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Preface

In this text, the term optical represents the electromagnetic spectrum from microwaves to
the ultraviolet.  This is because the quantum nature of the field becomes important in
light–matter interactions beginning with microwaves, and most propagation media are
opaque beyond the vacuum ultraviolet (0.1 µm). (Transparency begins again with x-rays.)
Also, the fundamental resonances of propagation media are rotational, vibrational, and
electronic, which are all within the realm of optical frequencies. Electronic spectroscopy
is complicated and, when possible, limiting our discussion to the onset of electronic
absorption greatly simplifies the treatment of electromagnetic propagation. The impor-
tance of spectroscopy to the field of optical propagation cannot be overemphasized, and
in many ways the central theme of Part I of this work is applied spectroscopy. This field,
traditionally part of physics and chemistry, has matured to the point that it is now essen-
tial to many electro-optical and photonic engineering applications.

Three basic components: a source, a receiver, and a medium in which optical energy
propagates (including windows on the source and detector) compose a typical optical
system. Many textbooks cover sources and detectors, but very few cover propagation in a
comprehensive way, incorporating the latest progress in theory and experiment concerning
the propagation medium. Advances in source and detector technologies have resulted in
greatly improved system performance. Frequently, the propagation medium limits per-
formance and must be considered in any analysis of a complete optical system. It is the
goal of this book to fulfill this need. The propagation medium can be atmospheric gases
and particles, solid-state components (e.g., protective windows, devices, and fiber wave-
guides), or water (e.g., seawater and biomedical fluids). The application may be
communication, remote sensing, photonic devices, imaging, or guidance. Physically based



models are developed and applied to diverse media. When the receiver and transmitter are
well characterized, then knowledge of the propagation medium can be obtained. This is
the important field of remote sensing. Remote sensing can be active (a source is used) or
passive (the medium being probed is the source) and is usually noninvasive. Also, knowl-
edge of the optical properties of semiconductors and insulators is essential to the design
of optoelectronic devices. For these reasons, optical propagation is crucial to the fields of
optical science and optical engineering.

This book can cover a full-year course on modern topics in optical propagation at the
upper graduate level or a one-semester course if topics are appropriately selected (e.g.,
laser light propagation, solid-state optics, optical propagation in the atmosphere, etc.).
It is based on a one-semester graduate-level course taught at The Johns Hopkins
University, G.W.C. Whiting School of Engineering, which uses an introductory laser
physics course as a prerequisite. A background in undergraduate electromagnetic theory
and elementary quantum mechanics is essential. It is also helpful to have some back-
ground in Fourier optics or diffraction theory.

Material presentation is in a style appropriate for students in engineering and applied
science, and for practicing scientists and engineers. Detailed derivations are used as
needed, but not when a good reference exists or a simpler approach, utilizing basic con-
cepts, is available. Extensive bibliographies and problem sets are listed at the end of each
chapter. Problems are intended to reinforce and extend chapter material. Simple applica-
tions are given as example exercises within the text and stressed in homework problems
as well. These aspects are important to those learning the field for the first time. Also, 
I have used the text, as it has developed, as a reference to solve real-world problems at the
Applied Physics Laboratory. I believe the book contains enough detail and completeness
in the models presented to be useful to practicing engineers and scientists.

The text is structured as two units. A basic background concerning definitions, the-
oretical fundamentals, and experimental aspects of the linear interaction of light and
matter is presented in the first unit. Practical theoretical models should always lead to
measurable quantities. Specific models and computer codes concerning propagation of
optical energy in various media are covered in the second unit. The topics covered in
this unit are also sufficiently comprehensive and contemporary for use as a reference
source for practicing engineers and scientists. The presented material builds on 
other textbooks and does not attempt to rewrite the entire subject. The text strives 
to develop optical propagation in a variety of media from a general background in 
classical and quantum electrodynamics. This unifies the discussion of propagation, as
opposed to other texts which treat solids and gases separately, for example. The result,
I hope, is a fundamental and contemporary development of optical propagation in linear
media.

Part I is based on Maxwell’s equations as applied to optical frequencies, an intro-
duction to spectroscopy of matter (gases, solids, and liquids), stationary-state quantum
mechanics, and electrodynamics (classical and quantum) at optical frequencies.
Electrodynamics covers the time-dependent interaction of light and matter. Emphasis is
on linear absorption, refraction, and single scattering phenomena. (Turbulence is not
covered here, since this requires additional background in the theory of random vari-
ables, and other excellent texts exist.) Time-domain and frequency-domain models are
developed. Time-domain models of the electric susceptibility are required for high-
bandwidth applications using finite-difference time-domain (FDTD) techniques.
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Formulas derived in this part are fundamental to understanding many practical models
of optical propagation. The main goal is to develop a theoretical foundation concerning
the general properties of the complex index of refraction at a level that is reasonably
complete but not too cumbersome. Also, measurement techniques are covered which
allow verification of the theory and the determination of material specific optical con-
stants for semiempirical models. In this way a general foundation is established to cover
a variety of media and applications.

Part II develops practical models of the complex index of refraction, describing how
light propagates through matter as a function of temperature, pressure, and frequency, with
an emphasis on the similarities and differences between various media mentioned previ-
ously. These models are implemented by popular computer codes such as MODTRAN,
FASCODE, and OPTIMATR. The material presented in this book previously existed in
separate journal publications and reports and is therefore a unique and important feature of
the text. Propagation in the atmosphere of the earth, and optical properties of solids and
water-based media (e.g., seawater and biomedical fluids) are covered, emphasizing absorp-
tion and reflection, refraction, and scattering phenomena. Noise and background radiance
in a propagation medium are also covered. Beam and pulse propagation are presented as
the ultimate application of the prior chapters. Specific applications, such as remote sens-
ing, optical coatings, lasers, waveguides, material property calculations, and design
considerations, are presented to reinforce the topics covered.

The appendices address topics that would disrupt the flow of discussion in the main
text. Appendix 1, on symbols and units, is intended to define all the variables and con-
stants used in this text and list other symbols commonly used in the literature describing
propagation in various media. The fields of absorption and scattering for various media
have evolved independently, and the nomenclature is quite diverse. Appendix 2 lists spe-
cial functions used in the text. Appendix 3 lists Hilbert and Fourier transform pairs and
important relationships between them. Appendix 4 lists numerical values of model param-
eters for the complex index of refraction as developed in Part II of the text for a variety of
optical media. This allows a fairly comprehensive characterization of optical properties.
An extensive reference list is also given. Appendix 5 presents the quantization of the elec-
tromagnetic field. This appendix is intended for the more advanced student who seeks a
more rigorous understanding of light–matter interaction.

An endeavor of this magnitude cannot be a singular effort. I have greatly benefited
from the help of many people. First, I wish to acknowledge my students who, through
their enthusiasm for the course material, have encouraged me to prepare this text. Also,
the correctness and readability of the text has been improved by their comments.
Second, the support to write the bulk of the text came from a Parsons and two Janney
Fellowships, and a J.H. Fitzgerald Dunning Professorship granted by the Applied
Physics Laboratory of the Johns Hopkins University. Much of the material in Part II of
the book represents work accomplished at the Applied Physics Laboratory. Third, I
gratefully recognize the help and inspiration of Professor Richard I. Joseph, who
reviewed, with great thoroughness, the entire manuscript. His contributions have
greatly improved the quality and organization of the text. Next, I wish to acknowledge 
Dr. William J. Tropf, my supervisor at the Applied Physics Laboratory for eleven years,
for finding problems for me that I could solve and the necessary encouragement 
and support to complete the solution and its final publication. Also, many of my col-
leagues at the Applied Physics Laboratory and elsewhere deserve my thanks for their
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helpful reviews: Drs. George Birnbaum, William H. Carter, Donald D. Duncan, James
D. Franson, and Milton J. Linevsky. Jane Thomas prepared many of the illustrations for
the text. Last but not least, I wish to recognize the many sacrifices my family had to
endure for the sake of this manuscript.

It is said that we currently live in an information age. However, there is an important
distinction between information and knowledge. Knowledge is the ability to process
information. In the spirit of a recent book commemorating the 125th anniversary of the
University entitled Johns Hopkins Knowledge for the World, it is my intention to write
a book that provides insight and perspective in addition to information. Finally, it is my
sincere hope that the deficiencies of this text are overcome by its utility.
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3

1

Optical
Electromagnetics I

In this chapter, the optical spectrum is defined and subdivided into many sub-bands,
which are traditionally determined by transparency in various media. Propagation of the
electromagnetic field in vacuum, as based on Maxwell’s equations, and basic notions of
geometrical and physical optics, are covered. The theoretical and conceptual foundation
of the remaining chapters is established in this chapter and the next.

1.1 Introduction

Optical electromagnetic propagation is generally and often accurately described by
classical geometrical optics or ray optics. When diffraction or wave interference is of
concern, then the more complete field of physical optics is used. Geometrical optics
requires precise knowledge of the spatial and spectral dependence of the index of
refraction. This requires electrodynamics, which is most appropriately described by
quantum optics. These topics are covered in the first five chapters. The definitions of the
optical spectrum and the various models for describing propagation are introduced in
the following.

1.1.1 The Electromagnetic Spectrum

The optical electromagnetic field covers the range of frequencies from microwaves 
to the ultraviolet (UV) or wavelengths from 10 cm to 100 nm. This is a very liberal 
definition covering six orders of magnitude, yet the description of propagation is very
similar over this entire band, and distinct from radio-wave propagation and x-ray 



4 OPTICAL PROPAGATION IN LINEAR MEDIA

Table 1.1 Definition of Spectral Regions

Wavelength Wave Number Frequency Energy
λ [µm] ν [cm−1] f [GHz] E [eV]

Soft x-ray <0.01 >124
Extreme UV 0.01– 0.1 124 –12.4
Vacuum UV 0.1– 0.185 12.4 –6.7
Air cutoff 0.185 6.7
Solar blind UV 0.185 –0.3 6.7– 4.1
Near UV 0.2– 0.4 50,000–25,000 6.2–3.1
Visible 0.4 – 0.7 25,000–14,286 3.1–1.8
Near-infrared 0.7– 2.0 14,286–5000 1.8– 0.62
Mid-infrared 2.0 –10.0 5000 –1000
Far-infrared 10.0 –100.0 1000 –100
Submillimeter 100 –1000 100 –10
Millimeter waves 1000 –10,000 10–1 300–30
Microwaves 10,000 –106 30 –0.3
Radio waves >106 <0.3

propagation. A listing of the nomenclature for the different spectral bands within the
range of optical wavelengths is given in Table 1.1. Other commonly used units of spec-
tral measure such as wave number, frequency, and energy are also listed in the table.
These various quantities are related to wavelength by the following formulas:

c = λ f, E = h f, and ν = 1/λ = f/c (1.1)

where c is the speed of light (c = 2.99792458 × 108 m/sec), λ is wavelength, f is fre-
quency in hertz, E is energy, h is Planck’s constant (h = 6.6260755(40) × 10−34

J sec), and ν is frequency in wave numbers (the number of wavelengths per centimeter).
Although wavelength is commonly used by applied scientists and engineers, frequency
is the most appropriate unit for the theoretical description of light–matter interactions.
Because of the importance of spectroscopy in the discussion of optical propagation, the
spectroscopic unit of wave number will be consistently used.

The spectral nature of electromagnetic propagation in any medium is determined by
the location of absorption bands and the type of scattering. Strong absorption charac-
teristics of a medium define the window or transparency regions. Regardless of the
medium, these absorption features generally involve transitions of electrons in atoms
and vibrational motions of bound atoms within molecules. Weak absorption features
and scattering determine the nature of propagation in the window region. The various
bands in Table 1.1 are typically determined by absorption features in various media.
The vacuum ultraviolet (VUV) cuts off at 0.1 µm because the transparency of typical
ultraviolet window materials, MgF2 and LiF, end at this wavelength. Thus the extreme
ultraviolet (XUV) requires windowless operation and distinctly different sources. The
vacuum ultraviolet begins at 0.185 µm because this is where molecular oxygen begins
to absorb strongly, thus requiring high-vacuum spectrometers. The solar blind UV is the
spectral region where sunlight is blocked by stratospheric ozone absorption and UV
propagation is good in the troposphere. The visible spectrum is determined by the trans-
parency of liquid water. The infrared (IR) is broken up into three different spectral



bands, the near-IR, mid-IR, and far-IR, based on the location of windows in water vapor.
The far-IR is largely opaque in the atmosphere because of a major absorption band of
water vapor. Transparency begins again at the submillimeter band and continues to
improve at millimeter waves and on to microwaves. Microwaves are further subdivided
into sub-bands based in part on water vapor and molecular oxygen absorption lines
occurring in the atmosphere.

Two additional mechanisms affecting propagation in transparent regions are scatter-
ing and turbulence. Scattering results from small-scale, large-amplitude spatial and
temporal fluctuations of density of the propagation medium. When the fluctuations are
small compared with a wavelength, Rayleigh scatter results. This type of scatter falls
off rapidly with decreasing frequency, thus emphasizing the blue end of a spectral
region. When the fluctuations are on the order of a wavelength, Mie scatter results. 
This type of scatter has a relatively flat spectral response and results in the characteris-
tic white color of clouds, for example. Turbulence results from large-scale, small-
amplitude spatial and temporal variations of optical properties within the propagation
medium.

The emphasis in this text will be on absorption and single scattering, since a similar
background in electromagnetic theory can be used to describe these mechanisms.
Turbulence is more appropriately covered in terms of statistical optics and excellent
texts exist in this field (see references 1.10 and 1.11).

1.1.2 Classical and Quantum Concepts

The major distinction between optical and radar-/radio-frequency propagation is the
need to include a quantum description of the field and medium. Based on Eq. 1.1, the
energy is directly proportional to the frequency, so that at lower frequencies the energy
of a single quantum of the field (the photon) is small and not easily detected. Many pho-
tons are required for detection and thus a field (classical) description is adequate. At
optical wavelengths, single photon events and the discrete energy level structure within
the medium match photon energies and are important in describing absorption and scat-
tering mechanisms in detail. However, classical models are still very useful and
instructive, because optical measurements are generally time averaged over many
photon detections and a quantum description of the propagation media is not always
necessary. Hence, both classical and quantum models will be used to describe optical
propagation.

The most fundamental and practical description of optical propagation is given by
nonrelativistic quantum electrodynamics or the subfield, quantum optics (which is
quantum electrodynamics limited to low-energy optical frequencies). Quantum optics
is a detailed microscopic theory of photons and molecules (atoms) in the gas, liquid,
and solid phase, and their interactions involving quantum mechanics (Schrödinger’s
equation) and the quantized electromagnetic field. These combined theories lead to the
quantum oscillator model. Because of the scope and level of detail of this theory, it is
also the most complicated to present. The quantum-mechanical description of the
energy structure of matter within the realm of quantum optics is called spectroscopy.
This field considers the location, strength, and shape of spectral lines. Another fashion-
able subset of quantum electrodynamics is quantum electronics, which emphasizes
optical devices such as lasers and nonlinear optics. Quantum electronics is often 
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presented within the context of semiclassical radiation theory. In this approach the
propagation medium is treated quantum mechanically, but the field is treated classically.
Thus, semiclassical radiation theory can be thought of as a bridge connecting spec-
troscopy with the classical version of Maxwell’s equations. It allows the treatment of
high field intensities interacting with matter. This is important in the description of laser
phenomena.

When the quantum nature of the field and medium is not relevant, such as elastic
scattering, refraction, or reflection, then classical electrodynamics or classical optics
can be used. This allows a simpler and equally valid approach based solely on
Maxwell’s equations, Newtonian mechanics, and Lorentz force relation. This theoreti-
cal foundation leads to the commonly used classical oscillator model. Historically, the
wave nature of light is the topic of physical optics or wave optics. The development of
this field predates the unifying work of Maxwell and is based on solutions of the wave
equation. Maxwell’s equations include the wave equation and therefore form a more
complete theory that describes the coupling of the field to the propagation media. As an
example application, the fields of Fourier optics and particle scatter are based on phys-
ical optics. Furthermore, when wave interference of the field is not relevant and the
frequency of the field is sufficiently high, then geometrical optics or ray optics can be
employed. This field also predates the development of Maxwell’s equations and is
based on the particle interpretation of light. This approach is consistent with classical
optics when based on a high-frequency asymptotic solution to the wave equation. It is
the simplest description of optical field propagation and often a good place to begin a
description of the propagation path. Optical engineers commonly use geometrical
optics to design optical systems. The field of radiometry also should be mentioned in
this introduction as a subfield to geometrical and physical optics.

Consequently, geometrical optics, as defined above, is a subset of physical optics,
and physical optics is a subset of classical optics. Classical optics is a subset of quan-
tum optics. This point is graphically illustrated in Fig. 1.1. Also, emphasis at the
beginning will be on classical optics and, as background is developed, the more com-
plete theories will be used. The first five chapters develop these important theories for
practical use.

The inclusion of relativistic theory into our models is not necessary to meet the goals
of this book. However, it is interesting to note that relativistic quantum mechanics
(Dirac theory) includes the effect of particle spin. Photons have integer spin. This leads
to polarization or the vector character of the electromagnetic field and will be handled
by conventional classical methods.

The following sections in this chapter and the next describe electromagnetic field
propagation based on Maxwell’s equations in vacuum and in linear matter, respectively.
In each section the classical aspects of the electromagnetic field and the propagation
medium are discussed in detail. The quantum nature of the propagation medium is
introduced in Chapter 3. Electrodynamics is then introduced in Chapters 4 and 5.
Chapter 4 develops the classical version, covering the classical oscillator model for
gases and solids, and elastic scattering for gases and particles. Chapter 5 presents
applied quantum electrodynamics at optical frequencies or quantum optics. The quan-
tum oscillator model is developed, which is the foundation for many of the practical
models of Part II. The sixth chapter of this first part discusses experimental tech-
niques to measure fundamental optical constants as dictated by the theory of the first
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five chapters. The complementary interplay between theory and experiment is then
more fully appreciated.

1.2 Macroscopic Properties in Vacuum

It is instructive and relevant to begin the development of optical electromagnetics with
a discussion of plane-wave propagation in vacuum. The presence of matter greatly com-
plicates the description of optical propagation and it is useful to distinguish between
properties of the field and properties of the propagation medium. Furthermore, even
though true plane waves cannot be physically realized, an understanding of plane-wave
propagation allows a complete description of any function representing a realistic
propagating electromagnetic wave via Fourier analysis. Plane-wave propagation is 
considered in unbounded and bounded vacuum.

1.2.1 Plane-Wave Propagation

The macroscopic properties of the electromagnetic field are represented by Maxwell’s
equations, which are founded in classical physics. Since plane waves form a complete
basis set spanning a function space (an infinite-dimension vector space with mono-
chromatic plane-wave functions as basis vectors), it is convenient and comprehensive
to begin with a plane-wave solution of Maxwell’s equations in unbounded vacuum or
free space. Other function basis sets, such as spherical waves, are also useful and will be
presented later. Solutions to Maxwell’s equations in bounded vacuum are also examined
in this section.

OPTICAL ELECTROMAGNETICS I 7

Fig. 1.1 Illustration of the relationship between and scope of the fields and subfields of quan-
tum optics, spectroscopy, classical optics, semiclassical radiation theory, physical optics, and
geometrical optics.



1.2.1.1 Maxwell’s Equations in Free Space

Maxwell’s equations in unbounded vacuum are:

Faraday’s law: ∇ × e(r,t) = −∂b(r,t)
∂t

, (1.2)

Ampere’s law: ∇ × h(r,t) = ∂d(r,t)
∂t

(1.3)

and

Gauss’s law: ∇ · d(r,t) = ∇ · e(r,t) = 0, (1.4)

∇ · b(r,t) = ∇ · h(r,t) = 0, (1.5)

with the free-space constitutive relations

d(r,t) = ε0e(r,t) and b(r,t) = µ0h(r,t), (1.6)

where ε0(= 8.854188 × 10−12 F/m) is the free-space permittivity, µ0(= 4π×
10−7 H/m) is the free-space permeability, e is the electric field intensity in units of volts
per meter, d is the electric flux density in units of coulombs per meter squared, h is the
magnetic field intensity in units of amperes per meter, and b is the magnetic flux den-
sity in units of webers per meter squared. All lowercase vector symbols represent
time-domain quantities. (An attempt to consistently use MKS units is made, but this is
not always achieved because of the small size of optical wavelength and detectors; in
this case cm is often used.) Taking the curl of Faraday’s law and applying Gauss’s law,
a vector wave equation for e is obtained,

∇2e(r,t) = 1

c2

∂2e(r,t)
∂t2

, (1.7)

where

c2 = 1

ε0µ0
. (1.8)

To solve this partial differential equation, the Fourier transform will be employed. 
It is defined for individual components of the field vector as1

�{ei (r,t)} = Ei (r,ω) =
∞∫

−∞
ei (r,t)e− jωt dt (1.9)

and the corresponding inverse transform as

�−1{Ei (r,ω)} = ei (r,t) = 1

2π

∞∫
−∞

Ei (r,ω)e− jωt dω, (1.10)
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where, for Cartesian coordinates,

e = ex x̂ + ey ŷ + ez ẑ, i = x, y, z, and ω = 2π f.

Uppercase vector quantities are in the frequency domain with an amplitude that is
constant over a unit bandwidth. The Fourier transform of Eq. 1.7 is given by

∇2 Ei (r,ω) = −ω2

c2
Ei (r,ω). (1.11a)

The electric field intensity is now in the frequency domain. The subscript i represents
the two different directions of polarization of the E-field. Without loss of generality, since
vacuum is isotropic, let E be polarized in the x-direction and propagate in the z-direction.
An orthogonal polarization in the y-direction also exists but its representation, at this
point, is analogous to x-direction field. (When accounting for the total field energy
(both polarizations) a multiplication factor of two must be used for unpolarized light.)
Thus, substituting E = Ex(z,ω)x̂ into Eq. 1.11a we obtain

∂2 Ex

∂z2
+ ω2

c2
Ex = 0. (1.11b)

This is the standard one-dimensional scalar wave equation with the well-known
solution describing a monochromatic plane-wave field, with the radiation boundary
condition (Ex(z →∞) → e± jωz/c), as given by

Ex(z,ω) = 1

2
E+

x0e− j ω
c z + 1

2
E−

x0e j ω
c z. (1.12a)

For arbitrary polarization and propagation direction, the solution is more generally
written as

E(r,ω) = 1

2
E+

0 e− jk′·r + 1

2
E−

0 e jk′·r, (1.12b)

where k′ = k ′
x x̂ + k ′

y ŷ + k ′
z ẑ is the wave vector with magnitude ω/c (= 2π/λ) and

r = x x̂ + yŷ + zẑ is the position vector. This describes a plane wave with both forward
and backward (time-reversed) propagating components or, from a different perspective,
positive and negative frequency components. This concept will be useful later. Also,
observe that the plane-wave solution is not only time harmonic, but harmonic in space
as well. It is required that ex be real, thus

E−
x0 = (E+

x0)
∗

(1.13)

and Eq. 1.12a reduces to

Ex(z,ω) = Re
[
Ex0e− j ω

c z
]
. (1.14)
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This, in effect, is phasor notation and, as is customary, the Re[ • ] symbol will almost
always be suppressed in the notation from now on.2

The wave equation, as given by Eq. 1.11, can also be solved in a bounded rectangu-
lar region of free space with sides Lx , L y, and Lz. The boundary condition for a
metallic cavity, for example, is that the tangential E-field must vanish on the boundary.
This leads to standing-wave solutions (see Problem 1.7) of the form

Ex(r,ω) = Ex0 cos
lπx

Lx
sin

mπy

L y
sin

nπz

Lz
(1.15a)

Ey(r,ω) = Ey0 sin
lπx

Lx
cos

mπy

L y
sin

nπz

Lz
(1.15b)

Ez(r,ω) = Ez0 sin
lπx

Lx
sin

mπy

L y
cos

nπz

Lz
, (1.15c)

where Gauss’s law requires

l

Lx
Ex0 + m

L y
Ey0 + n

Lz
Ez0 = 0; (1.15d)

l, m, and n are integers, and are related to the wave vector according to

k ′2 = ω2

c2
= π2

(
l2

L2
x

+ m2

L2
y

+ n2

L2
z

)
. (1.15e)

Such standing-wave fields are commonly discussed in textbooks on laser theory. For
a finite cavity, only modes with discrete frequencies can be supported. The number of
modes per unit volume with frequency less than f, ρEM, must be a finite value and,
based on Eq. 1.15e, is given by (see Problem 1.5)

ρEM = 8π f 3

3c3
. (1.15f )

This is an important result that will be needed in Chapter 5.

1.2.1.2 Poynting Vector

The corresponding unbounded H-field solution comes from the solution of the frequency-
domain version of Faraday’s law, as given by

∇ × E(r,ω) = − jωµ0 H(r, ω). (1.16)

Substituting Eq. 1.14 for E in Eq. 1.16, the following is obtained

Hy(z,ω) = 1

η0
Ex0 e− j ω

c z, (1.17)
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where η0(= (µ0/ε0)
1/2) is the intrinsic impedance of free space and equals 377	. At

optical frequencies, field quantities are not directly measured. Instead, optical detectors
typically measure time-average power density or radiance, L , in units of watts/
(cm2 sr). In terms of field quantities this is the magnitude of the time-averaged time-
domain Poynting vector, 〈 (t)〉t (= 〈e(t) × h(t)〉t) , where 〈 〉t is the time average as
defined by

〈a(t)b(t)〉t = 1

2T

T∫
−T

a(t)b(t) dt

where T is the observation time (usually much longer than an optical period). For a
monochromatic field the time-averaged Poynting vector is given by (see Problem 1.3)

〈 (t)〉t = L = 1

2
Re [E(ω) × H∗(ω)] = |Ex0|2

2η0
ẑ. (1.18)

The monochromatic Poynting vector is a good approximation for single-mode con-
tinous wave (CW) laser light, but does not represent common polychromatic sources
(e.g., pulsed lasers and light bulbs). In that case, the individual electric and magnetic
fields are represented by a sum of monochromatic fields possessing different frequen-
cies, ωm , and phases, φm ,

E(ω) =
∑

m

Em(ωm,φm) and H(ω) =
∑

m

Hm(ωm,φm),

and must be summed over all frequencies and phases. Substituting these expressions
into Eq. 1.18 leads to the result for a polychromatic time-averaged Poynting vector:

〈 (t)〉t = 1

2
Re

[∑
m

Em(ωm,φm) × H∗
m(ωm,φm)+

∑
m �= l

Em(ωm,φm)× H∗
l (ωl,φl)

]
.

(1.19a)

For a stationary random polychromatic field, each component in the second term of
Eq. 1.19a is zero, and the sum is also zero. Thus, the time-averaged Poynting vector
becomes a spectral distribution function, as given by

〈 (t)〉t=
∑

m

|Em0|2
2η0

ẑ = c

2
ε0

∑
m

|Em0|2 ẑ . (1.19b)

The field polarization is arbitrarily chosen in the x-direction, consistent with the
monochromatic case. Power flows in the z-direction, only.
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A straight-line path is called rectilinear propagation and is consistent with the
approximations of a lossless, homogeneous, isotropic unbounded region used thus far.
Thus the electromagnetic field can be thought of as a light ray (ray optics), ignoring the
details of the electric and magnetic fields composing the electromagnetic wave. The
nonphysical condition of an unbounded medium containing rectilinear parallel rays
results in a number of practical limitations on this particular solution of Maxwell’s
equations:

1. No restrictions on the extent of the field in the xy-plane exist. The field fills all
space, requiring an infinite amount of energy.

2. Light does not always travel in a straight line, but can be bent.
3. Rays of light from other directions will intersect at some point in space (called a

caustic) causing infinitely high power density to exist3.

To resolve these limitations in this theory, finite boundaries and diffraction theory
must be included. It is of interest to describe a beam of light that is finite in the trans-
verse direction and not a plane wave over large distances. This increases the scope of
the initial problem to consider solutions with finite sources.

1.2.2 Diffraction: Physical Optics

As previously noted, the solution to the wave equation in unbounded vacuum of the
previous section has two serious problems. First, the field exists in all space as a plane
wave propagating in the z-direction with no limitations in the xy-plane, requiring infi-
nite energy. This cannot be a physical solution, since some limitation in the xy-plane
must exist. Second, when geometrical rays come to a focus or caustic, it occupies a
single point, requiring infinite energy density. This, also, is not a physical result. To
overcome these limitations, diffraction theory must be addressed. The following devel-
opment is more intuitive than rigorous but leads to meaningful results. More complete
derivations are available in the bibliography.

1.2.2.1 Spherical-Wave Representation

Recall that the plane-wave solution, given by Eq. 1.14, represents an electromagnetic
wave with planar wave fronts of infinite extent propagating in the positive z-direction,
as illustrated in Fig. 1.2. The solid lines in the figure represent z = constant planes,
where phase repeats a certain arbitrary value (determined by the constant) every wave-
length. This solution of the wave equation can be represented in other mathematical
forms, which will prove useful for further analysis. The plane-wave representation
resulted because of the choice of rectangular coordinates. Because sources of light can
often be approximated by point sources, spherical waves are also a meaningful basis
set, representing propagating fields.

Furthermore, an electromagnetic field generated by a finite source in the xy-plane can
be represented by an integration of point sources over the xy-plane aperture. This statement
is Huygens’ principle, and allows the examination of the consequences of a finite
source in a simple manner. (Point sources or impulse response functions are commonly
used in science and engineering.) Consider the three-dimensional point source located
at the origin of a spherical coordinate system in an unbounded medium,
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dEx(r) = const Ex0
e− jk ′r

r
dS, (1.20)

where “const” is a constant to be determined later, r = |r| and dS(= dxdy) is a sur-
face element in the xy-plane. This is a special function in applied mathematics and
engineering called a free-space Green’s function or impulse response function.
Equation 1.20 is the three-dimensional free-space Green’s function, and is the solution
of the wave equation with a delta-function point source and the radiation boundary
condition. Coulomb’s law for point charges is an example of such a three-dimensional
Green’s function (for k = 0) and can be used to represent general charge distributions
when integrated over a specified volume.

1.2.2.2 Fresnel and Fraunhofer Diffraction

The construction of optical fields in terms of spherical waves from a point source is an
old concept originating with Fresnel, who in 1818, applied Huygens’ principle and
Young’s concept of interference to explain diffraction phenomena. To see this, consider
the spherical wave field such that x	 z and y	 z, and that the observed field is deter-
mined by sources in the xy-plane directly behind it along the z-axis. This means the
field is nearly a plane wave in the z-direction, this is known as the paraxial ray approx-
imation. Based on this assumption and a binomial expansion, the observation point is
given by

r =
√

z2 + x2 + y2 ∼
z→∞ z + 1

2z

(
x2 + y2)+ O

(
1

z3

)
. (1.21)

The analytical expression for an unbounded plane wave propagating in the positive
z half-space, in terms of spherical waves, is obtained by integrating over all coherent
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(identical phase) point sources in the xy-plane, as given by

Ex(z,ω) = const

z
e− jk ′z

∞∫
−∞

dx

∞∫
−∞

dyEx0 e− j k′
2z (x2+y2). (1.22)

The approximation in Eq. 1.21 is used in the phase term because this adequately
determines the locations of constructive and destructive interference, but a more relaxed
approximation can be used in the denominator factor of the Green’s function (e.g., 
r ≈ z). The result of the above integration must have the same result as Eq. 1.14, thus
the constant factor can be determined. The integrals are Gaussian, with well-known
solutions. The result is

const = j

λ
. (1.23)

Now a representation of optical fields exist in the positive z-half-plane that can
account for the effects of finite beam apertures by allowing E0

x to be nonzero only over
the aperture.

Consider the double coordinate system in Fig. 1.3. A coordinate system is specified
for the plane of the observer, such that the location of the field at a point is specified by

r = |r−ro| =
√

z2 + (x − xo)2 + (y − yo)2. (1.24)

Again, applying the paraxial ray approximation, given by |x – xo| 	 z and |y–yo| 	 z,
and expanding r by a binomial expansion, one obtains

r ∼
z→∞ z + (x − xo)

2

2z
+ (y − yo)

2

2z
+ O

(
1

z3

)
. (1.25)
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Following the same procedure as before, an expression of the field in the xo yo-plane
of the observer as a function of a source in the xy-plane is obtained. The result is the
Fresnel formula of diffraction, as given by (dS = dxdy)

Ex(xo,yo,z,ω) = j

λz
e− jk ′z

∞∫
−∞

∞∫
−∞

dSEx0(x,y)e
− jk ′
(

(x−xo)2

2z + (y−yo)2

2z

)
, (1.26)

which is valid only within the paraxial ray approximation (z2 � [(x – xo)
2+(y – yo)

2]max )
and where Ex0 is an aperture function defining the extent of a beam in the xy-plane. The
field expands and the spatial distribution changes beyond the xy-plane, thus losing uni-
form plane-wave properties.

To see this point more clearly, examine the integrand in the far field, where the
approximation

z �
k ′

4π

(
x2 + y2)

max = zR (1.27)

is valid. The parameter zR is called the Rayleigh range. The phase factor in the inte-
grand of Eq. 1.26 can be expanded to obtain

e
− jk ′
(

x2
o

2z + y2
o

2z

)
e
− jk ′
(

x2

2z + y2

2z

)
e

jk ′
(

xxo
z + yyo

z

)
. (1.28)

Applying the far-field approximation, we obtain the Fraunhofer diffraction integral
in the paraxial approximation4, as given by

Ex(xo,yo,z,ω) = j

λz
e− jk ′ze− jk ′ x2

o +y2
o

2z

∞∫
−∞

∞∫
−∞

dxdyEx0(x,y) e jk ′ xo
z x e jk ′ yo

z y. (1.29)

The integral is of the form of a two-dimensional Fourier transform between a spatial
distribution of a field in a plane at z = 0 and spatial frequencies, κx and κy in the far-
field observation plane (κx = k ′xo/z and κy = k ′yo/z (see reference 1.5). The
two-dimensional spatial Fourier transform is defined as

E(κx , κy) =�xy [E0(x,y)] =
∞∫

−∞

∞∫
−∞

dxdyE0(x,y) e jκx x e jκy y .

For visible wavelengths (λ ≈ 0.5 µm) and 1 cm square aperture, and based on 
Eq. 1.27, the far-field distance or Rayleigh range is approximately 200 meters. For a
uniformly illuminated aperture, the far-field pattern is composed of sinc functions (e.g.,
sin c(x) = sin(x)/x ) in the x- and y-directions (see Problem 1.4). This field pattern will
continue to widen as the wave propagates, completely changing the uniform field 
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distribution pattern in the z = 0 plane. The Fraunhofer diffraction pattern of the radi-
ance is, based on Eq. 1.19,

L =
∣∣E(xo,yo,z)

∣∣2
2η0

= |�xy [E0(x,y)] |2
2(zλ)2η0

, (1.30)

where �xy is the two-dimensional spatial Fourier transform.
Diffraction theory also limits the minimum size of a focus, thus solving the problem

of caustics mentioned earlier. This is easily demonstrated using the Fraunhofer diffraction
integral and the time–bandwidth product of Fourier transform theory (�x�κx ≥ 1/2).
Considering the far-field diffraction pattern of a large aperture lens, one obtains

sin α = λ

4πD
,

where sin α = �xo/z and D (= �x ) is the diameter of the focusing lens. For �xo to be
zero (a point focus) requires an infinite-diameter lens, thus a finite field intensity at the
focus is always the case.

1.3 Optical Propagation in Vacuum

In practice, optical engineers and scientists are concerned about the propagation of light
in the form of CW or pulsed light beams. Applications for vacuum propagation include
remote sensing and communication links in space. The following two sections apply the
background obtained thus far to beam and pulse propagation in vacuum.

1.3.1 Beam Propagation

Generally, light-beam propagation is analyzed in terms of plane waves. This will be the
approach taken in the remaining chapters. However, realistic beams of light can only be
approximated by plane waves, and it is important to understand where this approximation
is valid. Beams of light from the spherical sun, for example, are essentially plane waves
to an observer on earth because of the great distance from the sun to the earth.

Laser beams are generated inside a resonant cavity. A stable spatial distribution of
the output beam is desired, which requires the beam profile to remain the same as it
propagates back and forth within the cavity. Furthermore, to minimize diffraction losses
also requires maintaining the field pattern as the wave propagates. Thus, diffraction
theory dictates that a field function which Fourier transforms into a function of the same
form is desired. This is the Gaussian class of beams, commonly produced by lasers and
customarily discussed in laser textbooks (see Bibliography). However, Gaussian
beams continue to expand upon propagation because of diffraction. To see this, con-
sider a circular beam in the xy-plane with a Gaussian distribution of the electric field
polarized in the x-direction, as given by 

Ex0(x,y,0) = Ex00

πw2
0

e−(x2+y2)/w2
0, (1.31)
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where w0 is the beam radius or waist at the 1/e field point, Ex00 is a constant and the
E-field is normalized such that

∞∫
−∞

∞∫
−∞

dxdyEx0 = Ex00.

It is assumed in this formulation that, in the region of the z = 0 plane, the beam is
independent of z. Using Eq. 1.30 and the cosine Fourier transform, the far-field radi-
ance becomes

L(xo,yo,z) = |Ex00|2
2(zλ)2η0

e−2(x2
o + y2

o)/w2(z), (1.32a)

where in the far-field limit

lim
z→∞ w(z) = 2z

k ′w0
. (1.32b)

The angular divergence of the beam, θbeam, can be determined from the beam radius
and the distance z, as given by

θbeam = tan−1

(
w(z)

z

)
� λ

πw0
. (1.33)

As the beam propagates, the far-field intensity distribution is maintained, but the
beam broadens and the radiance is attenuated. The beam divergence angle depends
inversely on the beam waist in the z = 0 plane. Thus, as w0 increases, the beam becomes
more like a plane wave.

With this insight from the far-field case, a general expression for a Gaussian beam
can be obtained, based on the Fresnel diffraction formula, in a straightforward
manner. Substituting Eq. 1.31 into Eq. 1.26 and using Eq. 1.28, the following result
is obtained:

Ex(xo,yo,z) = j

λz
e− jk ′z e

− jk ′
(

x2
o

2z + y2
o

2z

)
�xy[ExGS(x,y,z)], (1.34a)

where

ExGS(x,y,z) = Ex00

πw2
0

e− jk ′ (x2+y2)
2q(z) . (1.34b)

The Fresnel diffraction integral becomes the spatial Fourier transform of a Gaussian
spherical wave, ExGS , with a complex radius of curvature, q , given by

1

q
= 1

z
− j

2

k ′w2
0

. (1.35)
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Performing the spatial Fourier transform, a mathematical expression for a Gaussian
beam is obtained:

Ex(xo,yo,z) = Ex00

πw0w(z)
e− j (k ′z−ψ(z))e

− jk ′ (x2
o +y2

o)
2q(z)

,
(1.36a)

where the following functions are defined as

w(z) = w0

[
1 +

(
2z

k ′w2
0

)2
]1/2

, (1.36b)

ψ(z) = tan−1

(
2z

k ′w2
0

)
, (1.36c)

and

q(z) = z + j
k ′w2

0

2
. (1.36d)

Examining the real and imaginary parts of q(z), we obtain the following more mean-
ingful expression:

1

q(z)
= 1

R(z)
− j

2

k ′w2(z)
. (1.37)

An explicit expression for R(z) is the point of Problem 1.8. Now the Gaussian
spherical-beam electric field becomes

Ex(xo,yo,z) = Ex00

πw0w(z)
e− j (k ′z−ψ(z))e− jk ′ (x2

o + y2
o)

2R(z) e
−(x2

o + y2
o)

w2(z) . (1.38)

R(z) is the radius of curvature of the spherical wave and w(z) is the beam waist as
before. The Gaussian beam radiance is

L(xo,yo,z) = |Ex(xo,yo,z)| 2

2η0
= |Ex00|2

2π2w2
0w2(z)η0

e
−2(x2

o + y2
o)

w2(z) . (1.39)

This describes a Gaussian beam from z = 0 to the far field. To see this, consider the
far-field limit

w(z) → 2z

k ′w0
= zλ

πw0
,
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and Eqs. 1.32a and 1.32b are obtained. A ray diagram of a Gaussian beam is illustrated
in Fig. 1.4. The dashed curves represent the wavefronts. Notice at the beam waist
(w(z = 0) = w0) the wavefronts are like a plane wave. Farther out, the wavefronts are
spherical. The rays are perpendicular to the wavefronts and indicate the direction of the
propagating Gaussian beam. Such beams are commonly produced by lasers.

A special beam profile represented by Bessel functions does not expand upon prop-
agation over limited, but useful, distances, and is called a diffraction-free beam (see
reference 1.7).

The lesson to be learned from this section is the importance of diffraction on propa-
gation of realistic beams of light over long distances or originating from small
apertures. The unbounded plane-wave solution of the previous section cannot be phys-
ically realized, although it can be closely approximated over practical distances. The
intuitive development of diffraction theory used here is a good introduction, but does
not replace more rigorous derivations based on Maxwell’s equations (see references 1.2,
1.7, and 1.8). The formulas obtained are adequate for the needs of this text. It can be
observed from Fig. 1.4 that the Gaussian beam can be represented by rectilinear rays
and plane waves over meaningful regions of the beam. For this reason, most of the
emphasis in this text will be on geometrical optics and the quantum nature of the
medium and field.

1.3.2 Pulse Propagation

There is great interest today in high-speed pulse propagation. An electromagnetic pulse
is composed of many frequencies. In fact, the narrower the pulse in the time domain,
the broader it is in the frequency domain. The time–bandwidth product of Fourier trans-
form theory states that

�t� f = 1,

where �t is the temporal pulse width and � f is the frequency bandwidth in hertz.
Thus, monochromatic solutions to the wave equation are not appropriate in this case
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and new solutions must be found. To this end, it is straightforward to show that a func-
tion of the general form

f (k ′z − ωt) = E(k ′z − ωt) e− j (k ′z−ωt)

is a solution to the wave equation, as given by Eq. 1.11. Figure 1.5 plots such a func-
tion with an optical frequency carrier at discrete times. The pulse propagates forward in
time with a velocity of ω/k′ = c, the speed of light in vacuum. Because the propagation
medium is vacuum, the pulse propagates undistorted in time and space. Such a result
will not be obtained when the propagation medium is matter, especially as the band-
width increases. Further details can be found in reference 1.12.

Problems

1.1 A photon has an energy of l eV. Find the corresponding frequency in GHz,
wavelength in µm and wave number in cm−1.

1.2 Show that the free-space plane-wave solutions satisfy Gauss’s laws
(∇ · B = 0 and ∇ · D = 0).

1.3 Show that the time average of the time-domain signals a(t) = |A| cos (ωt + α)

and b(t) = |B| cos(ωt + β) is given by

〈a(t)b(t)〉t = 1

2T

T∫
−T

a(t)b(t) dt = 1

2
Re [AB∗]

where A = |A| e jα and B = |B| e jβ are the corresponding phasor quantities,
respectively, and that the observation time, T, is long compared with the optical
period.
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Fig. 1.5 An electromagnetic pulse propagating in free space at three different times.



1.4 Verify that Eqs. 1.15a–e satisfy Maxwell’s equations.
1.5 Verify Eq. 1.15f for the mode density in a finite volume. (Hint: Convert the

discrete sum to an integral in spherical coordinates. See Milonni and Eberly,
reference 1.11, for details.)

1.6 Show that

e− jk ′r

r

is a solution of the wave equation.
1.7 What is the far-field (Fraunhofer) diffraction pattern of the uniformly illumi-

nated rectangular aperture shown in Fig. P1.7.
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Fig. P1.7

1.8 Derive Eqs. 1.36 and 1.37 and show

R(z) = z + 1

z

(
k ′w2

0

2

)2

.

1.9 Show that Eq. 1.39 is consistent with the far-field formula given by Eq. 1.32a.
1.10 Verify that Eq. 1.40 is a solution to the wave equation as given by Eq. 1.7.

Notes

1 Engineers commonly choose e− jωt and physicists eiωt. It is important to be consistent with
the time harmonic choice of the field.

2 Phasor notation requires assuming a time-harmonic field

ex (r,t) = Re
[
ex (r) ehit

]
.

Using Eq. 1.10, over a finite bandwidth, and Eq. 1.14,

ex (z,t) = Re
[

Ex0 |� f | e jω(t− z
c )
]

= ex0 cos ω
(

t − z

c

)
.



