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Preface

This book is an introduction to modern credit risk methodology as well a cookbook for
putting credit risk models to work. We hope that the two purposes go together well. From
our own experience, analytical methods are best understood by implementing them.

Credit risk literature broadly falls into two separate camps: risk measurement and pricing.
We belong to the risk measurement camp. Chapters on default probability estimation and
credit portfolio risk dominate chapters on pricing and credit derivatives. Our coverage of
risk measurement issues is also somewhat selective. We thought it better to be selective than
to include more topics with less detail, hoping that the presented material serves as a good
preparation for tackling other problems not covered in the book.

We have chosen Excel as our primary tool because it is a universal and very flexible tool
that offers elegant solutions to many problems. Even Excel freaks may admit that it is not
their first choice for some problems. But even then, it is nonetheless great for demonstrating
how to put models at work, given that implementation strategies are mostly transferable to
other programming environments. While we tried to provide efficient and general solutions,
this was not our single overriding goal. With the dual purpose of our book in mind, we
sometimes favored a solution that appeared more simple to grasp.

Readers surely benefit from some prior Excel literacy, e.g. knowing how to use a sim-
ple function such as AVERAGE(), being aware of the difference between SUM(A1:A10)
SUM($A1:$A10) and so forth. For less experienced readers, there is an Excel for beginners
video on the DVD, and an introduction to VBA in the appendix; the other videos supplied
on the DVD should also be very useful as they provide a step-by-step guide more detailed
than the explanations in the main text.

We also assume that the reader is somehow familiar with concepts from elementary
statistics (e.g. probability distributions) and financial economics (e.g. discounting, options).
Nevertheless, we explain basic concepts when we think that at least some readers might
benefit from it. For example, we include appendices on maximum likelihood estimation or
regressions.

We are very grateful to colleagues, friends and students who gave feedback on the
manuscript: Oliver Blümke, Jürgen Bohrmann, André Güttler, Florian Kramer, Michael
Kunisch, Clemens Prestele, Peter Raupach, Daniel Smith (who also did the narration of the
videos with great dedication) and Thomas Verchow. An anonymous reviewer also provided
a lot of helpful comments. We thank Eva Nacca for formatting work and typing video text.
Finally, we thank our editors Caitlin Cornish, Emily Pears and Vivienne Wickham.



xii Preface

Any errors and unintentional deviations from best practice remain our own responsibility.
We welcome your comments and suggestions: just send an email to comment@loeffler-
posch.com or visit our homepage at www.loeffler-posch.com.

We owe a lot to our families. Before struggling to find the right words to express our
gratitude we rather stop and give our families what they missed most, our time.



Some Hints for Troubleshooting

We hope that you do not encounter problems when working with the spreadsheets, macros
and functions developed in this book. If you do, you may want to consider the following
possible reasons for trouble:

• We repeatedly use the Excel Solver. This may cause problems if the Solver add-in is
not activated in Excel and VBA. How this can be done is described in Appendix A2.
Apparently, differences in Excel versions can also lead to situations in which a macro
calling the Solver does not run even though the reference to the Solver is set.

• In Chapter 10, we use functions from the AnalysisToolpak add-in. Again, this has to be
activated. See Chapter 9 for details.

• Some Excel 2003 functions (e.g. BINOMDIST or CRITBINOM) have been changed
relative to earlier Excel versions. We’ve tested our programs on Excel 2003. If you’re
using an older Excel version, these functions might return error values in some cases.

• All functions have been tested for the demonstrated purpose only. We have not strived to
make them so general that they work for most purposes one can think of. For example,

– some functions assume that the data is sorted in some way, or arranged in columns
rather than in rows;

– some functions assume that the argument is a range, not an array. See the Appendix A1
for detailed instructions on troubleshooting this issue.

A comprehensive list of all functions (Excel’s and user-defined) together with full syntax
and a short description can be found at the end of Appendix A5.





1
Estimating Credit Scores with Logit

Typically, several factors can affect a borrower’s default probability. In the retail segment,
one would consider salary, occupation, age and other characteristics of the loan applicant;
when dealing with corporate clients, one would examine the firm’s leverage, profitability or
cash flows, to name but a few. A scoring model specifies how to combine the different pieces
of information in order to get an accurate assessment of default probability, thus serving to
automate and standardize the evaluation of default risk within a financial institution.

In this chapter, we will show how to specify a scoring model using a statistical technique
called logistic regression or simply logit. Essentially, this amounts to coding information into
a specific value (e.g. measuring leverage as debt/assets) and then finding the combination
of factors that does the best job in explaining historical default behavior.

After clarifying the link between scores and default probability, we show how to estimate
and interpret a logit model. We then discuss important issues that arise in practical appli-
cations, namely the treatment of outliers and the choice of functional relationship between
variables and default.

An important step in building and running a successful scoring model is its validation.
Since validation techniques are applied not just to scoring models but also to agency ratings
and other measures of default risk, they are described separately in Chapter 7.

LINKING SCORES, DEFAULT PROBABILITIES AND OBSERVED
DEFAULT BEHAVIOR

A score summarizes the information contained in factors that affect default probability.
Standard scoring models take the most straightforward approach by linearly combining those
factors. Let x denote the factors (their number is K) and b the weights (or coefficients)
attached to them; we can represent the score that we get in scoring instance i as:

Scorei = b1xi1 + b2xi2 + � � � + bKxiK (1.1)

It is convenient to have a shortcut for this expression. Collecting the b’s and the x’s in
column vectors b and x we can rewrite (1.1) to:

Scorei = b1xi1 + b2xi2 + � � � + bKxiK = b′xi� xi =

⎡
⎢⎢⎢⎣

xi1

xi2
���

xiK

⎤
⎥⎥⎥⎦ � b =

⎡
⎢⎢⎢⎣

b1

b2
���

bK

⎤
⎥⎥⎥⎦ (1.2)

If the model is to include a constant b1, we set xi1 = 1 for each i.
Assume, for simplicity, that we have already agreed on the choice of the factors x – what

is then left to determine is the weight vector b. Usually, it is estimated on the basis of the
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Table 1.1 Factor values and default behavior

Scoring
instance i

Firm Year Default indicator
for year +1

Factor values from the end of
year

yi xi1 xi2 xiK

1 XAX 2001 0 0.12 0.35 � � � 0.14
2 YOX 2001 0 0.15 0.51 � � � 0.04
3 TUR 2001 0 −0�10 0.63 � � � 0.06
4 BOK 2001 1 0.16 0.21 � � � 0.12
� � � � � � � � � � � � � � � � � � � � � � � �
912 XAX 2002 0 −0�01 0.02 � � � 0.09
913 YOX 2002 0 0.15 0.54 � � � 0.08
914 TUR 2002 1 0.08 0.64 � � � 0.04
� � � � � � � � � � � � � � � � � � � � � � � �
N VRA 2005 0 0.04 0.76 � � � 0.03

observed default behavior.1 Imagine that we have collected annual data on firms with factor
values and default behavior. We show such a data set in Table 1.1.2

Note that the same firm can show up more than once if there is information on this firm
for several years. Upon defaulting, firms often stay in default for several years; in such
cases, we would not use the observations following the year in which default occurred. If a
firm moves out of default, we would again include it in the data set.

The default information is stored in the variable yi. It takes the value 1 if the firm
defaulted in the year following the one for which we have collected the factor values, and
zero otherwise. The overall number of observations is denoted by N .

The scoring model should predict a high default probability for those observations that
defaulted and a low default probability for those that did not. In order to choose the
appropriate weights b, we first need to link scores to default probabilities. This can be done
by representing default probabilities as a function F of scores:

Prob�Defaulti� = F�Scorei� (1.3)

Like default probabilities, the function F should be constrained to the interval from 0 to 1;
it should also yield a default probability for each possible score. The requirements can be
fulfilled by a cumulative probability distribution function. A distribution often considered
for this purpose is the logistic distribution. The logistic distribution function ��z� is defined
as ��z� = exp�z�/�1 + exp�z��. Applied to (1.3) we get:

Prob�Defaulti� = ��Scorei� = exp�b′xi�

1 + exp�b′xi�
= 1

1 + exp�−b′xi�
(1.4)

Models that link information to probabilities using the logistic distribution function are called
logit models.

1 In qualitative scoring models, however, experts determine the weights.
2 Data used for scoring are usually on an annual basis, but one can also choose other frequencies for data collection as well as
other horizons for the default horizon.
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In Table 1.2, we list the default probabilities associated with some score values and
illustrate the relationship with a graph. As can be seen, higher scores correspond to a higher
default probability. In many financial institutions, credit scores have the opposite property:
they are higher for borrowers with a lower credit risk. In addition, they are often constrained
to some set interval, e.g. 0 to 100. Preferences for such characteristics can easily be met. If
we use (1.4) to define a scoring system with scores from −9 to 1, but want to work with
scores from 0 to 100 instead (100 being the best), we could transform the original score to
myscore = −10 × score + 10.

Table 1.2 Scores and default probabilities in the logit model

Having collected the factors x and chosen the distribution function F , a natural way
of estimating the weights b is the maximum likelihood method (ML). According to the
ML principle, the weights are chosen such that the probability (=likelihood) of observing
the given default behavior is maximized. (See Appendix A3 for further details on ML
estimation.)

The first step in maximum likelihood estimation is to set up the likelihood function. For
a borrower that defaulted (Yi = 1), the likelihood of observing this is

Prob�Defaulti� = ��b′xi� (1.5)

For a borrower that did not default (Yi = 0), we get the likelihood

Prob�No defaulti� = 1 − ��b′xi� (1.6)

Using a little trick, we can combine the two formulae into one that automatically gives
the correct likelihood, be it a defaulter or not. Since any number raised to the power of 0
evaluates to 1, the likelihood for observation i can be written as:

Li = ���b′xi��
yi �1 − ��b′xi��

1−yi (1.7)
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Assuming that defaults are independent, the likelihood of a set of observations is just the
product of the individual likelihoods3:

L =
N∏

i=1

Li =
N∏

i=1

���b′xi��
yi �1 − ��b′xi��

1−yi (1.8)

For the purpose of maximization, it is more convenient to examine ln L, the logarithm of
the likelihood:

ln L =
N∑

i=1

yi ln���b′xi�� + �1 − yi� ln�1 − ��b′xi�� (1.9)

This can be maximized by setting its first derivative with respect to b to 0. This derivative
(like b, it is a vector) is given by:

� ln L

�b
=

N∑
i=1

�yi − ��b′xi�� xi (1.10)

Newton’s method (see Appendix A3) does a very good job in solving equation (1.10) with
respect to b. To apply this method, we also need the second derivative, which we obtain as:

�2 ln L

�b �b′ = −
N∑

i=1

��b′xi�� 1 − ��b′xi�� xix
′
i (1.11)

ESTIMATING LOGIT COEFFICIENTS IN EXCEL

Since Excel does not contain a function for estimating logit models, we sketch how to con-
struct a user-defined function that performs the task. Our complete function is called LOGIT.
The syntax of the LOGIT command is equivalent to the LINEST command: LOGIT(y, x,
[const],[statistics]), where [] denotes an optional argument.

The first argument specifies the range of the dependent variable, which in our case is the
default indicator y; the second parameter specifies the range of the explanatory variable(s).
The third and fourth parameters are logical values for the inclusion of a constant (1 or
omitted if a constant is included, 0 otherwise) and the calculation of regression statistics
(1 if statistics are to be computed, 0 or omitted otherwise). The function returns an array,
therefore, it has to be executed on a range of cells and entered by [Ctrl]+[Shift]+[Enter].

Before delving into the code, let us look at how the function works on an example data
set.4 We have collected default information and five variables for default prediction: Working
Capital (WC), Retained Earnings (RE), Earnings before interest and taxes (EBIT) and Sales
(S), each divided by Total Assets (TA); and Market Value of Equity (ME) divided by Total
Liabilities (TL). Except for the market value, all of these items are found in the balance
sheet and income statement of the company. The market value is given by the number of
shares outstanding multiplied by the stock price. The five ratios are those from the widely

3 Given that there are years in which default rates are high, and others in which they are low, one may wonder whether the
independence assumption is appropriate. It will be if the factors that we input into the score capture fluctuations in average default
risk. In many applications, this is a reasonable assumption.
4 The data is hypothetical, but mirrors the structure of data for listed US corporates.
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known Z-score developed by Altman (1968). WC/TA captures the short-term liquidity of
a firm, RE/TA and EBIT/TA measure historic and current profitability, respectively. S/TA
further proxies for the competitive situation of the company and ME/TL is a market-based
measure of leverage.

Of course, one could consider other variables as well; to mention only a few, these
could be: cash flows over debt service, sales or total assets (as a proxy for size), earnings
volatility, stock price volatility. Also, there are often several ways of capturing one underlying
factor. Current profits, for instance, can be measured using EBIT, EBITDA (=EBIT plus
depreciation and amortization) or net income.

In Table 1.3, the data is assembled in columns A to H. Firm ID and year are not required
for estimation. The LOGIT function is applied to range J2:O2. The default variable which
the LOGIT function uses is in the range C2:C4001, while the factors x are in the range
D2:H4001. Note that (unlike in Excel’s LINEST function) coefficients are returned in the
same order as the variables are entered; the constant (if included) appears as the leftmost
variable. To interpret the sign of the coefficient b, recall that a higher score corresponds to
a higher default probability. The negative sign of the coefficient for EBIT/TA, for example,
means that default probability goes down as profitability increases.

Table 1.3 Application of the LOGIT command to a data set with information on defaults and five
financial ratios

Now let us have a close look at important parts of the LOGIT code. In the first lines of
the function, we analyze the input data to define the data dimensions: the total number of
observations N and the number of explanatory variables (incl. the constant) K. If a constant
is to be included (which should be done routinely) we have to add a vector of 1’s to the
matrix of explanatory variables. This is why we call the read-in factors xraw, and use them
to construct the matrix x we work with in the function by adding a vector of 1’s. For this, we
could use an If-condition, but here we just write a 1 in the first column and then overwrite
it if necessary (i.e. if constant is 0):

Function LOGIT(y As Range, xraw As Range, _
Optional constant As Byte, Optional stats As Byte)

If IsMissing(constant) Then constant = 1
If IsMissing(stats) Then stats = 0
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’Count variables
Dim i As long, j As long, jj As long

’Read data dimensions
Dim K As Long, N As Long
N = y.Rows.Count
K = xraw.Columns.Count + constant

’Adding a vector of ones to the x matrix if constant=1,
’name xraw=x from now on

Dim x() As Double
ReDim x(1 To N, 1 To K)
For i = 1 To N
x(i, 1) = 1
For j = 1 + constant To K
x(i, j) = xraw(i, j - constant)

Next j
Next i
…

The logical value for the constant and the statistics are read in as variables of type byte,
meaning that they can take integer values between 0 and 255. In the function, we could
therefore check whether the user has indeed input either 0 or 1, and return an error message
if this is not the case. Both variables are optional, if their input is omitted the constant is
set to 1 and the statistics to 0. Similarly, we might want to send other error messages, e.g.
if the dimension of the dependent variable y and the one of the independent variables x do
not match.

In the way we present it, the LOGIT function requires the input data to be organized in
columns, not in rows. For the estimation of scoring models, this will be standard, as the num-
ber of observations is typically very large. However, we could modify the function in such a
way that it recognizes the organization of the data. The LOGIT function maximizes the log
likelihood by setting its first derivative to 0, and uses Newton’s method (see Appendix A3)
to solve this problem. Required for this process are: a set of starting values for the unknown
parameter vector b; the first derivative of the log-likelihood (the gradient vector g()) given
in (1.10)); the second derivative (the Hessian matrix H() given in (1.11)). Newton’s method
then leads to the rule:

b1 = b0 −
[

�2 ln L

�b0 �b′
0

]−1
� ln L

�b0

= b0 − H�b0�
−1g�b0� (1.12)

The logit model has the nice feature that the log-likelihood function is globally concave.
Once we have found the root to the first derivative, we can be sure that we have found the
global maximum of the likelihood function.

A commonly used starting value is to set the constant as if the model contained only a
constant, while the other coefficients are set to 0. With a constant only, the best prediction
of individual default probabilities is the average default rate, which we denote by ȳ; it can
be computed as the average value of the default indicator variable y. Note that we should
not set the constant b1 equal to ȳ because the predicted default probability with a constant
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only is not the constant itself, but rather ��b1�. To achieve the desired goal, we have to
apply the inverse of the logistic distribution function:

�−1�ȳ� = ln�ȳ/�1 − ȳ�� (1.13)

To check that it leads to the desired result, examine the default prediction of a logit model
with just a constant that is set to (1.13):

Prob�y = 1� = ��b1� = 1
1 + exp�−b1�

= 1
1 + exp�− ln�ȳ/�1 − ȳ���

= 1
1 + �1 − ȳ�/ȳ

= ȳ (1.14)

When initializing the coefficient vector (denoted by b in the function), we can already
initialize the score b′x (denoted by bx), which will be needed later. Since we initially set
each coefficient except the constant to zero, bx equals the constant at this stage. (Recall that
the constant is the first element of the vector b, i.e. on position 1.)

’Initializing the coefficient vector (b) and the score (bx)
Dim b() As Double, bx() As Double, ybar As Double
ReDim b(1 To K): ReDim bx(1 To N)

ybar = Application.WorksheetFunction.Average(y)
If constant = 1 Then b(1) = Log(ybar / (1 − ybar))
For i = 1 To N
bx(i) = b(1)

Next i

If the function was entered with the logical value constant=0, the b(1) will be left zero,
and so will be bx. Now we are ready to start Newton’s method. The iteration is conducted
within a Do While loop. We exit once the change in the log-likelihood from one iteration
to the next does not exceed a certain small value (like 10−11). Iterations are indexed by the
variable iter. Focusing on the important steps, once we have declared the arrays dlnl
(gradient), Lambda (prediction ��b′x�), hesse (Hessian matrix) and lnl (log-likelihood)
we compute their values for a given set of coefficients, and therefore for a given score bx.
For your convenience, we summarize the key formulae below the code:

’Compute prediction Lambda, gradient dlnl,
’Hessian hesse, and log likelihood lnl
For i = 1 To N
Lambda(i) = 1 / (1 + Exp(−bx(i)))
For j = 1 To K
dlnL(j) = dlnL(j) + (y(i) − Lambda(i)) * x(i, j)
For jj = 1 To K
hesse(jj, j) = hesse(jj, j) − Lambda(i) * (1 − Lambda(i)) _

* x(i, jj) * x(i, j)
Next jj
Next j
lnL(iter) = lnL(iter) + y(i) * Log(1 / (1 + Exp(−bx(i)))) + (1 − y(i)) _

* Log(1 − 1 / (1 + Exp(−bx(i))))
Next i
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Lambda = ��b′xi� = 1/�1 + exp�−b′xi��

dlnl =
N∑

i=1

�yi − ��b′xi�� xi

hesse = −
N∑

i=1

��b′xi�� 1 − ��b′xi�� xix
′
i

lnl =
N∑

i=1

yi ln���b′xi�� + �1 − yi� ln�1 − ��b′xi��

There are three loops we have to go through. The function for the gradient, the Hessian and
the likelihood each contain a sum for i=1 to N. We use a loop from i=1 to N to evaluate
those sums. Within this loop, we loop through j=1 to K for each element of the gradient
vector; for the Hessian, we need to loop twice, so there’s a second loop jj=1 to K. Note
that the gradient and the Hessian have to be reset to zero before we redo the calculation in
the next step of the iteration.

With the gradient and the Hessian at hand, we can apply Newton’s rule. We take the
inverse of the Hessian using the worksheetFunction MINVERSE, and multiply it with the
gradient using the worksheetFunction MMULT:

’Compute inverse Hessian (=hinv) and multiply hinv with gradient dlnl
hinv = Application.WorksheetFunction.MInverse(hesse)
hinvg = Application.WorksheetFunction.MMult(dlnL, hinv)

If Abs(change) <= sens Then Exit Do
’ Apply Newton’s scheme for updating coefficients b
For j = 1 To K
b(j) = b(j) − hinvg(j)

Next j

As outlined above, this procedure of updating the coefficient vector b is ended when the
change in the likelihood, abs(ln(iter)-ln(iter-1)), is sufficiently small. We can
then forward b to the output of the function LOGIT.

COMPUTING STATISTICS AFTER MODEL ESTIMATION

In this section, we show how the regression statistics are computed in the LOGIT func-
tion. Readers wanting to know more about the statistical background may want to consult
Appendix A4.

To assess whether a variable helps to explain the default event or not, one can examine a
t ratio for the hypothesis that the variable’s coefficient is zero. For the jth coefficient, such
a t ratio is constructed as:

tj = bj/SE�bj� (1.15)

where SE is the estimated standard error of the coefficient. We take b from the last iteration
of the Newton scheme and the standard errors of estimated parameters are derived from the
Hessian matrix. Specifically, the variance of the parameter vector is the main diagonal of
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the negative inverse of the Hessian at the last iteration step. In the LOGIT function, we have
already computed the Hessian hinv for the Newton iteration, so we can quickly calculate the
standard errors. We simply set the standard error of the jth coefficient to Sqr(-hinv(j,
j). t ratios are then computed using equation (1.15).

In the Logit model, the t ratio does not follow a t distribution as in the classical linear
regression. Rather, it is compared to a standard normal distribution. To get the p-value of a
two-sided test, we exploit the symmetry of the normal distribution:

p-value = 2 ∗ �1 − NORMSDIST�ABS�t��� (1.16)

The LOGIT function returns standard errors, t ratios and p-values in lines 2 to 4 of the
output if the logical value statistics is set to 1.

In a linear regression, we would report an R2 as a measure of the overall goodness of fit.
In non-linear models estimated with maximum likelihood, one usually reports the Pseudo-R2

suggested by McFadden. It is calculated as 1 minus the ratio of the log-likelihood of the
estimated model (ln L) and the one of a restricted model that has only a constant (ln L0):

Pseudo-R2 = 1 − ln L/ ln L0 (1.17)

Like the standard R2, this measure is bounded by 0 and 1. Higher values indicate a better
fit. The log-likelihood ln L is given by the log-likelihood function of the last iteration of
the Newton procedure, and is thus already available. Left to determine is the log-likelihood
of the restricted model. With a constant only, the likelihood is maximized if the predicted
default probability is equal to the mean default rate ȳ. We have seen in (1.14) that this can be
achieved by setting the constant equal to the logit of the default rate, i.e. b1 = ln�ȳ/�1 − ȳ��.
For the restricted log-likelihood, we then obtain:

ln L0 =
N∑

i=1

yi ln���b′xi�� + �1 − yi� ln�1 − ��b′xi��

=
N∑

i=1

yi ln�y� + �1 − yi� ln�1 − y�

= N · 	y ln�y� + �1 − y� ln�1 − y�


(1.18)

In the LOGIT function, this is implemented as follows:

’ln Likelihood of model with just a constant(lnL0)
Dim lnL0 As Double
lnL0 = N * (ybar * Log(ybar) + (1 − ybar) * Log(1 − ybar))

The two likelihoods used for the Pseudo-R2 can also be used to conduct a statistical test of
the entire model, i.e. test the null hypothesis that all coefficients except for the constant are
zero. The test is structured as a likelihood ratio test:

LR = 2�ln L − ln L0� (1.19)

The more likelihood is lost by imposing the restriction, the larger the LR statistic will be. The
test statistic is distributed asymptotically chi-squared with the degrees of freedom equal to
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the number of restrictions imposed. When testing the significance of the entire regression, the
number of restrictions equals the number of variables K minus 1. The function CHIDIST(test
statistic, restrictions) gives the p-value of the LR test. The LOGIT command returns both
the LR and its p-value.

The likelihoods ln L and ln L0 are also reported, as is the number of iterations that
was needed to achieve convergence. As a summary, the output of the LOGIT function is
organized as shown in Table 1.4.

Table 1.4 Output of the user-defined function LOGIT

b1 b2 � � � bK

SE�b1� SE�b2� … SE�bK�
t1 = b1/SE�b1� t2 = b2/SE�b2� … tK = bK /SE�bK�
p-value�t1� p-value�t2� … p-value�tK�
Pseudo-R2 # iterations #N/A #N/A
LR test p-value (LR) #N/A #N/A
log-likelihood (model) log-likelihood (restricted) #N/A #N/A

INTERPRETING REGRESSION STATISTICS

Applying the LOGIT function to our data from Table 1.3 with the logical values for constant
and statistics both set to 1, we obtain the results reported in Table 1.5. Let’s start with the
statistics on the overall fit. The LR test (in J7, p-value in K7) implies that the logit regression
is highly significant. The hypothesis ‘the five ratios add nothing to the prediction’ can be
rejected with a high confidence. From the three decimal points displayed in Table 1.5, we
can deduce that the significance is better than 0.1%, but in fact it is almost indistinguishable
from zero (being smaller than 10−36). So we can trust that the regression model helps to
explain the default events.

Table 1.5 Application of the LOGIT command to a data set with information on defaults and five
financial ratios (with statistics)
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Knowing that the model does predict defaults, we would like to know how well it does so.
One usually turns to the R2 for answering this question, but as in linear regression, setting
up general quality standards in terms of a Pseudo-R2 is difficult to impossible. A simple but
often effective way of assessing the Pseudo-R2 is to compare it with the ones from other
models estimated on similar data sets. From the literature, we know that scoring models for
listed US corporates can achieve a Pseudo-R2 of 35% and more.5 This indicates that the
way we have set up the model may not be ideal. In the final two sections of this chapter,
we will show that the Pseudo-R2 can indeed be increased by changing the way in which the
five ratios enter the analysis.

When interpreting the Pseudo-R2, it is useful to note that it does not measure whether
the model correctly predicted default probabilities – this is infeasible because we do not
know the true default probabilities. Instead, the Pseudo-R2 (to a certain degree) measures
whether we correctly predicted the defaults. These two aspects are related, but not iden-
tical. Take a borrower which defaulted although it had a low default probability: If the
model was correct about this low default probability, it has fulfilled its goal, but the out-
come happened to be out of line with this, thus reducing the Pseudo-R2. In a typical
loan portfolio, most default probabilities are in the range of 0.05% to 5%. Even if we
get each single default probability right, there will be many cases in which the observed
data (=default) is not in line with the prediction (low default probability) and we there-
fore cannot hope to get a Pseudo-R2 close to 1. A situation in which the Pseudo-R2

would be close to 1 would look as follows: Borrowers fall into one of two groups; the
first group is characterized by very low default probabilities (0.1% and less), the second
group by very high ones (99.9% or more). This is clearly unrealistic for typical credit
portfolios.

Turning to the regression coefficients, we can summarize that three out of the five ratios
have coefficients b that are significant on the 1% level or better, i.e. their p-value is below
0.01. If we reject the hypothesis that one of these coefficients is zero, we can expect to err
with a probability of less than 1%. Each of the three variables has a negative coefficient,
meaning that increasing values of the variables reduce default probability. This is what we
would expect: by economic reasoning, retained earnings, EBIT and market value of equity
over liabilities should be inversely related to default probabilities. The constant is also highly
significant. Note that we cannot derive the average default rate from the constant directly
(this would only be possible if the constant were the only regression variable).

Coefficients on working capital over total assets and sales over total assets, by contrast,
exhibit significance of only 46.9% and 7.6%, respectively. By conventional standards of
statistical significance (5% is most common) we would conclude that these two variables
are not or only marginally significant, and we would probably consider not using them for
prediction.

If we simultaneously remove two or more variables based on their t ratios, we should be
aware of the possibility that variables might jointly explain defaults even though they are
insignificant individually. To statistically test this possibility, we can run a second regression
in which we exclude variables that were insignificant in the first run, and then conduct a
likelihood ratio test.

5 See, e.g., Altman and Rijken (2004).
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Table 1.6 Testing joint restrictions with a likelihood ratio test

This is shown in Table 1.6. Model 1 is the one we estimated in Table 1.5. In model 2, we
remove the variables WC/TA and S/TA, i.e. we impose the restriction that the coefficients on
these two variables are zero. The likelihood ratio test for the hypothesis bWC/TA = bS/TA = 0
is based on a comparison of the log likelihoods ln L of the two models. It is constructed as:

LR = 2	ln L�model 1� − ln L�model 2�


and referred to a chi-squared distribution with two degrees of freedom because we impose
two restrictions. In Table 1.6 the LR test leads to value of 3.39 with a p-value of 18.39%.
This means that if we add the two variables WC/TA and S/TA to model 2, there is a
probability of 18.39% that we do not add explanatory power. The LR test thus confirms the
results of the individual tests: individually and jointly, the two variables would be considered
only marginally significant.

Where do we go from there? In model building, one often follows simple rules based
on stringent standards of statistical significance, like ‘remove all variables that are not
significant on a 5% level or better’. Such a rule would call to favour model 2. However, it
is advisable to complement such rules with other tests. Notably, we might want to conduct
an out-of-sample test of predictive performance as it is described in Chapter 7.
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PREDICTION AND SCENARIO ANALYSIS

Having specified a scoring model, we want to use it for predicting probabilities of default.
In order to do so, we calculate the score and then translate it into a default probability (cf.
equations (1.1) and (1.4))6:

Prob�Defaulti� = ��Scorei� = ��b′xi� = 1
1 + exp�−b′xi�

(1.20)

In Table 1.7, we calculate default probabilities based on the model with all five ratios. For
prediction, we just need the coefficients, so we can suppress the statistics by setting the
associated logical value in the LOGIT function to zero.

Table 1.7 Predicting the probability of default

We need to evaluate the score b′xi. Our coefficient vector b is in J2:O2, the ratio values
contained in xi can be found in columns D to H, with each row corresponding to one value
of i. However, columns D to H do not contain a column of 1’s which we had assumed when
formulating Score = b′x. This is just a minor problem, though, as we can multiply the ratio
values from columns D to H with the coefficients for those ratios (in K2:O2) and then add
the constant given in J2. The default probability can thus be computed via (here for row 9):

= 1/�1 + EXP�−�J$2 + SUMPRODUCT�K$2�O$2� D9�H9����

The formula can be copied into the range Q2:Q4001 as we have fixed the reference to
the coefficients with a dollar sign. The observations shown in the table contain just two
defaulters (in row 108 and 4001), for the first of which we predict a default probability of
0.05%. This should not be cause for alarm though, for two reasons: First, a borrower can

6 Note that in applying equation (1.20) we assume that the sample’s mean default probability is representative of the population’s
expected average default probability. If the sample upon which the scoring model is estimated is choice-based or stratified (e.g.
overpopulated with defaulting firms) we would need to correct the constant b0 before estimating the PDs, see Anderson (1972) or
Scott and Wild (1997).
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default even if its default probability is very low. Second, even though a model may do a
good job in predicting defaults on the whole (as evidenced by the LR test of the entire model,
for example) it can nevertheless fail at predicting some individual default probabilities.

Of course, the prediction of default probabilities is not confined to borrowers that are
included in the sample used for estimation. On the contrary, scoring models are usually
estimated with past data and then applied to current data.

As already used in a previous section, the sign of the coefficient directly reveals the
directional effect of a variable. If the coefficient is positive, default probability increases if
the value of the variable increases, and vice versa. If we want to say something about the
magnitude of an effect, things get somewhat more complicated. Since the default probability
is a non-linear function of all variables and the coefficients, we cannot directly infer a
statement such as ‘if the coefficient is 1, the default probability will increase by 10% if the
value of the variable increases by 10%’.

One way of gauging a variable’s impact is to examine an individual borrower and then
to compute the change in its default probability that is associated with variable changes.
The easiest form of such a scenario analysis is a ceteris paribus (c.p.) analysis, in which we
measure the impact of changing one variable while keeping the values of the other variables
constant. Technically, what we do is change the variables, insert the changed values into the
default probability formula (1.20) and compare the result to the default probability before
the change.

In Table 1.8, we show how to build such a scenario analysis for one borrower. The
estimated coefficients are in row 4, the ratios of the borrower in row 7. For convenience,
we include a 1 for the constant. We calculate the default probability (cell C9), very similar
to the way we did in Table 1.7.

Table 1.8 Scenario analysis – how default probability changes with changes in
explanatory variables
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In rows 13 and 14, we state scenario values for the five variables, and in rows 17 and 18
we compute the associated default probabilities. Recall that we change just the value of one
variable. When calculating the score b′xi by multiplying b and xi, only one element in xi is
affected. We can handle this by computing the score b′xi based on the status quo, and then
correcting it for the change assumed for a particular scenario. When changing the value of
the second variable from xi2 to x∗

i2, for example, the new default probability is obtained as:

Prob�Defaulti� = ��b′xi
∗� = ��b′xi + b2�xi2

∗ − xi2�� (1.21)

In cell C18, this is implemented via:

= 1/�1 + EXP�−�SUMPRODUCT�$B$4 � $G$4� $B$7 � $G$7� + C$4∗�C14 − C$7����

We can directly copy this formula to the other cells C17:G17. For example, if the firm
manages to increase its profitability EBIT/TA from –2% to 8%, its default probability will
move from 1.91% to 0.87%. We could also use the Goal Seek functionality or the Solver to
find answers to questions like ‘what change in the variable ME/TL is required to produce a
default probability of 1%?’.

An analysis like the one conducted here can therefore be very useful for firms that want
to reduce their default probability to some target level, and would like to know how to
achieve this goal. It can also be helpful in dealing with extraordinary items. For example,
if an extraordinary event has reduced the profitability from its long-run mean to a very low
level, the estimated default probability will increase. If we believe that this reduction is
only temporary, we could base our assessment on the default probability that results from
replacing the currently low EBIT/TA by its assumed long-run average.

TREATING OUTLIERS IN INPUT VARIABLES

Explanatory variables in scoring models often contain a few extreme values. They can
reflect genuinely exceptional situations of borrowers, but they can also be due to data errors,
conceptual problems in defining a variable or accounting discretion.

In any case, extreme values can have a large influence on coefficient estimates, which
could impair the overall quality of the scoring model. A first step in approaching the problem
is to examine the distribution of the variables. In Table 1.9, we present several descriptive
statistics for our five ratios. Excel provides the functions for the statistics we are interested
in: arithmetic means (AVERAGE) and medians (MEDIAN), standard deviations (STDEV),
skewness (SKEW) and excess kurtosis (KURT),7 percentiles (PERCENTILE) along with
minima (MIN) and maxima (MAX).

A common benchmark for judging an empirical distribution is the normal distribution.
The reason is not that there is an a priori reason why the variables we use should follow a
normal distribution but rather that the normal serves as a good point of reference because it
describes a distribution in which extreme events have been averaged out.8

7 Excess kurtosis is defined as kurtosis minus 3.
8 The relevant theorem from statistics is the central limit theorem, which says that if we sample from any probability distribution
with finite mean and finite variance, the sample mean will tend to the normal distribution as we increase the number of observations
to infinity.
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Table 1.9 Descriptive statistics for the explanatory variables in the logit model

A good indicator for the existence of outliers is the excess kurtosis. The normal distribution
has excess kurtosis of zero, but the variables used here have very high values ranging
from 17.4 to 103.1. A positive excess kurtosis indicates that, compared to the normal, there
are relatively many observations far away from the mean. The variables are also skewed,
meaning that extreme observations are concentrated on the left (if skewness is negative) or
on the right (if skewness is positive) of the distribution.

In addition, we can look at percentiles. For example, a normal distribution has the prop-
erty that 99% of all observations are within ±2�58 standard deviations of the mean. For
the variable ME/TL, this would lead to the interval 	−5�77� 9�68
. The empirical 99% con-
fidence interval, however, is [0.05, 18.94], i.e. wider and shifted to the right, confirming
the information we acquire by looking at the skewness and kurtosis of ME/TL. Looking at
WC/TA, we see that 99% of all values are in the interval 	−0�33� 0�63
, which is roughly
in line with what we would expect under a normal distribution, namely 	−0�30� 0�58
. In
the case of WC/TA, the outlier problem is thus confined to a small subset of observations.
This is most evident by looking at the minimum of WC/TA: it is −2�24, which is very far
away from the bulk of the observations (it is 14 standard deviations away from the mean,
and 11.2 standard deviations away from the 0.5 percentile).

Having identified the existence of extreme observations, a clinical inspection of the data
is advisable as it can lead to the discovery of correctable data errors. In many applications,
however, this will not lead to a complete elimination of outliers; even data sets that are
100% correct can exhibit bizarre distributions. Accordingly, it is useful to have a procedure
that controls the influence of outliers in an automated and objective way.

A commonly used technique applied for this purpose is winsorization, which means that
extreme values are pulled to less extreme ones. One specifies a certain winsorization level �;
values below the � percentile of the variable’s distribution are set equal to the � percentile,
values above the 1 − � percentile are set equal to the 1 − � percentile. Common values for
� are 0.5%, 1%, 2% or 5%. The winsorization level can be set separately for each variable
in accordance with its distributional characteristics, providing a flexible and easy way of
dealing with outliers without discarding observations.
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Table 1.10 exemplifies the technique by applying it to the variable WC/TA. We start with
a blank worksheet containing only the variable WC/TA in column A. The winsorization
level is entered in cell E2. The lower quantile associated with this level is found by applying
the PERCENTILE() function to the range of the variable, which is done in E3. Analogously,
we get the upper percentile for 1 minus the winsorization level.

Table 1.10 Exemplifying winsorization for the variable WC/TA

The winsorization itself is carried out in column B. We compare the original value of
column A with the estimated percentile values; if the original value is between the percentile
values, we keep it. If it is below the lower percentile, we set it to this percentile’s value;
likewise for the upper percentile. This can be achieved by combining a maximum function
with a minimum function. For cell B6, we would write

= MAX�MIN�A6� E$4�� E$3�

The maximum condition pulls low values up, the minimum function pulls large values down.
We can also write a function that performs winsorization and requires as arguments the

variable range and the winsorization level. It might look as follows:

Function WINSOR(x As Range, level As Double)

Dim N As Integer, i As Integer
N = x.Rows.Count

’Obtain percentiles
Dim low, up
low = Application.WorksheetFunction.Percentile(x, level)
up = Application.WorksheetFunction.Percentile(x, 1 − level)

’Pull x to percentiles
Dim result
ReDim result(1 To N, 1 To 1)
For i = 1 To N
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result(i, 1) = Application.WorksheetFunction.Max(x(i), low)
result(i, 1) = Application.WorksheetFunction.Min(result(i, 1), up)

Next i

WINSOR = result

End Function

The function works in much the same way as the spreadsheet calculations in Table 1.10.
After reading the number of observations N from the input range x, we calculate lower and
upper percentiles and then use a loop to winsorize each entry of the data range. WINSOR
is an array function that has as many output cells as the data range that is inputted into the
function. The winsorized values in column B of Table 1.10 would be obtained by entering

= WINSOR�A2�A4002� 0�02�

in B2:B4001 and confirming with 	Ctrl
 + 	Shift
 + 	Enter
.
If there are several variables as in our example, we would winsorize each variable sepa-

rately. In doing so, we could consider different winsorization levels for different variables.
As we saw above, there seem to be fewer outliers in WC/TA than in ME/TA, so we could use
a higher winsorization level for ME/TA. We could also choose to winsorize asymmetrically,
i.e. apply different levels to the lower and the upper side.

Here we present skewness and kurtosis of our five variables after applying a 1% win-
sorization level to all variables:

WC/TA RE/TA EBIT/TA ME/TL S/TA

Skewness 0.63 −0�95 0.14 3.30 1.68
Kurt 0.01 3.20 1.10 13.48 3.42

Both skewness and kurtosis are now much closer to zero. Note that both statistical character-
istics are still unusually high for ME/TL. This might motivate a higher winsorization level
for ME/TL, but there is an alternative: ME/TL has many extreme values to the right of the
distribution. If we take the logarithm of ME/TL, we also pull them to the left, but we don’t
blur the differences between those beyond a certain threshold as we do in winsorization.
The logarithm of ME/TL (after winsorization at the 1% level) has skewness of −0�11 and
kurtosis of 0.18, suggesting that the logarithmic transformation works for ME/TL in terms
of outliers.

The proof of the pudding is in the regression. Examine in Table 1.11 how the Pseudo-R2

of our logit regression depends on the type of data treatment.

Table 1.11 Pseudo-R2s for different data treatments

Pseudo-R2

Original data 22.2%
Winsorized at 1% 25.5%
Winsorized at 1% + log of ME/TL 34.0%
Original but log of ME/TL 34.9%
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For our data, winsorizing increases the Pseudo-R2 by three percentage points from 22.2%
to 25.5%. This is a handsome improvement, but taking logarithms of ME/TL is much more
important: the Pseudo-R2 subsequently jumps to around 34%. And one can do even better
by using the original data and taking the logarithm of ME/TL rather than winsorizing first
and then taking the logarithm.

We could go on and take the logarithm of the other variables. We will not present details
on this, but instead just mention how this could be accomplished. If a variable takes negative
values (this is the case with EBIT/TL, for example), we cannot directly apply the logarithm
as we did in the case of ME/TL. Also, a variable might exhibit negative skewness (an
example is again EBIT/TL). Applying the logarithm would increase the negative skewness
rather than reduce it, which may not be what we want to achieve. There are ways out of these
problems. We could, for example, transform EBIT/TA by computing − ln�1 − EBIT/TA�
and then proceed similarly for the other variables.

As a final word of caution, note that one should guard against data mining. If we fish
long enough for a good winsorization or similar treatment, we might end up with a set
of treatments that works very well for the historical data that we optimized it on. It may
not, however, serve to improve the prediction of future defaults. A simple strategy against
data mining is to be restrictive in the choice of treatments. Instead of experimenting with
all possible combinations of individual winsorization levels and functional transformations
(logarithmic or other), we might restrict ourselves to a few choices that are common in the
literature or that seem sensible, based on a descriptive analysis of the data.

CHOOSING THE FUNCTIONAL RELATIONSHIP BETWEEN THE
SCORE AND EXPLANATORY VARIABLES

In the scoring model (1.1) we assume that the score is linear in each explanatory variable x:
Scorei = b′xi. In the previous section, however, we have already seen that a logarithmic
transformation of a variable can greatly improve the fit. There, the transformation was
motivated as an effective way of treating extreme observations, but it may also be the right
one from a conceptual perspective. For example, consider the case where one of our variables
is a default probability assessment, denoted by pi. It could be a historical default rate for the
segment of borrower i, or it could originate from models like those we discuss in Chapters 2
and 4. In such a case, the appropriate way of entering the variable would be the logit of pi,
which is the inverse of the logistic distribution function:

x = �−1�p� = ln�p/�1 − p�� ⇒ ��x� = p (1.22)

as this guarantees that the default prediction equals the default probability we input into the
regression.

With logarithmic or logit transformations, the relationship between a variable and the
default probability is still monotonic: for a positive coefficient, a higher value of the variable
leads to a higher default probability. In practice, however, we can also encounter non-
monotonic relationships. A good example is sales growth: low sales growth may be due to
high competition or an unsuccessful product policy, and correspondingly indicate high default
risk; high sales growth is often associated with high cash requirements (for advertising and
inventories), or may have been bought at the expense of low margins. Thus, high sales growth
can also be symptomatic of high default risk. All combined, there might be a U-shaped
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relationship between default risk and sales growth. To capture this non-monotonicity, one
could enter the square of sales growth together with sales growth itself:

Prob�Defaulti� = �
(
b1 + b2 Sales growthi + b3�Sales growthi�

2 + � � � + bKxiK

)
(1.23)

Similarly, we could try to find appropriate functional representations for variables where
we suspect that a linear relation is not sufficient. But how can we guarantee that we detect
all relevant cases and then find an appropriate transformation? One way is to examine the
relationships between default rates and explanatory variables separately for each variable.
Now, how can we visualize these relationships? We can classify the variables into ranges,
and then examine the average default rate within a single range. Ranges could be defined
by splitting the domain of a variable into parts of equal length. With this procedure, we are
likely to get a very uneven distribution of observations across ranges, which could impair
the analysis. A better classification would be to define the ranges such that they contain an
equal number of observations. This can easily be achieved by defining the ranges through
percentiles. We first define the number of ranges M that we want to examine. The first range
includes all observations with values below the �100/M)th percentile; the second includes
all observations with values above the �100/M�th percentile but below the �2 × 100/M�th
percentile and so forth.

For the variable ME/TL, the procedure is exemplified in Table 1.12. We fix the number
of ranges in F1, then use this number to define the alpha values for the percentiles (in
D5:D24). In column E, we use this information and the function PERCENTILE(x, alpha)
to determine the associated percentile value of our variable. In doing so, we use a mini-
mum condition to ascertain that the � value is not above 1. This is necessary because the
summation process in column L can yield values slightly above 1 (Excel rounds to 15 digit
precision).

The number of defaults within a current range is found recursively. We count the number
of defaults up to (and including) the current range, and then subtract the number of defaults
that are contained in the ranges below. For cell F5, this can be achieved through:

= SUMIF�B$2�B$4001� “ <= ”&E5� A$2�A$4001� − SUM�F4�F$4�

where E5 contains the upper bound of the current range; defaults are in column A, the variable
ME/TL in column B. Summing over the default variable yields the number of defaults as
defaults are coded as 1. In an analogous way, we determine the number of observations. We
just replace SUMIF by COUNTIF.

What does the graph tell us? Apparently, it is only for very low values of ME/TL that
a change in this variable impacts default risk. Above the 20th percentile, there are many
ranges with zero default rates, and the ones that see defaults are scattered in a way that
does not suggest any systematic relationship. Moving from the 20th percentile upward has
virtually no effect on default risk, even though the variable moves largely from 0.5 to 60.
This is perfectly in line with the results of the previous section where we saw that taking the
logarithm of ME/TL greatly improves the fit relative to a regression in which ME/TL entered
linearly. If we enter ME/TL linearly, a change from ME/TL = 60 to ME/TL = 59�5 has the
same effect on the score as a change from ME/TL = 0�51 to ME/TL = 0�01, contrary to
what we see in the data. The logarithmic transformation performs better because it reduces
the effect of a given absolute change in ME/TL for high levels of ME/TL.
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Table 1.12 Default rate for percentiles of ME/TL

Thus, the examination of univariate relationships between default rates and explanatory
variables can give us valuable hints as to which transformation is appropriate. In case of
ML/TE, it supports the logarithmic one; in others it may support a polynomial representation
like the one we mentioned above in the sales growth example.

Often, however, which transformation to choose may not be clear; and we may want
to have an automated procedure that can be run without us having to look carefully at a
set of graphs first. To such end, we can employ the following procedure: we first run an
analysis as in Table 1.12. Instead of entering the original values of the variable into the logit
analysis, we use the default rate of the range to which they are assigned. That is, we use a
data-driven, non-parametric transformation. Note that before entering the default rate in the
logit regression, we would apply the logit transformation (1.22) to it.

We will not show how to implement this transformation in a spreadsheet. With many
variables, it would involve a lot of similar calculations, making it a better idea to set up a
user defined function that maps a variable into a default rate for a chosen number of ranges.
Such a function might look like this:

Function XTRANS(defaultdata As Range, x As Range, numranges As Integer)
Dim bound, numdefaults, obs, defrate, N, j, defsum, obssum, i
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ReDim bound(1 To numranges), numdefaults(1 To numranges)
ReDim obs(1 To numranges), defrate(1 To numranges)

N = x.Rows.Count

’Determining number of defaults, observations and default rates for ranges
For j = 1 To numranges

bound(j) = Application.WorksheetFunction.Percentile(x, j / numranges)

numdefaults(j) = Application.WorksheetFunction.SumIf(x, ‘‘<=’’ & _
bound(j), defaultdata) − defsum

defsum = defsum + numdefaults(j)
obs(j) = Application.WorksheetFunction.CountIf(x, ‘‘<=’’ & bound(j))_

− obssum
obssum = obssum + obs(j)

defrate(j) = numdefaults(j) / obs(j)
Next j

’Assigning range default rates in logistic transformation
Dim transform
ReDim transform(1 To N, 1 To 1)

For i = 1 To N
j = 1
While x(i) − bound(j) > 0

j = j + 1
Wend
transform(i, 1) = Application.WorksheetFunction.Max(defrate(j), _

0.0000001)
transform(i, 1) = Log(transform(i, 1) / (1 − transform(i, 1)))

Next i

XTRANS = transform
End Function

After dimensioning the variables, we loop through each range, j=1 to numranges. It
is the analogue of what we did in range D5:H24 of Table 1.12. That is why we see the same
commands: SUMIF to get the number of defaults below a certain percentile, and COUNTIF
to get the number of observations below a certain percentile.

In the second loop over i=1 to N , we perform the data transformation. For each observa-
tion, we search through the percentiles until we have the one that corresponds to our current
observation (Do While … Loop) and then assign the default rate. In the process, we set the
minimum default rate to an arbitrarily small value of 0.0000001. Otherwise, we could not
apply the logit transformation in cases where the default rate is zero.

To illustrate the effects of the transformation, we set the number of ranges to 20, apply the
function XTRANS to each of our five ratios and run a logit analysis with the transformed
ratios. This leads to a Pseudo-R2 of 47.8% – much higher than the value we received with
the original data, winsorization, or logarithmic transformation (Table 1.13).
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Table 1.13 Pseudo-R2 for different data treatments and transfor-
mations

Pseudo-R2

Original data 22.2%
Winsorized at 1% 25.5%
Winsorized at 1% + log of ME/TL 34.0%
Original but log of ME/TL 34.3%
Transformation based on default rates 47.8%

The number of ranges that we choose will depend on the size of the data set and the average
default rate. For a given number of ranges, the precision with which we can measure their
default rates will tend to increase with the number of defaults contained in the data set. For
large data sets, we might end up choosing 50 ranges while smaller ones may require only
10 or less.

Note that the transformation also deals with outliers. If we choose M ranges, the distribu-
tion of a variable beyond its �100/M�th and �100−100/M�th percentiles does not matter. As
in the case of outlier treatments, we should also be aware of potential data-mining problems.
The transformation introduces a data-driven flexibility in our analysis, so we may end up
fitting the data without really explaining the underlying default probabilities. The higher the
number of ranges, the more careful we should be about this.

CONCLUDING REMARKS

In this chapter, we addressed several steps in building a scoring model. The order in which
we presented them was chosen for reasons of exposition; it is not necessarily the order in
which we would approach a problem. A possible frame for building a model might look like
this:

1. From economic reasoning, compile a set of variables that you believe to capture factors
that might be relevant for default prediction. To give an example: the Factor ‘Profitability’
might be captured by EBIT/TA, EBITDA/TA, or Net Income/Equity.

2. Examine the univariate distribution of these variables (skewness, kurtosis, quantiles…)
and their univariate relationship to default rates.

3. From step 2 determine whether there is a need to treat outliers and non-linear functional
forms. If yes, choose one or several ways of treating them (winsorization, transformation
to default rates,…).

4. Based on steps 1 to 3, run regressions in which each of the factors you believe to be
relevant is represented by at least one variable. To select just one variable out of a
group that represents the same factor, first consider the one with the highest Pseudo-R2

in univariate logit regressions.9 Run regressions with the original data and with the
treatments applied in step 3 to see what differences they make.

5. Rerun the regression with insignificant variables from step 4 removed; test the joint
significance of the removed variables.

9 For each variable, run a univariate logit regression in which default is explained by only this variable; the Pseudo-R2’s from these
regressions give a good indication on the relative explanatory power of individual variables.
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Of course, there is more to model building than going through a small number of steps.
Having finished step 5, we may want to fine tune some decisions that were made in
between (e.g. the way in which a variable was defined). We may also reconsider major
decisions (like the treatment of outliers). In the end, model building is as much an art as a
science.

NOTES AND LITERATURE

In the econometrics literature, the Logit models we looked at are subsumed under the heading of
‘binary response or qualitative response models’. Statisticians, on the other hand, often speak of
generalized linear models. Expositions can be found in most econometrics textbooks, e.g. Greene,
W.H., 2003, Econometric Analysis, Prentice Hall. For corrections when the sample’s mean probabil-
ity of default differs from the population’s expected average default probability see Anderson, J.A.,
1972, Separate sample logistic discrimination, Biometrika 59, 19–35 and Scott, A.J. and Wild,
C.J., 1997, Fitting regression models to case-control data by maximum likelihood, Biometrika
84, 57–71.

For detailed descriptions of scoring models developed by a rating agency see: Falkenstein, E., 2000,
RiskCalc for Private Companies. Moody’ Default Model. Moody’s Investor Service; Sobehart, J.,
Stein, R., Mikityanskaya, V. and Li, L., 2000, Moody’s Public Firm Risk Model: A Hybrid Approach
to Modeling Short-Term Default Risk. Moody’s Investor Service; Dwyer, D., Kocagil, A. and Stein,
R., 2004, Moody’s KMV RiskCalc v3.1 model. Moody’s KMV.

Two academic papers that describe the estimation of a logit scoring model are Shumway, T., 2001,
Forecasting bankruptcy more accurately: A simple hazard model, Journal of Business 74, 101–124 and
Altman, E. and Rijken, H., 2004, How rating agencies achieve rating stability, Journal of Banking and
Finance 28, 2679–2714. Both papers make use of the financial ratios proposed by Altman, E., 1968,
Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance
23, 589–609.

APPENDIX

Logit and Probit

We have described the estimation of scoring model with logit. A common alternative
choice is the probit model, which replaces the logistic distribution in equation (1.4) by the
standard normal distribution. Experience suggests that the choice of the distribution is not
crucial in most settings; predicted default probabilities are fairly close. Note, however, that
the estimated coefficients differ significantly because the two distributions have different
variances. When comparing logit and probit models estimated on the same data set, you
should compare default probability estimates or other information which is not affected by
scaling.

Marginal effects

Scenario analysis is an intuitive way of understanding the impact of individual variables.
An analytical approach would be to calculate the marginal effect of a variable. In linear
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models the marginal effect is equal to the coefficient. In the logit model, however, life is
more difficult. The marginal effect is given by the coefficient multiplied by a scale factor:

Marginal effecti = Scale factori × bi = ��b′xi��1 − ��b′xi�� × bi (1.24)

This scale factor varies with each observation – that is, for each row of our data set we have
a different scale factor. To make a statement about average marginal effects, we can use the
mean of the x variables to calculate (1.24). Alternatively, we can calculate the scale factor
for every observation and then take the average of that.





2
The Structural Approach to Default

Prediction and Valuation

Structural models of default risk are cause-and-effect models. From economic reasoning,
we identify conditions under which we expect borrowers to default and then estimate the
probability that these conditions come about to obtain an estimate of the default probability.

For limited liability companies, default is expected to occur if the asset value (i.e. the
value of the firm) is not sufficient to cover the firm’s liabilities. Why should this be so?
From the identity

Asset value = Value of equity + Value of liabilities

and the rule that equity holders receive the residual value of the firm, it follows that the
value of equity is negative if the asset value is smaller than the value of liabilities. If you
have something with negative value, and you can give it away at no cost, you are more than
willing to do so. This is what equity holders are expected to do. They exercise the walk-away
option that they have because of limited liability and leave the firm to the creditors. As the
asset value is smaller than the value of liabilities, creditors’ claims are not fully covered,
meaning that the firm is in default. The walk-away option can be priced with standard
approaches from option pricing theory.

This is why structural models are also called option-theoretic or contingent-claim models.
Another common name is Merton models because it was Robert C. Merton (1974) who first
applied option theory to the problem of valuing a firm’s liabilities in the presence of default
and limited liability.

In this chapter, we first explain how structural models can be used for estimating default
probabilities and valuing a firm’s liabilities. We then show how to implement structural
models in the spirit of the original Merton model. We focus on the estimation of default
probabilities rather than valuation.

DEFAULT AND VALUATION IN A STRUCTURAL MODEL

The basic premise of structural models is that default occurs if the value of the assets
falls below a critical value associated with the firm’s liabilities. To clarify the issues, we
consider the simple set-up examined by Merton (1974): the firm’s liabilities consist of just
one zero-coupon bond with notional value L maturing in T . There are no payments until T ,
and equity holders will wait until T before they decide whether to default or not. (If they
defaulted before T they would forgo the chance of benefiting from an increase of the asset
value.) Accordingly, the default probability is then the probability that, at time T , the value
of the assets is below the value of the liabilities.

