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Preface

The immediate reason for the creation of this book has been the advent of Basel II.
This has forced many institutions with loan portfolios into building risk models, and,
as a consequence, a need has arisen to have these models validated both internally and
externally. What is surprising is that there is very little written that could guide consultants
in carrying out these validations. This book aims to fill that gap.

In creating the book, we have become aware that many of these validation issues have
been around for a long time and that the need for this book probably predates Basel
II. Of particular interest for investment banks and asset management companies are the
problems associated with the quantitative risk management of ones own money and client
money.

Clients in particular can become litigious, and one of the key questions that arise is
whether the risk of the client portfolio has been properly measured. To assess whether this
is so requires the validation of the portfolio risk model. This area is virtually non-existent
but has some features in common with Basel I. Thus, it is considered good practice to
consider back-testing, scenario analysis and the like. Purveyors of risk models claim to
test their products themselves, but they rarely make their models available for external
validation. This means that the asset manager needs to take responsibility for the exercise.

As editors, we were delighted that a number of young and prominent researchers in the
field were happy to contribute to this volume. Likewise, we thank the publishers for their
understanding, Anne Mason who managed the document harmoniously and the Bank
of Greece whose support for risk management helped bring about the creation of this
project.
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1 Determinants of small business default∗ 

Sumit Agarwal†, Souphala Chomsisengphet‡ and Chunlin Liu¶

Abstract

In this paper, we empirically validate the importance of owner and business credit risk
characteristics in determining default behaviour of more than 31 000 small business loans
by type and size. Our results indicate that both owner- and firm-specific characteristics
are important predictors of overall small business default. However, owner characteristics
are more important determinants of small business loans but not small business lines. We
also differentiate between small and large business accounts. The results suggest that owner
scores are better predictors of small firm default behaviours, whereas firm scores are better
predictors of large firm default behaviour.

1. Introduction

In this chapter, we develop a small business default model to empirically validate the
importance of owner and the business credit bureau scores while controlling for time to
default, loan contract structure as well as macroeconomic and industry risk characteristics.
In addition, several unique features associated with the dataset enable us to validate the
importance of the owner and business credit bureau scores in predicting the small business
default behaviour of (i) spot market loans versus credit lines and (ii) small businesses
below $100 000 versus between $100 000 and $250 000.

Financial institutions regularly validate credit bureau scores for several reasons. First,
bureau scores are generally built on static data, i.e. they do not account for the time
to delinquency or default.1 Second, bureau scores are built on national populations.
However, in many instances, the target populations for the bureau scores are region-
specific. This can cause deviation in the expected and actual performance of the scores.
For example, customers of a certain region might be more sensitive to business cycles and
so the scores in that region might behave quite differently during a recession. Third, the

∗ The authors thank Jim Papadonis for his support of this research project. We also thank seminar participants
at the Office of the Comptroller of the Currency, Office of Federal Housing Enterprise Oversight, Brent
Ambrose, Michael Carhill, John Driscoll, Ronel Elul, Tom Lutton, Larry Mielnicki, and Nick Souleles for
helpful discussion and comments. We are grateful to Diana Andrade, Ron Kwolek, and Tim Murphy for
their excellent research assistance. The views expressed in this research are those of the authors and do not
represent the policies or positions of the Office of the Comptroller of the Currency, of any offices, agencies,
or instrumentalities of the United States Government, or of the Federal Reserve Bank of Chicago.

† Federal Reserve Bank of Chicago, Chicago, IL
‡ Office of the Comptroller of the Currency, Washington, DC
¶ College of Business Administration, University of Nevada, Reno, NV
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bureau scores may not differentiate between loan type (spot loans versus lines of credit)
and loan size (below $100K and above $100K), i.e. they are designed as one-size-fits-all.

However, it is well documented that there are significant differences between bank
spot loans (loans) and lines of credit (lines). For example, Strahan (1999) notes that firms
utilize lines of credit to meet short-term liquidity needs, whereas spot loans primarily
finance long-term investments. Agarwal et al. (2006) find that default performance of
home equity loans and lines differ significantly. Hence, we assess whether there are any
differences in the performance of small business loans and lines, and if so, what factors
drive these differences?

Similarly, Berger et al. (2005) argue that credit availability, price and risk for small
businesses with loan amounts below and above $100K differ in many respects. Specifically,
they suggest that scored lending for loans under $100K will increase credit availability,
pricing and loan risk; they attribute this to the rise in lending to ‘marginal borrowers’.
However, scored lending for loans between $100K and $250K will not substantially
affect credit availability, lower pricing and lesser loan risk. This is attributed to the price
reduction for the ‘non-marginal borrowers’. Their results suggest that size does affect
loan default risk.

Overall, our results indicate that a business owner’s checking account balances,
collateral type and credit scores are key determinants of small business default. However,
there are significant differences in economic contributions of these risk factors on default
by credit type (loans versus lines) and size (under $100K versus $100K–250K). We find
that the effect of owner collateral is three times as much on default for small business
loans than for lines. This result is consistent with Berger and Udell’s (1995) argument that
a line of credit (as opposed to loan) measures the strength of bank–borrower relationship,
and as the bank–firm relationship matures, the role of collateral in small business lending
becomes less important. Our results also show that the marginal impact of a 12-month
increase in the age of the business on lowering the risk of a small business defaulting is
10.5% for lines of credit, but only 5.8% for loans. Moreover, a $1000 increase in the
6-month average checking account balance lowers the risk of default by 18.1% for lines
of credit, but only 11.8% for loans. Finally, although both owner and firm credit scores
significantly predict the risk of default, the marginal impacts on the types of credits differ
considerably. The marginal impact of a 10-point improvement in the owner credit score
on lowering the risk of defaults is 10.1% for lines, but only 6.3% for loans. A similar
10-point improvement in the firm credit score lowers the risk of default by 6.3% for
small business loans, but only 5.2% for small business lines. These results are consistent
with that of Agarwal et al. (2006).

Comparing small businesses under $100K (small) and those between $100K and $250K
(large), we find that the marginal impact of a 10-point improvement in the owner credit
score in lowering the risk of default is 13.6% for small firms, but only 8.1% for large
firms. On the contrary, the marginal impact of a 10-point improvement in the firm credit
score in lowering the risk of default is only 2.2% for small firms, but 6.1% for the
larger size firms. Furthermore, a $1000 increase in the 6-month average checking account
balance lowers the risk of default by 5.1% for small firms, but by 12.4% for large
firms. These results suggest that smaller size firms behave more like consumer credits,
whereas larger size firms behave more like commercial credits and so bank monitoring
helps account performance. These results are consistent with that of Berger et al. (2005).
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The rest of the chapter is organized as follows. Section 1.2 discusses the data, method-
ology and summary statistics. Section 1.3 presents the empirical results for small business
defaults by type (Section 1.3.1) and size (Section 1.3.2). Section 4 provides concluding
remarks.

2. Data, methodology and summary statistics

2.1. Data

The data employed in this study are rather unique. The loans and lines are from a single
financial institution and are proprietary in nature. The panel dataset contains over 31 000
small business credits from January 2000 to August 2002.2 The majority of the credits
are issued to single-family owned small businesses with no formal financial records. Of
the 31 303 credits, 11 044 (35.3%) are loans and 20 259 (64.7%) are lines and 25 431
(81.2%) are under $100K and 5872 (18.8%) are between $100K and $250K. The 90-day
delinquency rate for our dataset of loans and lines are 1.6% and 0.9%, respectively. The
delinquency rates for credits under $100K and between $100K and $250K are 1.5% and
0.92%, respectively. It is worth mentioning some of the other key variables of our dataset.
First, our dataset is a loan-level as opposed to a firm-level dataset. More specifically, we
do not have information of all the loans a firm might have with other banks. Second,
because these are small dollar loans, the bank primarily underwrites them based on the
owners’ credit profile as opposed to the firms credit profile. However, the bank does
obtain a firm-specific credit score from one of the credit bureaus (Experian).3 The owner
credit score ranges from 1 to 100 and a lower score is a better score, whereas the firm
credit score ranges from 1 to 200 and a higher score is a better score.

2.2. Methodology

For the purpose of this study, we include all accounts that are open as of January 2000,
and exclude accounts with a flag indicating that the loan is never active, closed due to
fraud/death, bankruptcy and default.4 Furthermore, we also exclude all accounts that
were originated before 1995 to simplify the analysis on account age. We follow the
performance of these accounts from January 2000 for the next 31 months (until August
2002) or until they default.

We use a proportional hazard model to estimate the conditional probability of a small
business defaulting at time t, assuming the small business is current from inception up to
time t −1. Let Di�t indicate whether an account i defaults in month t. For instance, the
business could default in month 24, then Di�t = 0 for the first 23 months and Di�24 = 1, and
the rest of the observations will drop out of the sample. We define default as two cycles
of being delinquent, as most accounts that are two cycles delinquent (i.e. 60 days past
due) will default or declare bankruptcy. Furthermore, according to the SBRMS report,
57% of banks use the two cycles delinquent as their standard definition of default and
another 23% use one cycle delinquent as their definition of default.5

The instantaneous probability of a small business i defaulting in month t can be written
as follows:

Di�t = h0�t� exp��′Xi�t�� (1.1)
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where h0�t� is the baseline hazard function at time t (the hazard function for the mean
individual i-th sample), we use age (number of months) of the account to capture ‘season-
ing’6 as a proxy for this baseline. Xi�t� is a vector of time-varying covariates; � is the vector
of unknown regression parameters to be estimated; and exp(�′Xi�t�) is the exponential
distribution specification that allows us to interpret the coefficients on the vector of X as
the proportional effect of each of the exogenous variables on the conditional probability
of ‘completing the spell’, e.g. small business loan terminating.

The time-varying exogenous variables (known as covariates) that are crucial to a small
business’ decision to default can be classified into five main risk categories as follows:

�′Xi�t = �1Owneri�t−6 +�2F irmi�t−6 +�3LoanContracti�t 

+�4Macroi�t−6 +�5Industryi�t−6
(1.2)

where Owneri�t−6 represents specific characteristics of the owner that may be important in
the risk of a small business defaulting, including owner credit score, owner collateral and
average checking account balance. Firmi�t−6 represents firm-specific firm characteristics
that may affect default risks of the firm, including credit score for the business, firm
collateral and months in business.7 Finally, LoanContracti�t−6 captures loan amount,
risk premium spreads and internally generated behaviour score for the loan. Macroi�t−6

captures county unemployment rate as well as 9 state dummies.8 Industryi�t−6 captures 98
two-digit SIC dummies.9 Time-varying values of owner, firm, loancontract, macro and
industry risks are lagged 6 months before default because of concerns about endogeneity.
For instance, owner credit score at default would have severely deteriorated. This would
bias our results towards the owner risk score being highly significant (reverse causality).
Similarly, we want to control for unemployment rate before default and at the time of
default.10 The above explanatory variables are defined in Table 1.1. In addition, we also
consider the expected sign on each coefficient estimate in Table 1.1 and provide some
intuitions below.

Owner risks

The use of owner’s personal assets as collateral11 to secure a business enhances the
creditor’s claims of new assets (see Berger and Udell, 1995). Owners using personal
assets to secure the loans or lines are less likely to pursue unnecessary risky projects as
there is more at stake; therefore, small businesses using owner collateral are less likely
to default. Next, we control for the owner credit score. The higher the owner score, the
riskier the business owner, i.e. higher the risk of default.12 A 6-month average checking
account balance captures the liquidity position of a business owner. We expect this owner
characteristic to be inversely related to default.13

Firm risks

Like owner collateral, firm collateral merely alters the claims of the creditors (Berger and
Udell, 1995). Hence, firm collateral is expected to have negative impact on default risks.
Similarly, firms with higher credit score are expected to be less risky and, thus, are less
likely to default. Finally, a non-linear estimation for months in business should capture
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Table 1.1 Variables, definitions and expected signs in the event of default

Variable Definition Expected
Sign

Owner risks
Owner collateral Dummy variable indicating owner-specific collateral − 

(mortgage, personal savings, etc.)
Owner scoret−6 Quarterly updated score measuring owner credit risk + 

characteristics – higher score high risk
Average 6 months Six-month average checking account balance updated − 

checking account monthly
balancet−6

Firm risks
Firm collateral Dummy variable indicating firm-specific collateral − 

(receivables, cash, etc.)
Firm scoret−6 Quarterly updated score measuring firm credit risk − 

characteristics – lower score high risk
Months in business Months in business as reported by the credit bureau + 
Months in business (squared) − 
Loan contract
Loan amount Loan amount at origination − 
Interest rate spreadt−6 Interest rate – prime rate + 
Internal risk ratingt−6 Bank-derived risk rating for the loan + 
Macro and industry risks
Unemployment ratet−6 County unemployment rate + 

the aging process of any business, and we expect the default rate to rise up to a certain
age and then drop thereafter, i.e. younger accounts have a higher probability of default.

Contract structure

Internal risk rating is a behavioural score based on the performance of the loan. The
higher the behavioural score, the higher the risk of a small business defaulting. Loan
amount determines the ex post risk characteristics of the owner and the business. A higher
loan amount implies that both the business and/or the owner are lower risk, and thereby
should reduce the risk of default. In other words, the bank perceives the borrower to be
lower risk, and so, it is willing to provide a higher loan amount.

Macroeconomic risks

We expect that small businesses facing higher local unemployment rate are subject to
higher risks of default.

Industry risks

Control for differing risk profile by SIC industry code.
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Table 1.2 Summary statistics for small business accounts by type
and size

Variables Type Size

Loans Lines Small Large

Number of accounts 11 044 20 259 25 431 5,872
Share of total 35.3% 64.7% 81.2% 18.8%
Owner risks
Owner collateral 0.33 0.02 0.35 0.08
Owner scoret−6 76 79 82 61
Average 6 months $33 987 $31 156 $28 724 $57 059

checking account
Balancet−6

Firm risks
Firm collateral 0.47 0.40 0.44 0.64
Firm scoret−6 136 102 114 122
Months in business 135 109 116 145
Loan contract
Loan amount $103 818 $79 740 $65 420 $197 425
Loan interest rate 7.48 7.42 7.49 6.84
Internal risk ratingt−6 5.19 5.14 5.17 5.07
Macro and industry risks
Unemployment Ratet−6 5.25 5.22 5.23 5.22

2.3. Summary statistics

Table 1.2 provides summary statistics for some of the key variables. About 33% of
the loans and 35% of the small firms have personal collateral, whereas lines and large
firms have less than 10% personal collateral. Conversely, the lines and large firms have
significant amount of firm collateral. Additionally, over 50% of the lines do not have any
collateral. The loan amount is three times as much for the large businesses in comparison
with the small businesses. Although not statistically significant, the internal credit ratings
for the lines of credit and large businesses reflect lower risk in comparison with loans and
small businesses.

3. Empirical results of small business default

We first estimate the baseline hazard, as discussed in Gross and Souleles (2002), using
a semiparametric model to understand the default rate differences of same age accounts
over calendar time and cohort by type and size segments. The semiparametric model
estimation does not assume any parametric distribution of the survival times, making the
method considerably more robust. The baseline survival curves for small business loans
are statistically different than those for the lines (see Figure 1.1). The line sample exhibits
a relatively higher survival rates (i.e. lower probability of default) with account age, but
the loan sample exhibits a relatively lower survival rate (i.e. higher probability of default)
with account age. Next, the baseline survival curves for small business credits between
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Figure 1.2 Survival curves for small business default by size

$100K and $250K are statistically different than those under $100K (see Figure 1.2). The
larger credits exhibit a relatively higher survival rate (i.e. lower probability of default)
with account age, but the smaller credits exhibit a relatively lower survival rate (i.e. higher
probability of default) with account age.

Next, we estimate Equation 1.1 to assess the various factors that may impact the
likelihood of a small business defaulting. We also conduct exhaustive robustness test
by including quadratic specifications for the various risk variables, discrete dummies for
some of the continuous variable, log transformations and others.

We first estimate the conditional probability of lines defaulting and loans defaulting
separately. Table 1.3 summarizes the estimated impact of owner and firm risk on the
likelihood of a small business defaulting, while controlling for loan contract structure and
macroeconomic and industry risks. Below, we discuss how lines and loans do respond
differently to their determinants, particularly owner- and firm-specific factors.
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Table 1.3 Determinants of small business default – loans and lines

Variable Type

Loans Lines

Coefficient Std. t-Statistics Coefficient Std. t-Statistics
Value Error Value Error

Owner risks
Owner collateral −0.97823 0.35498 −2.76 −1.89872 1.24876 −1.52
Owner scoret−6 0.00103 0.00040 2.59 0.00299 0.00124 2.41
Average 6 months 0.00000 0.00000 −2.30 −0.00001 0.00000 −3.06

checking account
balancet−6

Firm risks
Firm collateral −1.93484 0.33299 −5.81 −1.10893 0.33289 −3.33
Firm scoret−6 −0.00073 0.00033 −2.22 −0.00068 0.00023 −2.99
Months in business 0.00124 0.00340 0.36 0.04140 0.01239 3.34
Months in business −0.00001 0.00000 −2.55 −0.00007 0.00002 −3.03

(squared)
Loan contract
Loan amount 0.00000 0.00000 −2.20 −0.00001 0.00000 −2.94
Risk premiumt−6 0.05283 0.01839 2.87 2.53459 0.33289 7.61
Internal risk ratingt−6 0.32349 0.04020 8.05 1.38989 0.13289 10.46
Macro and industry risks
Unemployment ratet−6 2.49890 0.73495 3.40 0.68933 0.56757 1.21
Quarter dummy Yes Yes
SIC dummy Yes Yes
State dummy Yes Yes
Log likelihood −627 −578
number of observations 298 230 547 026

3.1. Default behaviours of loans versus lines

Our results show that owner characteristics are less predictive of line defaults in compari-
son with loan defaults. The use of the owner’s personal assets to secure loans, as opposed
to lines, reduces the likelihood of loans defaulting. The finding that owner collateral is
not a significant determinant of default for small business lines of credit is consistent with
Berger and Udell (1995). Furthermore, a deterioration in the owner’s as well as the firm’s
credit risk significantly raises the default risks of small businesses; however, the marginal
impact varies between credit types. In Table 1.4, we show that the impact of a 10-point
increase in the owner credit score (a deterioration of the credit risk of the owner) raises
the default probability by 10.1% for loans, but only 6.3% for lines. On the contrary, a
10-point decline in the firm credit score (a deterioration of the credit risk of the firm)
raises the default probability by 6.3% for loans, but only 5.2% for lines.

Moreover, we find that both owner and firm collateral are better predictor of default
for loans than for lines. Owner collateral lowers the risk of default by 8.3% for loans,
but only 2.9% for lines. Similarly, firm collateral lowers the risk of default by 4.4% for
loans, but only 1.4% for lines.
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Table 1.4 Marginal effects of owner and firm characteristics on small business default

Variables Type Size

Loans (%) Lines (%) Small (%) Large (%)

Owner risks
Owner collateral
10 Point rise in owner scoret−6

$1000 Increase in average 6 months
checking account balancet−6

Firm risks
Firm collateral
10 point drop in firm scoret−6

12 Months rise of months in business

−8�3
10�1

−11�8

−4�4
6�3

−5�8

−2�9
6�3

−18�1

−1�4
−5�2

−10�5

−2�2
13�6
−5�1

−0�7
2�2

−7�9

−5�9
8�1

−12�4

−2�3
6�1

−13�1

Equally important, the results show that the number of months in business is signifi-
cantly positive, with the quadratic term significantly negative, for lines of credit. Small
businesses that have been in business for an additional 1 year have a lower probability
of default by 5.8% and 10.5%, respectively, for loans and lines. This result suggests that
younger firms face higher risk of defaulting. However, the number of months in business
is statistically insignificant in determining loan defaults. This would imply that even with
age, loans are inherently more risky than lines.

The 6-month average checking account balance is highly significant in determining the
default risks of lines and loans. However, the marginal impact of a $1000 rise in average
checking account balance lowers the probability of default by 18% for lines, but only
by 11% for loans. These results support the Mester et al. (forthcoming) argument that
‘banks are special’.

3.2. Default behaviours of small versus large credits

We investigate whether default behaviours of credits differ between small businesses with
less than $100K (small) and those with debt between $100K and $250K (large). Table 1.5
summarizes the estimated coefficients of small business default for small and large debt
accounts. These results are very interesting and provide evidence that small businesses
under and over $100K have very different risk characteristics, as discussed below.

The risks of default between small businesses with credit amount of less than $100K
and those with credit amount between $100K and $250K mainly differ in owner
characteristics. For example, although both owner and firm collateral significantly reduce
the likelihood of default, the impact is more striking for firms with credit amount between
$100K and $250K (large) than for firms with credit amount less than $100K (small).
Specifically, the use of owner collateral lowers the risk of default of large firms by 5.9%,
but of small firms by only 2.2%. Similarly, the use of firm collateral lowers the risk of
default of large firms by 2.3%, but of small firms by only 0.7%.

Furthermore, our results suggest that owner-specific score may be a better predictor
of small firm default risks, whereas firm-specific score is a better predictor of large firm
default behaviours. The reason lies in the magnitude of the marginal impact. For example,
a 10-point increase in owner score (a deterioration in the owner’s credit risk) raises the
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Table 1.5 Determinants of small business default – small and large

Variable Size

Small Large

Coefficient Std. t-Statistics Coefficient Std. t-Statistics
Value Error Value Error

Owner risks
Owner collateral −0.33875 0.13489 −2.51 −8.32895 3.32478 −2.51
Owner scoret−6 0.00009 0.00004 2.31 0.23885 0.06924 3.45
Average 6 months −0.00001 0.00000 −2.12 −0.00001 0.00000 −2.83

checking account
balancet−6

Firm risks
Firm collateral −3.23899 0.44389 −7.30 −9.2381 6.7744 −1.36
Firm scoret−6 −0.00074 0.00034 −2.15 −0.00079 0.00039 −2.03
Months in business 0.00124 0.00798 0.16 0.02878 0.03848 0.75
Months in business −0.00003 0.00001 −2.41 −0.00007 0.00003 −2.24

(squared)
Loan contract
Loan amount −0.00001 0.00000 −4.67 −0.00001 0.00000 −3.50
Risk premiumt−6 0.04898 0.03289 1.49 0.33589 0.08327 4.03
Internal risk ratingt−6 0.54899 0.06325 8.68 0.73298 0.23775 3.08
Macro and industry risks
Unemployment ratet−6 0.13295 0.29835 0.45 0.03893 0.98355 0.04
Quarter dummy Yes Yes
SIC dummy Yes Yes
State dummy Yes Yes
Log likelihood −984 −591
Number of observations 686 347 158 908

probability of default by 13.6% for small credits and only by 8.1% large credits. On the
contrary, a 10-point decline in firm score (a deterioration in the firm’s credit risk) raises
the probability of default by 2.2% for small credits, but by 6.1% for large credits. These
results suggest that small credits behave more like consumer credits, whereas large credits
behave more like commercial credits.

4. Conclusion

We empirically validate the importance of owner versus firm credit bureau score in
determining default behaviours of small business loans, while controlling for time to
default, the loan contract structure as well as macroeconomic and industry risks. We also
compare and contrast the impact of owner and firm characteristics on small business
default by type (loans versus lines) and size (under $100K versus $100K and $250K).

Our results indicate that both owner- and firm-specific characteristics are impor-
tant predictors of overall business default. However, the economic impacts of owner
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characteristics significantly differ for small business loans than for lines. The marginal
impact of owner collateral, owner credit risk improving and owner–bank relationship
strengthening in lowering the risks of default is considerably larger for loans than for
lines.

When we differentiate between small and large business accounts, our results suggest
that the economic impact of owner and firm characteristics on small business default also
differ considerably. For example, the marginal impact of an owner credit risk deteriorating
on the probability of default is larger for small firms, whereas the marginal impact of a
firm credit risk deteriorating on the probability of default is larger for large firm.
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Notes

1. Credit bureau scores are built on historic data. The datasets are typically collected over a 12-month period
with performance data for additional 24 months.

2. We very much liked to include a longer time period; unfortunately, data were not available. However,
our data cover both the latter part of an economic growth and the early part of an economic recession.
Moreover, as discussed in Berger and Udell (1998), an estimated 23.7% (52.7%) of small businesses
disappear within the first 2 (4) years because of default/bankruptcy and other reasons. Hence, we should
capture a sufficient number of defaults within the 2-year sample period (4 years in business because a
business had to be operational for at least 18 months to qualify for a loan).

3. See, www.experian.com
4. As discussed in Gross and Souleles (2002), this “makes the data stationary.” We conduct robustness tests

by excluding accounts that default in the first 2 months since January 2000. The results are qualitatively
the same.

5. For the purpose of this study, alternate definitions of default were also considered. Specifically, we defined
default as 90 days past due and the results are robust to the definition of default.

6. Loan age “account seasoning” is modelled as a polynomial also discussed by Gross and Souleles (2002).
The Cox Model does not explicitly report the coefficient values for the loan age variable, but the survival
curves do provide the impact of account seasoning in small business default.

7. Months in business does not necessarily equal to loan age. As over 90% of the accounts in the dataset
have been in business anywhere from 6 months to 24 months before applying for a loan at the financial
institution.

8. Our data are primarily from the ten New England states. The dummies control for any states laws or
state-specific macro economic polices.
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9. For the purposes of this study, we interact the state and SIC dummy variables so that we have a state-
specific control variable for the same SIC across states. This will help isolate any state-specific effect on a
particular two-digit SIC code.

10. A related issue is the appropriate lag structure for these variables. As discussed in Gross and Souleles
(2002), we could choose to lag these variables at account origination date, but that would not necessarily
control for the risk composition between time of origination and the time since the beginning of the
sample. Next, we could choose to control them at the time since the beginning of the sample or lag them
12 months from the time at default. We tried both these specifications, and the results are qualitatively
the same.

11. There are over 70 distinct categories of collateral, but we have classified them into three broad categories,
namely no collateral, owner collateral (residential mortgage, taxi medallions, stocks and bonds, bank
deposits, gold/silver, etc.) and firm collateral (machinery, equipment, inventory, accounts receivable, letters
of credit, etc.). This segmentation is consistent with Berger and Udell (1995, pp. 357) who describe owner
and firm collateral as ‘outside’ and ‘inside’ collateral, respectively.

12. The score is counterintuitive, since traditional scores such as FICO lower risk with higher scores. This
score is developed by Experian.

13. Mester, Nakamura and Renault (forthcoming) also conclude that checking account information does
provide a ‘relatively transparent window’ in predicting small business credit deterioration. Evidence of a
negative relationship between default and checking account balance.



2 Validation of stress testing models
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Abstract

Stress testing has gained importance in financial institutions with the introduction of Basel II.
Although discussed from many perspectives, the predominant use for stress testing is in
predicting how a portfolio would respond to changes in the macroeconomic environment.
The future environment is encapsulated in a macroeconomic scenario for an extreme sit-
uation and then fed through a scenario-based forecasting model. Validating stress testing
models is inherently difficult, because financial institutions do not have historical data rep-
resenting portfolio performance through many severe recessions. Data availability presents
challenges for standard in-sample/out-of-sample tests. This chapter discusses these limitations
and describes a suite of tests that may be employed to determine the robustness of stress
test models. Particular emphasis is given to retail portfolios, which have received very little
attention in the literature.

1. Why stress test?

In many fields, stress testing is a routine part of the job. Architecture and engineering have
made extensive use of stress testing for decades, with some very interesting case examples
such as the Citibank Tower in Manhattan (Morgenstern, 1995). Although those fields
have rich traditions and well-developed scientific literature on the subject, sadly very little
of it is applicable to banking.

Just as a structural engineer would want to run simulations of extreme winds on a sky
scraper, bankers need to simulate the impact of extreme macroeconomic environments
on their portfolios. Therefore, a stress test model must contain explicit macroeconomic
factors. All stress test models are scenario-based forecasts. The most comprehensive use
of stress testing has been in tradable instruments, whereas the technology for stress testing
the loan book has historically lagged far behind.

Basel II is increasing the visibility of stress testing by mandating stress testing for all
of a bank’s business lines. Basel II proscribes how banks will compute minimum capital
requirements for their book of business. However, the calculation of a once-in-a-thousand-
year event cannot be verified directly from the data of the implementing institution,
because such events are not present in their historic data. To validate the capital calcula-
tion, paragraph 765 of the guidelines (Basel Committee on Banking Supervision, 2005)
states clearly that stress testing will be employed to verify that the minimum capital
computed under Basel II is sufficient to protect the bank against reasonably conservative

∗ President and Chief Operating Officer, Strategic Analytics Inc., Santa Fe, NM
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scenarios of macroeconomic downturns. In the event of a shortfall, the minimum capital
requirement will be increased to match the levels indicated by the stress test.

At first, the stress testing requirement of Basel II was largely ignored, but the last
few years have seen this issue brought to the forefront. Central banks around the world
have been releasing studies on best practices and proper use of stress testing for financial
institutions. Documents released by the IMF (IMF, 2005), United Kingdom (Hoggarth
and Whitley, 2003), Ireland (Kearns, 2004), Austria (Boss, 2002), the Czech Republic
(Cihak, 2004) and Singapore (MAS, 2002) are just a few. Stress testing is also appearing
in other contexts, such as a recent joint release by the US regulatory agencies on subprime
lending, explicitly mandating stress testing for any institution engaged in such lending
(OCC, 2004). This requirement is independent of whether those institutions are subject
to Basel II.

Although most of these publications discuss best practices in creating stress testing
models, none discuss how those models should be validated. Stress testing was enlisted
as an indirect means of validating minimum capital calculations, but what validates the
stress tests?

To discuss the validation of stress testing models, two potential areas of confusion must
be addressed immediately. First, stress testing is not the same as sensitivity analysis. If we
have a transition-matrix model predicting that 10% of BB-rated instruments are likely to
be downgraded next year, asking what happens if that rises to 15% is not a stress test. It
is a sensitivity analysis. Arbitrarily varying a model parameter will reveal how sensitive
the portfolio is to that parameter, but says nothing about the likelihood of such a stress
or how the portfolio might perform in an economic downturn.

The second confusion is that measuring goodness-of-fit when creating a model is not
a validation. Portfolio forecasts and stress testing are extrapolation problems. The goal
is to take the known time series and extrapolate to possible distant futures. With stress
testing, we know in advance that we want to use our model to predict performance into
environments never captured in the historical data – an inherently ill-posed problem.

Measuring goodness-of-fit while constructing the model is important, but verifying the
model’s robustness in extrapolation requires some form of out-of-time hold-out sample.
This area of statistics is less well developed than interpolation models (which include
credit rating and credit scoring models), where a large body of literature exists.

Stress testing model validation is largely concerned with verifying that the assumptions,
structures and parameters incorporated into a model trained on historical data will persist
far enough into the future and into extreme environments for the model to be useful.

2. Stress testing basics

Although this chapter does not have sufficient space for a full review of stress testing
approaches, those models all have certain features in common by necessity. Those simi-
larities lead the universal methods for validation.

The following is a list of features of stress test models:

• Use time series modelling.
• Incorporate macroeconomic data.
• Are not based upon the Basel II formulas.
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Unlike scoring models or risk ratings, Bluhm et al. (2002) and Lando (2004) stress
test models are explicitly time series models. Even when they incorporate risk ratings or
scores, they must show how performance will evolve with time.

Time evolution of performance is assumed to be driven by macroeconomic data. The
Basel II guidelines require that recession scenarios be considered, which implies that
macroeconomic variables must be incorporated into those models. All of the validation
work will assume that data exists and that we can build multiple models for comparison.
To the extent that expert intuition is used in the model-building process, we will be testing
the reproducibility of that intuition. If external models are being employed, many of these
tests will not be possible, but the model provided should be asked to conduct appropriate
validation tests.

Stress testing models will not use the minimum capital formulas described in the Basel
II guidelines. Those formulas are meant to quantify the distribution of possible futures
for the portfolio, parameterized by Probability of Default (PD) and the confidence level
(99.9%). They do not predict the time evolution of the portfolio and do not incorporate
any macroeconomic data. Therefore, the Basel II formulas cannot accept as input a serious
recession to see how the portfolio would perform. In fact, the parameterization with PD
is a crude method for adapting the distribution to the many types of products offered by
financial institutions, which is probably one of the motivating factors behind the stress
testing requirement.

In discussing stress testing models, we need to consider three asset classes: market trad-
able instruments, commercial loans and retail loans. These three classes usually require
different modelling techniques to capture the unique dynamics of the products. Fortu-
nately, even though the models are different, they have sufficiently similarity that we will
be able to discuss common validation approaches.

2.1. Tradable instruments

All best-practices surveys find that stress testing continues to focus primarily on tradable
instruments Commitee on the Global Financial System (CGFS, 2005), presumably because
the ability to mark-to-market greatly simplifies the analysis for tradable instruments.
Value-at-risk analysis (VaR) is a simulation approach designed to quantify the range of
possible futures for the portfolio given the observed historic volatility. VaR is ubiquitous
for analyzing tradable instruments, but as pointed out by the CGFS stress testing survey,
it is not suitable for stress testing as it does not explicitly incorporate macroeconomic
variables and does not consider extreme events outside the normal range of experience
although variations have been proposed to achieve this (Kupiec, 1998).

Therefore, stress testing tradable instruments is done by creating econometric models
relating changes in market value to changes in macroeconomic conditions. Given enough
historical data to create such a relationship to macroeconomic drivers, scenarios for those
variables are input to create a scenario-based forecast of the portfolio’s future value.

2.2. Commercial lending models

Stress testing models for loan portfolios are considerably more challenging. In commercial
lending, corporate risk ratings take the place of marking to market, so most models focus
on transitions in credit ratings at the loan level.
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A stress testing model would relate the probability of a rating downgrade to changes
in macroeconomic conditions. These are essentially transition matrices with the probabil-
ities conditioned on key macroeconomic drivers. The ratings transition model may also
be conditioned on a number of other factors available to the lending institution, but the
condition on macroeconomic conditions is the critical requirement. Given such a model,
the stress test involves running a recession scenario and quantifying the impact upon the
portfolio.

2.3. Retail lending models

Stress testing retail loan portfolios is arguably the most difficult. Consumers have credit
scores, but those scores are explicitly intended not to change in any systematic way
through macroeconomic cycles. Further, retail loans, especially subprime loans, have
relatively high levels of predictable losses because of the consumer–product interaction
lifecycle (Breeden, 2003).

With consumer loans, the loans with the highest predictable losses (subprime) have the
lowest sensitivity to macroeconomic conditions. Conversely, the lowest risk loans (prime
mortgage) have the highest sensitivity to macroeconomic conditions (Breeden, 2006).
Portfolio managers usually say that subprime consumers are always in recession, whereas
all prime losses are unexpected.

The result of these challenges is that retail lending stress test models are rarely successful
unless they incorporate known factors such as vintage maturation. To capture the known
structures, models must occur below the total portfolio level, such as the vintage or
account level. A vintage in retail lending refers to a group of loans that were originated
in the same period of time, such as an origination month. Performance for that vintage is
then tracked as a function of time.

Experience has shown that when vintage effects are properly incorporated, stress test
models tying performance residuals to macroeconomic drivers become possible. With-
out this adjustment, variation due to marketing plans and operational policies tends to
destabilize econometric models (Figure 2.1).

2.4. Underlying similarities

Therefore, in considering validation approaches, we need to assume that a time series
model has been built using macroeconomic variables as drivers to explain long-term port-
folio performance as well as other predictive components. Generically, we can represent
this as

ỹ �a� t�v� = f �U �v� �W �a� �X �t��+� �a� t�v� � (2.1)

where ỹ �a� t�v� is the forecast for portfolio performance metric y �a� t�v�, which could be
PD, Loss Given Default (LGD), Exposure at Default (EAD), attrition, balance growth or
other suitable portfolio measures. The factors U�v� capture instrument, loan or vintage-
specific information such as scores or risk ratings, loan attributes, etc. W�a� are variables
as a function of months-on-books, a, designed to capture the process known variously
as seasoning, maturation or vintage lifecycle. X�t� are variables as a function of calendar
date intended to capture macroeconomic impacts.
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Figure 2.1 Delinquent accounts for a portfolio segment split by annual vintages (year of
origination) showing strong maturation effects as well as seasonal and macroeconomic impacts

The model, f , will need to incorporate possible lagged impacts and other transforms
of the input factors, using techniques such as transfer function models. In general, vector
autoregressive models are typically constructed to incorporate the various impacts from
outside factors. See Enders (2004), Wei (1989) and others for thorough discussions on
how to create such models.

We assume that to create a stress test, a stressed scenario for the macroeconomic
variables X̃ �t� has been created and fed through the time series forecasting model f .
Facility-level, loan-level and vintage-level forecasts will all need to be aggregated up to
achieve total portfolio impacts.

To capture cross-correlations between different portfolio metrics or different segments,
we need simply include the same factors X̃ �t� in multiple models. Thus, as the scenario
for the economy unfolds, the full impact can be felt in concert across the portfolio.

3. Overview of validation approaches

With these simple assumptions on the form of the model, we can ask a range of questions.

1. Is the model stable?
2. Does the model forecast well?
3. Are the results reproducible across segments?
4. Do we have reliable scenarios?

Stress test models need to forecast 1 year ahead. This is usually accomplished by
modelling monthly performance data. Although tradable instruments may have longer
histories, they are often in different macroeconomic regimes, meaning that only the last
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10–20 years at most are applicable in the modelling. For retail lending, the longest data
history in the United States is 14 years for mortgage defaults. Most institutions around
the world currently have about 5 years of data for building and testing these models
although the time series are expected to grow due to Basel II. Data sets for emerging
markets are typically among the shortest.

Therefore, we can only expect to see one or two recessions in most data sets. This data
limitation raises the greatest and least testable question of all.

1. Is a model created on recent macroeconomic stresses applicable to possible future
environments?

Some of these questions are more amenable to testing than others. The following
sections will explore the possibilities.

4. Subsampling tests

For short time series, stability tests are the easiest to perform. If we split our data set into
two or more samples, each with the same time range, and rebuild the stress test model
independently on each part, are the models structurally equivalent? This subsampling is
performed on a dimension other than time, because we want to compare models over the
same time period.

4.1. Random sampling

When building a stress test model, we assume the model applies to all the loans or
facilities within that data set. If we randomly split the data set in half, we are assuming
the same model would still apply to both pieces. When account level data is available,
randomly sampling accounts seems the most obvious. For data aggregated to the vintage
level, which is common in retail lending, splitting the data by alternating vintages is a
natural approach.

When the subsamples have been created, the simple first step is to compute goodness-
of-fit statistics for the overall model as applied to each of the subsets. As the model will
still cover the same length of time for all subsets, the accuracy should be statistically
equivalent on all subsets. This is, however, still just a comparison of in-sample model
performance.

Testing the overall model on the subsets is not as good as asking whether those subsets
would produce the same model. The best approach is to create new, independent models
for each data subset to determine how structurally stable the results are. We expect the
dependence of the model f on the macroeconomic factors X�t� to be the same for all
subsets. If the subsets select strongly for different dependencies, it would suggest that the
modelling approach is not sufficiently robust.

The same techniques will apply to the loan- or vintage-specific factors U�v�. By creating
functional relationships between performance and the factors U�v� on different randomly
generated data sets, the stability of the models can again be tested.
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Lastly, we can use the sampling approach coupled with an out-of-sample test. By
holding out the last year data, we can perform a weak comparison (because of the limited
data length) of the models produced on each subset.

Several test statistics are available to measure whether the forecasts coming from two
models are significantly different when applied to an out-of-sample period. Assume that
we have two models, f1 and f2, built on two subsets of the in-sample portfolio of the time
series. To compare the models, we test them on the same out-of-sample data set. The
errors in their forecasts are e1 and e2, respectively. The following test statistics can then
be applied.

F-Statistic

We begin by computing the mean-square-percentage error (MSPE) for each model over
H out-of-sample time points.

H1 ∑
2MSPE = ei (2.2)

H
i=1

By computing the ratio of the MSPE for the two models, placing the larger error in the
numerator, we get the F statistic with H degrees of freedom.

H∑ 2e1i 

F = i=1 (2.3)
H∑ 2e2i 

i=1

If the F -statistic is significantly different from zero, then the models are not equivalent,
and we have failed the stability test.

This test is only valid when the following three conditions are met:

1. Errors are zero mean and normally distributed.
2. Errors are serially uncorrelated.
3. Errors are not cross-correlated.

Granger–Newbold test

In many practical situations, the above conditions for applying the F -test cannot be met.
Granger and Newbold (1976) developed an approach that also applies for series that do
have cross-correlated errors. For their approach, they let xt = e1t +e2t and zt = e1t −e2t.

Then they compute

r
GN = √ xz � (2.4)

�1− rxz� /�H −1� 

where rxz is the correlation between the two series xt and zt. The GN statistic has a
t-distribution with degrees of freedom H −1. If this measure is statistically different from
zero, then the models are not equivalent in their accuracy, and the stability test fails.
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Diebold–Mariano test

The GN test statistic uses a quadratic function of the errors to compare accuracy. This
test has been generalized to any accuracy measure, a common choice being absolute
error (Diebold and Mariano, 1995). Given an objective function g�e� the mean modelling
error is

H1 ∑
d = �g �e1i�−g �e2i�� (2.5)

H
i=1

For models of equivalent accuracy, d = 0. To test whether d is significantly different
from zero, we compute

d 
DM = √( ) (2.6)

	0 +2	1 + � � �+2	q / �H +1−2j + j�j −1�/H� 

If we let 	i equal the ith autocovariance of the sequence di = g �e1i�−g �e2i�, for models
performing j step ahead forecasts, then the DM statistic is a t-distribution with H – 1
degrees of freedom. If the result is significantly different from zero, then the models are
not equivalent.

For examples of the use of these tests and a discussion of their derivations, see Enders
(2004). Keep in mind that these tests utilize a single out-of-sample data set for model
comparison. That data set is probably not comprehensive relative to all possible future
regimes in which the models will be applied. As such, these tests should be recognized as
providing limited confidence about what can happen in the future.

4.2. Old versus new accounts

Random sampling is the best way to test the structural stability of the use of calendar-
based factors, X �t�, such as macroeconomic impacts. However, we also want to verify
that the maturation factors, W �a�, are also stable. By splitting accounts before and after
an arbitrary origination date, we are testing that the accounts booked recently are similar
in behaviour to those booked previously. One should assume that variations in credit
quality will occur between the two groups, but correcting for minor variations in credit
quality, we should still see the same dependence of PD, LGD and EAD on the number of
months since origination.

Failure here is more common than failing the random sampling test. Failure occurs
because the segment population is not stable over time. For example, if a retail lending
business shifted its originations over the last few years from prime to include a significant
subprime population, the expected maturation process for those recent originations would
be significantly different from the prior years’ bookings. Figure 2.2 shows an example of
how the default rate maturation curve can change when stability fails.

This shift in default lifecycle would not be properly captured by an overall average
maturation curve and would lead to time-varying estimation errors that would likely
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Figure 2.2 A comparison of two lines, one for each half of the vintages of a segment, showing
that the dependence of their PD rates on months-on-books has shifted significantly over vintages.
This segment fails the stability test

surface in the calibration to macroeconomic factors. To create a reliable stress test model,
all of the model factors must be stable over the data set, not only the macroeconomic
sensitivity. Although visually the stability failure in Figure 2.2 seems pretty clear, we can
use the Granger–Newbold or Diebold–Mariano tests described in section 4.1 to test the
hypothesis directly. If we create two series computing the differences between each of the
curves in Figure 2.2 and the average curve obtained for the full data set,

eji = Wj �a�−W �a� � (2.7)

where j represents the two series, i is the months-on-books index and the W �a� are the
maturation curves obtained by modelling the full data set. Then, either of the GN or DM
tests can be used to see whether the maturation curves created for the two subsets are
significantly different as compared to the full curve. Note that these errors are most likely( )/( )

H H

correlated so the F-test of F = ∑ e2
1i 

∑
e2

2
i would be inappropriate.

i=1 i=1
Failing the split-vintage test suggests that the segmentation is insufficient to assure

model stability. In the above example, subprime loans should not have been included in
the modelling of prime loans. Over-segmentation is detrimental, because modelling error
will rise as the event rate falls. For all data sets, a ‘sweet spot’ will exist in the trade-off
between increased segmentation to improve estimation of maturation curves, transition
matrices or whatever structural components might be needed versus the decreasing the
segmentation to raise the event rate and diminish the estimation error.
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5. Ideal scenario validation

Once we have verified the structural stability of the stress test model, the question any
reviewer of that model will ask is, ‘How good is it?’ For a scenario-based model, this is
a surprisingly difficult question.

In time series analysis, the typical response is to run an in-sample (in-time) and out-
of-sample (out-of-time) validation. A model is built only on the in-sample data and then
tested on the out-of-sample data.

The challenge with a pure out-of-sample test in scenario-based forecasting is that
a scenario must be chosen for the out-of-sample period. Consequently, we will have
difficulty distinguishing between a bad model and a bad scenario. Stress testing models
will necessarily incorporate macroeconomic scenarios as input, as well as future marketing
plans and account management changes. If the scenario is bad, no level of modelling
sophistication will be sufficient to correct the forecast.

The solution to this problem is to run separate validation tests on the model and the
scenario. To validate the model, we conduct an ideal scenario validation (ISV). Simply
put, if we had used the ‘ideal’ scenario during the out-of-sample period, how accurate
would the model have been. Our usual approach is to treat the estimation of maturation
effects, W�a�; vintage origination factors, U�v�; seasonality, XSSN �t� – a component of
X�t� and the structural model combining these, f, as determinants of the model accuracy.
They are estimated from the in-sample data. For the macroeconomic scenario, XECON �t� –
components of X �t�, we use the actual value of those factors during the out-of-sample
period as the ideal scenario. Similarly, if any new originations are being included in the
stress testing model, the actual bookings for those are used, because in theory, this is a
known plan provided by marketing. Figure 2.3 shows the origin of the components used
in the out-of-sample test.

When the test is run, the forecasting error is an indicator of the model accuracy.
Admittedly, a 12-month test provides limited information, but as the model is validated
across each segment and vintage, greater confidence is gained.

A high error rate for the ISV indicates either too much segmentation leading to high
estimation errors or too little segmentation leading to specification errors in the factors
or drift in the model structure. From a modelling perspective, the best approach is to vary
the segmentation until an optimal value for the ISV is obtained. One straight-forward
method is to over-segment the data, then aggregate structurally similar segments until the
overall ISV has reached a minimum.

ISV data-use timeline 

In-sample

Learn dynamics for
 Credit risk
 Maturation
 Seasonality 

Out-of-sample

Time
Use scenarios for

 New bookings
 Macroeconomic environment 

Figure 2.3 Diagram showing the proper use of in-sample and out-of-sample data for an ideal
scenario validation
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6. Scenario validation

A typical ISV might show a single-digit error rate over a 1-year horizon, but real-life use
of the model should be expected to be less accurate. The problem is that scenario design
is an inexact art, and macroeconomic forecasting is notoriously problematic. When one
sales representative for a vendor of economic scenarios was asked how accurate they were,
the response was ‘It wouldn’t make any sense to publish the accuracy of our scenarios,
because we make a new one every quarter’.

Fortunately, the US Congressional Budget Office is a bit more forthcoming on their
forecasting accuracy. They recently published a report (CBO, 2005) in which they analysed
all of their 2-year forward forecasts made between 1982 and 2003, as well as those from
the US Administration and the Blue Chip index of professional forecasters.

These errors swamp any ISV-measured modelling error. The report points out that all
three forecasting groups are correlated in their errors, so there is little noise-reduction
benefit in combining forecasts. They are most wrong at economic turning points, arguably
when they are needed most. In addition, the forecasts are biased for many years following
significant macroeconomic changes, such as the efficiency gains of the 1990s, which were
not foreseen in their models.

This is all very bleak news for creating a baseline forecast using macroeconomic data
considering that the typical business operational plan uses an 18-month horizon. Although
the results in Table 2.1 clearly shows why we need the ISV approach for validating the
underlying stress testing model, macroeconomic scenario accuracy is less critical to the
use of those models for stress testing. The goal under Basel II is to conduct stress tests
with extreme, improbable and yet plausible scenarios.

The challenge for stress testing scenarios is creating internal consistency. The scenario
must be plausible in the sense that if unemployment rises dramatically, we cannot also
assume that other macroeconomic indicators stay the same or improve. The Fair model
(Fair, 1994) is one such publicly available model often used for generating self-consistent
scenarios.

Aside from testing the internal consistency of a macroeconomic scenario, another
challenge is to compute the probability of occurrence for a given macroeconomic scenario.
Few, if any, macroeconomic forecasters can provide a quantified probability, but even if
they could, it would not be useful for Basel II. If a recession scenario was assigned as one

Table 2.1 Mean percent error for 2-year-ahead forecasts from the congressional budget office,
blue chip index, and US administration

Mean percent error by variable CBO(%) Blue chip(%) Administration(%)

Growth rate for real output 130 109 141
Growth rate for nominal output 19 17 21
Inflation in the consumer price index 25 27 25
Nominal interest rate on 3-month 28 29 28

treasury bills
Nominal long-term interest rate 10 10 12
Real interest rate on 3-month 90 77 85

treasury bills
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of the 1% worst recessions, it does not mean that it will produce a loss estimate in the 99th
percentile of the distribution for a specific retail portfolio. For example, while commercial
loans to the transportation sector may be very sensitive to an oil shock, retail loans will
respond much more slowly and mostly through indirect impacts on employment and
wages. The result is that we cannot know the severity of a scenario for retail lending just
from an economist’s ranking of that scenario according to GDP or some other measure.
Thus, Basel II makes the vague request that a ‘severe’ recession be tested and compared
against the minimum capital calculation, without specifically requesting a recession at
the 99.9% severity level. Although regulators will probably put standards in place for
scenario design, the difficulty of assigning probabilities to those scenarios will remain.

7. Cross-segment validation

The greatest problem with time series analysis for retail portfolios is the limited data
length. As mentioned earlier, the longest portfolio performance history in the United
States is 14 years for mortgages, and most portfolios are much shorter. Worldwide,
most practitioners have only one or two recessions at most to model against. Comparing
regional economic differences within a portfolio is one way to augment this history.