In the following, a unit bandwidth is assumed. Therefore, the frequency-domain amplitude
can be equated to the time-domain amplitude in size and dimension. Again this is consistent with
phasor notation.

3 The problem with caustics.
At a focus, geometrical optics breaks down because it predicts an infinite field intensity at the

focal point or curve (also called a caustic). To see this consider the figure below and the follow-
ing equations:

dS1 = (R1 − d)(R2 − d) dθdφ

and

dS2 = R1 R2 dθdφ.

In geometrical optics the intensity is proportional to the ray density per unit area, thus the ratio
of dS2 to dS1 is of interest. The ratio of intensities at surface A to surface B (see figure below) is
proportional to

I1

I2
=
(

1 − d

R1

)(
1 − d

R2

)
.

At the focal line Q′, R2 = 0 and the intensity ratio goes to infinity, which is not physical.
Diffraction theory is needed to resolve this limitation.
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4 The paraxial ray approximation is not necessary for the Fraunhofer diffraction integral, but
is useful for the description of beam propagation, the topic of the next section. A more general
Fraunhofer diffraction integral is obtained by examining the distance from the source to the field
point in three dimensions, as given by

r = |r − ro| =
√

(z − zo)2 + (x − xo)2 + (y − yo)2,

where r represents the source coordinates and ro represents the field or observer coordinates.
This expression can be rewritten, in general, as

r = |ro|
(

1 − 2
r · ro
|ro|2 + |r|2

|ro|2
)1/2

.

It can be further simplified by a binomial expansion for |ro| large to be

r �
z→∞ |ro| − r · ro

|ro| + O

(
1

|ro|2
)

.



Because the dimensions of the source are much smaller than the observer distance in the far
field, the last term in |r|2 can be dropped. The Fraunhofer diffraction integral, in general, then
becomes (see reference 1.2)

Ex (ro,ω) = j z

λ| ro|r e− jk ′|ro|
∞∫

−∞
dx

∞∫
−∞

dyEx0(r)e
jk ′ r · ro

|ro | .

Applying the paraxial ray approximation to the above formula leads directly to Eq. 1.29.
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2

Optical
Electromagnetics II

In this chapter the same basic topics are addressed as in the previous chapter, but now in
the presence of matter. This greatly complicates the description of optical propagation and
continues to be the primary topic of the remaining chapters. A formal structure is devel-
oped to handle absorption and scattering phenomena in general. The modeling of optical
propagation is reduced to having to know the complex index of refraction of the medium.

2.1 Macroscopic Properties in Matter

A macroscopic description represents the large-scale observable character of optical
propagation. At this level, many models are phenomenological, but lead to important
general properties, definitions, formulas, and the establishment of basic concepts.
Because microscopic models to be presented in future chapters contain considerable
detail, this section is an important prerequisite to the remaining text.

2.1.1 Plane-Wave Propagation and Linear Response Theory

Again, plane waves are a useful tool for the description of optical propagation. The
Poynting vector, causality, and Poynting’s theorem are used to develop and derive quan-
tities and relationships concerning radiometry and the flow of electromagnetic power at
optical frequencies.

2.1.1.1 Maxwell’s Equations in an Unbounded Medium

Consider Maxwell’s equations again, but in the presence of linear isotropic matter. 
Now the constitutive relations will play a more important role and are the foundation of



classical dispersion theory. Recall, Maxwell’s equations in the time domain and in 
differential form:

Faraday’s law: ∇ × e(r,t) = −∂b(r,t)
∂t

, (2.1)

Ampere’s law: ∇ × h(r,t) = j(r,t) + ∂d(r,t)
∂t

, (2.2)

and

∇ · d(r, t) = ρ(r,t), (2.3)

Gauss’s laws:

∇ · b(r,t) = 0 (2.4)

with the time-domain constitutive relations given by

j(r,t) = σt(r,t) ∗ e(r,t) =
∞∫

−∞
dt ′σt(r,t ′) e (r,t − t ′), t > t ′, (2.5)

b(r,t) = µt(r,t) ∗ h(r,t), (2.6)

and

d (r,t) = εt(r,t) ∗ e(r,t) . (2.7)

σt , µt , and εt are the phenomenological time-domain conductivity, permeability, and
permittivity, respectively, and are scalars because the medium is assumed isotropic.
Anisotropic media require σt , µt , and εt to be dyadic, and this issue is addressed in
Chapter 4. The “*” operator signifies convolution as defined by Eq. 2.5. The relation-
ships between the free-space constants µ0 and ε0, and µt and εt are given by

µt(r,t) = µ0µr (r,t) [H/m sec] and εt(r,t) = ε0εr (r,t) [F/m sec], (2.8)

where µr (r,t) and εr (r,t) are the relative causal time-domain permeability and relative
causal time-domain permittivity, respectively, and have units of reciprocal time. σt has
MKS units of mhos per meter second ( /(m sec)). For example, a material with an
instantaneous response for the permittivity has the following approximate form:

εt(r,t) ≈ ε0

[
δ(t) − χ(r)

dδ(t)

dt
h(t)

]
,

where χ(r) is the electric susceptibility, δ(t) is the Dirac delta function, and h(t) is the
Heaviside step function. Since the constitutive parameters are driven by oscillating
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fields, they also oscillate in time. Time-dependent properties of these quantities are
addressed in the next section. Because of the complexity of the convolution relationship
between fields, time-domain solutions of Maxwell’s equations are not commonly
attempted. For this reason, most of the analysis presented here will be in the frequency
domain. However, high-speed and large-bandwidth systems can only be effectively
handled in the time domain. For this reason, computational procedures, such as finite-
difference–time-domain (FD-TD) technique, are emerging (see Ref. 2.3).

The Fourier transform of these time-domain constitutive parameters produces
frequency-domain parameters as given by

�{εt(r,t)} = ε(r, ω), �{µt(r,t)} = µ(r,ω), � {σt(r,t)} = σ(r, ω).

The frequency-domain parameters have the time dimension removed, thus
εr (ω) and µr (ω) are dimensionless quantities and σ(ω) has dimensions of mhos per
meter. Only general macroscopic properties of these parameters will be examined at
this time. A more detailed microscopic development is presented in Chapter 5.

The constitutive relations greatly complicate a time-domain solution of Maxwell’s
equations. For this reason, a frequency-domain solution is preferred because the
convolution integrals are not needed. The Fourier transform of the above equations and
the substitution of the constitutive relations into Maxwell’s equations results in the
following:

∇ × E(r,ω) = − jωµ(r,ω)H(r,ω), (2.9)

∇ × H(r,ω) = σ(r,ω)E(r,ω) + jω ε(r,ω)E(r,ω), (2.10)

∇ · ε(r,ω)E(r,ω) = ρ(r,ω), (2.11)

and

∇ · µ(r,ω)H(r,ω) = 0. (2.12)

Taking the curl of Faraday’s law, one obtains the frequency-domain wave equation
for the electric field, E

∇ × 1

µ
∇×E(r,ω) = (− jωσ + ω2ε)E(r,ω) . (2.13)

The following assumptions are now made:

1. ε, µ, and σ vary slowly with r such that spatial derivatives of ε, µ, and σ can be
ignored.

2. ρ = 0, the medium contains no net volume charge.

Then, Eq. 2.13 reduces to the frequency-domain wave equation,

∇2E(r,ω) = ( jωµ(ω)σ(ω) − ω2µ(ω) ε(ω))E(r,ω) = γ 2(ω)E(r,ω), (2.14)
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where γ (ω)(= − jk ′(ω)) is called the propagation constant. In complex form, it is
given by

γ (ω) = jω

√
µ(ω)ε(ω)

(
1 − j

σ(ω)

ωε(ω)

)
= β fa(ω) + jα f p(ω) (2.15)

where βfa(ω) is the field absorption coefficient and α f p(ω) is the field phase coefficient.
To simplify the notation, define

εc(ω) = εr (ω)

(
1 − j

σ(ω)

ωε(ω)

)
. (2.16)

εc(ω) is a generalized permittivity, which includes contributions from free charges (via
the conductivity, σ(ω)) and bound charges (via the relative permittivity, εr (ω)). It is
important to distinguish between these two very different processes. In the frequency
domain, all the constitutive parameters are also complex quantities. Therefore, the prop-
agation constant now becomes

γ (ω) = j
ω

c

√
µr (ω)εc(ω). (2.17)

As in Chapter 1, let E(r,ω) be polarized in the x-direction and propagate in the 
z-direction. Then a scalar wave equation is obtained:

∇2 Ex(z,ω) = γ 2(ω)Ex(z,ω). (2.18)

The solution for monochromatic forward-propagating light is

Ex(z,ω) = Ex0e−γ (ω)z = Ex0e−β fa(ω)ze− jα f p(ω)z (2.19a)

where Ex0 = Ex(z = 0). In the time domain, the steady-state solution becomes

ex(z,t) = ex0 e−β f a z cos(ωt − α f pz).

This field is attenuated and delayed or phase shifted as it propagates and the mean-
ing of β f a(ω) and α f p(ω) is now more clear. For arbitrary polarization and propagation
directions, the forward-propagating polychromatic electric field is expressed as

E(r,ω) =
∑

m

Em(ωm) e− jk′(ωm) · r. (2.19b)

Again, optical detectors measure the time-averaged power. Thus, the time-averaged
Poynting vector is of interest, as defined by (recall Eq. 1.18)

〈 (t)〉t = 1

2
Re
[
Ex(ω)H∗

y (ω)
]

ẑ
[
watts/(m2sr)

]
. (2.20)

To derive Hy in terms of the electric field intensity, we use Faraday’s law and obtain,
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Hy =
√

ε0εc

µ
Ex = 1

ηc
Ex . (2.21)

Using these results, the magnitude of the time-averaged Poynting vector is the 
frequency-domain radiance, L(z,ω), which, in terms of the electromagnetic field
becomes

L(z,ω) = |〈 (z,t)〉t | = 1

2
Re

[
1

η∗
c (ω)

]
|Ex0|2 e−2β fa(ω)z. (2.22)

Most media in which light propagates are nonmagnetic, with µ = µ0. Then, the
intrinsic impedance simplifies to

1

ηc
= 1

η0

√
εc. (2.23)

It is of interest to find the real and imaginary parts of the propagation constant, β fa

and α fp , in terms of the generalized permittivity. Using Eq. 2.17, we have

βfa = Re
(

j
ω

c

√
εc

)
and α f p = Im

(
j
ω

c

√
εc

)
.

It is convenient to define a new parameter representing the dielectric properties of a
medium, the complex index of refraction, nc, by

n̄c = n − jka = √
εc = √ε′

c − jε′′
c (2.24)

where n is the index of refraction, ka is the index of absorption (also called the extinc-
tion coefficient in some publications), ε′

c is the real part of the relative permittivity and
ε′′
c is the imaginary part of the relative permittivity. Now, the field absorption and phase

coefficients become

βfa = ω

c
ka and αf p = ω

c
n. (2.25)

The meaning of n and ka is similar to α f p and β fa, respectively; n contributes to
phase effects during propagation (e.g., time delay) and ka contributes to attenuation of
the propagating beam caused by absorption. The complex index of refraction affects
refraction and reflection, as will be demonstrated later. Substituting these results into 
Eq. 2.22, the radiance now becomes

L(z,ω) = n(ω)
|Ex0|2

2η0

exp

(
−2ωka

c
z

)
. (2.26)
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The radiance at z = 0, L(0,ω), is

L(z = 0,ω) = n(ω)
|Ex0|2

2η0

. (2.27)

The transmittance in an unbounded medium, τ∞(z,ω), is therefore defined as

τ∞(z,ω) = L(z,ω)

L(0,ω)
= e−2β fa(ω)z. (2.28)

The transmittance is dimensionless and always between zero and one. The power
absorption coefficient, βpa(z, ω), is defined as

βpa(ω) = 2β fa(ω) = 2
ω

c
ka(ω) = ω

cn(ω)
ε′′

c (ω). (2.29)

Normally βpa is called the absorption coefficient and the subscript p will be
dropped. It is a fundamental quantity concerning the description of optical propagation.
Expressed in terms of wave numbers, βabs(ν) becomes

βabs(ν) = 4πνka(ν) = 2πν

n(ν)
ε′′

c (ν). (2.30)

2.1.1.2 Temporal Dispersion and Causality

The fact that a medium cannot respond to the incident light field or power until after it
has been illuminated is called causality. This fundamental requirement produces impor-
tant symmetry properties and integral relationships between the real and imaginary
parts of the complex permittivity and mathematical relationships between the real and
imaginary parts of the complex index of refraction. These results will be of great use later.

Another definition of the complex relative permittivity, in terms of the complex elec-
tric susceptibility, χ , is given by

εr (ω) = 1 + χ(ω), (2.31)

and

ε′
r (ω) − jε′′

r (ω) = 1 + χ ′(ω) − jχ ′′(ω). (2.32)

Also, the constitutive relation given by Eq. 2.7 is redefined using the polarization
vector in the time domain, p(r,t),

d(r,t) = ε0e(r,t) + p(r,t) (2.33)

where

p(r,t) = ε0χt(r,t) ∗ e(r,t). (2.34)

30 OPTICAL PROPAGATION IN LINEAR MEDIA



χt(r,t) represents the time-domain response of a passive medium to the electric
field. Causality requires this response to come after the field excites the medium. Thus
χt(t) (the spatial dependence of χ is suppressed, since it is not relevant to the remain-
ing discussion) must contain a “turn on” function to account for causality. Therefore,
for positive values of time

χt(t) = h(t)χ(t) (2.35)

where χ(t) is the dimensionless time-domain susceptibility and is a real function. h(t)
is the Heaviside step-function in units of reciprocal time and is given by

h(t) = 1

2
(1 + sgn(t)) =

{ 0 t < 0
1
2 t = 0
1 t > 0.

(2.36)

The frequency-domain susceptibility is the Fourier transform of the time-domain
susceptibility (Eq. 2.35) and becomes

χ(ω) =� {χt(t)} =
∞∫

0

dtχ(t) e− jωt . (2.37)

This result leads to the following important properties:

1. The static susceptibility is the integral of the material response function over all
positive time. That is,

χ(ω = 0) =
∞∫

0

dtχ(t). (2.38)

Therefore, the true static susceptibility requires an infinite observation time.
2. Based on Eq. 2.37 and the fact that χ(t) is real, we obtain the following symmetry

of the frequency-domain susceptibility about the origin of the frequency axis,

χ(ω) = χ∗(εω), χ ′(ω) = χ ′(−ω), and χ ′′(ω) = −χ ′′(−ω). (2.39a)

The real part of the susceptibility is an even function of ω, and the imaginary part
is an odd function. For the permittivity, based on Eq. 2.32, similar statements can
be made:

εr (ω) = ε∗
r (−ω), ε′

r (ω) = ε′
r (−ω), and ε′′

r (ω) = −ε′′
r (−ω). (2.39b)

Based on these results the static susceptibility must be real. Furthermore, it 
similarly follows that the complex index of refraction must have the following
symmetry relationships:

n̄(ω) = n̄∗(−ω), n(ω) = n(−ω), and ka(ω) = −ka(−ω). (2.39c)

These symmetry properties are illustrated in Fig. 2.1 for a medium with Debye,
vibrational, and electronic transitions, and are fundamental to realistic models of 
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the susceptibility. More details concerning these different transitions will be presented
in Chapters 3 and 4. The symmetry of χ(ω) forces the shape of absorption and emis-
sion (time-reversed) processes to be matched. This symmetry requirement is a part of
what is called detailed balance.

The inverse transform of Eq. 2.37 can be expressed as the sum of a cosine transform
and a sine transform, as given by

χt(t) = 1

2π

∞∫
−∞

dω χ ′(ω) cos(ωt) + 1

2π

∞∫
−∞

dω χ ′′(ω) sin(ωt). (2.40)

The cosine transform is even in t, and the sine transform is odd in t. That is, the time-
domain susceptibility can be expressed as a sum of an even function, χte(t), and an odd
function, χto(t), thus

χt(t) = h(t)χ(t) = χte(t) + χto(t).

Because the time-domain susceptibility is causal, it must be zero for t < 0. This
means the even and odd susceptibility functions must be equal for positive time so that
they cancel for negative time. This also implies that the noncausal susceptibility can be
expressed as

χ(t) = 2χto(t) = 2χto(t) for t ≥0. (2.41)

This result is useful because the time-domain susceptibility can now be determined
from either the real or imaginary parts of the frequency-domain susceptibility.

The frequency-domain representation of χ(ω) is also given by a convolution of the
time-domain components given in Eq. 2.35,

χ(ω) = � {h(t)} ∗ � {χ(t)}. (2.42)
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Fig. 2.1 The complex permittivity as a function of frequency representing various resonances in
a medium.



The Fourier transform of the Heaviside step function is a well-known result given by

� {h(t)} = 1

2
δ(ω) − j

2

P

πω
. (2.43)

P indicates the Cauchy principle value integral operator and δ(ω) is the Dirac delta
function. Substituting this result into Eq. 2.42 and recalling that f(x) ∗ δ(x) = f(x),

one obtains

χ(ω) = −P

[
1

πω
∗ j

2
� {χ(t)}

]
− j

[
j

2
� {χ(t)}

]
. (2.44)

The time symmetry of χ(t) is odd (i.e., χ(t) = −χ(−t)). This statement is sup-
ported by the following arguments. Negative time represents time reversal or, in this
case, emission (time-reversed absorption). The negative sign indicates that population
inversion exists in the medium and that the gain coefficient is the negative of the
absorption coefficient. Emission is a source to the field. Thus, using the time-domain
Maxwell’s equations together with Eqs. 2.33 and 2.34, the following form of the wave
equation in a nonconducting medium is obtained:

∇2e + 1

c2

∂2e
∂t2

= 1

ε0c2

∂2pa

∂t2
− 1

ε0c2

∂2pe

∂t2
, (2.45)

where the subscript a indicates absorption and the subscript e indicates emission. pa is
a sink to the field and pe is a source to the field, and using Eq. 2.34, this justifies the
symmetry relationship of χ(t). Causality must also be present for emission, but now the
Heaviside step function is zero for positive time and unity for negative time. Therefore,
the time reversal of the turn on function must be

h(−t) = [1 − h(t)].

Based on these arguments, the time-domain response function χt(t) in the time-
reversed sense (t < 0) must be

χt(t) = [1 − h(t)]χ(t).

The odd symmetry of χ(t) now produces a negative χt(t) as desired.
The Fourier transform of χ(t) is pure imaginary and therefore only the sine trans-

form exists, as given by

� {χ(t)} = − j �s{χ(t)} (2.46)

where the subscript s indicates a Fourier sine transform. Substitution of these results
into Eq. 2.44 and equating real and imaginary parts, gives

χ ′′(ω) = 1

2
�s{χ(t)} (2.47a)
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and

χ ′(ω) = −P

[
1

πω
∗ χ ′′(ω)

]
. (2.47b)

Writing out the convolution integral leads to

χ ′(ω) = 1

π
P

∞∫
−∞

dω′ χ
′′(ω′)

ω′ − ω
= Hi

{
χ ′′(ω′)

}
. (2.48a)

This integral relationship between the real and imaginary parts of the susceptibility
is called a Hilbert transform, Hi{ }, or the Kramers–Krönig relation and is fundamental
to realistic models. The inverse transform is given by

χ ′′(ω′) = 1

π
P

∞∫
−∞

dω
χ ′(ω)

ω′ − ω
= Hi−1 {χ ′(ω)

}
. (2.48b)

These relations can also be applied to the permittivity, based on Eq. 2.31, to obtain

ε′
r (ω) − 1 = Hi {ε′′

r (ω′)} (2.49a)

and

ε′′
r (ω′) = Hi−1{ε′

r (ω) − 1}. (2.49b)

This causal relationship must also hold between the components of the complex
index of refraction, thus

n(ω) − 1 = Hi {ka(ω
′)} (2.50a)

and

ka(ω
′) = Hi−1{n(ω) − 1}. (2.50b)

Using the symmetry properties of χ ′(ω) and χ ′′(ω), the single-sided Hilbert trans-
form becomes

χ ′(ω) = 2

π
P

∞∫
0

dω′ ω′χ ′′(ω′)
ω′2 − ω2

, (2.51a)

with the corresponding inverse transform given by

χ ′′(ω′) = 2

π
ω′P

∞∫
0

dω
χ ′(ω)

ω′2 − ω2
. (2.51b)
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The single-sided Hilbert transform for the complex index of refraction follows similarly
and is

n(ω) − 1 = 2

π
P

∞∫
0

dω′ ω′ka(ω
′)

ω′2 − ω2
, (2.52a)

with the inverse transform given by

ka(ω
′) = 2

π
ω′P

∞∫
0

dω
n(ω) − 1

ω′2 − ω2
. (2.52b)

These are fundamental relationships of any causal system.
Because of the odd symmetry of χ(t), it must equal zero at t = 0. Thus, χt(t = 0) = 0,

also. Using this result with the inverse transform of Eq. 2.40, we obtain the following
integral relationship for χ ′(ω) and ε′

r (ω):

∞∫
−∞

dω χ ′(ω) =
∞∫

0

dω χ ′(ω) = 0 =
∞∫

0

dω
[
ε′

r (ω) − 1
]
. (2.53a)

This is a practical test for any physical model of the refractive index. In a similar
fashion, it can also be shown that for the real part of the index of refraction, the fol-
lowing is true:

∞∫
0

[n(ω) − 1] dω = 0. (2.53b)

This is an interesting result that shows that the real part of the susceptibility and
index of refraction has equal area above and below unity. Based on Fig.2.1, the permit-
tivity above electronic transitions (x-ray region and above) is less than one, and
asymptotically approaches one as ω goes to infinity.

Also, based on Eqs. 2.51a and 2.52a, the following relationships for the static sus-
ceptibility and for static index of refraction are obtained:

χ ′(ω = 0) = 2

π

∞∫
0

dω′ χ
′′(ω′)
ω′ (2.54a)

and

n(ω = 0) − 1 = 2

π

∞∫
0

dω′ ka(ω
′)

ω′

= c

π

∞∫
0

dω′ βabs(ω
′)

ω′2 ,

(2.54b)

where Eq. 2.29 was used to obtain the last equation.
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Practical models, to be developed later, are required to satisfy these fundamental
symmetry properties and integral relationships of temporal dispersion and linear
response theory.

2.1.1.3 Poynting’s Theorem and Conservation of Power Flow

Previous discussion concerned propagation in unbounded media and macroscopic prop-
erties of the media. Realistic theories must include the effect of boundaries, and this
greatly complicates the problem of characterizing propagation.

Consider a bounded linear isotropic medium in the presence of an external optical
source, as shown in Fig. 2.2. The flow of optical power through the medium must be
conserved. A precise mathematical statement is obtained from Poynting’s theorem. We
begin with the time-domain Ampere’s and Faraday’s laws, and manipulate them in the
following way:

∇ × e · h = −
(

∂b
∂t

)
· h (2.55a)

and

e · ∇ × h = e · j + e ·
(

∂d
∂t

)
. (2.55b)

Subtract Eq. 2.55b from 2.55a and apply the following identity:

∇ · (e × h) = (∇ × e) · h − e · ∇ × h

along with the definition of the time-domain radiance, to obtain Poynting’s theorem in
point form,
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Fig. 2.2 Illuminated finite medium, where ε, µ, and σ

are scalars. The medium is completely enclosed by a
surface S with volume V. Upon propagation through
the medium, the illuminating ray generates reflected
rays, bulk scattered rays, absorbed rays (which are
then emitted), and a transmitted ray.



∇· (t) = −∂b
∂t

· h − e · j − e · ∂d
∂t

. (2.56)

The time-domain version of Poynting’s theorem, as given by Eq. 2.56, leads to a
continuity equation for power flow, for µ = µ0 and σ = 0 in a lossless medium,

∇· (t) = − ∂u

∂t
= − n

c

∂| (t)|
∂t

.

where u(= 1/2[(e · d) + (b · h)]) is the stored energy density of the electromagnetic
field. This result is useful when transient effects are important. A good example is the
propagation of a laser pulse inside a lossy resonator. 

The corresponding frequency-domain result of Poynting’s theorem is obtained by
beginning with Eqs. 2.9 and 2.10, and following the same mathematical procedure as
above. Since the time-averaged Poynting vector is ultimately desired, we compute
E×H∗ and E∗×H and add the results, yielding

∇ · Re [E×H∗] = −(Re [σ ] + ω Im [ε])|E|2 − ω Im [µ]|H|2. (2.57)

For a medium with no magnetic loss (i.e., Im [µ] = 0) and using Eqs. 1.18, 2.27, and
2.29, Eq. 2.57 reduces to the following important result concerning electromagnetic
propagation,

∇ · Re [E × H∗] = ∇ · L(ω,r) = −1

2
ωε0 Im [εc(ω,r)] |E(ω,r)|2

= −βabs(ω,r)L(ω,r),

(2.58)

where L(ω)(= 1/2 Re [E × H∗]) is the frequency-domain time-averaged Poynting’s
vector or the spectral radiance vector. This is the frequency-domain continuity equation
for time-averaged power flow. For propagation in the z-direction, Eq. 2.26 is a solution
to the above equation when βabs is independent of position. Based on Eq. 2.58, the
vector radiance is solenoidal if βabs is zero (i.e., there are no sinks). If we also consider
a medium with gain and absorption, then a gain coefficient, βgain , must be added as a
source to the continuity equation, thus

∇ · L(ω,r) = [−βabs(ω,r) + βgain(ω,r)]L(ω,r). (2.59)

Requiring thermal equilibrium, or that the medium is at constant temperature (steady
state), means absorption loss and gain must be equal, and the field of rays is again sole-
noidal. Thus,

∇ · L(r,ω) = 0. (2.60)

Within the framework of geometrical optics, this means the number of rays of light
entering a point equals the number leaving. This represents the time-averaged or steady-
state flow of power through a source-free point. Then, Eq. 2.60 is a statement of
conservation of power flow in the form of a source-free steady-state continuity equation
in a lossless medium.
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Further, consider a surface enclosing the medium and an incident ray upon the
medium, as illustrated in Fig. 2.2. The incident ray is reflected at the first and second
interface, as represented by Ir1 and Ir2, respectively. A series of reflected rays is pro-
duced with the intensity decreasing as the number of reflections increases. Also, surface
roughness increases the angular spread of reflected rays. Scattered rays, Is, are pro-
duced within the medium, due to refractive index fluctuations. Light is also absorbed
within the medium, as represented by Ia. The remaining intensity, It, is transmitted. The
volume integration of Eq. 2.60 over the volume, V, contained within the surface, S,
extends the conservation of power flow from a point to a realistic finite medium. Using
the divergence theorem, convert the volume integration to a closed surface integration
to obtain

∫ ∫
V

∫
∇ · L dV =

∮
S

L · n̂ dS = 0. (2.61)

The unit vector n̂ points outward perpendicular to the surface, so that incoming rays are
negative and outward rays are positive. Let the surface S be a sphere so that
dS = r2sin θ dθdφ = r2d	, where d	 is a differential solid angle in units of steradi-
ans. Define the spectral radiant intensity vector, I(	,ω), as seen by an observer at a
distance r from the source, to be

I(	,ω) = L(	,ω)r2 [watts/(sr unit bandwidth)]. (2.62)

Eq. 2.61 becomes, with the substitution of Eq. 2.62 and conversion to solid-angle
integration,

∮
s

I(	,ω) · n̂ d	 = 0. (2.63)

The net or integrated radiant intensity entering and exiting the surface, S, is the sum
of the integrated incident, integrated reflected, integrated scattered, integrated emitted,
and integrated transmitted radiant intensity of light, as given by∮

s

I(	,ω) · n̂ d	 = −
∮
s

Ii(	i,ω) · n̂ d	i +
∮
s

Ir(	i,	r, ω) · n̂ d	r

+
∮
s

Is(	i,	s,ω) · n̂ d	s +
∮
s

Ie(	i,	e,ω) · n̂ d	e

+
∮
s

It(	i,	t,ω) · n̂ d	t

= 0

(2.64)

where 	i is the solid angle of the incident beam, 	r is the solid angle of reflection, 	s

is the solid angle of scatter, 	e is the solid angle of emission, and 	t is the solid angle
of transmission. The magnitude of I(	,ω) is the radiometric quantity called the spec-
tral radiant intensity, I (	,ω) (e.g., |I(	,ω)| = I (	,ω)). All unit vectors point in the
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outward direction from the volume. The net absorbed intensity, Ia , is assumed to be
reradiated, so that the medium does not change temperature (the assumption of thermal
equilibrium). Thus, the net time-averaged absorbed power equals the time-averaged
integrated emitted power. The reflected light represents surface effects. The scattered
radiant intensity represents bulk scattering effects. These intensities are bidirectional
frequency-domain quantities which depend on the solid angle of incidence, 	i , and the
solid angle corresponding to the type of exiting light.

The closed surface integral over the spectral radiant intensity is the corresponding
spectral flux, �(ω), in units of watts per unit bandwidth. Flux is an especially impor-
tant radiometric quantity because it is directly measurable by common optical detectors.
Thus, based on Eq. 2.64, the following definitions are made:

�i (ω) =
∮
s

Ii(	i, ω) · n̂ d	i ≡ Net incident flux, (2.65a)

�r (	i ,ω) =
∮
s

Ir(	i,	r, ω) · n̂ d	r ≡ Net reflected flux, (2.65b)

�s(	i , ω) =
∮
s

Is(	i,	s, ω) · n̂ d	s ≡ Net scattered flux, (2.65c)

�e(	i , ω) =
∮
s

Ie(	i,	e, ω) · n̂ d	e ≡ Net emitted flux, (2.65d)

and

�t(	i , ω) =
∮
s

It(	i ,	t , ω) · n̂ d	t ≡ Net transmitted flux. (2.65e)

Kirchhoff’s radiation law states that the time-averaged power absorbed must equal
the time-averaged power emitted for a medium at constant temperature and for no ther-
mal conduction or convection losses. In general, the spectral emitted and absorbed flux
must be integrated over all frequencies for this to be true:

∞∫
0

�e(	i ,ω) dω =
∞∫

0

�a(	i ,ω) dω. (2.66)

When the emitted and radiated power are in thermal equilibrium (e.g., like a black-
body), then integration over all frequencies is not necessary and the spectral power
emitted equals the spectral power absorbed. This can also be true in the narrow spectral
band field case if the absorption feature is also narrow band and uncoupled from its
environment. Thus, in this case it also true that

�e(	i,ω) = �a(	i,ω). (2.67)
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Substituting these definitions into Eq. 2.64, we obtain

�i = �r + �s + �a + �t . (2.68)

Normalizing this expression relative to the incident flux, the important statement of
conservation of power flow is now obtained,

1 = ρ(	i,ω) + αsca(	i,ω) + αabs(	i,ω) + τ(	i,ω) (2.69)

where the following definitions have been made:

ρ(	i,ω) = �r (	i,ω)

�i (ω)
= total integrated reflectance, (2.70a)

αsca(	i,ω) = �s(	i,ω)

�i (ω)
= total integrated scatterance, (2.70b)

αabs(	i,ω) = �a(	i,ω)

�i (ω)
= total integrated absorptance, (2.70c)

and finally

τ(	i,ω) = �t(	i,ω)

�i (ω)
= total integrated transmittance. (2.70d)

Notice that these quantities are functions of angles of incidence and frequency only.
Equation 2.69 is also called the total power law. The sum of total integrated scatterance
and total integrated absorptance is generally defined as the total integrated extinctance,
αext ,

αext(	i,ω) = αabs(	i,ω) + αsca(	i,ω). (2.71)

Using this result, the total power law becomes

1 = ρ(	i,ω) + αext(	i,ω) + τ(	i,ω). (2.72)

Another useful quantity is the spectral directional emittance, which is defined as

ε(	i,ω) = �e(	i,ω)

�bb(ω)
, (2.73)

where �bb is the blackbody function representing the spectral emission of a medium
which totally absorbs all light at all frequencies in thermal equilibrium (this function
will be given explicitly in Chapter 5). When �i (ω) = �bb(ω), and based on Eq. 2.67,
the directional emittance equals the total integrated absorptance,

ε(	i,ω) = αabs(	i,ω). (2.74)

The above equation is another form of Kirchhoff’s law of radiation.
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This section has presented the effects of boundaries of finite media on optical prop-
agation, and introduced the definition of several practical quantities. Further discussion
of bidirectional quantities will come later.

2.1.1.4 Radiation Transfer Equation Along a Path

Another useful equation governing electromagnetic power flow is the radiation transfer
equation (also called radiation transport equation), which is heuristically based on the
point form of Poynting’s theorem for time-averaged power flow in a homogeneous
medium (see Eq. 2.60). In this case, the concept of the continuity equation is used. The
radiance vector can be thought of as a current density of directed photons. Also, let the
radiance vector in Eq. 2.60 represent only the incident and transmitted radiance. Then
the field is no longer solenoidal and must include sinks, due to scattering and absorp-
tion along the path, and sources, due to path emission and scattering of external sources
into the path. These concepts are illustrated in Fig. 2.3. Also, the point form of
Poynting’s theorem must be applied carefully, since only the integral form has physical
meaning. Therefore, the propagation path is considered finite in size (macroscopic) and
can be represented by a series of connected spheres along a specified path, as shown in
Fig. 2.3. The point form is the limit of the spheres shrinking to a point, and therefore an
approximation. Based on this discussion, consider the following form of Eq. 2.60:

∇ · L(ω, r) = − ℘−(ω, r) + ℘+(ω, r). (2.75)

This is a statement of the conservation of steady-state photon flow when sources and
sinks exist. ℘+ is related to the volume density of photon sources, and ℘− is related to
the volume density of photon sinks. Equation 2.60 provides an explicit expression for
℘−, as given by the following for multiple absorbers:

℘−(ω,r) =
(∑

i

βabs,i (ω, r)

)
L(ω,r). (2.76)

As discussed in the previous section, scattering also contributes to loss and, for the case
of single scattering (which will be described in Section 2.1.2), a scattering coefficient,
βsca , is now defined, which is added to the absorption coefficient to obtain the net loss or
extinction coefficient,

βext = βabs + βsca. (2.77)
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Therefore, the sink term can be generalized to the form

℘−(ω,r) =
(∑

i

βext,i (ω,r)

)
L(ω,r), (2.78)

where βext,i is the extinction coefficient of the i th species, representing photon loss
caused by absorption and single scattering. ℘+ is a source function accounting for emis-
sion along the path and scattering along the path by external sources into the field of
view of the receiver. Details of this function will be discussed later when background
radiance is added to the signal, which is introduced in Chapter 11.

The magnitude of the radiance vector is the radiance, and this is the quantity com-
monly used in the radiation transfer equation. Based on Eq. 2.78, Eq. 2.75 is rewritten
to obtain (suppressing for the moment ω)

∇ · L(r) = ∇L(r) · ŝ = −
(∑

i

βext,i (r)

)
L(r) + ℘+(r). (2.79)

The position vector, r, specifying the optical path, is made a function of the scalar
parameter, s. The propagation path is now described along an arc, s, with direction ŝ
(see Fig. 2.6), therefore the differential equation for the radiation transfer equation
becomes

∇L[r(s)] · ŝ = dL(s)

ds
= −

(∑
i

βext,i (s)

)
L(s) + ℘+(s) (2.80)

or in differential form

d L = −
(∑

i

βext,i

)
L ds + ℘+ ds.

This is the radiation transfer equation (also called the radiation transport equation)
for spectral radiance. In the literature on radiation transfer, the extinction coefficient is
commonly replaced by the extinction cross-section, expressed as

βext,i = Cext,iρp,i , (2.81)

where Cext,i is the extinction cross-section of the ith species with units of area and ρp,i

is the corresponding particle volume density with units of reciprocal volume. In some
sense, the extinction cross-section can be visualized as an effective area blocking the
beam, resulting in attenuation (see Section 2.1.2).

To solve Eq. 2.80, consider first the homogeneous portion of this differential equa-
tion, as given by
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dL(s)

ds
+
(∑

i

βext,i (s)

)
L(s) = 0. (2.82)

The solution is easily obtained to be

L(s) = L(0) e−τOD(s) (2.83)

where τOD(s) is the optical depth as given by

τOD(s) =
s∫

0

∑
i

βext,i (s) ds ′. (2.84)

This result is a generalization of Eq. 2.28, since βext now depends on position.
The inhomogeneous differential equation, as given by Eq. 2.80, can now be solved

by observing

deτOD(s)L(s)

ds
= eτOD(s)

[
dL(s)

ds
+ L(s)

(∑
i

βext,i (s)

)]
.

Since the factor in the brackets is equal to the source function, the solution to 
Eq. 2.80 is obtained in a straightforward manner to become the radiation transfer equation
(reinserting ω),

L(ω, s) = L(ω, 0)e−τOD(ω,s) +
s∫

0

℘+(ω,s ′)e(τOD(ω,s ′)−τOD(ω,s)) ds ′. (2.85a)

More details on βext and ℘+ will be developed in Chapters 3, 4, 5, and 11. The radi-
ation transfer equation is used when propagation within a medium is along a specified
path. Boundaries can be included by incorporating reflection coefficients at the appro-
priate points along the path.

Equation 2.85a is valid for spectrally dependent radiation transfer. However, many
practical electro-optical systems operate over a finite band of frequencies. For that case,
the measured radiance is band averaged according to

L(s) =
∫

�ω

dω L(ω,s) =
∫

�ω

dω

[
L(ω,0)τ(ω,s) +

s∫
0

ρ+(ω,s ′)
τ (ω,s)

τ (ω,s ′)
ds ′
]

(2.85b)

where the internal transmittance is

τ(ω,s) = e−τOD(ω,s).

If we ignore sources along the path (e.g., path radiance and scatter) and the source
radiance is constant over the spectral region of interest (�ω), then the band-averaged
transmittance is obtained to be
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τ(s) = L(s)

L(0)
= 1

�ω

∫
�ω

dω τ(ω, s),

where the substitution L(ω,0) = L(0) · �ω has been made in Eq. 2.85b. L(0) is the
band-averaged radiance at the source.

Furthermore, in a real electro-optical system the spectral response of the detector
must be included in Eq. 2.85a, so that the measured radiance can be modeled. This is
accomplished by multiplying Eq. 2.85a by the detector spectral response or transfer
function, tf(ω). The band integrated result is obtained by integrating over the band of
interest, as given by

L(s) =
∫

�ω

dω tf(ω)

[
L(ω, 0)τ(ω, s) +

s∫
0

ρ+(ω, s ′)
τ (ω, s)

τ (ω, s ′)
ds ′
]

(2.85c)

2.1.1.5 Total Power Law and Directional Dependence

Let us continue to examine, in more detail, the consequences of some of the defined
quantities used in the total power law. This approach is most useful when the propaga-
tion medium of interest is finite in extent, such as a window or mirror, and can be
enclosed by a surface. Consider, a finite slab of thickness d in thermal equilibrium with
the surrounding environment, and a beam of incident optical energy on its surface that
generates a reflected beam and an attenuated transmitted beam. The surface is not per-
fectly smooth, so that the reflected light will have an angular dependence, as indicated
by the definition of the reflected intensity. Also, the bulk medium scatters light in all
directions, as indicated by the definition of the scattered intensity. Thus, to completely
characterize the angular effects of scatter, both the solid angle of incidence and the solid
angle of the reflected or scattered light must be known. The quantities in Eqs. 2.69 and
2.70 depend only on the angles of incidence, so more general definitions are needed.
The geometry is illustrated in Fig. 2.4a for reflectance measurements and 2.4b for scat-
terance measurements. Using the definitions of the flux (Eq. 2.65), a normalized
differential flux is given by

d�r

�i (ω)
= Ir (	i,	r, ω) · n̂

�i (ω)
d	r = Ir (	i ,	r , ω) cos θr

�i (ω)
d	r (2.86)

where is a unit vector that points in the direction of the reflected rays. Based on the
above result, the following bidirectional reflection function is defined:

d�r

d	r
= ρ(	i ,	r , ω)�i . (2.87)
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Fig. 2.4 (a) Three-dimensional geometry of focused incident light and the reflected beam defin-
ing a reflectance measurement. (b) Geometry of incident, reflected, and transmitted beams for a
semitransparent slab of thickness d.

ρ(	i,	r, ω) is called the bidirectional reflectance distribution function (BRDF). For
single-ray reflection, reciprocity requires the following symmetry relation:

ρ(	i,	r ) = ρ(	r,	i ).

Using the definition of scattered flux (Eq. 2.65c), a similar expression for
αsca(	i,	s, ω), the bidirectional scatterance distribution function (BSDF), is also
defined to be

d�s

d	s
= αsca(	i,	s, ω)�i = Is(	i,	s, ω) cos θs�i . (2.88)



In these definitions of BRDF and BSDF, 	r covers the backward hemisphere and 	s

represents the full sphere. (Also be aware that the cos θr,s factor in Eqs. 2.86 and 2.88
is not always kept in the definition of the BRDF and BSDF.) BRDF measurements are
for nontransmitting samples (e.g., mirrors, painted surfaces, etc.) and provide informa-
tion about surface roughness. BSDF measurements are for transparent samples (e.g.,
windows) and provide information about the surface and bulk scattering. Also, in this
development, the polarization state of the scattered optical fields has not been
addressed. It is assumed that the observer is not sensitive to polarization. This topic will
be further discussed later in the chapter. Furthermore, the details of scattering mea-
surements are presented in Chapter 6.

Differentiating Eq. 2.88 with respect to area, leads to the definition of irradiance, as
given by

Ls = d2�s

dAd	s
= αsca(	i,	s, ω)

d�i

dA
= αsca(	i,	r )Mi, (2.89)

where Ls is the scattered radiance and Mi is the incident irradiance.
Based on Eq. 2.86, the integral of the BRDF over 	r is the unidirectional

reflectance, as defined in Eq. 2.70a, and is also called the total integrated reflectance
(TIR). Similarly, the integral of the BSDF over 	s is the unidirectional scatterance or
the total integrated scatter (TIS). The BRDF and BSDF are now broken down as a prod-
uct of two factors, the total integrated quantity and a normalized solid-angle-dependent
function called the phase function, Pr,s(	i,	r,s), for reflection and scatter, respectively.
The normalization condition on the phase function is

∫
	r,s

Pr,s(	i,	r,s, ω) d	r,s = 1. (2.90)

The BRDF and BSDF are now written as

ρ(	i,	r ) = ρTIR(	i )Pr (	i,	r ) (2.91a)

and

αsca(	i,	s) = αsca,TIS(	i )Ps(	i,	s), (2.91b)

respectively.
It is instructive to further break the phase function into specular and diffuse compo-

nents, separately representing the unscattered beam and the scattered light, respectively,
as given by the following for reflection:

Pr (	i,	r,ω) = PSr (	i,	r,ω) δ(	i + 	r ) + PDr (	i,	r,ω) (2.92)

and for scatter

Ps(	i,	s,ω) =PSs(	i,	s,ω)[δ(	i + 	s) + δ(	s − 	t)]

+ PDs(	i,	s,ω).
(2.93)
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Specular components (PS) represent the contributions from the reflected and trans-
mitted rays for a perfectly flat surface. Diffuse components (PD) represent the effects
of surface roughness. For a uniform surface with randomly oriented roughness there
will be no dependence in the φ-direction. Thus, scatter from the sample is invariant
under rotation by the angles φi and φr,s , and the phase function is a function of
θi and θr,s only. For diffuse reflectance, the phase function has the interpretation of a
probability density function. It gives the probability of observing a reflected ray in a
particular direction, given a specific incidence angle, which now leads to the realm of
statistical optics.

For a passive medium with no surface roughness, no bulk scatter, and a collimated
ray bundle with incidence angle θi, incident on the surface such that

ρ(θi,θr) = ρs(θi )δ (θi + θr )

and

τ(θi ,θt) = τs(θi )δ(θi − θt).

Example 2.1 The diffuse component of a flat opaque medium with small-scale
random roughness (see Fig. 2.4a) is called Lambertian. The phase function is

PD(θi,θr) = (cos θr )/π, (2.94)

and PD is independent of the angle of incidence. The cos θr factor accounts for the
projected illuminated-surface area of the sample. In the case of a transparent
sample with bulk and surface scatter, the phase function is 1/(2π ) | cos θs |.
(Because an isotropic phase function is by definition a constant or equal in all
directions, the cos θr,s factor is sometimes put into the definition of BRDF/BSDF.
But this change will alter the condition of normalization and is not adopted in 
this text.)