What is required to determine this probability? If we look at Figure 2.1, we get the firm’s
liability from the balance sheet (hoping that it is not manipulated). We then need to specify
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Figure 2.1 Default probability in the Merton model

the probability distribution of the asset value at maturity T . A common assumption is that
the value of financial assets follows a log-normal distribution, i.e. that the logarithm of the
asset value is normally distributed. We denote the per annum variance of the log asset value
changes by �2. The expected per annum change in log asset values is denoted � − �2/2,
where � is the drift parameter.1 Let t denote today. The log asset value in T thus follows a
normal distribution with the following parameters:

ln AT ∼ N
(
ln At + �� − �2/2��T − t�� �2�T − t�

)
(2.1)

If we know L, At, � and �2, determining the default probability is an exercise in elementary
statistics. In general, the probability that a normally distributed variable x falls below z is
given by ���z− E�x	�/��x�	, where � denotes the cumulative standard normal distribution.
Applying this result to our case, we get

Prob�Default� = �

[
ln L − ln At − �� − �2/2��T − t�

�
√

T − t

]

= �

[
ln�L/At� − �� − �2/2��T − t�

�
√

T − t

]
(2.2)

In the literature, one often uses the term distance to default (DD). It measures the number of
standard deviations the expected asset value AT is away from the default. We can therefore
write

1 A variable X whose logarithm is normal with mean E(ln X) and variance �2 has expectation E�X	 = exp�E�ln X� + �2/2�.
Denoting the expected change of ln X by E�ln X� = � − �2/2 rather than by � has the effect that the expected change of X is
E�X	 = exp��� and thus depends only on the chosen drift parameter, and not on the variance �2.
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DD = ln At + �� − �2/2��T − t� − ln L

�
√

T − t

⇒ Prob(Default) = � �−DD	 (2.3)

So far, we have not used any option pricing formulae. In fact, there is no theoretical reason
why we need them to determine default probabilities, but there is instead a practical one:
for a typical firm, we cannot observe the market value of assets. What we can observe are
book values of assets, which can diverge from market values for many reasons. If we don’t
observe asset values, we don’t know today’s asset value At needed for formula (2.2). In
addition, we cannot use observed asset values to derive an estimate of the asset volatility � .

Option pricing theory can help as it implies a relationship between the unobservable
(At, �) and observable variables. For publicly traded firms, we observe the market value of
equity, which is given by the share price multiplied with the number of outstanding shares.
At maturity T , we can establish the following relationship between equity value and asset
value (cf. Figure 2.2): As long as the asset value is below the value of liabilities, the value
of equity is zero as all assets are claimed by the bondholders. If the asset value is higher
than the notional principal of the zero-coupon bond, however, equity holders receive the
residual value, and their pay-off increases linearly with the asset value.

Mathematically, the pay-off to equity holders can be described as

ET = max�0�AT − L� (2.4)

This is the pay-off of a European call option. The underlying of the call are the firm’s assets;
the call’s strike is L. The pay-off to bondholders corresponds to a portfolio composed of a
risk-free zero-coupon bond with notional value L and a short put on the firm’s assets, again
with strike L.

L

Equity 
holders

L Bond holders

0 Asset value AT

P
ay
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ff

Figure 2.2 Pay-off to equity and bondholders at maturity T
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If the firm pays no dividends, the equity value can be determined with the standard Black–
Scholes call option formula:

Et = At · ��d1� − L e−r�T−t� ��d2� (2.5)

where

d1 = ln�At/L� + �r + �2/2��T − t�

�
√

T − t
and d2 = d1 − �

√
T − t (2.6)

and r denotes the logarithmic risk-free rate of return.
Remember our problem of determining the asset value At and the asset volatility � .

We now have an equation that links an observable value (the equity value) to these two
unknowns (� enters (2.5) via (2.6)). However, we have only one equation, but two unknown
variables. So where do we go from there? We can go back into the past to increase the
available information. There are several ways of using this information, and we illustrate
two different ones in the next two sections.

IMPLEMENTING THE MERTON MODEL WITH A ONE-YEAR
HORIZON

The iterative approach

Rearranging the Black–Scholes formula (2.5), we get

At =
[
Et + L e−r�T−t� ��d2�

]
/��d1� (2.7)

If we go back in time, say 260 trading days, we get a system of equations

At =
[
Et + Lt e−rt�T−t� ��d2�

]
/��d1�

At−1 = [Et−1 + Lt−1 e−rt−1�T−�t−1�� ��d2�
]
/��d1�






At−260 = [Et−260 + Lt−260 e−rt−260�T−�t−260�� ��d2�
]
/��d1�

(2.8)

For simplicity, we have not added time subscripts to the d1’s and d2’s, whereas we have
added them to the other variables that can change over time. Using time-varying interest rates
and liabilities is somehow inconsistent with the Merton model, in which both are constant.
However, we can hope to come closer to market valuations with this approach, as the latter
will be based on the information the market has at a particular date.

System (2.8) is composed of 261 equations in 261 unknowns (the asset values). Have we
made any progress? Although it seems as if we have an additional unknown variable, the
asset volatility � , this should not bother us, as this variable can be estimated from a time
series of A’s. Therefore, the system of equations can be solved.

Before applying this procedure to an example firm, however, we have to translate the
stylized firm of the Merton model into the real world. Typical firms have many different
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liabilities maturing at different points in time – from one day to 30 years or more. The
following is one solution often found in the literature: Assume that the firm has only
liabilities that mature in one year. The choice may appear to be ad hoc, and outrageously
so. It is largely motivated by convenience. Structural models are often used to produce
one-year default probabilities. Had we assumed a maturity of, say, three years, it would
not have been obvious how to convert the three-year default probability to a one-year
probability.

If we make the ad-hoc assumption that the maturity is one year, there is no reason why
we should not apply it to every day in the past. On the contrary, it seems natural because
firms often have relatively stable maturity structures, i.e. issue new debt once some part of
the debt is retired. Setting �T − t� to 1 for each day within the preceding 12 months, (2.8)
simplifies to:

At = �Et + Lt e−rt ��d2�	 /��d1�

At−1 = �Et−1 + Lt−1 e−rt−1 ��d2�	 /��d1�






At−260 = �Et−260 + Lt−260 e−rt−260 ��d2�	 /��d1�

(2.9)

This system of equations can be solved through the following iterative procedure:

Iteration 0: Set starting values At−a for each a = 0� 1� � � � � 260. A sensible choice is to
set the At−a equal to the sum of the market value of equity Et−a and the book value of
liabilities Lt−a. Set � equal to the standard deviation of the log asset returns computed
with the At−a.

For any further iteration k = 1� � � � , end

Iteration k: Insert At−a and � from the previous iteration into the Black–Scholes formulae
d1 and d2. Input these d1 and d2 into equation (2.7) to compute the new At−a. Again use
the At−a to compute the asset volatility.

We go on until the procedure converges. One way of checking convergence is to examine
the change in the asset values from one iteration to the next. If the sum of squared differences
between consecutive asset values is below some small value (such as 10−10) we stop.

We will now implement this procedure for Enron, three months before its default in
December 2001. At that time, this default was the biggest corporate default ever. It also
caught many investors by surprise as Enron had decent agency ratings until a few days
before default.

We collect quarterly data on Enron’s liabilities from the SEC Edgar data base. The one-
year US treasury serves as the risk-free rate of return2 and the market value of equity
can be obtained from various data providers. When linking the daily data on equity value
with the quarterly liability data, we take the most recent, available data. The date of
availability is taken to be the filing date stated in the SEC filings. On July 31, 2001,

2 Data can, for example, be obtained from www.econstats.com.



32 The Structural Approach to Default Prediction and Valuation

for example, the liability data is from the report for the first quarter of 2001, filed on
May 15, 2001. We therefore use only information actually available to the market at our
valuation date.

The data and calculations are contained in Table 2.1. We start by entering the initial values
for the asset value in column F. Our guess is that the asset value equals the market value of
equity plus the (book) value of liabilities. Cell F4, for example, would read = B4 + C4.

Column G contains the system of equations (2.9). For each day, we compute the asset value
using the rearranged Black–Scholes formula. For convenience we write a VBA-function
BSd1 to compute the d1 as given in equation (2.6):

Function BSd1(S, x, h, r, sigma)
’S=value underlying, x=strike, h=time to maturity,
’r=risk-free rate, sigma=volatility underlying
BSd1 = (Log(S / x) + (r + 0.5 * sigma ˆ 2) * h) / (sigma * h ˆ 0.5)
End Function

Note that the horizon �T − t� is here denoted by h.
In column H, we compute the log returns of the asset values from column F. We use

the function STDEV to determine their standard deviation and multiply the result with the
square root of 260 (the number of trading days within a year) to transform it into a per
annum volatility (this is an application of the root-T -rule explained in Box 2.1).

The iterative procedure is implemented through the macro iterate. Its job is very simple:
just copy column G into column F as long as the sum of squared differences in asset values

Table 2.1 Using the iterative approach to estimate asset values and asset volatility
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Box 2.1 Root-T-rule for scaling standard deviations of return

The percentage price change over T periods from t = 0 to t = T can be written as

PT /P0 = R0�T = R1 × R2 × R3 × � � � × RT

where P denotes price and R the simple, gross return. With logarithmic returns
r = ln�R� we have (recall ln�xy� = ln�x� + ln�y�):

r0�T = r1 + r2 + r3 + � � � + rT

If the returns are independent across periods, the T -period variance is just the sum
of the one-period variances

Var�r0�T � = Var�r1� + Var�r2� + Var�r3� + � � � + Var�rT �

If return variances are identical across time, Var�r1�= Var�r2�= � � � = Var�rT �=
Var�rt�, we can then write

Var�r0�T � = T × Var�rt�

For the standard deviation of returns, it follows that

��r0�T � = √
T��rt�

This is the root-T -rule. An example application is the following: we multiply
the standard deviation of monthly returns with the square root of 12 to get the
annualized standard deviation of returns. The annualized standard deviation is
usually called volatility.

(in G and F) is below 10−10. The sum of squared differences is computed in cell J6 using
the function SUMXMY2.

For the default probability formula, we need the expected change in asset values. With
the asset values obtained in Table 2.1, we can apply the standard procedure for estimating
expected returns with the Capital Asset Pricing Model (CAPM). We obtain the beta of the
assets with respect to a market index, and then apply the CAPM formula for the return on
an asset i:

E�Ri	 − R = �i�E�RM	 − Rf � (2.10)

with R denoting the simple risk-free rate of return �R = exp�r� − 1�. We take the S&P 500
index return as a proxy for RM , the return on the market portfolio. Computations are shown
in Table 2.2. We first copy the asset values from column G of Table 2.1 into column B
of Table 2.2 then add the S&P index values and the risk-free rate of return. In columns F
and G, we compute the excess return on the assets and the S&P 500 (excess return is return
minus risk-free rate).
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Table 2.2 Using estimated asset values and the CAPM to derive an estimate of the drift rate of
asset returns

By regressing the asset value returns on S&P 500 returns, we obtain an estimate of the
assets’ beta. This is done in cell I5 with the function SLOPE. Assuming a standard value of
4% for the market risk premium E�RM	 − R, the expected asset return is then 4.6%. This,
however, is not the drift rate � that we use in our formula (2.2). The drift rate � is for
logarithmic returns. We determine � as ln(1.046).

Now that we have estimates of the asset volatility, the asset value and the drift rate, we can
compute the default probability. This is done in Table 2.3. The estimated one-year default
probability as of August 31, 2001 is 7.34%.

A solution using equity values and equity volatilities

The iterative solution of the last section used the Black–Scholes formula

Et = At · ��d1� − L e−r�T−t� ��d2� (2.11)

Table 2.3 Using the estimates to determine the implied default probability
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and solved the problem of one equation with two unknowns by examining (2.11) for various
dates t.

Another common approach is to use (2.11) for the current date t only, and introduce
another equation that also contains the two unknowns. Since equity is a call on the asset
value, its riskiness depends on the riskiness of the asset value. Specifically, one can show
that the equity volatility �E is related to the asset value At and the asset volatility � in the
following way:

�E = � ��d1�At/Et (2.12)

where d1 is the standard Black–Scholes d1 as given in equation (2.6). If we know the equity
value Et and have an estimate of the equity volatility �E , (2.11) and (2.12) are two equations
with two unknowns. This system of equations does not have a closed-form solution, but we
can use numerical routines to solve it.

In the following, we apply this approach to the case study from the previous section. We
use the same data and assumptions, i.e. we set the horizon T − t to one year, we take the
equity value Et from the stock market, set liabilities L equal to book liabilities, and use the
one-year yield on US treasuries as the risk-free rate of return. The only new parameter that
we need is an estimate of the equity volatility �E . We choose to base our estimate on the
historical volatility measured over the preceding 260 days. Data and computations are shown
in Table 2.4. Daily Enron stock prices are in column B,3 and are converted to daily log
returns in column C. For example, the formula reads =LN(B3/B2) for cell C3. By applying
the STDEV command to the range containing the returns, we get the standard deviation
of daily returns. Multiplying this figure by the square root of 260 gives us the annualized
equity volatility (cf. Box 2.1). The whole formula for cell E2 then reads

= STDEV�C3C263�∗260∧0
5

Table 2.4 Estimating equity volatility from stock prices

3 Prices should be adjusted for stock splits, etc.
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We now have all the data needed to solve the Black–Scholes equation system, and this is
done in Table 2.5. Our input data is contained in the range B2:B6.

The unknown parameters are in cells B9:B10, and it is necessary to assign feasible initial
values to them, i.e. values larger than zero. To speed up the numerical search procedure, it
is also advisable to choose the initial values such that they are already close to the values
that solve the system.

A good choice for the initial asset value in cell B9 is the market value of equity plus the
book value of liabilities. An approximation of the unknown asset volatility in cell B10 can be
based on equation (2.12). Solving this equation with respect to � and assuming ��d1� = 1,
we get the approximation:

� = �E Et/At (2.13)

Table 2.5 Calibrating the Merton model to equity value and equity volatility
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To see why equation (2.13) is useful, examine when the assumption ��d1� = 1 holds.
Through the properties of the normal distribution, ��d1� lies between 0 and 1. For large
d1, ��d1� approaches unity. Comparing the equation for d1 (2.6) with the equation for the
distance to default (2.3), we see that they have the same structure, and differ only in the
drift rate and the sign of the variance in the numerator. Thus, a large d1 goes along with a
high distance to default, and a low default probability. If this is true – and most firms have
default probabilities smaller than 5% – the approximation (2.13) is reasonable.

The option pricing equations are entered in B13:B16. We could again use our Bd1

function. For the sake of variation, we type the formulae for d1 and d2 in cells B13 and
B14, respectively. The two Black–Scholes equations (2.11) and (2.12), are in cells B15 and
B16, respectively.

The equation system is solved if the difference between model values and observed values
is zero. That is, we would like to reach B15 = B2 and B16 = B3, by changing B9 and B10. To
arrive at a solution, we can minimize the sum of squared differences between model values
and observed values. Since equity value and equity volatility are of a different order, it is
advisable to minimize the sum of squared percentage differences. Otherwise, the numerical
routine could be insensitive to errors in equity volatility and stop short of a solution that sets
both equations to zero.

The objective function that we are going to minimize thus reads

= �Model Et/Observed Et − 1�2 + �Model �E/Observed �E − 1�2

= �B15/B2-1�∧2 + �B16/B3 − 1�∧2

which we write in cell B19. We then use the Solver to minimize B19 by changing B9 and
B10 (see screenshot in Table 2.5). The precision option of the Solver is set to 0.000001. We
also tick the options ‘Assume non-negative’ and ‘Use Automatic Scaling’.

The Solver worked fine in this example – model values are very close to observed equity
values, and convergence was quick. In cases where the Solver has approached the solution,
but stopped before errors were close to zero, try running the Solver again. In cases where the
Solver procedure stops because the Solver considers a value of zero for the asset volatility,
add the constraint B10�0.000001 in the Solver window. In some cases, playing around with
the objective function might also help.

To compute the default probability, we again need the drift rate of asset returns. We could,
for example, obtain it in a fashion similar to the previous section. Apply the calculations
from Table 2.5 to a series of dates in the past, obtain a series of asset values and use the
CAPM as in Table 2.2. For simplicity, we do not spell out the calculations but rather use
the drift rate obtained in the previous section, which was 4.5%. The default probability can
then be determined as in Table 2.3. This gives 0.38%.

Comparing different approaches

The following summarizes the key results that we obtained with the two different approaches:

Iterative 2 equations
Asset value 77,395 76,146
Asset volatility 28.23% 15.78%
Default probability 7.35% 0.38%
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The iterative procedure and the procedure based on solving a system of two equations
yield asset values that are relatively close (the asset value from the 2-equation approach
is 1.9% lower than that from the iterative approach). The asset volatilities, however, differ
dramatically, which is also the main reason why the default probabilities differ in the way
they do.
This may seem odd as we used the same one-year history of equity prices in both approaches.
However, we used them in different ways. In the 2-equation approach, we estimated the
equity volatility from those prices. This is a good way of estimating a volatility if we
believe it to be constant across time. But equity is a call option in the Merton world, with
risk varying if the asset-to-equity ratio At/Et varies (cf. equation (2.12)). Equivalently, we
could also say that equity risk varies with leverage, as leverage can be measured through
�At − Et�/At = 1 − Et/At.

During the time period of the analysis, Enron’s asset-to-equity ratio changed dramatically.
Using the figures from Table 2.1, it increased from 1.52 in August 2000 to 2.96 in August
2001. Leverage increased from 34% to 66%. The equity volatility measured with past
values thus mixes observations from a low-volatility regime with those from a high-volatility
regime.

By contrast, in the iterative approach, we model changes in leverage. Recall that we had
collected the history of liabilities, which then entered the Black–Scholes equations. We rely
on the assumption that the asset volatility is constant across time, but this is an assumption
that is also implicitly included in the 2-equation approach (equity volatility is constant if
both leverage and asset volatility are constant). For data characterized by large changes in
leverage, one can therefore make a case for preferring the iterative approach.

We can also compare our estimates to those from a commercial implementation of the
Merton model, the EDF™ measure by Moody’s KMV (MKMV, see Box 2.2 for a brief
description). One element that MKMV adds to the simple Merton approach is calibration of
the model outcome to default data. For various reasons (e.g. non-normal asset returns) Merton
default probabilities can underestimate the actual default probabilities. MKMV thus uses a
historical default database to map model default probabilities into estimates of actual default
probabilities. Partly for this reason, EDFs are usually larger than the default probabilities
we get from implementations as the ones we followed here.

Box 2.2 The EDF™ measure by Moody’s KMV

A commercial implementation of the Merton model is the EDF™ measure by
Moody’s KMV (MKMV). Important modeling aspects are the following:

• MKMV uses a modified Black–Scholes valuation model that allows for different
types of liabilities.

• In the model, default is triggered if the asset value falls below the sum of
short-term debt plus a fraction of long-term debt. This rule is derived from an
analysis of historical defaults.

• The distance-to-default that comes out of the model is transformed into default
probabilities by calibrating it to historical default rates.
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For August 2001, the EDF for Enron was roughly 2%,4 which is larger than the result we
get from the 2-equation approach, but smaller than the result from the iterative approach. The
latter is somewhat atypical. One reason could be that the critical value that triggers default
in the EDF model is not total liabilities, but short-term debt plus a fraction of long-term
liabilities. While this adjustment increases the quality of EDFs on average, it may have lead
to an underestimation for Enron. Due to off-balance sheet transactions, financial statements
understated the Enron’s liabilities. By using the total liabilities, we may have unwittingly
corrected this bias.

To sum up, the case that we have examined may be somewhat atypical in the sense that
a simple implementation of the Merton model yields relatively high default probabilities,
which also seem to be close to the true default probability. In many cases, a simple Merton
approach will produce default probabilities that are very low, such as 0.0000001%, even
though we have good reason to believe that they should be much higher. We would then be
hesitant to use the model result as an estimate of the actual default probability. Empirical
studies, however, show that the results can nonetheless be very useful for ordering firms
according to their default risk (cf. Vassalou and Xing, 2004).

IMPLEMENTING THE MERTON MODEL WITH A T -YEAR
HORIZON

So far, we have implemented the Merton model by setting debt maturity to one year – an
arbitrary, but convenient assumption. Typically, the average maturity of a firm’s debt is
larger than one year. So can we hope to get better results by aligning the maturity in the
model with the actual debt maturities? The answer is not immediately obvious. If the only
thing that we change is the horizon (e.g. change cell B6 of Table 2.5 from 1 to 5), we
would have failed to model the fact that the firm makes payments before maturity – like
regular interest on bonds and loans, or dividends. It may be safe to ignore such interim
payments over a horizon of one year. A one-year bond with annual coupon payments is in
fact a zero-coupon bond, and firms usually do not pay out large dividends shortly before
default. However, for a horizon of several years, interim payments should enter our valuation
formula in a consistent way.

In the following, we will implement such an approach. It maintains the set-up of the
Merton model in the sense that there is only one date at which liabilities are due. However,
we take interim payments into account. The key steps are as follows:

1. Assume that the firm has issued only one coupon bond with maturity equal to the average
maturity of liabilities.

2. Accrue interest and dividend payments to the maturity assumed in step 1, i.e. hypotheti-
cally shift their payment dates into the future.

3. Since accrued dividends and interest are assumed to be due at maturity, even though
they are actually paid before, treat them as liabilities that have higher priority than the
principal of the bond.

4 See EDF Case Study: Enron, http://www.moodyskmv.com/research/files/Enron.pdf.
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We start with step 1. In the balance sheet of a firm, liabilities are split up into current liabilities
(maturity less than one year) and long-term liabilities (maturity larger than one year).
Additional information on maturity can be obtained from the annual report, an examination
of outstanding bonds, or other sources. Usually, however, this information is not sufficient
for precisely determining the average maturity. Here, we follow a simple rule that requires
little information: assuming that current (long-term) liabilities have an average maturity of
0.5 (10) years, the average maturity obtains as (L is total liabilities, CL is current liabilities):

�0
5 × CL + 10 × �L − CL�	/L

With the balance sheet from Enron’s quarterly report for June 2001, this leads to a maturity
of T − t = 5
53 years.

Having fixed T , we can proceed to step 2 and compute the value of accrued dividends and
interest payments at T . We assume that dividends are paid annually, and that they grow at
an annual rate of g. With the dividend just paid �D0�, the end value of the dividend stream,
which we denote by D, then obtains as:

D =
T∑

�=t+1

D0�1 + g�� exp�r�T − ��� (2.14)

From Enron’s annual report, the dividend for 2000 was D0 = 368 m, up 3.66% on the 1999
dividend. This motivates our assumption of g = 3%. Note that we accrue dividends at the
risk-free rate r, which we take to be the yield of five-year treasuries. Using the risk-free rate
seems ad hoc, because dividends are risky. But it has some justification as dividends will
be treated senior to debt, so it is probably a better choice than the yield on Enron’s debt.

Interest payments are treated in a similar fashion. Assuming that they are due annually,
and that the coupon rate is c, the end value of interest payments (denoted by I) is:

I =
T∑

�=t+1

c · L · exp�r�T − ��� (2.15)

We could infer the coupon rate by examining the coupons on Enron bonds outstanding at t.
Here, we just assume a value of c = 4%.

Now we can move to step 3. As in the first two sections, the analysis will rest on the
option pricing formula that returns equity value as a function of the asset value, liabilities,
and asset volatility. To understand how equity should be valued, we examine the pay-off
to equity holders at maturity T . Assuming that accrued dividends D have priority over the
principal L, and that accrued interest I and accrued dividends have equal priority, we can
distinguish three regimes (AT is the asset value at maturity):

• AT < L + I: Firm is in default, and asset value is not sufficient to cover claims from
dividends and interest. The equity holders receive their share D/�D + I�AT .

• L+D + I>AT >I +D: Asset value suffices to cover claims from dividends and interest,
but the firm is in default because the principal L is not fully covered. Equity holders
receive only accrued dividends D.
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• AT > L + I + D: Asset value suffices to cover all claims. Equity holders receive
AT − L − I . Note that this includes the dividend claims D. Explicitly stated, equity holders
receive

D + �AT − L − I − D� = AT − L − I

The pay-off structure is shown in Table 2.6 for example values for D, I and L.

Table 2.6 Pay-off structure if accrued dividends and interest have priority over other liabilities L

Carefully inspecting the pay-off structure, it is an exercise in financial engineering to
replicate the pay-off to equity with a portfolio of call options and direct investments in the
underlying assets. Specifically, equity is equivalent to that shown in Figure 2.3.



42 The Structural Approach to Default Prediction and Valuation

a share of D/�D + I� in the assets, plus
a share of D/�D + I� in a short call on assets with strike D + I , plus
a call on assets with strike L + D + I
= equity value

Graphical depiction:

Figure 2.3 The pay-off structure

We can then use the standard Black–Scholes option pricing formula to model today’s value
of equity. We obtain:

Et =At · ��d1� − �L + D + I� e−r�T−t���d2�

+ D

D + I
�At − At��k1� + �D + I�e−r�T−t���k2�� (2.16)

with

d1 = ln�At/�L + D + I�� + �r + �2/2��T − t�

�
√

T − t

d2 = d1 − �
√

T − t (2.17)

and

k1 = ln�At/�D + I�� + �r + �2/2��T − t�

�
√

T − t

k2 = k1 − �
√

T − t (2.18)

As before, we can derive a second equation relating equity volatility to asset volatility.

�E = �
At

Et

[
N�d1� + D

D + I
�1 − N�k1��

]
(2.19)

and determine the unknowns At and � by solving (2.16) and (2.19).
In Table 2.7, the approach is applied to Enron. Dividends and interest are accrued in

E1:G12 using equations (2.14) and (2.15), respectively.
The starting value for the asset value is equity value plus book value of liabilities; the

starting value for the asset correlation is equity correlation times Et/At. Cells B19:B24
contain the formulae (2.16) to (2.19). We then use the Solver to minimize the squared
percentage errors between the observed values (for equity value and volatility) and their
model counterparts.

We also determine the default probability (cell B29). Assuming the drift rate to be 4.5%
as in the previous section, we get a default probability of 31.37%. Note that this is a default
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Table 2.7 Calibrating the multi-period model to equity value and equity volatility

probability over a horizon of 5.5 years. Within our framework, it is not obvious how to
convert it to an annual default probability, as the model does not allow interim defaults. To
get some indication, we can derive an annual default probability under the assumption that
default probabilities are constant across time. This leads to

Prob�default p.a.� = 1 − �1 − 0
3137�1/5
5 = 6
58%

When comparing this figure to the previous results, note that there are several effects at
work. The assumptions about dividends and interest are not the only difference between the
multi-year approach and the one-year approach. The sensitivity of the default probability to
a given asset drift and a given asset volatility also changes with the horizon. This is evident
from the results. The asset volatility in Table 2.7 is closer to the one we received from the
one-year, 2-equation approach. The default probability, on the other hand, is closer to the
one from the iterative approach.
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CREDIT SPREADS

With the estimates from Table 2.7, we can also determine the yield on Enron’s liabilities.
In our model, the firm has just one bond that pays L + I at maturity (if the firm is not in
default). The current value of the bond Bt is the payment in T discounted at the yield y. We
also know that it is equal to the asset value minus the equity value. Therefore, we have

Bt = At − Et =
L + I

�1 + y�T−t
(2.20)

Solving for the yield y we get

y =
(

L + I

At − Et

)1/�T−t�

− 1 = 6
17% (2.21)

Here, we have inserted the results from Table 2.7. The spread s (i.e. the difference between
the corporate bond yield and the risk-free rate) is:

s = y − R = y − �exp�r� − 1� = 1
60% (2.22)

In accordance with the relatively large default probability, we get a spread that is typical of
relatively risky debt, which appears to be sensible.

However, in empirical studies spreads produced by Merton models are often found to be
lower than observed market spreads. One reason could be that the Merton model tends to
underestimate default risk (cf. the discussion in the previous section). In addition, market
spreads compensate investors for the illiquidity and tax disadvantages of corporate bonds,
i.e. factors that are separate from default risk.

NOTES AND LITERATURE

Assumptions

The Merton model, like any model, simplifies the reality to make things tractable. Important assump-
tions in Merton (1974) are: no transactions cost, no bankruptcy cost, no taxes, unrestricted borrowing
and lending at the risk-free interest rate, no short selling restrictions, no uncertainty about liabilities,
log-normally distributed assets. Many extensions to Merton (1974) have been proposed and tested,
and the design and practical application of structural models is still high on the agenda in credit risk
research.

Literature

The seminal paper is Merton, R.C., 1974, On the pricing of corporate debt. The risk structure of
interest rates, Journal of Finance 29, 449–470.

The iterative method is used, for example, in Vassalou, M. and Xing, Y., 2004, Default risk in
equity returns, Journal of Finance 59, 831–868. Our multi-year analysis follows Delianedis, G. and
Geske, R., 2001, The components of corporate credit spreads. Default, recovery, tax, jumps, liquidity,
and market factors, Working Paper, UCLA. The approach behind Moody’s KMV EDFs is described
in Kealhofer, S., 2003, Quantifying credit risk I: Default prediction, Financial Analysts Journal 59
(1), 30–44.



3
Transition Matrices

A credit-rating system uses a limited number of rating grades to rank borrowers according
to their default probability. Ratings are assigned by rating agencies such as Fitch, Moody’s
and Standard & Poor’s, but also by financial institutions. Rating assignments can be based
on a qualitative process or on default probabilities estimated with a scoring model (cf.
Chapter 1), a structural model (cf. Chapter 2) or other means. To translate default probability
estimates into ratings, one defines a set of rating grade boundaries, e.g. rules that borrowers
are assigned to grade AAA if their probability of default is lower than 0.02%, to grade AA if
their probability of default is between 0.02% and 0.05% and so on.

In this chapter, we introduce methods for answering questions such as ‘With what prob-
ability will the credit risk rating of a borrower decrease by a given degree?’ In credit risk
lingo, we show how to estimate probabilities of rating transition or rating migration. They
are usually presented in transition matrices.

Consider a rating system with two rating classes A and B, and a default category D. The
transition matrix for this rating system is a table listing the probabilities that a borrower
rated A at the start of a period has rating A, B or D at the end of the period; analogously for
B-rated companies. Table 3.1 illustrates the transition matrix for this simple rating system.

Table 3.1 Structure of a transition matrix

Rating at end of period

A B D

R
at

in
g

at
st

ar
t

of pe
ri

od

A Probability of staying in
A

Probability of migrating
from A to B

Probability of default
from A

B Probability of migrating
from B to A

Probability of staying in
B

Probability of default
from B

Row headers give the rating at the beginning of the time period, column headers give the
rating at the end of period. The period length is often set to one year, but other choices are
possible. The default category does not have a row of its own as it is treated as an absorbing
category, i.e. probabilities of migrating from D to A and B are set to zero. A borrower that
moves from B to D and back to B within the period will still be counted as a defaulter. If
we counted such an instance as ‘stay within B’, the transition matrix would understate the
danger of experiencing losses from default.

Transition matrices serve as an input to many credit risk analyses, e.g. in the measurement
of credit portfolio risk (see Chapter 6). They are usually estimated from observed historical
rating transitions. For agency ratings, there is practically no alternative to using historical
transitions because agencies do not associate their grades with probabilities of default or
transition. For a rating system based on a quantitative model, one could try to derive transition
probabilities within the model – but this is not common.

In this chapter, we discuss two estimation procedures built on historical transitions: the
cohort approach and the hazard approach. The cohort approach is a traditional technique that
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estimates transition probabilities through historical transition frequencies. Though widely
established, the cohort approach does not make full use of the available data. The estimates
are not affected by the timing and sequencing of transitions within a year. One consequence
hereof is that transition rates to low grades are often zero for high-quality issuers. Such
events are so rare that they are seldom observed empirically. Still, there is indirect evidence
that they can nevertheless happen. What one does observe is that high-grade issuers are
downgraded within a year, say to BBB, and that BBB issuers can default within a few
months. An approach that circumvents such problems and makes efficient use of the data
would be to estimate transition rates using a hazard rate approach, similar to survival studies
in medical science. After presenting this approach, we show how to determine confidence
intervals for the estimated transition probabilities.

COHORT APPROACH

A cohort comprises all obligors holding a given rating at the start of a given period. In the
cohort approach, the transition matrix is filled with empirical transition frequencies that are
computed as follows.

Let Ni�t denote the number of obligors in category i at the beginning of period t (Ni�t is
therefore the size of the cohort i� t). Let Nij�t denote the number of obligors from the cohort
i� t that have obtained grade j at the end of period t. The transition frequencies in period t
are computed as

p̂ij�t =
Nij�t

Ni�t

(3.1)

Usually, a transition matrix is estimated with data from several periods. A common way of
averaging the period transition frequencies is the obligor-weighted average, which uses the
number of obligors in a cohort as weights:

p̂ij =
∑
t

Ni�tp̂ij�t∑
t

Ni�t

(3.2)

Inserting (3.1) into (3.2) leads to:

p̂ij =
∑
t

Ni�t�Nij�t/Ni�t�∑
t

Ni�t

=
∑
t

Nij�t∑
t

Ni�t

= Nij

Ni

(3.3)

Therefore, the obligor-weighted average can be directly obtained by dividing the overall
sum of transitions from i to j by the overall number of obligors that were in grade i at the
start of the considered periods.

The periodicity can be chosen by the analyst. In the following, we use calendar-year
periods. A possible alternative with the same period length would be to use overlapping
12-month periods.

Let us now apply the cohort approach. A typical way of storing rating data is shown in
Table 3.2. The first column contains an obligor identifier; the second column gives the date
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Table 3.2 A rating data set

of the rating action and the third the rating that was assigned. In our hypothetical data set,
we use the Standard & Poor’s rating scale from AAA to C. A rating withdrawal is coded as
NR (not rated).

For computations, it is convenient to convert the rating classes to numbers. We do this
in column D using the VLOOKUP function. In the range F1:H23, we have two different
conversion schemes. In column G, the rating symbol is mapped into 22 rating classes,
maintaining the fineness of modified rating scale �+/flat/−� used in column C. In column
H, the ratings are mapped into eight letter-grade classes. We will use the latter mapping
in this chapter. It is obtained by entering =VLOOKUP(C2,F$1:H$23,3,0) in cell D2 and
filling it down to the end of the data set. (To map the ratings into the 22-number scheme
change the third argument in the VLOOKUP function to two:

= VLOOKUP�C2� F$1�H$23� 2� 0�

Note that lower rating numbers correspond to better ratings, and that a rating withdrawal is
assigned the (arbitrary) value zero.

To understand how the data should be analysed in the cohort approach, let us single out
an obligor and determine the cohorts to which it belongs. With calendar-year cohorts, the
first obligor (id 1) in Table 3.2 belongs to the cohorts shown in Table 3.3, formed at the
end of the stated year. The rating actions are ‘stay in the same rating’ with the exception of
year 2002, where we record a transition from 7 to 6.
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Table 3.3 Rating at year-end for id1

Year-end Grade

2000 7
2001 7
2002 6
… …
Final year in data set 6

We will implement the cohort approach in a user-defined function. The output conforms
to the way in which rating agencies publish transition matrices: transition from default
and not-rated are not shown, while transitions to not-rated are shown in the rightmost
column.

The function assumes that the data is sorted according to obligors and rating dates
(ascending), as the data in Table 3.2 shows. The opening lines of our function COHORT()
with the definition of the variables read:

Function cohort(id, dat, rat, _
Optional classes As Integer, Optional ystart, Optional yend)

If IsMissing(ystart) Then ystart = _
Year(Application.WorksheetFunction.min(dat))

If IsMissing(yend) Then yend = _
Year(Application.WorksheetFunction.Max(dat))- 1

If classes = 0 Then classes = Application.WorksheetFunction.Max(rat)

The input of the obligor identifier, the rating date and the rating itself are sufficient for
our function. However, we add three optional variables. The first two are ystart and
yend which restrict the computation to cohorts formed at the end of year ystart, and to
transitions occurring until the end of year yend. If these two optional parameters are not
specified, we estimate the transition matrix from the year-end following the first rating action
to the year-end preceding the last rating action. The third optional parameter is classes.
Here, the number of rating grades can be supplied. Our function assumes that the highest
rating number marks the default category, whereas rating withdrawals carry a zero as rating
number. You can easily achieve this coding by the VLOOKUP function described above.
When the input of the classes variable is omitted, we estimate the number of rating
categories from the data. Next, we declare variables:

Dim obs As Long, k As Long, kn As Long, i As Integer, j As Integer, _
t As Integer

Dim Ni() As Long, Nij() As Long, pij() As Double, newrat As Integer
ReDim Nij(1 To classes − 1, 0 To classes), Ni(1 To classes)
obs = id.Rows.count

k is a counter for the observations; kn will be used to find the rating from the next year-end.
i, j, t, Ni, Nij and pij are used as in equation (3.3). newrat is an auxiliary variable
that will contain the rating from the next year-end.
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The Ni and Nij are determined in the following For k = 1 to obs loop:

For k = 1 To obs
’Earliest cohort to which observation can belong is from year:

t = Application.Max(ystart, Year(dat(k)))

’Loop through cohorts to which observation k can belong
Do While t < yend

’Is there another rating from the same year?
If id(k + 1) = id(k, 1) And Year(dat(k + 1)) <= t _

And k <> obs Then Exit Do
’Is the issuer in default or not rated?
If rat(k) = classes Or rat(k) = 0 Then Exit Do

’Add to number of issuers in cohort
Ni(rat(k)) = Ni(rat(k)) + 1

’Determine rating from end of next year (=y+1)
’rating stayed constant
If id(k + 1) <> id(k) Or Year(dat(k + 1)) > t + 1 Or k = obs Then

newrat = rat(k)
’rating changed
Else

kn = k + 1
Do While Year(dat(kn + 1)) = Year(dat(kn)) And _

id(kn + 1) = id(kn)
If rat(kn) = classes Then Exit Do ’Default is absorbing!
kn = kn + 1

Loop
newrat = rat(kn)

End If

’Add to number of transitions
Nij(rat(k), newrat) = Nij(rat(k), newrat) + 1
’Exit if observation k cannot belong to cohort of y+1
If newrat <> rat(k) Then Exit Do
t = t + 1

Loop
Next k

With a Do While loop, we find the cohorts to which observation k belongs. To decide
whether it belongs to a certain cohort, we check whether the current rating information is
the latest in the current year t. If there is a migration during the current period, we exit the
Do While loop and continue with the next observation. If not, we first check whether the
issuer is in default or not rated; in these two cases we exit the Do While loop because we
do not compute transitions for these two categories.

If observation k has passed these checks, we increase the Ni count by 1 and determine
the associated rating from the end of the year t. We can quickly determine whether there
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was any rating action before the end of year t; if there was, we again use a Do While loop
to find the rating prevailing at the end of year t. We then increase the Nij count by 1.
Before moving on to the next year within the Do While loop, we close it if we know that
the current observation cannot belong to next year’s cohort.

Next, we calculate the transition frequencies pij=Nij/Ni. Following convention, we
also set the NR category to be the rightmost column of the transition matrix:

ReDim pij(1 To classes − 1, 1 To classes + 1)

’Compute transition frequencies pij=Nij/Ni
For i = 1 To classes − 1

For j = 1 To classes
If Ni(i) > 0 Then pij(i, j) = Nij(i, j) / Ni(i)

Next j
Next i

’NR category to the end
For i = 1 To classes − 1

If Ni(i) > 0 Then pij(i, classes + 1) = Nij(i, 0) / Ni(i)
Next i

cohort = pij

End Function

There are eight rating grades in our example. The transition matrix therefore is a 7 × 9
dimensional matrix. It has only seven rows because we do not return the frequencies for the
default and the not-rated category; it has nine columns because the not-rated category is not
included in the eight classes.

To apply the function COHORT() to the example data from Table 3.2, select a range of
7 × 9 cells, enter

= COHORT�A2�A4001� B2�B4001� C2�C4001�

and press [Ctrl]+[Shift]+[Enter]. The result is the one shown in Table 3.4.
The matrix mirrors two empirical findings common to the matrices published by rating

agencies. First, on-diagonal entries are the highest; they are in the range of 61% to over
90%. This means that the rating system is relatively stable. Second, default frequencies
for the best two rating classes are zero. Since one cannot rule out the possibility of an
obligor defaulting, we would expect the true default probability of the best grades to be
non-zero, albeit very small. But with a very small default probability, the default events are
so rare that it is typical to observe no defaults. For a rating class with 100 obligors and a
default probability of 0.01%, for example, the expected number of defaults over 20 years
is 0.2.

An NR-adjusted version of the transition matrix (3.2) would remove the NR column and
adjust the other entries such that they again sum up to 100%. One way for achieving this
to exclude the obligors who had their rating withdrawn from the cohort. To perform such
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Table 3.4 One-year transition Matrix with the cohort approach

an adjustment, we do not need the original rating data; a matrix like the one in Table 3.4
suffices. See Chapter 4 for details.1

MULTI-PERIOD TRANSITIONS

If we want to estimate probabilities for transitions over a horizon of maybe three years
instead of one, we can do this in much the same way as in the previous section. Just define
the period length to be three years instead of one, and modify the function COHORT()
accordingly.

Alternatively, we can convert a transition matrix that was estimated for a given period
length – like one year in the previous section – into a multi-period matrix without analyzing
the original data again. For doing so, we have to assume that transitions are independent
across the years. Then, a T -period transition matrix can be obtained by multiplying the
one-period matrix with itself �T − 1� times. Let PT denote the transition matrix over T
periods, then:

PT = PT
1 = P1P1� � � P1︸ ︷︷ ︸

T times

(3.4)

With this rule, we can also generate matrices over horizons that are longer than the time
span covered by our rating data; for example, we can estimate a five-year transition matrix
from two years of data.2

If we try to multiply the matrix in Table 3.5 with itself using the MMULT() command, we
observe a problem. To multiply a matrix with itself, the matrix has to be symmetric, but our
matrix has seven rows and nine columns. To fix this problem, we can add two rows for the

1 Of course there are other possibilities to adjust the NR ratings, for example loading the NR probabilities into the diagonal
elements.
2 Remember that we assume the transitions to be independent across years. This so-called ‘Markovian’ assumption contradicts
empirical findings where rating transitions in one year are not found to be independent of the transition in the previous year. This
methodology should therefore be used with caution.
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Table 3.5 Two-year transition matrix based on Table 3.4

default and not-rated categories. For the default category, which we assumed to be absorbing,
the natural way of filling the row is to put 0’s off-diagonal and 1’s on-diagonal. For the NR
category, we could have estimated the transition rates. In the previous section we did not
include migrations to NR in our calculation. We could thus perform an NR-adjustment and
work with the NR-adjusted matrix. Here, we refrain from doing so and assume that the NR
status is absorbing as well. From a risk-management perspective, this can be an innocent
assumption if lending relationships are (at least temporarily) terminated with a transition
to NR.

In Table 3.5, we therefore extend the matrix from Table 3.4 by two rows having 0’s off-
diagonal and 1’s on-diagonal, and compute a two-year matrix with the MMULT() command.

By repeated application of the MMULT command we can obtain any T -year matrix. To
get a three-year matrix, for example, we would type

= MMULT�MMULT�B3�J11� B3�J11�� B3�J11�

Since this can get tedious for large T , we propose a user-defined function MPOWER(array1,
power) which takes array1 to the power of power (cf. the appendix of this chapter for
details).
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HAZARD RATE APPROACH

The cohort approach does not make full use of the available data. Specifically, the estimates
of the cohort approach are not affected by the timing and sequencing of transitions within
the period. As an example, consider obligor number 5 from Table 3.2. For this obligor, we
have recorded the following rating actions:

Id Date Rating Symbol Rating Number

5 24-May-00 AA− 2
5 30-May-01 A+ 3
5 30-Oct-01 AA− 2

In the cohort approach, we would conclude that the rating remained stable over the year
2001 even though there were two rating changes in that year.

An alternative approach, which captures within-period transitions, is called the duration
or hazard rate approach. In the following, we demonstrate its implementation without
explaining the underlying Markov chain theory; the interested reader is referred to the
literature stated at the end of the chapter. We first estimate a so-called generator matrix
� providing a general description of the transition behavior. The off-diagonal entries of �
estimated over the time period �t0� t	 are given as:


ij = Nij∫ t

t0
Yi�s�ds

for i �= j (3.5)

where Nij is the observed number of transitions from i to j during the time period considered
in the analysis, and Yi�s� is the number of firms rated i at time s. The denominator therefore
contains the number of ‘obligor-years’ spent in rating class i. Note the similarity to the
cohort approach. In both cases, we divide the number of transitions by a measure of how
many obligors are at risk of experiencing the transition. In the cohort approach, we count
the obligors at discrete points in time (the cohort formation dates); in the hazard approach
we count the obligors at any point in time.

The on-diagonal entries are constructed as the negative value of the sum of the 
ij per
row:


ii = −∑
i �=j


ij (3.6)

How would the history of obligor 5, shown above, affect the generator matrix? It migrated
from the second rating class to the third and back to the second. This adds a value of 1 both
to N2�3 and N3�2.3 The contribution to the denominator is as follows (assuming t0 to precede
24-May-00): the first spell in rating class 2 adds roughly one year to the denominator of

2�j; the time spent in class 3 adds half a year to the denominator of 
3�j; and the second
time spent in class 2 adds the difference between t and 30-Oct-01, again to 
2�j .

3 When referring to actual numbers we separate the classes in the subscripts by commas, e.g. we write N2�3 instead of N23.
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From Markov chain mechanics, a T -year transition matrix P�T� is derived from the
generator matrix as follows:

P�T� = exp ��T� = �
�

k=0

�kT k

k! (3.7)

where �T is the generator matrix multiplied by the scalar T and exp() is the matrix expo-
nential function. If we want a one-year matrix, we simply evaluate exp���, but generating
matrices for other horizons is just as easy.

For the calculation of the generator matrix, we supply the user-defined function GENER-
ATOR(). It assumes that the data is sorted according to obligors and dates (ascending). The
arguments are the same as for the function COHORT() from above:

Function GENERATOR(id, dat, rat, _
Optional classes As Integer, Optional ystart, Optional yend)

Again, we assign default values from the data set to unspecified optional parameters.
In contrast to the COHORT() function where the knowledge of the year was sufficient,
daily information is used here to define the start and end date. If ystart and yend
are only specified as calendar years, we set the start and end day to the respective
year-end:

Dim k As Long, i As Long, j As Long, dmin As Date, dmax As Date, _
obs As Long

If classes = 0 Then classes = Application.WorksheetFunction.Max(rat)
obs = Application.WorksheetFunction.count(id)
dmin = Application.WorksheetFunction.min(dat)
dmax = Application.WorksheetFunction.Max(dat)

If IsMissing(ystart) = False Then
dmin = ystart
If Len(ystart) = 4 Then dmin = DateSerial(ystart, 12, 31)

End If

If IsMissing(yend) = False Then
dmax = yend
If Len(yend) = 4 Then dmax = DateSerial(yend, 12, 31)

End If

Dim spell() As Double, nlambda() As Double, dlambda() As Double, _
lambda() As Double, spell_k As Double, dat_k As Date

ReDim nlambda(0 To classes, 0 To classes), dlambda(0 To classes)

As in the cohort function, k is the observation counter, while i and j are used as in
equation (3.5). nlambda is the numerator of the 
ij , dlambda its denominator. dat_k
and spell_k are auxiliary variables containing the migration date of the kth observation
and the length of time that observation k spends in its grade.
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Now we can enter the core of the function, a For k=1 to obs-1 loop:

For k = 1 To obs - 1

dat_k = dat(k)
’Truncate
If dat_k < dmin Then dat_k = dmin
If dat_k > dmax Then dat_k = dmax
If dat(k + 1) < dmin Then GoTo mynext

If id(k) = id(k + 1) And dat(k + 1) <= dmax Then
spell_k = (dat(k + 1) − dat_k)
nlambda(rat(k), rat(k + 1)) = nlambda(rat(k), rat(k + 1)) + 1
Else
spell_k = (dmax − dat_k)

End If
dlambda(rat(k)) = dlambda(rat(k)) + spell_k / 365

mynext:
Next k
’last obs
If dmax > dat(obs) Then dlambda(rat(obs)) = dlambda(rat(obs)) + _

(dmax − dat(obs)) / 365

The final observation is treated differently to avoid the index running out of range. Now we
treat special cases: If the rating action happened before the time interval �t0� t	 we raise its
date to t0; if it happened afterwards, we lower it to t. Also, we move to the next observation
if the current one is followed by another rating action before t0.

A transition nlambda is recorded whenever the next observation belongs to the same
obligor and has date smaller than t. To determine the length of the spell in days, we subtract
the current date from the next observation’s date or from t; the latter applies if the next
observation has date larger than t or belongs to another obligor. With the spell we calculate
the denominator of the 
ij . Since the spell_k is measured in days, we divide by 365 to
translate it into obligor-years.

Having gone through all observations, the generator matrix can be obtained by calculating
the off-diagonal 
ij , summing them up in the variable sumoffdiag and setting the on-
diagonal 
ii equal to -sumoffdiag:

Dim sumoffdiag As Double
ReDim lambda(0 To classes + 1, 0 To classes + 1)
For i = 0 To classes

sumoffdiag = 0
If dlambda(i) > 0 Then

For j = 0 To classes
lambda(i, j) = nlambda(i, j) / dlambda(i)
If i <> j Then sumoffdiag = sumoffdiag + lambda(i, j)

Next j

End If
lambda(i, i) = -sumoffdiag
Next i
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Adding the absorbing default class, which consists of zeros, and putting the NR category to
the right, we are finished:

’Absorbing default class
For j = 0 To classes + 1

lambda(classes, j) = 0
Next j

’Shift NR category to the end of the matrix
Dim lambdatmp: ReDim lambdatmp(1 To classes + 1, 1 To classes + 1)
For i = 1 To classes + 1

lambda(classes + 1, i) = lambda(0, i)
lambda(i, classes + 1) = lambda(i, 0)
For j = 1 To classes + 1

lambdatmp(i, j) = lambda(i, j)
Next j

Next i
lambdatmp(classes + 1, classes + 1) = lambda(0, 0)

GENERATOR = lambdatmp

End Function

Table 3.6 shows how to use the function on our example data. It is an array function whose
output extends over several cells. We select a 9 × 9 range, enter

= GENERATOR�A2�A4001� B2�B4001� C2�C4001�

and confirm by [Ctrl]+[Shift]+[Enter].

Table 3.6 Estimating the generator matrix from the rating data



Credit Risk Modeling using Excel and VBA 57

The one-year transition matrix based on this generator is given by applying the exponential
function to the generator. Assume for a moment that we have just four categories, including
default and NR. The matrix exponential exp��T� would then be of the form

exp��T� =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦+ T

⎡
⎢⎢⎣


11 
12 
13 
14


21 
22 
23 
24


31 
32 
33 
34


41 
42 
43 
44

⎤
⎥⎥⎦

+ T 2

2!

⎡
⎢⎢⎣


11 
12 
13 
14


21 
22 
23 
24


31 
32 
33 
34


41 
42 
43 
44

⎤
⎥⎥⎦

2

+
�∑

k=3

��T�k

k!

(3.8)

We can evaluate the matrix exponential by truncating the infinite sum in (3.8) at some
suitable point. This is implemented in the user-defined function MEXP() explained in
the appendix to this chapter. Since truncation may be numerically problematic, we also
supply the user-defined function MEXPGENERATOR(), which is more reliable for the
special case of generator matrices; this function is also discussed in the appendix to this
chapter.

Applying the MEXPGENERATOR() function to the generator of Table 3.6 leads to the
result shown in Table 3.7. Again, we first select a 9 × 9 range, enter

= MEXPGENERATOR�F3�N11�

where F3:N11 is the range containing the generator matrix, and confirm by
[Ctrl]+[Shift]+[Enter].

To obtain a three-year matrix, for example, enter

MEXPGENERATOR�F3�N11∗3�

in the range F18:N26.
In contrast to the transition matrix estimated with the cohort approach, we have default

probabilities of non-zero value for each rating category (the default probabilities are given
in column M of Table 3.7). We see in the data that top-graded obligors are at risk of
being downgraded to lower rating grades, which are then at risk of moving into default.
Chaining the two moves together, we also get a non-zero probability of default for top-graded
obligors.

One cannot conclude, though, that default probabilities estimated with the hazard approach
are always higher than those from the cohort approach. In Table 3.7, the opposite is true for
grades 3, 4, 5 and 7. What matters for the difference is the sequencing of rating transitions.
Consider a ‘pass-through’ grade to which many obligors migrate shortly before their default.
One would expect the hazard default probability to be higher because the cohort approach
fails to capture many of the short stays in the pass-through grade.
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Table 3.7 Obtaining a one-year transition matrix from the generator

OBTAINING A GENERATOR MATRIX FROM A GIVEN
TRANSITION MATRIX

We are not always in the lucky position of having detailed rating information from which we can
estimate a generator. If the only information available is a transition matrix for a given horizon,
can we obtain a generator? The answer is both ‘Yes’ and ‘No’. It is possible, but not all transition
matrices have a generator and for those that do, the generator may not be unique.4

To construct an approximate generator, we can make the assumption that there is only
one transition per obligor and period. Let pij denote the entries of the transition matrix P,
then the generator is given by


ii = ln�pii�


ij =pij


ii

pii − 1
� i �= j (3.9)

4 Conditions for a valid generator include the underlying Markov chain to be stochastically monotonic. See Israel et al. (2001) for
an overview.
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We have implemented this conversion methodology in the user-defined function transi-
tion2generator(array) whose only argument is the array containing the transition matrix:

Function transition2generator(array1)

Dim P, n As Integer, i As Integer, j As Integer, lambda
P = array1
If UBound(P, 1) <> UBound(P, 2) Then End
n = UBound(P, 1)
ReDim lambda(1 To n, 1 To n)

’lii=log(pii)
For i = 1 To n

lambda(i, i) = Log(P(i, i))
For j = 1 To n
If i <> j And P(i, i) < 1 Then
lambda(i, j) = P(i, j) ∗ lambda(i, i) / (P(i, i) − 1)

End If
Next j

Next i
transition2generator = lambda
End Function

In Table 3.8, we apply the function to the transition matrix of Table 3.7 and reconvert it to
a transition matrix with the function MEXPGENERATOR().

Comparing this approximate generator to the transition matrix in Table 3.8, we see that
both are similar but not identical. In our data, the assumption that there is only one transition
per year is not fulfilled, leading to a discrepancy between the approximate generator and the
one estimated with the detailed data.

CONFIDENCE INTERVALS WITH THE BINOMIAL
DISTRIBUTION

In both the cohort and the hazard approach, entries of the transition matrix are estimates of
transition probabilities. Like any estimate, they are affected by sampling error. If we see a
value of 0.05% in some cell of the matrix, we cannot be sure that the transition probability
is truly 0.05%. It could very well be lower or higher.

An intuitive way of quantifying sampling error is to provide confidence intervals for
the estimates. In this section, we show how to use the binomial distribution for obtaining
confidence bounds within the cohort approach. Bootstrapped confidence bounds for the
hazard approach are demonstrated in the next section.

We focus on default probability estimates because these are the most relevant for risk man-
agement purposes. Transition probabilities to grades other than default could be examined
in much the same way.

Let PDi denote the true probability of default for rating class i. The estimated default
probability according to equation (3.3) is:

p̂iK = NiK

Ni

(3.10)
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Table 3.8 Obtaining an approximate generator from a transition matrix

Now assume that defaults are independent across time and across obligors. Then, the
number of defaults is binomially distributed with Ni successes and success probability
PDi, and we can easily derive confidence bounds. In practice, defaults are not necessarily
independent (see Chapter 5). Nevertheless, it can be useful to have a quick (yet somehow
dirty) way of obtaining confidence bounds.

If we are seeking a two-sided, 1 − � confidence interval where � is a value such as 5%,
the lower bound PDmin

i must be such that the probability of observing Ni defaults or more is
�/2. PDmin

i therefore solves the condition

1 − BINOM�Nik − 1�Ni� PDmin
i � = �/2 (3.11)
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where BINOM(x�N�q) denotes the cumulative binomial distribution for observing x or less
success out of N trials with success probability q.