Rather than model an entire portfolio as one macroeconomic region, we can compare
geographic regions that may have different macroeconomic conditions. For example, at
a national level no housing price collapses have occurred in the United States in decades,
but a regional or city-level segmentation will reveal housing price bubbles.

With a geographic segmentation, the goal would be to create a stress test model
applicable across all segments, but hold a few segments out during the model building so
that they may be used as an out-of-sample test.

Similar regional analyses may be possible for multinational portfolios in Europe or Asia
if suitable calibrations are included for national differences in consumer behaviour.

8. Back-casting

Every discussion of time series model validation needs to consider the issue of het-
eroskedasticity. In this context, are recent recessions (i.e. volatility) representative of
portfolio response to future recessions?

One way to examine this problem is to look backward. By calibrating portfolio per-
formance to macroeconomic factors, one can consider how the portfolio would have
performed during previous macroeconomic environments. Financial institutions do not
have internal data to verify that this back-cast performance was actually experienced,
but the nature of the portfolio impact from those previous recessions can be compared
to recent recessions. Was the rate of change in portfolio performance similar to what we
observe today? Was the autocorrelation structure similar? At the most basic, does the
model capture the impact of known prior recessions in a plausible manner?

One unpublished study at a major multinational bank suggested that recessions since
the early 1980s are similar in consumer loan response, but recessions prior to that began
and ended more abruptly. This is interpreted as a sign of the impact of modern interest
rate management by the Federal Reserve. If confirmed, the question becomes whether
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future recessions should be assumed to behave more like recent recessions or whether
all eras should be considered when trying to create severe recessions. Such questions are
more philosophical and political than the domain of model validation and thus will likely
be resolved by the regulatory bodies.

9. Conclusions

Any stress testing model is necessarily a scenario-based forecasting model. To validate that
model, one must distinguish between the accuracy of the predictable internal portfolio
dynamics and the unpredictable or uncontrolled external impacts. We cannot have enough
certainty in any macroeconomic scenario to get a highly accurate long-range portfolio
forecast, but we can validate the predictable part of the model and feed it with plausible
macroeconomic scenarios to measure the range of possible future portfolio performance.
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3 The validity of credit risk model
validation methods∗ 

George Christodoulakis† and Stephen Satchell‡

Abstract

In this chapter, we discuss the nature, properties and pitfalls of a number of credit risk model
validation methods. We focus on metrics of discriminatory power between sick and healthy
loans, their association and their properties as random variables, which may lead to pitfalls
in model validation processes. We conclude with a discussion of bootstrap and credit-rating
combinations.

1. Introduction

The development of various types of credit risk models has its origins in the pricing of
assets and has been further strengthened by the Basel Capital Accord, which allows for the
determination of capital adequacy of credit institutions using internal rating models. This
process has led the financial institutions as well as their supervisors to develop not only
internal models but also validation methods to assess the quality and adequacy of those
models. The need for credible assessment stems from the fact that using low-quality models
could lead to sub-optimal allocation of capital as well as ineffective management of risks.
The assessment of credit risk model adequacy is usually based on the use of statistical
metrics of discriminatory power between risk classes, often referred as model validation,
as well as on the forecasting of the empirically observed default frequency, often referred
as model calibration. The most popular measures of discriminatory power constitute the
Cumulative Accuracy Profile (CAP) and the Receiver Operating Characteristic (ROC),
which can be summarized by the statistical metrics of Accuracy Ratio (AR) and Area under
ROC (AUROC), respectively. Related statistics, but with limited applications, constitute
the Kolmogorov–Smirnov test, the Mahalanobis distance as well as the Gini coefficient.

In this chapter, we present the advantages and disadvantages of various validation
metrics, the degree of their information overlap, as well as the conditions under which such
measures could lead to valid model assessments. A critical aspect in this direction is the
recognition of randomness, which results in random estimators of validation measures. In

∗ The views expressed in this paper are those of the authors and should in no part be attributed to the Bank of
Greece.

† Manchester Business School and Bank of Greece, Manchester, UK
‡ Trinity College and Faculty of Economics, University of Cambridge, Cambridge, UK
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this respect, the assessment of two competing models should not be based on the absolute
difference of the estimated validation measures, but rather on the statistical significance
of this difference.

2. Measures of discriminatory power

The discrimination of debtors by using quantitative scoring models essentially intends to
reflect the difference between true default and true non-default events. Thus, the model
might lead to a correct or a wrong prediction of each state. In particular, the four
possibilities correspond to ‘correct alarm’, ‘correct non-alarm’, ‘false alarm’ and ‘false
non-alarm’, where the latter two correspond to Type-II and Type-I error, respectively. In
percentage form, the above four possibilities are presented in Table 3.1.

2.1. The contingency table

In its static form, Table 3.1 is called contingency table. The default forecast row of the
table contains the number of creditors who were correctly classified as defaulters as a
percentage of the true number of defaults, as well as the number of creditors who were
wrongly classified as defaulters – whilst they have survived – as a percentage of the true
number of non-defaults (Type-II error). The non-default forecast row of the table contains
the number of creditors who were wrongly classified as non-defaulters – whilst they have
defaulted – as a percentage of the true number of defaults (Type-I error), as well as the
number of creditors who were correctly classified as non-defaulters as a percentage of the
true number of non-defaults. Clearly, each column sums up to unity; thus, knowledge of
one element immediately implied knowledge of the other.

The contingency table reveals the complete static picture of model performance. How-
ever, the comparability of contingency tables from competing models would depend on
the definition of default. As long as the model assessment concerns only the two basic
classes, default and non-default, the contingency tables would be immediately compara-
ble. In the case of more than two or continuous classes, e.g. from 1 to 100, the definition
of default would depend on the subjective cut-off point of the classification scale into two
categories. For different cut-off points, any model would exhibit different performance;
thus, contingency tables could be used as a mean of assessment of competing models only
for common cut-off points.

Table 3.1 Contingency table

Default Non-default

Default forecast
Correct alarms

%
False alarms

%
Defaults Non-defaults 

False non-alarms Correct non-alarms
Non-default forecast % %

Defaults Non-alarms 

Total 100 100



29The validity of credit risk model validation methods

2.2. The ROC curve and the AUROC statistic

A way to overcome the above difficulties of contingency tables would be to describe
graphically the model performance for all possible cut-off points. Thus, the ROC curve
is defined as the plot of the non-diagonal element combinations of a contingency table
for all possible cut-off points. That is, the plot of correct alarm rate (CAR)

Correct alarms
CAR = %

Defaults 

on the vertical axis, versus the false alarm rate (FAR)

False alarms
FAR = %

Non-defaults 

on the horizontal axis, for all possible cut-off points. In Figure 3.1, we plot three possible
ROC curves:

A perfect model would correctly predict the full number of defaults and would be rep-
resented by the horizontal line at the 100% correct alarm level. On the other side, a model
with zero predictive power would be represented by the 45� straight line. Finally, any
other case of some predictive power would be represented by a concave curve positioned
between the two extreme cases. The complements of the vertical and the horizontal axes
would then represent the diagonal elements of the contingency table. Thus, the comple-
ment of the vertical axis would give the false non-alarm rate, whilst the complement of
the horizontal axis would give the correct non-alarm rate.

In the case that the ROC curve of a particular model lies uniformly above the ROC
curve of a competing model, it is clear that the former exhibits superior discriminatory
power for all possible cut-off points. In the case that the two curves intersect, the point of
intersection shows that at that point the relative discriminatory of the models is reversed
(see Figure 3.2).
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Figure 3.1 The receiver operating characteristic (ROC) curve
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Figure 3.2 Alternative receiver operating characteristic (ROC) curves

The area under the ROC curve (AUROC) summarizes the information exhibited by the
curve in a single statistic defined as

∫ 1

AUROC = CAR�FAR�dFAR 
0

The AUROC statistic is often used instead of ROC curve for the assessment of model
performance. Clearly, the statistic takes values in the [0.5,1] interval where the two
bounds correspond to models with zero and full discriminatory power, respectively. It
must be emphasized that in case of two competing models, say 1 and 2, with intersecting
ROC curves, even if AUROC1 > AUROC2, there will be a range of cut-off points in
which model 2 might exhibit superior discriminatory performance. Therefore, in certain
applications and selected cut-off points, the analyst might tend to approve models with
smaller AUROC as compared with competing models.

2.3. The CAP curve and the AR statistic

The CAP curve is composed of combinations of the CAR (vertical axis) and the total
number of defaults and non-defaults (horizontal axis) for all possible cut-off points.
Graphically, we obtain the result shown in Figure 3.3.

A model of zero discriminatory power would be represented by the straight line of 45� ,
whilst a perfect model of full discriminatory power would increase linearly its CAR to
100%. Any other model of non-zero discriminatory power would be represented by a
concave curve positioned between the two extreme cases.

A summary statistic for the information exhibited by a CAP curve is called AR. It is
defined as the ratio of the area under the model’s CAP curve over the area under the CAP
curve of the perfect model and takes values in the [0.5,1] interval where the two bounds
correspond to models with zero and full discriminatory power, respectively.
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Figure 3.3 The cumulative accuracy profile (CAP) curve

There are arguments on the relationship between AUROC and AR and a study by
Engelmann et al. (2003) shows that these statistics are essentially equivalent. In particular,
it can be shown that

AR = 2 �AUROC −0�5� 

Clearly, the AR is simply a linear transformation of the AUROC; thus, both statistics
contain he same information and knowledge of any one of them would immediately imply
knowledge of the other.

3. Uncertainty in credit risk model validation

Credit scoring models intend to discriminate between default and non-default events
using a sample drawn from a non-observable population. The sample is composed of
default and non-default events and the full set of scores estimated by a credit institution
is an effort to infer the population properties from those observed in the sample. Given a
number of model imperfections, the credit-scoring results are often subject to substantial
variation because of the quality of the data sample and its composition between default
and non-default events. Experimental empirical applications on extended databases, see
Stein (2002), have shown that the existence of a small number of defaults in a data sample
constitutes the main factor affecting the variation of model discriminatory performance. In
real-world applications, most credit institutions have limited access to adequate and valid
databases, and in this sense, they are subject to extensive risk of under- or over-assessment
of credit risk model adequacy. On this basis, credit institutions should emphasize on the
analysis and comprehension of scoring performance variation so that model validation is
interpreted adequately. The literature has proposed a number of experts but also simple
and applicable methods in this direction, which are often borrowed from other disciplines,
see Pesaran and Skouras (2001).



32 The Analytics of Risk Model Validation

3.1. Confidence intervals for AUROC

Let us consider every credit score as one possible realization of a random variable. In the
case that the scoring concerns an element from our sample of defaults, this is denoted
as RD, otherwise RND. Thus, the probability to characterise correctly a default event is
Pr(RD < RND). Because for every cut-off point, C, the CAR and the FAR are defined as

CAR = Pr �RD < C� 

FAR = Pr �RND < C� 

then,

Pr �RD < RND� = AUROC 

Mann and Whitney (1947) have established the U -statistic for the static test of zero
discriminatory power hypothesis

Pr �RD < RND� = 0�5

of a given model. The U-statistic is essentially a statistically unbiased estimator of AUROC.
On the basis of Mann and Whitney, Engelmann et al. (2003) have shown that the
U-statistic is asymptotically normally distributed and propose the calculation of a confi-
dence interval of the form[ ( ) ( )]

1+
 1+
 
Û − �̂Û �−1

2
� Û + �̂Û �−1

2

The true value of AROC should be within the confidence interval with probability 
,
whilst U�ˆ �̂Û and � denote the estimated U-statistic, its estimated standard deviation and
the standard normal distribution, respectively. Empirical analysis suggests that the above
confidence interval is a satisfactory proxy as long as the number of defaults in the sample
is at least 50, otherwise one may use alternative computational methods such as those
described in Bamber (1975).

Clearly, the difference in the estimated value of the AUROC statistic of two competing
scoring models can be due to chance. DeLong et al. (1988) as well as Engelmann et al.
(2003) show that it is possible to test for the statistical significance of the difference
between AUROC estimates from competing models. In particular, we can show that the
standardized difference between the U-statistics of two models( )2 

Û1 − Û2 

�
U

2
ˆ

1
+�

U

2
ˆ

2
−2�Û1Û2

follows a X2 �1� distribution, where �2
ˆ ��2

ˆ ��2
ˆ ˆ denote the variances of the U-statistics

U1 U2 U1U2

from models 1 and 2 as well as their covariance. Therefore, we can immediately test for
the statistical significance of the difference between AUROC estimates from competing
models.
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3.2. The Kupiers Score and the Granger–Pesaran Test

The Kupiers Score (KS) was originally used in the evaluation of weather forecasts, see
Murphy and Dann (1985), as well as in the construction of Henrikson and Merton (1981)
test statistic for market-timing in finance, which was subsequently generalized by Pesaran
and Timmermann (1992). It is defined as the distance between the CAR and the FAR:

KS = CAR− FAR 

Granger and Pesaran (2000), show that the Pesaran–Timmermann statistic can be
expressed as

√ 
N ×KS a

GP = ( ) 1 ∼ N �0�1� 
pf �1−pf � 2

pa�1−pa� 

where pa denotes the number of realized defaults over the full number of data (default and
non-default) and pf denotes the number of correctly and incorrectly predicted defaults
over the full number of data (default and non-default). The GP statistic can be shown to
follow a standard normal distribution, thus making testing procedures readily available.

4. Confidence interval for ROC

Basel II recommendations place the validation of credit risk models at the heart of credit
risk management processes. Financial institutions develop credit-rating models that are
often judged on the basis of statistical metrics of discriminatory power as well as default
forecasting ability. The ROC is the most popular metric used by creditors to assess credit-
scoring accuracy and as part of their Basel II model validation. Related tests but with
relative limited applications are the Kolmogorov–Smirnov test, the Mahalanobis distance
as well as the Gini coefficient. A recent review paper has been published by Tasche
(2005). Christodoulakis and Satchell (2006) developed a model to provide a mathematical
procedure to assess the accuracy of ROC curve estimates for credit defaults, possibly
in the presence of macroeconomic shocks, supplementing the non-parametric method
recommended by Engelmann et al. (2003) based on the Mann and Whitney (1947) test.
In this section, we shall focus on the properties of the method offered by Christodoulakis
and Satchell (2006).

4.1. Analysis under normality

Let us denote sick and healthy credit scores by y and x, respectively. Both are assumed to
be absolutely continuous random variables, and their distribution functions are defined
as Fy �c� = Pr �y ≤ c� and Fx �c� = Pr �x ≤ c�, respectively, and Fx 

−1 ��� denotes the inverse
distribution function that is uniquely defined. A perfect rating model should completely
separate the two distributions whilst for an imperfect (and real) model perfect discrimina-
tion is not possible and the distributions should exhibit some overlap. The latter situation
is presented in Figure 3.4 using normal density functions.
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Figure 3.4 Rating score distributions for sick and healthy loans (Source: Christodoulakis and
Satchell, 2006)

The decision maker discriminates the debtors belonging to the two classes by intro-
ducing a cut-off point as depicted in Figure 3.4, which would classify all the debtors
below that point as potential defaulters and those above as potential survivors. We then
have four possible decision results as clearly described by Sobehart and Keenan (2001):
(1) debtors classified below cut-off that eventually defaulted (correct alarms), (2) debtors
classified below cut-off that eventually survived (false alarms), (3) debtors classified above
cut-off that eventually survived (correct survivors) and (4) debtors classified above cut-off
that eventually defaulted (missed alarms).

We can then construct the ROC by calculating for every possible cut-off point in the
range of rating scores, the ratio of correct alarms to total number of defaults (CAR) and
false alarms to total number of non-defaults (FAR). Then, ROC is defined as the plot of
pairs of CAR versus FAR. Clearly, both quantities take values between zero and one, and
in Figure 3.1, CAR can be represented by the integral of the sick loan density up to the
cut-off point whilst FAR can be represented by the integral of the healthy loan density
up to the cut-off point. This probabilistic interpretation leads us to state the following
proposition, which is taken from Christodoulakis and Satchell (2006).

Proposition 1
If the credit-rating scores for defaulters y and non-defaulters x are represented by mutually
independent normally distributed random variables y ∼ N 
y��y 

2 and x ∼ N 
x��x 
2 ,

respectively, then the ROC satisfies the following relationship:

( ) 
 −
 +�−1 �FAR��
CAR = � �−1 �FAR� = � x y x 

y 

where �( ) denotes the cumulative standard normal density.
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Proof See Christodoulakis and Satchell (2006).
We can estimate the unknown parameters 
x�
y��x��y, as the usual sample moments,

given two samples x1� � � � � xN1
and y1� � � � � yN2

.

4.2. Examples under normality

Let us consider some numerical examples presented in the original paper to illustrate the
relevance of estimated parameters in our analysis. We assume a ‘true’ data-generating pro-
cess in which the means of sick and healthy loan credit-rating scores are −7 and 2, respec-
tively, and their standard deviation is 5. Also, assume that sick (healthy) loan mean has
been underestimated (overestimated) taking value −8 (3). This would result in a false belief
that the rating model exhibits superior performance over the entire range of FARs. The
reverse results would become obvious in the case that sick (healthy) loan mean had been
overestimated (underestimated) taking value −6 (1). We plot all three cases in Figure 3.5.

Then, let us assume that sick (healthy) loan standard deviation has been underestimated
(overestimated) taking value 4 (7). This would result in a false belief that the rating
model exhibits superior (inferior) performance for low (high) FARs. The reverse results
would become obvious in the case that sick (healthy) loan standard deviation had been
overestimated (underestimated) taking value 7 (4). We plot all three cases in Figure 3.6.

4.3. The construction of ROC confidence intervals

In this subsection, we shall turn our attention to the construction of ROC confidence
intervals. Let us denote our estimated y by CAR ˆ versus the true CAR��� FAR�,�� FAR 

where � = 
 �
 �� �� . Then, from Christodoulakis and Satchell (2006), we state thex y x y 

following proposition for the confidence interval of CAR.
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Figure 3.5 ROC sensitivity to mean mis-estimation (Source: Christodoulakis and Satchell, 2006)
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Figure 3.6 ROC sensitivity to variance mis-estimation (Source: Christodoulakis and Satchell,
2006)

Proposition 2
If the credit-rating scores for defaulters y and non-defaulters x 
independent normally distributed random variables y ∼ N 

are represented by mutually
��2 ��2and x ∼ N ,y xy x 

respectively, and Proposition 1 holds, then the confidence interval for CAR is given by

1+alphaˆCAR �� FAR −�−1 d < CAR��� FAR� 
2

1+alphaˆ +�−1�� FAR d�3�6�< CAR 
2

1+alpha 

2
where �−1

= 

is the upper alpha per cent point of the standard normal and
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h 

d2
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2h 
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22� (y 
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where

h = �( −1 �x� ) 

 −
 +h� x y x 

a = 
y 

Proof See Christodoulakis and Satchell (2006).

4.4. Analysis under non-normality

In this subsection, we shall study the effects of non-normality by assuming that our
data are generated by independent skew-normal distributions, originally introduced by
O’Hagan and Leonard (1978) as priors in Bayesian estimation and developed by Azzalini
(1985, 1986) and further generalized by Azzalini and Dalla Valle (1996) and Arnold and
Lin (2004) among others. Let us denote

y = 
y +�yvy 

where vy ∼ SN �y and �y is a real constant then the density function of the skew normal
distribution for v is given byy 

pdf vy = 2� vy � �yvy 

where

( ) 1 v2 

� vy = √ exp − y 

2� 2 

is the standard normal density and �( ) is the cumulative standard normal. In this context,
the parameters 
, � and � refer to location, scale and skewness parameters, respectively,
and do not correspond to moments. The skew normal accommodates a variety of skewness
patterns as � varies, whilst it converges to the Normal as � → 0. Similarly, for non-default
data we assume

x = 
 +� vx x x 

where v ∼ SN �� �. We can show thatx x

2� 
E �x� = 
+�� ( 1+�2 ) 

2�2 

Var �x� = �2 1− 
� �1+�2� 

whilst both skewness and kurtosis also depend on �. Thus, in the presence of skew-normal
data-Generating processes, the decision problem of discriminating between default and
non-default scoring distributions, as depicted in Figure 3.1, would have a large number
of analogues depending on the relative values of skewness parameters �x and �y on top
of location and scale parameters.
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4.5. Examples under non-normality

Adopting the examples of Christodoulakis and Satchell (2006), for �y = 3 and �x = −3
the likelihood of making discrimination errors is shown to decrease in Figure 3.7, but
when �y = −3 and �x = 3, we observe clearly that the distributions develop extensive
overlap which in turn enhances the likelihood of making both types of discrimination
errors (see Figures 3.7 and 3.8).

Our results under skew normal are now summarized in Proposition 3.
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Figure 3.7 Rating score distributions for sick and healthy loans (Source: Christodoulakis and
Satchell, 2006)
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Proposition 3
If the credit-rating scores for defaulters y and non-defaulters x are represented by mutually
independent skew-normally distributed random variables y ∼ SN 
 ��2�� and x ∼( ) y y y 

SN 
x��x 
2��x respectively, then the ROC satisfies the following relationship.


 −
 +CSN−1 �FAR�� �� 
CAR = CSN 

x y x x
��  

� y (( ) y ) (( ) )
= � 

x y x x −2T 
x y x x

��

 −
 +CSN−1 �FAR�� �� 
 −
 +CSN−1 �FAR�� ��

� � y 
y y 

where CSN( ) and �( ) denote the cumulative skew-normal and standard normal densities,
respectively, and T( ) denotes the Owen (1956) function.

Proof See Christodoulakis and Satchell (2006).

Note that given values of g and k, the Owen (1956) function T�w�k� calculates the
quantity

w2 ( ) 
1 ∫ k 

exp − 
2

1+x2 

T �w�k� = d dx
2� 0 1+x2

The ROC curve described in Proposition 3 has a more general form as compared with
that of Proposition 1 in that it is affected not only by location and scale parameters but
also by the shape parameter. This allows for further flexibility and accuracy in generating
ROC curves as we can show that the four moments of the skew-normal distribution
are all affected by the presence of skewness. Let us consider a ‘true’ data-generating
process in which the means of sick and healthy loan credit-rating scores are −7 and
2, respectively, and their standard deviation is 5. In addition, the true sick and healthy
loan shape parameters are 1 and 0.3, respectively. Let us assume that sick loan shape
parameter has been mis-estimated taking possible values 0, 1.5 and 2.5, respectively.
Plotting these alternative ROC curves in Figure 3.9, we observe clearly that sick skewness
underestimation (overestimation) results in a false belief of rating model superior (inferior)
performance over the entire range of FARs. Ultimate under- (over) estimation of skewness
parameter would lead the analyst to the false conclusion that the model approaches
perfectly efficient (inefficient) performance.

In the case that both sick and healthy loan parameters are mis-estimated or under dif-
ferent true data-generating processes, these comparative static effects would be effectively
altered. That is, using all the parameter values as described above, but for healthy loan
skewness 1.3 or −1.3, our resulting ROC would be depicted as in Figures 3.10 and 3.11,
respectively.

In Figures 3.10 and 3.11, we see that our false impression on the performance of a
model is subject to shape parameter trade-offs between sick and healthy loan distributions.
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Figure 3.10 ROC sensitivity to sick loan skew mis-estimation (Source: Christodoulakis and
Satchell, 2006)

Of course, the picture would further complicate in case that location and scale parameters
change as well. The following corollary describes the relationship between Proposition 1
and Proposition 3.
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Figure 3.11 ROC sensitivity to sick loan skew mis-estimation (Source: Christodoulakis and
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Corollary
The ROC of Proposition 1 is a special case of Proposition 3.

Proof See Christodoulakis and Satchell (2006).

5. Bootstrapping

A common method to empirically extract statistics with unknown properties in the
presence of small samples is called Bootstrapping, which is widely used in the area of
econometrics and statistics. In brief, suppose the analyst has available a sample of scoring
results from which he/she randomly draws a sub-sample. Using the sub-sample, he/she
then calculates the chosen statistic, e.g. AUROC or AR, and then records the resulting
value. In the following, the analyst replaces the sub-sample in the original sample of data
and applies the same process for a large number of iterations, and in every iteration, the
value of the statistic under investigation is recorded. Thus, an empirical distribution of
the statistic will become available, and therefore, an assessment of its uncertainty will
be readily available. This process is possible to provide with satisfactory results under
generally acceptable conditions, see Efron and Tibshirani (1993).

6. Optimal rating combinations

Building confidence intervals and robust standard errors for model validation statistics
is a natural way to assess their variability. A possible reduction in variability could be
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attained through the use of successful methods developed in the area of econometrics as
well as the financial theory of portfolio selection. For a number of debtors, it is possible to
observe scoring results both from external rating agencies as well as from internal rating
systems. These alternative scoring results often differ, a phenomenon that is often called
‘split ratings’. To some extent, split ratings reflect some common information that is
publicly available, plus some information that is exclusive or subjective to every different
scoring system or analyst. Thus, it might be possible to create a ratings combination
for each debtor, which is a portfolio of ratings, which could exhibit smaller variation
as compared with each individual rating. These combinations are called ‘synthetic’ or
‘composite’ ratings. From a technical point of view, this is constructed in a way similar to
the construction of optimal portfolios of assets, as long as the measure of risk for the user
is the variance. For an application in this context, see Tabakis and Vinci (2002). However,
we should emphasize that the construction of minimum variance synthetic ratings reflect
symmetric preferences with respect to the cost from over-rating versus under-rating. From
the point of view of a prudent bank supervisor and credit institutions, the cost of imperfect
scoring should be asymmetric, where over-scoring should be more costly as compared
with equal under-scoring. In this case, minimum variance composite ratings should yield
inferior results. The standardized form of Basel II proposes the adoption of the median
in case of split ratings, thus encouraging the formation of composite ratings.

7. Concluding remarks

The validation of credit risk models constitutes an indispensable element in the process
of quantitative risk management. The comparative evaluation of competing models is
largely based on the use of statistical measures such as the CAP and ROC curves and the
respective statistics AR and AUROC, which constitute popular choices. In this chapter,
we have examined the conditions under which the use of such methods would yield valid
scoring results. We show that such metrics are subject to variation, and thus, the analyst
should be interested not in the absolute difference between statistics, but in the statistical
significance of this difference. We have analysed a number of alternative approaches
dealing with this problem.
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4 A moments-based procedure for
evaluating risk forecasting models
Kevin Dowd∗ 

Abstract

This chapter examines the important problem of evaluating a risk forecasting model [e.g.
a values-at-risk (VaR) model]. Its point of departure is the likelihood ratio (LR) test applied to
data that have gone through Probability Integral Transform and Berkowitz transformations
to become standard normal under the null hypothesis of model adequacy. However, the LR
test is poor at detecting model inadequacy that manifests itself in the transformed data being
skewed or fat-tailed. To remedy this problem, the chapter proposes a new procedure that
combines tests of the predictions of the first four moments of the transformed data into a
single omnibus test. Simulation results suggest that this omnibus test has considerable power
and is much more robust than the LR test in the face of model misspecification. It is also easy
to implement and does not require any sophistication on the part of the model evaluator. The
chapter also includes a table giving the test bounds for various sample sizes, which enables a
user to implement the test without having to simulate the bounds themselves.

1. Introduction

There has been a lot of interest in the last few years in risk forecasting (or probability-
density forecasting) models. Such models are widely used by financial institutions to
forecast their trading, investment and other financial risks, and their risk forecasts are
often a critical factor in firms’ risk management decisions. Given the scale of their reliance
on them, it is therefore important for firms to ensure that their risk models are properly
evaluated. Any such evaluation must involve some comparison of time series of both
forecast density functions and subsequently realized outcomes, but the comparison is
complicated by the fact that forecast densities typically vary over time. Forecast evaluation
is also made more difficult by the limited sizes of the data sets typically available, and it
is well known that standard interval forecast tests often have very low power with real
world sample sizes.

This chapter offers a new approach to the problem of risk model evaluation. It builds on
earlier work in particular by Crnkovic and Drachman (1995), Diebold et al. (1998) and
Berkowitz (2001). The first two of these studies suggested how the problem of evaluating
a density function that changes over time can be ‘solved’ by mapping realized outcomes
to their percentiles in terms of the forecasted density functions. This Probability Integral

∗ Nottingham University Business School, Jubilee Campus, Nottingham, UK
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Transform (PIT) transformation makes it possible to evaluate density forecasting models
by testing whether the distribution of mapped outcomes is consistent with the uniform
distribution predicted under the null that the risk model is adequate. Berkowitz then
suggested that these mapped observations should be run through a second transformation
to make them into a series z that is distributed as standard normal under the null. A major
attraction of this suggestion is that it enables the model evaluator to make use of the
wide variety of normality tests available. Testing for model adequacy then reduces to
testing whether z is distributed as standard normal. Berkowitz focused on the likelihood
ratio (LR) test for this purpose, and his results suggested that it was superior to standard
interval forecast approaches such as those suggested by Kupiec (1995) or Christoffersen
(1998). His results also suggested that the LR test had good power with the sample sizes
often available for model validation purposes.

This chapter presents a more pessimistic view of the power of the LR test, backed up
by simulation results showing the power of the LR test against a wide range of specified
departures from standard normality. The problem with the LR test is that it only examines
a subset of the ‘full’ null hypothesis – more specifically, it tests whether z has a mean
of 0 and a standard deviation of 1. However, it is quite possible for z to satisfy these
predictions and yet be non-normally distributed, and in such cases, the LR test would
typically overlook model inadequacy. Thus, the LR test focuses on whether the first two
moments of z are compatible with standard normality but has little power in the face of
departures from standard normality that manifest themselves in the higher moments of z.

More constructively, this chapter also suggests a new testing approach that is reliable
in the sense of having good power against a wide range of departures from standard
normality. The proposed test is a composite test that takes equal account of all first
four moment predictions and tests whether each sample moment is consistent with what
we would expect it to be under standard normality. The test can therefore be regarded
as an omnibus test of model adequacy. The test also has considerable power against a
wide range of possible departures from standard normality, including those that manifest
themselves in the third and fourth moments of z. The new test is therefore more reliable
than the LR test for model validation purposes.

Furthermore, the test is intuitive and does not require a high level of statistical or
econometric expertise on the part of the model evaluator who implements it. It is also
easy to carry out and can be implemented quickly on a simple spreadsheet. These features
make it ideal for model evaluators who are not specialist statisticians or econometricians,
and this would include many risk managers, regulatory supervisors or auditors faced with
the task of signing off risk models as part of their routine risk management, supervisory
or audit functions.

This chapter is laid out as follows. Section 2 goes through some preliminary mapping
analysis and shows how the original P/L data can be mapped to the z series that is standard
normal under the null hypothesis that the model is adequate. Section 3 examines the use of
an LR test to evaluate the standard normality prediction and presents some results showing
the power of the LR test against a variety of departures from standard normality. Section 4
then explains the moments-based test, discusses its implementation, and presents results
showing its power against the same non-standard normality distributions considered
in Section 3. Section 5 presents a worked example illustrating how the new test can
detect the inadequacy of a risk model that under-estimates the heaviness of the tails of
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the forecasted distribution, which is a common problem with many values-at-risk (VaR)
models. Section 6 concludes.

2. Preliminary analysis

Suppose we have a risk model that forecasts the density function for a random variable
over a specified forecast period. Typically, the model might forecast a financial insti-
tution’s VaR over the next trading day, and the random variable might be the daily
profit/loss. The task is to evaluate the model’s density forecasting performance over a
sample period. The evaluator might be a risk manager employed by the institution, the
institution’s regulatory supervisor or a risk auditor.

We also assume that the evaluator knows the density forecasts. This assumption makes
sense in the VaR context because any of these possible evaluators would have access to
this information in practice. This assumption also makes sense in some other contexts –
for instance, it would make sense where the density forecasts are published (e.g. as with
the inflation density forecasts of the Survey of Professional Forecasters or the UK inflation
density forecasts published by the Bank of England since 1997) or based on model-free
forecasts [e.g. as with model-free approaches to estimating risk neutral densities of the
underlying asset in an option, as suggested by Aït-Sahalia and Lo (1998)].1

To evaluate the model’s density forecasts, we carry out a PIT transformation and map
each realized value to its percentile point on its forecasted density function (e.g. if the
realized value over some period is equal to the 90-th percentile of its forecasted density
function, then this value maps to 0.90, etc.). Now let p be the realized values mapped to
their percentiles on the forecasted densities.

Under the null hypothesis that the model is adequate, the mapped series p should
be uniformly distributed over the interval (0,1), so we can evaluate the model directly
by testing the prediction that p is uniformly distributed (e.g. using a Kolmogorov test).
However, following Berkowitz (2001), testing is easier if we transform p into a series that
is standard normal under the null. We can do so by applying a standard normal inverse
function to the p series, viz.:

z = �−1�p� (4.1)

This second, Berkowitz, transformation is helpful because we have a wider and more
powerful range of tests available to us if we deal with standard normal random variables
than if we deal with standard uniform ones. We can therefore evaluate the model’s
adequacy by testing the prediction that the PIT–Berkowitz transformed data should be
standard normal.2

3. The likelihood ratio test

One way to do so is by means of a LR test, as suggested by Berkowitz (2001). However,
such a test only addresses part of the ‘full’ null hypothesis – specifically, it tests the
predictions that the mean 
 and standard deviation � of z are 0 and 1, respectively, but
does not test that the distribution of z is normal. To emphasize the distinction, note that



= 
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the ‘full’ null, H0� � �z  ∼ N�0�1��, can be decomposed into two separable sub-hypotheses
H0

a � �
  = 0��  = 1� and H0
b � �z  ∼ N�
��2��. We might expect the LR test to be good at

detecting departures from the null that arise from departures from H0
a, but we would not

necessarily expect it to have much power against departures from the null that arise from
departures from H0

b .
To investigate further, Table 4.1 shows power results for the LR test against a con-

siderable variety of illustrative departures from the full standard normal null hypothesis.
The first three lines give results for illustrative departures from H0

a involving either or
both of 
 
 0 and � = 1. In each of these cases, z is normal, so there is a departure from
H0

a but not from H0
b. The next eight lines show results for illustrative departures from H0

b:
three cases of skewness but no leptokurtosis, three cases of leptokurtosis but no skewness
and two cases involving both skewness and leptokurtosis. In each of these cases, there is
a departure from H0

b but no departure from H0
a, so 
 = 0 and � = 1. Each line gives a

description of the particular distribution, the values of its first four moments and power
results for sample sizes of 50, 100, 250, 500 and 1000. These latter results are obtained
using Monte Carlo simulation with 10 000 trials.3

The results in Table 4.1 show that our expectations about the LR test are confirmed. The
LR test is powerful against departures from H0

a, and (as we would also expect) its power
rises with the sample size. For example, with a sample size n = 1000, the power of the test
against each of the three specified departures from standard normality is 0.810, 0.973 and
0.998, respectively. (The significance level or type I error rate is set at 0.05.) However, the
remaining results indicate that the LR test typically has little or no power against alterna-
tive hypotheses involving departures from normality. Indeed, in most cases, the power of
the test remains close to the significance level regardless of the sample size, which indicates
that the LR test has little or no discriminatory power against the particular departure
concerned. Thus, the overall impression is that the LR test is good at detecting departures
from H0

a but is of little – and typically almost no – use in detecting departures from H0
b .

4. A moments test of model adequacy

We seek an alternative testing procedure that is more sensitive to departures from H0
b 

whilst still retaining sensitivity to departures from H0
a .4 A good starting point is to consider

the moment predictions implied by these hypotheses: in particular, H0
a predicts that the

first moment (i.e. that associated with the mean) should be 0 and the second moment
(i.e. that associated with the variance) should be 1, and H0

b predicts that the third moment
(i.e. that associated with the skewness) should be 0 and the fourth moment (i.e. that
associated with the kurtosis) should be 3.5 Given that we want a robust testing framework
that is sensitive to failures of any of these moment predictions, it makes sense to require
that it give each of these moment predictions equal weight in the rejection process.6

Now imagine that we have a large number m of samples drawn from a standard
normal, and each sample is of size n. Each sample can be regarded as a sample z series,
and imagine that we put each of these samples through a sequence of four filters. The
first filter applies a test of the first moment prediction and rejects a certain proportion
of samples. Samples that pass the first test are put through a second filter that applies a
test of the second-moment prediction and again rejects a certain proportion of samples.
Those that survive this test are put through a test of the third-moment prediction and



Table 4.1 Power results for likelihood ratio test1

Departure Type of distribution Mean Std Skew Kurtosis Power for sample size (n)
from standard
normality n = 50 n = 100 n = 250 n = 500 n = 1000
Alternative involves normal with non-standard parameter values
Mean 
= 0 non-standard normal 0�1 1 0 3 0.097 0.132 0.271 0.499 0.810
Std 
= 1 non-standard normal 0 1�1 0 3 0.137 0.224 0.492 0.782 0.973
Mean 
= 0 and non-standard normal 0�1 1�1 0 3 0.182 0.315 0.648 0.925 0.998

Std 
= 1
Alternative involves 
 = 0��  = 1 and non-normal distribution
Skewed Skew-t with � = 100 0 1 0�11 ≈3 0.060 0.055 0.057 0.062 0.074

and � = 252

Skewed 2PN with � 2 = 1�13 0 1 0�16 ≈3 0.056 0.055 0.052 0.052 0.053
Skewed 2PN with � 2 = 1�23 0 1 0�32 ≈3 0.056 0.056 0.054 0.056 0.058
Leptokurtic Error distribution with 0 1 0 3.56 0.075 0.075 0.076 0.076 0.075

c = 1�254

Leptokurtic Generalized symmetric-t 0 1 0 3.55 0.074 0.069 0.067 0.071 0.076
with � = 155

Leptokurtic Generalized symmetric-t 0 1 0 9 0.169 0.179 0.206 0.215 0.219
with � = 55

Skewed and Skew-t with � = 5 0 1 1 3.77 0.083 0.083 0.082 0.083 0.095
leptokurtic and � = 32

Skewed and Skew−t with � = 15 0 1 0�61 4.12 0.077 0.080 0.080 0.082 0.086
leptokurtic and � = 52

Notes:
1. Significance level (type I error rate) = 0.05, and each result is based on the outcome of 10 000 Monte Carlo simulation trials. Only results for positive departures

from 
 and � nulls and positive skews are reported, as the corresponding results for negative departures and negative skews are similar.
2. The skew-t parameters are those of the (���) parameterization in Jones and Faddy (2003), with mean and standard deviation set to 0 and 1, respectively.
3. The two-piece normal (2PN) parameters are those of the (
��1��2) parameterization of John (1982), with mean and standard deviation set to 0 and 1,

respectively.
4. The error distribution parameters are as given in Evans et al. (2000), with mean and standard deviation set to 0 and 1, respectively.
5. The symmetric-t parameters are as given in Evans et al. (2000), with mean and standard deviation set to 0 and 1, respectively.
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those that survive this are put through a test of the fourth-moment prediction. The point
of this exercise is to obtain the bounds demarcating whether we accept or reject a sample
at each stage. These are determined by the desired rejection rates, and it is these bounds
that we use to implement our test.

To make the discussion concrete, suppose we wish to reject a proportion 0.01275 of
samples at each stage. Say m = 50 000 and n = 50. We then estimate the sample means
and find that the 1�275/2 = 0�6375 and 100 − 1�275/2 = 99�3625 percentile points of
the distribution of simulated sample means are −0.350 and 0.351. This tells us that
98.73% of the simulated sample means lie between −0.350 and −0.351. (These values
are, of course, also the bounds of the central 98.73% confidence interval for the simulated
sample means.) We then eliminate those samples whose means lie outside this range. We
now estimate the variances of our remaining samples and find that 98.73% of these lie
between 0.7554 and 1.256. We then eliminate those samples whose variances lie outside
this range and estimate the skewness parameters of our remaining samples. Proceeding in
similar manner, we find that 98.73% of the estimated skewnesses lie between −0.850 and
0.847. We then eliminate those samples whose skewnesses fall outside this range, estimate
the kurtoses of surviving samples and find that 98.73% of these lie between 1.932 and
4.797. Eliminating those samples whose kurtoses lie outside this range, we have eliminated
altogether �1−0�01275�4 = 5% of the samples with which we started. Given that we are
operating under the null hypothesis of a standard normal, this rejection rate corresponds
to our type I error rate or significance level. More generally, if we reject a proportion 
 
at each stage, we would get an overall significance level � equal to 1− �1−
�4.7

Once we have the bounds, the implementation of the test is straightforward. We start
with a sample of P/L observations. We run these through the two transformations 4.1 and
4.2 to obtain our z series, and we estimate its first four sample moments. We then choose
our (overall) significance level � and estimate the bounds of the first, second, third and
fourth moment tests using Monte Carlo simulation as just described. The null hypothesis
(of model adequacy) is then accepted if each sample moment lies between these bounds
and is rejected otherwise. For example, if n = 50, we ‘pass’ the model if the sample mean
lies in the range −0.350 to 0.351, if the sample variance lies in the range 0.754 to 1.256,
if the sample skewness lies in the range −0.850 to 0.847 and if the sample kurtosis lies
in the range 1.932 to 4.797. The model ‘fails’ if any of these conditions is not met.8

Some estimates of the different moment test bounds are given in Table 4.2. These are
obtained using 50 000 simulation trials for 
 = 0�01275 corresponding to an overall

Table 4.2 Bounds of individual moment tests1

Moment
number

n = 50
Lower Upper

n = 100
Lower Upper

n = 250
Lower Upper

n = 500 n = 1000
Lower Upper Lower Upper

1
2
3
4

−0.350 0.351
0.754 1.256

−0.850 0.847
1.932 4.797

−0.251 0.250
0.826 1.180

−0.614 0.614
2.155 4.394

−0.159 0.159
0.889 1.113

−0.388 0.388
2.399 3.924

−0.111 0.112 −0.079 0.079
0.921 1.079 0.945 1.057

−0.272 0.274 −0.191 0.190
2.545 3.621 2.657 3.438

Notes:
1. The significance level for each individual moment test is 0.0127, making for an overall rejection rate of 0.05

after all moment tests have been carried out. Tests are based on 50 000 simulation trials.
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significance level of � = 0�05. This table shows the bounds for each individual moment
test statistic for the same n-values as before (i.e. n = 50, 100, 250, 500 and 1000). As we
would expect, these bounds narrow as n gets bigger. For example, if we take the first
moment test, the bounds range −0.350 to 0.351 for a sample size of n = 50 narrows to
−0.251 to 0.250 for n = 100 and so forth.

This testing framework is calibrated to ensure that each individual moment test gives
the ‘correct’ proportion of failures under the null given that we wish each individual
moment prediction to have equal importance in the rejection process. This means that
the rejection rates are exactly what we want. The only source of estimation error is in
the bounds obtained, but if we want to increase the accuracy of our bound estimates,
we can do so by increasing the number of simulation trials m: the accuracy will increase
with the square root of m.

Table 4.3 shows the power results for the moments test applied with an overall signif-
icance level � equal to 0.05. These results show that the moments test has considerable
power against most of the alternative hypothesis distributions considered. The power of
our test also rises appreciably with the sample size. For example, in the last line of the
table, where we have a skewed leptokurtic alternative distribution, the power of the test
rises from 0.2245 for n = 50 to 0.9998 for n = 1000. The test also tends to have greater
power against more pronounced departures from standard normality. Evidence of this
can be seen by comparing, e.g. the fourth and last alternatives: the former is quite close
to standard normality, and the latter is much less so, and our test has much more power
against the latter than the former.

Comparing the LR and moments tests, we can say that the moments test is a little less
powerful than the LR test in the presence of departures from H0

a, but the difference in
power is usually small in absolute terms. For example, with n = 1000, the average power
of the LR test against the H0

a alternatives is 0.927, whereas that of the moments test is
0.903. However, the moments test is very much superior to the LR test in the face of
departures from H0

b, and its superiority tends to increase as the sample size gets bigger. For
n = 50, the average power of the LR test against the non-normal alternatives considered
in the table is 0.082, and this rises to 0.092 for n = 1000. But for the moments test, the
average power rises from 0.0181 for n = 50 to 0.733 for n = 1000. The power of the LR
barely improves as n gets bigger, but the power of the moments test improves markedly.

Thus, in choosing the LR test, we get a slightly superior test against departures from
H0

a at the price of very little power in the face of departures from H0
b . On the other

hand, in choosing the moments test, we get a vastly improved ability to detect departures
against H0

b at the price of a small loss of power in the face of departures from H0
a. In

other words, the moments test is much more robust than the LR test, in the sense that it
is able to detect a much wider range of departures from the null hypothesis.

5. An illustration

It might help to give a ‘walked through’ example of how the test would be implemented.
It is also helpful to choose an example that illustrates the ability of the proposed test
to identify a common source of model inadequacy – namely, the under-estimation of
kurtosis. This is a common problem in financial risk modelling but is also an important
one because under-estimation of kurtosis leads to under-estimation of VaR and other risk



Table 4.3 Power results for moments test1

Departure Type of distribution Mean Std Skew Kurtosis Power for sample size (n)
from standard
normality n = 50 n = 100 n = 250 n = 500 n = 1000
Alternative involves normal with non-standard parameter values
Mean 
= 0 Non-standard normal 0�1 1 0 3 0.0809 0.0976 0.2203 0.4178 0.7532
Std 
= 1 Non-standard normal 0 1�1 0 3 0.1186 0.1844 0.4207 0.7249 0.9656
Mean 
= 0 and Non-standard normal 0�1 1�1 0 3 0.1495 0.2343 0.5394 0.8303 0.9904

std 
= 1
Alternative involves 
 = 0��  = 1 and non-normal distribution
Skewed Skew-t with � = 100 0 1 0�11 ≈3 0.0630 0.0722 0.0996 0.1575 0.2831

and � = 252

Skewed 2PN with � 2 = 1�13 0 1 0�16 ≈3 0.0549 0.0689 0.0967 0.1847 0.3595
Skewed 2PN with � 2 = 1�23 0 1 0�32 ≈3 0.0825 0.1399 0.3469 0.7005 0.9679
Leptokurtic Error distribution with 0 1 0 3.56 0.1066 0.1340 0.2221 0.3676 0.6554

c = 1�254

Leptokurtic Generalized symmetric-t 0 1 0 3.55 0.1132 0.1445 0.2215 0.3560 0.5967
with � = 155

Leptokurtic Generalized symmetric-t 0 1 0 9 0.3702 0.5667 0.8803 0.9923 1.0000
with � = 55

Skewed and Skew-t with � = 5 0 1 1 3.77 0.4300 0.8835 0.9996 1.0000 1.0000
leptokurtic and � = 32

Skewed and Skew−t with � = 15 0 1 0�61 4.12 0.2245 0.4082 0.7787 0.9694 0.9998
leptokurtic and � = 52

Notes:
1. Significance level (type I error rate) = 0.05, and each result is based on the outcome of 10 000 Monte Carlo simulation trials.
2. The skew-t parameters are those of the (���) parameterization in Jones and Faddy (2003), with mean and standard deviation set to 0 and 1, respectively.
3. The 2PN parameters are those of the (
��1��2) parameterization of John (1982), with mean and standard deviation set to 0 and 1, respectively.
4. The error distribution parameters are as given in Evans et al. (2000), with mean and standard deviation set to 0 and 1, respectively.
5. The symmetric-t parameters are as given in Evans et al. (2000), with mean and standard deviation set to 0 and 1, respectively.
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measures at high-confidence levels and means that institutions are more exposed to the
risk of high losses than their models suggest. This underestimation will manifest itself
in z coming from a heavy-tailed distribution instead of a normal one.9 Let us suppose,
therefore, that our z-observations are drawn from a generalized t distribution with mean
0, standard deviation 1 and 5 degrees of freedom. This distribution has a zero skew and a
kurtosis equal to 9, whereas a standard normal has a zero skew and a kurtosis equal to 3.

Now suppose that we have a sample of 250 z observations drawn from this distribution.
We begin by estimating the sample mean (−0.0316) and comparing it to the bounds for
the mean test [which are (−0.159, 0.159); see Table 4.3]. As the sample mean is well
within this range, the model therefore passes the first test. We then compare the sample
standard deviation (0.9895) with its predicted range (0.889 to 1.113), and find that the
model passes the second test as well. We now proceed to the skewness test: the sample
skewness (0.1394) is inside its predicted range (−0.388 to 0.388), so the model passes
this test too. We then carry out the kurtosis test: the sample kurtosis (4.4797) is outside
its predicted range (2.399–3.924). The model therefore fails the kurtosis test, and so fails
overall. By comparison, if we applied the LR test, we would find that the model would
pass. This is as we would expect, because the model inadequacy lies in one of the higher
moments that the LR test does not address.

This example is only illustrative because it is based on a single sample, but it is
plausible given the power results reported in Tables 4.1 and 4.3. In particular, the power
of the LR test against this type of alternative hypothesis is only 0.206 (see Table 4.1,
third line from bottom), whereas the power of the moments test in this situation is
0.8803 (Table 4.3, third line from bottom). We can therefore say with some confidence
that the LR test is likely to give the wrong answer in such circumstances, whereas the
moments test is likely to give the right one.

This example also shows how easy it is to apply the test in practice: all implementation
requires are the sample moments of z and knowledge of the relevant risk bounds. The
latter can be estimated by simulation in the course of a testing exercise, but in practice,
it is much easier if these are pre-estimated and then distributed to users. In principle, this
needs doing only once, and once obtained, they can be tabulated for others to use. There
is therefore no need for a model evaluator as such to estimate these bounds or even have
the skills to do so. Instead, the evaluator only needs to look up these values and compare
them to the sample moments that he or she has just estimated. Implementation of the
model on a spreadsheet is then very straightforward.10

6. Conclusions

This chapter examines the important practical problem of testing the adequacy of a risk
forecasting model. Its point of departure is the LR test applied to the PIT-then-Berkowitz
transformed series z, which should be standard normal under the null hypothesis of model
adequacy. Applied to z, the LR test has good power against normal departures from
standard normality but poor power against non-normal departures: the LR test is poor
at detecting skewness and excess kurtosis in z, and these are common risk management
problems. To remedy this defect, the chapter proposes a new procedure that combines
tests of all first four moment predictions into a single test. The proposed test can be
regarded as a robust omnibus test of risk model adequacy and gives equal weight to each
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moment prediction, which is desirable if one has no a priori sense of which moment
prediction might be problematic in any given situation. Simulation results suggest that this
test has considerable power against a wide range of departures from standard normality
and is consequently much more robust than the LR test in the face of possible model
misspecification. The test is also very easy to implement and does not require any statistical
or econometric sophistication on the part of the model evaluator. Indeed, the test can
easily be pre-programmed into a spreadsheet, and all the evaluator then needs to do is
input the data and interpret the test result.11

With this use in mind, Table 4.4 provides estimates of the bounds for various sample
sizes that users are likely to encounter in practice. This table enables users to implement
the test without having to simulate the bounds themselves.