The subscript S denotes specular or flat surface terms where the reflected angle
equals the negative of the incident angle and the transmitted angle approximately equals
the incident angle (for nearly parallel surfaces, see Fig. 2.4). Then the generalized total
power law reduces to the simple formula

τs(θi, ω) + ρs(θi, ω) + αabs(θi, ω) = 1. (2.95)

These deterministic specular terms are a function of the complex index of refraction
for spectrally averaged (i.e., the bandwidth of the incident beam washes out interference
effects) polarized light incident on a slab of thickness d , as given by (ignoring interfer-
ence, fluorescence, and diffraction)

τs(θi,ω) = [1 − R(θi,ω)]2 exp(−βabs(ω)d/cos θa)

1 − R2(θi,ω) exp(−2βabs(ω)d/cos θa)
, (2.96)
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ρs(θi,ω) = R(θi,ω) + R(θi,ω)[1 − 2R(θi,ω)] exp(−2βabs(ω)d/cos θa)

1 − R2(θi,ω) exp(−2βabs(ω)d/cos θa)
, (2.97)

and

αabs(θi,ω) = [1 − R(θi, ω)][1 − exp(−βabs(ω)d/cos θa)]

(1 − R(θi ,ω) exp(−βabs(ω)d/cos θa))
. (2.98)

R(θi,ω) is the single-surface Fresnel power reflection coefficient for polarized light as
a function of the angle of incidence, θi, wave number, and complex index of refraction.
For normal incidence, the above formulas can be applied for unpolarized light because
the Fresnel power reflection coefficients for the two different polarizations are equal.
Explicit formulas of R for unpolarized and polarized light will be presented in Chapter 4.
In general, the specular transmittance for unpolarized light is given by

τunpolarized = 1

2
(τs + τp),

where τs and τp are the transmittances for two orthogonal polarizations (see Section
2.1.2.2). Similar expressions for the unpolarized reflectance are also necessary. The
factor exp(−βabs(ω)d/cos θa) is the internal transmittance. βabs(ω) is the absorption
coefficient, and also will be discussed in more detail in Chapters 4 and 5. θa is the
refracted angle within the medium, as defined in Fig. 2.4, and is related to θi according
to the well-known Snell’s law of refraction,

sin θa = n1

n2
sin θi. (2.99)

Equations 2.96–2.98 are derivable from geometrical optics approximations (see
Problem 2.5a) or from a solution of Maxwell’s equations for a uniform infinite slab. The
denominator in Eqs. 2.96–2.98 represents contributions from multiple reflections within
the slab. To find explicit formulas for transmittance, reflectance, and extinctance, including
the effects of scattering, requires physical optics, and this is developed later in this chapter.

Including the effects of interference leads to the Airy formulas, which include the
effects of phase of the field for a medium with parallel smooth surfaces (for a deriva-
tion, see Problem 2.5b and Born and Wolf, Ref. 2.1, and P. Yeh, Ref. 2.5 (lossless case).
Again, ignoring contributions from fluorescence, scattering, and diffraction, the specular
transmittance, reflectance, and absorptance, including interference, and for monochro-
matic light, now become

τSI (θi,ω) = (1 − R)2 K

1 − 2RK cos(2ωn2d cos θa/c) + R2 K 2
, (2.100)

ρSI (θi,ω) = R(1 − 2K cos (2ωn2d cos θa/c) + K 2)

1 − 2RK cos (2ωn2d cos θa/c) + R2 K 2
, (2.101)
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and

αabs(θi, ω) = (1 + RK )(1 − R)(1 − K )

1 − 2RK cos (2ωn2d cos θa/c) + R2 K 2
, (2.102)

where again the internal transmittance is

K = exp (−βabs(ω)d/cos θa),

the field reflection coefficient for light from medium 1 reflecting off medium 2 is
r12 = −r21, and the field transmission coefficient is t12 = t21 (see Chapter 4 for more
information). The power reflection coefficient is R = |r12|2 and the power transmission
coefficient is T = t12t21, where T + R = 1. These formulas are useful for Fabry–Perot
interferometers and thin-film transmission calculations. Again, one needs to know the
complex index of refraction of the media involved. The finite bandwidth Equations,
2.96–2.98, can be obtained from the monochromatic Equations 2.100–2.102, by per-
forming a spectral average (or an angle average, see Problem 2.5c). At this point, the
problem of modeling the propagation of light is reduced to knowing the geometry of
the ray path and the complex index of refraction.

Thus far we have only considered conservation of power flow for integrated or uni-
directional quantities. This is because Poynting’s theorem and conservation of power
flow only have meaning if integration of the propagation terms covers a completely
enclosed surface. However, it is often necessary to consider a conservation law of power
flow for bidirectional quantities.

The bidirectional reflectance can be equated to the bidirectional emittance based on
the following arguments and Eq. 2.64. For a single incident ray propagating in a single
direction, the incident intensity is described by 

Ii(	,ω) · n̂ = �iδ(	 − 	i ),

where   • n̂ = 1 and is a unit vector pointing in the direction of 	i. For a single ray,
only a single reflected ray, scattered ray, and so on, can exist. If we limit the solid-angle
integrals to these specific directions, since otherwise it is zero, a conservation relation
can be obtained for bidirectional quantities. In the limit of infinitesimal integration
limits, the following is obtained:

δ(	 − 	i ) = Ir(	i ,	r , ω) · n̂
�i

+ Is(	i ,	s, ω) · n̂
�i

+ Ie(	i ,	e, ω) · n̂
�i

+ It(	i ,	t , ω) · n̂
�i

.

Solid-angle integration is implied on each term in the above expression. That is, the
incident ray can only result in single reflected, scattered, emitted, or transmitted ray.
The delta function reminds us that integration is required to obtain a physically mean-
ingful statement. Using the definitions of bidirectional functions, as given by Eqs. 2.87
and 2.88, the above equation becomes a statement of conservation of power flow, as
given by
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δ(	 − 	i ) = ρ(	i ,	r , ω) + αsca(	i,	s,ω) + ε(	i ,	e, ω) + τ(	i ,	t , ω).

Consider the geometry of Fig. 2.5, with rays of light being emitted from the surface
at angle θe into region 1 and an incident ray (at θi ) reflecting at angle θr (= θe), also in
region 1. In region 2, there are the corresponding refracted rays. These are semi-infinite
regions, so no light is transmitted (r = 0). The total power law for radiation generated
in region 2 and escaping from the surface into region 1 for a single ray is (now using
solid angles and combining reflectance and scatter into one term)

ε(	′
e,	e, ω) + ρ(	′

e,	
′
r , ω) = δ(	 − 	′

e). (2.103)

The total power law for incident blackbody radiation from region 1 with the same
solid angle as the emitted light, onto region 2 is

αabs(	i ,	
′
r , ω) + ρ(	i ,	r , ω) = δ(	 − 	i ). (2.104)

The spectral bidirectional reflectance is the same for light rays in region 1 reflecting
off the surface as for light rays in region 2 reflecting off the interface between the two
regions. Thus, the following is true:

ρ(	i ,	r , ω) = ρ(	′
e,	

′
r , ω). (2.105)

Substituting the above equation into Eq. 2.103 and subtracting Eq. 2.103 from 
Eq. 2.104, the desired result is obtained, relating internal emission to external bidirec-
tional reflectance:

ε(	′
e,	e, ω) + δ(	 − 	i ) − δ(	 − 	′

e) = αabs(	i ,	
′
r , ω)

= δ(	 − 	i ) − ρ(	i ,	r , ω).
(2.106a)

The directional emissivity is obtained by integrating over all internal sources, 	′
e .

Using the principle of reciprocity, this is equivalent to integrating over all possible
external sources, 	i . Thus, the following useful relationship is obtained:

∮
ε(	′

e,	e,ω) d	′
e = ε(	e, ω) = 1 −

∮
ρ(	i ,	r ,ω) d	i

= 1 − ρ(	e, ω),

(2.106b)
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where 	e = 	r . Equation 2.106b remains true for a finite semitransparent medium,
when emitted light is observed at angles where no transmitted light from an external
source exists. Also, using reciprocity, the integration over incidence angles can be
changed to the reflected angles.

Example 2.2 Consider painted aluminum; the integrated transmittance must
equal zero. Therefore, using Eqs. 2.69 and 2.74, a simple expression for the direc-
tional emittance is found, similar to the above result,

ε(	i , ω) = 1 − ρ(	i , ω).

Near room temperature and below, it is much easier to measure the directional
reflectance using a laser than the weak emitted radiance from a surface because of
contaminating background radiance reflected from surrounding structures.

2.1.1.6 Formal Geometrical Optics

Thus far we have used the concept of the plane wave to incorporate loss and reflection
along a propagation path. This restricts the description of the optical path to a straight
line, which is seldom the case. The ability to specify the ray path in a medium of
nonuniform index of refraction is necessary for the discussion of practical problems.
This great need brings us to an introduction to geometrical optics.

Because of the importance of geometrical optics to optical propagation, a formal
development is presented. In this way the approximations and realm of validity of geo-
metrical optics can be precisely stated. The emphasis will be on obtaining a description
of the optical path.

Geometrical optics is a high-frequency asymptotic solution of Maxwell’s equations
to the zeroth order. An asymptotic expression becomes increasingly accurate as a
parameter in that expression becomes increasingly large. An asymptotic representation
of the electromagnetic field with frequency as the large parameter and the leading term
independent of frequency is desired. Such an expression is the Luneberg–Kline series
for E and H, as given by (see Ref. 2.6)

E(r) � e− jk ′
0ψ(r)

∞∑
m = 0

Em(r)
( jω)m (2.107a)

and

H(r) � e− jk ′
0ψ(r)

∞∑
m = 0

Hm(r)
( jω)m . (2.107b)

Substituting these asymptotic expressions into the frequency-domain Maxwell’s
equations (Eqs. 2.9–2.12) for the charge density ρ = 0, assuming that εr, µr, and σ are
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constant in frequency, and using the relation k ′
0 = ω/c, one obtains the following

expansion:

∑
m

∇ψ(r)× Em(r)
( jω)m

=
∑

m

(
c∇ × Em(r)

( jω)m+1
+ cµ(r)Hm(r)

( jω)m

)
, (2.108a)

∑
m

∇ψ(r)× Hm(r)
( jω)m

=
∑

m

(
c∇ × Hm(r)

( jω)m+1
− cε(r)Em(r)

( jω)m
− cσ(r)Em(r)

( jω)m+1

)
, (2.108b)

∑
m

Em(r)
( jω)m

· ∇ψ(r) =
∑

m

[
c

( jω)m+1

(
Em(r) · 1

εr (r)
∇εr (r) + ∇ · Em(r)

)]
, (2.108c)

and

∑
m

Hm(r)
( jω)m

· ∇ψ(r) =
∑

m

[
c

( jω)m+1

(
Hm(r) · 1

µ(r)
∇µ(r) + ∇ · Hm(r)

)]
. (2.108d)

Based on Fig. 2.1, the assumption that the permittivity, permeability, and conductiv-
ity are frequency independent means that εr, σ, and µr are constant in frequency and
complex in general (although treated as real in the following). Grouping together terms
of the same order in ω leads to the following sets of Maxwell’s equations to various
orders in ω:

Order 0:

∇ψ(r) × E0(r) = cµ(r)H0(r), (2.109a)

∇ψ(r) × H0(r) = − cεr (r)E0(r), (2.109b)

E0(r) · ∇ψ(r) = 0, (2.109c)

and

H0(r) · ∇ψ(r) = 0. (2.109d)

Equations 2.109c and 2.109d show that the E-field and H-field are perpendicular to
the direction of ∇ψ .

Order 1:

∇ψ(r) × E1(r) = c∇ × E0(r) + cµ(r)H1(r), (2.110a)

∇ψ(r) × H1(r) = c∇ × H0(r) − cεr (r)E1(r) − cσ(r)
ε0

E0(r), (2.110b)
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E1(r) · ∇ψ(r) = E0 · c

εr(r)
∇εr (r) + c∇ · E0(r), (2.110c)

and

H1(r) · ∇ψ(r) = H0(r) · c

µ(r)
∇µ(r) + c∇ · H0(r). (2.110d)

and so on. For ω large, the zero-order equations are the most significant, and are the
basis for geometrical optics. This is why geometrical optics is considered valid at high
or optical frequencies. The higher order equations contribute to the geometrical theory
of diffraction (GTD) and propagation in conductive media. GTD is commonly applied
to microwave theory and is beyond the scope of this text. References on GTD are given
in the Bibliography (see Refs. 2.6 and 2.7).

For a dielectric medium, the geometrical optic field is a transverse electromagnetic
(TEM) wave, thus ∇ψ points in the direction of propagation. To see this for a simple
case, consider the surface function of constant phase for a plane wave (see Eq. 2.19)

ψ = nŝ · r (2.111)

where ŝ is a unit vector pointing in the direction of propagation, and refractive index, n,
is a constant in frequency and position. Then (this is true in general)

∇ψ = nŝ . (2.112)

Since the surfaces, specified by ψ = constant, are the wavefronts, based on 
Eq. 2.112, the normal to these surfaces points in the direction of propagation. This con-
cept is illustrated in Fig. 1.4 for regions were the plane-wave approximation is valid.

Following the same procedure for deriving the wave equation in a nonmagnetic
medium, Eqs. 2.109a–d result in a more general expression valid for inhomogeneous
media, called the eikonal equation, as given by

|∇ψ(r)|2 = n2(r). (2.113)

This is a more general result than Eq. 2.112, because n is a function of position but
is still independent of frequency. Again, it is of central interest to determine the time-
averaged Poynting vector for the case of geometrical optics. Keeping only the leading
terms in the Luneberg–Kline series leads to

〈 (t)〉t = 1

2
Re [E0 × H∗

0]. (2.114)

Using Eq. 2.109a for an expression of H0 in terms of E0 and substituting into the
above equation results in

〈 (t)〉t = |E0|2
2η0

∇ψ. (2.115)

Based on the eikonal equation and the fact that the Poynting vector points in the
direction of propagation, it follows that
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〈 (r,t)〉t = |E0|2
2η0

n(r)ŝ (2.116)

where ŝ is a unit vector pointing in the direction of propagation. This result is consistent
with Eq. 2.27, which was obtained for the unbounded plane wave. The above equation is
more general, since the index of refraction depends on position and a general path can be
used. Based on this result the eikonal equation can be written in vector form as

∇ψ(r) = n(r)ŝ. (2.117)

Again this is a generalization of Eq. 2.112. The eikonal equation establishes a rela-
tionship between the complex index of refraction and the phase. This is a basic equation
of geometrical optics, because it allows one to calculate the ray path. Consider an arc of
length s with a position vector, r, locating a point P on the arc as illustrated in Fig. 2.6,
then in terms of differential arc lengths the unit vector, ŝ, is expressed as

ŝ = lim
�s→0

�r
�s

= dr
ds

. (2.118)

Using this result with the vector eikonal equation we obtain the following differen-
tial equation for the ray path in terms of the spatial variation of the real part of the
refractive index,

d

ds

(
n(r)

dr
ds

)
= ∇n(r). (2.119)

Therefore, to completely specify a propagation problem within the context of geo-
metrical optics, the spatial dependence and magnitude of the index of refraction must
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be known. Most practical problems concerning the propagation of light can be solved
within the limits of geometrical optics. For this reason most of the remaining text will
concentrate on understanding the complex index of refraction.

Spatial variations in the refractive index that are much larger than a wavelength lead to
refraction for continuous variation and reflection for discontinuous variation. When the
spatial variations of the index of refraction are on the order of the wavelength, then dif-
fraction effects are important and the geometrical optics description of refraction breaks
down. This becomes the topic of scattering, which is introduced in the next section.

Example 2.3 For n = constant, Eq. 2.119 reduces to

d2r
ds2

= 0,

which leads to the following solution:

r = sA + B.

This is an equation for a straight line path as expected, based on the plane-wave
solutions obtained in the first section.

2.1.2 Elastic Scattering: Physical Optics

Scattering phenomena are of concern when refractive index (real part) spatial variations
or fluctuations are on the order of a wavelength or less, and are categorized as either
elastic or inelastic. Variations in the refractive index are caused by particles (molecules,
aerosols, dust, fog, etc.), voids (bubbles in liquids or solids) or statistical fluctuations in
the density. Media fluctuation effects, much larger than a wavelength, are covered in
turbulence, which is outside the scope of this book. Elastic scattering refers to interac-
tions with a medium where no energy is given or taken away from the incident field.
Thus, the frequency of the incident light is unchanged by the interaction. Inelastic scat-
tering, on the other hand, represents scattering where the frequency of the incident light
has changed after the scattering interaction. Inelastic scattering involving vibrational
and rotational transitions in the scattering medium is called Raman scatter. Inelastic
scattering involving translational or acoustic transitions is called Brillouin scatter. To
simplify this introductory section, only elastic scattering will be considered.

2.1.2.1 Particle Scattering

In the previous section we showed that the absorption coefficient, βabs, and the index of
refraction, n, affect the attenuation and phase of a propagating plane wave. These quan-
tities are based on resonant phenomena of the medium. Now, we will examine the
nonresonant process called particle scattering. This will lead to formulas for the scat-
tering coefficient,  βsca. A few restrictions will be applied to the development:

1. The scattered light has the same frequency as the incident light. Raman and
Brillouin scattering are ignored and only elastic scattering will be considered.
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2. The scattering particles are independent. One particle can be studied to understand
many particles.

3. Single scattering dominates, that is, the scattering by N particles is N times the
scattering function of one particle. Essentially, the incident light ray is scattered by
only one particle and sees no other. In the case of multiple scattering, more than
one particle interacts with an incident ray before it exits the medium. Single scat-
tering dominates when βscaz < 0.1 or when βscaz scales with the path length, z.

Scattering can be treated either as classical or as quantum phenomena. However, a
quantum approach is more important for molecular inelastic scatter, and practical scat-
tering problems must, also, address larger scatters (clouds, fog, dust, etc. in the earth’s
atmosphere and grain boundaries in polycrystalline solids). For elastic scatter, quantum
and classical models agree. Thus, scattering will be treated classically without any loss
of generality. Molecular scattering will be treated classically via Rayleigh scattering.

Consider an unpolarized uniform plane wave, Ei(= Ei0 exp (− jk ′z + jωt)), illumi-
nating a single particle, as shown in Fig. 2.7. The scattered field can be represented by
an unpolarized spherically outgoing wave (recall Eq. 1.20) given by

Es = S(θs, φs)
e− jk ′r+ jωt

jk ′r
Ei0. (2.120)

S(θs, φs) is called the amplitude function, much like an antenna pattern. (In general, the
amplitude function is bidirectional and depends on the solid angle of incidence as well.)
To simplify the following analysis the incident angle is fixed, forming a collimated
beam, as specified in Fig. 2.7. In terms of the incident field, the scattered field becomes

Es = S(θs, φs)
e− jk ′r+ jk ′z

jk ′r
Ei. (2.121)

Again, in optics we are interested in the magnitude of the time-averaged Poynting
vector of the scattered field, or the scattered radiance, Lsca ,

Lsca(	s) = |Es|2
2η0

= |S(θs, φs)|2
k ′2r2

Mi , (2.122)
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where Mi is the incident irradiance (watts/cm2) and the amplitude function magnitude
squared takes on the unit 1/sr. Based on this formula and Eqs. 2.62 and 2.65c, the inte-
grated scatter cross-section, Csca , is defined as

Csca =
∮

d	sCsca(	s) = �s

Mi
=
∮

d	s
|S(	s)|2

k ′2 , (2.123)

where Csca(	s) is the scattering cross-section with units of area/steradian for fixed
angle of incidence, θi = 0. For spherical particles, Csca is independent of θi .

Since we are interested in attenuation or total extinction, the amplitude function in
the forward direction, S(θs = 0), is of interest. This represents the scattered field that
will be detected by the observer, and indistinguishable from the incident field. The for-
ward and backward scattered fields are special cases because interference from the
incident field must be included. Because of the small angles, it is a good approximation
to state in the plane of the observer (recall Eq. 1.21), that

r = z + x2 + y2

2z
.

Recall from Chapter 1 that this is the paraxial ray approximation. The total field at
the observer is the sum of the incident and forward scattered (for θs = 0) fields and
becomes

Eo = Ei + Es = Ei

(
1 + S(0)

jk ′z
e

− jk′(x2+y2)
2z

)
(2.124)

where

∣∣∣∣ S(0)

k ′z
e

− jk′(x2+y2)
2z

∣∣∣∣	 1

in the far field for z large, which is consistent with the single scatter approximation. The
observed radiance, to first order in S(0), is

|Ei + Es|2 ≈
(

1 − 2

k ′z
Re

[
j S(0) e

− jk′(x2+y2)
2z

])
|Ei|2. (2.125)

The first term is the unattenuated radiance. The second term represents loss or light
removed from the observer’s aperture. Integration of the second over the xy-plane gives
the general result for the forward direction extinction cross-section, Cext ,

Cext(θs = 0) = 4π

k ′2 Re[S(0)], (2.126)

where |Eo|2 = (1 − Cext)|Ei|2. When the particle both absorbs and scatters, then the
forward extinction cross-section is the sum of the absorption cross-section, Cabs , and
the scatter cross-section caused by the presence of the particles, thus
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Cext = Csca + Cabs. (2.127)

Equation 2.126 is the fundamental forward extinction formula for scattering. Notice
the similarity between this procedure for a blocking aperture and that for the transmit-
ting aperture of Section 1.2.1.2 and diffraction theory. Thus, the mechanism of loss is
more than a geometrical optics blocking of rays, but includes diffraction effects as well.
Also, because scattered light rays are bent around the particle, care must be used in the
measurement of Cext to ensure that θs > 0 rays are excluded from the field of view.

Now let us consider a cloud of scatterers, each independent and characterized by
their amplitude function, Si (θs, φs). Again, we are interested in the intensities, but now
must worry about cross-terms, Si (θs, φs)Sj (θs, φs), where i �= j . However, the random-
ness of the phase means all the cross-terms average to zero. Thus, for single scattering,

Ls(θs, φs) =
∑

i

Ls,i (θs, φs) (2.128)

and it further follows (by integrating over all scatter directions, 	s)

Csca =
∑

i

Ci,sca. (2.129)

The situation for θs(= θi ) = 0 is different, the phase relationship between the inci-
dent and scattered fields is fixed and not random. In this case, the fields are added and

S(0) =
∑

i

Si (0) (2.130)

and

Cext =
∑

i

Ci,ext . (2.131)

Now, consider a slab with many scatters, as illustrated in Fig. 2.8. Assume all the
particles have the same S(θs, φs), are independent, and that there are N particles with a
particle number density ρp . The field at the observer is influenced by scattering from all
particles in the slab, but the observed forward traveling wave is coherently influenced
only by the particles in the “active” volume of the slab, which coincides with a few cen-
tral Fresnel zones, as seen by the observer. For r large enough (r ≈ z) then

Eo = Ei

(
1 + S(0)

∑
N

1

jk ′z
e

− jk′(x2+y2)
2z

)
. (2.132)

Converting the sum on N to a volume integration, we have

∑
N

→ ρp

∫
dV . (2.133)
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Then, for k ′ = k ′
0 = 2π/λ, in the vacuum outside the particles, Eq. 2.132 becomes

Eo = Ei

⎛
⎝1 + S(0)ρp

z∫
0

dz′
∞∫

−∞
dx

∞∫
−∞

dy
1

jk ′
0z′ e

− jk′
0
(x2+y2)

2z′

⎞
⎠.

Completing the integration yields

Eo = Ei

(
1 − 2π

k ′2
0

ρpzS(0)

)
. (2.134)

It is of great interest to relate this formalism for single scatter to the formalism
developed for absorption in Section 2.1.1.1. Consider the E-field at the observation
point in terms of a plane wave, of the form

Eo = Eo0 e− jk ′
0nz,

just after propagation through a scattering medium with an effective index n. The
change in the field relative to a particle-free vacuum with n = 1 is

e− jk ′
0nz

e− jk ′
0z

= e− jk ′
0z(n−1) ≈ l − jk ′

0z(n − 1) (2.135)

for n close to 1. Then, recognizing that Ei = Eo0 and using Eq. 2.134 leads to

|Eo|
|Ei| = 1 − jk ′

0z(n − 1) = 1 − 2π

k ′2
0

ρpzS(0). (2.136)

Then, single scattering phenomena are represented by a new complex index of
refraction,
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(ns − 1) − jks = 2π

k ′3
0

ρp

(
Im[S(0)] − j

2π

k ′3
0

ρpRe[S(0)]

)
. (2.137)

(ns − 1) is the real part of the scattering index and is usually close to zero, thus very
small compared with the normal index caused by absorption. ks is the imaginary part of
the scattering index, and includes the effects of particle scattering and absorption. 
A scattering coefficient for nonabsorbing particles can be defined analogously to the
absorption coefficient using Eq. 2.29. Thus,

βsca = 2k ′
0ks = 4π

k ′2
0

ρpRe[S(0)]. (2.138)

Comparing this result to Eq. 2.126 for a single particle, we obtain the following rela-
tion for the extinction coefficient,

βext(θs = θi ) = ρpCext . (2.139)

In this way, single scatter and absorption by particles are handled by a familiar for-
malism through the complex index of refraction.

If the particles are embedded in a dielectric medium, then the background absorp-
tion and refraction can be included in a straightforward manner. The combination of
background absorption and particle processes leads to the definition of the extinction
coefficient, βext , in terms of βabs and βsca,

βext = βabs + βsca(θs = θi ). (2.140a)

The net index of refraction also becomes

nnet = n + (ns − 1). (2.140b)

Now the total power law, as given by Eqs. 2.96–2.98, can be modified to include
single scatter loss,

τs(θi,ω) = [1 − R(θi,ω)]2 exp [−βext(θi,ω) d/cos θa]

1 − R2(θi,ω) exp [−2βext(θi,ω) d/cos θa]
, (2.141)

ρs(θi,ω) = R(θi,ω) + R(θi,ω)[1 − 2R(θi,ω)] exp [−2βext(θi,ω) d/cos θa]

1 − R2(θi,ω) exp [−2βext(θi,ω) d/cos θa]
(2.142)

and

αext,s(θi,ω) = [1 − R(θi,ω)]{1 − exp [−βext(θi,ω)d/cos θa]}
1 − R(θi,ω) exp [−βext(θi,ω)d/cos θa]

. (2.143)
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αext,S(θi ,ω) is the total integrated extinctance. When βsca = 0, the total integrated
extinctance reduces to the absorptance (Eq. 2.98). When βabs = 0 and the particles are
nonabsorbing, the total integrated extinctance reduces to

αext,S(βabs = 0) = βsca(θi )d/ cos θa = αsca,S(θi ), (2.144)

where αsca,S(θa) is the total integrated scatterance, and related to the integrated scatter
cross-section, as given by Eq. 2.123, according to

αsca,S(θi ) = Csca(θi )ρpd/cos θa = Cext(θi = θs)ρpd/cos θa. (2.145)

This result further develops the BSDF, as given in Eq. 2.91.
Since the transmittance, reflectance, and extinctance are integrated quantities, the

extinction coefficient changes, depending on the angular extent of the integration.
Transmittance and reflectance are specular and only considered in one direction. Based
on Eqs. 2.144 and 2.145, the total integrated scatter, on the other hand, is integrated over
all angles, which changes the functional form of the scatter coefficient to

βsca(θi ) = Csca(θi )ρp. (2.146)

This result is equivalent to Eq. 2.138, which considers the extinction in the trans-
mitted direction only. This equivalence is the point of the optical theorem (see Bohren
and Huffman, Ref. 2.9).

2.1.2.2 Polarization of Light

Thus far, the propagation medium has been linear and isotropic, and has not required a
detailed discussion of polarization of the electromagnetic field. It was assumed that the
polarization does not change during propagation. Because of the many different non-
spherical shapes of particles, the scattered field can have different polarization
properties from the incident field. A review of the characterization of light polarization
is presented in this section to prepare for the introduction of this topic.

Two categories are used to characterize polarization, the state or type of polarization
and the degree of polarization. Table 2.1 lists the various types of polarizations and the
corresponding designations.

Linear polarization is usually designated relative to an interface of discontinuous
indices of refraction and the plane of incidence, which includes both the incident and
reflected rays. When the E-field is in the plane of incidence, the light is vertically polar-
ized and parallel to the plane of incidence in the direction of the unit vector  ‖. When
the E-field is perpendicular to the plane of incidence the light is horizontally polarized
and parallel to the surface in the direction of the unit vector   ⊥. These concepts are illus-
trated in Fig. 2.9. The polarization vector has usually been assumed in the x-direction
in past discussions, but can be any direction perpendicular to the propagation direction.
Thus, to specify linear polarization in general requires a two-dimensional orthonormal
vector basis set, as given by

= a ‖ + b ⊥, (2.147)
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ê ê ê



where

Orthonormal circular polarization basis vectors are complex, and given by

(2.148a)

for right and left circular polarization, respectively, where

(2.148b)

Any polarization can be expressed in terms of this basis set as well. Thus it is not
necessary to define a basis set for elliptical polarization.

The degree of polarization is an indication of the percentage of light that is polar-
ized. Light may be polarized to a high degree, as is the case for some lasers. Light may
be unpolarized, as is the case for blackbody radiation. Unpolarized light contains equal
amounts of statistically independent horizontally and vertically polarized light. Light
may also contain some levels of polarized and unpolarized light; this is referred to as
partially polarized. It may also be of interest for polarized light, to determine the degree

ˆ ˆ ˆ ˆ ˆ ˆ .e e e e e eR R L L
*

R L
**⋅ = = ⋅ ⋅ =1 0    and

ˆ ˆ ˆ ˆ ( ˆ ˆ ),e e e e e e|| ||R L= + =1

2

1

2
j j⊥ ⊥−and

a b2 2 1 0+ = = =ˆ ˆ ˆ ˆe e e e⋅ ⋅and || ⊥
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Table 2.1 States of Polarization

State Designation

Linear Horizontal, ⊥, perpendicular, s, σ
Vertical, ‖, parallel, p, π

Circular Right-handed
Left-handed

Elliptical Right-handed
Left-handed

Fig. 2.9 Plane-wave reflection at a dielectric interface for parallel and perpendicular polarizations
in the plane of incidence.



of linear or circular polarization within the polarized beam. This requires more sophis-
tication than just specifying the polarization state.

The choice of polarization basis sets does not indicate the state and degree of polar-
ization. To do this requires the four-component Stokes vector, as defined below and
computed using Eq. 2.19a,

⎛
⎜⎝

I
Q
U
V

⎞
⎟⎠=

⎛
⎜⎜⎝

〈E‖E∗
‖ + E⊥E∗

⊥〉
t

〈E‖E∗
‖ − E⊥E∗

⊥〉
t

〈E‖E∗
⊥ + E⊥E∗

‖ 〉t
j〈E‖E∗

⊥ − E⊥E∗
‖ 〉t

⎞
⎟⎟⎠= 1

2

⎛
⎜⎝

|E‖0|2 + |E⊥0|2
|E‖0|2 − |E⊥0|2

2E‖0 E∗
⊥0 cos[(α‖f p − α⊥f p)z]

2E‖0 E∗
⊥0 sin[(α‖f p − α⊥f p)z]

⎞
⎟⎠ . (2.149)

All the Stokes vector components are real and measurable. I is proportional to the
total radiance of the light (by a factor of 1/(2η), see Eq. 1.19), the sum of all polarized
and unpolarized light intensities. Q is a measure of the difference of horizontal and ver-
tical light and can be experimentally determined by using linear polarizers. Also, the
Stokes vector requires only three components when the light is completely polarized.
The fourth component determines the degree of polarization (see Born and Wolf, 
Ref. 2.1, p. 30).

However, if unpolarized light is present in the beam then another measurement is
required to uniquely determine the degree of polarization. The polarizer can be rotated
±45◦ and the previous experiment repeated. Thus, the difference will change if the light
is polarized, but will not change if the light is unpolarized. The rotation of the polar-
ization basis vectors is accomplished by the following transformation

(2.150)

For θ = 45◦, the new orthonormal basis vectors,     and , become

(2.151)

as illustrated in Fig. 2.10. The corresponding E-field amplitudes in the and direc-
tions are

(2.152)

To repeat the previous experiment requires computation of the difference of the
polarized intensities in the and     reference frame. The result is

E+E∗
+ − E−E∗

− = E‖E∗
⊥ + E⊥E∗

‖ . (2.153)

E E E E E E– || ||= + = +1

2

1

2
( ) ( ).⊥ + ⊥and

ˆ ˆ ˆ ˆ ( ˆ ˆ ),e e e e e e− || ⊥ + || ⊥= + =1

2

1

2
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ˆ

ˆ

ˆ
e
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⊥

||

⎛
⎝⎜

⎞
⎠⎟

⎛
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⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= −

cos sin

sin cos

θ θ
θ θ
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This is the U component of the Stokes vector. As a linear polarizer is rotated, it
cannot distinguish between unpolarized and circularly polarized light. Thus the final
test is to look at the difference of right and left circularly polarized light.

Using the basis vectors as defined in Eq. 2.148 the E-field components can be found
by projection via the dot product,

E · = ER = 1√
2
(E‖ − jE⊥), (2.154a)

and

E · = EL = 1√
2
(E‖ − jE⊥), (2.154b)

The difference of the right circularly polarized and left circularly polarized light
intensities becomes

ER E∗
R − EL E∗

L = j
(
E‖E∗

⊥ − E⊥E∗
‖
)

. (2.155)

This represents the fourth component in the Stokes vector. From these measurements
the degree of polarization can be found, using the following formula:

Degree of polarization =
√

Q2 + U 2 + V 2

I
. (2.156)

When the degree of polarization is 0, the light is unpolarized. When it is 1, the light
is competely polarized. Partial polarization occurs when the degree of polarization is
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Fig. 2.10 Rotation of polarization unit vector basis set.
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between 0 and 1. Also, the degree of polarization for linear and circular polarization can
be obtained by the following formulas:

Degree of linear polarization =
√

Q2 + U 2

I
(2.157)

and

Degree of circular polarization = V

I
. (2.158)

Based on Eqs. 2.149, 2.153, and 2.155, the Stokes parameters can be experimentally
determined according to the following equation:

⎛
⎜⎝

I
Q
U
V

⎞
⎟⎠ = η0

⎛
⎜⎝

L
Lv − Lh

L+ − L−
L R − L L

⎞
⎟⎠ = η0

⎛
⎜⎝

L
L − 2Lh

L − 2L−
L − 2L L

⎞
⎟⎠ (2.159a)

where (v = vertical, h = horizontal, + = +45◦, − = −45◦, etc., polarization), and

L = Lv + Lh = L+ + L− = LR + LL . (2.159b)

Four independent radiance measurements are required to determine the four inde-
pendent Stokes parameters. However, the results using seven radiance measurements
lead to direct physical interpretation and will be used in following discussions. In matrix
form, Eq. 2.159 becomes

s =

⎛
⎜⎝

I
Q
U
V

⎞
⎟⎠ = η0

⎛
⎜⎝

1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L
Lv

Lh

L+
L−
L R

L L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡ η0(T )L. (2.160)

(T ) is the transformation matrix between the Stokes vector space and a vector space
containing experimentally determined components based on radiance measurements
with polarizers. Thus, the Stokes vector is a practical representation of polarization and
allows the connection between theory (Eq. 2.149) and experiment (Eq. 2.159). The
inverse transform is also useful, and is given by
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L = 1

η0
(T )−1s (2.161)

where

(T )−1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Based on Eq. 2.160, the Stokes vectors for standard states of polarization can be
directly determined, and are listed in Table 2.2. The Stokes vectors are normalized so
that I = 1 in the table.

2.1.2.3 Scattering and Polarization

When the scattering particle is spherical, the scattered light has the same state of polar-
ization as the incident light field. However, very few particles and molecules are
spherical in shape and, in general, the scattered field has a different polarization char-
acter relative to the incident field. Since the state and degree of polarization is
completely specified by the Stokes vector, it is desirable to have a transformation matrix
which produces the transmitted or scattered-field Stokes vector given the incident-field
Stokes vector. Such a matrix is called the Mueller matrix, (M), as defined by
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Table 2.2 Normalized Stokes Vectors for Various States of Polarization

Unpolarized ⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

Linearly polarized ⎛
⎜⎝

1
1
0
0

⎞
⎟⎠

Vertical

⎛
⎜⎝

1
−1

0
0

⎞
⎟⎠

Horizontal

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠

+ 45◦

⎛
⎜⎝

1
0

−1
0

⎞
⎟⎠

+ 45◦

Circularly polarized ⎛
⎜⎝

1
0
0
1

⎞
⎟⎠

Right

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠

Left



ss =

⎛
⎜⎝

Is

Qs

Us

Vs

⎞
⎟⎠ =

⎛
⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎠
⎛
⎜⎝

Ii

Qi

Ui

Vi

⎞
⎟⎠ = (M)si. (2.162)

The Mueller matrix elements can be determined both experimentally and theoreti-
cally. Each matrix element is a bidirectional function of 	i and 	s .

Experimental determination of the Mueller matrix elements is based on Eqs. 2.160 and
2.161, and the following transformation between the incident and scattered L vectors

Ls =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ls

Lvs

Lhs

L+s

L−s

L Rs

L Ls

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X00 X0v X0h X0+ X0− X0R X0L

Xv0 Xvv Xvh Xv+ Xv− XvR XvL

Xh0 Xhv Xhh Xh+ Xh− Xh R Xh L

X+0 X+v X+h X++ X+− X+R X+L

X−0 X−v X−h X−+ X−− X−R X−L

X R0 X Rv X Rh X R+ X R− X R R X R L

X L0 X Lv X Lh X L+ X L− X L R X L L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Li

Lvi

Lhi

L+i

L−i

L Ri

L Li

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (X)Li.

(2.163)

The (X) matrix represents 49 different but related experimental measurements
involving various combinations of previously mentioned polarizers. The subscript 0
indicates unpolarized light, v, vertical polarization, h, horizontal polarization, +, 45◦

polarization, −, −45◦ polarization, R, right circular polarization, and L , left circular
polarization. The first subscript indicates the polarization of the incident light and the
last subscript indicates the polarizer used on the scattered or transmitted light before the
detector. These are more measurements than needed. However, this approach leads to
Mueller matrix elements with direct interpretation. The experimental Mueller matrix is
obtained by the following matrix transformation:

(M) = (T )(X)(T )−1.

Performing the transformation, the experimentally determined Mueller matrix
becomes
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(M)0 =

1

2

⎛
⎜⎝

5X00 (X0v − X0h) (X0+ − X0−) (X0R − X0L)

5(Xv0 − Xh0) (Xvv + Xhh) − (Xvh + Xhv) (Xv+ + Xh−) − (Xh+ − Xv−) (XvR + XhL) − (Xh R + XvL)

5(X+0 − X−0) (X+v + X−h) − (X−v + X+h) (X++ + X−−) − (X−+ + X+−) (X+R + X−L) − (X−R + X+L)

5(X R0 − X L0) (X Rv + X Lh) − (X Lv + X Rh) (X R+ + X L−) − (X L+ + X R−) (X R R + X L L) − (X L R + X RL)

⎞
⎟⎠.

(2.164)

To obtain this result the following relationships were used:

X00 = X0v + X0h = X0+ + X0− = X0R + X0L .



In this formulation of the Mueller matrix, the M11 component is related to the BSDF
or X00 when the incident and scattered fields, are properly defined (see Eq. 2.86). Thus,
the Mueller matrix represents all combinations of polarization states of the incident and
scattered fields, and each component is a bidirectional function of the solid angle of
incidence and the solid angle of scatter. The BSDF concept now has been generalized
to include polarization.

Theoretical determination of the Mueller matrix begins with the scattering matrix,
(S), which is based on a generalization of Eq. 2.121 by representing the incident and
scattered E-fields in terms of two orthogonal directions of polarization (vertical and
horizontal in this case). Therefore,

Es =
(

Evs

Ehs

)
= e− jk ′r+ jk ′z

jk ′r

(
S1(	i,	s) S2(	i,	s)

S3(	i,	s) S4(	i,	s)

)(
Evi

Ehi

)
= e− jk ′r+ jk ′z

jk ′r
(S)Ei.

(2.165)

Since we are interested in calculating optical field intensities and, ultimately, the
Stokes vector, an intermediate step is necessary. This step begins with the definition of
the coherency matrix, (C), defined as (see O’Neill, Ref. 2.10, Chapter 9)

(C) = 〈e(t) × e†(t)〉t =
(

Jxx Jxy

Jyx Jyy

)
(2.166)

where × represents a direct or Kronecker matrix product, e† is the Hermitian conjugate
of e and

Ji j = 〈ei e
†
j 〉t = 1

2
Re[Ei E∗

j ].

Using Eq. 2.165 and the definition of the coherency matrix, a relation between the
scattered and incident coherency matrices can be obtained, and is given by

(C)s = 〈es × e†
s 〉t = 1

k ′2r2
〈(S)Ei × (S)∗E∗

i 〉t = [(S) × (S)∗]

k ′2r2
(C)i . (2.167)

This result can be compared to Eq. 2.122. To express the above equation in matrix
form requires reformatting the coherency matrix into a column vector, then

Cs =

⎛
⎜⎝

Jxxs

Jxys

Jyxs

Jyys

⎞
⎟⎠ = 1

k ′2r2

⎛
⎜⎝

S11 S12 S21 S22

S13 S14 S23 S24

S31 S32 S41 S42

S33 S34 S43 S44

⎞
⎟⎠
⎛
⎜⎝

Jxxi

Jxyi

Jyxi

Jyyi

⎞
⎟⎠ ≡ (S)

k ′2r2
Ci. (2.168)
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where

Si j = Si S∗
j .

The matrix transformation relationship between the coherency vector and the Stokes
vector is straightforward to express,

s =

⎛
⎜⎝

Jxx + Jyy

Jxx − Jyy

Jxy + Jyx

j (Jxy − Jyx)

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 j − j 0

⎞
⎟⎠
⎛
⎜⎝

Jxx

Jxy

Jyx

Jyy

⎞
⎟⎠ ≡ (T)C. (2.169)

The inverse transform is also needed and is given by

C = 1

2

⎛
⎜⎝

1 1 0 0
0 0 1 − j
0 0 1 j
1 −1 0 0

⎞
⎟⎠
⎛
⎜⎝

I
Q
U
V

⎞
⎟⎠ ≡ (T)−1s. (2.170)

Using Eqs. 2.162, 2.168, 2.169, and 2.170, the theoretical Mueller matrix can be
obtained from the following formula:

(M)th = 1

k ′2r2
(T)(S)(T)−1. (2.171)

The solution is

Again the M11 component is the BSDF when both the incident and scattered fields
are unpolarized.

As an example, consider the characterization of a linear polarizer at an arbitrary
angle, ξ, which is illuminated by a plane wave. The scattering matrix between the inci-
dent and transmitted fields is

(
Evt

Eht

)
=
(

cos2ξ sin ξ cos ξ

sin ξ cos ξ sin2ξ

)(
Evi

Ehi

)
. (2.173)
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(M)th = 1
2k ′2r 2 ×

⎛
⎜⎝

(S11 + S22 + S33 + S44) (S11 + S33 − S22 − S44) (S12 + S34 + S21 + S43) j (S21 + S43 − S12 − S34)

(S11 − S33 + S22 − S44) (S11 − S33 − S22 + S44) (S12 − S34 + S21 − S43) j (S21 − S43 − S12 + S34)

(S13 + S31 + S24 + S42) (S13 + S31 − S24 − S42) (S14 + S32 + S23 + S41) j (S14 + S32 − S23 − S41)

j (S13 − S31 + S24 − S42) j (S13 − S31 − S24 + S42) j (S14 − S32 + S23 − S41) (S14 − S32 − S23 + S41)

⎞
⎟⎠ .

(2.172)



Following the previously described procedure, the computed Mueller matrix becomes

(M)th = 1

2

⎛
⎜⎝

1 cos 2ξ sin 2ξ 0
cos 2ξ cos22ξ cos 2ξ sin 2ξ 0
sin 2ξ sin 2ξ cos 2ξ sin22ξ 0

0 0 0 0

⎞
⎟⎠ . (2.174)

Based on this result, the Mueller matrices for the linear polarizers needed to meas-
ure the Stokes vector components can be computed. The results are listed in Table 2.3,
which also contain Mueller matrices for circular polarizers.

2.2 Optical Propagation in Matter

The propagation of beams and pulses of light in matter are now briefly considered. This
section extends Section 1.3 for vacuum by updating previous equations for propagation
in matter.