The upper bound PDmax
i must be such that the probability of observing Ni or less defaults

is �/2:

BINOM�Nik�Ni� PDmax
i � = �/2 (3.12)

To obtain the number of observations Ni, we can adjust our function COHORT() to
COHORTN().5 The changes are highlighted:

Function COHORTN(id, dat, rat, _
Optional classes As Integer, Optional ystart, Optional yend)

...

ReDim pij(1 To classes − 1, 0 To classes + 1)

’Compute transition frequencies pij=Nij/Ni
For i = 1 To classes − 1

pij(i, 0) = Ni(i)
For j = 1 To classes
If Ni(i) > 0 Then pij(i, j) = Nij(i, j) / Ni(i)

Next j
Next i

...

COHORT N = pij

End Function

In Table 3.9, we construct the confidence sets. The transition matrix is computed in the range
E2:M8 with the function COHORTN(); the table shows only the first and the last column of
its output. Columns O and P are reserved for the confidence bounds. We leave them blank
because we determine them with a macro. In columns Q and R we insert the conditions for
the confidence sets according to equations (3.11) to (3.12). In Excel, the binomial distribution
function is available through BINOMDIST(x, N , q, 1) where the logical value 1 tells Excel
to return the cumulative distribution rather than the density. Cell Q4, for example, reads:

= 1 − BINOMDIST�E4∗M4 − 1� E4� O4� 1� − P$10/2

In the macro binomialconfidence(), we apply the Solver to set each cell within Q2:R11 to
zero. (Make sure that a reference to the Solver is set in the VBA editor, as described in
Appendix A2.) The corresponding macro would be as follows:

Sub binomialconfidence()
Dim i As Long, target, change
SolverReset

5 We also could add an additional optional argument to the function COHORT().
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Table 3.9 Confidence sets for the probability of default

For i = 2 To 8
’PD non-zero?
If Range("M" & i) > 0 Then

’Lower Bound
Range("O" & i) = Range("M" & i)
target = "Q" & i
change = "O" & i
SolverOk SetCell:=target, MaxMinVal:=3, _

ValueOf:="0", bychange:=change
SolverOptions AssumeNonNeg:=True
SolverSolve UserFinish:=True
’Upper Bound
Range("P" & i) = Range("M" & i)
target = "R" & i
change = "P" & i
SolverOk SetCell:=target, MaxMinVal:=3, _

ValueOf:="0", bychange:=change
SolverOptions AssumeNonNeg:=True
SolverSolve UserFinish:=True

Else
Range("O" & i) = 0
Range("P" & i) = 1 − Range("P10") ˆ (1 / Range("E" & i))
Range("Q" & i & ":R" & i).Clear

End If

Next i

End Sub



Credit Risk Modeling using Excel and VBA 63

We start by declaring a counter i and resetting the Solver to its default parameters. We
then loop through the seven rating grades contained in rows 2 to 8. First, start values for
lower and upper bounds are set equal to the estimated PD from column M. We next define
the cells that are handed to the Solver as target cell (target) and changing cell (change),
and call the Solver. We do not use the Solver if the estimated default probability is zero. In
this case, the lower bound is obviously zero, as it cannot be negative. The upper bound can
be obtained by solving the equation

�1 − PDi�
Ni = �

The resulting confidence bounds are relatively wide. In most cases, they overlap with those
of adjacent rating classes. What may seem surprising is that the upper bound for the best
rating category 1 is higher than those for rating classes 2 to 5. The reason is that the number
of observations in class 1 is relatively low (96), which increases (the length or the upper
bound of) confidence intervals.

BOOTSTRAPPED CONFIDENCE INTERVALS FOR THE HAZARD
APPROACH

Since it is not obvious how to apply the binomial distribution to estimates from the hazard
approach (there is no direct counterpart to the Ni of the cohort approach), we employ bootstrap
simulations. In a bootstrap analysis, one re-samples from the data used for estimation and
re-estimates the statistics with the re-sampled data. Having done this many times, one can
derive a distribution of the statistic of interest.

The steps of our bootstrap analysis are as follows:

1. Randomly draw with replacement an obligor’s complete rating history. Repeat as many
times as there are obligors in the original rating data set.

2. Calculate the generator � and transition matrix exp(�) for the sample generated in step 1.
3. Repeat steps 1 and 2 M times.
4. Determine percentiles of the transition probabilities from step 3.

The choice made in step 1 is not the only possible one. In a simple setting with N

independent observations, one would re-sample N times with replacement to maintain the
size of the original data set. Our rating data, by contrast, has several dimensions: the
number of obligors, the number of rating actions, the number of obligor-years for which
data is available, the calendar time spanned by the first and last rating action, and sev-
eral more. We could try to design the simulation such that the bootstrap sample closely
resembles the original data in each dimension, but a perfect similarity would be infea-
sible. Among the one-dimensional bootstrap strategies, drawing obligors appears to be
natural.

We implement the bootstrap in a user-defined function called BOOTCONF(). As with
the COHORT() and GENERATOR() functions, arguments include the range containing the
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obligor identifier id, the migration date dat and the rating rat. Additionally, we include:
a variable M for the number of repetitions; a variable toclass which selects the rating
class to which we analyze transitions; and a final parameter that specifies the confidence
level. To simulate a 95% confidence interval, set confidence=0.05.

The header, together with some definitions, reads:

Function BOOTCONF(id, dat, rat, M As Long, toclass As Integer, _
confidence)

If confidence < 0 Or confidence > 1 Then End

Dim i As Long, data() As Long, k As Long, obs As Long, jmax As Long, _
j As Long, classes As Integer, bdmax As Date, bdmin As Date, _
nobligor As Long, tmp

obs = id.Rows.count
classes = Application.WorksheetFunction.Max(rat)

Next we write the information on obligors into an array data(). We need one row for each
obligor, but since we do not yet know the number of obligors, we reserve as many rows as
there are observations in the data. In column 1, we assign each obligor a new running Id.
In columns 2 and 3, we store the lines number from the original data in which the first and
last observation belonging to this obligor is found.

‘Input the obligor information into the array data
k = 1
ReDim data(1 To obs, 1 To 3)
jmax = 0
For i = 1 To obs

If id(i) <> id(i + 1) Then
data(k, 1) = id(i)
data(k, 2) = i − j
data(k, 3) = i
k = k + 1
If j + 1 > jmax Then jmax = j + 1
j = 0

Else
j = j + 1

End If
Next i

nobligor = k

The variable jmax contains the highest number of rating actions over all obligors, while
nobligor contains the total number of different obligors. The number of observations in
each simulation step is unknown but cannot exceed jmax times nobligor. This informa-
tion will be used for dimensioning arrays.

We are now ready to start the simulation. In a For i = 1 to M loop, we perform M
repetitions, whose output (the transition probabilities) are stored in the array dist:
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Dim bid(), bdat() As Date, brat(), brow, rand, bid_k, dist
ReDim dist(1 To M, 1 To classes + 1, 1 To classes + 1)
bdmin = Application.WorksheetFunction.Max(dat)
‘Now we simulate
brow = 1: bid_k = 0
For i = 1 To M

ReDim bid(1 To jmax * obs), bdat(1 To jmax * obs), _
brat(1 To jmax * obs)

For k = 1 To nobligor
rand = Int((nobligor − 1) * Rnd + 1)
bid_k = bid_k + 1
For j = data(rand, 2) To data(rand, 3)

bid(brow) = bid_k
bdat(brow) = dat(j)
brat(brow) = rat(j)
If bdat(brow) < bdmin Then bdmin = bdat(brow)
If bdat(brow) > bdmax Then bdmax = bdat(brow)
brow = brow + 1

Next j
Next k

The variable brow counts the rows in the bootstrap data array. The variables bid, bdat
and brat are bootstrapped ids, dates, and ratings, respectively. bmin and bdmax are the
minimum and maximum date in the bootstrap sample, respectively. As many times as they
are obligors (For k=1 to nobligor), we draw a random obligor id rand, and then add
the information from this obligor to the bootstrapped data set.

We then cut the empty rows in the bootstrap data using the ReDim Preserve command,
since our generator function cannot cope with empty entries:

‘Cut unneeded observations
ReDim Preserve bid(1 To brow − 1), bdat(1 To brow − 1), _

brat(1 To brow − 1)

Next, we calculate the generator � and the transition matrix exp(�) on this sample and save
the result in the three-dimensional array dist().

‘Calculate transition based on this sample
tmp = mexpgenerator(GENERATOR(bid, bdat, brat, classes, bdmin, bdmax))
‘Add calculated generator to distribution
For j = 1 To classes + 1

dist(i, j, toclass) = tmp(j, toclass)
‘To remember all classes, uncomment the three lines below:

‘For k = 1 To classes + 1
‘dist(i,j,k)=tmp(j,k)

‘Next k
Next j
brow = 1

Next i

Here, we only store the migration to the variable toclass. The whole transition matrix of
each simulation step could be stored by adding a second for loop as shown in the code.
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To obtain the confidence bands on this distribution, we convert the stored information
into a one-dimensional array format which can be analyzed with the worksheet function
PERCENTILE:

‘Now we obtain the percentiles
Dim percenti, upper, lower
ReDim percenti(1 To classes + 1, 1 To 2)
‘Problem: PERCENTILE does not work with dist()
ReDim tmp(1 To M)
‘only default categor
For j = 1 To classes + 1

For k = 1 To M
tmp(k) = dist(k, j, toclass)

Next k
percenti(j, 1) = Application.Percentile(tmp, confidence / 2)
percenti(j, 2) = Application.Percentile(tmp, 1 - confidence / 2)

Next j

BOOTCONF = percenti

End Function

The function returns an array with two columns, where each row corresponds to a rating
class and the columns contain the lower and upper confidence bounds. In Table 3.10,

Table 3.10 Bootstrapped confidence bounds for default probabilities from the hazard
approach
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we apply the function to our data set. We draw M = 1000 bootstrap samples here and
calculate the confidence for the probability of default (toclass=8) with 5% confidence by
entering

= BOOTCONF�A2�A4001� B2�B4001� C2�C4001� 1000� 8� 005�

into the range F5:G15 and confirming by [Ctrl]+[Shift]+[Enter]. Note that it takes some
time for the function to return its output.

The smaller confidence bands for the top rating classes present a striking difference to
the binomial confidence bounds obtained for the cohort estimates. The first rating class, for
example, has a PD between 0.00 and 0.04% with 95% confidence. The intuition is that the
hazard estimate of this grade’s PD is not only based on the behavior of the few obligors
within this grade but also on the behavior of obligors in other grades.

With slight modifications, the function BOOTCONF() could also be used for the cohort
method. If we continue to re-sample issuers, however, the confidence bounds for rating
grades with an estimated default probability of zero would be degenerate and equal to
[0, 0]. If there is no default in the original data, there will be no default in the bootstrap
data.
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APPENDIX

Matrix Functions

In this chapter, we make use of the matrix exponential. Our user-defined function MEXP() makes
heavy use of other matrix operations such as matrix multiplication, addition, etc. Since Excel does not
provide sufficiently flexible functions to perform these tasks, we provide some further user-defined
matrix functions. To gain uniformity, the arguments of these functions are usually called array1
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and array2. To avoid the referencing problem (see the troubleshooting in Appendix A.1 for details),
we pass all values by ByVal.

MSMULT(array1, array2) is identical to Excel’s function MMULT if two arrays are provided.
However, if you enter a scalar as first array (or point to a singular cell), our function returns the matrix
in array2 multiplied by the scalar. MMULT, in contrast, returns an error. Our function performs both
matrix by matrix and matrix by scalar multiplication:

Function MSMULT(ByVal array1, ByVal array2)
Dim output, i, j
If Application.WorksheetFunction.count(array1) = 1 Then

array2 = array2
ReDim output(1 To UBound(array2, 1), 1 To UBound(array2, 2))
For i = 1 To UBound(array2, 1)

For j = 1 To UBound(array2, 2)
output(i, j) = array1 ∗ array2(i, j)

Next j
Next i
MSMULT = output

Else
MSMULT = Application.WorksheetFunction.MMult(array1, array2)

End If
End Function

MADD(array1, array2) adds two matrices. If the input matrix array1 contains a number or a single
cell, the function assumes that the first matrix consist entirely of entries with this value:

Function MADD(ByVal array1, ByVal array2)
Dim i, j, n1, n2
n1 = Application.WorksheetFunction.count(array1)
n2 = Application.WorksheetFunction.count(array2)
array1 = array1: array2 = array2

If n1 = 1 Then
For i = 1 To UBound(array2, 1)

For j = 1 To UBound(array2, 2)
array2(i, j) = array2(i, j) + array1

Next j
Next i

Else
For i = 1 To UBound(array2, 1)

For j = 1 To UBound(array2, 2)
array2(i, j) = array1(i, j) + array2(i, j)

Next j
Next i

End If
MADD = array2
End Function

MPOWER(array1, power) takes the matrix in array1 to the power supplied in the parameter power.
This parameter is restricted to integers. If power is equal to zero, the function returns the identity
matrix:
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Function MPOWER(ByVal array1, power As Integer)
Dim i: MPOWER = array1

For i = 1 To power − 1
MPOWER = Application.WorksheetFunction.MMult(mpower, array1)
Next i

If power = 0 Then MPOWER = mdiag(UBound(mpower, 1), 1)
End Function

MDIAG�m�d� returns a symmetric m×m matrix with on-diagonal entries of d and off-diagonal zeros.
This is called a diagonal matrix and is equivalent to multiplying the identity matrix by the scalar D:

Function MDIAG(m As Integer, D As Double)
‘Generate diag matrix with MxM and D as entries on diagional

Dim i, j, output: ReDim output(1 To m, 1 To m)

For i = 1 To m
For j = 1 To m

output(i, j) = 0
Next j

output(i, i) = D
Next i

MDIAG = output
End Function

All these functions are provided in the Add-in and are useful in many other settings, as those described
here. We will now go into detail concerning the user-defined function MEXP(array1) which provides
the exponential function of a matrix array1:

Function MEXP(array1)
‘Calculate exp(matrix)
Dim error As Double, k As Long, calc, mpowerk, maddition
array1 = array1: mpowerk = array1
‘Check symmetry
If UBound(array1, 1) <> UBound(array1, 2) Then End

‘First and second entry (identity matrix + array1)
calc = madd(mdiag(UBound(array1, 1), 1), array1)
k = 2
error = 1
Do While (error > 10 ˆ �−320� And k <= 170)

mpowerk = msmult(mpowerk, array1)
maddition = msmult(1 / Application.WorksheetFunction.Fact(k),mpowerk)
calc = madd(maddition, calc)
k = k + 1
If k > 10 Then error = _

Application.WorksheetFunction.SumSq(maddition)
Loop
MEXP = calc
End Function
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The function MEXP() directly implements equation (3.8) and truncates the sum in the following way:
For each step greater than 10 �k > 10�, we compute the sum of the squared elements of the kth
summand. If this is smaller than 10−320, i.e. equal to zero by Excel’s precision, we stop the summation
process. Each of the elements missed (all k greater than the stopping k) is smaller than the last addition.
We furthermore stop the routine if k > 170 since Excel returns an #NUM! error for the factorial of
k > 170. With some tricks we could go beyond these limits, but in most of our tests convergence was
achieved in less than 150 steps.

In our application, however, we have to evaluate the matrix exponential of a special type of matrix,
the generator matrix. On the diagonal, the generator matrix has negative values equal to minus the
sum of the off-diagonal elements in the respective row (cf. equation (3.6)). Adding up large positive
and negative numbers can lead to numerical problems, in turn rendering the truncated sum in MEXP()
unreliable. To avoid such problems, we have programmed a function MEXPGENERATOR() which
adjusts the generator to contain only positive values. The idea is as follows: We first find the maximal
absolute on-diagonal element of array1, denote this by 
max:


max = max��
ii��

Then, we construct a diagonal matrix D = diag�
max� with 
max as entries, i.e. multiply the identity
matrix by 
max. Here, D is shown for the case of a 4 × 4 matrix:

D =

⎛
⎜⎜⎝


max 0 0 0
0 
max 0 0
0 0 
max 0
0 0 0 
max

⎞
⎟⎟⎠

The sum of the generator itself and the thus obtained diagonal matrix contains only positive entries.
Let us call this matrix �∗ with �∗ =�+D. Since the identity matrix commutes with any other matrix,
we obtain:

exp��� = exp��∗ − D� = exp��∗� × exp�−D� = exp�−
max� × exp��∗�

We have therefore reduced our problem to that of the matrix exponential of �∗ with only positive
entries. The function reads:

Function MEXPGENERATOR(array1)

‘Calculate the matrix exponential

Dim n as long, i, D, lmax as double, tmp, Lstar
array1 = array1
n = UBound(array1)
lmax = 0
‘Find maximal diagonal entry
For i = 1 To n

If Abs(array1(i, i)) > lmax Then lmax = Abs(array1(i, i))
Next i
‘Construct diagonal matrix with maximal entry and add this to the matrix
Lstar = madd(mdiag(n, lmax), array1)
‘Now use the truncated sum method to obtain an estimate for Im+mymatrix
tmp = mexp(Lstar)
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‘And finally:
MEXPGENERATOR = msmult(Exp(−1 ∗ lmax), tmp)

End Function

In our tests, this function yielded the same result as MEXP(). However, we recommend using MEXP-
GENERATOR() for the matrix exponential of generator matrices.





4
Prediction of Default and Transition Rates

Default and transition rates are essential to pricing or risk management. Based on a forecast
for next year’s default rate, for example, a bank can set appropriate loan rates for short-term
loans.

In Chapter 3, we showed how to estimate average transition rates based on data extending
over several years. If such rates are used to estimate next year’s transition rates, one would
implicitly assume the next year to be a typical or average year. This may be an appropriate
assumption in some situations; in others, however, we may have good reason to believe
that the following year should be relatively good or bad for credits. If the economy is just
moving into a recession, for example, we should expect default rates to be relatively high.

In this chapter, we show how to use readily available information to predict default and
transition rates for corporates rated by a major rating agency. The fact that default and
transition rates can indeed be predicted might cast doubt on the efficiency of agency ratings.
If there were good reasons to believe, say at the end of 2001, that the default rate of BB-rated
issuers was to be relatively high in 2002, why did the agency not downgrade more BB-rated
issuers? To understand this, it is crucial to know that agencies do not aim at assigning ratings
in such a way that the one-year default probability of a rating category is constant across
time. By contrast, ratings are meant to be relative assessments of credit quality. If overall
economic conditions have deteriorated, affecting all borrowers in a similar way, the previous
relative ordering would still be correct, even though the default probability of a given rating
category may substantially deviate from its average in the past.

CANDIDATE VARIABLES FOR PREDICTION

In the examples studied in this chapter, we predict default and transition rates for calendar
years, i.e. from the end of year t to the end of year t + 1. Herefore, we need information that
is already known at the end of year t. We consider four different predictive factors, each of
which is captured by one empirical variable.

• Macroeconomic conditions: Liquidity and profits of corporates are affected by overall
economic conditions. We could capture them by a measure of current activity, such as
GDP growth over the preceeding year. However, we can hope to do better if we use
forecasts of future economic activity instead of current activity, and if we use a measure
of activity that is closely associated with corporate conditions. We therefore use forecasts
of one-year changes in corporate profits. To control for effects of inflation, we also deflate
the forecasts. We denote this variable as PRFt. It is defined as

PRFt =
1 + Forecasted change in corporate profits �in t for t� t + 1�

1 + Forecasted change in GDP deflator �in t for t� t + 1�
− 1
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The forecast data is taken from the Survey of Professional Forecasters, which is available
on the internet.1

• Corporate bond spreads: Yields of corporate bonds should be set such that the expected
return from holding a bond is at least as large as the return from holding a risk-free
government bond. Otherwise, there would be little incentive to buy risky corporate bonds.
Roughly speaking, the expected return on a corporate bond is its yield minus the loss rate.
The corporate bond spread, which is the difference between the yield of a corporate bond
and a comparable government bond, should therefore vary with the loss rates expected
by the market. We define the variable SPR as

SPRt = Yield of corporate bonds�in t� − Yield of US treasuries �in t�

The corporate bonds used for computing the variable SPR should have a risk similar to the
risk of the issuers whose transition rates are to be predicted. When predicting investment
grade default rates, for example, we use the yield of Baa-rated corporate bonds. The
yield of US treasury bonds is taken from 10-year treasuries. The data is available from
Econstats.2

• Aging effect: It has been documented in the literature that issuers who first entered
the bond market three to four years ago are relatively likely to default. This empirical
phenomenon is called the aging effect. There are several possible explanations, one being
that the debt issue provides firms with cash – enough cash to survive for several years
even if the business plan envisaged at the time of the bond issue did not work out. So if
new issuers run into difficulties, liquidity problems will only appear with a certain delay.
We define the variable AGE as the fraction of current issuers that had their first-time
rating three to four years ago3:

AGEt =
# Newly rated issuers �from t − 4 to t − 3�

# Rated issuers �in t�

The number of newly rated issuers and the overall number of issuers is taken from
Standard and Poor’s (2006), Tables 19 and 20, respectively.

• Average risk: When analyzing average default rates of a group comprising several rating
categories, we should take into account the fact that the composition of the group can
change over time. Investment-grade issuers, for example, include issuers rated AAA, AA,
A or BBB, and the percentage of BBB-rated issuers within this group has risen from
27% in 1981 to 46% in 2005. When predicting investment grade default rates, we capture
differences in average risk by the percentage of current investment-grade issuers that are
rated BBB

BBBt =
# BBB-rated issuers �in t�

# Investment-grade issuers �in t�

The necessary data can be taken from Standard and Poor’s (2006), Table 24.

1 http://www.phil.frb.org/econ/spf/spfmed.html.
2 http://www.econstats.com/.
3 Helwege and Kleiman (1997) also lag issuing activity by three years to define their aging variable.
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PREDICTING INVESTMENT-GRADE DEFAULT RATES WITH
LINEAR REGRESSION

Imagine that it is currently December 2005, and that we want to predict the investment-
grade default rate for the year 2006. Having collected the variables just described, we could
linearly combine the variables to produce a default rate forecast IDR∗:

IDR∗
t�t+1 = b1 + b2PRFt + b3AGEt + b4BBBt + b5SPRt� t = 2005 (4.1)

But from where do we get the b’s? We could choose them based on the observed historical
relationship between default rates and the four variables. To estimate this relationship, we
can use the following regression equation for observed default rates IDR:

IDRt�t+1 = b1 + b2PRFt + b3AGEt + b4BBBt + b5SPRt + ut� t = 1984� � � �� 2004 (4.2)

where ut is the default rate component that cannot be explained. The time span is determined
by data availability. The data from Standard and Poor’s starts in 1981, but we need to wait
three years until the variable AGE can be computed for the first time. The investment-grade
default rate can be collected from Standard and Poor’s (2006), Table 1.

A straightforward way of estimating equation (4.2) is linear regression (cf. Appendix A4).
One can rightly point out that linear regression does not take into account that default rates
are bounded between 0 and 1; default rate predictions coming out of the regression could
easily be negative.4 We nevertheless examine linear regression because it is a simple and
widely used technique. In the next sections, we will compare its performance to a more
sophisticated technique (Poisson regression).5

In linear regression, the coefficients b are determined such that the sum of squared
prediction errors is minimized. (To be precise, the prediction error for year t is given by
�IDRt�t+1 − �b1 + b2PRFt + b3AGEt + b4BBBt + b5SPRt��.) Once we have estimates of the
b’s, we can apply them to current values of the four explanatory variables and get a prediction
of the future default rate. In doing so, we assume that the error ut is zero on average.

To perform a linear regression in Excel, we can use the command LINEST(y’s, x’s, const,
stats), where y’s denotes the dependent variable (IDR in our case) and x’s the explanatory
variables (PRF, AGE, BBB, SPR). Const is a logical value that leads to inclusion of a
constant �b1� if set to 1. If the logical value stats is set to 1, the function LINEST returns
several regression statistics, rather than just the estimated coefficients.6

LINEST returns an array and must be entered as an array function using
[ctrl]+[shift]+[return]. If the explanatory variables in the sheet are ordered from 2 (leftmost)
to K (rightmost) and a constant is included, the output is of the form shown in Table 4.1.

Note that the order of variables is reversed in the output. The coefficient of the rightmost
variable in the data will appear leftmost in the output. SE�bi� is the estimated standard error
of coefficient bi. R2 is the coefficient of determination. It is the fraction of the variance of
the dependent variable that is explained by the explanatory variables. RMSE is the standard
deviation of the residuals ut. The F statistic tests the significance of the entire regression;

4 They could also be larger than one but this is unlikely to occur if we examine investment grade default rates.
5 Note that we should not use the LOGIT command developed in Chapter 1 as it requires the dependent variable to be either 0 or 1.
6 For a more detailed description of tests and measures of goodness of fit, see Appendix A4.
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Table 4.1 Output of the LINEST function

bK … b3 b2 b1

SE�bK� … SE�b3� SE�b2� SE�b1�
R2 RMSE #NA #NA #NA
F statistic DF #NA #NA #NA
MSS RSS #NA #NA #NA

DF is the degrees of freedom, which can be obtained as the number of observations used in
the regression minus the number of independent variables (including the constant). MSS and
RSS decompose the variation in the dependent variable into two parts: one that is explained
(MSS = model sum of squares) and one that is not (RSS = residual sum of squares). R2 is
computed as 1 – RSS/(MSS + RSS).

The standard errors SE�bi� can be used to construct a t statistic for the hypothesis that a
coefficient equals zero:

ti = bi/SE�bi�

which is referred to a t distribution with DF degrees of freedom to determine the p-value
of the test. In Excel, this can be done with the TDIST(t, DF, tails) function. It accepts only
positive t statistics. Since the t distribution is symmetric, we can work around this limitation
by inputting the absolute value of the statistic. Usually, one constructs a two-sided test,
which can be specified by setting tails = 2.

Table 4.2 shows the data and some regression results. The default rate in the row headed
by year t is the default rate in t. The values of the other variables are taken from the end of
the year stated in the first column. All values are expressed in percent, so 0.18 means that
the default rate was 0.18%.

The results of estimating regression equation (4.2) with LINEST are shown in the range
H4:L7. For clarity, we shade the output of the LINEST function and label the columns and
rows. Since the default rate to be explained is from the year following the observation of the
x variables, the y range of the LINEST function is shifted one year into the future relative
to the x range, which contains the explanatory variables.

The signs of the coefficients b meet our expectations. High spreads, a large fraction
of risky BBB issuers and a large fraction of recently rated issuers should be associated
with higher default rates, and therefore with positive b’s. Higher profit expectations, on the
other hand, should be coupled with lower default rates. Note that we cannot directly read
something into the constant because it is not the average default rate.7

Examining the t statistics and the associated p-values that are computed from the regression
output, we see that profit forecasts (PRF) and the aging effect (AGE) are the most significant
variables. Their p-values are below 7%, so we can reject the hypothesis that the coefficients
are zero with a significance level of 7% or better. Bond spreads (SPR) and the fraction
of BBB-rated issuers (BBB) also seem to have some explanatory power, but with a lower
significance.

7 The constant in a linear regression is obtained as ȳ − K∑
i=1

bix̄i, where ȳ and x̄i denote the mean of the dependent and the ith

independent variable, respectively.
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Table 4.2 Predicting investment-grade default rates with linear regression

Note: IDR = investment-grade default rate, PRF = forecasted change in corporate profits, AGE = fraction of new
issuers, BBB = fraction of BBB-rated issuers, SPR = spread on Baa bonds

If some variables show only moderate or no contribution, it is interesting to examine how
the results change if we drop these variables. This leads us to model 2. The remaining two
variables, AGE and PRF, are now both significant on a level of 2% or better. The R2 has
decreased from 60% to 44%. To test whether this is a significant loss in explanatory power,
we perform an F test. If model 2 excludes J variables from model 1, then the F statistic
can be computed as:

F = �R2�model 1� − R2�model 2��/J

�1 − R2�model 1��/DF
(4.3)

It is distributed with (J , DF) degrees of freedom, where DF is the degrees of freedom of
model 1. The p-value can be calculated with the function FDIST(F -value, J , DF).

The p-value of the F test is 6.4%. So if we start with model 2 and include the two
variables SPR and BBB, there is a probability of 6.4% that we do not add any explanatory
power. There is no general rule for what to do in such a situation. Often, one applies stringent
standards of statistical significance, e.g. variables should be significant at the 5% level or
better in order to be included in a model. This could lead us to favor model 2. But such a
procedure is somewhat ad hoc. If we choose model 2 instead of the more general model 1, we
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guard against inclusion of variables that are not truly significant; on the other hand, we are
fairly likely to ignore some valuable information. In principle, both models could be justified
on statistical grounds, and therefore, we will examine the predictions of both models.

We could arrive at the prediction by multiplying each variable for the year 2005 with its
associated coefficient as in equation (4.1), and summing up (remembering to not forget the
constant when doing so). The quicker alternative would be to use the Excel function

TREND�known_y′s� known_x′s� new_x′s� const�

The known_y′s and the known_x′s are the same y’s and x’s that we used in the LINEST
command. The new_x′s are the x variables from the end of year t which preceeds the forecast
horizon. We want to make a forecast for 2006, so the new_x′s are taken from 2005; the trend
line is estimated using data from 1984 to 2005. If we set the logical value const = 1, we
get the same effect as if we hadn’t specified anything for const: the regression underlying
TREND will include a constant.

Forecasts differ across the two models. Model 1 predicts a default rate of 0.1%, model 2
one of 0.06%. Looking at the x-values for the year 2005, the origin of difference is obvious.
The profit forecast, PRF, is close to the average for the last 25 years, while the aging
effect, AGE, is somewhat less present than in the past. Therefore, the default rate prediction
based on model 2 should be below the average default rate, which is 0.1%. The fraction of
BBB-rated issuers, having increased over the 1990s, is at a historically high level. Once we
include the variable BBB as we do in model 1, the default rate forecast increases.

PREDICTING INVESTMENT-GRADE DEFAULT RATES WITH
POISSON REGRESSION

We already mentioned a drawback of linear regression: default rate predictions could be
negative. In addition, linear regression does not take into account that the realized default
rate will vary less around the expected default probability if the number of issuers is large.
To overcome these drawbacks, we can describe the data as being drawn from a probability
distribution that has the desired properties: default rates should have a minimum of zero,
and their variability should decrease with an increasing number of issuers. To determine
the parameters of the distribution, we choose them in such a way that we maximize the
probability of observing the data that we actually have observed – that is, we apply the
maximum likelihood principle.8

What is an appropriate probability distribution for defaults? Default rates vary from year
to year, but for a given year it might be a good approximation to assume that defaults are
independent. This does not rule out, for example, a cluster of defaults during a recession. If
the default probability of investment-grade issuers has increased from 0.1% to 0.4% during
a recession, we would expect to see four times as many defaults as usual. Nevertheless,
defaults could be independent in the sense that if one particular issuer defaults in a recession
year, this does not further increase the default probability of another issuer.

With the independence assumption, the number of defaults observed in a given year
follows a binomial distribution. One could base a maximum likelihood estimation on this

8 For a more detailed discussion of the maximum likelihood method, see Appendix A3.
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distribution, but it is more convenient to use the Poisson distribution instead. If the number
of issuers is large, and the default probability is small, the Poisson provides a very good
approximation to the binomial.

The density function of the Poisson, which specifies the probability that the number of
defaults is equal to some observed number Dt, is:

Prob�#defaultst = Dt� = exp�−�t��
Dt
t

Dt!
(4.4)

where Dt! denotes the factorial of Dt, i.e. Dt × �Dt − 1� × � � � × 1. It can be shown that the
expected number of defaults is �t.

In Excel, the density (4.4) can be computed with the function POISSON. For a given
� and a given N , the number of issuers that may default, we get Prob�#defaults = D� by
using POISSON�D�� ∗ N� 0�. The binomial is also available in Excel (through the function
BINOMDIST).

Table 4.3 compares the binomial and the Poisson densities for two different cases. The
first one (columns B and C) is typical of investment-grade defaults. There are around 2500
investment-grade issuers, and the average default rate is around 0.1%. In the second case
(columns D and E), we assume that there are just 20 issuers with a default rate of 40%. As
can be seen from the tabulated densities as well as from the two charts, the Poisson and the
binomial are almost identical for the first case, while they show big differences in the second.

Table 4.3 Comparison of Binomial and Poisson density functions
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Having established that the Poisson is a valid approximation to the binomial in our case,
we can go on by modeling the variation of default rates across time. The standard way is to
assume that the expected number of defaults varies in the following way with explanatory
variables x:

�t = exp �	1 + 	2x2t + 	3x3t + · · · + 	KxKt� (4.5)

The exponential function makes sure that the expected number of defaults is always non-
negative. Equivalently, we can write

ln �t = 	1 + 	2x2t + 	3x3t + · · · + 	KxKt (4.6)

In vector notation, with 	′ = �	1 	2 	3 · · ·	K� and x′
t = �1 x2t x3t · · ·xKt�, this can be refor-

mulated as:

ln �t = 	′xt (4.7)

The goal of the estimation is to determine the weights 	 which describe the impact of the
variables on the default occurrence. To apply the maximum likelihood principle, we need the
likelihood L, which is the probability of observing an entire sample. From the independence
assumption and from (4.4), it is given by

L = Prob�# defaults1 = D1� · Prob�# defaults2 = D2� ·� � � · Prob�# defaultsT = DT �

= exp�−�1��
D1
1

D1!
exp�−�2��

D2
2

D2!
� � �

exp�−�T ��
DT
T

DT !
(4.8)

Taking logarithms, we obtain

ln L =
T∑

t=1

�−�t + Dt ln �t − ln Dt!� (4.9)

Inserting (4.7), this can be written as

ln L =
T∑

t=1

�−�t + Dt	
′xt − ln Dt!� (4.10)

We can use the Newton method described in Appendix A3 and already used in Chapter 1 to
determine the vector 	 that maximizes this likelihood. A user-defined array function called
POIREG(y’s, x’s) is available on the DVD and shown in the appendix to this chapter. Here,
we do not want to go through the details of the function, but just present its output (see
Table 4.4).

The function routinely adds a constant to the regression. In contrast to the LINEST
function, the coefficients appear in the order the variables are entered. Also, we add t statistics
and p-values. As usual, we can compute t statistics by dividing a coefficient estimate by its
standard error, but irrespectively of the number of observations, we refer the statistics to the
standard normal distribution function.



Credit Risk Modeling using Excel and VBA 81

Table 4.4 Output of the user-defined function POIREG

	1 	2 … 	K

SE�	1� SE�	2� … SE�	K�
t1 = 	1 /SE�b1� t2 = 	2 /SE�b2� … tK = 	K /SE�bK�
p-value�t1� p-value�t2� … p-value�tK�
Pseudo-R2 ln likelihood # N/A # N/A

For a non-linear model such as the POISSON regression, we cannot compute an R2 as
we do in a linear regression. A Pseudo-R2 that is often reported in the literature is defined
by relating the log-likelihood of the model to the log-likelihood of a model that has just a
constant in it:

Pseudo -R2 = 1 − ln L�model�
ln L�model with all 	 except 	1 set to 0�

Table 4.5 contains the data analysis with the Poisson approach. Note that the dependent
variable is now the number of defaults D, and not the default rate. In addition to the variables

Table 4.5 Predicting investment-grade default rates with Poisson regression

Note: D = number of investment grade defaulters, LNN log number of issuers, PRF = forecasted change in cor-
porate profits, AGE = fraction of new issuers, BBB = fraction of BBB-rated issuers, SPR = spread on Baa bonds
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that we used in the linear regression analysis, we therefore include LNN, the logarithm of
the number of investment-grade issuers at the start of the year. It captures the effect that, for
a given default probability which is modeled by the other variables, the expected number of
defaults increases with the number of issuers. To see why we should enter the log issuers
instead of the issuers, assume that the default probability PD is constant across time. The
expected number of defaults is then PD∗N , where N is the number of issuers at the start of
the year. PD∗N should equal �, and here we check that it does. Entering the log issuers as
a variable we get:

ln �t = 	0 + 	1 ln�Nt� (4.11)

Estimating 	0 = ln�PD� and 	1 = 1, we get:

ln �t = ln�PD� + ln�Nt� = ln�PD · Nt� ⇔ �t = PD · Nt (4.12)

As in the linear regression model, the profit forecast PFR and the aging variable AGE are
highly significant in the more general model 1. (Their t statistics are well above 1.96 in
absolute terms.) The other variables show little significance. Excluding the spread and the
fraction of BBB-rated issuers, we arrive at model 2; we do not exclude the number of issuers
LNN, which is also insignificant, because we have seen that there is a good theoretical
reason for including it. Looking at the results for model 2, one may wonder why LNN is
significant in model 2, but not in model 1. The reason is that LNN is highly correlated with
the fraction of BBB-rated issuers. If two correlated variables are included in one model, as
is done in model 1, the standard errors tend to increase.

As in the linear regression, there is an easy way to test whether model 2 is a sensible
restriction of model 1. This time, we use a likelihood ratio test. In general, a likelihood ratio
test has the following form

LR statistic = 2 �ln L�general model� − ln L�restricted model�� (4.13)

where ln L denotes the log-likelihood. The more likelihood is lost by imposing the restriction,
the larger the LR statistic will be. Asymptotically, it is chi-squared distributed with degrees
of freedom equal to the number of restrictions imposed. Here, there are two restrictions (the
coefficients of two variables are set to zero).

In the table, the LR statistic is computed from the output of the function POIREG. Its
p-value can be calculated with the function CHIDIST(statistic, degrees of freedom). We
obtain a value of 0.23, which means that if we add the two variables SPR and BBB to model
2, there is a probability of 23% that we do not add explanatory power.

Predictions of the default rate can be based on �, which we get via (4.5). Dividing � by
the number of issuers N yields the expected default rate. To understand the formula in cell
J23 of Table 4.5, note that the variable LNN is just ln(N ) and:

�t/Nt = exp �	1 + 	2x2t + 	3x3t + � � � + 	KxKt� /Nt

= exp �	1 + 	2x2t + 	3x3t + � � � + 	KxKt − ln�Nt�� (4.14)
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It is useful to have a function similar to TREND to make predictions. It can quickly be
provided via a user-defined function. For your convenience, we show the relevant formulae
below the code:

Function POITREND(y, x, xn)
Dim C As Integer, i As Integer
Dim poiregout As Variant, lnlambda As Double
C = x.Columns.Count
poiregout = POIREG(y, x)

lnlambda = poiregout(1, 1)
For i = 1 To C

lnlambda = lnlambda + poiregout(1, 1 + i) * xn(i)
Next i

POITREND = Exp(lnlambda)
End Function

ln �t =	1 + 	2x2t + 	3x3t + � � � + 	KxKt

�t = exp �ln �t�

We programmed the function POITREND such that it returns the number of defaults, and
not the default rate. The inputs are analogous to TREND. In the function, we start by
determining C, the number of explanatory variables x excluding the constant. Note that
there are C + 1 = K coefficients because POIREG also includes a constant. Then, we call
the function POIREG to get the 	’s and use a loop to compute lnlambda= ln � = 	′x.
The constant poiregout(1,1) is added to lnlambda before we enter the loop. The
function then returns �.

Compared to linear regression, the predictions made by model 1 and model 2 are relatively
close. What may seem surprising is that Poisson model 2 predicts a higher default rate than
does Poisson model 1. In the linear regression, this was reversed. Recall that the difference
in linear regression results was due to excluding BBB, the fraction of BBB-rated issuers.
In Poisson model 2, we also exclude BBB, but now we include LNN, the log number of
issuers. Since LNN is highly correlated with BBB, LNN contains much of the information
contained in BBB, and dropping BBB does not have a great effect on the forecast.

Linear or Poisson – which estimation method should we use? On conceptual grounds, the
Poisson model is superior. However, this does not necessarily mean that it leads to better
forecasts. To learn about the performance of the two models, we should conduct a backtest.

BACKTESTING THE PREDICTION MODELS

In a genuine backtest of a model, we employ the model for some time to make predictions
in a certain setting and environment, and then examine the prediction errors that have arisen.
So, after setting up a forecasting model, we would have to wait some time until we can learn
something about its validity. In our case, in which we make one-year predictions, we would
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probably have to wait three years or more because we cannot learn too much from a single
year. A work-around would be to perform something usually referred to as a backtest, albeit
being sort of hypothetical: Assuming that we had used the model over the last years, what
prediction errors would we have gotten?

In performing such a test, we should make sure that when setting up a forecast for some year
t in the past, we use only information that was available at the end of year t − 1. In other words,
the sample that we use for setting up the forecasting model should be kept separate from the
sample used for validation. For this reason, backtests are also called out-of-sample tests.

With respect to some pieces of information, this requirement can be met fairly easily.
If our forecast for year t is based on a regression, for example, we should estimate the
coefficients with data available up until t − 1. With respect to other information, meeting the
requirement may turn out to be much more difficult than expected at first. In the previous
two sections, we have already looked at the entire sample when performing the regression
analysis. This will probably affect our choice of regressions that we use in the backtest. One
could avoid such a situation by keeping the data separated into two parts from the start. A
sensible procedure might be to perform our previous regression analysis solely by looking
at the years 1981–1995, holding out the years 1996–2005 for a backtest. But imagine that
you had already seen another study which uses data until 2005. It would then be difficult to
prevent this knowledge from having an influence on your modeling of the 1981–1995 data.
Consciously or subconsciously, you may favor variables that you have seen perform well.

We take a pragmatic stance here. We are careful not to use obvious out-of-sample
information, and try to prevent implicit knowledge from having an undue influence. For the
data at hand, we decide to cut the sample into roughly two parts and use 1996–2005 for
out-of-sample evaluation. The sample used for estimation always starts in 1981 and ends in
the year before the respective forecast period. When making a forecast for the year 2000,
for example, we use information from 1981 to 1999.

As before, predictions can be generated using the function TREND (for linear regressions)
or the user-defined function POITREND (for Poisson regressions). The forecast error is the
default rate in t minus the default rate prediction that was made for t at the end of year t − 1.
In assessing the forecasts errors, we have to arrive at some assessment of their consequences.
A common choice is to apply a quadratic loss function, meaning that we examine squared
prediction errors. Why should we use a quadratic loss function in our case? A bank’s profits
will suffer both if it grants credit too easily and if it charges loan rates that are so high that
attractive clients switch to competitors. Therefore, it seems appropriate to penalize a forecast
model for both negative and positive errors, as is done with the quadratic loss function. The
quadratic loss function also entails that making one big error (such as underestimating the
investment grade default rate by 0.2%) has bigger consequences than two errors that sum up
to the same magnitude (such as underestimating the default rate by 0.1% over two years).
For a bank, big errors can have drastic consequences as they could jeopardize their solvency
and thus their very existence. Repeated smaller errors, on the other hand, can be more easily
feathered by raising new equity capital or other measures.

Of course, one could just as well motivate other loss functions, e.g. by arguing that a bank
loses more money by granting bad credits than by failing to make business with good credits.
Our focus, however, is on the practical implementation of a backtest. Since the techniques
employed in a backtest can be easily adapted to different loss functions, we proceed by
assuming a standard quadratic loss function without going into a more detailed discussion
here.
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Even with an uncontroversial loss function it is often difficult to derive statements on
whether observed losses are large, acceptable, or small in absolute terms. A standard solution
to this problem is to examine whether forecast errors are smaller than those from a simple
alternative. In our case, a straightforward candidate for such benchmark forecasts is the
prevailing average default rate. It is easily available, and it would be the optimal forecast if
expected default rates did not vary over time.

In Table 4.6, we calculate squared out-of-sample prediction errors for the 10 years from
1996 to 2005. We do so for the prevailing mean as the benchmark model, and our forecast
models 1 and 2, estimated with linear or Poisson regression. We cumulate the squared
forecast errors – that is, we add the squared forecast error from 1997 to that from 1996, then
add the squared forecast error from 1998 to the sum of the squared errors from 1997 and
1996, and so forth. In the spreadsheet, this can easily be done by adding the value of the

Table 4.6 Backtesting: cumulative squared prediction errors of regression models compared to the
ones of the trailing average
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previous cell to the current squared forecast error. Forecast errors are computed separately
for all five forecasting models and then plotted in a chart.

Judging from the cumulative forecast error, each regression model outperforms the bench-
mark model. Within the regression models, Poisson leads to lower forecast errors than the
linear regression. The difference between regression models and the benchmark is fairly
large. Using linear regression reduces the cumulative squared prediction error by up to 38%
�11
95/19
13−1�; using Poisson regression reduces the error by up to 76%�4
44/19
13−1�.
From 2002 on, the more general models 1 perform better than models 2. This conforms
to intuition: The more general a model, the more data is needed to get precise coefficient
estimates. The overall difference between the two model specifications, however, is rela-
tively small. Since it is difficult to assess which model we actually would have used over
those 10 years, the fact that the choice of the model did not have such great an influence on
the resulting prediction is certainly reassuring. (Recall the model selection problem that is
inherent in such a backtest.)

A closer look at the evolution of forecast errors reveals that differences in cumulated
errors are largely due to the year 2002. Was 2002 just a lucky year for the regression models,
which should not greatly affect our appraisal of the models? Logic suggests that it was not
just pure luck. In 2002, the default rate strongly deviated from the historical average. It is
exactly in such years that we would expect regression models to perform much better than
the simple average.

To learn more about the consistency of performance differentials, we count the number of
years in which the simple average lead to lower annual squared forecast errors. As shown in
Table 4.7, we can easily perform such calculations with the cumulative forecast errors that
we just looked at.

By subtracting the previous cumulative error from the current cumulative one, we get the
current year’s error. We then compare the forecast error of a regression model to the one
from the average. In cell K29, for example, we write:

= ��$J17 − $J16� < �K17 − K16��∗1

The condition = ��$J17 − $J16� < �K17 − K16�� would return TRUE or FALSE. By multi-
plying this logical condition with 1, the output is 1 or 0, which can more easily be used as
input to a function.

With so little data, visual inspection gives us a quick overview: the trailing average
outperforms three models in three years out of 10; the linear regression model 2 is only
outperformed in two years out of 10. Thus, regression models perform better in the majority
of years.

We can also make a statement on the statistical significance of this consistency by
performing a sign test. If the regression models were no better than the average, the number
of years in which the average is superior would follow a binomial distribution with success
probability 0.5. The fewer years we observe in which the average outperforms, the more
confident can we be that a regression model is better.

The p-value of the sign test with the null hypothesis that the average is better can be
computed through the function BINOMDIST(number of successes, trials, probability of
success, cumulative). The number of successes can be obtained by summing over the range
with 0’s and 1’s that mark the outperformance of the average; we know that the number
of trials is 10 (years), but we can also calculate it using the function COUNT. The success
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Table 4.7 Consistency of the outperformance of linear and Poisson models over the trailing average
(extends Table 4.6)

probability is set to 0.5. The logical value cumulative is set to 1 so that the function returns
the probability of obtaining the stated number of successes or less.

The resulting p-value is 17.19% in three out of four cases; it is 5.47% for the linear regres-
sion model 2. The lower the p-value, the higher the confidence with which we can reject the
hypothesis that the trailing average is superior to the regression models. Thus, the test provides
moderate statistical support for the conclusion that the regression models are consistent outper-
formers. In interpreting this result, we should not forget that the small sample size would make
this a fairly likely outcome even if the regression models were truly superior.

PREDICTING TRANSITION MATRICES

The default rates we have analyzed in the previous sections are also recorded in transition
matrices, together with transition rates. The latter are average frequencies with which ratings
migrate from one rating to another. Like default rates, transition rates vary over time. This is
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evidenced in Table 4.8, which shows the average transition matrix over the years 1981–2005
as well as the 2002 transition matrix. Both matrices are from Standard and Poor’s (2006),
Tables 9 and 24, and are estimated with the cohort approach described in Chapter 3.

Table 4.8 Transition matrices from Standard & Poor’s (in %): Average versus 2002

As seen above, default rates were very high in 2002. Looking at the transition matrix, it
is evident that the downgrade frequencies were also relatively high. For example, 9.15% of
the B-rated issuers from the start of 2002 ended up in the CCC category at the end of 2002.
The long-run average transition rate from B to CCC was only 4.21%. The counterpart to this
pronounced downward movement is that fewer ratings remained stable or were upgraded.

These observations suggest that ratings move somewhat in lockstep. In a bad year (such
as 2002), many issuers default or experience downgrades, while few are upgraded. In
the remainder of this chapter, we present a parsimonious model in which movements of
the transition matrix are described by a single parameter. Once we have a forecast of
this parameter, we can also forecast the entire transition matrix. Before introducing this
framework, however, we have to deal with some irregularities of transition matrices.

ADJUSTING TRANSITION MATRICES

If an issuer rated at the start of the year is no longer rated at the end of the year, a standard
transition matrix, like the one shown in Table 4.8, records a transition to the NR status,
where NR denotes not-rated. (If it is known that such an issuer defaulted, however, one
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would record a default instead.) There are various ways for producing transition matrices
that do not contain this type of transition, and still have entries that sum up to 100%. One
way is to exclude issuers whose rating was withdrawn from the analysis.

We use some formulae to clarify the procedure. Let Ni be the number of issuers with
rating i at the start of the period; let Ni�j be the number of issuers with rating i at the start of
the period and rating j at the end of the period. The unadjusted transition rate from rating A
to rating B, for example, would be calculated as TRA�B =NA�B/NA. The unadjusted transition
rate from A to NR would be TRA�NR = NA�NR/NA. Removing the NR category from the
calculations leads to a NR adjusted transition rate TRNR:

TRNR
A�B = NA�B

NA − NA�NR

= NA�B

NA − NA�NR

NA

NA

= NA�B

NA − TRA�NRNA

= NA�B

NA�1 − TRA�NR�
= TRA�B

�1 − TRA�NR�
(4.15)

which means that we derive the NR-removed rates from the original transition rates by
dividing each original transition rate from class i by one minus the transition rate from i to
not-rated. In the following discussion, we will always use NR-removed matrices that have
been constructed in this way.

There are two other simple ad-hoc adjustments we routinely make: We set cells with
zero entries to 0.001%; we adjust the on-diagonal cells containing the frequency with which
the rating is maintained such that the sum over one row equals 100%. Note that, due to
rounding in the figures that we take from S&P, a row sum of 100% is not guaranteed even
before replacing zero entries by 0.001%. Rounding can lead to deviations from 100% which
amount to 0.01% or more. These adjustments facilitate the ensuing calculations, but are not
essential. We could just as well adjust some of the formulae in such a way that they can
deal with values of 0 or above 1.

REPRESENTING TRANSITION MATRICES WITH A SINGLE
PARAMETER

Consider the following two statements:

• The probability of a migration from A to B is 2.5%.
• The rating migrates from A to B whenever a standard normal variable ends up between

1.645 and 1.960.

Both statements are equivalent because the probability that a standard normal variable ends
up between 1.644 and 1.960 is 2.5%. In Excel, this can be verified by

= NORMSDIST�1
960� − NORMSDIST�1
645�

In fact, we can describe the entire transition matrix by the concept that transitions are driven by
a standard normally distributed variable x – and do so without losing any information. Instead
of describing transition behavior through transition rates, we can describe it through a set of
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thresholds: 1.645 and 1.960 would be a pair of thresholds, which together describe a bin. Each
bin triggers a certain specific transition whenever the variable x ends up in this bin.

But why try to find another representation of the same information? We can use it to shift the
transition matrix into bad or good years. But before showing this, let us first define the bins.

We can illustrate the binning procedure for transitions from A:

AAA AA A BBB BB B CCC/C D

A 0.052% 1.991% 91.427% 5.858% 0.440% 0.157% 0.031% 0.042%

Bin (�,
3.28]

[3.28,
2.04]

[2.04,
−1
51]

[−1
51,
−2
47]

[−2
47,
−2
83]

[−2
83,
−3
18]

[−3
18,
−3
34]

�−3
34,
−�)

We can start to define the bins at any of the two extreme transitions, transitions to AAA or
transitions to default. Let’s unroll the computations from transitions to default. If the proba-
bility of a migration from A to D is 0.042%, we can define the D bin as ��−1�0
00042��−��,
where �−1�� denotes the inverse cumulative standard normal distribution function. The upper
threshold for this D bin becomes the lower threshold for the CCC/C bin. The latter should
be hit with a probability of 0.031%. This can be achieved by setting the upper threshold
to �−1�0
00042 + 0
00031� = −3
18. We can continue in this way. Though we have eight
bins, we need to compute just seven thresholds. Since the normal distribution is symmetric,
another valid binning would result if we multiplied all threshold values from above by −1.

Table 4.9 shows how the binning is done in Excel. The inverse of the normal distribution
function is available through NORMSINV(). Note that the argument is computed by summing

Table 4.9 Thresholds for representing transitions through a standard normal variable
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the transition rates in the current row from the rightmost column to the current column.
Division by 100 is necessary because the transition rates are stated in percent. Recall from
above that we set cells with entry zero to 0.001%; also, we adjust the no-change rate such
that the sum over one row equals 100%.

Table 4.10 graphically illustrates the results from Table 4.9. The chart shows the standard
normal density and the thresholds for transitions from BB. The density can be computed
using the function NORMDIST(x, mean, standard_dev, cumulative). We set the mean to 0
and the standard deviation to 1 in order to get the standard normal, and we set the logical
value cumulative to 0 to get the density function. Some experimentation shows that eight
values are enough to get a nice curve provided that the smoothed line option is activated.9

The chart type is XY (scatter).

Table 4.10 Thresholds for representing transitions through a standard normal variable – graphical
illustration for transitions from BB

We then add the thresholds to this chart. The thresholds themselves enter as x-values of
a second series within the XY chart; the associated y-values are set to 0.4, the maximum
value that we allow for the y axis. Then, we need to use a little trick. Because one cannot
directly choose bars in a scatter chart, we hide the symbols and the lines for this second
series, but activate y error bars for this series – with length 0.4.10 Finally, we use a text box
to label the thresholds.

SHIFTING THE TRANSITION MATRIX

Imagine that, in the chart from Table 4.10, the normal density is shifted to the left, i.e.
assume that it has a negative mean rather than mean zero.

9 To smooth a line chart: (i) Doubleclick the data series you want to smooth; (ii) Select the Patterns tab; (iii) Select the Smoothed
line check box.
10 To show y-error bars: (i) Doubleclick the data series; (ii) Select the Y Error Bars tab; (iii) Specify the bars you want.
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Figure 4.1 Shifting the distribution function to change transition probabilities

Figure 4.1 shows such a move to the left. The probability of a transition is the probability
of ending up in the associated bin. This probability is equal to the area enclosed by the
boundaries of the bin and the density function. Therefore, a shift to the left would increase the
probabilities of downgrades as well as the probability of default. Importantly, we still have
fully specified transition probabilities, albeit ones that are different from those we used for
the threshold determination. Analogously, we could reduce the probabilities of downgrade
and default by shifting the distribution to the right.

In Table 4.11, we compute the transition probabilities that result after a shift. The mag-
nitude of the shift is called ‘credit index’ and specified in cell E23. A negative number

Table 4.11 Shifting transitions matrices with a credit index
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means that the distribution function is shifted to the left, thus increasing the probabilities of
downgrade and default.

The probability that a normal variable with mean m and standard deviation 1 ends up to
the left of a threshold is given by

��threshold − m� = NORMSDIST�threshold − m�

To obtain the probability of ending up in a bin, we use this formula to obtain the probability
of ending up below the upper threshold of the bin, and then subtract the probability of
ending up below the lower threshold of the bin. We could compute the latter with the normal
distribution, but we can also sum over the cells in the same row that are located to the right
of the bin we are in. For the AAA bins, we exploit the fact that transition probabilities sum
up to 1.

The next steps in the analysis are as follows:

1. We find credit indices that best fit historically observed annual transition matrices.
2. Based on step 1, we build a forecasting model to predict credit indices.
3. We use the predictions from step 2 to forecast transition matrices.
4. We subject the forecasts from step 3 to a backtest.

The backtest will again be done for the years 1996–2005. With the requirements of the
backtest in mind, we set up the sheet such that the credit indices we back out for a particular
year use only information up to that year.

