matthias Tichy. Identifying optimal sets of

standardized architectural features – a method and its automotive application. In 2015
11th International ACM SIGSOFT Conference on Quality of Software Architectures
(QoSA), pages 103–112. IEEE, 2015.

DTAC08. Sébastien Demathieu, Frédéric Thomas, Charles André, Sébastien Gérard, and
François Terrier. First experiments using the UML profile for MARTE. In 2008
11th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 50–57. IEEE, 2008.

EHPL15. Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, and Jonn Lantz. Architecting in the
automotive domain: Descriptive vs prescriptive architecture. In Software Architecture
(WICSA), 2015 12th Working IEEE/IFIP Conference on, pages 115–118. IEEE, 2015.

FA16. Patrik Feth and Rasmus Adler. Service-based modeling of cyber-physical automotive
systems: A classification of services. In CARS 2016 workshop, 4th International
Workshop on Critical Automotive Applications: Robustness and Safety, 2016.

Fri06. Jon Friedman. MATLAB/Simulink for automotive systems design. In Proceedings
of the conference on Design, Automation and Test in Europe, pages 87–88. European
Design and Automation Association, 2006.



References 49

Für10. Simon Fürst. Challenges in the design of automotive software. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 256–258. European
Design and Automation Association, 2010.

HP08. Jon Holt and Simon Perry. SysML for systems engineering, volume 7. IET, 2008.
HRM07. Edward Huang, Randeep Ramamurthy, and Leon F McGinnis. System and simulation

modeling using SysML. In Proceedings of the 39th conference on Winter simulation:
40 years! The best is yet to come, pages 796–803. IEEE Press, 2007.

JPR08. Isabell Jahnich, Ina Podolski, and Achim Rettberg. Towards a middleware approach for
a self-configurable automotive embedded system. In IFIP International Workshop on
Software Technolgies for Embedded and Ubiquitous Systems, pages 55–65. Springer,
2008.

JT13. Marcin Jamro and Bartosz Trybus. An approach to SysML modeling of IEC 61131-3
control software. In Methods and Models in Automation and Robotics (MMAR), 2013
18th International Conference on, pages 217–222. IEEE, 2013.

KB02. Jörg Kaiser and Cristiano Brudna. A publisher/subscriber architecture supporting
interoperability of the can-bus and the internet. In Factory Communication Systems,
2002. 4th IEEE International Workshop on, pages 215–222. IEEE, 2002.

KM99. Joerg Kaiser and Michael Mock. Implementing the real-time publisher/subscriber
model on the controller area network (can). In 2nd IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, 1999, pages 172–181. IEEE,
1999.

KOS06. Philippe Kruchten, Henk Obbink, and Judith Stafford. The past, present, and future for
software architecture. IEEE software, 23(2):22–30, 2006.

Kru95. Philippe B Kruchten. The 4 + 1 view model of architecture. Software, IEEE, 12(6):42–
50, 1995.

KS02. Ludwik Kuzniarz and Miroslaw Staron. On practical usage of stereotypes in UML-
based software development. the Proceedings of Forum on Design and Specification
Languages, Marseille, 2002.

KS05. Ludwik Kuzniarz and Miroslaw Staron. Best practices for teaching uml based software
development. In International Conference on Model Driven Engineering Languages
and Systems, pages 320–332. Springer, 2005.

LSNT04. Henrik Lönn, Tripti Saxena, Mikael Nolin, and Martin Törngren. Far east: Modeling
an automotive software architecture using the east adl. In ICSE 2004 workshop on
Software Engineering for Automotive Systems (SEAS), pages 43–50. IET, 2004.

MAD09. Frédéric Mallet, Charles André, and Julien Deantoni. Executing AADL models with
UML/MARTE. In Engineering of Complex Computer Systems, 2009 14th IEEE
International Conference on, pages 371–376. IEEE, 2009.

Nat01. Martin Daniel Nathanson. System and method for providing mobile automotive
telemetry, July 17 2001. US Patent 6,263,268.

OMG05. UML OMG. Profile for modeling and analysis of real-time and embedded systems
(marte), 2005.

OPR96. Randy Otte, Paul Patrick, and Mark Roy. Understanding CORBA: Common Object
Request Broker Architecture. Prentice Hall PTR, 1996.

PKYH06. Jiyong Park, Saehwa Kim, Wooseok Yoo, and Seongsoo Hong. Designing real-
time and fault-tolerant middleware for automotive software. In 2006 SICE-ICASE
International Joint Conference, pages 4409–4413. IEEE, 2006.

RW12. Nick Rozanski and Eóin Woods. Software systems architecture: Working with
stakeholders using viewpoints and perspectives. Addison-Wesley, 2012.

San96. Keiji Saneyoshi. Drive assist system using stereo image recognition. In Intelligent
Vehicles Symposium, 1996., Proceedings of the 1996 IEEE, pages 230–235. IEEE,
1996.

Sar00. Nadine B Sarter. The need for multisensory interfaces in support of effective attention
allocation in highly dynamic event-driven domains: the case of cockpit automation.
The International Journal of Aviation Psychology, 10(3):231–245, 2000.



50 2 Software Architectures: Views and Documentation

SBGC04. Kevin Steppe, Greg Bylenok, David Garlan, Bradley Schmerl, Kanat Abirov, and
Nataliya Shevchenko. Two-tiered architectural design for automotive control systems:
An experience report. In Proc. Automotive Software Workshop on Future Generation
Software Archtiecture in the Automotive Domain, 2004.

SGSP16. Ali Shahrokni, Peter Gergely, Jan Söderberg, and Patrizio Pelliccione. Organic
evolution of development organizations – An experience report. Technical report, SAE
Technical Paper, 2016.

SKMC10. Chaitanya Sankavaram, Anuradha Kodali, Diego Fernando Martinez, Krishna Pattipati
Ayala, Satnam Singh, and Pulak Bandyopadhyay. Event-driven data mining techniques
for automotive fault diagnosis. In Proc. of the 2010 Internat. Workshop on Principles
of Diagnosis (DX 2010), 2010.

SKT05. Miroslaw Staron, Ludwik Kuzniarz, and Christian Thurn. An empirical assessment
of using stereotypes to improve reading techniques in software inspections. In ACM
SIGSOFT Software Engineering Notes, volume 30, pages 1–7. ACM, 2005.

SKW04. Miroslaw Staron, Ludwik Kuzniarz, and Ludwik Wallin. Case study on a process
of industrial MDA realization: Determinants of effectiveness. Nordic Journal of
Computing, 11(3):254–278, 2004.

SSBH14. Giuseppe Scanniello, Miroslaw Staron, Håkan Burden, and Rogardt Heldal. On the
effect of using SysML requirement diagrams to comprehend requirements: results from
two controlled experiments. In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, page 49. ACM, 2014.

Sta16. Miroslaw Staron. Software complexity metrics in general and in the context of ISO
26262 software verification requirements. In Scandinavian Conference on Systems
Safety. http://gup.ub.gu.se/records/fulltext/233026/233026.pdf, 2016.

SW06. Miroslaw Staron and Claes Wohlin. An industrial case study on the choice between
language customization mechanisms. In Product-Focused Software Process Improve-
ment, pages 177–191. Springer, 2006.

VF13. Andreas Vogelsanag and Steffen Fuhrmann. Why feature dependencies challenge the
requirements engineering of automotive systems: An empirical study. In Requirements
Engineering Conference (RE), 2013 21st IEEE International, pages 267–272. IEEE,
2013.

VS02. Pablo Vidales and Frank Stajano. The sentient car: Context-aware automotive
telematics. In Proceedings of the Fourth International Conference on Ubiquitous
Computing, pages 47–48, 2002.

http://gup.ub.gu.se/records/fulltext/233026/233026.pdf


Chapter 3
Automotive Software Development

Abstract In this chapter we describe and elaborate on software development pro-
cesses in the automotive industry. We introduce the V-model for the entire vehicle
development and we continue to introduce modern, agile software development
methods for describing the ways of working of software development teams.
We start by describing the beginning of all software development—requirements
engineering—and we describe how requirements are perceived in automotive
software development using text and different types of models. We discuss the
specifics of automotive software development such as variant management, different
integration stages of software development, testing strategies and the methods used
for these. We review methods used in practice and explain how they should be used.
We conclude the chapter with discussion on the need for standardization as the
automotive software development is based on client-supplier relationships between
the OEMs and the suppliers developing components of vehicles.

3.1 Introduction

Software development processes are at the heart of software engineering as they
provide structure and rigor to the practices of developing software [CC90]. Soft-
ware development processes consist of phases, activities and tasks which prescribe
what actors should do. The actors can have different roles in software development
such as software construction designers, software architects, project managers and
quality managers.

The software development processes are organized in phases where the focus is
on a specific part of software development. Historically these phases include:

1. requirements engineering—the phase where ideas about the functions of the
software are created and broken down into requirements (atomic pieces of
information about what should be implemented)

2. software analysis—the phase where the system analysis is conducted and high-
level decisions about the allocation of functionality to the logical part of the
system are made

3. software architecting—the phase where the software architects describe the high-
level design of the software including its components and allocate them to
computational nodes (ECUs)
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4. software design—the phase where each of the components is designed in detail
5. implementation—the phase where the design for each component is imple-

mented in programming languages relevant for the design.
6. testing—the phase where the software is tested in a number of different ways, for

example through unit and component tests.

These phases are often done in parallel as modern software development
paradigms postulate that it is best to design, implement and test software iteratively.
However, the prevalent software development model in the automotive industry is
the so-called V-model where these phases are aligned to a V-shaped curve, where
the design phases are on the left-hand side of the V and the testing phases are on the
right-hand side of the V.

3.1.1 V-Model of Automotive Software Development

The V-model is illustrated in Fig. 3.1. This model is prescribed by international
industry standards for development of safety-critical systems, like the ISO/IEC
26262 [ISO11].

In the figure, we also make a distinction between the responsibilities of OEMs
(vehicle manufactures) and those of their suppliers. This distinction is important as
it is often the phase where the handshaking between the suppliers and OEMs takes
place, and therefore the requirements are used during the contract negotiations. In
this context a detailed, unambiguous and correct requirements specification prevents
potentially unnecessary costs related to the changes in requirements caused by
misunderstandings between the OEMs and suppliers.

Fig. 3.1 V-shaped model of software development process in automotive software development
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In the remainder of this chapter we go through the requirements engineering
phase and the testing phase. The analysis and architecture phase are included in the
next chapter while the detailed design phase is included in the latter part of the book.

3.2 Requirements

Requirements engineering is a discipline of vehicle development on the one hand
and on the other hand a subdomain of software engineering and an initial phase of
the software development lifecycle. It deals with the methods, tools and techniques
for eliciting, specifying, documenting, prioritizing and quality assuring the require-
ments. The requirements themselves are very important for the quality of software
in multiple senses as the quality is defined as “The degree to which software fulfills
the user requirements, implicit expectations and professional standards.” [CC90].

Requirements engineering in the automotive sector is increasingly about the
software since the software is the source of the innovations. According to Houdek
[Hou13] and a report about the innovation in the car industry [DB15], the number of
functions in an average car grows much faster than the number of devices, with the
number of systematic innovations growing faster than the individual innovations.
The systematic innovations are systems of software functions rather than individual
functions.

Therefore the discipline of requirements engineering is more about engineering
than it is about innovation.

The length of an automotive requirements specification is in the range of 100,000
pages for a new car model according to Houdek, based on his study at Mercedes-
Benz [Hou13], with ca. 400 documents of 250 pages each at the lowest specification
level (component specifications), which are sent over to a large number of suppliers
(usually over 100 suppliers, one for each ECU in the car).

Weber and Weisbrod [WW02] showed the complexity and size of requirements
specifications in the automotive domain based on their experiences at Daimler-
Chrysler. Their large software development projects can have as many as 160
engineers working on a single requirement specification and producing over 3 GB
of requirements data. Weber and Weisbrod describe the process of requirements
engineering in the following way: “Textual requirements are only part of the game –
automotive development is too complex for text alone to manage.” This quote
reflects the state-of-the-practice of requirements engineering—that the requirements
form only one part of the construction database. However, let’s look at how the
requirements are specified in the automotive domain. Similar challenges of linking
requirements to other parts of the construction database can be also found in our
previous studies in [MS08].

The requirements are often defined as (1) A condition or capability needed by a
user to solve a problem or achieve an objective. (2) A condition or capability that
must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents. (3) A documented
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representation of a condition or capability as in (1) or (2) [CC90]. This definition
stresses the link between the user of the system and the system itself, which is
important for a number of reasons:

• Testability of the system—it should be clear how a requirement should be tested,
e.g. what is the usage scenario realized by the requirement?

• Traceability of the functionality to design—it should be possible to trace
which parts of the software realize the requirement in order to provide safety
argumentation and enable impact/change management

• Traceability of the project progress—it should be possible to get an overview
of which requirements have already been implemented and which are still to be
implemented in the project

It is a very technical definition for something that is intuitively well known—
a requirement is a way of communicating what we, the users, want in our dream
car. In this sense it seems that the discipline of requirements engineering is simple.
In practice, working with requirements is very complex as the ideas which we,
users, have need to be translated to one of the millions of components of the car
and its software. So, let’s look at how the automotive companies work with our
requirements or dreams.

We talk about software requirements engineering because the automotive indus-
try has recognized the need to move innovation from the mechanical parts of the
car to the electronics and software. The majority of us, the customers, buy cars
today because they are fast (sporty), safe or comfortable. In many cases these
properties are realized by adjusting the software that steers the parts of modern
cars. For example we can have the same car with a software package that makes it
extremely sporty—look at Tesla’s “Insane” acceleration package or Volvo’s Polestar
performance package. These represent just two challenges which lead to two very
important trends in automotive software requirements engineering:

1. Growing amount of software in contemporary cars—as the innovation is driven
by software, the amount of software and its complexity grow exponentially. For
example the amount of software in the 1990s was a few megabytes of binary
code (e.g. Volvo S80) and today reaches over one gigabyte, excluding maps and
other user data (e.g. Volvo XC90 of 2016).

2. Safety requirements posed by such standards as ISO 26262—as software steers
more parts of the car, there is a larger probability that it can interfere with our
driving and cause accidents and therefore it has to be safety-assured just like
the software in airplanes and trains. The contemporary standard for functional
safety (ISO/IEC 26262, Road vehicles—Functional safety) prescribes methods
and processes to specify, design and verify/validate the software.

Automotive software requirements engineering therefore requires rigid processes
for handling the construction of software for a car and therefore is very different
from other types of software requirements engineering, such as for telecom or web
design.
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This chapter takes us through the theory of requirements engineering in automo-
tive development by looking into two types of requirements—textual specifications
and models used as requirements. It also helps us to explore the evolution of
requirements engineering in automotive software development to finally draw on
current trends and challenges for the future.

3.2.1 Types of Requirements in Automotive Software
Development

When designing software for a car, the designers (who are often referred to as
constructors) gradually break down the requirements from car level to component
level. They also gradually refine them from textual requirements to models of
behaviour of the software. This gradual refinement is due to the fact that the
requirements have to be sent to Tier 1 suppliers for development and therefore
should be as detailed as possible to enable their validation. In the automotive domain
we have a number of tiers of suppliers:

• Tier 1—suppliers working directly with OEMs, usually delivering complete
software and hardware subsystems and ECUs to the OEMs

• Tier 2—suppliers working with Tier 1 suppliers, delivering parts of the sub-
products which are then delivered by Tier 1 suppliers to the OEMs; Tier 2
suppliers usually do not work directly with OEMs, which makes it even more
important for the requirements to be detailed so that they can be correctly broken
down by Tier 1 suppliers for Tier 2.

• Tier 3—suppliers working with Tier 2 suppliers, similarly to Tier 2 suppliers
working with Tier 1 suppliers. Usually silicon vendors who deliver the hardware
together with the drivers.

In this section we describe these different types of requirements, which can be
found in these phases.

3.2.1.1 Textual Requirements

AUTOSAR is a great source of inspiration for research in automotive software
development, and therefore let us look at the requirements in this standard—they are
mostly textual. We use the same template as AUTOSAR for specifying requirements
to provide an example of a requirement for keyless entry to the vehicle, as presented
in Fig. 3.2.

The structure of the requirement is quite typical for requirements in general—
it contains the description, the rationale and the use cases. So far we do not see
anything specific. Nevertheless, if we look at the sheer size of such a specification—
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Type Valid

Description It should be able to open the car with an RFID key

Rationale The cars of our brand should all have the possibility to be
opened using keyless solution. The majority of our competitors
have an RFID sensors in the car that opens and starts the car 
based on the proximity of the designated driver who has the
RFID sender (e.g.a card).

Use case Keyless start‐up

Dependencies REQ‐11: RFID implementation

Supporting material ‐‐‐

REQ‐1: Keyless vehicle entryt

Fig. 3.2 An example AUTOSAR requirement

over 1000 pages—we can see that we might confront issues; so let’s discuss the kind
of issues we can discover.

Rationale The textual requirements are used when describing high-level prop-
erties of cars. These types of requirements are mostly used in two phases—the
requirements phase, when the specification of the car’s functionality at a high level
takes place, and at the component design phase, where large software requirements
specification documents are sent to suppliers for development (although the textual
requirements are often complemented by model-based requirements).

Method Specifying this kind of requirement rarely happens from scratch. Textual
requirements are often specified based on models (e.g. UML domain models) and
are intended to describe details of the inner workings of software systems. They
are often linked to verification methods describing how the requirements should be
verified—e.g. describing the test procedure for validating that the requirement is
implemented correctly. Quite often it is the suppliers who do the verification, as
many requirements demand specific test equipment to test their implementation. If
this is the case, the OEMs choose a subset of requirements and verify them to check
the correctness of the verification procedure on their side.

Format The text for the requirement is specified in the format which we can see
in Fig. 3.2—tables with text. This format is very good if we can specify the details,
but they are not very good when we want to communicate overviews and provide
the context for the requirements. For that we need other types of requirements—use
cases or models.

3.2.1.2 Use Cases

In software engineering the golden standard for specifying requirements is using
use cases as defined by Jacobson, together with his Objectory methodology, in the
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Keyless start-up

Fig. 3.3 An example use case specification with one use case

driver:Actor

MyCar:System

approach()

isValidDriver = checkValidity()

[isValidDriver] openDoors()

[isValidDriver] startEngine()

Fig. 3.4 An example specification of a use case using the message sequence charts/sequence
diagrams

1990s [JBR97]. The use cases describe a course of interaction between an actor and
the system under specification, for example as shown in Fig. 3.3, where the actor
interacts with the car in the use case “Keyless start-up”. The corresponding diagram
(called the use case diagram in UML) is used to present which interactions (use
cases) exist and how many actors are included in these interactions.

In the automotive industry this kind of requirements specification is the most
common when describing the functions of the vehicles and their dependencies. It
is used to describe how the actors (drivers or other cars) interact with the designed
vehicle (the system) in order to realize a specific use case. This kind of specification
is often described using the sequence diagrams of UML and we can see an example
of such a specification in Fig. 3.4.

Rationale The use case specifications provide a high-level overview of the func-
tionality of the designed system, such as a car, and therefore are very useful in the
early phases of vehicle development. Usually these early phases are the functional
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design (use case diagrams) and the beginning of the system design (use case
specifications).

Method Using the high-level descriptions of product properties, the functional
designers break down these properties into usage scenarios. These usage scenarios
provide a way to identify which of the functions (use cases) are of value to the
customers and which are too cumbersome.

Format These kinds of specifications consist of three parts—(1) the use case
diagram, (2) the use case specification using a sequence diagram, and (3) the textual
specification of a use case detailing the steps of the interaction using somewhat
structured natural language.

3.2.1.3 Model-Based Requirements

One method to provide more context to the requirements is to express them as mod-
els. This kind of representation can be done in two types of formalisms—UML-like
models and Simulink models. In Fig. 3.5 we present an excerpt of a Simulink model
for an ABS system from [Dem] and [RSBC13a].

The model shows how to implement the ABS system, but the most important
property is that the model shows how the algorithm should behave and therefore
how it should be verified.

Rationale Using models as requirements has been recognized by practitioners, and
in an automotive software project up to 23% of models are used as requirements

Fig. 3.5 An example Simulink model which can be used as a requirement to describe how to
implement the ABS system
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according to our previous studies [MS10b] and [MS10a]. According to the same
studies, up to 13% of effort is spent in the software project to design these kinds of
requirements.

Method The simulation models used for requirements engineering are often used
as part of the process of system design and function design, where the software and
system designers develop algorithms that describe how functions in modern cars are
to be realized. These models can be automatically translated to C/C++ code using
code generation, but it is rather uncommon. The reason is that these models describe
entire functions which are often partitioned into different domains and spread over
multiple components. Quite often these kinds of requirements are translated into
textual specifications, shown in the previous subsection.

Format The models are expressed using Simulink or a variation of statechart such
as Statemate or Petri nets. These simulation models detail the functions described in
the use cases by adding the system view of the interaction—the blocks and signals.
The blocks and signals represent the realization of the functionality in the car and
are focused on one function only. These models are often used as specifications
which are then detailed and often used to generate the source code automatically.

3.3 Variant Management

Having a good database of requirements and construction elements is key to success
in automotive software engineering. This is dictated by the fact that the automotive
market is based on variability—i.e. the locations in the product (software) where it
can be configured. As customers we expect the ability to configure our car with the
latest and greatest features of hardware, electronics and software.

There are two basic kinds of variability mechanisms in automotive software:

• Configuration—when we configure parameters of the software without modify-
ing its internal structure. This kind of variability is often seen in the non-safety
critical functions such as engine calibration or in configuring the availability of
functions (e.g. rain sensors).

• Compilation—when we change the internal structure of the software, compile
it and then deploy on the target ECU. This kind of variability is used when we
need to ensure that the software always behaves in the same way, for example the
availability of the function for collision avoidance by breaking.

In this section we explain the basics of these two mechanisms.
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Fig. 3.6 Variability through
configuration

Software 
component 

(e.g. windshield 
wipers controller)

Variability point: speed controller

3.3.1 Configuration

Configuration is often referred to as runtime variability as changing the software
can be done after the software is compiled. Figure 3.6 presents the conceptual view
of this kind of variability.

In Fig. 3.6 we can see that we have one variant of the software component
(rectangle) with one variability point (the dotted line triangle) which can be
configured using two different configurations—without the rain sensor and with the
rain sensor. This means that we compile the code for the software component once
and then use two different configuration files when deploying the software.

The configuration as a variability mechanism has important implications for the
designers of the software. The main implication is that the software has to be tested
using multiple scenarios—i.e. the software designers need to be able to prevent use
of the software component with invalid configurations.

3.3.2 Compilation

The compilation as a variability mechanism is fundamentally different as it results in
a software component which cannot be modified (configured) after its compilation,
during runtime. Therefore it is an example of so-called design time variability as
the designers must decide during design which variant is being developed. This is
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Fig. 3.7 Variability through
compilation Software 

component var1 
(e.g. windshield 

wipers controller)

Variant 1: no rain sensor

Software 
component var2
(e.g. windshield 

wipers controller)

Variant 2: with rain sensor

conceptually shown in Fig. 3.7 where we can see two different versions of the same
component—with and without the rain sensor.

As Fig. 3.7 suggests, there are two different code bases for the software
component—one with and one without the rain sensor. This means that the
development of these two variants can be decoupled from each other, but that
also means that the designers have to maintain two different code bases at the same
time. This parallel maintenance means that if there are defects in the common code
then both code bases need to be updated and tested.

The main advantage of this kind of variability mechanism is the assurance that the
code is not tampered with in any way after the compilation. The code can be tested,
and once deployed there is no way that an incorrect configuration can break the
quality of the component. However, the main disadvantage of this type of variability
management mechanism is the high cost of maintenance of the code base—parallel
maintenance.

3.3.3 Practical Variability Management

Both of the above variability management mechanisms are used in practice.
Compile time variability is used when the software is an integral part of an ECU
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whereas configuration is used when the software can be calibrated to different
types of configurations during deployment (e.g. configuration on the assembly line,
calibration of the engine and gearbox depending on the powertrain performance
settings).

3.4 Integration Stages of Software Development

On the left-hand side of the V-model the main type of activity is refinement of
requirements in multiple ways. On the right-hand side of the model the main activity
type is integration followed by testing.

In short, integration is the activity where software construction engineers inte-
grate their code with the code of other components and with the hardware. In the first
integration stages the hardware is usually simulated hardware in order to allow for
unit and component testing (described in Sect. 3.5). In the later integration phases
the software code is integrated together with the target hardware, which is then
integrated into a complete electrical/electronic system of the car (Table 3.1).

Figure 3.8 shows an example software integration of software modules and
components into an electrical system. What is important to notice is the fact that the
integration steps (vertical solid black lines) are not synchronized as the development
of different software modules is done at different pace.

In practice this figure is even more complicated, as the integration plan is often
a document with several dimensions. Each integration cycle (which is what we
show in Fig. 3.4) is done several times during the project. First, the so-called basic

Table 3.1 Types of integration

Type Description

Software integration This type of integration means that two (or more) software
components are put together and their joint functionality is tested.
The usual means of integration depend on the what is integrated—it
can be merging of the source code if the integration is on the source
code level; it can be linking of two binary code bases together; or it
can be parallel execution to test interoperability. The main testing
techniques are unit and component testing, described in Sect. 3.5

Software-hardware
integration

This type of integration means that the software is integrated
(deployed) to the target hardware platform. In this type of
integration, the focus is on the ability of the complete ECU to be
executed and the main testing type is component testing, described
in Sect. 3.5

Hardware integration This type of integration means that the focus is on the integration of
the ECUs with the electrical system. In this type of integration the
focus is on the interoperability of the nodes and basic functionality,
such as communication. The testing related to this type of
integration is system testing
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Fig. 3.8 Software integration with integration steps

software is integrated (functionality like the boot code, and communication) and
then higher level functionality is added, according to the functional architecture as
described in Chap. 2.

3.5 Testing Strategies

Requirements engineering progresses from higher abstraction levels towards more
detailed, lower abstraction levels. Testing is the opposite. When the testers test the
software they start from the most atomic type of testing—unit testing—where they
test each function and each line of code. Then they gradually progress by testing
entire components (i.e. multiple units linked together), then the entire system and
finally each function. Figure 3.9 shows the right-hand side of the V-model with a
focus on the testing phases.

In the coming subsections we look deeper into the testing phases of the
automotive software.

3.5.1 Unit Testing

Unit test is the basic test, which is performed on individual entities of software such
as classes, source code modules and functions. The goal of unit testing is to find
defects related to the implementation of atomic functions/methods in the source
code.

The basic scheme of unit testing is the creation of automated test cases which
combine individual methods with the data that is needed to achieve the needed
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Fig. 3.9 Testing phases in automotive software development

Fig. 3.10 Example unit test for testing the status of windshield wiper module

quality. The result is then compared to the expected result, usually with the help
of assertions. An example of a unit test is presented in Fig. 3.10.

The unit test presented in Fig. 3.10 is a test for correctness of the creation of
object “WindshieldWiper”—a unit under test (UAT). This particular test code is
written in C# and in practice the test code can be written in almost any programming
language. The principles, however, are the same for all unit tests.
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Of interest for our chapter are lines 14–23, as they contain the actual test code.
Line 15 is the arrangement line which prepares (sets up) the test case—in our
example it declares a variable which will be assigned to the object of the class
WindshieldWiper. Line 18 is the actuation line which executes the actual test code—
in our example creates the object of the WindshieldWiper class.

The most interesting are lines 21–23 since they contain the so-called assertion.
The assertion is a condition which should be fulfilled after the execution of the test
code. In our example the assertion is that the status of the newly created object (line
21) is “closed” (line 22). If it is not the case, then the error message is logged in the
testing environment (line 32) and the execution of the new test cases continues.

Unit testing is often perceived as the simplest type of testing and is most
often automated. Frameworks like CppUnit, JUnit or Google test framework can
orchestrate the execution of unit tests, allowing us to quickly execute the entire set
of tests (called test suites) without the need for manual intervention.

Automated unit tests are also reused in several ways, for example to create
nightly regression test suites or to create the so-called “smoke testing” where testers
randomly execute test cases to check whether the system exposes random behavior.

It is also important to notice that reuse of test cases needs to be accompanied by
the methods to prioritize test cases, e.g. by identifying risky areas in source code
[ASMC14] or focusing on code that was changed since the last test run [KSMC15,
SHFC13]. It is also important to trace the test process in the context of software
reliability growth [RSMC13, RSBC13b].

We can also see that if the test case finds a problem (fails), then troubleshooting is
relatively simple—we know which code was executed and under which conditions.
This knowledge allows the testers to quickly describe where the defect is or even
suggest how to fix it.

3.5.2 Component Testing

This is sometimes also called integration testing, as the goal of this type of testing
is to test the integrations, i.e. links, between units of code within one of many
components. The main characteristic which differentiates component tests from unit
tests is that in component testing we use stubs to simulate the environment of the
tested component or the group of the components. This is illustrated in Fig. 3.11.

In contrast to unit tests, component tests focus on the interaction between the
stubs and the component under test. The goal of this type of testing is to verify that
the structure and behavior of the interfaces is implemented correctly.

We should also mention that the number of stubs in the system decreases as
the development project progresses. With the progress of the development, new
components are designed and they replace the stubs. Hence the nickname of this
type of testing—“integration testing”.

In automotive systems this type of testing is often done by simulating the
environment using either models (the so-called Model-In-the-Loop or MIL testing)
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Fig. 3.11 Component under test with the simulated environment

or hardware simulators (the so-called Hardware-In-the-Loop or HIL testing). An
example of equipment for HIL testing is presented in Fig. 3.12.

Figure 3.12 shows a testing rig from dSpace, which is widely used in the
automotive industry to test components by simulating the external environment.

Since the environment of the components is simulated, the non-functional prop-
erties of the components are often hard to test or require very detailed simulations.
The very detailed simulations, however, also tend to be very costly.

3.5.3 System Testing

System testing is the phase of testing when the entire system is assembled and tested
as a whole. The focus of system testing is on checking whether the system fulfills
its specifications in a number of ways. The system testing focuses on verifying the
following aspects:

1. functionality—testing whether the system has the functionality as specified in
the requirements specification

2. interoperability—testing whether the system can connect to the other systems
which are designed to interact with the system under test

3. performance—testing whether the system under test performs within the speci-
fied limits (e.g. timing limits, capacity limits)

4. scalability—testing whether the system’s operation scales up and down (e.g.
whether the communication buses operate with 80 and 120 ECUs connected)

5. stress—testing whether the system operates correctly under high load (e.g. when
the maximum capacity of the communication buses is reached)

6. reliability—testing whether the system operates correctly during a specific period
of time

7. regulatory and compliance—testing whether the system fulfills legal and regula-
tory requirements (e.g. carbon dioxide emissions)
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Fig. 3.12 HIL testing
rig—Image source: dSPACE
GmbH. Copyright 2015
dSPACE GmbH—reprinted
with permission

System testing is usually the first testing phase when the above aspects can be
tested and therefore it is usually the most effective way of testing. However, it is
also very costly way of testing and very inefficient, as fixing the defects found in
this phase requires frequent changes in multiple components.

In the automotive software this type of testing is often done using the so-called
“box cars”—the entire electrical system being set up on tables without the chassi
and the hardware components.
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Test ID T0001

Description Test of the basic function of windshield wipers. The goal of the test is to 
verify that the windshield wipers can make one sweep with the engine 
turned off. 