2.2.1 Beam Propagation

Equation 1.39 for a Gaussian beam is easily extended to propagation in matter.
Consistent with the paraxial ray approximation, loss in the transverse directions can be
ignored. Thus, the Gaussian beam radiance in a lossy medium becomes

70 OPTICAL PROPAGATION IN LINEAR MEDIA

Table 2.3. Mueller Matrices for Various Polarizers

Vertical polarizer, ξ = 0◦

1

2

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

Horizontal polarizer, ξ = 90◦

1

2

⎛
⎜⎝

1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠

45◦ polarizer, ξ = 45◦

1

2

⎛
⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎠

−45◦ polarizer, ξ = −45◦

1

2

⎛
⎜⎝

1 0 −1 0
0 0 0 0

−1 0 −1 0
0 0 0 0

⎞
⎟⎠

Right circular polarizer

1

2

⎛
⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎠

Left circular polarizer

1

2

⎛
⎜⎝

1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎞
⎟⎠

This equation is for plane-wave transmission, thus the multiplicative factor of Eq. 2.165 for spherical-wave propagation is

not appropriate.



L(xo,yo,z) = n |Ex(xo,yo,z)|2
2η0

= n |Ex00|2
2π2w2

0w2(z)η0
e−2(x2

o +y2
o )/w2(z)e−βext z, (2.175)

where the substitution k → k ′
0n
(
k ′

0 = 2π/λ
)

is made, and the imaginary part of the
complex index is kept only in factors that dictate the z-propagation dependence.

2.2.2 Pulse Propagation

The variation of the index of refraction with frequency is called dispersion. If dispersion
can be ignored, then we need only change the speed of light in Eq. 1.40 to c = c/n to
obtain a valid solution. However, if dispersion cannot be ignored, then finding solutions
to the wave equation is considerably more difficult. Furthermore, the frequency-domain
wave equation given by Eq. 2.14 ignores the transient response of the medium to the
electromagnetic field. To appreciate these points, let us examine the time-domain wave
equation. Following the same procedure as in Section 2.1.1.1, we obtain

∇2e(r,t) = 1

c2

∂2e(r, t)

∂t2
+ 1

c2

∂2

∂t2

∞∫
−∞

dt ′χ(t ′)u(t ′) e(r, t − t ′). (2.176a)

If a time-harmonic field is chosen, then the frequency-domain wave equation is
obtained. However, pulses are inherently polychromatic, and time-harmonic solutions
are not appropriate. Knowledge of the time-domain susceptibility now becomes impor-
tant. If the time-domain electromagnetic pulse is slow compared with the dielectric
response of the propagation medium, then the field can be brought outside the convo-
lution integral, and frequency-domain solutions can be obtained. However, if the
electromagnetic pulse is fast and comparable to the speed of the dielectric response,
then it is best to solve the time-domain wave equation.

Equation 2.176a can be written more explicitly if we apply the step function in the
convolution and require t > t ′:

∇2e(r, t) = 1

c2

∂2e(r,t)
∂t2

+ 1

c2

∂2

∂t2

t∫
0

dt ′χ(t ′) e(r, t − t ′). (2.176b)

This is an integrodifferential equation that is difficult to solve. Numerical techniques,
such as finite-difference–time-domain (FD-TD), have been applied to obtain solutions
for optoelectronic device design.

2.3 Microscopic Properties in Matter

Thus far, the problem of optical propagation has been reduced to requiring a knowledge
of the spatial and spectral dependence of the complex index of refraction within the
propagation medium, field polarization, and the path geometry. The most fundamental
quantity is the complex index. This leads us to explore the microscopic nature of matter
for the derivation of meaningful models of the complex refractive index.
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2.3.1 The Dipole Moment

Most propagation media of interest are insulators with no net charge density. The
number of positive and of negative charges is equal. However, the nature of the charge
distribution determines the coupling of the incident electromagnetic field to the propa-
gation medium. The charge distribution is affected by the arrangement and type of
atoms composing the medium and field induced effects.

Consider the multipole expansion of an electric potential V(r), given the charge den-
sity ρc(r), as stated by (see Chapter 4 of Jackson, Ref. 2.13)

V (r) =
∫

ρc(r′)
|r − r′| d3r ′. (2.177)

The Green’s function can be expanded in terms of spherical harmonics, Ylm (see
Appendix 2), where for r > r ′

1

|r − r′| = 4π

∞∑
l = 0

l∑
m =−l

1

2l + 1

r ′l

r l+1
Y ∗

lm(θ ′, φ′)Ylm(θ, φ). (2.178)

This allows the potential to be expanded as a sum of multipole moments. By substi-
tuting Eq. 2.178 into Eq. 2.177, the following sum is obtained:

V(r) = 4π
∑
l,m

qlm

2l + 1

Y ∗
lm(θ, φ)

rl+1
, (2.179)

where the qlms are the multipole moments, as given by

qlm =
∫

Y ∗
lm(θ ′, φ′)r ′lρc(r′) d3r ′. (2.180)

It is instructive to calculate the first few terms of qlm . They are as follows:

q00 = 1√
4π

q, (2.181)

q10 =
√

3

4π
µdp,z, (2.182a)

and

q11 = −q∗
1−1 = −

√
3

8π
( dp,x− j dp,y) (2.182b)

where q is the net charge of the medium and  dp is the dipole moment, defined as

dp =
∫

r′ρc(r′) d3r ′. (2.183)
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Higher order terms in the expansion include quadrupole moments, octupole
moments, and so on. The strength of the potential decreases as the moments go to
higher order. Thus, the leading nontrival term in the expansion is always the most
important, and often the only one needed to represent the coupling of the electromag-
netic field to the propagation medium.

The relevant microscopic element, for the coupling of the electromagnetic field to a
neutral (q = 0) propagation medium, is the dipole moment. It is created by the separa-
tion of opposite charges, as illustrated below. The dipole moment strength,  dp(t), is the
product of the charge, q , and the charge separation, x(t),

dp(t) = qx(t). (2.184)

For a neutral medium with no dipole moment, the quadrupole moment becomes the
leading term; it is illustrated in Fig. 2.11. This is a very weak coupling term and is usually
not an issue for most optical media and path lengths. A medium with permanent dipole
moments is called polar. A medium with no permanent dipole moments is called nonpolar.

2.3.2 Polarizability

When an external electric field is present, the bound charge distribution of a medium is
altered. The dominant effect is the induction of new dipole moments and alignment of
permanent dipole moments by this external field. The degree to which this is done on a
single molecule is a measure of the frequency-domain electric molecular polarizability,
αe,mol(ω), defined as

〈qX(ω)〉 = 〈 dp(ω)〉 = αe,mol(ω)E. (2.185)

〈 dp〉 is the mean dipole moment vector and is proportional to the frequency-domain
macroscopic polarization vector, P(ω), as given by

P(ω) = ρ〈 dp(ω)〉 = ε0χ(ω)E(ω) , (2.186)

where ρ is the number of dipoles per unit volume. Generally, the mean dipole moment,
with no external field applied, is zero unless the material is an electret. Using the above
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results, the relation between the susceptibility and the molecular polarizability is
obtained:

χ(ω) = ρ

ε0
αe,mol(ω). (2.187)

In this manner, macroscopic quantities can be related to microscopic properties of a
medium.

To further address the microscopic properties of the complex index of refraction
requires the consideration of the quantum structure of matter and how light couples to
that structure. This is the topic of the next three chapters.

Problems

2.1 For a nonmagnetic, nonconducting dielectric medium, show that the radiance, L,
can be expressed as

L = 1

2
cnε0|E|2.

2.2 An absorption line in a medium is represented by the imaginary part of the rel-
ative permittivity ε′′

r (ν) = Aδ(ν − ν0) − Aδ(ν + ν0). Find the corresponding
real part of the relative permittivity using the Kramers–Krönig relation. What is
ε′

r (0) and ε′
r (ω � ω0)?

2.3 Derive Eqs. 2.51a, b from Eqs. 2.48a, b.
2.4 Derive Eq. 2.53a, using symmetry properties of the susceptibility.
2.5 Consider an infinite slab of thickness d , with a single-surface power reflection

coefficient R, a single-surface power transmission coefficient T = 1 – R, and a
one-pass loss factor K = exp(−βabsd/cos θa).
(a) The slab is illuminated by a rectilinear polychromatic ray bundle as illus-

trated in Fig. P2.5. Derive the specular transmittance, τS , the specular
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reflectance, ρS , in terms of R and K, and verify Eqs. 2.96 and 2.97.
According to the total power law,

τS + ρS = 1 − αabs,S

where αabs,S is the absorptance. Find the expression for αabs,S in terms of
R and K , as well, and show that for a lossless slab αabs,S(K = 1) = 0.
(Hint: Use ray optics and obtain a series representation of the net transmit-
ted power and reflected power rays.)

(b) Derive the corresponding formulas for transmittance, reflectance, and
absorptance, and with monochromatic illumination, thus including the
effects of interference. Now the rays represent field quantities. Let the field
reflection coefficient, r = |r | exp ( jαr ), and field transmission coefficient,
t = |t | exp ( jαt), must be used. (Note: R = |r |2 and T = |t |2 . The details of
these coefficients in terms of the complex index of refraction are presented
in Chapter 4.)

(c) Perform a spectral average on the transmittance of part (b) and show agree-
ment with the transmittance of part (a). Thus, evaluate the following:

τS = 〈τSI 〉 = 1

λ2 − λ1

λ2∫
λ1

τSI (λ) dλ = 1

2π

2π∫
0

τSI (φ) dφ,

where φ = 2ωn2 (cos θ) d/c. Then use contour integration to solve the inte-
gral on φ.

2.6 Based on Eqs. 2.74 and 2.98, show that a measurement of the emissivity is a
direct measurement of the absorption coefficient when the internal transmit-
tance is close to one (K ≥ 0.9). Also, show that the emissivity is 

1 − R,

when the absorption coefficient times the material thickness is large.
2.7 (a) Derive Eq. 2.119 from the eikonal equation. (b) Find the ray path in the 

xz-plane, given the spatial variation of the index of refraction is

n(z) = 1 + a + bz

for a ray initially directed in the x-direction and a and b small.
2.8 Verify Eq. 2.85.
2.9 Verify Eq. 2.126.

2.10 Start with Eq. 2.132 and derive Eq. 2.134. (Hint: This problem requires find-
ing the solution to

∞∫
−∞

dte− jat2
.

Then let, a = lim
b→0

(a − jb).

Then consult Gradshteyn and Ryzhik, Ref. 2.11.)
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2.11 Show, for βabs = 0 and θa = 0, that Eq. 2.145 is true based on Eq. 2.143 in the
single scatter limit.

2.12 For a spherical particle, the off-diagonal elements of the scattering matrix are
zero. Obtain the Mueller matrix for this case.
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3

Spectroscopy of Matter

It is critical to understand the nature of the propagation medium in terms of the avail-
able resonances which couple to the electromagnetic field. The detailed specification of
the complex index of refraction as a function of frequency is the subject of spec-
troscopy. Since propagation media cover all phases of matter, the spectroscopy of gases,
solids, and liquids is introduced in this chapter. Topics are not exhaustively covered, but
rather with sufficient depth to support the practical applications that will come later.

The chapter begins with a formal review of topics covered in stationary-state quantum
mechanics necessary for the development of spectroscopy. The next section develops
models to calculate spectral line positions, which are necessary to characterize a spectral
line. The full development of spectral line parameters is not only the goal of this chapter
but the next two as well. The remaining sections address the essential elements of the
spectroscopy of gases, solids and liquids. Both classical and quantum models are used.

3.1 Quantum Mechanics I

Time-independent quantum mechanics allows the description of the quantized energy
level structure of matter. This is the central topic of this chapter. Time-dependent quan-
tum mechanics is necessary for the development of a theory covering transitions
between stationary-state energy levels and is the topic of Chapter 5.

3.1.1 Early Quantum Mechanics and Light

The classical concept of light is that of an oscillating continuous wave field, as pre-
sented in the first two chapters. This is consistent with the classical electrodynamics



based on Maxwell’s equations. However, the work by Planck on blackbody radiation
and Einstein on the photoelectric effect showed that optical fields also have a quantized
or particle-like nature.

Planck, in 1900, suggested that the energy of light, E, be quantized according to

E = h f [J] (3.1)

where f is frequency (sec−1) and h is Planck’s constant (h = 6.6260755(40) × 10−34

J-sec). This allowed a theoretical description of blackbody radiation for the first time.
However, it was Einstein, who, a few years later, made Eq. 3.1 more credible by
applying it to explain the photoelectric effect.Only light of a certain frequency or
greater, incident upon a material, can induce a current. A light field with the same
radiance but lower frequency will not induce a current. This also required the energy
of light to be quantized in packets or particle-like quantities. This notion of quantized
light was further verified by the Compton effect (1923), which states that light will
be deflected by an electron much like a particle–particle interaction. These wave
packets or particles of light are called photons. The wave packet concept, as illus-
trated in Fig. 3.1, is commonly used to describe quantum-mechanical particles. The
particle is contained within the packet, thus the precise position of the particle is
uncertain.

This work showed that light has a particle nature, as well as the previously estab-
lished wave nature (interference and diffraction of physical optics). This dual nature of
light is naturally incorporated into quantum mechanics which requires all particles to
have a characteristic wavelength or De Broglie wavelength, λ, expressed as

λ = h

p
, (3.2)

where p is the momentum. This equation, first expressed in 1924 by De Broglie, can
also be written as

h̄k ′ = p (3.3)

where h̄ = h/2π and k ′ = 2π/λ and is called the magnitude of the wave-vector. Thus,
electrons, protons etc., must also have a wave–particle duality just like the photon.
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The energy of a photon, because of its wave nature, cannot be precisely determined
if anything is known about it in time. This statement can be intuitively made by using
E = h f and the time–bandwidth product of Fourier transform theory. Thus given

�E = h� f and � f �t ≥ 1

4π
,

then

�E�t ≥ h̄

2
. (3.4)

This statement is the Heisenberg uncertainty principle, which is fundamental to
quantum physics. The uncertainty principle applies to Fourier transform or conjugate
pairs, like time and energy or position and momentum. Simply put, the temporal and
spectral character of the photon cannot be simultaneously stated with infinite precision.

The modern notion of the photon is based on the quantization of the electric and
magnetic fields. These fields are assumed to be generated by harmonic oscillators. By
quantizing these harmonic oscillators the electric and magnetic fields can be described
in terms of raising and lowering operators which denote creation and annihilation of a
photon with a particular frequency, direction, and polarization.

A vacuum state or field is one which contains no photons. However, the harmonic
oscillator representation of the photon requires a zero point energy or a background
fluctuation of the field. Photons are being created and annihilated by electron and
positron pair creation and annihilation. This creates a fluctuation in the vacuum state.
Thus, an excited atom in vacuum can be induced to emit a photon with energy equiva-
lent to the energy difference between the excited and lower states of the atom by this
fluctuating background field. This is called spontaneous emission.

Spontaneous emission is a noise source in many systems and is an example of quan-
tum noise. In propagation problems one must consider the noise of a medium that will
add to the noise of the source and detector. More details of the quantized electro-
magnetic field are presented in Appendix 5, after more background material is developed
in Chapters 4 and 5.

3.1.2 Formal Introduction

We have already discussed the Heisenberg uncertainty principle in relation to the photon
and its description in terms of a wavepacket. Again the uncertainty principle is stated as

(�x) (�p) ≥ h̄

2

or

(�E) (�t) ≥ h̄

2
.

The language of quantum physics is not in terms of the exact location or momentum
of a particle but rather in terms of a distribution function that represent the probability
that it will have a certain location or momentum. The Heisenberg uncertainty principle
also suggests this notion. This explanation is called the Copenhagen interpretation.
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In general, a probability density function is normalized as

∞∫
−∞

P(x) dx = 1. (3.5)

For example, P(x) dx can represent the position of a particle between x and x + dx
with a certain probability. A general function of x, f (x), has an expectation value,
〈 f(x)〉, defined as

〈 f(x)〉 =
∞∫

−∞
f(x)p(x) dx. (3.6)

Also of interest is the variance of the function, defined as

〈 f(x) − 〈 f(x)〉〉2 = 〈 f 2(x)〉 − 〈 f(x)〉2 = [� f(x)]2. (3.7)

The standard deviation is the square root of the variance, � f(x). In this manner,
observable quantities with corresponding uncertainties can be calculated.

Quantum mechanics, like any field of physics, can be formulated in terms of the fol-
lowing basic postulates:

1. Each particle in a physical system is described by a wave function, ψ(r,t). This
function and its spatial derivative, ∇ψ , are continuous, finite, and single valued.

2. In dealing with classical quantities such as position, r , energy, E, and momentum,
p, we must relate these quantities with abstract quantum-mechanical operators
defined in the following way:

Classical Variable Quantum Operator

Position x, r x̂, r̂

f(x), f(r) f
(
x̂
)
, f(r̂)

Momentum p(x), p(r) −h̄
j

∂
∂x , −h̄

j ∇
Energy E −h̄

j
∂
∂ t or H

The hats (ˆ) indicate an operator as opposed to a variable. H is the system
Hamiltonian and equals the total system energy, thus

Ĥ = T̂ + V̂ , (3.8)

where T is the kinetic energy and V is the potential energy.

3. The probability of finding a particle with wave function ψ in the volume dx dy dz
is ψ∗ψdx dy dz . The product ψ∗ψ is normalized according to

∞∫
−∞

ψ∗(r) ψ(r) dr = 1, (3.9)
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where dr = dx dy dz. The integration is over all space. Thus ψ∗ψ(r)
(= |ψ(r)|2)

is interpreted as a probability density function. The expectation value, 〈Q〉, of any
variable Q is calculated from the wave function by using the operator Qop , as
defined in postulate 2, is given by

〈Q〉 =
∞∫

−∞
ψ∗ Qopψ dr. (3.10)

4. Operators which commute produce observable quantities or expectation values
that can be simultaneously determined with high accuracy. However, operators that
do not commute produce observable quantities that cannot be determined simulta-
neously. This is the case for operators whose classical variable analogs are Fourier
transform pairs, such as p and r. Because of its importance, commutation is des-
ignated by the commutation bracket, [ ]. For example,

(
x̂p̂x − p̂x x̂

)
ψ(x) = [x̂, p̂x

]
ψ(x) = − j h̄ψ(x) .

The proof of this is left as an exercise in Problem 3.2.

5. Quantum mechanics must include classical mechanics in the appropriate limits,
that is when:
(a) The particles are large enough for wave motion to be neglected.
(b) A continuum of energy levels exists.
(c) h → 0 approaches the “classical limit.”

3.1.3 Wave and Matrix Mechanics

The total energy function for a particle is called its Hamiltonian. It is the kinetic plus
potential energy 

(
i.e., H = T + V = 1/2 mv2 + V (r) = p2/(2m) + V (r)

)
The total

energy and ψ are important parts of wave mechanics as represented by the Schrödinger
wave equation, which determines the time and spatial evolution of these quantities. It is
stated as

Ĥψ(r,t) = − j h̄
∂ψ(r,t)

∂t
(3.11a)

or, expanding the Hamiltonian for a particle in a potential,

− h̄2∇2

2m
ψ(r,t) + V (r̂,t) ψ(r,t) = − j h̄

∂ψ(r,t)
∂t

. (3.11b)

For a time-harmonic solution of the form

ψ(r,t) = ψ(r) e jωt

and a time-independent potential, we obtain the stationary-state Schrödinger wave
equation, the basis for wave mechanics, as given by
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− h̄2∇2

2m
ψ(r) + V (r̂) ψ(r) = h̄ωnψ(r) .

Based on Eq. 1.1, h̄ωn = En and the above equation reduces to

Ĥψn(r) = Enψn(r) . (3.12)

Thus, stationary-state quantum mechanics is formulated as an eigenvalue problem
with eigenfunctions, ψn(r), eigenvalues, En , and quantum numbers, n (n can represent
more than one number). The quantized energy structure of a system described by the
Hamiltonian is the resulting energy eigenvalues. This approach, first proposed by
Schrödinger in 1926, is commonly called “wave mechanics.”

Another approach to describe quantum-mechanical phenomena was put forward by
Heisenberg. It is called “matrix mechanics” and is mathematically isomorphic to wave
mechanics. It offers a very useful, compact notation, called Dirac notation, emphasiz-
ing operators, eigenvalues, and quantum numbers. The statement of normalization of
the probability density function is now defined by

〈n|n〉 = 1, (3.13)

where 〈n| is a “bra” vector and |n〉 is a “ket” vector (from the word “bracket”). The
expectation value is 〈Q〉 = 〈n ∣∣Qop

∣∣ n〉, where the operator is represented by a matrix.
n represents the relevant quantum numbers of a system, and the spatial dependence is
suppressed. The wave function, ψn(r), is expressed as

ψn(r) = 〈r|n 〉. (3.14)

The corresponding stationary-state wave equation or eigenvalue equation is given as

Ĥ |n〉 = En|n〉, (3.15)

similar to Eq. 3.12. The expectation value of the Hamiltonian operator becomes

〈n|Ĥ |n〉 = En〈n|n〉

and applying Eq. 3.13, the above equation reduces to

〈H〉 = En. (3.16)

Generally, the ket vector |n〉 is denoted in terms of the set of system quantum numbers:

|n〉 = |J, v〉,
for the case of molecular vibrating rotor. J is the rotational quantum number and v is
the vibrational quantum number.

An operator is Hermitian or self-adjoint if it satisfies the following relation:

〈n|Ĥ |m〉 = (〈n|Ĥ)∗|m〉, (3.17)
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or in integral form ∫
ψn(Ĥψm) dr =

∫
(Ĥψn)

∗ψm dr. (3.18)

When the Hamiltonian of the system satisfies H = H∗, real energy eigenvalues are
required, that is

〈n|Ĥ |n〉 = En = 〈n|Ĥ∗|n〉 = E∗
n . (3.19)

Operators of physically observable quantities must be Hermitian and yield real
eigenvalues.

The eigenstates, |n 〉, form a basis set which spans the function space allowed by the
governing differential equation, and are usually chosen to be orthonormal. An ortho-
normal basis set has the inner product property that

〈n|n〉 = δn′n. (3.20)

The unit or identity operator, 1̂, is often useful and is defined as

1̂ =
∫

dr|r〉〈r| or 1̂ =
∑

n

|n〉〈n| (3.21)

for either continuous or discrete systems, respectively. Using Eqs. 3.14, 3.20, and 3.21,
it follows that the wave functions are orthonormal also, thus∫

drψ∗
n′(r)ψn(r) = δn′n . (3.22)

In this manner the Dirac notation of matrix mechanics can be converted to the spa-
tially dependent wave function of wave mechanics.

3.1.4 Single-Particle Propagation

As an example, consider the propagation of a free particle (e.g., V(r) = 0) along the 
z-axis. The wave function solving the Schrödinger equation in this case is

ψ(z) = Ae− jk ′z + Be jk ′z, (3.23)

where k ′ = (2mω/h̄) based on Eq. 3.3 and p2/(2m) = E. This solution is for the spe-
cial case when the particle momentum is known precisely, which also means the
particle position is completely unknown (see Problem 3.1). A more realistic solution
can be represented by a linear combination of functions in the form of Eq. 3.23 for dif-
ferent values of momentum or k ′. Now the momentum will have a nonzero uncertainty
and the particle position will have a finite uncertainty based on the Heisenberg uncer-
tainty principle. For propagation in the forward direction, a general solution of the wave
function for free-particle propagation is

ψ(z,t) =
∞∫

−∞
A(k ′) e jω(k ′)t e− jk ′zdk ′. (3.24)
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Let the momentum uncertainty, �k ′, be 2ε centered about k ′
0, thus

k ′
0 − ε ≤ k ′ ≤ k ′

0 + ε. (3.25)

Expand ω(k) about k ′
0 in the form of a Taylor series, to obtain

ω(k ′) = ω0 + (k ′ − k ′
0)

(
dω

dk ′

)
k ′

0

+ · · · . (3.26)

Substituting this result into Eq. 3.24, we obtain the following form for this particu-
lar free-particle wave function:

ψ(z,t) = e− j (k ′
0z−ω0t)

∞∫
−∞

A(k ′) e
− j (k ′−k ′

0)

[
z−
(

dω

dk′
)

k′
0

t
]

dk ′. (3.27)

Therefore, general free-particle wave functions must be of the form

ψ(z,t) = A

[
z −

(
dω

dk ′

)
k ′

0

t

]
e− j (k ′

0z−ω0t). (3.28)

This represents a traveling wave solution with an envelope function, defining the prob-
able particle location in space. This wave function is called a wave packet. An illustration
of the result in terms of the probability density function, ψ∗ψ , is shown in Fig. 3.1. This
envelope function in Fig. 3.1 satisfies the realistic boundary condition that ψ(±∞) → 0.
The velocity of the wave packet is called the group velocity and is given by

vg =
(

dω

dk ′

)
k ′

0

. (3.29)

The wave packet does not represent the size of the particle, but its probability of
location and momentum. The particle is contained within the wave packet. These are
fundamental concepts of quantum mechanics and are very different from our classical
understanding of particle propagation.

3.2 Introduction to Spectroscopy

Spectroscopy is the field of study which characterizes the energy level structure of matter.
In particular, it covers the location of spectral lines and the interaction of light and matter.

3.2.1 Line Position, Strength, and Shape

The energy structure of an atom or a molecule is composed of discrete or quantized
energy levels. At optical frequencies, the quantum nature of molecular structure is
important. This concept is illustrated in Fig. 3.2 for a two-level system. A photon has a
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characteristic frequency, f0, which must be proportional to the final and initial energy
level difference, such that Ef – Ei = h f0, if the photon is to be absorbed by this two-
level system. All other frequencies do not interact (to first order, e.g., scattering is
excluded), and propagate beyond the molecule. Energy is removed from the photon
field at precisely the frequency f0. Thus a spectral line is observed at f0 because of the
absence of energy relative to the incident photon field.

A real spectral line has an integrated amplitude (or strength, Si ) and a half-width, γi ,
because the energy levels are not single valued, but instead have a distribution of energies
caused by photon fluctuations, collisions from other molecules, electric fields, magnetic
fields, and thermal motion. The resulting absorption feature is illustrated in Fig. 3.3.

The strength of the i th absorption line is defined as the entire area under the absorp-
tion curve, βabs,i (ν). Thus,

Si =
∞∫

0

βabs,i dν. (3.30)

Line strength is, therefore, independent of frequency. The profile or line shape func-
tion of the transition is defined as

g(ν ; ν0, γi ) ,
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Fig. 3.2 Photon absorption in a two-level system.

Fig. 3.3 Absorption coefficient of a spectral line, where ν0 = (E f – Ei )/hc = f0/c where c is
the speed of light.



where γi = half-width at half-maximum and ν0 = line-center wave number (which is
directly proportional to frequency). Thus the absorption coefficient of a single line can
be broken down into two factors: the line strength and the line shape profile,

βabs,i (ν) = Si g(ν ; ν0, γi ) (3.31a)

The definition of Si as given by Eq. 3.30 requires the line shape profile to be nor-
malized as

1 =
∞∫

0

g
(
ν; ν0,γi

)
dν. (3.31b)

Also, as discussed in Section 2.1.1.2, the odd symmetry of the index of absorption
requires the absorption coefficient to be even, based on Eq. 2.30. Based on Eq. 3.31 and
the symmetry of the absorption coefficient, the line profile function must then have even
symmetry (in classical theory only):

g(ν) = g(−ν). (3.32)

This chapter shall be concerned with determining the position, ν0, of an absorption
line. In Chapters 4 and 5 the nature of the strength, Si , and profile function, g(γ ), will be
developed more completely. At infrared frequencies only molecules, not atoms, can
strongly couple to the electromagnetic field. Atoms do not have rotational and vibrational
spectra. Of course, no molecule has only one spectral line and a sum over all spectral lines
must be made to compute the total absorption as a function of frequency. Therefore,
replacing γ0 with γi , the ith line position, and summing over all spectral lines, we have

βabs(ν) =
∑

i

βabs,i (ν) =
∑

i

Sig
(
ν ; νi,γi

)
. (3.33)

Substituting the above equation into Eq. 2.54b and converting to angular frequency
(ω = 2πcν), the following sum rule is obtained:

n(ω) − 1 = c

π

∑
i

SiP

∞∫
0

dω′ g(ω′)
ω′2 − ω2

(3.34)

The Hilbert transform of g(ω) is now defined to be d(ω), the dispersion profile.
Thus, the forward single-sided Hilbert transform is

d(ω) = 1

π
P

∞∫
0

dω′ g(ω′)
ω′2 − ω2

(3.35a)

and the corresponding inverse transform is

g(ω) = 4

π
ω2P

∞∫
0

dω′ d(ω′)
ω2 − ω′2 . (3.35b)
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Based on the symmetry of the spectral line profile function and Eq. 3.35a, the dis-
persion profile is an even function in frequency (d(ω) = d(−ω)). Using these results,
Eq. 2.34 becomes

n(ω) − 1 = c
∑

i

Si d(ω ;ωi ). (3.36a)

Again the sum is over all spectral lines. Based on Eq. 2.53b, the following condition
on the dispersion profile is obtained:

∞∫
0

dω d(ω) = 0. (3.36b)

These definitions and relationships are fundamental to realistic models of the com-
plex index of refraction and to the discussion of optical propagation. They are applied
to models in Part II of this text.

3.2.2 Dipole Moments and Selection Rules

Strength and line position of a molecular transition are influenced by the nature of the
intramolecular bond, and by the configuration and mass of the atoms forming the mol-
ecule. A molecule with a dipole moment can couple to the photon field. The strength
of the dipole moment partially determines the strength of the transition. The masses of
the atoms, the relative positions, and the bond strengths determine the line positions of
the transitions (for rotational and vibration–rotation spectra). Recall that the dipole
moment is defined as

µdp = qr.

It is illustrated in Fig. 3.4. An example of an ionically bonded gaseous molecule is
HCl, and an ionically bonded solid is NaCl. The simplistic figure below is for a diatomic
molecule. Molecules with dipole moment interactions will be emphasized because they
are, by far, the strongest and therefore the most important in absorption spectroscopy.
Infrared-active rotational spectra require molecules with permanent dipole moments
(e.g., H2O, O3, and CO). Such molecules are called polar molecules.

In materials with proper structural symmetry and electron affinity (e.g., diamond, N2,
O2, and CO2) no dipole is formed, thus µdp = 0. Such materials are called nonpolar.
Nonpolar molecules typically have covalent bonds. Then quadrupole moments are most
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Fig. 3.4 Illustration of dipole moment for an ionic bond, where M+ = mass of positive ion and
m− = mass of negative ion, and q is the charge magnitude.



important to the transition probability (the exception is a collision-induced dipole).
These are very weak transitions, usually not important to optical propagation. Nonpolar
molecules have no rotational spectra. Certain vibrational motions can break the symme-
try, creating a temporary dipole moment and become infrared active.

Infrared-active vibrational spectra require molecules with only a change in the
dipole moment caused by the asymmetric relative motions of the atoms within the mol-
ecule. Therefore, if the relative vibrational motion of the atoms within a nonpolar
molecule is asymmetric, then a dipole moment may be produced and vibrational spec-
tra can exist. This point can be stated mathematically by considering a Taylor series
expansion of the dipole moment transition expectation value (explained in more detail
in Chapter 5) about the equilibrium position, re, of a molecule. Thus,

〈Jf v f |µ|Jivi 〉 = 〈Jf v f |µdp0|Jivi 〉 +
〈

Jf v f

[
∂µdp

∂r

]
r=re

(r − re) |Jivi

〉
+ · · · , (3.37)

where 〈r |Jv〉 = ψJv (r) represents the wave function of the molecule with the rota-
tional quantum number, J, and the vibrational quantum numbers, v. (There are 3N − 5
vibrational modes for linear molecules and 3N − 6 otherwise; N is the number of atoms
in the molecule. This is because every atom has three degrees of freedom for its motion,
thus 3N . As a molecule there are three translational degrees of freedom, thus 3N − 3.
A linear molecule has two degrees of freedom for rotation, otherwise there are three.
Subtracting the rotational degrees of motion leaves only the vibrational modes of the
system.) An illustration of vibrational motion in common molecules in the atmosphere
of the earth is given in Fig. 3.5.

In the case of pure rotational transitions, the first term must exist for a molecule to
be infrared active. The second term is unimportant. In the case of vibrational transitions,
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the second term must exist for a molecule to be infrared active. Polar molecules are 
typically strong absorbers of infrared radiation and have spectra from the far-infrared
(pure rotational) to throughout the mid-infrared (vibration–rotation bands). Water vapor,
for example, is the most important absorber of infrared radiation in the troposphere.

Based on Eq. 3.37, the selection rules are determined. For pure rotational transi-
tions, Jf − Ji = �J = 1. For vibration–rotation transitions, v f − vi = �v = 1 and
�J = ±1, 0. The different rotational selection rules form distinct groups of lines or
branches. �J = −1 corresponds to the P-branch, �J = 0 is the Q-branch, and �J = 1
is the R-branch. These selection rules are discussed further in the following sections on
line position.

A dipole moment can also be induced in molecules by an external electric field.
Dipole moment strength is proportional to the external-field frequency and electronic
polarizability, αe, which results from electronic cloud distortion by the incident light
field. This mechanism is important for Rayleigh and Raman scattering. Rayleigh scat-
ter is elastic, thus the incident-field frequency equals the scattered-field frequency.
Raman scatter is inelastic; the scattered-field frequency is shifted relative to the incident
field, revealing internal rotational and vibrational structure. The selection rules change to
�J = ±2, 0, where �J = −2 is called the O-branch and �J = 2 is the S-branch, and
�v = ±1, forming the stokes (�v = −1) and antistokes (�v = 1) vibrational bands.

A special case of interest to tropospheric propagation is collision-induced absorp-
tion (CIA) of N2 and O2. Strong collisions by neighboring molecules induce a dipole
moment that exists only during the duration of the collision. Because the collisions are
very brief, the line widths are very broad, and individual transitions merge into a broad
band structure. This type of featureless absorption is called continuum absorption.
More will be said about this phenomenon in Chapter 7.

3.3 Spectroscopy of Gases

Fortunately, nature has greatly simplified the study of spectroscopy by sufficiently sep-
arating the fundamental energies of rotational, vibrational, and electronic transitions
such that

Ee1 � Eνib � Erot .

The energy structure of each dynamics problem can be solved separately and treated
independently in the zeroth order. Couplings between the different types of energy
structures is then treated as a perturbation to the zeroth order system.

Rotational spectra typically occur in the far-infrared (0.1 to 100 cm−1) and exist only
for molecules with permanent dipole moments. Vibrational spectra typically occur in
the mid-infrared and near-infrared (100 to 10,000 cm−1) and only exist for molecules.
Electronic spectra exist for atoms and molecules, and typically occur in the visible
(weak bands) and ultraviolet (strong absorption bands which determine the end of opti-
cal transparency in a medium). Since the topics in this book are generally concerned
with infrared and visible phenomena, electronic structure will not be covered in detail.

The development begins with rotation spectra in the vibrational and electronic
ground state, then vibration–rotation spectra in the electronic ground state, and closes
with a brief description of electronic spectra.
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3.3.1 Rotational Spectroscopy

The weakest energy structures in molecules are purely rotational and are part of all
other transitions. The simplest molecule is the diatomic molecule, which has only one
unique axis of rotation and thus only one degree of rotation. For this reason, diatomic
molecules are covered first. A polyatomic molecule requires, in general, three rotational
degrees of freedom, and is more complicated to describe.

3.3.1.1 Diatomic Molecules

The simplest molecule is diatomic, and analytical models can be obtained in a straight-
forward manner. In the following, it is assumed that the system is in the vibrational
ground state (e.g., rigid rotor) and electronic ground state. Because of the importance
of the quantized energy level structure in gas-phase spectroscopy, it is instructive to 
set up the rigid-rotor problem in quantum mechanics. Let us begin with the time-
independent Schrödinger wave equation,

Ĥψ(r) = Eψ(r) .

The Hamiltonian for a rotating system is needed. In the case of a rigid rotor, the
rotational kinetic energy is

T = 1

2
Iω2 = J 2

2I
, (3.38)

where I is the moment of inertia, as given by

I =
∑

i

mir
2
i ,

J = Iω is the angular momentum, and ω is the rotational frequency of the rotor.
The diatomic model can be simplified by using a center-of-mass coordinate system

in the following way. The center of mass is defined to be at the origin and is determined
by the following conditions:

∑
i

mi ri = 0 and r1 + r2 = re.

The equilibrium separation of the atoms is re. This leads to the following result for
the moment of inertia:

I = m1r2
1 + m2r2

2 = µ′r2
e , (3.39)

where the following definitions are used,

r1 = m2

m1 + m2
re, r2 = m1

m1 + m2
re, (3.40a)
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and µ′ is the reduced mass, given by

µ′ = m1m2

m1 + m2
. (3.40b)

r1 and r2 are distances from the atoms “one” and “two”, respectively, to the center of
mass (CoM) point of the system. The two-body diatomic model is then transformed into
a single body of reduced mass, µ′, rotating about an origin re away. This model is illus-
trated in Fig. 3.6. Thus, instead of considering the rotation of the dumbbell, we can
equally well consider the rotation of a single particle of mass µ′ at a fixed distance re

from the axis of rotation. This reduces the two-body problem to the tractable single-
body problem.

The Hamiltonian for a freely rotating body is composed of the rotational kinetic
energy with no potential energy, thus based on Eqs. 3.38 and 3.39 the following opera-
tors are generated:

T̂ = p̂2

2µ′ = − h̄2∇2

2µ′ and V (r̂) = 0

where Ĵ = p̂re, p̂ is the tangential momentum operator, and V(r̂) is the potential. The
stationary-state Schrödinger wave equation now becomes

− h̄2∇2

2µ′ ψ(r) = Eψ(r). (3.41)

Choosing spherical coordinates, the corresponding wave function is ψ(re,θ,φ), where
r = constant ≡ re for a rigid rotor. Based on these results, let us solve the stationary-state
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Fig. 3.6 Rigid-rotor model is illustrated in two steps:
(a) two-body model and (b) the corresponding one-
body model.



Schrödinger equation as given by

1

sin θ

∂

∂θ

(
sin θ

∂ψ(θ,φ)

∂θ

)
+ 1

sin2θ

∂2ψ(θ,φ)

∂φ2
= −2µ′r2

e E

h̄2 ψ(θ,φ). (3.42)

Assuming that the wave function is separable, the following substitutions are made:
ψ(θ,φ) = �(θ)�(φ), and µ′r2

0 = I. The wave equation now becomes

sin θ

�(θ)

∂

∂θ

(
sin θ

∂�(θ)

∂θ

)
+
(

2I

h̄2 E

)
sin2θ = − 1

�(φ)

∂2�(φ)

∂φ2
. (3.43)

The two sides of the above equation must equal a constant, M2, independent of either
θ or φ, because each side depends on a different variable. Therefore, a separate equa-
tion involving �(φ) is obtained, thus

M2 = − 1

�(φ)

d2�(φ)

dφ2
(3.44)

with the solution

�(φ) = Ae− jMφ + Be jMφ. (3.45)

The boundary condition for a periodic function requires �(φ) = �(φ + 2π) because
of the rotational nature of the problem, therefore

Ae− jMφ + Be jMφ = Ae− jMφe− jM2π + Be jMφe j M2π. (3.46)

The boundary condition will be satisfied if e± j M2π = 1, where

M = 0,±1,±2,±3, . . . . (3.47)

Now consider the right-hand side of Eq. 3.42 involving �(θ),

sin θ

�(θ)

d

dθ

(
sin θ

d�(θ)

dθ

)
+
(

2I

h̄2 E

)
sin2θ = M2. (3.48)

Letting x = cos θ , the above equation becomes

(1 − x2)
d2�(θ)

dx2 − 2x
d�(θ)

dx
+
(

2I

h̄2 E − M2

1 − x2

)
�(θ) = 0. (3.49)

This is a well-known differential equation with associated Legendre functions as
solutions if
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2I

h̄2 E = J (J + 1), where |M| ≤ J = 0, 1, 2, 3, . . . . (3.50)

This condition requires the rotational energy levels to be quantized according to the
following formula:

ERot = h̄2 J (J + 1)

2I
. (3.51)

Writing the rotational frequency of a rigid rotor in units of wave numbers, we have

νRot = ERot

hc
= h

8π2Ic
J (J + 1). (3.52)

Spectroscopic notation expresses the rotational energy level in wave numbers by a
term value, F(J ), where

νRot = F(J ) = Be J (J + 1) and Be = h

8π2Ic
. (3.53)

Be is defined as the equilibrium rotational molecular constant valid for r = re . Notice
that the energy of a rotational level depends only on J, not on M. There are 2J + 1
values of M for each J and, therefore, 2J + 1 unique wave functions, ψJM(re,θ, φ), for
a particular rotational energy level specified by J. For situations like this the energy
level is called degenerate. In this case the degeneracy, gJ , is equal to (2J + 1). A rota-
tional energy level diagram is depicted in Fig. 3.7. Using the selection rule of �J = 1,
a series of spectral lines are formed with a regular interval between lines. 
The rotational constant determines the spacing between these lines. Thus light mole-
cules have broad rotation bands and heavy molecules have narrow-band formation.

The resulting wave functions for the rigid rotor are spherical harmonics. A listing of
these functions for various J and M values can be found in Appendix 2.

Example 3.1 Consider the diatomic molecule 12C16O, given re = 1.128 Å, m1 =
12 amu, and m2 = 16 amu; what is the value of Be?
The reduced mass is

µ′ = 6.857 amu = 1.138 × 10−23g

where 1 amu = 1.6604 × 10−24 grams and the moment of inertia is

I = µ′r2
e = 1.448 × 10−39g cm2.

Therefore, based on Eq.3.53, the equilibrium rotational constant is

Be = 1.931 cm−1.

The value Be = 1.9313 cm−1 has been experimentally verified (see reference 3.4).

The location of a pure-rotation spectral line, representing a transition between two
adjacent energy levels, is computed using the following formula:
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�ERot

hc
= F(J + 1) − F(J ) = 2Be(J + 1), (3.54)

where J is the rotational quantum number of the lower state. The separation between
adjacent spectral lines is 2Be. This regular spacing is characteristic of diatomic rota-
tional spectra and is illustrated in Fig. 3.7. Notice that �J = 1 was chosen for this
computation. It is called a selection rule and is based on nonzero values of the transi-
tion matrix element of the dipole moment, as based on Eq. 3.37,

q〈Jf |r |Ji 〉 �= 0. (3.55)

The verification of this selection rule is the point of Problem 3.5. The foundation for
this rule requires examination of the time-dependent Schrödinger wave equation, which
is discussed in Chapter 5.

3.3.1.2 Polyatomic Molecules

Pure rotational bands typically exist from millimeter waves to the far-infrared. The 
formulas for rotational spectral line positions vary for different types of molecules.
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Molecules are classified as linear (e.g., N2, O2, H2, CO, OH, CO2, N2O, OCS, HCN),
spherical top (e.g., CH4), symmetric top (e.g., NH3, CH3D, CH3Cl, C2H6), and asym-
metric top (e.g., H2O, O3, SO2, NO2, H2O2, H2S). Energy level structure is specified by
the term value, F(J )(= E/(hc)), and at most three rotational constants (A, B, and C;
one for each direction), both in cm-1. In general, there are three rotational degrees of
freedom (Ja, Jb, and Jc) and three corresponding quantum numbers (J, Ka, and Kc),
as illustrated in Fig. 3.8. However, symmetry of the molecular structure can reduce the
number of independent quantum numbers. The rotational term value functions with the
degeneracy factor gJ for the various types of molecules are as follows:

● Linear molecules (one independent rotational motion),

F(J ) = B J (J + 1) and gJ = 2J + 1. (3.56)

● Spherical-top molecules (A = B = C ) (one independent rotational motion),

F(J ) = BJ (J + 1) and gJ = (2J + 1)2. (3.57)

● Symmetric-top molecules (two independent rotational motions),
● prolate (A > B = C ),

F(J,K )= BJ (J + 1) + (A − B)K 2 and gJ =
{

2J + 1 K = 0,

2(2J + 1) K �= 0; (3.58)

● oblate (A = B > C),

F(J,K )= B J (J + 1) + (C − B)K 2 and gJ =
{

2J + 1 K = 0,

2(2J + 1) K �= 0.
(3.59)

● Asymmetric-top molecules (A> B >C) (three independent rotational motions).
F(J, Ka, Kc) is treated as an intermediate state between oblate and prolate 
symmetric tops. Thus a precise statement depends on the molecule and the degree
of asymmetry. For more information on this class of molecules see Herzberg 
Ref. 3.5.
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Fig. 3.8 Directions of angular momentum for a
general polyatomic rotor.