In Table 4.12, we first compute an average transition matrix using the years 1981 up to
the year specified in cell N1. Note that transition rates are given in percent even though we
do not state this explicitly in order to save space. Let Ni�t be the number of issuers with
rating i at the start of year t; let TRij be the transition rate from i to j in year t. The average
transition rate from i to j that uses data until year T is an issuer weighted average of the
annual transition rates:

TRT
ij =

T∑
t=1981

Ni�tTRij�t

/ T∑
t=1981

Ni�t (4.16)

For cell N3, for example, the formula used to compute (4.16) is:

{=MAX(0.00001,SUM(IF(ROW($A$3:$A$500)<$Q$1,
IF($A$3:$A$500=$L3,$B$3:$B$500*D$3:D$500,)))/
SUM(IF(ROW($A$3:$A$500)<$Q$1,IF($A$3:$A$500=$L3,$B$3:$B$500,))))}

The annual transition matrices in columns A to J extend until row 225. Applying the function
to the wider range A3:A500 does not change the results and allows us to enter new data in
subsequent years without changing the formula. The steps in the formula are as follows:

• The maximum condition ensures that a transition rate is not smaller than 0.001%. (Recall
that we decided to adjust matrices in this way.)

• The function SUM applied to the product of the number of issuers and the transition
rates yields the scalar product of the two, i.e. the numerator of formula (4.16). We use
encapsulated IF-conditions to restrict the operations to those rows that (i) have the same
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Table 4.12 Backing out credit indices that best fit annual transition matrices
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initial rating as the rating for which we are computing the average and that (ii) belong to
years smaller or equal to one specified in cell N1. To check condition (ii), we determine
the number of the first row that belongs to the year following the one specified in N1.
Since the year is stated before each annual transition matrix, we can use the function
MATCH to identify where an annual matrix begins, and then add nine rows to get to
the end of this matrix. This calculation is done in cell Q1, and we then check in the
IF-condition that the row numbers are smaller than this value.

• We compute the denominator in a fashion similar to the numerator.

The formula just described applies to all off-diagonal elements of the matrix. Diagonal ele-
ments are determined on the basis that transition probabilities add up to 1. Thresholds and the
shifted matrix are determined as shown in Tables 4.9 and 4.11. The final matrix (in M33:T39)
is the annual matrix for the year specified in cell N31. As the annual transition matrices
are all equally spaced, we can quickly obtain them using the function OFFSET(reference,
rows, columns, height, width). This function returns a reference to a range that is a specified
number of rows and columns from a cell specified in the argument reference. Arguments
height and width are optional and can be used to specify the size of the new range.

Now we can determine the credit index that brings the matrix M23:T29 as close as possible
to the matrix in M33:T39. We make this operational by minimizing the sum of squared
differences between matrix elements. This sum of squared errors is calculated in cell O41
using the function SUMXMY2(). Of course, other distance norms are also possible.

To minimize the distance, we use the Solver (cf. Appendix A2). The target cell to be
minimized is O41; the changing cell is the credit index in P21. Since we have to determine
a credit index for more than 20 years, we use a macro, called ‘creditindex’, shown in
Table 4.12. It loops from 1981 to 2005. The easiest way to get the necessary commands for
running the Solver is to record a macro, run the Solver analysis in a sheet, stop recording
and edit the macro. One crucial element is to have Userfinish �= True at the end of the
Solver procedure; otherwise, the macro would ask us to confirm the solution in each step of
the loop. It is also useful to check for sufficient precision. Here, we use SolverOptions to
set the precision to the default value of 0.00001 (the lower this value, the more precise the
solution will be). Running the Solver within a macro requires a reference to the Solver in
the VBA editor. This can be set by selecting ‘Tools’ from the VBA editor menu, and then
‘References’.

The years that we use to derive the thresholds for year t are either:

• 1981–1995 if the year t is smaller than 1996. Since we start our backtest in 1996, we can
use information until 1995 to produce the first forecast, which is for 1996.

• 1981 to t if the year t is larger than 1995.

The macro writes the credit indices (and the years) into the range O43:P67.
Table 4.13 shows how to produce out-of-sample predictions based on the credit indices

derived in Table 4.12. Since the credit index is a continuous variable that is potentially
unbounded and can be both negative or positive, there is no obvious reason why the linear
regression model should be inappropriate. Issues involved in specifying the regression model
are similar to those discussed in the prediction of default rates. Therefore, we choose to
present just one model. The in-sample regression conducted with the LINEST command
shows that corporate profit forecasts and the aging variable explain a significant part of
the variation in the credit index. The out-of-sample forecasts are then generated using the
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Table 4.13 Predicting the credit index CINDEX with corporate profits and the aging
effect

function TREND. (We could insert the forecast for 2006 into cell E23 of Table 4.11 to get
a forecast of the transition matrix for 2006.)

BACKTESTING THE TRANSITION FORECASTS

Now we can go back to the sheet built for Table 4.12 and perform the backtest; it is shown
in Table 4.14. We first copy the out-of-sample forecasts for the credit index into the sheet.
Starting in 1996, we then use the credit index forecast for year t to produce a transition
matrix forecast for t, and compare it with the observed matrix in year t. The function
HLOOKUP is used to fetch the credit index from the range L44:U45 for the year following
the one specified in N1, and write it into cell P21.

Again, we use a quadratic loss function and benchmark the forecast errors against an
average. The sum of squared differences between matrix elements is computed in cells N41
and N42 for the average and our forecast, respectively. The average is the average transition
matrix based on years 1981 to t − 1. We have to be careful to select the corresponding
years. In contrast to Table 4.12, the year stated in N1 has to be one year less than the year
stated in N31. The cumulative error analysis is performed by the macro ‘backtest’ which
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Table 4.14 Backtesting forecasts of transition matrices (table construction as in Table 4.12)
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loops through years 1995 to 2004, corresponding to out-of-sample forecasts for the years
1996 to 2005. The errors are already cumulated within the macro and then written into cells
L47:U49.

The resulting pattern in forecast errors is similar to the one in the default rate backtest.
Up until 2001, it does not matter greatly in terms of squared errors whether one uses the
average transition matrix or the forecasted one. Over the entire 10-year horizon, however,
the forecast model leads to squared errors that are 20% lower �=0
54/0
67 − 1� than those
associated with the simple average.

SCOPE OF APPLICATION

We have shown that default and transition rates can be predicted using readily available
information. In line with the frequency of the data that we have used, analyses were performed
on a calendar year basis. With the forecasting models that we estimated, however, we could
directly produce forecasts for arbitrary 12-month horizons, provided that the explanatory
variables are available at the beginning of such a 12-month horizon. With data on within-
year or multi-year transitions, one could also implement forecasting models with a higher
or lower frequency, respectively.

In this chapter, forecasts were made for transition rates of ratings produced by one of
the major rating agencies. We could apply the methods to the prediction of transition rates
of other rating systems. However, when analyzing transitions of a rating system in which
ratings directly correspond to short-term default probabilities – e.g. a system based on logit
scores (Chapter 3) – we should expect transition rates to be less predictable. As such ratings
adjust more quickly to new information than agency ratings, there is less potential of finding
information that predicts rating transitions.

NOTES AND LITERATURE

Default and transition rates are often serially correlated, which means that current rates can be predicted
just by looking at lagged rates. This correlation can vanish once other variables are controlled for. In
our multivariate regression models, lagged default rates or credit indices are not significant.

Default and transition data are reported by rating agencies, e.g. in Standard and Poor’s (2006),
Annual 2005 Global Corporate Default Study and Rating Transitions.

Studies which propose and discuss forecasting models for default rates include Fons, J., 1991, An
Approach to Forecasting Default Rates, Moody’s Special Report; Helwege, J. and Kleiman, P., 1997,
Understanding aggregate default rates of high yield bonds, Journal of Fixed Income 5, 79–88; Keenan,
S., Sobehart, J. and Hamilton, D., 1999, Predicting Default Rates: A Forecasting Model for Moody’s
Issuer-based Default Rates, Moody’s Special Comment.

The representation of transition matrices through a continuous state variable has been introduced into
the credit literature by Gupton, G.M., Finger, C.C. and Bhatia, M., 1997, CreditMetrics – Technical
document, New York.

Our approach of backing out a credit index from annual transition matrices has been inspired by
Belkin, B., Suchower, S., and Forest, L.R. Jr, 1998, A one-parameter representation of credit risk
and transition matrices, CreditMetrics Monitor, Third Quarter, 46–56 and Kim, J., 1999, A way to
condition the transition matrix on wind, Working Paper, Riskmetrics Group.
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APPENDIX

The following function returns estimates from a Poisson regression of y on x, where x is the argument
xraw plus a column with 1’s. The function assumes that the input data y and xraw are column
vectors. The output is described in the main text of this chapter.

Function POIREG(y, xraw)

’count rows and columns of data
Dim i As Long, j As Integer
Dim N As Long, K As Integer
Dim x() As Double, lny() As Double, b() As Double
Dim x1b As Variant, yhat() As Double

N = xraw.Rows.Count
K = xraw.Columns.Count + 1

’Add constant to x matrix, initialize coeffs based on linear regression
ReDim x(1 To N, 1 To K)
ReDim lny(1 To N, 1 To 1)
ReDim b(1 To K, 1 To 1)

For i = 1 To N
x(i, 1) = 1
lny(i, 1) = Log(y(i, 1) + 0.01)
For j = 2 To K

x(i, j) = xraw(i, j − 1)
Next j

Next i
Dim tmp
tmp = Application.WorksheetFunction.LinEst(lny, x, 0, 0)
For j = 1 To K

b(j, 1) = tmp(K + 1 − j)
Next j

’Compute initial Predicted Values
ReDim yhat(1 To N, 1 To N)
x1b = Application.WorksheetFunction.MMult(x, b)
For i = 1 To N

yhat(i, 1) = Exp(x1b(i, 1))
Next i

’Defining the variables used in the Newton procedure
Dim diff As Double, maxiter As Integer, crit As Double, iter As Integer
Dim g() As Double, x1l() As Double
Dim g1 As Variant, g2 As Variant, hinv As Variant, hinvg As Variant

’Compute constant element of gradient
g1 = Application.WorksheetFunction.MMult( _

Application.WorksheetFunction.Transpose(x), y)
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’iterations

ReDim x1l(1 To N, 1 To K)
ReDim g(1 To K, 1 To 1)
ReDim b1(1 To K, 1 To 1)
diff = 10
crit = 10 ˆ −10
maxiter = 100

Do While diff > crit
’Compute gradient
g2 = Application.WorksheetFunction.MMult( _

Application.WorksheetFunction.Transpose(x), yhat)
For j = 1 To K

g(j, 1) = g1(j, 1) − g2(j, 1)
Next j

’Compute Hessian
For i = 1 To N

For j = 1 To K
x1l(i, j) = x(i, j) * yhat(i, 1) ∧ 0.5

Next j
Next i
’update coefficient
hinv = Application.WorksheetFunction.MInverse( _

Application.WorksheetFunction.MMult _
(Application.WorksheetFunction.Transpose(x1l), x1l))

hinvg = Application.WorksheetFunction.MMult(hinv, g)
For j = 1 To K

b1(j, 1) = b(j, 1) + hinvg(j, 1)
Next j

’check convergence
diff = Application.WorksheetFunction.SumXMY2(b, b1)

If diff > crit Then
x1b = Application.WorksheetFunction.MMult(x, b1)
For i = 1 To N

yhat(i, 1) = Exp(x1b(i, 1))
Next i
For j = 1 To K

b(j, 1) = b1(j, 1)
Next j

ElseIf diff <= crit Then
x1b = Application.WorksheetFunction.MMult(x, b)

End If

iter = iter + 1
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If iter > maxiter Then
diff = 0
b1(1, 1) = "no convergence"

End If
Loop

’Compile output
Dim repoisson(), yq As Double, lnL As Double, lnlr As Double, lnfact As Double
ReDim repoisson(1 To 5, 1 To K)
For j = 1 To K

repoisson(1, j) = b(j, 1)
repoisson(2, j) = hinv(j, j) ∧ 0.5
repoisson(3, j) = repoisson(1, j) / repoisson(2, j)
repoisson(4, j) = (1 − Application.WorksheetFunction.NormSDist( _

Abs(repoisson(3, j))))
repoisson(5, j) = "#NA"

Next j

yq = Application.WorksheetFunction.Average(y)
For i = 1 To N

If y(i, 1) <= 170 Then
lnfact = Log(Application.WorksheetFunction.Fact(y(i, 1)))

Else ’use Stirling’s approximation for factorial
lnfact = (y(i, 1) + 0.5) * Log(y(i, 1)) − y(i, 1) _

+ 0.5 * Log(2 * Application.Pi())
End If
lnL = lnL − yhat(i, 1) + y(i, 1) * x1b(i, 1) − lnfact
lnlr = lnlr − yq + Log(yq) * y(i, 1) − lnfact

Next i
repoisson(5, 1) = 1 − lnL / lnlr
repoisson(5, 2) = lnL

POIREG = repoisson

End Function





5
Modeling and Estimating Default

Correlations with the Asset Value Approach

The previous chapters have focused on the measurement of individual default probabilities.
For a financial institution that wants to assess the default risk of its loan portfolio, however,
individual default probabilities are not enough. Consider the simplest case: a portfolio
comprises only two borrowers, and the bank would like to know the probability that both
borrowers default in the next period. This cannot be measured with the default probabilities
alone. We could assume that the two borrowers are independent. The probability that both of
them default would then equal the product of the two individual default probabilities. Default
rates of firms, however, fluctuate with macroeconomic or industry-specific conditions, so
we should not rely on defaults being independent.

What we need to know in this case is the joint default probability. As we will see in this
chapter, this will lead us directly to the default correlation. We will also examine a widely
used way of modeling default correlations, the so-called asset-value approach. We show
how to estimate the relevant parameters based on historical default experience and how to
assess the quality of the parameter estimates. The two estimation methods that we consider
are the method of moments approach and the maximum likelihood approach.

DEFAULT CORRELATION, JOINT DEFAULT PROBABILITIES
AND THE ASSET VALUE APPROACH

To formalize default correlation, we use the standard definition of the correlation coefficient
of two random variables X1 and X2:

�X1X2
= cov�X1�X2�

��X1���X2�
(5.1)

where cov denotes the covariance, and � the standard deviation. In our case, the random
variable is a default indicator yi that takes the value 1 if obligor i defaults and 0 otherwise.
The default correlation we are searching is therefore:

�ij = cov�yi� yj�

��yi���yj�
(5.2)

What can we say about the denominator of the correlation coefficient? Inserting our notation
into the standard definition of variance leads us to:

�2�yi� = Prob�yi = 1��1 − E�yi��
2 + Prob�yi = 0��0 − E�yi��

2 (5.3)
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Denoting the default probability Prob�yi = 1� by pi and exploiting the fact that Prob�yi = 1�
is the same as E�yi� we get:

�2�yi� = pi�1 − pi�
2 + �1 − pi��0 − pi�

2 = pi�1 − pi�
2 + p2

i �1 − pi�

= pi�1 − pi� (5.4)

which is the familiar result for the variance of a Bernoulli variable with success probability
pi.

To express the covariance in terms of default probabilities, we utilize the general result
E�X1X2� = E�X1�E�X2� + cov�X1�X2�. Applied to our case, this implies:

cov�yi� yj� = E�yiyj� − E�yi�E�yj� = pij − pipj (5.5)

where pij denotes the joint default probability Prob�yi = 1� yj = 1�. Thus, the default corre-
lation is completely specified by the individual and the joint default probabilities:

�ij = pij − pipj√
pi�1 − pi�pj�1 − pj�

(5.6)

Even though the default correlation can be expressed with two intuitive measures – individual
and joint default probabilities – it would be a daunting task to build a portfolio risk analysis
on estimated pairwise default correlations. In a portfolio with 1000 obligors, there are
�10002 − 1000�/2 = 499 500 default correlations – far too much to specify.

In practical applications, one therefore imposes some simplifying structure that reduces
the number of parameters to be estimated. Instead of directly imposing the structure on
default correlations themselves, it is more convenient to first represent defaults as a function
of continuous variables and then to impose structure on these variables. Let us name these
variables Ai� i = 1 to N . The default indicator can then be represented as

Defaulti ⇔ yi = 1 ⇔ Ai ≤ di

No defaulti ⇔ yi = 0 ⇔ Ai > di

(5.7)

where di is the critical value which marks the default of borrower i if the variable Ai falls
below it. The joint default probability between two obligors then is

Prob�yi = 1� yj = 1� = Prob�Ai ≤ di�Aj ≤ dj� (5.8)

From an econometrician’s perspective, the variables A are latent variables that determine
an observed, discrete outcome. In the credit risk literature, the latent variables are usually
interpreted as the firm’s asset values. This goes back to the option-theoretic approach of
Merton (1974), in which a firm defaults if its asset value falls below a critical threshold
associated with the value of liabilities (see Chapter 2).

In the following, the mechanics of the approach are described for the most simple, but
widely used case in which the asset values are assumed to be normally distributed with
correlations that go back to a single common factor. Formally, borrower i’s asset value Ai

depends on the common factor Z and an idiosyncratic factor �i:

Ai = wiZ +
√

1 − w2
i �i� cov��i� �j� = 0� i �= j� cov�Z��i� = 0� ∀i (5.9)
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where Z and �i are standard normal variables. By construction, Ai is also standard normal.
The asset correlation is completely determined by the factor sensitivities w:

�asset
ij = cov�Ai�Aj�

��Ai���Aj�
=

cov�wiZ +√1 − w2
i �i� wjZ +

√
1 − w2

j �j�

1 × 1

= cov�wiZ�wjZ� = wiwj var�Z�

= wiwj (5.10)

Which default correlation follows? As seen above, we first need the default probability. This
is given by

Prob�Ai ≤ di� = pi = 	�di� (5.11)

where 	�·� denotes the cumulative standard normal distribution function. The joint default
probability is

Prob�Ai ≤ di�Aj ≤ dj� = pij = 	2�di� dj� �asset
ij � (5.12)

where 	2�·� ·� �� denotes the bivariate standard normal distribution function with correla-
tion �.

There are several ways of parameterizing the asset correlation model, i.e. choosing the d’s
and the w’s. We can set the default triggers d such that they result in the default probabilities
that we have estimated with a default prediction model like the logit model (Chapter 1), a
structural model (Chapter 2), or from an analysis of default rates (Chapter 3).

To determine the factor sensitivities, we could go to the roots of the asset value approach
and estimate correlations of borrowers’ asset values. However, this brings in some potential
for model error: even if default behavior can be described by some latent variable A, we
do not know if this variable A behaves in the same manner as the asset values; also, we do
not know if problems in estimating asset values impair the estimation of asset correlations.1

Another approach that requires fewer assumptions is to choose the factor sensitivities such
that they are in line with observed default behavior. This will be described in the following
sections.

CALIBRATING THE ASSET VALUE APPROACH TO DEFAULT
EXPERIENCE: THE METHOD OF MOMENTS

Assume that we have collected default information for a group of obligors over several
years. Let Dt denote the number of obligors that defaulted in period t, and Nt the number of
obligors that belonged to the group at the start of period t. We will assume that one period
corresponds to one year. Data is observed over T years.

1 Asset values are usually not traded, so we have to estimate their market value with a structural model (see Chapter 2).
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The essential information for our purpose is the default probability and the joint default
probability. The average default probability can be estimated by averaging the annual default
rates:

p̂ = 1
T

T∑
t=1

Dt

Nt

(5.13)

In the absence of other information, we will assume that all obligors have the same default
probability, i.e. we set pi = pj = p; our default threshold is then di = dj = d = 	−1�p�.

We can estimate the joint default probability in a similar way. In (5.13), we relate the
number of observed defaults to the possible number of defaults; now we relate the number
of observed joint defaults to the possible number of joint defaults. If there are Dt defaults,
the number of pairs of defaulters that we can form follows from combinatorial analysis as:

(
Dt

2

)
= Dt�Dt − 1�

2
(5.14)

If all obligors defaulted, we would get the maximum number for pairs of defaulters, which
is

(
Nt

2

)
= Nt�Nt − 1�

2
(5.15)

The joint default rate in year t is the number of default pairs (5.14) divided by the maximum
number of default pairs (5.15):

p̂2t =
�Dt�Dt − 1��/2
�Nt�Nt − 1��/2

= Dt�Dt − 1�

Nt�Nt − 1�
(5.16)

Using the information from the T years, the estimator for the joint default probability takes
the average from the observed annual joint default rates:

p̂2 = 1
T

T∑
t=1

p̂2t
= 1

T

T∑
t=1

Dt�Dt − 1�

Nt�Nt − 1�
(5.17)

Again, we would assume that the joint default probability is equal for all borrowers.
The asset correlation follows suit. From (5.12) we know that

pij = 	2�di� dj� �asset
ij � (5.18)

We can estimate pij by (5.17) and di and dj from (5.13). Equation (5.18) then turns into an
equation with one unknown, the asset correlation. We cannot solve it analytically, but we
can use numerical procedures to get a quick solution. Specifying the default thresholds and
the asset correlation in this way is an application of the method of moments. In this method,
one calibrates unknown parameters such that the model results match empirical estimates of
moments. The two moments used here are E�yi� = pi and E�yiyj� = pij .

The application of the method of moments approach to investment grade default data
from Standard & Poor’s is illustrated in Table 5.1. The annual default counts �Dt� are in
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Table 5.1 The method of moments approach applied to investment grade defaults

column B, the number of issuers at the start of the year �Nt� in column C. In column D, we
compute the annual joint default rates according to (5.16).

The two moments are estimated in G4 and G7, respectively. G4 implements (5.13) with
the array function 
 =AVERAGE�B3�B27/C3�C27��. G7 implements (5.17) by averaging
over the annual joint default rates in E3:E27. The default threshold in G12 is obtained by
applying the inverse cumulative normal to the default probability estimated in G4. In G15,
we reserve a cell for the asset correlation that we want to determine, and in G17 we compute
the joint default probability (5.18) for the threshold and the asset correlation that we have
in G12 and G15. For this, we need a function that evaluates a bivariate standard normal
distribution function. It is not available in Excel, but we can, for example, use the function
BIVNOR written by Erik Heitfield and Michael Gordy, which is available on the internet.2

We can now use the Goal Seek (or the Solver) functionality of Excel to determine the asset
correlation G15 such that the estimated joint default rate G7 equals the joint default probabil-
ity G17 implied by our asset value model. The Goal Seek window is shown in the table. Note

2 http://mgordy.tripod.com/software/bivnorf.zip. We are grateful to Erik Heitfield and Michael Gordy for the permission to use
their function.
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that we have to make sure that Goal Seek applies sufficient precision in solving the problem.
To that end, we can choose a very small value in menu Tools→Calculation→Maximum
change. Of course, we could also write =(G7–G17) in some cell and then use Goal Seek or
the Solver to set it to zero by changing G15. In this way, we would avoid the small rounding
errors associated with typing the value for the joint default rate into Goal Seek.

If there are several groups of obligors (e.g. investment grade and speculative grade issuers)
and we want to calibrate the asset value model for both, we could do it separately for the
individual groups. There is a drawback to this, however. Estimating the parameters for groups
of issuers separately means that we assume that the defaults are independent across groups,
which they are not: the correlation of investment and speculative default rates over the years
1981–2005 is 70%. In principle, one could generalize the method of moments procedure
in such a way that it could also deal with correlated groups. But there is another approach
which is not only more flexible but also makes better use of the available information. It
is the maximum likelihood approach used repeatedly in this book, which we are going to
discuss in the next section.

ESTIMATING ASSET CORRELATION WITH MAXIMUM
LIKELIHOOD

Applied to the asset value approach, the maximum likelihood principle says the following:
Determine default probabilities and factor sensitivities such that the probability (=likelihood)
of observing the historical default data is maximized (cf. Appendix A3 for a general intro-
duction to maximum likelihood).

We first need to describe default behavior through an appropriate distribution function.
To derive this distribution function, let us start with the concept of a conditional default
probability. Here, it’s the default probability conditional on Z, i.e. the default probability
pi�Z� that is associated with a given factor realization Z. Formally, we write

pi�Z� = Prob
(
Ai ≤ 	−1�pi��Z

)
(5.19)

Inserting our factor model (5.9) in (5.19) and rearranging yields:

pi�Z� = Prob
(

wiZ +
√

1 − w2
i �i ≤ 	−1�pi�

)

= Prob

(
�i ≤

	−1�pi� − wiZ√
1 − w2

i

)

= 	

[
	−1�pi� − wiZ√

1 − w2
i

]
(5.20)

If the factor realization is ‘bad’ (e.g. −2), the conditional default probability is relatively
high, and there will be many defaults. The crucial insight for the following is that once we
know Z, the default of borrower i provides no information on the likely default of another
borrower. To understand this, note that once we have fixed the value of Z, the randomness
in (5.20) is entirely due to �i – but we have assumed that �i and �j are independent for i �= j.
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Conditional on a factor realization, defaults are thus independent; knowing whether bor-
rower i has defaulted or not does not help us to predict whether borrower j defaults or not.
Each default variable yi can then be seen as a 0–1 random variable with success probabil-
ity pi�Z�. If the conditional default probability is uniform across issuers at p�Z�, the total
number of defaults D follows a binomial distribution with success probability p�Z� and N
trials.

Recall that the binomial density for x successes out of n trials with success probability q

is
(

n
x

)
qx�1 − q�n−x. Applying this formula to our problem leads to the following likelihood

for the number of defaults within sector k in a given year t:

Lkt =
�∫

−�

(
Nkt

Dkt

)
pk�Z�Dkt �1 − pk�Z��Nkt−Dkt d	�Z� (5.21)

We integrate over the factor Z because we do not know which factor has materialized. If
we have default data for sector k that spreads over T years, we assume that defaults are
independent across time and arrive at the following likelihood:

Lk =
T∏

t=1

�∫
−�

(
Nkt

Dkt

)
pk�Z�Dkt �1 − pk�Z��Nkt−Dkt d	�Z� (5.22)

If we were to apply the maximum likelihood approach to the data of just one sector – e.g. the
investment grade defaults that we examined in the previous section – we would maximize
equation (5.22) to obtain the parameters pk and wk. (Recall that pk and wk are contained in
pk�Z�, as pk�Z� is given by equation (5.20).)

If there are more sectors k=1�    �K, we have to model the joint distribution of defaults.
Surely we want to allow for dependence. The simplest way is to assume that there is only
one systematic factor that affects each sector. For a single year t, the likelihood can be
written as:

Lt =
�∫

−�

K∏
k=1

((
Nkt

Dkt

)
pk�Z�Dkt �1 − pk�Z��Nkt−Dkt

)
d	�Z� (5.23)

For T years, this leads to

L =
T∏

t=1

�∫
−�

K∏
k=1

((
Nkt

Dkt

)
pk�Z�Dkt �1 − pk�Z��Nkt−Dkt

)
d	�Z� (5.24)

Unfortunately, likelihoods such as (5.24) are difficult to maximize. A common procedure –
setting the first derivatives of the likelihood to zero – is not feasible. What we need are
numerical techniques for evaluating the integrals in the likelihood. Such techniques are
available in statistical software packages – but even then knowledgable judgment is required
to select the appropriate techniques.

For this book, we will suggest a non-standard numerical solution because our primary
goal is to present a solution that helps us to understand the estimation principle by giving
nice visual correspondences between the likelihood functions and the functions we enter in
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Excel. Our proposal is to approximate the standard normal distribution of Z by a discrete
distribution. Then the integral over Z will be a sum. Based on this, we can directly calculate
likelihood functions and then use the Solver to maximize them.3

The discrete distribution is shown in Table 5.2. We used the Solver to determine 21 points
and associated probabilities such that this discrete distribution matches the first 10 moments
of the standard normal distribution.4 The number 21 was chosen after some experimentation
with a smaller number of points, which did not seem to provide sufficient accuracy for the
problem at hand.

Table 5.2 A discrete 21-point distribution for approximating the standard normal
distribution

In Table 5.3, we use the numbers from Table 5.2 to apply the maximum likelihood
approach to investment grade defaults. We thus need to determine equation (5.22) for k = I
(investment grade) and maximize it. As usual, we maximize the log-likelihood. It is given by:

ln Lk =
T∑

t=1

ln

�∫
−�

(
Nkt

Dkt

)
pk�Z�Dkt �1 − pk�Z��Nkt−Dkt d	�Z� (5.25)

Figure 5.1 serves to clarify the correspondence between calculations in the sheet and in
the likelihood formula.5

3 For the (few) situations we looked at, approximation appears to be reasonably accurate. See the notes at the end of the chapter.
4 The maximum percentage deviation from the theoretical moments is 0.01%.
5 Note that the Excel function COMBIN may not work for data where N and/or D are larger than the values in the data used here.
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Table 5.3 The maximum likelihood approach applied to investment grade defaults

SUM() in B6 Integral: SUMPRODUCT() in E10:E34 

LN()  in E10:E34 

COMBIN()∗….∗…  in G10:AA34 

ln ∫
∞

–∞
⎟
⎟

⎠
⎜
⎜

⎝

⎞⎛

ln Lk = ∑
T

t =1

pk (Z )Dkt (1 − pk ( Z ))Nkt−Dkt d Φ (Z ).
Dkt

Nkt

Figure 5.1 How the likelihood is calculated in Table 5.3
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The data, Dkt and Nt, are in columns B and C of Table 5.2. The 21 points for approximating
the distribution of Z are in G2:AA2; their probabilities can be found in G3:AA3. For each
Z, we use equation (5.20) to determine pk�Z� in G6:AA6. The binomial probabilities for
a given Z and a given year are in G10:AA34. In E10:E34, we compute the weighted sum
of the binomial densities, which corresponds to integration over Z, and take logs. We then
obtain the overall likelihood (in B6) by summing over the annual likelihoods.

Having determined the log-likelihood for the given data and given parameters specified in
cells B2 (default probability) and B3 (factor sensitivity), we can apply the Solver to maximize
it. In doing so, we choose the following Solver options: precision is set to 0.000001; we tick
Assume non-negative (as both default probability and factor sensitivity are non-negative),
and we tick Automatic-scaling. Before starting the Solver, we choose sensible values for
p and w, e.g. the method of moments estimators from Table 5.2; these starting values are
written into cells B2 and B3, respectively, before calling the Solver.

Before looking at the results, let us look at the likelihoods. Why, for example, is the
column G likelihood in the year 2002 (1.7E-32) much lower than in the year 2004 (9.7E-01)?
The factor value for this column is Z = 4�78 (in G2), so it’s a column for an extremely good
year. Now 2002 was a very bad year with a default rate of 0.46%, while 2004 was a very
good year with a zero default rate. If we assume that the year was very good as we do in
column G, we can do a much better job of explaining the 2004 experience. In column AA,
it is the other way around.

Comparing the results of the maximum likelihood (ML) approach from Table 5.3 to the
method of moments (MM) estimator from Table 5.2

MM ML

Default probability p 0.100% 0.105%
Factor sensitivity w 19.706% 22.305%
Asset correlation w2 3.883% 4.975%

we see that, with ML, the default probability and the asset correlation are somewhat higher.
Overall, the differences appear to be small; they are more pronounced for the asset correlation.

We can use likelihood ratio tests to test hypotheses such as ‘the default correlation is
20%’.6 We would write 0�2∧0�5 = 0�4472 into B3 and then maximize the likelihood solely
by varying the default probability in B2. Doing so, we get a log-likelihood of −50�23. The
LR statistic is

LR = 2�−46�76 + 50�23� = 6�94

where −46�76 is the likelihood from Table 5.3. The p-value of this test is
CHIDIST(6.94,1)=0.8%, so we could reject the hypothesis at a high significance.

One motivation for the ML procedure was that it allows estimation of correlations with
data from several segments. Next, we will give examples of such calculations for data on
both investment grade and speculative grade defaults. In doing so, we assume that both
sectors have the same factor sensitivity (the latter assumption can easily be relaxed).

Building on Table 5.3, there is little we need to change to get to Table 5.4. We
have to allow for different default probabilities for the two sectors, which we do in

6 Cf. Appendix A4 for more details on likelihood ratio tests.
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Table 5.4 The maximum likelihood approach applied to investment grade and speculative grade
defaults

cells B2:B3. The factor sensitivity is moved to cell E2. We insert the speculative grade
data in D10:E34, shifting the likelihood calculations two columns to the right. In I7:AC7
we compute the conditional default probabilities of speculative issuers analogously to
the approach we used for investment grade issuers. In doing so, we have to be care-
ful to refer to the right parameters. The conditional default rate of investment grade
issuers depends on the default probability in B2, the speculative on the one in B3.
Since we assume a uniform factor sensitivity, both conditional default rates depend
on E2.

Then, we only have to change the calculation of the binomial densities in the range
I10:AC34. Since we assume that both grades are driven by the same factor, we evaluate the
joint probability of observing investment and speculative grade defaults for a given Z. The
joint probability of independent events (recall what we said about conditional independence)
is the product of individual probabilities, so we multiply binomial densities of investment
and speculate defaults for a given Z.
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Compared to the previous ML estimates, the default probability is somewhat lower, while
the asset correlation is higher:

MM ML ML (joint with spec grade)

Default probability p 0.100% 0.105% 0.096%
Factor sensitivity w 19.706% 22.305% 25.365%
Asset correlation w2 3.883% 4.975% 6.434%

To come to an intuitive explanation for this result, note that we observe a few years with
high investment grade default rates. There are two reasons why we can expect to see high
default rates: a high default probability or a high asset correlation. If high investment grade
defaults are coupled with high speculative grade default rates, the joint use of the data could
favor the asset correlation explanation, providing one reason why we can observe the shift
in the parameter estimates.

The joint estimation would make a difference even if we allowed the asset correlation to
vary across investment and speculative grade issuers. We can easily generalize Table 5.4
in this way: we reserve E3 for the speculative grade factor sensitivity, refer to E3 in cells
I7:AC7, and let the Solver optimize over B2:B3 and E2:E3. We do not show the results
here, but we have conducted a likelihood ratio test of the hypothesis that the two factor
sensitivities are the same. Its p-value is 0.57, so the assumption of uniform sensitivities
appears to be a good working hypothesis.

The change in results from Table 5.3 to Table 5.4 exemplifies the importance of making
efficient use of data. Speculative grade defaults can be not only useful for estimating
investment grade correlations, but also for estimating investment grade default probabilities.
When choosing between different estimators, however, we should be aware of the possibility
that estimators that appear to be desirable with respect to some criteria might perform poorly
with respect to others. In particular, we should be aware of small sample problems. Many
estimators have good properties if the number of observations is large, but if the sample
is small they can be beset by low precision or biases, i.e. produce estimates which are, on
average, too low or too high. When estimating default correlations, we are typically dealing
with small samples: the relevant dimension for estimating correlations is not the number of
borrowers but rather the number of years. With the Standard & Poor’s data, we have just
25 of them. Many financial institutions wishing to estimate correlations with their own data
will have less. So having a tool to help to assess problems arising in small samples is a good
idea. In the next section, we will present such a tool: Monte Carlo studies.

EXPLORING THE RELIABILITY OF ESTIMATORS WITH A
MONTE CARLO STUDY

Consider the following setting: Having estimated parameters with empirical data, you want
to examine the properties of the estimates. A Monte Carlo study would then be structured
as follows:

1. Specify a probability distribution that is a good description of the empirical data you
work with.

2. Randomly draw a hypothetical dataset from the distribution specified in step 1.
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3. Determine the estimators to be studied for the simulated data from step 2.
4. Repeat steps 2 and 3 sufficiently often and analyze the estimates.

In our illustration of a Monte Carlo study, we build on Table 5.3, leading to Table 5.5. We
assume that there exists (and is available to us) data on investment grade defaults over 25

Table 5.5 A Monte Carlo study of method of moments (MM) and maximum likelihood estimators
(ML) for default probability p and factor sensitivity w
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years. The number of issuers at the start of each year are the actual ones taken from the
history. Defaults are generated (step 1) according to a one-factor asset value model with
the following parameters: pI = 0�1% (investment grade default probability), w = 0�3 (factor
sensitivity). These parameter values are close to those we obtained from the actual data.
We study the maximum likelihood estimator, which is determined as in Table 5.3, and the
method of moments estimator. To obtain the latter, we follow the procedure from the second
section of this chapter.

The Monte Carlo study is conducted by running the macro MCstudy() on Table 5.5.
Note first the changes that were made in the table relative to Table 5.3. We add the
method of moments estimator for the default probability in C2, and the method of moments
estimator for the factor sensitivity in F2. We add a column with annual joint default
rates in E10:E34, shifting the likelihood calculations two columns to the right. In F3,
we calculate the squared difference between the estimated joint default probability (5.17)
and the theoretical one (5.18). We multiply this difference with a large number �1010�
because when we later set it to zero by varying F2, we want to make sure that the
numerical routine we apply stops only when the difference is in the very near proximity
of zero.

The macro (see Table 5.5) starts by setting the parameters: default thresholds d depend
on the chosen default probabilities. Factor sensitivity is set to w = 0�3. We then loop
through the trials of the Monte Carlo simulation: First, we simulate defaults. Defaults are
drawn from a binomial with success probability equal to the conditional default prob-
ability. The latter depends on the factor realization z, which is drawn from a standard
normal distribution. To draw random numbers, we use the inverse distribution method:
If a variable follows the distribution function F�x�, we can draw realizations by draw-
ing a variable y that is uniformly distributed on the unit interval, and then apply the
inverse of F . For a draw y∗ we then receive the draw x∗ = F−1�y∗�. In VBA, a uni-
form random number is generated by RND(). The inverse of the standard normal and the
binomial are given by calling the worksheet-functions NORMSINV() and CRITBINOM(),
respectively.

The method of moments estimates for default probabilities are automatically calculated in
the sheet. To obtain the MM estimate for the correlation, we use the Goal Seek functionality
to set cell F3 equal to zero; our starting value is w = 0�5. We use the MM estimates as
starting values for the ML estimation. However, if the MM estimator for the factor sensitivity
did not converge, we use w = 0�5. (The MM is classified as non-convergent if it yields an
error value for the squared difference in F3, or if this difference is larger than 0.0000001.)
We then call the Solver to maximize the likelihood in cell B6 with the same options that we
used in Table 5.3.

Finally, we insert the estimates for investment grade default probability and for the factor
sensitivity into the sheet (starting in row 41). We conduct M = 1000 Monte Carlo trials and
get the following results7:

pML pMM wML wMM

Average 0.10% 0.10% 28.28% 25.22%
RMSE 0.03% 0.03% 8.08% 8.22%

7 We ignored those trials were either of the two estimators did not converge.
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where RMSE is root mean squared error. For the ML estimator wML of the factor sensitivity
w = 0�3, for example, it is defined as

RMSEw =
√

1
M

M∑
i=1

�wML − 0�3�2

Regarding default probabilities, there is little difference between the two estimators. They both
appear to be unbiased, and they both have a similar precision (as measured by RMSE). This is
not the same for the factor sensitivity, however. Both are downward biased, i.e. their average
value is below the true value of 0.3, but the downward bias is more pronounced for the MM
estimator. The RMSE of the two estimators is similar. The Monte Carlo study would thus
prefer the ML procedure if we believe that the data we work with is similar to the one we
simulated. However, since we have found the ML estimate of the factor sensitivity to be biased
by roughly two percentage points, we could adjust our estimates accordingly. If ML leads
to a factor sensitivity estimate of 0.25, for example, we could work with one of 0.27 instead.

CONCLUDING REMARKS

The model of default correlation presented in this chapter can be generalized in many ways.
We can increase the number of factors, turn the factor sensitivities into random variables,
or let the asset values follow non-normal distributions.

The sheer number of modeling alternatives might call into question our trust in the simple
model we have examined here. Most definitely, model set up is an important issue at hand.
Should the model be wrong in some way, however, we can still hope for the estimation
procedure to pick the parameters in such a way that even a flawed model might explain
the data satisfactorily well. Hamerle and Rösch (2005), for example, have shown that the
consequences of choosing a normal asset value distribution instead of a Student t distribution
are largely offset in the estimation of the factor sensitivity. If we assume a normal distribution
when the true one is t, the default correlation for a given factor sensitivity is underestimated;
but when we falsely use the normality assumption in estimating the factor sensitivity from
default data, we tend to overestimate the factor sensitivity, neutralizing the error from the
distributional assumption.

NOTES AND LITERATURE

To assess the reliability of our estimation procedure, we exactly replicated a Monte Carlo study by
Gordy and Heitfield (2002), in which they examined the behavior of the ML estimator for a data set with
three sectors that are driven by a single common factor, the factor sensitivity being uniform at 30%:

ML estimate of factor sensitivity

Gordy and Heitfield,
Table 4(b), MLE3

Method of
this chapter

Average 28.49% 28.63%
RMSE 6.39% 6.35%
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The differences between the results are small and within the bounds of simulation error.
The asset value approach goes back to Vasicek, O., 1987, Probability of Loss on Loan Portfolio,

White Paper, KMV, and Gupton, G.M., Finger, C.C. and Bhatia, M., 1997, CreditMetrics – Technical
Document, J.P. Morgan.

The method of moment approach was suggested by Gordy, M., 2000, A comparative anatomy of
credit risk models, Journal of Banking and Finance 24, 119–149. In this chapter, we use the estimator
suggested in Frey, R. and McNeil, A.J., 2003, Dependent defaults in models of portfolio credit risk,
Journal of Risk 6, 59–92.

On the maximum likelihood approach, see Gordy, M. and Heitfield, E., 2002, Estimating default
correlations from short panels of credit rating performance data, Working Paper, Federal Reserve.

For a discussion of the importance of distributional assumptions, see Hamerle, A. and Rösch, D.,
2005, Misspecified copulas in credit risk models: how good is Gaussian? Journal of Risk 8, 41–58.



6
Measuring Credit Portfolio Risk with

the Asset Value Approach

A credit portfolio risk model produces a probability distribution of losses that can arise from
holding a portfolio of credit risky instruments. A financial institution can use such models
to answer questions such as ‘What is the probability that losses on my loan portfolio exceed
100m over a horizon of one year?’

The annus mirabilis of portfolio credit risk models is 1997, which saw the publication of
three different approaches; a fourth approach has been developed at about the same time.1

Even though extant models are similar in underlying structure, it is beyond the scope
of this chapter to provide thorough implementations of each. Accordingly, we cover just
one approach – the asset value or latent variable approach exemplified by CreditMetrics. In
this approach, the portfolio loss distribution is obtained through a Monte Carlo simulation.
Computing time is thus an important implementation issue. To keep focused on this issue,
we start with a simplified framework in which we just consider losses from default (but not
from changes in market value). We then show how to speed up simulations, and conclude
with some generalizations.

A DEFAULT MODE MODEL IMPLEMENTED IN THE
SPREADSHEET

We can split portfolio credit risk modeling into four main steps. In the following, we describe
those steps for a general model and for a specific approach – a default mode model in which
we consider only losses from default:

1. Specify probabilities of individual credit events
Default mode: specify only probabilities of default (PDs) as other events (changes in
credit quality) are ignored in the modeling.

2. Specify value effects of individual credit events
Default mode: specify the loss given default (LGD), which is the percentage of exposure
at default (EAD) that is lost in case of default.

3. Specify correlations of individual credit events and value effects
Default mode: specify default correlations and (possibly) correlations of LGDs.

4. Based on steps 1 to 3, obtain the portfolio value distribution (via simulations or
analytically).

In previous chapters, we have explored different ways of obtaining default probabilities:
logit scores, structural models, or historical default rates per rating category. We could use

1 These models are CreditMetrics (Gupton, Finger and Bhatia, 1997), CreditRisk+ (CSFB, 1997), CreditPortfolioView (Wilson,
1997a,b), and KMV PortfolioManager.
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any of the three approaches (as well as others) to determine probabilities of default (PD) as
required in step 1. Loss-given default (LGD) can be measured in similar ways. We can use
historical averages of LGDs or multivariate prediction models to obtain LGD estimates.

In step 3, we choose to employ the asset value approach detailed in Chapter 5. It models
default correlations by linking defaults to a continuous variable, the asset value A. Borrower
i defaults if its asset value falls below some threshold di chosen to match the specified PDi:

Defaulti ⇔ Ai ≤ di

No defaulti ⇔ Ai > di (6.1)

If the asset values are assumed to be standard normally distributed, we would set di =
�−1�PDi�, where � denotes the cumulative standard normal distribution function.

Correlation in asset values can be modeled through factor models. We start with a simple
one containing just one systematic factor Z:

Ai = wiZ +
√

1 − w2
i �i� cov��i� �j� = 0� i �= j� cov�Z��i� = 0�∀i

Z ∼ N�0� 1�� �i ∼ N�0� 1��∀i (6.2)

In words, we assume that: systematic �Z� and idiosyncratic ��� shocks are independent;
idiosyncratic shocks deserve their name because they are independent across firms; shocks
are standard normally distributed.

In the asset value approach, the standard way of obtaining the portfolio distribution (step
4) is to run a Monte Carlo simulation. It has the following structure:

1. Randomly draw asset values for each obligor in the portfolio (which we will do here
according to (6.2)).

2. For each obligor, check whether it defaulted according to (6.1); if yes, determine the
individual loss LGDi × EADi.

3. Aggregate the individual losses into a portfolio loss.
4. Repeat steps 1 to 3 sufficiently often to arrive at a distribution of credit portfolio losses.

In the following, we implement such a simulation in an Excel spreadsheet. We assume
that we have estimates of the PDi� LGDi� EADi, and asset correlations. We use a one-factor
model with normally distributed asset values, so correlations are fully specified once we
have specified the factor sensitivities wi.

Table 6.1 shows these parameters for a portfolio of 100 loans. Loan-specific PDs, LGDs,
EADs and factor sensitivities w are contained in B10:E109. Simulation steps 1 to 3 are
also implemented in the sheet. For each loan, we first determine its default threshold di by
applying the function NORMSINV() to PDi (column G) before drawing a factor realization in
J10. RAND() gives a uniform random number between 0 and 1. With the inversion method,
we can transform it into a standard normal variable by applying the inverse of the standard
normal. J10 thus reads =NORMSINV(RAND()). Next, we determine the individual scenario
asset value according to formula (6.2). In doing so, we refer to the factor sensitivities and
the factor, and generate a loan-specific random variable �i. H10, for example, reads:

= E10∗J$10 + �1 − E10∧2�∧0�5∗NORMSINV�RAND���
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Table 6.1 Simulating a default-mode model – Spreadsheet implementation

With the asset values and the default threshold in hand, we can decide whether a loan
defaulted in the scenario or not. If it defaulted, the associated loss is LGD × EAD. Generally
speaking, the individual scenario can be written as

= LGD × EAD × �1 if default� 0 otherwise�

Cell I10, for example, reads:

= C10∗D10∗�H10 < G10�
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In cell J12, we then sum up the individual loan losses to obtain the portfolio loss in the
scenario. But we haven’t completed the Monte Carlo simulation yet. To derive an estimate
of the loss distribution, we need many scenarios, not just one. Within the sheet, we could
press F9 to produce another random scenario, but it is more convenient to employ a macro.
We propose the macro simsheet, which is also shown in the table.

At the heart of the macro lies a ‘for’ loop. As many times as specified in cell C3 in the
sheet, we let Excel compute a new scenario in the sheet and have our macro save the resulting
portfolio loss in column K. We don’t need to tell Excel to compute a new scenario as we made
sure that the Automatic-Calculation-Option (to be found via Tools→Options→Calculation)
is activated. When we change something in the sheet – and there is a change once we
write the result into column K – the sheet is recalculated, including a new draw of random
numbers.

The motivation for the other statements is as follows: Without

Application.Screenupdating=False

computing time would increase because Excel would update the displayed screen content in
the course of each trial. We also clear output from previous runs (to make sure that we don’t
mix old and new results) and clear the formulae which analyze the loss distribution (Excel
would recalculate them whenever the macro writes a new scenario, requiring additional
computing time). At the end of the macro, we write the formulae back into cells H3:H6.
They return percentiles of the loss distribution for the confidence levels specified in cells
G3:G6. Finally,

Application.StatusBar = Int(i / M * 100) & "%"

keeps us informed about simulation progress.
The portfolio examined in Table 6.1 contains only 100 obligors, which is representative

of a corporate bond fund, but certainly not representative of a bank’s loan portfolio. Even
with such a low number, the simulation is not done in a wink. If we increased the number
of obligors to, say, 5000, or increased the number of simulations to 20 000 to make the
simulation results more precise (we’ll come back to this issue in a later section), the
simulation time would be unacceptably long.

The implementation in the worksheet thus mainly serves for our purpose of introducing
the simulation methodology. In the following sections, we will explore faster and more
efficient ways of implementing such a simulation in Excel.

VBA IMPLEMENTATION OF A DEFAULT-MODE MODEL

In the simulation of Table 6.1, two very time-consuming elements are

• drawing random numbers through NORMSINV(RAND())
• writing simulation output into the sheet.

To gain an idea of the time these two elements consume, start with an empty sheet and
fill =NORMSINV(RAND()) into the range A1:A65536. It takes several seconds until the
numbers are determined and filled in.

In the following, we therefore propose an alternative implementation which uses another
algorithm to produce standard normal numbers and also moves all computations to VBA.
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To generate random normal numbers, we use the polar method algorithm:

1. Generate two uniform random variables U1 and U2; compute V1 = 2U1 − 1, V2 = 2U2 − 1
2. Repeat step 1 until W = V 2

1 + V 2
2 < 1

3. Z1 = V1

√−2 ln�W�/W and Z2 = V2

√−2 ln�W�/W are standard normal variables.

Thus, one application of the polar method produces two standard normal variables. An
implementation of this algorithm is our function NRND():

Function NRND() As Double
Dim W As Double, z As Double
Static NRND2 As Double, take2 As Boolean

’Check whether a non-used variable is available
If take2 = True Then

NRND = NRND2
take2 = False

Else
’Polar method
Do

NRND = 2 * Rnd −1
NRND2 = 2 * Rnd −1
W = NRND * NRND + NRND2 * NRND2

Loop Until W < 1

z = Sqr(-2 * Log(W) / W)
NRND = NRND * z
NRND2 = NRND2 * z
take2 = True

End If
End Function

The do loop and the following calculations (until NRND2=NRND2*z) implement the polar
method described above. In addition, we exploit the fact that the algorithm produces two
random variables. If the function is called for the first time, it returns the first random variable
NRND. But we store the second random variable in NRND2. This variable is declared to be
a static, so it will be available after the function has returned NRND. Through If take2 =
True, we check whether such a non-used variable is available. If this is indeed the case,
we don’t enter the polar method algorithm but immediately return the random number that
was stored in a previous run of the function.

Let us ponder another issue before building the simulation macro. In Table 6.1, we wrote
the simulated loss scenarios into the sheet and applied the worksheet function PERCENTILE
to it. In the macro to be written, we’ll record the loss scenarios in a VBA array. Once we
increase the number beyond the maximum number of rows within a sheet, we run into two
problems: first, saving the losses in the sheet is not convenient as we would need more than
one column; second, the function PERCENTILE does not work for arrays longer than the
maximum number of rows in the spreadsheet. Our strategy will be as follows. To compute
percentiles, we sort the array containing the loss function; the 	 percentile of this ascendingly
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sorted array with M elements is taken to be the element with index 	�M + 1�, rounded to
the nearest integer. We then write the percentiles determined in VBA back into the sheet.

As there is no sorting functionality in VBA, we provide one through a macro SORT(). It
implements the following Quicksort algorithm2:

1. Partition the data into two subsets by selecting a partitioning element.
2. Simultaneously move from the left and from the right towards the partitioning element.

Compare elements on the left to those on the right and swap them when you find a pair
with the left one larger than the partitioning element while the right one is smaller.

3. Refer the sorted subsets created by steps 1 and 2 to step 1.

Here is the implementation, in which the partitioning element is the one in the middle of the
(sub)sets.

Sub SORT(x(), Optional lower, Optional upper)
Dim a, p1, p2, tmp

If IsMissing(lower) Then lower = LBound(x)
If IsMissing(upper) Then upper = UBound(x)

’Determine partioning element
a = x((lower + upper) / 2)
p1 = lower: p2 = upper

Do
Do While (x(P1) < a): P1 = P1 + 1: Loop
Do While (x(P2) > a): P2 = P2 − 1: Loop
If P1 <= P2 Then

’exchange elements
tmp = x(P1): x(P1) = x(P2): x(P2) = tmp
P1 = P1 + 1: P2 = P2 − 1

End If
Loop Until (P1 > P2)
’Recursively sort subarrays
If lower < p2 Then: SORT x, lower, p2
If p1 < upper Then: SORT x, p1, upper
End Sub

With NRND() and SORT() at hand, we can build a macro that performs the Monte Carlo
simulation. We use the same portfolio as in Table 6.1. As shown in Table 6.2, we use the
spreadsheet only for collecting the input parameters and for displaying the results of the
Monte Carlo simulation. All calculations are performed through the macro simVBA, with
the structure of this macro as follows.

After declaring variables, we read the number of simulations M (in cell C3) and the num-
ber of loans N (count the entries in B10:B65536) from the sheet. We then write the loan

2 There are other sorting algorithms as well as variants of the Quicksort implemented here. We refrain from a discussion and rather
refer readers concerned about efficiency and reliability to the literature, e.g. Vetterling et al., 2002, Numerical Recipes in C ++:
The Art of Scientific Computing, Cambridge.
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Table 6.2 Simulating a default-mode model – VBA implementation

characteristics contained in columns B to E into arrays. We don’t store the PDi but instead the
default thresholds di =�−1�PDi� as the latter are needed in the simulation, while the PDi them-
selves are not. The other input parameters written into arrays are LGDi, EADi and the factor
sensitivities wi. We also create an array w2 containing

√
1 − w2

i . This transformation of the
factor sensitivity will be used again and again in the course of the simulation (cf. equation (6.2)).

The Monte Carlo trials are conducted with a For j=1 to M loop. In one single trial j,
we first draw a factor, then determine the loss for an individual loan i and add it to the
portfolio loss. Once we’ve done this for all loans, we store the trial’s portfolio loss (named
loss_j) in an array (named loss).

Having conducted M trials, we use the SORT macro to sort the array loss. For the
percentile levels stated in the sheet (in the range H3:H7), we infer the loss percentiles and
write them into the sheet.

Sub simVBA()

Dim M As Long, N As Long, i As Long, j As Long
M = Range("c3") ’Number of simulations
N = Application.Count(Range("B10:B65536")) ’Number of loans

Dim d(), LGD() As Double, EAD() As Double, w() As Double, w2() As Double
Dim loss(), factor As Double, loss_j As Double

ReDim d(1 To N), LGD(1 To N), EAD(1 To N), w(1 To N), w2(1 To N), _
loss(1 To M)

’Write loan characteristics into arrays
For i = 1 To N

d(i) = Application.NormSInv(Range("B" & i + 9))
LGD(i) = Range("C" & i + 9)
EAD(i) = Range("D" & i + 9)
w(i) = Range("E" & i + 9)
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w2(i) = ((1 − w(i) * w(i))) ˆ 0.5
Next i

’Conduct M Monte Carlo trials
For j = 1 To M

factor = NRND()
’Compute portfolio loss for one trial
loss_j = 0
For i = 1 To N

If w(i) * factor + w2(i) * NRND() < d(i) Then
loss_j = loss_j + LGD(i) * EAD(i)

End If
Next i
loss(j) = loss_j

Next j

SORT loss
For i = 3 To 7

Range("H" & i) = loss(Int((M+1) * Range("G" & i)))
Next i

End Sub

On the two-year-old laptop we’re using at the time of writing, 50 000 trials take less than
5 seconds for the small portfolio with 100 obligors. With 5000 obligors and 50 000 trials,
simulation time is 3 minutes and 23 seconds.

We reported the simulation time for 50 000 trials because we shouldn’t expect to get
precise results if we chose considerably less. Note that looking at the overall number of
trials and considering it to be ‘large’ can give a false sense of precision. The precision with
which a percentile is estimated will be related to the expected number of simulations that
are above the percentile. For the 99.95th percentile, this would be 5 if the number of trials
were 10 000. Intuitively, relying on five observations is likely to be problematic.

Before we delve deeper into the relation between the number of trials and the pre-
cision of the estimates, we first consider two variations on the approach that we fol-
lowed in the macro simVBA. Both variations aim at providing higher precision with fewer
trials.