Table 4.4 Test bounds for various sample sizes1

n2 Mean Std Skewness Kurtosis

Lower Upper Lower Upper Lower Upper Lower Upper

50 −0.350 0.351 0.754 1.256 −0.850 0.847 1.932 4.797
75 −0.288 0.288 0.800 1.204 −0.710 0.700 2.059 4.554
100 −0.251 0.250 0.826 1.180 −0.614 0.614 2.155 4.394
125 −0.223 0.225 0.844 1.161 −0.551 0.550 2.216 4.299
150 −0.202 0.205 0.859 1.145 −0.503 0.502 2.266 4.181
175 −0.189 0.190 0.867 1.135 −0.469 0.470 2.303 4.087
200 −0.178 0.177 0.876 1.126 −0.436 0.436 2.339 4.024
225 −0.169 0.167 0.882 1.119 −0.412 0.413 2.371 3.964
250 −0.159 0.159 0.889 1.113 −0.388 0.388 2.399 3.924
275 −0.151 0.150 0.894 1.107 −0.372 0.367 2.422 3.868
300 −0.145 0.145 0.898 1.102 −0.356 0.348 2.440 3.827
325 −0.140 0.140 0.901 1.099 −0.341 0.335 2.459 3.791
350 −0.134 0.135 0.905 1.095 −0.332 0.322 2.475 3.772
375 −0.128 0.129 0.909 1.092 −0.316 0.312 2.490 3.741
400 −0.124 0.124 0.912 1.089 −0.306 0.303 2.505 3.708
425 −0.121 0.121 0.914 1.087 −0.297 0.293 2.517 3.681
450 −0.117 0.118 0.917 1.083 −0.286 0.288 2.527 3.659
475 −0.115 0.115 0.919 1.081 −0.277 0.279 2.537 3.641
500 −0.111 0.112 0.921 1.079 −0.272 0.274 2.545 3.621
525 −0.109 0.109 0.923 1.077 −0.265 0.266 2.555 3.607
550 −0.106 0.107 0.925 1.076 −0.260 0.261 2.563 3.598
575 −0.103 0.106 0.926 1.074 −0.255 0.253 2.571 3.588
600 −0.101 0.103 0.929 1.073 −0.248 0.245 2.577 3.570
625 −0.099 0.101 0.930 1.071 −0.241 0.241 2.585 3.558
650 −0.097 0.099 0.931 1.070 −0.238 0.235 2.591 3.549
675 −0.094 0.096 0.932 1.068 −0.234 0.231 2.596 3.546
700 −0.093 0.095 0.934 1.067 −0.231 0.229 2.603 3.532
725 −0.092 0.093 0.935 1.066 −0.226 0.223 2.608 3.523
750 −0.091 0.091 0.936 1.065 −0.222 0.219 2.611 3.514
775 −0.090 0.090 0.937 1.063 −0.217 0.216 2.615 3.505
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Table 4.4 Continued

n2 Mean Std Skewness Kurtosis

Lower Upper Lower Upper Lower Upper Lower Upper

800 −0.089 0.088 0.938 1.063 −0.215 0.213 2.620 3.497
825 −0.087 0.087 0.939 1.062 −0.210 0.209 2.630 3.482
850 −0.086 0.086 0.940 1.061 −0.207 0.207 2.636 3.477
875 −0.086 0.084 0.941 1.060 −0.202 0.204 2.637 3.470
900 −0.084 0.083 0.942 1.059 −0.199 0.201 2.641 3.461
925 −0.083 0.082 0.943 1.058 −0.198 0.197 2.646 3.456
950 −0.081 0.081 0.943 1.058 −0.195 0.196 2.649 3.449
975 −0.080 0.080 0.944 1.057 −0.193 0.194 2.654 3.443
1000 −0.079 0.079 0.945 1.057 −0.191 0.190 2.657 3.438

Notes:
1. The significance level for each individual moment test is 0.0127, making for an overall

rejection rate of 0.05 after all moment tests have been carried out. Tests are based on 50 000
simulation trials.

2. For intermediate values of n, approximate bounds can be obtained using interpolation.
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Notes

1. However, there are many other circumstances where we might wish to evaluate a model that is not
known but merely estimated. This is usually the case in volatility forecasting or interest-rate modelling.
The evaluation of estimated models is a more difficult problem and is the subject of a parallel literature
(Hong and Li, 2002; Bontemps and Meddahi, 2003; Corradi and Swanson, 2003; Duan, 2003; Bao et al.
2004). The extent to which the approach suggested here will apply to estimated density forecast models
is therefore an open question although it is reassuring to note that studies that have looked at parameter
uncertainty seem to conclude that it is (usually?) of second-order importance [e.g. Chatfield (1993) or
Diebold et al. (1998)].

2. If the risk model is adequate and if the forecast horizon matches the frequency with which the random
variable is observed, then z should be iid standard normal, and not just plain standard normal. For example,
if we observe P/L on a daily basis and our model forecasts a daily VaR, then z should be iid standard
normal. It would also be the case that the z should be iid if there is a multi-day holding period, but the
multi-day VaR was obtained by extrapolating a daily VaR forecast over a longer period. This paper does
not address how we might test the iid prediction, where it arises, but Berkowitz (2001, pp. 468–469) has a
good discussion of how to test for iid standard normality within an LR context. For example, he suggests we
might estimate a first-order autoregressive process for z and then test whether the autoregression parameter
is significantly different from 0.

3. More specifically, the first line gives results for the case where the ‘true’ distribution is a normal with
mean 0.1 and standard deviation 1, and the second and third lines give corresponding results for normal
distributions with 
 = 0�� = 1�1 and 
 = 0�1�� = 1�1, respectively. Because of their normality, these all
have zero skewness and kurtosis equal to 3. The fourth to eleventh lines then give standardized (
 = 0�� = 1)
results for a skew-t with skew 0.11 and kurtosis (about) 3; a 2PN with skew 0.16 and kurtosis (about)
3; a 2PN with skew 0.32 and kurtosis (about) 3; an error distribution with skew 0 and kurtosis 3.56;
a symmetric-t with zero skew and kurtosis 3.55; a symmetric-t with zero skew and kurtosis 9; a skew-t 
with skew 1 and kurtosis 3.77 and a skew-t with skew 0.61 and kurtosis 4.17. More details on these
distributions are given in the Appendix.

4. This chapter is not the first to suggest looking at the higher moments in a z-testing framework. Berkowitz
himself suggested that lagged and/or powered values of z, including powers of 3 or more, could be
incorporated into his regression framework and therefore taken account of [Berkowitz (2001, p. 468)].
Berkowitz was therefore aware of the higher moment issue on which the present paper expands but
did not discuss the issue in detail or present any power results that explicitly take account of higher
moment departures from standard normality. However, his suggestion that higher moment departures can
be accounted for within an LR testing framework is well worth further exploration.

5. H0
b also makes predictions about all the higher moments – the fifth moment should be 0, etc. – but we ignore

these for the moment as risk managers are usually concerned only with the first four moments. However,
the testing framework suggested here can easily be modified to handle the higher moment predictions as
well. See Note 8 below.
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6. As an aside, we also want a testing framework that does not make unwarranted assumptions about how
individual moment test statistics might be related. In particular, we cannot (and do not) assume that the
moments are independent of each other.

7. In practice, we would start with the overall significance level � and then obtain the associated 
-value
using the relationship 
 = 1− �1−��1/4.

8. It makes sense to focus on the first four moment predictions because these are the ones with which risk
managers are mainly concerned. However, if we wish to, we could easily modify the testing framework to
handle higher moments. For example, if we wanted to incorporate the fifth moment prediction and have
an overall significance level of �, we would choose 
 = 1− �1−��1/5. We would then add a fifth moment
test comparable to the individual four moment tests considered in the text and calibrate accordingly. Once
we have the five sets of bound estimates, one for each moment, we would apply the actual test. This would
involve estimating the first five moments of our z-sample, and we would reject the model if any sample
moment falls outside the relevant bounds. Extensions to incorporate sixth and higher moment predictions
are obvious.

9. A more detailed illustration of this point is provided by Dowd (2004, p. 86).
10. This ease of use can be a major consideration. For example, the Basel capital adequacy regulations make

banks’ regulatory supervisors responsible for validating bank’s risk models. However, these supervisors are
typically qualified as accountants and are rarely highly trained in statistics. The simplicity of the framework
proposed is therefore a major benefit to such users.

11. The proposed testing framework is also no doubt capable of refinement, and it may be possible to improve
the power of the omnibus test if we replace the basic moment tests used here with alternatives. However,
the chances are that any such improvements in power would come at the price of making the tests less
user-friendly, and (as the previous footnote points out) this is certainly an issue in the risk management
context.

Appendix

This appendix gives details of the error distribution, 2PN distributions, t distributions and skew-t 
distributions used as alternative hypotheses to generate some of the simulation results reported in
the tables.

1. Error distribution

The error distribution uses three parameters – a location parameter a, equal to the mean; a scale
parameter b and a shape parameter c – and its pdf is

p�x� = exp
b
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where ���� is a gamma distribution.
Its variance is equal to 2cb2��3c/2�/��c/2�, and the normal is a special case where c = 1.
The error distribution used in the simulations is parameterized so that the mean is 0, the standard

deviation is 1 and c = 1�25. It therefore has a zero skew and a kurtosis of 3.56.
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2. Two-piece normal distribution

The 2PN distribution has three parameters – a mode 
 and two uncertainty parameters �1 and
�2 – and its pdf is⎧⎪⎪⎪⎨ 1− �x−
�2 �x  ≤ 
C exp

2�1
2

(4.3)p�x� = ⎪⎪⎪⎩ 1− �x−
�2 �x  ≥ 
C exp
2�2

2

where C = k��1 + �2�−1 and k = 2/� (John, 1982). The distribution takes the lower half of a
normal distribution with parameters 
 and �1 and the upper half of a normal with parameters 
 
and �2, scaled using scaling factors 2�1/��1 +�2� and 2�2/��1 +�2�. The distribution is negatively
(positively) skewed if �1 > �2��1 < �2�. If �1 = �2, then the 2PN is symmetric and equivalent to a
normal with mean/mode and standard deviation (or ).
 � �1 2√

22 and 1 2 (Wallis,− − −/��� � � � /���� � � +� �2 1 2 1 1 2The mean and variance of the 2PN are 
+ 
2004).

The 2PN distributions used in the simulations are calibrated so that the mean and standard
deviation are equal to 0 and 1, and �2 takes the values 1.1 and 1.2

3. t-Distribution

The t-distributions used in the simulations are conventional symmetric generalized t distributions
(i.e. not Student-t distributions) with mean 0, standard deviation 1, and 5 and 15 degrees of
freedom. They both therefore have zero skew, but the former has a kurtosis of 9 and the latter has
a kurtosis of 3.55.

4. Skew-t distribution

There are various parameterizations of skew-t distributions, but the one used in this chapter is the
����� parameterization suggested by Jones and Faddy (2003). Its pdf is:

] �+�+1 ] �−�+1

p�x� = C−1 1+ x 2

1− x 2

(4.4)
�� +x2�1/2 �� +x2�1/2

where C−1 = 2�−1B 2
�−� 

2 and B��� is a beta distribution. � is closely related to the degrees of
freedom, and � indicates possible skewness. The skew-t takes the symmetric-t as a special case
where � = 0, and it takes the normal as a special case where � = 0 and � → 
.

The skew-t distributions used to produce the simulation results reported in this paper are stan-
dardized to have zero mean and unit standard deviation. The values of ����� used are (100,25),
(5,3) and (15,5).



5 Measuring concentration risk
in credit portfolios
Klaus Duellmann∗ 

Abstract

This paper addresses the need to measure the concentration risk in credit portfolios, which is
not captured by banks’ minimum capital requirements in the internal rating-based approaches
under Basel II. Concentration risk can arise from an unbalanced distribution of exposures to
single borrowers (single name concentrations) or sectors (sectoral concentrations), the latter
being more difficult to discern and address using quantitative models. Simple concentration
indices, an extension of the single-factor model on which the regulatory minimum capital
requirements are based and more complex multi-factor portfolio models are presented as
tools to quantify these risks. A case study-like numerical example demonstrates their use and
confirms their relative importance for the measurement of portfolio credit risk.

1. Concentration risk and validation

An important innovation in the internal ratings-based (IRB) approach of Basel II is the
introduction of model-based risk weight functions to determine the risk-weighted assets
for credit risk in the banking book. As the IRB risk weight functions are already given
by the new Framework, the internal validation process does not focus on the underlying
IRB model itself but instead on its input variables, namely the probability of default
(PD), the loss given default (LGD) and the exposure at default (EAD). More precisely,
validation in this context ‘encompasses a range of processes and activities that contribute
to an assessment of whether ratings adequately differentiate risk, and whether estimates
of risk components (such as PD, LGD, or EAD) appropriately characterise the relevant
aspects of risk’.1 Whereas validation defined in this way focuses on the inputs of the IRB
model, this paper is concerned with the model’s output. More specifically, it addresses
the impact of risk concentrations in credit portfolios on capital in relation to the IRB
model and compares selected methods how to quantify this impact.

Risk concentrations are defined by credit risk that arises from portfolio concentrations
in single borrowers (name concentration or low granularity) and in geographical or
business sectors (sectoral concentration or segment concentration). A quantification of
concentration risk is related to the validation of IRB systems in a broad sense in that the
presented methods are intended to help explain differences between Pillar 1 minimum

∗ Deutsche Bundesbank, Frankfurt, Germany. The views expressed here are my own and do not necessarily
reflect those of the Deutsche Bundesbank.
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capital requirements and capital estimates from an internal model. It turns out that the
IRB risk weight functions can understate credit risk in portfolios in which the assumptions
of the IRB model are not fulfilled, in particular if the portfolio is concentrated in borrower
names, business sectors or geographical regions. A quantitative assessment of the potential
consequences in terms of capital for such portfolios is therefore warranted. This paper
discusses various approximation methods that could be useful for this purpose and that
avoid the computational burden of Monte Carlo simulations.

As risk concentrations are not fully captured by the regulatory minimum capital require-
ments (Pillar 1), a treatment under Pillar 2 of the new Framework, the supervisory review
process, is warranted. The Basel II framework text states that ‘Banks should explic-
itly consider the extent of their credit risk concentrations in their assessment of capital
adequacy’.2 This issue becomes all the more important as the scope of IRB banks is not
limited to large, internationally active banks – regional and local banks, for example in
the European Union, may also be eligible to use IRB approaches.

From a general perspective, concentration risk can affect risk management in various
places of the enterprise. ‘Risk concentrations can arise in a bank’s assets, liabilities, or off-
balance sheet items, through the execution or processing of transactions (either product
or service), or through a combination of exposures across these broad categories’.3 In the
trading book, counterparty risk is also a case in point. Consider, for example, the global
credit derivatives market, where the top ten counterparties are responsible for around
85% of the total market volume. Therefore, concentration risk can have many facets
in banking practice. In the following, I will focus only on risk concentration in credit
portfolios.

2. Concentration risk and the IRB model

An alternative interpretation of concentration risk is to understand it as the flip side
of diversification. Intuitively, the better a credit portfolio is diversified across names or
sectors, the lower its ‘concentration risk’ should be. It has been argued that the IRB model
does not capture diversification effects which could be misunderstood as if real bank
portfolios generally warranted capital relief, depending on how far they are diversified.
As will become clearer in the following, the IRB model is based on strict assumptions
concerning the risk concentration in the credit portfolio. These assumptions imply that
Pillar 1 does not necessarily produce a conservative capital estimate, for example if a
portfolio is concentrated in names or sectors.

The importance of exposure concentrations in credit portfolios is recognized in the
Basel II framework text: ‘Because lending is the primary activity of most banks, credit risk
concentrations are often the most material risk concentrations within a bank’.4 This state-
ment is confirmed by the recent empirical work of Duellmann and Masschelein (2006),
based on central credit register data. They find that unbalanced exposure distributions
across sectors in real banks can justify up to 40% higher capital cushions than credit
portfolios, which resemble the aggregate credit exposure distribution across sectors of the
German banking system as a whole. The impact of low granularity appears to be smaller,
as realistic portfolios can require around 8% higher capital than a very fine-grained port-
folio. This number is also similar to the empirical results in Gordy and Lütkebohmert
(2007). The empirical results on the materiality of sector concentration and granularity
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are also broadly in line with Heitfield et al. (2006), who use syndicated loan portfolios
in the US. In summary, these empirical findings indicate that both sectoral concentration
and name concentration can have a material influence on the value-at-risk (VaR), with
sectoral concentrations tending to have the stronger impact.

Measuring the impact of risk concentrations in terms of capital as is done, for example
in the above-cited empirical studies, requires a credit risk model. A key issue in this case
is how to capture dependencies of credit events. Credit events can be either borrower
defaults in the world of book-value accounting or adverse changes in the credit quality
of the borrower from the perspective of a mark-to-market valuation of credit claims.
The models discussed in the following are all one-period default-mode models. The IRB
model, although technically a default-mode model, was calibrated to a mark-to-market
framework by adding a maturity adjustment term as a multiplicative factor. I will point
out the implications for the various methodologies as I go along.

To measure name concentration, all exposures to the same borrower need to be aggre-
gated and borrowers in the same sector likewise need to be aggregated to quantify
sectoral concentration. From this perspective, name concentration and sectoral concen-
tration appear to differ only in the aggregation level. But this view ignores a key difference
between them, which determines the methodological differences in the ways how they are
measured.

If the credit quality of a single borrower deteriorates for firm-specific reasons, this
generally does not affect the individual credit risk of other borrowers in the portfolio.
In other words, name concentration represents idiosyncratic risk that can generally be
diversified away by increasing the number of exposures. Therefore, exposure size is a
key determinant of this type of concentration risk, and simple ad hoc measures of the
single-exposure distribution in a credit portfolio can already provide useful information.

Risk concentrations in sectors instead require technically more sophisticated methods
for the following reason. A deterioration in credit quality of borrowers in the same sector
is not an idiosyncratic event but caused by the same sector affiliation, in economic terms by
the dependence of these borrowers’ credit quality on a common sector-specific risk factor.
Therefore, measuring sectoral concentration requires the modelling of credit dependencies,
typically by a factor structure that affects the stochastic trigger variable of a borrower
default, for example, a firm’s asset value returns. As a consequence, measuring credit
risk from sectoral concentrations is more challenging from a methodological perspective,
as the required risk parameters – for example asset correlations – are more difficult to
estimate than for name concentration.

The distinction between name concentration and sectoral concentration is particularly
convenient in the context of the IRB model, but it is less often made explicit in common
multi-factor models. A conceptual reason is that the risk contribution – more precisely,
the marginal VaR – of an individual exposure in a multi-factor model implicitly captures
both aspects of concentration risk. It also explains why concentration risk is generally
not regarded as a separate risk category but is instead woven into the credit risk of the
portfolio. In cases in which the credit risk model cannot (fully) account for both types
of concentration risk, it is, however, important to measure them separately to validate
the capital figure produced by the model. The IRB model is a case in point, which is
illustrated in the rest of this section in more detail.

Under the Basel I regime, the required regulatory minimum capital for credit risk in
the banking book depends only on the borrower type and does not explicitly account
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for dependencies between credit events. One of the main goals of Basel II is to increase
risk sensitivity and to better align regulatory minimum capital requirements with the
economic capital determined by the bank for internal risk management purposes. This is
achieved by replacing the rigid, borrower-dependent risk weight scheme of Basel I with
risk weight functions that are based on a credit risk model and capture dependencies of
credit events through asset correlations.

The strong sensitivity of the capital output to the factor structure and the empirical dif-
ficulties in obtaining robust estimates of asset correlations may be factors that contributed
to regulators’ decision not to allow banks to use their internal portfolio models for the
calculation of regulatory minimum capital in Basel II. By contrast, the IRB risk weight
functions are derived from a given model that captures systematic risk by a common
dependence of the credit quality of different borrowers on a single, unobservable risk
factor. The asset correlations in Pillar 1 depend on the asset class, in most asset classes
also on the borrower’s PD and for loans to small- and medium-sized enterprises (SMEs)
also on firm size.

An important advantage of selecting a single risk factor model for the calculation of
regulatory capital requirements is a property called portfolio invariance. By this prop-
erty, risk-weighted assets can be calculated on an exposure-by-exposure basis without
considering the risk characteristics of the remaining portfolio. In credit risk models, the
contribution of individual exposures to the total portfolio risk generally depends on the
risk characteristics of the other exposures; yet, Gordy (2003) showed that portfolio invari-
ance can hold even in heterogeneous credit portfolios – at least asymptotically – under
the following two assumptions:5

The first assumption requires that the portfolio is extremely fine-grained in terms of expo-
sures to individual borrowers. Loosely speaking, the contribution of every borrower’s loan
exposure to the total portfolio risk has to be very small. This assumption is often referred
to as infinite granularity. It implies the absence of name concentration, which describes risk
from large exposures to single borrowers. In the case of the IRB model, it is not only the
existence of large exposure lumps but in fact any deviation from an infinitely fine-grained
portfolio, which violates this model assumption. Clearly, from an economic perspective,
a more important factor than the violation of the assumption as such is the materiality
of its impact on capital. It turns out that name concentration is generally less important
for large, well-diversified banks but can be more relevant for smaller, regional banks. An
empirical S&P study for the 100 largest rated western European banks uncovered still
significant credit concentrations in many of the relatively large banks in the sample.6

The second assumption of the IRB model requires that systematic risk be fully captured
by a single systematic risk factor. Clearly, credit portfolios with exposures in the same
regions and industries are affected by sector-specific common risk factors. But, for a
bank that is well-diversified across regions and industry sectors, it is conceivable that all
systematic risk not captured by a single common factor, such as a global economic cycle,
is eliminated. A single-factor model can, however, produce a capital figure that is too low
if a credit portfolio is concentrated in certain sectors.

In summary, the two assumptions of the IRB model needed for portfolio invariance are
closely related to the two types of risk concentration in the portfolio. As the quantification
of credit risks from name concentrations and sector concentrations requires quite different
methodologies, these types of risk concentrations are treated separately in the next two
sections.
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3. Measuring name concentration

For any quantification of risks, it is convenient to have quantitative benchmarks, for
example to measure the distance from a neutral reference state of no concentration or
full diversification. The common but not very precise definition of name concentration as
referring to a lumpy exposure distribution across borrowers makes it difficult to define
such a benchmark. If name concentration is defined instead as an aberration from the
IRB model, the special case of an infinitely granular portfolio lends itself as a natural
benchmark for the quantification of name concentration. This basic idea of measuring
name concentration as the capital impact of not holding a fully diversified portfolio has
also been suggested in the industry.7 Note that this definition, which is more convenient
for the purpose of this paper, implies that concentration risk is already present in credit
portfolios that generally would not be regarded as particularly lumpy. In such cases,
the risk contribution from exposure concentrations can be very small and negligible in
practice.

Measuring the impact of name concentrations on portfolio risk requires robust quanti-
tative tools that can be either ad hoc or model-based methods. A prominent example of an
ad hoc method is the Herfindahl-Hirschman Index (HHI). It has found wide application
in various areas of economic theory, one example being the measurement of competition
in a market. For the purpose of measuring name concentration, the HHI is defined as
the sum of all N -squared relative portfolio shares wn of the exposures to single borrow-

N

ers: HHI = ∑ wn 
2. By construction, the HHI is restricted between zero and one, with

n=1
one corresponding to monopolistic or full concentration. Practitioners also employ the
Herfindahl number, defined as the inverse of the HHI.

Key advantages of the HHI include its simplicity and the relatively moderate data
requirements, i.e. only the exposure size per borrower. Both advantages come at a price.
The HHI can be misleading as a risk measure because of two limitations. Firstly, it does
not consider the borrower’s credit quality, and secondly, it does not account for credit risk
dependencies between borrowers. An exposure to a Aaa-rated borrower, for example, is
treated in the same way as an exposure to a B-rated borrower. Two large exposures to
borrowers belonging to the same supply chain and located in the same town are treated
in the same way as two large exposures to borrowers in completely unrelated industry
sectors and located on different continents.

The first limitation can be addressed by a ‘rating-weighted’ HHI. The squared relative
exposure shares are weighted in the aggregation by a numeric borrower rating, thereby
giving more weight to borrowers with a lower credit quality. The second limitation, the
ignoranceofdefaultdependencies, cannotbe remedied inasimilarlyelegantway.Asarating-
weighted HHI provides a ranking in terms of name concentration, it can be useful for a
comparisonacross creditportfolios; yet, it fails toproduceacapital figure for lowgranularity

Although the data requirements for the HHI calculation seem to be moderate at first
sight, they often turn out to be difficult to meet in practice. They require nothing less than
the aggregation of all exposures to the same borrower for the whole business entity, be it
a bank or a banking group. A heterogeneous IT environment can already present a serious
technical obstacle to this aggregation. Furthermore, large borrowers, which are actually
the most relevant entities for measuring name concentration, can themselves be complex
structures that are not always easy to identify as belonging to the same borrower entity.
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The fast-growing markets for securitization and credit derivatives offer new opportunities
to mitigate concentration risk. It can, however, be difficult to identify single borrowers,
for example in large asset pools, and to quantify the real exposure, such as in complex
basket products. Securitization structures, in which the credit risk of an exposure to a
specific borrower depends on how the credit risk of lower rated tranches has developed
over time, are also a case in point.

As exposure aggregation on a borrower basis is a prerequisite not only for the HHI
calculation but for the measurement of name concentration in general, these technical
difficulties require careful attention. Conversely, if this aggregation problem is already the
most difficult obstacle to overcome in practice, it may be preferable to use more refined
measures than the HHI if the additional data collection costs are small compared with
the aggregation problem and if the information gain is substantial.

Apart from its widespread use in other areas, the HHI has also a firm foundation
in model theory. It turns out that in special cases a granularity adjustment for the IRB
model is a linear function of the HHI. A granularity adjustment that incorporates name
concentration in the IRB model was already included in the Second Consultative Paper
of Basel II8 and was later significantly refined by the work of Martin and Wilde9 and
further in Gordy and Lütkebohmert (2007). Given a portfolio of N borrowers, Gordy and
Lütkebohmert developed the following simplified formula for an add-on to the capital
for unexpected loss (UL capital)10 in a single-factor model:

N

GAN = 
2K

1
∗ 
∑

wn 
2LGDn �� �Kn +LGDnPDn�−Kn� (5.1)

N n=1

where wn denotes the relative portfolio share of the exposure to the n-th borrower, Kn 

the UL capital for this exposure, LGDn the expected loss-given-default, PDn the PD,
N

KN 
∗ = wnKn and � is a constant parameter.11 From Equation 5.1 follows immediately

n=1
that the granularity adjustment is linear in the HHI if the portfolio is homogeneous in
terms of PD and LGD.

The simplified Equation 5.1 follows from the ‘full’ granularity adjustment of Gordy
and Lütkebohmert (2007) if quadratic terms are dropped. An alternative interpretation
is to assume that any idiosyncratic risk in recovery rates that is still explicitly captured
by the ‘full’ adjustment formula is eliminated by diversification.

An arguably severe obstacle to the application of earlier approaches that was resolved
in the most recent proposal by Gordy and Lütkebohmert was the requirement to aggregate
across all borrowers in a bank portfolio. The authors showed how the granularity adjust-
ment can be conservatively approximated by considering only a part of the portfolio:
namely, borrowers with exposures above a certain minimum exposure limit.

From a practitioner’s perspective, the theoretical justification to compute the granularity
adjustment from a subset of ‘largest exposures’ in the portfolio is potentially even more
important than the quite parsimonious structure of Equation 5.1 compared with earlier
proposals. More precisely, the required inputs for the approximation based on a subset
of the portfolio are

1. The figures wn, Kn, PDn and LGDn for a subset of N ≤ N borrowers that have the
highest capital contributions wnKn.
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2. An upper bound of the exposure size for all N −N borrowers that are not included
in this subset.

3. The total sum of UL capital K∗ and expected loss EL∗ for the credit portfolio.12
N N 

In various simulation exercises, based on empirically founded, realistic risk parameters,
Gordy and Lütkebohmert find that their granularity adjustment is quite accurate even
for portfolios of only 500 obligors, which is a relatively small number for a typical bank
portfolio. Although its accuracy deteriorates for very small portfolios, the approximation
is conservative, and for low-quality portfolios, it performs well for even smaller credit
portfolios containing only 200 borrowers.

The convenient simplicity of the granularity adjustment formula comes at the price of
a potential model error. The reason is that the granularity adjustment, unlike the IRB
model, was developed in a CreditRisk+ setting, and the CreditRisk+ model13 differs in
the tail of the loss distribution from the IRB model. For this reason, their formula comes
close to, but is not fully consistent, with the IRB model. It can be argued that this issue
is more a lack of scientific elegance than a problem in practice, as the benefits from the
tractability outweigh the costs of the model mismatch.

The authors briefly discuss other approaches to add a granularity adjustment to the
IRB model but conclude that their approach is particularly suited for use in practice if the
criteria of tractability and accuracy are considered together. Furthermore, the maturity
adjustments of the IRB model can easily be accommodated by including them in the
inputs.

4. Measuring sectoral concentration

Sectoral concentration can refer to an unbalanced distribution across geographical regions
or business sectors. In standard portfolio models applied in the industry, this distinction
is not particularly important, as country and industry are similarly captured by common
risk factors. Unlike the development of a granularity adjustment, sectoral concentrations
have until recently met with much less interest in the literature and in the industry. A
notable exception is country risks, which refer to sectoral concentrations in geographical
regions. In the following, the focus is on sectors, defined as branches of industry, but the
methodology carries through to geographical sectors.

Unfortunately, no adjustment to the IRB model has been developed yet that accounts
for sectoral concentrations and that was derived with the same rigor as the granularity
adjustment of Gordy and Lütkebohmert (2006). As demonstrated by one of the methods
discussed in this section, it is, however, possible to derive a multi-factor adjustment to
a single-factor model at the price of extending this model to a multi-factor model and
introducing additional correlation parameters.

Although sectors are directly linked to risk factors in the following, it is important
to distinguish the ‘sector effect’ (more precisely ‘sectoral concentration effect’) on UL
capital or VaR, which results from an unbalanced exposure distribution across sectors
from a ‘multi-factor effect’ which derives from replacing the one-factor by a multi-
factor model structure. The former effect results from changing the exposure distribution
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in the portfolio by increasing sector concentration. The latter effect is caused by an
‘approximation’ of the multi-factor model by a one-factor model without changing the
portfolio. The multi-factor effect can be relatively small if the factor loadings in the
single factor model are defined appropriately. The factor reduction technique of Andersen
et al. (2003) can serve as an example. The effect of sector concentration instead can be
substantial as was found in the empirical work by Duellmann and Masschelein (2006)
and Heitfield et al. (2006).

A multi-factor asset-value model is used in the discussed methods as a general frame-
work to account for sectoral concentrations. For simplicity, every borrower can be
uniquely assigned to one sector that is represented by one common factor. In a multi-
factor default-mode CreditMetrics-type model, the asset value return over the risk horizon
or more general the default trigger Yn is defined as

Yn = rs�n�Xs�n� + 1− rs�n��n (5.2)

where s�n� denotes the sector to which the n-th borrower belongs, and Xs�n� and �n are
defined as the sector-specific common risk factor and the idiosyncratic risk factor, both
independently standard normally distributed.

Correlations between the sector factors are collected in the correlation matrix �.
A standard method of determining the sector correlations is to estimate them from stock
index returns. In jurisdictions in which capital markets are less developed, this method
becomes difficult to apply or the estimates may at least be less reliable for sectors with
only a very few listed companies. Inferring default correlations from rating migrations or
historical default rates can offer a solution but both methods are prone to their specific
problems, such as the lack of external ratings in some jurisdictions or the scarcity of
default events, for which unrealistically long time series are required. In the following,
I will abstract from these empirical challenges and treat sector (factor) correlations as
given. As the quantification of concentration risk is part of Pillar 2, it is fair to state that
less strict standards need to be met than for a Pillar 1 model.

Even if sector correlations are available, the calculation of UL capital in the presence
of sectoral concentrations encounters two problems. The first problem concerns the
calculation procedure itself. This is usually done by Monte Carlo simulation but in
practice tractable and robust approximations are desirable, particularly for banks that do
not have a portfolio model with a simulation engine in place. The second problem occurs
when comparing the output of the multi-factor model with the capital figure produced
by the IRB model. The difference depends on the parameter settings in the IRB model,
and it is not necessarily fully explainable by the sector allocation.

A few modelling approaches have been put forward in recent literature to account for
sectoral concentrations. In the following, I focus on three of these models, which are
used in Garcia Cespedes et al. (2006), Pykhtin (2004) and Duellmann and Masschelein
(2006). All three approaches employ at some stage a multi-factor model, either through
a calibration exercise or as a basis for a closed form approximation of UL capital. They
were selected because they look appealing in terms of tractability and applicability in high
dimensions.

A key contribution of Garcia Cespedes et al. (2006) is the development of a diversifi-
cation factor DF that works as a scaling factor to the sector aggregate of UL capital Ks 

∗�sf 
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for sector s, in a single-factor model and produces an approximation of the UL capital
KN 

∗�GC for the total portfolio.

S

KN 
∗�GC = DF �CDI��� 

∑
Ks 

∗�sf � (5.3)
s=1

The diversification factor DF(.) is defined as a second-order polynomial f��� of the
capital diversification index CDI and a weighted average sector correlation �.14 The
surface parameterization of f��� is calibrated to a multi-factor model by minimizing the
squared error between KN 

∗�GC from Equation 5.3 and a capital figure computed by Monte
Carlo simulations for a wide range of portfolios. Note that the aggregation of Ks 

∗�sf is
carried out on a sector level, implicitly assuming a fine granular portfolio.

An alternative approach that offers an analytic approximation formula has been
presented by Pykthin (2004) and was used in a simplified version in Duellmann and
Masschelein (2006). Pykhtin’s model is based on previous work by Gourieroux et al.
(2000) and Martin and Wilde (2002). In terms of the applied methodology, it is closely
linked to the granularity adjustment of Gordy and Lütkebohmert (2007) as it also employs
a Taylor series approximation of the VaR.15

The simplifications by Duellmann and Masschelein from Pykhtin (2004) lie firstly in
applying the approximation formulae to sector aggregates instead of at single-borrower
level and secondly in dropping the second-order term of Pykhtin’s VaR approximation.
Under these assumptions, UL capital can be approximated by⎡ ⎛ ( ) √ ( )⎞ ⎤

S �−1 PD − �∗�−1 
 �X� 
KN 

∗�DM = ∑ws 
∗ LGDs 

⎣�⎝ s √ s q ⎠−PDs 
⎦ � (5.4)

1−�∗ 
s=1 s 

where ws 
∗ denotes the sum of single-exposure weights, expressed as relative shares of the

portfolio exposure and 
q�X� the q-quantile of the distribution of X. LGDs and PDs are
average values for sector s. Note that the systematic factor X is the same for all sectors
but �∗ 

s is sector-dependent. The asset correlations �∗ 
s are calculated as proposed in Pykhtin

(2004), broadly speaking by maximizing the correlation between the single systematic
risk factor in the simplified model and the original sector factors.16

For their analysis of the approximation error, the authors employ realistic portfolios,
constructed from German central credit register data, and an 11-sector (factor) model with
empirically founded factor correlations. For fine-grained portfolios with homogeneous
PDs and LGDs in every sector, the approximation error ends up moving in a close range of
±1%. The approximation error is measured relative to UL capital obtained from Monte
Carlo simulation-based estimates of UL capital. The effect of the absence of the second
and higher order terms in Equation 5.4 is negligible. If dispersion in PDs is introduced in
each sector, KN 

∗�DM provides a conservative estimate of UL capital because of the concave
relationship between UL capital and PD.

Duellmann and Masschelein observe that the approximation error increases if they
consider less granular portfolios that are heterogeneous in the size of single exposures
and broadly representative for some small, regional German banks. Even in these cases,
the absolute approximation error for UL capital stays well below 10%, measured rel-
ative to the simulation-based estimate, and Equation 5.4 still produces a conservative
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approximation.17 The reason is that the upward bias from using sector-average PDs
instead of borrower-dependent PDs exceeds the downward bias from neglecting the lower
granularity.

A comparison of the approximation formulae used by Garcia Cespedes et al. (2006),
Pykthin (2004) and Duellmann and Masschelein (2006) shows that all three have dif-
ferent strengths and weaknesses. The idea of Garcia Cespedes et al. to develop a scaling
factor to UL capital (Ks 

∗�sf ) that in turn is based on a single-factor model appears to be
convenient: As the single-factor model has a simple, closed form solution for UL capital,
the computational burden is greatly reduced.

Caution is warranted in the parameterization of the model from which Ks 
∗�sf is com-

puted, as the scaling factor is restricted to the interval from zero to one and, therefore,
always produces a capital relief relative to Ks 

∗�sf . Consider, for example, a portfolio in
which all exposures are concentrated in a single business sector (CDI = 1), thus making
the scaling factor one. Ks 

∗�sf should be interpreted in this case as the UL capital required
for a portfolio that is fully concentrated in the same business sector. As a consequence,
this UL capital figure should be based on intra-sector asset correlations. The asset cor-
relations in the IRB model are instead best understood as an average of intra-sector
and inter-sector asset correlations. As inter-sector correlations are typically lower than
intra-sector correlations, the asset correlation of exposures in the same sector generally
should be higher than in the IRB model. Therefore, if Ks 

∗�sf were computed by the IRB
model, diversification would be double-counted and the capital amount generally would
be lower than adequate for exposures in the same sector.

In other words, to justify the capital relief from diversification, measured by DF(.), it
would be necessary to scale the asset correlations in the single-factor model up from those
of the IRB model. As the intra-sector correlations that are consistent with the calibration
of the IRB model are not available, it is not possible to achieve consistency with the IRB
calibration. Therefore, it is also not recommendable to use the multi-factor adjustment
of Garcia Cespedes et al. with Ks 

∗�sf based on the IRB model to compute a diversification
adjustment to the IRB model. Consistency with the single-factor model requires that Ks 

∗�sf 

is properly parameterized, as will be demonstrated by an example in the next section.
The Pykthin model and the simplified version in Duellmann and Masschelein (2006)

have the conceptual advantage of not requiring a calibration exercise as the model of
Garcia Cespedes et al. (2006). Furthermore, if Pykhtin’s original approximation formula
is applied, granularity is automatically captured, i.e. if the aggregation in Equation 5.4
is carried out over borrowers with individual PDs instead of with sectoral averages. A
further gain in accuracy is brought about by adding a higher order adjustment term. For
large portfolios, the numerics can, however, become tedious. If the input parameters are
instead computed at the coarser sector level, the methods of Duellmann and Masschelein
and Garcia Cespedes et al. share the same restriction of not considering the granularity
of the portfolio. The approximation accuracy therefore becomes a key criterion in the
evaluation of KN 

∗�GC and KN 
∗�DM that will be examined in the next section.

Two other approaches that account explicitly for sectoral concentration have been
developed in Tasche (2006) and Duellmann (2006). Tasche’s approach is related to the
work by Garcia Cespedes et al. (2006) and gives a more rigorous foundation of the
diversification factor. Although he offers an analytic solution for the two-factor case,
his model becomes less tractable in higher dimensions. The infection model developed in
Duellmann (2006) is a generalization of the binomial expansion technique.18 The model
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Measuring concentration risk in credit portfolios

parameters are calibrated to a multi-factor CreditMetrics-type model, but simulation
results suggest that the model is quite sensitive to the confidence level for which it was
calibrated.

Contrary to the granularity adjustment of Gordy and Lütkebohmert (2007), the three
models that account for sector concentrations are separate models, not direct extensions
of the IRB model, and none of the authors discusses an extension into a mark-to-market
valuation setting that would also require maturity adjustments.

5. Numerical example

The following example demonstrates how UL capital can be approximated by the three
methods put forward in Garcia Cespedes et al. (2006), Pykthin (2004) and Duellmann
and Masschelein (2006). For this purpose, the three approximation formulae are applied
to credit portfolios with realistic risk characteristics. A simulation-based estimate for UL
capital serves as benchmark.

The portfolio allocation to 11 business sectors is presented in Figure 5.1 and taken from
Duellmann and Masschelein (2006). The inter-sector asset correlations were estimated
from MSCI stock index returns for the respective sectors (average over sectors: 0.14)
and the intra-sector asset correlation r is set to 0.25 for all sectors. The benchmarks 

portfolio represents the sector distribution obtained from an aggregation of large exposure
portfolios in the German banking system, based on the German central credit register.
The concentrated portfolio is much more concentrated in a single sector (Capital goods)
but still reflects a degree of sectoral concentration observed in real banks.19
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Figure 5.1 Exposure distribution across sectors of the benchmark portfolio (portfolio 1) and the
more concentrated portfolios (portfolio 2 and 3)
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There are four ways to calculate UL capital:

1. An estimate from 2 ·106 Monte Carlo simulation runs in the multi-factor model that
serves as a benchmark for the following three methods.

2. The approximation formula from Pykthin (2004), which differs from Equation 5.4
in that the aggregation is carried out over single borrowers instead of sectors and
includes a second-order multi-factor adjustment term.

3. Approximation formula (Equation 5.4) [Duellmann and Masschelein (DM) formula].
4. Approximation formula (Equation 5.3) [Garcia Cespedes (GC) et al. formula].

Note that for the approximation formula of Garcia Cespedes et al. (2006), Ks 
∗�sf is not

computed with the asset correlations from the IRB model. Instead, the parameter � in
Equation 5.10 in Appendix A.1 is replaced by the intra-sector correlation rs, which is
the same in all sectors. Its value of 0.25 always exceeds the asset correlations in the IRB
model, which vary between 0.12 and 0.24, depending on the PD.

Only portfolios with homogeneous PD and LGD are considered in the example, as
the approximation formulae by Garcia Cespedes et al. (2006) and Duellmann and Mass-
chelein (2006) do not account for heterogeneity in these input variables. The LGD is set to
45% and the PD to 2% for all exposures. Differences in the granularity of the exposures
are also not accounted for by these two models, yet this effect is included in the analysis
because low granularity creates a concentration risk.

Table 5.1 summarizes UL capital figures for three portfolios. The entries in the column
for portfolio 1 refer to a portfolio that is distributed across sectors as the benchmark
portfolio (see Figure 5.1) and that comprises 600 borrowers with an exposure size of
1/600 to each borrower. The next column contains the results for portfolio 2 that has
the sectoral distribution of the concentrated portfolio in Figure 5.1 but is still as finely
granular as portfolio 1. The last column collects the results for portfolio 3, which has the
same concentrated sectoral distribution as portfolio 2 but a higher name concentration
than the other two. It was generated from the second portfolio by replacing 384 of the
493 exposures of 1/600 in the Capital goods sector by 32 lumpy exposures of 1/50. The
lump size of 1/50 is motivated by European large exposure rules20 as this number is the
maximum exposure limit of 25% of regulatory capital, assuming a regulatory capital

Table 5.1 Comparing UL capital in a multi-factor model with analytic approximations

Portfolio

1 2 3

Exposure distribution across sectors: Benchmark Concentrated
Number of borrowers (exposures) 600 600 248
UL capital & (difference from MC estimate)a

MC simulation 7.88 10.8 11.63
Pykthin formula 7.97 (1.1) 10.81 (0.1) 11.70 (0.6)
DM formula 7.75 (−1.7) 10.67 (−1.2) 10.67 (−8.3)
GC et al. formula 8.08 (2.5) 10.74 (−0.6) 10.74 (−7.7)

aUL capital in percent of total exposure; difference in brackets as a percentage of MC estimate.
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charge of 8% of the portfolio’s nominal value. The number of 32 lumpy exposures with a
total of 32/50 still satisfies the maximum limit of eight times the regulatory capital set by
the same rules. The coarser granularity of the second portfolio is reflected in the higher
HHI value of 0.0134, compared with a value of 0.0017 for the first.

If we compare the UL capital estimates in Table 5.1 for portfolio 1, i.e. the benchmark
portfolio, this reveals a relatively high accuracy for all three approximation formulae,
as the errors measured relative to the simulation-based estimates lie in a narrow band
between –1.7% and 2.5%. Given that the GC et al. formula relies on a calibration on
a set of different portfolios with other risk characteristics, the numerical example is, in
fact, an out-of-sample test with encouraging results.

A similar degree of accuracy also holds for all three approximations in the case of
the second, sectorally more concentrated portfolio. The increase in UL capital from the
benchmark portfolio to the concentrated portfolio amounts to 37.1% for the simulation-
based estimates and confirms the need to consider sectoral concentrations in credit
portfolios.

The last column collects the UL capital estimates for the less granular portfolio 3 of
only 248 borrowers. The simulation-based value increases by 7.7% relative to the second,
more granular portfolio that has the same sectoral distribution. The DM and GC et al.
formulae do not account for granularity, therefore causing the error to increase in this
range. The Pykhtin formula instead accounts for the lower granularity. Its relative error
of 0.6% is similar to the errors for the highly granular portfolios and much lower than
for the other two approximation formulae.

In summary, the numerical example shows that the two approximation formulae by
Garcia Cespedes et al. (2006) and Duellmann and Masschelein (2006) both perform very
well if the portfolio is homogeneous in terms of PD and LGD and if the portfolio is highly
fine-grained. Both fail to capture name concentration, in which case the Pykthin (2004)
model still offers a viable alternative to running Monte Carlo simulations. Its technical
burden could be a main pitfall of Pykthin’s approximation formula if it is applied on a
single-borrower level: In the above example, its computation took nearly as long as the
Monte Carlo simulations, and computation time for this method increases faster than for
the Monte Carlo simulations with the same number of borrowers.

6. Future challenges of concentration risk measurement

The various measurement approaches discussed in the previous three sections have the
same methodological underpinning as typical credit risk models currently applied in the
industry and therefore are subject to the same limitations. Recent empirical research
suggests the existence of credit risk dependencies, which cannot be explained by typical
multi-factor models which assume independence conditional on the common risk fac-
tors.21 One economic explanation of these dependencies is the existence of business links
between firms, which may become particularly relevant for exposure concentrations in
large firms. As no model standard has been established yet that captures such contagion
effects, incorporating them remains a challenge.

UL capital is quite sensitive to the confidence level of the VaR calculation. Figure 5.2
shows simulation-based estimates of UL capital for confidence levels between 95% and
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granular, (sectorally) concentrated portfolio at different confidence

99.98% for two portfolios: the benchmark portfolio and the concentrated portfolio from
the numerical example in the previous section.

UL capital increases strongly with the confidence level, and this increase is notably
stronger for the more concentrated portfolios. The difference in UL capital between the
two fine-grained portfolios, measured relative to UL capital for the benchmark portfolio,
increases from 18% for a 95% confidence level to 36% for the 99.98% confidence level.
The difference in UL capital between the fine-grained and the coarse granular sectorally
concentrated portfolios also increases with the confidence level, but contributes much less
to the cumulative effect of sectoral and name concentration. The reason for the stronger
increase of UL for the two more concentrated portfolios is that higher confidence levels
implicitly give more weight to concentration effects. This example demonstrates that
management decisions such as setting the confidence level and quantifying the capital
impact of risk concentrations are intricately linked.

Not only management variables but also estimates from external data can have a strong
impact on measuring the impact of risk concentrations. The presented methods suffer
from the widely known weaknesses of most existing industry models, such as correlation
estimates being either unstable over time or inaccurate, the latter due either to data
constraints or a lack of recognition of dependencies between PD and LGD. A potential
remedy is offered by stress tests for risk concentrations.

As concentration risk is implicitly captured by standard industry models, it is often
difficult to distinguish between stress tests for concentration risk and (more general) stress
tests for credit risk. A forecast of a sudden drop in the production index of the car
industry can serve equally well as an example of a concentration risk stress test – if the
portfolio is known to be concentrated in the automobile sector – as well as of a more
general credit risk stress test. In Pillar 2, banks are encouraged to conduct periodic stress
tests of their major credit risk concentrations.22

The stress test procedure in Bonti et al. (2006) offers a potential means of uncovering
sectoral concentrations and assessing the resulting portfolio risk. Recognizing that the
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exact stress event cannot be forecasted, the authors restrict the range of a specific risk
factor such that the expectation value of the stressed factor in the truncated subspace
corresponds to the ‘expected’ stress scenario. Staying within their model framework and
employing the original correlation matrix, their stress test methodology also picks up
losses under stress conditions that are caused by correlations between sectors.

A technical burden that their stress test methodology shares with various other
approaches is that each stress test requires new Monte Carlo simulations. The UL capital
approximation in Garcia Cespedes et al. (2006) offers a framework that can also be used
for stress testing and that greatly reduces this technical burden.23

Finally, given the progress that has been made in credit risk modelling, data constraints
have become one of the most important challenges for credit risk management in practice.
They can be relatively basic requirements such as being able to aggregate all exposures
to the same borrower on a group level, or they can be more sublime issues such as the
stability of correlation estimates and how to capture observed dependencies that are no
longer explained by standard models based on the conditional independence assumption.