The rotational constants are defined as

A = h

8π2cIa
, B = h

8π2cIb
, and C = h

8π2cIc
, (3.60)

where Ia, Ib, and Ic are the molecular moments of inertia. Values of rotational constants
of atmospheric molecules are listed in Table 3.1. Line positions are calculated by using
the selection rule �J = Jf − Ji = 1 and Eqs. 3.8–3.11. For linear and symmetric top
molecules the result is

νRot = F(Jf) − F(Ji ) = 2BJf [cm−1]. (3.61)

The purpose of this section is to develop insight into the nature of molecular rota-
tional structure. For example, the rotational constants of water vapor are much larger
than any other molecule listed of importance to atmospheric propagation. This means
the rotational band structure of water vapor covers a much larger spectral range than the
rotational structure of other molecules.

Also, water vapor is an asymmetric molecule requiring three quantum numbers. This
produces a rich irregularly spaced spectrum, as depicted in Fig. 3.9. Because of this
(and other properties), water vapor plays an important role in every infrared spectral
region.

3.3.2 Vibrational Spectroscopy

Vibration bands of gases typically exist in the mid-infrared. Atmospheric infrared win-
dows are defined by the locations of these vibrational frequencies. Again, this section
will begin with a detailed presentation of vibrational motion in diatomic molecules.

96 OPTICAL PROPAGATION IN LINEAR MEDIA

Table 3.1 Rotational Constants of Common Atmospheric Gases*

Molecule A [cm−1] B [cm−1] C [cm−1]

H2 — 60.853 —
OH — 18.871 —
NO — 1.7046 —
CO — 1.9314 —
CO2 — 0.3902 —
N2O — 0.4190 —
H2O 27.877 14.512 9.285
O3 3.553 0.445 0.395
CH4 — 5.249 —
N2 — 2.010 —
O2 — 1.44566 —
NH3 6.196 9.9444 —
SO2 2.0274 0.3442 0.2935
NO2 8.0012 0.4336 0.4104
H2S 10.374 8.991 4.732

*From Herzberg (Refs. 3.4, 3.5).
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3.3.2.1 Diatomic Molecules

At this point we recognize that not only will a diatomic molecule rotate, but it will also
vibrate along the bond axis. To see this, consider the classical notion of two balls con-
nected by a spring, with spring constant βs, as shown in Fig. 3.10.

Using Newton’s third law and reducing the two-body problem to a single-body prob-
lem, as in the case of the rigid rotor, the motion of the vibrating diatomic molecule can
be described as

µ′ d2r(t)

dt2 = −βs(r(t) − re), (3.62)

where µ′ is the reduced mass, βs is a spring constant, and r(t) is the distance between
the atoms. It is convenient to define the variable

Fig. 3.10 Model for the vibrating diatomic mole-
cule, where m1 and m2 are the masses of the atoms,
βs is the spring constant of the restoring force, and re
is the equilibrium separation between the atoms.

Fig. 3.9 Pure rotational band of nitrogen-broadened water vapor for pH2O = 0.02 atm, pN2
=

0.98 atm, and T = 296 K.



q(t) = r(t) −re, (3.63)

where re equals the time-independent equilibrium separation. Then, substituting 
Eq. 3.63 into Eq. 3.62, we obtain the homogeneous differential equation

(
d2

dt2 + βs

µ

)
q(t) = 0. (3.64)

With the initial condition q(t = 0) = 0, the solution to this equation is

q(t) = q0sin ω0t, where ω0 =
√

βs

µ′ . (3.65)

In quantum mechanics, we are interested in the potential energy as part of the system
Hamiltonian, thus

F = −∇V (q) and V (q̂) = 1

2
βs q̂2. (3.66)

Using the Hamiltonian for a particle in a harmonic potential as given above, the
Schrödinger wave equation is

− h̄2

2µ′
d2ψ(q)

dq2 + 1

2
βsq2ψ(q) = Eψ(q). (3.67)

Making the substitution ψ(q) = exp
(−aq2

)
�(q) , we obtain

�′′(q) − 4aq�′(q) +
[(

4a2 − µ′βs

h̄2

)
q2 + 2µ′E

h̄2 − 2a

]
�(q) = 0. (3.68)

Hermite’s differential equation can be obtained if the following substitutions are
made:

a = µ′ω0

2h̄
and x =

√
µ′ω0

h̄
q.

Then, Eq. 3.68 reduces to

�′′(x) − 2x�′(x) + h̄

µ′ω0

[
2µ′E

h̄2 − µ′ω0

h̄

]
�(x) = 0. (3.69)
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Furthermore, impose the following quantization condition on the coefficient of the
last term in the above equation:

[
2µ′E

h̄2 − µ′ω0

h̄

]
h̄

µ′ω0
= 2v, where v = 0, 1, 2, 3, . . . . (3.70)

This leads to Hermite’s differential equation, of the form

�′′(x) − 2x�′(x) + 2v�(x) = 0, (3.71)

with the corresponding energy eigenvalues

Eνib = h̄ω0

(
v + 1

2

)
. (3.72)

The functions �(x) are the Hermite polynomials. The wave function then becomes

ψ(q) = exp
(−aq2)�

(√
µ′ω0

h̄
q

)
.

Converting Eq. 3.72 to wave numbers, the vibrational term value for a harmonic
oscillator is defined to be

Eνib

hc
= G(ν) = h̄ω0

hc

(
v + 1

2

)
= ννib

(
v + 1

2

)
. (3.73)

The factor ννib is the vibrational resonant frequency. Notice that for v = 0, a nonzero
vibrational energy still exists. It is called the zero-point energy and is a consequence of
the Heisenberg uncertainty principle. Since p and q are contained in the system
Hamiltonian and do not commute, the energy cannot be known with certainty. This is a
nonclassical result, but it is not of concern in spectroscopy, since spectral lines are gen-
erated by energy level differences.

The selection rule for vibrational transitions is �v = 1 or −1 for absorption or emis-
sion, respectively. The location of vibrational spectral lines is computed by taking the
difference of the term values for the upper and lower levels,

G(v + 1) − G(v) = ννib. (3.74)

All vibrational transitions occur at the same wave number, since the above result is
independent of v. This is a result of the harmonic approximation to the potential.

The solution of the harmonic oscillator is one of the most fundamental results of
quantum mechanics. It allows the quantum-mechanical description of any oscillatory
phenomena. To apply this formalism to some systems requires an algebraic solution
within the formalism of matrix mechanics. This is accomplished in the following 
discussion.

The stationary-state Schrödinger equation in Dirac notation is given by

Ĥ |v 〉 = Ev|v 〉,
where for the harmonic oscillator
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H(p,q) = 1

2

(
p2

m
+ ω2mq2

)
. (3.75)

The Hamiltonian can be simplified by reducing the momentum and position opera-
tors in the following way:

P = p√
m

and Q = √
mq, where P = Q̇. (3.76)

Substituting the above definitions into Eq. 3.75, we obtain the following Hamiltonian:

H(P,Q) = 1

2

(
P2 + ω2Q2). (3.77)

Also, based on Eq. 3.76 and [p,q] = j h̄ , the commutation relation between P and Q
becomes

[P,Q] = j h̄. (3.78)

A useful perspective on the harmonic oscillator problem is obtained by defining new
operators, as given by

â† = 1

(2h̄ω)1/2
(ωQ + jP) (3.79)

and

â = 1

(2h̄ω)1/2
(ωQ − jP). (3.80)

Then, based on these definitions and Eq. 3.78, the commutator bracket for the new
operators becomes [

â, â†] = 1. (3.81)

Substituting Eqs. 3.79 and 3.80 into Eq. 3.77, the system Hamiltonian can be
expressed in terms of the a operators to be

H(P,Q) = 1

2

(
P2 + ω2 Q2) = h̄ω

(
â†â + 1

2

)
. (3.82)

Therefore, the energy eigenvalue equation is written as

h̄ω

(
â†â + 1

2

)
|v〉 = Ev|v〉 (3.83)

or in standard eigenvalue equation form

â†â|v〉 =
(

Ev

h̄ω
− 1

2

)
|v〉. (3.84)
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Eigenvalue problems require that an operation on a function produces a number
times the function, thus

â†â |v〉 = number |v〉 = v |v〉
Therefore, the numerical factor on the right-hand side of Eq. 3.84 must equal the

number, v, and solving for Ev we obtain

Ev = h̄ω

(
v + 1

2

)
, (3.85)

which is a result analogous to Eq. 3.72. Thus, v is the energy quantum number. The
operator â†â is called the number operator, because it yields the number of vibrational
quanta a particular system has.

What do the operators â† and â represent? To answer this question, consider the fol-
lowing arguments. Let us find the eigenvalues of the operator â, as defined by

â |n〉 = Am | m〉, (3.86)

where the numbers Am and m need to be determined. The Hermitian conjugate form of
this equation is given by 〈

n
∣∣â† = 〈m∣∣ A∗

m . (3.87)

Based on the previous two equations, it follows that the inner product of a state
against the same state is

〈n ∣∣â†â
∣∣ n〉 = 〈m ∣∣A∗

m Am

∣∣m〉 = |Am |2, (3.88)

where it is assumed that the eigenvectors are orthonormal. Now, based on Eqs. 3.84 and
3.85, the following can be stated:

|Am |2 = 〈v ∣∣â†â
∣∣ v〉 = 〈v |v| v〉 = v. (3.89)

Therefore, the eigenvalue of the operator â can be expressed in terms of the energy
quantum number, as

Am = √
v. (3.90)

Further, the eigenvector can be determined by the following arguments. Consider the
post operation of the operator â on an eigenvector with the number operator operating
on the eigenstate, |v〉, as given by

â
(
â†â |v〉) = vâ |v〉. (3.91)

Rearranging the parentheses in the above equation, in the following manner,

ââ† (â |v〉) = vâ |v〉
and using the commutation relation, as given by
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ââ† = 1 + â†â,

we obtain

â†â |m〉 = (v − 1)| m〉. (3.92)

The operator on the eigenvector, |m〉, is the number operator. Therefore, the quan-
tum number of the eigenvector must be

|m〉 = |v − 1〉.
The solution to Eq. 3.86 now becomes

â|v〉 = √
v|v − 1〉. (3.93)

The operator â lowers the quantum number of the eigenstate and, for this reason, it
is called a lowering operator.

Also, let us examine the Hermitian conjugate of the lowering operator. Consider the
following eigenvalue equation:

â† |v〉 = Bn|n〉, (3.94)

where Bn and n are numbers to be determined. The Hermitian conjugate form of this
equation is given by

〈v ∣∣â = B∗
n 〈n∣∣ . (3.95)

In a similar fashion to the previous development, we compute the expectation value
of the following operator, which also equals |Bn|2:

|Bn|2 = 〈v ∣∣ââ†
∣∣ v〉 = 〈v ∣∣(1 + â†â

)∣∣ v〉 = 1 + v. (3.96)

Therefore, the eigenvalue of the operator â† can be expressed in terms of the quan-
tum number, v, as given by

Bn = √
1 + v. (3.97)

Furthermore, the eigenvector can be determined in a similar manner as before.
Consider the number operator operating on Eq. 3.94, which becomes after simple alge-
braic manipulation

â†â
(
â†|v〉) = (1 + v)

(
â† |v〉). (3.98)

Based on Eqs. 3.94 and 3.97, the above equation reduces to

â†â |n〉 = (1 + v) |n〉. (3.99)

This is the number operator operating on the state |n〉, which means

|n〉 = |v + 1〉
must be true. Therefore, the solution to Eq. 3.94 is given by

â†|v〉 = √
v + 1 |v + 1〉. (3.100)
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â† is called a raising operator because it raises the quantum number of the eigenvector.
(The raising and lowering operators are very useful tools when the electromagnetic field is
quantized in Appendix 5.)

Note The raising operator can be used to specify a state in general in the 
following way:

|v〉 = (â†)v√
v!

|0〉

where |0〉 is the ground state.

The harmonic oscillator is only an approximation to a real potential function. It is
valid only for systems in the lowest energy levels and even then does not give a detailed
description of a system. A realistic potential is composed of attractive and repulsive
potentials. The binding force in a polar molecule is the electrostatic attraction between
unlike charges. The atoms can only get so close because the electronic clouds sur-
rounding the nucleus begin to overlap and this is not allowed by the Pauli exclusion
principle (see Merzbacher Ref. 3.2). Also, the repulsive force between the two (or
more) positive nuclei will also have an effect when the atoms are close enough. The
resulting potential is the sum of these components, forming a potential well with a min-
imum at the equilibrium separation between the atoms, re. This description is illustrated
in Fig. 3.11.

Many intramolecular and intermolecular potential functions have been proposed;
here are two popular examples:

Leonard–Jones potential (or Van der Waals, also called 6–12 potential):

V(r) = A

r12
− B

r6
. (3.101a)

Morse potential:

V(r) = −D0 + D0
(
1 − e−a(r − re)

)2
, (3.101b)
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where D0 is the dissociation energy and re is the equilibrium position as defined 
in Fig. 3.11. Near the bottom of a realistic potential well the function is harmonic 
(see Fig. 3.11). To see this, consider the Morse potential function, for r − re small:

V(r) = −D0 + D0

{
1 −

[
1 − a (r − re) + a

2
(r − re)

2 + · · ·
]}2

≈ −D0 + 1

2
βs (r − re)

2 + anharmonic terms.
(3.102)

The Morse potential will be of interest later, mainly because it allows an exact solu-
tion to the Schrödinger equation. Thus, the anharmonicity is represented to all orders.
The one-dimensional wave equation with the Morse potential is

− h̄2

2µ

d2

dx2
ψ(x) + D0 {1 − exp [−a(x − xe)]}2 ψ(x) = (D0 + Ev) ψ(x). (3.103)

The corresponding energy eigenvalues are

Ev = h̄ω0

[(
v + 1

2

)
− 1

j ′

(
v + 1

2

)2 ]
− D0 (3.104)

where ω0 is the fundamental vibrational frequency, v = 0, 1, 2, 3, . . . , vmax ≤ ( j ′ − 1)/2
and

j ′ ≡
(

4D0

h̄ω0

)
. (3.105)

The wave function in the rotational ground state is

ψ(x) = 1√
4π

√
a

�(k − v)

(
v∑

i=0

�(k − 2v − 1 + i)

�(i + 1)

)1
2

e− z
2 z

k−2v−1
2 e− jπ(k−1)Lk−2v−1

v (z)

where k = (8πD0)
1/2/ah̄, z = kea(x−xe) and Lm

v (z) is the associated Laguerre polyno-
mial. Another consequence of an anharmonic potential is that �v = ±1,±2,±3, . . . .
Thus overtone bands are now allowed.

In general, the energy values of the one-dimensional anharmonic oscillator are given by

Ev = −D0 + h̄ωe

(
v + 1

2

)
− h̄ωexe

(
v + 1

2

)2

+ h̄ωe ye

(
v + 1

2

)3

+ . . . , (3.106)

where ωe = ω0, and xe and ye represent anharmonic corrections. Converting to wave
numbers,

G(v) = Ev

hc
= − D0

hc
+ νe

(
v + 1

2

)
− νexe

(
v + 1

2

)2

+ νe ye

(
v + 1

2

)3

+ · · · (3.107)



where G(v) is the vibrational term value. Vibrational spectral line locations are computed
by examining the differences between energy levels. To first order in the anharmonicity,
this is

νvib = G(v + 1) − G(v) = νe − νexe

[(
v + 3

2

)2

−
(

v + 1

2

)2 ]
. (3.108a)

After some simple algebra, the result is

νvib = νe − 2νexe(v + 1). (3.108b)

Vibrational transitions which originate above the ground state are shifted to lower
frequencies relative to the fundamental.

Now let us combine the rotational and vibrational motions, which we have thus far
considered separately. As the nonrigid molecule rotates with increasing energy, it
stretches until it ultimately flies apart. This is called centrifugal distortion, and it adds
a correction term to the rotational term value of the form

F(J ) = Be J (J + 1) − De J 2(J + 1)2, (3.109)

where

De = 4B3
e

ω2
0

. (3.110)

The rotational constant Be must also be modified, since re in the moment of inertia,
I , is the equilibrium separation, which changes for anharmonic vibrations as a function
of the vibrational level. Thus,

Bv = Be − αe

(
v + 1

2

)
+ · · · , (3.111)

where αe is a correction factor listed as a molecular constant in tables (e.g., see Herzberg,
Ref. 3.4). Further, a correction is also needed for the centrifugal distortion term,

Dv = De + βe

(
v + 1

2

)
. (3.112)

Based on these results, it follows that

Fv(J ) = Bv J (J + 1) − Dv J 2(J + 1)2 + · · · (3.113)

(usually Dv is very small and can be neglected for J small). Now the energy levels of
a vibrating rotator can be expressed as

T (v,J ) = G(v) + Fv(J )

= νe

(
v + 1

2

)
− νexe

(
v + 1

2

)2

+ · · · + Bv J (J + 1) − Dv J 2(J + 1)2 + · · · .
(3.114)
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The corresponding energy level diagram is illustrated in Fig. 3.12.
We are now ready to compute the positions of infrared vibration–rotation bands. As

before, ∆v = 1, but now �J = ±1 is possible. Thus for each vibrational transition there
are two separate bands or branches of rotational lines that will exist. For �J = 1, an
R-branch is formed and for �J = −1, a P -branch is formed. To see this, consider the
energy level difference for �v = 1 and �J = 1,

νR = G(v + 1) − G(v) + Fv+1(J + 1) − Fv(J ) . (3.115a)

Substituting Eqs. 3.107 and 3.113 for the vibrational and rotational term values and
ignoring the D rotational constant, the result for the R-branch line position is

νR = νe − 2νexe(v + 1) + (Bv+1 − Bv)J 2 + (3Bv+1 − Bv)J + 2Bv+1. (3.115b)

The corresponding energy level differences for the P-branch are computed in a sim-
ilar manner according to

νP = G(v + 1) − G(v) + Fv+1(J − 1) − Fv(J ). (3.116a)

The result for the P-branch line position is

νP = νe − 2νexe(v + 1) + (Bv+1 − Bv)J 2 − (Bv+1 + Bv)J. (3.116b)
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Fig. 3.12 Vibration-rotation energy level diagram (Herzberg, Ref. 3.4).



Ignoring second-order effects in the rotational constant (Bv + 1 ≈ Bv = Be), we have
the following simple formulas:

νR = νe − 2νexe(v + 1) + 2BeJ + 2Be (3.117)

for the R-branch lines with �J = 1, and

νP = νe − 2νexe(v + 1) − 2BeJ (3.118)

for the P -branch lines with �J = −1. A particular transition is denoted as
P(J ) or R(J ), where J is the lower-level quantum number. Note that the P-branch is
below the vibrational transition frequency and the R-branch is above. An experimental
vibrational spectrum of carbon monoxide is shown in Fig. 3.13.

Also in Fig. 3.13, secondary bands appear which are red shifted and weaker than the
main band. These are isotopic bands in which one of the atoms in the molecule is an
isotope. For example, in CO the main band is 12C16O, and the red-shifted band is from
the isotope 13C16O. Since the 13C atom is heavier, it is slower in vibration and rotation.
The amount of the shift is determined by the ratio of the reduced masses (diatomic):

ν
isotope
e

νe
=
√

µ′

µ′isotope = ρ. (3.119)

For the rotational constant Be it can be shown that

Bisotope
e = ρ2 Be . (3.120)
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Fig. 3.13 Vibration–rotation bands of CO, showing the fundamental (1–0) of the main isotope
12C16O and the fundamental of 13C16O.



This is very useful knowledge for problems in atmospheric propagation with CO2 or
CO lasers. Because these gases also exist in the atmosphere, the very transition that pro-
duces the laser radiation can also be an important absorber of that radiation in the
atmosphere. Thus isotopic CO2 and CO lasers will have improved propagation charac-
teristics, because laser power will be unchanged but the atmospheric absorption will be
greatly reduced. (CO2 lasers are very popular for many electro-optic systems in the
atmosphere and many companies offer isotopic CO2 in the gain media.)

3.3.2.2 Polyatomic Molecules

A polyatomic molecule can have many more modes of vibration than the simple diatomic
molecule. The number of possible vibrational modes is determined from the degrees of
freedom of the particular system. Each atom can, in general, move in three directions. In
a molecule with N atoms, there are 3N degrees of freedom describing the motion.
Choosing a central coordinate system allows the description of motion of the molecule in
three directions. Also the system can rotate in three different directions. Then the number
of independent modes of vibration is 3N − 6, where the “6” accounts for three degrees of
rotation and three degrees of translation. In the case of a linear molecule (i.e., CO2,
diatomics, etc.) the number of vibrational modes is 3N – 5, since only two independent
rotational modes exist. The vibrational modes describe motion of the atoms relative to one
another. When this motion is linear and with a fixed relative phase, a special set of vibra-
tional modes are generated. Such vibrational modes are called the normal modes of
vibration. Not all the modes will necessarily be infrared active. In a nonpolar molecule a
dipole moment must be created by asymmetric vibrations of the atom, otherwise no
dipole will exist and the modes are called “infrared inactive.” The study of symmetry
properties regarding the arrangement of atoms within a molecules is called group theory.
Group theory can be used to determine the activity of a molecule but is beyond the scope
of this text (see Herzberg, Ref. 3.4, and Burns, Ref. 3.8, for further references).

The vibrational term value function, G( ), for a polyatomic molecule with no degen-
eracy is

G(v1,v2,v3,. . .) =
∑

i

vi

(
vi + 1

2

)
+
∑

i

∑
k≥i

xik

(
vi + 1

2

)(
vk + 1

2

)
, (3.121)

where vi is the vibrational quantum number of the i th mode, vi is the ith harmonic
vibrational mode frequency, and xik(= xki ) accounts for an harmonic correction. Most
vibrational bands observed in the atmosphere originate from the vibrational ground
state (where 0 = v1 = v2 = · · ·). The centers of such bands are calculated to be

G0 (v1,v2,v3,. . .) = G (v1,v2,v3,. . .) − G (0,0,0,. . .)

=
∑

i

ν0ivi +
∑

i

∑
k ≥ i

x0ikvivk,
(3.122)

where

v0i = vi + xii + 1

2

∑
k �= i

xik
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and

x0ik = xik (ignoring higher powers).

If, for the ith mode, vi = 1, then the transition is called fundamental. Fundamental
normal-mode vibrational frequencies of atmospheric molecules are listed in Table 3.2.
When vi > 1, overtone bands result, which are harmonics of the fundamental.
Combination bands involve transitions employing different vibrational modes. When
the initial state of the molecule is not the ground state, hot bands result, with the fol-
lowing term value formula:

G(v f ,vi ) = G0(v f 1,v f 2,v f 3, . . .) − G0(vi1,vi2,vi3, . . .) , (3.123)

where v f,i represents the vibrational quantum number matrix of the final and initial states,
respectively. Values of vibrational frequencies squared depend inversely on the reduced
mass of the vibrating system and directly on the bond strength. Thus molecules with light
atoms will have the highest vibration frequencies. Again, water vapor is such a molecule.

Rotational–vibrational spectra include the perturbation effect that rotational motion
has on the vibrational energies. The allowed rotational transitions become �J = ±1, 0
which results in P, Q, and R-branch structure (see Herzberg, Refs. 3.4 and 3.5). Net
term value energies of the vibrating rotor become

T (v,J ) = G(v) + Fv(J ). (3.124)

Applying the selection rules leads to formulas predicting line position which can be
found in Herzberg.
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Table 3.2 Fundamental Vibrational Frequencies of Atmospheric Moleculesa

Degeneracy

Molecule v1 [cm−1] v2 [cm−1] v3 [cm−1] v4 [cm−1] gν1 gν2 gν3 gν4

CO 2143 1
H2 4401.21b 1
OH 3735.21 1
NO 1904.0 1
N2 2359.6b 1
O2 1580.4b 1
CO2 1388.2b 667.4 2349.2 1 2 1
N2O 2223.8 588.8 1284.9 1 2 1
H2O 3652 1594.7 3755.7 1 1 1
H2S 2614.6 1182.7 2627.5 1 1 1
NO2 1319.7 749.8 1617.7 1 1 1
O3 1110 705 1042.1 1 1 1
SO2 1151.3 517.6 1361.7 1 1 1
NH3 3336.2 932.5 3443.6 1626.1 1 1 2 2
CH4 2916.5b 1533.6 3019.5 1310.8 1 2 3 3

aFrom Herzberg (Refs. 3.4, 3.5).
bInfrared inactive.



As an example of this, let us consider the nonpolar linear molecule CO2. It has three
atoms, thus 3(3) – 5 = 4 modes of vibration. They are illustrated below.

CO2 Normal Vibrational Mode Structure

1. ν1: Symmetric stretch mode
2 and 3. ν2: Bending mode

(In the plane of the paper and perpendicular to the plane of this paper)
4. ν3: Asymmetric stretch mode
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The ν2 vibrational mode is twofold degenerate and requires two quantum numbers,
as designated by v1

2 . Thus four vibrational quantum numbers are necessary to describe
vibrational motion in CO2:

v1 v1
2 v3.

The vibrational ground state is designated as 0000, the first ν1 vibrational state is,
1000, and so on. Employing this notation with Table 3.2, we obtain

ν1 = 1000 − 0000 = 1388 cm−1,

ν2 = 0100 − 0000 = 667 cm−1,

ν3 = 0001 − 0000 = 2349 cm−1.

Because of the symmetry of the v1 mode, it is infrared inactive. However, the other two
vibrational modes are infrared active and are important absorption bands in the earth’s
atmosphere. (In fact, the ν2 band contributes to the greenhouse effect in the atmosphere of
the earth.) Each one of the bands will, of course, have rotational structure as well. The
familiar P- and R-branches are present, and �J = 0 also becomes possible (but not
always), thus Q-branches may also appear. An example of the ν3 vibrational band of CO2
is shown in Fig. 3.14. Figure 3.15 also has a vibrational energy level diagram for CO2.

Another example of great interest to us is H2O because of its importance to atmos-
pheric propagation and propagation in seawater (liquid phase). It has 3(3) − 6 = 3
vibrational modes: the bending mode (ν2), the symmetric stretch (ν1), and the asym-
metric stretch (ν3). Because of the light hydrogen atoms in H2O, high vibrational
frequencies are possible, as opposed to other atmospheric gases.

Therefore, water vapor has strong absorption bands throughout the infrared. This
fact, coupled with the large rotational constants of water vapor, explains why water
vapor dominates attenuation of infrared photons by absorption in the lower atmosphere.
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Fig. 3.14 CO2 v3 vibration–rotation band.

Fig. 3.15 Vibrational energy level diagram of CO2.

Also, the absorption spectrum of the gas and liquid phase of water has determined why,
in evolution, natural selection has chosen the eye’s visible spectrum.

3.3.3 Electronic Spectroscopy

Electronic absorption bands typically exist in the ultraviolet for atmospheric molecules and
involve transitions of outermost orbital electrons within the molecule. These transitions
mark the end of optical transparency in the atmosphere. Thus it is not necessary to present
a detailed description of the entire band structure, but rather the beginning absorption edge.
The most important molecules in this case are O2 and O3, since these molecules begin
absorbing at lowest ultraviolet frequencies of the atmospheric gases. Also, electronic tran-
sitions of N2 and O2 contribute significantly to the real part of index of refraction
throughout the infrared and visible.



Figure 3.16 illustrates a ground-state electronic level and an excited electronic level.
Within these electronic states are vibrational energy structures and within the vibra-
tional structures are rotational structures. The transition between these electronic
energies contains many possible vibration–rotation bands, as Fig. 3.5 demonstrates. A
series of absorption bands results, which characterizes the beginning of electronic band
absorption. Oxygen begins strong absorption at 195 nm with the Schumann–Runge
bands. Ozone, found primarily in the stratosphere, begins absorbing at 300 nm.

3.4 Spectroscopy of Solids

Solids do not have rotational spectra because the molecules are relatively fixed in posi-
tion and cannot rotate, but they do have vibrational motion of the lattice sites and
electronic transitions. The solid state adds a new look to these now familiar phenom-
ena, especially the regular structure of crystals. Also, continuous bands, not discrete
energy structures, are observed in solids, as opposed to gases. For this reason, a classi-
cal description of solid-state vibrational structure is used. Crystalline structure will be
emphasized at this time and applied later to both single- and polycrystalline materials.
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Fig. 3.16 Potential energy curves for two electronic states of a diatomic molecule (McCartney,
Ref. 3.7, with permission).



3.4.1 Lattice Vibrations and Phonons

When we discussed polyatomic molecules in the gas phase we stated that there are 
3N − 6 vibrational modes. The “6” corresponded to three rotational modes and three
translational modes. N represented the number of atoms in the molecule. Now, since no
rotational motion is allowed, the number of normal vibrational modes (which are also
optical modes) becomes

3N − 3,

where the second term, “3”, represents the number of translational modes. However, in
a solid, the translational modes become acoustic modes, which are also vibrational in
nature. Thus, there are actually 3N vibrational modes in a solid. The nonacoustic vibra-
tional modes are called optical modes because they typically occur at infrared
frequencies, which are higher frequencies than acoustic vibrations. Also, N now repre-
sents the number of atoms in a primitive unit cell or basis (which can be more than the
number of atoms in the molecule). The primitive unit cell contains the basic configura-
tion of the atoms, which is repeated in the crystal to form the macroscopic solid. Thus
a solid can have many possible vibration modes. For example, NaCl has one molecule
for each primitive unit cell, thus N = 2. The number of possible optical modes becomes
three. Of course, not all of these are distinct infrared active modes. Because of symme-
try, many modes will be degenerate or will have no dipole moment and, therefore, be
optically inactive. Also, as is the case for NaCl, more optical modes are actually
observed because of crystal defects and impurities.

3.4.1.1 One-Dimensional Diatomic Lattice

Let us begin the discussion of lattice vibration by considering the simple problem of a
one-dimensional lattice with two atoms per unit cell. In this case, the number of opti-
cal modes is one ( = N – 1). Therefore, one optical mode and one acoustic mode are
expected. A diagram of this lattice is illustrated in Fig. 3.17. This will be a classical
treatment, which will be very useful to us later, because the energy levels occur in bands
and only broad spectral features can be observed.

Consider an infinite one-dimensional diatomic chain of a polar molecule. The nega-
tive atom has a mass M and the positive atom has a mass m. They are separated by the
equilibrium distance a and held together by a Hooke’s law force with spring constant
βs. This means, as before, we have assumed a harmonic potential. Now, let the atom
have a small displacement from equilibrium, as shown in Fig. 3.18. v represents dis-
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Fig. 3.17 The one-dimensional diatomic lattice. m is the positive ion, M is the negative ion, βs
is the spring constant representing the bond between atoms, and a is the equilibrium distance
between atoms.



placements of the negative atoms and u represents the displacements of the positive
atoms. The subscripts locate the particular atom in the linear chain.

The lattice potential energy is (considering only nearest neighbors)

Vv(u,v) =
∞∑

n = 1

[
βs

2
(un − vn)

2 + βs

2
(vn − un+1)

2

]
centered about vn (3.125)

and

Vu(u,v) =
∞∑

n = 1

[
βs

2
(vn − un)

2 + βs

2
(un − vn−1)

2

]
centered about un. (3.126)

Using, F = − |∇V | and F = m(d2v/dt2), we have the following coupled differ-
ential equations:

m
d2un

dt2 = −∇u Vu = − ∂

∂un
Vu = βs(vn + vn−1 − 2un) (3.127)

and

M
d2vn

dt2 = −∇vVv = − ∂

∂vn
Vv = βs(un+1 + un − 2vn). (3.128)

Assuming traveling wave solutions for un and vn , we have

un = u e− j (2nk ′a −ωt) (3.129a)

and

vn = v e− j[(2n+1)k′a −ωt]. (3.129b)

Upon substitution into Eqs. 3.127 and 3.128, we find the following results:

−mω2u = βs

[
v
(

e jk ′a + e− jk ′a
)

− 2u
]

(3.130)

and

−Mω2v = βs

[
u(e jk ′a + e− jk ′a) − 2v

]
. (3.131)
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Fig. 3.18 Lattice site displacements.



A solution will exist if the two equations are independent. Thus the determinant of
the coefficient matrix must be zero:

∣∣∣∣ mω2 − 2βs βs(e j ′ka + e− j ′ka)

βs(e jk ′a + e− jk ′a) Mω2 − 2βs

∣∣∣∣ = 0 (3.132)

Evaluating the determinant, we obtain the following dispersion relation between
ω and k ′,

ω2 = βs

µ′ ± βs

√
1

µ′2 − 4sin2k ′a
mM

(3.133)

where µ′ = [mM/(m + M)] is the reduced mass, just as in a diatomic gas.
A plot of ω(k ′) is shown in Fig. 3.19 for k ′ > 0 only, since the curve is symmetric

about k ′ = 0 (i.e., ω(k ′) = ω(−k ′)). Also, the solution is periodic in k ′ with period
π/a. This is a useful property, and the interval

−π

2a
≤ k ′ ≤ π

2a

is called the first Brillouin zone.
It is instructive to examine the dispersion relation for the simple case of the k ′ ≈ 0

limit. Two solutions are possible,

ω ≈
(

2βs

µ′

)1/2

, and
u

v
≈ − M

m
(optic branch) (3.134)

and

ω ≈
(

2βs

m + M

)1/2

k ′a, and
u

v
≈ 1(acoustic branch). (3.135)
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Fig. 3.19 The ω versus k ′ plot for a linear diatomic chain in the positive half of the first Brillouin
zone.



One solution represents the optic branch, because it can be excited by high frequen-
cies (infrared). The acoustic branch supports lower frequency modes. The solutions for
k ′ = π/(2a) are listed in Fig. 3.19. For this case, the lattice site position amplitude
ratios are given by

u

v
= ∞ (i.e., v = 0) (optic branch) ,

and

u

v
= 0 (i.e., u = 0) (acoustic branch).

The corresponding motion of the atoms, as indicated by the ratio of the position
components, is illustrated in Fig. 3.20 for both k ′ = 0 and π/(2a). Note that the optic
branch represents lattice motions consistent with an applied electric field (at optical fre-
quencies) in the direction of the lattice and propagates perpendicular to the lattice. The
acoustic branch represents compression waves or sound wave phenomena which prop-
agate in the direction of the lattice.

From this model of the diatomic linear chain, the linear monatomic lattice can be
directly understood. Setting M = m reduces Eq. 3.133 to a single formula, from which
the following dispersion relation is obtained:

ω = 2

(
βs

m

)1/2 ∣∣∣sin
(

k ′ a
2

)∣∣∣ . (3.136)

Now only one branch exists, the acoustic, as expected.
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Fig. 3.20 Illustration of lattice motion for (a) k ′ = 0 optic branch, (b) k ′ = 0 acoustic branch,
(c) k ′ = π/2a optic branch, and (d) k ′ = π/2a acoustic branch.



The group velocity, vg , can be computed for each branch based on the dispersion
relation and is defined as

vg = dω

dk ′ .

For the optic branch at k ′ ≈ 0 and k ′ ≈ π/(2a), the group velocity is

vOB
g = 0.

For the acoustic branch, the group velocity is

vAB
g =

(
2βs

m + M

)1
2

a = vs (3.137)

where vs is the speed of sound in a diatomic crystal for k ′ ≈ 0. Thus, the optic 
branch cannot support the transport of vibrational energy along the direction of the one-
dimensional lattice for k ′ ≈ 0, but the acoustic branch can. The optic branch supports a
standing wave and the acoustic branch supports a traveling wave.

Also notice that the wavelength of optical radiation, λ (about 1000 to 0.1 µm), is
much greater than the spacing between the lattice site, a (about 3 to 4 Å). Thus to match
the wavelength of optical light the lattice has a very small value of k ′. For this reason,
many problems dealing with optical properties of solids are solved in the “long wave-
length limit,” that is, k ′ ≈ 0.

3.4.1.2 Three-Dimensional Lattice

Many important points can be learned from the one-dimensional lattice problem, but
it is too simplistic to represent other important issues of real materials. To complete
this introduction to solid-state spectroscopy we must discuss the three-dimensional
lattice.

Three-dimensional lattice structures can be represented by seven different crystal
systems with 14 different unit cells. These systems are listed in Table 3.3 and the unit
cell structures are illustrated in Fig. 3.21. The coordinate system used in their descrip-
tion is illustrated in Fig. 3.22. These different groupings represent three classes of
importance to optical propagation in crystals. They are cubic, uniaxial, and biaxial, and
are indicated in Table 3.3. Most optical crystals are either cubic or uniaxial; very few
are biaxial. Cubic structures have the most symmetry, therefore fewer optical modes are
expected and the material is more isotropic in character. Uniaxial structures have two
directions of different symmetry and therefore two sets of vibrational modes, which
depend on the crystal orientation. The properties of this class of material differ in the
two directions. Biaxial structures differ in all three space directions and therefore have
different vibrational modes and material properties in these directions as well. The
importance of, and differences between, these classes concerning optical propagation is
demonstrated in the next chapter.
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Table 3.3 Organization of Crystal Systems

System No. of Lattice Types Axes and Angles Optical Designation

Cubic 3 a = b = c cubic
α = β = γ = 90◦

Hexagonal 1 a = b �= c uniaxial
α = β = 90◦

γ = 120◦

Tetragonal 2 a = b �= c ”
α = β = γ = 90◦

Trigonal 1 a = b = c ”
α = β = γ < 120◦, �=90◦

Monoclinic 2 a �= b �= c biaxial
α = β = γ = 90◦ �=β

Orthorhombic 4 a �= b �= c ”
α = β = γ = 90◦

Triclinic 1 a �= b �= c ”
α �= β �= γ

Fig. 3.21 The crystallographic systems and space lattices (Burns, Ref. 3.8, with permission).



Each system structure has unique symmetry properties which determine mode
degeneracy and infrared activity. This requires group theory of space structures and is
not covered here, but can be found in the solid-state references at the end of this chap-
ter (see Refs. 3.8 and 3.9).

Because of the additional dimensions, other vibration and acoustic modes are now
possible. In one dimension only, modes in the direction of the lattice exist and are called
longitudinal. For the case of the one-dimensional diatomic lattice, one mode is longitu-
dinal acoustic (LA) and the other is longitudinal optical (LO). Now transverse modes are
possible, where the lattice site oscillations are perpendicular to the direction of the bonds
between the atoms, as illustrated in Fig. 3.23. Such modes can have an optic branch or
an acoustic branch, and are called transverse optic (TO) and transverse acoustic (TA).
For a crystal with one atom per unit cell, there are three acoustic modes, one longitudi-
nal and two transverse. For a crystal with two atoms per unit cell, there are three acoustic
modes (one LA and two TAs) and three optic modes (one LO and two TOs). Dispersion
curves for various monatomic and diatomic crystals are shown in Fig. 3.24.

3.4.1.3 Vibrational Density-of-States

Many vibrational states can exist in a solid, and it is useful to define a density-of-states
function, ρ(ω). It is the number of vibrational states between ω and ω + dω within a
volume L3, as defined by (see Kittel, Ref. 3.9)
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Fig. 3.22 Crystal axes and angles.

Fig. 3.23 Two-dimensional lattice showing transverse modes (Burns, Ref. 3.8, with permission).



ρ(ω) dω = dN =
(

L

2π

)3 ∫
shell

d3k ′, (3.138)

where N is the number of modes and ρ(ω) is normlized according to 

∞∫
0

ρ(ω) dω = 1. (3.139)

Based on Eq. 3.135, the frequency is directly proportional to the wave vector, k ′, for
the acoustic branch. Thus, the number of acoustic vibrational modes less than k ′ is
obtained by integrating Eq. 3.138 over the entire volume. The result is
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Fig. 3.24 Dispersion curves for Na, Si, and KBr (Burns, Ref. 3.8, with permission).



N =
(

L

2π

)3 4π

3
k ′3 = V ω3

6π2v3
s

,

where the volume V = L3. The vibrational density-of-states in the Debye approxima-
tion (considering only acoustic modes) is obtained by differentiating the above result
with frequency. The normalized result is given by

ρ(ω) =
{ 3ω2

ω3
max

ω ≤ ωmax

0 ω > ωmax

, (3.140)

where ωmax is the maximum acoustic frequency the lattice will support. This is, in gen-
eral, a crude approximation, good only for small ω (e.g., acoustic modes), but useful for
many applications. An example of a real density-of-states function is shown Fig. 3.25
for a monatomic crystal. This model does give a relatively good representation of the
acoustic density-of-states.

Optical-mode density-of-states structure is more complicated, and no generic model
exists.

3.4.1.4 Phonons

In solid-state physics, lattice vibrations are often called phonons. A phonon is a quan-
tized lattice vibration or a traveling wave packet with many similar characteristics of a
photon (the particle of light). Thus the vibrational motion of a lattice can behave like a
particle (wave packet).
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Fig. 3.25 An example of a real ρ(ω) for Na. Note the sharp cutoff near 15 meV. The dashed
curve is the approximate Debye function.



3.4.2 Electronic Structure

Electronic transitions in a solid begin at the material’s bandgap. This generally marks
the end of a material’s useful transparency. Above the bandgap, the material is reflec-
tive. Solid-state electronic spectroscopy is broad band, and is complicated by the many
possible transitions. However, electronic structure is fundamental to understanding the
nature of the bonds forming the solid and thus many of the material properties.

3.4.2.1 Band Structure

As in the case of vibrational structure, it is instructive to begin with a one-dimensional
lattice. However, the problem will be posed within the formalism of quantum mechan-
ics, because of the importance of energy level splitting in electronic band formation.
This point is illustrated in Fig. 3.26 for diamond. Consider carbon atoms in the gas
phase; the energy level structure is discrete and clearly defined. As the atoms come
together to form the solid, the energy levels split N -fold, where N is the number of
atoms. A covalent bond is formed by the new energy levels that are below the gas phase
ground state levels because the system seeks the state of least energy.

Recall, the stationary-state Schrödinger equation in one-dimension,

d2ψ(x)

dx2
+ 2m

h̄
[E − V (x)]ψ(x) = 0.

Choose a periodic square potential such that V (x + d) = V (x), as illustrated in 
Fig. 3.27. For an infinitely long one-dimensional solid, V (x + nd) = V (x) also holds
for any integer n. This arrangement approximates a lattice with the outermost electron
in the atom at each lattice site trapped in the potential well between lattice sites.
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Fig. 3.26 The formation of energy bands as a function of atomic separation for diamond (Pankove,
Ref. 3.10).



Based on the nature of the potential, choose a periodic solution of the form

ψ(x) = u(x) e jk ′x , (3.141)

where u is periodic, as

u(x + nd) = u(x). (3.142)

Solve separately for ψ(x) in two regions: (1) for V(x) = 0 and (2) for V(x) = Vo .

1. For V(x) = 0 and 0 < x < a, the Schrödinger equation reduces to

(
D2

x + 2mE

h̄2

)
ψ(x) = 0. (3.143)

The solution is

ψ(x) = Ae jαx + Be− jαx, (3.144)

where

α =
(

2mE

h̄2

)1
2

. (3.145)

2. For V (x) = Vo and a < x < a + b (assuming Vo > E (i.e., bound electrons)),
the Schrödinger equation becomes (Dx = d/dx )

(
D2

x − 2m(Vo − E)

h̄2

)
ψ(x) = 0. (3.146)
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Fig. 3.27 Periodic potential of a one-dimensional linear monatomic lattice.



The solution in this region is

ψ(x) = Ceβx + De−βx , (3.147)

where

β =
(

2m(Vo − E)

h̄2

)1
2

. (3.148)

Rearranging Eq. 3.141, we have

u(x) = ψ(x) e− jk ′x . (3.149)

Then, substituting into the above equation the solutions for φ(x), the corresponding
solutions for u(x) in the two regions are as follows:

u1(x) = Ae j (α − k ′)x + Be− j (α + k ′)x for 0 < x < a (3.150a)

and

u2(x) = Ce(β − jk ′)x + De−(β + jk′)x for a < x < a + b. (3.150b)

The boundary conditions in this case are that

ψ(x) and
dψ(x)

dx

are continuous functions everywhere. Thus u and u′ must also be continuous every-
where. Therefore, at x = 0 we have u(0) = u(d) and u1(0) = u2(0) , which results in
the following conditions:

A + B = C + D (continuity of u(x))

and

j (α − k ′)A − j (α + k ′)B = (β − jk ′)C − (β + jk ′)D (continuity of u′(x)).