Action/Step Expected result

Start ignition Battery icon on the dashboard lit red; windshield wipers are in the 

Push the windshield wipers 
level one step forward

Wait 20 seconds

Turn off ignition

Fig. 3.13 Example of a functional test

3.5.4 Functional Testing

The functional testing phase focuses on verifying that the functions of the system
work according to their specification. They correspond to the functional require-
ments in the form of use cases and are quite often specified according to the use
cases. Figure 3.13 presents an example of a functional test—specified as a table.

What is important in this example is the specification, which is similar to the
specification of a use case—the description of the action (step) on the left-hand side
together with the expected outcome on the right-hand side. We can also observe that
the functional test does not require the knowledge of the actual construction of the
system under test (SUT), which led to the nickname of these tests as “black-box
testing”.

We should not focus on the simplicity of the example because functional testing
is often the most effort-intensive type of testing. It is often done in a manual manner
and requires sophisticated equipment to conduct.

Examples of sophisticated functional test cases are safety test cases where OEMs
test their safety systems. To be able to test such a function, car manufacturers need to
recreate the situation where the system could be activated and check whether it was
activated. They also need to recreate the situation when it should not be activated
and test that it was not activated.

When the functional test fails, it is rather difficult to find the defect, as the
number of construction elements which take part in the interaction can be quite
large—in our example the failure of the functional test case could be caused by
anything from mechanical failure of the battery to design defect in the software.
Therefore functional testing is often used after the other tests are conducted to
validate functionality rather than to verify the design.
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3.5.5 Pragmatics of Testing Large Software Systems: Iterative
Testing

As the electrical system of contemporary cars is very complex, OEMs often apply
concepts of interactive testing to their development. Concept of iterative testing
means that the functionality of the software is divided into levels (as prescribed by
the functional architecture described in Chap. 2) and the functions are tested using
unit, component, system and functional testing per layer. This means that the basic
functionality such as booting up of the electronics, starting up of the communication
protocols, running diagnostics, etc. are tested first and the more advanced functions
such as lighting, steering, and braking are tested later, followed by more advanced
functions such as driver alerts.

3.6 Construction Database and Its Role in Automotive
Software Engineering

All these types of requirements need to come together somehow and that’s why we
have the process and the infrastructure for requirements engineering. Let us start
with the infrastructure—usually named the design or construction database. In the
light of work of Weber and Weisbrod [WW02] it is called the common information
model. Figure 3.14 shows how this design database is used. The construction

Fig. 3.14 Design database
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database contains all elements of the design of the electrical system of the vehicle—
components, electronic control units, systems, controllers, etc. The structure of such
a database is hierarchical and reflects the structure of the vehicle. Each of the
elements in the database has a set of requirements linked to it. The requirements are
also linked to one another to show how they are broken down. Such a database grows
over time and is version-controlled as different versions of the same elements can
be used in different vehicles (e.g. different year models of the same car or different
cars).

An example of such a system is described by Chen et al. [CTSC06] and has been
developed by the company Systemite, which specializes in databases for vehicle
construction. Such a database structures all the elements of the construction of the
electronics of the vehicle and links all artifacts to the construction elements. An
example of a construction element is the engine’s electronic control unit, and all the
functions that use this control unit are linked to it.

Such a database usually has a number of views which show the required
set of details—functional view, architectural view, topological view and software
components’ view. Each view provides the corresponding entry point and shows the
relevant elements, but the database is always in a consistent state where all the links
are valid.

The database is used to generate construction specifications for different actors.
For each supplier that delivers an ECU, the database generate the set of all
requirements which are linked to the ECU and all models which describe the
behaviour of the ECU. Sometimes, depending on the situation, the documentation
contains even the simulation models for the functions which are to be included in
the ECU.

One of the commercial tools available on the market which is used as a
construction database is the tool SystemWeaver provided by Systemite. The main
strength of such a tool is the ability to link all elements together. In Fig. 3.15 we
can see how the requirements are linked to the software architecture model. On the
left-hand side we can see that the requirements are part of an element (e.g. “Adjust
speed” as part of the “Adaptive cruise control”), and on the right-hand side another
requirement visualized as a diagram.

Such tools provide specific views, for example listing all requirements linked to a
specific function as shown in Fig. 3.16. As part of that view we can see that the text
is complemented with figures which allow the analysts to be more specific when
specifying requirements and allow the designers to understand the requirements
better.

The ability to link the elements from different views (e.g. requirements and
components) and provide a graphical overview of these elements allows the
architects to quickly perform change impact analyses and reason about their
architectural choices. Such a dynamic creation of views is very important when
assessing architectures (e.g. during ATAM assessments). An example of such a view
is one showing a set of architectural components used in realization of a specific user
function, as shown in Fig. 3.17.
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Fig. 3.15 Design database linking requirements to architectural elements. Copyright 2016,
Systemite—reprinted with permission

Fig. 3.16 Design database listing requirements for a specific function. Copyright 2016,
Systemite—reprinted with permission
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Fig. 3.17 Design database showing architectural components used when designing a specific
function. Copyright 2016, Systemite—reprinted with permission

The system construction database can also help us in linking requirements to test
cases during the test planning phase—as shown in Fig. 3.18.

It can also assist us in tracking the progress of testing—Fig. 3.19. Since the
number of requirements is so large in automotive systems, tracking the progress of
whether they are tested is also not trivial. Therefore a unified view is needed where
the project can track the test cases that are planned to cover certain requirements, as
well as those that they were executed and what the result of the execution was.

The construction database and modelling tool provide the project teams with a
consistent view on their software system. In the case of software architectures this
tool allows us to link together all the views presented in Chap. 2 (such as physical,
logical, and deployment) and therefore avoid unnecessary work to keep documents
in a steady and consistent state. Most of the tools available for this purpose provide
the possibility to handle multiple parallel versions and baselines, which is essential
in the development of automotive software.
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Fig. 3.18 Linking test cases to requirements. Copyright 2016, Systemite—reprinted with
permission

Fig. 3.19 Tracking test progress. Copyright 2016, Systemite—reprinted with permission
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3.7 Further Reading

In this chapter we outlined the practical aspects of automotive software development
from a bird’s eye perspective. Interested readers can turn to more literature in the
area to dive deeper into details.

For the automotive software processes we recommend the book by Schäuffele
and Zurawka [SZ05], which presents a classical view on automotive software
development, starting from low-level processor programming and moving on to
advanced functionality development.

The classical paper by Broy [Bro06] describing the challenges in automotive
software engineering is the next step to understanding the dynamics of automotive
software engineering in general. This reading can be complemented by the paper by
Pretschner et al. [PBKS07], where the focus is on the future of automotive software
development.

Readers interested in the management of variability in general should explore
the work of Bosch et al. [VGBS01, SVGB05] or [BFGC01]. The work is based on
software product lines, but applies very well to the automotive sector. This can be
complemented with more recent developments in this area—software ecosystems
and their realization in the automotive sector [EG13, EB14].

Otto et al. [Ott12] and [Ott13] presents a study on requirements engineering
at Mercedes-Benz, where they classified over 5800 requirement review protocols
to their quality model. Their results showed that textual requirements (or natural
language requirements as they are called in the publication) are prone to such
problems as inconsistency, incompleteness and ambiguity—with about 70% of
defects in requirements falling into these categories. In the light of this article we
can see the need for complementing the textual requirements with more context,
provided by use case models, user stories and use cases.

Törner et al. [TIPÖ06] presented a similar study but of the requirements at Volvo
Car Group. In contrast to the study of Otto et al. [Ott12], these authors studied the
use case specifications and not the textual requirements. The results, however, are
similar, as the main types of defects are missing elements (correctness in Otto et
al.’s model) and incorrect linguistics (ambiguity in Otto et al.’s model).

Eliasson et al. [EHKP15] described further experiences from Volvo Car Group
where they explored challenges with requirements engineering at large in a mecha-
tronics development organization. Their findings showed that there is a lot of
communication in parallel to the requirements specification. The stakeholders in the
requirements specification frequently mentioned the need to have a good network in
order to specify the requirements correctly. This indicates the challenges described
previously in this chapter that the requirements need more context than is usually
provided in just the specification (especially the textual specification).

Mahally et al. [MMSB15] identified requirements to be the main barriers and
enablers in moving towards Agile mechatronics organizations. Although today
OEMs try to move towards fast development of mechatronics and reduce the cycle
time by using Agile software development approaches, the challenges are that we
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do not know upfront whether a requirement requires the development of electronics
or is only a software requirement. According to Mahally et al. that kind of problem
needs to be solved, and based on the prediction of Houdek [Hou13] this kind of
issue might be coming to an end as device development flattens out and most of
the requirements become software requirements. Similar challenges were presented
by Pernstål et al. [PGFF13] who found that requirements engineering is one of
the top improvement areas for automotive OEMs. The ability to communicate via
requirements was also an important part.

At Audi, Allmann et al. [AWKC06] presented the challenges in the requirements
communication on the boundary between the OEMs and their suppliers. They
identified the need for better communication and the challenges of communicating
through textual representations. They recognized the need for tighter partnerships
as there is an inherent deficiency in communicating through requirements—
transferring knowledge through an intermediate medium. Therefore they recom-
mended integrating systems to minimize knowledge loss via transfer of documents.

Siegl et al. [SRH15] presented a method for formalizing requirements specifica-
tions using the Time Usage Model and applied it successfully to a requirements
specification from one of the German OEMs. The evaluation study showed an
increase in test coverage and increased quality of the requirements specification.

At BMW, Hardt et al. [HMB02] demonstrated the use of formalized domain
engineering models in order to reason about the dependencies between requirements
in the presence of variants. Their approach provided a simplistic, yet powerful,
formalism and its strength was industrial applicability.

A study of the functional architecture of a car project at BMW and the
requirements linked to the functions by Vogelsang and Fuhrmann [VF13] showed
that 85% of functions are dependent on one another and that these dependencies
cause a significant number of problems in software projects. This study shows
the complexity of the functional decomposition of the vehicle’s design and the
complexity of its description.

At Bosch, the longitudinal study of a 5-year project by Langenfeld et al. [LPP16]
showed that 61% of defects in requirements come from the incompleteness or
incorrectness of the requirements specifications.

One of interesting trends in requirements engineering is the automatization of
tasks of requirements engineers. One of such tasks is the discovery of non-functional
requirements. This task is based on reading the specifications of functional require-
ments and identifying phrases which should transform into non-functional require-
ments. A study on the automation of this task has been conducted by Cleland-
Huang et al. [CHSZS07]. The study showed that the automated classification of
requirements could be as good as 90%, but at this stage cannot replace the manual
classifiers.
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3.7.1 Requirements Specification Languages

A model for requirements traceability [DPFL10] DARWIN4Req has been proposed
to address the challenges related to the ability to follow the requirements’ lifecycle.
The model allows us to link requirements expressed in different formalities (e.g.
UML, SySML) and connect them to one another. However, to the best of our
knowledge, the model and the tool have not been adopted on a wider scale yet.

EAST-ADL [DSLT05] is an architecture specification language which contains
elements to capture requirements and link them to the architectural design. The
approach is similar to that of SySML but with the difference that there is no
dedicated requirements specification diagram. EAST-ADL has been demonstrated
to work in industry; however, it is not a standard for automotive OEMs yet.
Mahmud [MSL15] presented a language ReSA that complements the EAST-ADL
modelling language with the possibility to analyze and validate requirements (e.g.
basic consistency checks).

For non-functional requirements in the domain of safety, Peraldi [PFA10] has
proposed another extension of the EAST-ADL language which allows for increased
traceability of requirements and their linking to non-functional properties of the
designed embedded software (e.g. Safety).

Mellegård and Staron [MS09] and [MS10c] conducted an empirical study on
the impact of using hierarchical graphical requirements specification on the quality
of change impact assessment. For this purpose they designed a requirements’
specification language based on the existing formalism—Requirements Abstraction
Model. The results showed that the graphical overview of the dependencies between
requirements introduces significant improvement [KS02].

Finally, the use of models as core artifacts in software development in the
automotive domain has been studied in the context of MDA (Model-Driven
Architecture) [SKW04a, SKW04b, SKW04c]. The important aspect is the evolution
of models throughout the lifecycle.

3.8 Summary

Correct, unambiguous and consistent requirements specifications are foundations
for high-quality software in general and in the automotive embedded systems in
particular. In this chapter we introduced the most common types of requirements
used in this domain and provided their main strengths.

Based on the current state of evolution of automotive software we could observe
three trends in requirements engineering for automotive embedded systems—
(1) agility in requirements specification, (2) increased focus on non-functional
requirements and (3) increased focus on security as a domain for requirements.
Towards the end of the chapter we also provided an overview of the requirements
practices at some of the vehicle manufacturers (Mercedes Benz, Audi, BMW and
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Volvo) based on documented experiences at these companies. We have also pointed
out a number of directions for further reading for the interested.

In our future work we plan to review the requirements engineering practices in
the main automotive OEMs and identify their differences and commonalities.
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Abstract In this chapter, we describe the role of the AUTOSAR (AUTomotive
Open System ARchitecture) standard in the development of automotive system
architectures. AUTOSAR defines the reference architecture and methodology for
the development of automotive software systems, and provides the language (meta-
model) for their architectural models. It also specifies the architectural modules
and functionality of the middleware layer known as the basic software. We
start by describing the layers of the AUTOSAR reference architecture. We then
describe the proposed development methodology by identifying major roles in the
automotive development process and the artifacts they produce, with examples of
each artifact. We follow up by explaining the role of the AUTOSAR meta-model
in the development process and show examples of the architectural models that
instantiate this meta-model. We also explain the use of the AUTOSAR meta-model
for configuring basic software modules. We conclude the chapter by showing trends
in the evolution of the AUTOSAR standard and reflect on its future role in the
automotive domain.

4.1 Introduction

The architecture of automotive software systems, as software-intensive systems, can
be seen from different views, as presented in Sect. 2.7 and described in more detail
by Kruchten in the 4+1 architectural view model [Kru95]. Two of these architectural
views deserve special attention in this chapter, namely the logical and the physical
views, so we describe them briefly here as well.

Logical architecture of automotive software systems is responsible for defining
and structuring high-level vehicle functionalities such as auto-braking when a
pedestrian is detected on the vehicle’s trajectory. These functionalities are usually
realized by a number of logical software components, e.g., the PedestrianSensor
component detects a pedestrian and requests full auto-brake from the BrakeControl
component. These components communicate by exchanging information, e.g.,
about the pedestrian detected in front of the vehicle. Based on the types of
functionalities they realize, logical software components are usually grouped into
subsystems that in turn are grouped into logical domains, e.g., active safety and
powertrain.
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The physical architecture of automotive software systems is usually distributed
over a number of computers (today usually more than 100) referred to as Electronic
Control Units (ECUs). ECUs are connected via electronic buses of different
types (e.g., Can, FlexRay and Ethernet) and are responsible for executing one or
several high-level vehicle functionalities defined in the logical architecture. This
is done by allocating logical software components responsible for realizing these
functionalities to ECUs, thereby transforming them into runnable ECU application
software components. Each logical software component is allocated to at least one
ECU.

Apart from the physical system architecture that consists of a number of ECUs,
each ECU has its own physical architecture that consists of the following main
parts:

• Application software that consists of a number of allocated software components
and is responsible for executing vehicle functionalities realized by this ECU, e.g.,
detecting pedestrians on the vehicle’s trajectory.

• Middleware software responsible for providing services to the application soft-
ware, e.g., transmission/reception of data on the electronic buses, and tracking
diagnostic errors.

• Hardware that includes a number of drivers responsible for controlling different
hardware units, e.g., electronic buses and the CPU of the ECU.

The development of the logical and physical architectural views of automotive
software systems and their ECUs is mostly done following the MDA (Model-Driven
Architecture) approach [Obj14]. This means that the logical and physical system
architecture and the physical ECU architecture are described by means of archi-
tectural models. Looking into the automotive architectural design from the process
point of view, car manufacturers (OEMs, Original Equipment Manufacturers) are
commonly responsible for the logical and physical design of the system, while
a hierarchy of suppliers is responsible for the physical design of specific ECUs,
implementation of their application and middleware software and the necessary
hardware [BKPS07].

In order to facilitate this distributed design and development of automotive
software systems and their architectural components, the AUTOSAR (AUTomotive
Open Systems ARchitecture) standard was introduced in 2003 as a joint partnership
of automotive OEMs and their software and hardware vendors. Today, AUTOSAR
consists of more than 150 global partners [AUT16a] and is therefore considered a
de facto standard in the automotive domain. AUTOSAR is built upon the following
major objectives:

1. Standardization of the reference ECU architecture and its layers. This increases
the reusability of application software components in different car projects
(within one or multiple OEMs) developed by the same software suppliers.

2. Standardization of the development methodology. This enables collaboration
between a number of different parties (OEMs and a hierarchy of suppliers) in
the software development process for all ECUs in the system.
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3. Standardization of the language (meta-model) for architectural models of the
system/ECUs. This enables a smooth exchange of architectural models between
different modeling tools used by different parties in the development process.

4. Standardization of ECU middleware (basic software, BSW) architecture and
functionality. This allows engineers from OEMs to focus on the design and
implementation of high-level vehicle functionalities that can, in contrast to ECU
middleware, create competitive advantage.

In the next four sections (4.2–4.6), we show how AUTOSAR achieves each
one of these four objectives. In Sect. 4.6, we analyze trends in the evolution of
AUTOSAR and how it can be measured. In Sect. 4.7, we present current initiatives
regarding the future role of AUTOSAR in the development of automotive software
systems. Finally, in the last two sections (4.8 and 4.9), we provide guidelines for
further readings and conclude this chapter with a brief summary.

4.2 AUTOSAR Reference Architecture

The architectural design of ECU software based on AUTOSAR is done according to
the three-layer architecture that is built upon the ECU hardware layer, as presented
in Fig. 4.1.

The first layer, Application software, consists of a number of software compo-
nents that realize a set of vehicle functionalities by exchanging data using interfaces

Fig. 4.1 AUTOSAR layered software architecture [AUT16g]
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defined on these components (referred to as ports). This layer is based on the
logical architectural design of the system. The second layer, Run-time environment
(RTE), controls the communication between software components, abstracting the
fact that they may be allocated onto the same or different ECUs. This layer is usually
generated automatically, based on the software component interfaces. If the software
components are allocated to different ECUs, transmission of the respective signals
on the electronic buses is needed, which is done by the third layer (Basic software).

The Basic software layer consists of a number of BSW modules and it is
responsible for the non-application-related ECU functionalities. One of the most
important basic software functionalities is the Communication between ECUs,
i.e., signal exchange. It consists of BSW modules such as COM (Communication
Manager) that are responsible for signal transmission and reception. However,
AUTOSAR basic software also provides a number of Services to the Application
software layer, e.g., diagnostics realized by DEM (Diagnostic Event Manager)
and DCM (Diagnostic Communication Manager) modules that are responsible for
logging error events and transmitting diagnostic messages, respectively, and the
Operating System for scheduling ECU runnables. The majority of BSW modules
are configured automatically, based on the architectural models of the physical
system [LH09], e.g., periodic transmission of a set of signals packed into frames
on a specific electronic bus.

Communication between higher-level functionalities of ECU Basic software and
drivers controlling the ECU hardware realized by the Microcontroler Abstraction
BSW modules is done by the ECU Abstraction BSW modules, e.g., bus interface
modules such as CanIf, which is responsible for the transmission of frames
containing signals on the CAN bus. Finally, AUTOSAR provides the possibility
for application software components to communicate directly with hardware, thus
bypassing the layers of the AUTOSAR software architecture, by means of custom
implementations of Complex Drivers. This approach is, however, considered non-
standardized.

Apart from the Complex Drivers, RTE and modules of the Basic Software
layer are completely standardized by AUTOSAR, i.e., AUTOSAR provides detailed
functional specifications for each module. This standardization, together with the
clear distinction between the Application software, RTE and Basic software layers,
allows ECU designers and developers to specifically focus on the realization of high-
level vehicle functionalities, i.e., without the need to think about the underlying
middleware and hardware. Application software components and BSW modules
are often developed by different suppliers who specialize in one of these areas, as
explained in more detail in the following section.
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4.3 AUTOSAR Development Methodology

On the highest level of abstraction, automotive vendors developing architectural
components following the AUTOSAR methodology can be classified into one of
the following four major roles in the automotive development process:

• OEM: responsible for the logical and physical system design.
• Tier1: responsible for the physical ECU design and implementation of the

software components allocated to this ECU.
• Tier2: responsible for the implementation of ECU basic software.
• Tier3: responsible for supplying ECU hardware, hardware drivers and corre-

sponding compilers for building the ECU software.

In most cases, different roles represent different organizations/companies
involved in the development process. For example, one car manufacturer plays the
role of OEM, two software vendors play the roles of Tier1 and Tier2, respectively,
and one “silicon” vendor plays the role of Tier3. However, in some cases, these roles
can also be played by the same company, e.g., one car manufacturer plays the role of
OEM and Tier1 by doing logical and physical system design, physical ECU design
and implementation of the allocated software components (in-house development),
or one software vendor plays the role of Tier1 and Tier2 by doing implementation
of both the software components and the BSW modules. The development process
involving all roles and their tasks is presented in Fig. 4.2.

OEMs start with logical system design (1) by modeling a number of composite
logical software components and their port interfaces representing data exchange
points. These components are usually grouped into subsystems that are in turn

Fig. 4.2 AUTOSAR development process
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Fig. 4.3 Example of the logical system design done by OEMs (1)

grouped into logical domains. In the later stages of the development process, usually
in the physical ECU design (3), composite software components are broken down
into a number of atomic software components, but this could have been done
already in the logical system design phase by OEMs. An example of the logical
system design of the minimalistic system created for the purpose of this chapter that
calculates vehicle speed and presents its value to the driver is presented in Fig. 4.3.

The example contains two subsystems, Break and Info, each of which consists
of one composite software component, SpeedCalc and Odometer, respectively. The
SpeedCalc component is responsible for calculating vehicle speed and it provides
this information via the VehicleSpeed sender port. The Odometer component is
responsible for presenting the vehicle speed information to the driver and it requires
this information via the VehicleSpeed receiver port.

As soon as a certain number of subsystems and software components have been
defined in the logical system design phase (1), OEMs can start with the physical
system design (2), which involves modeling a number of ECUs connected using
different electronic buses and deployment of software components to these ECUs. In
case two communicating software components (with connected ports) are allocated
to different ECUs, this phase also involves the creation of system signals that will
be transmitted over the electronic bus connecting these two ECUs. An example of
the physical system design of our minimalistic system is presented in Fig. 4.4.

The example contains two ECUs, BreakControl and DriverInfo, connected using
the Can1 bus. The SpeedCalc component is deployed to the BreakControl ECU
while the Odometer component is deployed to the DriverInfo ECU. As these two
components are deployed to different ECUs, information about vehicle speed is
exchanged between them in a form of system signal named VehicleSpeed.

After the physical system design phase (2) is finished, detailed design of the car’s
functionalities allocated to composite software components deployed to different
ECUs (physical ECU design) can be performed by the Tier1s (3). As different ECUs
are usually developed by different Tier1s, OEMs are responsible for extracting the
relevant information about the deployed software components from the generated
SWC system model (A) into the SWC ECU model (B), known as the ECU Extract.
The main goal of the physical ECU design phase is to break down the composite
software components into a number of atomic software components that will in the
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Fig. 4.4 Example of the physical system design done by OEMs (2)

Fig. 4.5 Example of the physical ECU design done by the Tier1s (3). (a) BreakControl ECU. (b)
DriverInfo ECU

end represent runnable entities at ECU run-time. An example of the physical ECU
design of our minimalistic system is presented in Fig. 4.5.

The example shows detailing of the SpeedCalc and Odometer composite soft-
ware components into a number of atomic software components that will represent
runnables in the final ECU software. SpeedCalc consists of the RpmSensor sensor
component that measures the speed of axis rotation, the RpmValue atomic software
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component that calculates the value of the rotation and the BreakControl atomic
software component that calculates the actual vehicle speed based on the value of
the axis rotation. Odometer consists of the InfoControl atomic software component
that receives information about the vehicle speed and the Odometer atomic software
component that presents the vehicle speed value to the driver.

The ECU design phase is also used to decide upon the concrete implementation
data types used in the code for the data exchanged between software components
based on the choice of the concrete ECU hardware (C) delivered by the Tier3s. For
example, data can be stored as floats if the chosen CPU has support for working
with the floating points.

Based on the detailed SWC ECU model containing the atomic software com-
ponents (D), the Tier1s can continue with the functional development of the car’s
functionalities (4) allocated onto these components. This is usually done with a help
of behavioral modeling with modeling tools such as Matlab Simulink, as explained
in Sect. 5.2, that are able to generate source SWC code for the atomic software
components (E) automatically from the Simulink models [LLZ13]. This part is
outside of the AUTOSAR scope.

During the physical ECU design and functional development phases performed
by the Tier1s, OEMs can work on the physical COM design (5) that aims to complete
the system model with packing of signals into frames that are transmitted on the
electronic buses. This phase is necessary for configuring the communication (COM)
part of the AUTOSAR basic software configuration (6). An example of the physical
COM design of our minimalistic system is presented in Fig. 4.6.

The example shows one frame of eight bytes named CanFrm01 that is transmitted
by the BreakControl ECU on the Can1 bus and received by the DriverInfo ECU. It
transports the VehicleSpeed signal in its first two bytes.

After the physical COM design phase has been completed for the entire system,
OEMs are responsible for creating COM ECU model extracts (G) from the generated

Fig. 4.6 Example of the physical COM design done by OEMs (5)
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COM system model (F) for each ECU that contains only ECU-relevant information
about the COM design. This step is similar to the step taken after the logical and
physical system design, related to the extraction of ECU-relevant information about
application software components. These ECU extracts are then sent to the Tier1s,
which use them as input for configuring the COM part of the ECU basic software
configuration (6) and, together with configuring the rest of BSW (diagnostics
services, operating system, etc.), generate the complete BSW configuration code
(H) for the developed ECU. An example of the BSW configuration design of our
minimalistic system is presented in Fig. 4.7.

The example shows different groups of BSW modules, i.e., Operating System;
Services including modules such as DEM and DCM; Communication including
modules such as COM; and ECU Abstraction including modules such as CanIf
needed for the transmission of frames on the Can bus in our example.

The actual ECU basic software development (7) is done by the Tier2s, based
on the detailed specifications of each BSW module provided by the AUTOSAR
standard, e.g., COM, CanIf or DEM modules. The outcome of this phase is a
complete BSW code (I) for the entire basic software that is usually delivered by
the Tier2s in the form of libraries. The hardware drivers for the chosen hardware
(J), in our example the CAN driver, are delivered by the Tier3s.

The last stage in ECU software creation (8) is to compile and link the functional
SWC code (E), the BSW configuration code (H), the functional BSW code (I) and
the hardware drivers (J). This is usually done using the compiler and linker (K)
delivered by the Tier3s.

Fig. 4.7 Example of the BSW configuration design done by the Tier1s (6). (a) BreakControl ECU.
(b) DriverInfo ECU
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Despite the fact that the described methodology of AUTOSAR is reminiscent
of the traditional waterfall development approach, except from the decoupled
development of the ECU functional code and the ECU BSW code, in practice
it represents just one cycle of the entire development process. In other words,
steps (1)–(6) are usually repeated a number of times, adding new functionalities
to the system and its ECUs. For example, new composite software components are
introduced in the logical system design (1), requiring new signals in the physical
system design (2); new atomic software components are introduced as part of
the new composite software components in the physical ECU design (3) and
implemented in the functional development (4); and new frames to transport the
new signals are introduced in the physical COM design (5) and configured in the
BSW configuration design (6) phase. Sometimes even the ECU hardware (C) and
its compiler/linker (K) and drivers (J) can be changed between different cycles, in
case it cannot withstand the additional functionality.

Examples of AUTOSAR based logical system design (1), physical system design
(2), physical ECU design (3) and physical COM design (5) are presented in
Sect. 4.4. Examples of AUTOSAR-based basic software development (7) and basic
software configuration (6) are presented in Sect. 4.5. As already stated, functional
development of software components (4) is outside of the scope of AUTOSAR and
this chapter.

4.4 AUTOSAR Meta-Model

As we have seen in the previous section, a number of architectural models, as
outcomes of different phases in the development methodology, are exchanged
between different roles in the development process. In order to ensure that modeling
tools used by OEMs in the logical (1), physical (2) and system design commu-
nication (5) phases are able to create models that could be read by the modeling
tools used by the Tier1s in the physical ECU design (3) and BSW configuration
phases (6), AUTOSAR defines a meta-model that specifies the language for these
exchanged models [NDWK99]. Therefore, models (A), (B), (D), (F) and (G)
represent instances of the AUTOSAR meta-model that specifies their abstract syntax
in the UML language. The models themselves are serialized into XML (referred to
as ARXML, the AUTOSAR XML), which represents their concrete syntax, and are
validated by the AUTOSAR XML schema that is generated from the AUTOSAR
meta-model [PB06].

In this section, we first describe the AUTOSAR meta-modeling environment
in Sect. 4.4.1. We then show an example use of the AUTOSAR meta-model in
the logical system design (1), physical system design (2), physical ECU design
(3) and physical COM design (5) phases in Sect. 4.4.2 using our minimalistic
system presented in the previous section and present examples of these models in
the ARXML syntax. Finally, we discuss the semantics of the AUTOSAR models
described in the AUTOSAR template specifications in Sect. 4.4.3.
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4.4.1 AUTOSAR Meta-Modeling Environment

As opposed to the commonly accepted meta-modeling hierarchy of MOF [Obj04]
that defines four layers [BG01], the AUTOSAR modeling environment has a five-
layer hierarchy, as presented below (the names of the layers are taken from the
AUTOSAR Generic Structure specification [AUT16f]):

1. The ARM4: MOF 2.0, e.g., the MOF Class
2. The ARM3: UML and AUTOSAR UML profile, e.g., the UML Class
3. The ARM2: Meta-model, e.g., the SoftwareComponent
4. The ARM1: Models, e.g., the WindShieldWiper
5. The ARM0: Objects, e.g., the WindShieldWiper in the ECU memory

The mismatch between the number of layers defined by MOF and AUTOSAR
lies in the fact that MOF considers only layers connected by the linguistic instantia-
tion (e.g., SystemSignal is an instance of UML Class), while AUTOSAR considers
both linguistic and ontological layers (e.g., VehicleSpeed is an instance of System-
Signal) [Küh06]. To link these two interpretations of the meta-modeling hierarchy,
we can visualize the AUTOSAR meta-modeling hierarchy using a two-dimensional
representation (known as OCA—Orthogonal Classification Architecture [AK03]),
as shown in Fig. 4.8. Linguistic instantiation (“L” layers corresponding to MOF
layers) are represented vertically and ontological layers (“O” layers) horizontally.

The ARM2 layer is commonly referred to as the “AUTOSAR meta-model” and
it ontologically defines, using UML syntax (i.e., AUTOSAR meta-model is defined
as an instance of UML), AUTOSAR models residing on the M1 layer (both the

Fig. 4.8 AUTOSAR meta-model layers [DSTH16]
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AUTOSAR meta-model and AUTOSAR models are located on the L1 layer). The
AUTOSAR meta-model also uses a UML profile that extends the UML meta-model
on the ARM3 layer, which specifies the used stereotypes and tagged values.

Structurally, the AUTOSAR meta-model is divided into a number of top-
level packages referred to as “templates”, where each template defines how to
model one part of the automotive system. The modeling semantics, referred to
as design requirements and constraints, are described in the AUTOSAR template
specifications [Gou10]. The AUTOSAR templates and their relations are presented
in Fig. 4.9.