7. Summary

Concentration risk in credit portfolios is woven into the credit risk of the portfolio and,
therefore, implicitly accounted for in best-practice multi-factor portfolio models applied in
the industry. This paper gives an overview and compares various approximation methods
that measure the capital impact of risk concentrations in the context of the single-factor
model that underlies the IRB risk-weight functions. For this purpose, risk concentrations
are understood as violations of two specific assumptions of the IRB model: firstly, that the
portfolio is highly granular in terms of exposures to individual borrowers and, secondly,
that systematic credit risk is fully captured by a single risk factor. Measuring the capital
impact of any violation of the second assumption must also take into account the fact
that the IRB model was calibrated to produce a UL capital charge that would be appro-
priate for large credit portfolios that are well-diversified across sectors (risk factors).24

As a consequence, the regulatory minimum capital requirements can underestimate the
prudential amount of capital needed for credit portfolios that have either high name con-
centration or an unbalanced sectoral exposure distribution, either across geographical or
across business sectors.

Recent empirical work by Duellmann and Masschelein (2006) and others confirms a
widely held perception that both types of risk concentration can have a material impact
on total portfolio risk and that sectoral concentrations typically have a stronger effect.
Neither name nor sectoral concentrations can be accounted for by model adjustments that
are fully consistent with the IRB model framework. In other words, none of the discussed
methods promise to directly adjust the IRB model in a way that is fully consistent with
this model. As concentration risk is treated under Pillar 2 of the new Framework, it can
be argued that full consistency is not needed.

In the case of name concentration, the granularity adjustment developed in Gordy and
Lütkebohmert (2007) comes very close to achieving consistency with the IRB model.
The option of determining a simplified granularity adjustment that requires the exposure
aggregation per borrower only for a portfolio subset of the largest borrowers significantly
facilitates its application in practice.
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Sectoral concentrations – or, equivalently, violations of the single-factor assumption –
are more difficult to address than name concentration. A multi-factor framework in which
the impact of the portfolio distribution across sectors is captured by systematic risk factors
can account for concentration risk in geographical or business sectors. It forms also the
basis of the approximation formulae developed in Garcia Cespedes et al. (2006) and
Duellmann and Masschelein (2006). Their methods greatly reduce the technical burden
of calculating a UL capital figure, which accounts for the exposure distribution across
sectors. The approach by Garcia Cespedes et al. (2006) captures risk concentrations by
a scaling factor to a capital figure, which in turn is based on a single-factor model. This
single-factor model differs from the IRB model in its parameterization because it assumes
that all exposures are located in the same business sector. This assumption implies that
asset correlations in this model generally should be higher than in the IRB model

In summary, neither methodology can provide a fully consistent adjustment to the IRB
model, as the intra-sector and inter-sector asset correlations used in its calibration are
not available. In many cases, this may not be necessary as the discussed methods can
at least provide a ranking of credit portfolios in terms of economic capital for sector
concentration, which already gives important information.

Notwithstanding these limitations of quantifying concentration risk in credit portfolios
by simple, fit-for-purpose tools, a model-based approach like the one followed in the
methods presented in this paper can offer substantial benefits over ad hoc measures in
terms of accuracy and robustness of the results. Considering that the exposure aggregation
at borrower level already poses a major challenge in practice and that this hurdle also
concerns simple ad hoc measures such as the HHI, the cost of additional data requirements
for model-based methods may appear justified considering the achieved information gain.

Identifying risk concentrations and quantifying their impact on portfolio risk is only the
first step in concentration risk management. The second, and equally important, step –
which is, however, beyond the scope of this paper – concerns the prudential management
of risk concentrations. The importance of the management aspect is also emphasized in
Pillar 2: Banks should review the results of their stress tests on concentration risk and
respond to potential changes in market conditions that could adversely impact the bank’s
performance. Likewise, they should ensure that, in respect of credit risk concentrations,
risk management complies with the Basel Committee on Banking Supervision (BCBS)
document ‘Principles for the Management of Credit Risk’.25
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Notes

1. See BCBS (2005), p. 2.
2. See BCBS (2004), para. 773.
3. See BCBS (2004), para. 771.
4. See BCBS (2004), para. 771.
5. A more technical presentation of the two assumptions and their relationship to name concentration and

sectoral concentration is given in Appendix A.1.
6. See Tornquist (2004).
7. See Loesch (2006), p. 4.
8. See BCBS (2001).
9. See Wilde (2001) and Martin and Wilde (2003).

10. UL capital is defined as the difference between the value-at-risk and the expected loss. See Appendix A.1
for more details on UL capital in the context of a single-factor model.

11. The constant � depends on the VaR confidence level and also on the variance of the systematic factor.
Gordy and Lütkebohmert suggest a value of 5 as a meaningful and parsimonious number. An asterisk
signals that the variable is computed as the sum of other variables.
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12. For a mathematical definition of EL∗ , see (5.9) in Appendix A.1.N

13. See Credit Suisse Financial Products (1997).
14. See Appendix A.2 for further details on the definition of DF(.), its two components CDI and � and the DF

surface parameterization.
15. For the relatively complex approximation formula, see Pykthin (2004).
16. See Appendix A.3 for a formal definition of �∗ 

s .
17. This is not contradicted by Table 5.1, in which the UL capital from their formula is slightly less than

the simulation-based estimate, because the conservativeness is only due to PD heterogeneity, which is not
present in that table.

18. See Cifuentes and O’Connor (1996).
19. For further details about the portfolio and the correlation estimates, see Duellmann and Masschelein

(2006).
20. See Directive 93/6/EEC of 15 March 1993 on the capital adequacy of investment firms and credit institu-

tions.
21. See, for example, Collin-Dufresne et al. (2003) or Das et al. (2007).
22. See BCBS (2004), para. 775.
23. See Garcia Cespedes et al. (2006) for further details.
24. See BCBS (2006).
25. See BCBS (2004), para. 775–6.
26. See Gupton et al. (1997).
27. This structural resemblance is misleading in that the calibration of the maturity adjustments, which is

omitted here, was actually carried out in a mark-to-market framework.

Appendix A.1: IRB risk weight functions and concentration risk

Let q be the confidence level, 
q�Z� the q-quantile of the distribution of a random variable Z, N the
number of borrowers and LN the random loss rate of the total portfolio over a fixed risk horizon.
In the limit, portfolio invariance requires that

N→
 

q �LN �− 
q �E �LN �X�� −−−→ 0� (5.5)

where E �LN �X� is defined by aggregating the expected loss conditional on the systematic risk factor
X over all borrowers:

N

E �LN �X� = wnLGDnpn�X�� (5.6)
i=1

where pn�X� denotes the PD conditional on X. Convergence in Equation 5.5 can also be achieved
in the multi-factor case if X denotes a vector of common risk factors. The additional relationship

( [ ]) N→
 
P LN ≤ E LN �
q �X� −−−→ q� (5.7)

which leads to a simple formula for E �LN �X�, however, only exists for a single-factor model. This
explains why there is no simple ‘multi-factor adjustment’ that would allow us to account for an
unbalanced distribution across sectors while retaining an analytic solution for UL capital.

In finite portfolios, the difference of 
q �LN �− 
q �E �LN �X�� can be interpreted as the impact of
undiversified idiosyncratic risk. It describes the ‘true’ granularity adjustment that does not have an
analytical solution. However, it can be approximated by, for instance, the granularity adjustment in
Gordy and Lütkebohmert (2006), which is derived from a Taylor series approximation, disregarding
terms of higher than second-order.
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The UL capital charge KN 
∗ for the total portfolio in the IRB model captures the unexpected loss

and is defined by

KN 
∗ = 
 �LN �−EL ∗ (5.8)q N 

as the difference between the VaR 
q�LN � and the expected loss

N

EL ∗ = wnLGDnPDn (5.9)N = E �LN � 
n=1 

where wn denotes the relative portfolio share of the exposure to the n-th borrower, LGDn the
expected LGD and PDn the borrower’s PD. The structure of the IRB model is closely related to a
one-period default-mode CreditMetrics26 model.27 Default is triggered if the ability-to-pay process
Yn crosses a default barrier cn and Yn can be decomposed into an idiosyncratic risk factor X and a
systematic risk factor �n as follows:

√ √
Y = � X + 1−� �n n 

where X and �n are independently standard normally distributed random variables. The param-
eter �, commonly referred to as asset correlation, is the correlation between the ability-to-pay
processes of any pair of borrowers. The default barrier ci is related to the (unconditional) PD
by PDn = P �Yn ≤ cn� = � �cn�, where �(.) denotes the cumulative standard normal distribution
function.

In this model and by invoking Equation 5.7, UL capital Kn for the n-th borrower, given a risk
horizon of 1 year and a confidence level q, can be calculated as follows:

[ ] [ (
c −√ 

� �−1
(

 �X� 

)) ]
Kn = E ln�
q �X� = wnLGDn � 

n √ q −PDn (5.10)
1−� 

where ln denotes the loss of the total exposure to the n-th borrower. The IRB risk weight formulae
are based on Equation 5.10 multiplied by a constant of 12.5 to account for the minimum solvency
ratio of 0.08. For simplicity, maturity adjustments, the dependency of � on PD in certain asset
classes and the requirement to differentiate between an (expected) LGD and an economic downturn
LGD are omitted in Equation 5.10.

Appendix A.2: Factor surface for the diversification factor

Garcia Cespedes et al. (2006) have calibrated the following factor surface f �CDI��� for the diver-
sification factor.

f �CDI��� = 1+a11 �1−�� �1−CDI�+a21 �1−��2 �1−CDI�+a22 �1−��2 �1−CDI�2

with a11 = −0�852�a21 = 0�426 and a22 = −0�481,

S ( )2∑ ∗�sf
Ks 

CDI = (s=1 )2 (5.11)
S∑ ∗�sf

Ks 
s=1
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and

∑S S

wswt�st 
s=1 t=1�t=
 s 

� = (5.12)
S S

wswt 
s=1 t=1�t=
 s 

with �st denoting the correlation between the s-th and t-th sector factor.
In Garcia Cespedes et al. (2006), the correlation matrix of sector factors has only nine parameters

instead of S · �S −1�/2 in the general multi-factor model. The reason is that they define each sector
factor as a weighted sum of a common risk factor for all sectors and a sector-specific risk factor.
The correlation matrix is, therefore, fully specified by the S weights of the single common factor.
In the numerical example, the correlation parameter �st in Equation 5.12 is taken instead from the
more general matrix �.

Appendix A.3

In Pykhtin (2004), the �∗ 
s for s ∈ �1� � � � � S� are determined as follows.

S

�s = rs 	stbt 
∗ √ ∑

t=1

where 	st comes from a Cholesky decomposition of the factor correlation matrix �.
The coefficients b1� � � � � bs and � are given as the solution of the following S+ 1 equations:

S

bt = s 	st for t ∈ �1� � � � � S� 
s=1

S

b2 = 1s 
s=1

with

�s = w ∗ 
s LGD � 

⎛⎝�−1
(
PDs 

)
+ √ 

rs�
−1
(

q �X� 

)
√

rs −1

⎞⎠ � 



6 A Simple method for regulators to
cross-check operational risk loss
models for banks
Wayne Holland∗ and ManMohan S. Sodhi∗ 

Abstract

Under Basel II, banks are encouraged to develop their own advanced measurement approaches
(AMA), allowing different approaches to flourish. However, this flexibility may pose a
problem for the regulators in approving a particular bank’s proposed capital requirement as
indicated by the bank’s own AMA model. We propose a simple method for regulators to
cross-check any bank’s proposed capital reserve using a lower bound function on the capital
requirement. This bound is a function of the weight of the bank’s estimate of its expected
losses relative to the pooled loss experience of other banks. The regulator can use the bound
to indicate potential problems with an individual bank’s AMA model at the line of business
level. We illustrate our approach with a bound that is easy to compute. Banks can also use
this approach to cross-check their own models.

1. Introduction

We seek to provide a simple way for regulatory bodies to cross-check the operational
risk loss model and the proposed capital requirement at the line of business level for a
particular bank by using the pooled loss experience of other banks. For regulators, as
well as for any bank developing its operational risk models using advanced measurement
approaches (AMA), there are at least two challenges: (1) the variety of sophisticated
statistical and other probability-based ideas for modelling and (2) the paucity of loss data
available for constructing loss distributions. Our contribution is to provide regulators
with a simple approach using a bank’s expected losses as well as pooled loss data of
other banks to cross-check this bank’s method of estimating the capital reserve by line of
business and in total.

Our motivation is to provide an approach that is somewhat between the Standard-
ized Approach and the AMA in that we also seek minimum capital requirements at the
line of business level. The Basic Approach sets minimum capital requirement as a per-
centage, usually 15%, of annual gross income for the business as a whole for most banks.
The Standardized Approach takes this further by providing percentages at the line of
business level for most banks. The AMA is specific to an individual bank that uses their

∗ Cass Business School, City University London, UK
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own approach to determine capital requirements for their different lines of business and
for the bank as a whole. By contrast, our approach is standardized in the sense that it is
transparent and uses the loss experience of all reporting banks. However, the regulators
can apply our approach to a particular bank, knowing only the bank’s annual gross
income and expected losses at the line of business level.

In our approach, besides the proposed capital reserve, the regulator asks the bank to
provide its expected annual loss and expected annual gross income by line of business
and for the bank as a whole. Using a weight 
 that ranges from 1 down to 0 to combine
the bank’s loss parameters with those of the pool, the regulator obtains a lower bound
function based on a particular standard probability distribution. (We use a lognormal
distribution for illustration, but we can use other distributions as well.) The regula-
tor uses the 99.9-th percentile of this distribution to obtain a lower bound for capital
requirement for all values of 
 for each of the lines of business and for the bank as
a whole.

If the bank’s proposed capital requirement for any line of business or for the total is
below the respective bound for all values of 
, the regulators will have flagged a situation
where they need to take a closer look at the bank’s AMA. Even where all the lines of
business have the bank’s capital requirements by line of business exceed the respective
lower bound for some values of 
, very different ranges of 
 for different lines of business
also indicate a possible problem.

Our approach is simple to use as a diagnostic tool. It uses not only the bank’s estimates
(subjective and/or objective) but also the pool of banks’ operational losses collected by
regulators, e.g. the 2002 losses reported by 89 banks, which the Basel Committee (2003)
has summarized. Moreover, our method requires only the expected annual losses and
annual gross income by line of business and in total, while using other parameters from
the more reliable pooled loss experience of all reporting banks. Finally, our method uses
standard probability distributions well accepted in operational risk modelling – doing so
does not make their use ‘correct’ in any objective sense, but it does make it easier to
explain their use.

On the contrary, our approach has many limitations stemming from the simplifying
assumptions. (Therefore, regulators or banks should use our approach only to indicate
potential problems with a bank’s operational risk modelling rather than use our approach
as an AMA per se.) We assume that the number of losses is Poisson-distributed with
lognormally distributed impact per loss event. This is not a serious problem because many
AMA models appear to make the same assumption in conjunction with subjective score-
based methods. Furthermore, we assume that the pooled history of losses of reporting
banks (as a percentage of revenues) is the same as having a longer history of a single bank.
Although this makes our method less vulnerable to the vagaries of a particular bank’s
short history, we are assuming that all banks have the same coefficient of variation
(standard deviation adjusted by the mean) of future annual losses scaled by annual gross
income. We ignore the fact that the data compiled by the regulator do not include all
losses, only those above thresholds like 10 000 euros (Basel Committee, 2003). We can
adjust for that – the adjustment may be smaller than 5% – but we have not shown the
adjustment. Finally, we use the lognormal distribution based on simulation rather than
on theoretically derived results.

In Section 2, we discuss the Basel II requirements and approved approaches for cal-
culating capital requirement. In Section 3, we present our approach. Sections 4 and 5
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outline a justification of our method and present the simulation on which we relied to
propose the lower bound based on the lognormal distribution. Section 6 concludes this
paper and outlines areas of further work.

2. Background

Basel II capital requirements allow for three approaches for setting minimum capital
requirement to cover operational risk losses (McNeil et al., 2005: pp. 463–466). Of
these, AMA are based on the development of probabilistic models to obtain the capital
requirement.

AMA models range in sophistication and approach. Some models use extreme value
theory (e.g. Cruz, 2003: pp. 63–85 or Embrechts et al., 1997: pp. 283–358). Others fit
probability distributions to describe the number of loss events per year and the severity
of losses (e.g., Alexander, 2003: pp. 129–211) in the 8×7 different types of losses (Basel
Committee, 2003). Bayesian networks have also generated some interest owing to the
paucity of loss data and to a desire to have models built on causes rather than effects or
reported losses only (Cowell et al., forthcoming).

The supervisory framework introduced by the Basel Committee as Basel II rests on
three pillars: minimum capital requirement, supervisory review and market discipline.
For determining the minimum capital requirement, the first of these pillars, the Basel
Committee allows three possible approaches (McNeil et al., 2005: pp. 463–466):

1. Basic Indicator Approach: A bank can choose an indicator of operational risk such as
gross income or revenues. The bank can then take a fixed percentage of this measure
to be the Minimum Capital Requirement. The value of this percentage is typically
15% of annual gross income (averaged over 3 years), but in some cases a value as
high as 20% may be more appropriate.

2. Standardized Approach: This is the same as the Basic Approach except that the
bank applies potentially different factors to annual gross income for each of eight
BIS-recognized lines of business. These lines of business are (1) corporate finance;
(2) trading and sales; (3) retail banking; (4) commercial banking; (5) payment and
settlement; (6) agency services and custody; (7) asset management and (8) retail
brokerage. The respective values of the multiples for determining the Minimum
Capital Requirement for these lines of business depend of the relative risk for
each line.

3. Advanced Measurement Approaches: A bank may use more sophisticated proba-
bilistic or other approaches based on internal measurements, subjective measures
regarding controls in place and other bank’s pooled loss experience. The frame-
work requires banks not only to analyse its data by the eight business lines outlined
under the Standardized Approach but also by seven standard loss event categories –
(1) internal fraud; (2) external fraud; (3) employment practices and workplace safety;
(4) clients, products and business practices; (5) damage to physical assets; (6) business
disruptions and systems failures; and (7) execution, delivery and process manage-
ment. The Basel Committee has not imposed restrictions on the type of approaches
whether based on collection and modelling of internal data, scenario analysis or
expert opinion.
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Our method extends the Standardized Approach to cross-check the capital reserve
required by any particular AMA. Regarding AMA, the Basel Committee has not been
overly prescriptive in its framework. This allows room for new approaches to develop
but places a burden on the regulators to verify a bank’s internal approaches (Alexander,
2003: pp. 56–57). Moreover, these models require detailed loss data histories and herein
lies the rub. Either organizations have not collected all loss data in all categories, or
have collected loss data only above certain thresholds (say, only when the loss was above
5000 euros), or in categories that are different from the 56 that the Basel Committee
has recommended for standardization. In this paper, we propose a validation procedure
to assess the reasonableness of the outcome of the particular AMA that a bank may be
using, taking advantage of the data of other banks available to the regulators.

3. Cross-checking procedure

In the following discussion, Greek letters denote the parameters of the appropriate distri-
bution. To keep our notation simple, we do not use subscripts to distinguish the specific
estimated parameters for a particular line of business or for the bank as whole. Nor do
we distinguish between estimates obtained from the pooled data or in any other way and
the (unknown) value of the parameters themselves using the traditional ‘hat’ symbol. This
section describes the procedure whereas the following two sections (4 and 5) outline the
justification.

Using the pool-of-loss experience reported by different banks, the regulator can compute

 and � , the mean and standard deviation respectively of annual loss as a percentagep p

of annual gross income. These two estimated parameters are for each of the eight lines of
business as well as for a bank as a whole; therefore, there are nine pairs of parameters.

Using these parameters, the regulator can compute a lower bound function for the
capital reserve for the bank in question for each line of business and for the bank as a
whole as follows:

1. Input from bank: The regulator asks the bank to provide the expected annual loss
and expected revenues for each line of business and for the total. This would give the
regulator
b, the mean annual loss as a percentage of annual gross income (for line of
business or bank) for bank b’s line of business or grand total, respectively. (There are
thus up to nine such parameters, less when a bank does not have a particular line of
business from the eight listed by the Basel Committee.) Most banks will likely have
some subjective measures based on managers’ expertise to provide estimates of the
expected loss (Table 6.1).

2. Weighted mean and standard deviation: Take 
 to be a parameter representing the
relative weight to be given to bank b data in relation to the pooled data �0 ≤ 
 ≤ 1�.
Then, for each line of business and total, the regulator can define weighted parameters
specific to the bank in so far as the value of 
 is close to 1.



 = 

b + �1−
�
p 

�
 = �p 
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Table 6.1 Inputs that the regulator requires, in our approach, from the bank in question

Line of business Expected Annual Proposed
annual loss gross income capital requirement

Corporate finance
Trading and sales
Retail banking
Commercial banking
Payment and settlement
Agency services and custody
Asset management
Retail brokerage
BANK as a whole

When 
 is close to 0, the two parameters approach the pooled values. As before,
there are (up to) nine pairs of means and standard deviations.

3. Parameters of bounding distribution: For each line of business and for the bank
as a whole, the regulator can then define parameters for the distribution used for
bounding; in our case, the lognormal distribution for illustration. (We observe in the
next section that a log-lognormal could provide a better bound.) For the lognormal
distribution, if m and s are the mean and standard deviation of the underlying normal
distribution, then


2 

m
 = loge √ 
 

�2 +
2√ ( ) (6.2)
�2 +
2 

s
 = loge




2

 

4. Lower bound function: For each line of business and for the total, the regulator defines
L
 to be a lower bound on the minimum capital requirement based on the 99.9-th
percentile of the lognormal distribution less the expected value 

, respectively, as
functions of 
 ranging from 0 to 1. In other words, L
 is such that P�X < L
� = 0�999
where X ∼ lognormal �m
� s
� (Figure 6.1).

5. Decision: If the bank’s proposed capital requirement for any line of business or for
the total is below our lower bound function for all values of 
, the implication is
either that the bank’s AMA is providing low values of capital reserve or that the
bank is significantly better than other banks in controlling operational risk losses.
Either way, the regulator needs to examine the bank’s AMA and loss experience more
closely. Otherwise, the regulator could consider the bank’s proposed capital reserve
and AMA as having been cross-checked although the regulator may still want to
understand the bank’s approach better.
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Figure 6.1 Four schematic cases to illustrate the decision procedure. In Cases 1 and 4, the bank’s 
proposed capital requirement intersects with the lower bound function for values of 
 ranging 
from 0 to some value less than 1. This means that the bank’s advanced measurement approaches 
(AMA) might be considered reasonable by the regulator. In Case 2, the bank’s proposed reserve is 
lower than the lower bound function for all values of 
, giving rise to regulatory concern. In 
Case 3, the AMA lies entirely above the lower bound, thus generating greater confidence than in 
Case 1. In all cases, the Standardized Approach would require too much capital reserve 

4. Justification of our approach 

Our first objective is to find reasonable estimators for the mean and standard deviation 
of operational risk-related loss for bank b. If we had these, we could use an ‘appropriate’ 
standard probability distribution to find the 99.9-th percentile and hence the capital 
reserve. 

The reality is that any individual bank will likely possess only a handful of years of 
annual loss data and perhaps not even that for all 8 ×7 categories under Basel II. Such 
data would be inadequate to estimate means and standard deviations of annual losses 
with any degree of confidence, leave alone finding the best-fitting standard probability 
distribution. Therefore, the regulator will have to rely on the pooled operational risk 
losses reported by many different banks to understand or cross-check the AMA and 
capital reserve proposed by any bank. 

However, banks in the pool vary considerably so the regulator must scale all losses 
by size of the reporting bank (or that of its pertinent line of business) to get useful 
statistics. As such, we suggest that the regulator considers all reported losses in the pool 
as percentages of annual gross income by line of business as well as for the respective 
bank as a whole. Our underlying assumption is therefore that, other things being equal 
between two banks, the operational risk losses (actually the parameters of the underlying 
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distribution such as mean and standard deviation) are proportional to the annual gross
income for the line of business and for the bank as a whole.

In other words, all the banks’ annual operational risk losses – those in the past as
well as those in the future – are from the same probability distribution when the losses
are percentages of the annual gross income. Therefore, the regulator can average the
scaled losses in the pooled losses to estimate the pooled mean loss (
p) for a partic-
ular line of business or for a bank as a whole expressed as a percentage of annual
gross income. Using the Basel Committee’s eight lines of business, there would be nine
such parameter estimates, eight for the lines of business and one for a bank overall.
(Recall that we do not use subscripts or other marks to distinguish between estimates
for different lines of business or to distinguish estimates from the unknown parameter
values.)

A bank proposing a capital reserve can potentially have a different probability distri-
bution of operational risk losses and therefore a different mean and standard deviation
of annual losses than that of the pool. This is because it may have better (or worse)
controls on its internal processes than the ‘typical’ bank in the pool. The regulator can
give the benefit of doubt, allowing the bank to report its mean loss for bank b �
b� as
a percentage of annual gross income from whatever history and/or subjective estimates
made by the banks’ managers. (Note that the bank’s loss models and proposed capital
requirement is likely to be based on a combination of its loss database, if any, and the
subjective estimates of its managers, but our article is not about the different approaches
a bank may take internally.)

On the contrary, the regulator needs to compare the effect of accepting the bank’s
self-reported expected losses to that of the ‘typical’ bank in the pool. A simple way for
the regulator to do so is to give different relative weights to the two means in producing
a combined estimate. The weight can range from 1 down to 0 depending on the level of
confidence one has in bank b’s own model or in the pooled loss experience.

The regulator can combine the two means as



 = 

b + �1−
�
p (6.3)

or equivalently as



 = 
�
b −
p�+
p (6.4)

The latter form shows 
 to be the weight given to the difference between the expected
loss between bank b and that of the pooled result from all other banks. The regulator
does not look for any specific value of 
 – the motivation is only to determine whether
there is any range of 
 for which the bank’s proposed capital requirement exceeds the
lower bound our approach provides.

The computation for the standard deviation of loss is slightly different. The very limited
dataset for bank b makes it very unreliable to calculate �b directly, and subjective estimates
may be difficult. We assume that the coefficient of variation ��p/
p� calculated across
all reporting banks applies to all banks, including the bank that is proposing its capital
reserve based on its own AMA. Multiplied by 

, we get an estimate for �
, the standard
deviation of loss per unit of revenue for bank b.
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Therefore, the expected annual losses as percentage of annual gross income for the
bank ranges from 
b to 
p, and correspondingly, the standard deviation of annual losses
ranges from �p�
b/
p� to �p as 
 goes from 1 down to 0. If we knew the probability
distribution, we could determine the 99.9-th percentile using the range of means and
standard deviations.

However, we do not know the probability distribution, but we can use standard
probability distributions that provide lower values of the 99.9-th percentile and therefore
give us a lower bound. We can use different distributions – these will impact how high
the lower bound will be and therefore how good (or possibly oversensitive) a bound
will be to indicate potential problems relating to a bank underestimating its capital
reserve because of its AMA. In the next section, we discuss why we used the lognormal
distribution to emphasize that others may similarly find distributions that are even better
suited.

5. Justification for a lower bound using the lognormal
distribution

We used simulation parameters based on data from actual banks to see how the 99.9-th
percentile of annual losses compares with that of some standard probability distributions.
In our simulation, the number of individual losses in any of the 8×7 categories is Poisson-
distributed and the loss for each event comes from a lognormal distribution. We assume
that all categories are independent with regard to the incidence and size of operational
risk losses. The parameters we used for the distributions are based on the summary of
operational losses of 89 banks (Basel Committee, 2003).

We assumed the distributions of individual losses per event are all lognormal, with
means estimated from average loss per event (mean = total loss in cell/total events in
cell). We also computed the standard deviation simply by assuming that a coefficient of
variation of 0.5 applied to all means. We made this assumption for our test purposes
only because Basel Committee (2003) does not provide raw data that we could use to
compute standard deviations. We thus obtain individual loss distributions for each cell.
(See Figure 6.2 – the y-axis is different for each cell but the x-axis ranges from 10 000
euros to 10 000 000 euros, truncating distributions from both sides.)

With regard to frequency of losses, we assume the frequency of events follows a
Poisson distribution with means based on average number of loss events taken from
Basel Committee (2003) loss summary (mean = total loss events in cell/89). (We
only need one parameter, the mean, for determining a Poisson distribution.) Thus, we
obtain the Poisson distribution of events in a year for each cell. (See Figure 6.3 – the
y-axis is different for each cell but the x-axis ranges from 0 loss events to 50 loss
events.)

To generate simulated raw data, for each of the 8×7 categories, we simulated the total
annual loss by generating a Poisson random variable, N , for the number of loss events. We
then summed up N independent and identically distributed lognormal random variables
to model the annual loss. We repeated this to produce 10 000-simulated observations
for each cell, representing 10 000 years of data to get the total annual loss distribution
per cell.
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Figure 6.2 Lognormal probability distributions for individual losses given loss event in each cell
for eight lines of business and seven categories using parameters estimated from the pooled loss
experience of 89 banks summarized in Basel Committee (2003)

We then summed all the losses across the 56 cells for each year, producing 10 000
observations of total annual loss ascribable to operational risk and hence its distribution.
(See Figure 6.4 – the x-axis represents losses in euros and the y-axis represents the number
of years out of 10 000 where the annual losses are in the range represented by the bar
thickness.)

We found the 99.9-th percentile of the simulated annual losses to be 369 million euros
(Table 6.2). The average is 78.97 million euros, the standard deviation is 13.386 million,
the kurtosis is 12.755 and the skewness is 2.001. We also found that the generated
distribution of the total of annual losses across categories has its 99.9-th percentile
somewhere between that provided by a lognormal distribution at the lower side and a
Pareto distribution on the higher side when all three distributions have the same mean
and standard deviation. Therefore, the distribution of simulated losses, formed from a
compound Poisson process of lognormal variables, is more skewed and has larger kurtosis
than a lognormal distribution for the same mean and standard deviation. Note that this
is an empirical observation – we have not derived this result theoretically. Hence, the
99.9-th percentile of the lognormal for the same mean and standard deviation can provide
a lower bound on the minimum capital requirement.

We also noted that another standard probability density function, the Pareto distri-
bution, can provide an upper bound function because such a distribution with the same
mean and standard deviation has a higher 99.9-th percentile than our simulated loss data.
We could use both bounds – a lower such as the lognormal and an upper bound using, for
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Figure 6.3 Poisson probability distributions for number of loss events in each cell for eight lines of
business and seven categories using parameters estimated from the summary of losses provided by
the Basel Committee (2003)

instance, the Pareto distribution, but we already have ‘upper bounds’ from the so-called
Basic Indicator and the Standardized Approaches.

We also observed two more things that could form the basis of future work. The
first observation was that the 99.9-th percentile for the total losses was almost exactly
equal to the square root of the sum of the squares of the losses in each category. We
could tie this observation to the fact that the variance of the operational losses in total
is equal to the sum across all the 8× 7 categories of the variances of the operational
losses across category because of the assumption of independence of losses across cat-
egories. If we can show this formally, the implication is that each category contributes
to the square of the capital reserve requirement with its own capital reserve requirement
squared.

Another observation was that taking the log of the simulated annual losses results
in a distribution that is still quite skewed but looks more like a lognormal distribu-
tion. We took the logarithm of these losses more than once and found that the distri-
bution becomes less skewed each time but remained skewed. This suggests to us that
we could use log-lognormal, log-log-lognormal and even log-log-log-lognormal distribu-
tions instead of the lognormal distribution to provide a lower bound but this requires
further work.
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Figure 6.4 The histogram representing the total of annual losses across all the lines of business,
the simulation representing annual losses for 10 000 years. Parameters for the simulation were
extracted from the pooled losses of 89 banks summarized by the Basel Committee (2003)

Table 6.2 Statistics from simulation results (in millions of euros) for a ‘typical’ bank along with
statistics from lognormal and Pareto distributions that have the same mean and standard

deviation as the simulated annual losses. The parameters for the simulation are extracted from the
summary of losses (Basel Committee, 2003)
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6. Conclusion

The Basel II regulation has introduced a broad framework to force banks to address
the issue of operational risk measurement but been left sufficiently general to allow
different approaches to flourish and thus the field to advance. However, the regulator, and
indeed banks themselves, needs a transparent process for assessing whether methodologies
employed by individual banks are reasonable. This paper has provided a simple procedure
to devise and adopt lower bound functions for the minimum capital requirement to
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cross-check a particular bank’s models. The particular lower bound function we used
was based on the lognormal distribution, but other distributions (e.g., log-lognormal) can
likely provide more useful bounds.

To the extent banks can buy or otherwise access pooled data of other banks’ losses,
the procedure also allows banks themselves to cross-check the sophisticated models they
may develop in their approach to assessing operational risk. They could also use these
bounds with even lower percentiles (say, 90-th percentile) and for quarterly rather than
annual losses to check whether their controls are working as expected.

Further work is needed on at least three fronts. First, we need raw pooled operational
loss data to refine the simulation experiments. Second, we need to develop theoretical
results to underpin our claims and a theory to explain why operational losses might take
the chosen distributions for a bank. Finally, we need to find better distributions that
could serve as lower bounds for the procedure that we have presented.
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7 Of the credibility of mapping and
benchmarking credit risk estimates for
internal rating systems
Vichett Oung∗ 

Abstract

This chapter examines the application of the credibility theory, originally developed in the 
field of risk theory and insurance mathematics, to benchmarking of credit ratings from 
heterogenous and different credit portfolios. This approach offers an interesting theoretical 
framework in which robust ratings comparability is enabled by explicitly correcting risk 
bucket estimates for the portfolio’s structure effects that are deemed significant. Moreover, 
statistical tests may then be performed to assess the comparability of whole different risk 
structures reflected in rating systems. Finally, hierarchical credibility models dealing with 
nested risk classifications and estimations may also be useful to formalize mapping rules in 
particular when the benchmark is not of the same granularity. Such ‘Credible’ mapping could 
then help build more consistent master scales. 

1. Introduction

Both researchers and practitioners have recently been giving growing attention to the 
issue of benchmarking as a complement and, in some cases, an alternative to the formal 
validation of internal rating systems based on robust statistical tests. To date and in the 
current state of the art, the latter still appear to be showing limitations with respect to 
the extent of their reliability [see for example RTF (2005) and Hamerle et al. (2003) for 
some insights on the subject]. As a result, the recourse to benchmarks is often eventually 
sought after as the ultimate decision rule in the process of validating rating systems. In 
this case, a benchmark is given a special credibility, and deviations from its value provide 
a reason to review or accept the internal estimate at a relatively low cost. Hui et al.
(2005) argue quite rightly that the benefit of benchmarking lies with its flexibility in the 
sense that it ultimately gives the experts the scope to select what they consider to be the 
appropriate benchmark. This will be the case for ratings issued by the so-called ECAI 
(External Credit Assessment Institutions) eligible for the ‘standard approach’ under the 
new Basel II regulation. This credibility is, however, generally implicit and, at best, focused 
on the observed or assumed quality of the benchmark retained, leaving aside the question 
of the reliability of the benchmarking process itself, i.e. the consistency of mapping two 
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possibly different underlying risk distributions, which, at least for the internal estimates, 
most likely incorporate endogenous effects of the portfolio structure. A prerequisite to 
robust benchmarking would therefore require some prior inference on the comparability 
of the internal risk estimate with its benchmark and, ideally, a credibility theory. This 
chapter examines how insights provided by the credibility theory that originated in the 
field of risk theory and insurance mathematics may pave the way for an application to 
benchmarking credit risks. 

2. Why does the portfolio’s structure matter?

2.1. Statistical issues linked with the portfolio risk heterogeneity

The most straightforward concern is with statistical issues. Credit risk is one of the areas in 
economic and financial empirical research where the paucity of data is most problematic. 
Default events, relative to the total number of credit loans, remain rare. At a bank 
portfolio and sub-segment level, it is very unlikely that the biggest corporate risk class 
accounts for more than a few tens of thousands names. Even in the retail market where 
portfolios can be expected to be much larger, possibly in the millions, the calibration of 
high-level confidence default statistics would still require the availability of lengthy series 
and extensive data. Hence, it appears rather intuitive that the portfolio’s structure puts 
constraints on the availability of data and the accuracy of risk estimates. In this respect, 
Basel II requires that banks should improve the documentation of default events and the 
accumulation of statistical data in the future. However, besides data limitation, portfolios’ 
structure also matters for the statistical accuracy of internal rating estimates. Those risks 
evolve over time, and ratings’ migrations occur leading to the heterogeneity and instability 
of data pools underlying the internal rating segmentation. Moreover, rating migration 
means that following changes in the borrowers’ credit quality, internal ratings change or 
more precisely, borrowers change rating class. This can also be interpreted as shifts in 
the risk distribution of the bank’s portfolio reflecting macroeconomic fluctuations. One 
could expect that similar macroeconomic changes should be reflected similarly in the risk 
estimates of two rating systems benchmarked, and in this regard, this is not a concern, 
unless the perception of these changes by the bank and its rating system are different. 
Some important insights on this issue are provided by Heiftield, in RTF (2005), who 
suggests that the dynamics of a bank’s rating system lead to very different risk estimates. 
These are difficult to compare and even back test with regard to the actual defaults 
observed (e.g. in the case of rating systems that are sensitive to the business cycle). Thus, 
statistical consistency would require that comparable risk estimates are corrected for the 
portfolio’s heterogeneity. 

2.2. Risk transfer mechanisms across the portfolio and double default

Rating migrations also have another economic significance. They mean that risks in 
general and defaults in particular may be correlated. Standard credit risk models generally 
capture correlation through the assumed correlation of the latent risk variable (e.g. the 
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distance to default in the case of the Merton or the generalized Vasicek framework) to 
observable risk factors. 

Zi�t+1 = �iXt+1 + 1−�2 
i ·�i�t+1 

Zj�t+1 = �jXt+1 + 1−�j 
2 ·�j�t+1 

(7.1) 

=cov Zi�t+1�Zj�t+1 �i�j 

Equation 7.1 models the potential for all risks in risk bucket i and, more generally, 
in the portfolio as in Basel II baseline model, to evolve at the same time, conditional 
to the realization of risk Factor X. Default correlation extends, however, to the more 
general paradigm of the so-called double default correlation. This suggests that besides 
correlation through common macroeconomic effects, the default (the rating) from one 
obligor or class of obligors i in the portfolio may consequently trigger the default (the 
risk deterioration or rating migration) of another obligor or class of obligors j in the 
same portfolio. One can think more specifically of risk transfer mechanisms as simple 
as guarantees. As a matter of fact, Basel II does attempt to address the double default 
correlation that is not explicitly modelled by using a substitution rule according to which 
the risk of (say) the guarantor is simply substituted onto the risk of the initial obligor. 
This may potentially underestimate the true risk as the guarantor is usually of a better 
risk quality than the obligor. 

Besides improving modelling, taking into account double default correlation across the 
portfolio actually gives a better theoretical understanding of portfolio structure effects. 
Let us now introduce double default correlation between two classes of obligors as a 
specific risk factor as follows: 

Zi�t+1 = �iXt+1 + 1−�2 
i �ij�i�t+1 + 1−�ij 

2 ·!i�t+1 

Zj�t+1 = �jXt+1 + 1−�2 
j �ij�i�t+1 + 1−�ij 

2 ·!j�t+1 
(7.2) 

( ) √( ) ( )
cov Zi�t+1�Zj�t+1 = �i�j +�ij 

2 1−�2 
i 1−�2 

j 

Equation 7.2 formulates that, conditional to the overall risk factor X, the double cor-
relation between two classes of obligors i and j may occur at any time following the 
realization of a specific risk factor �i�t common to both. This can be generalized to all 
obligors within the portfolio. Let " be the random risk variable taking values " = �i, 
with probability U for all classes of obligors i across the portfolio, Equation 7.2 can be 
written as 

Zi�t+1 = �iXt+1 + 1−�2 
i · �ij"t+1 + 1−�ij 

2 ·!i�t+1 � (7.3) 

where " represents the risk of double default correlation stemming from the portfolio’s 
structure. Modelling double default correlation still remains a difficult theoretical and 
empirical issue, which is beyond the scope and objective of this chapter. Nevertheless, 
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this analysis suggests that because of such risk transfer mechanisms, the structure of 
the portfolio implicitly conveys information about potential risk correlation that could 
impact internal risk estimates at the bucket level. Thus, if two rating systems do not reflect 
the same portfolio structures, nor the same risk transfer mechanisms, then benchmarking 
could be spurious. This raises the question of a credibility model for benchmarking. The 
issue of credibility was extensively studied by researchers on non-life insurance risks. 
Eventually, a credibility theory was proposed to take into account the potential impact 
of the portfolio’s structure on the sub-class risk estimates. 

3. Credible credit ratings and credible credit risk estimates

3.1. Credibility theory and credible ratings

Credibility theory is actually a very old branch of risk theory and non-life insurance 
mathematics. It was first formulated in the 1920s by American actuaries to correct 
potential portfolio structure effects on the construction and estimation for risk classes 
from heterogeneous sub-portfolios. It gained importance and credit with the formalization 
of its theoretical foundations by Bühlmann (1967) and Bühlmann and Straub (1970) who 
proposed the standard models of modern credibility theory. The generalization of the 
approach was intensively reported in the actuarial literature over the ensuing decades, 
some key references being Hachemeister (1975), Jewell (1975), Sundt (1980) and Norberg 
(1980) to name a few. The most recent contributions seek to extend the theory to dynamic 
risk generating processes using Kalman filtering. The Appendix provides some further 
details on credibility theory of which an overview is introduced for discussion below. 

Consider a portfolio of k = 1� � � � �N  risk classes with risk random variable of interest 
(e.g. number of claims or default events) Zk�i observed for period i = 1� � � � � t and assumed 
to be independent. The risk behaviour of each risk class k is assumed to be described 
by an unknown and unobservable parameter "k. Let " be the random variable taking 
values � = "1�"2� � � � �"k with probability distribution U . Interestingly, actuaries and risk 
mathematicians name this distribution the portfolio’s structure function and as a matter 
of fact U characterizes the heterogeneity of the different risk segment risk estimates in 
the overall portfolio. 


��� = E �Zk/" = �� 

m = 
���dU ��� = E �
 �"�� 

a = �
 ���−m�2dU ��� = V �
 �"�� 

s 2 = E �2 �"k� = �2 ���dU ��� with �2 �"� = V �Zk/"� 

Provided that all random variables are square integrables in the Hilbert space L2 gen-
erated by (Zk�i) and under the above notations, then it can be demonstrated that the best 
approximation of 
��k�, in the sense of the least squares, is defined by its projection on the 
sub-space An of all affine combinations of the observations 1�Zk�i 1≤i≤t 

. An alternative is 
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a projection on linear combinations of observations Zk�i 1≤i≤t 
. In the affine case the cred-

ibility estimator is said to be non-homogenous and conversely homogenous in the linear
case (see Appendix). We focus here on the more general case corresponding to the non-
homogenous estimator. This estimator is given by Bühlmann’s famed credibility theorem 

Cr �
 ��k�� = �1−bkt�m+bktZk• ∑ t1 N at (7.4)Zk• = 
t 

Zki and bkt = 
at + s2 

= 
s2 � 

k=1 t + 
a 

A demonstration of Equation 7.4 is given in Appendix. In its most intuitive and simple 
form, credibility theorem simply formulates that the optimal estimator of a given risk 
random variable of interest (say frequencies of claims in the field of insurance risks or 
frequency of defaults in the field of credit risks) of a sub-portfolio k, conditional to the 
portfolio’s structure, is simply a weighted average between the empirical mean Zk• and 
the estimator obtained on the whole portfolio: 

Cr �E �Zk�� = �1−bk�E �Z�+bkZk 

The weights bk are called credibility coefficients and vary between 0 and 1, and 
Cr �E �Zi�� is also called the credibility estimator or credibility rating. Thus, in a very 
simple and intuitive form, this theory suggests that the effects of the portfolio structure 
should be taken into account in the risk estimate for a risk class k of this portfolio. 

3.2. Applying credibility theory to internal risk rating systems

In theory, credibility theory is perfectly applicable to credit risk. In particular, one can 
note two interesting specific corollary results from the standard credibility theory briefly 
summarized above: 

1. when a = 0, i.e. "1 = "2 = � � � = "k meaning that there is no risk class heterogeneity 
within the portfolio, then bk = 0 and Cr �
 �"k�� = m = E �
 �"k�� almost surely; 

2. when s2 > 0 and a >  0, which is the general case, i.e. there is some risk class het-
erogeneity within the portfolio. In this case m = E �
 �"k�� is probably not a ‘good’ 
estimator of the risk bucket; at the limit a → +
 and bk = 1 thus leading to the 
intuitive conclusion that risk estimates at the portfolio level should almost surely be 
preferred to the risk bucket level which can be deemed as too unreliable. 

These two corollary results may potentially have strong implications for the validation 
of banks’ internal rating systems in the field of credit risks. In particular, corollary 2 
actually suggests that in the general case the structure of the risk buckets of an internal 
rating system is likely to reflect the risk heterogeneity of credit portfolios for the reasons 
mentioned before. A great deal of attention should then be paid to estimating the class’ 
risk estimate. This issue has so far been overlooked by researchers, practitioners and 
supervisors, whose attention has mainly been devoted to setting a minimum target for the 
granularity of risk buckets within an internal rating system to maximize its discriminatory 
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power. Taking a different route Hamerle et al. (2003) came to a similar conclusion when 
examining the portfolio’s structure effects on the discriminatory power of a rating system 
using accuracy ratio (AR) type measures. They show in particular that a portfolio’s 
structure effects can lead to spurious performance measures. Thus, the accuracy of internal 
risk rating estimates and performance regardless of the portfolio’s structure could be 
misleading. The following example helps illustrate how credibility theory may be applied 
to offer a more robust answer to this important issue in the validation of internal rating 
systems. 

Let us now introduce the portfolio structure in the dynamics of the rating system. We 
consider the default process as the combination of two components: 

1. a Poisson distribution that models the number of defaults n for a class of obligors 
calibrated to a given default level k, conditional on the realization of the parameter � 

�k 

p� �n = k� = p �n = k �� � = · exp �−�� (7.5)
k! 

with E �n� = V �n� = �. 
2. a Gamma distribution with non-negative scale and shape parameters 
�� and den-

sity on [0�+
], which models the distribution of risks � within the portfolio. The 
probability density function is 

f ��� = ·�
−1 · exp �−� ·�� (7.6)
� �
� 

with E ��� = 
/� and V ��� = 
/�2. 
From Equations 7.5 and 7.6, the number of defaults for any (class of) obligor randomly 

selected from a portfolio whose structure is characterized by a Gamma distribution with 
parameters (
��) has therefore a Gamma–Poisson mixed distribution defined by the 
probability density function: 

P �n = k� = p �n = k �� � · f ���d�� (7.7) 
0 

The calculation in the Appendix shows that Equation 7.7 actually reflects the form of 
a negative binomial distribution BN�r�p� with parameters [r = 
�p = �/��+1�] and 

n+ r −1 
P �n = k� = pr �1−p�n (7.8)

n 

with 

r �1−p� 
 
E �n� = = (7.9) 

p � 

and 

k �1−p� 
 ��+1� 
V �n� = 

p2 
= 

�2 
(7.10) 
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From the statistical point of view, one can note from Equation 7.10 that the portfolio 
structure has indeed an amplifying effect on the variance of the default process consistent 
with the economic intuition that double default correlation should bring more uncertainty 
to risk estimates. 

Moreover, the Bühlmann credibility factor within the Gamma–Poisson model has a 
simple reduced form (see Appendix for calculation): 

zk = �
+Nk�� (7.11)
��+ t� 

where (
��) are the parameters from the Gamma distribution and Nk is the total number 
of defaults for class k observed over the period t. 

4. An empirical illustration 

Table 7.1 simulates the number of defaults observed on a loans’ portfolio segmented into 
17 risk buckets the size of which is normalized to 100 contracts each. The events of 
defaults are assumed to be generated by a Poisson process as described by Equation 7.5 
and are observed over a 10-year period for the internal rating system studied. In a naïve 
approach, benchmarking the risk estimates of this rating system to the reference rating 
scale given by �0 would lead to the conclusion that the two rating systems are equivalent. 

Assume now that the portfolio structure of this rating system conveys information 
about default correlation and can be modelled by a Gamma distribution of observable 
parameters (
��). Figure 7.1 presents two different cases. Case 1 �
��� = �3�1�5� simulates 
a risky portfolio while case 2 �
��� = �2�3� represents a safer one with more concentrated 
risks. 

Table 7.2 presents the Bühlmann credibility risk estimates given by Equation 7.11 for 
both case 1 and 2 and compares them to the benchmark rating scale. The results are 
strikingly different from the naïve approach that concluded in the equivalence of both 
rating systems. In case 1, the credible estimates suggest that given the portfolio structure 
and empirical experience, defaults may be already underestimated in low-risk classes, 
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Table 7.1 Simulated defaults observed 

Risk bucket

�0 0.10% 0.25% 0.50% 0.75% 1.00% 1.50% 2.20% 3.50% 5.00% 7.00% 10.00% 12.00% 15.00% 18.00% 23.00%

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 0 0 1 2 0 8 2 12  15  21  15  30  
2 0 0 0 0 2 1 3 2 5 8 10  12  18  19  27  
3 0 0 0 0 0 0 3 6 10  9 9  10  12  17  28  
4 0 1 0 0 1 0 1 2 4 11  10  13  11  22  18  
5 0 1 1 0 0 1 1 4 8 2 14  16  17  15  22  
6 0 0 0 0 0 1 4 1 6 5 4  16  13  17  27  
7 0 0 2 0 2 2 3 1 9 7 9  15  8 14  24  
8 0 1 2 1 0 2 1 4 6 8 8  11  13  11  19  
9 1 0 1 3 1 1 4 6 9 8 8  14  13  15  21  
10  0 0 0 0 1 0 3 4 6 5 7  11  7  13  33  
m 0.1 0.4 0.6 0.4 0.7 0.9 2.5 3 7.1 6.5 9.1 13.3 13.3 15.8 24.9 
N 1  4  6  4  7  9 25  30  71  65  91  133  133  158  249  



99 Of the credibility of mapping and benchmarking credit risk 

Table 7.2 Benchmarking credible risk estimate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Case 10.35 0.61 0.78 0.61 0.87 1.04 2.43 2.87 6.43 5.91 8�17 11.83 11.83 14.00 21.91 21.39 25.74 

Case 20.23 0.46 0.62 0.46 0.69 0.85 2.08 2.46 5.62 5.15 7�15 10.38 10.38 12.31 19.31 18.85 22.69 

m̂ 0.10 0.40 0.60 0.40 0.70 0.90 2.50 3.00 7.10 6.50 9�10 13.30 13.30 15.80 24.90 24.30 29.30 

�0 0.10 0.25 0.50 0.75 1.00 1.50 2.20 3.50 5.00 7.00 10�00 12.00 15.00 18.00 23.00 26.00 30.00 

Table 7.3 Accuracy ratios 

Accuracy ratio

Prior estimates 0�6925 
Credible estimates (Case 1) 0�5593 
Credible estimates (Case 2) 0�5469 

whereas they are conversely overestimated in high-risk classes. This may be due to implicit 
default correlation and/or wrong calibration. Conversely, portfolio 2 that is concentrated 
to a far greater extent on good risks gives less credibility to the high-risk estimate. 