Furthermore, since u(x) must have the same periodicity of V (x), then u must have
the same values at x = a and x = −b,

Ae j (α − k ′)a + Be− j (α + k ′)a = Ce−(β − jk ′)b + De(β + j ′k)b

u1(a) = u2(−b)
(3.151a)

and similarly for u′,

j
(
α − k ′) Ae j(α−k ′)a − j

(
α + k ′) Be− j(α+k ′)a = (β − jk ′)Ce−(β− jk ′)b

− (β + jk ′) De(β+ jk ′)bu1 (a) = u2 (−b)

(3.151b)

For a solution of these four simultaneous homogeneous equations to exist, we
require the determinant of the coefficients to vanish, which results in
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β2 − α2

2αβ
sinh βb sin αa + cosh βb cos aα = F(αa) = cos k ′(a + b). (3.152)

This equation is not tractable analytically and leads to the graphical solution shown
in Fig. 3.28. Values of F(αa) ≤ 1 are valid solutions and define an energy band struc-
ture which we expect for solids. The lowest energy band is called the valance band and
the first excited energy band is called the conduction band.

3.4.2.2 Electronic Density-of-States

In three dimensions, electronic band structure becomes more complicated, because it
now varies with crystallographic direction, just as was the case for vibrational structure.
This point is illustrated in Fig. 3.29 for the case of the electronic k ′-space diagram for
α-sapphire. At the bandgap, the energy structure of the valence and conduction bands
is parabolic in nature. This is an important characteristic function near the bandgap for
many optoelectronic devices. A brief development is presented below.

In a three-dimensional cubic box of length L, the wave function for a periodic poten-
tial takes the form

ψ(r) = u(r)e jk ′· r , (3.153)

where the function u is periodic in three dimensions in a similar fashion to the one-
dimensional case given by Eq. 3.142. The periodicity of the wave function requires the
wave vector to be quantized according to

k ′
i = 2πm

Li
,

where i = x, y, z and L = Lx = L y = Lz. In k ′-space, the volume, V , per electronic
state is

8π3

V
, where V = Lx L y Lz.
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Fig. 3.28 Band structure of one-dimensional monatomic solid.



The electronic density-of-states, ρ(k ′), is defined as the number of electronic states
per band, with a value of k ′ between k ′ and k ′ + dk ′ . This is determined by computing
the volume of states in a spherical shell times two, for the two different spin states,
divided by the volume per electronic state, thus

ρ(k ′) dk ′ = 2
V

8π3
k ′2
⎛
⎝ ∫

shell

sin θ dθ dφ

⎞
⎠ dk ′ = k ′2V

π2
dk ′ (3.154)

For a given k ′, the associated kinetic energy of a conduction band electron is given by

E(k ′) = h̄2k ′2

2mc
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Fig. 3.29 (a) k ′-space energy band structure for single-crystal sapphire. (b) The corresponding
density-of-states (DOS) function for sapphire (French, Ref. 3.12a, with permission).



where mc is the effective mass of an electron in the conduction band. A similar formula
is obtained for an electron in the valence band, where the effective mass becomes mv .
To convert the density-of-states to a function of energy, use

ρ(E) dE = ρ(k ′) dk ′.

Using the above formulas, the following result for the electronic density-of-states is
obtained:

ρ(E) = 1

2π2
V

(
2mc,v

h̄2

)3/2

E1/2, (3.155)

where mc,ν is either the mass of an electron in the conduction band or the valence band.

3.4.2.3 Excitons

An exciton is a bound electron–hole pair, formed by an electron in a conduction band
with a hole (absence of an electron) in the valence band. It has many properties similar
to that of a hydrogen atom. The spectrum of an exciton is similar to that of hydrogen
and occurs near the bandgap of the host material. The bond length varies depending on
the host medium. Long bond lengths are found in semiconductors and short bond
lengths are found in insulating materials.

3.5 Spectroscopy of Liquids

Liquids can be thought of as a transition phase for matter between gases and solids.
Thus we expect to see broad continuous spectral features, as is typical for condensed
phase media at spectral locations similar to gas-phase spectra. This, it turns out, is basi-
cally true for vibrational structure but not for rotational structure. The rotational motion
is hindered because of collisions with nearby neighboring molecules, and optically
manifests as broad-band spectra, typically in the microwave.

From the point of view of the most important optical propagation media, one liquid
stands out, water. The dielectric properties are needed for solving atmospheric scatter
problems by fog, clouds, and sea spray, and absorption problems within seawater and
biological fluids. Thus understanding the spectroscopy of water is fundamentally
important to two common propagation media.

Liquid-phase spectroscopy is complicated and will only be surveyed here. The sim-
ilarities with gases and solids are emphasized.

3.5.1 Orientational Polarizability

For the case of polar molecules in the liquid phase the molecules rotate to align them-
selves to an applied field. This produces what is called orientational polarizability. A
relaxation time is given for a particular system to do the orientational process, it is
called the Debye relaxation time. For water it is found to be τD ≈ 10−11 sec.
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The Debye relaxation process accounts for the damped rotation of the water mole-
cule in the liquid state. The conductivity relaxation process accounts for the damped
translational motion of the ionic charge carrier. Debye, in 1913 (Ref. 3.13), approxi-
mately determined the Debye relaxation time, τD , by considering Stoke’s law converted
for a rotating sphere and Brownian motion. The following formula was obtained:

τD = 8πηa3

kB T
, (3.156)

where η is the viscosity of water, a is the radius of water molecule and kB is the
Boltzmann’s constant. Surprisingly, this formula predicts reasonably well the observed
relaxation time of water, which is on the order of 1 × 10−11 sec. Figure 3.30 shows the
Debye absorption band peaked at a wavelength of ∼10,000 µm(= cτD).

Microwave ovens use this absorption band to heat food. Infrared ovens (the common
oven) use vibrational absorption bands for coupling energy into a medium. The amount
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Fig. 3.30 The index of absorption, ka, and index of refraction, n, as a function of wavelength for
liquid water at room temperature and one atmosphere pressure.



of energy absorbed is proportional to the absorption coefficient and not the index of
absorption. They are linearly related by frequency as given by Eq. 2.30.

Note In the case of seawater, one must also consider the free-carrier contribu-
tions to the complex index of refraction. Intuitively, the relaxation time, τc, of the
translational motion of the ionic charge carrier in water should be similar to the
rotational relaxation of the water molecule. Following a similar approach to Debye,
the conductivity relaxation time can be approximately found by examining the
charge density and by applying Stoke’s law and Brownian motion. The result is

τc = 6πηbx2
0

kB T
, (3.157)

where b is the radius of the charge carrier and x0 is the 1/e point of the charge dis-
tribution. Substituting into the formula numbers for seawater and assuming that
a ≈ b and x0, one finds that τD ≈ τc .

Thus, the microwave absorption coefficient is significantly lower than the infrared
absorption coefficient. This is why microwave ovens heat a volume more uniformly and
therefore quickly, and infrared ovens primarily couple to the surface and require more
time to heat the entire medium.

3.5.2 Vibrational and Electronic Structure

Vibrational structure of the gas phase will also appear in the liquid phase; however, the
location of the observed vibrational band will be shifted from the gas-phase location.
Obviously, the intramolecular potentials have changed. Also, continuous band structures
are observed. An example of this is the liquid H2O spectrum in Fig. 3.30. The
ν2 and νs(ν1 and ν3 stretch bands combined) bands, as listed in Table 3.2 for the gas
phase, are clearly present. Notice that no rotational structure is seen within the vibrational
bands, only smooth bands. Also, new bands have appeared due to “intermolecular” poten-
tials between molecules. νT is the translation band caused by collisions by surrounding
water molecules that hinder the translational motion of the absorbing molecule. νL is the
librational band caused by hindered rotations of two interacting molecules. The molecules
rock about a hydrogen bond as they try to rotate. νA is the association band caused by
combinations of other bands (ν2 + νL ). Table 3.4 lists the location and identification of
observed vibration bands of water. The strong absorption peak at 2.9 µm is commonly
used for tissue ablation in biomedical applications.

The vibrational bands decrease in strength as the frequency increases. The minimum
index of absorption occurs in the visible, which is a window region in water bordered
by vibrational absorption bands to the low-frequency side and electronic absorption
bands and scatter loss to the high-frequency side. This fact, plus the origin of life from
seawater, is why we see in the visible spectrum. In fact, as discussed in Chapter 1, the
visible spectrum is defined by liquid water absorption.

Pure water has reasonably good transparency out to 0.22 µm. Then electronic
absorption bands rapidly increase in strength to end transmission at shorter wave-
lengths. More will be written about the optical properties of water in Chapter 9.
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Problems

3.1 (a) Verify that solution given by Eq. 3.23 satisfies the Schrödinger wave equa-
tion. (b) Show that this solution represents the momentum with no uncertainty
and that the particle position is unknown for forward propagating particles
(B = 0) in a finite region [−L , L].

3.2 Show that x̂ and p̂x do not commute, that is, show that [x̂, p̂x ]ψ(x) =
(x̂p̂x − p̂x x̂)ψ(x) = − j h̄ψ(x).

3.3 A common line shape function is the Lorentz profile, given by

g(ν − νo; γ ) = 1

π

γ

(ν − νo)2 + γ 2
.

Does this line shape function satisfy the normalization condition

∞∫
0

g(ν − νo; γ ) dν = 1?

Does the Lorentz line shape satisfy Eq. 3.32?
3.4 Compute Be in cm−1 for OH−, N2, and CO2, given re = 0.97 Å, 1.094 Å, and 

1.15 Å, respectively (for CO2, re is the distance from the O atom to the C atom).
Which of these molecules have permanent dipole moments, thus observable
rotational spectra?

3.5 Compute 〈Jr

∣∣µdp

∣∣Ji 〉 �= 0, thus show that the selection rule for rotational spec-
tra is �J = ±1.

3.6 Given the energy eigenvalues of the Morse potential,

Eν

hc
= νo

[(
ν + 1

2

)
− 1

j ′

(
ν + 1

2

)2
]

,

plot the energy level structure for j ′ = 10 and νo = 1000 cm−1. What is the dis-
sociation energy?
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Table 3.4 Vibrational Bands of Water

Band Location

Band Identification [cm−1] [µm]

νT 170 588
νL 590 16.95
ν2 1640 6.097
νA 2130 4.695
νs 3390 2.950
νs + ν2 5125 1.951
2νs 6875 1.454
ν2 + 2νs 8400 1.190
3νs 10,250 0.975



3.7 What is the total number of possible normal vibrational modes for CH4 and SF6?
3.8 (a) How do isotopes of the atoms affect rotational and vibrational spectra of

molecules? Calculate the isotopic shift of 13C16O from the main isotope
12C16O vibrational band. (b) Show that Bisotope

e = ρ2 Be , where

ρ =
√

µ′

µ′isotope .

(Consider diatomic molecules only.) (c) Why do molecules that contain light
atoms have rotational and vibrational bands that are broad compared with
those of molecules of all heavier atoms?

3.9 For the case of Raman bands and collision-induced bands (i.e., O2 and N2,
which are important in atmospheric propagation), transitions for
�ν = 1 and �J = ±2, 0 are allowed. Compute the locations of the spectral
line in terms of the quantum numbers and the molecular constants. Assume the
vibrational motions are purely harmonic and Dν ≈ 0. A S-branch is formed for
�J = 2, a Q-branch is formed for �J = 0 and an O-branch is formed for �J =
−2, a Q-branch is formed for �j = 0 and an O-branch is formed for j = 2.
How does the spacing between spectral lines compare with pure rotational
spectra and the R- and P-branch of vibration–rotation spectra?

3.10 Water vapor absorption bands determine the infrared windows of the atmos-
phere. Given that

ν2 = 1595 cm−1,

ν1 = 3652 cm−1,

and

ν3 = 3756 cm−1.

Plot the energy level diagram for H2O and then compute the location of the com-
bination overtone bands: 2ν2, ν2+ν3, 2ν2 + ν3, ν1 + ν3, ν1 + ν2 + ν3, and,

2ν1 + ν3. Plot the location of these bands on a wave number axis and predict the
location of atmospheric windows. (Ignore anharmonic corrections, but don’t forget
CO2 to get a complete picture!)

3.11 A more realistic crystalline one-dimensional lattice is illustrated in Fig. P3.11
for M > m.
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Solve for the dispersion relation ω
(
k ′) = ?. This problem uses the molecular

approximation, where βs > αs . Thus the bonding within the molecule is
greater than the bonding between molecules.

3.12 Derive the normalized Debye acoustic density-of-states distribution function
as given by Eq. 3.140, knowing that ρ (ω) ∝ ω2 for 0 ≤ ω ≤ ωmax and zero
otherwise.

3.13 Compute the acoustic two-phonon density-of-states, ρ2(ω), given that the one-
phonon density-of-states function, ρ1(ω), is the Debye function (see Eq. 3.140).
The two-phonon density-of-states is computed by convolution as given by

ρ2(ω) = ρ1(ω) ∗ ρ1(ω).

3.14 Derive the normalized electronic density-of-states function.
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4

Electrodynamics I:
Macroscopic
Interaction of Light
and Matter

Thus far, we have developed the properties of the electromagnetic field at optical
frequencies, based on Maxwell’s equations. These equations further give a classical
macroscopic perspective on the coupling of the propagation media to the field, as
presented in Chapter 2. The macroscopic properties of a medium are based on averaged
microscopic properties. The microscopic energy structure of matter was presented in
Chapter 3, covering gases, solids, and liquids by employing mostly quantum models.
We now proceed to the next level of development, the dynamic description of the
interaction between the optical field and the propagation medium as a function of the
field frequency and propagation media variables (e.g., energy structure, temperature,
and pressure). In this chapter, the classical electromagnetic field is coupled to discrete
frequency oscillators via Newton’s equation of motion. This approach leads to the
popular classical oscillator model, often presented in introductory books on lasers. The
classical oscillator model is an incomplete theory and can be only a semiempirical
model. In the next chapter, a more detailed and comprehensive approach, which also
includes statistical and quantum mechanics, is used leading to robust semiclassical and
quantum oscillator models. This chapter and the next are the basis for the applied
models presented in Part II of this book.
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4.1 Classical Electrodynamics

Classical electrodynamics is based on Maxwell’s equations, as given in Chapter 2
(Eqs. 2.1–2.6), and the Lorentz force relation, as given below:

F = q[E + (v × B)]. (4.1)

These equations cover the classical description of the interaction of light and matter.
The first term in Eq. 4.1 represents coupling of the electric field to the medium. As dis-
cussed in Chapter 2 (Section 2.2), the leading mechanism for this is the electric dipole
moment. To see that this is the coupling mechanism in the first term, consider the potential
function driving this force,

F = −∇V (r) = −∇(−qr · E).

The above expression contains the dipole moment, as defined in Chapter 2.
The second term in Eq. 4.1 represents coupling of the magnetic field to the medium.
It is a weaker effect and will not be considered, since most propagation path lengths are
too short for this coupling mechanism to be important.

In the classical limit, the electromagnetic field energy flow is considered continuous.
When many photons compose the field, this is a good approximation and can often be
applied. A good example of the success of this approximation is the fruitful field of
physical optics.

Two approaches can be used to formulate this problem. One is a detailed micro-
scopic theory and the other is a phenomenological macroscopic theory. It is instructive
to consider the macroscopic approach first. This approach leads to simple phenomeno-
logical classical models, which demonstrate basic concepts and are surprisingly practical.
Detailed classical microscopic models are not presented, since they will ultimately be
replaced by more complete microscopic quantum models (see Chapter 5).

4.2 Classical Oscillator Model

The classical oscillator model (also called the Lorentz oscillator model) is largely
phenomenological in nature but is commonly used to represent the real and imaginary
parts of the complex index of refraction as a function of frequency for a wide variety of
media. It is commonly presented in textbooks covering the topic of lasers.

4.2.1 Gases at Low Density

Assuming the medium is at low density (e.g., a gas), then the Newtonian equation of
motion for an electron (or any other binary system), bound to a nucleus by a restoring
force produced by a harmonic potential (recall Eqs. 3.65 and 3.66) and driven by an
external electric field e(Z ,t) propagating in the Z -direction, is given by

mẍ(t) + m�ẋ(t) + mω2
0 x(t) = qe(Z ,t), (4.2)

where m is the electron mass (or the reduced mass for diatomic vibrating or rotating
nuclei, see Eq. 2.64), � is a phenomenological damping constant, q is the charge of the
mass, and ω0 is the system oscillation frequency. R(t) defines an external coordinate



system that locates the nucleus of the moving atom and the spatial dependence of the
incident electromagnetic field. The oscillator frequency, ω0, is obtained from Chapter 3.
Because the nucleus is much more massive than the electron, we assume the motion of
the nucleus can be ignored. To simplify the problem, a system with only two energy
levels or one transition frequency is considered. Later, a sum over all possible transi-
tions will be performed. x(t) denotes the internal coordinate system of the oscillator and
represents the relative motion between the opposite charges of the nucleus and the 
outermost electron. Figure 4.1 illustrates the geometry for an electron oscillating about
a nucleus driven by an external electromagnetic wave. As previously argued, magnetic
field effects are weak and therefore ignored. Also, the strength of the electric field is low,
such that it does not distort the molecule to reveal anharmonic effects in the potential.

Then, assume time-harmonic (or monochromatic) behavior as x(t) = X (ω) exp( jωt)
and e(Z ,t) = E(Z ,ω) exp( jωt). Making these substitutions, Eq. 4.2 is converted to the
frequency domain and becomes

−mω2X(ω) + jm�ωX(ω) + mω2
0X(ω) = qE(Z , ω). (4.3a)

This is now an algebraic equation with the following solution for the electron position
X(ω):

X(ω) = q

m
(ω2

0 − ω2 + jω�)−1E(Z , ω). (4.3b)

Now, based on Eq. 2.183, the frequency-domain dipole moment vector, dp(ω), created
by this oscillator model becomes

dp(ω) = qX(ω) = q2

m

(
ω2

0 − ω2 + jω�
)−1

E (Z , ω) . (4.4)

The direction of X is the same as the polarization direction of the E-field. That is, the
dipole moment of this system aligns with the field.

If there are Na absorbing molecules per unit volume V with a number
density ρa (= Na/V ), and using Eqs. 2.31, 2.34, 2.184, and 2.185, then the
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Fig. 4.1 Coordinate systems for the electromagnetic field (upper case italic) and atomic oscillator
(lower case).

m
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relationship between the applied electric field and the dipole moment of the medium is
given by

ρa〈m dp(ω)〉 = P(Z ,ω) = ε0χ(ω)E(Z ,ω)

and

ε(ω) = εr (ω)ε0 = ε0 + |P(Z ,ω)|
|E(Z ,ω)| = (1+χ(ω))ε0. (4.5)

P(Z ,ω) is the polarization vector, ε0 is the free-space permittivity, εr (ω) is the relative
permittivity, and χ(ω) is the electric susceptibility, as defined in Chapter 2. Further,
based on these definitions and Eq 4.4, we sum over all allowed transitions to obtain

P(Z ,ω) = ρa

∑
i

〈 dp,i (ω)〉 =
∑

i

ρa(q2/m)i E(Z , ω)

(ω2
i − ω2 + jω�i )

(4.6)

Here ω0 is replaced by ωi representing multiple oscillators. The sum on i is over all
allowed rotational, vibrational, and electronic transitions of the medium. Using Eqs. 4.5
and 4.6, the complex relative permittivity becomes

εr (ω) = 1 +
∑

i

ρa

(
q2

ε0m

)
i

ω2
i − ω2 + jω�i

. (4.7)

To somewhat reduce the notation, define

�εi = ρa
q2

i

miω
2
i ε0

. (4.8a)

�εi is related to the oscillator strength and is directly proportional to number density.
For an ideal gas (noninteracting), the density is related to temperature and pressure
according to

ρa = pa

kB T
.

Thus, in general, �εi is a function of temperature and pressure,

�εi = �εi0
paT0

pa0T
, (4.8b)

where T0 and pa0 are the reference temperature and reference pressure, respectively,
and �εi0 is the value at the reference conditions. �εi0 is often listed for standard tem-
perature and pressure (STP) (e.g., T0 = 273 K and pa0 = 1 atm) conditions or for
normal temperature and pressure (NTP) (e.g., T0 = 296 K and pa0 = 1 atm) conditions.
Equation 4.8b is needed when the permittivity at different conditions is desired.
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With substitution of Eq. 4.8, the complex relative permittivity for a low-pressure
ideal gas can be rewritten as

ε′
r (ω) − jε′′

r (ω) = 1 +
∑

i

ω2
i �εi

ω2
i − ω2 + jω�i

. (4.9)

Solving the above equation for the real and imaginary parts of the complex relative
permittivity, the following classical oscillator model for gaseous media is obtained:

ε′
r (ω) = 1 +

∑
i

ω2
i �εi (ω

2
i − ω2)

(ω2
i − ω2)2 + (ω�i )2

(4.10a)

and

ε′′
r (ω) =

∑
i

ω2
i �εiω�i

(ω2
i − ω2)2 + (ω�i )2

. (4.10b)

Figure 4.2 illustrates these permittivity functions for a gaseous medium with a single
oscillator as a function of wave number.

The permittivity of a noninteracting gaseous mixture is obtained by summing over
each type of gas in the mixture, as given by

ε′
r (ω) = 1 +

∑
s

∑
i

ω2
s,i�εs,i (ω

2
s,i − ω2)

(ω2
s,i − ω2)2 + (ω�s,i )2

(4.11a)
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Fig. 4.2 The real, ε′
r (v), and imaginary, ε′′

r (v), parts of the relative permittivity for a gas-phase
oscillator centered at v0 = 10 cm−1, an oscillator strength of �ε = 0.01 and a full-width at
half-maximum, � = 0.2 cm−1.



and

ε′′
r (ω) =

∑
s

∑
i

ω2
s,i�εs,iω�s,i

(ω2
s,i − ω2)2 + (ω�s,i )2

. (4.11b)

The index s represents each type of molecule in the mixture. It is important
to remember that �εs,i depends on the number density of the s-type molecule that it
represents.

At the resonance frequency, the real part of the relative permittivity exhibits anom-
alous dispersion, which connects the low- and high-frequency limits of the dielectric
constant. These functions also satisfy the required symmetry properties established in
Section 2.1.2. The classical oscillator model is useful because it satisfies these basic
physical properties.

Further recall that, based on Eqs. 2.29 and 2.30, and assuming n(ω) is constant in the
vicinity of the absorption feature, the absorption coefficient is obtained:

βabs(ω) = 4πνka(ω) = 2
ω

c
ka(ω) = ω

nc
ε′′

r (ω).

Substituting Eq. 4.10b for ε′′
r(ω), we have the following result:

βabs(ω) = ω2

nc

∑
i

ω2
i �εi�i

(ω2
i − ω2)2 + (ω�i )2

. (4.12)

This result can be broken down into the factors discussed in Chapter 2, the line strength
and the line shape. First consider the near line center absorption coefficient
(ω ≈ ωi ± δ), where Eq. 4.12 reduces to

βabs(ω) = ω2

nc

∑
i

2ω2
i �εi

(
�i
2

)
(2ωi ± δ)2(δ)2 + 4

(
ωi �i

2

)2 (4.13)

Then, for δ small (ωi � δ), and ignoring the mixing or coupling of adjacent absorption
lines,

βabs(ω) =
∑

i

πω2
i �εi

2nc

(
ω

ωi

)2

jL(ω) [L−1], (4.14)

where the dimension of βabs is reciprocal length and

jL(ω) = 1

π

γi

(ωi − ω)2 + γ 2
i

(4.15)

is the Lorentz line shape (illustrated in Fig. 3.3), with γi = �i/2 representing the half-
width at half-maximum. Comparing Eq. 4.14 and Eq. 3.33, we obtain the line profile
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function for the near line center classical oscillator model: 

g(ω) =
(

ω

ωi

)2

jL(ω) and Si = πω2
i �εi

2nc
. (4.16)

Then, the absorption coefficient can be expressed in the familiar form, as defined in
Chapter 3:

βabs(ω) =
∑

i

Si g(ω) near line center .

This equation agrees with the form stipulated in Section 3.2.1 (Eq. 3.33). The line pro-
file function, g(ω), as defined above, is called the Van Vleck–Weisskopf line shape
function. (At infrared and higher frequencies it simplifies to the Lorentz line shape.)
Figure 4.3 compares the absorption coefficient as computed according to Eq. 4.12 with
that as given by Eq. 4.14. The agreement at line center is very good, and the two
functions disagree away from line center as expected.

The Van Vleck–Weisskopf and Lorentz line shapes are only valid near line center
and cannot satisfy the normalization condition given by Eq. 3.31b. These line profile
functions are not valid in the wing (|ωi − ω| � γi ) of an absorption line. A more
complete line profile description is presented in Chapter 5. The description of the line
wing is important in optical propagation, because systems are designed to operate away
from strong absorption features and in the region of absorption line wings.

The real part of the permittivity, ε′
r (ω), is related to the complex index of refraction

by the expression

ε′
r (ω) = n2(ω) − k2

a(ω) . (4.17)
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Fig. 4.3 Comparison of the absorption coefficient as given by the classical oscillator model
(solid) to the Van Vleck–Weisskopf model in the near-line-center approximation (dotted).
The same absorption line parameters are used as given in Fig. 4.2.



In the region of transparency (i.e., n � ka and ω2
i − ω2 � ω�i ), a simple expression for

the real part of the index of refraction is obtained:

n2(ω) = 1 +
∑

i

ω2
i �εi

ω2
i − ω2

. (4.18a)

This formula is known as Sellmeier’s equation and is a convenient way of representing
the index of refraction of gases (and also liquids and solids, as will be shown later) in
spectral regions of transparency. Another common formula is a simplification of the
Sellmeier equation when ωi � ω, and is called the Cauchy model. It is given by

n(ω) = 1 + 1

2

∑
i

�εi +
(

1

2

∑
i

�εi

ω2
i

)
ω2. (4.18b)

This model is appropriate when electronic oscillators dominate and infrared oscillators
can be ignored. This is the case for atoms and nonpolar molecules, which have no vibra-
tional spectra (e.g., Ar, N2, O2).

Although the classical oscillator model is simplistic, it has one very useful property:
it satisfies the Hilbert transform or the Kramers–Krönig relation (see Appendix 3).
From an experimental point of view, this is a very important fact. Reflectance meas-
urements are easy to make, but only the reflectance magnitude is obtained. However,
to determine the real and imaginary parts of the permittivity, phase information must
also be obtained, and this is not as easy. The Kramers–Krönig relation provides the
phase information given only the magnitude so that the complex permittivity can be
determined in a meaningful way. Knowing the permittivity, the complex index of
refraction can be found directly. Recall that

n̄2 = (n − jka)
2 = εr = ε′

r − jε′′
r ,

for n > 0 and real, and ka > 0 and real; then

n2 − k2
a − j2nka = ε′

r − jε′′
r . (4.19)

Now, solving for n and ka in terms of ε′
r and ε′′

r , we obtain

n =
(

1

2

(|εr | + ε′
r

))1
2

(4.20)

and

ka =
(

1

2

(|εr | − ε′
r

))1
2

= ε′′
r

2
(

1
2

(|εr | + ε′
r

)) 1
2

. (4.21)

The second solution for ka is numerically more stable, since the imaginary part of the
permittivity is often much smaller than the real part. The real and imaginary parts of the
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complex index of refraction are plotted in Fig. 4.4 for the same conditions used to gen-
erate Fig. 4.2. The same basic functional forms are observed as those for the complex
permittivity. To apply this model to high densities, the effect of neighboring molecules
must be considered and the Lorentz-Lorenz formula is needed.

4.2.2 Lorentz–Lorenz Formula

As the density of a gas increases, the molecules become closer together and the electric
fields of local molecules must be considered. The polarization P, in this case, is

P = ρi = ρiαeEloc (4.22)

where ρi is the concentration of dipoles in number per unit volume, αe is the mean
polarizability, and Eloc is the local electric field. Eloc includes not only the externally
applied field but also the internal field caused by neighboring dipoles. For a cubic
geometry, the local polarization field is

P
3ε0

. (4.23)

The net local field is now expressed as

Eloc = Eext + P
3ε0

, (4.24)

where Eext is the external electric field imposed on the media. Therefore, substituting
Eq. 4.24 into Eq. 4.22,
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Fig. 4.4 The real and imaginary parts of the complex index of refraction. The same absorption
line parameters are used as given in Fig. 4.2.

mdp



P = (ρiαe)

(
Eext + P

3ε0

)
. (4.25)

This leads to the susceptibility and permittivity,

|P|
|ε0Eext| = χ = ρiαe

ε0 − 1
3ρiαe

= εr − 1. (4.26)

Solving for the mean polarizability, we have

ρiαe

3ε0
= (εr − 1)

(εr + 2)
, (4.27)

the Clausius–Mossotti relation. This formula is commonly used at microwave frequen-
cies, where εr (ω ≈ 0) ≈ εs . Letting n2 = εr , and considering infrared and visible
frequencies,

∣∣∣∣n2 − 1

n2 + 2

∣∣∣∣ = ρiαe

3ε0

, (4.28)

and the Lorentz–Lorenz relation is obtained. It accounts for the effect of internal-
field-induced dipoles on the refractive index.

Collision-induced dipoles may also be of concern, and this adds more terms to the
Lorentz–Lorenz expression, as given by

n2 − 1

n2 + 2
= ARρi + BRρ2

i + CRρ3
i + · · · , (4.29)

where the coefficients AR, BR, and CR are the first, second, and third refractive virial
coefficients, respectively. BR represents the contributions to the mean polarizability
from interacting pairs of molecules or atoms. CR represents contributions from three
particle interactions. These coefficients become significantly weaker as the number of
interacting particles increases; usually AR and BR are sufficient for most applications.
This formula is very useful for modeling the refractive index of high-pressure gases.
Parameters for the Lorentz–Lorenz formula are listed in Appendix 4 for specific gases.

4.2.3 Solids and the Classical Oscillator Model

Let us return to the discussion in Chapter 3 concerning the spectroscopy of lattice vibra-
tions. Now, externally excite the lattice with an electromagnetic field and also recognize
that the lattice motions are damped in a real crystal. This approach is often used to
represent electronic transitions as well, but below the bandgap energy in the Sellmeier
approximation.
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The damping term accounts for coupling of the excited vibrational mode to other
vibrational modes through anharmonicities in the potential energy and other effects thus
far ignored. Now the system differential equations (see Eqs. 3.127 and 3.128) become

md2un

dt2 + m�
dun

dt
+ βs [2un − (vn + vn−1)] = qE (4.30)

and

Md2vn

dt2 + M�
dvn

dt
+ βs [2vn − (un + un+1)] = −qE, (4.31)

where

m�
dun

dt
and M�

dvn

dt
(4.32)

are the damping terms. Let us again (see Chapter 3, Section 3.4.1.1) assume time-
harmonic solutions for the diatomic lattice positions of the form

un = u e− j(2nk ′a −ωt), E = E0 e jωt (4.33a)

and

vn = v e− j[(2n+1)k′a −ωt]. (4.33b)

Upon substitution of the above functional form into Eqs. 4.30 and 4.31, one finds the
algebraic equations

−mω2u + jm�ωu + βs

[
2u −

(
e jk ′a + e− jk ′a

)
v
]

= qE0 e j2nk ′a (4.34a)

and

−Mω2v + j M�ωv + βs

[
2v −

(
e jk ′a + e− jk ′a

)
u
]

= −qE0e j(2n+1)k′a. (4.34b)

For k ′ ≈ 0 (long-wavelength condition), the solutions for u and v become

u = (q/m)E0

ω2
0 − ω2 + jω�

and v = −(q/M)E0

ω2
0 − ω2 + jω�

, (4.35)

where

ω2
0 = 2βs

µ′

for optic mode frequencies and µ′ is the reduced mass as defined in Chapter 3.
The dipole moment in this case must account for the motion of the opposing charges
and hence

mdp= q(u − v). (4.36)
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The total polarization is again

P = ρa〈mdp 〉, (4.37)

where ρa is the number density of dipoles. However, this accounts only for vibrational
contributions, not electronic. Thus combining Eqs. 4.35–4.37 and Eq. 3.134, the
relative permittivity becomes

εr (ω) = ε∞ + ω2
0(εs − ε∞)

ω2
0 − ω2 + jω�

, (4.38)

where εs = εr (ω = 0) is the static dielectric constant and ε∞ is the high-frequency
permittivity constant accounting for the low-frequency extrapolation of electronic
transition contributions. Of course, most materials have more than one vibrational
frequency, so that in general εr (ω) becomes

εr (ω) = ε∞ +
∑

i

ω2
i �εi

ω2
i − ω2 + jω�i

, (4.39)

where

εs = ε∞ +
∑

i

�εi . (4.40)

When ε∞ > 1, it accounts for high-frequency (usually vacuum and extreme ultraviolet)
electronic contributions. A more complete model includes the frequency dependence of
electronic transitions in an approximate manner by writing

ε∞(ω) = 1 +
∑

k

ω2
k�εk

ω2
k − ω2 + jω�k

, (4.41)

where the sum on k now includes electronic resonances. A simplification of this
formula is often used to represent the index of refraction as a function of frequency in
the transparent (window) regime of solids. For ω2

i − ω2 � �iω, we have

εr (ω) = n2(ω) = 1 +
Elec∑

k

ω2
k�εk

ω2
k − ω2

+
V ibra∑

i

ω2
i �εi

ω2
i − ω2

. (4.42)

This is the Sellmeier equation, and is identical in form to the formula for gases.
However, �ε and � have somewhat different interpretations for solids. A table of
coefficients for a variety of solid materials is available in Appendix 4 (Table A4.4). This
is a very useful model for accurately characterizing the optical properties of solids at a
constant temperature, and is commonly used to represent the real part of the complex
index of refraction for solids in a semiempirical manner.

An example of this solid-state classical oscillator model is given for a typical solid
in Fig. 4.5 for ε∞ = 2, a single oscillator with a strength of �ε = 2, a line center
frequency of 250 cm−1, and a width factor of � = 10 cm−1. The real and imaginary
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parts of the relative permittivity are illustrated as a function of frequency in part (a).
Notice that the real part can be negative above the resonant frequency. The point
where the real part becomes positive again is a special frequency and is designated νL O .
The significance of this will be explored shortly. Also plotted in part (b) of this
figure is the magnitude of the relative permittivity and the corresponding reciprocal.
These functions peak at the oscillator frequencies, ν0(= νTO) and νLO , and provide a
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Fig. 4.5 The complex permittivity as a function of frequency. (a) The real
(solid) and imaginary (dotted) parts with the following oscillator parameters: ε∞ = 2,

�ε = 2, ν0 = 250 cm−1 , and �/(2πc) = 10 cm−1 . (b) The magnitude of the complex
permittivity and the corresponding reciprocal scaled up by a factor of 10.



useful means of determining these important frequencies. The real and imaginary parts
of the complex index of refraction can be computed based on Eqs. 4.19–4.21, and are
plotted in Fig. 4.6 along with the absorption coefficient. These functions have a differ-
ent appearance from the relative permittivity function of Fig. 4.5. The absorption
coefficient is broadened in the blue wing to account for the additional contributions of
the longitudinal mode. This is a new aspect of the model, as opposed to the gas-phase
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Fig. 4.6 The complex index of refraction as a function of frequency. (a) The real (solid) and
imaginary (dotted) part using the same oscillator parameters as in Fig. 4.5. (b) The corresponding
absorption coefficient.



results, and will be characteristic also of noncrystalline solids and liquids that have
similar oscillator parameters.

In Chapter 3, we discussed the existence of transverse and longitudinal optical
modes. ωi in the above model is the transverse optical mode frequency, or ωTO,i .
To see the how ωLO plays a part in this model, consider the case when ε′

r = 0 and then
solve Maxwell’s equations for longitudinal excitation. (As Fig. 4.5 indicates,
ε′

r (ωLO) = 0.) In Chapters 1 and 2 we considered transverse (TEM) fields that satisfy
∇ · D = 0 (i.e., D = εEx x̂ and k′ = k ′

z ẑ). Thus

∇ · D = k′ · D = εk′ · E = εk ′
z Ex ẑ · x̂ = 0. (4.43)

However, another solution can occur when ε = 0. Then k′ = k ′
x x̂ becomes possible, or

a longitudinal mode exists. This can happen near resonances in a crystal (or solids in
general), as illustrated in Fig. 4.5. Thus, we must specify both ωTO and ωLO when
discussing the vibrational structure of a solid. The longitudinal oscillation frequency
can be found by plotting the reciprocal of the magnitude of εr (ω) as illustrated in part (b)
of Fig. 4.5.

For εr (ωLO) = 0 and a single resonance with no damping, Eq. 4.39 becomes

ω2
LO

ω2
TO

= εs

ε∞
. (4.44)

This is the Lyddane–Sachs–Teller (LST) relationship. Based on this relationship, νLO ,
as indicated in Fig. 4.5, equals 353.6 cm−1. It is also straightforward to show that

ω2
LO − ω2

ω2
TO − ω2

= εr (ω)

ε∞
. (4.45)

This shows that ωTO and ωLO are related by the strength of the resonance. For example,
when a mode is infrared inactive (�ε = 0), then ωTO equals ωLO . For multiple
resonances, the LST relation becomes

∏
i

ω2
LO,i − ω2

ω2
TO,i − ω2

= εr (ω)

ε∞
. (4.46)

For � = 0, the ωTOs are the poles and the ωLOs are the zeroes of the permittivity func-
tion. All real materials have damping, and the above analysis suggests the following
four-parameter model for the complex permittivity:

εr (ω) = ε∞
∏

i

ω2
LO,i − ω2 + jω�LO,i

ω2
TO,i − ω2 + jω�TO,i

. (4.47)

In this case, the ωTOs are the maxima and the ωLOs are the minima of the permit-
tivity function. When �TO = �LO , this four-parameter oscillator model is identical to
the three-parameter classical oscillator model. This is usually the case for cubic
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materials and around room temperature for all solids. However, at high temperature in
biaxial and uniaxial crystalline materials, �TO �= �LO , the four-parameter model is
needed for the best fit to experimental data.

4.2.3.1 Anharmonic Potential Considerations

In the discussion so far, we have used a harmonic potential. This can be seen by exam-
ining the restoring force in Eq. 4.2 and the potential expansion in Eq. 3.102. By taking
the gradient of the leading harmonic term in the potential, we obtain a force in the form
used in Eq. 4.2. To make our model more complete, let us consider anharmonic terms
in the potential. Letting � = 0, Eq. 4.2 is rewritten as an undriven oscillator,

ẍ + ω2
0x + λax2 + λ2bx3 + · · · = 0.

λ is a dummy parameter that helps to keep track of the order in the potential expansion.
At the end of the analysis it will be set to one. Assume that x can be expanded in the
following perturbation expansion:

x = x0 + λx1 + λ2x2 + · · ·
Substituting the expansion of x into the above differential equation and separating
according to order, we obtain to the following set of equations:

Zeroth order, λ0

ẍ0 + ω2
0x0 = 0 ⇒ x0 = Ae jω0t .

First order, λ1

ẍ1 + ω2
0x1 = −ax2

0 = −a A2e j2ω0t .

Based on the source term in the above first-order differential equation, let the harmonic
solution for x1(t) take the form of an oscillator at the second harmonic of x0(t), thus

x1(t) = Be j2ω0t .

Substituting this solution into the first-order differential equation leads to the following
condition on the coefficients:

3ω2
0 B = a A2.

Second order, λ2

ẍ2 + ω2
0x2 + 2ax1x0 + bx3

0 = 0.

The forms chosen for x0 and x1 suggest that

x2(t) = Ce j3ω0t .
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Substituting the various orders of x into the second-order differential equations,
we obtain following relationship:

8ω2
0C = 2a AB + bA3.

Now drive the lattice with an external electric field oscillating at the second-harmonic
frequency of the fundamental lattice vibrations (i.e., at ω ≈ 2ω0). The first-order
differential equation now becomes

ẍ1 + ω2
0x1 = −a A2e jωt + q

m
Ee jωt .

The solution of this equation leads to an oscillator amplitude resonating at the second
harmonic lattice vibration frequency, as given by

B = qE/m

(2ω0)2 − ω2
.

This result leads to a second-harmonic response of the dielectric permittivity. As we
shall see in Chapter 8, this is called two-phonon absorption or, in general, multiphonon
absorption. All harmonics can be obtained by a similar procedure. The second-order
differential equation driven by an external field at the third harmonic of the fundamental
lattice vibration frequency is given by

ẍ2 + ω2x2 + 2ax1x0 + bx3
0 = q

m
Ee jωt .

Solving this equation leads to a third-harmonic response of the lattice to the electro-
magnetic field, as given by

C = qE/m

(3ω0)2 − ω2
.

Multiphonon absorption is important in the optical properties of solids, because it deter-
mines the infrared edge of transparency and contributes to the infrared refractive index,
as we shall see in more detail in Chapter 8. The lesson to this exercise is the importance
of considering the anharmonic ramifications of a real potential.

4.2.4 Time-Domain Susceptibility for Lattice Vibrations

The classical oscillator model is particularly convenient in this case, because the time-
domain susceptibility can be obtained in closed form by evaluating the inverse Fourier
transform of the frequency-domain formula given by Eq. 4.9. Based on Eq. 2.37, the
inverse Fourier transform is defined to be

χtν(t) = �
−1[εrv(ω) − 1] = 1

2π

∞∫
−∞

[εrv(ω) − 1] e jωt dω. (4.48)
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Evaluating the above equation, the time-domain electrical susceptibility due to lattice
vibrations, χtv(t) (recall εrv = εtv + ε∞) becomes

χtv(t) =
∑

i

ω2
i �εi e

−�i t/2

sin

(√
ω2

i −
(

�2
i
/
4

)
t

)
√

ω2
i −

(
�2

i
/
4

) h(t) (4.49)

where h(t) is the Heaviside step function, and ω = 2πcν . Such information is needed
in high-speed microwave device design using FD-TD techniques. A plot of this func-
tion for the single vibrational mode of intrinsic GaAs is given in Fig. 4.7. The figure
demonstrates that the intrinsic impulse response of GaAs at microwave frequencies is
that of a damped oscillator in the picosecond regime.

4.2.5 Free Carriers and Debye Relaxation

Both free-carrier effects and Debye relaxation are important in understanding the
electrical (microwave to millimeter wave) properties of seawater and water. Free carrier
effects dominate the infrared properties of metals and are important for many semicon-
ductors as well. Debye relaxation is observed in some solids also, but at radio frequencies
or lower. In metals, the charge carrier is the negatively charged electron. Holes and elec-
trons exist in semiconductors and positive and negative hydrated ions exist in seawater.

A general and introductory understanding of the optical properties of metals,
the microwave-infrared properties of semiconductors, and microwave properties
of aqueous solutions (e.g., seawater) can be obtained from the development of
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Fig. 4.7 Time-domain susceptibility for intrinsic GaAs at room temperature due only to
the fundamental lattice vibration (i = 0, ω0 = 5.054 × 1013 rad sec−1, �ε0 = 2.09, and �0 =
4.679 × 1011 rad sec−1).



Drude’s theory (1900). It is a limiting form of the classical oscillator model when the
external field frequency, ω, is above all oscillator frequencies, ωi .