Probably the most important templates for the design of automotive software
systems are the SWComponentTemplate, which defines how to model software
components and their interaction; SystemTemplate, which defines how to model

Fig. 4.9 AUTOSAR templates [AUT16f]
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ECUs and their communication; and ECUCParameterDefTemplate and ECUCDe-
scriptionTemplate, which define how to configure ECU basic software. In addition
to these templates, AUTOSAR GenericStructure template is used to define general
concepts (meta-classes) used by all other templates, e.g., handling different varia-
tions in architectural models related to different vehicles. In the next subsection, we
provide examples of these templates and AUTOSAR models that instantiate them.

4.4.2 Architectural Design Based on the AUTOSAR
Meta-Model

A simplified excerpt from the SWComponentTemplate that is needed for the logical
system and physical ECU design of our minimalistic example that calculates vehicle
speed and presents its value to the driver is presented in Fig. 4.10.

The excerpt shows the abstract meta-class SwComponent that can be either
AtomicSwComponent or CompositeSwComponent, which may refer to multiple
AtomicSwComponents. Both types of SwComponents may contain a number of
Ports that can either be ProvidedPorts providing data to the other components
in the system, or RequiredPorts requiring data from the other components in

Fig. 4.10 Logical and ECU design example (SwComponentTemplate)
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the system. Ports on the CompositeSwComponents are connected to the ports
of the AtomicSwComponents using DelegationSwConnectors that belong to the
CompositeSwComponents, i.e., DelegationSwConnector points to an outerPort of
the CompositeSwComponent and an innerPort of the AtomicSwComponent. Finally,
Ports refer to a corresponding PortInterface, e.g., SenderReceiverInterface or
ClientServerInterface, that contains the actual definition of the DataType that is
provided or required by this port (e.g., unsigned integer of 32 bits or a struct that
consists of an integer and a float).

The model of our example of the logical system design presented in Fig. 4.3 that
instantiates the SWComponentTemplate part of the meta-model is shown in Fig. 4.11
in ARXML syntax. We chose ARXML as it is used as a model exchange format
between OEMs and Tier1s, but UML could be used as well.

The example shows the definition of the SpeedCalc composite software com-
ponent (lines 1–11) with the VehicleSpeed provided port (lines 4–9), and the
Odometer composite software component (lines 12–22) with the VehicleSpeed

Fig. 4.11 AUTOSAR model example: logical design



4.4 AUTOSAR Meta-Model 95

required port (15–20). Both ports refer to the same sender-receiver interface (lines
23–33) that in turn refers to the unsigned integer type of 16 bits (lines 34–36) for
the provided/required data.

According to the AUTOSAR methodology, these composite software compo-
nents are, after their allocation to the chosen ECUs, broken down into a number
of atomic software components during the physical ECU design phase. The partial
model of our minimalistic example of the physical ECU design presented in Fig. 4.5
that instantiates the SWComponentTemplate part of the meta-model is shown in
Fig. 4.12 in ARXML syntax.

The example shows the definition of the BreakControl atomic software com-
ponent (lines 31–41) with the VehicleSpeed provided port (lines 34–39) that is
referenced (lines 12–17) from the SpeedCalc composite software component (lines
1–30). We can also see the delegation connector Delegation1 inside the SpeedCalc

Fig. 4.12 AUTOSAR model example: ECU design
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Fig. 4.13 Physical and COM design (SystemTemplate)

composite software component (lines 20–28) that connects the provided ports in the
SpeedCalc and BreakControl software components.

A simplified excerpt from the SystemTemplate that is needed for the physical and
COM system designs of our minimalistic example is presented in Fig. 4.13.

Related to the physical system design, the excerpt shows the EcuInstance
meta-class with the diagnosticAddress attribute which may contain a number of
CommunicationConnectors that represent connections of EcuIstance to a Phys-
icalChannel (e.g., CanCommunicationConnector connects one EcuInstance to a
CanPhysicalChannel). A number of SwComponents (CompositeSwComponents or
AtomicSwComponents) created in the logical designs can be allocated to one
EcuInstace by means of SwcToEcuMappings.
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Related to the physical COM design, the excerpt shows the SenderReceiver-
ToSignalMapping of the VariableData created in the logical design of a SystemSig-
nal. It also shows that one SystemSignal can be sent to multiple buses by creating
different ISignals and mapping them to IPdus, which are in turn mapped to Frames.
IPdu is one type of Pdu (Protocol Data Unit) that is used for transporting signals,
and there may be other types of Pdus, e.g., DcmPdu for transporting diagnostic
messages.

The model of our example of the physical system design presented in Fig. 4.4
that instantiates the SystemTemplate part of the meta-model is shown in Fig. 4.14.

The example shows the definition of the BreakControl ECU with diagnostic
address 10 (lines 1–9) that owns a CAN communication connector (lines 5–7).
It also shows the mapping of the SpeedCalc composite software component onto
the BreakControl ECU (lines 10–14). Finally, it shows the definition of the Can1
physical channel (lines 15–24) that points to the CAN communication connector of
the BreakControl ECU (lines 19–21), thereby indicating that this ECU is connected
to Can1.

The model of our example of the COM system design presented in Fig. 4.6 that
instantiates the SystemTemplate part of the meta-model is shown in Fig. 4.15.

The example shows the definition of the VehicleSpeed system signal (lines 1–
3) that is mapped to the SpeedCalc variable data element defined in the logical
design phase (lines 4–12). The example also shows the creation of the ISignal
VehicleSpeedCan1 (lines ) with initial value of 0 that is meant to transmit the vehicle
speed on the Can1 bus defined in the physical design phase. This ISignal is mapped
to Pdu1 (lines 20–22) using ISignalToIPduMapping (23–27) that in turn is mapped
to CanFrame1 (lines 28–30) using IPduToFrameMapping (lines 31–35).

Fig. 4.14 AUTOSAR model example: physical design
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Fig. 4.15 AUTOSAR model example: COM design

4.4.3 AUTOSAR Template Specifications

Like other language definitions, the AUTOSAR meta-model defines only syntax for
different types of architectural models, without explaining how its meta-classes shall
be used to achieve certain semantics. This is done in natural language specifications
called templates [Gou10], e.g., SwComponentTemplate and SystemTemplate, that
explain different parts of the AUTOSAR meta-model. These templates consist of
the following main items:

• Design requirements that should be fulfilled by the models (specification items).
• Constraints that should be fulfilled by the models and checked by modeling tools.
• Figures explaining the use of a group of meta-classes.
• Class tables explaining meta-classes and their attributes/connectors.

As an example of a specification item related to our minimalistic example
that calculates vehicle speed and presents its value to the driver, we present
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specification item no. 01009 from the SystemTemplate that describes the use of
CommunicationConnectors:

[TPS_SYST_01009] Definition of CommunicationConnector [An EcuInstance
uses CommunicationConnector elements in order to describe its bus interfaces and
to specify the sending/receiving behavior.]

As an example of a constraint, we present constraint no. 1032 from the SwCom-
ponentTemplate that describes the limitation in the use of DelegationSwConnectors.

[constr_1032] DelegationSwConnector can only connect ports of the same
kind [A DelegationSwConnector can only connect ports of the same kind, i.e.
ProvidedPort to ProvidedPort and RequiredPort to RequiredPort.]

The majority of constraints including constr_1032 could be specified directly in
the AUTOSAR meta-model using OCL (Object Constraint Language). However,
due to the complexity of OCL and thousands of automotive engineers in more
than hundred OEM and supplier companies that develop automotive software
components based on AUTOSAR, natural language specifications are considered
a better approach for such a wide audience [NDWK99].

Meta-model figures show relationships between a number of meta-classes using
UML notation and they are similar to Figs. 4.10 and 4.13 presented in the previous
section. These figures are usually followed by class tables that describe the meta-
classes in the figures in more detail, e.g. description of the meta-classes, their parent
classes and attributes/connectors, so that the readers of the AUTOSAR specification
do not need to look directly into the AUTOSAR meta-model which is maintained
by the Enterprise Architect tool.

In addition to specification items, constraints, figures and class tables,
AUTOSAR template specifications also contain a substantial amount of plain
text that provides additional explanations, e.g., introductions to the topic and notes
about specification items and constraints.

4.5 AUTOSAR ECUMiddleware

AUTOSAR provides detailed functional specifications for the modules of its
middleware layer (basic software modules). For example, the COM specification
describes the functionality of the Communication Manager module that is mostly
responsible for handling the communication between ECUs, i.e., transmitting
signals received from the RTE onto electronic buses and vice versa. These speci-
fications consist of the following main items:

• Functional requirements that should be fulfilled by the implementation of the
BSW modules.

• Description of APIs of the BSW modules.
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• Sequence diagrams explaining the interaction between BSW modules.
• Configuration parameters that are used for configuring the BSW modules.

The functional side of the AUTOSAR BSW module specifications (functional
requirements, APIs and sequence diagrams) is outside of the scope of this chapter.
However, we do describe here the general approach to configuration of the BSW
modules as it is done based on the AUTOSAR meta-model and its templates.

Two of the AUTOSAR templates are responsible for specifying configuration of
the AUTOSAR basic software—ECUCParameterDefTemplate and ECUCDescrip-
tionTemplate on the ARM2 layer. ECUCParameterDefTemplate specifies the gen-
eral definition of configuration parameters, e.g., that parameters can be grouped into
containers of parameters and that they can be configured at different configuration
times (e.g., before or after building the complete ECU software). ECUCDescrip-
tionTemplate specifies modeling of concrete parameter and container values that
reference their corresponding definitions from the ECUCParameterDefTemplate.

The values of configuration parameters from the ECUCDescriptionTemplate
models can be automatically derived from the models of other templates, e.g.,
SoftwareComponentTemplate and SystemTemplate. This process is called “upstream
mapping” and it can be done automatically with support from the ECU configuration
tools [LH09]. A simplified example of the ECUCParameterDefTemplate and
ECUCParameterDefTemplate and their models, including the upstream mapping
process, is shown in Fig. 4.16 in UML syntax.

The ECUCParameterDefTemplate on the ARM2 layer (left blue box) specifies
modeling of the definition of configuration parameters (ECUCParameterDef s) and
containers (ECUCContainerDef s), with an example of the integer parameter def-
inition (ECUCIntegerParameterDef ). The ECUCDescriptionTemplate (left yellow
box) specifies modeling of the values of containers (ECUCContainerValues) and

Fig. 4.16 Example of the AUTOSAR templates and their models
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parameters (ECUCParameterValues), with an example of the integer parameter
value (ECUCIntegerParameterValue). As with the elements from the SwCompo-
nentTemplate and the SystemTemplate, the elements from these two templates are
also inherited from the common element in the GenericStructureTemplate (green
box) named Identifiable, which provides them with a short name and unique
identifier (UUID).

The standardized model (i.e., provided by AUTOSAR) of the ECUCParame-
terDefTemplate can be seen on the ARM1 layer (right blue box). It shows the
ECUCContainerDef instance with shortName “ComSignal” that refers to the
ECUCParameterDef instance with shortName “ComSignalInitValue”. These two
elements both have the tagged value named UM, denoting Upstream Mapping. The
UM tagged value for the “ComSignal” container instance refers to the ISignal meta-
class from the SystemTemplate. The UM tagged value for the “ComSignalInitValue”
parameter instance refers to the initValue attribute of the ISignal. This implies that
for every ISignal instance in the SystemModel, one ECUCContainerValue instance
in the ECUCDescriptionModel shall be created with an ECUCParameterValue
instance. The value of this parameter instance shall be equal to the initValue attribute
of that SystemSignal instance.

Considering the “VehicleSpeedCan1” ISignal with “initValue” 0 (orange box)
that we defined in our SystemModel shown in Fig. 4.15 (COM design phase), the
ECUCDescriptionModel (right yellow box) can be generated. This model contains
one instance of the ECUCContainerValue with shortName “VehicleSpeedCan1”
that is defined by the “ComSignal” container definition and refers to one instance of
the ECUCParameterValue with shortName “initValue” of value 0 that is defined by
the “ComSignalInitValue” parameter definition.

AUTOSAR provides the standardized ARM1 models of the ECUCParameter-
DefTemplate for all configuration parameters and containers of the ECU basic
software. For example, the ComSignal container with ComSignalInitValue are
standardized for the COM BSW module. On the smallest granularity, standardized
models of the ECUCParameterDefTemplate are divided into a number of packages,
where each package contains configuration parameters of one Basic software
module. At the highest level of granularity, these models are divided into different
logical packages, including ECU communication, diagnostics, memory access and
IO access.

4.6 AUTOSAR Evolution

The development of the AUTOSAR standard started in 2003 and its first release
in mass vehicle production was R3.0.1 from 2007. In this section, we show trends
in the evolution of the AUTOSAR meta-model and its requirements (both template
and basic software) from its first release until release 4.2.2 from 2016, with a focus
on the newer releases (R4.0.1–R4.2.2).



102 4 AUTOSAR Standard

4.6.1 AUTOSAR Meta-Model Evolution

From the architectural modeling point of view, the most important artifact to be
analyzed through different releases of AUTOSAR is the AUTOSAR meta-model,
as it defines several different types of AUTOSAR models such as SWC, COM and
BSW configuration models. We start the analysis of the AUTOSAR meta-model
evolution by showing its increase in size from the initial release until the latest one.
Figure 4.17 shows the number of AUTOSAR meta-classes in all of its templates
(left) and the number of standardized BSW configuration parameters, as instances
of the ECUCParameterDefTemplate (right) [DSTH14].

The figure indicates relatively even evolution of the AUTOSAR application
software and AUTOSAR basic software, except for the R1.0, where no BSW
configuration parameters have been standardized. We can also ascertain that there
is a significant increase in the number of meta-classes and configuration parameters
starting from R4.0.1, and relatively small change between R3.0.1 and R3.1.5. This
is because the development of AUTOSAR R4.0.1 started in parallel to that of R3.1.1
and continued to develop as independent branches, namely the 3.x branch and the
4.x branch, for a couple of years until all AUTOSAR OEMs switched to 4.x. The
main development focus, such as the introduction of new AUTOSAR features, was
on the 4.x branch, and the 3.x branch was considered to be in the maintenance
mode, focusing mostly on fixing errors in the meta-model and specifications and
implementing the most important features from the 4.x branch.

AUTOSAR R4.0.1 was made public in 2009 and brought significant changes
to almost all specifications, including the AUTOSAR meta-model. These changes
included a number of new features, referred to as concepts by AUTOSAR, such
as for supporting the LIN 2.1 electronic bus and concept enabling the existence of
different variants in AUTOASAR models related to different vehicle lines. However,
it also included clean-up activities of the meta-classes and configuration parameters
of unused or broken concepts. Because AUTOSAR 4.x releases are used today by
the majority of AUTOSAR OEMs, we provide in the rest of this section a more
detailed analysis of the evolution trends of the 4.x branch. Figure 4.18 shows the
number of added, modified and removed meta-classes between different releases
of 4.x.

Fig. 4.17 Number of classes (TPS) and objects (BSW)
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Fig. 4.18 Number of added, modified and removed classes (TPS)

At least three important conclusions about the evolution of the AUTOSAR meta-
model can be derived from this figure. First, we can see that the evolution is
mostly driven by modifications and additions of meta-classes, while removals are
very seldom. The main reason behind this is the strong requirement for backwards
compatibility of the AUTOSAR schema that is generated from the AUTOSAR
meta-model, e.g., R4.0.2 models should be validated by the R4.0.3 schema or later.
Second, we can see that the initial three releases, R4.0.1 to R4.1.1, all have increased
the number of added, modified and removed meta-classes, indicating that it took a
couple of releases to stabilize the 4.x branch. Finally, we can see that generally
only minor AUTOSR releases (second digit changed, e.g., R4.1.1 vs. R4.2.1) bring
a lot of new meta-classes. This is related to the AUTOSAR’s policy that only major
(first digit changed) and minor (second digit changed) releases may introduce new
features while revisions (third digit changed) are mostly responsible for fixing errors
in the meta-model related to the existing features.

In order for the automotive engineers to be able to make a preliminary assessment
of the impact of adopting a new AUTOSAR release, or a subset of its new features,
on the used modeling tools, a measure of meta-model change (NoC—Number of
Changes) has been developed [DSTH14]. NoC considers all possible changes to the
meta-classes, meta-attributes, and meta-connectors that need to be implemented by
the vendors of the AUTOSAR tools used by OEMs and Tier1s. We use this measure
to present the estimated effort needed to update the AUTOSAR modeling tool-chain
in order to switch from one AUTOSAR release to another (e.g., 3.x to 4.x). The
measurement results are presented in Fig. 4.19.

As expected, the highest effort is needed when switching from the older
AUTOSAR releases (e.g., R1.0 and R2.0) to the newer ones (e.g., R4.2.1 and
R4.2.2). However, the figure also shows that there is a significantly higher effort
caused by the AUTOSAR releases in branch 4.x than in releases from the previous
branches. This indicates that the functional “big bang” of AUTOSAR started with
branch 4.x and it still continues to expand.



104 4 AUTOSAR Standard

Fig. 4.19 Number of changes between releases (TPS)

Due to the fact that this expansion is mostly driven by new features incorporated
into the minor releases of the AUTOSAR branch 4.x, we continue our analysis of the
AUTOSAR evolution by presenting the impact of 14 new concepts of AUTOSAR
R4.2.1. A brief description of each concept is presented below (more details can be
found in [AUT16i]).

1. SwitchConfiguration: Enables full utilization of Ethernet and Ethernet
switches as a communication medium between ECUs.

2. SenderReceiverSerialization: Enables mapping of complex data to single
signal entities by means of byte array serialization. The goal is to reduce the
number of signals and minimize the signal processing time.

3. CANFD: Introduces a new communication protocol for the CAN bus with
higher bandwidth and payload for large signals.

4. EfficientCOMforLargeData: Enables faster transmission of large signals
through the ECU by avoiding overhead of the COM module.

5. E2E Extension: Reworks the modeling of safety communication (e.g., indica-
tor about modified or missing data during transport) between ECUs so that it
does not require additional non-standardized code.

6. GlobalTimeSynchronization: Provides a common time base that is distributed
across various buses for accurate ECU data correlation.

7. SupportForPBLAndPBSECUConfiguration: Enables simultaneous configu-
ration of several ECU variants in a car and different car lines.

8. SecureOnboardCommunication: Provides mechanisms for securing the com-
munication on in-vehicle networks (e.g., communication between the car and
the outside world).

9. SafetyExtensions: Provides mechanisms to realizing and documenting func-
tional safety of AUTOSAR systems (e.g. according to ISO 26262).
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10. DecentralizedConfiguration: Extension of the AUTOSAR meta-model to sup-
port transfer of diagnostic needs of OEMs to suppliers by use of AUTOSAR-
complaint models.

11. IntegrationOfNonARSystems: Enables integration of non-AUTOSAR sys-
tems, e.g., Genivi, into an AUTOSAR system during development.

12. NVDataHandlingRTE: Provides efficient mechanisms for the software com-
ponents to handle non-volatile data.

13. EcuMFixedMC: Provides support for ECU state handling on ECUs with
multiple cores.

14. AsilQmProtection: Provides means for protecting modules developed accord-
ing to safety regulations from other potentially unsafe modules (i.e., it reduces
the chance of error propagation to safety-critical modules).

Figure 4.20 shows the results of the NoC measure calculated for each of these 14
features for all AUTOSAR meta-model templates.

This figure shows two important aspects of the AUTOSAR meta-model evolution
related to new concepts. First, they have very different impact on the AUTOSAR
meta-model (see left part of the figure), i.e., some concepts have no impact at all,
such as the concept of IntegrationOfNonARSystems, while some have a significant
impact, such as the concept of DecentralizedConfiguration. Second, we can see that
the vast majority of changes in R4.2.1 is related to new concepts (see right part of
the figure) and only a small part to other changes, e.g., fixes of errors related to
existing concepts.

Finally, in order to present the results of role-based assessment of impact of
the AUTOSAR R4.2.1 concepts, we considered the following design roles in
AUTOSAR-based development, whose work is described in Sect. 4.3 [DST15]:

• Application Software Designer: Responsible for the definition of software
components and their data exchange points (involved in the phases of physical
system and physical ECU design; see (2) and (3) in Fig. 4.2).

Fig. 4.20 Number of changes per concept (TPS)
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• Diagnostic Designer: Responsible for the definition of diagnostic services
required by software components (involved in the phases of physical system and
physical ECU design; see (2) and (3) in Fig. 4.2).

• ECU Communication Designer: Responsible for the definition of signals and
their transmission on electronic buses in different frames (involved in the phase
of physical COM design; see (5) in Fig. 4.2).

• Basic Software Designer: Responsible for the design of BSW modules and their
interfaces (involved in the phase of BSW development; see (7) in Fig. 4.2).

• COM Configurator: Responsible for the configuration of communication BSW
modules (involved in the phase of BSW configuration; see (6) in Fig. 4.2).

• Diagnostic configurator: Responsible for the configuration of diagnostic BSW
modules (involved in the phase of BSW configuration; see (6) in Fig. 4.2).

Figure 4.21 shows the impact of 13 new concepts of AUTOSAR R4.2.1 (all
except the concept of SupportForPBLAndPBSECUConfiguration, as it causes a
significantly higher number of changes in comparison to other concepts, thereby
obscuring the results) on these six roles.

This figure shows the following interesting points. First, the COM Configurator
role followed by the ECU Communication Designer role are mostly affected by the
concepts, i.e., roles related to the communication between different ECUs. Then,
we can see that the majority of concepts do not have impact on all roles, except for
the concept of DecentralizedConfiguration. Finally, we can see that some concepts,
e.g., IntegrationOfNonARSystems and AsilQmProtection, do not have impact on
any of the major roles. The concept of IntegrationOfNonARSystems represents a
methodological guideline without the actual impact on the models while the concept
of AsilQmProtection has impact on other safety-related basic software modules that
are not explicitly related to ECU communication and diagnostics.

Number of changes per concept per role
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4.6.2 AUTOSAR Requirements Evolution

As already explained, AUTOSAR defines two main types of requirements:

• Design requirements in the AUTOSAR template specifications (TPS require-
ments) that define semantics for the AUTOSAR meta-model elements. They
include both specification items and constraints checked by the modeling tools.

• Functional middleware requirements in the AUTOSAR basic software specifi-
cations (BSW requirements) that define functionality of the AUTOSAR BSW
modules, e.g., Com, Dem and Dcm.

The evolution of the AUTOSAR TPS requirements is tightly related to the
evolution of the AUTOSAR meta-model, as the introduction, modification and
removal of meta-classes also require introduction, modification and removal of the
supporting requirements for their use. This evolution mostly affects the work of
OEMs and Tier1s in the system, ECU and COM design phases of the development.
The evolution of the AUTOSAR BSW requirements indicates the functional
changes in the ECU middleware that is developed by Tier2s in the basic software
development phase and to some extent Tier3s related to the development of drivers
for the chosen hardware. In this subsection, we present the analysis of evolution of
both types of AUTOSAR requirements for different AUTOSAR releases in branch
4.x [MDS16]. We first show in Fig. 4.22 the increase in the number of requirements
in the AUTOSAR templates (left) and BSW specifications (right).

There are two interesting points that can be observed from this figure. First, we
can see a constant increase in the number of both TPS and BSW requirements
in the new AUTOSAR releases. This indicates that the standard is still growing,
i.e., new features are being incorporated into the standard. Second, we can see a
relatively steady increase in the number of BSW requirements without disruptive
changes in their number between consecutive releases. On the other hand, we
can see a big increase (almost three times) in the number of TPS requirements
between AUTOSAR R4.0.2 and R4.0.3 and then again almost a double increase
between R4.0.3 and R4.1.1 that indicates that the evolution of the TPS and
BSW requirements does not follow the same trend. This large increase in the

Fig. 4.22 Number of TPS and BSW requirements
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number of TPS requirements is partially related to the immaturity of the older
AUTOSAR template specifications, where a lot of plain text had to be converted
into specification items and constraints.

We already showed that AUTOSAR continues to grow by standardizing new
features. In order to assess the influence of new features on the evolution of both
template and BSW specifications, we analyzed the number of added, modified and
removed TPS and BSW requirements. Figure 4.23 shows the results for the TPS
requirements for different releases of the AUTOSAR 4.x branch.

We can see that the evolution of the AUTOSAR TPS specifications is mostly
driven by introduction of new requirements (specification items and constraints).
This is especially the case with minor releases of AUTOSAR, but also in R4.0.3.
Removal of TPS requirements is not common, similarly to removal of meta-classes
from the AUTOSAR meta-model, as it may affect backwards compatibility of the
AUTOSOAR models that is kept high within one major release.

Figure 4.24 shows the number of added, modified and removed BSW require-
ments for different releases of the AUTOSAR 4.x branch.

The results confirm that the evolution of the AUTOSAR BSW specifications is
also mostly driven by the introduction of new BSW requirements (i.e., new basic
software features). However, we can see that there are generally more modifications

Fig. 4.23 Number of added, modified and removed requirements (TPS)

Fig. 4.24 Number of added, modified and removed requirements (BSW)
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and removals of BSW requirements than was the case with TPS requirements.
High modification to the BSW requirements could indicate lower stability of the
AUTOSAR basic software. High removals of the BSW requirements could indicate
that certain features become obsolete, probably due to the introduction of newer
features that provide the same or similar functionality. Another reason behind more
removals of BSW requirements in comparison to TPS requirements is related to
the relaxed backwards-compatibility requirements of the AUTOSAR basic software
in comparison to the AUTOSAR models, as AUTOSAR models are exchanged
between several roles in the development process (e.g., OEM and Tier1) while basic
software modules are usually developed by the role of Tier2 only.

4.7 Future of AUTOSAR

The results of the AUTOSAR evolution analysis presented in the previous section
show that it is strongly driven by innovations in the form of new features incor-
porated into the standard. This trend is expected to continue in the future and will
be expanded, considering the plans of AUTOSAR for maintaining two platforms
in parallel—a classic platform that represents the continuation of the work on the
branch 4.x and an adaptive platform that represents a new platform with the goal
to satisfy future needs of the automotive industry. The classic platform aims to
stabilize and improve the existing AUTOSAR features while the adaptive platform
aims to anticipate the future by identifying technological trends and key features for
AUTOSAR.

The subsequent release of the classic platform was R4.3.0, planned for the last
quarter of 2016. Examples of new concepts that will be supported in this release are
presented below:

1. MacroEncapsulationOfLibraryCalls: Simplifies handling of interpolation rou-
tines provided by libraries (automated selection and parametrization).

2. CryptoInterface: Develops the strategy for security SW-/HW-Interface to support
technology trends such as Car-2-X communication and autonomous drive.

3. V2XSupport: Enables implementation of Intelligent Transportation Systems
(ITS) applications [ETS16] as AUTOSAR software components and their inte-
gration into an AUTOSAR ECU (Ethernet-based V2X-stack).

4. ProfilesForDataExchangePoints: Improves the interoperability between
AUTOSAR tools by providing means for describing which data is expected
for a given data exchange point.

5. DecentralizedConfigurationExt01: Extends the concept of “Decentralized Con-
figuration”, which provides a top-down configuration of diagnostics via diagnos-
tic extract, with features such as On-Board Diagnostics (OBD).

6. ExtendedBufferAccess: Extends the existing rapid prototyping functionality
(quick validation of a software algorithm in an ECU context without the need
for a production build) with support for bypassing the RTE.
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7. PolicyManager: Allows specification of security policies in AUTOSAR ARXML
(e.g., insurance company can read data but not modify it).

8. DLTRework: Improves the Development Error Tracer (DLT) module that pro-
vides generic logging and tracing functionality for the software components,
RTE, DEM module, etc.

9. SOMEIPTransportProtocol: Defines a protocol for segmentation of Scalable
Service-Oriented Middleware over IP (SOME/IP) [Völ13] packets that are larger
than 128 kBytes.

Together with these new features, the release will bring improvements to the
existing features by fixing a number of issues in the related specifications.

The first release of the adaptive platform is planned for the first quarter of
2017 and will be following a different naming schema that consist of the release
year and month, e.g., R17-03. Its main goal is to ensure the fulfillment of the
2020 expectations from the automotive industry which state that all major vehicle
innovations will be driven by electrical systems. The list of selected main functional
drivers for the AUTOSAR’s adaptive platform is presented below [AUT16b]:

1. Highly automated driving: Support driving automation levels 3–4 according to
the NHSTA (National Highway Safety Traffic Administration) [AUT13], i.e.,
limited driving automation where the driver is occasionally expected to take the
control and full driving automation where the vehicle is responsible for perform-
ing the entire trip. This includes support for cross-domain computing platforms,
high-performance micro-controllers, distributed and remote diagnostics, etc. The
levels of autonomous functionality are described further in Sect. 9.2.

2. Car-2-X applications: Support interaction of vehicles with other vehicles and
off-board systems. This includes support for designing automotive systems with
non-AUTOSAR ECUs based on Genivi, Android, etc.

3. Vehicle in the cloud: Support vehicle to cloud communication. This includes
the development of secured on-board communication, security architecture and
secure cloud interaction.

4. Increased connectivity: Support increased connectivity of the automotive soft-
ware systems and other non-AUTOSAR and off-board systems. This includes
support for dynamic deployment of software components and common method-
ology of work regardless of whether the system is on-board or off-board.

The idea behind adaptive cars is depicted in Fig. 4.25 [AUT16b]. The figure
shows several classic AUTOSAR ECUs (“C”) that are responsible for common vehi-
cle functionalities, e.g., engine or brake control units. The figure also shows several
non-AUTOSAR ECUs (“N”) that are responsible for infotainment functionalities
or communication with the outside world (e.g., Genivi or Android ECUs). Finally,
the figure shows certain adaptive AUTOSAR ECUs (“A”) that are responsible for
realization of advanced car functionalities that usually require inputs or provide
outputs to both classic and non-AUTOSAR ECUs, such as car-2-X applications.
These ECUs are commonly developed following agile development methodologies
and require more frequent updates and run-time configuration.
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Fig. 4.25 Adaptive AUTOSAR vehicle architecture

Considering the functional drivers for the adaptive platform and the idea behind
the adaptive vehicle architecture explained above, adaptive ECUs are expected
to be designed using the following principles and technologies (the list is not
exhaustive):

• Agile software development methodology based on dynamic software updates.
This enables a continuous functional development mode that starts with a
minimum viable product.

• Fast addition of new features (application software components) deployed in
different packages. This enables fast software innovation cycles.

• Secured service-oriented point-to-point communication. This enables dynamic
updates of application software, where new software components subscribe to
existing services via a service discovery protocol.

• Wireless updates of the application software. This enables “on the road” software
updates without the need for taking the car to a workshop.

• Support for run-time configuration. This enables dynamic adaption of the system
based on available functionality.

• High bandwidth for inter-ECU communication (Ethernet). This enables faster
transmission of large data.

• Switched networks (Ethernet switches). This enables smart data exchange
between different Ethernet buses.

• Micro-processors with external memory instead of micro-controllers. This
enables higher amounts of memory and peripherals that can be extended.

• Multi-core processors, parallel computing and hardware acceleration. This
enables faster execution of vehicle functions.
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• Integration with classic AUTOSAR ECUs or other non-AUTOSAR ECUs (e.g.,
Genivi, Android). This enables unanimous design of heterogeneous automotive
software systems.

• Execution models of access freedom, e.g. full access or sandboxing. This enables
security mechanism for separating running programs from each other, e.g.,
safety- and security-critical programs from the rest.