Overall, the benchmarking of credible risk estimates suggests that the rating systems 
benchmarked are not equivalent. It is interesting to note that credibility estimates also 
provide a very different view of the discriminative power of the rating system studied. For 
example, one can observe that credibility estimates for risk buckets 2, 3 and 4 suggest 
that, conditional to the observations and the portfolio structure effects, these risk class are 
not discriminative enough, which mitigates the initial impression of a very granular rating 
scale. The same conclusion can be observed for risk buckets 9 and 10, 12 and 13, as well 
as 15 and 16. This has two implications, firstly in terms of performance measurement 
with indicators such as ARs [see RTF (2005) for an extensive presentation of performance 
indicator for rating systems], and secondly in terms of mapping (see Section 5). 

As regards performance measurement, Table 7.3 compares the ARs obtained on prior 
rating estimates and credible rating estimates for both models (see Appendix for calcu-
lation). Thus, one can note that while displaying a rather satisfactory AR close to 0.70 
with the prior estimates obtained from Table 7.2, AR calculated for credible estimates 
from models 1 and 2 are much lower and confirm that the two rating systems are not 
that discriminative. 

Overall, the results illustrated by this case study provide some evidence that naïve 
benchmarking can lead to spurious inferences and conclusions. On the contrary, it seems 
that credibility theory applied to credit ratings, and therefore the credible ratings thus 
obtained may provide some instruments for a more robust benchmarking. Moreover, 
formal statistical tests again derived from insurance practices such as the Pearson test or 
the log-rank test may then be performed on credible ratings to complete the approach. 

4.1. Statistical tests

A first consequence of potential portfolio structure effects is that rating estimates for risk 
classes within two different portfolios cannot be compared pair wise, as usually performed 
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in the naïve approach but, conversely, should be benchmarked and tested jointly condi-
tional to the portfolio structure. Furthermore, this means that benchmarking two rating 
systems should focus instead on assessing the consistency of the respective credible risk rat-
ing distributions. Further investigation into the interesting insights of Jewell (1974) with 
respect to the estimation of whole credible distributions is beyond the scope of this chapter. 
In effect, however, benchmarking would actually require the systematic comparison of 
default curves conditional to the portfolio structure. More straightforward statistical tests 
are, however, available to test the adequacy of the conditional default curves: 

• The #2 Pearson test is the most familiar approach. It tests the null hypothesis of no 
significant difference between the two risk estimates benchmarked; it can, however, 
be rapidly constrained by the need for the same granularity both for rating scales’ 
comparison as well as by the degree of freedom (N −1 with N as the number of risk 
classes). 

• An interesting alternative approach is the log-rank test. It resembles the Pearson test 
but has more extensive power and is often used in life insurance practices to verify the 
consistency of mortality or survival curves to regulatory benchmarks. In life insurance, 
the test is used in the temporal dimension to compare two curves SA�t� and SB�t� 
generally representing survival rate (or mortality rate) e. The null hypothesis is the 
adequacy of the compared curve to the benchmark H0 : SA�t� = SB�t�, for t >  0. The 
alternative is that there exists at least one period in time when the survival rates differ 
H1: there exists t ∗ such as SA�t∗� 
 SB�t∗�.=

The log-rank statistics is constructed in the following manner: 

�DA −EA�2 �DB −EB�2 

Q = + 
EA EB︸ ︷︷ ︸ ︸ ︷︷ ︸
QA QB 

where 

DA = ∑ t DtA is the total number over time of deceases observed for population A. 
DB = ∑ t DtB is the total number over time of deceases observed for population B. 
EA = ∑ t DtA is the total number over time of deceases expected for population A. 
EB = t DtB is the total number over time of deceases expected for population B. 

Under the null hypothesis the statistic Q is then asymptotically distributed according 
to a #2 with one degree of freedom. 

One can note that there should be no conceptual difficulty in applying the log-rank test 
cross-section across risk class k of two given rating systems A and B to compare the cor-
responding default curves SA�k� and SB�k�. We construct the log-rank test for our example 
following results displayed in Table 7.2. In this example, both rating systems have been 
calibrated to have ex ante the same expected default rates. Recall that according to Equa-
tion 7.5, E �n� = V �n� = �. Thus, obtaining the log-rank statistic from Table 7.2 is straight-
forward. The value of the log-rank Q statistic for benchmarking both rating systems is 
15.91, well above the critical value of 3.84 at the 5% confidence level, thus rejecting the 
null hypothesis of equivalence of the two rating systems benchmarked (Table 7.4). 



Table 7.4 Log-rank test 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total

Case 10�35 0�61 0�78 0�61 0�87 1�04 2�43 2�87 6�43 5�91 8�17 11�83 11�83 14�00 21�91 21�39 25�74 

Case 20�23 0�46 0�62 0�46 0�69 0�85 2�08 2�46 5�62 5�15 7�15 10�38 10�38 12�31 19�31 18�85 22�69 

m̂ 0�10 0�40 0�60 0�40 0�70 0�90 2�50 3�00 7�10 6�50 9�10 13�30 13�30 15�80 24�90 24�30 29�30 

�0 0�10 0�25 0�50 0�75 1�00 1�50 2�20 3�50 5�00 7�00 10�00 12�00 15�00 18�00 23�00 26�00 30�00 

QA 0�63 0�52 0�16 0�03 0�02 0�14 0�02 0�11 0�41 0�17 0�33 0�00 0�67 0�89 0�05 0�82 0�60 5�57 

QB 0�17 0�18 0�03 0�11 0�10 0�28 0�01 0�31 0�08 0�49 0�81 0�22 1�42 1�80 0�59 1�97 1�78 10�34 
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5. Credible mapping

5.1. The mapping process

We define mapping as the process that normalizes the granularity of two rating scales 
with different numbers of buckets. Mapping is thus an important preliminary step: 

• to allow the benchmarking of the rating system studied to a reference external rating 
scale (S&P’s, Moody’s, etc.) with a different granularity and 

• also to enable the prior aggregation of sub-ratings systems on a master scale, which is 
then used for benchmarking to external references. 

The latter specific issue is particularly important for internal rating systems implemented 
by banks and the credit portfolios of which are usually segmented according to refined risk 
and economic characteristics reflecting business practices tailored to address specific and 
very diverse market segments. As noted in RTF (2005), internal rating systems are usually 
designed in a ‘bottom-up’ approach, better reflecting operational reality, but rating grades 
are often ultimately mapped onto a master scale that is then calibrated or compared to 
an external benchmark. 

Notwithstanding the effects of this segmentation on the accuracy of risk bucket esti-
mates previously mentioned, internal rating systems are ultimately facing an aggregation 
consistency issue. Thus, as for credible ratings discussed above, credible benchmarking 
would also require credible mapping. In this regard, generalizations and extensions of 
the standard credibility theory, such as those initially proposed by Jewell (1975) for seg-
mented insurance portfolios, may actually also provide some theoretical background to 
credible mapping in the case of credit ratings (Figure 7.2). 

The insights again issue from the literature on credibility for insurance risks. We 
introduce here the basic principles of hierarchical credibility as first introduced by Jewell 
(1975). More recent developments can be found in particular in Dannenburg et al. (1996) 
and Ohlsson (2006), who proposes an interesting multiplicative hierarchical credibility 
model. 

1

1 k nj

1 1 1

Total portfolio 

nj Subportfolios 

∑ 
nj

nk Risk classes 
nnjnkn1

k = 1

Figure 7.2 Jewell’s (1975) hierarchical credibility model 
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Consider a portfolio segmented in n sub-portfolios that may be risk classes. Each bucket 
can itself be segmented and so on so that the overall portfolio is hierarchically segmented 
in j levels of aggregation. One can think, for example, of a bank portfolio segmented by 
country sub-portfolios that are in turn segmented by market (retail, corporate, SME, etc.) 
and again by sector or products (industry, services, mortgage, etc.). Ultimately, each jth 
level sub-portfolio is segmented in nnj risk buckets. 

Following Dannenburg et al. (1996), we use the triplet (i� j� k) to characterize any 
hierarchical structure of a portfolio of contracts, in this case loans, and more precisely 
risk bucket k of sub-portfolio j at the ith level of sub-aggregation. 

The observations are realizations of random variables Zi�j�k that are supposed to be 
square integrables. The principles of credibility modelling presented above are applied to 
the hierarchical structure: at each given level i each aggregate sub-portfolio or new cluster 
j is assumed to be characterized by a latent risk parameter �j , which is not observable and 
also assumed to be a random variable. In addition, each risk class level k of sub-portfolio 
j is also assumed to be characterized by an unobservable risk parameter �jk. One then 
obtains the following specifications: 

• at the overall portfolio level: E Zi�j�k( = m∣ ; ) ( )• at the jth sub-portfolio in level i: E ∣�j = andZi�j�k 
0(�j ∣ ) ( )• at the risk class k of the jth aggregate in level i � E  Zi�j�k 
∣�j�jk = 
 �j� �jk . 

Furthermore, let 

b = var 
0 �j � ( ( ( ) ∣ ))
a = E var 
 �j� �jk 

∣�j and ( ( ( )))
s 2 = E �2 
 �j� �jk � 

It can then be shown that credibility estimates obtained for any aggregate class j are 
given by ( ( )) ( ) zw 

Cr E Zj = 1−qj m+qjZj•• � (7.12) 

where 

qj = zj• 
a (7.13) 

zj• + 
b 

is the credibility factor for aggregate class j� 

zj• = zjk (7.14) 
k 

is the aggregate credibility estimate for all classes of aggregate class j with 

zjk = wjk• 
2 (7.15) 

s
wjk• + 

a 
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as credibility factor for sub-class k; wjk• = wi�j�k is the total aggregate number of 
i 

observations at level i for aggregate class j and sub-class k. 
The credibility factor for sub-class k here differs slightly from the standard credibility 

factor in Equation 7.4 by the introduction of ‘weights’, reflected by the relative size of 
sub-segments prior to aggregation. 

Zjk• 
w = i∑wijkZi�j�k (7.16) 

i wijk 

if the average defaults for sub-portfolio j and class k weighted by total aggregated number 
of exposures at level i. ∑ w 

Zj•• 
zw = k∑zjkZjk• (7.17) 

k zjk 

is the average credible risk estimate for aggregate class j weighted by credibility factors 
of sub-classes k. 

5.2. An empirical illustration

Assume that the following rating scale with 10 grades is a reference scale (Table 7.5). 
One may wish to map the initial 17 grades onto an equivalent 10 grades master scale, 

and assume that all prerequisites in terms of mapping consistency are fulfilled (same 
type of portfolio). Often a rather simple approach is used, by which a ‘naïve mapping’ 
is directly performed by clustering risk buckets together such as in Table 7.6. In this 
case, one would assume that, based on prior risk estimates, bucket 1 of the reference 
rating scale, which displays a default rate of 0.25%, would map to buckets 1 and 2 with 
respective prior estimates of 0.1% and 0.25%. 

However, a ‘credible’ mapping based on credible estimates would suggest a different 
approach. Firstly, the previous results obtained from risk class credibility estimates for 

Table 7.5 Reference benchmark scale 

Bucket 1 2 3 4 5 6 7 8 9 10

% Defaults 0.25 0.75 1  2  5  7  10  15  25  30  

Table 7.6 Bucket mapping 

Benchmark 1 2 3 4 5 6 7 8 9 10

Naïve 
mapping 
Credible 
mapping 

1 + 2 3  + 4 5 + 6 7 8  + 9 10  

1 2 + 3 + 4 5  + 6 7 8  9  + 10 + 11 

11  + 12 

12 + 13 + 14 

13 + 14 

15 + 16 

15 + 16 

17 

17 
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model 1 (see Table 7.2) indicated a lack of discriminative power of a number of buckets. A 
first stage in a credible mapping would then require these buckets to be clustered together 
as presented in Table 7.6. Secondly, proper credible risk estimates for the mapping 
performed would need to be calculated. This is undoubtedly more satisfactory than in 
the naïve approach. To do so, we apply Jewell’s two-level credibility model to model 1 
previously studied: in our simple case study, all classes have the same weight and the same 
credibility factor, thus greatly simplifying the calculation that can then be directly obtained 
from previous results from Table 7.4. As a matter of fact, the calculation reduces to a 
second-step estimation of standard credibility factor on the resulting 10 buckets mapped 
rating scale and corresponding portfolio. As before, the specific Gamma–Poisson model 
underlying model 1 allows the use of Equation 7.11 to directly derive new credibility 
estimates for the mapped rating scale. Table 7.7a presents the data used. 

The resulting mapped rating scale and corresponding credible estimates can now be 
benchmarked with the reference rating scale. The results presented in Table 7.7b appear 
interesting and quite satisfactory. Most of the buckets compared have rather similar risk 
estimates. Some larger discrepancies are observed, however, noticeably for 10. The log-
rank test gives nevertheless the value 2.51 below the 3.84 critical value, thus accepting 
the null hypothesis of equivalence between the two rating scales. Moreover, the credible 
mapping, i.e. mapping performed on credible estimates, also resulted in an increased 
discriminative power, from initially 0.5593 (see Table 7.3) to 0.6121. 

Table 7.7a Defaults (%) for mapped rating scale 

Buckets

Year 1 2 + 3 + 4 5 + 6 7 8 9 + 10 + 11 12 + 13 14 15 + 16 17

1 0.00 0.33 0.50 2.00 0.00 7.33 18.00 15.00 26.00 24.00 
2 0.00 0.00 1.50 3.00 2.00 7.67 15.00 19.00 29.00 41.00 
3 0.00 0.00 0.00 3.00 6.00 9.33 11.00 17.00 28.00 27.00 
4 0.00 0.33 0.50 1.00 2.00 8.33 12.00 22.00 20.00 26.00 
5 0.00 0.67 0.50 1.00 4.00 8.00 16.50 15.00 19.00 29.00 
6 0.00 0.00 0.50 4.00 1.00 5.00 14.50 17.00 24.00 28.00 
7 0.00 0.67 2.00 3.00 1.00 8.33 11.50 14.00 22.50 35.00 
8 0.00 1.33 1.00 1.00 4.00 7.33 12.00 11.00 25.00 26.00 
9 1.00 1.33 1.00 4.00 6.00 8.33 13.50 15.00 23.00 28.00 
10 0.00 0.00 0.50 3.00 4.00 6.00 9.00 13.00 29.50 29.00 

Average 0.10 0.47 0.80 2.50 3.00 7.57 13.30 15.80 24.60 29.30 

Table 7.7b Credible estimates for mapped rating scale 

Benchmark 1 2 3 4 5 6 7 8 9 10

Risk estimate 0.25 0.75 1.00 2.00 5.00 7.00 10.00 15.00 25.00 30.00 
Credible mapping 1 2 + 3 + 4 5  + 6 7  8  9  + 10 + 11 12 + 13 + 14 15 + 16 17 
Credible estimate 0.35 0.67 0.96 2.43 2.87 6.84 11.83 14.00 21.65 25.74 
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6. Conclusions

Benchmarking will take on a far greater importance for internal credit rating validation 
processes if it can be formalized into a robust approach. In particular, the benchmarking 
process needs to be given some formal credibility. To this end, this chapter has looked at 
the credibility theory initially developed in the field of risk theory for non-life insurance 
claims’ portfolios. The conclusions reached in this chapter are that in many respects, 
credibility theory may actually be applicable to credit portfolios. In particular 

• Risk estimates for internal rating systems may be affected by the portfolio structure that 
reflects not only statistical calibration problems but also economic phenomenon such 
as double default correlation. Therefore, benchmarking may become problematic if 
the ratings compared on the basis of their estimates are biased or include idiosyncratic 
portfolio structure effects. Credibility theory was developed to address such concerns. 
What makes credibility theory particularly attractive when applied to benchmarking 
credit rating and credit risk estimates is that it offers an elegant theoretical framework 
that enables ratings comparability by explicitly correcting risk bucket estimates for 
the portfolio’s structure effects. 

• Because of the portfolios’ structure effects, benchmarking credible risk estimates actu-
ally broadens the issue from benchmarking ratings to benchmarking the rating system’s
structure, which ultimately is a more satisfactory and consistent approach. Moreover, 
statistical tests may then be performed to assess the comparability of different risk 
structures. 

• Developments in credibility theory such as hierarchical credibility models may also be 
useful to formalize mapping rules in particular for using master scales. This is needed 
when the benchmark is not of the same granularity. ‘Credible’ mapping could help to 
build more consistent master scales. 
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Appendix

1. Further elements of modern credibility theory

Although credibility concepts originated in the early 1900s, the modern credibility theory was 
formally established by Bühlmann (1967), who gave it robust mathematical foundations. Recall the 
fundamental relation of credibility theory given by Equation 7.4 

Cr �
 ��k�� = �1−bkt�m+bktZk•� 

The initial idea of credibility theory was to project 
��� on sub-spaces generated by (1�Zk�i). The 
resulting non-homogenous credibility estimator is perfectly sound on the theoretical level but can 
be difficult to use at a practical level, as the required conditional expectation 
��� = E �Zk/" = �� 
is not always known ex ante. In particular, it necessitates prior assumptions on the form of the 
portfolio’s structure function U , which characterizes the probability distribution of risk parameter 
� across the portfolio. Under some specific assumptions, however, the problem can be alleviated as 
demonstrated by Jewell (1975) and an exact solution obtained. 

Alternatively, if one does not wish to make such assumptions, an empirical credibility estimator 
can still be obtained by restricting the problem to a projection on (Zk�i), sub-space of linear
combinations of the observations. In theory, the resulting projection, which is a random variable, 
does not have same mean as 
��� and thus does not comply with the required property. To alleviate 
this, a best estimate can be obtained by imposing a constraint: the best estimate of the credibility 
factor, said to be homogenous, is then obtained by the combination of linear combinations of 
observations that satisfies at the same time the constraint E Crh �
 ��k�� = E �
 ��k��. The estimation 
error is, however, larger. 

2. Proof of the credibility fundamental relation

We recall here the initial demonstration carried by Bühlmann (1967) deriving the credibility relation 
in the non-homogenous case. Alternative proofs and generalizations to the hierarchical credibility 
framework can be found in Jewell (1975), Sundt (1980) and Norberg (1996), among others. 

Consider a portfolio of k = 1� � � � �n risk classes with risk random variable of interest (e.g. number of 
claims or default events) Zk�i observed for period i = 1� � � � � t and assumed to be independent. The risk 
behaviour of each risk class k is assumed to be described by an unknown and unobservable parameter 
"k. Let " be the random variable taking values � = "1�"2� � � � �"k with probability distribution U . 
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Notations
Let 

��� ∫= E �Zk/"k = ��, the expected risk for class k conditional to risk driver �. 
m = 
���dU ��� = E �
 �"��, the expected risk over the whole portfolio. 
a = ∫ �
 ���−m�2 dU ��� = V �
 �"��, the variance of risks across the whole portfolio. 
s2 = E �2 �"k� = �2 ���dU ��� with �2 �"� = V �Zk/"k�, the variance over time of empirical risk 

estimate Zk for class k, conditional to risk driver �k. 

Assumptions ( )
1. ∀k = 1� � � � �n�∀j ≥ 1, the random variables Zkj are square integrables with E Zkj �"k = 
�"k� 

independent from j and cov 
(
Zkj�Zki �"k 

)= �2 �"k� �ij with �ij = 1 if  i = j
�

0 if  i 
 j=
2. ∀(k = 1� � � � �n ) and p = 1� � � � �n  with p =
 n, the random vectors �"k�Zki � i ≥ 1� and 

"p�Zpj � j ≥ 1 are independent in probability, and the random variables "1�"2� � � � �"k are 
independent and have the same probability law. Assumption 2 formulates that, conditional to 
the risk driver of a given class, each (loan) contract is independent. 

Theorem
Under assumptions 1 and 2, the best linear (non-homogenous) (Bühlmann, 1967) estimator of the 
expected risk for class k conditional to risk driver � is 

Cr �
 �"k�� = �1−bkt�m+bktZk•� 

where 

N1 ∑
Zk• = Zki mean of empirical estimates for class k over time 

t 
k=1 

at t
and = = �bkt at + s2 t + s2 

a 

Proof One seeks the best linear approximation of 
�"k�, the risk of class k with risk driver 
"k, by a random variable W = Cr �
 �"k�� that is assumed to be an affine combination of all the 
observations Zij of the whole portfolio. 

n t

W = c0 + cijZij 
i=1 j=1 

W is therefore the orthogonal projection of 
�"k� on the sub-space spanned by the random variables 
(1�Zij). The vector �
 �"k�−W� is then orthogonal to this sub-space and the following nt + 1 
relations are satisfied (scalar product): 

E ��
 �"�−W� ·1� = 0 

E �
 �"�−W� ·Zpl = 0 for p = 1� � � � �n and l = 1� � � � � t

n t

From the first relation, one gets m = c0 + cijm 
i=1 j=1 
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The other relations are equivalent to cov 
��k� �Zpl = cov W�Zpl 

•p = k then for each t = 1� � � � � t  

n t∑ ∑ 1 if  i = 1 
a = a cki + s 2 cki�il� where �il = 

0 if  i 
 1= 
i=1 i=1 

t

a 1−a cki = s 2 cki� 
i=1 

a
thus, ck1 = ck2 = � � � = ckt = 

at + s2 

•p 
 k= 
Under assumption 2, one gets 

n t

0 = cij cov Zij�Zpl 
i=1 j=1 

t t

0 = cpj a+�jls 
2 = cpja+ cpls 

2� thus cp1 = � � �  = cpt = 0 
j=1 j=1 

Overall, the solution reduces to 

t∑ at a 
W = c0 + c1 Zkj� with c0 = 1− m and c1 = � 

at + s2 at + s2 
j=1 

which demonstrates the results of Equation 7.4. 

3. Mixed Gamma–Poisson distribution and negative binomial

Conditional to �, the probability to observe k defaults is Poisson and given by 

−� 

p �n = k �� � = �k e

k! 
However, � is a random variable with Gamma probability density 

f ��� = ·�
−1 · exp �−� ·�� � 

The probability to observe k defaults according to a Gamma–Poisson process is therefore 

g �n = k� = p �n = k �� �f ���d� 
0 ∫ +
 

�k e−� �
 

�
−1 −��d�= e 
0 k! � �
� 

= �k+
−1 e���−1�d� 
k!� �
� 0 
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�
 −�k+
� = � �k+
� ��+1�
k!� �
� { }{ }
 { }k� �k+
� � 1 = 

k!� �
� �+1 �+1 

or { }{ }
 { }k�k+
−1�! � � 
g �n = k� = 1− � 

�
−1�!k! �+1 �+1 

Let p = , then 
�+1

g �n = k� = k+
−1 
p
 �1−p�k � 

k 

which is the form of a negative binomial 
� with expectation 
/� and variance 
1+� 


 ��+1� 
 
> . 

�2 �2 

4. Calculation of the Bühlmann credibility estimate under the
Gamma–Poisson model

� follows a Gamma distribution with parameters (
��). 
Recall from Equation 7.4 that 

Cr �
 ��k�� = �1−bkt�m+bktZk• 
N1 ∑ at t 

Zk• = 
t 

Zki and bkt = 
at + s2 

= 
s2 

k=1 t + 
a 

with 

a = �
 ���−m�2dU ��� = V �
 �"�� = 
 

�2 

s 2 = E 
(
�2 �"k� 

)= 
∫

�2 ���dU ��� = 
� 

Nk defaults over t years. The observed annual default frequency is Nk/t 
The credibility of the t years of observations is 

t t t = =bkt = 
s2 
/� t +� 

t + t + 
a 
/�2 

The ex ante hypothesis of defaults frequencies at the portfolio level is m = E ��� = 
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Thus the credible estimate for class k is 

Cr �
 ��k�� = �1−bkt�m+bktZk• = 1− t · 
 + t · Nk = 
+Nk � 
t +� � t +� t �+ t 

5. Calculation of accuracy ratio

The demonstration can be found in Hamerle et al. (2003): 

1 
AR = · Gini� 

1− �̄

�̄ is the average default rate, with Gini coefficient defined as 

1 2 
Gini = 1+ − �N�1 + �N −1� �2 + � � �+�N � � 

N N 2�̄

where N is the total number of buckets and �i is the default rate for risk bucket i. 
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8 Analytic models of the ROC Curve

Applications to credit rating model validation

Stephen Satchell∗ and Wei Xia†‡

Abstract

In this chapter, the authors use the concept of the population receiver operating characteristic
(ROC) curve to build analytic models of ROC curves. Information about the population
properties can be used to gain greater accuracy of estimation relative to the non-parametric
methods currently in vogue. If used properly, this is particularly helpful in some situations
where the number of sick loans is rather small, a situation frequently met in practice and in
periods of benign macro-economic background.

1. Introduction

Following the publication of the ‘International Convergence of Capital Measurement and
Capital Standards: A Revised Framework’ by the Basel Committee on Banking Supervi-
sion (BCBS) (known as Basel II) in June 2004, qualified banks are now allowed to use
the internal rating-based (IRB) credit risk modelling approach for risk modelling and eco-
nomical capital calculation. One of the important components of most IRB risk models
is the rating system used for transforming and assigning the probability of default (PD)
to each obligor in the credit portfolio, and over the last three decades, banks and public
ratings agencies have developed a variety of rating methodologies. Therefore, questions
arise as to which of these methodologies deliver acceptable discriminatory power between
the defaulting and non-defaulting obligor ex ante and which methodologies would be
preferred for different obligor sub-groups. It has become increasingly important for both
the regulator and the banks to quantify and judge the quality of rating systems.

This concern is reflected and stressed in the recent BCBS working paper No.14 (2005),
which summarizes a number of statistical methodologies for assessing discriminatory power
described in the literature, for example, cumulative accuracy profile (CAP), receiver operat-
ing characteristic (ROC), Bayesian error rate, conditional information entropy ratio (CIER),
Kendall’s $ and Somers’ D, Brier score, inter alia. Among those methodologies, the most
popular ones are CAP and its summary index, the accuracy ratio (AR), as well as ROC and
its summary index known as the area under the ROC (AUROC) curve. It is worth noting
that, unlike some other measures that do not take sample size into account and are therefore

∗ Faculty of Economics, University of Cambridge and Trinity College, Cambridge, UK
† Doctoral Student, Birkbeck College, University of London, UK
‡ Visiting Lecturer, University of International Business and Economics, Beijing, China



114 The Analytics of Risk Model Validation

substantially affected by statistical errors, the CAP and the ROC measures explicitly account
for the size of the default sample and, thus, can be used for direct rating model comparison.

A detailed explanation of the CAP is presented in Sobehart et al. (2000) and Sobehart
and Keenan (2004). ROC has long been used in medicine, psychology and signal detection
theory, so there is a large body of literature that analyses the properties of the ROC curve.
Bamber (1975) shows that the AUROC is related to the Mann–Whitney statistic and
also discusses several different methods for constructing confidence intervals (CIs). An
overview of possible applications of the ROC curves is given by Swets (1988). Sobehart
and Keenan (2001) introduce the ROC concept to internal rating model validation and
focus on the calculation and interpretation of the ROC measure. Engelmann et al. (2003)
show that AR is a linear transformation of AUROC; their work complements the work
of Sobehart and Keenan (2001) with more statistical analysis of the ROC. However,
the previous work with which we are familiar has used a finite sample of empirical or
simulated data, but no one has analysed the analytic properties of the ROC curve and
the ROC measure under parametric assumptions for the distribution of the rating scores.

In this chapter, we further explore the statistical properties of the ROC curve and its
summary indices, especially under a number of rating score distribution assumptions. We
focus on the analytical properties of the ROC curve alone as the CAP measure is just a
linear transformation of the ROC measure.

In Section 2, to keep this chapter self-contained, we briefly introduce the credit rating
model validation background and explain the concepts and definitions of ROC and
CAP. A general equation for the ROC curve is derived. By assuming the existence of
probability density functions (PDFs) of the two variables that construct the ROC curve,
an unrestrictive assumption, we show that there is a link between the first derivative of
the curve and the likelihood ratio (LR) of the two variables, a result derived by different
methods in Bamber (1975).

In Section 3, by further assuming certain statistical distributions for the credit rating
scores, we derive analytic solutions for the ROC curve and its summary indices. In
particular, when the underlying distributions are both negative exponential distributions,
we have a closed-form solution.

In Section 4, we apply the results derived in Section 3 to simulated data. Performance
evaluation reports are presented. Section 5 concludes.

We find that estimation results from our analytic approach are as good as and, in many
cases, better than the non-parametric AUROC ones. The accuracy of our approach is limited
by the continuous rating score assumption and also affected by the accuracy of estimation of
the distribution parameters on rating score samples in some cases. However, it offers direct
insight into more complex situations and is, we argue, a better tool in credit rating model
selection procedure as the analytic solution can be used as an objective function.

2. Theoretical implications and applications

In this section, we first briefly review the credit rating system methodology, in particular
the CAP and the ROC measures. The content presented in this part is very similar to
Engelmann et al. (2003) and BCBS working paper No.14 (2005). Then, we introduce
the ordinal dominance graph (ODG), where ROC is a special case of ODG and some
interesting theoretical implications of the ROC curve will be given.
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2.1. The validation of credit rating system

The statistical analysis of rating models is based on the assumption that for a predefined
time horizon, there are two groups of bank obligors: those who will be in default, called
defaulters, and those who will not be in default, called non-defaulters. It is not observable
in advance whether an obligor will be a defaulter or a non-defaulter in the next time
horizon. Banks have loan books or credit portfolios; they have to assess an obligor’s
future status based on a set of his or her present observable characteristics. Rating systems
may be regarded as classification tools to provide signals and indications of the obligor’s
possible future status. A rating score is returned for each obligor based on a rating model,
usually an expert judgment model. The main principal of rating systems is that ‘the
better a grade, the smaller the proportion of defaulters and the greater the proportion of
non-defaulters who are assigned this grade’. Some quantitative examples are the famous
Altman’s Z score or some scores from a Logit model.

Therefore, the quality of a rating system is determined by its discriminatory power
between non-defaulting obligors and defaulters ex ante for a specific time horizon, usually
a year. The CAP measure and ROC provide statistical measures to assess the discrimina-
tory power of various rating models based on historical (ex post) data.

2.2. CAP and AR

Consider an arbitrary rating model that produces a rating score, where a high score is
usually an indicator of a low default probability. To obtain the CAP curve, all debtors are
first ordered by their respective scores, from riskiest to safest, i.e. from the debtor with
the lowest score to the debtor with the highest score. For a given fraction x of the total
number of debtors, the CAP curve is constructed by calculating the percentage d�x� of the
defaulters whose rating scores are equal to, or lower than, the maximum score of fraction
x. This is done for x ranging from 0% to 100%. Figure 8.1 illustrates CAP curves.
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Figure 8.1 Cumulative accuracy profile
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A perfect rating model will assign the lowest scores to the defaulters. In this case,
the CAP increases linearly to one, then remains constant. For a random model without
any discriminative power, the fraction x of all debtors with the lowest rating scores will
contain x percent of all defaulters. The real rating system lies somewhere in between these
two extremes. The quality of a rating system is measured by the AR. It is defined as the
ratio of the area aR between the CAP of the rating model being validated and the CAP
of the random model and the area aP between the CAP of the perfect rating model and
the CAP of the random model.

aRAR = 
aP

It is easy to see that for real rating models, the AR ranges from zero to one, and the
closer the AR is to one, the better the rating model.

2.3. ROC and the AUROC curve

The construction of a ROC curve is illustrated in Figure 8.2, which shows possible dis-
tributions of rating scores for defaulting and non-defaulting debtors. For a perfect rating
model, the left distribution and the right distribution in Figure 8.2 would be separate.
For real rating systems, perfect discrimination in general is not possible. Distributions
will overlap as illustrated in Figure 8.2 [reproduced from BCBS Working paper No.14
(2005)].

Assume one has to use the rating scores to decide which debtors will survive during
the next period and which debtors will default. One possibility for the decision-maker
would be to introduce a cut-off value C as in Figure 8.2, then each debtor with a rating
score lower than C is classed as a potential defaulter, and each debtor with a rating score
higher than C is classed as a non-defaulter. Four decision results would be possible. If
the rating score is below the cut-off value C and the debtor subsequently defaults, the
decision was correct. Otherwise, the decision-maker wrongly classified a non-defaulter
as a defaulter. If the rating score is above the cut-off value and the debtor does not
default, the classification was correct. Otherwise, a defaulter was incorrectly assigned to
the non-defaulters’ group.

Defaulters
C

Non-defaulters

F
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Rating score 

Figure 8.2 Distribution of rating scores for defaulting and non-defaulting debtors
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Then, one can define a hit rate HR(C) as

H �C� 
HR�C� = � 

ND

where H�C� is the number of defaulters predicted correctly with the cut-off value C and
ND is the total number of defaulters in the sample. This means that the hit rate is the
fraction of defaulters who were classified correctly for a given cut-off value C. The false
alarm rate FAR(C) is then defined as

F �C� 
FAR�C� = � 

NND 

where F �C�  is the number of false alarms, i.e. the number of non-defaulters who were
classified incorrectly as defaulters by using the cut-off value C. The total number of
non-defaulters in the sample is denoted by NND. In Figure 8.2, HR(C) is the area to the
left of the cut-off value C under the score distribution of the defaulters (coloured plus
hatched area), whereas FAR(C) is the area to the left of C under the score distribution of
the non-defaulters (chequered plus hatched area).

To construct the ROC curve, the quantities HR(C) and FAR(C) are computed for all
possible cut-off values of C that are contained in the range of the rating scores; the ROC
curve is a plot of HR(C) versus FAR(C), illustrated in Figure 8.3.

The accuracy of a rating model’s performance increases the steeper the ROC curve is
at the left end and the closer the ROC curve’s position is to the point (0,1). Similarly,
the larger the AUROC curve, the better the model. This area is called AUROC and is
denoted by A. By means of a change of variable, it can be calculated as∫ 1

A = HR�FAR�d�FAR� 
0

A

1

Perfect modelRating model 

Random modelH
it 
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0 1

False alarm rate 

Figure 8.3 Receiver operating characteristic curves
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The area A is 0.5 for a random model without discriminative power, and it is 1.0 for
a perfect model. In practice, it is between 0.5 and 1.0 for any reasonable rating model.

It has been shown in Engelmann et al. (2003) that

aR NND �A−0�5� 
AR = = = 2 �A−0�5� = 2A−1� 

aP 0�5NND

2.4. Some further statistical properties of ROC measures

The ROC stems from the ODG. Assume we have two sets of continuous random variables,
X and Y . Let C be an arbitrary constant. Define

y = Prob �Y ≤ C� = FY �C� and x = Prob �X ≤ C� = FX �C� � 

where x and y lie between [0, 1] and C lies in �−
�+
�. Then the ODG is simply a plot
of y against x. See Figure 8.4. There are some straight forward properties of the ODG:

1. The ODG curve is never decreasing, as x increases y cannot decrease.
2. If Prob �Y ≤ C� = Prob (X ≤ C), then x and y are identically distributed, y = x and

the ODG curve is a 45� line.
3. If X first-order stochastic dominates (FSD) Y , then the ODG curve lies above the 45� 

line and vice versa.

Proof

If X FSD Y ⇒ FX �C� ≤ FY �C� �∀C ∈ � ⇒ x ≤ y 
⇒ �x� y� lies above the 45� line

If we regard y as score signals of defaulters in the next predefined period and x as those of
the non-defaulters, then we expect any sensible rating system to produce Prob �Y ≤ C� ≥ 
Prob (X ≤ C) for all C. Thus, x ≤ y for all C, and the ODG curve is above the 45� line.
In the risk literature, it is referred to as the ROC curve. In terms of Section 2.3, y is the
HR�C� and x is the FAR�C�.

By assuming the existence of PDFs of FX and FY , i.e. that they are both absolutely
continuous, the following lemma can be derived:

Lemma 1

%C 1
If x = FX �C� � C  = FX 

−1 �x� � then = � where fX �C� is the PDF of X� 
%x fX �C� 

Proof

%FX �C� %FX �C� %C %C %C 1
1 = = · = fX �C� � ∴ = � 

%x %C %x %x %x fX �C� 
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Lemma 2
If y = FY �C�, then

%y = fY �C� 
.

%x fX �C� 
We see from Lemma 2 that the slope of the ODG curve is just the LR of Y and X 

evaluated at C.

Proof

%y %FY �C� %FY �C� %C %C fY �C� = = · = fY �C� · = � 
%x %x %C %x %x fX �C� 

Theorem
If fY �C�/fX �C� is increasing in C, then %y/%x is increasing and the ODG curve is convex.

If fY �C�/fX �C� is decreasing in C, then %y/%x is decreasing and the ODG curve is
concave.

The latter case is the one that we are interested in, as it is the ROC curve. See Figure 8.4.
We have assumed that X and Y have PDFs, thus they are continuous random variables.

Then, AUROC can then be expressed as

A = Prob�y ≤ x� Prob �Y ≤ X�X = C�Prob �X = C�dC� 
−
 

As X and Y are scores from different obligor groups, they are independent. 
We have Prob �Y ≤ X�X = C� = Prob �Y ≤ C�. 
Since y = FY �C� = Prob �Y ≤ C� and %x = fX �C� %C 

∫ 
 ∫ 1 ( )
A = FY �C� fX �C�dC = FY FX 

−1 �x� dx� (8.1)
−
 0

A modelling exercise may choose a rating model that maximizes the AUROC with
respect to the obligor group under review. But how would one estimate Prob (y ≤ x)?

1

y

Concave

Convex

0 1
x

Figure 8.4 Ordinal dominance graph
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Bamber (1975) and Engelmann et al. (2003) show that given a rating score sample of the
obligors assigned by a rating model, the AUROC could be estimated in an non-parametric
way using the Mann–Whitney U statistic.

On the other hand, if we had a parametric distribution model for X and Y , then
we could explicitly derive a formula for the ROC curve and for the AUROC. In the
next section, we will review some plausible distributions for X and Y and derive the
closed-form solutions wherever possible.

3. Choices of distributions

In this section, we derive analytical formula for the ROC by assuming that the rating scores
produced by rating models follow plausible distributions. The distributions we present
here are Weibull distribution (including exponential distribution), logistic distribution,
normal distribution and mixed models for X and Y . Where we have explicit closed
forms for the ROC curve, we derive the closed form AUROC as well. The case of mixed
distributions for X and Y can easily be extended from the following discussion.

We use the symbol M for the location parameters (sometimes the mean, sometimes the
minimum), � for the scale parameter and 
 for the shape.

3.1. Weibull distribution

We first present solutions under a Weibull distribution assumption of rating scores.
The Weibull distribution is flexible and rich. A three-parameter Weibull distribution
cumulative probability function (CDF) is given by

F �z� ≡ P �Z ≤ z� = 1−e −� z−
�
M �




� 

where z > M�
 >  0 and � >  0. The inverse CDF of a three-parameter Weibull distribu-
tion is

F −1 �p� = M +� �− ln �1−p�� 
 
1

� 

where p ∈ �0�1�. Assuming y is the HR�C� and x is the FAR�C�, the three-parameter
Weibull distribution ROC is derived as

�x 
xx = FX �C� = 1−e −� C−Mx �

x ⇒ C = Mx +�x �− ln �1−x�� 

1

�yy = FY �C� = P �Y ≤ C� = 1−e 
− C−My 

)
y 

( { }
y 
)

� 1 ( )

xROC � y  = 1− exp − x �− ln �1−x�� + Mx −My (8.2)

y 

The above ROC formula is very difficult to use for deducing an explicit closed-form
formula for the AUROC although a numerical solution exists in this case once all the
parameters are estimated. However, the situation becomes much better if we impose the
slightly stronger assumption that the shape parameters 
 of the FX and FY are equal to one.
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We then have analytical closed-form solutions, and the Weibull distribution degenerates
to a truncated exponential distribution family if M is positive and an extended exponential
if M is negative.

Assume that 
x = 
y = 1, we then rewrite the above equation as follows:

My−Mx �x 

ROC � y  = 1−e �y �1−x� �y � 

My−Mx 

Let K = e �y and � = �

�
x , then
y ∫ 1 [ ] K � My−Mx 

AUROC = 1−K �1−x�� dx =1− = 1− y 
e �y � (8.3)

0 1+� � +�x y 

We next discuss some of the properties of Equation 3.

Property 1 for the two-parameter Weibull model
M − M ∈ �−
�0� for any plausible rating system. The smaller M − M is (or the larger∣ y x ∣ y x ∣My −Mx 

∣is), the closer the AUROC is to 1. Recall that M is the location parameter, in this
case the minimum. Therefore, the rating system will receive a higher AUROC if it can better
discriminate the defaulter from non-defaulter by the difference in their minimum values.

It is also interesting to see that if My −Mx → 0�AUROC → 1− 
�

�

+
y

�
. As we illustrated

x y 

in an earlier section, AUROC of a plausible, non-random rating system is above 0.5. This
implies that the value of the scale parameters to which the rating scores are assigned have
to be such that 0 < �y ≤ �x. Note that this condition is implied where both groups are
exponential but also where both groups are truncated or extended exponentials with the
same minima.

Property 2 for the two-parameter Weibull model
AUROC is monotonically increasing with respect to �x but monotonically decreasing
with respect to �y.

Proof

d K [( ) ( ) ( )] 
d�y

AUROC = (
�x +�y 

)2
�y 

My −Mx �x +�y −�y �x +2�y [( ) ( ) ( )] ( ) ( ) ⎫
M −M � +� −� � +2� < � +� M −M −� < 0 ⎬y x x y y x y x y y x y 

Since plausible rating systems, we expect My ≤ Mx�K  ≥ 0 and �y > 0⎭⇒ 

d ⇒ AUROC ≤ 0
d�y 

3.2. Logistic distribution

A two-parameter logistic distribution CDF is

z−M 
e � 

F �z� ≡ P �Z ≤ z� = 
z−M

� 
1+e 

where z ∈ � and � > 0. Here M is a mean parameter.
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The inverse CDF of a two-parameter logistic distribution is

F −1 �p� = M +� ln
p

�
1−p 

where p ∈ �0�1�. Again, assuming y is the HR�C� and x is the FAR�C�, we have

C−Mx 

e �x x 
x = FX �C� = 

C−Mx 
⇒ C = M +�x ln x 

1+e �x 1−x 

and

C−My Mx−My ( ) �x 

y = FY �C� = FY 

(
FX 

−1 �x� 
)= e �y

C−My 
= e �

M

y

x−My 

1(−xx 
�)y 

�x
� 

1+e �y 1+e �y 
1−

x
x 

�y 

Similarly to the Weibull distribution case, the AUROC with the above ROC specifi-
cation can always be evaluated numerically. Moreover, by assuming �x = �y = 1, and in
what follows assume that K does not equal 1, K = eMx−My , the above ROC equation can
be simplified to

eMx−My x Kx 
y = = � 

1−x+eMx−My x 1+ �K −1� x 

The AUROC can now be derived analytically.

∫ 1 x K ∫ 1 �K −1� x 
AUROC = K dx = dx 

0 1+ �K −1� x K −1 0 1+ �K −1� x 

Let u = 1+ �K −1� x� 

∫ ( ) ( )
K K 1 K lnK 

AUROC = 1− du = 1− ⇒ lim AUROC = 1
�K −1�2 1 u K −1 K −1 K→
 

3.3. Normal distribution

A two-parameter normal distribution CDF is

z 21 x−M 

F �z� ≡ P �Z ≤ z� = 
∫

√ 1 e 2 � � � dx = � 

(
z−M 

)
� 

−
 � 2� � 

where z ∈� and � ��� is the standard normal probability distribution function. The inverse
CDF of a two-parameter logistic distribution is

F −1 �p� = M +��−1 �p� � 
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where p ∈ �0�1�. For y is the HR�C� and x is the FAR�C�, we have

x x = �
C −M ⇒ C = M +� �−1 �x� 

� x x
x ( ) (( ) )

C −M M −M +� �−1 �x� 
y = �

y = �
x y x

� 
y y 

which gives the ROC curve. ( )
Therefore, AUROC = ∫0

1
� 

�Mx−My�
�

+
y

�x�−1�x� 
dx 

This function can easily be evaluated numerically to obtain the AUROC.

Property
AUROC increases with Mx −My, and in particular if Mx −My = 0, AUROC = 0.5.

Proof and more properties can be found in Appendix.

3.4. Mixed models

It is obvious that as long as we have parametric distribution families for the defaulters
and non-defaulters, we can always calculate an AUROC for the two-score samples from
Equation 1 in Section 2, even with two different parametric distributions for the two
populations.

4. Performance evaluation on the AUROC estimation with
simulated data

Using simulated data, we carry out performance evaluations on AUROC estimations using
both the non-parametric Mann–Whitney statistic and the analytic approach suggested in
this chapter.

We first assume some known parametric distributions for the credit scores of defaulters
and non-defaulters, and by doing this, we know the theoretical value of the AUROC.
After generating simulated sample data from the assumed distributions for defaulter and
non-defaulter scores, we estimate the AUROC and its CI using the two approaches. We
repeat the simulation and estimation procedures a number of times. We then compare the
accuracy of the AUROC estimation and the CI of the two approaches. Finally, we change
the parameter values of the assumed distribution and repeat the simulation. We repeat the
above procedures to evaluate the performance of the two approaches subject to different
theoretical AUROC index values with different defaulter sample sizes. We choose the
following distributions: two-parameter normal distributions, one-parameter exponential
distributions and Weibull distributions with various shape and scale parameters.

4.1. Performance evaluations under the normal distribution assumption

We assume normal distributions for our parametric distribution of the credit scores of
both defaulters and non-defaulters. The theoretical value of AUROC for the normal score



124 The Analytics of Risk Model Validation

samples is evaluated numerically.1 The non-parametric estimate of AUROC is carried out
using the ROC module in SPSS, and we use the bootstrap to re-sample 1000 replications
to obtain the estimates of the analytic approach that also generates a two-sided 95%
CI. The parameters of the parametric distribution are estimated for each replication and
substituted back into the analytic AUROC formula. We then define the error as the
difference between model estimates based on a sample and the theoretical AUROC value
and compare the mean error and mean absolute error for the two approaches. The width
of the CI is also compared.

We generate 50 normal samples from six different settings. Settings 1, 2 and 3, con-
sisting of group 1, target the AUROC at a low value, whereas settings 4, 5 and 6, group
2, target the AUROC at a high value. Within each group there are three defaulter sample
sizes: 20, 100 and 500. Credit rating models can be applied to at least three different
types of groups: credit risk with corporate, counter party default risk in trading books,
and credit risk in credit card and other loan type banking books. The default sample of
corporate is usually small, such as 50 in 10 years, especially under a good economic cycle.
Meanwhile, the number of defaults in a loan book or a credit card book in a commercial
bank’s banking book can be fairly large, usually in excess of several hundreds a year.
The reason for selecting different defaulter sample sizes is to assess for which type of
problem the analytic approach outperforms the non-parametric approach. We define a
performance statistic as follows

Difference = non-parametric estimate−analytic estimate

Difference = non-parametric estimate−analytic estimate� 

In Tables N1–N6, all mean CI widths show that the estimates of the analytic approach
are better than the non-parametric estimates. As for the mean error and the mean abso-
lute error, analytic estimates outperform the non-parametric estimates in Tables N1, N2
and N4–N6. Ratio to N shows the percentage difference from the non-parametric

Normal settings 1–3

Normal distributions Number of observations

Sample Mean Standard deviation Setting 1 Setting 2 Setting 3

X
Y

2
1

2
3

1000
20

1000
100

1000
500

Theoretical AUROC = 0.609239. 
Results on estimation error with 50 simulated normal samples and 1000 
replication bootstrap. 

Setting N1

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.007482
0.050164
0.289225

0.007466
0.048408
0.276522

0.000016
0.001756
0.012703

3.50%
4.39%
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Setting N2

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.000404
0.025946
0.136364

−0.081959
0.024957
0.130728

0.082363
0.000989
0.005636

3.81%
4.13%

Setting N3

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.002643
0.014172
0.064965

0.002752
0.014809
0.062608

−0.000109
−0.000636

0.002357
−4.49%

3.63%

Normal settings 4–6

Normal distributions Number of observations

Sample Mean Standard deviation Setting 4 Setting 5 Setting 6

X 2 0.5 1000 1000 1000
Y 1 1 20 100 500

Theoretical AUROC = 0.814448. 
Results on estimation error with 50 simulated normal samples and 1000 
replication bootstrap. 

Setting N4

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.009138
0.046588
0.232187

0.006718
0.045725
0.215922

0.002421
0.000863
0.016265

1.85%
7.01%

Setting N5

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.001187
0.025564
0.112444

0.000510
0.024311
0.107148

0.000678
0.001253
0.005296

4.90%
4.71%

Setting N6

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.001470
0.012239
0.052653

0.001303
0.011061
0.049464

0.000167
0.001178
0.003189

9.62%
6.06%
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approach estimate. The larger the ratio to N , the more the analytic approach outperforms
the non-parametric approach.

4.2. Performance evaluations under exponential distribution assumption

In this performance evaluation, we assume exponential distributions for our parametric
distribution of the credit scores of both the defaulters and the non-defaulters. The theo-
retical value of AUROC for the exponential score samples is evaluated analytically by the
closed-form formula 8.3 in Section 3.1. The performance evaluation setting is very similar
to that with normal distribution. Again there are six settings across different AUROC
values and defaulter sample sizes.