To see how the properties of mobility influence the impedance of materials, consider
the standard definition of conductivity for an electrically neutral medium

σ(ω) =
N∑

i=1

[|e+i |ρ+iµ+i (ω) + |e−i |ρ−iµ−i (ω)] , (4.50a)

with the condition that

N∑
i=1

(e+iρ+i + e−iρ−i ) = 0, (4.50b)

where ρ±,i is the number density per unit volume of the ith ± charge carrier, e±,i is the
charge of the ith ± charge carrier, µ±,i is the carrier mobility of the i th ± charge carrier,
and N is the number of carrier types (solutes for an aqueous solution). Since most elec-
trolytes composing the ocean, and holes and electrons in semiconductors, are 1:1 (i.e.,
the number of positive and negative particles generated is the same for an intrinsic
material), it is assumed that

|e+i |ρ+i = |e−i |ρ−i = ρc,i ≡ charge density. (4.51)

The conductivity for a single 1:1 charge carrier type simplifies to

σ = ρc(µ+ + µ−). (4.52)

A simple expression for the carrier mobility can be obtained from the following
equations:

µ± = 〈v±〉
E

(4.53)

and

m±
d〈v±〉

dt
+ m±�±〈v±〉 = |e|E, (4.54)

where 〈v±〉 is the mean velocity (or drift velocity) of the charge carrier, m± is the mass
of the charge carrier, �± is the damping constant, |e| is the charge of the charge carrier,
and E is the applied electric field. Let 〈v±〉 and E be time harmonic as e jωt . The solution
of Eq. 4.54 results in the following relations for the mobility:

µ±(ω) = µ0,±
1 + j ω

�±

, where µ0,± = |e|
m±�±

. (4.55)
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Substituting this result into Eq. 4.52, the frequency-dependent conductivity becomes

σ(ω) = ρc

(
µ0,+

1 + j ω
�+

+ µ0,−
1 + j ω

�−

)
. (4.56)

In a metal the only charge carrier is the electron. In electrolytic solutions, it can be
assumed that the damping forces will be similar for both the positive and negative
charge carriers. Therefore,

�+ ≈ �− = �. (4.57)

� is the reciprocal of the conductivity relaxation time. This interpretation is easily seen,
based on Eq. 4.54. When the applied E-field is turned off, the charge carriers relax back
to equilibrium and the mean velocity becomes

〈v〉 = 〈v(t = 0)〉e−t�. (4.58)

The conductivity relaxation time, 1/�±, is designated τc,±. Thus, it follows that

σ(ω) = σ0,+
1 + jωτc,+

+ σ0,−
1 + jωτc,−

(4.59a)

where the DC conductivity for each charge carrier is

σ0,+ = ρc,+
|e+|τc,+

m+
and σ0,− = ρc,−

|e−|τc,−
m−

. (4.59b)

This simple model breaks down when the mean free path of the charge carrier is greater
than the skin depth, δ(ω) (= 2/βabs(ω)). This leads to the so-called anomalous skin
effect, which is typically important at low temperatures for good metals.

Debye relaxation represents the orientational polarizability of a polar molecule to an
applied electric field commonly observed in liquids (GHz frequencies) and solids (mHz
frequencies). Essentially, it is hindered rotational motion converted to a vibrational
mode. As was the case for electrical conduction, no restoring force exists, thus the
differential equation describing this phenomenon is the same as Eq. 4.54. The complex
relative permittivity for orientational polarizability is of a similar form to the free-
carrier process and becomes (see Debye, Ref 4.2)

εr (ω) = 1 + χD(ω) = 1 + �εD

1 + jωτD
, (4.60a)

where τD is the Debye relaxation time. Figure 4.8 illustrates the frequency-domain
complex permittivity and the complex index of refraction for Debye relaxation with
parameter values typical of a liquid. The Fourier transform of the frequency-domain
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susceptibility leads to the time-domain susceptibility for Debye relaxation,

χD(t) = �εD

τD
exp (−t/τD)h(t). (4.60b)

Recall from Chapter 2 that the relative permittivity (bound-charge phenomena) can
be redefined to include conductivity (free-carrier phenomena) in the following manner:

εc(ω) = εr (ω) + χc(ω) = εr (ω) − j
σ(ω)

ωε0
. (4.61)

Substituting Eq. 4.59b for a single carrier type (N = 1) into the above equation, we
obtain

εc(ω) = εr (ω) − j
σ0,+/ε0

ω + jω2τc,+
− j

σ0,−/ε0

ω + jω2τc,−
. (4.62)
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Fig. 4.8 (a) The complex permittivity due to Debye relaxation as a function wave number for
�εD = 40 and �D/(2πc) = 0.1 cm−1. (b) The corresponding complex index of refraction as a
function of wave number.



To be consistent with the previously developed classical oscillator model for gases and
solids, we use the conductivity damping parameter. Then the above term for free-carrier
effects becomes

εc(ω) = εr (ω) − ω2
p,+

ω2 − jω�c,+
− ω2

p,−
ω2 − jω�c,−

, (4.63a)

where ωp,± is the plasma frequency, as defined by

ω2
p,± = ρc|e|

m±ε0
= ρe2

m±ε0
. (4.63b)

The plasma frequency marks the upper spectral limit of the free-carrier effect (see
Fig. 4.8). Based on Eq. 4.59, for a single carrier, the DC conductivity is:

σdc = ω2
p,+ε0

�c,+
+ ω2

p,−ε0

�c,−
. (4.63c)

The corresponding time-domain susceptibility for free-carrier phenomena becomes

�{χc(ω)} = χc(t) = ω2
p

�c
(1 − exp(−�ct))h(t). (4.63d)

Converting to wave numbers and writing out εr (ω) for both Debye relaxation and
resonant phenomena plus conductivity, the net complex permittivity is

εc(ν) = 1 + �εD

1 + jν 2πc
�D

+
∑

i

ν2
i �εi

ν2
i − ν2 + jν �i

2πc

− ν2
p,+

ν2 − jν �c,+
2πc

− ν2
p,−

ν2 − jν �c,−
2πc

,

(4.64)

where �D = 1/τD . The real and imaginary parts of the general permittivity are

ε′
c(ν) = 1 + �εD

1 + ν2
(

2πc
�D

)2 +
∑

i

ν2
i �εi (ν

2
i − ν2)

(ν2
i − ν2)2 + ν2

(
�i

2πc

)2 − ν2
p

ν2 + ( �c
2πc

)2 (4.65a)

and

ε′′
c (ν) = ν�εD

2πc
�D

1 + ν2
(

2πc
�D

)2 +
∑

i

ν2
i �εiν

�i
2πc

(ν2
i − ν2)2 + ν2

(
�i

2πc

)2 + ν2
p

�c
2πc

ν3 + ν
(

�c
2πc

)2 , (4.65b)

respectively. This is the correct procedure to add together these three different phe-
nomena. Debye relaxation, bound-charge resonances, and free-carrier processes are not
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always additive in terms of the complex index of refraction. Since at optical frequen-
cies the complex index of refraction is commonly used, combining these phenomena
must be approached with care.

Figure 4.9 illustrates the complex permittivity and the complex index of refraction
for a typical conductive medium with a DC conductivity of 1.2 × 107 υ/m. The inter-
section of the real and imaginary parts of the complex index of refraction occurs near the
plasma frequency. Generally, this model works well at infrared frequencies but becomes
less accurate at visible frequencies because interband transitions become important.

Figure 4.10 compares the absorption coefficient of a metal, as depicted in Fig. 4.9
with that of a moderate conductor with a DC conductivity of 1.2 × 103 υ/m. The
conductivity relaxation time is the same for both cases (�c/(2πc) = 147 cm−1). Notice
the relative change in the shape of the functions in the two different cases. The large
plasma frequency of the metal dominates the optical properties. However, as the plasma
frequency becomes lower, charge carrier relaxation effects can be observed.
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Fig. 4.9 (a) The complex permittivity due to free-carrier conduction in a typical metal as a func-
tion wave number for νp = 3.3 × 104 cm−1 and �c/(2πc) = 147 cm−1. (b) The corresponding
complex index of refraction as a function of wave number.



The contribution from conductivity has the same form as the bound charge permit-
tivity when ν is much greater than the maximum νi . Thus, when the photon energy is
above the bandgap energy of a medium, valance band electrons are excited into the
conduction band and free-carrier properties dominate, as expected.

Equation 4.65 provides a comprehensive model as a function of frequency (wave
number), combining the effects of conductivity, orientational polarizability, rotation,
vibration, and electronic transitions, that matches experimental data fairly well for
many cases. This classical model satisfies the symmetry relations given by Eq. 2.39b
and the Hilbert transform given by Eq. 2.49a, which in part explains the model’s util-
ity. However, this model has a number of serious limitations, which require corrections
beyond the classical approach used here.

A list is given below:

1. No temperature dependence beyond density is specified.
2. The model only predicts loss; no gain is allowed, preventing thermal equilibrium

and lasers.
3. Line strength and line width cannot be computed with this model.

The classical oscillator model does not explain all observations. Despite the limitations
of such classical macroscopic models, they are successfully used within the regions of
validity, in the solid-state optical properties code OPTIMATR, which is described in
Chapter 8. Important corrections to this classical model will be introduced at that point.

4.2.6 Dyadic Permittivity

Thus far, we have considered only isotropic media. However, many important window
materials are anisotropic (i.e., Al2O3, SiO2, MgF2 etc., see Appendix 4). In particular
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Fig. 4.10 The absorption coefficient as a function of wave number for a good
(σ0 = 1.2 × 107 υ/m) and moderate conductor (νp = 330 cm−1 and σ0 = 1.2 × 103 υ/m). The
same conductivity relaxation time is used in both cases (�c/(2πc) = 147 cm−1).



they can be uniaxial. To understand how this affects the optical properties, it is neces-
sary to develop the concept of the dyadic complex permittivity. In general, for a
Cartesian coordinate system, XY Z , the relationship between D and E is

D =
( DX

DY

DZ

)
=
(

εX X εXY εX Z

εY X εY Y εY Z

εZ X εZY εZ Z

)( EX

EY

EZ

)
= (�): E. (4.66)

The corresponding susceptibility and complex index of refraction are also dyadic. The
dyadic permittivity represents the effect the electric field has on the medium in other
directions in addition to the direction of polarization. Transforming into a coordinate
system that matches the geometry of the unit cell, xyz, the permittivity matrix (dyad)
can be made diagonal, thus

( Dx

Dy

Dz

)
=
(

εxx 0 0
0 εyy 0
0 0 εzz

)( Ex

Ey

Ez

)
. (4.67)

The values of the diagonal elements are called the principal values, and they determine
the type of optical material, that is, whether it is cubic, uniaxial, or biaxial:

cubic ⇒ εxx = εyy = εzz,

uniaxial ⇒ εxx = εyy �= εzz,

and

biaxial ⇒ εxx �= εyy �= εzz and εxx �= εzz.

For cubic materials, the optical properties are called isotropic, and the dyad can be
replaced by a single scalar value, as was done in Chapter 2. For uniaxial materials, the
z-axis is aligned with the crystallographic c-axis. Light that propagates in this direction
only experiences εxx and εyy and the medium appears isotropic. For this reason, the
light ray that enters along the c-axis is called the ordinary ray. Light that enters along
the a- or b-axis will experience different permittivities, depending on the polarization,
and is called the extraordinary ray. Crystals that satisfy the condition εzz > εxx are
called positive uniaxial, and for εzz < εxx are called negative uniaxial. Because of the
variation with direction of the biaxial type materials, they are seldom used in optical
systems.

4.3 Reflection and Refraction at a Plane Boundary

For TEM waves, two polarizations completely describe the E-field orientation, as
discussed in Chapter 2. The geometry was also presented in Fig. 2.9. The Fresnel
formulas on reflection and transmission at an interface are commonly derived in text-
books on electromagnetic theory (see Jackson, Ref. 4.4, p. 281, for example). It is
assumed the reader is familiar with this derivation, and therefore only the results are
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presented here. Two cases are considered. The first is for cubic materials, and the
second is for uniaxial materials that have the crystallographic c-axis in the direction of
the normal to the interface surface. Unfortunately, very little published literature exists
on solutions for the reflection coefficients of uniaxial materials.

When the E-field is in the plane of incidence, it is called p-polarization or vertical
polarization. When the E-field is perpendicular to the plane of incidence it is called
s-polarization or horizontal polarization. This notation is used in the following.

4.3.1 Cubic Media

For cubic media:

εxx = εyy = εzz = ε0n̄2.

The field reflection, r12, and transmission, t12, Fresnel formulas for propagation from
medium 1 to medium 2 are given as follows (see Ref. 4.1):

p-Polarization

rp12 = n2cos θi − n1cos θt

n1cos θt + n2cos θi
= n2 cos θi −

√
n2 − sin2θi

n2 cos θi +
√

n2 − sin2θi

= −rp21, (4.68)

where n̄ = n̄2/n̄1 for n1 real and

tp12 = 2n1 cos θi

n1 cos θt + n2 cos θi
= n1 cos θi

n2 cos θt
tp21. (4.69)

s-Polarization

rs12 = n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
= cos θi −

√
n2 − sin2θi

cos θi +
√

n2 − sin2θi

= −rs21 , (4.70)

where n̄ = n̄2/n̄1 for n1 real and

ts12 = 2n1 cos θi

n1 cos θi + n2 cos θt
= n1 cos θi

n2 cos θt
ts21. (4.71)

Recall that Snell’s law is given by

n1 sin θi = n̄2 sin θt , (4.72)

where the refracted angle, θt , is complex and the angle of incidence, θi , is real.
r21 and t21 are the field reflection and transmission coefficients for propagation from
medium 2 to medium 1, respectively. The relationship between r12 and r21, and t12 and
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t21 is called the principle of reversibility. The single-surface Fresnel power coefficients
for reflection (R) and transmission (T ) are directly obtained according to the following
formulas for p- and s-polarization,

Rp,s = |rp,s |2 (4.73)

and

Tp,s = n2 cos θt

n1 cos θi
|tp,s |2. (4.74)

Based on these formulas, and substituting the complex index of refraction of medium 2
when medium 1 is vacuum, we have the following useful results:

Rs = (a − cos θi )
2 + b2

(a + cos θi )2 + b2
(4.75a)

and

Rp = Rs

(
(a − sin θi tan θi )

2 + b2

(a + sin θi tan θi )2 + b2

)
(4.75b)

where the terms a and b are defined as

a2 = 1

2

{
[(n2 − k2

a − sin2 θi )
2 + 4n2k2

a]
1
2 + (n2 − k2

a − sin2 θi )
}

(4.76a)

and

b2 = 1

2

{
[(n2 − k2

a − sin2 θi )
2 + 4n2k2

a]
1
2 − (n2 − k2

a − sin2 θi )
}
. (4.76b)

The principle of reversibility and Snell’s law require that

R12 = R21 and T12 = T21. (4.77)

Also, it can be shown by simple algebra that

Rs,p + Ts,p = 1. (4.78)

For unpolarized light, the single-surface power reflection coefficient becomes

Runpol = 1

2
(Rs + Rp). (4.79)

For partially polarized light, the single-surface power reflection coefficient becomes

Rpp = (1 − DoP)Runpol + [x Rs + (1 − x)Rp]DoP

where DoP is the degree of polarization as defined in Chapter 2 and x is the fraction of
polarized light in the Rs direction. Other basis sets for the type and direction of
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Fig. 4.11 (a) Spectral dependence of the reflection coefficient for an insulator. (b) The single-
surface power reflection coefficient for Rs (upper curve), Rp (lower curve), and Runpol (middle
curve).



polarization can be used. The spectral dependence of the reflection coefficient is shown
in Fig. 4.11a for an insulator modeled by the classical oscillator model using the
parameters listed in Fig. 4.5. Note that above the one-phonon region the reflection is
very low. In fact there is a spectral point where the reflection coefficient comes very
close to zero, called the Christiansen frequency. Example plots of Rs, Rp, and Runpol

as a function of the illumination angle are illustrated in Fig. 4.11b for different values
of n2/n1 and ka2 for ka1 = 0.

4.3.2 Biaxial and Uniaxial Media

For uniaxial media

εxx = εyy = ε0n̄2
o and εzz = ε0n̄2

e .

The general solution for the uniaxial reflection coefficients is very complicated
(see Lekner, Ref. 4.6). However, solutions for special cases have been obtained. Let the
z-axis be the crystallographic c-axis and the surface normal, then, Rp and Rs become

Rp =
∣∣∣∣∣none cos θi − (n2

e − sin2 θi
)1/2

none cos θi + (n2
e − sin2 θi

)1/2

∣∣∣∣∣
2

(4.80a)

and

Rs =
∣∣∣∣cos θi − (n2

o − sin2 θi )
1/2

cos θi + (n2
o − sin2 θi )1/2

∣∣∣∣
2

. (4.80b)

Obviously, if no = ne , then the cubic results are obtained.
The near-normal transmittance for a plane-parallel uniaxial dielectric slab of thick-

ness d with the c-axis on the surface (90° material), illuminated by unpolarized light
and including the effects of interference, is given by

τ = 1

2
(τo + τe), (4.81)

where

τo,e = exp(−4πνdko,e)(1 − Ro,e)

1 − 2 exp(−4πνdko,e)Ro,e cos(4πνdno,e) + exp(−8πνdko,e)R2
o,e

(4.82)

and

Ro,e =
(

1 − no,e

1 + no,e

)2

.

This is a useful result, because the e-ray absorption coefficient can be obtained know-
ing the e-ray index of refraction and the o-ray complex index of refraction.
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In general, when dealing with polarized light the transmittance, reflectance, and
soon, must be broken down into components that distinguish polarization as well. Thus,

τo = τso + τpo and τe = τso + τpo.

For biaxial media:

εxx = ε0n̄2
x , εyy = ε0n̄2

y, and εzz = ε0n̄2
z .

Uniaxial and biaxial materials are birefringent, that is, light linearly polarized in one
direction experiences a different refractive index than light polarized in a different
direction. The description of the effective index is best handled by the well-known
index ellipsoid, as given by

x2

n2
x

+ y2

n2
y

+ z2

n2
z

= 1. (4.83)

This formula is commonly applied to phase matching that involves second-harmonic
generation in nonlinear optical materials. When nx = ny the uniaxial case is obtained.

4.4 Single Scattering

The definition of, and introduction to, single scattering was presented in Chapter 2.
Now specific formulas will be derived for the complex index of refraction for scatter
that depend on frequency, temperature, and media composition. Two general models are
presented, Rayleigh scatter for gases and small-scale structures and Mie scatter for
particles.

4.4.1 Rayleigh Scattering

A general solution for particles of arbitrary shape can be obtained if the size, a, of the
particle is much smaller than the wavelength, λ, of the incident light. A good example
is the scattering of visible light (λ ≈ 5000 Å) by atoms and molecules (a ≈ 1–5 Å).
The mechanism of this scattering is through the mean electronic polarizability, αe.
The electrons or dipoles in the molecule try to orient to the E-field of the incident light.
No absorption takes place because this is not a resonant condition; however, the mole-
cule does respond to incident fields with frequencies below the resonance frequency.
A dipole is induced in the illuminated molecule, which then quickly radiates in all
directions. We will consider elastic reactions (collisions) (recall that an inelastic colli-
sion produces Raman scattering); thus the molecule radiates, because of this stimulation,
at the frequency of the incident field. This is Rayleigh scattering.

For an isotropic polarizability (〈mdp〉 = αe Ei, where Ei is the incident field), the scat-
tered electric field radiating from a single particle with an electric dipole moment in the
far field limit is (see Jackson, Ref. 4.4, p. 395)

Es = k ′ 2〈 〉 sin θd

4πε0r
e− jk ′r = k ′ 2αeEi sin θd

4πε0r
e− jk ′r . (4.84)
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The angle θd is the angle between the dipole moment direction and the direction of
propagation, as illustrated in Fig. 4.12. The scattered irradiance is obtained, using 
Eqs. 2.19b, 2.20, and 4.84, as

Ls(ω) = ω4|αe|2sin2 θd

32π2c3ε0r2
|Ei0 |2. (4.85)

This result shows the characteristic ω4 frequency dependence of Rayleigh scattering.
Because of the strong decrease in the scatter strength as the frequency decreases,
molecular Rayleigh scatter is important at visible and ultraviolet frequencies and not at
infrared and lower frequencies.

An observer in the xz-plane at an angle θ from the x-axis sees a different scattering
pattern depending on the incident light polarization. For s-polarization in the xz
scattering plane (see Fig. 4.12), θd = 90◦, and no θ -dependence is observed. For
p-polarization, θd = 90◦ − θ in the xz scattering plane. In terms of the scattering
matrix and incident light fields, the observed scattered field for s- and p-polarizations,
becomes

(
Eps

Ess

)
=
{

jk ′3αe

4πε0

(
cos θ 0

0 1

)}
e− jk ′r e jk ′z

jk ′r

(
E0pi

E0si

)
. (4.86)
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Fig. 4.12 Geometry of scattering pattern in the xz-plane by a dipole for (a) p-polarization
(vertical polarization) with the dipole in the xz-plane and (b) s-polarization (horizontal polariza-
tion) with the dipole in the y-direction.



Notice that the scattering matrix is diagonal, which is the case for spherical particles.
In the far field of a small particle, the nonspherical shape does not contribute to the
radiation pattern or the amplitude function. Thus, for the wavelength much greater than
the particle size, the scattered field is insensitive to the particle shape. Also, note that
Rayleigh scatter emphasizes s-polarized light.

Based on the definitions of Chapter 2 (Eqs. 2.62, 2.66, 2.123, and 2.145), the angular
scattering cross-section Csca(θ) for unpolarized incident light is one-half the sum of the
s- and p-polarized scatter intensities, thus

Csca(θ) = Is(θ)

Mi
= (1 + cos2 θ)k ′4|αe|2

32π2ε2
0

. (4.87)

Based on Eqs. 2.89, 2.91, and 4.87, the phase function for Rayleigh scatter is:

Ps(θ) = 3

16π
(cos2θ + 1). (4.88)

A plot of this phase function is displayed in Fig. 4.13.
Based on the development of Chapter 2 for nonabsorbing particles (molecules), the

net extinction cross-section equals the integration of the angular scatter cross-section
over all solid angles. Thus,

Cext = 2π

π∫
0

sin θ dθCsca(θ).

Evaluating the integral for Eq. 4.87, the following result is obtained:

Cext = k ′4|αe|2
6πε2

0

. (4.89)
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Fig. 4.13 The phase function for Rayleigh scatter as a function of scatter angles: (a) polar plot,
(b) rectangular plot.



Recalling the relation between the extinction cross-section and the scattering coefficient
(Eq. 2.139), we obtain a useful result for the Rayleigh scatter coefficient in gases as a
function of frequency and gas density:

βsca(ω, ρp) = ρpCext(ω, ρp) = 1

6π

(ω

c

)4 ρp|αe(ω)|2
ε2

0

. (4.90)

Substituting the Lorentz–Lorenz formula (Eq. 4.28) for the polarizability of a gas, the
scattering coefficient becomes

βsca(ω) = 3ω4

2πc4ρp

(
n2(ω) − 1

n2(ω) + 2

)2

, (4.91)

representing the net attenuation caused by scatter. This is the scattering coefficient
commonly used for molecular Rayleigh scattering with unpolarized light, and n is the
index of refraction of the medium. For normal temperature and pressure (NTP,
T = 298 K and P = 1 atm) gases, the index of refraction is approximately unity. Based
on this result and using the ideal gas law, we obtain

βsca(ω,P,T ) = ω4
[
n2(ω,P,T ) − 1

]2
kB T

6πc4 P
, (4.92)

where P is the total pressure, T is temperature, and kB is Boltzmann’s constant.
Multiplying this result by the path length yields the total integrated scatter, αsca .
The Rayleigh scatter coefficient for gases is further developed in Chapter 7 and applied
to optical propagation in the atmosphere of the earth. This formula can be used to
explain the blue sky and the changing colors of the sun at sunset and sunrise, as illus-
trated in Fig. 4.14. When polarization is important, the Mueller matrix formalism can
be used as introduced in Chapter 2. The development of the Mueller matrix for
Rayleigh scattering is left to the reader (see Problem 4.13).

4.4.2 Mie Scattering

Mie scattering describes a general solution to Maxwell’s equations for particles of
arbitrary size and refractive index but limited to spherical shape. This is a very useful
model commonly applied to particle scattering. Nonspherical and noncylindrical
particle geometries are very difficult to solve and the Mie model is generally the only
option for interpretation of measurements. Also, because particles are often randomly
oriented, nonspherical particles average out to have spherical-particle scattering
properties.

We begin with Eqs. 2.9–2.12 for a nonmagnetic lossy medium with no net charge.
The vector wave equation is obtained directly for both the electric and magnetic fields.
These fields are solenoidal and related to one another by the curl (Faraday’s and
Ampere’s laws). It can be shown that the vector wave equation of fields with these
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characteristics can be reduced to a scalar wave equation (see Bohren and Huffman,
Ref 4.9, Chapter 4, and Stratton, Ref. 4.1, Chapter 6). This procedure is outlined below.

Begin with the following vector wave equation:

∇2M(r) − γ 2M(r) = 0, (4.93)

where M is solenoidal. It can represented by a the curl of a constant radial vector and a
scalar function, as given by

M(r) = ∇ × aψ(r). (4.94)

In this way, the vector field is guaranteed to be solenoidal. Substituting this definition
of M into the vector wave equation, we obtain a scalar wave equation in ψ ,

∇2ψ(r) − γ 2ψ(r) = 0. (4.95)

Thus, solving for ψ also leads to solutions to M. Another vector, orthogonal to M,
is also generated by ψ (or M) and is defined by

N(r) = ∇ × M(r)
jγ

. (4.96)

This vector field is also solenoidal. The electromagnetic fields E and H can be
represented as a linear combination of the vector fields M and N.
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Fig. 4.14 Spectral power output of the sun above the atmosphere (solid line). Solar output at the
surface of the earth for 0° zenith angle (dotted line). Solar output of the sun at the surface of the
earth for the sun at the horizon (dashed line).



The solution of Eq. 4.95 in spherical coordinates with the appropriate boundary con-
ditions is a long and tedious story that has been told in many other texts (see Bohren
and Huffman, Ref. 4.9, Chapter 4, and Stratton, Ref. 4.1, Chapter 6). The geometry is
illustrated in Fig. 4.15. Parts of the problem have been solved in Chapter 3 (Section
3.3.1.1). We shall emphasize the results in the form of the scattering matrix (Eq. 2.165),
given by the following equations:

S1(θs) =
∑

m

2m + 1

m(m + 1)
[am(x)τm(θs) + bm(x)πm(θs)] (4.97a)

and

S2(θs) =
∑

m

2m + 1

m(m + 1)
[am(x)πm(θs) + bm(x)τm(θs)] , (4.97b)

where x = k ′a = 2πan1/λ, a = |a| is the particle radius and is a constant,

am(x) = nψm(nx)ψ ′
m(x) − ψm(x)ψ ′

m(nx)

nψm(nx)ξ ′
m(x) − ξm(x)ψ ′

m(nx)
(4.98a)

and

bm(x) = ψm(nx)ψ ′
m(x) − nψm(x)ψ ′

m(nx)

ψm(nx)ξ ′
m(x) − nξm(x)ψ ′

m(nx)
, (4.98b)

where n̄ = n̄1/n2 is the complex index of refraction ratio and the Riccati–Bessel
functions are

ψm(x) = x jm(x) and ξm(x) = xh(1)
m (x)
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Fig. 4.15 Geometry of a plane-wave illuminated spherical particle of radius a and complex
index of refraction n̄1.



and jm(x) is the spherical Bessel function and h(1)
m (x) is the spherical Hankel function

of the first kind, and

πm(θs) = Pl
m(cos θs)

sin θs
(4.99a)

and

τm(θs) = dPl
m(cos θs)

dθs
, (4.99b)

where Pl
m (where l = 1) are the associated Legendre functions. These special functions

are listed in Appendix 2.
Based on Eq. 2.123, the scatter cross-section for spherical particles illuminated by

unpolarized light is

Csca = 1

2k ′ 2

∫
4π

d	s
(|S1(θs)|2 + |S2(θs)|2

)
. (4.100)

Figure 4.16a illustrates the angular dependence of the scatter cross-section for spheri-
cal particles with n = 1.33 and k = 1 × 10−5 in the Rayleigh limit, when the radius and
wavelength are comparable and for large particles. The angular dependence can be
considerably different, from Rayleigh scatter to when the particle size and wavelength
become comparable. The figure shows the angular pattern for the size parameter x =
0.1, 1, and 10. As x increases above one, the angular structure greatly increases. Of par-
ticular note, as x increases, the forward-scattered and back-scattered amplitudes become
very different. This is a major indicator of the relative particle size, knowing the wave-
length. In Fig. 4.16b, the M11 component of the Mueller matrix is plotted. This plot
shows the relative amplitudes of the scatter in the different regimes of x.

The corresponding extinction cross-section for spherical particles illuminated by
unpolarized light is

Cext(k
′) = 2π

k ′2 Re[S1(θs = 0) + S2(θs = 0)]. (4.101)

In the real world, particles within any group are not identical and can cover a wide
range of sizes and shapes. Assuming that randomly oriented particles scatter as spheres,
then shape is not an important parameter. However, any extinction coefficient requires
the consideration of spherical particles of different radii. Thus, the particle density must
be a function of the particle radius. The extinction coefficient for Mie scatter now
becomes

βext =
∞∫

0

drCext(r)ρp(r). (4.102)
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Fig. 4.16 Angular dependence of the scatter cross-section for Mie scatter for x = 0.1, 1 and 10,
n = 1.33, and k = 1 × 10−5, and an unpolarized incident light field. (a) Log-polar plot with all
plots normalized to one at θ = 0. (b) Log-linear plot of the M11 Mueller matrix element.



Specific particle distribution functions depend on the medium and are most appropri-
ately discussed in Part II of this text.

In the Rayleigh limit (x 	 1), the Mie equations are greatly simplified and are very
useful at infrared and microwave wavelengths. The resulting scattering field amplitudes
for scattering and absorbing particles of uniform radius, a, n1 = 1, are (see Bohren and
Huffman, Ref. 4.9)

S1 = j x3 n2 − 1

n2 + 1
and S2(θs) = S1 cos (θs). (4.103)

The corresponding extinction coefficient illuminated by unpolarized light is

βext(λ) = −8π2a3ρp

λ
Im

[
n2 − 1

n2 + 2

(
1 + 2πa

λ

(
n2 − 1

n2 + 2

)
n4 + 27n2 + 38

2n2 + 3

)]

+128π5a6ρp

3λ4
Re

⎡
⎣(n2 − 1

n2 + 2

)2
⎤
⎦ . (4.104)

Absorption is a higher order process over scatter and dominates the extinction
coefficient. However, in many cases, the imaginary part of the complex index of
refraction is very small, and absorption and scatter loss are comparable in magnitude.
The corresponding scattering coefficient is

βsca = 128π5a6ρp

3λ4

∣∣∣∣ n̄2 − 1

n̄2 + 2

∣∣∣∣
2

. (4.105)

This compares closely to the result given for molecular scatter in Eq. 4.91, but now the
dependance of the particle radius explicitly appears. When the particle is nonabsorbing
(e.g., n̄ is real), then the extinction and scattering coefficients are equal. A plot of the
extinction coefficient and the scatter coefficient as a function of the imaginary part of
the particle complex index of refraction is shown in Fig. 4.17. For ka of the particle
below 1 × 10−4, βext and βsca are equal. Thus only the real part of the refractive index
is relevant and the particle is effectively nonabsorbing in this case. This is also the case
for the plot of Fig. 4.16b. The large change in the scatter amplitude from x = 0.1 to 1
is indicative of the a6 dependence in Eq. 4.104. For x much greater than one, the M11
component or the scatter coefficient basically depends on the area of the particle. This
is a much weaker dependence on the particle size than in the Rayleigh limit and
explains the reduced rate of increase from x = 1 to 10 in Fig. 4.16b.

4.4.3 Rayleigh–Gans Scattering

Rayleigh–Gans scattering considers particles of arbitrary size but with small changes in
the index of refraction relative to the surrounding medium. This is a common situation
in solids and liquids.
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The Rayleigh–Gans model is valid when

|n − 1| 	 1, (4.106)

where n̄ = n̄1/n2, as in Mie theory. In this limit, it can be shown that the scattered field
is independent of the scattering particle size. To see this, recall that, in the limit,
Eq. 4.106 is true:

n − 1 ∝ N

V
,

where N is the number of dipoles per unit volume, V. Consider a coherent sum of small
volume elements, dV, over the total volume of a particle in the single scatter limit
(e.g., 2k ′a |n̄ − 1| 	 1). The Mie formulas in the Rayleigh limit (Eqs. 4.103) can be
applied to the small volume elements. The net result is obtained by integrating the
scatter matrix elements over all volume elements. (The details of this procedure are
given in Bohren and Huffman, Ref. 4.9, Chapter 6.) The results are given in the
following, consistent with the definition of the scatter matrix as given by Eq. 2.165,

S1(θ, φ) = jk ′3

2π
(n − 1)V f (θ,φ), (4.107a)

S2(θ, φ) = jk ′3

2π
(n − 1)V f (θ, φ) cos (θ), (4.107b)
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Fig. 4.17 A comparison between the extinction coefficient and the scatter coefficient as a
function of ka for a particle with a = 0.05 µm, λ = 1 µm, n = 1.33, and ρp = 104 cm−3 for Mie
scatter in the Rayleigh limit.



where

f (θ, φ) = 1

V

∫
V

e− jk ′R·(êz − êr) (4.107c)

is called the form factor. The geometry is illustrated in Fig 4.18.

Problems

4.1 Obtain a Cauchy model for the index of refraction of dry air at NTP (normal
temperature and pressure, 296 K and 1 atm) using the parameters listed in
Appendix 4 and the fact that dry air is composed of 79% N2, 20% O2, and 1% Ar.

4.2 Starting with the classical oscillator model for solids (ε∞ = 1),

εr (ω) = 1 +
∑

i

ω2
i �εi

ω2
i − ω2 + j�iω

,

obtain the Sellmeier model (�i = 0) in the common form

n2 − 1 =
∑

i

λ2�εi

λ2 − λ2
i

.

Now compute the index of refraction of CaF2 at λ = 5 µm, given
�ε1 = 0.5675888, λ1 = 0.050263605 µm; �ε2 = 0.4710914, λ2 =
0.1003909 µm; �ε3 = 3.8484723, λ3 = 34.649040 µm.

4.3 Using the index of refraction computed above for CaF2 at λ = 5 µm. Compute
both Rp and Rs for an angle of incidence of 54.4◦. Comment on the transmission
characteristics at that angle.

4.4 Compute the transmittance, reflectance, and emittance of a dielectric slab
of thickness L = 1 cm, given that the complex index of refraction of the slab is
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Fig. 4.18 Rayleigh–Gans scattering geometry for an arbitrary particle (Bohren and Huffman,
Ref. 4.9).



n̄ = 1.727 − j3.8 × 10−5 for ν = 1000 cm−1, T = 295 K, and θ = 0◦ (i.e.,
normal incidence). The medium outside the slab is vacuum.

4.5 (a) Convert the classical oscillator model (Eq. 4.9) from angular frequency
to wave numbers [cm−1]. For ν1 = 400 cm−1 , �ε1 = 3, ε∞ = 2, and
�1/(2πcν1) = 0.01, plot ε′

r (ν), ε′′
r (ν), and 1/|εr (ν)| from ν = 0 to 1000 cm−1.

Also, plot R for θ = 0◦ over the same spectral range. What mathematical
formulas can be used to explain the relationship between all these curves?
(b) Show that the classical oscillator model, in general, satisfies

∞∫
0

(ε′
r (ω) − 1) dω = 0.

(c) Also evaluate the integral

∞∫
0

dωβabs(ω)

for the classical oscillator model given by Eq. 4.12 for a single mode. Then con-
struct the line strength and line shape function for the classical oscillator model.
(Hint: For parts (b) and (c), apply contour integration, as demonstrated in
Appendix 3.)

4.6 Using the Hilbert transform (or Kramers–Krönig relation) show that

n(ν) = 1 + 1

2π2

∑
i

Si

ν2
i − ν2

given

βa(ν) =
∑

i

Siδ(ν − νi )

where δ(ν) is a Dirac delta function. How does the index of refraction vary with
density? Why is the index of refraction often greater in the RF than in the visible?
How does the index of refraction vary with the line position and line strength?

4.7 A dielectric slab waveguide can be used for optical propagation. The reflectiv-
ity at the boundary of the slab will determine loss of a geometrical optics ray.
For the geometry and refractivity shown in Fig. P4.7, determine |Rp| and |Rs |.
Is this a good waveguide?
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4.8 At low number density (i.e., atmospheric densities), N, the ideal gas law
(pV = nRGC T ) can be used to express density in terms of pressure and tem-
perature. Find that expression and compute the NTP (T = 296 K and P = 1
atm) number density of an ideal gas.

4.9 Show that the conductive permittivity is obtained from the dielectric permit-
tivity (classical oscillator model) when ω is much greater than the bandgap
frequency. Explain why this occurs (or why Ge appears metallic).

4.10 Show that the Debye and free-carrier models satisfy a Hilbert transform.
4.11 Verify Eqs. 4.75a and b based on Eqs. 4.73, 4.68, and 4.70.
4.12 Using the concepts of Rayleigh scattering, explain why the sky is blue and

sunsets are yellow to red even though the sun appears white. The wavelength
of blue light (sky blue that is) is ∼0.48 µm, yellow light is 0.61 µm and red
light is 0.65 µm. Give numerical evidence to support your explanation. (Note:
It will take more than Rayleigh scattering to completely explain the blue sky;
think about the nature of the source and the receiver, also.)

4.13 (a) What is the ratio of forward scatter (θ = 0) to back scatter (θ = π ) for
Rayleigh scattering?
(b) Determine the Mueller matrix for Rayleigh scatter. Then compute the
scattered Stokes vector for unpolarized incident light. Comment on the angular
dependence of the polarization of scattered light.

4.14 For a particle with n = 1.33, k = 1 × 10−5 , x = 0.1 (Rayleigh limit),
λ = 0.5 µm, and ρp = 100 cm−3, compute the extinction coefficient in km−1.
What is the corresponding extinction cross-section?
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5

Electrodynamics II:
Microscopic Interaction of
Light and Matter

Although the primarily phenomenological theory of absorption and refraction of light
by matter, based on classical models as presented in Chapter 4, is very useful, it is
incomplete and often inadequate. A more complete and accurate picture of electrody-
namics is given by the theory of quantum optics, and that is the topic of this chapter.
The models developed in this chapter are more detailed and therefore more complicated
than the phenomenological models of Chapter 4. The most robust models, which are
applied in Part II, are presented in this chapter. The quantum models accurately repre-
sent experimental data and allow extrapolation and interpolation of such data. Many
practical computer based models concerning optical propagation are based on this
theory.

The theory of elastic scatter as presented in Chapter 4 is consistent with quantum
optics and is not presented again. (However, inelastic scatter must address the quantum
nature of the scattering medium.)

5.1 Quantum Optics

Quantum optics is not completely covered in this chapter. Entire textbooks are devoted to
this diverse and comprehensive topic covering optics (see Refs. 5.1–5.3). The emphasis of
this book is on absorption and reflection spectroscopy. Now details of internal structure
of the medium impacting light–matter interaction are examined. The classical oscillator



model is upgraded by semiclassical radiation theory and a quantum oscillator model is
developed. Semiclassical radiation theory is based on a quantized medium coupled to a
classical field. It is often applied to laser theory, where near-line-center stimulated emis-
sion dominates. The quantum oscillator model again utilizes the quantized medium and
classical field, but with more attention to detailed balance between absorption and emis-
sion. It satisfies causality and the fundamental symmetry relationships established in
Chapter 2. These quantum optics models are more complete formalisms and provide
solutions to the shortcomings of classical electrodynamics.

Of particular interest to propagation in gaseous media is the line shape in the far
wing. To achieve long path lengths, propagation near line center of a resonance must be
avoided. Line shape models in quantum optics accurately represent much of the
frequency and temperature dependence observed in experimental data. For this reason
a full discussion of line shapes has been postponed until this chapter.

In Part II of this book, the quantum oscillator model is used to represent the complex
index of refraction of a variety of media with good success. The semiclassical model is
also useful because it allows upgrades (i.e., temperature dependence and population
distributions) to parameters in the commonly used classical oscillator model. Part II is
a testimony to the great utility of quantum optics and applied spectroscopy. The optical
scientist and engineer of today must be aware of these powerful tools.

5.2 Statistical Distribution Functions

This section is intended to provide the necessary background for Sections 5.4 and 5.6.
We will begin with a brief discussion of energy distribution functions for various types
of many body systems in thermal equilibrium. The models presented here are founded
in statistical mechanics and the reader is referred to the bibliography for a deeper
understanding.

5.2.1 Maxwell–Boltzmann Statistics

For a medium or single particle in thermal equilibrium with its environment at
temperature T , the distribution of energy Ei within the system is given by

fMB(Ei ) = gi e−Ei /(kB T )

Q(T )
, (5.1)

where kB is Boltzmann’s constant (1.380622 × 10−16 erg/K) and gi is the degeneracy of
energy level Ei . Q(T ) is the partition function, such that

∑
Ei

fMB(Ei ) = 1. (5.2)

Thus, the partition function normalizes the distribution function to satisfy the above
condition. Therefore, it is given by

Q(T ) =
∑

Ei

gi e
−Ei /(kB T ) . (5.3)
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In an ensemble of N particles, the number of particles with energy Ei becomes

Ni = N fMB(Ei ) = Ngi
e−Ei /(kB T )

Q(T )
. (5.4)

Note that the sum of Ni over all energies must equal the total number of particles in the
system, thus

∑
i

Ni = N

∑
i

gi e−Ei /(kB T )

Q(T )
= N .

Particles that satisfy this distribution law are called boltzons (like fermions and
bosons). Molecules and atoms are examples of boltzons. The internal energy distribu-
tion at thermal equilibrium of rotational, vibrational, and electronic motion follows
fMB(E).

In general, the net internal energy of a molecule is the sum of the rotational, vibra-
tional, and electronic energies. However, because of the large differences between these
different types of energies in molecules, the partition function can be approximately
expressed by the following product:

QTot(T ) ≈ QE1(T ) QV ib(T ) Q Rot(T )

=
∑

gn exp

(−EE1(n)

kB T

)∑
gv exp

(−EV ib(v)

kB T

)∑
gJ exp

(−ERot(J )

kB T

)
. (5.5)

This ignores interactions between the different types of molecular energies. Over the
range of typically encountered temperatures, QEl = 1 and QV ib ≈ 1 are good approxi-
mations. Knowledge of the rotational partition function is always important. A listing
is given, according to the class of molecule (see Chapter 3), in the following section.

5.2.1.1 Diatomic Molecules

Because the rotational energy levels are often closely spaced, the sum is converted to
an integral (see Example 5.1 below). The general rotational partition function for a
diatomic molecule becomes

Q Rot(T ) = 8π2 IekB T

σh2
= 1

σ

T

1.4388Be
, (5.6)

where σ is a symmetry number with σ = 2 when homonuclear molecules are considered
(for N2, O2, etc.) and σ = 1 otherwise (for CO, HF, etc.). Be can be found in Table 3.1 for
various diatomic molecules.
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Example 5.1 The rigid rotor for AB (non-homonuclear) molecules has the
following formula for its rotational energy levels:

EJ = hcBe J (J + 1), where gJ = (2J + 1)

and the rotational quantum number is J = 0,1,2,3... . The partition function for a
system in the electronic and vibrational ground state is

Q Rot(T ) =
∞∑

J=0

(2J + 1) exp

(
− hc

kB T
Be J (J + 1)

)
.

Because of the closeness of rotational energy levels (e.g., Be is small), we will convert
the sum to an integral. Thus

Q Rot(T ) =
∞∫

0

dJ (2J + 1)e−y(J 2+J ) ,

where the following substitution is made:

y = hc

kB T
Be .

This is a good approximation for most atmospheric molecules of interest. The
resulting rotational partition function is

Q Rot(T ) = 1

y
= kB T

hcBe
.

The diatomic molecule has only one vibrational mode. Thus the vibrational partition
function for a purely harmonic potential becomes (see Chapter 3)

QV ib(T ) =
∞∑

v=0

exp

(
−hcν0

kB T
v

)
=
[

1 − exp

(−hcν0

kB T

)]−1

. (5.7)

The ground-state energy is set to zero, since it is not relevant to population calculations.
The electronic partition function, QEl(T ) ≈ 1 for most temperatures of interest (e.g.,
near room temperature).

5.2.1.2 Polyatomic Molecules

The rotational energies for the various polyatomic molecules are listed in Section
3.3.1.2 and applied using Eq. 5.3 to obtain the partition function.

Linear Molecules Based on Eq. 3.56 the same energy eigenvalues are obtained for
linear polyatomic molecules as for diatomic molecules, thus the partition functions are
also the same.

178 OPTICAL PROPAGATION IN LINEAR MEDIA



Symmetric-Top Molecules Based on Eqs. 3.58 and 3.59, the partition function
becomes

Q Rot = 1

σ

K=∞∑
K=−∞

exp

(
− hc

kB T
(A − B)K 2

) ∞∑
J=|K |

(2J + 1) exp

(
− hc

kB T
BJ (J + 1)

)
.