IMPORTANCE SAMPLING

Simulating portfolio losses in the way we did in the previous section produces a lot of more
or less irrelevant trials. Risk managers are mainly concerned with extreme events, e.g. what
is happening beyond the 99th percentile. However, the bulk of trials will have much smaller
portfolio losses; and the distribution of losses below the target percentile level does not
matter for the calculation of the percentile.

The idea of importance sampling is to adjust the simulation procedure such that we produce
more trials that are important for the users of the simulation output. Since we are concerned
with large losses, let us first state how such large losses can come about. Recall that default
occurs if the asset value Ai drops below the default threshold, and that we modeled Ai as
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wiZ +√1 − w2
i �i. So there are two situations in which the number of defaults is large (they

can, of course, come about at the same time):

• the factor realization Z is negative (think of the economy moving into a recession)
• the average �i is negative (think of many firms having individual bad luck).

The larger the number of obligors in a portfolio, and the more even are the exposures
distributed across obligors, the more important will be the first effect relative to the second.3

This is due to diversification: some obligors will be lucky ��i > 0�, some will not ��i < 0�,
and both effects will tend to cancel each other.

In the following, we therefore concentrate on how to adjust the distribution of the factor
such that we have more relevant scenarios. Remember that we drew the factor from a
standard normal distribution. To tilt our simulation towards scenarios with large losses,
we can instead sample the factor from a normal distribution with mean 
 < 0, leaving the
standard deviation at 1. When doing so, we have to take into account that our simulation
results will be biased. When modeling correlations through the one-factor model (6.2), we
assumed the factor to have a mean of zero, but now we work with a mean different from
zero. There is a quick way of correcting this bias, however.

Before importance sampling, the probability of observing a trial j is just 1/M , where M
is the chosen number of trials. With importance sampling, we get the trial’s probability by
multiplying 1/M with the likelihood ratio:

��Zj�

��Zj − 
�
(6.3)

where � denotes the standard normal density, Zj is the factor drawn in trial j, and 
 is the
mean of Z assumed in the importance sampling. Consider the case Zj = −2 and 
 = −1.
With 
 = −1, a realization of Zj = −2 has a probability that is higher than the one we
assumed in the modeling, so we have to downweigh the scenario. Since the ratio (6.3) is
0.22 for these example values, this is what we achieve when applying the likelihood ratio
(6.3).

When implementing importance sampling, it is useful to note that

��Zj�

��Zj − 
�
= �2��−1/2 exp�−Z2

j /2�

�2��−1/2 exp�−�Zj − 
�2/2�
= exp�−
Zj + 
2/2� (6.4)

The probability of observing the loss of trial j is therefore:

Probj = exp�−
Zj + 
2/2�/M (6.5)

Once we have a vector of simulated losses and a vector of associated likelihood ratios,
we can proceed as follows: First, sort the two vectors according to the magnitude of
losses. Then, starting from the largest loss, cumulate the trial probabilities (6.5). Deter-
mine the 	 percentile as the maximum loss that has a cumulated probability larger than
�1 − 	�.

3 The magnitude of the asset correlation also plays a role.
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Before implementing the importance sampling scheme through the macro simVBAis, we
adjust Table 6.2 such that we can enter into cell C4 a mean 
 for the factor. The changes
to the previous macro simVBA are shaded:

Sub simVBAis()

Dim M As Long, N As Long, i As Long, j As Long, shift As Double
M = Range("c3") ’Number of simulations
N = Application.Count(Range("B10:B65536")) ’Number of loans
shift = Range("C4") ’Mean of factor in importance sampling

Dim d(), LGD() As Double, EAD() As Double, w() As Double, w2() _
As Double

Dim loss(), factor As Double, loss_j As Double, prob()

ReDim d(1 To N), LGD(1 To N), EAD(1 To N), w(1 To N), w2(1 To N), _
loss(1 To M)

ReDim prob(1 To M)

’Write loan characteristics into arrays
For i = 1 To N

d(i) = Application.NormSInv(Range("B" & i + 9))
LGD(i) = Range("C" & i + 9)
EAD(i) = Range("D" & i + 9)
w(i) = Range("E" & i + 9)
w2(i) = ((1 - w(i) * w(i))) ˆ 0.5

Next i

’Conduct M Monte Carlo trials
For j = 1 To M

factor = NRND() + shift

prob(j) = Exp(-shift * factor + shift ˆ 2 / 2) / M

’Compute portfolio loss for one trial
loss_j = 0
For i = 1 To N

If w(i) * factor + w2(i) * NRND() < d(i) Then
loss_j = loss_j + LGD(i) * EAD(i)

End If
Next i
loss(j) = loss_j

Next j

SORT2 loss, prob

’cumulate probabilities

For j = M - 1 To 1 Step -1

prob(j) = prob(j + 1) + prob(j)

Next j
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j = M

For i = 7 To 3 Step -1

Do
j = j - 1

Loop Until prob(j) > 1 - Range("G" & i)

Range("H" & i) = loss(j)

Next i

End Sub

Since we have to sort both the array loss and the array prob by loss, we need to
adjust our SORT macro from the previous section such that it can sort two vectors. This is
done in the macro SORT2(1st array, 2nd array, optional lower bound, optional upper bound)
which sorts the two arrays according to the first one:

Sub SORT2(x(), x2(), Optional lower, Optional upper)
Dim a, P1, P2, tmp
If IsMissing(lower) Then lower = LBound(x)
If IsMissing(upper) Then upper = UBound(x)

’Determine partioning element
a = x((lower + upper) / 2)
P1 = lower: P2 = upper
Do

Do While (x(P1) < a): P1 = P1 + 1: Loop
Do While (x(P2) > a): P2 = P2 - 1: Loop
If P1 <= P2 Then

’exchange elements
tmp = x(P1): x(P1) = x(P2): x(P2) = tmp
tmp = x2(P1): x2(P1) = x2(P2): x2(P2) = tmp
P1 = P1 + 1: P2 = P2 - 1

End If
Loop Until (P1 > P2)
’Recursively sort subarrays
If lower < P2 Then: SORT2 x, x2, lower, P2
If P1 < upper Then: SORT2 x, x2, P1, upper
End Sub

The optimal choice of factor will depend on the percentiles in which we are interested.4

The more extreme the percentiles, the more extreme will be the optimal shift. A rule of
thumb is to shift the mean to a value that is somewhat less extreme than the percentiles of the
loss distribution in which one is interested. In the example calculations of this chapter, we
consider a mean of 
=−1�5. Under a standard normal, −1�5 is exceeded with a probability
of 93.3%, so this is less extreme than the percentiles above 95% that risk managers usually
focus on.

4 See Glasserman and Li (2005) for an approach that determines the optimal shifting factor.
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Before we examine the efficiency gain from importance sampling, let us examine another
variant of standard Monte Carlo simulation.

QUASI MONTE CARLO

Due to the randomness inherent in a simulation trial, the properties of a set of simulated
numbers will deviate from the distribution from which they were drawn. If we draw 10 000
factor realizations from the standard normal distribution, for example, we will typically not
observe that exactly 100 = 0�01 × 10� 000 factor values are below −2�326�=�−1�0�01��. As
a result, the simulated loss distribution will deviate from the true one. This problem grows
larger if the number of trials becomes smaller.

A possible way of alleviating this problem is to employ quasi Monte Carlo numbers. They
follow a deterministic rule5 that is meant to produce simulated distributions very close to
the specified theoretical distribution, even for small sets of random numbers. The concept
is best understood by looking at an example. The Halton sequence (here with base 2) leads
to the following quasi random numbers that are uniformly distributed on the unit interval:

1
2

�
1
4

�
3
4

�
1
8

�
5
8

�
3
8

�
7
8

�
1
16

�
9

16
�   

When in need of M random numbers, we would take the first M numbers of this sequence.
The Halton sequence fills the unit interval with an ever-increasing fineness. This is

illustrated in Figure 6.1, which shows how Halton numbers (with base 2) and a randomly
chosen set of 100 uniform random numbers are distributed on the unit interval. Note that
the random sample exhibits more clustering, and larger gaps between clusters.

1st 50 Halton numbers

1st 100 Halton numbers

0 0.5 1

0 0.5 1

Random sample of 100 uniform numbers

0 0.5 1

Figure 6.1 Halton numbers and a randomly chosen set of 100 uniform numbers

5 The random numbers produced by computers are also deterministic (which is why they are often called pseudo-random numbers);
they are, however, not designed to have minimum deviation from the specified distribution.
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Two things are worth noting. First, we can apply the inversion method to get standard
normal numbers from the Halton numbers (which we need in our credit portfolio simulation).
Second, we can produce different Halton sequences. The Halton sequence with base 3 (above
we used base 2) would be:

1
3

�
2
3

�
1
9

�
4
9

�
7
9

�
2
9

�   

A function for determining Halton numbers requires little code. To draw the jth element of
a Halton sequence with base b, start by writing the index j as a number in the numerical
system with base b. Consider index j = 4 for base 2. Its representation in the binary system
is:

4 = �1� 0� 0�2 = 1 · 22 + 0 · 21 + 0 · 20 =� �d2 d1 d0�2

where the d′
i s are the binary digits. Now reverse the digits and put the radix point in front

of the sequence:

�� d0d1d2�2 = 0
21

+ 0
22

+ 1
23

= 1
8

to get the 4th Halton number for base 2. In the same way, we can determine the Halton
number for any index j and base b.

We generate Halton numbers with the following function:

Function HALTON(j, base)

Dim i As Long, invbase As Double, digit As Long
invbase = 1 / base
i = j

Do While i > 0
digit = i Mod base
HALTON = HALTON + digit * invbase
i = (i - digit) / base
invbase = invbase / base

Loop

End Function

Having entered the do loop, we start by determining the digit d0 through i Mod base,
and apply the base inversion. We then loop to d1 and so forth.

A straightforward application of Quasi Monte Carlo is to draw the factor values in our
importance sampling scheme from a Halton sequence. There is little we have to adjust, and
just write

factor = Application.WorksheetFunction.NormSInv(HALTON(j, 2)) + shift

instead of factor = NRND() + shift in macro simVBAis. We have made this change
in the macro simVBAisqmc.
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ASSESSING SIMULATION ERROR

We now want to examine the question of how many simulations are sufficient to obtain a
desired level of accuracy. Additionally, we want to determine whether modifications such
as importance sampling or Quasi Monte Carlo lead to significant improvements relative to
standard Monte Carlo.

One way of providing answers to these questions is to conduct a simulation study. (Don’t
get confused by this – what is meant is a simulation study to examine several ways of doing
Monte Carlo simulations.) To assess the accuracy of a specific simulation method, follow
this structure:

1. Determine the portfolio loss distribution with a large number of trials (e.g. one million)
that is judged to yield sufficient accuracy.

2. Determine the portfolio loss distribution with the method under scrutiny, and a specified
number of trials (e.g. 10 000). Compare the differences with respect to the results from
step 1.

3. Repeat step 2 sufficiently often to get a precise estimate of the average differences.

We apply such a study to a portfolio that is more representative of a banking portfolio
than the small portfolio we examined so far; the new portfolio contains 5000 obligors. The
distribution of borrowers across probabilities of default (PD) is presented in Table 6.3.

Table 6.3 Structure of example portfolio

Grade PD Portfolio weight

1 0�01% 4%
2 0�05% 7%
3 0�10% 15%
4 0�20% 25%
5 1�00% 40%
6 5�00% 8%
7 20�00% 1%

The mean loan size is set to 1 for each grade. Nj , the number of loans contained in grade
j, is then 5000 × portfolio weightj . Lumpiness in exposures is modeled as follows. Within
rating grade j, EADij , the exposure of loan i is determined through

EADij = i4Nj

/ Nj∑
i=1

i4

This rule is meant to produce a portfolio structure that is representative for commercial bank
loan portfolios.6

We start by using the simple VBA macro simVBA to determine the loss percentiles. The
number of trials is chosen to be 1 million – this is step 1 from the simulation structure
outlined above. In Table 6.4, we show how to do steps 2 and 3 for the standard Monte Carlo

6 Cf. Gordy, M., 2003, A risk-factor model foundation for ratings-based bank capital rules, Journal of Financial Intermediation
12, 199–232.
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simulation method. We thus build on Table 6.2. In the range G11:H15, we have stored the
results from running the macro simVBA with 1 million trials before running the following
macro accuracy:

Sub accuracy()
Dim i As Integer, j As Integer, jmax As Integer, a As Integer, abserr() As Double

’Number of repetitions
jmax = 50

’Loop for three settings differing in #trials
For i = 1 To 3

Range("C3") = Cells(18, i + 7) ’get #trials from H18:J18
ReDim abserr(1 To 5)

’jmax Monte Carlo simulations for a specific setting
For j = 1 To jmax

simVBA
’Analyze 5 different percentiles
For a = 1 To 5

abserr(a) = abserr(a) + Abs(Range("H" & a + 2) - Range("H" & 10 + a))
Next a

Next j
’Write result in sheet
For a = 1 To 5

Cells(18 + a, 7 + i) = abserr(a) / jmax
Next a

Next i

End Sub

The macro computes the mean absolute error (MAE), i.e. it returns the average absolute
difference between simulated percentiles of the model under scrutiny and the percentiles
obtained with 1 million trials. Obtaining a precise estimate of a mean is much easier than
obtaining a precise estimate of an extreme percentile. jmax, which specifies how often our
model under scrutiny is compared to the one with 1 million trials, can thus be set to a
relatively low number (here we choose 50).

We examine the accuracy of the following simulation techniques:

• standard Monte Carlo (run simVBA)
• importance sampling (IS, run simVBAis)
• importance sampling combined with Halton numbers (IS-QMC, run simVBAisqmc)

with the number of trials set to 1000, 5000, or 10 000.
Figure 6.2 shows the mean absolute errors in estimating the 95th and 99.9th percentiles,

respectively.
Evidently, importance sampling leads to a dramatic improvement of simulation accuracy.

For a given number of trials, the mean absolute error is much lower than the one of standard
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Table 6.4 Testing simulation accuracy
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Figure 6.2 Mean absolute simulation errors (MAE)

Monte Carlo. Combining importance sampling with Quasi Monte Carlo leads to a further
improvement. With 5000 trials, for example, it results in an absolute error of 0.9 when
estimating the 99.9th percentile �= 151�2�. In percentage terms, this is an error of less
than 1%.
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EXPLOITING PORTFOLIO STRUCTURE
IN THE VBA PROGRAM

All three variants of Monte Carlo simulation that we considered check the following condition
to find out whether borrower i is in default or not:

w(i) * factor + w2(i) * NRND() < d(i)

This is the condition that the asset value of borrower i ends up below the default point of
borrower i. In our general notation, it can be written as (insert equation (6.2) into (6.1)):

wiZ +
√

1 − w2
i �i ≤ di (6.6)

Rearranging (6.6), we obtain an equivalent condition:

�i ≤
di − wiZ√

1 − w2
i

(6.7)

Now apply the cumulative normal � to both sides of (6.7):

���i� ≤ �

(
di − wiZ√

1 − w2
i

)
(6.8)

Since �i is a standard normal variable, ���i� is uniformly distributed on the unit interval (this
is the reversal of the inversion method that we repeatedly use to produce random variables).
Instead of (6.6), we could thus also check:

ui ≤ �

(
di − wiZ√

1 − w2
i

)
(6.9)

where ui is a uniform random variable. In the macro, (6.9) can be coded as:

RND() < Application.Worksheetfunction.NormSDist _
((d(i) - w(i) * factor) / w2(i))

On the left-hand side, we now need just a uniform random variable RND(), which requires
less time than the standard normal NRND(). On the right-hand side, however, we have to
evaluate the cumulative standard normal. A little experimentation tells us that one evaluation
of the cumulative normally costs more time than the time saved by using RND() instead of
NRND(). But we may not have to evaluate the right-hand side as many times as we evaluate
the left-hand side. The right-hand is identical for borrowers with the same default point d
(i.e. the same PD) and the same factor sensitivity w. In our example portfolio, there are
seven rating grades, each with uniform PD and uniform factor sensitivity. In one trial of
the Monte Carlo simulations, we thus would need only seven evaluations of the standard
normal. By contrast, we can exploit the advantage of RND() over NRND 5000 times (=the
number of loans).

Many financial portfolios resemble our example portfolio in the fact that borrowers are
grouped into rating categories with uniform PDs; the use of uniform factor sensitivities
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is also common. It is thus worth while to explore the potential savings from building the
macro on condition (6.9) instead of condition (6.6). Here is an adapted version of the macro
simVBA (changes are highlighted):

Sub simVBAgroups()

Dim M As Long, N As Long, i As Long, j As Long
M = Range("c3") ’Number of simulations
N = Application.Count(Range("B10:B65536")) ’Number of loans

Dim d() As Double, LGD() As Double, EAD() As Double, w() As Double, _
w2() As Double
Dim loss(), factor As Double, loss_j As Double, group() As Long , _
crit as Double

ReDim d(0 To N), LGD(1 To N), EAD(1 To N), w(0 To N), w2(1 To N), _
loss(1 To M)

ReDim group(0 To N)

’Write loan characteristics into arrays
group(0) = 0
For i = 1 To N

d(i) = Application.NormSInv(Range("B" & i + 9))
LGD(i) = Range("C" & i + 9)
EAD(i) = Range("D" & i + 9)
w(i) = Range("E" & i + 9)
w2(i) = ((1 - w(i) * w(i))) ˆ 0.5
If d(i) = d(i - 1) And w(i) = w(i - 1) Then

group(i) = group(i - 1)

Else
group(i) = group(i - 1) + 1

End If
Next i

’Conduct M Monte Carlo trials
For j = 1 To M

factor = NRND()
’Compute portfolio loss for one trial
loss_j = 0
For i = 1 To N
If group(i) > group(i - 1) Then

crit = Application.WorksheetFunction.NormSDist _

((d(i) - w(i) * factor) / w2(i))

End If
If Rnd() < crit Then
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loss_j = loss_j + LGD(i) * EAD(i)
End If

Next i
loss(j) = loss_j

Next j

SORT loss
For i = 3 To 7

Range("H" & i) = loss(Int((M+1) * Range("G" & i)))
Next i

End Sub

We identify subsets with uniform PD and uniform factor sensitivity w through the array
group; in doing so, it is assumed that the loan data is sorted by PD and w. Note that we changed
the lower bound of the arrays d and w from 1 to 0. With this little trick, the index is not out of
range if we compare, say, w(i) to w(i-1) for a value of i equal to 1. In the For i=1 to
N loop containing the calculations for one Monte Carlo trial, we use an If statement to check
whether the right-hand side of (6.9), which is denoted by crit, has to be evaluated or not.

If we run simVBAgroups on the example portfolio with 50 000 trials, we need 1 minute
and 17 seconds. The macro simVBA, by contrast, requires 3 minutes and 23 seconds for
the same problem. For portfolios with homogeneous subsets, one should thus consider an
implementation along the lines of simVBAgroups.

There is another variation that has the potential to further speed up calculations. As
described in Chapter 5, individual defaults are independent, conditional on the factor realiza-
tion. The number of defaults within groups with uniform PD and uniform factor sensitivity
thus follows a binomial distribution. We could exploit this by drawing the number of defaults
from a binomial distribution instead of separately drawing each individual default. In gen-
eral, though, knowing the number of defaults is not sufficient to determine the portfolio loss
as exposure size and LGD typically differ across loans. Allocating the simulated aggregate
default occurrences to individual loans then requires additional computing time. In cases
where not only PDs and factor sensitivities, but also exposures and LGDs are uniform within
subsets, one should consider the binomial distribution for drawing defaults.

EXTENSIONS

First extension: Multi-factor model

The one-factor model that we used is widely used in practice and seems adequate for
many portfolios. In some situations, however, dependence may be richer than what can be
described through a one-factor model. In an international portfolio, for example, it may be
necessary to allow within-country correlations to be larger than across-country correlations.

In a model with K factors, the asset value of obligor i is modeled as:

Ai =
K∑

k=1

wikZk +
√√√√1 −

(
K∑

k=1

w2
ik

)
�i (6.10)
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In addition to the assumptions that we made above (see equation (6.2)), we also assume the
factors Zk to be independent.

To implement such a model, we first need to specify as many factor sensitivities as there
are factors. In Table 6.2, we could record them to the right of column E.

In the VBA program, we would draw not just one factor, but K factors, and we would
adjust the scenarios for individual asset values according to (6.10).

When applying importance sampling of the factors, we can shift each factor and then
apply the following likelihood ratio to correct the probability weight of a trial j:

exp�−
′Z�j� + 
′
/2� (6.11)

where the vector 
 collects the means of the factors (
′ is the transpose of 
) and the vector
Z�j� collects the realized factor values for trial j.

When using the Halton sequence to generate quasi-random numbers, we would
use different prime numbers as bases of the sequences from which we draw the K
factors.

Second extension: t-distributed asset values

Following industry practice, we have assumed that asset values are normally distributed.
Equivalently, we could say that we modeled default correlation through a normal or Gaussian
copula.7 For a given correlation assumption, other distributional assumptions (i.e. other
copulas) can imply different portfolio loss distributions. In the following, we therefore show
how to implement an alternative often considered, the multivariate t distribution.

A multivariate t distribution with df degrees of freedom obtains when multivariate standard
normal variables Xi are divided by a chi-squared variable Y with df degrees of freedom:

ti = Xi/
√

Y/df� Xi ∼ N�0� 1�� Y ∼ �2�df� (6.12)

Applied to our case, implementation steps are as follows: we determine the Xi according to
the one-factor model (6.2) and then divide by

√
Y/df to get t-distributed asset values. For

small df, this can dramatically increase default correlations. To see why this is so, recall
that default occurs once the asset value (here represented by ti) falls below some threshold.
Consider what happens if Y/df is found to be smaller than 1. As each Xi is divided by the
same

√
Y/df , this makes the asset values of all obligors more extreme, thus increasing the

probability of observing many defaults.
Our previous approach requires little adaptation. As before, we use the factor model (6.2)

to generate correlated standard normal asset values. To transform them into t-distributed
variables, we just add a step in which the simulated asset values are divided by a chi-squared
random variable. We also have to adjust the default points di�; instead of using the inverse of
the standard normal, we apply the inverse of a t distribution with df degrees of freedom. The
Excel function TINV(	, df) returns the critical t-value for a two-sided test at significance 	.
TINV(0.05, 1000), for example, returns 1.96. To get a di such that Prob�t < di� = PDi we
apply –TINV�PD∗

i 2�df �. A chi-squared variable can be drawn with the inversion method:
=CHIINV(RAND(), df).

7 A copula is a multivariate distribution with the property that its marginal distributions are standard uniform. It can be used to
describe the dependence between random variables.
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We implement the t copula in the macro simVBAt, highlighting the changes that we
make relative to the macro simVBA (the degrees of freedom are stated in cell C4 of the
spreadsheet; tadjust is

√
Y/df ):

Sub simVBAt()

Dim M As Long, N As Long, i As Long, j As Long, df As Long
M = Range("c3") ’Number of simulations
N = Application.Count(Range("B10:B65536")) ’Number of loans
df = Range("C4")

Dim d(), LGD() As Double, EAD() As Double, w() As Double, w2() As Double
Dim loss(), factor As Double, loss_j As Double, tadjust As Double

ReDim d(1 To N), LGD(1 To N), EAD(1 To N), w(1 To N), w2(1 To N), _
loss(1 To M)

’Write loan characteristics into arrays
For i = 1 To N

d(i) = -Application.WorksheetFunction.TInv(Range("B" & i + 9) * 2, df)
LGD(i) = Range("C" & i + 9)
EAD(i) = Range("D" & i + 9)
w(i) = Range("E" & i + 9)
w2(i) = ((1 − w(i) * w(i))) ˆ 0.5

Next i
’Conduct M Monte Carlo trials
For j = 1 To M

factor = nrnd()
tadjust = (Application.WorksheetFunction.ChiInv(Rnd, df) / df) ˆ 0.5
’Compute portfolio loss for one trial
loss_j = 0
For i = 1 To N

If (w(i) * factor + w2(i) * nrnd()) / tadjust < d(i) Then
loss_j = loss_j + LGD(i) * EAD(i)

End If
Next i
loss(j) = loss_j

Next j

Sort loss
For i = 3 To 7

Range("h" & i) = loss(Int((M+1) * Range("g" & i)))
Next i
End Sub

Third extension: Random LGDs

So far, we have assumed loss given default (LGD) to be equal to the values we specified
in the spreadsheet. Effectively, this means that we have perfect foresight of future LGDs,
which clearly is not the case.

A look at empirical data (Table 6.5) on LGDs may serve to clarify the issue.
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Table 6.5 Characteristics of loss given default (LGD)

Asset class Mean
LGD

Standard
deviation of
LGD

Bank Debt 0.225 0.309
Senior Secured Bonds 0.380 0.333
Senior Unsecured Bonds 0.574 0.348
Senior Subordinated Bonds 0.697 0.333
Subordinated Bonds 0.708 0.342
Junior Subordinated Bonds 0.809 0.306

Note: Own calculations based on Standard & Poor’s (2006),
Table 17

If we fix an instrument’s LGD at the mean observed in the same asset class (e.g. bank
debt), we capture only variation across asset classes. We do not capture the substantial
variation within asset classes that manifests itself in the high standard deviations of empirical
LGDs. To model this risk, we can assume that LGDs follow some parametric distribution,
the parameters of which are calibrated to the observed data.

A good candidate for this choice is the beta distribution. It is a two-parameter distribution
bounded between 0 and 1 that is fully specified once we have determined its mean and
standard deviation.

The density of the beta distribution is:

��a�b� x� = ��a + b�

��a���b�
xa−1�1 − x�b−1� 0 < x < 1 (6.13)

where � denotes the Gamma function. The expectation and variance of a beta distributed
variable Y are given by:

E�Y� = a

a + b
(6.14)

var�Y� = ab

�a + b�2�a + b + 1�
(6.15)

Having determined estimates for the expectation and the variance, we can solve (6.14) and
(6.15) to calibrate the parameters a and b:

a = E�Y�

var�Y�
�E�Y��1 − E�Y�� − var�Y�� (6.16)

b =1 − E�Y�

var�Y�
�E�Y��1 − E�Y�� − var�Y�� (6.17)

In credit portfolio modeling, we would calibrate a and b to our estimates of the LGD’s mean
and variance; these estimates can be based on empirical data, as shown above. If a default
occurs within a Monte Carlo simulation, we would then draw a random variable that follows
a beta distribution with the specified a and b. In Excel, this can be done with the inversion
method. In the spreadsheet, we can use

= BETAINV�RAND��� a� b�
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to draw a variable distributed beta with parameters a and b. In VBA, we can call BETAINV
through

application.worksheetfunction.BETAINV()

Table 6.6 exemplifies the calculations for the asset class bank debt. In cells B6 and B7 we
use (6.16) and (6.17) to calibrate the parameters of the beta distribution to the empirical
mean and standard deviation of bank debt LGDs.

Table 6.6 Calibrating a beta distribution to the historical mean and standard deviation
of LGDs

For illustrational purposes, we also plot the density associated with the chosen values.
Excel does not provide a function for the Gamma function itself, but there is a function
GAMMALN(x) which returns the logarithm of ��x� which allows us to compute the den-
sity (6.13).
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At first sight, the shape of the density may appear somewhat odd but it conforms nicely to
the empirical frequency distribution of bank debt LGDs as shown, for example, in Gupton,
Finger and Bhatia (1997, Chart 7.1).

With the approach just described, we can capture specific LGD risk, i.e. the risk that the
LGD of a specific issuer deviates from the mean LGD in its asset class. There is, however,
evidence that LGD varies systematically with the business cycle. In periods of high default
rates, LGDs tend to be high, and vice versa. This is exemplified in Table 6.7, which plots
the annual average LGDs of senior secured bonds against the average bond default rate.8

The chart is a xy (scatter) chart. To add a trend line and the R2 of the associated linear
regression,9 click the data series and choose Add Trendline from the Chart menu; then
select Linear on the Type tab and Display R-squared value on chart on the Options tab.
The R2 between default rates and LGDs is 0.5122; the correlation between the two is thus
0�51220�5 = 0�7157.

Table 6.7 Evidence for systematic risk in LGDs

In the Monte Carlo simulation, we could incorporate systematic LGD risk by making the
parameters of the LGD distribution depend on the factor realization Z. We refrain from
detailing such an approach here and refer the interested reader to the literature.10

8 Data are taken from Moody’s (2006), Exhibit 29 and Exhibit 30.
9 See Appendix A4 for details on regressions and R2.

10 E.g. Giese, G., 2005, The impact of PD/LGD correlations on credit risk capital, Risk, April, 79–84.
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Fourth extension: Other risk measures

Measuring credit portfolio risk through percentiles is intuitive, and very widespread in the
financial industry. The commonly used term is Value at Risk (VaR): VaR(	), the VaR at
confidence 	, is the 	 percentile of the loss distribution.11

However, we should be aware that a percentile does not tell us anything about the
distribution of losses beyond the percentile. Also, the use of percentiles can have additional
drawbacks. When combining two portfolios, for example, the VaR of the new portfolio
could exceed the sum of the two individual VaRs – something that runs against the logic of
diversification.

An alternative to VaR often considered is expected shortfall (ES, also called expected tail
loss, or conditional value at risk). It is the expected loss conditional on the portfolio loss
being larger than the Value at Risk for a chosen confidence 	:

ES = E�loss�loss ≥ VaR�	�� (6.18)

With M simulated loss scenarios, the expected shortfall can be computed as (j denotes one
portfolio scenario):

ES =

M∑
j=1

Prob�j�loss�j�I�loss�j� ≥ Var�	��

Prob�loss ≥ VaR�	��
(6.19)

where I�loss�j� ≥ VaR�	�� takes the value 1 if loss�j� is larger than the 	 VaR and 0
otherwise. In the following, we show how to change the importance sampling macro such
that it produces expected shortfall figures. After the line SORT2 loss, prob we replace
the code in simVBAis as follows:

Dim cwloss
ReDim cwloss(1 To M)

’cumulate probability-weighted losses and probabilities
For j = M − 1 To 1 Step −1

cwloss(j) = cwloss(j + 1) + loss(j) * prob(j)

prob(j) = prob(j + 1) + prob(j)
Next j

j = M
For i = 7 To 3 Step −1

Do
j = j − 1

Loop Until prob(j) > 1 − Range("G" & i)
Range("H" & i) = loss(j) ’Value at Risk
Range("I" & i) = cwloss(j) / prob(j) ’Expected Shortfall

Next i

11 Value at Risk is sometimes also defined as the percentile of the portfolio loss distribution minus the expected portfolio loss.
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We first introduce the variable cwloss, which cumulates loss(j) * prob(j), start-
ing with the biggest loss. We do not evaluate the indicator variable in (6.19) as we can
achieve the same result by restricting the summation to those losses that are above the VaR.
This restriction is imposed in the second loop. As before, we return results for the five
specified confidence levels, starting with the highest confidence level. Finally, we divide by
the cumulated probability contained in the array Prob�j�, which corresponds to dividing by
Prob(loss ≥ VaR(	)) in (6.19).

Table 6.8 shows the results for the example portfolio.

Table 6.8 Expected shortfall with importance sampling

Fifth extension: Multi-state modeling

In a multi-state model, we do not constrain the possible credit events to just two, default or
no default; we also model changes in credit quality along with their effects on the market
value of the instruments in the portfolio (this is why multi-state models are also called
mark-to-market models).

A straightforward way of modeling changes in credit quality is to assign borrowers to
certain rating categories and allow transitions from one category to another. The implemen-
tation can follow the simulation-based asset-value approach used throughout this chapter.
In addition to default probabilities, we then have to specify transition probabilities (see
Chapter 3), i.e. probabilities of migrating from one rating category to another. To determine
the value associated with some scenario rating, we can use assumptions about rating-specific
yield spreads.

Here, we do not spell out a complete implementation of a multi-state model but instead
just comment on one technicality that has to be solved in the course of the Monte Carlo
simulation: how to find the scenario rating associated with a scenario asset value.12 Assume
that we have seven rating categories, and that we collect transition probabilities in the matrix
shown in Table 6.9. We now have to define thresholds that allow us to associate a rating

12 In Chapter 4, we also represented transitions by means of a standard normal variable. Some practical problems that arise in this
context were discussed in Chapter 4.
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Table 6.9 From scenario asset values to scenario ratings

with the asset value that we draw in the course of the simulation. Note that we will have
a set of thresholds for each initial rating. For the sake for presentation, we refrain from
indexing the initial rating in the following; the description is thus to be read as pertaining to
one specific initial rating.

As before, we determine the default threshold d by taking the inverse standard normal of
the default probability. Next, we define d(7), the threshold for rating category seven. We
record a transition to category 7 if the asset value Ai ends up between d(7) and d. We then
have:

Prob(Transition to 7) = Prob�d�7� > Ai ≥ d� = ��d�7�� − ��d� (6.20)

We can solve for d(7) to get

d�7� = �−1�Prob(Transition to 7) + ��d�� (6.21)

In general, thresholds for transitions to grade k are determined as follows: apply the inverse
cumulative normal to the cumulative probability of moving into grade k or a lower grade
(including default).

In the spreadsheet, this can be implemented as shown in Table 6.9. For the best rating,
the rule leads to �−1�1�, which is infinity; accordingly, Excel would return an error value.
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For the rating look-up that we will do in the following, it is convenient to replace infinity
by a large number, say 100 000.

Looking up the new rating comprises two steps

1. Select the appropriate row in the threshold matrix. If an obligor has current rating 3, for
example, the relevant thresholds are in the row headed by 3.

2. Find the column where the threshold first exceeds the scenario asset value.

Step 2 can be done with the function MATCH (lookup_value, lookup_array, match_type).
Our look-up_value is the asset value; the lookup_array is the threshold matrix; match_type
is set to −1 because this tells MATCH to find the smallest value that is greater than or
equal to lookup_value. Match then returns the position of this value within the lookup_array;
according to the way we have set up the matrix, this position number is already the rating
number that we look for.

To select the appropriate row, we use the function OFFSET to shift the lookup_array
according to the current rating.

NOTES AND LITERATURE

While we focused on efficient simulation techniques, we have not exploited all possible ways of
improvement. For example, we have not shown how to do importance sampling on individual defaults
(see Glasserman and Li, 2005).

The pathbreaking industry credit portfolio models are described in CSFP, 1997, CreditRisk+: A
Credit Risk Management Framework, Credit Suisse Financial Products; Gupton, G.M., Finger, C.C.
and Bhatia, M., 1997, CreditMetrics – Technical Document, New York; Kealhofer S. and Bohn, J.,
2003, Portfolio management of default risk, KMV White Paper; Wilson, T.C., 1997a, Portfolio credit
risk I, Risk 10 (9), 111–117, and Wilson, T.C., 1997b, Portfolio credit risk II, Risk 10 (10), 56–61.

For an overview and analysis of different modeling approaches, see Crouhy, M., Galai, D. and
Mark, R., 2000, A comparative analysis of current credit risk models, Journal of Banking and Finance
24, 59–117; Gordy, M., 2000, A comparative anatomy of credit risk models, Journal of Banking and
Finance 24, 119–149; and Frey, R. and McNeil, A., 2003, Dependent defaults in models of portfolio
credit risk, Journal of Risk 6, 59–92.

Importance sampling techniques are discussed in Glasserman, P. and Li, J., 2005, Importance
sampling for portfolio credit risk, Management Science 51, 1643–1656. Details on (quasi) random
number generation can be found in many textbooks, e.g. Seydel R., 2003, Tools for Computational
Finance, 2nd edn, Springer.



7
Validation of Rating Systems

Having set up a rating system, it is natural that one wants to assess its quality. There are
two dimensions along which ratings are commonly assessed: discrimination and calibration.
In checking discrimination, we ask: How well does a rating system rank borrowers according
to their true probability of default (PD)? When examining calibration we ask: How well do
estimated PDs match true PDs?

The following example shall illustrate that the two dimensions capture different aspects
of rating quality:

Borrower Rating of system 1
(associated PD)

PD of
System 2

True PD

B1 A (1%) 2.01% 1.5%
B2 B (5%) 2.00% 2%
B3 C (20%) 1.99% 2.5%

Rating system 1 might represent an agency rating system, with A being the best rating.
An agency rating itself is not a PD but can be associated with PDs based on average
historical default rates per rating class (cf. Chapter 3). Rating system 2 might be based on
a statistical credit scoring model (cf. Chapter 1) which directly produces PD estimates. The
rank ordering of system 1 is perfect, but the PDs differ dramatically from the true ones.
By contrast, the average PD of rating system 2 exactly matches the average true PD, and
individual deviations from the average PD are small. However, it does not discriminate at
all as the system’s PDs are inversely related to the true PDs.

The literature has proposed various methods that test for either discrimination, calibration,
or both. There are a several reasons why one would want to test for only one aspect of rating
quality even though this cannot give a complete picture. Here are just two possible reasons:
First, some rating systems do not produce default probabilities, so it is not possible to test
calibration without imposing default probability estimates. Second, some uses of ratings do
not necessarily require default probabilities, for example when banks use ratings solely to
decide whether a client receives a loan or not.

In this chapter, we introduce methods for evaluating either discriminatory power (cumu-
lative accuracy profiles and receiver operating characteristics), both discrimination and
calibration (Brier score), or just calibration (binomial test and a test allowing for default
correlation). Contrary to what was assumed in the example given above, true default proba-
bilities cannot be observed in practice. The presented evaluation methods therefore rest on a
comparison of predicted default risk with actual, observed default occurrence. We conclude
with a discussion on how to structure the validation of a rating system that is (i) already in
place or (ii) still in the design stage.
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CUMULATIVE ACCURACY PROFILE AND ACCURACY RATIOS

The cumulative accuracy profile (CAP) provides a way of visualizing discriminatory power.
The key idea is the following: if a rating system discriminates well, defaults should occur
mainly among borrowers with a bad rating.

To graph a CAP, one needs historical data on ratings and default behavior. The latter
would, for example, record whether a borrower defaulted in the year subsequent to having
received a certain rating. Observations belonging to a rating category that contains borrowers
already in default would be excluded.

The CAP is constructed by plotting the fraction of all defaults that occurred among
borrowers rated x or worse against the fraction of all borrowers that are rated x or worse.
In Table 7.1, we look at a simple example to understand this definition.

Table 7.1 Illustration of the cumulative accuracy profile (CAP)

We start with the worst rating C, asking ‘What is the fraction of all defaults that we
cover when we include all borrowers rated C (or worse, but there is no worse rating)?’
Forty percent of all observations are rated C, the three defaults that occurred among C-rated
borrowers make up 75% of all defaults. This gives us the first point of the curve (0.4, 075).
Similarly, 70% of all observations are rated B or worse, while borrowers with a rating of
B or worse cover 100% of all defaulters. This yields the second point (0.7, 1.0). The final
point is always (1, 1) because if we look at all observations (here rating A or worse) we
will, by construction, include all observations and all defaults. We then let the profile start
at the origin (0, 0) and connect the data points.

An accuracy ratio condenses the information contained in CAP curves into a single
number. It can be obtained by relating the area under the CAP but above the diagonal to
the maximum area the CAP can enclose above the diagonal. Thus, the maximum accuracy
ratio is 1. One restricts the analysis to the area above the diagonal because the latter gives
the expected CAP curve of an uninformative rating system which does not discriminate at
all between low and high risks. To note why this is so, just read a diagonal CAP curve
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as follows: for every fraction of all borrowers that you pick, you get the same fraction of
all defaults. Thus, the rank ordering of the rating does not contain any information about
the rank ordering according to default risk. The maximum area under the CAP curve, by
contrast, will be obtained if the lowest rating category contains all defaulters, and only those.

Figure 7.1 demonstrates the calculation of accuracy ratios: we compute the accuracy ratio
as A/B, where A is the area pertaining to the rating system under analysis, and B is the
one pertaining to the ‘perfect’ rating system. Theoretically, accuracy ratios can lie in the
range of �−1� 1�. For a rating system to have any value, the accuracy ratio should be above
zero, because otherwise, one should replace it with a system that assigns ratings by chance.
If a rating system perfectly ranks debtors according to their true default probability, it will
nevertheless fail to achieve an accuracy ratio of 1 except for some rare situations. To see
why this is so, imagine a portfolio consisting of two groups of borrowers, one with a default
probability of 5% and the other with a default probability of 0.1%. If one correctly assigns
debtors to these two groups, the worst rating category with default probability of 5% will
contain many non-defaulters, while the better category may contain some defaulters. Both are
features that the ‘perfect’ rating system does not have. When making a probabilistic forecast,
the best one can hope to achieve in practice is to get the probabilities right; one cannot
foresee what will actually happen. If you throw two dice, you should expect a forecaster
to know that the probability of a 1 is one-sixth for each dice. You should not expect the
forecaster to know which of the dice will return a 1 and which not.
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Figure 7.1 Computation of accuracy ratio as A/B

The video on the CD shows you how to construct a CAP in a spreadsheet using only
standard Excel functions. While this way of doing the analysis is very illustrative without
taking too much time, it involves several steps that have to be repeated whenever analyzing
a new data set.

We therefore present a user-defined Excel function that automates the analysis. It produces
the points of the CAP curve and computes the accuracy ratio. Assume that you arranged
data on ratings and defaults as above, i.e. into two arrays. Also sort the data from the worst
rating category to the best. The function refers to these data arrays as ’ratings’ and ’defaults’
respectively. It reads as follows:

Function CAP(ratings, defaults)
‘Function written for data sorted from worst rating to best

Dim N As Long, K As Long, numdef As Long, a As Integer, i As Long
Dim xi As Double, yi As Double, xy(), area As Double
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N = Application.WorksheetFunction.Count(defaults)
numdef = Application.WorksheetFunction.Sum(defaults)
‘Determine number of rating categories K
K = 1
For i = 2 To N

If ratings(i) <> ratings(i − 1) Then K = K + 1
Next i
ReDim xy(1 To K + 2, 1 To 2)

‘First row of function reserved for accuracy ratio, 2nd is origin (0,0),
‘so start with row a=3
a = 3

For i = 1 To N

‘Cumulative fraction of observations(xi) and defaults(yi)
xi = xi + 1 / N
yi = yi + defaults(i) / numdef

‘Determine CAP points and area below CAP
If ratings(i) <> ratings(i + IIf(i = N, 0, 1)) Or i = N Then

xy(a, 1) = xi
xy(a, 2) = yi
area = area + (xy(a, 1) − xy(a − 1, 1)) * (xy(a − 1, 2) + xy(a, 2)) / 2
a = a + 1

End If
Next i

‘Accuracy ratio
xy(1, 1) = (area − 0.5) / ((1 − numdef / N / 2) − 0.5)
xy(1, 2) = "(Accrat)"
CAP = xy

End Function

After defining the function and its input, we determine the number of observations N by
counting the rows of the input range; we determine the number of defaults numdef by
summing over the default indicator variable; and we loop through the data to determine the
number of rating grades K. With this information at hand, we can define the vector for the
CAP coordinates (xy). It has two columns (for the x-axis and the y-axis) and K + 2 rows
(one for the accuracy ratio, one for the origin, and one for each rating grade).

Moving from one observation to the next (For i=1 To N), we determine the fraction of
all observations included at a given i (xi) and the fraction of defaults included (yi). The
values are recorded in the array xy only when the rating category changes; in checking this
condition, the last observation is treated differently to prevent the subscript i from going
out of range (i+1 would give N+1 for i=N). Whenever we update xy, we also update the
area under the curve by adding the area under the CAP that is included by the current and
the previous point.

The area under the CAP in between two points can be handled as a trapezoid (some areas
are in fact triangles or rectangles, but the trapezoid formula is nonetheless valid). We compute
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the area of a segment as shown in Figure 7.2 (note that xy(a,1) contains the x-value of
the CAP for rating category a, while xy(a,2) contains the y-value for category a):
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Figure 7.2 How segments of the area under the CAP are determined in VBA

The function CAP is an array function. Its output extends over two columns and over as
many rows as there are ratings plus 2. The accuracy ratio is returned in the first row. Like
any array function, CAP has to be entered using [Ctrl]+[Shift]+[Enter]. Table 7.2 shows
the result of applying the function to the example data.

Table 7.2 The function CAP applied to the example data

RECEIVER OPERATING CHARACTERISTIC (ROC)

An analytic tool that is closely related to the Cumulative Accuracy Profile is the Receiver
Operating Characteristic (ROC). The ROC can be obtained by plotting the fraction of
defaulters ranked x or worse against the fraction of non-defaulters ranked x or worse. The
two graphs thus differ in the definition of the x-axis. A common summary statistic of a ROC
analysis is the area under the ROC curve (AUC). Reflecting the fact that the CAP is very
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similar to the ROC, there is an exact linear relationship between the accuracy ratio and the
area under the curve:

Accuracy ratio = 2 × Area under curve − 1

The choice between CAP and ROC is therefore largely a matter of taste. Both convey the
same information in a slightly different fashion. Our function CAP requires only a few
changes to be turned into a function ROC that returns the coordinates of the ROC along
with the area under curve (changes are shaded):

Function ROC (ratings, defaults)
‘Function written for data sorted from worst rating to best

Dim N As Long, K As Long, numdef As Long, a As Integer, i As Long
Dim xi As Double, yi As Double, xy(), area As Double

N = Application.WorksheetFunction.Count(defaults)
numdef = Application.WorksheetFunction.Sum(defaults)

‘Determine number of rating categories K
K = 1
For i = 2 To N

If ratings(i) <> ratings(i − 1) Then K = K + 1
Next i
ReDim xy(1 To K + 2, 1 To 2)

‘First row of function reserved for AUC, 2nd is origin (0,0),
‘so start with row a=3
a = 3

For i = 1 To N

‘Cumulative fraction of non-defaulters(xi) and defaulters(yi)
xi = xi + IIf(defaults(i) = 0, 1, 0) / (N − numdef)
yi = yi + defaults(i) / numdef

‘Determine ROC points and area below ROC
If ratings(i) <> ratings(i + IIf(i = N, 0, 1)) Or i = N Then

xy(a, 1) = xi
xy(a, 2) = yi
area = area + (xy(a, 1) − xy(a − 1, 1)) * (xy(a − 1, 2) + xy(a, 2)) / 2
a = a + 1

End If
Next i

‘Area under curve
xy(1, 1) = area

xy(1, 2) = "(AUC)"

ROC = xy

End Function
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In Table 7.3, the ROC function is applied to our example data.

Table 7.3 The function ROC applied to the example data

BOOTSTRAPPING CONFIDENCE INTERVALS FOR THE
ACCURACY RATIO

CAPs and ROCs, accuracy ratios and AUC are only estimates of a rating system’s discrim-
inatory power, based on the data we have. Their standard errors and associated confidence
intervals can be determined analytically.1 Alternatively, we can employ bootstrap simula-
tions, which is the route we will follow here. The core idea of bootstrapping is to re-sample
from the data used for estimation and re-estimate the statistics with this new, re-sampled
data. Having done this many times, we can derive a distribution of the statistic of interest.

Here, we show how to estimate a confidence interval for the accuracy ratio through
bootstrapping. The structure of this bootstrap is as follows:

1. From the N observations on ratings and default, draw N times with replacement (draw
pairs of ratings and defaults, to be precise).

2. Compute the accuracy ratio with the data resampled in step 1.
3. Repeat steps 1 and 2 M times.
4. To construct a 1−� confidence interval for the accuracy ratio, determine the �/2 and the

1−�/2 percentile of the bootstrapped accuracy ratios.

We conduct the bootstrap simulation in a function – alternatively, we could also use a macro.
The function requires rating and default data, the number of bootstrap trials to be conducted
(M) and the desired confidence � for the confidence interval. Similar to the function CAP,
the data has to be sorted from the worst rating to the best.

After declaring variables and inferring the number of observations N, we use a ‘for’ loop to
assign numbers to the rating categories, stored in the arrayratnum. The first (i.e. worst) rating
receives the number 1. This array will allow us to sort bootstrapped data from worst to best.

1 Cf. Basel Committee on Banking Supervision (2005).
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To randomly draw an observation from the data, we draw bootindex, an integer
number between 1 and N . Note that Rnd() returns a random variable between 0 and 1,
so Int(Rnd()∗N+1) returns an integer random variable between 1 and N . From the
observation with array index equal to bootindex, we take the rating and the default
information and write them into our bootstrap arrays. Once we have N elements in the
bootstrap arrays, we sort them, use the CAP function to determine the accuracy ratio, and
store the accuracy ratio in the array bootar. Sorting is done with the macro SORT2
introduced in Chapter 6. Having gone through M bootstrap trials, we compute the percentiles
of the bootstrapped accuracy ratios. Here’s the entire code:

Function BOOTCAP(ratings, defaults, M, alpha)
Dim ratnum(), bootindex, bootratings(), bootdefaults(), bootar(), bootout()
Dim N As Long, i As Long, j As Long, defnum As Long
Dim bootar_tmp, a
N = Application.WorksheetFunction.Count(defaults)

ReDim ratnum(1 To N), bootratings(1 To N), bootdefaults(1 To N)
ReDim bootar(1 To M), bootout(1 To 2)

‘Assign numbers to rating categories (1 is best)
ratnum(1) = 1
For i = 2 To N

ratnum(i) = IIf(ratings(i) = ratings(i − 1), ratnum(i − 1), _
ratnum(i − 1) + 1)

Next i

‘Do M bootstrap trials
For j = 1 To M

‘Draw observations for trial j
For i = 1 To N

bootindex = Int(Rnd() * N + 1)
bootratings(i) = ratnum(bootindex)
bootdefaults(i) = defaults(bootindex)

Next i

‘Compute accuracy ratio
If Application.WorksheetFunction.Sum(bootdefaults) > 0 Then

SORT2 bootratings, bootdefaults
bootar_tmp = CAP(bootratings, bootdefaults)
bootar(j) = bootar_tmp(1, 1)

Else: j = j − 1
End If

Next j

bootout(1) = Application.WorksheetFunction.Percentile(bootar, alpha / 2)
bootout(2) = Application.WorksheetFunction.Percentile(bootar,_

1 − alpha / 2)
BOOTCAP = bootout
End Function
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The function is applied in Table 7.4. Note that we have moved from our previous example
data to a larger data set. We take default data and estimated default probabilities from
Chapter 1, Table 1.7. The accuracy ratio is 75.77%; the bootstrapped 95% confidence interval
is [64.2%, 85.8%].

Table 7.4 Bootstrapped confidence intervals for the accuracy ratio

INTERPRETING CAPS AND ROCS

Typical accuracy ratios of rating systems used in practice lie between 50% and 90%, but apart
from this, there is little that can be said about the accuracy ratio that a ‘good’ system should
achieve. The reason is that the maximum attainable accuracy depends on the portfolio structure.
In particular, it depends on the heterogeneity of a portfolio with respect to default probabilities.

The interpretation of CAP curves and accuracy ratios is easier if one examines the relative
performance of different rating systems within the same data set. But even then, one should
be careful in drawing conclusions. In Figure 7.3, we present an application of the cumulative
accuracy profile from Löffler (2004). The author used CAP curves to compare the default
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Figure 7.3 Cumulative accuracy profiles for Ratings and EDFs.
(Reprinted from Journal of Banking and Finance 28, Löffler, G., Ratings versus market-based measures
of default risk in portfolio governance, pp. 2715–2746, 2004, with permission from Elsevier.)
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prediction power of Moody’s credit ratings to the one of Moody’s KMV EDFs. The latter
are quantitative estimates of one-year default probabilities based on the structural approach
to default risk (cf. Chapter 2). Figure 7.3 shows the profiles for one-year and five-year
horizons. Horizon here refers to the definition of the default indicator variable. For a T -year
horizon, this variable records whether a default occurred in the T years after the rating
assignment.

Accuracy ratios are as follows:

One-year horizon Five-year horizon

Ratings 79.1% 67.4%
EDFs 86.2% 67.8%

Recall from the definition of the CAP that the more northwestern the curve, the better the
corresponding rating system. On a one-year horizon, the EDF curve is mostly above the
rating curve, and its accuracy ratio is larger. However, the two curves intersect repeatedly
in the second half of the profile (see middle chart of Figure 7.3); this part of the data set
more or less corresponds to issuers with investment grade ratings. The analysis thus does not
allow an unambiguous conclusion about the superiority of EDFs. Among high-risk issuers,
EDFs are superior at discriminating between defaulters and non-defaulters, but this does not
hold true in the investment-grade domain. The differentiation is relevant, for instance for
investors restricted to investing only in bonds with investment grade rating. For them, the
second half of the profile is decisive.

The third chart, finally, shows that the prediction horizon can matter as well. On a five-
year horizon, differences between accuracy ratios are marginal. The two curves intersect
earlier, and the rating curve then stays above the EDF curve. When applying analytic tools
like the CAP, one should therefore check whether the chosen horizon matches the horizon
of the agent for which the analysis is done.

BRIER SCORE

CAPs and ROCs test discrimination; a measure that tests both discrimination and calibration
is the Brier score. It translates the common principle of examining squared forecast errors
to probability forecasts. An example of a probability forecast would be ‘the probability of
rain showers for next day is 60%’. Applied to ratings, the Brier score is defined as

Brier score = 1
N

N∑
i=1

�di − PDi�
2 (7.1)

where i indexes the N observations, di is an indicator variable that takes the value 1
if borrower i defaulted (0 otherwise), and PDi is the estimated probability of default of
borrower i. To compute the Brier score, we then need probabilities of default, which we do
not need for CAPs and ROCs. The Brier score lies between 0 and 1; better default probability
forecasts are associated with lower score values.

Table 7.5 shows how to compute the Brier score for some example data set. To calculate the
sum of squared differences in (7.1), we can make use of the function SUMXMY2(matrix1,
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Table 7.5 The Brier score for example data

matrix2). We then only have to divide by the number of observations, which we can
determine through the function COUNT().

Of course, we can also create a user-defined function. This could, for example, read

Function BRIER(ratings, defaults)
BRIER = (Application.WorksheetFunction.SumXMY2(ratings, defaults)) / _

(Application.Worksheetfunction.Count(ratings))
End Function

TESTING THE CALIBRATION OF RATING-SPECIFIC DEFAULT
PROBABILITIES

In many rating systems used by financial institutions, obligors are grouped into rating
categories. The default probability of a rating category can then be estimated in dif-
ferent ways. One can use the historical default rate experience of obligors in a given
rating grade (cf. Chapter 3); one can map one’s own rating into categories of rating
agencies and use their published default rates or one can average individual default
probability estimates of obligors in the grade (e.g. estimates obtained through scoring,
Chapter 1).

Regardless of the way in which a default probability for a rating grade was estimated, we
may want to test whether it is in line with observed default rates. From the perspective of risk
management and supervisors, it is often crucial to detect whether default probability estimates
are too low. In the following, we will thus present one-sided tests for underestimation of
default probabilities; they can easily be extended to two-sided tests. In addition, the tests
are conducted separately for each observation period (normally one year), and separately for
each grade.

Let us start with the simplified assumption that defaults are independent (so default
correlation is zero). The number of defaults �Dkt� in a given year t and grade k then follows
a binomial distribution. The number of trials is Nkt, the number of obligors in grade k at
the start of the year t; the success probability is PDkt, the default probability estimated
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at the start of year t. At a significance level of � (e.g. �= 1%), we can reject the hypothesis
that the default probability is not underestimated if:

1 − BINOM�Dkt − 1�Nkt� PDkt� ≤ � (7.2)

where BINOM(x, N , q) denotes the binomial probability of observing x successes out of
N trials with success probability q. If condition (7.2) is true, we need to assume an unlikely
scenario to explain the actual default count Dkt (or a higher one). This would lead us to
conclude that the PD has underestimated the true default probability.

For large N , the binomial distribution converges to the normal, so we can also use a normal
approximation to (7.2). If defaults follow a binomial distribution with default probability
PDkt, the default count Dkt has a standard deviation of

√
PDkt�1 − PDkt�Nkt; the default

count’s mean is PDktNkt. Mean and standard deviation of the approximating normal are set
accordingly. Instead of (7.2) we can thus examine:

1 − �

(
�Dkt − 0	5 − PDktNkt�√

PDkt�1 − PDkt�Nkt

)
≤ � (7.3)

where � denotes the cumulative standard normal distribution.
To adjust the test for the presence of default correlations, we can use the one-factor asset

value model introduced in Chapter 5. There, we had modeled default correlation through
correlations in asset values and had assumed that the latter can be fully captured by just one
factor Z. In such a model, there are two reasons why the observed default rate in year t is
larger than the underlying default probability:

• Many obligors happened to have had individual ‘bad luck’.
• Year t was generally a bad year for all credits.