In Tables E1–E6, all the mean absolute error and the mean CI widths show that the
estimates of the analytic approach are better than the non-parametric estimates. Ratio

Exponential settings 1–3

Exponential distributions Number of observations

Sample Scale parameter (Lamda) Setting 1 Setting 2 Setting 3

X 3 1000 1000 1000 
Y 1.5 20 100 500 

Theoretical AUROC = 0�666667. 
Results on estimation error with 50 simulated normal samples and 1000 
replication bootstrap. 

Setting E1

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

−0.008179
0.040993
0.209540

−0.007035
0.040056
0.189586

−0.001144
0.000938
0.019954

2.29%
9.52%

Setting E2

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

−0.000987
0.025320
0.099043

0.000034
0.021922
0.088280

−0.001021
0.003398
0.010763

13.42%
10.87%

Setting E3

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

−0.002926
0.011471
0.055636

−0.003401
0.011015
0.047672

0.000475
0.000456
0.007964

3.98%
14.31%
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Exponential settings 4–6

Exponential distributions Number of observations

Sample Scale parameter (Lambda) Setting 4 Setting 5 Setting 6

X 4 1000 1000 1000 
Y 1 20 100 500 

Theoretical AUROC = 0.800000. 
Results on estimation error with 50 simulated normal samples and 1000 
replication bootstrap. 

Setting E4

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

−0.008576
0.033790
0.145500

−0.006721
0.031174
0.132758

−0.001855
0.002616
0.012742

7.74%
8.76%

Setting E5

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.002783
0.015655
0.071140

0.003403
0.014320
0.064132

−0.000621
0.001335
0.007008

8.53%
9.85%

Setting E6

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.000118
0.007710
0.043742

0.000521
0.007495
0.034280

−0.000403
0.000215
0.009462

2.79%
21.63%

to N shows that the non-parametric approach estimates provide a significantly better CI
than the non-parametric estimates.

4.3. Performance evaluations under Weibull distribution assumption

In this performance evaluation, we assume Weibull distributions with scale and shape
parameters for our parametric distribution of the credit scores of both the defaulters
and the non-defaulters. The theoretical value of AUROC for the Weibull score samples
is evaluated analytically by the closed-form formula 8.2 in Section 3.1 by setting the
location parameters to zero. The maximum estimation of sample distribution parameters
is obtained by a numerical approximation. As we have a shape parameter for the Weibull
distribution that may shift the shape of the distribution significantly, we evaluate the
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performance of the two approaches under two cases: with the same shape parameter for
defaulter and non-defaulter sample and with different shape parameters. The theoretical
value of AUROC for the normal score samples is also evaluated numerically (Note 1). The
rest of the performance evaluation setting is very similar to that of the normal distribution.
Here also, there are six settings across different AUROC values and defaulter sample
sizes.

In Tables W1–W6, all mean CI widths show that the estimates of the analytic approach
are marginally better than the non-parametric estimates. As for the mean error and
the mean absolute error, analytic estimates marginally outperform the non-parametric
estimates in Tables W2, W3, W5 and W6. Because we use numerical approximation
for sample maximum likelihood estimates and because the estimation error could be

Weibull settings 1–3

Weibull distributions Number of observations

Sample Shape parameter Scale Setting 1 Setting 2 Setting 3

X 2 2 1000 1000 1000 
Y 1 1 20 100 500 

Theoretical AUROC = 0.757867. 
Results on estimation error with 50 simulated normal samples and 1000 
replication bootstrap. 

Setting W1

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.005128
0.051701
0.242836

0.010230
0.054179
0.226842

−0.005102
−0.002478

0.015994
−4.79%

6.59%

Setting W2

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.001110
0.022661
0.112448

0.000983
0.022363
0.109910

0.000127
0.000298
0.002538

1.32%
2.26%

Setting W3

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.0027541
0.0123445
0.0548159

0.0030963
0.0118544
0.0533400

−0.000342
0.000490
0.001476

3.97%
2.69%
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Weibull settings 4–6

Weibull distributions Number of observations

Sample Shape parameter Scale Setting 4 Setting 5 Setting 6

X 1 3 1000 1000 1000
Y 1 1 20 100 500

Theoretical AUROC = 0.75. 
Results on estimation error with 50 simulated normal samples and 1000 
replication bootstrap. 

Setting W4

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.000084
0.035960
0.168248

0.000314
0.036155
0.165242

−0.000231
−0.000195

0.003006
−0.54%

1.79%

Setting W5

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.003680
0.018331
0.082652

0.003795
0.017988
0.081830

−0.000115
0.000343
0.000822

1.87%
0.99%

Setting W6

Approach Non-parametric Analytic Difference Ratio to N

Mean error
Mean ABS error
Mean CI width

0.003889
0.009632
0.048446

0.003961
0.009525
0.047586

−0.000072
0.005340
0.000860

1.11%
1.77%

fairly large when we have a small sample, we observe that this estimation error is passed
through our analytic estimation for the AUROC index making the mean absolute errors
estimated from the analytic approach larger than the non-parametric approach in settings
W1 and W4. This also reduces the gain of the analytic approach over the non-parametric
approach when compared with the previous tests.

5. Summary

Although the analytic approach gives no better estimates than the non-parametric one
when we use approximated maximum likelihood estimates for small samples, the per-
formance evaluation shows that the analytic approach works at least as well as the
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non-parametric approach in the above tests and, in most cases, provides better mean
absolute error estimates and CI estimates.

The above discussion has the following implications. If appropriate parametric distri-
butions for the defaulter and non-defaulter scores can be identified, then the AUROC and
its CI can be estimated more accurately using the analytic approach. On the other hand,
if the rating model can be designed so that the score sample is generated by some specific
parametric distribution families, then a better rating model could be found by using the
analytic AUROC as the objective function to maximize in the model selecting process.

Another interesting finding is the effect of defaulter sample size on AUROC. The above
experiments clearly show the level of estimation error in both methods with different
sample sizes, and the error can be substantially large only if we have a small defaulter
sample.

In addition, although it is not very clear from the results in Sections 4.1 and 4.2, the
analytic approach seems to provide more gain over the non-parametric approach when
the AUROC index is in its high-value region than in its low-value region. The reason for
this is not clear, so more research is needed.

6. Conclusions

This chapter reviews some of the prevailing credit rating model validation approaches
and, in particular, studies the analytic properties of the ROC curve and its summary
index AUROC. We use the concept of the population ROC curve to build analytic models
of ROC curves. It has been shown through simulation studies that greater accuracy
of estimation relative to the non-parametric methods can be achieved. We also show
that there are some situations where the accuracy gain of the analytic ROC model may
decrease, a finding that should be taken into account when applying the analytic models
to practical applications.

Moreover, with some distributions, where the closed-form solution of AUROC is
available, analytic AUROC can be directly used as an objective function to maximize
during the rating model selection procedure. This means that if the rating scores can
be transformed into those distributions, analytic AUROC could offer a powerful model
selection tool.

Finally, we also studied the performance of both non-parametric and analytic ROC
models under different defaulter sample size, research that had not been done previously.
The error size can be substantially significant when we have a small defaulter sample, a
frequently met situation in corporate credit risk studies and in periods of benign macro-
economic background.
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Note

1. The theoretical AUROC is approximated by 100 000 partitions, whereas the bootstrap estimation is
approximated by 10 000 partitions.

Appendix

1. The properties of AUROC for normally distributed sample

Property 1
AUROC increases with Mx −My, and in particular, if Mx −My = 0�AUROC = 0�5.

Proof For inverse normal distribution function u = �−1 �v� � v ∈ �0�1� and u ∈ �−
�+
�. It is an
odd function in orthogonal coordinates with centre of (v = 0�5�u = 0).

For cumulative normal distribution function, t = � �u�. This is also an odd function in orthogonal
coordinates with centre of ([(u = 0� t) = 0�5).]

It follows that f �x� = � �x/�y �−1 �x� is also an odd function in orthogonal coordinates with
centre of (x = 0�5� f  �x� = 0�5), when Mx −My = 0. Rewrite f �x� as follows:

f �x� = �f �x�−0�5�+0�5 = g �x�+0�5� 

where g �x� is an odd function with centre of (x = 0�5�g �x� = 0). Then we can show that

∫ 1 ∫ 1 ∫ 1 ∫ 0�5 ∫ 1 ∫ 1
AUROC = f �x�dx = g �x�dx+ 0�5dx = g �x�dx+ g �x�dx+ 0�5dx 

0 0 0 0 0�5 0∫ 0�5 ∫ 0�5 ∫ 1 ∫ 1
= g �x�dx− g �x�dx+ 0�5dx = 0�5dx = 0�5 QED� 

0 0 0 0
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The above property is also quite intuitive. If the means of two normally distributed populations
equal each other, then overall there is no discriminatory power of the models based on this rating
mechanism, i.e. neither X or Y FSD. So the AUROC is 0.5. A special case for this is when we have
two identical distributions for X and Y . Then second-order stochastic dominance (SSD) cannot be
identified by AUROC when Mx −My = 0.

Property 2
The relations with �x and �y are slightly more complicated.

AUROC 

AUROC 

⎧⎨⎩
⎧⎨⎩

∈ �0�5�1� � decreases with � � when M −M > 0x x y 

= 0�5� irrelavent to � � when M −M = 0x x y 

∈ �0�0�5� � increases with � � when M −M < 0x x y 

∈ �0�5�1� � decreases with � � when M −M > 0y x y 

= 0�5� irrelavent to � � when M −M = 0y x y 

∈ �0�0�5� � increases with � � when M −M < 0y x y 

We are only interested in the rating models, and this is the case where X should FSD Y , i.e.
Mx − My > 0, so it is clear that with smaller standards of the two normal distributions, the two
samples are more separated than those with larger standard deviations when Mx −My > 0.

Figures 8.5 and 8.6 shows the AUROC with different Lambda settings. Lambda of X is written
as L.X and Lambda of Y is L.Y .

Normal distributed AUROC with MuX – MuY

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L.X–2, L.Y–4 
L.X–2, L.Y–8 
L.X–2, L.Y–16 
L.X–2, L.Y–2, Lc,Y–X 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 8.5 Normal distributed area under the receiver operating characteristic (AUROC) curve
with the same mean
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Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L.X–2, L.Y–4 
L.X–2, L.Y–8 
L.X–2, L.Y–16 
L.X–2, L.Y–2 
Y–X

Normal distributed AUROC with MuX – MuY –2 but different lamda 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 8.6 Normal distributed area under the receiver operating characteristic (AUROC) curve
with different means

Remark
The closer the AUROC of a rating system is to 0.5, the less discriminatory power it has. The
closer the AUROC of a rating system is to 0 or 1, the better its discriminatory power. Therefore,
under the normally distributed scoring variable assumption, the smaller the variance, the better the
discriminatory power the rating system has.

When Mx −My < 0, a scoring system would give defaulters, Y , higher scores. Hence, even the
discriminatory power is higher when we have smaller variances on X and Y in this case, but the
AUROC will be smaller.
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9 The validation of equity portfolio
risk models
Stephen Satchell∗ 

Abstract

The purpose of this chapter is to survey risk validation issues for equity portfolio models.
Because risk is measured in terms of volatility, an unobservable time-varying variable, there
are a number of difficulties that need to be addressed. This is in contrast to a credit risk
model, where default or downgrading is observable. In the past, equity risk models have been
validated rather informally, but the advent of Basel II has brought about a need for a more
formal structure. Furthermore, a number of past high-profile court cases have considered
the worthiness of the risk models used by fund managers as part of the broader question
of whether the manager has been competently managing risk. To be able to demonstrate
that the model user has been managing risk properly, it will be necessary, going forward,
to demonstrate that back-testing and other forms of model validation have been practised;
and that the systems in place have been designed for the efficient execution of such practise.
There have been a number of insightful articles on portfolio risk written by the Faculty and
Institute of Actuaries, see Gardner et al. (2000) and Brooks et al. (2002) among others. These
papers address in some detail many of the problems concerning portfolio risk and make a
number of recommendations. Any equity portfolio risk manager should read them. However,
they do not say a great deal about risk model validation. Indeed, there are only occasional
sections. For example, in Gardner et al. (2000), the following is stated in Section 2.76:

‘It is claimed that risk models are subject to exhaustive tests by their owners, although
the results are not routinely published.’

The authors point out that neither model user nor plan sponsor will find the level of internal
validation sufficiently transparent to feel particularly comfortable. As in most Basel II con-
texts, it is clear that there is a need for external validation, and this chapter puts forward
some preliminary suggestions and guidelines. This topic will clearly change with time, and
there is no claim that the contents of this chapter will be best practised in a decade. In many
papers written as a result of Basel I, much is made of back-testing. Without denigrating these
efforts, we understand back-testing to mean a comparison of what the model sets out to
do, and what actually happens. In this particular context, it simply means comparing model
forecasts of portfolio risk with the risk that the portfolio actually experienced. Another issue
that we deal with in a rather cursory manner is the metric used for measuring portfolio risk.
Whilst downside risk measures have tremendous appeal at the univariate level, they are gener-
ically inappropriate for portfolio analysis, as there is simply a dearth of theorems linking the
downside measure of the aggregate to the downside measures of the constituents. Downside

∗ Faculty of Economics, University of Cambridge and Trinity College, Cambridge, UK
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enthusiasts regularly produce such results, but there is always a subtext. This subtext stems
from the assumption of normality or ellipticity, in which case the downside risk metric is
invariably a transformation of the standard deviation of absolute or relative returns. For the
reasons stated in the above paragraph, portfolio risk in the context of this chapter means
standard deviation or its square, variance. The whole analysis can be reworked as tracking
error (TE), or TE squared, if we use benchmark relative returns. We give formal definitions
in the text. We shall first discuss linear factor models (LFMs) and how they are used for
forecasting risk. This may be slightly repetitive in terms of the material in other chapters,
but it is convenient to keep this chapter self-contained, and in any case the emphasis here is
different. We need to consider how the risk model forecasts can be evaluated. Thus, we will
need to look closer at volatility as a temporal and cross-sectional process. We shall further
discuss some of the non-mathematical issues associated with equity risk model validation.
In Section 1, we cover LFMs, using the standard taxonomy of time series, statistical and
fundamental. Sections 2–4 deal with each of these approaches in turn. Section 5 deals with
forecast construction and evaluation, the latter in rather broad terms. Section 6 discusses
diagnostics in some detail. Section 7 discusses issues to do with time horizon of forecast and
frequency of model construction and data. Section 8 focuses on model residuals. Section 9
deals with Monte Carlo procedures and Section 10 concludes.

1. Linear factor models

These are fundamental to the evaluation of portfolio risk. They are the basis of equity risk
modelling, and all major systems are based on them. Before we discuss risk modelling,
we need to understand how linear factor models (LFMs) are constructed.

Suppose that Rt = vector of N equity monthly returns possibly relative to cash. We
�N×1� 

now suppose that these returns are linearly related to K factors, whose values at time t 
are represented by the vector ft 

Rt = 
+�ft +Vt (9.1)

In the simplest form 
�� are fixed, ft is K ×1�Vt ∼ �0�D�, meaning mean zero, covari-
ance matrix D where D is diagonal. Diagonality implies that the factors are uncorrelated
with each other; the i-th diagonal element corresponds to the idiosyncratic variance of
the i-th stock return. It represents risk attributable to firm-specific events, not covered by
the K common factors. It could be risk because of local effects, particular staff issues, an
insane finance director etc.

Turning to the factors, we assume them to be uncorrelated with the errors, Cov�ft�Vt 
′� = 0,

Cov�ft� = �F F  . The notation Cov�X�, where X is a vector means ‘the covariance matrix
of X’; the notation Cov�X�Y �, where X and Y are vectors will be a matrix of covariances
between the elements of X and the elements of Y . Using standard results in multivariate
statistics, we can get an expression for the covariance matrix of equity returns in terms
of the constituent parts.

�RR = ��F F �′ +D (9.2)
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For a portfolio p with vector of weights, (w),

�P 
2 = w ′�RRw = w ′��F F �′ w+w ′Dw = �s 

2 +�R 
2 (9.3)

There are three fundamental methods, time series versus statistical versus cross-sectional
(CS) regression.

2. Building a time series model

For time series models, the assumption is that we have observable factors, and we estimate
the parameters in the LFM. Typically, you might choose your factors in the context of
a particular market you wish to model, say for the UK market, you might have the FT.
All share return as a market factor and 10 or 38 sector variables as additional factors
depending upon how fine you go down into factor detail. Taking the 10 sector case,
and the market, as an 11 factor model, you can compute returns to all these factors
directly by considering capitalization – weighted sector returns and estimating stock betas
(exposures) – by conventional regression methods.

Thus

rit = 
i +�′ 
ift +�it� �it ∼ �0��i 

2�� t = 1�T� i  = 1�N  (9.4)

Note that this is in econometric terms a generalized least squares (GLS) problem as each
equation has a different idiosyncratic variance, but as the model has common regressions,
it is a theorem that system-wide GLS equals system-wide ordinary least squares (OLS).
Now, it follows that optimal estimation is equivalent to OLS equation by equation.
This assumes we impose no restrictions on parameters before estimation. Furthermore, if
we assume joint normality, these estimators are maximum likelihood. In practise, there
is additional information we may wish to include. In our example, it could be sector
membership, so we may wish to make our estimation method sensitive to the fact that
stock i is classified as a member of sector j. Once we impose restrictions on the equations,
we need to consider some version of GLS again.

In system terms, after estimation, we have, where a tilde means an OLS estimate,

= 
̂ �ft + ˆ (9.5)rt ∼
+ ˆ �t 

∼

N×1 N×k�k×1 N×1
N×1

and we can estimate �i 
2 by �̂i 

2 = ∑t
T 
=1 �̂it

2 /T .
Notice that the residuals will have a sample mean of zero by construction as all

equations are estimated with a constant. For any fixed weight portfolio P, w�N ×1� 

rpt = 
̂p + �̂p 
′ ft + �̂pt 

′ ˆ �′ ′ ˆ ′ ˆ
̂p = w 
� ˆ
p = w �′� �̂pt = w � 
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We need the notation Var(X) to mean variance of X and Cov(X�Y ) to mean the
covariance of X and Y where X and Y are now scalars. As in the capital asset pricing
model (CAPM), the portfolio variance obeys the following:

Var�rpt� = Var��̂′ 
pft�+Var��̂pt� 

The risk decomposition in this model between systematic and residual risk is exact, as
by OLS properties Cov�ft� �̂pt� = 0, as long as the regression has been estimated with a
constant. This procedure allows us a further ex post reality check, as we can evaluate
factor risk versus residual risk that will equal total risk. Often, experienced modellers
have strong priors as to what constitutes a sensible risk decomposition and implausible
numbers here indicate a problem with the model.

3. Building a statistical factor model

Portfolio risk was discussed earlier, in Section 2, for the case when the factors were
known. A time-series model was used and exposures (Bs) and residual variances (D) were
estimated.

However, we may not wish to proceed this way. We may believe that our factors are
unknown and our exposures are unknown but wish to estimate them.

In this case, as before

iid iid
Rt = 
+�ft +�t��t ∼�0�D�� ft ∼�
F ��F � (9.6)

So that E�Rt� = 
+�
F and (9.7)

Cov�Rt� = ��F �′ +D as before (9.8)

The difference here is that we do not observe 
��� ft or �t, just Rt. In the previous case
we observed Rt and ft. We shall discuss two methods: principal components and factor
analysis. Principal components ignore all the structure in Equations 9.6, 9.7 and 9.8,
whilst factor analysis tries to take it into account. If ft is observable we are back to
our earlier case. In general, it is not so to proceed we need to revise Eigen-vectors and
Eigen-values and positive definite matrices. Our treatment follows the text of Dhrymes
(1970) very closely.

3.1. Definitions

Here, we define some of the terms necessary to explain how principal components are con-
structed. In what follows, � is a (n×n) covariance matrix. As will be clear, covariance

�n×n� 

matrices have an important property called positive definiteness, which we define next.
� is positive definite if w′�w > 0�∀w 
= 0. If � is symmetric, P orthogonal, P such

�n×n� 

that P�P ′ = D1, where D1 is diagonal, choosing w′ = �1�0� � � � �0�, we have w′P�P ′ 
1×n 
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w = wD1w = du, the first diagonal element of D >  0. Furthermore, w′P is the first row
of P which is the first column of P ′, this column we denote by P01.

As P�P ′ = D1� P ′P�P ′ = P ′D1, or �P ′ = P ′D1, considering the first column of P ′� P01,
we have �P01 = P01du.

So, we see that du is the first Eigen-value of � and it is positive. Generally for a (n×n)
matrix A, an Eigen-vector x is a (n×1) vector such that Ax = �x where � is a constant,
the constant � is the Eigen-value associated with the Eigen-vector x. An arbitrary (n×n)
matrix will have n Eigen-vectors and n Eigen-values, although these are not necessarily
distinct. That there are n of them is an interesting consequence of the fundamental theorem
of algebra.

3.2. Principal components

We next discuss how to construct our new statistical variables/factors. Let x ∼ N�
�&��x 
being an m-dimensional vector, and let it be desired to find a linear combination of the
elements of x having maximal variance.

If ' ′ = 
′x is such a linear combination, then Var�'� = 
′&
 
And it becomes clear that the problem does not have a solution, for if we choose


∗ = c
.
For a fixed 
, we can make the variance of ' arbitrarily large by taking c to be large.
Hence, we have a scale problem; in this context, the problem is usually resolved by the

convention 
′
 = 1, which requires that the vector defining the linear combination be of
unit length. Notice that this is a rather poor normalization for financial data, as the linear
combination we are considering will usually be a portfolio and hence will also need to be
rescaled so that the weights add up to 1. This double normalization is rather a nuisance
and can lead in practise to rather peculiar factors.

Thus, the problem becomes equivalent to the maximization of the Lagrangean

L = 
′&
+��1−
′
� 

This yields the first-order conditions

%L = 2&
−2�
 = 0
(9.9)

%L = 1−
′
 = 0

and it is verified that the solution vector obeys


′&
 = � (9.10)

On the contrary, the first set of equations in Equation 9.9 implies that � must be one of
the characteristic roots of &. As a result of Equation 9.10 and the nature of the problem,
we must choose the largest characteristic root, say �1, and the (normalized) characteristic
vector associated with it, say 
�1�. Thus, we define the (first) principal component of (the
elements of) x by '1 = 
�

′ 
1�x. Where 
�1� obeys ��1I −&�
�1� = 0 and 
�

′ 
1�
�1� = 1 and �1 is

the largest root of ��I −&� = 0.
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It follows that E�'1� = 
�
′ 
1�
 and Var�'1� = �1. To construct the second principal compo-

nent, we repeat the calculations above but impose an orthogonality condition requiring
that the second factor be uncorrelated with the first. Repeating this procedure, we end
up with n linear combinations of equity returns, all uncorrelated with each other. These
can be renormalized as portfolios and can become the factors in our LFM. They have
certain advantages in that they have minimal data requirements; they have certain clear
disadvantages in that they cannot be easily identified, and that the portfolios rapidly
become ridiculous once we get past the first two or three factors.

We omit discussion of factor analysis. There are clear expositions of this in many texts;
see, for example, Campbell et al. (1997). The critical difference is that the factors here
are built by consideration of the risk decomposition described in Equation 9.2, whilst
principal components work with the full covariance matrix and do not take into account
the nature of the matrix structure. Whilst the former is more appealing, intellectually,
it comes at a cost, as we need to impose a number of rather arbitrary identifiability
conditions before we can identify the factors. Whilst we believe there are contexts where
these approaches can be helpful, we do not think that they work particularly well for
a conventional actively managed equity portfolio, where rebalancing is a relatively low-
frequency event.

4. Building models with known beta’s

Again, we have Equation 9.1, but we treat the exposures (�) and Rt as known, � is now
�t and we estimate ft and Dt so our model is actually Rt = 
tiN +�tft +Vt�Vt ∼ �0�Dt� 
and �t = �t�Ft

�′ 
t +Dt.

This is much more complex, and it is only possible to estimate it if we treat �t and Rt 

as known.
These models are based on known betas; which are themselves attributes of the com-

pany. They would be things such as firm size, dividend yield and book to price ratio plus
industry. These models are most frequently used and occupy at least 80% of the risk
model market for portfolio risk. Because they use company accounts data to compute
exposures, they are called fundamental models. As the betas, as defined, cover all stocks
at each period of time, they are denoted by Bitj� i  = 1�N� t  = 1�T� j  = 1� k. Our model
now is

k

Rit = 
t + �itj fjt +Vit 
j=1

Vt ∼ �0�Dt�� ft ∼ �
Ft
��FFt

� 
(9.11)

∼ ∼

N×1 k×1

These models are compared with macroeconomic (time series models) and statistical
(principal components, factor analysis) models by Connor (1995). In this paper, he argues
in favour of fundamental models; however, other research could be quoted making the
case for the other two. { }

In Equation 9.11, Rit and �itj are known and we need to estimate fjt ; the implied
factor returns. This is done by CS regressions.
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Ideally, one should use GLS based on some rolling estimator of D (if we assume
Dt = D�∀t), i.e. if⎛ ⎞

�2 0 · · ·  1

D = ⎜⎜⎝ 0
� � � 

��� 
⎟⎟⎠

� �2� · · · N 

and we estimate �i 
2 by sit

2 , then run the CS regression.

Rit = 
t + ∑ Bitj fjt + Vit 

Sit Sit Sit Sit 

The transformed error �t = �it = Vit will be approximately �0� IN �.
∼

sit 

Notice that if add a time-specific constant 
t, then, averaging over i, E�Vit� = 0. How-
i 

ever, this does not mean that E�Vit� = 0 and, indeed, it may not. This becomes a problem
t 

if we wish to estimate �i 
2 based on past time-series of �Vit�� t = 1� � � � �T . We may have

to subtract residual means. These models can be used to construct a history of estimated
�fts

′ �, which are then used to estimate �FF . Together with our estimate of D, we can put
all this together to form

�̂RR = ��̂FF �′ + D̂ (9.12)

Up to this point, all discussion has been in terms of absolute risk; in practise, many risk
calculations are in terms of relative risk. This is referred to as TE. We need benchmark
weights denoted by the vector b. The formal definition of TE is the standard deviation of
relative returns measured annually; typical numbers will be 1%, 2% or 3%. From a risk
management perspective, it is necessary to be absolutely clear about this definition. So, as
a standard deviation, it will implicitly be subtracting the portfolio expected returns, even
though the risk models may not explicitly model such quantities. There is a persistent
confusion about TE in the industry, as many practitioners still think of it as the second
central moment about zero. Now, it is clear that these two definitions will coincide if the
mean of the benchmark equals the mean of the active fund. If the risk validator believes
that the risk model is producing the second central moment, he or she will need to bring
into play estimates of relative returns to make ex ante and ex post comparisons. The
history of this confusion is quite interesting. The earliest application of TE was for index
funds, where, in the early days, full replication was very challenging. Thus, the index
tracker was trying to replicate the index with a limited number of stocks. In this context,
the relative return was set up to be zero, and so the two concepts of TE coincided. Passing
over some of these subtleties, we note that the portfolio analogue of Equation 9.12,
measured in TE terms, can be expressed as

�w−b�′�̂RR = �F F  D�w−b��w−b� �w−b�′� ̂ �′�w−b�+ �w−b�′ ˆ (9.13)

Notice that this gives an explanation of

Total relative risk squared = �TE�2 = factor risk+ idiosyncratic risk (9.14)
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5. Forecast construction and evaluation

All the above models described in Sections 2–4 can be used to forecast TE. To use them,
you input w and b and the model gives you TE together with risk decompositions and
risk contribution, i.e. what factors induce what quantities of risk taken as a percentage
or measured in absolute terms?

All the models will take data up to the current period and estimate the equity covariance
matrix. Indeed, different risk models can be interpreted as different forecasts of the same
covariance matrix. Traditionally, these models have been reestimated each month, and
each month a new forecast is obtained. Thus, from the perspective of risk management,
one requirement would be to store a history of covariance matrices over the period that
the model has been used. Of course, to allow for full back-testing, it will be necessary
to store all the components of the covariance matrix, by which we mean the factor
covariance matrix, the factor exposures and the idiosyncratic covariance matrix. This is
a formidable, but achievable, storage requirement.

Once we have a sequence of portfolio risk forecasts, we will need to assess their efficacy.
Thus, for a given investment house, we will have potentially 100 or so funds, whose risks
have been forecasted over, say, 10 years, at a monthly frequency. At first, this seems a
generous amount of data with which one can test the risk model. However, there are
difficulties, which make this problem much more complicated than it first looks. The first
difficulty, discussed in Chapter 8, is the simple fact that the portfolio weights will keep
changing, even within the month, as some trading will occur, and through time, equity
portfolios will include and exclude stocks as well as changing relatively.

So if we wish to compare the ex post volatility with the ex ante volatility, as it seems at
first to be natural to do so, we need to store a great deal of information about portfolio
composition through time, and in principle, we should use the beginning of period weights
in the computation of end of period return and risk. In practise, practitioners do not do
this; they consider the fund return and compute the volatility of that.

Another consideration is the unobservable (latent) and changing nature of the volatil-
ity process. Financial econometrics seems to be unified in the view that volatility is
a time-varying latent stochastic process. There are numerous models that try to cap-
ture its characteristics. We name without references such broad families as generalized
autoregressive, conditional, heteroskedasticity models (GARCH), and stochastic volatil-
ity (SV) models. Practitioners have rightly ignored much of this research as very lit-
tle of it is implementible for a 30,000 stock universe. However, the stochastic latent
nature of volatility means that the matching of ex ante and ex post becomes especially
problematic.

Suppose we have a volatility (standard deviation) process, which we denote by ��s�.
This is a continuous function of time s and is stochastic. In the option pricing literature,
this is frequently modelled by a log-normal Brownian motion with jumps. The cumu-
lative variance from time t to t +h will be

∫ t+h
�2�s�ds. If we now consider a return rtt 

from time to time t+1, we can conceive of it in terms of a constant mean parameter∫ t+1

r = 
+ ��s�E�s�ds.t t 
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Here, E�s� is some white-noise process with constant unit variance. Suppose, for sim-
plicity that 
 = 0, and we compute

Ėt�rt 
2�� This will be the following 

Et�rt 
2� = ∫

t

t+1
Et��

2�s��ds� 

If we now take our ex post variance and assume still that 
 = 0, then 

T

S2 = rt 
2/T 

t=1 

and

T

E1�s
2� = 1 ∑ ∫ t+1

E1��
2�s��ds 

T t=1
t 

= 1 ∫ T +1
E1��

2�s��ds� 
T 1

This tells us that an ex post estimator is an unbiased estimator of the expected variance
averaged over the period. Whilst this may be reassuring from a statistical perspective, it is
unlikely that the ex ante forecast from the risk model should equal this number if �2�s�.

Write expressions for integral volatility.

6. Diagnostics

In this section, we consider the tools used by the industry for measuring forecast per-
formance. The first one we shall consider is the root mean square error (RMSE). This
essentially considers the difference between the ex ante and ex post values of risk for
a particular portfolio. It can be computed both in sample and out of sample. This is
a perfectly reasonable number to compute, but the difficulties outlined in the previous
section will apply here. Before we detail these difficulties, it may be worth saying a little
about RMSE. The theoretical motivation for RMSE stems from the mathematical concept
of mean square error, and mean square convergence. We say that �̂  

n converges in mean
square to � if lim E��̂  

n −��2 = 0.
x→
 

The key point here is that the concept really applies to the extent to which a sequence
of random variables approaches a constant. It requires that we can describe the statistical
properties of that sequence, at least in terms of the first two moments. In the context of
a risk model, this could be done, but we note that both the changing weights problem
and the changing nature of the true but unknown volatility process make this rather
challenging.

One procedure that has a great deal to recommend it is what is called the bias test.
This is very simple to apply and has the tremendous advantage that it takes the focus
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off the computation of ex post volatility, with all its inherent difficulties as discussed in
Section 5. We proceed as follows.

The bias test is a technique used for evaluating the risk model. The explanation is as
follows, suppose we want to evaluate the model’s ability to forecast risk. We collect a
history of returns, �rt� t = 1� � � � �T �, and a history of risk forecasts, �

(

t�t=1�����T . Note that
the return, rt, is measured over the period t, that is, from time t to time t+1, whereas the
forecast risk, �

(

t, is measured at the start of period t. The standardized return, denoted
Zt, is computed as follows:

Zt = rt/�t 

If the model forecasts risk accurately, then the standard deviation of the time series of
{Zt} should be about one. If it is significantly below one, then the model has over-predicted
risk. Furthermore, if the standard deviation n of {Zt} is significantly above one, then the
model has under-predicted risk. The difficulty in implementing this is the calculation of
significance. We discuss this next.

The formal argument is as follows. Under the null hypothesis that the risk model is
unbiased, i.e. that the standard deviation of {Zt} is one, and further assuming that the
sample size T is large and that the returns are normally distributed, the standard deviation
of {Zt} will lie in the interval �1− 2/T�1+ 2/T � approximately 95% of the time. This
interval represents the 95% confidence interval for the bias statistic. When the computed
bias statistic lies within this interval, the null hypothesis that model is unbiased cannot
be rejected. Conversely, when the computed bias statistic lies to the right of the interval,
we conclude that the model will under-predict risk, and when the bias statistic lies to the
left of the interval, we conclude that the model will over predict risk.

Whilst this methodology is very appealing, because it is less focused on the difficulties
associated with ex post volatility, there are a number of large assumptions. The distribu-
tion of the statistic is based upon two critical assumptions. The first is that T is large, so
that the estimate of risk will converge in probability to the true risk. This is a standard
assumption in the theory of statistics, but we need to think about the realities of the situ-
ation. Most risk models are based on effectively 72 monthly observations, either through
equal weighting or exponentially weighting a larger number. Thus, the amount of data
available may be enough to assume that �̂t → �t. T is the number of scaled returns,
often as low as 10. Setting T equal to 72 is probably sufficient if the volatility process
is independently and identically distributed (i.i.d.). However, there are large periods of
recent history when volatility has been highly auto-correlated, with a consequent loss of
information, in which case, T needs to be larger. The second assumption is that returns
are normally distributed. This is either true or false, and if the bias test is to be sensibly
used, it should be done so jointly with a test for normality. If the returns are non-normal,
the critical values (cv) for the bias test will typically move outwards.

A further difficulty with this procedure is that the methodology assumes that the return
of the portfolio whose risk is being assessed has a mean of zero. Whilst this may be a
reasonable assumption over a very short horizon, it is clearly unreasonable over, say,
an annual horizon. If all our calculations are with annualized data, and if the entity
in question is likely to have a positive mean, this could bring a substantial bias into
proceedings. It should be said though that this bias could be conservative, in the sense
that it would make us reject more than accept.
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We now suppose that rt ∼ N�
t�
2� where initially, we shall assume that rt is i.i.d.( t ) 
It then follows that Zt = rt ∼ N 
t �1 . 

�t �t 

And so setting �t = 


�t

t , we see that Zt = �t +�t, where �t i�i�d�N�0�1�. 
T T 

Clearly, Z = �t +�t, and so �Zt −Z�2 = ���t −��+ ��t −���2. We shall assume that
t=1 t=1

�t ∼ N��0��� 
2� and independent of �t. In which case, Zt ∼ N��0�1+�� 

2� and( )2∑T Zt −Z X2�T −1� ∼ �1+�2� � 
T −1 � �T −1� 

t=1

Now, without any calculation, we can see that the bias test can be highly inaccurate, as

&�Zt −Z�2
√ √

X2�T −1� 
sd = ∼2 1+�� 

2 � 
T −1 T −1

√ 
the upper and lower 2½% cv will be only approximately measured by 1+2/ T and√ 

1−2/ T . To get some idea of the magnitudes involved, consider the case where T = 20
and �� = 0. Here, the exact cv will be 0.68 and 1.31 whilst the approximate cv will be
0.55 and 1.45. For the case, assuming T = 200��� = 0, we get 0.86 and 1.14 for the
approximate values and 0.90 and 1.10 for the exact values. In both cases, we see that
the approximation makes it more likely to not reject bias relative to the true values. If
we add the impact of the variability of the model alpha so that �� = 5, this will move the
exact cv upward by 11.2% so that for T = 20, the exact values become 0.75 and 1.44.
Whilst this has the effect of virtually equating the upper values of the approximate and
exact procedures, it means that there is a region for the lower value (0.55–0.75) where
the exact test would reject unbiasedness whilst the approximate would not.

7. Time horizons and data frequency

An important issue, not clearly enunciated by many risk model vendors, is the time
horizon of the risk forecast. Implicitly, in the process of making a monthly forecast, and
measuring risk annually, is the idea that the forecast is for 12 months. In litigation, this
can be a point of contention. The reason follows from the well-known fact that if there
is auto-correlation in monthly returns, then annualization by multiplying the monthly
volatility by the square root of twelve can lead to an under- or overestimate, depending
on the sign of the correlation. Thus, the risk manager needs a very clear view of the time
horizon of the forecasts. This is something he or she should require the risk model vendor
to be explicit about. Back-testing cannot be accomplished sensibly without knowing this.

Closely related to the time horizon of the forecast, is the frequency of the model. We
note that for most stocks, prices are available to very high frequencies indeed, likewise,
for yields on gilts and treasuries. However, in the case of fundamental (CS) models, we
do not have the same situation. These models have difficulties in being estimated on
higher frequencies, because much of the data associated with them come out with annual
or biannual accounts. However, for time series models, whose explanatory variables are
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themselves prices or returns or yields, there is no such problem. Time series models with
macroeconomic factors are quite problematic at a monthly frequency and likely to be
very problematic at higher frequencies. This chapter has so far been rather unsympathetic
to statistical models. However, they are ideally suited to high-frequency analysis, as they
only require prices. The most interesting applications of statistical models that the author
has seen has been for intra-day applications.

Now, the great advantage of high-frequency model building and forecast generation is
that we can resolve the time horizon issue by building annual measures as sums of weekly
measures. These can be bootstrapped or simulated, and some insights into the forecast’s
tendency to under/over-predict through time aggregation can be gained.

8. The residuals

As with any statistical model, analysis of residuals is an important part of model valida-
tion. Using the same notation as before, but allowing the equation below to represent a
generic LFM, we can define residuals as follows:

�̂pt = rpt − 
̂p − �̂p 
′ ft 


̂p = w′ ˆ �p = w �� �̂pt = w′ ˆ
� ˆ ′ ˆ �t 

There are a number of standard and simple exercises that can be carried out with the
model residuals. They can be plotted through time to see whether there is any exploitable
autocorrelation. Indeed, the autocorrelation functions of the residuals can be computed
and standard tests for white noise applied. The factor specification can also be examined.

Many model builders now routinely compute principal components from the residual
covariance matrix. The presence of some common factor, not used in the model, will
appear in the residual covariance matrix. There also exists more formal procedures for
testing the diagonality of a covariance matrix. Indeed, this is a standard problem in
classical multivariate analysis. A useful procedure, not used in finance to the author’s
knowledge, is presented in Muirhead (1982). In particular, he presents, in Theorem
11.2.10, the distribution of a likelihood ratio test for the diagonality of the covariance
matrix, assuming normality. It turns out to be asymptotically #2, unsurprisingly. However,
he or she also presents an extension that allows one to test for diagonality in the presence
of elliptical (non-normal) errors.

An issue that arises is the properties of the residuals for the three different types of
models. The first two models, time series and statistical, have the attractive property that
the sum of the residuals will sum to zero if the models have been estimated by OLS with
a constant. Furthermore, under the same assumptions, the sample covariances between
factors and residuals will be zero. This considerably simplifies residual analysis.

However, for fundamental (CS) models, the same is not true. It is now the cross-
sectional sample mean that is zero. For any given stock, the residuals associated with it
will not have a sample time series mean that is zero; it could be any value positive or
negative. Whilst this magnitude has the advantage that it can be interpreted as the average
stock idiosyncratic alpha, there are disadvantages. It is now necessary to save residuals
from all periods, allocating them to stocks, taking care that those stocks were present
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in the cross-section, and necessarily subtracting the average from them if an estimate of
residual variance is required. None of these steps represent major obstacles, but they are all
situations in which model users with inadequate statistical training tend to make mistakes.

9. Monte Carlo procedures

The above discussions have demonstrated how truly difficult it is to include real portfolios
in an assessment of a risk model. We have discussed many reasons, but the key ones are
changing weights and changing volatility. Some of these difficulties can be sidestepped
through the use of Monte Carlo methods. Here, there are little practical guidelines as to
how to proceed as managers have tended to focus on live or historical portfolios; hence,
the following comments are rather exploratory in their nature.

If we look back to the earlier sections of this chapter, we can fully specify stochastic
processes that describe the evolution of returns. This can even accommodate time-varying
volatility in idiosyncratic returns and factor returns, through the use of vector ARCH
and/or SV models. Having specified the returns process with suitable chosen ‘true’ param-
eter values, we can imitate the methodology of the risk model vendor by building a risk
model from the generated data. This risk model can then be used to build risk forecasts
(ex ante risk) for suitably chosen portfolio weights. These forecasts can then be compared
with the ex post values of risk, which are actually known in this context, because of the
nature of the Monte Carlo experiment.

To be able to do this, we need to know how risk models have been built. This raises
an interesting commercial problem as risk model vendors have varying degrees of trans-
parency about their methodologies. So, if a client wants to back-test a vendor model,
they need the cooperation of the vendor to help them in carrying out the experiment.
Vendors have been traditionally rather secretive about their activities. If the vendor does
not cooperate, one can build one’s own risk model, either from first principals or through
the purchase of risk model building kits, now commercially available. However, the threat
of such an action may induce some cooperative behaviour from the vendor, who may be
prepared to carry out the exercise himself, making the experiment available to the regu-
lator on demand, the broad results available to the client, but not necessarily revealing
key commercial secrets to clients.

10. Conclusions

We have presented a framework for understanding how equity portfolio risk models are
built, and how their forecasts are constructed. We have noted a large number of difficulties
associated with the validation of such models. Our position is not one of quantitative
nihilism. To paraphrase a quotation from a popular film, ‘We believe in something’. In
particular, we need to set up experiments that compare forecasts with actuals and we
need to carry out model analysis that allows us to investigate model misspecification. For
the former, Monte Carlo analysis is strongly recommended. For the latter, bias tests and
residual analysis seem useful tools. At a practical level, a risk model validation would
also involve inspection of the documentation processes, implementation and degree of
embeddedness of the model in the risk management, carried out by its user.
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10 Dynamic risk analysis and risk
model evaluation
Günter Schwarz∗ and Christoph Kessler∗ 

Abstract

In this article, we present explorative methods for measuring investment risk. While the
underlying concepts are purely quantitative, the way results are visualized and interpreted is
rather qualitative but nevertheless rigorous. The methods are in particular well suited for the
task of evaluating the performance of investment risk models that are used in the investment
decision process of an asset manager, where the time horizon is months and not days. Such
a model cannot be subjected to rigorous statistical tests as the amount of time required to
achieve significance would be far too long. The explorative methods described in this chapter,
however, provide ‘immediate’ results as they visualize the dynamics of risk behaviour ‘in real
time’, allowing direct comparison with what the risk model anticipated at the same time.
The chapter begins with a brief discussion of in-sample tests versus out-of-sample tests used
in investment risk measurement and how these might be utilized in model validation. We
then introduce the underlying concepts of cumulative variance and covariance. We outline an
approach of viewing risk over time that does not enforce a pre-determined fixed time horizon
and apply it in various examples. These examples cover general risk measures like beta, total
and active risk that can be applied for either single securities or portfolios. Additional risk
measures that are standardized by the risk forecast are then applied to evaluate risk model
out-of-sample performance. Finally, we discuss some criteria for judging the quality of the
risk model.

1. Introduction

Investment risk models are widely utilized in the finance industry. The scope and shape of
these models are as diverse as the way they contribute to investment or trading decisions.
One extreme might be an option trader who requires a model that describes the anticipated
distribution of the returns of a small number of parameters as accurate as possible to
be competitive in the market. In turn, a policy risk tool to be used in asset/liability
management for pension funds much more focuses on the long-term covariance between
aggregated markets and asset classes.

The ways the performance of such models is assessed are as diverse as the models’
scopes and structures and in particular the intended time horizon. Although it might be
simple to check the performance of an option trader’s model by measuring the accuracy
with which the trader is able to react in the market, it is about impossible to confirm

∗ UBS Global Asset Management, Global Investment Solutions, Zurich, Switzerland.
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the quality of a model with a horizon of decades as one would need to wait hundreds of
years until one has statistically significant results.

In general, models can be checked in-sample or out-of-sample. In-sample checks are
based on the same data that were originally used to estimate the model. Their main
purpose is to evaluate whether the model is rich enough to capture the targeted risk
characteristics without being ‘over-fitted’. In the context of linear factor models that are
commonly used in the finance industry, important questions are as follows:

• Does the model have enough factors to capture the correlations of the assets, that is,
can assets’ specific risks be regarded as being uncorrelated without distorting the risk
geometry?

• Are the factors adequate, that is, do they facilitate the management and allocation of
risk in the investment process?

• Are the assets’ factor exposures well chosen and/or estimated?
• Is the factor explained risk reasonable in size and pattern across the whole universe

of securities?
• Can the model be made more parsimonious without loss of precision?

Let us just mention that these questions can be answered by testing the model on a
set of real or artificial (simulated) portfolios. Thoroughly designed in-sample tests give a
good sense of the behaviour of the model and are the basis for the decision whether the
model is suited for being made operational.

In contrast to this, out-of-sample checks evaluate the model on data not already used
for model calibration. In particular, the interest is on the forward-looking side, that is,
evaluation with data from a period that goes beyond the estimation time frame. Whenever
real-life risk management applications are evaluated, two effects need to be taken into
account: the underlying security and market risk is changing over time and the portfolio
structure may change over time as well.

When dealing with out-of-sample tests, we distinguish between the following general
methods:

• The static approach evaluates the model over a pre-determined out-of-sample period,
for example, on a yearly basis since introduction of the model.

• The semi-static approach uses a rolling window of pre-determined length, for example,
a 1-month window over a year.

• The dynamic approach uses explorative statistics and charts that allow evaluating the
dynamic ex post risk behaviour of the assets and portfolios over an extended longer
period (e.g., since introduction of the model) independent of a fixed window size or
frequency. This then can be compared with the numbers anticipated by the model
over the same period. In addition, the dynamic approach allows analyzing how the
model worked over any sub-period of the out-of-sample period. Model changes can
be accommodated as easily as interim changes in portfolio structure.

In this chapter, we give a detailed description of the dynamic approach for out-of-
sample analysis of risk behaviour.
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2. Volatility over time and the cumulative variance

2.1. Theoretical background

There exist different ways of looking at the variation of volatility over time. For example,
it is possible to estimate volatility using a fixed number of observations over a pre-
determined time span and move this estimation window forward over time, or one can
use generalized autoregressive conditional heteroskedasticity (GARCH) modelling. For
an introduction see for example Jorion or McNeil, Frey Embrechts. Here, we suggest
an approach that goes back to the original definition of volatility as the square root of
the sum of squared returns and utilizes the underlying process of the cumulated sums
of squared returns – the so-called quadratic variation process. Notice that the actual
instantaneous variance can be seen as the first derivative of this process.

Given returns R�s� for s ≥ 0, let the cumulative realized variance process be defined as

CumVar�t� �= R2�s�� t ≥ 0� (10.1)
0<s≤t 

The realized variance over the time period from t up to T is then given by

CumVar�t�T � �= R2�s� = CumVar�T �−CumVar�t�� (10.2)
t<s≤T 

So the accumulated variance over a period equals the increment of the cumulative
variance. With time measured in years, the slope of the cumulative variance over the time
period t up to T equals the conventional variance estimate under the assumption of zero
means. So, if dt denotes the observation frequency [resulting in a number of �T − t� /dt 

return observations in the time window t to T ], and using �
(2

dt and �
(2

for the dt frequency
variance estimator and the annualized variance estimator, respectively, we have

CumVar�t�T � ∑ �
(2

dt�t�T � (2= �T − t�−1 · R2�s� = = � �t�T �� (10.3)
T − t 

t<s≤T 
dt 

If returns have a zero mean, then the realized variance is an unbiased estimate of the
cumulated variance over the period from t up to T : given the variance of the returns R�s�,

�2�s� �= E 
(
R2�s� 

)
� (10.4)

and the cumulative variance of the returns over the period t up to T is

�2�t�T � �= ∑ �2 �s�� (10.5)
t<s≤T 

then the expected realized variance coincides with the variance, that is,

E �CumVar�t�T �� = �2 �t�T � � (10.6)

Sometimes the cumulative variance is also called the integrated (squared) volatility.
See for example Barndorf-Nielsen, Shephard. Although our analysis is, strictly speaking,
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about the second moments and not about the variance, for most practical applications in
finance with frequencies up to monthly data, the mean is close enough to zero to justify
neglecting it. In fact, volatility estimates derived this way are often more stable.

If in addition the variance or volatility is constant over the time period from t up to T ,
then the realized variance is an unbiased estimate of this underlying volatility, that is,

�2�t�T � = �2�s� = �2�T − t� (10.7)
t<s≤T 

and

E �CumVar�t�T �� = �2�T − t�� (10.8)

So with time measured in years, the expected slope of the cumulative variance over the
time period t up to T equals the square of the annualized volatility �, that is,

E 
CumVar�t�T � = �2� (10.9)

T − t 

In particular, if we assume that volatility is constant over time, then the cumulative
variance fluctuates around the constant variance line given by

v�t� = �2 · t� for t ≥ 0� (10.10)

How large is the deviation of the realized cumulative variance relative to the underlying
cumulative variance curve? In case of uncorrelated squared returns over time (i.e., zero
autocorrelation), the standard deviation of the realized variance can be calculated easily:

Var �CumVar�t�T �� = E 
[
CumVar�t�T �−�2�t�T � 

]2 = ∑ [
E 
(
R4�s� 

)−�4�s� 
]
� 

t<s≤T 

(10.11)

In case of normally distributed returns, this reduces further to

Var �CumVar�t�T �� = 2 �4�s�� (10.12)
t<s≤T 

Finally, if volatility is constant, that is,

�2�s� = �2 ·dt� (10.13)

then the standard deviation of the cumulative variance equals

√ √ 
StDev �CumVar�t�T �� = �2 · 2 ·dt · T − t� (10.14)
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In this case, the estimation error is proportional to the square root of time. The
conventional annualized variance estimate under zero mean assumption equals the slope
of the realized cumulative variance, and the estimation error is given by( ) (√ )

StDev
CumVar�t�T � = �2 √ 2 ·dt

� (10.15)
T − t T − t 

If one looks at the slope measured in volatility units instead of variance units, then a
Taylor expansion of the square root function yields(√ ) ( √ )

CumVar�t�T � dt �
StDev √ ≈ � √ = √ � (10.16)

T − t 2�T − t� 2 ·N�t�T � 

So the relative error depends purely on the number of observations, N �t�T � = �T − t� /dt 
in the time period from t to T . For later reference, Table 10.1 shows the estimation
error for different popular data frequencies and time spans. For the sake of completeness,
let us further mention the well-known fact that under the assumption of independent,
identically and normally distributed returns, the variance estimate is #2 distributed. In
particular, the estimation error distribution is skewed, and the standard deviation has to
be used with this in mind.