AUTOSAR plans to achieve this using the adaptive ECU architecture presented
in Fig. 4.26 [AUT16b]:

As was the case with classic AUTOSAR platform, AUTOSAR standardizes
the middleware layer of the adaptive platform that is referred to as the Adaptive
AUTOSAR Services layer. However, this layer is organized in functional clusters
rather than as a detailed description of the modules (internal structure of the
clusters), which enables platform-independent design of the software architectures.
Orange clusters represent parts of the ECU architecture that will be standardized in
the first release of the adaptive platform, while gray clusters represent parts of the
ECU architecture that will be standardized in the later releases.

We can see that, apart from the Operating system that is based on POSIX and
standardized Bootloader for downloading software to the ECU, AUTOSAR plans
to deliver Execution Management, Logging and Tracing, Diagnostics and Com-
munications functional clusters. The Execution Management cluster is responsible
for starting/stopping applications related to different car modes and it is based on
threads rather than runnables. The Logging and Tracing cluster is responsible for
collecting information about different events such as the ones related to safety or

Adaptive AUTOSAR Foundation

(Virtual) Machine / Hardware

Adaptive AUTOSAR Services 

Operating 
system

Bootloader
Hardware 

Acceleration
Platform Health 
Management

Execution 
Management Software 

Configuration 
Management

Security
Management Diagnostics

Communications

Adaptive Application

Logging and 
Tracing

Persistency

API API

API

API API API API

Service Service Service

Fig. 4.26 AUTOSAR adaptive ECU architecture
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security. As in the classic AUTOSAR platform, the Diagnostics cluster is respon-
sible for collection of diagnostic event data which is now possible to exchange
with the diagnostic backend. Finally, the Communications cluster is responsible for
service-oriented communication between ECUs connected via Ethernet (SOME/IP
protocol).

The big improvement in the standardization process of the AUTOSAR adaptive
platform is the validation of new features before their standardization. This means
that AUTOSAR will form a group of engineers that will create prototypes of the new
features based on specifications that are planned to be released and provide feedback
to AUTOSAR about their feasibility. This ensures agility of the development process
within the AUTOSAR consortium as well.

4.8 Further Reading

For those who would like details about AUTOSAR, it is important to understand
that AUTOSAR is a huge standard with over 200 specifications and more than
20,000 requirements, so it is nearly impossible to be an expert in all of its features.
AUTOSAR’s specifications are divided into standard and auxiliary specifications,
where only the standardized ones are required to be followed for achieving full
AUTOSAR compliance. Nevertheless, both standardized and auxiliary specifica-
tions could be of interest to the readers who would like to learn specifics about the
AUTOSAR standard.

We recommend all AUTOSAR beginners to start reading the Layered Software
Architecture document [AUT16g], as it defines high-level features of AUTOSAR
that should be known before diving deeper into other specifications. The
AUTOSAR’s Methodology specification [AUT16h] could be a natural continuation
as it contains descriptions of the most important artifacts that are created by different
roles in the AUTOSAR development process. However, it also contains many details
that may not be understandable at this point, so it should be skimmed through, with
us focusing on the familiar topics.

The rest of the readings are specific to the interest topic of the reader. Readers
interested in the architectural design of automotive software systems should look
into AUTOSAR’s template specifications (TPSs). For example, if they are interested
in the logical system/ECU design, they should take a look at the AUTOSAR
Software Component template [AUT16j] in order to understand how to define
application software components and their data exchange points. Some general
concept used in all templates could be found in the Generic Structure template
[AUT16f], but it is probably best to follow references from the template that is being
read to the concrete section in the Generic Structure templates. This is because
understanding the entire document at once could be challenging. There is no real
need to look at the actual AUTOSAR meta-model specified in UML, as all relevant
information and diagrams are exported to the AUTOSAR template specifications.
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Readers interested in the functionalities of the AUTOSAR basic software should
read the software specifications (SWS) of the relevant basic software modules. For
example, if they are interested in the ECU diagnostic functionality, they should take
a look at the AUTOSAR Diagnostic Event Manager [AUT16d] and Diagnostic
Configuration Manager [AUT16c] specifications. Requirements applicable to all
basic software modules can be found in the General Requirements on Basic Software
Modules specification [AUT16e].

On a higher granularity level, design requirements from the TPS specifications
can be traced to the more formalized requirements from the requirements speci-
fications (RS) documents. Similarly, functional basic software requirements from
the SWS specifications can be traced to the more formalized requirements from
the software requirements specifications (SRS) documents [MDS16]. RS and SRS
requirements can be traced to even higher-level specifications such as the ones
describing general AUTOSAR features and AUTOSAR’s objectives. However, we
advise AUTOSAR beginners to stick to the TPS and SWS specifications, at least at
the beginning, as they are the ones that contain explanations and diagrams needed
for understanding the AUTOSAR features in detail.

There are two additional general recommendations that we could give to readers
who want to learn more about AUTOSAR. First, AUTOSAR specifications are not
meant to be read from the beginning until the end. It is therefore recommended
to switch between different specifications in a search for explanations related to
a particular topic. Second, the readers should always read the latest AUTOSAR
specifications as they contain up-to-date information about the current features of
the AUTOSAR standard.

Apart from the specifications released by AUTOSAR, readers interested in
knowing more about the AUTOSAR standard could find useful information in a few
scientific papers. Related to the AUTOSAR methodology, Briciu et al. [BFH13] and
Sung et al. [SH13] show an example of how AUTOSAR software components shall
be designed according to AUTOSAR and Boss et al. [Bos12] explain in more detail
the exchange of artifacts between different roles in the AUTOSAR development
process, e.g., OEMs and Tier1s.

Related to the AUTOSAR meta-model, Durisic et al. [DSTH16] analyze the
organization of the AUTOSAR meta-model and show possible ways in which it
could be re worked in order to be compliant with the theoretical meta-modeling
concept of strict meta-modeling. Additionally, Pagel et al. [PB06] provide more
details about the generation of the AUTOSAR’s XML schema from the AUTOSAR
meta-model, and Brorkens et al. [BK07] show the benefits of using XML as an
AUTOSAR exchange format.

Related to the configuration of AUTOSAR basic software, Lee et al. [LH09]
explain further the use of the AUTOSAR meta-model for the configuration of
AUTOSAR basic software modules. Finally, Mjeda et al. [MLW07] connect the
phases of automotive architectural design based on AUTOSAR and functional
implementation of the AUTOSAR software component in Simulink.
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4.9 Summary

Since its beginning in 2003, AUTOSAR soon became a world-wide standard in
the development of automotive software architectures, accepted by most major car
manufacturers in the world. In this chapter, we explained the reference layered
system architecture defined by AUTOSAR that is instantiated in dozens of car
ECUs, and how different architectural components are usually developed according
to the AUTOSAR methodology. We showed the role of the AUTOSAR meta-model
in the design of the architectural components and the exchange of architectural
models between different parties in the automotive development process. We also
described major components of the AUTOSAR middleware layer (basic software)
and how they could be configured.

Towards the end of the chapter, we visualized the evolution of the AUTOSAR
standard by analyzing its meta-model and requirements changes between the latest
AUTOSAR releases, and showed that the standard is still growing by standardizing
new features. We also showed how AUTOSAR plans to support future cars func-
tionalities, such as autonomous drive and car-to-car communication, by presenting
ideas behind the AUTOSAR adaptive platform.

In our future work we plan to further analyze the differences between AUTOSAR
classic and adaptive platforms on the meta-model and requirements levels, and the
impact of using both platforms in the design of the automotive software systems.
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Chapter 5
Detailed Design of Automotive Software

Abstract Having discussed architectural styles and one of the major standards
impacting architectural design of automotive software systems, we can now discuss
the next abstraction level—detailed design. In this chapter we continue to dive into
the technical aspects of automotive software architectures and we describe ways
of working when designing software within particular software components. We
present methods for modelling functions using Simulink modelling and we show
how these methods are used in the automotive industry. We dive deeper into the
need for modelling of software systems with Simulink by presenting an example
of the braking algorithm and its implementation in Simulink (the example can be
extended by the Simulink tutorials from Matlab.com). After presenting the most
common design method—Simulink modelling—we discuss the principles of design
of safety-critical systems in C/C++. We also introduce the MISRA standard, which
is a standard for documenting and structuring C/C++ code in safety-critical systems.

5.1 Introduction

Architecting and high-level description of the automotive car software is usually the
domain of OEMs. They decide what they want in their cars and what requirements
they pose on their software system and electrical system. OEMs are responsible for
breaking requirements on the system level to requirements on particular software
components.

However, detailed design of software components and their subsequent imple-
mentation is the domain of suppliers (both Tier-1, Tier-2 and Tier-3) or in-house
software development teams. It is these suppliers and in-house development teams
that understand the requirements of the components, design the architecture of the
components, implement the software, integrate it and then test it before delivering
to the OEMs.

In this chapter we go through the principles of detailed design of automotive
software. We start by describing the method used widely—Simulink modelling—
then move to the principles of programming of safety-critical embedded systems and
finally discuss principles of good programming according to the MISRA standard.
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5.2 Simulink Modelling

The models used in the design of automotive software often reflect the behavior of
the function of a car and therefore, as such, are created in formalisms which reflect
the physical world rather than the software world.

This kind of designing has implications on the design process and the compe-
tence of the designers. The process is shown in Fig. 5.1.

First of all, the process starts by describing the function of a car as a mathematical
function in terms of its input, and outputs, with the focus on data flow. This means
that the designers often operate with mathematical models to describe the function
of a car. For instance, in order to describe the Anti-lock Breaking System (ABS,
a well-known example from Matlab/Simulink), the designers need to describe the
physical processes of wheel slippage, torque and velocity as a function (or functions)
of time. When the mathematical descriptions are ready, each of the equations is
translated to a set of Simulink blocks.

Fig. 5.1 Designing using
Simulink models—a
conceptual overview
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When translating the mathematical equations into Simulink blocks, transitions
and functions, the designers focus on the flow of the data and the feedback loops
present there. For example, in the ABS example the slippage of the wheel depends
on the speed and the speed depends on the slippage. These feedback loops are
present in the model. In more advanced cases, the designers need to write pieces
of code in Matlab to describe some of the functions which are not available in the
standard Simulink libraries.

Once the model is completed and tested, it is used to generate the code in the
target programming language—usually C or C++, depending on the system.

In this section we go into more depth about this process.

5.2.1 Basics of Simulink

Simulink has a rich library of functions and blocks which help the designers to
model their systems. We present the main blocks and describe their usage.

The basic principle of each Simulink model is that it starts with the source and
ends with a sink, which means that there is data flowing through a number of steps
in the process, starting from the source and ending in the sink.

The usual sources of the data are the function blocks or the step blocks. The usual
sinks in the model are either scope blocks (for observing the outcome) or the output
ports of the models.

5.2.1.1 Function and Step Blocks

The model usually “starts” with the step block, which provides the basic input to the
entire model and allows for its simulation. The standard source blocks are shown in
Fig. 5.2. The figure shows only a subset of the most commonly used source blocks
in automotive software design.

The meaning of these blocks is:

• Constant—generates the signal of a constant value.
• Clock—generates the signal which is the current time of the simulation.
• Digital clock—generates the simulation signal at specific periods of time.
• Pulse generator—generates a pulse, where all parameters can be specified.
• Ramp—generates a signal which is constantly increasing or decreasing at a

specified rate.
• Random number—generates a random number for the simulation.
• Signal generator—generates some of the most commonly used signals such as a

Sine wave or a specific function.
• Step—generates a discrete step signal of which the value and frequency can be

specified.
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Fig. 5.2 Simulink basic
blocks—sources of signals in
the Simulink model

• Uniform random number—generates a random number which is evenly dis-
tributed over a specified interval.

• From file—generates a set of signals which are stored in a file (which can be the
result of simulations from other models).

• From workspace—similar to from a file, but with signals that do not store the
time.

The source blocks can provide the input signals in terms of continuous signals
(e.g. a Sine wave), discrete signals (e.g. Step blocks), random signals (e.g. random
number) or a predefined sequence (e.g. from File).

5.2.1.2 Commonly Used Blocks

The blocks which are collected under the category of the most commonly used
blocks are:

• Gain—gives the output as a multiplication of the input (the multiplier is specified
by the designer).

• Product—gives the output as the product of two inputs (e.g. signals).
• Sum—similar to the Product block, but shows the output as the sum of two

signals.
• Saturation—imposes upper and lower limits on the input signal.
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• Subsystem—a block representing a subsystem (e.g. an embedded model). This
type of block is used very often to structure models into hierarchies and to use
one model as part of another one.

• Out1—models a signal that goes outside of the current model (e.g. to another
model).

• In1—the opposite to Out1—used to take the signal from outside of the current
model into the simulation.

• Integrator—where the output is the integral of the input.
• Switch—a block which chooses between the first and the third input based on the

value of the second input.
• Terminator—a block used to capture signals which do not connect to other

blocks.

The graphical symbols for these blocks are shown in Fig. 5.3.

Fig. 5.3 Simulink commonly
used blocks
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5.2.1.3 Sinks

The standard blocks that are used as sinks of the models are:

• Display—the current value of the step of the simulation at specific location of the
simulation.

• Scope—diagram showing the display as a function of time of the simulation.
• Stop—stopping the simulation when the signal is other than zero.
• To file—sending the signal to the specified file.
• To workspace—storing the signal without the time variable.
• XY graph—diagram used to plot two signals against each other (instead of

against time).

The graphical representation of these blocks is presented in Fig. 5.4.
In the design of physical processes it is often the case that we need to describe

a process as a mathematical function. The Matlab environment is well suited for
that purpose and the Simulink environment can take advantage of all built-in and
user-defined functions. The basic block used for that is presented in Fig. 5.5.

Display
Floating
Scope

XY Graph Scope Stop Simulation

To File

untitled.mat sim out

To Workspace

STOP

Fig. 5.4 Simulink model sink blocks

MATLAB: Function

u y
fon

Fig. 5.5 Simulink basic blocks—Matlab function encapsulation in the Simulink model
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5.2.2 Sample Model of Digitalization of a Signal

Let us now focus on designing a simple Simulink model which converts an analog
signal to a digital one. This process can be described in Formula (5.1).

f .x/ D
(
1 if x > 0

0 if x � 0
(5.1)

This equation corresponds to the Simulink model presented in Fig. 5.6.
The equation is specified in the middle block—the “Compare to constant” block

named “Digitalize signal”, as shown in Fig. 5.7.
The main part of the figure is the two options—Operator and Constant. They are

also shown in the icon in Fig. 5.6.
Now that we have the digitalization function, we need to package that into a

block with two ports—input and output. We can also add an example function that
will generate a signal used to test the block—as presented in Fig. 5.8.

Figure 5.8 shows three blocks: The sine wave function (left-hand side) generates
the signal to digitalize; the scope block (right-hand side) is used to visualize the
results of the simulation. The scope block has two inputs—one from the sine

Fig. 5.6 Digitalization of a signal value as designed in Simulink

Fig. 5.7 Specification of the digitalization function in the Digitalize signal block
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Fig. 5.8 Making the digitalization into a Simulink block

Fig. 5.9 The result of the simulation visualized as two parallel diagrams—the digitalized result at
the top and the original input as provided by sine wave source at the bottom

wave function itself and one from the digitalization function. These two inputs are
visualized in two diagrams after the simulation, as shown in Fig. 5.9.

The newly designed block contains the diagram presented in Fig. 5.6 and is
named “Digitalization of a sin wave function”.

The model presented in this example is naturally very simple and illustrates the
simplicity of using Simulink to model a mathematical equation. Now, this particular
equation is about the process of digitalization of a signal, which is not based on
physical processes in real life. The model also does not contain such elements as
the feedback loop important in designing of control systems (which we expand on
in the upcoming sections).
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Fig. 5.10 Code report for the digitalization function

The next step in the design of a system based on the digitalization block is to
generate the C/C++ code from the model. The code generated from this Simulink
model has the property that it is hard to read for a human being and therefore the
Simulink environment provides a report about what has been generated. The report
for this model is presented in Fig. 5.10.

The report guides us to all the files that were generated (“Model files” in the
left-hand side of the figure) and provides the summary in the main window.

The actual piece of code can look like the code presented in Fig. 5.11. The code
in the figure presents a C structure with the initialization of the blocks (e.g. the sine
wave parameters and the digitalization threshold “0”).

5.2.2.1 Comments on the Sample Model

In this simplistic example we managed to see the power of Simulink and at the same
time we managed to follow the process of designing automotive software as shown
in Fig. 5.1. In the design of the automotive software we have libraries which take
care of this kind of process. These libraries, however, are part of the lowest layers of
automotive software and can be seen in the architecture diagram of a communication
layer in the CAN bus communication.
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Fig. 5.11 Generated source code for the initialization of the block

Fig. 5.12 Relation between linear and wheel velocity

5.2.3 Translating Physical Processes to Simulink

The example with the digitalization of the signal is rather trivial and has no
physical process that is modelled. However, in most cases of Simulink modelling
in automotive software, we have such models.

To illustrate that such processes are modelled both as mathematical equations
and as Simulink blocks, let us consider an example of calculating the linear velocity
of a wheel based on its wheel velocity and vice versa. Figure 5.12 shows the relation
between these two kinds of velocity for a wheel of radius “radius”.
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Fig. 5.13 Simulink model calculating the linear velocity
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Fig. 5.14 Simulink model calculating the wheel velocity

The equations describing the relation between the two velocities are:

v D ! � radius (5.2)

and

! D v

radius
(5.3)

Both of the equations are rather simple and let us now build the model which will
take two scalar values and calculate the linear velocity. The model is presented in
Fig. 5.13.

The model consists of two scalar values (wheel speed and radius), their product
and the display sink. Executing the model displays the result in the display sink.

The model which calculates wheel velocity based on linear velocity requires
changing the product to be a fraction instead. The resulting model is presented in
Fig. 5.14.

The properties of the product block are changed as presented in Fig. 5.15.
In the “Number of inputs” field we make a change, which denotes division

instead of multiplication.
Before we move to another example, let us illustrate another important concept

in the design of control systems using Simulink—feedback loops. The concept of a
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Fig. 5.15 Properties of the product block

1

start_value

Delay

++

Z–1

Scope

Fig. 5.16 Example of a simple feedback loop

feedback loop is often used in control systems to design self-regulating systems. In
Fig. 5.16 we can see an example of a simple feedback loop.

In the figure we can see that the loop takes a signal directly from the output of
the summation and puts it back with a delay. The delay is needed in order to make
sure that the first iteration of the simulation has the initial value in the summation.
The properties of the delay block are shown in Fig. 5.17.



5.2 Simulink Modelling 129

Fig. 5.17 Properties of the delay block

The important part is the “Delay length” property, which denotes how many
simulation cycles the input signal is postponed. Once we execute the simulation,
we can see that the summation results in the gradual increase of the signal as shown
in Fig. 5.18.

5.2.4 Sample Model of Car’s Interior Heater

Now let us look into a bit more complex model—the heater of a car. The model
introduces the feedback loop and has been inspired by the house heating model from
the Matlab Simulink standard model library, but has been simplified to illustrate only
the most important aspects of modelling systems with the control loop.

In general the model of a heater contains three components, which we will turn
into blocks:

• Car interior—describing the temperature of the car’s interior, including heat loss
• Heater—describing the heater, its on/off status and the heating temperature
• Thermostat—describing the switch for the heater
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Fig. 5.18 Results of the simulated feedback result

Fig. 5.19 Heater model

There are two inputs to this simulation model—the outdoor temperature and the
desired temperature of the interior.

Let us start with modelling the heater itself. The heater has an on/off switch
for the flow of the air as well as the heater element. This means that when it is
switched on, it blows hot air at a given temperature into the interior compartment of
the modelled car. A simple model can look as in Fig. 5.19.

In this model the heater blows hot air of temperature 30 ıC at a given rate
(modelled as Gain K). The gain block is configured as shown in Fig. 5.20.
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Fig. 5.20 Heater model—gain block properties

In1
Relay

Out1

11

Fig. 5.21 Switcher model

The two constants that are multiplied by each other are (1) the air flow per hour,
which we assume is a constant rate of 1 kg/s, which gives 3600 ks/h, and (2) the heat
capacity of the air, which is 1005.4 J/kg-K at the room temperature (in our model).

We need to make a small observation here—the values which we use in the model
are mostly constant, as we want to illustrate how to design an algorithm in Simulink.
However, in real life the challenge is to model these constants as functions. For
example, we assume the heat capacity of air to be constant, which is not accurate
as it changes with the temperature of the air. The flow rate of the heater is also not
constant as when the heater starts the fan needs some time to start spinning and
therefore the flow rate changes. In reality we could have two equations modelling
these two processes and use them as input instead of providing constants.

Now, let us move over to the model of the switch of the heater, which needs to
switch on and off the heater based on the difference in the temperature outside of
the car. Let us configure the on/off deviation to be 3 ıC compared to the desired
temperature. We can use the relay block to model that, as shown in Fig. 5.21.

The properties of the relay are the on/off criteria (C=�3ı) and the output signal
for on (1) and off (0), as shown in Fig. 5.22.

The next step is to link both blocks together as shown in Fig. 5.23. The link has to
connect the input on/off port of the heater to the output on/off port of the switcher.
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Fig. 5.22 Switcher model—relay properties

temperature difference on/off
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target temperature

airflow

Heater subsystem

on/off command

Fig. 5.23 Linking the heater to the switcher

Now, we need to model the environment and the feedback loops before we go
into modelling the car’s interior. In particular we need to model the calculation of
the temperature difference between the interior and the desired temperature. We do
it by adding a proxy for the car (an empty subsystem), which we will design in the
next steps by adding the summation component to calculate the difference between
the desired and the current temperature. We also need to add a constant which
configures the model with the desired temperature. We do it by adding a constant
block and setting the temperature to 21 ıC. The resulting model is presented in
Fig. 5.24.

The model has one port which is not connected—it is the current temperature
port of the heater; we need to connect this to a signal from the interior of the car.
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Fig. 5.24 First version of the air heater model with the feedback loop
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Fig. 5.25 Model of the interior of the car

Now, we need to model the actual temperature of the car’s interior. The
temperature of the car’s interior is the same as the temperature outside (which
we need to add to our model) and increases as the heater blows in the hot air.
The increase of the temperature of the interior can be described by the following
equation:

dTempcar

dt
D 1

Mair � 1005:4J=kg � K
�

�
dQheater

dt

�
(5.4)

Now, for a normal car, the mass of the air (Mair) is a product of the volume of
the car’s interior and the density of the air (a constant of 1.2250 kg/m3). In order
to simplify things, let’s say that the volume of a personal vehicle’s interior is 3 m3,
which, multiplied by the density of the air gives 3.675 kg as the mass of the air. Now
we have a model which looks like the one in Fig. 5.25.

In the model we use the gain block to increase the temperature and the integrator
to set the initial temperature. We also add the feedback loop to make the increase in
the temperature similar to a loop in a programming language. Inside the gain block
we put the calculated increase in temperature as shown in Eq. (5.4), resulting in the
configuration shown in Fig. 5.26.

When we connect all the elements, we get the following model—Fig. 5.27.
When we look at the plot of the temperature over time we can see the result as

shown in Fig. 5.28.
Now we can see that the model is too simplistic. The temperature of the car’s

interior goes up from the initial value of 1 and then stays at the constant level. It
is because our model of the car’s interior takes into consideration only the heating
process of the interior, at the same time ignoring the process of chilling the interior
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Fig. 5.26 Properties of the gain block in the interior
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Fig. 5.27 Heating-only model of the car’s heater

when the heater is not working. In order to fix that without complicating the model
too much, let us add a feedback loop after the gain block, in the way shown in
Fig. 5.29.

Once we make this addition, we can see that the temperature of the car’s interior
drops when the heater is not powered on, as shown in Fig. 5.30.

5.2.4.1 Summary of the Heater Model

The heater model presented in this section is a simplistic model with a feedback
loop and illustrates a few important principles which make Simulink modelling so
popular in software development.

Once the model is somewhat complete, the designers can execute the model and
observe the results. As the “Scope” sink can be placed virtually at any signal, it is
easy to debug the models and to understand where it does not work (if needed).
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Fig. 5.28 Result of a simulation of the heater model
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Fig. 5.29 Model of the interior with cooling effect

Fig. 5.30 Result of the simulation with the cooling effect
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Another principle is the ability to make the model modular. The designers can
use constants and assumptions during early prototyping phases of their software
development. As the development progresses and the designers know more about
the physical processes, they can replace constants with calculations of values using
blocks and Matlab functions. These functions can be developed either analytically
based on the designer’s knowledge of the physical processes or they can be done
using mathematical regression and statistical modelling techniques.

And finally the ability to generate source code which can be executed on target
platforms. If a model can be executed, then the code for it can be generated, which
is a very big help for automotive software engineers.

5.3 Simulink Compared to SySML/UML

SySML is a notation based on the Unified Modelling Language (UML). Compared
to the Simulink notation, it is different and neither of them has a specific software
development process which the notation supports. However, in practice these two
notations support different development processes. In Fig. 5.31 we outline these
differences per phase of software development.

In the analysis phase these two notations support different types of analysis
and modelling. Simulink is based on describing the system using mathematical
equations (as we saw in the examples in this chapter) whereas SySML/UML use
conceptual models and class diagrams (with low level of detail). The models created
in SySML/UML are intended to be high level and non-executable whereas the
mathematical models need to be rather complete as they will be used in modelling
in the design phase.

In the design phase the main goal is to develop a detailed model of the software
and there these two notations differ significantly. In SySML/UML the main entities

Fig. 5.31 Result of the simulation with the cooling effect
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are classes (corresponding to programming language classes/modules), statecharts
and sequence diagrams. Although the SySML/UML notations provide more types of
diagrams than these three, these three are by far the most popular ones. In Simulink
the primary entities are blocks and signals, as we saw in the examples in this chapter.

The implementations of the two designs differ significantly—Simulink usually
results in 100% code generation. The generated code can be compiled and executed.
The SySML/UML notations usually do not result in full code generation, but in so-
called skeleton code. The skeleton code needs to be complemented by the designers
with manually written code in the target programming language.

Once the designs are implemented, they are tested, which in Simulink happens
through simulations (sometimes using test environments to execute the simulations),
whereas for the SySML/UML generated code, the code is tested in a traditional
manner, e.g. using unit tests.

The SySML/UML languages are often called architectural languages because
they come from the field of object-oriented analysis and design and focus on the
conceptual modelling of objects in the real world. This means that the main part
of the effort is on the development of the design models, because all details of the
target programming language have to be taken into consideration—otherwise we
cannot generate the code. Therefore we can see that in the automotive domain these
languages are often used to specify logical component architectures, whereas the
detailed design of automotive systems is done using Simulink.

5.4 Principles of Programming of Embedded Safety-Critical
Systems

Safety-critical systems have entered the automotive industry quite recently com-
pared to the aviation and space industry [Sto96, Kni02]. Historically, the aviation
industry and the space industry relied on the Ada programming language due to its
well-defined semantics and mechanisms for parallel programming.

In the telecommunication industry engineers use functional programming lan-
guages such as Haskell or Erlang, even if the safety criticality is not that crucial
there.

In the automotive industry, however, it is the generated C/C++ code which is
the most common. C/C++ have the advantage of being relatively well known by
the software engineering community, relatively simple if needed and with good
compiler support. In practice this means that the code can be ported easily between
different operating systems, as the majority of the safety critical OSs have the Unix
kernel at their core.

The operating systems often used in automotive software are VxWorks and
QNX, which are relatively simple, with great schedulers and task handlers. It
is their simplicity that allows the designers to retain a large degree of control
over the programs and therefore makes them so popular. The AUTOSAR standard
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standardizes a number of elements of the underlying operating systems, as discussed
in Chap. 4.

As the software system of the car is distributed over multiple ECUs, it is
the communication between the ECUs which is important. From the designer’s
perspective this communication means that there are signals exchanged between
different software components and state machines need to be synchronized. Often,
in the programming language this means that the messages are packaged as
packages or sent using sockets.

From the physical perspective the designers have a number of different commu-
nication protocols available, such as:

• CAN bus—Specified in the ISO standard [Sta93], it is currently the most
frequently used bus in the automotive industry. It allows us to send messages
with a speed of up to 1 MBps, which allows to send even video streams in the
car’s bus (e.g. from the parking camera). The standard is popular because of its
relatively simple architecture and specifications of the MAU (Medium Access
Unit) and the DLL (Data Link Layer) parts.

• Flexray bus—Specified in the ISO 17458 standard, is one of the possible future
directions of development in the automotive industry. It allows communications
with a speed of up to 10 Mbps over a similar type of wiring and has two
independent data channels (one for fault tolerance).

• Ethernet bus—Used throughout the internet for communications, it is now being
considered for speeds of up to 1 Gbps. At the time of writing of this book
the protocol is used for downloading new software to ECUs for many car
manufacturers and for communications during driving some cars. As the protocol
is prone to electrostatic distortions, the majority of the manufacturers are waiting
for more mature specifications before they start using this protocol more widely
in their electrical systems.

• MOST bus—Used in the automotive industry for sending/receiving multimedia-
related content (e.g. video and audio signals). The communication speeds are up
to 25–150 Mbps depending on the version of the standard.

• LIN bus—used for low cost communications with speeds of up to 20 Kbps
between mechatronic nodes in the car.

In the design of the automotive systems, the architects usually decide upon the
topology of the network and its communication buses rather early. As we can see
from the description of each of these protocols, they are aimed at different purposes
and therefore their choice is rather straightforward.

5.5 MISRA

When designing the software for automotive applications, we need to follow certain
design guidelines. The automotive industry has adopted the MISRA-C standard
where the details of the design of computer programs are in the C programming
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language [AC08]. The standard contains the principle of how to document embed-
ded C code—in terms of naming conventions, documentation and the use of certain
programming constructs. The rules are grouped into such categories as:

1. Environment—rules related to the programming environment used in the
development (e.g. mixing of different compilers).

2. Language extension—rules specifying which types of comments are to be used,
enclosing assembly code or removing commented code.

3. Documentation—rules defining which code constructs should be documented
and how.

4. Character sets—usage of ISO C character sets and trigraphs.
5. Identifiers—defining the length and naming convention of identifiers as well as

the usage of typedef.
6. Types—the usage of the “char” type, the naming convention of new types and

the usage of bit fields.
7. Constants—preventing the usage of octal constants.
8. Declarations and definitions—rules about the explicit visibility of types of

functions and their declarations.
9. Initialisation—rules about default values of variables at their declaration.

10. Arithmetic type conversions—describing implicit and explicit rules for type
conversions as well as the dangerous conversions.

11. Pointer type conversions—rules regarding the interchangeability of different
types of pointers.

12. Expressions—rules about the evaluation of arithmetical expressions in
programs.

13. Control statement expressions—rules about the expressions used in for loops,
explicit evaluations of values to Boolean (instead of 0).

14. Control flow—rules about the dead code, null statements and their location and
prohibited goto statements.

15. Switch statements—rules about the structure of the switch statements (a subset
of possible structures from the C language).

16. Functions—rules prohibiting such unsafe constructs as variable argument lists
or recursion.

17. Pointers and arrays—rules about the usage of pointers and arrays.
18. Structures and unions—rules about the completeness of union declarations and

their location in memory; prohibiting the usage of unions.
19. Preprocessing directives—rules about the usage of #include directives and C

macros.
20. Standard libraries—rules about the allocation of heap variables, checking

the parameters of library functions and prohibiting certain standard library
functions/variables (e.g. errno).