In the binomial test and its normal approximation, we allowed for only the first reason. We
would like to allow for the two reasons at the same time. As it turns out, this is possible
(for example with techniques used in Chapter 5), but complex to achieve. So let’s consider
only the second explanation in judging whether a PD is too low. The logic is as follows: We
judge that a PD underestimated the default probability if we have to assume that the year
was so extremely bad that it seems unlikely to be the right explanation.

Technically, ignoring individual bad luck means assuming that the default rate in year t
is identical to the default probability in year t. The crucial thing to note is that the latter
can vary. In the one-factor model (cf. Chapter 5), the probability of default in year t, pkt,
depends on the factor realization Zt (as well as on the average default probability pk and the
asset correlation 
):

pkt = �

[
�−1�pk� − √

�Zt√
1 − �

]
(7.4)

Setting the average default probability to our estimate PDkt, and the default probability equal
to the default rate in year t we get:

Dkt/Nkt = �

[
�−1�PDkt� − √

�Zt√
1 − �

]
(7.5)
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Solving this for the factor Zt tells us what kind of year we need in order to bring the PD in
line with the default rate:

Zt =
�−1�PDkt� − √

1 − ��−1 �Dkt/Nkt�√
�

(7.6)

Note that a negative Zt will push the default rate above the PD. In the one-factor model,
Zt is standard normally distributed, so the probability of observing a year as bad as t or
worse is ��Zt�. At significance level �, we thus reject the PD if

�

[
�−1�PDkt� − √

1 − ��−1 �Dkt/Nkt�√
�

]
≤ � (7.7)

If (7.7) is true, the scenario Zt that reconciles the default rate and the PD is too extreme by
our standards of significance. Therefore, we conclude that the PD estimate was too low.

In Table 7.6, we implement the three tests for default data from Standard & Poor’s. We
go back to the year 2002 – a bad year for credits – and set the PD estimates for the year 2002
equal to the average default rates observed over the years 1981–2001. Subsequently, we test
whether these PDs would have passed tests of being in line with the 2002 default rates.

Table 7.6 Testing underestimation of default probabilities in the year 2002, using
1981–2001 default rates as PD estimates

To get the default count from the observed default rates, which are only available in
two-decimal precision, we round the product of default rates and number of issuers. The
asset correlation � is set to 7%, a value close to the one we obtained in Table 5.4 of
Chapter 5. We then type the left-hand sides of formulae (7.2), (7.3) and (7.7) into the sheet to
obtain the p-values of the binomial test, its normal approximation, and the test incorporating
correlation, respectively. The Excel formulae are shown in the table.
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With the binomial test, we would classify three rating-specific PDs as underestimating
the true default rate at a significance of 1%; the number increases to four with the normal
approximation. Once we assume an asset correlation of 7%, however, the significance levels
rise as we allow for the possibility that the year under scrutiny was a bad year in general.
Now we can no longer reject a PD at a significance of 1%; we could, however, reject two
PDs at a significance of 5%. Note that the tests return error values if the realized default rate
is zero. Obviously, one cannot find any evidence for underestimating a default probability
if the realized default rate is at its minimum.

Decisions on significance levels are somewhat arbitrary. In a traffic lights approach,
we choose two rather than one significance level. If the p-value of a test is below �red,
we assign an observation to the red zone, meaning that an underestimation of the default
probability is very likely. If the p-value is above �red but below �yellow, we interpret the
result as a warning that the PD might be an underestimate (yellow zone). Otherwise, we
assign it to the green zone.

In Excel, it is easy to assign traffic light colors to p-values. Table 7.7 copies the con-
tents of Table 7.6 and uses the conditional formatting functionality accessible through

Table 7.7 Assigning traffic light colors to the p-values of the tests from Table 7.6
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Format→Conditional Formatting. We choose �red = 0	01 and �yellow = 0	05. (The colors are
probably hard to discern as the book is printed black and white.)

VALIDATION STRATEGIES

We can distinguish two major uses of accuracy measures:

(i) a rating system is already in place, and we want to find out whether its quality is (still)
adequate

(ii) we are about to decide which rating system to implement, and thus want to compare
alternatives according to their accuracy.

In situation (i), we would regularly update the accuracy measures as new data comes in.
For a system introduced in December 2006, for example, we would compute accuracy
measures for the year 2007, 2008, etc. as soon as the data becomes available. To increase the
updating frequency, we can consider 12-month intervals rather than calendar year intervals,
i.e. compute accuracy measures from January 2007 to December 2007, February 2007 to
January 2008, and so on.

A nice way of visualizing the results is to plot the evolution of accuracy measures. When
considering the accuracy ratio, for example, we can show how the accuracy ratio computed
with 12 consecutive months of data evolves over time. In doing so, it is advisable to also
provide confidence intervals (cf. the section on bootstrapping). If there is a decrease in the
accuracy ratio, for example, confidence intervals help discern whether the decrease is likely
to be due to chance or to a worsening of the rating system’s discriminatory power.

When developing a new rating system (situation (ii)), one typically fits, tailors, or calibrates
a system to empirical data. In statistical scoring (Chapter 1), we choose variables, functional
transformations and weights such that the resulting scoring model does a good job in
predicting observed default behavior; when using structural models, we might base our choice
of the model on how it discriminates defaults in the data at hand or alternatively calibrate
features of the model to the data (cf. the approach taken by Moody’s KMV described in
Chapter 2).

Typically, a system’s quality (discriminatory power or calibration) is higher for the default
data we used to develop it than in the later, life application. To use model builders’ jargon,
the in-sample power is higher than the out-of-sample power, where sample refers to the
development data. One reason for this loss in power is based on systematic changes in the
relationships that we model. Another is that the past, by chance, contains patterns that are
not representative. In both cases, we might end up fitting our system to peculiarities of
past data which are unlikely to show up again. This danger of overfitting (or data mining)
increases if we consider more variables, outlier treatments, functional relationships or model
variants, and if the data base is small.

To assess the extent to which a model’s validity extends to the future, we can create a
hypothetical future by separating the data that we have into a part that we use for developing
the model, and a part that we use to validate it. Broadly, we can distinguish two ways of
doing this (see Box 7.1). The first one, which we might call a walk-forward out-of-sample
test (or backtest), mimics what we described above for a model already in use. If we are
building a model in 2006 we can ask: Assuming that we decided on the model in 2002,
what would it have looked liked? And how would its performance have been in 2003, as,
say, measured by the accuracy ratio? We then move one year forward, test a model that
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we would have used in 2003 on the data from 2004, and so forth. This gives as a series of
accuracy measures, which we can compare across alternative rating models.

If our data encompasses only a few years, or if the number of defaults per year is
very small, the walk-forward test may not be appropriate. We can then consider a cross-
sectional validation. Instead of separating the data according to time, we separate it cross-
sectionally. For instance, we could draw random numbers for each observation, and then
assign observations with random numbers below the median to the development sample,
while the others are assigned to the validation sample. Of course, we can consider splits
other than 50–50, and we can repeat the exercise to make it less dependent on the particular
split that resulted from drawing some random numbers.2

Box 7.1 Validation strategies for model design

1998 2002

1998 2002 2005

2005

Walk-forward out-of-sample 
test

1. Define a year t for the first 
 test (here 2002).
2. Estimate rating system with 
 complete data until year t  – 1.
3. Validate system with dotted 
 white data from year t.
4. Set t = t + 1 and go back to 
 step 2.
5. Analyze (e.g. average) the 
 obtained accuracy measures.

Cross-sectional validation

Estimate rating system with dark 
gray data, validate on dotted white 
data.

NOTES AND LITERATURE

For a summary on validation methods see Sobehart, J.R., Keenan, S.C. and Stein, R.M., 2000, Bench-
marking Quantitative Default Risk Models: A Validation Methodology, Moody’s Investors Service, and
Basel Committee on Banking Supervision, 2005, Studies on the validation of internal rating systems,
Bank for International Settlements.

Validation strategies are discussed in Stein, Roger M., 2002, Benchmarking Default Prediction
Models: Pitfalls and Remedies in Model Validation, Moody’s KMV.

2 A related procedure, K-fold testing, is described in Dwyer, D., Kocagil, A. and Stein, R., 2004, Moody’s KMV RiskCalc v3.1
Model, Moody’s KMV.
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Validation of Credit Portfolio Models

Portfolio credit risk models produce a probability distribution for portfolio credit losses (and
gains, if it is a mark-to-market model). To validate the quality of a given model, we can
examine whether observed losses are consistent with the model’s predictions.

Some people argue that portfolio models are difficult or even impossible to validate
empirically. Usually, such an opinion is justified by a comparison to market risk models.
Market risk models produce loss forecasts for a portfolio (which might be the trading book of
a bank) as well, but the underlying horizon is much shorter – often, it is restricted to a single
day. A standard validation procedure is to check the frequency with which actual losses
exceeded the Value at Risk (VaR). In a market risk setting, risk managers usually examine
the 99% VaR, which is the loss that is predicted not to be exceeded with a probability 99%.
Over one year containing roughly 250 trading days, the expected number of exceedances of
the 99% VaR is 250 × �1 − 0�99� = 2�5, provided that the VaR forecasts are correct. When
we observe the number of exceedances differing significantly from the expected number, we
can conclude that the predictions were incorrect. Significance can be assessed with a simple
binomial test.

Obviously, such a test is not very useful for the validation of credit portfolio models,
which mostly have a one-year horizon. We would have to wait 250 years until we gain
as many observations as we do after one year of tracking a market risk model. There is a
way out, however. If we do not confine a test to the prediction of extreme events but rather
test the overall fit of the predicted loss distribution, we make better use of information and
possibly learn a significant amount about a model’s validity with just five or 10 years of
data.

There are many procedures for testing the quality of a distribution. Here, we introduce
the Berkowitz test, which is a powerful test that has been examined both for credit risk and
market risk models.

TESTING DISTRIBUTIONS WITH THE BERKOWITZ TEST

Let us begin with the information required. For each period (which usually has a length of
one year), we need

• a loss figure (say 145 million USD)
• a forecast of the loss distribution made at the start of the period.

If our data spans five years, the necessary information might look like Figure 8.1.
In the figure, the portfolio loss distribution is symbolized by a cumulative distribution for

portfolio losses, F�L�. For a given loss L, it returns the probability F�L� with which this
loss is not exceeded. The portfolio model’s prediction could also be summarized differently,
and we will return to this later in the implementation of the test. Note that loss distributions
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Figure 8.1 Information required for the test

can differ from year to year because of changes in portfolio composition or changes in the
risk parameters of the portfolio constituents.

The basic idea behind the Berkowitz (2001) test is to evaluate the entire distribution. The
test involves a double transformation of observed losses, with the two transformations as
follows:

• 1st Transformation: replace Lt, the loss in t, by the predicted probability of observing
this loss or a smaller one. We obtain this probability by inserting the loss Lt into the
cumulative distribution function F�Lt�:

pt = F�Lt� (8.1)

• 2nd Transformation: transform pt by applying �−1�x�, the inverse cumulative standard
normal distribution function. Formally,

zt = �−1�pt� (8.2)

The first transformation produces numbers between 0 and 1. If the predicted distribution
is correct, we have even more information: the numbers should be uniformly distributed
between 0 and 1. To see this, start by looking at the median of the distribution. If the
model is correct, 50% of observed losses would be expected to end up below the median
loss, which has F�median loss� = 0�5. Thus, the transformed variable pt should be below
0.5 in 50% of all cases. We can go on in this way: The 25th percentile, which has F (25th
percentile) = 0.25, splits the first half into another pair of two halves, and again observations
will be evenly spread on expectation. Similarly, we can conclude that there should be as
many pt’s below 0.25 as there are above 0.75. We can use finer partitionings and still
conclude that the pt’s should be evenly spread across the intervals.

In principle, we could stop after the first transformation and test whether the pt’s are
actually uniformly distributed between 0 and 1. However, tests based on normally distributed
numbers are often more powerful. This is why the second transformation is used. If the
model summarized by F�L� is correct, transformed losses zt will be normally distributed with
zero mean and unit variance. The intuition behind this is similar to the first transformation.
If pt is uniform between 0 and 1, 2.5% of all observations will be below 2.5%, for example.
In consequence, 2.5% of all zt will be below −1�96�=�−1�0�025��, but this is just what we
expect for a standard normal variable.
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Berkowitz (2001) suggested the restriction of the test to the hypothesis that zt have zero
mean and unit variance. We could additionally test whether they are normally distributed,
but tests of normality tend not be very powerful if the number of observations is small, so
we do not lose much information if we do not test for this property on zt as well.

A convenient and powerful way of testing the joint hypothesis of zero mean and unit
variance is a likelihood ratio test. The likelihood is the probability that we observe given data
with a given model. With a likelihood ratio test, we test whether imposing a restriction (here
that the zt have zero mean and unit variance) leads to a significant loss in the likelihood.

The test statistic is based on the log-likelihood function of the transformed series zt. Since
the zt are normally distributed under the hypothesis that the model is correct, the likelihood
is obtained through the normal density

Likelihood =
T∏

t=1

1√
2��2

exp�−�zt − ��2/�2�2�� (8.3)

That is, if we have T observations, we multiply the probabilities of observing individual
observations zt to get the likelihood to observing the set of T observations. This is correct
if unexpected losses, which are captured here by zt, are independent across time. While this
assumption may be violated in some situations, it should be fulfilled if the loss forecasts
make efficient use of information. Note that this is not the same as assuming that losses
themselves are independent across time. There is no need to abandon the concept of credit
cycles as long as the notion of credit cycles relates to losses, not unexpected losses.

It is more convenient to work with ln L, the logarithm of the likelihood (8.3):

ln L = −T

2
ln 2� − T

2
ln �2 −

T∑
t=1

�zt − ��2

2 �2
� (8.4)

To evaluate the log-likelihood, we calculate the maximum likelihood (ML) estimators for the
mean and variance of the transformed variable zt (see Appendix A3 for details on maximum
likelihood estimation):

�̂ML = 1
T

T∑
t=1

zt	 (8.5)

�̂2
ML = 1

T

T∑
1

�zt − �̂ML�� (8.6)

The likelihood ratio test is then structured to test the joint hypothesis that the zt have zero
mean and unit variance. It is given by


 = 2
[
ln L�� = �̂ML��2 = �̂2

ML� − ln L�� = 0��2 = 1�
]

(8.7)

If imposing the hypothesis �=0 and �2 =1 leads to large loss in likelihood, 
 will be large.
Therefore, the larger 
 is, the more evidence we have that the zt do not have mean zero and
unit variance. Under usual regularity conditions, the test statistic 
 will be asymptotically
distributed as a chi-squared variable with two degrees of freedom. Particularly in small
samples, we cannot rely on this asymptotic property. Below, we will show how we can
simulate the small sample distribution of the statistic. Until then, we will work with the
asymptotic distribution.
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Example implementation of the Berkowitz test

Let’s assume that we have five years of loss data. For the sake of exposition, also assume
that

• the predicted loss distribution was the same for every year,
• the specification of the loss distribution is such that we can immediately determine the

exact probability of each loss (we will relax this in the next section).

The data and the loss distribution are shown shaded in Table 8.1. The other cells contain
calculations leading to the likelihood ratio statistic 
. The major steps are as follows:

Table 8.1 Example implementation of the Berkowitz test

For each loss, determine the associated cumulative probability of the predicted distri-
bution (=1st transformation). This can be achieved through the function VLOOKUP().
VLOOKUP(lookup_value, array, column, look-up) searches for look-up_value in the left-
most column of array and returns a value that is in the same row of array but in column
column. Provided that the logical value look-up is set to 1, the function VLOOKUP() searches
the largest value that is smaller than or equal to lookup-value. For taking the inverse of
the standard normal distribution function (=2nd transformation), we can use the function
NORMSINV().

Recalling the formula for the log-likelihood (8.4), we see that we need

• the number of observations: we determine them through the function COUNT applied to
one column of the data;
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• the maximum likelihood estimate of the variance of zt: this can be obtained through the
function VARP;

• the maximum likelihood estimate of the mean: we could determine it using the function
AVERAGE. However, we will determine the log-likelihood with Excel functions that
implicitly estimate the mean.

Examining the log-likelihood (8.4), we see that the first term −T/2 ln 2� is contained in
both likelihoods (the one associated with the maximum likelihood estimates and the one
with the hypothesis of zero mean and unit variance). Since we will subtract one likelihood
from the other in the construction of the test statistic, we can dispose of this first term right
away.

In row 14, we compute the second and third term of the log-likelihood that is associated
with the ML estimates. In doing so, we use the T and the variance estimate of our data.
To determine the sum of squared deviations ��zt − ��2, we can use the function DEVSQ(),
which returns the sum of squared deviations from the mean. The corresponding calculations
for the restricted likelihood (row 15) are simpler. The second term of the likelihood is zero
as ln�1� = 0. In the final term, ��zt − ��2/�2 simplifies to �z2

t , as � = 0 and �2 = 1. �z2
t

can be evaluated using the function SUMSQ().
We can then directly compute the likelihood ratio statistic 
. Its associated asymptotic

p-value can be obtained with the function CHIDIST.
In the example, the p-value is 0.3%. We could thus reject the hypothesis that the model

is correct at a significance level of 0.3%, i.e. we can expect to err with a probability of
0.3% when rejecting the model. Looking at the data, it becomes evident why the test rejects
the model. The loss series contains two years with zero losses, but the model’s probability
of observing a zero loss is just 0.08%. Therefore, two years with zero losses in a five-year
period is an extremely unlikely event. Upon observing such an unlikely event, we reject the
model.

REPRESENTING THE LOSS DISTRIBUTION

Information about the portfolio distribution can be represented in different ways. Simulation-
based credit risk models will produce a long list of scenarios containing all the necessary
information. This information can be processed into a cumulative distribution function.

Table 8.2 exemplifies these two types of expressing a loss distribution. Moving from the
scenario representation to the cumulative distribution is straightforward. If the scenarios are
sorted in ascending order, we can type

=COUNTIF(A$3:A$50002, "<=" &B3)/COUNT(A$3:A$50002)

into cell C3 and copy the formula down. Note the little trick in COUNTIF that integrates a
variable range into the condition. (A standard use of COUNTIF would be COUNTIF(B2:B5,
">55").)

In practical applications of the Berkowitz test, one notices that representing the loss
distribution through a cumulative distribution is useful. One could apply the Berkowitz
transformation directly to a list of scenarios, but the number of scenarios is quite often
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Table 8.2 Different representations of the loss distribution

so large that they can not conveniently be handled within the row constraint of an Excel
spreadsheet (currently 65536).1

The cumulative distribution should be specified with a large number of intervals. Other-
wise, we lose too much information, possibly leading to biased tests. The 20 intervals shown
in the example data were chosen for the sake of illustration and should not be viewed as a
model implementation. The probability of the last value in the list should be very close to
100%.

In the calculations of the previous section, we chose losses and the loss distribution in
such a way that losses did not lie within the intervals of the distribution. In practice, they
will, and we have to find a way of dealing with this. A simple procedure would be to linearly
interpolate the cumulative probabilities. If an interval ranges from 13 to 14 with associated
probabilities of 30% and 30.5%, for example, we would assign a probability of 30.25% to
a loss of 13.5. The interpolation as such is easy to do, but referring to the right values is
somewhat of a complex task. One way of doing it is shown in Table 8.3.

We use two functions for associating a given loss with the lower and the upper end of an
interval, respectively. VLOOKUP() with the logical value look-up set to 1 helps us identify
the lower end of an interval. The function MATCH also finds the largest value that is less
than or equal to the lookup-value. The difference to VLOOKUP is that MATCH returns the
position of the lookup-value in the range instead of the value itself. Thus, the position of the
upper end is the return value of MATCH plus 1. The associated probability can be identified
with the function INDEX. If we use VLOOKUP and MATCH to linearly interpolate the
data, the resulting equation is somewhat messy, but we reach our goal and the function can
easily be copied from one cell to the next.

Note that realized losses could be outside of the range of losses for which loss probabilities
are specified. This problem can be solved by adding a large value considered not to be

1 If scenarios are sorted ascending and saved in a range (‘SCEN-RANGE’), the transformation pt = F�Lt� can be achieved, for
example, through

=MATCH(Lt , SCEN-RANGE,1)/COUNT(SCEN-RANGE)
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surpassed and assigning a probability of one to it.2 In Table 8.3, this is done in row 24.
Note that there is a problem if the last probability of the original distribution (cell G23
in Table 8.3) already amounts to 100% and observed losses are even larger. Applying the
inverse normal to a pt of 100% yields an error. A simple fix to this problem is to set the
next-to-last probability of the distribution (here, this would be the one in cell G23) to a value
very close to 100%, e.g. 0.9999999999. Another problem could arise if zero losses occur
but the predicted distribution assigns a probability of zero to losses of zero. A simple fix
would be to set the probability to a very low number, e.g. 0.0000000001. Alternatively, we
could use an IF-condition that signals a rejection of the model whenever an observed loss
has probability zero within the model. With the typical time span T , the simple fix has the
same effect because one loss that is assigned a very low probability such as 0.0000000001
suffices to reject the model.

Table 8.3 Assigning a probability to an observed loss

SIMULATING THE CRITICAL CHI-SQUARED VALUE

Since the number of observations T will typically be small, we should be careful when
using the asymptotic distribution of the likelihood ratio test. One way of achieving robust
inference is to simulate critical values under the assumption that the model predictions are
correct. We do this repeatedly and get a simulated distribution of the test statistic to which
we can compare the statistic computed with actual data.

Only few changes to Table 8.1 are required to accomplish this; they are shown in Table 8.4.
If the model is correct, the first transformation of losses pt should be uniformly distributed

2 In a mark-to-market model, where profits can arise (corresponding to negative losses), one would proceed similarly at the lower
end of the distribution.
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between 0 and 1. Therefore, we can directly simulate pt’s that follow a uniform distribution.
The loss distribution and the actual losses are no longer needed.

We can directly insert the scenario generating function into the range C3:C7 by using
the function RAND() which returns random numbers distributed evenly across the interval
(0, 1). The computation of the LR statistic then follows Table 8.1.

In order to produce a sufficient amount of LR statistics, we can use a macro. In each step
of a loop, we write the LR statistic to a cell in the worksheet. The macro might appear as
follows:

Sub simlr()
Application.ScreenUpdating = False
Application.Calculation = xlCalculationAutomatic
Dim i As Long
For i = 1 To 10000

Application.StatusBar = i
Range("A" & i + 20) = (Range("C17"))

Next i
End Sub

In the macro, we make sure that the option Automatic calculation (to be found via
Tools – Options – Calculation) is activated. With this option activated, every change in the
worksheet leads to a recalculation of the entire worksheet, including new-drawn random

Table 8.4 Simulating critical values of the test statistic
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variables. Since there is a change in each step of the loop – we write the LR statistic into
the sheet – random numbers are newly drawn in each step. If the option Manual calculation
were chosen instead, we would have to insert a line with calculate, e.g. after For i=1
to 10000.

Once we have produced the list of simulated test statistics, we can use them to determine
critical values of the test statistic. We reject a model if the statistic is above a certain set level.
To obtain the critical value associated with a significance level of , we determine the �1−�
percentile of the data. This can be accomplished with the function PERCENTILE(Range,
percentile value).

These critical values are then used as follows: If we want to conduct a test on the, say, 5%
level, we would compare the 
 statistic computed with actual losses to the simulated value
of 7.427. If it is larger than this critical value, we can reject the model at a significance of
5% or better.

Note that the critical values do not have to be simulated again for each application. For a
given number of observations T , we can use them to test different models on different data
sets. As a reference, the following tabulation collects simulated critical values for various T
and  (based on 50 000 simulations):

 5 years 10 years 15 years 20 years Asymptotic

0.1 5.70 5.09 4.90 4.78 4.61
0.05 7.42 6.60 6.35 6.24 5.99
0.01 11.32 10.21 9.78 9.62 9.21

There is a caveat to this, however. When simulating critical values in the way described
above, we are implicitly assuming that both the true distribution of losses and the density
forecast used for the transformation are continuous. Simulations show that discreteness of the
distribution need not lead to major changes in critical values if the distribution is sufficiently
smooth. For a typical, large bank portfolio with 5000 obligors, for example, there is almost
no effect on critical values.3

TESTING MODELING DETAILS: BERKOWITZ ON
SUBPORTFOLIOS

The test implemented above examines the model’s prediction for the entire portfolio loss. It
therefore serves to check whether modeling assumptions are correct on average. It might be
useful, however, to check modeling details. If a model allows for differences in asset corre-
lation across obligors, for example, one would like to know whether the chosen differences
are consistent with the data.

Due to lack of historical loss data, we cannot hope to test the correctness of each individual
assumption, but we might gain valuable insights by grouping obligors and checking whether
the average difference in parameters between the groups can be validated. Consider the

3 We draw losses from a default-mode asset correlation model with 5000 obligors, uniform default probability of 1% and asset
correlation of 5%. Each default leads to a loss of 1. For the Berkowitz transformation, the distribution is represented through 50 000
scenarios drawn from the distribution. With 10 years, the simulated critical value is 5.07 for  = 10%, very close to the value
reported in the tabulation.
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following example: A bank determines obligor-specific correlations in a one-factor model
based on equity correlations or other information. With N obligors, there are up to
N different correlation assumptions. We then group the obligors into two equal-sized
portfolios: subportfolio 1 contains the obligors with the larger asset correlations, sub-
portfolio 2 those with the lower asset correlations. We set up model predictions for
the losses of these subportfolios and transform the observed subportfolio losses as we
did above.

This gives us two series of transformed variables z1 and z2, with the subscript referring to
one of the two subportfolios. Since the losses are expected to be correlated, we need to look
at the joint likelihood. The appropriate distribution function is the bivariate normal, which
has the following log-likelihood:

ln L = − T ln 2� − T ln �1 − T ln �2 − T

2
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12�

− 1
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12�
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�1

)2

− 2�12

(
zt1 − �1

�1

)(
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�2

)
+
(

zt2 − �2

�2

)2
]

(8.8)

where �12 is the correlation between z1 and z2, and �i and �2
i denote the mean and variance

of zi, respectively. The likelihood ratio test examines the hypothesis �1 = 0��2 = 0��2
1 =

1��2
2 = 1.

Before we implement the test, let us clarify the advantage of such an approach. A
portfolio model might produce an aggregate forecast that is consistent with the data even
if individual assumptions are far from being correct. For some obligors, asset correla-
tions may be too high while being too low for others. If these errors average out over
the entirety of the portfolio, a test based on the entire portfolio is unlikely to indicate a
misspecification. A test based on grouped portfolios, however, could reveal the errors as
they influence the prediction of subportfolio losses. An issue that needs to be answered
in practical applications is the forming of the subportfolios. A good testing strategy is to
form the subportfolios such that differences in predicted subportfolio risk are maximized.
In many situations, such as the example sketched here, this is easy to achieve. Note that
we are not restricted to performing the test on just two subportfolios (rather than three
or more). For the sake of exposition, however, we will explain the procedure for the
two-portfolio case.

To calculate the likelihood ratio statistic in the subportfolio setting, we first determine the
maximum likelihood (ML) estimators for �2

i , which can be achieved by applying the same
formula that we used above (8.6). The estimate for the correlation coefficient is given by

�̂12 = 1
T

T∑
t=1

�zt1 − �̂1� �zt2 − �̂2�

�̂1 �̂2

� (8.9)

In the next step, we determine the likelihood under the restrictions �1 = 0��2 = 0��2
1 =

1��2
2 = 1. The appropriate estimate for �12 is a restricted ML estimator. To determine
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the estimate, we can maximize the restricted log likelihood, which we obtain by inputting
�1 = 0��2 = 0��2

1 = 1��2
2 = 1 into (8.8):

ln L = −T ln 2� − T

2
ln�1 − �2

12� − 1

2�1 − �2
12�

T∑
t=1

(
z2

t1 − 2�12zt1zt2 + z2
t2

)
(8.10)

In Excel, we could use the Solver to quickly find the value of �12 that maximizes (8.10). For
repeated applications of the test, however, it can be useful to define a function that returns
the restricted ML estimate of �12. To this end, we can perform a simple line search across
�−1� 1�, the possible values for �12, and single out the one that maximizes the restricted
log-likelihood.4

Table 8.5 shows an example implementation of the cross-sectional Berkowitz test. We
observe losses on two subportfolios over five years. We start by transforming the raw

Table 8.5 Implementation of a test based on two subportfolios

4 One might think of applying the Newton method or other standard numerical routines here. The restricted likelihood function,
however, can have more than one maximum which complicates the application of such routines.



174 Validation of Credit Portfolio Models

subportfolio losses as we did above in Table 8.1. We then determine maximum likelihood
estimates of variances and the correlation using VARP and CORREL, respectively.

The line search for the correlation is implemented in the following user-defined function:

Function RHOSEARCH(z1, z2)
Dim T As Long, sz1 As Variant, sz2 As Variant

Dim lmax As Double, lnL As Double, rmax As Double, r As Single

T = z1.Rows.Count
sz1 = Application.WorksheetFunction.SumSq(z1)
sz2 = Application.WorksheetFunction.SumSq(z2)
lmax = -1 / 2 * ( sz1 + sz2)

For r = −0.9999 To 0.9999 Step 0.0005
lnL = −T / 2 * Log(1 − r ˆ 2) − 1 / (2 * (1 − r ˆ 2)) * −

(sz1 - 2 * r * _
Application.WorksheetFunction. _
SumProduct(z1, z2) + sz2)

If lnL > lmax Then
rmax = r
lmax = lnL

End If
Next r
RHOSEARCH = rmax
End Function

We start the function by determining elements of the likelihood function that are independent
of �12. Specifically, we count the number of years and determine sz1=∑

z2
t1 and sz2=∑

z2
t2. Before starting the iteration, we determine a value to which the likelihood of the

first iteration is compared; for simplicity, we take this to be the likelihood associated with
�12 = 0. In steps of 0.0005, we then check all values for �12 within the interval [−0�9999,
0.9999]. If the likelihood in one iteration is larger than the previous maximum lmax, we
write �12 of this iteration into rmax.

With the correlation estimates in hand, we can determine the likelihood ratio statistic
similar to the way we did above. The squared deviations of the zt from their mean are
again calculated using DEVSQ; in the restricted likelihood, we use SUMSQ. To compute
the covariance term in cell C16, we exploit the definition of the correlation estimator:

�̂12 = 1
T

∑ �zt1 − �̂1� �zt2 − �̂2�

�̂1 �̂2

⇒∑[
−2�̂12

�zt1 − �̂1� �zt2 − �̂2�

�̂1 �̂2

]
= −2�̂2

12T (8.11)

The covariance term in the restricted likelihood can be calculated with SUMPRODUCT.
Finally, note that the likelihood ratio statistic 
 is now referred to the chi-squared distribution
with four degrees of freedom. Of course, we should check whether this provides a good
approximation of the true distribution of the statistic. Since we estimate more parameters than
in the previous test, the asymptotic distribution is likely to be less reliable. Again, we would
deal with the problem by simulating the small-sample distribution of the test statistic. In
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doing so, we have to ascertain that the correlation structure across subportfolios is retained.
We cannot simply draw independent uniform random numbers for the first transform pt1

and pt2, because this would impose zero correlation. Instead, we would start by using our
portfolio model to simulate losses for all obligors in the portfolio, then split the obligors into
the two subportfolios, and insert the simulated subportfolio losses into the ranges B3:B7 and
C3:C7, respectively.

ASSESSING POWER

Consider the following situation: A bank runs a Berkowitz test and finds that the model
used by the bank cannot be rejected. How sure can the bank be that the model is reliable?
What the bank would like to know is called power by statisticians. Power is the probability
that we reject a hypothesis (here: ‘the model is correct’) if it is false.

Given that the number of observations available for a test is typically small, one could
surmise that the power will also be small. But if the differences between the true model and
the one we use are substantial, the power could be large even if we have only five or 10
years of data. As there is a lot of uncertainty in the industry about the correct modeling and
parameterization of credit risk models, we are quite likely to encounter such a situation. In
fact, simulation evidence shows that the Berkowitz test could resolve some of the questions
debated by credit risk managers.5

If a bank uses model A, but considers one or several other models to be plausible rivals,
one can use simulations to check the probability that model A is rejected if one of the rival
models were true. Let us sketch the structure of such a simulation:

1. Randomly draw a loss history from model B, the rival model.
2. Use the data from step 1 to calculate the LR statistic of model A, the model actually in

use.
3. Repeat steps 1 and 2 sufficiently often.
4. The power is then obtained as the relative frequency with which the LR statistic is

significant at a chosen confidence level.

Note that the power will increase if we use a less stringent significance level (say, 10%
instead of 5%).

The necessary computations (except for those for step 1) have been discussed in the
previous examples. Table 8.6 shows how to draw random losses from a given loss distribution
if it is specified as a cumulative distribution.

We start by drawing a uniform random number (RAND) for each year. We take each of
the random numbers to be a cumulative probability F�L� and then use linear interpolation
to find the loss associated with this number in the loss distribution. This is just the inverse
of what we did in Table 8.3, so the formula looks similar.

Drawing from a list of scenarios is simpler. If we have K scenarios sorted ascending
within the range SCEN-RANGE, a random draw can be performed with

= INDEX�SCEN-RANGE� INT�RAND��∗K� + 1�

5 See Frerichs and Löffler (2003).
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Table 8.6 Drawing random losses from a given loss distribution

RAND()∗K produces random numbers that are uniformly distributed on the unit interval.
We round them to the nearest integer using INT and add 1 to get integer values between 1
and K. Therefore, INT(RAND()∗K)+1 corresponds to the drawing of one row out of the K
rows of our scenario list. We then use the function INDEX to find the scenario-value in the
row that was drawn.

SCOPE AND LIMITS OF THE TEST

The Berkowitz test provides a very flexible validation framework. It can be applied to any
model independent of its structural form or of the sources of risk that are modeled.

As shown in this chapter, the test can be used to test the overall quality of the distribution
as well as the validity of cross-sectional differences in parameter choices. Of course, there is
a limit as to how far we can go into the cross-section. We could partition the portfolio into
many subportfolios by using a multivariate normal distribution instead of the bivariate form.
However, the number of the parameters in the likelihood function will grow very quickly
with the number of subportfolios. With the usual 5–10 year history, we probably should not
endeavor to form more than five subportfolios.6

A possible criticism is that risk managers and supervisory authorities are mainly concerned
about the probability of extreme events, whereas the Berkowitz test is based on the entire
range of the distribution. When responding to this criticism, three aspects seem to be
important.

First, significant differences in the tails of the distribution often go along with significant
changes in the rest of the distribution. This holds, for example, if we change parameter values
(say the asset correlation) within a given modeling framework. If a model dramatically fails
to predict extreme percentiles, it will also be severely wrong in the prediction of other
percentiles, and the Berkowitz test is likely to detect these misspecifications.

6 An answer to the question of how many subportfolios we should form could be obtained via simulation studies.
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Second, there are situations in which the model to be tested differs from the correct one
mainly in the prediction of extreme percentiles. Using inappropriate distributional assump-
tions might lead to such a situation. In this case, there would be little hope of uncovering the
model’s deficiency. This, however, is not a problem of the Berkowitz test but a general one
that cannot be healed by pinpointing the test at extreme realizations. Should model errors
materialize mainly beyond the 99.9th percentile, even 50 or 250 years of data will typically
not contain evidence against the model because only 1 out of 1000 years is expected to see
a loss beyond the 99.9th percentile.

Finally, one should not conclude that tests are worthless simply because they cannot
uncover some model deficiencies. They might uncover others, which could be very valuable
to risk managers.

NOTES AND LITERATURE

A general description of the Berkowitz test is given (together with applications to market risk models)
in: Berkowitz, J., 2001, Testing density forecasts with applications to risk management, Journal of
Business & Economic Statistics 19, 465–474.

A simulation study of the properties of the Berkowitz test when applied to credit risk models is
given in: Frerichs, H. and Löffler, G., 2003, Evaluating credit risk models using loss density forecasts,
Journal of Risk 5, 1–23.





9
Risk-Neutral Default Probabilities

and Credit Default Swaps

In this chapter, we discuss the most important instrument on the credit derivatives market:
the credit default swap (CDS). A CDS is a bilateral contract that provides an insurance
against the default of a particular issuer, known as the reference entity. The protection seller,
who is short in the CDS, insures the protection buyer, who is long in the CDS, in the
following way: in the case of a predefined credit event, the protection buyer has the right
to sell bonds of the defaulted issuer to the protection seller – at their face value. The total
volume covered by a CDS is called its notional principal. For single-name CDS, which we
will consider in this chapter, the credit event is the default of the issuer.

Of course, this insurance does not come free. The buyer makes periodic payments (typi-
cally at the end of each quarter, half-year or year for which the insurance is bought) to the
seller until the maturity of the CDS or the default. Upon default, settlement can take place
either by physical delivery or in cash, depending on the terms agreed on in the contract.
Physical delivery means that the buyer hands the bonds to the seller, who then pays their
par value to the buyer. If cash settlement is specified in the contract, the protection seller
pays the difference between the bonds’ par value and some suitably defined market price.

Let us illustrate the structure of the CDS by an example: a five-year CDS contracted on
January 1, 2006, with a notional principal of $100 million and General Motors (GM) as
reference entity. The seller demands 600 basis points (bps) annually for the protection; this
is the CDS spread. Flows between seller and buyer with physical settlement are illustrated
in Figure 9.1.

Protection 
Buyer

Protection 
Seller

GM Bonds with notional 

principal of $100 m

Upon default:

Each year until maturity or default:

Protection 
Buyer

Protection 
Seller

$100 million

$6 million

Figure 9.1 CDS structure

In case that GM does not default until 2011, the buyer of the CDS pays $6 million per
year. Assuming that GM defaults on June 1, 2008, the buyer hands over bonds with total
par value of $100 million to the seller and receives $100 million in turn. The buyer also has
to pay the part of the annual fee accrued between January 1, 2008, and the default date on
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June 1, 2008. Typically the accrued fee is proportioned linearly, meaning the buyer would
pay 5/12 of the annual fee as accrued fee in this example.

In this chapter, we will show how to price such a CDS using the general risk-neutral
valuation approach. We first introduce this approach and show how to use bond prices to
infer its ingredients, in particular (risk-neutral) probabilities of default. The fact that we
devote a lot of time to this concept explains why this chapter is called ‘Risk-neutral default
probabilities and credit default swaps’, rather than just ‘Credit default swaps’.

DESCRIBING THE TERM STRUCTURE OF DEFAULT: PDS

CUMULATIVE, MARGINAL, AND SEEN FROM TODAY

Since the standard maturity of a CDS is five years, we need more than a just a probability
of default (PD) for the next year to describe the default risk relevant for a CDS. We have
to describe the term structure of PDs, i.e. specify probabilities that default occurs at various
dates in the future.

The term ‘structure’ can be described in different ways. For our purpose, it is useful to
specify a probability of default for each future period t as seen from today �t = 0�. Let us
denote this by PD0

t , where the superscript zero indicates today’s view.1 Consider a pool of
100 issuers and suppose that you expect to see two defaults within the second year from
today, then PD0

2 = 2%. So PD0
t is the probability to default between January 1 of year t and

December 31 of year t as expected today.
In other situations, PD term structures are more commonly expressed via cumulative PDs.

Let us denote the cumulative PD over t years by PDC
t . Suppose you expect a time-constant

PD0
t of 2%, then the probability to default over two years, PDC

2 , is 4%. In more general
terms, the relationship is:

PDC
t = PDC

t−1 + PD0
t (9.1)

The next and final concept is the marginal PD in year t, denoted by PDM
t . It is the probability to

default during year t conditional on having survived until the beginning of year t:

PDM
t = PD0

t /�1 − PDC
t−1� (9.2)

Note that the denominator of equation (9.2) is the survival probability over t − 1 years.
Combining both equations, we obtain an expression for the cumulative PD in terms of the
marginal PD:

PDC
t = PDC

t−1 + PDM
t × �1 − PDC

t−1� (9.1a)

Here, we see that the t-year cumulative PD is composed of the previous year cumulative PD
�PDC

t−1� plus the marginal PD in that year �PDM
t � times the cumulative survival probability

over t − 1 years �1 − PDC
t−1�.

Comparing equations (9.1a) and (9.1), we see that the PD0
t as seen from today is the

marginal probability to default in year t �PDM
t � times the probability to survive until year

t − 1�1 − PDC
t−1�.

1 In the examples that follow, we set period length to one-year, but we could use any other periodicity.
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Finally, the marginal default probability in terms of the cumulative default probability is
given via equation (9.2a) as:

PDM
t = �PDC

t − PDC
t−1�/�1 − PDC

t−1� (9.2a)

To clarify these three concepts and their relations to each other consider Figure 9.2. PD0
2, the

probability of default in year 2 as seen from today, is the probability of following the dotted
path from t = 0 to t = 2. The marginal probability in year 2 is the probability of taking the
path to default from t = 1 to t = 2, conditional on having taken the upper path until t = 1.

Default

Default

Time

PDM
 = PDC

 = PD0

t = 0 t = 1 t = 2

PD0
2

No default

No default 

1 – PDM
1

1 – PDM
2

PDM
2

1 1 1

Figure 9.2 PD concepts: marginal (M), cumulative (C) and seen from today (0)

FROM BOND PRICES TO RISK-NEUTRAL DEFAULT
PROBABILITIES

Concepts and formulae

Intuitively, the higher the default risk of the reference entity, the higher the protection
buyer’s payment to the protection seller will be. But how do we obtain the probabilities of
default (PDs) for pricing a CDS? In previous chapters, we already discussed several ways
of obtaining probability of default (PD) estimates: the scoring model in Chapter 1 or the
transition matrices in Chapter 3 are both based on historically observed defaults. If we used
these PDs to price a CDS such that the seller was compensated for its expected loss in
case of default, we would miss an important pricing component: we would fail to take into
account that the seller might require a premium for taking this risk.

Instead, we can use bonds to back out risk-neutral probabilities. A risk-neutral PD is
the probability of default in a hypothetical world in which investors are indifferent to risk,
i.e. where they do not require an extra return for bearing risk. In such a world, the price of
any asset can be obtained by discounting the asset’s expected pay-offs with the risk-free rate.
Importantly, this price can be used to determine the appropriate price in a world like ours,
which is populated by risk-averse investors. Why is this so? Risk aversion means that people
assign higher weights to bad states than risk-neutral people; when translating the pricing to
a risk-neutral world, this is captured by increasing the probabilities of bad states relative to
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those prevailing under risk aversion. Risk-neutral probabilities of default – expressing a bad
state – can thus be expected to be higher than actual ones.

The most straightforward way of determining risk-neutral probabilities is to take market
prices of corporate bonds or other default-risky instruments. If we know those prices and
the risk-free rates of return, and if we assume the recovery rates to be constant over time
and across different issues, the only unknowns in the risk-neutral pricing equation are the
risk-neutral default probabilities.

Let’s have a detailed look at the formula. A random cash flow CFt received at time t has,
at time t = 0, a price of E0�CFt/�1 + rt�

t�, where E0�CFt� is the risk-neutral expectation of
CFt as seen from today and rt denotes the per annum risk-free spot rate from today to t.
The spot rate is the interest rate which would be earned on a zero-coupon bond, i.e. a bond
providing no coupons.2 A bondholder receives cash flows at each coupon payment date and
the notional principal at maturity. Generally, the price of bond today P0 is then obtained as
the sum of discounted cash flows as they are expected today:

P0 = E0

[
T∑

t=1

CFt

�1 + rt�
t

]
(9.3)

If the bond defaults at time � < T , the subsequent cash flows are zero, i.e. CFi = 0, i ≥ �.
When valuing a risk-free bond, we drop the expectations operator. To distinguish risky and
risk-free bonds, we denote the price of the latter by B0

3:

B0 =
T∑

t=1

CFt

�1 + rt�
t
=

T∑
t=1

Coupont

�1 + rt�
t
+ Notional

�1 + rT �T
(9.4)

For a corporate bond maturing in one year, we can easily express the expectation in
equation (9.3) in terms of a one-year default probability PD and a recovery rate. Consider
a zero-coupon bond with notional 100 maturing in one year. There are two possible states
of the world in one year. Either the bond survives and the bondholder receives the notional.
In the other case, the bond defaults and the bondholder receives 100 times the recovery
rate, denoted by R. The second state’s probability is the risk-neutral default probability PD0

1.
Today’s price of the bond is thus:

P0 = 100�1 − PD0
1� + 100 · R · PD0

1

1 + r
(9.5)

Rearranging and using B0 = 100/�1 + r� for the price of a risk-free zero-coupon bond with
the same notional as the corporate bond, we obtain:

P0 = 100
1 + r

− PD0
1�100 − 100 · R�

1 + r
⇔

B0 − P0 =PD0
1�100 − 100 · R�

1 + r

(9.6)

2 When using treasury bonds, which pay coupons, we cannot use their yield directly but have to convert it to a zero-coupon bond
rate. This can be done, for example, with a recursive procedure or based on treasury STRIPS (Separate Trading of Registered
Interest and Principal of Securities). Ready-to-use zero rates are available from many data providers.
3 By assuming the interest rate to be deterministic, i.e. known at time t = 0, we abstract from the risk due to an unexpected change
in interest rates. However, stochastic interest rate models could be implemented in the following analysis.
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In words, the difference between the price of a risk-free bond and a risky one (both having
the same promised cash flows) is equal to the discounted expected loss from holding the
risky rather than the risk-free bond; the loss associated with default is that one gets 100 · R
rather than 100, and this happens with probability PD.

Generally, the relationship ‘difference between prices = present value of expected losses
from default’ also holds for (coupon) bonds with a maturity of more than one year. Note,
however, that we abstract here from taxes, liquidity and other reasons which can also lead to
a difference in the prices of risky and risk-free bonds. In the following, we will just consider
the risk of default.

How can we express the relationship (9.6) in a general formula? At possible default dates
�, we assume that the bondholders have a claim C� on which they realize C�R. This is
compared to F� , the price of the risk-free bond that prevails at time �. In our one-year
example – assuming that default can occur only at maturity t = 1 – both C1 and F1 are 100,
and we would write

B0 − P0 = PD0
1�F1 − C1 · R�

1 + r
(9.7)

With more than one possible default date �, the formula becomes:

B0 − P0 =∑
�

PD0
��F� − C� · R�

�1 + r��
�

(9.8)

Let us consider the ingredients of formula (9.8), focusing on aspects relevant when using
the formula to back out PDs from market prices of bonds:

• �: in principle, default could occur on any date � within the life of a bond. In practical
applications, we may choose to simplify computations by assuming that default can only
occur at discrete dates, e.g. once every quarter.4

• P0: this is the observed market price of the corporate bond.
• B0: we determine B0 by discounting the promised cash flows of the corporate bond with

the risk-free spot rates, i.e. we apply formula (9.4).
• PD0

� : the probabilities PD0
� are probabilities of default as seen from today, corresponding

to the expectation E0 in (9.3). The goal of the analysis is to solve (9.8) for PD0
� . If we

have only one bond, we have only one equation of type (9.8), so we can only solve it if
we impose some structure on how PD0

� evolves our time. The simplest structure is that it
is constant. If we have more than one bond, we will assume that it is stepwise constant.

• F� : this is the price of the risk-free bond that is expected to prevail at date �. The standard
procedure is to determine this price with implied forward rates.5

• C� : the claim that bondholders have upon default. Some alternatives considered in the
literature and in practice are

– the notional principal (par value)
– the notional principal plus accrued interest

4 Here, � denotes dates on which a default can occur in our pricing framework. In some of the literature, � contrarily denotes a
default date.
5 Forward rates are rates for lending/borrowing contracts that start at some date a and last until date b. Forward rates f are derived
from spot rates r via fab = ��1 + rb�b × �1 + ra�−a��1/�b−a�� − 1.
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– the market price of a comparable risk-free bond
– the market price of the bond before default.

The choice of one over the other can be motivated by, for example, bankruptcy regulations
or ease of computation. The modeling presented in this chapter can easily accommodate
various alternatives.

• R: the recovery rate, i.e. the percentage of the claim that bondholders receive in case of
a default on average. Assumptions can be based on average historical recovery rates or
multivariate prediction models.

• r: spot rates. A common choice are spot rates derived from AAA-rated government bonds,
such as treasury bills (T-bills) or treasury bonds (T-bonds) for the US. An alternative
would be the LIBOR rate or swap rates. In this chapter, we will use risk-free rates based
on US government bonds. The modeling, however, is general enough to accommodate
other sources of risk-free rates.

Before moving on, we take notice of a reformulation of (9.8) that can simplify the
implementation. One component of (9.8) is the forward price of the risk-free bond, which is
then discounted with the risk-free rate. The way we construct forward prices, a discounted
forward price from time � is just today’s present value of the payments from time � onwards.
We can thus avoid the explicit computation of forward rates and instead use:

B0 − P0 =∑
�

PD0
�

(
B�

0 − C� · R
�1 + r��

�

)
(9.9)

where B�
0 denotes today’s present value of the payments to the risk-free bond that accrue

after �.

Implementation

The challenges in implementing the approach outlined in the previous section are less
conceptual than technical. When evaluating a bond pricing formula such as (9.4), for example,
we have to deal with the fact that the time between today and the accrual of cash flows is
typically fractions of years whose length need to be determined exactly. For such tasks, a
host of functions is available through Excel’s add-in Analysis Toolpak (ATP). Before we
look at some of them, make sure that the ATP is installed and available to VBA. To check
the former, open the Add-in section of the Tools menu and check both items as shown in
the left screenshot of Figure 9.3. If these items are not available in the list, you probably
need to install ATP using Excel’s setup routine (see, e.g., item ‘Detect and Repair’ in the
help menu).

Now open the VBA editor by pressing �Alt� + �F11�. In the editor’s tools menu, you can
find the item references. A window shown in the right screenshot of Figure 9.3 appears.
Search the list for a reference called ATPVBAEN.xls, which stands for Analysis Toolpak
Visual Basic for Application English. You can also try to locate the file manually by pressing
the browse button. If you do not succeed, refer to help for more details.
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Figure 9.3 Installation of the Analysis Toolpak Add-in

The ATP functions that we will use are:

• YEARFRAC(start_date, end_date, basis) Returns the difference between two dates as
fraction of a year. Basis specifies the day-count convention (see Box 9.1).

• COUPPCD(settlement, maturity, frequency, basis) Returns the coupon date preceding
the settlement date. Frequency is the number of coupon payments per year.

• COUPNCD(settlement, maturity, frequency, basis) Returns the next coupon date after
the settlement date.

• COUPDAYS(settlement, maturity, frequency, basis) Returns the number of days in the
coupon period that contains the settlement date.

• COUPDAYSNC(settlement, maturity, frequency, basis) Returns the number of days
from the settlement date to the next coupon date.

Excel also provides a function PRICE() for calculating a bond price. We will not use it as
PRICE() only works with constant rates, i.e. it does not allow rt’s that vary across maturity
as we have them in a formula like (9.4).

Box 9.1 Day-count convention and estimation

When dealing with interest rates, one has to be precise on the interest’s definition.
Excel’s financial functions as well as our user-defined functions written for this
purpose include the parameter basis. This parameter can take one of the follow-
ing values, each defining a different day count basis. Omitting this parameter is
equivalent to setting it to zero.

0 (or omitted) US (NASD) 30/360
1 Actual/Actual
2 Actual/360
3 Actual/365
4 European 30/360
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Box 9.1 (Continued)

Interest rates in the US and Europe (basis=0 or basis = 4) are typically quoted
assuming each month to have 30 days and a year to have 360 days. Both cases
differ in the way they deal with the 31st day of a month. In the European case,
(basis=4) dates on the 31st of a month are set back to the 30th of a month,
while in the US case (basis=0 or omitted) the end date is moved to the 1st of
the next month if the starting date (of the interest period) is earlier than the 30th.
LIBOR and EURIBOR rates are quoted according to the European case, while US
treasuries and most of other US rates are quoted with basis equal to zero. The
other three cases use the actual number of days within the current months (actual
in the numerator) and/or within the current year (actual in the denominator).

Instead, we program a user-defined function that allows for a non-flat interest rate structure.
In a preparatory step, we write a function INTSPOT(spots, year) that uses a term structure
of interest rates as input and interpolates them according to the function argument year.
The term structure is assumed to be contained in two columns, with the maturity in the
first column (expressed in years), and the interest rate in the second. Table 9.1 shows an
application of the function INTSPOT().

Table 9.1 The user-defined function INTSPOT()

Here is the code:

Function INTSPOT(spots, year)
’Interpolates spot rates to year

Dim i As Integer, spotnum As Integer
spotnum = spots.Rows.Count

If Application.WorksheetFunction.Count(spots) = 1 Then
’Single rate given

INTSPOT = spots
Else ’Term structure given

If year <= spots(1, 1) Then
INTSPOT = spots(1, 2)
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ElseIf year >= spots(spotnum, 1) Then
INTSPOT = spots(spotnum, 2)

Else
Do

i = i + 1
Loop Until spots(i, 1) > year
INTSPOT = spots(i − 1, 2) + (spots(i, 2) − spots(i − 1, 2)) * _

(year − spots(i − 1, 1)) / _
(spots(i, 1) − spots(i − 1, 1))

End If
End If

End Function

The core of the function is a Do … until loop which finds the first t in the interest
range larger than the t specified as an argument. Having found this t, we linearly interpolate
between this and the previous t. Before entering the loop, we deal with cases in which the
input is a single rate rather than a term structure, or where the year specified as an argument
is smaller than the minimum year in the range, or larger than its maximum.

Now, we are ready to define the function MYPRICE() to price a bond according to
equation (9.4). We make it a bit more flexible, though. It allows to specify the compounding
frequency, i.e. the m in the following pricing formula:

B0 =
T∑

t=1

Coupont

�1 + rt/m�mt
+ Notional

�1 + rT /m�mT
(9.10)

In addition, we include an optional argument fromdate. The function then returns the
present value of cash flows accruing at or after fromdate:

B0 =
T∑

t=fromdate

Coupont

�1 + rt/m�mt
+ Notional

�1 + rT /m�mT
(9.10a)

The syntax of the function is

MYPRICE(settlement, maturity, coupon rate, spots, notional, frequency, [compound],
[fromdate], [basis]),

where [argument] denotes an optional argument. Here is the code:

Function MYPRICE(settlement As Date, maturity As Date, rate, spots, _
notional, freq As Integer, Optional compound As Integer, _
Optional fromdate As Date, Optional basis As Integer)

’Determines present value of bond cash flows accruing after fromdate

Dim t As Date, y As Double

’Set default values and some error checking
If compound = 0 Then compound = freq
If fromdate = 0 Then fromdate = settlement
If fromdate > maturity Or settlement > maturity Then End
’Determine PV of payment at maturity



188 Risk-Neutral Default Probabilities and Credit Default Swaps

t = maturity
y = Yearfrac(settlement, maturity, basis)
MYPRICE = (notional + notional * rate / freq) / _

(1 + INTSPOT(spots, y) / compound) ˆ (y * compound)

’Add PVs of coupon payments
t = Couppcd(t − 1, maturity, freq, basis)
Do While t > settlement And t >= fromdate

y = Yearfrac(settlement, t, basis)
MYPRICE = MYPRICE + rate / freq * notional / _

(1 + INTSPOT(spots, y) / compound) ˆ (y * compound)
t = Couppcd(t − 1, maturity, freq, basis)

Loop

End Function

The function unravels the pricing equation (9.10a) from the maturity date. The differ-
ence between a payment date and today is computed through the ATP function YEAR-
FRAC(). Coupon dates are found with the ATP function COUPPCD(). If t is a coupon date,
COUPPCD(t, maturity, basis) returns t. So, we subtract 1 to find the previous dates in such
cases, too. The application of the function is demonstrated in Table 9.2.