Table 10.1 Volatility estimation error

Observation
Frequency

1 Month

Observation Period Length

1 Quarter 1 Year 2 Years 5 Years

Daily
Weekly
Monthly

15
34
71

0.09
0.20
0.41

0.04
0.10
0.20

0.03
0.07
0.14

0.02
0.04
0.09

√ √ √
The standard deviation of ( dt/ 2�T − t� or 1/ 2 ·N�t�T � based�/� equals
on return frequency dt, observation period length �T − t� and number of obser-
vations N�t�T � 

2.2. Explorative approach

As the concept of cumulative variance is rather simple, its explorative use can be
quite fruitful. In this section, artificial data will be used to explain how the concept is
applied. The simplest example to start with consists of randomly generated returns with
constant volatility. Daily returns are drawn independently from a normal distribution
with zero mean and a constant volatility of 10% on an annualized basis. Assuming
260 trading days in a year, daily volatility is 10% divided by the square root of 260
or 0.6%.

Figure 10.1 plots the realized cumulative variance for three random return series. The
figure is complemented with constant volatility lines that make it possible to ‘guesstimate’
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Figure 10.1 Realized cumulative variance based on normally distributed daily returns with 10%
volatility annualized

the volatility just by visual inspection – the cumulative variance should in the example
move in parallel to the 10% volatility line. As can be seen, this works fine if daily data
is used. The variation in slope over sub-periods depends on the length of the sub-period.
For the standard deviation errors of these slopes, see Table 10.1. Of course, if one looks
at time periods with particularly high volatility, the estimation error is likely to be higher
than the figures suggested in Table 10.1 as in this case, one is looking at what is called a
maximally selected statistics. This is a well-known effect that is dealt with in sequential
statistical analysis.

For practical purposes, it is important to get a sense for how precise the realized cumu-
lative variance reflects the underlying variance. While the estimation errors in Table 10.1
give a perspective on this issue and Figure 10.1 indicates results for daily data, the next
item would be to have a look at the impact of data frequency. In Figure 10.2, the realized
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Figure 10.2 Realized cumulative variance based on normally distributed daily, weekly and
monthly returns with 10% volatility annualized
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cumulative variance is shown for a single underlying data series but now using daily,
weekly and monthly returns for calculating the cumulative variance.

As an example, the monthly volatility estimate over the full 5-year period is close to
9% and under-estimates the true volatility by 10% in relative terms. This is just in line
with the 10% estimation error from Table 10.1. On a yearly basis, one could see periods
with volatility as low as 5% or going up to 12%. Table 10.1 would indicate a relative
estimation error of 20%, that is, estimates between 8% and 12%. This ‘discrepancy’ is
due to the effect of looking at the extremes over a given time period. Of course, it would
be possible to exploit this further by sampling the distribution of the maximally selected
slopes over certain periods of time.

As the estimation error only depends on the number of observations, the statistical
behaviour of the slope of the cumulative variance (i.e. the estimated variance) is roughly
the same within each of the following three examples:

1. around 12 observations: 2-week periods based on daily data, quarterly periods based
on weekly data or yearly periods based on monthly data,

2. around 25 observations: monthly periods based on daily data, half-year periods based
on weekly data or 2-year periods based on monthly data and

3. around 50–60 observations: quarterly periods based on daily data, yearly periods
based on weekly data or 5-year periods based on monthly data.

The next example resembles a regime shift in the underlying volatility. We assume that
during the first half of a 5-year period, annualized volatility is at 10% and then suddenly
rises to 15%. Figure 10.3 shows the daily, weekly, and monthly cumulative variance
based on the same underlying daily return series. While with monthly data it is really
hard to guess the underlying volatility from the chart, the weekly cumulative variance
already indicates the regime shift pattern, and the daily data series quite nicely picks up
the actual regime shift.
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Figure 10.3 Realized cumulative variance based on normally distributed daily, weekly and
monthly returns with 10% volatility during the first 2.5 years and 15% during the second
2.5 years
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In the third example, we assume a volatility shock, which is a quite common phe-
nomenon in financial markets. This is another interesting scenario indicating how the
cumulative variance behaves (Figure 10.4).
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Figure 10.4 Realized cumulative variance based on normally distributed daily, weekly and
monthly returns with 10% constant volatility, apart from a 1-month spike in volatility of 40% in
the middle of the 5-year period

It is hard to extract the exact magnitude and length of the volatility spike from the daily
and weekly cumulative variance chart. However, one can at least nicely see the pattern:
stable volatility – spike in volatility – going back to the original volatility level before the
spike. Monthly data, however, are not even sufficient for this conclusion.

Finally, it is interesting to compare the explorative characteristics of the cumulative
variance with commonly used methods like rolling window volatility estimates. The
three volatility scenarios from above – ‘constant volatility’, ‘volatility regime shift’ and
‘volatility shock’ – will be used to indicate the differences in behaviour.

In Figure 10.5, the daily and the 5-day realized cumulative variance is shown. The 5-day
cumulative variance is based on overlapping 5 trading-day intervals, that is, Monday
to Monday, Tuesday to Tuesday. � � � Overlapping 5-day returns are quite useful as a
compromise when analyzing global assets and portfolios that span different time zones.

The realized cumulative variance based on 5-day overlapped data also does as well
indicate the underlying true cumulative variance. Figure 10.6 shows the corresponding
charts for rolling window estimates with window sizes 1 month, 1 quarter and 1 year
based on daily return observations. The left-hand side covers the ‘regime shift’ scenario
and the right-hand side the ‘volatility shock’ scenario.

For the regime shift shown on the left-hand side of Figure 10.6, the 1-month window
estimate picks up the increase rather quickly, but is in fact too noisy. The 3-month estimate
does a good job, but it takes 3 months to end up with the correct estimate. For the smooth
yearly estimate, it takes a year of ‘rising volatility’ to adjust to the new regime. The com-
parison with Figure 10.5 nicely shows the advantage of the concept of cumulative variance.

For the volatility shock, the peak of the 1-month window estimate picks up the under-
lying volatility shock due to the fact that the shock did last for just a month. But it is
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Figure 10.5 Realized cumulative variance based on normally distributed daily (left-hand side) and
5-day overlapping (right-hand side) returns with ‘constant volatility’ (at 10%), ‘volatility regime
shift’ (from 10% to 15% after 2.5 years) and ‘volatility shock’ (10% volatility with 40% spike
after 2.5 years for a month)
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Figure 10.6 Realized volatility over fixed size rolling windows with length 1 month, 1 quarter and
1 year. Estimates are based on daily returns. The underlying scenarios are ‘volatility regime shift’
(from 10% to 15% after 2.5 years) on the left-hand side and ‘volatility shock’ (10% volatility
with 40% spike after 2.5 years for a month) on the right-hand side

hard to guess from this chart that it was a 1-month shock at a constant volatility of 40%.
This is different for the cumulative variance in Figure 10.5 (left-hand side). The pattern
is more or less obvious there, and a separate evaluation of the high slope (high volatility
period) would even yield the 40-% estimate.

Of course these examples have been artificial, and are therefore no proof of the useful-
ness of the cumulative variance approach in general. However they already indicate the
advantages compared to commonly used methods.
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2.3. Practical application for portfolio total and active risk

The realized cumulative variance can be used to explore the dynamics of risk for single
assets, but as well for benchmarks, portfolios and portfolios relative to benchmarks. As
discussed in the previous paragraphs, the time variation in risk can be assessed over a
given time period, provided there is a sufficient amount of data. So, the desired time
resolution determines the required data frequency.

The first example is a European equity fund with the Morgan Stanley Capital
International (MSCI) Europe index as benchmark. We draw the realized cumulative
variances for the portfolio, the benchmark and the portfolio versus the benchmark based
on daily returns. Figure 10.7 gives a good overview about the time variation in risk.
For portfolio and benchmark, there is a high volatility of 30% per annum in the period
preceding the Iraq war in the first quarter of 2003. Then both portfolio and benchmark
risks go down immediately to 14% and continue to drop to 10–12% until the May
2006 shock, which was passed with a volatility of ca. 25%. After May 2006, risks are
back at low levels of below 10%. The active or relative risk of the portfolio versus the
benchmark is around 5% in the first quarter of 2003. Afterwards, there is not much
fluctuation, and the active risk is quite stable at 2.5% with only a minor impact of the
May 2006 shock. After May 2006, the active risk is low at 2%.

Of course, one could have also come to this conclusion by looking at a set of rolling
fixed-length volatility estimates with varying length and GARCH estimates. The difference,
however, is that with a cumulative variance plot, this can be seen in a single chart that in
addition is very simple to calculate from portfolio and benchmark performance data.
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Figure 10.7 Realized cumulative variance for a European equity portfolio with MSCI Europe
benchmark based on daily returns

The next example is a global equity portfolio with the MSCI World as benchmark.
In this case, it is adequate to use 5-day overlapped returns to counter the effect of the
different time zones. Daily returns would lead to a downward bias in risk figures because
of the low autocorrelation within the day. Even allowing for the slightly reduced precision
compared to the above example due to the 5-day overlapped returns, the cumulative
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variance still does a reasonable job in showing the dynamic behaviour of risk. Please
notice that the time series start at the end of May 2003 and do not include the pre-Iraq
war period (Figure 10.8).
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Figure 10.8 Realized cumulative variance for a global equity portfolio with MSCI World
benchmark based on 5-day overlapped returns

3. Beta over time and cumulative covariance

3.1. Theoretical Background

The concept of the cumulative variance can be adapted to the covariance in a straightfor-
ward fashion, for example, the covariance of a portfolio versus its benchmark or assets
versus the underlying market indexes. However, here we will focus on beta, that is, the
market exposure of a portfolio or asset in general instead, as this introduces an additional
explorative concept.

The beta of a portfolio (or asset) with returns RP�t� for t ≥ 0 versus a benchmark (or
market) with returns RB�t� for t ≥ 0 is defined as the covariance of portfolio returns versus
benchmark returns divided by the variance of the benchmark returns, that is,

Cov�RP�t��RB�t�� 
�P�B�t� �= � (10.17)

Var�RB�t�� 

Let us generalize the concept of the cumulative variance to that of the cumulative
realized covariance process, which can be defined as

CumCovarP�B�t� �= RP�s� ·RB�s�� t ≥ 0� (10.18)
0<s≤t 

The realized covariance over the time period from t up to T is then given by

CumCovarP�B�t�T � �= RP�s�·RP�s�=CumCovarP�B�T �−CumCovarP�B�t� (10.19)
t<s≤T 
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The accumulated covariance over a period equals the increment of the cumulative
covariance. Furthermore, the realized beta over the time period t up to T can be defined as

�̂P�B�t�T � �= CumCovarP�B�t�T � 
� (10.20)

CumVar�t�T � 

Let us mention that if the returns have zero means, then this is an unbiased estimate,
that is,

E 
(
�̂P�B�t�T � �RB�t < s  ≤ T �  

)
= ∑ �P�B�s� · ∑R2

B

R

�s� 
2
B�u�

� (10.21)
t<s≤T 

t<u≤T 

This means that the conditional expectation of the realized beta given the benchmark
returns is a weighted average of the betas. The corresponding weights are determined by
the squares of the benchmark returns. We will come back to this expression later. If beta
is constant over the time period, then the right-hand side of Equation 10.21 reduces to
the respective constant beta.

The conditional variance of the realized beta given the benchmark returns can be
derived as

Var
(
�̂P�B�t�T � �RB�t < s  ≤ T �  

)
= ∑ 1

R2
B�u� 

· 
t<s

∑
≤T

�P
2
�B�s� · ∑R2

B

R

�s� 
2
B�u�

� (10.22)

t<u≤T t<u≤T 

with the residual variance defined as

�P
2
�B�s� �= Var RP�s�−�P�B�s� ·RB�s� � (10.23)

This is an expression similar to that for the conditional mean: the conditional variance
is a weighted average of the residual variances, where the weights are again determined by
the squares of the benchmark returns. In case of constant residual variance, the variance
of the realized beta can be simplified to the well-known formula

Var
(
�̂P�B�t�T � �RB�t < s  ≤ T �  

)
= 1 · �P

2
�B

� (10.24)
N�t�T � �̂B

2�t�T � 

where N�t�T � is the number of observations in the period of t up to T , and

�̂B
2�t�T � �= 1 · ∑ R2

B�s� (10.25)
N�t�T � 0<s≤T 

is the realized benchmark variance. The estimation error therefore depends on the ratio
of residual risk to benchmark risk and is proportional to the reciprocal of the square root
of the number of observations.

For practical applications, the ratio of residual volatility to benchmark volatility is in
general lower than 1 for ‘long only’ portfolios and often between 25% and 50%. For
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Table 10.2 Beta estimation error

Observation Observation period length
frequency

1 Month 1 Quarter 1 Year 2 Years 5 Years

Daily 0.21 0.12 0.06 0.04 0.03
Weekly 0.48 0.28 0.14 0.10 0.06
Monthly 1.00 0.58 0.29 0.20 0.13( ) √ /√ /√
The standard deviation of �̂P�B/ �P�B/�B equals dt T − t or 1 N�t�T � 
based on return frequency dt, observation period length �T − t� and number of
observations N�t�T � (Table 10.2).

assets, the respective ratio can vary substantially, and for equities, it can sometimes be as
low as 50%, but in most cases, it falls between 100% and 300%. The numbers shown
in Table 10.2 need to be multiplied by this ratio to get to the estimation error of beta.

3.2. Explorative approach

By definition, realized beta is the ratio of the cumulative covariance of the portfolio (or asset)
versus the benchmark (or the market) and the benchmark (or market) cumulative variance.
This leads to the idea of creating a chart where one plots the cumulative benchmark variance
on the horizontal axis and the cumulative covariance on the vertical axis. Then, the slope of
the resulting curve over a particular time period equals the realized beta over this time period.
This way, it is possible to visualize the dynamics of beta over time within a single chart, that
is, indicate the beta variation in time over any sub-period or the full period. So we can utilize
the same explorative framework as for the cumulative variance.

Figure 10.9 is an example using randomly generated returns. Both portfolio and bench-
mark returns are normally distributed, portfolio beta equals 1 and the ratio of residual to
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Figure 10.9 Realized cumulative active portfolio beta based on normally distributed daily returns
(left-hand side) and 5-day returns (right-hand side). Active beta is zero and the ratio of residual to
benchmark volatility is 1/3
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benchmark volatility is 1/3. We focus on the active beta (which equals beta minus 1) and
the active portfolio returns (defined as the difference between portfolio and benchmark
returns) rather than the corresponding portfolio figures to get a good resolution of the
cumulative beta chart. So the vertical axis shows the covariance of the active portfolio
returns versus the benchmark returns. On the horizontal axis, time is ‘running’ accord-
ing to the cumulative benchmark variance. On the left-hand side of Figure 10.9, the
effect of this time transformation is hardly visible as benchmark volatility is constant,
and we use daily data. However, for the weekly data sample on the right-hand side of
Figure 10.9, the effect of this time scale can be seen clearly as the random fluctuation
of the benchmark cumulative variance becomes larger. Over any chosen time period, the
slope of the covariance curve equals the realized active beta over that period. Let us
mention the relation to Equation 10.21, which shows how the time running with the
benchmark cumulative variance determines the weighting for the conditional expectation
of beta given the benchmark returns.

The estimation error can be derived from the ‘daily’ or ‘weekly’ column of Table 10.2
together with the ratio of residual to benchmark risk, which is 1/3 in this example (i.e.,
by dividing the values in the table by 3). For example, for the 5-year period, the daily
beta error is 1%, and for 1-year periods, it is 2%. The weekly estimation error is 2% for
the 5-year period or 5% for a 1-year period. With weekly data, the cumulative beta over
1-year periods is already quite noisy. However, there are applications in the financial
industry with only monthly data availability. Figure 10.10 illustrates the lack of precision
one has to accept in such a case.
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Figure 10.10 Realized cumulative active beta based on normally distributed monthly returns.
Active beta is zero and the ratio of residual to benchmark volatility is 1/3

The next example indicates the effects of shifts in the underlying beta. For the first 2.5
years, beta equals 1, for one quarter it peaks at 1.5 and for the rest of time beta is at
0.95. Figure 10.11 shows the plot for three samples of daily and 5-day overlapping data.
In both plots, the underlying changes in beta can be extracted from the graph.
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1-Day beta versus benchmark 5-Day overlapping beta versus benchmark 
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Figure 10.11 Realized cumulative active beta based on normally distributed daily returns
(left-hand side) and 5-day overlapping returns (right-hand side) with active beta 0% for the first
2.5 years, then for a quarter a sudden increase to 50% and for the rest of time –5%

3.3. Practical application for portfolio beta

The cumulative beta charts can be a useful tool for checking the dynamics of portfolio
beta. Figure 10.12 plots the active (portfolio minus benchmark) cumulative beta for a
European portfolio versus the MSCI Europe as benchmark and for a global portfolio
versus the MSCI World as benchmark. We use daily returns for the European portfolio
and 5-day overlapping returns for the global portfolio.
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Figure 10.12 Realized cumulative active beta for a European equity portfolio on a daily basis on
the left-hand side and for a global equity portfolio with 5-day overlapping returns on the
right-hand side
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In particular, for the Europe portfolio, one can see the impact of the time scaling
introduced by the cumulative benchmark variance. In 2003, there was a high benchmark
volatility causing the time to expand accordingly. For both portfolios and benchmarks,
the behaviour of risk is shown in Figures 10.7 and 10.8. For the European portfolio, the
active beta ranged between −5% and −10% before 2006, and then in 2006, it was close
to zero. The global portfolio had an active beta of approximately −5% in 2004, this
then decreased to about −15% and later increased slightly to −10%. At the end of the
observation period, it was back at −5%, with a spike of −15% right at the end of the
period.

As one could see not only from these two real-life portfolios but also from the examples
based on simulated data, the cumulative beta charts provide a useful tool for analyzing
beta over time. Of course, precision depends on both the data frequency and the ratio of
residual risk to benchmark risk.

4. Dynamic risk model evaluation

4.1. Theoretical background

Based on the simple theory derived in the above sections, we suggest two approaches for
an explorative risk model evaluation:

1. Add the respective ex ante forecasts to the cumulative variance and beta charts.
2. Explore the cumulative variance of the returns standardized by the risk forecast.

For the first approach, we use a single plot to compare the realized cumulative
variance

CumVarR�t� �= R2�s�� t ≥ 0� (10.26)
0<s≤t 

with the forecasted cumulated variance

CumFVarR�t� �= �F
2
�R�s�� t ≥ 0� (10.27)

0<s≤t 

Here, �F
2
�R�t� denotes the risk forecast at time t for the next day. The same can be done

for the beta or factor exposure. Here, we plot in a single chart on the vertical axis both
the realized cumulative covariance

CumCovarP�B�t� �= RP�s� ·RB�s�� t ≥ 0 (10.28)
0<s≤t 
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and the forecasted realized covariance based on the beta forecast �F�P�B�t�, that is,

CumFCovarP�B�t� �= �F�P�B�s� ·RB�s�� t ≥ 0� (10.29)
0<s≤t 

In this plot, the time on the horizontal axis is running with the realized cumulative
benchmark variance.

The second approach is to look at the cumulative-standardized variance, that is, base
the analysis on the realized return divided by the risk forecast( )2∑ R�s�

CumVarR̃�t� �= � t  ≥ 0� (10.30)
�F�R�s�0<s≤t 

If the forecasts are perfect, then the standardized returns have unit volatility. If in par-
ticular volatility is constant, the cumulative variance follows a #2 distribution, and the
statistics for constant volatility as outlined in Section 2.1 can be applied to check the
assumption that the risk forecasts are unbiased.

4.2. Realized versus forecast cumulative variance

We proceed with the Europe portfolio example. Figure 10.13 shows cumulative total,
benchmark and active variance realized as in Figure 10.7 plus the cumulated variances
based on risk model forecast as shown in Figure 10.14. The risk model under consideration
is a long-term risk model and as such does not reflect the short-term realized volatility
pattern. In times of high volatility, the model underestimated the total and benchmark risk,
whereas in low volatility times, it substantially overestimated these values. For the relative
risk of the portfolio relative to the benchmark, the situation looks slightly different. The
model performed better but still had a bias to overestimate risk. It is interesting to see
how the cumulative plots ‘smoothes out’ the risk over time.
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Figure 10.13 Europe portfolio total, benchmark and active risk realized versus risk model
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Figure 10.14 Europe portfolio total, benchmark and active risk based on risk model

4.3. Realized versus forecast cumulative beta

Looking at the same European portfolio using the same long-term risk model, Figure 10.15
shows the cumulative realized and forecasted active beta on the left-hand side and the
forecasted risk model active beta on the right-hand side. The model in this case does
a reasonable job, only slightly overestimating the magnitude of beta. For example, the
model beta was showing 5% in 2006, whereas the realized beta was closer to zero. The
model beta also behaves more smoothly than the realized beta.
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Figure 10.15 Europe portfolio active beta realized versus risk model

4.4. Cumulative variance of forecast-standardized returns

Our second approach to judge the performance or possible bias of the risk model is to
look at the cumulative variance of the standardized returns, where the standardization
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is given by the risk model forecast. In Figure 10.16 on the left-hand side, once again
the European portfolio is shown with daily data using the long-term risk model for
standardizing returns. On the right-hand side for a shorter period of time, the global
portfolio already discussed above is shown with a shorter-term risk model used for
standardization. The slope of the cumulative variance chart indicates the performance
of the risk model. Whenever the slope over a time period is above 1, then the model
under-estimates risk over this time period. A slope below 1 indicates that the model
over-estimates risk.

On the left-hand side for the European portfolio, the pattern for portfolio and bench-
mark risk is identical while the active risk differs mostly in the first quarter of 2003.
Apart from May 2006, risk has been ca. 40% over-estimated. The active risk figures are
slightly less biased than the portfolio and benchmark figures as the active slope is slightly
closer to one.

On the right-hand side for the global portfolio, 5-day overlapping returns are used.
Again, the active risk forecast is less biased than the portfolio and benchmark risk.
Portfolio and benchmark forecast quality is quite similar. During May 2006, the slope
was at 1.4, and the model under-estimated risk accordingly in this period. Before May
2006, the slope was between 0.6 and 1.0, which means the model first over-estimated
risk substantially, and then this bias was going down to zero. In the second half of 2006,
the model again over-estimated risk. Over the full 2-year period, the model was unbiased.
The model performed reasonably well for active risk, over-estimating by ca. 30% in the
last quarter of 2005 and the first quarter of 2006. During May 2006, the model forecast
was unbiased (Figure 10.16).
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Figure 10.16 Europe (left-hand side) and global portfolio (right-hand side) forecast-standardized
cumulative variance for portfolio, benchmark and portfolio versus benchmark returns

5. Summary

Cumulative variance and beta plots offer a great potential in analyzing the time variation
of risk numbers in a single plot. By just visualizing the evolution of the cumulative variance

0.8

0.6
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or beta, it is possible to replace a whole series of rolling window or GARCH estimates
that would otherwise be needed to carry the same information. In addition, the suggested
plots are very easy to generate and intuitive to interpret.

In this chapter, we presented ideas of how to apply these plots in the context of a
dynamic evaluation of investment risk models. By standardizing realized risk figures by
model-estimated figures, model performance evaluation can be done within the scope of
a single chart. Standardization takes care of both the effect of risk changing over time
and of any portfolio restructuring done during the analysis, whereas the technique of the
cumulative plot makes this result available ‘instantaneously’.

The method can easily be extended at other concepts of risk, like correlation analysis
or multivariate exposures.
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11 Validation of internal rating systems
and PD estimates∗ 

Dirk Tasche†

Abstract

Based on the theoretical binary classification framework, the notions of discriminatory power
of a rating system and calibration of PD (probability of default) estimates are introduced.
A variety of tools for measuring and testing discriminatory power and for testing correct
calibration is presented.

1. Introduction

This chapter elaborates on the validation requirements for rating systems and probabil-
ities of default (PDs) that were introduced with the New Capital Standards (commonly
called ‘Basel II’, cf. BCBS, 2004). We start in Section 2 with some introductory remarks
on the topics and approaches that will be discussed later on. Then, we have a view
on the developments in banking regulation that have enforced the interest of the public
in validation techniques. When doing so, we put the main emphasis on the issues with
quantitative validation. The techniques discussed here could be used to meet the quantita-
tive regulatory requirements. However, their appropriateness will depend on the specific
conditions under which they are applied.

To have a common ground for the description of the different techniques, we introduce
in Section 3 a theoretical framework that will be the basis for further considerations.
Intuitively, a good rating system should show higher PDs for the less creditworthy rating
grades. Therefore, in Section 4, we discuss how this monotonicity property is reflected in
the theoretical framework from Section 3.

In Section 5, we study the meaning of discriminatory power and some tools for mea-
suring it in some detail. We will see that there are tools that might be more appropriate
than others for the purpose of regulatory validation of discriminatory power. The topic in
Section 6 is calibration of rating systems. We introduce some of the tests that can be used
for checking correct calibration and discuss the properties of the different tests. We then
conclude in Section 7 with some comments on the question which tools might be most
appropriate for quantitative validation of rating systems and PDs.

∗ The opinions expressed in this paper are those of the author and do not necessarily reflect views of Fitch
Ratings.

† Fitch Ratings Ltd., London, United Kingdom.
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2. Regulatory background

There is a long tradition of rating agencies grading firms that issue bonds. This aims
primarily at facilitating the decision making of investors. Very roughly, the rating method-
ology applied by the agencies could be decribed as expert judgment that is based on hard
as well as on soft facts.

Credit institutions have another 50 years long tradition of scoring borrowers. This way,
the credit institutions want to support credit decisions, i.e. decisions to grant credit or not.
With regard to scoring, the predominant methodology applied by the credit institutions
could roughly be described as using statistically based score variables.

In the past, rating and scoring were regarded as being rather different concepts. This
was partly caused by the fact that rating and scoring respectively are usually applied to
populations with rather different characteristics. Ratings are most frequently used for
pricing of bonds issued by larger corporates. Score variables are primarily used for retail
credit granting.

But, also the background of the developers of rating methodologies and scoring method-
ologies, respectively, is usually quite different. Rating systems are often developed by
experienced practitioners, whereas the development of score variables tends to be con-
ferred on experts in statistics.

With the rising of modern credit risk management, a more unified view of rating
and scoring has become common. This is related to the fact that today both rating and
score systems are primarily used for determining PDs of borrowers. PDs are the crucial
determinants for pricing and granting credit as well as for allocating regulatory and
internal capital for credit risks.

In BCBS (2004), the Basel Committee on Banking Supervision recommends to take rat-
ing and scoring as the basis for determining risk-sensitive regulatory capital requirements
for credit risks (Basel II). Compared to the Basel I standard, where capital requirements
are uniformly at 8 per cent in particular for corporate borrowers irrespective of their
creditworthiness, this is a major progress.

Credit institutions that apply the Basel II standardized approach can base the calculation
of capital requirements on agency ratings, which are called external ratings in the Basel II
wording. However, at least in continental Europe, external ratings are available only
for a minority of the corporate borrowers. As a consequence, in practice, the capital
requirements according to the standardized approach will not differ much from the
requirements according to the Basel I regime.

Credit institutions that are allowed to apply the internal ratings-based (IRB) approach
will have to derive PDs from ratings or scores they have determined themselves. Such
ratings or scores are called internal ratings. The PDs then are the main determinants of
the regulatory capital requirements. Note that in the IRB approach, capital requirements
depend not only on PD estimates but also on estimates of loss given default (LGD) and
exposure at default (EAD) parameters. Validation of LGD and EAD estimates is not a
topic in this chapter.

As mentioned earlier, there are different ways to develop internal rating systems. On
the one hand, there is the traditional approach to rating that is primarily based on expert
knowledge. The number of rating grades is fixed in advance and assignments of grades
are carried out according to qualitative descriptions of the grades in terms of economic
strength and creditworthiness.
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On the other hand, another – also more or less traditional approach – is scoring, which
is primarily based on statistical methods. The first result then is a score variable that takes
on values on a continuous scale or in a discrete range with many possible outcomes. The
Basel II IRB approach requires that the score values are then mapped on a relatively small
number of rating grades (at least seven non-default grades) but leaves the exact number
of grades in the institution’s discretion.

Combinations of rating systems that are based on statistical models and rating systems
that are based on expert knowledge are called hybrid models. All kinds of combinations
appear in practice, with quite different combination approaches. Driven partly by an IRB
approach requirement, hybrid models even seem to be predominant. Often, they occur in
the shape of a statistical model whose output can be overridden by expert decisions.

Among the rules on validation in the Basel II framework, two are particularly relevant
for statistically based quantitative validation (see BCBS, 2004, §500):

1. Banks must have a robust system in place to validate the accuracy and consistency of
rating systems, processes, and the estimation of all relevant risk components.

2. A bank must demonstrate to its supervisor that the internal validation process enables
it to assess the performance of internal rating and risk estimation systems consistently
and meaningfully.

The BCBS has established the Accord Implementation Group (AIG) as a body where
supervisors exchange minds on implementation questions and provide general principles
for the implementation of the Basel II framework. In particular, the AIG has proposed
general principles for validation. Most of these principles are related to the validation
process as such, and only some are relevant for quantitative validation. In the following
list of principles (cf. BCBS, 2005a), the ones relevant for quantitative validation are
emphasized.

(i) Validation is fundamentally about assessing the predictive ability of a bank’s risk
estimates and the use of ratings in credit processes.

(ii) The bank has primary responsibility for validation.
(iii) Validation is an iterative process.
(iv) There is no single validation method.
(v) Validation should encompass both quantitative and qualitative elements.
(vi) Validation processes and outcomes should be subject to independent review.

Hence, in particular, the Basel Committee emphasizes that validation is not only a
quantitative statistical issue but also involves an important qualitative process-oriented
component. This qualitative component of validation is commonly considered equally if
not more important than the quantitative component. This chapter, however, deals with
the quantitative component of validation only.1

Principle (1) of the AIG introduces the term ‘predictive ability’. This is not a common
statistical notion. It is not a priori clear whether it is related to well-known technical
terms such as ‘unbiasedness’, ‘consistency’ and so on. However, there seems to be a
consensus in the financial industry that ‘predictive ability’ should be understood in terms
of discriminatory power and correctness of calibration of rating systems. We follow this
path of interpretation for the rest of the chapter.
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Commonly, discriminatory power is considered to be related to the discrimination
between ‘good’ and ‘bad’ borrowers.2 Additionally, there is a connotation of discrimina-
tory power with the correctness of the ranking of the borrowers by the rating system.
Whereas the importance of discriminatory power is obvious, examining the ranking seems
to be of secondary importance, as in the end the ranking should be according to the size
of the PD estimates. Therefore, correct ranking will be reached as soon as the calibration
of the rating system is correct. This is a consequence of the fact that correct calibration
is usually understood as having found the ‘true’ PDs for the rating grades. Correctness
of the calibration of a rating system may be understood as implementation of the Basel
Committee’s requirement to assess the quality of the estimation of all relevant risk com-
ponents. Checking discriminatory power may be interpreted as implementation of the
Basel Committee’s requirement to validate the performance of internal rating.

With regard to quantitative validation, the Basel Committee states in §501 of BCBS
(2004) ‘Banks must regularly compare realised default rates with estimated PDs for each
grade and be able to demonstrate that the realised default rates are within the expected
range for that grade’. Hence, there is a need for the institutions to compare PD estimates
and realized default rates at the level of single rating grades. Such a procedure is commonly
called back-testing.

In §502, the committee declares ‘Banks must also use other quantitative validation tools
and comparisons with relevant external data sources’. Thus, institutions are required to
think about further validation methods besides back-testing at grade-level.

In §504 of BCBS (2004), the Basel Committee requires that ‘Banks must have well-
articulated internal standards for situations where deviations in realised PDs, LGDs and
EADs from expectations become significant enough to call the validity of the estimates
into question. These standards must take account of business cycles and similar systematic
variability in default experiences’. As a consequence, institutions have to decide whether
perceived differences of estimates and realized values are really significant. Additionally,
the committee expects that validation methods take account of systematic dependence in
the data samples used for estimating the risk parameters PD, LGD and EAD.

In the retail exposure class, institutions need not apply fully fledged rating systems to
determine PDs for their borrowers. Instead, they may assign borrowers to pools according
to similar risk characteristics. Obviously, the requirements for quantitative validation
introduced so far have to be modified accordingly.

3. Statistical background

3.1. Conceptual considerations

The goal with this section on the statistical background is to introduce the model that
will serve as the unifying framework for most of the more technical considerations in the
part on validation techniques. We begin with some conceptual considerations.

We look at rating systems in a binary classification framework. In particular, we will
show that the binary classification concept is compatible with the idea of having more
than two rating grades. For the purpose of this chapter, binary classification is understood
in the sense of discriminating between the populations of defaulters and non-defaulters,
respectively.
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Also for the purpose of this chapter, we assume that the score or rating grade S (based
on regression or other methods) assigned to a borrower summarizes the information
that is contained in a set of covariates (e.g. accounting ratios). Rating or score variable
design, development or implementation3 is not the topic of this presentation. We want
to judge with statistical methods whether rating or scoring systems are appropriate for
discrimination between ‘good’ and ‘bad’ and are well-calibrated.

With regard to calibration, at the end of the section, we briefly discuss how PDs can
be derived from the distributions of the scores in the population of the defaulters and
non-defaulters, respectively.

3.2. Basic setting

We assume that with every borrower two random variables are associated. There is a
variable S that may take on values across the whole spectrum of real numbers. And there
is another variable Z that takes on the values D and N only. The variable S denotes
a score on a continuous scale that the institution has assigned to the borrower. It thus
reflects the institutions’s assessment of the borrower’s creditworthiness. We restrict our
considerations to the case of continuous scores as this facilitates notation and reasoning.
The case of scores or ratings with values in a discrete spectrum can be treated much in a
similar way. The variable Z shows the state the borrower will have at the end of a fixed
time-period, say after 1 year. This state can be default, D, or non-default, N . Of course,
the borrower’s state in a year is not known today. Therefore, Z is a latent variable.

The institutions’s intention with the score variable S is to forecast the borrower’s
future state Z, by relying on the information on the borrower’s creditworthiness that is
summarized in S. In this sense, scoring and rating are related to binary classification.
Technically speaking, scoring can be called binary classification with a one-dimensional
co-variate.

3.3. Describing the joint distribution of (S,Z) with conditional densities

As we intend statistical inference on the connections between the score variable S and the
default state variable Z, we need some information about the joint statistical distribution
of S and Z. One way to describe this joint distribution is by specifying first the marginal
distribution of Z and then the conditional distributions of S given values of Z.

Keep in mind that the population of borrowers we are considering here is composed by
the sub-population of future defaulters, characterized by the value D of the state variable
Z, and the sub-population of borrowers remaining solvent in the future, characterized by
the value N of the state variable Z. Hence, borrowers with Z = D belong to the defaulters’
population and borrowers with Z = N to the non-defaulters’ population.

The marginal distribution of Z is very simple as it suffices to specify p, the total
probability of default (also called unconditional PD) in the whole population. Hence, p 
is the probability that the state variable Z takes on the value D. It also equals 1 minus
the probability that Z takes on the value N .

p = P�Z = D� = 1−P�Z = N�� (3.1a)
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Figure 11.1 Illustrative example of score densities conditional on the borrower’s status (default or
non-default)

Note that the conditional probability of default given that the state variable takes on D 
is just 1 whereas the conditional PD given that the state is N is just 0. As the score variable
S is continuous by assumption, its conditional distributions given the two values of Z 
can take on may be specified by conditional densities fD and fN , respectively. Figure 11.1
illustrates how a plot of such conditional densities might look like. The probability that
the score S is not greater than some value s given that the state variable Z equals – say – D 
can be expressed as an integral of the density fD.∫ s 

Fz�s� = P�S ≤ s�Z = z� = fz�u�du� z = D�N (3.1b)
−
 

3.4. Describing the joint distribution of (S,Z) with conditional PDs

Another, in a sense, dual way of describing the joint distribution of S and Z is to specify
for every value the score variable can take on the conditional probability P�Z = D�S = s� 
that the state variable Z equals D. This is nothing but the conditional PD given the score.
See Figure 11.2 for an example of how the graph of such a conditional PD function could
look like.

s � = D�S = s� = P�D�S =→ P�Z s� 
(3.2a)= 1−P�N �S = s�� 

To fully specify the joint distribution, in a second step then the unconditional distribu-
tion of the score variable S has to be fixed, e.g. via an unconditional density f .∫ s 

P�S ≤ s� = f�u�du� (3.2b)
−
 

Note the difference between the unconditional density f of the score variable S on
the one hand and the on the state variable Z-conditioned densities fD and fN on the
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Figure 11.2 Illustrative example of probabilities of default (PDs) conditional on score values.
Calculated with the densities from Figure 11.1 according to Equation 3.3b. Total PD 10 per cent

other hand. The unconditional density f gives the distribution of the scores in the whole
population, whereas fD and fN describe the score distribution on sub-populations only.
If the score variable S really bears information about the default state, then the three
densities will indeed be different. If not, the densities might be similar or even identical.
By means of the densities f , fD and fN , the distributions of all, the ‘defaulting’ and the
‘non-defaulting’, respectively, borrowers’ score-variables are determined.

3.5. Equivalence of the both descriptions

So far, we have seen two descriptions of the joint distribution of the score variable and
the state variable, which are quite different at first glance. However, thanks to Bayes’
formula both descriptions are actually equivalent.

Suppose, first that a description of the joint distribution of score and state by the
total probability of default p and the two conditional densities fD and fN according
to Equations 3.1a and 3.1b is known. Then, the unconditional score density f can be
expressed as

f�s� = p fD�s�+ �1−p� fN �s�� (3.3a)

and the conditional PD given that the score variable takes on the value s can be written as

P�D�S = s� = p fD�s�
� (3.3b)

f�s� 

Assume now that the unconditional score density f in the sense of Equation 3.2b and the
function representing the conditional PDs given the scores in the sense of Equation 3.2a
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are known. Then, the total PD p can be calculated as an integral of the unconditional
density f and the conditional PD as

p = P�D�S = s� f�s� ds� (3.4a)
−
 

and both the conditional densities of the score variable can be obtained via

fD�s� = P�D�S = s� f�s�/p and
(3.4b)

fN �s� = P�N �S = s� f�s�/�1−p�� 

3.6. A comment on conditional PDs

It is useful to keep in mind that Equation 3.3b is only one of several ways to calculate
conditional PDs. By definition, the conditional PD, P�D�S�, can also be described as the
best forecast of the default/non-default state variable Z by a function of S in the least
squares sense, i.e.

P�D�S� = arg min E �Z −Y �2 � (3.5)
Y=f�S��f function

This means that the conditional PD can be regarded as the solution of an optimization
problem where the objective is to approximate as best as possible the state variable by
some function of the score variable. Or, alternatively, it can be stated that given the
information by the score S, there is no better approximation (in the least squares sense)
of the state variable Z than P[D�S]. Intuitively, this is quite clear, because obviously a
conditional PD of – say – 90 per cent would indicate that the borrower under consideration
is close to default.

Note that because of the continuous distribution of S for any s ∈� we have P�S = s� = 0.
Hence, P[D�S] is a conditional probability in the non-elementary sense and has to be dealt
with carefully.

3.7. Dealing with cyclical effects

Recall from Section 2 that, for modelling, estimation and validation, institutions have to
take account of ‘business cycles and similar systematic variability’. We consider here how
such cyclical effects, expressed as additional dependence on time, can be incorporated in
the model framework we have introduced.

A first way to incorporate time-dependence is to assume that the conditional PDs,
P[D�S = ·], provided by the model are constant over time and to admit time-dependence
only through the unconditional score density f , i.e. f is replaced by f�·� t�. This corre-
sponds to the so-called through-the-cycle (TTC) rating philosophy, where rating grades
are assumed to express the same degree of creditworthiness at any time and economic
downturns are only reflected by a shift of the score distribution towards the worse scores.

A second possibility to take account of time-dependence could be to assume that the
conditional PDs are varying with time, i.e.

P�D�S = ·� = Pt�D�S = ·�� (3.6)



177Validation of internal rating systems and PD estimates

This can be modelled with an assumption of constant conditional score densities fD 

and fN , having only the total PD p = pt time-dependent. Through Bayes’ formula (3.3b),
the conditional PDs would then depend upon time too. This approach corresponds to the
point-in-time (PIT) rating philosophy according to which one and the same rating grade
can reflect different degrees of creditworthiness, depending on the state of the economy.

3.8. The situation in practice

If we think in terms of a statistically based rating or scoring system, we can expect that
from the development of the score variable conditional densities of the scores in the two
populations of defaulters and non-defaulters respectively are known. In some institutions,
it is then practice to predict the total probability of default for the following period of time
by means of a regression on macro-economic data. In such a situation, Bayes’ formula
is useful for deriving the conditional PDs given the values of the score variable. Note
that we are then in the PIT context we have described above. In some cases, for instance
when logit or probit regression is applied, the score variable itself can be interpreted as
conditional PD. This would again be a case of a PIT rating philosophy.

The popular software by Moody’s-KMV provides a further example of this type. There,
one can also say that the score variable is identical with the conditional probability of
default. The traditional Moody’s (or S&P or Fitch) ratings are commonly considered to
be examples of the TTC rating philosophy.

3.9. Mapping score values on rating grades

Because of our assumptions and hence relevant for many score variables in practice, the
theoretical probability that the score variable S takes on some fixed score value s is 0. As a
consequence of this fact, PDs conditional on single scores s cannot directly be back-tested
as there will not be many or even no observations of borrowers with score s. To facilitate
validation, therefore, the BCBS decided to admit for the IRB approach only rating systems
with a finite number of grades. Thus, if a rating system is based on a continuous score
variable, a reasonable mapping of the scores on the grades must be constructed. In the
remaining part of this section, we show how such a mapping can be constructed while
taking into account the intended PDs of the grades.

The main issue with mapping score values on rating grades is to fix the criterion
according to which the mapping is defined. We consider two different quantitative criteria.
The first criterion for the mapping we consider is the requirement to have constant PDs
over time.

To describe the details of the corresponding mapping exercise, assume that k non-
default rating grades have to be defined. Grade 1 denotes the grade that indicates the
highest creditworthiness. Increasing PDs q1 < � � � < qk−1 have been fixed. Assume addi-
tionally that the conditional PD, P[D�S = s], as a function of the score values is decreasing
in its argument s. We will come back to a justification of this assumption in Section 4.

Given the model framework introduced above, the theoretical conditional PD given
that the score variable takes on a value equal to or higher than a fixed limit s1 can be
determined. This observation also holds for the PD conditional on the event that the score
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variable takes on a value between two fixed limits. Speaking technically, it is possible, by
proceeding recursively, to find limits s1 > s2 > � � � > sk−1 such that

p fD�u� du 
s1q1 = P�D�S ≥ s1� = ∫ 
 and

f�u� du 
s1 ∫ (3.7a)

p 
si−1 fD�u� du 

qi = P�D�si−1 > S  ≥ si� = ∫s
s
i

i−1
for i = 2� � � � � k−1� 

f�u� du 
si 

If a borrower has been assigned a score value s equal to or higher than the limit s1, he
or she receives the best grade R�s� = 1. In general, if the score value is less than a limit
si−1 but equal to or higher than the next limit si then the intermediate grade R�s� = i is
assigned. Finally, if the borrower’s score value is less than the lowest limit sk−1 then he
or she receives the worst grade R�s� = k.⎧⎨1 falls s ≥ s1� 

R�s� = i falls si−1 > s  ≥ si� i  = 2� � � � � k−1� (3.7b)⎩
k falls sk−1 > s�  

The PD of the worst grade k cannot be fixed in advance. It turns out that its value
is completely determined by the PDs of the better grades. This value, the conditional
PD given that the rating grade is k, can be calculated in a way similar to the calcula-
tions of the conditional PDs for the better grades in Equation 3.7a. As the result we
obtain

sk−1 fD�u� du−
P�D� R�S� = k� = P�D� sk−1 > S� = p ∫ sk−1
� (3.7c)

f�u� du−
 

As s � = � =→ P�D� S s� decreases, r → P�D� R�S� r� is an increasing function, as should be
expected intuitively.

The second criterion for the mapping we consider is the requirement to have a constant
distribution of the good borrowers across the grades over time. The intention with such
a criterion might be to avoid major shifts with respect to ratings in the portfolio when
the economy undergoes a downturn.

Assume, hence, that a number k of non-default grades (grade 1 best) and shares,
0 < r1� � � � � rk� 

∑
i
k 
=1 ri = 1, of good borrowers in the grades have been fixed. Assume again

additionally that high score values indicate high creditworthiness. It turns out that it is
then possible, again by proceeding recursively, to find limits s1 > s2 > � � � > sk−1 such that

r1 = P�S ≥ s1�N� = fN �s� ds� 
s1 ∫ (3.8a)

ri = P�si−1 > S  ≥ si�N� = 
s

s

i

i−1 fN �s�ds� i = 2� � � � � k−1� 

The mapping of the scores on grades in this case is again defined by Equation 3.7b. As∑k
i=1 ri = 1, this definition implies immediately

P�R�S� = k�N� = P�S < sk−1�N� = rk� (3.8b)
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Note that in both cases of mapping criteria we have considered, to keep constant over
time the PDs and the shares of good borrowers respectively, the limits s1 � � � � sk−1 must be
periodically updated.

4. Monotonicity of conditional PDs

The first mapping procedure described in the last part of Section 3 works under the
assumption that the conditional PD given the score P[D�S = s] is a function that decreases
in its argument s. As Figure 11.2 demonstrates this need not be the case. Are there any
reasonable conditions such that monotonicity of the conditional PDs given the score is
guaranteed?

An answer4 to this question, in particular, will provide us with a justification of the
monotonicity assumption which underlies Equations 3.7a–7c. This assumption is needed
to ensure that the proposed mapping procedure for having constant PDs over time really
works.

We discuss the question in the context of a hypothetical decision problem. Assume that
we consider a borrower chosen at random and have been informed about his or her score
value. But, of course, we do not yet know whether the borrower will default. How could
we infer the value of his or her default state variable Z? In formal terms: suppose that a
realization �s� z� of �S�Z� has been sampled. s is observed, z is not yet visible. Is z = N or
z = D?

One way to come to a decision would be to fix some set A of score values such that
we infer default, D, as state if the borrower’s score value is in A. If the value of the score
were not in A, we would conclude that the state is N for non-default, i.e.

s ∈ A ⇒ Conclusion z = D 
(4.1)

s � A ⇒ Conclusion z = N� 

How should we choose the acceptance set A? A convenient way to deal with the
problem of how to find A is to have recourse to statistical test theory.

Then the problem can be stated as having to discriminate between the conditional
score distributions P�S ∈ ·�D� on the defaulters’ and P�S ∈ ·�N� on the non-defaulters’
sub-populations, respectively. Thus, we have to decide whether the borrower under con-
sideration stems from the defaulters’ population or from the non-defaulters’ population.
The key concept for solving this problem is to have as objective a high certainty in the
case of a decision to reject the presumption that the borrower is a future defaulter.

Formally, we can state this concept as follows: the null hypothesis is that the borrower
is a future defaulter or, equivalently, that his or her state variable takes on the value D.
The alternative hypothesis is that the borrower’s state variable has got the value N .

• Null hypothesis: P�S ∈ ·�D�, i.e. z = D.
• Alternative: P�S ∈ ·�N�, i.e. z = N .

We conduct a statistical test on the null hypothesis ‘state equals D’ against the alter-
native ‘state equals N ’. Hence, our decision could be wrong in two ways. The so-called
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type I error would be to reject ‘state equals D’ although the state is actually D. The
so-called type II error would be to accept ‘state equals D’ although ‘state equals N ’ is true.

• Type I error: erroneously rejecting z = D.
• Type II error: erroneously accepting z = D.

To arrive at an optimal decision criterion, the probabilities of the two possible erroneous
decisions have to be considered: The probability of the type I error is the probability
under the defaulters’ score distribution that a borrower’s score will not be an element of
the acceptance set A.

P�Type I error� = P�S � A�D�� (4.2a)

In contrast, the probability of the type II error is the probability under the non-
defaulters’ score distribution that a borrower’s score will be an element of the acceptance
set A.

P�Type II error� = P�S ∈ A�N�� (4.2b)

The type I error probability is usually limited from above by a small constant. Common
values are 1 or 5 per cent, but we will see in Section 5 that for the purpose of validation
also higher values make sense. Having bounded the type I error probability from above,
the objective is to minimize the type II error probability.

P�Type I error� ≤ (small) constant
(4.3)P�Type II error� as small as possible� 

Note that 1 – P[Type II error] = P�S � A�N� is called the power of the test we are
conducting.

The optimal solution for the decision problem (given by Equation 4.3) is provided
by the well-known Neyman–Pearson lemma. We state here briefly a slightly simplified
version. See Casella and Berger (2001) or other textbooks on statistics for a more detailed
version of the lemma. Let now 
 denote a fixed bound for the type I error probability,
say 
 equal to 5 per cent. Hundred per cent minus such an 
 is called confidence level of
the test.