21. Run-time failures—rules prescribing of usage of static analysis, dynamic
analysis and explicit coding for avoiding runtime failures.
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The MISRA rules are often encoded in the C/C++ compilers used in safety-
critical systems. This inclusion in compilers makes it rather simple and straightfor-
ward and therefore widely used.

The MISRA standard was revised in 2008 and later in 2012, leading to the
addition of more rules. Today, we have over 200 rules, with the majority of them
classified as “required”.

Let us now analyze one of the rules and its implications—we take rule #20.4:
“Dynamic heap memory allocation shall not be used.” This rule in practice prohibits
dynamic memory allocations for the variables. The rationale behind this rule is the
fact that dynamic memory allocations can lead to memory leaks, overflow errors and
failures which occur randomly. Taking just the defects related to the memory leaks
can be very difficult to trace and thus very costly. If left in the code, the memory
leaks can cause undeterministic behavior and crashes of the software. These crashes
might require restart of the node, which is impossible during the runtime of a safety-
critical system. Following this rule, however, also means that there is a limit on the
size of the data structures that can be used, and that the need for memory of the
system is predetermined at design time, thus making the use of this software “safer”.

5.6 NASA’s Ten Principles of Safety-Critical Code

The United States-based NASA has a long tradition of developing and using safety-
critical software. In fact, much of the initial reliability research has been done in the
vicinity of NASA’s Jet Propulsion Laboratory. The reason for that is that NASA’s
missions often require safety-critical software to steer their devices such as space
shuttles or satellites.

In 2006 Holtzman presented ten rules of safety-critical programming, which
come from NASA, but apply to all safety-critical software [Hol06]. These rules
are (the original wording of the rules is kept):

1. Restrict all code to very simple control flow constructs, do not use goto
statements, setjmp or longjmp constructs, direct or indirect recursion.

2. Give all loops a fixed upper bound. It must be trivially possible for a checking
tool to prove statically that the loop cannot exceed a preset upper bound on the
number of iterations. If a tool cannot prove the loop bound statically, the rule is
considered violated.

3. Do not use dynamic memory allocation after initialization.
4. No function should be longer than what can be printed on a single sheet of paper

in a standard format with one line per statement and one line per declaration.
Typically, this means no more than about 60 lines of code per function.

5. The code’s assertion density should average to minimally two assertions per
function. Assertions must be used to check for anomalous conditions that
should never happen in real-life executions. Assertions must be side effect-free
and should be defined as Boolean tests. When an assertion fails, an explicit
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recovery action must be taken, such as returning an error condition to the caller
of the function that executes the failing assertion. Any assertion for which a
static checking tool can prove that it can never fail or never hold violates this
rule.

6. Declare all data objects at the smallest possible level of scope.
7. Each calling function must check the return value of non-void functions, and

each called function must check the validity of all parameters provided by the
caller.

8. The use of the preprocessor must be limited to the inclusion of header files and
simple macro definitions. Token pasting, variable argument lists (ellipses), and
recursive macro calls are not allowed. All macros must expand into complete
syntactic units. The use of conditional compilation directives must be kept to a
minimum.

9. The use of pointers must be restricted. Specifically, no more than one level
of dereferencing should be used. Pointer dereference operations may not be
hidden in macro definitions or inside typedef declarations. Function pointers
are not permitted.

10. All code must be compiled, from the first day of development, with all compiler
warnings enabled at the most pedantic setting available. All code must compile
without warnings. All code must also be checked daily with at least one, but
preferably more than one, strong static source code analyzer and should pass
all analyses with zero warnings.

These rules are naturally captured by the MISRA rules and show the similarity
of safety-critical systems regardless of the application domain. The “heart” of these
rules is that the safety-critical should be simple and modularized. For example, the
length of a typical function should be less than 60 lines of code (principle #4), which
is supported by the limits of the maintainability of large and complex code.

What these principles also show is the difficulty of automatically checking for
their violation. For example, the principles #6 (“Declare all data objects at the
smallest possible level of scope”) requires parsing of the code in order to establish
the boundary of the “smallest possible level of scope”).

5.7 Detailed Design of Non-safety-Critical Functionality

In the previous sections we focused on designing software which is often considered
safety-critical to various extents. However, there is a significant amount of software
in modern cars which is not safety-critical. One of such non-safety-critical domains
is the infotainment domain, where the main focus is on connectivity and user
experience of the interface. Let us look into one of the standards in this domain—
GENIVI [All09, All14].
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Fig. 5.32 GENIVI layered architecture overview

5.7.1 Infotainment Applications

The GENIVI standard is built upon a layered architecture with five basic layers, as
shown in Fig. 5.32.

In the GENIVI architecture the top layers are designated to the user applications,
which in turn can expose their services to one another. The standard itself, however,
focuses on the basic and high-level functions [All15]. The following areas are
included in the reference architecture:

• Persistence—providing persistent data storage
• Software management—supporting such functionality as SOTA (Software-Over-

The-Air) updates
• Lifecycle—supporting the start-up and shutdown of the system
• User management—supporting multiple users and their profiles
• Housekeeping—supporting error management
• Security infrastructure—supporting cryptography and interactions with hardware

security modules
• Diagnostics—supporting the diagnostics as specified in ISO 14229-1:2013
• Inter-Process Communications (IPC)—supporting communication between pro-

cesses (e.g. message brokers)
• Networks—supports the implementation of different vehicle network technolo-

gies (e.g. CAN)
• Network management—supports the management of network connections
• Graphics support—providing graphics libraries
• Audio/Video processing—providing codecs for audio and video playback
• Audio management—supporting the streaming and prioritizing streams of audio
• Device management—providing support for devices via (for example) USB
• Bluetooth—providing the bluetooth communication stack
• Camera—providing the functionalities needed for vehicle cameras (e.g. rear-

view camera)
• Speech—supporting voice commands
• HMI support—provides the functionality to handle user interactions
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• CE Device integration—supports such protocols as CarPlay
• Personal Information management—supporting the basic functionality of

address book and passwords
• Vehicle interface—provides the possibility to communicate with other vehicle

systems
• Internet functions—provides the support for internet, e.g. web browsing
• Media sources—provides support for media sharing such as DLNA
• Media framework—provides the generic logic of media players
• Navigation and Location Based Services—supporting the navigation systems
• Telephony—provides the support for telephony stack
• Radio and tuners—provides the support for radio

The above list shows that the GENIVI reference architecture is a large step
towards standardization of the internals of infotainment systems, which will allow
users to use common software ecosystems rather than OEM-specific solutions.

Today we can see the GENIVI implementation in many car platforms, such as
BMW with the system from Magneti Marelli (according to the GENIVI website).
The standard ADL for the GENIVI applications is the Franca IDL which is used for
defining interfaces in GENIVI software components.

5.8 Quality Assurance of Safety-Critical Software

Quality assurance of automotive software follows a number of standards, one of
them being the ISO/IEC 25000 series of standards [ISO16]. The usual way that
the standards describe the quality is that they divide the quality into a set of
characteristics and a set of perspectives. The three perspectives on software quality
are:

1. External software quality—describing the quality of the software product in
relation to its requirements (hence the classification as “external”).

2. Internal software quality—describing the quality of the software in relation to
the construction of the software (hence the classification as “internal”).

3. Quality in use—describing the quality of the software from the perspective of its
users (hence the classification as “in use”).

In this chapter we focus on the internal quality of the software and the methods
to monitor and control the internal quality—formal methods for verifying the
correctness of the software and static analysis for verifying properties of software
such as complexity. Testing as a technique for finding defects has been discussed in
Chap. 3.
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5.8.1 Formal Methods

Formal methods is a term used to collectively denote a set of techniques for
specification, development and verification of software using formalisms related to
mathematical logic, type theories, and symbolic type executions.

In the automotive domain formal methods are required during the verification
of ASIL D components (classified according to the ISO/IEC 26262 standard; see
Chap. 8).

The verification in the formal way often follows a strict process where the
software is specified using a formal notation (e.g. a VDM) and then gradually refined
into source code of the program. Each step is shown to be correct and therefore the
software is formally proven to be correct.

5.8.2 Static Analysis

Another method for assuring the internal quality of automotive software is the static
analysis [BV01, EM04]. Static analysis refers collectively to a set of techniques
for analyzing the source code (or the model code) of a software system. The
analysis aims at discovering vulnerabilities in the software code and violations
of programming good practices. Static analysis in the automotive systems usually
looks for violations of MISRA rules and good coding rules.

In addition to the MISRA rules, the static analysis often checks for the following
(examples):

• API usage errors, for example, using of private APIs
• Integer handling issues, for example, potentially dangerous type casts
• Integer overflows during calculations
• Illegal memory accesses, for example, using of pointer operations
• Null pointer dereferences
• Concurrent data access violations
• Race conditions
• Security best practices violations
• Uninitialized members

In order to analyze a program statically no execution is needed and therefore this
technique is very popular. The majority of static analysis tools do not need the code
to actually execute and therefore there is no requirement for the code to be complete
and runnable, which is the case for formal analysis (e.g. symbolic execution) or
dynamic analysis.

An example screenshot from one of the tools for static analysis (SonarQube) is
presented in Fig. 5.33.
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Fig. 5.33 Screenshot from SonarQube static analysis software

Fig. 5.34 Screenshot from SonarQube static analysis software, customized dashboard

In the figure we can see the development of complexity per module. The
complexity has direct impact on testability (higher complexity, lower testability),
and therefore it is an important parameter of the internal quality of the software.

Another view is presented in Fig. 5.34. The figure presents a custom view on the
quality—complexity per class and percentage of duplicated (cloned) code.

SonarQube can be expanded with the help of plug-ins to include multiple
programming languages and analyses; it can also be extended by custom plug-ins.
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Fig. 5.35 Screenshot from XRadar static analysis software

However, this lack of execution of software during analysis has its limitations. It
cannot check for such problems as deadlocks, data race conditions and memory
leaks.

Another example of a tool used for static analysis from the open source domain
is the XRadar tool, which includes both the static and dynamic execution analysis.
An example screenshot is presented in Fig. 5.35.

If the software development is done in the Eclipse environment (www.eclipse.
org) then there are over 1000 plug-ins which provide the ability to statically analyze
the software code. Many of these plug-ins implement the MISRA standard checks.

5.8.3 Testing

Testing is also a very well-known technique which should be mentioned here.
However, we’ve already discussed it in Chap. 3.

5.9 Further Reading

Readers who are interested in more hardware-software integration and programming
for automotive systems can study the book by Schauffele and Zurawka [SZ05].
They describe in more detail the concepts used in the detailed design of automotive
software, such as timing analysis and hardware-oriented programming.

www.eclipse.org
www.eclipse.org
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A good read for software engineers who move into the field of automotive
software design is the book chapter by Saltzmann and Stauner [SS04], who describe
the specifics of automotive software development compared to non-automotive
development.

For modelling in Simulink the best resource is the website of Matlab with its
numerous tutorials—www.matlab.com. In order to strengthen one’s understanding
of the process of translating the physical world to the Simulink models, we
recommend the tutorial from https://classes.soe.ucsc.edu/cmpe242/Fall10/simulink.
pdf.

More advanced readers who are seeking methods for optimizing Simulink
models should look at the article by Han et al. [HNZC13], who focus on that topic
discussing areas such as, for example, hydraulic servo mechanism. Another good
read in this direction, about detection of model smells, is the paper by Gerlitz et al.
[GTD15].

The MISRA standard is a well-known one, but it has been developed taking
into consideration NASA’s 10 rules of safety-critical programming [Hol06]. The
rationale and empirical evidence of using smaller sets of language constructs in
safety-critical systems can be found in the article by Hatton [Hat04].

Readers who are interested in a more detailed description of programming
languages and principles used in safety-critical programming can refer to Fowler’s
compendium [Fow09] or to the classical position by Storey [Sto96]. We also
recommend our previous work on the evolution of complexity of automotive
software [ASMC14] and its impact on reliability [RSMC13].

Using formal methods in the design of automotive software has been shown to be
efficient to validate product configurations as the number of all potential variants is
large, while the number of allowed variants is much smaller. Sinz et al. have shown
one such application [SKK03]. Another area is the integration of software as shown
by Jersak et al. [JREC03].

As using formal methods in general is rather costly, researchers constantly seek
new ways of decreasing cost, for example, by searching for lightweight methods,
such as the one advocated by Jackson [Jac01].

For readers interested in using and customizing UML for the purpose of detailed
design of automotive software I recommend taking a look at our previous work on
the impact of different customization mechanisms on the quality of models [SW06]
and the process of realizing MDA in industry [SKW04, KS02] and the problems of
inconsistent designs [KS03].

Finally, readers interested in the quality of automotive software may find it
interesting to study defect classification schemes, where the attributes of faults
encountered in automotive software are described in more detail [MST12].

www.matlab.com
https://classes.soe.ucsc.edu/cmpe242/Fall10/simulink.pdf
https://classes.soe.ucsc.edu/cmpe242/Fall10/simulink.pdf
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5.10 Summary

Since automotive software consists of multiple domains and multiple types of
computers, detailed design of it is based on many different paradigms, which we
briefly introduced in this chapter.

In this chapter we have explored ways in which software designers work
with detailed design of automotive software. We have focused on model-based
development using Simulink, which is the most common design tool and method
for the automotive software.

We have also introduced the principles of programming of safety-critical sys-
tems, which are based on NASA’s principles and the MISRA standard. In short,
these principles postulate the need to use simple programming constructs which
allow us to verify the validity of the program before its execution and minimize the
risk of unexpected behaviour of the software.

In this chapter we have also looked at the GENIVI architecture of infotainment
systems, which is one of the interesting areas in automotive software. Finally,
towards the end of the chapter we looked at a number of different techniques for
verifying automotive software, such as static analysis and formal verification.
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Chapter 6
Evaluation of Automotive Software
Architectures

Abstract In this chapter we introduce methods for assessing the quality of software
architectures and we discuss one of the techniques—ATAM. We discuss the non-
functional properties of automotive software and we review the methods used to
assess such properties as dependability, robustness and reliability. We follow the
ISO/IEC 25000 series of standards when discussing these properties. In this chapter
we also address the challenges related to the integration of hardware and software
and the impact of this integration. We review differences with stand-alone desktop
applications and discuss examples of these differences. Towards the end of the
chapter we discuss the need to measure these properties and introduce the need
for software measurement.

6.1 Introduction

Having the architecture in place, as we discussed in Chap. 2, is a process which
requires a number of steps and revisions of the architecture. As the evolution of the
architecture is a natural step, it is often guided by some principles. In this chapter
we look into aspects which drive the evolution of the architectures—non-functional
requirements and architecture evaluation methods.

During this process the architects take a number of decisions about their
architecture—starting from the basic one on what style should be used in which
part of the architecture and ending in the one on the distribution of signals over
the car’s communication buses. All of these evaluations lead to a better or worse
architecture and in this chapter we focus on the question that each software architect
confronts—How good is my architecture?

Although the question is rather straightforward, the answer to it is rather
complicated, because the answer to it depends on a number of factors. The major
complication is related to the need to balance all of these factors. For example, the
performance of the software needs to be balanced with the cost of the system, the
extensibility needs to be balanced with the reliability and performance, etc. Since
the size of the software system is often large the question whether the architecture
is optimal, or even good enough, requires an organized way of evaluating the
architecture.

In Chap. 3 we discussed the notion of a requirement as a customer demand on
the functionality of the software and the need for the fulfillment of certain quality
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attributes. In this chapter we dive deeper into the question—What quality attributes
are important for the automotive software architectures? and How do we evaluate
that an architecture fulfills these requirements?

To answer the first question we review the newest software engineering standard
in the area of product quality—ISO/IEC 25023 (Software Quality Requirements
and Evaluation—Product Quality, [ISO16b]). We look into the construction of the
standard and focus on how software quality is described in this standard, with the
particular focus on product quality.

To answer the second question about the evaluation of architectures, we look into
one of the techniques for evaluating quality of software architectures—Architecture
Trade-off Analysis Method (ATAM), which is one of the many techniques for
assessing quality of software architectures.

So, let us dive deeper into the question of what software quality is and how it is
defined in modern software engineering standards.

6.2 ISO/IEC 25000 Quality Properties

One of the main standards in the area of software quality is the ISO/IEC 25000 series
of standards—Software Quality Requirements and Evaluation (SQuaRE) [ISO16a].
The standard is an extension of the old standard in the same area—ISO/IEC 9126
[OC01]. Historically, the view of the software quality concept in ISO/IEC 9126
was divided into a number of sub-areas such as reliability or correctness. This view
was found to be too restrictive as the quality needs to be related to the context of
the product—its requirements, operating environment and measurement. Therefore,
the new ISO/IEC 25000 series of standards is more extensive and has a modular
architecture with a clear relation to other standards. An overview of the main quality
attributes, grouped into quality characteristics, is presented in Fig. 6.1. The dotted
line shows a characteristic which is not part of the ISO/IEC 25000 series, but another
standard—ISO/IEC 26262 (Road Vehicles–Functional Safety).

These quality characteristics describe various aspects of software quality, such as
whether it fulfills the functions described by the requirements correctly (functional-
ity) and whether it is easy to maintain (maintainability). However, for safety-critical
systems like the software system of a car, the most important part of the quality
model is actually the reliability part, which defines the reliability of a software
system, such as Degree to which a system, product or component performs specified
functions under specified conditions for a specified period of time, [ISO16b].

6.2.1 Reliability

Reliability of a software system in common understanding is the ability of the
system to work according to the specification during a period of time [RSBC13].
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Fig. 6.1 ISO/IEC 25000 quality attributes

This characteristic is important as car’s computer system, including software, has
to be in operation for years after its manufacturing. The ability to “reset” the car’s
computer system is very limited as it needs to operate constantly, controlling the
powertrain, brakes, and safety mechanisms.

Reliability is a generic quality characteristics and contains four sub-
characteristics as shown in Fig. 6.2—maturity, availability, recoverability and fault
tolerance.

Maturity is defined as degree to which a system, product or component meets
needs for reliability under normal operation. The concept defines how the software
operates over time, i.e. how many failures the software has over time, which is often
shown as a curve of the number of defects over time; see Fig. 6.2 from [RSMC13]
and [RSBC16].

The figure shows that the number of faults discovered during the design and
operation of the software system can have different shapes depending on the type of
development, type of the functionality being developed and the time of the lifecycle
of the software. The type of development (discussed in Chap. 3) determines how
and when the software is tested and the testing determines the type of faults that are
discovered—e.g. the late testing phases often uncovers more severe defects, while
the early testing phases can isolate simpler defects that can be fixed easily. Flattening
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Fig. 6.2 Reliability growth
of three different software
systems in the automotive
domain

of the curve towards the end of the development shows that the maturity of the
system is higher as the number of defects found gets lower—the software is ready
for its release and deployment.

Another sub-characteristic of reliability is the availability of the system, which
is defined as degree to which a system, product or component is operational and
accessible when required for use. The common sense of this definition is the ability
of the system to be used when needed, which can be seen as a momentary property.
High availability systems do not need to be available over time, all the time, but
they need to be available when needed. This means that these systems can be
restarted often and the property of “downtime” is not as important as for fault-
tolerant systems which should be available all the time (e.g. 99.999% of the time,
which is ca. 4 min of downtime per year).

Recoverability is defined as Degree to which, in the event of an interruption
or a failure, a product or system can recover the data directly affected and re-
establish the desired state of the system. This quality property is often quoted in the
research on self-* systems (e.g. self-healing, self-adaptive, self-managing) where
the software itself can adjust its structure in order to recover from failure. In the
automotive domain, however, this is still in the research phase as the mechanisms of
self-* often should be formally proven that the transition between states is safe. The
only exception is the ability of the system to restart itself, which has been used as a
“last resort” mechanism for tackling failures.

Fault tolerance is defined as degree to which a system, product or component
operates as intended despite the presence of hardware or software faults. This
property is very important as the car’s software consists of hundreds of software
components distributed over tens of ECUs communicating over a few buses—
something is bound to go wrong in this configuration. Therefore we discuss this
property separately in the next section.
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Fig. 6.3 Engine check control light indicating reduced performance of the powertrain, Volvo
XC70

6.2.2 Fault Tolerance

Fault tolerance, or robustness is a concept of the degree to which a computer
system can operate in the presence of errors [SM16]. Robustness is important as the
software system of a car needs to operate, sometimes with reduced functionality,
even if there are problems (or errors) during runtime.

A common manifestation of the robustness of the car is the ability to operate
with reduced functionality when the diagnostics system indicates a problem with,
for example, the powerline. In many modern cars the diagnostics system can detect
problems with the exhaust system and reduce the power of the engine (degradation
of the functionality), but still enable the operation of the car. The driver is only
notified by a control lamp on the instrument panel as in Fig. 6.3.

As the figure shows, the software system (the diagnostics) has detected the
problem and has taken action to allow the driver to continue the journey—which
shows high robustness to failures.

6.2.3 Mechanisms to Achieve Reliability and Fault Tolerance

The traditional ways of achieving fault tolerance are often found on the lower levels
of system design—hardware level. The ECUs used in the computer system can rely
on hardware redundancy and fail-safe takeover mechanisms in order to ensure the
operation of the system in the presence of faulty component. However, this approach
is often non-feasible in the car’s software as the electrical system of the car cannot
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be duplicated and hardware redundancy is not possible. Instead, the designers of the
software systems usually rely on substituting data from different sensors in order to
obtain the same (or similar) information once one of the components fails.

One of the main mechanisms used in modern software is the mechanism of
graceful degradation. Shelton and Koopman [SK03] define graceful degradation
as a measure of the system’s ability to provide its specified functional and non-
functional capabilities. They show that a system that has all of its components
functioning properly has maximum utility and “losing” one or more components
leads to reduced functionality. They claim that “a system degrades gracefully if
individual component failures reduce system utility proportionally to the severity
of aggregate failures.” For the architecture, this means that the following decisions
need to be prioritized:

• No single point of failure—this means that no component should be exclusively
dependent on the operation of another component. Service-oriented architectures
and middleware architectures often do not have a single point of failure.

• Diagnosing the problems—the diagnostics of the car should be able to detect
malfunctioning of the components, so mechanisms like heartbeat synchroniza-
tion should be implemented. The layered architectures support the diagnostics
functionality as they allow us to build two separate hierarchies—one for handling
functionality and one for monitoring it.

• Timeouts instead of deadlocks—when waiting for data from another component,
the component under operation should be able to abort its operation after a
period of time (timeout) and signal to the diagnostics that there was a problem in
the communication. Service-oriented architectures have built-in mechanisms for
monitoring timeouts.

Prioritizing such decisions should lead to an architecture where a single failure
in a component leaves the entire system operational and signals the need for manual
intervention (e.g. workshop visit to replace a faulty component).

A design principle to achieve fault-tolerant software is to use programming
mechanisms which reduce the risk of both design and runtime errors, such as:

• using static variables when programming—using static variables rather than
variables allocated dynamically on the heap allows taking advantage of atomic
write/read operations; when addressing a memory dynamically on the heap
the read/write operation requires at least two steps (read the memory address,
write/read to the address), which can pose threats when using multithreaded
programs or interrupts.

• using safety bits for communication—any type of communication should include
the so-called safety bits and checksums in order to prevent operation of software
components based on faulty inputs and thus failure propagation.

The automotive industry has adopted the MISRA-C standard, where the details
of the design of computer programs in C programming language [AC08], which has
been discussed in more detail in the previous chapter.



6.3 Architecture Evaluation Methods 157

However, since the architecture of the software is an artifact that is abstract and
cannot be tested, the evaluation of the architecture needs to be done based on its
description as a model and often manually.

6.3 Architecture Evaluation Methods

In our discussion of the quality of the system we highlighted the need to balance
different quality characteristics against each other. This balancing needs to be
evaluated and therefore we look into an example software architecture evaluation
technique.

The goals behind evaluating architectures can differ from case to case, from the
general understanding of the architectural principles to the exploration of specific
risks related to software architectures. Let us explore what kinds of architecture
analysis methods are the most popular today and why.

Techniques used for analysis of architectures, as surveyed by Olumofin
[OM05]:

1. Failure Modes and Effects Analysis (FMEA)—a method to analyze software
designs (including the architecture) from the perspective of risk of failures of
the system. This method is one of the most generic ones and can come either in
fully qualitative form (based on expert analysis) or as a combination of qualitative
expert analysis and quantitative failure analysis using mathematical formulas for
failure modelling.

2. Architecture Trade-off Analysis Method (ATAM)—a method to evaluate soft-
ware architectures from the perspective of the quality goals of the system.
ATAM, based on expert-based reviews of the architecture from the perspective
of scenarios (more about it later in this chapter).

3. Software Architecture Analysis Method (SAAM)—a method which is seen as
a precursor to ATAM is based on the evaluation of software architectures from
the perspective of different types of modifiability, portability and extendability.
This method has multiple variations, such as: SAAM Founded on Complex Sce-
narios (SAAMCS), Extending SAAM by Integration in the Domain (ESAAMI)
and Software Architecture Analysis Method for Evolution and Reusability
(SAAMER).

4. Architecture Level Modifiability Analysis (ALMA)—a method for evaluating
the ability of the software architecture to withstand continuous modifications,
[BLBvV04].

The above evaluation methods constitutes an important method portfolio for
software architects who need to make judgements about the architecture of the
system before the system is actually implemented. It seems like a straightforward
task, but in reality it requires skills and experience to be performed correctly.

An example of the need for skills and experiences is the evaluation of the perfor-
mance of the system before it is implemented. When designing the software system
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Fig. 6.4 Parking assistance camera showing the view behind the car while backing up, Volvo
XC70

in cars the performance of the communication channels is often a bottleneck—the
bandwidth of the CAN bus is usually limited. Therefore adding new, bandwidth-
greedy components and functions requires analysis of both the scenario of using
the function in question and the entire system. A simple case is the function of
providing a camera video feed from the back of the car when backing-up—used in
the majority of premium segment cars today. Figure 6.4 shows this function on the
instrument panel.

When adding the camera to the electrical system the amount of data transmitted
from the back of the car to the front of the car increases dramatically (depending
on the resolution of the camera, it could be up to 1 Mbit/s). Since the data is to be
transmitted in real time the communication bus must constantly prioritize between
the video feed data and the signals from such sensors as parking assist sensors.

In this scenario the architects need to answer the question—will it be possible to
add the camera component to the electrical system without jeopardizing such safety
critical functions as park assist?

6.4 ATAM

ATAM has been designed as a response to the need of the American Department
of Defense in the 1990s to be able to evaluate the quality of software systems in
their early development stage (i.e. before the system is implemented). The origins
of ATAM are at the Software Engineering Institute, in the publication of Kazman
et al. [KKBC98]. The ATAM method, which can be used to answer this question is
based on [KKC00]:
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The Architecture Tradeoff Analysis Method (ATAM) is a method for evaluating software
architectures relative to quality attribute goals. ATAM evaluations expose architectural risks
that potentially inhibit the achievement of an organization’s business goals. The ATAM gets
its name because it not only reveals how well an architecture satisfies particular quality
goals, but it also provides insight into how those quality goals interact with each other and
how they trade off against each other.

As stressed in the above definition, the method relates the system to its quality,
i.e. non-functional requirements on its performance, availability, reliability (fault
tolerance) and other quality characteristics of ISO/IEC 25000 (or any other quality
model).

6.4.1 Steps of ATAM

ATAM is a stepwise method which is similar to reading techniques used in
software inspections (e.g. perspective-based reading [LD97] or checklist-based
reading [TRW03]). The steps are as follows (after [KKC00]).

Step 1: Present ATAM. In this step the architecture team presents the ATAM
method to the stakeholders (architects, designers, testers and product managers).
The presentation should explain the principles of the evaluation, evaluation
scenarios and its goal (e.g. which quality characteristics should be prioritized).

Step 2: Present business drivers. After presenting the purpose of the evaluation,
the purpose of the business behind this architecture is presented. Topics covered
in this step should include: (i) the main functions of the system (e.g. new car
functions), (ii) the business drivers behind these functions and their optionality
(e.g. which functions are to be included in all models and which should be
optional), business case behind the architecture and its main principles (e.g.
performance over extendability, maintainability over cost).

Step 3: Present architecture. The architecture should be presented in a sufficient
level of detail to make the evaluation. The designers of the ATAM method do
not propose a specific level of detail, but it is customary that the architects guide
the reading of the architecture model—show where to start and where to stop
reading the architecture model.

Step 4: Identify architectural approaches. In this step the architects introduce
the architectural styles to the analysis team and present the high-level rationale
behind these approaches.

Step 5: Generate quality attribute utility tree. In this step, the evaluation team
constructs the system utility measure tree by combining the relevant quality
factors, specified with scenarios, stimuli and responses.

Step 6: Analyze architectural approaches. This is the actual evaluation step
where the evaluation team explores the architecture by studying the prioritized
scenarios from step 5 and architectural approaches which address these scenarios
and their corresponding quality characteristics. This step results in identifying
architectural risks, sensitivity points, and tradeoff points.
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Step 7: Brainstorm and prioritize scenarios. After the initial analysis of the
architectural approaches is done, there is a lot of scenarios and sensitivity points
elicited from the evaluation team. Therefore they need to be prioritized to guide
the further analysis of the architecture. The 100 dollar technique, planning game
and analytical-hierarchy-process are useful prioritization techniques at this stage.

Step 8: Analyze architectural approaches. In this step the team reiterates the
analysis from step 6 with a focus on the highly prioritized scenarios from step 7.
The result is again the list of risks, sensitivity points and trade-off points.

Step 9: Present results. After the analysis the team compiles and presents a
report about the found risks, sensitivity points, non-risks and tradeoffs in the
architecture.

The results of the analysis can only be as good as the input to the analysis, i.e.
the quality of the architecture documentation (its completeness and correctness), the
quality of the scenarios, the templates used in the analysis and the experience of the
evaluation team.

6.4.2 Scenarios Used in ATAM in Automotive

ATAM is an extensible method which allows us to identify scenarios by the
evaluation team, which is strongly encouraged. In this chapter we present a set of
inspirational scenarios to guide the evaluation team. Our example set is based on
the example set of scenarios presented by Bass et al. [BMC01] and in this chapter
we present a set of scenarios important for the evaluation of automotive software.
We present them in generic terms and in compact textual format. We group them
according to quality characteristics, following the approach presented by Bass et al.

6.4.2.1 Modifiability

We start with the set of scenarios which date back to the origins of ATAM and
address one of the main challenges for the work of the software architects—How
extendable and modifiable is our architectural design?

It is worth noting that some of the scenarios impact the design (or the internal
quality) of the product and some impact the external quality. The modifiability
scenarios impact the internal quality of the product.

Scenario 1: A request arrives to change the functionality of the system. The
change can be to add new functionality, to modify existing functionality, or to
delete functionality [BMC01].

Scenario 2: A request arrives to change one of the components (e.g. because of a
technology shift); the scenario needs to consider the change propagation to the
other components.
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Scenario 3: Customer wants different systems with different capabilities but using
the same software and therefore advanced variability has to be built into the
system [BMC01].

Scenario 4: New emission laws: the constantly changing environmental laws
require adaptation of the system to decrease its environmental impact [BMC01].

Scenario 5: Simpler engine models: Replace the engine models in the software
with simple heuristics for the low-cost market [BMC01].

Scenario 6: An additional ECU is added to the vehicle’s network and causes new
messages to be sent through the existing network. In the scenario we need to
understand how the new messages impact the performance of the entire system.