Table 9.2 Applying the function MYPRICE

In the second row, we enter the characteristics of a corporate bond. It is a bond issued
by General Motors. The coupon rate is located in cell B2. Maturity, coupon frequency and
settlement date are located in cells B5, B6 and B9, respectively. In the table, we consider
a case where we do not have the price of the bond itself, but its yield to maturity (in cells
C2).6 With the MYPRICE() function, however, we can find the price that matches the yield
to maturity. In cell D3, we determine the price of a risk-free bond with the same pay-off
structure as the corporate bond. In doing so, we use the risk-free spot rates contained in
F2:G8.

The difference between D3 and D2 is B0 − P0 of equation (9.9). Accordingly, we have
already made a step towards backing out a PD. Before moving on, however, we introduce

6 The yield to maturity is the constant r that sets the right-hand side of equation (9.4) equal to an observed bond price.
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another user-defined function. It returns the accrued interest, which we need if we define the
bondholders’ claim to be notional principal plus accrued interest. The function ACI() uses
the ATP functions COUPDAYSNC() and COUPDAYS():

Function ACI(settlement As Date, maturity As Date, rate, _
freq As Integer, Optional basis As Integer)

’Calculates the accrued interest at settlement

If settlement < maturity Then
ACI = 100 * rate / freq * (1 − Coupdaysnc(settlement, maturity, freq, _

basis) / Coupdays(settlement, maturity, freq, basis))
End If

If ACI = 0 Or settlement = maturity Then ACI = 100 * rate / freq

End Function

One comment worth making would be that in other modeling situations, one would set
accrued interest to zero for a date that is a coupon date. Here, we set accrued interest equal
to the coupon payment to be made at that date. The reason is as follows: we use the function
ACI() to determine accrued interest at default dates. If we set it to zero for default dates that
are also coupon dates, we would assume that the borrower paid the full coupon on the date
that it defaulted, which he will not typically do.

Now, consider again equation (9.9)

B0 − P0 =∑
�

PD0
�

(
B�

0 − C� · R

�1 + r��
�

)

We solve for the PD by assuming it to be constant across time. This directly leads to:

PD0 = B0 − P0∑
�

(
B�

0 − C� · R

�1 + r��
�

) (9.11)

We now extend Table 9.2 to implement (9.11). In cell B7 of Table 9.3, we enter a recovery
assumption, here 40%. From cell A15 onwards, we list the default dates � that we consider.
Prima facie, an obvious choice is the coupon dates of the bond we examine. They can be
determined with the ATP function COUPNCD(). If a borrower has issued several bonds
with different coupon dates, however, this choice becomes less obvious. Also, one might
want to consider more default dates than can be modeled with COUPNCD(). For the sake
of brevity, we nevertheless use the COUPNCD() function here. Since the settlement date
in our example is a coupon date, this is equivalent to using time intervals of fixed length,
starting at the settlement date. To fix the time interval length in cases where the settlement
date is not a coupon date, we construct a hypothetical maturity date from the day and month
of the settlement and the year following the actual maturity date. We could either write

= DATE�YEAR�B$5� + 1� MONTH�B$9�� DAY�B$9��

in any free cell and reference to that cell or use this formula directly in the COUPNCD()
command. The default frequency per year is specified in cell B10 of Table 9.3. Note that



190 Risk-Neutral Default Probabilities and Credit Default Swaps

Table 9.3 Backing out risk-neutral probabilities of default from the market price of a corporate
bond

the COUPNCD(function) allows only frequencies of 1, 2 and 4 per year. To develop the
series of default dates, we first we enter the settlement date in cell A14. In the next cells
A15, we write

= COUPNCD�A14� DATE�YEAR�B$5� + 1� MONTH�B$9�� DAY�B$9��� B$10� 0�

which can be copied down to A42, where we reach the maturity date.
B�

0 , the present value of the cash flows accruing at or after �, is found with the MYPRICE()
function. For the first date we enter

= MYPRICE�B$9� B$5� B$2� F$2�G$8� 100� B$6� � A15�

and copy the formula down to B42.
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In column C, we determine the accrued interest with our user-defined function ACI().
Column D contains the spot rate for the maturity corresponding to the default dates in
column A. We use the interpolation routine INTSPOT() introduced above. In doing so, we
convert the difference between a default date and the settlement date into a year fraction
using the ATP function YEARFRAC(). Cell D15 reads:

= INTSPOT�F$2�G$8� YEARFRAC�B$9� A15� 0��

In column E, we determine the loss amounts in case of default separately for each default
date �. The bondholders’ claim is chosen to be notional plus accrued interest, but we could
easily modify the formula to model other claim definitions. The formula in cell E15, which
can be copied to E42, reads:

= B15 − �B$7∗�100 + C15��/�1 + D15�∧YEARFRAC�B$9� A15� 0�

In B11, we evaluate equation (9.11). We take the difference between B0 and P0 and divide
by the sum of default losses. This gives the PD0 for the assumed quarterly frequency. In
B12, we can convert it into an annual PD by multiplying it by the frequency from B10.

The resulting PD0 is 7.87% per year, as seen from today. This appears to be in line with
the rating of General Motors at the time of estimation, which is B−. (Note, of course, that
default rates published for rating grades are estimates of actual PDs, not risk-neutral ones.)

PRICING A CDS

With PD estimates in hand, we can go on to price the CDS. For doing so, we compare the
expected pay-offs of the protection buyer and seller. The CDS buyer pays a fee in regular
intervals. Upon default, the buyer also pays the fee accrued since the previous payment date.
In return, the buyer receives the difference between the par value and the recovery value of
the defaulted bonds. As in the previous section, we work with risk-neutral probabilities of
default.

We denote the life of the protection (in years) by T and the annual percentage CDS fee
by s. If quarterly payments are contracted, for example, the protection buyer pays s/4 after
each quarter of protection.

For the sake of exposition, we assume that the default dates considered are also CDS
payment dates. We then do not have to model accrued fees.

With discrete payment and default dates �, � ≤ T , the present value of the expected
payments made by the protection buyer can be written as:

E�fee� = Notional· s /freq
∑

�

⎡
⎢⎢⎣

1 − �−1∑
t=1

PD0
t

�1 + r��
�

⎤
⎥⎥⎦ (9.12)

where ‘freq’ is the frequency per year in which CDS payments are made. As in previous
sections, PD0

t is the probability of default in t as seen from today. In equation (9.12), we
simply discount the payments and weigh them with the probability that they occur. The

latter is the probability of survival until the start of period �, which is given by 1 − �−1∑
t=1

PD0
t .
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Let’s take a look at the other side of the coin, the expected gain of the CDS buyer.
Abstracting from details connected with physical or cash settlement, we express the gain as
(1 – Recovery rate) × Claim. If we define the claim to be the notional principal plus accrued
interest, we get

E�default payments� = Notional
∑

�

�1 − R − A���R�
PD0

�

�1 + r��
�

(9.13)

where A�t� is the accrued interest as a percentage of the notional principal.
When two parties agree on the CDS spread s, they should settle on a value that sets

equations (9.12) and (9.13) to equal value. Otherwise, one party will gain (on expectation)
at the expense of the other. To avoid arbitrage, the spread therefore has to follow through:

E�fee�
!=E�default payment� ⇔

s =
∑
�

�1 − R − A���R�
PD0

�

�1 + r��
�

1
freq

∑
�

⎡
⎢⎢⎣

1 − �−1∑
t=1

PD0
t

�1 + r��
�

⎤
⎥⎥⎦

(9.14)

In Table 9.4, we use this formula to price a five-year CDS. The default probabilities are
taken from Table 9.2. Other characteristics of the reference entity that we require are: the
recovery rate, coupon rates and coupon payment dates of bonds. The latter are needed to
determine the accrued interest in equation (9.14). We take the data of the bond examined in
Table 9.3.

In cell B7, we choose the compounding frequency for present value calculations. Default
dates in A15:A34 are determined with the ATP function COUPNCD(), as in Table 9.2. The
accrued interest in column B is computed with the user-defined ACI() function. Spot rates
are interpolated in column C.

In column D, we enter the quarterly probability of default from Table 9.3. We assumed it
to be constant there, so we make the same assumption here.

Column E contains the denominator of equation (9.14). In E15, for example, we have
� = A15 = 15-Oct-06 and enter

= 1/B$10∗�1 − SUM�D$14�D14��/�1 + C15/B$7�

∧�B$7∗YEARFRAC�B$9� A15��

The expected payments to the buyer (numerator of (9.14)) are in column F:

= �1 − B$5 − B15∗B$5�∗D15/�1 + C15/B$7�

∧�B$7∗YEARFRAC�B$9� A15��

Both formulae can be filled down to row 34.
In B11, we sum the default payments and the fees, respectively, divide the former by the

latter and get the CDS spread of 5.64%.
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Table 9.4 Pricing a CDS

REFINING THE PD ESTIMATION

Having priced the CDS, we now present a generalization of the PD estimation conducted in
Table 9.3. There, we had based the estimate of the PD term structure on one corporate bond.
In practice, issuers often have several traded bonds outstanding. We can hope to increase the
precision of the PD estimates if we make full use of the available bond price information.

Recall equation (9.9), the basis for backing PDs out of bond prices:

B0 − P0 =∑
�

PD0
�

(
B�

0 − C� · R

�1 + r��
�

)

With one bond, we assumed the PD to be constant across maturities. With several bonds,
we will assume that they are stepwise constant. Assume that we have three bonds, maturing
at T1, T2 > T1 and T3 > T2, respectively. From the first bond, we estimate the constant PD0
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from time zero (today) to time T1. For default dates � ≤ T1, we insert this estimate into the
equation as an input for bond 2, and back out the constant PD0 between T1 and T2. Similarly,
we proceed with the third bond.

If we want to estimate a PD structure over T years, we would take into account the bonds
that mature before T as well as the one with the earliest maturity after T . Coming back to
our General Motors example, we select three GM bonds. Their characteristics are entered in
range A1:C4 of Table 9.5.

The next steps are the same as in Table 9.3. However, we compress the estimation
procedure for one bond. We could do this by combining the formula contained in columns
B to E of Table 9.3 into one column. For convenience, however, we write a user-defined
function LOSS() which returns the present value of the loss from default at a particular
default date:

B0
� − �C� × R/�1 + r��

��	

Table 9.5 Estimating a PD structure with several corporate bonds
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The function reads:

Function LOSS(settlement As Date, maturity As Date, rate, spots, _
notional, freq As Integer, compound As Integer, _
fromdate As Date, R As Double, Optional basis As Integer)

Dim price, A, y

If fromdate <= maturity Then
y = Yearfrac(settlement, fromdate, basis)
price = MYPRICE(settlement, maturity, rate, spots, notional, _

freq, compound, fromdate, basis)
A = ACI(fromdate, maturity, rate, freq, basis)
LOSS = price − R * (100 + A) / _

(1 + INTSPOT(spots, y) / compound) ˆ (compound * y)
Else

LOSS = 0
End If

End Function

As stated before, we defined the claim C to be notional principal plus accrued interest.
The major advantage of using such a function instead of performing the calculations in the
worksheet is that we can quickly modify the claim definition or other aspects. In addition,
we make the function return zero if the default date (fromdate) is outside the bond’s
maturity. This simplifies the calculations in the sheet as we can do operations across a full
range of cells without controlling for the maturity of the bond.

The default dates in A12:A39 are again returned by the COUPNCD function described
above. In B12, the first bond’s expected loss for the date specified in A12 can be obtained
by entering

= LOSS�D$7� B$2� A$2� F$2�G$8� 100� B$7� B$7� A12� B$8� 0�

Using the data from this first bond, we estimate a quarterly PD0 of 2.33% in cell E2 by
dividing B0 − P0 computed in cell D2 by the sum of the losses in B12:B39.

We go on and determine the LOSS() for bond 2. In D12, for example, we type:

= LOSS�D$7� B$3� A$3� F$2�G$8� 100� B$7� B$7� A12� B$8� 0�

The PD of the first bond is used in cell E3. The underlying formula is:

B0 − P0 = PD0�1�
∑
�≤T1

(
B�

0 − C� · R

�1 + r��
�

)
+ PD0�2�

∑
�>T1

(
B�

0 − C� · R

�1 + r��
�

)
(9.15)

where PD0�1� is the PD backed out from bond 1, and T1 is the maturity of bond 1. We
already know PD0�1�, so we can solve for PD0�2�. We evaluate the first term on the right-
hand side by writing PD0�1� into column C (with zeros for dates in column A that are larger
than T1); then we use the function SUMPRODUCT(). The formula in cell E3 reads:

= �D3 − SUMPRODUCT�C12�C39� D12�D39��/�SUMIF�A12�A39� ">"&B2� D12�D39��

where D3 contains B0 − P0. The SUMIF function evaluates the sum in the second term on
the right-hand side of (9.15).
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For the third bond, we repeat this procedure using PD0�1� and PD0�2� estimated from the
first two bonds. The result, a stepwise constant PD structure, is returned in column G.

The quarterly PD from the settlement date (July 15, 2006) to the last default date before
the maturity of the first bond (April 15, 2008) is 2.33%. The PD from that date until the last
default date before the maturity of the second bond (January 15, 2011) is 1.54%; the PD for
the time following is 2.16%.

We can copy the PDs contained in column G into column D of Table 9.4 to price the
CDS with this new PD structure. The estimated spread is 5.48%, 16 basis points smaller
than before. The reason is that the use of the three bonds leads to a lower average PD for
the life of the CDS (1.88% vs 1.97%).

Finally, note that we would possibly have to adapt the formula if the maturities of the
bonds, the chosen default date frequencies or other parameters changed. To increase sheet
flexibility, we could increase the ranges in the formula (i.e. sum over A15:A65536 instead
of A15:A39) and work with IF-conditions and other tricks.

NOTES AND LITERATURE

CDS designs and variations are manifold and it is beyond the scope of this chapter to provide an
overview. For practical design issues the reader is referred to Das, S.D., 2005, Credit Derivatives,
CDOs and Structured Credit Products, 3rd edition, Wiley Finance, or the webpage of the International
Swaps and Derivatives Association (www.ISDA.org).

The PD estimation and CDS valuation in this chapter follows the methodology discussed in Hull,
J. and White, A., 2001, Valuing Credit Default Swaps I: No counterparty default risk, Journal of
Derivatives 8, 29–40. For generalizations, cf. Hull, J. and White, A., 2001, Valuing Credit Default
Swaps II: Modeling default correlations, Journal of Derivatives, 8, 12–22. Textbook treatments can be
found, among others, in Duffie, D. and Singleton, K., 2003, Credit Risk, Princeton University Press;
Lando, D., 2004, Credit Risk Modelling. Theory and Applications, Princeton University Press. For
details on risk-neutral valuation and pricing of derivatives cf. Bingham, N.H. and Kiesel, R., 2000,
Risk-Neutral Valuation, Pricing and Hedging of Financial Derivatives, Springer.



10
Risk Analysis of Structured Credit:
CDOs and First-to-Default Swaps

In structured credit transactions, pay-offs depend on the default performance within a
portfolio. In a first-to-default swap, for example, a payment is made upon the first default
that happens within a group of issuers. Collateralized debt obligations (CDOs) are claims on
a debt portfolio which differ in their seniority. A CDO is only affected if the portfolio loss
exceeds some threshold level; the more senior the obligation, the higher the threshold level.

In this chapter, we clarify the basic concepts and methods for analyzing structured credit
transactions. We first show how to determine the risk structure of CDOs both by simulation
and analytically. For the latter we partly rely on the large homogeneous portfolio (LHP)
approximation, in which the CDO portfolio is proxied by a portfolio with an infinite number
of loans that are uniform in their risk parameters. Finally, we simulate correlated default
times over several periods.

In each step, we make heavy use of concepts from Chapter 5 and of simulation tools
developed in Chapter 6.

ESTIMATING CDO RISK WITH MONTE CARLO SIMULATION

Consider a portfolio with N loans that mature in one year with exposure totaling at 100.
Now issue three obligations: the most senior obligation has a notional principal of 93, the
mezzanine obligation has 4, and the junior obligation 3. At the end of the year, the loan
repayments from the portfolio are distributed to the obligations. First, the senior obligation
is served. The remaining funds are then used to serve the mezzanine obligation. What is left
is paid to the holders of the junior obligation.

This simplified structure illustrates the mechanics of CDO transactions. They are called
CDOs because debt portfolios serve as collateral for the issued obligations. Reflecting the
fact that the portfolio notional is sliced into pieces, individual obligations are often called
tranches. Their cut-off points are usually expressed as a percentage of the total exposure. The
lower cut-off of a tranche is its attachment point, the upper cut-off its detachment point. In
our example above, the mezzanine tranche has an attachment point of 3% and a detachment
point of 7%. The most junior tranche is usually called equity tranche as its risk is so high
that it is comparable to equity investments.

CDO structures are often used by financial institutions when selling parts of their loan
portfolio to the capital market. The repackaging in the form of tranches serves to cater to
different investor preferences. As we will see later on, senior tranches can have a default
probability corresponding to a AAA rating, even though the underlying portfolio may contain
speculative grade investments.

CDO structures are also used in the derivative market, where they are called synthetic
CDOs. In a synthetic CDO, buyers and sellers agree on a portfolio and the tranching without
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putting up a portfolio of actual loans or bonds. Synthetic CDOs are very flexible instruments
for investing, hedging, and speculating.

Real-life CDO structures are more complex than the one sketched above. In particular,
one has to set up rules on how cash-flows accruing before maturity (e.g. coupon payments)
are distributed. We nevertheless stick to the simplified, one-period structure with no interim
payments. This helps us to focus on the key modeling issues.

The risk of CDO tranches is usually evaluated by estimating their probability of default
or their expected loss. The probability of default is the probability that portfolio losses are
so high that the tranche cannot be served in full. The expected loss is the percentage of the
tranche notional that on average is lost due to default. To determine these risk measures,
we need the distribution of portfolio losses. Abstracting from interest earned on tranches we
can say that a tranche with attachment point of 10% will default if portfolio losses are larger
than 10% of the portfolio notional. A tranche’s probability of default is then identical to the
probability that portfolio losses exceed its attachment point.

In Chapter 6, we used the asset-value approach and a one-factor model to simulate the
distribution of portfolio losses. Here we will use the same approach, and we will also build
on tables and macros developed in Chapter 6. We believe that it is in the interest of the
reader if we refrain from summarizing the modeling steps explained in previous chapters.

Similar to Chapter 6, we collect the portfolio risk parameters in the sheet. In Table 10.1,
we can see the data necessary to analyze a CDO on a portfolio of 50 loans. For each loan,
we specify the probability of default PD, the loss given default LGD, the exposure at default
EAD, and the factor sensitivity w. The attachment points of the tranches are listed in column
G, starting in cell G3. Here, we have three tranches with attachment points 0%, 3% and 7%
respectively. In cell C3, we fix the number of trials for the Monte Carlo simulation whose
output will extend over the range H3:I5.

Table 10.1 Information required for the simulation analysis of CDO tranches

We then modify the macro simVBA from Chapter 6 to simulate the probability of default
and expected loss of each tranche. In the first lines, we input the number of simulations (M),
the number of loans in the portfolio (N) and the number of tranches (K). The latter two are
found by counting the elements in the ranges reserved for those items. (The macro assumes
that no irrelevant entries are made at some other place in those columns.) After declaring
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and dimensioning variables, we record the attachment points in the array attach, and write
the sum of individual loan exposures into the variable sumEAD.

In a For i = 1 to N loop, we write the loan parameters into arrays. The only difference
to the macro from Chapter 6 is that we convert the exposures to percentage exposures. This
facilitates the computation of tranche losses, as the tranches’ attachment points are stated in
percentage terms.

The portfolio loss in one trial of the Monte Carlo simulation is determined in exactly
the same way as in Chapter 6. We first draw a factor (the function NRND() introduced in
Chapter 6 returns a standard normal random number), then implement the factor model, and
sum the individual loan losses to get loss_j, the percentage portfolio loss in trial j.

Here’s the entire code of the macro:

Sub simCDO()

Dim M As Long, N As Long, K As Integer, i As Long, j As Long, a As Integer
M = Range("c3") ’Number of simulations
N = Application.Count(Range("B10:B65536")) ’Number of loans
K = Application.Count(Range("G3:G65536")) ’Number of tranches

Dim d(), LGD() As Double, EAD() As Double, w() As Double, w2() As Double
Dim tranchePD() As Double, trancheEL() As Double, attach() As Double

Dim factor As Double, loss_j As Double, sumEAD As Double

ReDim d(1 To N), LGD(1 To N), EAD(1 To N), w(1 To N), w2(1 To N)
ReDim tranchePD(1 To K), trancheEL(1 To K), attach(1 To K + 1)

’Read in attachment points and sum of loan exposures
For a = 1 To K

attach(a) = Range("G" & a + 2)
Next a
attach(K + 1) = 1
sumEAD = Application.Sum(Range("D3:D65536"))

’Write loan characteristics into arrays and sum EADs
For i = 1 To N

d(i) = Application.NormSInv(Range("B" & i + 9))
LGD(i) = Range("C" & i + 9)
EAD(i) = Range("D" & i + 9) / sumEAD
w(i) = Range("E" & i + 9)
w2(i) = ((1 − w(i) * w(i))) ˆ 0.5

Next i

’Conduct M Monte Carlo trials
For j = 1 To M

factor = NRND()
’Compute portfolio loss for one trial
loss_j = 0
For i = 1 To N

If w(i) * factor + w2(i) * NRND() < d(i) Then
loss_j = loss_j + LGD(i) * EAD(i)
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End If
Next i

’Record losses for tranches
a = 1
Do While loss_j − attach(a) > 10 ˆ −15

tranchePD(a) = tranchePD(a) + 1 / M
trancheEL(a) = trancheEL(a) + Application.WorksheetFunction.Min _

((loss_j − attach(a)) / (attach(a + 1) _
− attach(a)), 1) / M

a = a + 1
Loop

Next j
Range ("H3:H" & K + 2) = Application.WorksheetFunction._

Transpose(tranchePD)
Range ("I3:i" & K + 2) = Application.WorksheetFunction._

Transpose(trancheEL)

End Sub

Tranche losses are recorded in a Do While loop. In doing so, we start at the equity tranche,
which has index a=1. Tranche a suffers a loss if the percentage portfolio loss is larger than
tranche a’s attachment point. We could check this via loss_j>attach(a). However,
in order to avoid potential problems arising from numerical imprecision, we allow for some
very small tolerance and record a default only if loss_j − attach(a) > 10 ∧ − 15.

If a tranche is affected by the portfolio loss, we increase the variable tranchePD by
1/M, the probability of an individual trial. After completing the M trials, tranchePD
therefore contains the probability of default. To determine the expected loss, note that a
tranche’s notional principal is the difference between its detachment and attachment points.
In the VBA macro, this is attach(a+1) − attach(a). The percentage that is lost is
the difference between the portfolio loss and the attachment point, divided by the principal,
and capped at one (we don’t need a floor at zero because we leave the loop when the loss
is smaller than the attachment point):

Application.Worksheetfunction.Min _
((loss_j − attach(a)) / (attach(a + 1) − attach(a)), 1)

Dividing this loss by M , and summing it up over the M trials leads to the expected loss.
Finally, we write the tranchePD and trancheEL arrays into the sheet as the results of

the simulation. Since these arrays are row vectors within VBA we transpose them to convert
them into column vectors that fit into the structure of our sheet.

The results shown in Table 10.2 vividly illustrate the effects of tranching: the default
probability decreases from 35% (equity tranche) over 1.00% (mezzanine) to 0.01% (senior).
The latter corresponds to an AA or AAA rated corporate bond – even though the default
probability in the underlying portfolio is 1%.

When rating agencies assign a rating to a CDO tranche, they follow approaches very
similar to the one used here. Based on a credit portfolio model, they determine a tranche’s
probability and/or expected loss, and assign a rating accordingly.

We can play around with the parameters to explore the tranches’ sensitivity to the char-
acteristics of the underlying portfolio. For example, if we set all factor sensitivities to 0.5
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Table 10.2 Simulation analysis of CDO tranches in a one-period setting

and rerun the Monte Carlo simulation, the default probability of the senior tranche increases
to 0.36%. The default probability of the equity tranche by contrast is reduced to 27%.
The reason for this is that an increase in correlation makes it more likely to experience either
zero losses or very high losses.

Finally, note that simulation accuracy is an important issue, especially for the senior tranches
with low default probabilities. This is why we used 1 000 000 trials here. They take less than
one minute for the 50 obligor portfolio. For other portfolios, they may take much longer –
and they may not even be sufficient to reach an acceptable degree of accuracy. We would
then consider more sophisticated simulation approaches such as those discussed in Chapter 6.

THE LARGE HOMOGENEOUS PORTFOLIO (LHP)
APPROXIMATION

Although Monte Carlo simulations can be structured such that they require little computing
time, it is useful to have a direct, analytical method for determining the risk of CDO tranches. If
we are willing to make some simplifying assumptions, such a solution can indeed be derived.

The solution is built on the concept of conditional default probability within the one-factor
asset value approach. Recall from Chapter 5 that the default probability of an individual
exposure i conditional on a factor realization Z is

pi�Z� = �

[
�−1�pi� − wiZ√

1 − w2
i

]
(10.1)

where pi is the default probability (the PD), and wi is the factor sensitivity. The first
assumption that we make is that the underlying portfolio is homogeneous in the sense that
PDs, LGDs, EADs and factor sensitivities are uniform across debt instruments. In (10.1),
we can therefore drop the subscript i. The resulting p�Z� is the default rate in the portfolio
that we expect for a given Z.

The second assumption is that the portfolio is large – really large indeed. We assume
that it contains loans from an infinite number of obligors. By the law of large numbers, it
follows that the realized default rate is equal to the conditional default probability p�Z�.
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The conditional percentage portfolio loss Loss(Z) can be directly obtained as LGD times
conditional default probability:

Loss�Z� = LGD · �
[

�−1�p� − wZ√
1 − w2

]
(10.2)

We now move on to describe the distribution of losses. The probability that the loss is larger
than some value � can be expressed as the probability that the factor Z is smaller than some
critical value d���. To obtain d���, set loss�Z� = � in equation (10.2) and solve for Z:

Prob�Loss ≥ �� = Prob�Z ≤ d���� = ��d����

d��� = �−1�p� − √
1 − w2�−1��/LGD�

w

(10.3)

With this result, we have made an important step towards determining the expected loss
of CDO tranches. For the calculations, it is convenient to express the expected loss as a
percentage of the portfolio notional, not as percentage of the tranche notional as introduced
above. For an equity tranche with attachment point 0 and detachment point �, the expected
loss as percentage of the portfolio notional can be written as:

E�Loss�0���� = LGD · E
[
�

(
�−1�p� − wZ√

1 − w2

)
I	Z > d���


]
+ ���d���� (10.4)

The second term on the right-hand side captures factor scenarios where the portfolio loss
is larger than the detachment point �; in this case, the entire tranche principal, which is �
times the portfolio notional, is lost. The first term is the expected loss for factor scenarios
that do not have a loss greater than �. This restriction is captured by the indicator variable
I	Z > d���
, which takes the value 1 if Z is above d��� – so losses are below � – and zero
elsewhere. As shown in the appendix to this chapter, there is a closed-form solution for the
expectation in the first term, which leads to:

E�Loss�0���� = LGD · �2

(
�−1�p��−d����−w

)+ ���d���� (10.5)

where �2�x� y��� denotes the cumulative standard bivariate normal distribution function
with correlation �. It is not available as a standard Excel function, but in Chapter 5 we
already used a user-defined function BIVNOR.

Importantly, the formula can also be used to determine the expected loss of a tranche
with non-zero attachment point �1 and detachment point �2. We make use of the following,
general relation:

E�Loss��1��2�� = E�Loss�0��2�� − E�Loss�0��1�� (10.6)

For the senior tranche with detachment point �2 = 1, we can set E�Loss�0�1�� = LGD × PD.
In Table 10.3, we use the LHP model to determine the expected loss for the tranches from

Table 10.1. We write the attachment points in column A, including the detachment point 1
for the most senior tranche. In column B, we determine the thresholds d���; in column C,
we implement formula (10.5). Finally, in column D we determine the tranches’ expected
loss as a percentage of the tranche notional. Recall that the expected loss formulae from
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Table 10.3 Applying the LHP model to determine the expected loss of CDO tranches in a one-period
setting

above are not expressed as a percentage of the tranche notional. This is why we divide by
the difference between a tranche’s detachment and attachment points.

Looking at the results, we see that the expected loss of the junior tranche is fairly close
to the result that we obtained in the Monte Carlo simulation (see Table 10.2). For the
mezzanine tranche, however, the LHP leads to a considerably smaller loss. The reason for
this is that the LHP blends out firm-specific risk, which has a relatively strong impact on the
risk of the mezzanine tranche here. Should the number of the obligors in the portfolio increase
the quality of the LHP approximation improves as well. Other parameters affecting the
quality of the approximation are the magnitude of the factor sensitivity and the heterogeneity
of the portfolio.

The LHP model is often used to back out correlation assumptions implicit in market prices of
CDOs. Here, we only sketch the procedure. If we use risk-neutral default probabilities instead
of actual ones (cf. Chapter 9 for the distinction between the two), we can value a CDO tranche
by discounting the expected cash flows, which we can determine with the LHP model, with the
risk-free rate. Conversely, if we have a market price for a CDO tranche and assumptions about
PD and LGD in the portfolio, we can find the factor sensitivity w that levels the LHP model
price with the market price. Since the square of the factor sensitivity is the asset correlation in
the asset value approach, this leads us to estimates of market-implied correlation.

SYSTEMATIC RISK OF CDO TRANCHES

Examining the PD or expected loss of CDO tranches is the common way of assessing their
risk. Still, one shouldn’t conclude that a CDO tranche with a default probability of 0.1%
carries the same risk as a corporate bond with a default probability of 0.1%. The two can
dramatically differ in their systematic risk, i.e. their sensitivity to overall market conditions.
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An intuitive way of measuring systematic risk is to examine an instrument’s default
probability in a bad state of the world. In the one-factor approach used here, it is the default
probability conditional on a bad factor realization.

With the simulation tool from the first section, we could obtain conditional default
probabilities by fixing the factor in the simulation at some value, say −3�09 (−3�09 is a
scenario that is worse than 99.9% of all possible scenarios).

If the portfolio is homogeneous in PDs, LGDs, EADs and factor sensitivities (or if we
are willing to assume this as an approximation), we can analytically assess systematic risk.
As in the previous section, we could also assume the portfolio to be large – but this is not
really necessary. Consider again the conditional default probability

p�Z� = �

[
�−1�p� − wZ√

1 − w2

]
(10.7)

We now determine the exact conditional default probability of a homogeneous tranche with
attachment point �1. Let N be the number of issuers in the portfolio, while D denotes the
number of defaults in the portfolio. A tranche attachment �1 is hit if the following holds
true:

D × LGD × EAD
N × EAD

> �1 (10.8)

The left-hand side gives the percentage portfolio loss, which is compared to the attachment
point. Simplifying and rearranging yields:

D > �1 × N/LGD (10.9)

In the asset value model, defaults are independent conditional on a factor realization. The
number of defaults D thus follows a binomial distribution with success probability equal to
the conditional default probability. The probability that a tranche is hit is therefore given by

1 − Binom ��1 × N/LGD�N� PD�Z�� (10.10)

where Binom(x�N�q) denotes the cumulative probability of observing x or fewer suc-
cesses in N trials with success probability q. In Excel, it is available through the function
BINOMDIST(x�N�q� 1), where the logical value 1 tells Excel to return the cumulative
distribution rather than the density.

In Table 10.4, we compute conditional default probabilities for the mezzanine tranche
from the previous tables as well as for an individual bond with the same default probability
as the mezzanine tranche.

If times get rough, the risk increase is much stronger for the CDO than for the bond. For
a moderately bad scenario �Z = −2�, the default probability of the tranche is almost three
times as high as the default probability of the bond. If times get really rough �Z =−3�, the
ratio increases to 6.5.

In credit portfolio modeling, one shouldn’t treat CDO tranches as bonds with a standard
factor sensitivity. This could lead to severe underestimation of portfolio risk. When compar-
ing the spreads of bonds and CDO tranches with the same rating, one should bear in mind
that spreads reflect differences in systematic risk, whereas ratings do not (if they are based
on default probability or expected loss).
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Table 10.4 Conditional default probabilities of a CDO tranche and a standard corporate bond with
the same PD

DEFAULT TIMES FOR FIRST-TO-DEFAULT SWAPS

In standard, single-name credit default swaps (CDS), which we covered in Chapter 9,
payment is made upon the default of the issuer to which the CDS refers. To value the CDS,
we need default probabilities of this reference issuer over the maturity of the swap. In a
first-to-default swap, payments are triggered by the first default that occurs in a portfolio of
issuers. We therefore need the probabilities that the first default occurs over the life-time of
the contract.

As before, we start the analysis by specifying individual risk parameters for the obligors
in the portfolio. In particular, we require individual default probabilities of the issuers in the
basket to which the first-to-default swap refers. If the goal is to value the swap, we would
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take risk-neutral default probabilities, e.g. ones backed out from bond prices (cf. Chapter 9).
If the goal is to assess the risk of the swap, we would take actual default probabilities,
e.g. estimated from past default rates. An example for the latter are the following default
frequencies for A-rated issuers from Moody’s (2006, Exhibit 35):

Cumulative PDs

1 year 2 years 3 years 4 years 5 years
0.022% 0.114% 0.271% 0.418% 0.563%

Next, we have to model correlations. Again, the straightforward way would be to take
the asset value approach coupled with a one-factor model. In a one-year analysis, we would
record a default if the normally distributed asset value falls below �−1�PD1�, where �
denotes the standard normal distribution function and PDt denotes the cumulative default
probability over t years. In the multi-year setting, we record a default in year t if the asset
value ends up between �−1�PDt� and �−1�PDt−1�.

In the literature, one would describe this as an application of a Gaussian copula. Copulas
provide a very flexible tool for modeling dependence. The choice of the copula is not
obvious, and can lead to dramatic changes in dependence. We will stick to the Gaus-
sian copula here, and omit further details (cf. Chapter 6 for an implementation of a
t copula).

In Table 10.5, we assemble a basket of 100 obligors. The basket parameters are recorded
from row 10 onwards. We require factor sensitivities as well as default probabilities
for each period that we want to analyze. In the macro we are about to write, we will

Table 10.5 Information required for the time of the first default in a basket of 100 obligors
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require inputs in the form of cumulative default probabilities; the number of periods, how-
ever, can be chosen freely within the column number constraint of Excel. In the example
shown in Table 10.5, we determine cumulative default probabilities for five years. For
each obligor, we assume PDs to be given by Baa default rates (parameters could also be
heterogeneous).

The macro simTIME builds on the macro simVBA from Chapter 6. The main modifications
are as follows. In contrast to the previous analyses, we now have multiple default thresholds
for each obligor – one for each period. Therefore, we define the array d as a matrix with N
(=number of obligors) rows and K (=number of periods) columns.

Depending on the source of our default probability estimates, we may have estimates of
zero. In such a case, the NORMSINV function returns an error value. A simple fix then is
to set the threshold to a large negative number, e.g. −�1010�.

In a trial j of the simulation, we first simulate the factor and then loop through the
obligors. Having drawn an asset value x for obligor i, we use a Do while loop to deter-
mine whether the obligor defaulted, and if so, in which period. If the default happens in
the first period, the loop would lead us to compare the asset value x to the zero ele-
ment of array d, which we have not defined. We thus exit the loop when we reach the
element a=0.

Next, we write the default time into a variable deftime_j. It records the period of the
first default in trial j, so we only change it if the default of borrower i happened earlier
than any previous default in this trial. This is accomplished in

If a + 1 < deftime_j Then deftime_j = a + 1

Note that we have to increment the default period counter a by 1 as the preceding top
checking loop overshoots the index a by 1. Once we have gone through all obligors, we
add 1/M in position deftime_j of the array deftime. (1/M is the probability of an
individual trial). Note that deftime_j takes the value K+1 if no default occurred within
the specified time horizon. To prevent the index from running out of range, we have chosen
the dimension (1 to K+1) for the array deftime.

Finally, we write the output into the sheet. We copy the period dates from the basket data
and write the array deftime into the sheet. Deftime contains the probability that the first
default occurs within period t. To also obtain the cumulative probability that the first default
occurs before or within period t, we just sum up the period by period default probabilities.
Here, this is done with appropriate spreadsheet formula that the macro writes into the
sheet.

Sub simTIME()

Range("C4:IV6").Clear ‘Clear output range in sheet
Dim M As Long, N As Long, K As Integer, i As Long, j As Long, a As Integer
M = Range("C2") ‘Number of simulations
N = Application.Count(Range("B10:B65536")) ‘Number of obligors
K = Application.Count(Range("C10:IV10")) ‘Number of default dates

Dim d() As Double, w() As Double, w2() As Double, deftime() As Double
Dim factor As Double, x As Double, deftime_j As Integer

ReDim w(1 To N), w2(1 To N), d(1 To N, 1 To K), deftime(1 To K + 1)
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‘Write issuer characteristics into arrays (d=default points,
‘ w=factor sensitivity)
For i = 1 To N

w(i) = Range("B" & i + 9)
w2(i) = ((1 − w(i) * w(i))) ˆ 0.5
For j = 1 To K

If Cells(i + 9, j + 2) > 0 Then
d(i, j) = Application.NormSInv(Cells(i + 9, j + 2))

Else: d(i, K) $= -(10 ˆ 10)
End If

Next j
Next i

‘Conduct M Monte Carlo trials
For j = 1 To M

factor = NRND()
deftime_j = K + 1

‘Determine first default for this trial
For i = 1 To N

x = w(i) * factor + w2(i) * NRND()
a = K
Do While x < d(i, a)

a = a − 1
If a = 0 Then Exit Do

Loop
If a + 1 < deftime_j Then deftime_j = a + 1

Next i
deftime(deftime_j) = deftime(deftime_j) + 1 / M

Next j

‘Add headers, write output into sheet, and cumulate default times
Range("C4:IV4") = (Range("C9:IV9"))
Range(Cells(5, 3), Cells(5, 2 + K)) = deftime
Range("C6") = Range("C5")
Range("d6") = "=C6+D5"
Range(Cells(6, 4), Cells(6, 2 + K)).FillRight

End Sub

Simulation results are shown in Table 10.6. As in the case of CDOs, it is interesting to
compare the risk-structure of the first-to-default instrument to that of an individual bond.
The cumulative first-to-default probability over one year is 9.53%, well below the average
one-year default probability of C-rated bonds, which is 14.42% as reported by Moody’s
(2006). Over five-years however, the first-to-default probability is 59.84%, well above the
37.70% reported for C-rated bonds.
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Table 10.6 Simulated first default times for a basket of 100 obligors

NOTES AND LITERATURE

For an overview of CDO risk analysis, see Fender, I. and Kiff, J., 2004, CDO rating methodology:
Some thoughts on model risk and its implications, Working Paper, Bank for International Settlements.

For a description of the LHP analysis of CDOs see Berd, A., Engle, R. and Voronov, A., 2005, The
underlying dynamics of credit correlations, Working Paper.

The Gaussian copula for simulating default times is described in Li, D., 2000, On default correlation:
A copula function approach, Journal of Fixed Income 9, 43–54. Multi-year default frequencies of rated
bond issuers can be obtained from rating agency default studies, e.g. Moody’s, 2006, Default and
Recovery Rates of Corporate Bond Issuers, 1920–2005, Special comment, Moody’s.

APPENDIX

In this appendix, we show how to derive equation (10.5) from (10.4). The challenging part within
(10.4) is the expectation:

E
[
�

(
�−1�p� − wZ√

1 − w2

)
I	Z > d���


]
(10.11)

It can be evaluated through the following integral:

�∫
d���

�

(
�−1�p� − wZ√

1 − w2

)
�Z� dZ (10.12)
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where  is the standard normal density. Introducing a = �−1�p�/
√

1 − w2 and b = −w/
√

1 − w2, we
rewrite (10.12) as:

�∫
d���

� �a + bZ��Z� dZ (10.13)

Next, introduce y=−bZ+u, where u is standard normal and independent from Z, and note (conditional
on Z�y has mean −bZ and variance 1, so Prob�y ≤ a�Z� = ��a − �−bZ���:

�∫
d���

��a + bZ��Z� dZ = Prob�y ≤ a�Z > d���� (10.14)

The joint probability in (10.14) can be evaluated with the bivariate normal distribution �2. Since the
standard deviation of y is

√
1 + b2 and the correlation between y and −Z is b/

√
1 + b2, we get:

Prob�y ≤ a�Z > d���� = Prob�y ≤ a�−Z ≤ −d���� = �2

(
a√

1 + b2
�−d����

b√
1 + b2

)
(10.15)

From our definitions of a and b, note that

a√
1 + b2

= �−1�p�/
√

1 − w2√
1 + w2/�1 − w2�

= �−1�p� (10.16)

and

b√
1 + b2

= −w/
√

1 − w2√
1 + w2/�1 − w2�

= −w (10.17)

The integral (10.12) can thus be evaluated to:

�2

(
�−1�p�� −d���� −w

)
(10.18)
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Basel II and Internal Ratings

To secure a minimum level of solvency even in adverse conditions, regulators require banks
to hold a certain, specified amount of equity capital which serves to cushion losses from
risky activities. These capital requirements are a cornerstone of bank regulation.

Credit risk, which is the main driver of risk for many banks, can differ substantially across
individual loans and credit-risky instruments. The rules set out in the Basel I accord from
1988, however, showed little differentiation in the capital it required to be held against loans.
For every dollar lent to a corporation, regardless of whether it was rated AAA, CCC, or
unrated, banks were required to hold 8 cents in equity.

Therefore, one key motivation for reforming the Basel I accord was to make capital require-
ments more sensitive to the risk of an individual exposure. The new Basel II framework
allows several approaches for measuring this risk. In the standardized approach, individual
risk is measured through external agency ratings; each rating commands a certain risk weight
that determines capital requirements. In the internal ratings-based (IRB) approach, which
has a foundation and an advanced variant, individual risk is measured using banks’ internal
ratings.

In this chapter, we first show how to program the key formula of the IRB approach,
which represents capital requirements as a function of a loan’s default probability, loss given
default, and maturity. Subsequently, we explore the question of how boundaries for internal
rating grades should be set in order to minimize capital requirements and maximize the
discriminatory power of the rating system.

CALCULATING CAPITAL REQUIREMENTS IN THE INTERNAL
RATINGS-BASED (IRB) APPROACH

To determine how capital requirements should vary with the risk of a loan, the Basel
Committee employs a one-factor model of portfolio credit risk (cf. Chapter 5). In this model,
defaults are triggered by a continuous latent variable, which is often interpreted as the
borrower’s asset value. Borrower i’s asset value Ai is taken to depend on one systematic
factor Z and an idiosyncratic factor �i:

Ai = wiZ +
√

1 − w2
i �i� cov��i� �j� = 0� i �= j� cov�Z��i� = 0i ∀i (11.1)

where Z and �i are standard normal variables; by construction, Ai is also standard normal.
The default event is triggered if Ai <�−1�PDi�, where PDi is the default probability and ��·�
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denotes the cumulative standard normal distribution function. To verify that this specification
preserves the specified PD, consider:

PDi = Prob
(
Ai ≤ �−1�PDi�

)= �
(
�−1�PDi�

)= PDi (11.2)

The factor sensitivities wi determine asset correlations and therefore default correlations.
The asset correlation between two borrowers is wi × wj . If two borrowers have an identical
factor sensitivity w, their asset correlation is w2.

Capital requirements are set according to the expected loss in a stress scenario. A stress
scenario is defined as an extreme, negative realization of the factor Z. Based on (11.1), the
expected default probability conditional on a factor realization Z is given by:

PDi�Z� = Prob
(
Ai ≤ �−1�PDi��Z

)

= Prob
(

wiZ +
√

1 − w2
i �i ≤ �−1�PDi�

)

= Prob

(
�i ≤

�−1�PDi� − wiZ√
1 − w2

i

)

= �

[
�−1�PDi� − wiZ√

1 − w2
i

]
(11.3)

A scenario with a low value of Z (like −2) is ‘bad’ in the sense that it is associated with
a high conditional default probability. If the stress scenario is taken to be one with the
property that only � of all scenarios are worse, its value is �−1��� in our notation. Further
assuming a loss given default LGD, we arrive at the (percentage) expected loss in the stress
scenario of

E 	Loss�Stress
 = LGD × �

(
�−1�PD� − wi �

−1���√
1 − w2

i

)
(11.4)

Equation (11.4) is the cornerstone of the Basel II formulae for capital requirements. It is used
in the regulations for different types of loans. The capital requirement formula for corporate,
sovereign, and bank exposures is shown in Box 11.1. Note that the capital requirement is
expressed as a percentage of a given exposure at default (EAD).

Let us first compare our notation to the Basel one:

This book Basel II

Factor sensitivity = square root of correlation w R0�5

Cumulative standard normal � N
Inverse cumulative standard normal �−1 G
Stress scenario for factor �−1�0�001� −G�0�999�



Credit Risk Modeling using Excel and VBA 213

Box 11.1 Formula for risk-weighted assets for corporate, sovereign, and bank exposures.
(From: Basel Committee on Banking Supervision International, 2005, Convergence of Capital
Measurement and Capital Standards A Revised Framework, Basel, pp. 59–60.)

271. The derivation of risk-weighted assets is dependent on estimates of the PD,
LGD, EAD and, in some cases, effective maturity (M), for a given exposure.
Paragraphs 318 to 324 discuss the circumstances in which the maturity adjustment
applies.

272. Throughout this section, PD and LGD are measured as decimals, and EAD
is measured as currency (e.g. euros), except where explicitly noted otherwise. For
exposures not in default, the formula for calculating risk-weighted assets is:70�71

Correlation �R� =0�12 × �1 − EXP�−50 × PD��/�1 − EXP�−50��+
0�24 × 	1 − �1 − EXP�−50 × PD��/�1 − EXP�−50��


Maturity adjustment �b� = �0�11852 − 0�05478 × ln�PD��∧2

Capital requirement �K� = 	LGD × N�1 − R�∧ − 0�5 × G�PD�

+ �R/�1 − R��∧0�5 × G�0�999�


− PD × LGD
 × �1 − 1�5 × b�∧

− 1 × �1 + �M − 2�5� × b�

70 Ln denotes the natural logarithm.

71 N(x) denotes the cumulative distribution function for a standard normal random
variable (i.e. the probability that a normal random variable with mean zero and
variance of one is less than or equal to x). G(z) denotes the inverse cumulative
distribution function for a standard normal random variable (i.e. the value of x
such that N�x� = z). The normal cumulative distribution function and the inverse
of the normal cumulative distribution function are, for example, available in Excel
as the functions NORMSDIST and NORMSINV.

Important aspects of the formulae in Box 11.1 are as follows:

• The � chosen to define the stress scenario is 0.1%. This is equivalent to the statement
that there is a confidence of 1 − � = 99�9% that realizations are better than the stress
scenario. Since the normal distribution is symmetric, −�−1��� in formula (11.4) is the
same as +�−1�1 − ��. Accordingly, −�−1�0�001� is the same as +G�0�999�.

• The correlation is made dependent on the PD; it varies from 0.12 for high PDs to 0.24
for low PDs.

• The factor model captures only losses from default, but the maturity adjustment serves to
adjust the capital requirements in such a way that they also reflect losses from deteriora-
tions of credit quality. The longer the maturity of a loan, the higher the price impact of
a given deterioration. The adjustment depends on the PD as borrowers with a lower PD
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have more potential of being downgraded than do borrowers that already have a higher
PD.1

• The unconditional expected loss, given by LGD × PD, is subtracted from the expected
stress scenario loss, reducing capital requirements. The motivation is that banks routinely
provision against the unconditional expected loss, so it does not jeopardize their solvency
in case it materializes.

The three parameters that have to be specified for the capital requirement formula are PD,
LGD and the maturity M . We could enter the formula directly into the sheet, but it is more
convenient to provide a user-defined function that returns the capital requirement. Such a
function CAPREQ could look as follows:

Function CAPREQ(PD, LGD, M)
Dim rpd As Double, bpd As Double
rpd = 0.12 * (1 − Exp(−50 * PD)) / (1 − Exp(−50)) _

+ 0.24 * (1 − (1 − Exp(−50 * PD)) / (1 − Exp(−50)))
bpd = (0.11852 − 0.05478 * Log(PD)) ˆ 2

CAPREQ = (LGD * Application.WorksheetFunction.NormSDist( _
(Application.WorksheetFunction.NormSInv(PD) _
+ rpd ˆ 0.5 * Application.WorksheetFunction.NormSInv(0.999)) _
/ (1 − rpd) ˆ 0.5) _
− PD * LGD) _
* (1 + (M − 2.5) * bpd) / (1 − 1.5 * bpd)

End Function

Similarly, one can provide functions for other capital requirement formulae (e.g. for retail
exposures) as defined in the new Basel accord.

ASSESSING A GIVEN GRADING STRUCTURE

In the internal ratings-based (IRB) approach, PDs used in the capital requirement formula
are usually determined as follows: borrowers are assigned rating grades, and the average PD
of each grade is estimated. The average PD-estimate for a grade is then used as PD for all
borrowers within the grade.

Regulators admit three possible ways of estimating grade PDs: (i) internal default expe-
rience of borrowers, (ii) default rates of external rating systems to which the internal ones
are mapped; (iii) average predicted default probabilities from statistical default prediction
models. For (i) and (ii), one would use the methods discussed in Chapter 3; statistical default
prediction models are discussed in Chapter 1.

Banks have some leeway in the design of the grading system. The essential requirements
laid out by the regulators require a bank to have at least seven grades for non-defaulting
borrowers and to avoid undue concentrations in the distribution of borrowers across grades
(see Box 11.2).

To assess the pros and cons of different grading systems, we should try to assess the
economic consequences of system design. Some consequences will be difficult to measure.

1 The form of the maturity adjustments has been derived by applying a credit risk model that incorporates the value effects of
credit quality changes.
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Box 11.2 Selected requirements for rating structure. (From: Basel Committee on Banking
Supervision, 2005, International Convergence of Capital Measurement and Capital Standards
A Revised Framework, Basel, p. 87.)

403. A bank must have a meaningful distribution of exposures across grades with
no excessive concentrations, on both its borrower-rating and its facility-rating
scales.

404. To meet this objective, a bank must have a minimum of seven borrower
grades for non-defaulted borrowers and one for those that have defaulted. Banks
with lending activities focused on a particular market segment may satisfy this
requirement with the minimum number of grades; supervisors may require banks,
which lend to borrowers of diverse credit quality, to have a greater number of
borrower grades.

Consider an example: with many grades, prices can be better tailored to individual risk,
which should help increase the bank’s profits. However, competition or other forces may
restrain the pricing flexibility of the bank, something that is difficult to foresee and to
quantify.

Two effects that can be measured for a given distribution of individual PDs in a straight-
forward way are the following:

• The grading structure affects capital requirements.
• The grading affects the discriminatory power of the system (see Chapter 7 for measures

of discriminatory power).

Let us start with the impact of the grading system on capital requirements. The capital
requirement function is concave as a function of the PD. As illustrated in Figure 11.1,
this implies that capital requirements are reduced if the fineness of the grading structure
increases. Assume that a particular grade collects borrowers with PDs between 0.2% and
3%. For simplicity, further assume that there are just two borrowers that fall into this grade,
with individual PDs of 0.5% and 2.5%. The grade PD is obtained as the average of the
individual ones, which is 1.5%. The solid circle marks the average capital requirement with
this rating system. Now assume that the grade is divided into two, one ranging from 0.2%
to 1.5%, the other one ranging from 1.5% to 3%. The PDs of the two new grades are 0.5%
and 2.5%, respectively. The new average capital requirement can be obtained by connecting
the capital requirements associated with those new PDs, and selecting the middle point of
this line segment. It is marked with a square.

A system with many grades exploits this concavity better than a system with few ones.
For a given number of rating grades, however, it does depend on the definition of the grades.
The curvature of the capital requirement function varies with the PDs; to better exploit the
concavity effect, the grading system should depend on the curvature of the function. In
addition, the distribution of borrowers across PDs matters. Rating grades should be finer
over PD regions with many borrowers.

Like capital requirements, discriminatory power is affected by both the number of grades
and the distribution of grade boundaries. In a rating system that discriminates well, borrowers
with lower PDs should have better grades. Intuitively, this is easier to achieve with a large
number of grades. Just think of a grading system which has a grade collecting PDs from 1%
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Figure 11.1 How a finer grading reduces capital requirement: Simplified example with two borrowers
�PD1 = 0�5%, PD2 = 2�5%�

to 50%. By construction, it does not discriminate between PDs of, say, 2% and 20%, even
though the difference in PDs is dramatic. To see why the choice of boundaries matters for
a given number of grades, compare the following two rating systems:

Lower PD boundaries (in %) for grade
1 2 3 4 5 6 7

System A 0 0.05 0.08 0.12 0.5 2.5 15
System B 0 0.05 0.08 0.1 0.15 0.25 0.5

Both systems have seven grades. System A closely follows the grading system of major
rating agencies. System B is much finer in the low PD region, at the cost of putting all
borrowers with a PD larger than 0.5% into one grade, grade 7. In a typical loan portfolio, a
substantial fraction of borrowers has medium to high risk with PDs larger than 0.5%. Due
to their large PD, those borrowers make up the bulk of defaults. System B, however, does
not discriminate between medium and high-risk borrowers, and will therefore perform badly
in standard tests of discriminatory power.

In Table 11.1 we explore the consequences of grading structure for a given distribution
of individual PDs. The example data comprises 1500 borrowers. Columns A and B contain
the portfolio data on exposure at default (EAD) and PDs. We have chosen the PD’s such
that the portfolio composition is representative for commercial banks.

Lower PD boundaries for rating grades are specified in the range F4:F20. In the current
set-up, up to 17 grades are possible. If a rating system has less, we define the lower
boundaries by starting in F4 and then leaving blank the remaining cells. The grade numbers
are recorded in G4:G20. Having specified the grades, borrowers are graded based on their
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Table 11.1 Average capital requirement (CR) for a given grading system

PD. In the range C4:C1502, this is done via the function VLOOKUP(). After grading the
borrowers, we determine the distribution of borrowers across grades so that we can check
for undue concentrations. In H4:H20, we first use COUNTIF to determine the number with
a given grade, and then divide by the overall number of borrowers in the portfolio, which
we obtain by applying the function COUNT to column A.2

In I4:I20, we estimate the grade PD by averaging the PDs of the borrowers within a grade.
This can be done by coupling the function AVERAGE with an encapsulated IF-condition.
Note that we divide by 100 because the PDs in column B are stated in percent. The capital
requirement for a grade directly follows by applying the function CAPREQ (defined in the
previous section) to the grade PD, which is done in J4:J20; LGD and maturity are set to the
default values used by the Basel committee, which are 0.45 and 2.5, respectively. In column
D, we then assign the capital requirement to individual borrowers, similar to the way we
looked up the grade PD.

2 Depending on the purpose of the analysis, it might also be interesting to compute the EAD-weighted portfolio share.
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At this stage, we can already compute the average capital requirement of the portfolio,
which is done in cell F25. In the example, we have chosen a uniform EAD for all borrowers,
but in practice, EADs might systematically differ across grades. Accordingly, it is sensible
to calculate an EAD-weighted capital requirement. Applying the function SUMPRODUCT
to columns A and D gives the minimum capital measured in Dollars; dividing by the sum
over the exposures we arrive at the average capital requirement as a percentage of EAD.
The capital requirement for our example portfolio (and for the chosen grading system) is
6.95%, somewhat less than the 8% that would result from Basel I.

Discrimination, by contrast, is usually analyzed on a borrower basis, so the EADs do
not enter the formula. The measure that we are going to calculate is the accuracy ratio
(AR, cf. Chapter 7, which also gives more computational details than this chapter). For a
given portfolio and a given observation period, the accuracy ratio is a random variable as
it depends on the realized distribution of defaults, which are random. To decide how to
structure the grading system, we would like to know what the average associated accuracy
ratio will be. One straightforward way is to calculate the accuracy ratio under the assumption
that the number of defaults in each rating grade is equal to the expected number of defaults.
Let’s call this accuracy ratio the expected accuracy ratio. Assuming the estimated PDs to be
correct, the expected number of defaults is quite simply (grade PD)×(number of borrowers
in the grade).