The first step in stating the Neyman–Pearson lemma is to introduce another random
variable, the so-called likelihood ratio. It is obtained by applying the ratio of the non-
defaulters’ and the defaulters’ conditional score densities fN and fD, respectively, as a
function to the score variable itself. The second step is to determine the 1−
-quantile r
 

of the likelihood ratio.

r
 = min r ≥ 0 � P 
fN �S� ≤ r �D ≥ 1−
 � (4.4a)
fD 
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In the case of any reasonable assumption on the nature of the continuous conditional
score distributions, this can be done by equating 1 − 
 and the probability that the
likelihood ratio is not higher than the quantile, i.e.

1−
 = P 
fN �S� ≤ r
 �D � (4.4b)
fD 

and then solving the equation for the quantile r
. Having found the quantile of the likeli-
hood ratio, the decision rule ‘Reject the hypothesis that the future state is D if the likelihood
ratio is greater than the quantile’ is optimal among all the decision rules that guarantee
a type I error probability not greater than 
. Hence, formally stated, the decision rule

fN �S� > r
 ⇔ rejecting D (4.5a)
fD 

minimizes the type II error under the condition

P �Type I error� ≤ 
� (4.5b)

As a consequence, for any decision rule of the shape

S � A ⇔ rejecting D (4.6a)

and with P�S � A�D� ≤ 
 we have

P 
fN �S� ≤ r
 �N ≤ P �S ∈ A�N�� (4.6b)
fD 

In other words, any optimal test of D (defaulter) against N (non-defaulter) at level 
 
looks like the likelihood ratio test, i.e. from Equation 4.6b follows

A = s �  
fN �s� ≤ r
 � (4.7)
fD�s� 

Actually, Equation 4.7 is not only the optimal decision criterion for discriminating
between defaulters and non-defaulters but also provides an answer to the original question
of when the conditional PD given the scores is a monotonous function.

4.1. Cut-off decision rules

To explain this relation we need a further definition. A score variable S is called to be of
cut-off type with respect to the distributions P�S ∈ ·�D� and P�S ∈ ·�N�, if for every type I
error probability 
 a decision rule of half-line shape

S > r
 ⇔ rejecting D (4.8a)

or for every 
 a rule of half-line shape

S < r
 ⇔ rejecting D (4.8b)
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is optimal in the sense of minimizing the type II error probability under the constraint
(Equation 4.5b). Decision rules as in Equations 4.8a and 4.8b are called cut-off rules.

By Equation 4.7, we can now conclude that
the score variable S is of cut-off type with respect to P�S ∈ ·�D� and P�S ∈ ·�N�, if and

only if the likelihood ratio s � �s�/fD→ fN �s� is monotonous.
Note that, for any score variable, its corresponding likelihood ratio is of cut-off type.

4.2. Conclusions for practical applications

Bayes’ formula (Equation 3.3b) shows that the likelihood ratio is monotonous if and only
if the conditional PD s � = s� is monotonous. There are some theoretical examples→ P �D�S 
where the likelihood ratio is indeed monotonous: for instance, when both conditional
densities fN and fD are normal densities, with equal standard deviation.

Unfortunately, in practice, monotonicity of the likelihood ratio or the conditional PD is
hard to verify. However, from economic considerations, it can be clear that cut-off deci-
sion rules for detecting potential defaulters are optimal. This may justify the assumption
of monotonicity. If, however, non-monotonicity of the likelihood ratio is visible from
graphs as in Figure 11.2, the reliability of the score variable may be questioned. This
yields a first example for a validation criterion for score variables, namely is the likelihood
ratio monotonous or not?

5. Discriminatory power of rating systems

The following section is devoted to studying the question of how discriminatory power
can be measured and tested. We have seen in Section 3 that the statistical properties of
a score variable can to a high extent be expressed by the conditional densities of the
score variable on the two populations of the defaulters and non-defaulters, respectively.
Another, closely related way of characterization is by means of the conditional probability
of default given the score values. With this observation in mind, discriminatory power
can roughly be described in technical terms as discrepancy of the conditional densities, as
variation of the conditional PD or as having the conditional PDs as close as possible to
100 per cent or 0 per cent.

Many statistical tools are available for measuring discriminatory power in one of these
ways. We will consider a selection of tools that enjoy some popularity in the industry.
A first major differentiation among the tools can be applied according to whether their
use involves estimation of the total (or portfolio-wide or unconditional) probability of
default. If this is necessary, the tool can be applied only to samples with the right pro-
portion of defaulters. If estimation of the total PD is not involved, the tool can also be
applied to non-representative samples. This may be important in particular when the
power shall be estimated on the development sample of a rating system. The presen-
tation of tools in the remaining part of this section closely follows the presentation in
Chapter III of BCBS (2005b). Of course, the presented list of tools for measuring discrim-
inatory power is not exhaustive. Which tool should be preferred may strongly depend on
the intended application. As a consequence, various scientific disciplines such as statis-
tics in medicine, signal theory or weather forecasting in the course of time suggested
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quite different approaches on how to measure the discriminatory power of classification
systems.

5.1. Cumulative accuracy profile

The cumulative accuracy profile (CAP) is a useful graphical tool for investigating the
discriminatory power of rating systems. Recall from Equation 3.1b the notions FN and
FD for the distribution functions of the score variable on the non-defaulters’ and default-
ers’, respectively, populations. Denoting by p as in Section 3 the total (portfolio-wide)
probability of default, it follows from Equation 3.3a that the unconditional distribution
function F �s� of the score variable can be written as

F �s� = P �S ≤ s� = �1−p�FN �s�+pFD�s�� (5.1)

The equation of the CAP function is then given by

CAP �u� = FD F −1�u� � u  ∈ �0�1�� (5.2)

The graph of this function can either be drawn by plotting all the points �u�CAP�u��� 
u ∈ �0�1� or by plotting all the points �F �s�� FD�s��� s ∈ �. The latter parametrization of
the CAP curve can still be used when the score distribution function F is not invertible.
Figure 11.3 shows examples of how a CAP curve may look like. The solid curve belongs
to the score variable whose two conditional densities are shown in Figure 11.1. A curve
like this could occur in practice. The two other curves in Figure 11.3 correspond to the
so-called random (dotted line) and perfect (dashed curve), respectively, score variables. In
case of a random score variable, the two conditional densities fD and fN are identical. Such

Examples of CAP curves 
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Figure 11.3 Illustrative example of CAP curves of life-like, random and perfect score variables as
explained in main text. For the score variable associated with the conditional densities shown in
Figure 11.1. Total PD 10 per cent. AR = 0�336
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a score variable has no discriminatory power at all. In case of a perfect score variable,
the densities fD and fN have disjoint supports, i.e.

�s � fD�s� > 0�∩ �s � fN �s� > 0� = ∅� (5.3)

Equation 5.3 implies that the realizable range of the scores of the defaulting borrowers
and the realizable range of the scores of the non-defaulting borrowers are disjoint, too. As
a consequence, perfect discrimination of defaulters and non-defaulters would be possible.

In the context of CAP curves, F �s� is called alarm rate associated with the score level s 
and FD�s� is called hit rate associated with the score level s. These notions indicate what
happens if all the borrowers with a score equal to or less than some fixed threshold s are
considered suspect of default (cut-off rule in the sense of Equations 4.8a and 4.8b). The
hit rate then reflects which portion of the defaulters will be detected by this procedure.
The alarm rate gives the portion of the whole population that will raise suspicion of
being prone to default. From these observations, it follows that 100CAP�u�% indicates
the percentage of default-infected borrowers that are found among the first (according to
their scores) 100u% of all borrowers. A further consequence is that the ‘perfect’ curve in
Figure 11.3 corresponds to a score variable that is of cut-off type in the sense of Section 4.

It seems unlikely that any rating system or score variable from practice will receive a
CAP-curve like that from the perfect rating system as this would indicate that it will enable
its owners to detect defaulters with certainty. Similarly, it is not very likely to observe in
practice a rating system with zero power as a CAP-curve identical to the diagonal would
indicate. However, if a rating system is developed for a certain portfolio and then is used
on a completely different one, a very low discriminatory power can be the result of such
a procedure.

It is easy to show that the CAP function is related to the conditional probability of
default given the score through its derivative scaled by the total probability of default.

CAP ′�u� = P�D�S = F −1�u��/p� (5.4)

Recall from Equation 3.3b that by Bayes’ formula the conditional probability of default
given the score can be represented as a ratio involving the conditional score densities.
As a consequence of Equation 5.4 and that representation, the stronger is the growth of
CAP�u� for u close to 0 (implying the conditional PD being close to 1 for low scores) and
the weaker is the growth of CAP�u� for u close to 1 (implying the conditional PD being
close to 0 for high scores), the more differ the conditional densities and the better is the
discriminatory power of the underlying score variable.

5.2. Accuracy ratio

From Figure 11.3, it is intuitively clear that the area between the diagonal line and the
CAP curve can be considered a measure of discriminatory power. The random score
variable receives area 0 and the life-like score variable obtains an area greater than 0 but
less than the area of the perfect score variable. The area between the diagonal and the
CAP-curve of the life-like rating system (solid line) can be calculated as the integral from
0 to 1 of the CAP function (Equation 5.2) minus 1/2. The area between the curve of the



( )

185Validation of internal rating systems and PD estimates

perfect score variable and the diagonal is given by 1/2 − p/2 when p denotes the total
probability of default.

The so-called Accuracy Ratio (AR) (also Gini-coefficient) is defined as the ratio of the
area between the CAP-curve and the diagonal and the area between the perfect CAP curve
and the diagonal, i.e.∫ 12 0 CAP�u�du−1

AR = � (5.5a)
1−p 

Alternatively, the AR can be described as the difference of two probabilities. Imagine
that two borrowers are independently selected at random, one from the defaulters’ pop-
ulation and the other from the non-defaulters’ population. The first probability is the
probability of the event to observe a higher score for the non-defaulting borrower. The
subtracted probability is the probability of the event that the defaulting borrower has
the higher score. Then

AR = P�SD < SN �−P�SD > SN �� (5.5b)

where SN and SD are independent and distributed according to FN and FD, respectively.
Obviously, if we assume that in general non-defaulters have the higher scores, we will
expect that the first probability is higher than the second as is also indicated by the graph
in Figure 11.3.

From Figure 11.3, we can conclude that the discriminatory power of a rating system
will be the higher, the larger its AR is. This follows from Equation 5.4, as a large AR
implies that the PDs for the low scores are large whereas the PDs for the high scores are
small.

5.3. Receiver operating characteristic

The Receiver Operating Characteristic (ROC) is another graphical tool for investigating
discriminatory power. Define, additionally to the notions of hit rate and alarm rate from
the context of the CAP curve, the false alarm rate associated with the score level s as
the conditional probability P�S ≤ s�N� = FN �s� that the score of a non-defaulting borrower
is less than or equal to this score level. Then the false alarm rate reflects the portion of
the non-defaulters’ population, which will be under wrong suspicion when a cut-off rule
with threshold s is applied. The equation of the ROC function is now given by

ROC�u� = FD FN 
−1�u� � u  ∈ �0�1�� (5.6a)

The graph of this function can either be drawn by plotting all the points �u�ROC�u��� 
u ∈ �0�1� or by plotting all the points �FN �s�� FD�s��� s ∈ �. The latter parametrization of
the ROC curve can still be used when the conditional score distribution function FN is
not invertible. In contrast to the case with CAP curves, constructing ROC curves does
not involve estimation of the total (or portfolio-wide) probability of default. Figure 11.4
shows examples of how an ROC curve may look like. The solid curve belongs to the
score variable whose two conditional densities are shown in Figure 11.1. The dotted
and the dashed curves correspond to the random score variable and the perfect score
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Figure 11.4 Illustrative example of Receiver Operating Characteristic ROC curves of life-like,
random and perfect score variables as explained in main text. For the life-like score variable
associated with the conditional densities shown in Figure 11.1. AUC = 0.668

variable respectively as in the case of the CAP curves in Figure 11.3. As a result of
its definition, 100ROC�u�% indicates the percentage of default-infected borrowers that
have been assigned a score that is lower than the highest score of the first (according to
their scores) 100u% non-defaulters. Alternatively, the points on the ROC curve can be
characterized as all pairs of type I error probability and power (see Section 4) that can
arise when cut-off rules are applied for testing the hypothesis ‘non-default’ against the
alternative ‘default’.

The derivative of the ROC curve turns out to be closely related to the likelihood ratio
that was already mentioned in the context of the Neyman–Pearson lemma in Section 4.

ROC ′�u� = fD�FN 
−1�u��

� u ∈ �0�1�� (5.6b)
fN �FN 

−1�u�� 

Hence, the stronger is the growth of ROC�u� for u close to 0 and the weaker is the
growth of ROC�u� for u close to 1, the more differ the conditional densities and the better
is the discriminatory power of the underlying score variable.

From Section 4, we know that the score variable is of cut-off type and hence optimal
in a test-theoretic sense if and only if the likelihood ratio is monotonous. Through
Equation 5.6b, this is also equivalent to the ROC curve being concave or convex as
concavity and convexity mean that the first derivative is monotonous. If high scores
indicate high creditworthiness, the conditional score density fD is small for high scores
and large for low scores and the conditional score density fN is large for high scores and
small for low scores. As a conclusion, the ROC curve of an optimal score variable needs
to be concave in the case where high scores indicate high creditworthiness. Although
the lack of concavity of the solid curve in Figure 11.4 is not very clear, from the graph
of its derivative according to Equation 5.6b in Figure 11.5 the lack of monotonicity is
obvious.
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Derivative of ROC curve 
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Figure 11.5 Derivative of the ROC curve given by the solid line in Figure 11.4. For the life-like
score variable associated with the conditional densities shown in Figure 11.1

5.4. Area under the curve

As a further measure of discriminatory power, the Area under the curve (AUC) is defined
as the area between the ROC curve and the axis of abscissa in Figure 11.4. This area can
be calculated as the integral of the ROC curve from 0 to 1, i.e.∫ 1

AUC = ROC�u�du� (5.7a)
0

Alternatively, the AUC can be described as a probability, namely that the score of a
non-defaulter selected at random is higher than the score of an independently selected
defaulting borrower.

Hence,

AUC = P�SD < SN �� (5.7b)

where SN and SD are independent and distributed according to FN and FD, respectively.
Moreover, it can be proved (cf., for instance, Engelmann et al., 2003) that the AUC is
just an affine transformation of AR, namely

AR+1
AUC = � (5.7c)

2

As a consequence of this last observation, the higher the AUC the higher is the discrim-
inatory power of the rating system under consideration, as is the case for AR. Moreover,
maximizing AUC is equivalent to maximizing discriminatory power as maximizing the
area under the ROC curve due (Equation 5.6b) and (Equation 3.3b) results in high PDs
for small scores and low PDs for large scores. Additionally, Equation 5.7c shows that the
value of AR – like the value of AUC – depends on the conditional densities of the score
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variable given the state of the borrower but not on the total probability of default in the
portfolio.

There is also an important consequence from the representation of AUC as a probability.
The non-parametric Mann–Whitney test (see, e.g. Sheskin, 1997) for the hypothesis
that one distribution is stochastically greater than another can be applied as a test on
whether there is discriminatory power at all. Additionally, a Mann–Whitney-like test for
comparing the discriminatory power values of two or more rating systems is available
(cf. Engelmann et al., 2003).

5.5. Error rates as measures of discriminatory power

We have seen that the ROC curve may be interpreted as a ‘type I error level’-power
diagram related to cut-off decision rules in the sense of Equations 4.8a and 4.8b, based
on the score variable under consideration. Another approach to measuring discriminative
power is to consider only total probabilities of error instead of type I and II error
probabilities separately.

The first example of an error-rate-based measure of discriminatory power is the Baysian
error rate. It is defined as the minimum total probability of error that can be reached
when cut-off rules are applied.

Baysian error rate = min P�Erroneous decision when cut-off rule with threshold
s 

s is applied� 
= min �P�Z = D�P�S > s�Z = D�+P�Z = N�P�S ≤ s�Z = N�� (5.8a)

s 

= min �p �1− FD�s��+ �1−p�FN �s�� � 
s 

In the special case of a hypothetical total PD of 50 per cent, the Baysian error rate
is called classification error. Assume that defaulters tend to receive smaller scores than
non-defaulters, or, technically speaking, that FD is stochastically smaller than FN [i.e.
FD�s� ≥ FN �s� for all s]. The classification error can then be written as

Classification error = 1/2−1/2max �FD�s�− FN �s�� � (5.8b)
s 

The maximum term on the right-hand side of Equation 5.8b is just the population
version of the well-known Kolmogorov–Smirnov statistic for testing whether the two
distributions FD and FN are identical. The conditional distributions of the score variable
being identical means that the score variable has not any discriminatory power. Thus,
the classification error is another example of a measure of discriminatory power for
which well-known and efficient test procedures are available. The so-called Pietra-index
reflects the maximum distance of a ROC curve and the diagonal. In the case where the
likelihood ratio fD/fN is a monotonous function, the Pietra-index can be written as an
affine transformation of the Kolmogorov–Smirnov statistic and therefore is equivalent to
it in a statistical sense.

If the likelihood ratio is monotonous, the Kolmogorov–Smirnov statistic has an alter-
native representation as follows:

max �FD�s�− FN �s�� = 1/2 �fD�s�− fN �s��ds ∈ �0�1/2�� (5.8c)
s −
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This representation is interesting because it allows to compare the Kolmogorov–
Smirnov statistic with the information value, a discrepancy measure that is based on
relative entropies. We will not explain here in detail the meaning of relative entropy.
What is important here is the fact that the information value can be written in a way that
suggests to interpret the information value as something like a ‘weighted Kolmogorov–
Smirnov’ statistic.

Information value = E log
fD�S� �D +E log

fN �S� �N 
fN �S� fD�S� 

= �fD�s�− fN �s���log fD�s�− log fN �s��ds (5.8d)
−
 

∈ �0�
�� 

Note that the information value is also called divergence or stability index. Under the
notion stability index, it is sometimes used as a tool to monitor the stability of score
variables over time.

5.6. Measuring discriminatory power as variation of the PD conditional
on the score

So far, we have considered measures of discriminatory power that are intended to express
the discrepancy of the conditional distributions of the scores for the defaulters’ popula-
tion and the non-defaulters’ population, respectively. Another philosophy of measuring
discriminatory power is based on measuring the variation of the conditional PD given the
scores. Let us first consider the two extreme cases.

A score variable has no discriminatory power at all if the two conditional densities
of the score distribution (as illustrated in Figure 11.1) are identical. In that case, the
borrowers’ score variable S and state variable Z are stochastically independent. As a
consequence, the conditional PD given the score is constant and equals the total PD.

P�D�S� = p� (5.9a)

One could also say that the score variable S does not bear any information about
potential default. Obviously, such a score variable would be considered worthless.

The other extreme case is the case where the conditional PD given the scores takes on
the values 0 and 1 only.

P�D�S� = 1D = 1� if borrower defaults;
(5.9b)0� if borrower remains solvent.

This would be an indication of a perfect score variable, as in such a case there were no
uncertainty about the borrowers’ future state any more. In practice, none of these two
extreme cases will occur. The conditional PD given the score will in general neither take
on the values 0 and 1 nor be constant either.

In regression analysis, the determination coefficient R2 measures the extent to which
a set of explanatory variables can explain the variance of the variable which is to be
predicted. A score variable or the grades of a rating system may be considered explanatory
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variables for the default state indicator. The conditional PD, given the score, is then
the best predictor of the default indicator by the score in the sense of Equation 3.5. Its
variance can be compared with the variance of the default indicator to obtain an R2 for
this special situation.

R2 = var�P�D�S�� = var�P�D�S�� = 1− E �1D −P�D�S��2 ∈ �0�1�� (5.10a)
var�1D� p�1−p� p�1−p� 

The closer the value of R2 is to one, the better the score S can explain the variation of
the default indicator. In other words, if R2 is close to one, a high difference in the score
values does more likely indicate a corresponding difference in the values of the default
indicator variable. Obviously, maximizing R2 is equivalent to maximizing var[P[D�S]]
and to minimizing E��1D −P�D�S��2�.

The sum over all borrowers of the squared differences of the default indicators and the
conditional PDs given the scores divided by the sample size is called Brier score.

n1 ∑( )2
Brier score = 1Di 

−P�D�S = Si� � (5.10b)
n 

i=1

The Brier score is a natural estimator of E��1D −P�D�S��2�, which is needed for calcu-
lating the R2 of the score variable under consideration. Note that as long as default or
non-default of borrowers cannot be predicted with certainty [i.e. as long as Equation 5.9b
is not satisfied] E��1D −P�D�S��2� will not equal 0.

In practice, the development of a rating system or score variable involves both an
optimization procedure (such as maximizing R2) and an estimation exercise (estimating
the PDs given the scores P�D�S = s�). The Brier score can be used for both purposes.
On the one hand, selecting an optimal score variable may be conducted by minimizing
E��1D −P�D�S��2�, which usually also involves estimating P�D�S = s� for all realizable score
values. On the other hand, when the score variable S has already been selected, the Brier
score may be used for calibration purposes (see Section 6).

5.7. Further entropy measures of discriminatory power

Besides the information value defined in Equation 5.5 sometimes also other entropy-based
measures of discriminatory power are used in practice.

For any event with probability p its information entropy is defined as

H�p� = − �p log p+ �1−p� log�1−p�� (5.11a)

Note from Figure 11.6 that H�p� is close to 0 if and only if p is close to 0 or close to 1.
As a consequence, information entropy can be regarded as a measure of uncertainty of
the underlying event. When discriminatory power of a score variable has to be measured,
it can be useful to consider the information entropy applied to the conditional PD given
the scores, i.e. H�P�D�S��. If the average value of the information entropy is close to zero,
the conditional PD given the scores will be close to zero or to one in average, indicating
high discriminatory power. Formally, the average information entropy of the conditional
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Information entropy as function of PD 
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PD is described as conditional entropy HS, which is defined as the expectation of the
information entropy applied to the conditional PD given the scores.

HS = E �H �P�D�S��� � (5.11b)

As both the conditional PD given the scores as well as the calculation of the expectation
depend on the portfolio-wide total PD, it is not sensible to compare directly the conditional
entropy values of score variables from populations with different portions of defaulters.
However, it can be shown by Jensen’s inequality that the conditional entropy never
exceeds the information entropy of the total probability of default of the population under
consideration. Therefore, by using the conditional information entropy ratio (CIER),
defined as ratio of information entropy of the total PD minus conditional entropy of the
conditional PDs and the information entropy of the total PD, conditional entropy values
of different score variables can be made commensurable.

H�p�−HSCIER = ∈ �0�1� (5.11c)
H�p� 

The closer the value of CIER is to one, the more information about default the score
variable S bears, in the sense of providing conditional PDs given the scores which are
close to 0 or 1.

6. Calibration of rating systems

The issue with calibration of rating systems or score variables is how accurate the estimates
of the conditional default probability given the score are. Supervisors, in particular,
require that the estimates are not too low when they are used for determining regulatory
capital requirements. In the following, we will consider some tests on calibration that
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are conditional on the state of the economy. These are the binomial test, the Hosmer–
Lemeshow test and the Spiegelhalter test. As an example for unconditional tests, we will
then discuss a normal approximate test.

6.1. Conditional versus unconditional tests

The notions of conditional and unconditional tests in the context of validation for Basel
II can be best introduced by relating these notions to the notions of PIT and TTC PD
estimates (cf. Section 3.7 for the notions of PIT and TTC).

PD estimates can be based (or, technically speaking, conditioned) on the current state
of the economy, for instance by inclusion of macro-economic co-variates in a regression
process. The co-variates are typically the growth rate of the gross domestic product,
the unemployment rate or similar indices. The resulting PD estimates are then called
PIT. With such estimates, given an actual realization of the covariates, an assumption of
independence of credit events may be adequate, because most of their dependence might
have been captured by incorporating the economic state variables in the PDs estimates.

In contrast, unconditional PD estimates are not based on a current state of the economy.
Unconditional PDs that are estimated based on data from a complete economic cycle
are called TTC. When using unconditional PDs, no assumption of independence can be
made, because the variation of the observed default rates cannot be any longer explained
by the variation of conditional PDs, which are themselves random variables.

6.2. Binomial test

Consider one fixed rating grade specified by a range s0 ≤ S ≤ s1, as described, for instance,
in Equations 3.7a and 3.7b. It is then reasonable to assume that an average PD q has
been forecast for the rating grade under consideration. Let n be the number of borrowers
that have been assigned this grade.

If the score variable is able to reflect to some extent the current state of the economy,
default events among the borrowers may be considered stochastically independent. Under
such an independence assumption, the number of defaults in the rating grade is binomially
distributed with parameters n and q. Hence, the binomial test (cf., e.g. Brown et al.,
2001) may be applied to test the hypothesis ‘the true PD of this grade is not greater than
the forecast q’. If the number of borrowers within the grade and the hypothetical PD q 
is not too small, thanks to the central limit theorem under the hypothesis, the binomial
distribution can be approximated with a normal distribution. As already mentioned,
for this approximation to make sense is important that the independence assumption
is justified. This will certainly not be the case when the PDs are estimated TTC. The
following example illustrates what then may happen.

Example Assume that 1000 borrowers have been assigned the rating grade under consid-
eration. The bank forecasts for this grade a PD of 1 per cent. One year after the forecast
19 defaults are observed.

If we assume independence of the default events, with a PD of 1 per cent the probability
to observe 19 or more defaults is 0.7 per cent. Hence, the hypothesis that the true PD is
not greater than 1 per cent can be rejected with 99 per cent confidence. As a consequence,
we would conclude that the bank’s forecast was too optimistic.
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Assume now that the default events are not independent. For the purpose of illustration,
the dependence then can be modelled by means of a normal copula with uniform correlation
5 per cent (see, e.g. Pluto and Tasche, 2005, for details of the one-factor model). Then, with
a PD of 1 per cent, the probability to observe 19 or more defaults is 11.1 per cent. Thus, the
hypothesis that the true PD is not greater than 1 per cent cannot be rejected with 99 per cent
confidence. As a consequence, we would accept the bank’s forecast as adequate.

6.3. Hosmer–Lemeshow test

The binomial test can be appropriate to check a single PD forecast. However, if – say –
twenty PDs of rating grades are tested stand-alone, it is quite likely that at least one of
the forecasts will be erroneously rejected. To have at least control over the probability of
such erroneous rejections, joint tests for several grades have to be used.

So, assume that there are PD forecasts q1� � � � � qk for rating grades 1� � � � � k. Let ni 

denote the number of borrowers with grade i and di denote the number of defaulted
borrowers with grade i. The Hosmer–Lemeshow statistic H for such a sample is the sum
of the squared differences of forecast and observed numbers of default, weighted by the
inverses of the theoretical variances of the default numbers.

k∑ �niqi −di�
2

H = � (6.1)
niqi�1−qi�i=1

Under the usual assumptions on the appropriateness of normal approximation (like
independence, enough large sample size), the Hosmer–Lemeshow statistic is #k

2-distributed
under the hypothesis that all the PD forecasts match the true PDs. This fact can be used
to determine the critical values for testing the hypothesis of having matched the true PDs.
However, also for the Hosmer–Lemeshow test, the assumption of independence is crucial.
Additionally, there may be an issue of bad approximation for rating grades with small
numbers of borrowers.

6.4. Spiegelhalter test

If the PDs of the borrowers are individually estimated, both the binomial test and the
Hosmer–Lemeshow test require averaging the PDs of borrowers that have been assigned
the same rating grade. This procedure can entail some bias in the calculation of the
theoretical variance of the number of defaults. With the Spiegelhalter test, one avoids this
problem.

As for the binomial and Hosmer–Lemeshow test, also for the Spiegelhalter test inde-
pendence of the default events is assumed. As mentioned earlier, if the PD is estimated
point in time, the independence assumption may be justified.

We consider borrowers 1� � � � �n with scores si and PD estimates pi. Given the scores, the
borrowers are considered to default or remain solvent independently. Recall the notion
of Brier score from Equation 5.10b. In contrast to the situation when a rating system or
score variable is developed, for the purpose of validation we assume that realizations of
the ratings are given and hence non-random. Therefore, we can drop the conditioning on
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the score realizations in the notation. In the context of validation, the Brier score is also
called Mean squared error (MSE).

n

MSE = 1/n �1Di 
−pi�

2� (6.2a)
i=1

where 1Di 
denotes the default indicator as in (Equation 5.9b). The null hypothesis for

the test is ‘all PD forecasts match exactly the true conditional PDs given the scores’, i.e.
pi = P�Di�Si = si� for all i.

It can be shown that under the null we have

n

E�MSE� = 1/n pi�1−pi� and (6.2b)
i=1

n

var�MSE� = n −2 pi�1−pi��1−2pi�
2� (6.2c)

i=1

Under the assumption of independence given the score values, according to the central
limit theorem, the distribution of the standardized MSE

MSE −E�MSE� 
Z = √ (6.2d)

var�MSE� 

is approximately standard normally distributed under the null. Thus, a joint test of the
hypothesis ‘the calibration of the PDs with respect to the score variable is correct’ can be
conducted (see Rauhmeier and Scheule, 2005, for example from practice).

6.5. Testing unconditional PDs

As seen before by example, for unconditional PD estimates assuming independence of the
defaults for testing the adequacy of the estimates could result in too conservative tests.
However, if a time-series of default rates is available, assuming independence over time
might be justifiable. Taking into account that unconditional PD estimates usually are
constant5 over time, a simple test can be constructed that does not involve any assumption
of cross-sectional independence among the borrowers within a year. We consider a fixed
rating grade with nt borrowers (thereof dt defaulters) in year t = 1� � � � �T . Additionally,
we assume that the estimate q of the PD common to the borrowers in the grade is of
TTC type and constant over time, and that defaults in different years are independent.
In particular, then the annual default rates dt/nt are realizations of independent random
variables. The standard deviation � of the default rates can in this case be estimated with
the usual unbiased estimator( )2

T T

�̂2 = 1 ∑ dt − 1 ∑ d$ � (6.3a)
T −1

t=1 nt T
$=1 n$ 
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If the number T of observations is not too small, and under the hypothesis that the
true PD is not greater than q, the standardized average default rate is approximately
standard normally distributed. As a consequence, the hypothesis should be rejected if the
average default rate is greater than q plus a critical value derived by this approximation.
Formally, reject ‘true PD ≤ q’ at level 
 if

T1 ∑ d$ �̂
> q + √ �−1�1−
�� (6.3b)

T
$=1 n$ T 

As mentioned before, the main advantage of the normal test proposed here is that no
assumption on cross-sectional independence is needed. Moreover, the test procedure seems
even to be robust against violations of the assumption of inter-temporal independence, in
the sense that the test results still appear reasonable when there is weak dependence over
time. More critical appears the assumption that the number T of observations is large. In
practice, time series of length 5–10 years do not seem to be uncommon. In Tables 11.1
and 11.2, we present the results of an illustrative Monte-Carlo simulation exercise to give
an impression of the impact of having a rather short time series.

The exercise whose results are reflected in Tables 11.1 and 11.2 was conducted to check
the quality of the normal approximation for the test of the unconditional PDs according
to Equation 6.3b. For two different type I error probabilities, the tables present the true
rejection rates of the hypothesis ‘true PD not greater than 2 per cent’ for different values
of the true PDs. By construction of the test, the rejection rates ought to be not greater
than the given error probabilities as long as the true PDs are not greater than 2 per cent.
For the smaller error probability of 1 per cent this seems to be a problem, but not a
serious one. However, the tables also reveal that the power of the test is rather moderate.
Even if the true PD is so clearly greater than the forecast PD as in the case of 2.5 per cent,
the rejection rates are only 19.6 and 30.1 per cent, respectively.

Table 11.1 Estimated PD = 2%, T = 5�
 = 1%

True PD(%) Rejection rate(%)

1.0 0�00
1.5 0�01
2.0 2�05
2.5 19�6
5.0 99�2

Table 11.2 Estimated PD = 2%, T = 5�
 = 10%

True PD(%) Rejection rate(%)

1.0 0�00
1.5 0�60
2.0 7�96
2.5 30�1
5.0 99�2
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7. Conclusions

With regard to measuring discriminatory power, the AR and the Area under the Curve
seem promising6 tools as their statistical properties are well investigated and they are
available together with many auxiliary features in most of the more popular statistical
software packages.

With regard to testing calibration, for conditional PD estimates powerful tests such as
the binomial, the Hosmer–Lemeshow and the Spiegelhalter test are available. However,
their appropriateness strongly depends on an independence assumption that needs to be
justified on a case-by-case basis. Such independence assumptions can at least partly be
avoided, but at the price of losing power as illustrated with a test procedure based on a
normal approximation.
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Notes

1. For more information on qualitative validation see, e.g., CEBS (2005).
2. In this respect, we follow BCBS (2005b).
3. The process of design and implementation should be subject to qualitative validation.
4. This section is based on Tasche (2002).
5. Blochwitz et al. (2004) provide a modification of the test for the case of non-constant PD estimates.
6. The selection of the topics and the point of view taken in this chapter is primarily a regulatory one. This

is caused by the author’s background in a regulatory authority. However, the presentation does not reflect
any official regulatory thinking. The regulatory bias should be kept in mind when the following conclusions
are read. A procedure that may be valuable for regulatory purposes need not necessarily also be appropriate
for bank-internal applications.



Index 

A
Aaa-rated borrower, 63 
Accord Implementation Group (AIG), 171 
“Account seasoning” of loan age, 4, 11n 
Accuracy ratio (AR) statistic, 27–8 

calculation of, 111 
for credit rating, 185–6 

Advanced measurement approaches (AMA), 
see operational risk models 

Alarm rate, 184 
Area under ROC (AUROC) statistic, 27–8, 

116–18 
confidence intervals for, 32 
properties under normal distribution, 

131–3
Area under the curve (AUC), for credit rating,

187–8

B
Back-cast performance, of portfolios, 24–5 
Bank–borrower relationship, 2 
Bank–firm relationship, 2 
Basel Committee on Banking Supervision 

(BCBS), 170 
approved approach for rating system, 177 
§501 of, 172 
§502 of, 172 
§504 of, 172 

Basel II banking guidelines, 13–15, 23–4, 57n, 60, 
62, 170–2 

Second Consultative Paper, 64 
Bayes’ formula, for joint statistical distribution of 

S and Z, 173–4 
Bayesian error rate, 188 
Benchmarking, of risk estimates, 97, 99 
Beta estimation error, 161 
Beta, of a portfolio, 159 
Bias test, 144–5 
Binary classification concept, of rating 

system, 172 
Binomial test, 192–3 
Blue Chip index, of professional forecasters, 23 
Bootstrapping, 41 
B-rated borrower, 63 

Brier score, 190 
Bühlmann credibility risk estimates, 97, 110 

C
Calibration tests, for rating 

binomial test, 192–3 
conditional vs unconditional tests, 192 
Hosmer–Lemeshow test, 193 
Spiegelhalter test, 193–4 

Capital asset pricing model (CAPM), 138 
Classification error, see Bayesian error rate 
Commercial lending model, 15–16 
Conditional densities, on borrower status, 

173–4 
Conditional entropy, defined, 191 
Conditional information entropy ratio (CIER), 

defined, 191 
Conditional vs unconditional tests, 192 
Confidence intervals 

for AUROC, 32 
for ROC 

analysis under non-normality, 37 
analysis under normality, 33–4 
construction, 35–7 
examples under non-normality, 38–41 
examples under normality, 35 

Confidence level, 180 
Constant variance line, 152 
Contingency table, 28 
Contract structure, in the event of default, 5–6, 7 
Corporate risk ratings, 15–16 
Correct alarm rate (CAR), 29 
Covariance matrix, of equity, 138–142 
Credibility theory 

accuracy ratio, calculation of, 111 
application to internal risk rating systems, 95–6 
concepts, 107 
credibility relation in the non-homogenous 

case, 107–9
credible mapping 

defaults for mapped rating scale, 105 
estimates for mapped rating scale, 105 
illustration, 104–5 
process, 102–4 



198 Index

Credibility theory (continued)
and credit ratings, 94–7
empirical illustration of credibility risk

estimates 
benchmarking of risk estimates, 97, 99 
Bühlmann credibility risk estimates, 97, 110 
statistical tests, 99–100 

mixed gamma–Poisson distribution and
negative binomial distribution, 109–10

Credible mapping
approaches 

bucket, 104 
Gamma–Poisson model, 105 
Jewell’s two-level credibility model, 102, 105 
naïve, 104 

illustration, 104–5
process, 102–4

Credit bureau scores, 11n
validation, 1–2

Credit risk models, validity and validation
methods 

bootstrapping, 41 
confidence interval for ROC 

analysis under non-normality, 37 
analysis under normality, 33–4 
construction, 35–7 
examples under non-normality, 38–41 
examples under normality, 35 

measures of discriminatory power 
CAP curve and the AR statistic, 30–1 
contingency table, 28 
ROC curve and the AUROC statistic, 29–8 

optimal rating combinations, 41–2
uncertainties 

confidence intervals for AUROC, 32 
Kupiers Score and the Granger–Pesaran 

Test, 33 
Cumulative accuracy profile (CAP), 27 

curve, 30–1 
as a measuring tool, 183–5 

Cumulative realized variance process 
defined, 151, 159 
realized based on normally distributed daily 

returns with 10% volatility, 154 
realized based on normally distributed daily, 

weekly and monthly returns with 10% 
volatility, 154 

Cut-off decision rules, 181 

D
Diebold–Mariano test, 20 
Discriminatory power and tools, for ratings

accuracy ratio (AR), 184–5
area under the curve (AUC), 187–8

cumulative accuracy profile (CAP), 183–5 
discriminatory power, defined, 172 
entropy measures of discriminatory power, 

190–1 
error rates as measures of discriminatory 

power, 188–9 
receiver operating characteristic (ROC), 

185–6 
variations of conditional PD, 189–90 

Diversification factor DF, defined, 67 

E
Entropy measures, of discriminatory power,

190–1
Equity portfolio risk models 

analysis of residuals, 146 
forecast construction and evaluation, 142–3 

time horizon and data frequency, 145–6
tools for, 143–5 

with known beta’s, 140–1 
linear factor models (LFM), 136–7 
statistical factor model, 138–40 
time series model, 137–8 
use of Monte Carlo methods, 147 

Error distribution, 57 
Estimation error, of cumulative variance, 153 
External Credit Assessment Institutions 

(ECAI), 91 
External ratings, 170 

F
Fair model, for stress testing scenarios, 23 
False alarm rate (FAR), 29, 185 
Firm risks, in the event of default, 4–6, 8 
F statistic, 19 
Fundamental (CS) models, 140–1, 145–6 

G
Generalized autoregressive, conditional, 

heteroskedasticity models (GARCH), 
142, 151 

German banking system, 60, 69 
Gini coefficient, see accuracy ratio (AR) 

statistic 
Granger–Pesaran Test, 33 
Granger–Newbold test, 19 

H
Herfindahl-Hirschman Index (HHI), 63 
Herfindahl number, 63 
Hit rate, 184 
Hosmer–Lemeshow test, 193 
Hybrid models, 171 



Index 199

I 
Industry risks, in the event of default, 5–6, 8 
Infinite granularity, 62 
Information entropy, defined, 190 
Information value, defined, 189 
In-sample checks, 150 
Integrated (squared) volatility, 151 
Internal ratings, 171 
Internal risk rating, 5 
Investment risk measurement 

beta over time and cumulative covariance 
application of portfolio beta, 163–4 
explorative approach, 161–3 
theoretical background, 159–61 

in-sample checks vs out-of-sample checks, 150 
using dynamic risk model 

cumulative variance of 
forecast-standardized returns, 166–7 

realized vs forecast cumulative beta, 166 
realized vs forecast cumulative variance, 

165–6
theoretical background, 164–5

volatility over time and cumulative variance
application for portfolio total and active

risk, 158–9 
explorative approach, 153–7 
theoretical background, 151–3 

IRB model and risk concentration, 60–2,
76–7

J
Jewell’s hierarchical credibility model, 102, 105 

K
Kolmogorov–Smirnov statistic, 189 
Kolmogorov–Smirnov test, 33 
Kupiers Score, 33 

L
Likelihood ratio, 181–2
Likelihood ratio (LR) test, for model

validation, 46 
Linear factor models (LFM), 136–7 
Lines of credit (lines) 

default behaviour, 8–10 
as determinant of small business default, 8, 10 
and liquidity needs, 2 
marginal effects of owner and firm 

characteristics, 9 
as a measurement, 2 

Loan default risk, 2 
Log-rank test, 100–1 
Logistic distribution, for ROC estimation, 121–2 

M
Macroeconomic risks, in the event of default,

5–6, 8 
Mahalanobis distance, 33 
Mann–Whitney test, 33 
Marginal borrowers, 2 
Mixed gamma–Poisson distribution and negative 

binomial distribution, 109–10
Moments test, of model adequacy, 48–51
Monotonicity property, of conditional PDs,

179–82
Monte Carlo methods, for equity portfolio

risk, 147 
MSCI Europe index, 158–9, 163 
Multifactor default-mode model, 66 

N
Neyman–Pearson lemma, 180 
Non-marginal borrowers, 2 
Normal distribution 

performance evaluation on AUROC 
estimations, 123–6 

for ROC estimation, 122–3 

O
Operational risk models 

approaches, 79–80 
Basel II capital requirements, 81–2 
challenges, 79 
cross-checking procedure, 82–4 
lower-bound approach, 86–9 
rationale for approach, 84–6 

Optimal rating combinations, 41–2 
Out-of-sample checks, 150 
Owner risks, in the event of default, 4–6, 8 

P
Pareto distribution, 87–9
#2 Pearson test, 100 
Point-in-time (PIT) rating philosophy, 177 
Poisson-distribution, 86–7 
Portfolio invariance, 62 
Portfolio structure 

risk transfer mechanisms across the portfolio
and double default, 92–3

statistical issues linked with the portfolio risk
heterogeneity, 92 

Positive definiteness, 138 
Predictive ability concept, 171 
Pykhtin’s approximation formula, 68, 71, 78 

Q
Quadratic variation process, 151 



200 Index

R
Realized benchmark variance, 160 
Receiver operating characteristic (ROC), 27 

in the analysis of quality of a rating system, 115 
analytical formula for 

logistic distribution, 121–2 
normal distribution, 122–3 
Weibull distribution, 120–1 

in calculating CAP curve, 115–16 
confidence interval for 

analysis under non-normality, 37 
analysis under normality, 33–4 
construction, 35–7 
examples under non-normality, 38–41 
examples under normality, 35 

curve, 29–30 
as a measuring tool, 185–6 
performance evaluations on AUROC 

estimations 
under exponential distribution 

assumption, 126–7 
under the normal distribution 

assumption, 123–6 
under Weibull distribution 

assumption, 127–9 
in rating defaulting and non-defaulting 

debtors, 116–18 
statistical properties of, 118–20 

Residual variance, defined, 160 
Retail lending model, 16 
Risk concentration, in credit portfolios 

in Basel II banking guidelines, 60, 62 
challenges, 71–3 
definition, 59 
factor surface for diversification factor, 

77–8
and IRB model, 60–2, 76–7
name concentration, measurement of, 63–5
sectoral concentration, measurement of, 65–9
UL capital, approximation of, 69–71

Risk model evaluation
estimates of the bounds for various sample

sizes, 54 
implementation of tests, an illustration, 51–2 
likelihood ratio test, 47–9 
moments test of model adequacy, 48–51 
preliminary analysis, 47 

Root mean square error (RMSE), 143 

S
Scenario-based forecasting model, 22–4 
Short-term liquidity, 2 
Short-term liquidity needs, 2 
Skew-t distributions, 58 

Small business default model, empirical
analysis of 

data, 3 
empirical result analysis, 6–10 
methodology, 3–6 
summary statistics, 6 

Spiegelhalter test, 193–4 
Split-vintage test, 21 
Spot loans (loans), 2 

default behavior, 8 
as determinant of small business default, 8, 10 
marginal effects of owner and firm 

characteristics, 9 
Statistical factor model, 138–40 
Stochastic volatility (SV) models, 142 
Stress testing 

back-cast performance, 24–5
basics of 

commercial lending model, 15–16 
retail lending model, 16 
time series model, 16–17 
tradable instruments, 15 

cross-segment validation, 24 
scenario validation, 23–4 

ideal, 22 
significance, 13–14 
subsampling tests 

benefits of random sampling, 20–1
random sampling, 18–21

validation approaches, 17–18
Survival times, of small businesses, 6–7

T
t-distributions, 58 
Through-the-cycle (TTC) rating philosophy, 176 
Time series model, 16–17, 137–8 
Transfer function models, 17 
Two-piece normal (2PN) distribution, 58 
Type I and II errors, 28, 180–2 

U
UL capital 

approximation of, 67, 69–71 
defined, 75n 
formula, 64 

U-statistics, 32 

V 
Validation requirements, for rating systems and

probabilities of default (PDs)
calibration tests, for rating 

binomial test, 192–3 
conditional vs unconditional tests, 192 
Hosmer–Lemeshow test, 193 



Index 201

Spiegelhalter test, 193–4 
of unconditional PDs, 194–5 

discriminatory power and tools, for ratings
accuracy ratio (AR), 184–5
area under the curve (AUC), 187–8
cumulative accuracy profile (CAP), 183–5
entropy measures of discriminatory

power, 190–1
error rates as measures of discriminatory

power, 188–9
receiver operating characteristic

(ROC), 185–6
variations of conditional PD, 189–90

monotonicity property of conditional PDs,
179–82

regulatory background, 170–2
statistical background

Bayes’ formula for joint statistical 
distribution of S and Z, 175–6 

conceptual considerations, 173 

conditional PDs, 176
cyclical effects, 177
joint statistical distribution of S and Z, with

conditional densities, 173–4
joint statistical distribution of S and Z, with

conditional PDs, 174–5 
mapping of score variables, 177–9 
rating philosophies, 177 
variables, 173 

Value-at-risk analysis (VaR), 15
Vintage, defined, 16
Volatility estimation error, 153
Volatility shock, 156–7

W
Weibull distribution

performance evaluation on AUROC
estimations, 126–7

for ROC estimation, 120–1



This page intentionally left blank


	The Analytics of Risk Model Validation
	Copyright Page
	Contents
	About the editors
	About the contributors
	Preface
	Chapter 1 Determinants of small business default
	Abstract
	1. Introduction
	2. Data, methodology and summary statistics
	3. Empirical results of small business default
	4. Conclusion
	References
	Notes

	Chapter 2 Validation of stress testing models
	Abstract
	1. Why stress test?
	2. Stress testing basics
	3. Overview of validation approaches
	4. Subsampling tests
	5. Ideal scenario validation
	6. Scenario validation
	7. Cross-segment validation
	8. Back-casting
	9. Conclusions
	References

	Chapter 3 The validity of credit risk model validation methods
	Abstract
	1. Introduction
	2. Measures of discriminatory power
	3. Uncertainty in credit risk model validation
	4. Confidence interval for ROC
	5. Bootstrapping
	6. Optimal rating combinations
	7. Concluding remarks
	References

	Chapter 4 A moments-based procedure for evaluating risk forecasting models
	Abstract
	1. Introduction
	2. Preliminary analysis
	3. The likelihood ratio test
	4. A moments test of model adequacy
	5. An illustration
	6. Conclusions
	7. Acknowledgements
	References
	Notes
	Appendix
	1. Error distribution
	2. Two-piece normal distribution
	3. t-Distribution
	4. Skew-t distribution


	Chapter 5 Measuring concentration risk in credit portfolios
	Abstract
	1. Concentration risk and validation
	2. Concentration risk and the IRB model
	3. Measuring name concentration
	4. Measuring sectoral concentration
	5. Numerical example
	6. Future challenges of concentration risk measurement
	7. Summary
	References
	Notes
	Appendix A.1: IRB risk weight functions and concentration risk
	Appendix A.2: Factor surface for the diversification factor
	Appendix A.3

	Chapter 6 A simple method for regulators to cross-check operational risk loss models for banks
	Abstract
	1. Introduction
	2. Background
	3. Cross-checking procedure
	4. Justification of our approach
	5. Justification for a lower bound using the lognormal distribution
	6. Conclusion
	References

	Chapter 7 Of the credibility of mapping and benchmarking credit risk estimates for internal rating systems
	Abstract
	1. Introduction
	2. Why does the portfolio’s structure matter?
	3. Credible credit ratings and credible credit risk estimates
	4. An empirical illustration
	5. Credible mapping
	6. Conclusions
	7. Acknowledgements
	References
	Appendix
	1. Further elements of modern credibility theory
	2. Proof of the credibility fundamental relation
	3. Mixed Gamma–Poisson distribution and negative binomial
	4. Calculation of the Bühlmann credibility estimate under the Gamma–Poisson model
	5. Calculation of accuracy ratio


	Chapter 8 Analytic models of the ROC curve: Applications to credit rating model validation
	Abstract
	1. Introduction
	2. Theoretical implications and applications
	3. Choices of distributions
	4. Performance evaluation on the AUROC estimation with simulated data
	5. Summary
	6. Conclusions
	7. Acknowledgements
	References
	Note
	Appendix
	1. The properties of AUROC for normally distributed sample


	Chapter 9 The validation of the equity portfolio risk models
	Abstract
	1. Linear factor models
	2. Building a time series model
	3. Building a statistical factor model
	4. Building models with known beta’s
	5. Forecast construction and evaluation
	6. Diagnostics
	7. Time horizons and data frequency
	8. The residuals
	9. Monte Carlo procedures
	10. Conclusions
	References

	Chapter 10 Dynamic risk analysis and risk model evaluation
	Abstract
	1. Introduction
	2. Volatility over time and the cumulative variance
	3. Beta over time and cumulative covariance
	4. Dynamic risk model evaluation
	5. Summary
	References

	Chapter 11 Validation of internal rating systems and PD estimates
	Abstract
	1. Introduction
	2. Regulatory background
	3. Statistical background
	4. Monotonicity of conditional PDs
	5. Discriminatory power of rating systems
	6. Calibration of rating systems
	7. Conclusions
	References
	Notes

	Index