Scenario 7: An existing ECU after the update adds a new message type: same
messages but with additional fields that we are currently not set up to handle
(based on [BMC01]).

Scenario 8: A new AUTOSAR version is adopted and requires update of the base
software. We need to understand the impact of the new version in terms of the
number of required modifications to the existing components.

Scenario 9: Reduce memory: During development of an engine control, the cus-
tomer demands we reduce costs by downsizing the flash-ROM on chip (adapted
from [BMC01]). We need to understand what the impact of this reduction is on
the system performance.

Scenario 10: Continuous actuator: Changing two-point (on/off) actuators to con-
tinuous actuators within 1 month (e.g., for the EGR or purge control valve). We
need to understand the impact of this change on the behavior of our models
[BMC01].

Scenario 11: Multiple engine types in one car need to coexist: hybrid engine. We
need to understand how to adapt the electrical system and isolate the safety-
critical functions from the non-safety-critical ones.

6.4.2.2 Availability and Reliability

Availability and reliability scenarios impact the external quality of the product—
allow us to reason about the potential defects which come from unfulfilled perfor-
mance requirements (non-functional requirements).

Scenario 12: A failure occurs and the system notifies the user; the system
may continue to perform in a degraded manner. What graceful degradation
mechanisms exist? (based on [BMC01]).

Scenario 13: Detect software errors existing in third-party or COTS software
integrated into the system to perform safety analysis [BMC01].



162 6 Evaluation of Automotive Software Architectures

6.4.2.3 Performance

Performance scenarios also impact the external quality of the product and allow us
to reason about the ability of the system to fulfill performance requirements.

Scenario 14: Start the car and have the system active in 5 s (adapted from
[BMC01]).

Scenario 15: An event is initiated with resource demands specified and the event
must be completed within a given time interval [BMC01].

Scenario 16: Using all sensors at the same time creates congestion and this causes
loss of safety-critical signals.

6.4.2.4 Developing Custom Scenarios

It is natural that during an ATAM assessment the assessment group combines
standard scenarios with custom ones. The literature about ATAM encourages us
to create custom scenarios and use them in the evaluations, and therefore a few key
points emerge which can help the development of scenarios.

Scenarios should be relevant to both the quality model’s chosen/prioritized
quality attributes and the business model of the company. It is important that the
evaluation of the architecture be done in order to ensure that it fulfills the boundaries
of product development. The BAPO model (Business Architecture Process and
Organization, [LSR07]) from the evaluation of product lines can be used to make
the link.

The criteria applied for the scenarios should be clear to the assessment team
and the organization. It is important that all stakeholders understand what “good”,
“wrong”, “insufficient”, and “enough” mean in the evaluation situation. It is all too
easy to get stuck in a detailed discussion of mechanisms used in the evaluation
without the good support of measures or checklists.

When defining custom scenarios we can get help of the table with the elements
presented in Fig. 6.5.

6.4.3 Templates Used in the ATAM Evaluation

The first template which is needed in the ATAM evaluation is the template to specify
the scenarios. An example scenario template is presented in Fig. 6.6.

One of the templates, needed after the ATAM evaluation is completed, is the risk
description template, which should be included in the results and their presentation.
An example template is presented in Fig. 6.7.

Another part of the results from ATAM is the set of sensitivity points which
have been found in the architecture. A sensitivity point is defined by the Software
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Fig. 6.5 Template for defining custom scenarios

Fig. 6.6 Template for the description of a scenario in ATAM

Engineering Institute as
“a property of one or more components (and/or component relationships) that is

critical for achieving a particular quality attribute response. Sensitivity points are
places in a specific architecture to which a specific response measure is particularly
sensitive (that is, a little change is likely to have a large effect). Unlike tactics,
sensitivity points are properties of a specific system.”

A tradeoff template is presented in Fig. 6.8.
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Fig. 6.7 Template for the description of risks found in ATAM

Fig. 6.8 Template for the description of trade-offs identified after the ATAM analysis

6.5 Example of Applying ATAM

Now that we have reviewed the elements of ATAM and its process, let us illustrate
ATAM analysis using the example of placing the functionality related to a rear-view
camera on the back bumper of the car. As we have just introduced ATAM in this
chapter, let us start with the introduction of the business drivers.
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6.5.1 Presentation of Business Drivers

The major business driver in this architecture is achieving a high degree of safety.

6.5.2 Presentation of the Architecture

First, let us present the function architecture of the car in Fig. 6.9.
Since we focus on camera functionality, we only include the major functions

from the domains of active safety and infotainment. The functions presented in the
figure represent the basic functions of braking and ABS in the active safety domain
and the displaying of information on screens (both the main screen and the head-up
display HUD).

Let us now introduce the simplistic architecture of the car’s electrical system—
i.e. the physical view of the architecture. The physical view is presented in Fig. 6.10.

Fig. 6.9 Function dependencies in the architecture in our example
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Fig. 6.10 Physical view of the architecture in our example

In the example architecture we have two buses:

• CAN bus: connecting the ECUs related to the infotainment domain.
• Flexray bus: connecting the ECUs related to the safety domain and the chassi

domain

We can also see the following ECUs :

• Main ECU: the main computer of the car, controlling the configuration of the car,
initialization of the electronics and diagnostics of the entire system. The main
ECU has the most powerful computing unit in the car, with the largest memory
(in our example).

• ABS (Anti-locking Brake System): the control unit responsible for the braking
system and the related functionality; it is a highly safety-critical unit, with only
the highest safety integrity level software.

• ADAS (Advanced Driver Assistance and Support): the control unit responsible
for higher-level decisions regarding active safety, such as collision avoidance by
braking, emergency braking and skid prevention; it is also responsible for such
functions as parking assistance.

• Steering: the control unit responsible for the steering functionality such as the
electrical servo; it is also the controller of parts of the functions or parking
assistant.

• BBC (Back Body Controller): the unit responsible for controlling non-safety
critical functions related to the back of the car, such as adjusting of anti-dim
lights, turning on and off of blinkers (back), and electrical opening of the trunk.

In the logical view of the architecture we focus on showing the main components
used in the display of information and its processing from the camera unit, as we
need them to perform the architecture analysis. Now let us introduce the logical
architecture of the system in Fig. 6.11.
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And finally let us show the potential deployment alternative of the architecture,
where the majority of the processing takes place in the BBC node—as we can see
in Fig. 6.12.

6.5.3 Identification of Architectural Approaches

In this example let us focus on the deployment of software components on the
target ECUs. We also say that the physical architecture (hardware) does not change
and therefore we analyze the software aspects of the car’s electrical system. As an
alternative approach let us consider deploying all the processes on the main ECU
instead of dividing the components between the Main ECU and the BBC. This
results in the deployment as shown in Fig. 6.13. The dominant architectural style
is pipes-and-filters as the processing of images is the main functionality here. The
car’s electrical system should support the advanced mechanisms of active safety (i.e.
controlled by software) and should ensure that none of the mechanisms interfere
with another one, jeopardizing safety.

In our subsequent considerations we look into these two alternatives and decide
which one should be chosen to support the desired quality goals—i.e. what decision
the architect should take given his quality attribute tree.

6.5.4 Generation of Quality Attribute Tree and Scenario
Identification

In this example let us consider two scenarios which complement each other. We
could naturally generate many more for each of the quality attributes presented
earlier in this chapter, but we focus on the safety attribute—a scenario where there is
congestion on the CAN bus when reverse driving and using a camera, and a scenario
where we overload the main ECU when the video feed computations can interfere
with other functions such as the operation of windshield wipers and low beam lights.
We can use the scenario description template to outline the scenario in Fig. 6.14.

Let us also fully describe the first scenario as presented in Fig. 6.15.
In this scenario we are interested in the safety aspect of the reverse camera. We

need to understand what kind of implications the video feed data transfer has on the
capacity of the CAN bus which connects the BBC computer with the main ECU.
We therefore need to consider both alternative architectural decisions—deployment
of the video processing functionality on the BBC and the main ECU. We assume
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Fig. 6.14 Scenario described with its stimulus, response, environment and measure

Fig. 6.15 Scenario of congestion on the communication bus

that none of the deployments result in adding new hardware and therefore do not
influence the performance of the electrical system as a whole.1

We also can identify a scenario which is complementary to this one—see
Fig. 6.16.

1This assumption simplifies the analysis as we do not need to consider the physical architecture,
but can focus only on the logical and deployment views of the architecture.
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Fig. 6.16 Scenario of overloading of the main ECU

Fig. 6.17 Quality attribute utility tree

The reason for including both scenarios is the fact that they illustrate different
possibilities of reasoning about deployment of functionality on nodes.

The quality attribute utility tree in our case consists of these two scenarios linked
to two attributes—performance and safety. Both of these scenarios are ranked as
high (H) in the utility tree, as shown in Fig. 6.17.

Now that we have the utility tree let us analyze the two architecture scenarios,
and describe the trade-offs and sensitivity points.
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6.5.5 Analysis of the Architecture and the Architectural
Decision

Now we can analyze the architecture and its two deployments. In this analysis we
can use a number of risks, for example the risk that the signal does not reach its
destination. We can describe the risk using the template described in this chapter.
The description is presented in Fig. 6.18.

Since the risk presented in Fig. 6.18 affects the safety of the passengers, it should
be reduced. Reduction of this risk means that communication over the bus should not
affect the safety-critical signals. Therefore the architectural decision is that priority
should be given the deployment alternative—i.e. placing the processing of the video
feed on the BBC ECU rather than on the main ECU.

The alternative means that the BBC ECU should have sufficient processing power
to process the video in real time, which may increase the cost of the electrical
components in the car. However, safety can allow the company to pursue its main
business model (as described by the business drivers) and therefore balance the
increased cost with increased sales of cars.

Flexray

ABS ADAS

Steering BBC

SP1

Main
ECU

Fig. 6.18 Risk description
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6.5.6 Summary of the Example

In this example we presented a simple assessment of a part of the software
architecture for a car. The intention of this example is to provide an insight on how to
think and reason when conducting such an assessment. In practice, the main purpose
of an assessment like this one is all the discussions and presentations conducted by
the assessment and the architecture teams. The questions, scenarios, prioritizations,
and simply, brainstorming of ideas are the main point and benefit of the architecture.
We summarize them in table presented in Fig. 6.19.

The ATAM procedure is defined for software architectures, but in the automotive
domain the deployments of the software components and physical hardware archi-
tectures are tightly connected to the software—they both influence the software
architecture and are influenced by the architecture (as this example assessment
shows). Therefore, our advise is to always broaden the assessment team to include
both software specialists and the hardware specialists—to cover the system proper-
ties of software architectures.

Fig. 6.19 Tabular summary of the example ATAM evaluation
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6.6 Further Reading

An interesting overview of scenario-based software architecture evaluation methods
has been presented by Ionita et al. [IHO02]. Readers interested in a comparison
between the methods are directed to this interesting article.

This article can be complemented by the work of Dobrica and Niemela [DN02],
which focused on a more general overview and comparison of architecture evalua-
tion methods.

A comprehensive work on the notion of graceful degradation has been presented
by Shelton [She03, SK03] who discusses the notion of graceful degradation in
the context of an example safety-critical system of an elevator, its modelling and
measurement.

Readers interested in a wider view of the applicability of ATAM in other domains
can look into the work of Bass et al. [BMC01], who analyzed the architecture
evaluation scenarios of a number of safety-critical systems.

The original works of Bass and Kazman have been expanded to other domains
and other quality attributes than the original few (modifiability, reliability, availabil-
ity). An example of such extensions is presented by Govseva et al. [GPT01] and
Folmer and Bosch [FB04].

In the automotive domain we often consider different car models as product
lines with the equipment levels as product line members. For this kind of view on
automotive software architectures one could find the extension of ATAM to capture
product lines to be interesting—[OM05].

Readers interested in further examples of architecture evaluations can be found in
the article by Bergey et al. [BFJK99], who describe the experiences of using ATAM
in the context of software acquisitions. The readers can also consider the work of
Barbacci et al. [BCLC03].

6.7 Summary

Architecting is a discipline of high-level design which is often described in the form
of diagrams. However, equally important to the design is the set of decisions taken
when creating the architecture. These decisions delineate a set of principles which
designers have to follow in order to make sure that the software system fulfills its
purpose.

Arriving at the right decisions is a process of combining the expertise of
architects and the considerations of architects and designers. In this chapter we
presented a method to elicit architectural decisions based on discussions between
an external evaluation team and the architecture team—ATAM (Architecture Trade-
off Analysis Method). Through the assessments we can learn about the principles
behind the architectural design and design decisions. We can learn about the
alternative choices and why they are rejected.
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In this chapter we focus on the “human” aspects of software architecture
evaluation, which is by definition bound to be subjective to a certain degree. In the
next chapter, however, we focus on the monitoring of the architecture quality given
the set of information needs. This monitoring is done by conducting measurements
and quantifying quality attributes discussed in this chapter.
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Chapter 7
Metrics for Software Design and Architectures

Miroslaw Staron
University of Gothenburg, Gothenburg, Sweden

Wilhelm Meding
Ericsson AB, Gothenburg, Sweden

Abstract Understanding the architecture in a qualitative manner can be time-
consuming and effort-intensive. Therefore the qualitative methods such as
assessments presented in Chap. 6 are often done periodically at given milestones.
However, architects need to monitor the quality of the architecture constantly
and ensure that the characteristics of the architecture are within the limits of the
product boundaries. In this chapter we present a set of measures used for measuring
architectures and detailed designs. We explore the existing measures and present the
ones which are common in industrial applications. Towards the end of the chapter
we show the limits of selected measures by using an openly available industrial data
set from an automotive OEM.

7.1 Introduction

In the previous chapter we explored one way of understanding the architecture—
qualitative assessment based on scenarios. This method has multiple advantages as
it allows architects to dive deeply into the details of a selected set of prioritized
aspects of the architecture. The major disadvantage is the fact that qualitative
evaluation is effort-intensive and can be done as soon as the architecture is somehow
mature.

Architecting, however, is not done when the architecture is finished but is done
intensively before the architecture is finished. Moreover, it is done constantly, so
periodical assessments need to be complemented with methods for continuous
quality assessment. In order to achieve this continuity we need to use automated
methods which are usually based on measuring properties of architectures and
properties of detailed designs.
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Software architecting as an area has gained increasing visibility in the last
two decades as the software industry has recognized the role of software archi-
tectures in maintaining high quality and ensuring longevity and sustainability
of software products [Sta15, LKMC13]. Even though this recognition is not
new, there is still no consensus on how to measure various aspects of software
architectures beyond the basic structural properties of the software architecture
as a design artifact. In the literature we can encounter studies applying base
measures for object-oriented designs to software architectures [LTC03] and studies
designing low-level software architecture measures such as number of interfaces
[SFGL07].

In order to understand the kinds of measures which are used in software
architectures we have found a generic measurement portfolio of 54 measures
in the literature. The portfolio can be applied to software architectures and
designs, but interpreted differently based on where it is applied. The portfolio
was developed by the literature review using snowballing and following the
principles of systematic mapping of Petersen et al. [PFMM08]. The measures
in the portfolio were then organized according to the ISO/IEC 15939 standard’s
measurement information model [OC07] into base measures, derived measures and
indicators.

This chapter is structured as follows. Next, Sect. 7.2 presents our theoretical
foundation for designing the portfolio—the ISO/IEC 15939 measurement infor-
mation model. In Sect. 7.3 we present an overview of the standardized measures
presented in the new quality standard “Software Product Quality Requirements
and Evaluation”. In Sect. 7.4 we present more measures found in literature and we
organize them in the portfolio in Sect. 7.5 by identifying indicators. In Sect. 7.6
we present the limits of the selected measures based on an open data set from an
automotive OEM. We conclude the chapter with further reading in Sect. 7.7.

7.2 Measurement Standard in Software Engineering:
ISO/IEC 15939

The ISO/IEC 15939:2007 [OC07] standard is a normative specification for pro-
cesses used to define, collect, and analyze quantitative data in software projects or
organizations. The central role in the standard is played by the information product,
which is a set of one or more indicators with their associated interpretations that
address the information need. The information need is an insight necessary for a
stakeholder to manage objectives, goals, risks, and problems observed in measured
objects. These measured objects can be entities like projects, organizations, software



7.2 Measurement Standard in Software Engineering:ISO/IEC 15939 181

products, etc. characterized by a set of attributes. We use the following definitions
from ISO/IEC 15939:2007:

• Base measure, defined in terms of an attribute and the method for quantifying it.
This definition is based on the definition of base quantity from [oWM93].

• Derived measure, defined as a function of two or more values of base measures.
This definition is based on the definition of derived quantity from [oWM93].

• Indicator, provides an estimate or evaluation of specified attributes derived from
a model with respect to defined information needs.

• Decision criteria—thresholds, targets, or patterns used to determine the need for
action or further investigation, or to describe the level of confidence in a given
result.

• Information product—one or more indicators and their associated interpretations
that address an information need.

• Measurement method—a logical sequence or operations, described generically,
used in quantifying an attribute with respect to a specified scale.

• Measurement function—an algorithm or calculation to combine two or more base
measures.

• Attribute—a property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means.

• Entity—an object that is to be characterized by measuring its attributes.
• Measurement process—a process for establishing, planning, performing and

evaluating measurement within an overall project, enterprise or organizational
measurement structure.

• Measurement instrument a procedure to assign a value to a base measure.

The view on measures presented in ISO/IEC 15939 is consistent with other engi-
neering disciplines; the standard states at many places that it is based on such stan-
dards as ISO/IEC 15288:2007 (Software and Systems engineering—Measurement
Processes), ISO/IEC 14598-1:1999 (Information technology—Software product
evaluation), ISO/IEC 9126-x, the ISO/IEC 25000 series of standards, and the
International vocabulary of basic and general terms in metrology (VIM) [oWM93].
Conceptually, the elements (different kinds of measures) which are used in the
measurement process can be presented as in Fig. 7.1.

The model provides a very good abstraction and classification of measures—
from very basic ones to more complicated ones. The base measures are often close
to the entities they measure, such as architectural designs, and as such reflect
the entities relatively well, although using a different domain of mathematical
symbols and numbers. The indicators, on the other hand, serve the different
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Algorithm for combining two or
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Operations mapping an
attribute to a number

Property relevant to 
information needs

Object that is to be 
characterized by 
measuring its attributes

Insight necessary to manage
objectives, goals, risks and
problems

Fig. 7.1 Measurement Information Model—adopted from ISO/IEC 15939

purpose of fulfilling the information need of their stakeholder and as such are
closer to the concepts which the stakeholders want to get information about, e.g.
the architecture’s quality, stability or complexity.

As the indicators provide insight into what the stakeholders would like to
measure, see and observe, it is often easy to provide an analysis model (or coloring)
of the values of the indicators. It can be illustrated as in Fig. 7.2.

We use this model to describe the measures used for quantifying properties of
software architectures. Conceptually we can also consider the fact the higher in the
model the measure is, the more advanced the information need it fulfills. In Fig. 7.3
we can see a number of measures divided into three levels—the more basic ones at
the bottom and the more complex ones at the top.
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Fig. 7.2 Conceptual levels of architecture measures

Number of components
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Architecture weight

Architecture preserva�on factor

Metrics Information needs

How good is our architecture?

How maintainable is our architecture?

How ”big” is our architecture?

Degree of impact of change

Fig. 7.3 Higher-level measures correspond to more advanced information needs—an example

The more advanced information needs are related to the work of the architects
whereas the more basic ones are more related to the architecture as an artifact in
software development. So, now that we have the model, let’s look into one of the
standards where the software measures are defined—ISO/IEC 25000.
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7.3 Measures Available in ISO/IEC 25000

The ISO/IEC 25000 Software Quality Requirements and Evaluation (SQuaRE)
standard provides a set of reference measures for software designs and architectures.
At the time of writing of this book the standard is not fully adopted but the main
parts are already approved and the work is fully ongoing regarding the measures,
their definitions and usage. The standard presents the following set of measures
related to product, design and architecture in one of its chapters—ISO/IEC 25023—
Software and Software Product Quality Measures [ISO16]:

• Quality measures for functional suitability—example measure: functional imple-
mentation coverage addressing the information need of functional completeness

• Quality measures for performance efficiency—example measure: response time
addressing the information need of time behavior performance

• Quality measures for compatibility—example measure: connectivity with exter-
nal systems addressing the information need of interoperability

• Quality measures for usability—example measure: completeness of user docu-
mentation addressing the information need of learnability of the product

• Quality measures for reliability—example measure: test coverage addressing the
information need of reliability assessment

• Quality measures for security—example measure: data corruption prevention
addressing the information need of integrity

• Quality measures for maintainability—example measure: modification complex-
ity addressing the information need of modifiability

• Quality measures for portability—example measure: installation time efficiency
addressing the information need of installability of the software product

The list of the areas and the example measures illustrate how the measures
are discussed in the standards related to product quality. We can see that these
measures are related to the execution of the product and do not focus on the
internal quality of the product with such example measures as size (e.g. number
of components) or complexity (e.g. control flow complexity). Therefore we need
to turn to scientific literature to understand the measures and indicators related to
software architectures. There we can find measures which are of interest to software
architects.

7.4 Measures

Let’s start with the base measures which quantify the architecture shows in
Table 7.1—we can quickly notice that these measures correspond to the entities they
measure. The measurement method (the algorithms to calculate the base measure)
are very similar and are based on counting entities of a specific type. The list in
Table 7.1 shows a set of example base measures.
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Table 7.1 Base measures for software architectures

Measure Description

Number of components
[SJZ14]

The basic measure quantifying the size of the architecture in
terms of its basic building block—components

Number of connectors [SJZ14] The basic measure quantifying the internal connectivity of
the architecture in terms of its basic connectors

Number of processing units
[LK00]

The basic measure quantifying the size of the physical
architecture in terms of processing units

Number of data repositories
[LK00]

The complementary measure quantifying the size in terms
of data repositories

Number of persistent
components [LK00]

Quantifies the size in terms of the need for persistency

Number of links [LK00] Quantifies the complexity of the architecture, similarly to
the McCabe cyclomatic complexity measure. It is
sometimes broken down by type of link (e.g,
asynchronous–synchronous, data-control)

Number of types of
communication mechanisms
[LK00]

Quantifies the complexity of the architecture in terms of the
need to implement multiple communication mechanisms

Number of external interfaces
[KPSC98]

Quantifies the coupling between architectural components
and external systems

Number of internal interfaces
[KPSC98]

Quantifies the coupling among the architectural components

Number of services [KPSC98] Quantifies the cohesion of the architecture in terms of how
many services it provides/fulfills

Number of concurrent
components [KPSC98]

The measure counts the components which have concurrent
calculations as part of their behavior

Number of changes in the
architecture [DNSH13]

The measure quantifies the number of changes (e.g. changed
classes, changed attributes) in the architecture

Fanout from the simplest
structure [DSN11]

The measure quantifies the degree of the lowest complexity
of the coupling of the architecture

Collecting the measures presented in the table provides the architects with the
understanding of the properties of the architecture, but the architects still need
to provide context to these numbers in order to reason about the architectures.
For example, the number of components by itself does not provide much insight;
however, if put together with a timeline and plotted as a trend, allow to extrapolate
the information and therefore allow the architects to assess if the architecture is
overly large and should be refactored.



186 7 Metrics for Software Design and Architectures

Table 7.2 Base measures for software design

Measure Description

Weighted methods per class [CK94] The number of methods weighed by their complexity

Depth of inheritance tree [CK94] The longest path from the current class to its first
predecessor in the inheritance hierarchy

Cyclomatic complexity [McC76] Quantifies the control path complexity in terms of the
number of independent execution paths of a program.
Used often as part of safety assessment in ISO/IEC
26262

Dependencies between
blocks/modules/classes [SMHH13]

Quantifies the dependencies between classes or
components in the system

Abstractness of a Simulink block
[Ols11]

Quantifies the ratio of contained abstract blocks to
the total number of contained blocks

In addition to the measures for the architecture we can also find many measures
which are related to software design in general—e.g. object-oriented measures
or complexity measures [ASMC14, SKW04]. Examples of these are presented in
Table 7.2.

Once again these examples show that the measures are related to the design the
quantification of its properties. Such measures as the abstractness of a Simulink
block, however, are composed of multiple other measures and therefore are classified
as derived measures and as such are closer to the information need of architects.
In the literature we can find a large number of measures for designs and their
combinations and therefore when choosing measures it is crucial to start from the
information needs of the architects [SMKN10] since these information needs can
effectively filter out measures which are possible to collect, but not relevant for the
company (and as such could be considered as waste).

In the next section we identify which measures from the above two groups are to
be included in the portfolio and what areas they belong to.

7.5 Metrics Portfolio for the Architects

The measures presented so far can be collected, but, as the measurement stan-
dards prescribe, they need to be useful for the stakeholders in their decision
processes [Sta12, OC07]. Therefore we organize these measures into three areas
corresponding to the information needs of software architects. As architecting is
a process which involves software architecture artifacts, we recognize the need of
grouping these indicators into areas related to both the product and the process.
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7.5.1 Areas

In our portfolio we group the indicators into three areas related to basic properties
of the design, its stability and its quality:

Area: architecture measures—this area groups product-related indicators that
address the information need about how to monitor the basic properties of the
architecture, like its component coupling.
Area: design stability—this area groups process-related indicators that address
the information need about how to ascertain controlled evolution of the architec-
tural design.
Area: technical debt/risk—this area groups product-related indicators that
address the information need about how to ascertain the correct implementation
of the architecture.

In the following subsections we present the measures and the suggested way
to present them. One of the criteria for each of these areas in our study was that
the upper limit on the number of indicators be four. The limitations are based on
empirical studies of cognitive aspects of measurement, such as the ability to take in
information by the stakeholders [SMHC13].

7.5.2 Area: Architecture Measures

In our portfolio we could identify 14 measures as applicable to measure the basic
properties of the architecture. However, when discussing these measures with the
architects, the majority of the measures seemed to quantify basic properties of the
designs. The indicators found in the study in this area are:

Software architecture changes: To monitor and control changes over time the
architects should be able to monitor the trends in changes of software architecture
at the highest level [DNSH13]. Based on our literature studies and discussions
with practitioners we identified the following measure to be a good indicator of
the changes—number of changes in the architecture per time unit (e.g. week)
[DSTH14a, DSTH14b, DSN11].
Complexity: To manage module complexity, the architects need to understand
the degree of coupling between components, as the coupling is perceived as
cost-consuming and error-prone in the long-term evolution of the architecture.
The identified indicator is Average squared deviation of actual fanout from the
simplest structure.
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External interfaces: To control the degree of coupling on the interface level (i.e.
a subset of all types of couplings), the architects need to observe the number of
internal interfaces—number of interfaces.
Internal interfaces: To control of external dependencies of the product, the
architects need to monitor the coupling of the product to external software
products—number of interfaces.

The suggested presentation of these measures is presented in Fig. 7.4.

7.5.3 Area: Design Stability

The next area which is of importance for the architects is related to the need for
monitoring the large code base for stability. Generally, in this area we used visual-
izations from our previous research into code stability [SHFC13]. We identified the
following three indicators to be efficient in monitoring and visualizing the stability:

Code stability: To monitor the code maturity over the time the architects need to
see how much code has been changed over time as it allows them to identify code
areas where more testing is needed due to recent changes. The measure used for
this purpose is number of changes per module per time unit.
Defects per modules: To monitor the aging of the code the architects need to
monitor defect-proneness per component per time, using a similar measure as
that for code stability—number of defects per module per time unit (e.g. week).
Interface stability: To control the stability of the architecture over its interfaces
the architects measure the stability of the interfaces—number of changes to the
interfaces per time unit.

We have found that it is important to be able to visualize the entire code/product
base in one view and therefore the dashboard which depicts the stability is based
on the notion of heatmaps [SHFC13]. In Fig. 7.5 we present such a visualization
with three heatmaps corresponding to these three stability indicators. Each of the
figures is a heatmap which depicts different aspects, but each of them is organized in
the same way—columns designate weeks, rows designate the single code modules
or interfaces and the intensity of the color of each cell designates the number of
changes to the module or interface during the particular week.

7.5.4 Area: Technical Debt/Risk

The last area in our portfolio is related to the quality of the architecture over a longer
period of time. In this area we identified the following two indicators:

Coupling: To have manageable design complexity the architects need to have a
way to get a quick overview over the coupling between the components in the
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Fig. 7.5 Visualization of the measures in the architecture stability area

architecture—measured by number of explicit architectural dependencies, where
the explicit dependencies are links between the components which are introduced
by the architects.
Implicit architectural dependencies: To monitor where the code deviates from
the architecture the architects need to observe whether there are any additional
dependencies introduced during the detailed design of the software—this is
measured by number of implicit architectural dependencies, where the implicit
dependencies are such links between the components which are part of the code,
but not introduced in the architecture documentation diagrams [SMHH13].

The visualization of the architectural dependencies shows the degree of coupling
and is based on circular diagrams, as presented in Figs. 7.6 and 7.7, where each area
on the border of the circle represents a component and a line shows a dependency
between two components.
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Fig. 7.6 Visualization of the measures in the architecture technical debt/risk: implicit

Fig. 7.7 Visualization of the measures in the architecture technical debt/risk: explicit
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7.6 Industrial Measurement Data for Software Designs

The metrics portfolio for software architects should be complemented with a set
of metrics for software designs, which we presented in Table 7.2. One of these
measures is software complexity, measured as a number of independent paths in
the program (McCabe complexity). In order to illustrate how complex automotive
systems are, let us look into one of the industrial data sets publicly available
[ASDC15].

In general, software complexity can be measured in multiple ways, but there is a
small number of measures which have been found to be correlated with each other—
e.g. McCabe cyclomatic complexity, lines-of-code. The inherent correlations (cf.
[ASHC14]) allow us to simplify the problem to only one of them (for the sake of
the discussion)—we choose the McCabe complexity due to its spread in practice. In
short, the metric measures the number of independent execution paths in the source
code.

In the automotive sector, in data from the open domain we find that the
complexity of software modules is highly over the theoretical limit of 30 (execution
paths), as presented in Fig. 7.8.

What the data shows is that there are components where the number of execution
paths is over 160, which means that only to test each of the execution paths once
there is a need for 160+ test cases. However, in order to achieve full coverage one
needs more than 500 test cases for the entire component. If we need to test each
path with a positive and a negative case (so called boundary case) we need to at
least double the number of test cases. Exploring the other metrics provided in the

Fig. 7.8 Complexity of software modules (C programming language) as a McCabe cyclomatic
complexity
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Fig. 7.9 Sizes of the models in the example data set

same data set shows that the trends are very similar—the numbers are highly over
the theoretical complexity limits.

These numbers indicate that it is increasingly more difficult to provide full
verification of the software functionality in order to ensure the safety of software
systems. Therefore we need new approaches than just testing.

In Chap. 5 we explored the detailed designs in terms of simulink models. In the
data set presented in the studied paper [ASDC15], the size of such models can be
huge—as shown in Fig. 7.9.

As the figure shows, some of the models (Johnson.mdl) are huge models with
over 50,000 blocks and models of over 10,000 blocks are not uncommon. One
should note that this data comes only from one domain and one manufacturer;
however, the scale of the size shows how much software is included in modern
cars. It also shows the effort required to develop and to test such software.