In Figure 11.2 we briefly recap the construction of the cumulative accuracy profile (CAP).
Starting with the worst rating grade, we plot the fraction of all defaulters with grade i or
worse against the fraction of all borrowers with grade i or worse. The accuracy ratio is (Area
under the CAP – 0.5) / (Area under the CAP for a perfect rating system – 0.5). In a perfect
rating system, the worst rating grade contains all defaulters, and only those. The area under
its CAP is therefore (default rate/2 + (1-default rate)).
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Figure 11.2 The cumulative accuracy profile as the basis for calculating accuracy ratios

To calculate the expected accuracy ratio, which we do in Table 11.2, let us start with the
area under the expected CAP of our rating system. It is easily computed grade by grade. For
each grade, the associated area under the curve is made up of a triangle and a rectangle. The
baseline is the portfolio share that we have already computed in H4:H20 in Table 11.1. The
altitude of the triangle is the grade’s share of expected defaults; it is calculated in K4:K20.
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We exploit the following relationship, where Ni is the number of borrowers in grade i, N is
the overall number of borrowers, and PD is the average default rate of the entire portfolio:

Grade i’s share of defaults = PDi · Ni

PD · N = Ni

N
· PDi/PD

=Portfolio sharei · PDi/PD

The average PD that we need for this formula is determined in G22. Note that the ISERROR()
function is used in K4:K20 to return zeros for grades that are either non-defined or have no
borrowers assigned to. Otherwise, we could get error values that inhibit the computation of
the accuracy ratio.

Finally, areas of the CAP segments, are calculated separately for each grade in L4:L20.
In cell L4, for example, the formula reads:

= H4∗�SUM�K5 � K$21� + K4/2�

Table 11.2 Average capital requirement (CR) and accuracy ratio (AR) for a given grading system
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H4 is the baseline (the grade’s portfolio share); SUM(K5:K$21) is the share of defaults
occurring in worse rating grades, which gives the altitude of the rectangle in Figure 11.2; K4
is the current grade’s share of defaults, which gives the altitude of the triangle in Figure 11.2.

The segment areas are summed up in G25, together with the other steps necessary to
arrive at the accuracy ratio.

When experimenting with different grading structures, the ability of saving the key results
of grading structures is certainly of advantage. Capital requirements and accuracy ratio
are already provided in F25:G25; we complete the information by condensing the grade
boundaries into one cell. Using &, we concatenate the boundaries from F4:F20 and, separated
by hyphens, write them into H25. Now we can easily save the key facts of the grading
system by copying the range F25:H25 to another range in the worksheet. Cells F27:H28
contain the results for two grading systems whose boundaries mimic the default rates of
external ratings. The first system has seven grades corresponding to the seven letter ratings
of agencies, the second has 17, corresponding to the number of modified grades for which
the agencies publish statistics. The results show that the increase in the number of ratings
from seven to 17 leads to a considerable increase in the accuracy ratio. In terms of capital
requirements, the 17-grade system is also superior, but the improvement seems to be less
pronounced than in terms of accuracy.

TOWARDS AN OPTIMAL GRADING STRUCTURE

Experimenting with the sheet shown in Table 11.2 can already give valuable insights into
grading structures, but simple experimentation may not reveal the structure that best meets
the bank’s objectives. In this section, we will therefore show how to systematically search
for attractive grading structures.

The attractiveness of a grading structure could be made operational by defining an objec-
tive function, e.g.

Expected accuracy ratio −  × Capital requirement

and imposing constraints on the maximum number of grades and other aspects of the
grading system. One could then use appropriate techniques to find the grade boundaries that
maximize this function. An alternative approach that is quicker to implement is to randomly
simulate grading systems and then examine those that perform well on the dimensions we
are interested in. This is the strategy that we will pursue here. It may take some computing
time, but the same problem applies to a numerical optimization. And several minutes do not
matter much for a decision that is typically meant to last for several years, as is the choice
of a grading system.

Table 11.3 is built upon Table 11.2. The key difference is that we make the grading system
random. In doing so, we impose some restrictions. For example, a bank may not tolerate a
grading system where the best grade comprises PDs from 0% up to 5%. We can model such
restrictions by specifying maximum values for the upper boundaries of rating grades. In the
table, this is done in E4:E20. The simulation of grades is based on the function RAND(),
which returns random numbers that are uniformly distributed over the interval (0, 1). To
arrive at the lower boundary for grade i, we take the simulated lower boundary of grade
i − 1 and add RAND() times the maximum for grade i minus the simulated lower boundary
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Table 11.3 Average capital requirement and accuracy ratio for a given grading system (built on
Table 11.2)

of grade i− 1. This is done in cells F4:F20. Using the function ROUND(x, n) we also round
the random numbers to two digits because round numbers are often preferred in practice.
Though we simulate the grades such that their number is fixed (to seven), the sheet could
easily be adapted such that we also have a random number of grades.

Each time the sheet is recalculated (e.g. because of a change in the sheet or a keypress
of F9), a new random grading system is chosen and its characteristics are summarized in
F25:H25. To find attractive ones via simulation, we use the following macro:

Sub gradesim()
Application.ScreenUpdating = False
Application.Calculation = xlCalculationAutomatic
Dim imax As Long, i As Long
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imax = 5000
For i = 1 To imax

Application.StatusBar = i
Range("F" & i + 29 & ":H" & i + 29) = (Range("F25:H25"))

Next i

Range("F30:H" & 29 + imax).Sort Key1:=Range("F31"), Order1:=xlAscending
End Sub

Essentially, the macro loops over random grading structures and saves the result
into the sheet. The way the macro is written requires the option automatic calcu-
lation to be activated, and the second line of the macro makes sure that it is.
Application.ScreenUpdating=False speeds up the calculation as it prevents
Excel from displaying the change in numbers associated with newly drawn rating boundaries.
Since the macro may run several minutes, it is useful to see its current progress in the status
bar, which is achieved by typing Application.StatusBar=i. The line below writes
the key information on the simulated system into the sheet. After completing the loop, we
sort the output according to the capital requirements (in ascending order). This brings the
best to the top, and therefore facilitates our inspection of the results. In the example, we set
the number of iterations to 5000.

The results suggest that 5000 is indeed sufficient. The top systems are all in relatively close
proximity of one another when measured against either of the two criteria, so it is not very
likely that there should exist other highly superior systems which were not drawn during the
course of the simulation. Comparing the simulated grading systems with those corresponding
to external agency grades, it is evident that we can significantly improve upon a standard
seven-grade system. We can easily have lower requirements, and increase expected accuracy
ratios by more than two percentage points. As seen here, system design can really matter.
With the criteria and the portfolio examined here, it is key to differentiate across medium-
and high-risk borrowers. Having more than one grade for default probabilities between 0
and 0.15% does not improve the criteria, even though external ratings reserve three grades
(AAA, AA, and A) for this region.

To conclude, Table 11.4 shows the figures for two ‘realistic’ rating systems derived from
the simulations. Banks prefer round figures, so boundaries are based on key patterns of the
top-performing simulated systems, but are once more rounded. This is exemplified in the
first row of the table. In the second system, we add another grade for low-risk borrowers
because banks may require a fine structure among low-risk borrowers for other reasons. For
comparison, we also report the results for the systems that mimic external grades:

Table 11.4 Capital requirement and expected accuracy ratio for different grading systems

Lower grade boundaries (in %) #
grades

Capital
req.

Accuracy
ratio

0-0.15-0.5-1-2-7-15……… 7 6.88% 74.9%
0-0.05-0.15-0.5-1-2-7-15……… 8 6.88% 74.9%
0-0.05-0.08-0.15-0.5-2-15……… 7 6.95% 72.3%
0-0.04-0.05-0.07-0.09-0.11-0.13-0.18-0.25-0.35-0.5-
0.8-1.2-2-5-8-15

17 6.84% 78.9%



Credit Risk Modeling using Excel and VBA 223

As can be seen from the first row, additional rounding does not matter much; capital
requirements and accuracy ratio are very close to the best ones from Table 11.3, and nor
does the addition of another low-risk grade lead to significant improvements.

NOTES AND LITERATURE

The regulatory details of the IRB approach are set out in Basel Committee on Banking Supervision,
2005, International Convergence of Capital Measurement and Capital Standards. A revised framework,
Basel.

A detailed explanation of the capital requirement formula can be found in Basel Committee on
Banking Supervision, 2005, An Explanatory Note on the Basel II IRB Risk Weight Functions, Basel.





Appendix A1

Visual Basics for Applications (VBA)

MACROS AND FUNCTIONS

In this book, we use VBA (Visual Basic for Applications) to write macros and user-defined
functions. Macros and functions are routines for running a series of commands specified by
the user. The key differences between macros and functions are:

• User-defined functions can be used like standard spreadsheet functions, e.g. we can type
=OURFUNCTION(arguments) into a cell (or range of cells in case of an array function)
of the spreadsheet. The function will be run and the result will be returned in the sheet.
Macros have to be called by some action that we take outside a cell.

• The output of a function extends to only the cells in the sheet that it applies to; a function
cannot be used to change other cells. For example, if we type=OURFUNCTION(arguments)
into cell A1, we cannot make this function fill B3 with some value. With a macro, we can
change any cell in the worksheet, move to other sheets, etc.

WRITING A NEW MACRO OR FUNCTION

To start writing a macro or function, open the VBA editor, the short-cut would be pressing
[Alt]+[F11]. Alternatively, select Tools→Macro→Visual Basic Editor.

In VBA, macros are encompassed by two lines with the following structure

Sub MYMACRO()
…

End Sub

Similarly for functions:

Function MYFUNCTION()
…

End Function

The VBA editor will automatically provide the end statement and the parentheses behind
the name that we supply.

A first macro, a first function

Imagine that we want to write the number 156 into cell A3 using VBA. We could use the
following function:

Function FIRSTFUNCTION()
FIRSTFUNCTION=156

End Function
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Type =FIRSTFUNCTION () into A3, and you’ll see 156 in A3. We could also write the
following macro:

Sub FIRSTMACRO()
Range("A3")=156

End Sub

and run it. Two possible ways of running a macro are:

• While in the worksheet, press [ALT]+[F8], select the macro of your choice from the list,
and press ‘Run’. ([Alt]+[F8] is the shortcut for Tools→Macro→Macros)

• While in the VBA editor, point the cursor to some place within the macro text, and press
F5 (or press the play button).

In the macro FIRSTMACRO, we’ve already seen a way of referring to a cell within VBA.
The next section gives more details on this.

Referencing cells

In this book, we use two ways of referencing worksheet cells in VBA, the A1 method and
the index method. Here are two examples:

A1 method Index method Refers to

Range("A3") Cells(3,1) A3
Range("A1:B3") Range(Cells(1,1),cells(3,2)) A1:B3

This is probably self-explanatory. In the A1 method, we first state the column letter, imme-
diately followed by the row number. In the index method, we first state the row number;
the column number follows, separated by a comma.

In programming the cells that we refer to often depend on some variable. Assume that we
use the variable col to define the column number, and the variable row to define the row
number. The following are then examples for referencing:

A1 method Index method col row Refers to

Range("A" & row) Cells(row,1) 3 A3
Range("A1:B" & row) Range(Cells(1,1),cells(row,2)) 3 A1:B3
Range("A" & col & ":B3") Range(Cells(1,col),cells(3,2)) 1 A1:B3

Declaring variables

Declaring variables means that we explicitly tell VBA that we are going to work with a
variable named xxx. By default, we don’t need to declare variables. We can, however, force
us to do so by writing

Option explicit

right at the very top of a module in the VBA editor.
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Variables are usually declared through a dim statement, e.g.

Dim i

declares a variable named i.

Data types and arrays

VBA variables can have one of several data types which differ in the range of values they
support. Table A1.1 shows a list of important data types.

Table A1.1 Data types in VBA

Data type Memory Possible values

Byte 1 Byte Integers from 0 bis 255
Boolean 2 Bytes True or False
Date 8 Bytes 0:00:00 (midnight) on January 1, 0001 through 11:59:59 PM

on December 31, 9999
Integer 2 Bytes Integers from −32�768 to 32.767
Long 4 Bytes Integers from −2�147�483�648 to 2.147.483.647
Double 8 Bytes −1� 79769313486231E308 to 94065645841247E-324;

4,94065645841247E-324 to 1,79769313486232E308
Variant 16 (numerical

values)
Numerical values as for Double, strings possible

When we do not assign a specific data type, VBA works with the data type variant, i.e. the
one consuming maximum memory. Assigning appropriate data types can reduce the memory
needed and thus speed up computations.

For example, if we use a variable col to define the column number of a worksheet cell,
we would choose the data type Integer as the number of worksheet columns is below 32.767.
For a variable row that defines the row number of a cell, the data type Long would be
appropriate.

To assign the data type Byte to a variable x, we would type

Dim x as Byte

Similarly, we can assign the other data types.
An array is a variable that contains a group of values with the same data type, e.g. a

vector or a matrix. To declare an array with values of data type Double, we write

Dim x() as Double

where the () tells VBA that x is an array. In the declaration, we could also specify the
dimension of x, i.e. how many elements it has.

Dim x(1 to 10) as Double
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For example, would declare a (row) vector with 10 elements, the first having the index 1.
In this book, however, we always use a separate statement to fix the dimension, the Redim
statement:

Dim x() as Double
ReDim x(1 to 10)

One reason for using Redim is that the Dim statement does not accept variables for deter-
mining the dimension. Consider the situation where a variable N contains the dimension
that we want to assign to array x. We cannot type Dim x(1 to N ), but we can type Redim
x(1 to N ).

By default, the index of an array runs from 0 to the number we state in Redim or Dim.
Redim x(10, 3) would create a matrix with 11 rows and 4 columns. As already seen above,
we can let the index start at 1 by using Redim (1 to …, 1 to …). Alternatively, we could
tell VBA to let the index start at 1 by default. To this end, write

Option base 1

at the top of a module in the VBA editor. In this book, we let the index start at 1 as this
gives nice correspondences to the formulae in the text.

Loops

In order to repeat a similar command within VBA, we can use loops. If the number of
repetitions is known in advance (e.g. when conducting a Monte Carlo simulation), a for loop
is convenient:

For i=1 to 1000
…

Next i

By default, the counter (here a variable called i) is increased by 1 in each loop. But we are
free to choose any other step size, or loop in the reverse direction. Here’s an example with
step size 0.01:

For i=1 to 1000 Step 0.01
…

Next i

And here is another where we loop from 1000 to 1 with step size 1:

For i=1000 to 1 Step −1
…

Next i

In other situations, we may prefer a loop that is only left once a certain condition is met.
The top-checking variant would be

Do While deviation>10ˆ−10
…

Loop
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And here’s the bottom-checking variant:

Do
…

Loop until deviation<= 10ˆ−10

Of course, we would have some operation that changes the variable deviation within the
loop.

If-statements

A simple If-statement has the following structure

If condition Then
…

End If

Which can also be written as

If condition Then …

If-statements can be expanded by Else-statements, e.g.

If condition Then
…

Else
…

End If

Functions within VBA

Table A1.2 presents a selection of VBA functions that we use in the book.

Table A1.2 Selected VBA functions

Abs(number) Returns the absolute value of number
Dateserial(year, month, day) Returns a variable of type date containing the serial date,

i.e. the number of days since December 1, 1900
Day(serialdate) Returns the day of serial date
EXP(number) Returns e raised to the power of number
IIF(expression, truepart, falsepart) Returns truepart if expression is true, falsepart else
Int(number) Returns number with decimals removed
IsMissing(argument) Returns true if argument is not defined and false else
LBound(array) Returns the lowest index of array
LEN(text) Returns the number of characters in a text string
LOG(number) Returns the natural logarithm of number
Month(serialdate) Returns the month of serial date
Rnd Returns uniform random number between 0 and 1
UBound(array) Returns the highest index of array
Year(serialdate) Returns the year of serial date

In VBA, we can also use (most) Excel spreadsheet functions. However, we have to call
them with the prefix Application.Worksheetfunction (or just Application).
To compute the sum of the elements in the array x, for example, we would type
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sum_x = Application.WorksheetFunction.Sum(x)

An important thing to note is that the result of an array function can only be written to a
variable with data type variant.

Dim z() as double
z = Application.WorksheetFunction.MMult(x, y)

for example, does not work, whereas

Dim z()
z = Application.WorksheetFunction.MMult(x, y)

works (if x and y are properly defined).
As an alternative to analyzing data with functions, we can, in some cases, make VBA

return us some property of the data. To count the number of rows in the matrix x that we
read in as an argument of some function, for example, we can type

Rownum = x.rows.count

Finally, in other cases, we may expect that there is a straightforward solution, but then we
fail to find one. For example, we might expect to be able to add up two arrays x and y by
typing z = x + y. This is not possible. Nor is there a function for adding two arrays. A way
out is to loop through the elements of the arrays. If x and y are matrices with N rows and
K columns, we could use:

For i = 1 to N
For j = 1 to K

z(i, j) = x(i, j) + y(i, j)
Next j

Next i

Code editing

To insert a comment, use an apostrophe:

’This is a comment
x = Log(y) / 2 ’And this is another comment

To spread a statement over several lines of code, use an underscore preceded by a space:

area = Application.WorksheetFunction.NormSDist(0.01) _
+ Application.WorksheetFunction.Sum(x)

To use several statements in one line of code, use colons:

For i = 1 To N: x(i) = y(i): Next i

Macro recording

A very useful feature is available through Tools→Macro→Record New Macro. Having
started recording, each step you perform in the spreadsheet is translated into VBA and stored
in a macro until you stop recording. You can then run or change this recorded macro, or
examine it to learn how a task can be performed in VBA.

admin
高亮

admin
高亮



Credit Risk Modeling using Excel and VBA 231

Troubleshooting

When we used a function in the worksheet you could probably run into problems when
calling the same function within another function. Most commonly this is caused by the
difference between arrays and ranges. Consider the following function

Function fun1(range1)
fun1=range1.rows.count

End function

This function returns the number of rows of range1. So if you type =fun1(A1:A10) in the
worksheet, the function returns 10. However, if you type = fun1��1�2�3�4�5�6�7�8�9�10��
so range1 is an array, then the above function returns an error. As a solution, you can
consider an alternative to rows.count, for example

application.worksheetfunction.COUNT().

Now consider the case of fun2, which uses an array as input:

Function fun2(array1)
fun1=Ubound(array1)

End function

This function returns the highest index of array1. When you call this function in the
worksheet, e.g. =fun2(A1:A10), this function returns an error, it works however when you
input an array.

Avoiding this problem is simple. We just add array1=array1 to convert any range
into an array:

Function fun2(array1)
array1=array1
fun1=UBound(array1)

End function

Now fun2 works both with ranges and arrays.
Second, the way in which variables are referenced might cause problems. Without going

too much into technical details, VBA treats variable names as references by default. Consider
two functions:

Function fun3(number1)
Dim tmp
tmp=fun4(number1)
fun3=number1

End function

Function fun4(number1)
number1=number1*10

End function

If, for example, you call, fun3(10), then the function does not return 10, but 100, since
the argument number1 is changed by function fun4. To circumvent this problem, we can
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pass arguments by their value. This can be simply achieved by putting a ByVal before the
argument. In the above example we would write:

Function fun3(number1)
Dim tmp
tmp=fun4(number1)
fun3=number1

End function

Function fun4(ByVal number1)
number1=number1*10

End function

Now fun3(10) returns 10.

admin
高亮
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Solver

The Solver is a tool for finding numerical solutions to various kinds of problems. We can
use it to maximize or minimize a function or to set a function to some specified value.

Before we start demonstrating the use of the Solver, we have to ensure that the Solver
add-in is installed.

First open the Add-In item from the Tools menu:

Figure A2.1 Installing the Solver Add-in

Here check the box next to the entry ‘Solver Add-in’ and confirm by pressing OK.
If the Solver add-in does not show up in this list, your Excel installation does not contain

the Solver add-in. To install it use the item Detect and Repair from the Help menu to
initialize the setup routine. If you believe that the Solver add-in is installed you can try to
add the reference manually in the Add-In item from the Tools menu by pressing Browse.

The Solver add-in is typically located in the directory

< Program Files > \Microsoft Office \ OFFICExx \ Library \ SOLVER
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where <Program Files> points to the standard directory for programs, e.g. C:\Program
Files, and xx gives the office version. For Office XP xx equals 10, for Office 2003 xx is 11.

Now we are ready to look at an example to demonstrate the use of the Solver. Assume
that you want to maximize the following function:

y =
(√

x − x1�5

3

)
(A2.1)

Straightforward calculus would tell us that y is maximized for x = 1, but let’s use the Solver
to determine this value.

We guess some value for x (here 0), write it in cell A2, and type the functional relationship
(A2.1) into another cell, here B2:

A B C D E
1 x y
2 0 −0�0008 = �A2∧0�5 − 1/3∗A2∧1�5�

Then we open the Solver window via Tools→Solver. Our target cell is B2, the cell whose
value we want to maximize. We thus tick Max (Figure A2.2). Changing cells are cells that
the Solver considers changing in order to reach the set goal. In our case, this is just cell A2.

Figure A2.2 Solver parameters for example problem

We press Solve and get the solution that we expect:

A B C D E
1 x y
2 1 0�66666667 = �A2∧0�5 − 1/3∗A2∧1�5�

Now let’s consider some cases that require troubleshooting. Assume that our initial value
was 10 rather than 0.

A B C D E
1 x y
2 10 −7�37864787 = �A2∧0�5 − 1/3∗A2∧1�5�
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We run the Solver as above and get:

A B C D E
1 x y
2 −6 #NUM! = �A2∧0�5 − 1/3∗A2∧1�5�

During its search procedure, the Solver considered the value −6, and got trapped because
−60�5 produces an error value. Since we know that negative values of x are not admissible
in this particular problem, we can tell the Solver not to consider them. In the Solver main
window shown above, we could enter the constraint A2>0, but there is a quicker way. Press
the button Options in the window above and then tick ‘Assume Non-Negative’, as shown
in Figure A2.3. With this change, the Solver finds the solution with the starting value 10 as
well.

Figure A2.3 Solver options for example problem

Information on this and other Solver options can be obtained via the Help button. Here we
only comment on two more options. Precision sets the accuracy that Solver tries to achieve.
The smaller the number, the higher the targeted precision of the result. In our example, the
precision is set to the default value of 0.000001. The solution was not exactly 1, but it came
very close. For the starting value 0, the Solver presented the solution 1.00000003191548. If
we had set the precision to 0.5, for example, the Solver would have presented the solution
1.05997857962513.

Now consider the problem of maximizing the following function:

y =
(√

x − x1�5

3
+ 100 000

)11

(A2.2)
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Inspecting the function, we see that its maximization is equivalent to maximizing our previous
function (A2.1). But the Solver does not simplify functions algebraically, so let’s see what
happens. We set the initial value to zero:

A B C D E
1 x y
2 0 1E + 55 = �A2∧0�5 − 1/3∗A2∧1�5 + 100000�∧11

and call the Solver with the settings from above. The returns are shown in Figure A2.4.

Figure A2.4 Message upon running the Solver

But this message is misleading. There hasn’t been any change in the sheet:

A B C D E
1 x y
2 0 1E + 55 = �A2∧0�5 − 1/3∗A2∧1�5 + 100000�∧11

What causes trouble is that the dimension of the changing cell is very different from the
dimension of the target cell (around 1E + 55). Changing x has a very small effect on the value
of the target cell. The Solver is thus led to conclude that there is no scope for maximization.

In cases like this, the option Use automatic scaling can help, as the Solver will then try to
internally scale changing cells and target cells. There is no guarantee that this works. Here it
does. Having ticked the option in our example, the Solver converges to the correct solution,
which is again the value of 1.

The Solver can be run in macros, but it can not be run in user-defined functions (a function
cannot be made to change cells in the worksheet, but this is what the Solver requires to
work). The VBA code for the last run of the Solver that we just discussed would read:

SolverOk SetCell:="$B$2", MaxMinVal:=1, ValueOf:="0", ByChange:="$A$2"
SolverOptions MaxTime:=100, Iterations:=100, Precision:=0.000001, _

AssumeLinear:=False, StepThru:=False, Estimates:=1, _
Derivatives:=1, SearchOption:=1, IntTolerance:=5, _
Scaling:=True, Convergence:=0.0001, AssumeNonNeg:=True

SolverSolve

An easy way to get this code is to record a Macro (see Appendix A1). While recording the
Macro, open the Solver main window from the sheet, open the Solver option window, go
back to the main window and run the Solver.
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We just mention three important things for using the Solver in VBA:

• Running the Solver in VBA requires that we have set a reference to the Solver via
Tools->References (in the VBA editor).

• To run the Solver in VBA, it is not necessary to specify the complete Solver settings in
VBA. For choices not explicitly specified, VBA takes the active specifications (i.e. the
ones from the last run) or the default settings. By typing SolverReset right at the start,
we can set everything to the default setting, e.g. because we want to prevent us from
unwittingly using some unwanted settings.

• If we run the macro with just SolverSolve, we will be asked to confirm the solution before
it is written in the sheet. In many situations, e.g. when calling the Solver within a loop,
this is inconvenient. We can skip it by having Userfinish:=True behind the SolverSolve
statement.

To conclude, here’s an example of a macro that solves our problem and that specifies only
the option settings that differ from the default settings:

Sub RUNSOLVER()

SolverReset
SolverOk SetCell:="$B$2", MaxMinVal:=1, ValueOf:="0", _
ByChange:="$A$2"

SolverOptions Scaling:=True, AssumeNonNeg:=True
SolverSolve
UserFinish:=True

End Sub





Appendix A3
Maximum Likelihood Estimation

and Newton’s Method

The maximum likelihood method is a way of inferring parameter values from sample data.
Parameters are chosen such that they maximize the probability (= likelihood) of drawing the
sample that was actually observed. We can split the procedure into two main steps:

1. Set up a likelihood function that describes how the probability of a given sample depends
on the parameters.

2. Based on step 1, determine the parameters that maximize the likelihood of the sample at
hand.

Let us work through a simple example. Consider a sample of three numbers

x1 = −1� x2 = 5� x3 = 2

which are derived from a normal distribution with unknown mean � and unknown variance
�2. The likelihood of observing a single value xi is given by the density of a normal
distribution:

Li =
1√

2��
exp�−�xi − ��2/�2�2�� = �2��2�−1/2 exp�−�xi − ��2/�2�2�� (A3.1)

In many cases, we have good reasons to assume that individual draws are independent.
The likelihood of the entire data set then can be obtained by multiplying the individual
likelihoods. In our case this leads to (recall exp�x� exp�y� = exp�x + y�):

L =
3∏

i=1

�2��2�−1/2 exp�−�xi − ��2/�2�2��

= �2��2�−3/2 exp

(
−

3∑
i=1

�xi − ��2/�2�2�

)
(A3.2)

For the simple example, we can easily graph the likelihood function L: it is shown in
Table A3.1. The function PI() returns �. To compute the sum of squares ��xi − ��2 we
could type (here for cell B8):

�$B$2 − $A8�∧2 + �$B$3 − $A8�∧2 + �$B$4 − $A$8�∧2

but as shown in the table, we can also use an array function

	SUM��$B$2
$B$4 − $A8�∧2�
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For the discrete parameter values that we specified, the likelihood is maximized for � = 2
whatever the value of �2. (Note that 2 is also the arithmetic average over the three observa-
tions.) The overall maximum is obtained for � = 2 and �2 = 6.

Table A3.1 Likelihood for a sample of three normally distributed numbers

In typical situations, of course, we won’t be able to maximize the likelihood by visual
inspection – nor would it be efficient to do so. As in other maximization problems, we can
compute the first derivative of the likelihood, and then find the parameter values that set
the derivative equal to zero. In some cases, we quickly get an analytical solution to this
problem; in others, we resort to numerical procedures.

In doing so, it is more convenient to work with the logarithm of the likelihood. For
the likelihood (A3.2) of the sample from above we get the following log-likelihood (recall
ln�xa� = a · ln�x�, ln�xy� = ln�x� + ln�y�, ln�exp�x�� = x):

ln L = ln
3∏

i=1

�2��2�−1/2 exp�−�xi − ��2/�2�2��

= −3
2

ln�2�� − 3
2

ln �2 −
3∑

i=1

�xi − ��2/�2�2� (A3.3)

Its first derivative with respect to � is:

� ln L

��
=

3∑
i=1

�xi − ��/�2 (A3.4)
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Setting (A3.4) to zero yields a formula for the maximum likelihood (ML) estimator of �:

3∑
i=1

�xi − ��/�2 = 0 ⇔
3∑

i=1

xi −
3∑

i=1

� = 0 ⇔
3∑

i=1

xi − 3� = 0

⇒ �ML = 1
3

3∑
i=1

xi (A3.5)

which is also the formula for the arithmetic average and evaluates to 2, confirming our
observation from above. Similarly, we could differentiate the log-likelihood with respect to
�2 to get the following maximum likelihood estimator for the variance

� ln L

��2
= − 3

2�2
+ 1

2�4

3∑
i=1

�xi − ��2 = 0 (A3.6)

⇒ �2
ML = 1

3

3∑
i=1

�xi − �ML�2 (A3.7)

which evaluates to 6 for our data.
When there are no analytical solutions, we can use numerical procedures to find the root

to the first derivative. In many cases, Newton’s method is easy to implement and reliable.
Let us explain this method for the case in which we look for a scalar x that set f�x� equal
to zero. Starting with a guessed value x0 we search for x1 that brings us closer to f�x� = 0.
With a first-order Taylor expansion, f�x1� can be expressed as

f�x1� = f�x0� + f ′�x0��x1 − xo� (A3.8)

Our goal is to find x1 such that f�x1� = 0, so we set (A3.8) to zero and solve for x1:

f�x1� = f�x0� + f ′�x0��x1 − x0�=0

⇒ x1 = x0 − f�x0�/f ′�x0� (A3.9)

With the x1 obtained through this rule, we evaluate f�x1� and check whether it is zero (or
reasonably close). If yes, we have a solution. If not, we continue the iteration process, taking
x1 as our new guess and determine a new estimate x2 analogously to (A3.9).

When applying this procedure to likelihood maximization, be sure to get the correspon-
dences right. We want to set the first derivative of the likelihood function to zero, so f�x�
corresponds to the first derivative of the log-likelihood, f ′�x� to its second derivative.

The Newton procedure can also be applied when there are several unknown parameters.
We will illustrate this for the example from above. Collecting the two unknown parameters
in a column vector 

 =
[

�
�2

]
(A3.10)

we can set up the following rule

1 = 0 −
[

�2 ln L

�0 �′
0

]−1
� ln L

�0

(A3.11)
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The first derivative is a column vector with one row for each parameter, the second derivative
is a symmetric square matrix with the number of columns and rows being equal to the
number of parameters. For our example, its elements are:

�2 ln L

�0 �′
0

=

⎡
⎢⎢⎣

�2 ln L

����

�2 ln L

��2��

�2 ln L

����2

�2 ln L

��2��2

⎤
⎥⎥⎦ (A3.12)

which are given by:

� ln L

����
= −3/�2

� ln L

����2
= � ln L

��2��
= −

3∑
i=1

�xi − ��/�2�4� (A3.13)

� ln L

��2 ��2
= 3/�2�4� −

3∑
i=1

�xi − ��2/�6

The vector of first derivatives is often called the gradient vector g��, while the matrix of
second derivatives is called the Hessian matrix H��. With this notation, we can rewrite
(A3.11) as:

1 = 0 − H�0�
−1g�0� (A3.14)

In Table A3.2, we apply this procedure to our sample data. Note that calculations for one
iteration spread over two rows. Our starting values are �=0 and �2 =1, input in cells B7:B8.
The gradient vector is evaluated in D7:D8 using (A3.4) and (A3.6), the Hessian matrix in
F7:G8 using (A3.13). The first iteration following (A3.14) is performed in B9:B10. In each
case we use array functions, so we have to input the formula using [ctrl]+ [shift]+ [return].
Even though the starting values are not close to the ML estimates, the iteration converges
quickly. After nine iterations, there is no visible change in parameters, and the first derivatives
of the likelihood equal zero at the displayed precision.

To make sure the solution we have found is actually a maximum of the likelihood function,
we can inspect the second derivatives. In some applications of the ML procedure, this step
is not necessary as the likelihood function is globally concave.

In some situations, derivatives of the likelihood function are difficult to evaluate analyti-
cally. We can then for example, use a quasi-Newton procedure. It uses the same iteration rule
as in (A3.14) but computes the gradient and the Hessian through discrete approximations
rather than analytically. In Excel, such a numerical procedure is available through the Solver.
Again, we use our example with the three observations. In Table A3.1, we have already
computed the likelihood for a set of parameters. We copy everything to Table A3.3, but
then keep only the likelihood function for one combination of parameters specified, namely
the ones specified in cells A8 and B7. We could now try to maximize the likelihood in cell
B8, but it is advisable to perform maximization on the log likelihood. (The likelihood value
is very small in absolute terms, so we would have to take great care in making sure that the
Solver is sensitive enough to changes in the likelihood.)
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Table A3.2 Applying Newton’s method to a sample of three normally distributed numbers

We therefore write the logarithm of the likelihood in cell D7 and call the Solver to
maximize D7 by varying A8 and B7. Table A3.3 shows the Solver input window as well as
the results from applying the Solver (initial values were set to A8 =�= 0 and B7 =�2 = 1).
Again, we obtain the by now familiar solution � = 2 and �2 = 6.
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Table A3.3 Using the solver to maximize the likelihood for a sample of three normally distributed
numbers (based on Table A3.1)



Appendix A4

Testing and Goodness of Fit

In many situations, we examine data to get an estimate of unknown parameters. Examples
for such parameters are the mean of a distribution, the variance of a distribution or the
weights b that we apply in combining variables x into a prediction of another variable y.

In this book, we mainly employ the maximum likelihood and the least-squares estimation
principles. The maximum likelihood principle is described in Appendix A3. In least squares,
we choose the estimate such that the squared differences between observed values and our
predictions are minimized. As an illustration, consider the case where we want to estimate
the mean m of a sample of N observations xi. In the least squares approach, our prediction
for a single observation will be just the mean m we are looking for, so we minimize:

Sum of squared errors =
N∑

i=1

�xi − m�2 → min!
m

(A4.1)

We can solve this problem by taking the first derivative with respect to m:

d�Sum of squared errors�
dm

= −2
N∑

i=1

�xi − m�
!=0 (A4.2)

Solving for m yields the estimator m̂:

m̂ = 1
N

N∑
i=1

xi (A4.3)

that is, the arithmetic average of our observed x’s.

Standard errors

Once we have arrived at some estimate b we would like to know about the estimate’s
precision. Precision can be measured by the standard error (SE), the square root of the
estimator’s variance (var):

SE�b� =√var�b� (A4.4)

In standard least-squares problems, we just plug the formula for our estimator into (A4.4)
and try to get a handy expression for SE[b]. For the estimate of the mean m this would give
(��x� denotes the standard deviation of x):
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SE�m̂� =√var �m̂� =
√√√√var

[
1
N

N∑
i=1

xi

]
=
√√√√ 1

N 2
var

[
N∑

i=1

xi

]

=
√

1
N 2

N∑
i=1

var�xi�

=
√

1
N 2

N var�x�

= ��x�√
N

(A4.5)

Moving from the first line to the second, we assume that the xi are independent; moving from
the second to the third, we assume that they have identical variance. The result conforms
to intuition: our estimate is more precise (i.e. has a lower standard error) if we have more
observations N and if the variable that we want to predict is less dispersed. Note that we
would have to estimate the standard deviation ��x� in order to get an estimate of our standard
error SE[m].

In maximum likelihood (ML) estimation, the standard error can be estimated as the
negative inverse of the second derivative of the log-likelihood with respect to the parameter,
evaluated at its ML estimate. Thus, the standard error for some estimate bML would be:

SE�bML� =
√

−
[

�2 ln L

�b2
ML

]−1

(A4.6)

To get an intuition, look at Table A4.1. We separately estimate the means for two samples
of normally distributed variables. With ML estimation, we get a mean of 2 and a variance
of 6 for each sample. But the second sample has twice as many observations as the first,
so we would expect the mean of the second sample to be more precisely estimated. How
is this reflected in the second derivatives of the log-likelihood? In the table, we graph the
log-likelihoods for both samples. We vary the mean and keep the variance at the ML estimate
of 6. Both likelihoods are concave, which means that their second derivatives with respect
to � are negative. But the likelihood for the larger sample is more highly curved. Carefully
examining (A4.6), note that a higher curvature (e.g the second derivative is −1 rather than
−0	5) leads to a smaller standard error. Why should this be so? The higher the curvature,
the more likelihood is lost when moving from the ML estimate to the left or to the right;
therefore, with a high curvature, we are relatively sure that our ML estimate does the best
job rather than some other value in the neighborhood.

t Tests

Once we have an estimate b and its standard error SE[b] we can test hypotheses. We would
like to know whether the estimate is statistically different from some other value (our null
hypothesis). Such a test can be based on the t ratio:

t = �b − bh�/SE�b� (A4.7)
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Table A4.1 Likelihood functions for two samples of normally distributed variables

where bh is our null hypothesis. The t ratio tells us how far our estimate is away from the
hypothesized value, where distance is measured in multiples of standard error. The larger the
t ratio in absolute terms, the more distant is the hypothesized value, and the more confident
we can be that the estimate is different from the hypothesis.

To express confidence in a figure, we determine the distribution of t. Then we can quantify
whether a large t ratio should be attributed to chance or to a significant difference between
our estimate and the null hypothesis.

In applications of the least-squares approach, it is common to assume that the coefficient
estimate follows a normal distribution, while the estimated standard error follows a chi-
squared distribution. The t ratio then follows a t distribution if the null hypothesis is true; the
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degrees of freedom of the t distribution are given as the number of observations minus the
parameters that we estimated. Given some t ratio for a model with DF degrees of freedom,
we look up the probability that a t-distributed variable with DF degrees of freedom exceeds
the t ratio from our test. Usually, we perform a two-sided test, that is, we examine the
probability of exceeding t or −t. This probability is called the p-value. In Excel, the p-value
of a t value t∗ can be evaluated with

= TDIST�abs�t∗�
 DF
 2�

The p-value is the probability of making an error when rejecting the null hypothesis. When
it is low, we will tend to reject the null hypothesis. This is usually formulated as: we reject
the null hypothesis at a significance of < p-value>.

Let us examine an example. Assume that we sampled 10 normally distributed numbers.
In Table A4.2, they are listed along with the estimate for the sample mean (cf. equa-
tion (A4.3)), its standard error (A4.5), the t ratio for the null hypothesis that the mean is
zero (A4.7) as well as its associated p-value.

Table A4.2 Likelihood functions for two samples of normally distributed variables

We obtain a mean of 0.89 with a standard error of 0.305. The t statistic is fairly
high at 2.914. We can reject the hypothesis that the mean is zero with a significance
of 1.7%.

When we use maximum likelihood to estimate a non-linear model like Logit (Chapter 1)
or Poisson (Chapter 4), we cannot rely on our coefficient estimates following a normal
distribution in small samples. If the number of observations is very large, however, the
t ratio can be shown to be distributed like a standard normal variable. Thus, we refer the t
ratio to the standard normal distribution function, and we usually do so even if the sample
size is small. To avoid confusion some programs and authors therefore speak of a z ratio
instead of a t ratio. With the normal distribution, the two-sided p-value of a t ratio t∗ is
obtained as:

= 2∗�1 − NORMSDIST�abs�t∗���
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R2 and Pseudo-R2 for regressions

In a linear regression our goal is to determine coefficients b such that we minimize the
squared differences between our prediction, which is derived from weighting explanatory
variables x with b and the dependent variable y:

N∑
i=1

�yi − �b1 + b2xi2 + b3xi3 + � � � + bKxiK��2 =
N∑

i=1

�ei�
2 → min

b
! (A4.8)

where we introduce the shortcut ei for the residual, i.e. the prediction error for observation i.
We can measure a regression’s goodness of fit through the coefficient of determination,

R2 for short. The R2 is the squared correlation coefficient between the dependent variable
y and our prediction. Equivalently, we can say that it is the percentage of the variance of y
that is explained by the regression. One way of computing R2 is

R2 = 1 −
N∑

i=1
�ei�

2

N∑
i=1

�yi − ȳ�2

(A4.9)

The non-linear regressions that we examine in this book have the structure

Prob�Yi = yi� = F �b1 + b2xi2 + b3xi3 + � � � + bKxiK� (A4.10)

where Y is some random variable (e.g. the number of defaults) whose realization y we
observe. F is a non-linear function such as the logistic function. Having estimated regressions
of the form (A4.10) with maximum likelihood, the commonly used analogue to the R2 is the
Pseudo-R2 proposed by Daniel McFadden. It is defined by relating the log-likelihood of the
estimated model (ln L) to the log-likelihood of a model that has just a constant in it (ln L0):

Pseudo-R2 = 1 − ln L/ ln L0 (A4.11)

To understand (A4.11), note that the log-likelihood cannot be positive. (The maximum
value for the likelihood is 1, and ln(1)=0.) If the variables x add a lot of explanatory power
to a model with just a constant, the Pseudo-R2 is high because in evaluating ln L/ ln L0

we divide a small negative number by a large negative one, resulting in a small value for
ln L/ ln L0. The Pseudo-R2 cannot be negative as adding one or several variables can never
decrease the likelihood. In the extreme case where the variables x are useless, the estimation
procedure will assign them a zero coefficient, thus leaving likelihood unchanged.

Related to this observation, note that the Pseudo-R2 and the R2 can never decrease upon
inclusion of additional variables.

F tests

An F test is a generalization of a t test for testing joint hypotheses, e.g. that two regression
coefficients are jointly zero. An F test can be constructed with the R2’s from two regressions:
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a regression without imposing the restrictions yielding R2, and another regression which
imposes the restrictions yielding R2

0:

F = �R2 − R2
0�/J

�1 − R2�/DF
(A4.12)

where J is the number of restrictions implied by the hypothesis, and DF is the degrees of
freedom of the unrestricted regression. If the hypothesis is not valid, imposing it will lead
to strong decrease of R2, so F will be large. Thus, we can reject the hypothesis for large
values of F . The associated p-value obtains by referring the F statistic to an F distribution
with degrees of freedom J and DF. In Excel, this can be done using

= FDIST�F∗
 J
 DF�

When testing the hypothesis that all coefficients except the constant are equal to zero, we
can construct the F test with just one regression as the R2

0 in (A4.12) is then the R2 from a
regression with just a constant, which is zero.

Likelihood ratio tests

For a model estimated with maximum likelihood, one analogue to the F test is the likelihood
ratio test.1 In the F test, we compare the R2’s of unrestricted and restricted models; in
the likelihood ratio test, we compare the log-likelihood of unrestricted (ln L) and restricted
�ln L0� models. The likelihood ratio statistic LR is constructed as:

LR = −2 �ln L0 − ln L� = 2 �ln L − ln L0� (A4.13)

Thus, the more likelihood is lost by imposing the hypothesis, the larger will the LR statistic
be. Large values of LR will thus lead to a rejection of the hypothesis. The p-value can be
obtained by referring LR to a chi-squared distribution with J degrees of freedom, where J
is the number of restrictions imposed:

= CHIDIST�LR
 J�

We should bear in mind, though, that the LR statistic is only asymptotically (i.e. for a large
number of observations) chi-squared distributed. Depending on the application, it might be
advisable to explore its small sample properties.

1 The other two are the Wald test and the Lagrange-Multiplier test.



Appendix A5

User-Defined Functions

Throughout this book we use Excel functions and discuss user-defined functions to perform
the described analyses. In Table A5.1 we provide a list of all of these functions together
with their syntax and short descriptions. The source for original functions is Microsoft Excel
2003’s help file.

All of the user-defined commands are available in the xls file accompanying each chapter
and the lp.xla add-in, both provided on the DVD. The add-in is furthermore available for
download on our website www.loeffler-posch.com.

Installation of the Add-in

To install the add-in for use in the spreadsheet do the following steps in Excel:

1. Click on the item Add-Ins in the Menu Tools
2. Click on Browse and choose the location of the lp.xla file.

(a) If you are using the DVD the file will be located in the root directory, e.g. D:\lp.xla.
(b) If you downloaded the add-in from the internet the file is located in your download

folder.

To install the add-in for use within your own VBA macros do the following steps in Excel:

1. Open the VBA editor by pressing [Alt]+[F11].
2. Click on the item References in the Tools menu.
3. Click on Browse and choose the location of the lp.xla file.

(a) If you are using the DVD the file will be located in the root directory, e.g. D:\lp.xla.
(b) If you downloaded the add-in from the internet the file is located in your download

folder.

Function List

We developed and tested our functions with the international English version of Excel 2003.
If you run into problems with your version, please check that all available updates are
installed. If you still encounter problems please visit our homepage for updates or send us
an email to vba@loeffler-posch.com.

Shaded rows refer to user-defined functions available in the accompanying add-in.
Optional parameters are marked by []. ATP refers to the Analysis ToolPak Add-in (see
Chapter 9 for details).
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Index

accuracy ratio (AR), 219
AGE (variable), 74
aging effect, 76
Analysis Toolpak (ATP), 184

functions, 185
installation of, 185

AR see accuracy ratio (AR)
area under the ROC curve (AUC), 151
asset value approach

measuring credit portfolio risk with, 119
modeling/estimating default correlations, 103

Assume non-negative (option), 37, 112
ATP see Analysis Toolpak (ATP)
AUC (area under the ROC curve), 151
Automatic scaling (option), 112
AVERAGE (arithmetic), 15

backtesting prediction models see prediction
models, backtesting

Basel II and internal ratings, 211–24
Basel I accord, 211
Basel II framework, 211
grading structure, assessing, 214–20
grading structure, towards an optimal, 220–3
internal ratings-based (IRB) approach, 211
notes and literature, 223

Berkowitz test
example implementation, 166–7, 166
required information, 164
scope and limits of, 176–7
subportfolios, how many to form, 176
suggested restrictions, 165
testing distributions with, 163–7
transformations, 164

binning procedure, 90–1
BINOMDIST function, 61, 86
binomial distribution, 59–63

BIVNOR() function, 107
Black–Scholes formula, 30, 31, 34–7
bond prices

concepts and formulae, 181–4
PRICE() function, 185

BOOTCONF() function, 63–4
bootstrap analysis

BOOTCAP() function, 154
BOOTCONF() function, 63–4
confidence bounds for default probabilities

from hazard approach, 66
confidence intervals for accuracy ratio, 153

Brier score, 156–7

CAP, 148–51
Capital Asset Pricing Model (CAPM), 33
capital requirement (CR), 217
CAPM (Capital Asset Pricing Model), 33
CAPs and ROCs, interpreting, 155–6

cumulative accuracy profiles for Ratings and
EDFs, 155

CDO (collateralized debt obligations), 196
CDO risk, estimating with Monte Carlo

simulation, 197–201
information required for simulation analysis

of CDO tranches, 198
loss given default (LGD), 198
simulation analysis of CDO tranches in a

one-period setting, 210
tranches, 197–200

CDO tranches, systematic risk of, 203–5
conditional default probabilities of a CDO

tranche, 205
CDS (credit default swap)

CDS structure, 179
definition of, 179
pricing a CDS, 193
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ceteris paribus (c.p.), 14–15
cohort approach, 46–51

COHORT() function, 48
Do While loop, 49
NR ratings, 51
one-year transition matrix with cohort

approach, 51
a rating data set, 47
VLOOKUP() function, 47

COHORT() function, 48
collateralized debt obligations (CDO), 196
COMBIN() function, 110
confidence intervals, 59–63, 153
copula, 138
COUNT() function, 86, 157
COUNTIF() function, 20
c.p. (ceteris paribus), 14–15
CR see capital requirement (CR)
credit default swap (CDS)

CDS structure, 179
definition of, 179

credit portfolio models
asset value approach, 120
four main steps, 119–20
simulation, 121–37
validation, 163

credit scores, estimating with logit, 1
CRITBINOM() function, 116
cumulative accuracy profile and accuracy ratios,

148–51
accuracy ratio, 148–9

data types and arrays, 227–8
declaring variables, 227
default correlation, 103
default and transition rates

estimation, 45
prediction, 87

default prediction
scoring, 1
Merton model, 27
structural approach, 27

default-mode model, 119
Do While loop, 7, 22, 49, 50, 69, 124, 129,

200, 207
drift parameters, 28

EAD (exposure at default), 216
Earnings before interest and taxes (EBIT), 4
EBIT (Earnings before interest and taxes), 4
Econstats, 74

Enron, 31
European call option, 29–30
excess kurtosis (KURT), 15, 16
expected accuracy ratio, 218
exposure at default (EAD), 216

FDIST() function, 77
first-to-default swaps, default times for, 205–9

information required for the time of first
default in basket of 100 obligors, 206

simulated first default times for a basket of
100 obligors, 209

functions within VBA, 229–30

grading structure, assessing, 214–20
average capital requirement (CR) and

accuracy ratio (AR) for a given grading
system, 219

average capital requirement (CR) for a given
grading system, 217

cumulative accuracy profiles as basis for
calculating accuracy ratios, 218

exposure at default (EAD), 216
how a finer grading reduces capital

requirement, 216
selected requirements for rating structure, 215

grading structure, towards an optimal, 220–3
average capital requirement and accuracy

ratio for a given grading system, 221
expected accuracy ratio, 222

Halton sequence, 130–1
hazard rate approach (or duration), 53–8

estimating the generator matrix from the
rating data, 56

MEXPGENERATOR(), 57–8
obtaining a one-year transition matrix from

the generator, 58
Hessian matrix, 7, 8–9, 242
HLOOKUP() function, 96

If-statement, 229
internal ratings see Basel II and internal

ratings
internal ratings-based (IRB) approach, 211
internal ratings-based (IRB) approach,

calculating capital requirements in,
211–14

formula for risk-weighted assets for
corporate, sovereign, bank exposures,
213
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from of maturity adjustments (derived by),
214

IRB (internal ratings-based (IRB)
approach), 211

large homogeneous portfolio (LHP), 197
approximation, the, 201–3

LGD (loss given default), 119–21
LHP (large homogeneous portfolio), 197

approximation, the, 201–3
likelihood function, 6, 174, 176, 241, 242, 247,

248
likelihood ratio tests, 9, 12, 82, 112, 114, 165,

250
LINEST() function, 75
logistic distribution function, 7
logistic regression (logit) see logit
logit

description, 1
estimation, 3–8
likelihood function, 3–4
LOGIT() function, 4
outlier treatment, 15–19
prediction/scenario analysis, 13–15

log-likelihood function, see likelihood
function

loops, 228–9
loss distribution, representing the, 167–9

assigning a probability to an observed loss,
169

different representations of the loss
distribution, 168

Excel spreadsheet, row constraint of, 168
mark-to-market model, 169

loss given default (LGD), 119–21

macro recording, 230
macros/functions, key differences, 225
macros/functions, writing, 225
MAE (mean absolute error), 133, 134
marginal effect, 24–5
Market Value Equity (ME), 4
Markovian assumption, 51
MATCH() function, 146
matrix functions, 67–71
maximum likelihood (ML)

appendix A3, 239
applications, 3, 78, 108, 172
principle, 239

ME (Market Value Equity), 4
mean absolute error (MAE), 133, 134

MEDIAN (medians), 15
medians (MEDIAN), 15
Merton model

Black–Scholes formula, 30
calibration using equity value and volatility,

36
EDFTM measure by Moody’s KMV,

37–9
iterative approach, 30
one-year implementation, 30
T-year implementation, 39

methods of moment approach, 105–8
applied to investment grade defaults, 107
BIVNOR() function, 107

MEXPGENERATOR(), 57–8
minima (MIN), 15
ML (maximum likelihood), see maximum

likelihood (ML)
MMULT() function, 51
modeling and estimating default correlations see

asset-value approach, modeling/estimating
default correlations

Monte Carlo simulation,
asset correlation, study of estimators,

114–17
CDO risk, 197–201
credit portfolio risk, 121–37
importance sampling, 126
NRAND() function, 123
quasi Monte Carlo, see quasi Monte

Carlo

Newton’s method, 7–8, 241–2
NORMSINV() function,

116, 120
NR (not-rated), 51, 88–9

obligors, 127
OFFSET() function, 95, 146
one-year transition matrix with cohort approach,

51–2
MMULT() command, 51
two-year transition matrix, 52

option pricing theory, 29
outliers, treating in input variables,

15–19
descriptive statistic for explanatory variables

in logit model, 16
distribution of variables, examine the,

15–16
eliminating, 16
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outliers, treating in input variables (Continued)
empirical distribution (judging), 15
excess kurtosis, 16
percentiles, 16
winsorization, 16–19

PERCENTILE (percentile), 15, 16
percentiles (PERCENTILE), 15, 16
Poisson regression, 78

POIREG() function, 80
POISSON() function, 79

portfolio credit risk models, 119
power, assessing, 175–6
prediction models

backtesting, 83
cumulative squared errors, 85

PRF see profit forecasts (PRF)
probability of default (PD)

Basel II, 211
cumulative, 180
conditional, 108
credit portfolio modeling, 119
logit model, 1
Merton model, 28
seen from today, as, 180
validation, 157–161

probit model, 24
profit forecasts (PRF), 76

quasi Monte Carlo numbers, 130
quasi Monte Carlo

assessing simulation error, 132–4
deterministic rule, 130–1
HALTON() function, 131
Halton numbers and randomly chosen set of

100 uniform numbers, 130
Halton sequence, 130–1
quasi Monte Carlo numbers, 130

R2 and Pseudo-R2 for regressions, 249
RAND() function, 120
rating systems

Basel II requirements, 215
calibration, 157–61
discrimination, 148–57
grading structure, 45
transition probabilities, 45
validation strategies, 162

RE (Retained Earnings), 4
receiver operating characteristic (ROC),

151–3

referencing cells, 227
regression

least squares approach, 245
LINEST() function, 75
LOGIT() function, 5
POIREG() function, 80

Retained Earnings (RE), 4
risk-neutral default probabilities, 179–96
RMSE, 75–6
ROC see receiver operating characteristic

(ROC)
root-T -rule, 33

Sales (S), 4
scoring model, 1
SE (standard error), 245
SEC Edgar data base, 31
simulation error, assessing

banking portfolio (study), 132–3
commercial bank loan portfolios, 132
mean absolute simulation error (MAE), 134
simulation techniques, accuracy of, 133–4

skewness (SKEW), 15
smoothed line option, 91
Solver, the, 37, 61–3, 110, 112

appendix A2, Solver, 233–8
Assume non-negative (option), 37
Use automatic Scaling (option), 37

standard deviations (STDEV), 15
standard error (SE), 245
STDEV (standard deviations), 15
stock prices, 35
structural models, see Merton model
structured credit, risk analysis of, (CDOs and

first-to-default swaps)
CDO risk, estimating with Monte Carlo

simulation, 197–201
CDO tranches, systematic risk of, 203–5
first-to-default swaps, default times for,

205–9
introduction, 197
large homogeneous portfolio (LHP),

approximation, 201–203
notes and literature, 209

SUMIF() function, 20
SUMXMY2() function, 33, 156–7
Survey of Professional Forecasters, 74

TA (Total Assets), 4
TDIST() function, 76
TL (Total Liabilities), 4
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Total Assets (TA), 4
Total Liabilities (TL), 4
tranches, 197–200

CDO tranches, systematic risk of, 203–5
conditional default probabilities of a CDO

tranche, 205
information required for simulation analysis

of CDO tranches, 198
simulation analysis of CDO tranches in a

one-period setting, 210
transition matrices

adjusting, 88
backtesting forecasts, 96
cohort approach, 45–51
confidence intervals, 59–63
forecasting, 87–96
hazard rate approach, 46–58
Markovian assumption, 51
multi-period, 51–2

TREND() function, 78
t tests, 246–8

Use automatic Scaling (option), 37
user-defined functions, 251–6

Value at Risk (VaR), 143
VBA (Visual Basic for Applications) see Visual

Basic for Application (VBA)
Visual Basics for Applications (VBA), appendix

A 1, 225–32
VLOOKUP() function, 47

WC (Working Capital), 4
winsorization, 16–19

WINSOR() function, 18
Working capital (WC), 4

XTRANS() function, 22