7.7 Further Reading

Some of the most popular methods for evaluating software architectures in general
are to use qualitative methods like ATAM [KKC00], where the architecture is
analyzed based on scenarios or perspectives. These methods are used for final
assessments of the quality of the architectures, but as they are manual they need
effort and therefore cannot be conducted in a continuous manner. However, as many
contemporary projects are conducted using Agile methodologies, Lean software
development [Pop07] or the minimum viable product approach [Rie11], these
methods are not feasible in practice. Therefore the architects are willing to trade
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off quality of evaluation for speed of the feedback on their architecture, which leads
to more extensive use of measure-based evaluation of software architectures.

In our previous work we have studied metrics used for monitoring of architectural
changes [DNSH13, DSN11]. The results showed that the use of a modified coupling
metric can provide a very good estimation of the impact of the change in the
architecture between two different releases of the architecture.

One of the tools and methods supporting the architects’ work with measures is the
MetricViewer [TLTC05], which augments software architecture diagrams expressed
in UML with such measures as coupling, cohesion and depth of inheritance tree.
This augmentation is important for reasoning about the designs, but it is not
linked to the information needs of the stakeholders. Having such a link allows the
stakeholders to monitor attainment of their goals, which otherwise require them to
conduct the same analyses manually.

Similarly to Tameer et al., Vasconcelos et al. [VST07] propose a set of metrics
for measuring architectures based on low-level properties of software architectures,
such as number of possible operating systems or number of secure components. Our
work complements their study by focusing on internal quality properties related to
the design and not quality in use.

In the same vein, Dave [Dav01] patented the method for co-synthesis of software
and hardware using measures such as scheduling and task allocation metrics, which
complement the portfolio of architecture metrics presented in this chapter. The
major difference in the approach of the patent and our research is our focus on
three areas and their associated information needs rather than on a specific goal–
integration.

Additionally, even though it is a decade old, the technical recommendation for the
architecture evaluation still provides useful guidelines for choosing the right method
[ABCC97]. In particular, the recommendation is to customize the evaluation to a
specific quality or goal. In the case of the study presented in this chapter, this goal
is the set of information needs represented by the stakeholder.

The specific view, information need or goal which is prescribed in the archi-
tecture evaluation is a specific case of the domain context of the metrological
properties of measures [Abr10]. In software engineering in general and in software
architectures in particular there is no consensus about the universal values of
measures (e.g. how strongly coupled two entities should be), and therefore the
stakeholders approximate this using their experience and mandate in product
development organizations [RSBC13, RSBC14, RSMC13].

Readers interested in other examples of information needs for software metrics
are referred to a survey study conducted at Microsoft where the authors interview
over 100 engineers, managers, and testers to map their current and future informa-
tion needs [BZ12].

Using business intelligence and corporate performance measurement can be of
interest to readers interested in decision making at the strategic level, e.g., [Pal07,
RW01, KN98].
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Readers interested in mechanisms of effective visualization and manipulation
of measurement data can explore the field of visual analytics, e.g., [VT07, Tel14,
BOH11].

Close to the field of visual analytics is the field of project telemetry, which
focuses on online visualization of selected software metrics; interested readers
should explore:

• tools like Hackystat that are examples in this field [Joh01, JKAC03]
• the SonarQube tool suite for monitoring internal quality of software products

during development [HMK10] and
• dashboards for visualizing product development where the authors describe

experiences from introducing dashboards for a single team [FSHL13].

Readers interested in the concepts of measurement systems should explore the
following publications:

• ISO/IEC 15939 (and its IEEE correspondent), defining the concepts related to
measurement systems [OC07].

• Practical Software Measurement [McG02].
• The classical book on software metrics by Fenton and Pfleeger [FB14].
• The process of designing measurement systems in industry [SMN08].
• The graphical way of designing measurement systems with the focus on the

information need of the stakeholders [SM09].

One of the trends observed in the software industry is the growing focus on
customers even in measurement of internal quality attributes. Readers interested
in how to work with customer data can find the following works of value:

• Post-deployment data [OB13],
• developing customer profiles [AT01], and
• mining and visualizing customer data [Kei02].

In this context of customer data collections, it is also important to understand the
defects in automotive software. In our previous work we have developed a method
for classifying defects based on their criticality, targeted towards automotive soft-
ware [MST12] which is related to studies on the understanding of inconsistencies in
designs [KS03].

7.8 Summary

In this chapter we focused on the challenge of constantly monitoring the architecture
quality and the properties of software designs. We have focused on two aspects—
what measures exist in the literature that can be used for this purpose and which
measures should be used as indicators.

In the chapter we used the approach postulated by modern measurement
standards in software engineering—ISO/IEC 15939 and ISO/IEC 25000. The first
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of this standard provided us with a way of structuring the measures and the second
one provided us with a list of measures. Based on our work with industrial partners
[SM16] we identified three areas of interest. In these areas we managed to identify
a set of measures and indicators which address the needs of the stakeholders.

Finally we have also presented reference visualizations of these indicators.
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Chapter 8
Functional Safety of Automotive Software

Per Johannessen

Abstract In the previous chapters we explored generic methods for assessing
quality of software architecture and software design. In this chapter we continue
with a much-related topic, functional safety of software, in which functional safety
assessment is one of the last activities during product development. We describe how
the automotive industry works with functional safety. Much of this work is based
on the ISO 26262 standard that was published in 2011. This version of the standard
is applicable for passenger cars up to 3500 kg. There is also ongoing work on a
future version, expected in 2018, applicable to most road vehicles, including buses,
motorcycles, and trucks. The scope of the ISO 26262 standard is more than software
development and for better understanding we give an overview of these other
development phases in this chapter. However, we focus on software development
according to ISO 26262. The different phases that are covered are software planning,
software safety requirements, software architectural design, software unit design
and implementation, software integration and testing, and verification of software.

8.1 Introduction

Functional safety in ISO 26262 is defined as “absence of unreasonable risk due to
hazards caused by malfunctioning behaviour of E/E systems”. In a simplified way,
we could say that there shall not be any harm to persons resulting from faults in
electronics or software. At the same time, for an automotive product, this electronic
and software is within a vehicle. Hence, when working with functional safety, it is
important to consider the vehicle, the traffic situations including other vehicles and
road users and the persons involved.

The safety lifecycle of ISO 26262 starts with planning of product development,
continues with product development, production, operation and ends with scrapping
the vehicle. In ISO 26262, the base for product development is Items. An Item in
ISO 26262 is defined as “system or array of systems to implement a function at the
vehicle level, to which ISO 26262 is applied”. The key term here is “function at the
vehicle level”, which defines what components are involved. This also implies that
a vehicle consists of many Items, to which ISO 26262 is applied.

The work on the ISO 26262 standard started in Germany in the early 2000
and was based on another standard, IEC 61508 ()Functional Safety of Electri-
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9. Automotive Safety Integrity Level (ASIL)-Oriented and Safety-Oriented Analyses 
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Fig. 8.1 The ten different parts in the ISO 26262 standard, adopted from [ISO11]

cal/Electronic/Programmable Electronic Safety-related Systems). As IEC 61508
[IEC10] originates from the process control industry, there was a need to adapt it
to the automotive industry. The work within the ISO standardization organization
started in 2005 and resulted in the first edition of ISO 26262 published in 2011.

Even if the automotive industry had been working with functional safety before,
this was a significant step to standardize the work across the industry. As with
standards in general, the key advantage is simplified cooperation between different
organizations. Another benefit with ISO 26262 is that it can be seen as a cookbook
on how to develop safe functions on the vehicle level that to some degree are
implemented in electronics and software. By following this cookbook, the result
is a harmonized safety level across the industry and this level is seen as acceptable.

When looking into ISO 26262, there are ten different parts as shown in Fig. 8.1.
In this chapter we focus on part 6, for software development. At the same time, it
is important to understand the context in which this software is developed and also
the context in which this software is used. Hence, there is a very brief overview of
these other parts in ISO 26262 as well.

As we can see in Fig. 8.1, parts 4–6 are based on the V-model of product
development which we discussed in Chap. 3 and which is a defacto standard in
the automotive industry. It should be noted that even if the V-model is the basis
here, the standard is in reality applied in many different ways, including, e.g.
distributed development across multiple organizations, iterative development and
agile approaches. Independent of the development approach used, the rationale of
the safety standardization is argumentation that the requirements in the standards
have been appropriately addressed in the product.

In the forthcoming sections we briefly describe parts 2–8 of the standard. Part
1 contains definitions and abbreviations used in the standard. The safety analysis
methods described in part 9 are only covered implicitly in this chapter as they are
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referenced from the activities in parts 3–6. Also, part 10 is not described here as it
is an informative collection of guidelines for how parts 2–6 may be applied.

8.2 Management and Support for Functional Safety

When an organization works with functional safety, there are other processes that
should be established. When looking into part 2 of the ISO 26262 standard, there are
requirements to have a quality management system in place, e.g. ISO 9001 [ISO15]
or ISO/TS 16949 [ISO09]; to have relevant processes, including processes for
functional safety, established in the management system, the sufficient competence
and experience; and the field monitoring established. Field monitoring from a
functional safety perspective is in particular important for detecting potential faults
in electronics and software when the vehicle is in use.

During product development, there are also requirements on assigning proper
responsibilities for functional safety, to plan activities related to functional safety
and to monitor that the planned activities are done accordingly.

In addition, there are requirements to have proper support according to part 8,
including:

• Interfaces within distributed developments, which ensure that responsibilities
are clear between different organizations that share the development work, e.g.
between a vehicle manufacturer and its suppliers. It is often referred to as a
Statement of Work.

• Requirements management, which ensures that requirements, in particular safety
requirements, are properly managed. This includes identification of require-
ments, requirement traceability, and status of the requirements.

• Configuration management, which ensures that changes to an Item are controlled
throughout its lifecycle. There are other standards for configuration management,
e.g. ISO 10007, referenced from ISO 26262.

• Change management, which in ISO 26262 ensures that functional safety is
maintained when there are changes to an Item. It is based on an analysis
of proposed changes and control of those changes. Change management and
configuration management typically go hand in hand with each other.

• Documentation management, which in ISO 26262 ensures that all documents are
managed such that they are retrievable and contain certain formalities such as
unique identification, author and approver.

• Confidence in the use of software tools, which shall be done when compliance
with the ISO 26262 standard relies on correct behavior of software tools used
during product development, e.g. code generators and compilers. The first step is
tool classification to determine if the tool under consideration is critical and, if
critical, tool qualification is done to ensure that the tool can be trusted.



204 8 Functional Safety of Automotive Software

These requirements mean that ISO 26262 poses requirements on the product
development databases described in Chap. 3 in terms of the kind of connections and
relations that should be maintained.

8.3 Concept and System Development

According to ISO 26262, product development starts with the development of a
concept as described in part 3. In this phase, the vehicle level function of an Item
is developed. Also, the context of the Item is described, i.e. the vehicle and other
technologies such as mechanical and hydraulical components. After the concept
phase, there is the system development phase according to part 4 in ISO 26262. In
ISO 26262, the system only contains electronic hardware and software components,
no mechanical components. The development of these other components is not
covered by ISO 26262.

The first step in concept development is to define the Item to which ISO
26262 is applied. This definition of the item contains functional and non-functional
requirements, use of the Item including its context, and all relevant interfaces and
interactions of the Item. It is an important step as this definition is the basis for
continued work.

The following step is the hazard analysis and risk assessment, which includes
hazard identification and hazard classification. A hazard in ISO 26262 is a potential
source of harm, i.e. a malfunction of the Item that could harm persons. Examples of
hazards are no airbag deployment when intended and unintended steering column
lock. These hazards are then further analyzed in relevant situations, e.g. driving in a
curve with oncoming traffic is a relevant situation for the unintended locking of the
steering column. The combination of a hazard and relevant driving situations that
could lead to harm is called hazardous event.

During hazard classification, hazardous events are classified with an ASIL. ASIL
is an ISO 26262-specific term defined as Automotive Safety Integrity Level. There
are four ASILs ranging from ASIL A to ASIL D. ASIL D is assigned to hazardous
events that have the highest risk that needs to be managed by ISO 26262, and
ASIL A to the lowest risk. If there is no ASIL, it is assigned QM, i.e. Quality
Management. The ASIL is derived from three parameters, Controllability, Exposure,
and Severity. These parameters estimate the magnitude of the probability of being
in a situation where a hazard could result in harm to persons (Exposure), the
probability of someone being able to avoid that harm given that situation and that
hazard (Controllability), and an estimate of the severity of that harm (Severity). In
Table 8.1, a brief explanation of the different ASILs and examples are shown.

In addition to ASIL being a measure of risk, it also puts requirements on safety
measures that need to be taken to reduce the risk to an acceptable level. The higher
the ASIL, the more the safety measures are needed. Examples of safety measures
are analyses, reviews, verifications and validations, safety mechanisms implemented
in electronic hardware and software to detect and handle fault, and independent
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Table 8.1 Brief description of different ASILs with examples; the examples are dependent on
vehicle type

Risk
classification Description of risk Examples of hazardous event

QM The combination of probability of accident
(Controllability and Exposure) and
severity of harm to persons (Severity)
given the hazard is considered acceptable.
With a QM classification, there are no ISO
26262 requirements on the development

No locking of steering column
when leaving the vehicle in a
parked position. Not possible to
open sunroof

ASIL A A low combination of probability of
accident and severity of harm to persons
given the hazard occurring

No airbag deployment in a crash
fulfilling airbag deployment
criteria

ASIL B : : : Unintended hard acceleration of
vehicle during driving

ASIL C : : : Unintended hard braking of
vehicle during driving while
maintaining vehicle stability

ASIL D Highest probability of accident and
severity of harm to persons given the
hazard occurring

Unintended locking of steering
column during driving

Table 8.2 A simplified hazard analysis and risk assessment with two separate examples

Function Hazard Situation Hazardous event ASIL Safety goal

Steering
column lock

Unintended
steering
column lock

Driving in curve
with oncoming
traffic

Driver loses control
of his vehicle,
entering the lane
with oncoming
traffic

D Steering column
lock shall not be
locked during
driving

Driver
airbags

No
deployment
of driver
airbags

Crash where
airbag should
deploy

Driver is not
protected by airbags
in a crash when he
should be

A Driver airbag
shall deploy in
crash, meeting
deployment
criteria

safety assessments. If there is a QM, it means that there are no requirements on
safety measures specified in ISO 26262. Still, normal automotive development is
needed and this includes proper quality management, review, analysis, verification
and validation, and much more.

For hazardous events where there is an ASIL assigned, a Safety Goal shall
be specified. A Safety Goal is a top-level safety requirement to specify how the
hazardous event can be avoided. A simplified hazard analysis and risk assessment is
shown in Table 8.2.

The third step is the functional safety concept where each Safety Goal with an
ASIL is decomposed into a set of Functional Safety Requirements and allocated
to a logical design. It is also important to provide an argumentation of why the
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Fig. 8.2 The three parts of a functional safety concept, the Functional Safety Requirements, noted
as FSR, their allocation to a logical design, and the argumentation why the Functional Safety
Requirements fulfill the Safety Goal, noted as SG

Functional Safety Requirements fulfill the Safety Goal; this argumentation can be
supported by a fault tree analysis.

During the Functional Safety Concept stage, and also during later refinements of
safety requirements, it is possible to lower the ASILs if there is redundancy with
respect to the requirements. There is always a trade-off whether to use redundancy
or not. Redundant components could increase cost, at the same time as lower ASILs
could save cost. The choice to make needs to be assessed on a case-by-case basis.

An example of a Functional Safety Concept is shown in Fig. 8.2. Here the logical
design consists of three parts, the sensor element S, the decision element D and the
actuation element A. The sensor element has been refined using redundancy of two
sensor elements, S1 and S2. For all of these elements, there are Functional Safety
Requirements allocated, denoted bt FSR, with a sequence number and an ASIL. For
the argumentation of why these Functional Safety Requirements fulfill the Safety
Goal SG1, a fault tree with the violation of the Safety Goal, SG1, as a top event is
used.

During system development, as shown in Fig. 8.1 as part 4, the Functional Safety
Concept is refined into a Technical Safety Concept. It is very similar to a Functional
Safety Concept, but more specific in details. At this point, we work with actual
systems and components, including signaling in between. It is common that a
Technical Safety Concept includes interfaces, partitioning, and monitoring. The
Technical Safety Concept includes Technical Safety Requirements that are allocated
and an argumentation of why the Technical Safety Concept fulfills the Functional
Safety Concept (Fig. 8.3). An example of one possible level of design for a Technical
Safety Concept is shown in Fig. 8.4. Here the design for the decision element has
been refined to an ECU that consists of a microcontroller and an ASIC. For these
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Fig. 8.3 A Technical Safety Concept is one level more detailed than a Functional Safety Concept,
here with a microcontroller including software (SW) and an ASIC for ensuring correct activation

Fig. 8.4 An example of a hierarchy of Technical Safety Concepts

two elements, there are Technical Safety Requirements allocated, denoted by TSR,
with a sequence number and an ASIL.

During actual development, it is common that there is a hierarchy of Technical
Safety Concepts. In addition, for each Safety Goal with an ASIL there are other
Functional Safety Concepts and Technical Safety Concepts. An example of the
relationships between safety concepts is shown in Fig. 8.4. In this case, the top ones
allocate Technical Safety Requirements to elements that consist of both software
and hardware, e.g. an ECU. In the lowest one, the Technical Safety Requirements
are allocated to software and hardware. In this lowest level of Technical Safety
Concept, there is also a hardware-software interface. The following step in the
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design is detailed hardware and software development. In this chapter, we will only
consider the software part. The hardware development has a similar structure as the
software development.

8.4 Planning of Software Development

The software development starts with a planning phase. In addition to the planning
of all software activities, including assigning resources and setting schedules,
the methods and tools used need to be selected. At this phase, the modeling or
programming languages to be used are also determined. The software activities to
be planned are shown in Fig. 8.5 and also described in more detail in this chapter.

Even if ISO 26262 is described in a traditional context with manually written
code according to a waterfall model, ISO 26262 supports both automatic code
generation and agile way of working.

To support the development and to avoid common mistakes, there is a require-
ment to have modeling and coding guidelines. These shall address the following
aspects:

• Enforcement of low complexity: ISO 26262 does not define what low complexity
is and it is up to the user to set an appropriate level of what is sufficiently low.
An appropriate compromise with other methods in this part of ISO 26262 may
be required. One method that can be used is to measure cyclomatic complexity
and have guidance for what to achieve.

• Use of language subsets: When coding, depending on the programming lan-
guage, there are language constructs that may be ambiguously understood or
may easily lead to mistakes. Such language constructs should be avoided, e.g. by
using MISRA-C [AC08] when coding in C.
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Fig. 8.5 The software development activities according to ISO 26262. Adopted from [ISO1]
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• Enforcement of strong typing: Either strong typing is inherent in the program-
ming language used, or there shall be principles added to support this in the
coding guidelines. The advantage of strong typing is that the behavior of a piece
of software is more understandable during design and review as the behavior has
to be explicit. When strong typing is inherent in the programming language, a
value has a type and what can be done with that value depends on the type of the
value, e.g. it is not possible to add a number to a text string.

• Use of defensive implementation techniques: The purpose of defensive imple-
mentation is to make the code robust to continue to operate even in the presence
of faults or unforeseen circumstances, e.g. by catching or preventing exceptions.

• Use of established design principles: The purpose is to reuse principles that are
known to work well.

• Use of unambiguous graphical representation: When using graphical representa-
tion, it should not be open to interpretation.

• Use of style guides: A good style when coding typically makes the code
maintainable, organized, readable, and understandable. Hence, the likelihood for
faults is lowered when using good style guides. One example of a style guide for
C [AC08] is [DV94]

• Use of naming conventions: By using the same naming conventions the code
becomes easier to read, e.g. by using Title Case for names of functions.

8.5 Software Safety Requirements

Once we have Technical Safety Requirements allocated to software and the software
development planned, it is time to specify the software safety requirements. These
are derived from the Technical Safety Concept and the system design specification,
while also considering the hardware-software interface. At the end of this step,
we shall also verify that the software safety requirements, including the hardware-
software interface, realize the Technical Safety Concept.

In a safety-critical context, there are several services expected from software that
are specified by software safety requirements, including:

• Correct and safe execution of the intended functionality.
• Monitoring that the system maintain a safe state.
• Transitioning the system to a degraded state with reduced or no functionality, and

keeping the system in that state.
• Fault detection and handling hardware faults, including setting diagnostic fault

codes.
• Self-testing to find faults before they are activated.
• Functionality related to production, service and decommissioning, e.g. calibra-

tion and deploying airbags during decommissioning.
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8.6 Software Architectural Design

The software safety requirements need to be implemented in a software architecture
together with other software requirements that are not safety-related. In the software
architecture, the software units shall be identified. As the software units get different
software safety requirements allocated to them, it is also important to consider
if these requirements, potentially with different ASILs, can coexist in the same
software unit. There are certain criteria to be met for coexistence. If these criteria
aren’t met, the software needs to be developed and tested according to the highest
ASIL of all allocated safety requirements. These criteria may include memory
protection and guaranteed execution time.

The software architecture includes both static and dynamic aspects. Static aspects
are related to interfaces between the software units and dynamic aspects are related
to timing, e.g. execution time and order. An example can be seen in Fig. 8.6. To spec-
ify these two aspects, the notation of the software architecture to be used is informal,
semi-formal or formal. The higher the ASIL, the more the formality needed.

It is also important that the software architecture consider maintainability and
testability. In an automotive context, software needs to be maintainable as its
lifetime is considerable. It is also necessary that the software in the software
architecture easily be tested, as testing is important in ISO 26262. During the design
of the software architecture, it is also possible to consider the use of configurable
software. There are both advantages and disadvantages when using it.

To avoid systematic faults in software resulting from high complexity, ISO 26262
specifies a set of principles that shall be used for different parts, including:

• Components shall have a hierarchical structure, shall have high cohesion within
them and be restricted in size.

• Interfaces between software units shall be kept simple and small. This can be
supported by limiting the coupling between software units by separation of
concerns.

Fig. 8.6 A simple software architecture with four software units
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• Scheduling of software units shall be appropriate based on the software, and if
interrupts are used, these shall be avoided and be priority-based. The purpose is
to ensure timely execution of software units.

At the software architectural level there is a good possibility of detecting errors
between different software units. As in general for different ASILs, the higher the
ASIL, the more the mechanisms needed. These are mechanisms mentioned in ISO
26262, some overlapping with each other:

• Range checks of data: This is a simple method to ensure that the data read from
or written to an interface is within a specified range of values. Any value outside
this range is to be treated as faulty, e.g. a temperature below absolute zero.

• Plausibility checks: This is a type of sanity check that can be used on signals
between software units. It should, e.g., catch a vehicle speed signal going from
standstill to 100 km/h in 1 s for a normal car. Such acceleration is not plausible.
A plausibility check could use a reference model or compare information from
other sources to detect faulty signals.

• Detection of data errors: There are many different ways of detecting data errors,
e.g. error detecting codes such as checksums and redundant data storage.

• External monitoring facility: To detect faults in execution, an external monitoring
facility can be quite effective. It can, e.g., be software executed in a different
microcontroller or a watchdog.

• Control flow monitoring: By monitoring the execution flow of a software unit,
certain faults can be detected, including skipped instructions and software stuck
in infinite loops.

• Diverse software design: Using diversity in software design can be efficient. The
approach is to design two different software units monitoring each other; if the
behaviors differ, there is a fault that should be handled. This method can be
questioned, as it is not uncommon that software designers make similar mistakes.
To avoid similar mistakes, the more diverse the software functionality is, the
lower the likelihood of these types of mistakes.

Once an error has been detected, it should be handled. The mechanisms for error
handling at the software architectural level specified in ISO 26262 are:

• Error recovery mechanism: The purpose is to go from a corrupted state back into
a state from which normal operation can be continued.

• Graceful degradation: This method takes the system from a normal operation
to a safe operation when faults are detected. A common example in automotive
software is to warn the driver that something is not working by a warning lamp,
e.g. the airbag warning lamp when the airbags are unavailable.

• Independent parallel redundancy: This type of mechanism may be quite costly
as it may need redundant hardware to be efficient. The concept is based on the
assumption that the likelihood of simultaneous failures is low and one redundant
channel should always be operating safely.

• Correcting codes for data: For data errors, there are mechanisms that can correct
these. These mechanisms are all based on adding redundant data to give different
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levels of protection. The more the redundant data that is used, the more the errors
that can be corrected. This is typically used on CDs, DVDs, and RAM, but can
be used in this area as well.

Once the software architectural design is done, it needs to be verified against the
software requirements. ISO 26262 specifies a set of methods that are to be used:

• Walk-through of the design: This method is a form of peer review where the
software architecture designer describes the architecture to a team of reviewers
with the purpose to detect any potential problems.

• Inspection of the design: In contrast to a walk-through, an inspection is more
formal. It consists of several steps, including planning, off-line inspection,
inspection meeting, rework and follow-up of the changes.

• Simulation: If the software architecture can be simulated, it is an effective
method, in particular for finding faults in the dynamic parts of the architecture.

• Prototype testing: As with simulation, prototyping can be quite efficient for the
dynamic parts. It is however important to analyze any differences between the
prototype and the intended target.

• Formal verification: This is a method, rarely used in the automotive industry,
to prove or disprove correctness using mathematics. It can be used to ensure
expected behavior, exclude unintended behavior, and prove safety requirements.

• Control flow analysis: This type of analysis can be done during a static code
analysis. The purpose is to find any safety-critical paths in the execution of the
software at an architectural level.

• Data flow analysis: This type of analysis can also be done during a static code
analysis. The purpose is to find safety-critical values of variables in the software
at an architectural level.

8.7 Software Unit Design and Implementation

Once the software safety requirements are specified and the software architecture
down to software unit level is ready, it is time to design and implement the software
units. ISO 26262 supports both manually written code and automatically generated
code. If the code is generated, the requirements on software units could be omitted,
given that the tool used can be trusted, as determined by tool classification, and if
needed tool qualification. In this section, the focus will be on manually written code.

As with the specification of the software architecture, ISO 26262 specifies the
notation that should be used for the software unit design. ISO 26262 requires an
appropriate combination of notations to be used. Natural language is always highly
recommended. In addition the standard recommends informal notation, semi-formal
notation and formal notation. Formal notation is not really required at this time.

There are many design principles mentioned in ISO 26262 for software unit
implementation. Some may not be applicable, depending on the development. Many



8.7 Software Unit Design and Implementation 213

could also be covered by the coding guidelines used. However, all are mentioned
here for completeness:

• One entry and one exit point: One main reason for this rule is to have
understandable code. Multiple exit points complicate the control flow through
the code and therefore the code is harder to understand and to maintain.

• No dynamic objects or variables: There are two main challenges with dynamic
objects and variables, unpredictable behavior and memory leaks. Both may have
a negative effect on safety.

• Initialization of variables: Without initializing variables, anything can be put in
them, including unsafe and illegal values. Both of these may have a negative
effect on safety.

• No multiple use of variable names: Having different variables using the same
name risks, confusing to readers of the code.

• Avoid global variables: Global variables are bad from two aspects; they can be
read by anyone and be written to by anyone. Working with safety-related code, it
is highly recommended to have control of variables from both aspects. However,
there may be cases where global variables are preferred, and ISO 26262 allows
for these cases if the use can be justified in relation to the associated risks.

• Limited use of pointers: Two significant risks of using pointers are corruption of
variable values and crashes of programs; both should be avoided.

• No implicit type conversions: Even if supported by compilers for some program-
ming languages, this should be avoided as it could result in unintended behavior,
including loss of data.

• No hidden data flow or control flow: Hidden flows make the code harder both to
understand and to maintain.

• No unconditional jumps: Unconditional jumps make the code harder to analyze
and understand with limited added benefit.

• No recursions: Recursion is a powerful method. However, it complicates the
code, making it harder to understand and to verify.

At the time of software unit design and implementation, it is required to verify
that both the hardware-software interface and the software safety requirements are
met. In addition, it shall be ensured that the implementation fulfills the coding
guidelines and that the software unit design is compatible with the intended
hardware. To achieve this, there are several methods to be used:

• Walk-through.1

• Inspection (see footnote 1).
• Semi-formal verification: This family of methods is between informal verifica-

tion, like reviews, and formal verification, with respect to ease of use and strength
in verification results.

• Formal verification (see footnote 1).

1See Sect. 8.6.
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• Control flow analysis (see footnote 1).
• Data flow analysis (see footnote 1).
• Static code analysis: The basis for this analysis is to debug source code without

executing it. There are many tools with increasing capabilities. These often
include analysis of syntax and semantics, checking coding guidelines like
MISRA-C [AC08], variable estimation, and analysis of control and data flows.

• Semantic code analysis: This is a type of static code analysis considering the
semantic aspects of the source code. Examples of what can be detected include
variables and functions not properly defined and used in incorrect ways.

8.8 Software Unit Testing

The purpose of testing the implemented and verified software units is to demonstrate
that the software units meet their software safety requirements and do not contain
any undesired behavior, as shown in Fig. 8.7. There are three steps needed to achieve
this purpose; an appropriate combination of test methods shall be used, the test cases
shall be determined, and an argumentation of why the test done gives sufficient
coverage shall be provided. It is also important that the test environment used for
the software unit testing represent the target environment as closely as possible, e.g.
model-in-the-loop tests and hardware-in-the-loop tests as described in Chap. 3.

ISO 26262 provides a set of test methods, and an appropriate combination shall
be used, depending on the ASIL of the applicable software safety requirements. The
test methods for software unit testing are:

• Requirements-based test: This testing method targets ensuring that the software
under test meets the applicable requirements.

• Interface test: This testing method target to ensure that all interactions with
the software under test work as intended. It should also detect any incorrect
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Fig. 8.7 Software unit testing is done at the level of software unit design and implementation
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assumptions made on the interfaces under test. These interactions should have
been specified by requirements and hence this testing method is overlapping with
requirements-based tests.

• Fault injection test: This method is a very efficient test method for safety-related
testing. The key part is to test to see if there is something missing in the test target.
By injecting different types of faults, together with monitoring and analyzing the
behavior, it is possible to find weaknesses that need to be fixed, e.g. by adding
new safety mechanisms.

• Resource usage test: The purpose of this test method is to verify that the
resources, e.g. communication bandwidth, computational power and memory,
are sufficient for safe operation. For this type of testing, the test target is very
important.

• Back-to-back comparison test: This method compares the behavior of a model
with the behavior of the implemented software when both are stimulated in the
same way. Any differences in behavior could be potential faults that need to be
addressed.

Similarly, ISO 26262 provides a set of methods for deriving test cases for
software unit testing. These methods are:

• Analysis of requirements: This method is the most common approach for deriv-
ing test cases. Basically, the requirements are analyzed and a set of appropriate
test cases are specified.

• Generation and analysis of equivalence classes: The purpose of this method is
to reduce the number of test cases needed to give good test coverage. This is
done by identifying equivalence classes of input and output data that test the
same condition. Test cases are then specified with the target to give appropriate
coverage.

• Analysis of boundary values: This method complements equivalence classes.
The test cases are selected to stimulate boundary values of the input data. It is
recommended to consider the boundary values themselves, values approaching
and crossing the boundaries and out of range values.

• Error guessing: The advantage of this method is that the test cases are generated
based on experience and previous lessons learned.

The last step in software unit testing is to analyze if the test cases performed
provide sufficient test coverage. If this isn’t the case, more tests need to be carried
out. The analysis of coverage is according to ISO 26262, done using these three
metrics:

• Statement coverage: The goal is to have all statements, e.g. printf (“Hello World!
n”), in the software executed.

• Branch coverage: The goal is to have all branches from each decision statement
in the software executed, e.g. both true and false branches from an if statement.

• Modified Condition/Decision Coverage (MC/DC): The goal of this test coverage
is to have four different criteria met. These are: each entry and exit point is
executed, each decision executes every possible outcome, each condition in a
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decision executes every possible outcome, and each condition in a decision is
shown to independently affect the outcome of the decision.

8.9 Software Integration and Testing

Once all software units have been implemented, verified and tested, it is time to
integrate the software units and to test the integrated software. At this testing, the
target is to test the integrated software against the software architectural design, as
shown in Fig. 8.8. This testing is very similar to software unit testing and consists
of three steps: selection of test methods, specification of test cases, and analysis of
test coverage. Also, the test environment shall be as representative as possible.

The test methods for software integration testing are the same as for software
unit testing as described in Sect. 8.8, namely:

• Requirements-based test
• Interface test
• Fault injection test
• Resource usage test
• Back-to-back comparison test

The methods for deriving test cases for software integration testing are the same
as for software unit testing as described in Sect. 8.8, namely:

• Analysis of requirements
• Generation and analysis of equivalence classes
• Analysis of boundary values
• Error guessing
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Fig. 8.8 Software unit integration and testing is done at the level of software architecture
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The last step in the testing of the integrated software is to analyze test coverage.
Again, if the coverage is too low, more tests need to be done. The analysis of
coverage according to ISO 26262 is done using the following methods:

• Function coverage: The goal of this method is to execute all functions in the
software.

• Call coverage: The goal of this method is to execute all function calls in the
software. The key difference of this coverage compared with function coverage
is that a function may be called from many different places and ideally all of
these calls are executed during testing.

8.10 Verification of Software Safety Requirements

Once the software has been fully integrated, it is time for verification of the software
against the software safety requirements, as shown in Fig. 8.9. ISO 26262 specifies
possible test environments that can be used. At this point in time, the environment
to use is very dependent on the type of development. These test environments may
include a combination of:

• Hardware-in-the-loop: Using actual target hardware in combination with a virtual
vehicle is a cost-efficient way of testing. As it uses a virtual vehicle, it should be
complemented by another environment.

• Electronic control unit network environments: Using actual hardware and soft-
ware for the external environment is quite common. It is more correct compared
to a virtual vehicle; at the same time it may be less efficient in running the tests.

• Vehicles: Using vehicles during this level of testing is in particular useful when
there is software that is in operation and has been modified. At the same time, it
makes for the most costly test environment.
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Fig. 8.9 Software unit integration and testing is done at the level of software architecture
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8.11 Examples of Software Design

In this section we take some brief examples from the previous sections to show how
ISO 26262 could impact software design. In the example in Fig. 8.10, we have an
assumed Safety Goal covering faulty behavior classified as ASIL D, and no other
Safety Goal. This example has also broken down the ASIL D into two independent
ASIL B channels using ASIL decomposition. However, the comparator in the end
needs to meet ASIL D requirements as it is a single point of failure.

From the early phases of planning, there will be a requirement on the program-
ming language used, as shown in Fig. 8.10; when using the C language, the MISRA
C [AC08] standard is common. An example of a software safety requirement for the
comparator in the figure is to transition to a safe state in case of detected errors. In
this example a safe state could be no functionality, a so-called fail-silent state. As
intentionally shown in Fig. 8.10, working with the software architectural design is
quite important. In this example we see the plausibility and range checks on the
sensor side as well as external monitoring using diverse software. To make full
benefit of this monitoring function, it needs to be allocated to independent hardware.
For the testing of the main function, using methods meeting ASIL B requirements
on testing is sufficient.

Fig. 8.10 A simple example of a software design for an assumed ASIL D Safety Goal
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8.12 Integration, Testing, Validation, Assessment and Release

Once we have fulfilled the Technical Safety Requirements in the design and
implementation of software and hardware and also shown by testing that the derived
requirements are fulfilled, it is time to integrate hardware and software. In ISO
26262, this is done at three different levels; hardware-software, system and vehicle.
At each level, both integration and testing are required. In real development, there
can be fewer integration levels and more integration levels, especially when the
development has been distributed among vehicle manufacturers and suppliers at
many different levels. At each level, there are specific methods to derive test cases
and methods to be used during testing. All of these have the purpose of providing
evidence that the integrated elements work as specified.

Once we have our Item integrated in a vehicle we can finalize the safety
validation. The purpose of safety validation is to provide evidence that the safety
goals and the functional safety concept are appropriate and achieved for the Item.
By doing so, we have finalized the development and the only remaining activities
are to assess and to conclude that the development has resulted in a safe product.

To document the conclusion and the argument that safety has been achieved, a
safety case is written. A safety case consists of this argumentation, with pointers to
different documents as evidence. Typical evidence includes hazard analysis and risk
assessment, safety concepts, safety requirements, review reports, analysis reports,
and test reports. It is recommended that the safety case be written in parallel with
product development, even if it can’t be finalized before the development activities
have been finalized.

Once the safety case has been written, it is time for functional safety assessment
of Items with higher ASILs. There are many details on how this is to be done, but
let us simplify it here. Basically, someone independent is to review the developed
system, the documentation that led to the system, in particular the safety case, and
the ways of working during the development. If the person doing the assessment is
satisfied, it is possible to do the release for production and start producing.

8.13 Production and Operation

Functional safety as a discipline mainly focuses on product development. At the
same time, what is developed needs to be produced and is intended to be used in
operation by users of the vehicle. Part 7 of ISO 26262 is the smallest part of the
whole standard and describes what is required during both production and operation.
In addition, planning for both production and operation are activities to be done in
parallel to product development.

The requirements for production can be summarized so as to produce what was
intended, including maintenance of a stable production process, documentation of
what was done during production if traceability is necessary, and carrying out of
needed activities such as end-of-line testing and calibration.
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For operation, there are clear requirements on information that the driver and
service personnel should be aware of in, e.g., instructions in a driver’s manual,
service instructions and disassembly instructions. One key part during operation
is also a field monitoring process. The purpose of this process is to detect potential
faults, analyze those faults, and, if needed, initiate proper activities for vehicles in
operation.

8.14 Further Reading

In this chapter, we have provided an overview of ISO 26262 and gone into details of
the software-specific parts. For more details on both of these parts, the ISO 26262
standard itself [ISO11] is a good alternative when starting to work, especially for
the software-specific parts. At the same time, understanding this standard, like many
standards, would benefit from basic training to get the bigger picture and the logic
behind it. For more details on safety-related software, the work in [HHK10] gives a
good start.

To go into details of functional safety in general, there are some books available.
One of the classical books that gives a good overview, even if it is a bit old, is
[Sto96]. A newer book has been written by Smith [SS10]. This book gives a good
overview of functional safety standards in general and details of the IEC 61508 and
IEC 61511 standards. Even if these are different from ISO 26262, the book still
gives good insights that can be used in an automotive context.

When working with functional safety, it is apparent that much of the work is
based on various safety analyses. There is one book that gives a good overview of
what is most used in an automotive context, written by Ericson [EC15]. This book
is well worth reading.

Also, one of the key parts in ISO 26262 and many other safety standards is the
argumentation for safety. This is often documented in a Safety Case. To understand
more on Safety Cases, [WKM97] gives a good overview. For the argumentation part,
the Goal Structuring Notation is both well recognized and an effective approach.
This is well described in [KW04].

8.15 Summary

In this chapter we have described how the automotive industry works with functional
safety and in particular focused on software development. As apparent in this
section, the ISO 26262 standard is the basis for this in the automotive industry.
It is quite a significant standard and it is more or less a prerequisite for being in the
industry, both for organizations and for individuals.
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It is not a standard that is possible to learn overnight, at the same time it is fairly
straightforward for some parts like software engineering. As seen in this section, the
software-specific details in ISO 26262 is more or less a set of additional rules that
one adheres to following normal software development practices.

The reader should also have seen what is typical of ISO 26262; there is no single
answer. This is a standard that describes a simplified way of working with functional
safety in the automotive industry. As there are many different types of development,
this standard has to be adapted to fit each type of development. Hence, the user of
this standard has both a lot of flexibility when applying it and at the same time a
lot of responsibility with regard to arguing for the choices made, e.g. for the test
methods chosen when testing a software unit. There are also differences in how the
standard is interpreted in, e.g., different nations, types of vehicles and levels in the
supply chain.

There is currently an ongoing revision of ISO 26262 [ISO16], where the
significant changes will be in the scope of the standard, now to include all road
vehicles except mopeds. There will also be two new parts, one informative part
for semiconductors and one normative part for motorcycles. In addition, from the
ISO 26262 community there has been work initiated to cover safety of fault-free
vehicle-level functions as well as automotive security. These are not yet ready ISO
standards.
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Chapter 9
Current Trends in Automotive Software
Architectures

Abstract Cars have evolved a lot since their introduction and will evolve even
more. Today’s cars would not work without the software that is embedded in their
electronics. Although the physical processes are often the same as in the cars’ of
the 1990s (combustion engines, servo steering), they become computer platforms
and are able to “think” and drive autonomously. In this chapter we look into a few
trends which shape automotive software engineering—autonomous driving, self-*
systems, big data and new software engineering paradigms. We look into how these
trends can shape the future of automotive software engineering.

9.1 Introduction

Automotive software evolves over time and requires changes to the methods used
to develop it. The evolution of software means that we can use new functions
which require more software, but also that we can use more advanced software
development methods.

If we look at the history of electronics and software in cars, we can see that
it is today that the big technological breakthroughs are happening. The cars of
today have become sophisticated computer platforms which can be used in multiple
ways. The powertrain technology has changed from traditional combustion engines
to electrical or hybrid (e.g. hydrogen technology).

Living in these interesting times, software engineers and architects will see a lot
of great possibilities and great potential. Let us then explore a few trends that seem
to shape current automotive software engineering. In particular, let us explore the
following trends:

• Autonomous driving—how the introduction of autonomous driving shapes the
automotive sector and the software needed to steer cars.

• Self-*—how the ability to develop self-healing and self-adaptive systems influ-
ences the way in which we can design software in modern cars.

• Big data—how the ability to communicate and process large quantities of data
changes the way we think about decision making in cars.

• New software development paradigms—how new software engineering methods
influence the way we develop software for automotive systems.

In the remainder of this chapter we go through these trends.
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9.2 Autonomous Driving

Undoubtedly the main trend in modern software in cars’ is autonomous driving
software. Autonomous driving software allows drivers to skip controlling the
car or some of its functions. The NHSTA (National Highway Safety Traffic
Administration) in the United States recognizes the following levels of autonomous
functionality in cars [AC13]:

• Level 0, No automation—there are no functions in the car that can drive the car
or support the driver.

• Level 1, Function-specific automation—according to the definition “automation
at this level involves one or more specific control functions”, meaning that certain
functions can be autonomous, e.g. adaptive cruise control.

• Level 2, Combined function automation—where a group of functions can be
automated and be autonomous. The driver, however, is still responsible for the
control of the vehicle and must be prepared to take control of the vehicle on very
short notice. Example functions are self-driving on highways.

• Level 3, Limited self-driving automation—the vehicle is able to drive
autonomously under certain conditions and monitor the conditions; the drivers
might need to occasionally take control, but the transition time is comfortably
longer than at level 2.

• Level 4, Full self-driving automation—the vehicle is able to perform the entire
trip autonomously; the driver is only expected to enter constraints and the
destination for the trip. The level applies to both manned and unmanned vehicles.

One can see that modern vehicles already provide functions for automation Level
2 (combined function automation) and some even for level 3 (e.g. Tesla’s autopilot
functionality, [Pas14, Kes15]). This kind of functionality puts a lot of constraints on
the automotive software.

First of all, this drives the complexity of software and therefore the cost
of its development, verification, validation and certification. As the self-driving
functionality is safety-critical it requires specific validation. It also requires complex
reasoning in traffic situations on a very abstract level—e.g. whether it is better to
save lives of the car’s passengers or the lives of others in the accident.

Second of all, this kind of functionality drives the need for large quantities of
data to process, which drives the need for processing power in modern cars. The
processing power requires efficient CPUs and electronic buses of high throughput,
which require more advanced infrastructure (e.g. cooling fans), that is often suscep-
tible to environmental influences such as vibrations, humidity and temperature. This
means that new components need to be develop especially for the cars, which drives
costs.

Third of all, we need to understand that the quality of the sensors today is
insufficient for advanced scenarios. Cameras are able to see clearly in specific
conditions, but the human eye is still better synchronized with the human brain in
all situations. Therefore cameras are not able to work effectively in low light or bad
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weather conditions [KTIC05]. Using high-end cameras and sophisticated equipment
would drive up the cost and still not guarantee the same quality as from human eyes
and brains.

And finally, this kind of autonomous functionality requires acting on higher
abstraction levels. Information about distance to the nearest obstacle needs to be
transformed to a worldview which can be compared to a map view to determine the
best course of action in a specific situation [BT16]. This requires more advanced
algorithms which can be based on heuristics. The heuristics, however, are very
challenging to prove to work correctly in all kinds of traffic situations, thus posing
problems for safety certification.

9.3 Self-*

Self-healing is the ability of the system to autonomously change its structure so that
its behaviour stays the same. An example concept of self-healing can be seen in
the work of Keromytis et al. [Ker07], who define the self-healing as the ability to
autonomously recover from erroneous execution.

One of the most prominent mechanisms used in self-healing systems is the
MAPE-K (Measure, Analyse, Plan and Execute + Knowledge, [MNSKS05]). It is
shown in Fig. 9.1 as an overwatch algorithm for an ECU realizing the adaptive cruise
control functionality.

The algorithm in short is based on monitoring the execution of the algorithm
for correctness. In the example of adaptive cruise control, we can monitor the radar
to confirm it provides reliable results (e.g. no distortion is present). The analysis
component checks whether one of the failure conditions has been detected (e.g. too

Measure 
(if execution is 

correct)

Analyse 
(if action is 
needed)

Plan 
(the action)

Execute 
(the action)

Knowledge
ECU software 
(e.g. Adaptive 
Cruise Control)

Fig. 9.1 Realization of MAPE-K for ECU software
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much noise in the radar readings) and sends a signal to the plan component which
plans appropriate action based on the reading and analysis. One of the actions can
be to disable the adaptive cruise control and inform the user. Once the component
makes a decision about the recovery strategy it moves to the execution and executes
the repair strategy (i.e. informs the user and disables the adaptive cruise control
algorithm).

This trend of using self-adaptation is used increasingly in safety-critical systems
as it allows us to change the operation of a component in the presence of errors
and failures. It can provide the ability to the system to self-degrade the functionality
(e.g. temporarily change the operation of the engine, as discussed in Chap. 6).

However, there are still challenges which need to be addressed in order to make
self-adaptation even more applicable to automotive systems. One of the major
challenges is the ability to prove that the system is “safe” (in the sense of ISO/IEC
26262) during self-adaptation. Another is the fact that self-adaptation algorithms
can be complex and need to be validated, but in many situations the failure modes
cannot be replicated in real life. For example, it is difficult to safely replicate the
situation where a radar in adaptive cruise control is broken when a vehicle drives at
150 km/h.

Nevertheless, we can perceive more self-* algorithms entering automotive
systems as they need to monitor the increasingly complex decision algorithms in
modern cars (e.g. related to autonomous driving).

9.4 Big Data

With the ability of modern cars to communicate with each other and the ability to
use their own sensors in decision making, the amount to data used in modern cars
has increased exponentially. At the same time, the field of computer science has
evolved and started to tackle challenges related to storing, analysing and processing
large quantities of data [MCBC11, MSC13].

Big Data systems are often characterized by the so-called five Vs:

• Volume—big data systems have large amounts of data (e.g. tera- or petabytes),
which makes storage and processing a challenging task requiring new types of
algorithms.

• Variety—the data comes from heterogeneous sources, has different formats, and
has multiple semantic models, which require preprocessing before the data can
be fed to analysis algorithms.

• Velocity—the data is provided at high speeds and requires processing realtime
(e.g. from multiple sensors in the car and needs to be used to make safety-
critical decisions). The speed requires large processing power, which might not
be available in such systems as the automotive software.

• Value—the data collected has some business value (e.g. data about the driv-
ing routines of cars) which makes the storage, privacy and security issues
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challenging, especially in combination with the velocity of processing and the
next V—veracity.

• Veracity—the data has varying degree of quality, e.g., in terms of accuracy and
trustworthiness. This varying degree of accuracy makes it challenging for the
systems to use.

The challenges of using big data in automotive systems are related to all of
the above V’s. The large volume of data which comes from the car’s own sensors
needs to be processed and often stored, which puts requirements on storage in cars.
Before the popularization of the SSD (Solid State Disk) technology it was rather
challenging to use hard disks to store data (durability problems due to vibrations).
Now, it is possible to store more data and also to process more data.

The high speed of processing requires more processing power, more efficient
processors which take power and more connectivity. This drives the cost of
automotive hardware since the more efficient processors require more infrastructure
(stability, cooling), which is prone to problems in the automotive environment
(humidity, vibrations). The hardware price is so important in the automotive domain
(as opposed to other domains, where hardware is considered cheap) that one usually
takes a calculation (a rule of thumb) that one dollar more expensive hardware per
ECU can lead to 100 dollars more expensive cars.

The veracity of the data is a challenge as in many cases the “true” values
cannot be measured but computed. For example, the slippage of the road in winter
conditions cannot be measured but are derived either from ABS usage or the steering
wheel friction. In some cases the data is obfuscated in order to secure privacy
(e.g. triangulation algorithms to hide the true position of a car), which prevent the
algorithms from “knowing” the true value of the data point [SS16].

In the future we will see more of big data, as large quantities of data are needed
for autonomous driving and for advanced algorithms for collision prevention and
avoidance.

9.5 New Software Development Paradigms

Software engineering for automotive systems has evolved the pace of the automotive
domain. So, let us look into a few of the trends which shape the field today and will
potentially shape the field in the future.

Agility in Specification Development Agile software development has been used
in many domains outside of the automotive and now there is evidence that it is
used increasingly in the automotive domain. In particular, at the lower part of the V-
model suppliers work more agilely with their requirements engineering and software
development [MS04]. We can also observe these trends scaling up to complete
vehicle development [EHLB14] and [MMSB15]. With this increased adoption
of Agile principles we can foresee the increased ability to specify requirements
alongside software development, especially as the trends in automotive electronics
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increasingly contain more commodity (or off-the-shelf) components. AUTOSAR
also prescribes a standardized approach to development, which eases the use of
iterative development principles as the development of electronics/hardware is
decoupled from the development of functions/software.

Increased Focus on Traceability The increased amount of software in cars and
their increased presence in safety systems leads to stricter processes for keeping
track of requirements for safety-critical systems. ISO 26262 (Road vehicles—
Functional Safety) is one example of this. In the automotive domain this means that
the increased complexity of software modules [SRH15] leads to more fine-grained
traceability management. One of the enablers of this increased traceability is the
increased integration between the tools—tool chaining [BDT10] and [ABBC12].

Increased Focus on Non-functional Properties The increased use of software
for active safety systems calls for increased focus on non-functional properties of
software. The increased traffic on communication buses within the car, and the
increased capacity of the communication buses call for more synchronization and
verification. Safety analyses such as control path monitoring, safety bits and data
complexity control, are just a few examples [Sin11]. As the focus of requirements
engineering research in the automotive domain was mainly (or implicitly) in the
functional requirements, we foresee an increased growth of research and emphasis
on the non-functional requirements.

Increased Focus on Security Requirements A dedicated group of requirements
is the security requirements, as our cars are increasingly connected and therefore
prone to hacker attacks [SLSC13] and [Wri11]. The recent demonstration of the
possibility of steering a Jeep Wrangler vehicle offroad showed that the threat is real
and related to the safety of cars and transport systems. We therefore perceive that
the ability to prevent attacks will the focus of the automotive software development
increasingly more in the coming decade.

9.5.1 Architecting in the Age of Agile Software Development

Architecture development in software development is usually conducted by experi-
enced architects, and the larger the product, the more the experience required. As
each type of system has its specific requirements, the architectural design requires
attention to specific aspects like realtime properties or extensibility. For example,
in the telecom domain the extensibility and performance are the main aspects,
whereas in the automotive domain it is safety and performance that are of the
utmost priority. The architecture development efforts are dependent to some extent
on the software development process adopted by the company, e.g. the architecture
development methods differ in the V-model and Agile methodologies. In the V-
model the architecture work is mostly prescriptive and centralized around the
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Fig. 9.2 Feature development in Lean/Agile methods

architects whereas in the Agile methods the work can be more descriptive and
distributed into multiple self-organized teams.

As Agile software development principles spread in industry, architecture devel-
opment evolved. As Agile development teams became self-organized, architecture
work became more distributed and harder to control centrally [Ric11]. The dif-
ficulties stem from the fact that Agile teams value independence and creativity
[SBBC09] whereas architecture development requires stability, control, trans-
parency and proactivity [PW92]. Figure 9.2 presents an overview of how the
functional requirements (FR) and non-functional requirements (NFR) are packaged
into work packages and developed as features by teams. Each team delivers code to
the main branch. Each team has the possibility to deliver the code to any component
of the product.

The requirements come from the customers and are prioritized and packaged into
features by product management (PM), which communicates with system manage-
ment (SM) on the technical aspects of how the features affect the architecture of the
product. System management communicates with the teams (DM, Test) that design,
implement and test (functional testing) the feature before delivering it to the main
branch. The code in the main branch is tested thoroughly by dedicated test units
before being release [SM11].

9.6 Other Trends

Bosch has presented three trends which shaped software engineering in the mid-
2010s [Bos16]: speed of software development, ecosystems and data-driven devel-
opment. He predicted that the companies which are the first ones on the market
would be more successful than others as the innovation model is based on the shark’s
tail rather than the traditional technology adoption curve. In particular, the majority
of new, innovative software products are adopted by the market at a tremendous
pace, and then companies need to be prepared to be ready for the market. Followers
do not have the same ability to attract customers [DN14]. Ecosystem thinking (e.g.
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Apple’s App store or Google’s Play store) has been present in the automotive sector
from way back in the hardware domain (e.g. customers of BMW are bound to
buy spare parts from manufacturer) but not in the software domain. And finally
we have data-driven development and the Lean innovation thinking [Rie11] where
customers provide the companies with the data on how to develop their products.
With connected cars and the ability to update the car software over the air we
will probably see more data-driven development in the automotive industry in the
coming decade.

Burton and Willis from Gartner identified five mega-trends which have the
potential of shaping software engineering in the coming decades [BW15]. These
mega-trends are:

• Digital Business Moves Toward the Peak of Inflated Expectations
• IoT, Mobility and Smart Machines Rapidly Approach the Peak
• Digital Marketing and Digital Workplace Quickly Move Up
• Analytics Are at the Peak
• Big Data and Cloud Make Big Moves Toward the Trough of Disillusionment

In short, these trends will drive the need for more advanced functionality of cars
and the use of big data for decision making and even the development of the cars
(finding out the requirements from the data rather than focus group interviews).
However, they predict that the era of wearables (e.g. smartwatches) will reach the
so-called “pit of disillusion” where they will probably reach the state where no more
development is of interest to the customers.

In their 2016 report, Gartner Associates provide even more focus on Artificial
Intelligence, Machine Learning and autonomy. We perceive these technologies as
new hype in automotive software engineering, especially when combined with
different levels of autonomy and self-adaptation algorithms. This will mean even
more complexity and software in future cars.

9.7 Summary

To conclude this chapter let us make a speculation that future cars will be more like
computer platforms where different third party companies can build applications.
We can see the self-driving car of Google as an example of such a move [Gom16].

The telecommunication domain has evolved from proprietary solutions in mobile
phones of the 1990s to standardized platforms and ecosystems of the smartphones of
the 2010s—Android and iOS leading the field in this direction. Customers buying a
new mobile phone buy a device which they can load with apps of their own choice—
some free and some paid. We can see that the ability to update car’s software will
lead to similar trends (already visible in the infotainment domain.)

These possibilities of opening up for third party software in cars is expected to
change the face of the automotive industry in the future. Commoditizing platforms
and portability between vendors on the application level can cause cars to become
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much safer and much more fun. We can expect the cars to become hubs for all kinds
of devices and integrated with wearables to provide drivers and passengers with an
even better driving experience than today’s. We need to live and see what the future
of software in cars will bring.
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Chapter 10
Summary

Abstract In this book we have introduced the concept of software architecture
in automotive software and overviewed different architectural styles that can be
encountered in modern automotive software. In this chapter we present the summary
of the main points of the book and pinpoint additional reading in the area.

10.1 Software Architectures in General and in the
Automotive Software: A Short Recap

Software architecture is a high level design and organization of the software system.
It provides guidelines for the detailed design of the software, its components and
their deployment. It is usual that software architecture documentation contains
a number of different viewpoints, such as the functional viewpoint, the logical
viewpoints, or the deployment one.

As the software architecture also provides the principles of the high-level
organization of the software system, they often include different architectural styles.
In general, we could observe over 20 different styles which are often accompanies
by over 20 different patterns. However, in the automotive software design only some
of these styles and patterns are applicable.

In this book we collected the most important methods and tools for the design of
automotive software—both at the architectural level and at a detailed design level.
In this chapter we provide a short summary of each chapter and briefly outline why
this knowledge is important for the future of the automotive software engineering.

10.2 Chapter 2: Software Architectures

In the second chapter of this book we introduced the notion of software architecture
as high level structures of a software system, the discipline of creating such
structures, and the documentation of these structures. We have introduced the notion
of software component and discussed a set of architectural viewpoints which are
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common in the design of the automotive software systems, such as:

• Functional view—describing the architecture of the functions of the vehicle and
the dependency between them

• Physical view—describing the physical nodes (ECUs) and their connections
• Logical view—describing the software components and their organization, and
• Deployment view—describing the deployment of software components onto the

ECUs

We have also exemplified the main architectural styles present in the automotive
sector:

• Layered architecture
• Component-based architecture
• Monolithic architecture
• Microkernel architecture
• Pipes and filters architecture
• Event-driven architecture, and
• Middleware architecture with message brokers

The knowledge contained in Chap. 2 prepares us to start designing software
systems at a very high level. In order to be effective we need to understand how
the automotive software development is done, and therefore we describe it in the
next chapter.

10.3 Chapter 3: Automotive Software Engineering

When describing the automotive software engineering practices, we start with the
description of requirements, which are a bit specific for the automotive software.
We discuss the following types of requirements:

• Textual requirements—specifications which are done in form of free text or tables
• Use case requirements—specifications which are based on UML Use cases and

the corresponding sequence diagrams
• Model-based requirements—specifications which are done in form of models

that should be implemented by suppliers

We need to understand the way in which requirements are done so that we
understand the way in which software verification and validation is done. This
verification and validation, done in form of testing, is discussed in the remaining
of that chapter, where we introduce:

• Unit testing—verification of the functionality of individual software modules
• Component testing—verification of groups of software modules—components
• System testing—verification of the complete system (both of its complete

functionality and partial functionality during the course of the development), and
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• Functional testing—validation of the end user functions against their
specifications

Once we introduce the different testing techniques, and the stages of integration
of the software of a car, we discuss how these elements are stored in the so-called
product databases.

10.4 Chapter 4: AUTOSAR

One of the major trends in today’s automotive software is the introduction of the
AUTOSAR standard. The standard specifies how the automotive software is to be
organized and how it should communicate with each other. By some, the standard
is viewed as “the operating system” of the car.

This chapter has been written by Darko Durisic, who is one of the representatives
of one of the Swedish OEMs in the AUTOSAR consortium. His research and
expertise in the area resulted in a good introduction to the standard from the
perspective of a software designer. The focus on the chapter is on the reference
architecture provided by AUTOSAR and its implications.

In this chapter we also discuss the evolution of the AUTOSAR from the perspec-
tive of software concepts—which elements of the specification have changed, how
the number of concept has evolved and what it means for the automotive software
design.

We conclude the chapter by providing a few examples of how to design the
modern software components based on AUTOSAR.

10.5 Chapter 5: Detailed Design of Automotive Software

The discussion about automotive architectures would not be complete if we did not
discuss the methods for detailed design of this software. In Chap. 5 we introduce a
number of methods:

• Simulink modelling—probably the most widely used method for detailed design
of algorithms in the automotive software, usually used in such domains as
Powertrain and Active Safety or Chassi development.

• SysML—a UML based method for specifying the software focused on the
concepts of the programming languages.

• EAST-ADL—another UML based method for designing the automotive soft-
ware, combining the problem domain concepts with the programming/system
level concepts.

• GENIVI—a standard for programming infotainment systems, which is currently
gaining increasingly more popularity in the market.
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Knowing the notation is one thing, understanding the principles of the design of
safety-critical systems is another. Therefore we introduce the principles of designing
of safety critical systems based on the research from NASA and its space program.

10.6 Chapter 6: Evaluation of Automotive Software
Architectures

Once we introduce the detailed design we also discuss methods for evaluating soft-
ware architectures. In Chap. 6 we focus on presenting methods based on qualitative
evaluations—we focus on Architecture Trade-Off Analysis Method (ATAM).

We start the chapter by introducing the rationale for the evaluation of the
architectures anchored in the international standard ISO/IEC 25000. We then
describe the ATAM and provide a number of typical scenarios for evaluating safety
critical systems.

Finally we present an example evaluation of a simple architectural design.

10.7 Chapter 7: Metrics for Software Designs and
Architectures

To complement the methods presented in Chap. 6, we focus on methods based
on quantitative measurements of software design. We introduce the international
standard ISO/IEC 15939 for software measurement processes and we discuss
abstraction levels of different metrics.

We provide a set of measures used by software architects—an architect
portfolio—and their visualizations. We also present a set of metrics for the detailed
designs of the automotive software.

As an example in this chapter we present measurement results of publicly
available industrial data set from one of the modern cars. Based on this open data
we discuss the properties of the software such as its size or cyclomatic complexity.
We reason what that means for the validation of software and its safety.

This chapter is co-authored with Wilhelm Meding from Ericsson, who is a senior
measurement program and team leader and has been working in this domain for
more than 10 year.

10.8 Chapter 8: Functional Safety of Automotive Software

Once we outlined the risks of not being able to fully validate the software once it
becomes too complex, we move on and introduce one of the major standard in the
automotive software today—ISO/IEC 26262 (functional safety).
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This chapter was authored by Per Johannessen from Volvo AB, who was part of
the introduction of the ISO/IEC 26262 standard to one of the OEMs of the passenger
vehicles and is currently working on the same topic for heavy vehicles and buses.

As an example in this chapter we present an architecture of a microcontroller
where the different ASIL levels are demonstrated.

10.9 Chapter 9: Current Trends

Finally we close this book by outlining the current trends in the automotive software
development. We outline the following trends:

• Autonomous driving—a trend which requires more complex software and higher
degree of connectivity

• Self-healing, self-adaptive, self-organizing systems—a trend which enables more
reliable and smarter software, but is challenging in terms of safety assessment
over time

• Big data—a trend which enables the cars’ software to make smarter decisions
based on the availability of information from external sources, at the same time
putting requirements on the processing power, storage and other characteristics
of the software system

• New trends in software development—for example the trend of continuous
integration of software which enables constant improvements of the software, but
at the same time putting a lot of requirements on safety assessment and validation
of the software on-the-fly

10.10 Closing Remarks

At this point we finish our journey through the automotive software development of
the second decade of the second millennium. We see that we live in very dynamic
times where the field of software engineering in the automotive sector just starts to
grow and expand rapidly.

We hope that this book will help You, the reader to become a better software
engineer and will help the cars to be smarter, better, more fun and above all—safer!
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