(5.8)

As before, hcB/kB T and hc(A − B)/(kB T ) are small and the sums can be replaced by
integrals, thus for prolate symmetric tops

Q Rot =
√

π

σ

(
8π2 IakB T

h2

)1/2 (
8π2 IbkB T

h2

)

=
√

π

σ

(
T

1.4388A

)1/2 ( T

1.4388B

)
.

(5.9)

Spherical-top molecules are a special case of the prolate symmetric top where
A = B or Ia = Ib . This substitution into the above formulas produces the rotational
partition function for the spherical top.

Similarly, the rotational partition function for the oblate case (σ is a symmetry
number as previously defined) is

Q Rot =
√

π

σ

(
T

1.4388C

)1/2 ( T

1.4388B

)
. (5.10)

Asymmetric Top The rotational partition function for the asymmetric top is

Q Rot =
√

π

σ

(
8π2 IakB T

h2

)1/2(
8π2 IbkB T

h2

)1/2(
8π2 IckB T

h2

)1/2

. (5.11)

The vibrational partition function for polyatomic molecules within the unperturbed
harmonic oscillator approximation, and ignoring the zero point energy, becomes

QV ib(T ) =
∞∑

v1,v2,···vn=0

exp

(
−
[

hcν1

kB T
v1 + hcν2

kB T
v2 + · · · + hcνn

kB T
vn

])

=
[

1 − exp

(−hcν1

kB T

)]−1 [
1 − exp

(−hcν2

kB T

)]−1

· · ·
[

1 − exp

(−hcνn

kB T

)]−1

,  (5.12)

where n is the number of normal vibrational modes of the molecule.
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5.2.2 Fermi–Dirac Statistics

Two states per orbital are available to fermions (half-integer spin particles, e.g.,
electrons). Thus the occupancy number, N , must equal 1 or 0. The thermally averaged
value of the occupancy of an orbital is the ratio of the term in the grand sum with N = 1
to the sum of the terms with N = 0 (E = 0) and N = 1 (E = E). The average number
of fermions in an energy level E is

〈N (E)〉 = e−E/kB T

1 + e−E/kB T = 1

eE/kB T + 1
= fFD(E) . (5.13)

This is the Fermi–Dirac distribution function for fermions at thermal equilibrium.

5.2.3 Bose–Einstein Statistics

Any number of bosons (integer spin particles) can occupy a single state with energy E .
The ensemble average of the occupancy number, N , must consider all available states
and is given by

〈N (E)〉 =

∞∑
N=0

Ne−N E/kB T

∞∑
N=0

e−N E/kB T

=

∞∑
N=0

N x N

∞∑
N=0

x N

; x = e−E/kB T . (5.14)

The geometric series in the above expression contains the following closed form sums:

∞∑
n=0

xn = 1

1 − x
and

∞∑
n=0

nxn = x
d

dx

∞∑
n=0

xn = x

(1 − x)2
.

The average boson occupation number for a system of bosons in thermal equilibrium
with a particular energy, E , becomes

〈N(E)〉 = e−E/kB T

1 − e−E/kB T = 1

eE/kB T − 1
= fBE(E) . (5.15)

This is the Bose–Einstein distribution function, fBE . Photons are bosons and must sat-
isfy the Bose–Einstein distribution function.

A good example is the blackbody radiance and irradiance functions,
L BB(ν) and MBB(ν), respectively, given E = hcν is the photon energy. It describes the
total energy density or spectral distribution of radiation from a medium in thermal equi-
librium that is a perfect absorber at all frequencies. The radiated energy per unit volume
and unit bandwidth is the photon energy times the number density of modes per unit
bandwidth (see Eq. 1.15f) times the Bose–Einstein distribution function, fBE(hcν), as
given by

uBB(ν) = hcν
dρE M

dν
fBE(hcν) = 8πhν3c

ehcν/(kB T ) − 1
[J cm−3 cm] , (5.16a)
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where hc/kB = 1.43879 [cm K]. To obtain the power per unit area-bandwidth integrated
over all directions, uB B is multiplied by the speed of light (see Chapter 2),

cuBB(ν) = 8πhν3c2

ehcν/kB T − 1
[W cm−2 cm] . (5.16b)

This is the total spectral radiated power per area-unit bandwidth for a perfect blackbody
radiating in all directions. The blackbody radiance, L B B(ν), is obtained by dividing by
4π steradians,

L BB(ν) = 2hc2ν3

ehcν/kB T − 1
[W/(cm2 sr cm−1)] . (5.17a)

Because the blackbody radiance is also used as a function of wavelength, it is of
interest to convert L BB(ν) to L BB(λ). Remember radiance is per unit bandwidth, thus
the equality between L BB(ν) to L BB(λ) is given by

L BB(ν)|dν| = L BB(λ)|dλ| .

Using this relation, the blackbody radiance as a function of wavelength becomes

L BB(λ) = 2hc2

λ5

1

ehc/kB T − 1
. (5.17b)

The blackbody irradiance from a surface is obtained by integrating the radiance
times cos θ over all solid angles within a hemisphere. The result is

MBB(ν) = π L BB(ν) . (5.18a)

MBB(ν) is illustrated in Fig. 5.1 for typical temperatures of the surface of the earth and
solar photosphere.

It is often of interest to obtain the integrated irradiance over all frequencies. A closed-
form solution results, as given by

∞∫
0

dνMBB(ν) = 2π5k4
B

15c2h3
T 4 = σSB T 4 . (5.18b)

where σSB = 5.671 × 10−8 W/(m2K4) is called the Stefan–Boltzmann constant.
Another related result of common interest is a band limited integration of the blackbody
irradiance. For an integration between the spectral points λ1 and λ2 the result is

λ2∫
λ1

dλMbb(λ) = σSB T 4

[
F

(
hc

kBλ2T

)
− F

(
hc

kBλ1T

)]
, (5.18c)
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where

F(x) = 15

π4

∞∑
n=1

e−nx

(
x3

n
+ 3x2

n2
+ 6x

n3
+ 6

n4

)
.

In summary, molecules are boltzons and must satisfy the Maxwell–Boltzmann
distribution function, fMB(E). Electrons are fermions and must satisfy the Fermi–Dirac
distribution function, fFD(E). Integer spin particles, such as photons and phonons, are
bosons and must satisfy the Bose–Einstein distribution, fBE(E). These are all energy
distribution functions for systems in thermal equilibrium.

5.3 Quantum Mechanics II

This section presents the time-dependent perturbation expansion of the Schrödinger
wave equation. Also, the density matrix formalism is developed and applied to the semi-
classical oscillator model. This provides the necessary tools to model the interaction of
light and matter in a more complete manner, including the temperature dependence of
the complex index of refraction. The development is not intended to be rigorous, but to
provide the insight to properly apply the theory.

5.3.1 Time-Dependent Perturbation Theory

In quantum mechanics, only a few problems can be solved exactly. Thus techniques are
used that allow approximate solutions based on exact solutions. This is called
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perturbation theory. Examples of stationary-state perturbation theory are suggested in
Chapter 3 (i.e., rotational motion added to vibrational motion, and anharmonicity
corrections to the harmonic oscillator). Now we are interested in dynamic solutions to
the time-dependent Schrödinger equation. Consider a system Hamiltonian of the form

H(t) = H0 + Hint(t) , (5.19)

where H0 has an exact solution to the time-independent Schrödinger equation and
Hint(t) is a time-dependent interaction Hamiltonian and represents a perturbation to the
stationary-state system.

The probability that a system will change from an initial state |si (t)〉 to some final
state 〈s f(t)| is

Pi→ f = |〈s f(t)|si(t)〉|2 . (5.20)∣∣si(t)〉 and 〈s f(t)
∣∣ are describable in terms of time-independent eigenfunctions of Ĥ0.

This leads to the time development operator, Ŝ(t), as defined by

|si(t)〉 = ŜTot(t)|i〉 (5.21a)

for initial states before and during the interaction, and after the interaction

〈s f(t)| = 〈 f |Ŝ†
0(t) , (5.21b)

for final states. |i〉 and | f 〉 are stationary-state eigenfunctions generated by Ĥ0. Based
on the general solution to the time-dependent Schrödinger equation, as given by Eq.
3.11, the form of the time development operator becomes

ŜT ot(t) = exp

⎛
⎝ j

h̄

t∫
0

[
Ĥ0 + Ĥint(t

′)
]

dt ′

⎞
⎠ (5.22a)

and for the Hermitian conjugate operator

Ŝ†
0(t) = exp

⎛
⎝− j

h̄

t∫
0

Ĥ0 dt ′

⎞
⎠ = Ŝ−1

0 (t) . (5.22b)

Thus, Ŝ0(t) is unitary. Ŝ†
0(t) lacks the interaction Hamiltonian because the perturbation

comes before the final state. (This will not always be true when steady-state collisions
by other molecules [or systems] are considered.) The time dependence is now contained in
the operator and not in the wave function. This approach is called the Heisenberg picture.

Now, the transition probability becomes

Pi→ f = |〈 f | Ŝ†
0(t) ŜTot(t) |i〉|2

= |〈 f | Ŝ−1
0 (t) ŜTot(t) |i〉|2 . (5.23)
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Let the time development operator product be expressed as a single operator,

V̂ (t) = Ŝ−1
0 (t)ŜTot(t) . (5.24)

Based on the time-dependent Schrödinger equation, the equation of motion for this
operator becomes

− j h̄
∂V̂ (t)

∂t
= Ŝ−1

0 (t)Ĥint(t)Ŝ0(t)V̂ (t) , (5.25)

where the unit operator,

Ŝ0 Ŝ−1
0 = 1̂

is used. Solving the differential equation, we obtain

V̂ (t) = exp

⎛
⎝ j

h̄

t∫
0

Ŝ−1
0 (t ′)Ĥint(t

′)Ŝ0(t
′) dt ′

⎞
⎠ ; where V̂(t = 0) = 1̂ . (5.26)

The expansion of this operator in terms of the integral over time must be performed
carefully so that correct operator sequence is maintained. The time ordered perturbation
expansion of V̂ (t)is

V̂ (t) =1̂ +
∞∑

n=1

(
j

h̄

)n
t∫

0

dt ′
t ′∫

0

dt ′′ · · ·
t (n−1)∫
0

dt (n)
[

Ŝ−1
0 (t ′)Ĥint(t

′)Ŝ0(t
′)
]

×
[

Ŝ−1
0 (t ′′)Ĥint(t

′′)Ŝ0(t
′′)
]
· · ·
[

Ŝ−1
0 (t (n))Ĥint(t

(n))Ŝ0(t
(n))
]
. (5.27)

To first order in this expansion, V̂(t) becomes (the higher order terms in Eq. 5.27 lead
to phenomena in nonlinear optics)

V̂(t) = 1̂ + j

h̄

t∫
0

dt ′
[

Ŝ−1
0 (t ′)Ĥint(t

′)Ŝ0(t
′)
]

. (5.28)

Now, to first order the transition probability becomes (recall the orthogonality require-
ment on the stationary eigenstates, 〈 f |i 〉 = δi f = 0 for i �= f, as presented in Section
3.1.3),

Pi→ f =
∣∣∣∣∣∣

j

h̄

t∫
0

dt ′〈 f |Ŝ−1
0 (t ′)Ĥint(t

′)Ŝ0(t
′)|i〉

∣∣∣∣∣∣
2

. (5.29)
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Furthermore, recognizing that Ŝ0 contains the zero-order Hamiltonian and that the
eigenstates are determined by this Hamiltonian, the operation on the initial state by the
time development operator simplifies to

Ŝ0(t)|i〉 = exp

⎛
⎝ j

h̄

t∫
0

dt ′ Ĥ0

⎞
⎠ |i〉 = e

j
h̄ Ei t |i〉 . (5.30)

Similarly, Ŝ−1
0 operating on the final state, simplifies to

〈 f |Ŝ−1
0 (t) = 〈 f | exp

(
− j

h̄
E f t

)
. (5.31)

Therefore, based on the above results, the transition probability between two stationary
eigenstates to first order reduces to

Pi→ f = 1

h̄2

∣∣∣∣
∫ t

0
dt ′e− jω0t 〈 f |Ĥint(t

′)|i〉
∣∣∣∣
2

, (5.32)

where E f − Ei = h̄ω0.

5.3.2 Fermi’s Golden Rule

Assume the interaction Hamiltonian, Ĥint(t), is time harmonic, that is,

Ĥint(t) = Ĥint e jωt (5.33)

Substituting the above form of the interaction Hamiltonian into the transition
probability yields

Pi→ f = 1

h̄2

∣∣∣∣∣∣〈 f |Ĥint |i〉
t∫

0

dt ′e j (ω −ω0)t ′

∣∣∣∣∣∣
2

. (5.34)

Evaluating the above integral, we obtain

Pi→ f = 1

h̄2

∣∣∣∣〈 f |Ĥint |i〉
(

e j�ωt

j�ω
− 1

j�ω

)∣∣∣∣
2

. (5.35)

where �ω = ω − ω0. With some simple manipulation, this reduces to

Pi→ f = 1

h̄2

∣∣∣∣ sin �ωt/2

�ω/2

∣∣∣∣
2

|〈 f |Ĥint |i〉|2 . (5.36)
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The time-dependent factor of the above result represents strong transient behavior of
the system due to the instantaneous turn on of the perturbation. Real systems cannot do
this, and we are interested in the result at long time. In the limit of t → ∞, the transient
effects decay away and this function goes into the form of a delta function, thus

lim
t→∞

∣∣∣∣ sin�ωt/2

�ω/2

∣∣∣∣
2

= 2π tδ(�ω) . (5.37)

This point is illustrated in Fig. 5.2. Therefore in the limit, the transition probability
becomes

Pi→ f = 2π

h̄2 t |〈 f |Ĥint |i〉|2δ(�ω) . (5.38)

The transition rate, �, is defined as the transition probability per unit time. Based on
the above result for Pi→ f and dividing by t , we obtain Fermi’s golden rule for harmonic
perturbations,

�i→ f = 2π

h̄2 |〈 f |Ĥint |i〉|2δ(�ω) , (5.39)

or converting the argument of the delta function to energy,

�i→ f = 2π

h̄
|〈 f |Ĥint |i〉|2δ(E f − Ei − h̄ω) . (5.40)
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This formula is fundamental to the description of linear absorption and emission phe-
nomena. The importance is further emphasized by the choice of name given by Enrico
Fermi.

5.3.3 Density Matrix Formalism

The density matrix formalism allows the combination of the probability and statistics
of quantum and statistical mechanics in a straightforward manner. Since we are inter-
ested in characterizing large numbers of molecules, this approach makes a lot of sense.
Now, macroscopic models can be obtained with a microscopic basis. Therefore, more
complete and useful models result from this practical formalism.

Consider a time-dependent wave function expanded in terms of a time-independent
stationary-state basis set |n〉,

|ψ(t)〉 =
∞∑

n=0

cn(t)|n〉 . (5.41)

The coefficients, cn(t), are the time-dependent portion of the time-dependent
wavefunction. The expectation value of some observable parameter, A, is of vital interest
and is given by

〈ψ | Â|ψ〉 =
∞∑

n=0
m=0

cnc∗
m〈m| Â|n〉 .

The averaged (i.e., over time or ensemble average over molecules) expectation value is
denoted with an overbar, thus

〈A〉 =
∞∑

n=0
m=0

cnc∗
m〈m| Â|n〉 . (5.42)

At this point the microscopic expectation value becomes a macroscopic quantity
as desired. Now, define the density matrix element and the expectation value matrix
element as

ρnm(t) = cn(t)c∗
m(t) and Amn = 〈m| Â|n〉 , (5.43)

respectively. Since ρnm = ρ∗
mn, ρ is a Hermitian matrix. The averaged expectation value

is now expressed as a matrix product,

〈A〉 =
∞∑

n=0
m=0

ρnm Amn . (5.44)
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In matrix notation the averaged expectation value can be written in a more compact
form as

〈A〉 =
∑
n=0

(∑
m=0

ρnm Amn

)
=
∑
n=0

(ρ A)nn

= Tr (ρ A),

(5.45)

where Tr () is a trace operator, which produces the sum of the diagonal elements. Thus,
the trace is written out as

Tr (ρ) = ρ11 + ρ22 + ρ33 + · · · (5.46)

Furthermore,

Tr (ρ) = |c1|2 + |c2|2 + |c3|2 + · · · = 1

since the wave function inner product is normalized to one (i.e., 〈ψ |ψ〉 = 1). Thus, the
|cn|2 coefficients are interpreted as the probability that the nth state is occupied. In a
thermally averaged system, the density matrix elements become constant in time and
form a diagonal matrix with the diagonal elements equal to Boltzmann factors in a
Maxwell–Boltzmann distribution. Thus, based on Eq. 5.1, it follows that

ρi i = gi e−Ei /kB T

Q(T )
.

Also, density matrix elements can be generated by the following operator:

ρnm = cnc∗
m = 〈n|ψ〉〈ψ |m〉 = 〈n|ρ̂|m〉 . (5.47)

Thus, the density matrix operator is defined as

ρ̂ = |ψ〉〈ψ | . (5.48)

Based on the time-dependent Schrödinger equation, the equation of motion for the
density matrix operator can be obtained in the following manner. For the bra version of
the wave function defined by Eq. 5.41, the Schrödinger wave equation is written

j h̄
∂〈ψ |m〉

∂t
=
∑
k=0

〈ψ |k〉Hkm .

(Note that 〈ψ |m〉 = c∗
m(t).) In a similar fashion the ket wave function produces the

following wave equation:

− j h̄
∂〈n|ψ〉

∂t
=
∑
k=0

Hnk〈k|ψ〉 .
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Now differentiating the density matrix with respect to time and using the above results,
we obtain the following equation of motion:

j h̄ρ̇nm =
∑

k

(ρnk Hkm − Hnkρkm) , (5.49a)

or in more compact notation using commutator brackets,

j h̄
dρ̂

dt
= ρ̂ Ĥ − Ĥ ρ̂ = [ρ̂,Ĥ ] . (5.49b)

5.4 Semiclassical Oscillator Model

The quantized propagation medium is limited to two energy levels and interacts with a
classical field, producing a semiclassical oscillator model. This approach leads to a
tractable solution without use of perturbation theory. This means the semiclassical
oscillator model can be applied to interactions with high-intensity fields, such as inside
laser resonators.

To obtain a semiclassical oscillator model, consider a two-level quantum system
with states |1〉 and |2〉. As previously described in Chapter 4, consider the following
Hamiltonian for dipole moment coupling of the electromagnetic field with a medium:

H(t) = H0 +mdp· e(Z ,t) . (5.50)

The differential equations describing time evolution of the density matrix are derivable
from the equation of motion (Eq. 5.49), and become

j h̄ρ̇mn = ρmn En − Emρmn +
∑

k

(ρmk kn − mkρkn) · e(Z ,t) . (5.51)

Considering a two-level system (e.g., n, m, k = 1,2), using Eq. 1.12 for the electric field
and converting energy to frequency, the above equation becomes

j h̄ρ̇mn = h̄ωnmρmn + 1

2

∑
k

(ρmk kn − mkρkn) · (Ee jωt + E∗e− jωt) , (5.52)

where ωnm = En − Em . The time-harmonic nature of the wave function, as stated in
Section 3.1.3, is contained in the c-coefficients. The lower energy level can be defined as
a reference state against which the upper state frequency is measured. Thus, the time-
harmonic factor (e jωt) exists only in the c2(t) coefficient. Based on this convention, the
time-harmonic factor only exists in the off-diagonal density matrix elements, as given by

ρ21(t) → ρ21(t)e
jωt and ρ12(t) → ρ12(t)e

− jωt .
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Example 5.2 The interaction Hamiltonian, as stated in Eq. 5.50, is the same
coupling mechanism used in Chapter 4, which applies the Lorentz force relation.
This can be understood by converting the force equation of Eq. 4.1 to work or
energy on a negative charge in the electric dipole approximation, as follows:

−∇Hint(r, t) = F(t) = qe(Z , t) .

Solving for the interaction Hamiltonian, one obtains

Hint(r, t) = −qr · e(Z , t) = dp · e(Z , t) ,

which agrees wi}th Eq. 5.50. However, it is important to realize that this
Hamiltonian is, in general, incomplete, and represents linear coupling only.

Making this substitution into Eq. 5.52, we obtain to the following set of differential
equations

j h̄ρ̇11 = 1

2
(ρ12 21 · E + ρ12 21 · E∗e−2 jωt − 12ρ21 · Ee2 jωt − 12ρ21 · E∗) (5.53a)

j h̄ρ̇22 = 1

2
(ρ21 12 · Ee2 jωt + ρ21 12 · E∗ − 21ρ12 · E − 21ρ12 · E∗e−2 jωt) (5.53b)

and

j h̄ρ̇21 = h̄(ω − ω21)ρ21 + 1

2
(ρ22 21 − 21ρ11) · (E + E∗e− j2ωt) = − j h̄ρ̇∗

12 . (5.53c)

The high-frequency terms cannot be detected and essentially average to zero over
typical observation times. These terms can be dropped in the so-called rotating wave
approximation. Eqs. 5.53a–c now become

ρ̇11 = − j

2

(
ρ12

21 · E
h̄

−
∗
21 · E∗

h̄
ρ21

)
(5.54a)

where for a Hermitian operator µi j = µ∗
j i and

ρ̇22 = − j

2

(
ρ21

∗
21 · E∗

h̄
− 21 · E

h̄
ρ12

)
(5.54b)

ρ̇21 = ρ̇∗
12 = − j (ω − ω21)ρ21 − j

2
(ρ̇22 − ρ11)

21 · E
h̄

. (5.54c)
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Relaxation processes, such as adiabatic collisions, must also be included in this model.
This type of collision will not affect the population distribution, therefore only
Eq. 5.54c needs to be modified. It is

ρ̇21 = [−γ − j (ω − ω21)] ρ21 + j

2
(ρ11 − ρ22)

21 · E
h̄

, (5.55)

where γ represents collisional relaxation processes. It is assumed that the transition
probability (ρ21) will not change rapidly. In the quasi-steady state ρ̇21 ≈ 0, an expression
for ρ21 is obtained to be

ρ21(ω) = (ρ11 − ρ22)
21·E
2h̄

(ω − ω21) − jγ
= ρ∗

12(ω) . (5.56)

The equation set given by Eq. 5.54 can now be reduced to two equations in
ρ11(ω) and ρ22(ω). This is accomplished by substituting the steady-state solution of
ρ21(ω) and ρ12(ω) into Eqs. 5.54a and 5.54b. The result is

ρ̇11(t) = −| 21 · E|2
2h̄2 (ρ11 − ρ22)

γ

(ω21 − ω)2 + γ 2
= −ρ̇22(t) . (5.57)

The ρi i density matrix element times the total population, N , is the population of the
ith state, Ni. That is, the rate of change of the upper state population must be equal and
of opposite sign to the rate of change of the lower level population. This is true for a
closed system in thermal equilibrium. After multiplying through by the number of
absorbing molecules, N , Eq. 5.57 becomes,

Ṅ1 = −π | 21 · E|2
2h̄2 (N1 − N2) jL(ω) = −Ṅ2 , (5.58)

where jL(ω) is the Lorentz line shape as defined by Eq. 4.15. The quantity between the
equal signs in the above equation can also be thought of as a photon absorption rate. This
quantity is also the negative of stimulated emission rate. Spontaneous emission is miss-
ing in this model. The semiclassical theory of radiation used in laser theory adds
spontaneous emission in a heuristic manner (see Milonni and Eberly, Ref. 5.8).

A model for the absorption coefficient can be obtained based on Eq. 5.58, because
the absorption process is dominantly a stimulated process. Also, based on Eq. 2.80 for
no external sources and no scatter loss, the absorption coefficient is

βabs = − (dL/ds)

L
.
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Furthermore, the change in incremental radiance per incremental path is the photon
energy times the incremental number of photons absorbed, Np , per incremental time
divided by the volume, thus

dL

ds
= h̄ωṄp

V
.

The rate of change of the number of photons absorbed must equal the rate of change of
the population of the lower energy level, that is,

Ṅp = Ṅi

Combining these results yields the formula for the absorption coefficient,

βabs(ω) = −h̄ωṄ1(ω)
1
2 cnε0V |E|2 = πω

h̄cnV ε0
|µ21

• |2(N1 − N2) jL(ω) . (5.59)

is the unit vector pointing in the direction of polarization. In a gas or for randomly
polarized light, an orientational average is needed on the dot product between the direction
of the dipole moment and the electric field. The details of the calculation are left as an
exercise (see Problem 5.13). The absorption coefficient, as a function of wave number
and including orientational averaging, becomes

βabs(ν) = 8π3ν

3hε0n
| ul|2(ρl − ρu) jL(ν) , (5.60)

where the substitution ρ = N/V is made, and the subscripts 1 and 2 are changed to l
(lower state) and u (upper state), respectively. The population densities are dependent
on the energy level and therefore the frequency. This can be seen by using Eq. 5.4 to
obtain the following:

βabs(ν, T ) = 8π3ν0

3hnε0
| ul|2ρa( fMB(El) − fMB(El + ν))

ν

ν0
jL(ν) . (5.61)

Substituting the explicit formulas for the Maxwell–Boltzmann distribution, ignoring
degeneracy, the absorption coefficient becomes

βabs(ν, T ) = 8π3ν0

3hnε0
| ul|2 ρa

e−El/kB T

Q(T )
(1 − e−hcν/kB T )

ν

ν0
jL(ν) . (5.62)

This result can be broken down into the standard form of line strength and line shape
functions. The line strength is

Slu(T ) = 8π3ν0

3hnε0
| ul|2ρa

e−El/kB T

Q(T )
(1 − e−hcν0/kB T ) (5.63a)

ê

ê

192 OPTICAL PROPAGATION IN LINEAR MEDIA

m

m

m

m



and the line shape profile is

g(ν) = (1 − e−hcν/(kB T ))

(1 − e−hcν0/(kB T ))

ν

ν0
jL(ν) . (5.63b)

It is interesting to compare this result with the classical oscillator model. First, the popu-
lation difference factor now appears in the line strength. This is an important improvement.
The line profile functions agree when hcν/(kB T ) 	 1 and hcν0/(kB T ) 	 1. Typically
this will be the microwave region.

Although great progress has been made with the semiclassical oscillator model, it is
still incomplete. This is easily demonstrated by realizing that Eq. 5.63b does not satisfy
the symmetry condition of Eq. 3.32. Section 5.6 presents a new development which
addresses this important point. Furthermore, the description of spontaneous emission is
missing in this model. Spontaneous emission represents the majority of light sources in
use today (i.e., incandescent and fluorescent light bulbs). The next section addresses
this important topic.

5.5 The Einstein Relation and Spontaneous Emission

We begin by considering a medium in thermal equilibrium (constant temperature or
steady state) in which the rate of the number of photons absorbed equals the rate of the
number of photons emitted. Otherwise, the internal energy in the medium would be
increased or decreased and the net temperature will change. Thus,(

dNmσ

dt

)
abs

=
(

dNmσ

dt

)
em

(5.64)

where Nmσ is the photon occupation number with mode number m and polarization σ .
These time derivatives are related to the transition rate, �, by(

dNmσ

dt

)
abs

= Nal�l→u ≡ rate of photons absorbed (5.65a)

and (
dNmσ

dt

)
em

= Nau�u→l ≡ rate of photons emitted , (5.65b)

where Nal and Nau are the number of absorbing molecules in the lower (l) and upper (u)
transition levels, respectively. �l→u is the transition rate from the lower energy level to
the upper energy level, and conversely for �u→l .

For stimulated processes the transition rate is proportional to electromagnetic field
radiance. This can be seen by examining Fermi’s golden rule in Eq. 5.40, given the
interaction Hamiltonian in Eq. 5.50. For a system in thermal equilibrium, the field radi-
ance must obey the blackbody formula and satisfy a Bose–Einstein distribution. Given
this fact and the fact the upper and lower populations must satisfy a Maxwell–Boltzmann
distribution, Eq. 5.64 cannot be satisfied. Thus, thermal equilibrium cannot be satisfied,
and we know from experience that this is not true.
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In 1917, Albert Einstein realized this dilemma and proposed the following solution.
There must be two types of emission, stimulated and spontaneous. Spontaneous emission
does not require illumination by an external field to occur. Thus the upper to lower transi-
tion rate is modified in the following way:

�u→l = uBB(ν)Bul + Aul (5.66a)

and in a consistent fashion the lower to upper transition rate is

�l→u = uBB(ν)Blu . (5.66b)

Aul is called the Einstein A-coefficient, and Bul and Blu are called the Einstein 
B-coefficients. Substituting the above transition rates into Eqs. 5.65 and 5.64, using 
Eq. 5.4, and solving for the field energy density, we obtain the following expression:

uBB(ν) = Aul

Bul

1
gl Blu

gu Bul
exp

(
hcν

kB T

)
− 1

.

uBB(ν) is the blackbody spectral energy density formula (Eq. 5.16a) when

gl Blu = gu Bul and
Aul

Bul
= 8πhcν3 . (5.67)

Thus, the requirement of the existence of spontaneous emission allows thermal equi-
librium between bosons and boltzons to be satisfied.

The Einstein relation for an interaction system of photons and molecular oscillators
in thermal equilibrium is obtained by substituting Eqs. 5.65 and 5.66 into Eq. 5.64,
to obtain

NaluBB(ν)Blu = Nau[uBB(ν)Bul + Aul] . (5.68)

The result is important because it describes a distinction between stimulated processes
by direct illumination and nonstimulated processes.

If no stimulating field is present (i.e., u(ν) = 0), then spontaneous emission is the
only radiative process that occurs. Since the time rate of change of photons emitted
must equal the negative of the time rate of change of the upper population level, we
have

Ṅu = −Ṅmσ = −Nu Aul . (5.69)

Solving the differential equation, we obtain a description of an exponentially decaying
population:

Nu(t) =Nu(0) exp (−Aul t) . (5.70)
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Thus, the reciprocal of the Einstein A-coefficient is the lifetime, τul , of the upper level
for transitions between levels u and l. The net lifetime, τu , of the upper level is the sum
of all allowed transitions from the upper level, thus

1

τu
=
∑

l

Aul . (5.71)

Finally, spontaneous emission is not spontaneous, but a causal phenomenon. The
correct interpretation comes from electromagnetic field quantization, as presented in
Appendix 5. Spontaneous emission by an oscillator is caused by collisions with other
molecules or when in vacuum by background field fluctuations that occur randomly all
the time. Furthermore, field quantization rigorously describes stimulated emission, and
absorption. Stimulated emission duplicates the frequency, polarization, and direction of
the incident photon, thus explaining why lasers have unique coherence properties over
conventional sources. The details are beyond the scope and purpose of this book, but it
is important to be aware of the correct cause of this phenomenon.

5.6 Quantum Optics of Low-Density Gases

Quantum electrodynamics is one of the most successful theories ever developed by
mankind. The name is often associated with high-energy physics. However, this funda-
mental theory contains a comprehensive description of the electromagnetic field and
molecular systems, and can be applied to many topics at much lower energies. Quantum
electrodynamics at optical frequencies is often referred to as quantum electronics
(which emphasizes optical devices, usually solid state) or quantum optics (which
emphasizes the electromagnetic field, but includes light–matter interactions). Since the
emphasis of this section is on light–matter interaction with gases, the name quantum
optics is preferred.

The main objective of this section is to provide the fundamental line shape and line
strength formulas for optical propagation models concerning the atmosphere of the
earth (e.g., those used in commercially available computer codes such as FASCODE
and MODTRAN). In particular, the complete description of the line shape function
away from line center is addressed. This is a practical consideration because long-path
propagation does not occur when the frequency of the field matches the line center
frequency of an absorption line.

The HITRAN database is used in conjunction with FASCODE and MODTRAN, and
provides absorption line parameters of atmospheric molecules. A theoretical model of
the absorption coefficient is developed, which utilizes this database and is consistent
with current models. The description and application of these models are the topics of
Part II of this book.

5.6.1 Formal Development

As in prior sections, the first-order light–matter interaction Hamiltonian is the dipole
moment operator coupled to a classical electromagnetic field, as given by (suppressing
the spatial dependence of the field)
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Hint(t) = dp(t) · e(t) = dp(t) · 1

2
( Ee jωt+E*e− jωt)

This interaction Hamiltonian will be assumed weak, since our applications concern
propagation in window regions where absorption line wings are important. The use of
a classical field is valid when stimulated emission and absorption processes dominate.
Such an approximation ignores spontaneous emission, which is the process of conven-
tional light sources (i.e., blackbody radiation and fluorescence). As the previous section
shows, spontaneous emission is required to satisfy thermal equilibrium. A propagating
field within a medium in thermal equilibrium that does not saturate the medium pres-
ents a minor perturbation to thermal equilibrium, and spontaneous emission can be
ignored.

Fermi’s golden rule for the above interaction Hamiltonian, initially assuming that
µdp is time independent, is

�i→ f = 2π

4h̄2

[|〈 f | dp·E |i〉|2δ(ωi f − ω) + |〈 f | dp·E*|i〉|2δ(ωi f + ω)] . (5.72)

The first term represents absorption and the second term represents the time reversed
process of emission. Recall the integral representation of the Dirac delta function,

δ(ωi f − ω) = 1

2π

∞∫
−∞

dt e jωt e− jωi f t .

Then, knowing h̄ωi f = E f − Ei and using Eqs. 5.30 and 5.31, Fermi’s golden rule can
be modified to include the time-dependent dipole moment operator in the following
intuitive manner:

�i→ f = π

2h̄2

[ 1

2π

∞∫
−∞

dte jωt 〈i | dp(0)·E*| f 〉〈 f |e− j Ĥ0t/h̄
dp(0)e j Ĥ0t/h̄ ·E |i〉

+ 1

2π

∞∫
−∞

dte− jωt 〈i |e− j Ĥ0t/h̄
dp(0)e j Ĥ0t/h̄ ·E | f 〉〈 f | dp(0)·E*|i〉

]
(5.73)

Notice that the pre- and post-operators on the dipole moment are of the form of time
development operators. Using the Heisenberg representation for the time-dependent
dipole moment operator we obtain

dp(t) = e− j Ĥ0t/h̄
dp(0)e j Ĥ0t/h̄ . (5.74a)

Furthermore, the effect of collisions by external molecules can now be handled by the
addition to the zero-order system Hamiltonian of a collision Hamiltonian, Hc(t). Thus,

H(t) = H0 + Hc(t). (5.75)
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Applying the above Hamiltonian, the time-dependent dipole moment operator now
includes the dynamics of collisions, and the transition rate becomes

�i→ f = π

2h̄2

[
1

2π

∞∫
−∞

dt e jωt 〈i | dp(0)·E*| f 〉〈 f | dp(t)·E |i〉

+ 1

2π

∞∫
−∞

dt e jωt 〈i | dp(t)·E | f 〉〈 f | dp(0)·E*|i〉
]
, (5.76)

where

dp(t) = e− j Ĥ t/h̄
dp(0)e j Ĥ t/h̄ . (5.74b)

As discussed in Chapter 2, the susceptibility is a causal function and directly propor-
tional to the dipole moment. Thus, the dipole moment is causal as well. After removing
the turn-on function, it is an odd function in time (i.e., µdp(t) = −µdp(−t)), just like
the susceptibility. With this insight, and realizing that the first matrix element product
represents absorption, we have

i → l and f → u

and the second term represents stimulated emission, thus

i → u and f → l,

where l indicates the lower state and u indicates the upper state, Equation 5.76 becomes

�l→u = π

2h̄2

[
1

2π

∞∫
−∞

dt e jωt 〈l| dp(0)·E*|u〉〈u| dp(t)·E|l〉

−〈l| dp(0)·E|u〉〈u| dp(−t)· E*|l〉
]
. (5.77)

Now examine the dipole moment matrix element product in the above equation,

〈l| dp(0)·E*|u〉〈u| dp(t)·E |l〉.
Expanding the Heisenberg dipole moment operator, we obtain

dp(t) = e− j Ĥct/h̄e− j Ĥ0t/h̄
dp(0)e j Ĥet/h̄e j Ĥ0t/h̄

= Ŝ−1
c (t) dp(0)Ŝc(t)e

− jωul t .

Using this expanded form of the dipole moment operator and then inserting unit oper-
ators between the time-independent dipole moment operator and the time development
operators, the matrix element becomes
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∑
u′, l ′

〈l| dp(0)·E*|u〉〈u|S−1
c (t)|u′〉〈u′| dp(0)·E|l ′〉〈l ′|Sc(t)|l〉e− jωul t

= |〈u| dp(0)·E*|l〉|2
∑
u′, l ′

〈u′|S−1
c (t)|u′〉〈l ′|Sc(t)|l ′〉e− jωul t

= |〈u| dp(0)·E*|l〉|2C(t)e− jωul t

where C(t) is an autocorrelation function. Substituting this result into the transition rate
and using the Fourier transform defined by Eq. 1.9, we obtain

�l→u = π

2h̄2 |〈u| dp · E|l〉|2 1

2π
� {e− jωul t C(t) − e− jωul t C(−t)}.

The principle of detailed balance or microscopic reversibility requires the following
relation between the two correlation functions (see Milonni and Eberly, Ref. 5.8)

exp

(−h̄ωul

kB T

)
e− jωul t C(t) = e jωul t C(−t). (5.78a)

Defining the variable τ = t − j h̄/(2kB T ), the above relation can also be rewritten as

e jωulτ C

(
τ + j

h̄

2kB T

)
= e− jωulτ C

(
−τ + j

h̄

2kB T

)
. (5.78b)

Suppressing the frequency shift factors, the more commonly stated result is obtained

C

(
τ + j

h̄

2kB T

)
= C

(
−τ + j

h̄

2kB T

)
. (5.78c)

The time-reversed variable is written as −τ = −t − j h̄/(2kB T ), because the Boltzmann
factor cannot change sign, since it is time independent. Thus the complex time variable
must exist in the upper half-plane. Any complete theory of spectral line shapes must
satisfy this fundamental relation. Using Eq. 5.78a, the transition rate becomes

�l→u = π

2h̄2 |〈u| dp·E|l〉|2
[

1 − exp

(−h̄ω

kB T

)]
1

2π
� {e jωulτ C(τ)} . (5.79)

The Fourier transform of an autocorrelation function is the power spectral density func-
tion, j (ω), according to the Wiener–Khintchine theorem. The power spectral density
function is an important part of the line shape function. To ensure that the resulting line
shape function will satisfy the symmetry properties, the following reconfiguration is
performed:

(
1 − e−h̄ω/kB T

) (1 + e−h̄ω/kB T )

(1 + e−h̄ω/kB T )

1

2π
�
{
e jω f i τ C(τ)

}

= tanh

(
h̄ω

2kB T

)
[ j (ω) + j (−ω)] .

Based on Eq. 5.69, the rate of change of population in the time of the state |i〉 with
energy El is
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Ṅl = −Nl �l→u .

Substituting this population rate into Eq. 59 for the absorption coefficient, we obtain

βabs = −h̄ωṄl
1
2 cnε0 |E0|2 V

= 2h̄ωNl�l→u

cnε0V |E0|2
. (5.80)

Substituting Eq. 5.79 for �l→u produces the following fundamental result:

βabs(ω) = πω

cnε0h̄

N1

V
|〈u| dp · |l〉|2 tanh

(
h̄ω

2kB T

)
[ j(ω) + j(−ω)] , (5.81)

where E =E0 and is a unit vector pointing in the direction of polarization. For gases
and amorphous materials, the dipoles are randomly oriented relative to the field polariza-
tion. An orientational average removes the dot product in the matrix element and
produces a multiplicative factor of one-third (see Problem 5.13). Also, the above result
accounts for only one polarization direction and there are two. Therefore, we must also
multiply the above result by a factor of two. Finally, the derivation thus far considers only
one transition and many overlapping absorption lines are often present. Thus, we sum
over all initial states to obtain the following result:

βabs(ω) =
∑

l

2πω

3cnε0h̄
ρal

1

gl

∣∣ dp,ul

∣∣2 tanh

(
h̄ω

2kB T

)
[ j (ω) + j (−ω)] , (5.82)

where ρal = Nl/V .
Using the Maxwell–Boltzmann distribution for ρal/gl and converting to wave num-

bers, we obtain the quantum oscillator model for the absorption coefficient,

βabs(ν) = 8π3ν

3cnε0h
ρa

∑
l

e−El/kB T

Q(T )

∣∣ dp,ul

∣∣2 tanh

(
hcν

2kB T

)
[ j (ν) + j (−ν)]

=
∑

l

Slu g(ν) (5.83)

where the line strength and line shape functions are given by

Slu = 8π3νl

3cnε0h

e−El/kB T

Q(T )
ρa

∣∣ dp,ul

∣∣2 tanh

(
hcνl

2kB T

)
, (5.84)

and

g(ν) = ν

νl

tanh
(

hcν
2kB T

)
tanh

(
hcνl

2kB T

) [ j (ν) + j (−ν)] . (5.85a)

j (ν) is the power spectral density function or the Fourier transform of the time depend-
ent autocorrelation function, C(τ), which describes the time evolution of the state of the
absorbing molecule, and is expressed by

êê
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j(ν) = 1

2π

∞∫
−∞

dτ e− j2πcντ e j2πcν0τ C(τ ) , (5.85b)

where the autocorrelation function for a gas mixture is given by the product of individual
autocorrelation functions,

C(τ) = Ca(τ)Cb(τ)· · ·Cm(τ), and g(ν) = g(−ν) .

The subscripts designate the different types of molecules composing the gas. The nor-
malization condition on j (ν) is

∞∫
0

dν j(ν) = 1 for C(0) = 1 .

Note that j (ν) is a real and even function. More details on the autocorrelation function
will be given in Section 5.6.3.

5.6.2 Line Strength

To complete the line strength expression requires specifying the partition function, Q(T ),
the lower energy level El and the matrix elements | dp|2. The partition functions are
given for each class of molecule in Section 5.2.1. A polynomial representation of the
partition function is often used to include coupling of rotational and vibrational motion.
The lower energy levels are computed by the formulas of Chapter 3.

The matrix elements can be found by evaluation of | dp|2. This has been done for
certain molecules. Some analytical results are given below.

For rotational transitions in diatomic molecules in the electronic ground state, the
matrix elements for the R- and P-branches are (see Herzberg, Ref. 5.15)∣∣ dp

∣∣2 ∝ J + 1 for �J = 1 (5.86a)

and ∣∣ dp
∣∣2 ∝ J for �J = −1 . (5.86b)

For vibrational transitions with the Morse anharmonic potential as given by Eq. 3.101b,
the matrix element is (see Scholz, Ref. 5.38)

| dp,nm |2 = q2h

8π2cν0µ′
�(m + n + 1)

n2�(m + 1)

× j ′( j ′ − 1 − 2m) [ j ′ − 1 − 2(m + n)] �
(

j ′ − m − n
)

( j ′ − 1 − 2m − n)2�( j ′ − m)
, (5.87)

where n represents the number of vibrational quanta or the number of phonons in the tran-
sition and cannot exceed mmax . The transitions originate from the initial state m. �() is a
gamma function.

Also, matrix elements and lower energy levels for many gases are provided by the
HITRAN database (see Section 7.2.2).
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5.6.3 Line Shape Profiles

The most general classification of line shapes is either as homogeneous or inhomogeneous
broadening. Homogeneous broadening means that all molecules have the same basic
line shape characteristics. That is, if a line shape is observed for a collection of molecules,
the same line shape will be observed for each molecule. Examples are natural broadening
(radiation damping) and collision broadening. Inhomogeneously broadened lines
represent a collection of shifted homogeneously broadened lines. Thus, each molecule’s
line shape may be completely different from the total line shape of a collection of
molecules. Examples are Doppler broadening, nonuniform electric and magnetic fields
in Stark and Zeeman effects, and inhomogeneities in a medium (such as crystalline
strains and defects in solids). These concepts should become more clear when Doppler
broadening is thoroughly treated.

5.6.3.1 Homogeneous Line Shapes

Two related cases will be considered. These are radiation damping (natural broadening)
and collision broadening. Consider a perturbation to a quantum system, whether it be an
incident photon or colliding molecule that will smear the energy level structure. Due to
this probabilistic nature, an uncertainty results in observing the effects of the perturbation.
This is manifested by the Heisenberg uncertainty principle,

�x�p = �t�E ≈ h̄ .

Using �E = h� f , where � f is the change in frequency,

�t� f ≈ 1

2π
→ � f = 1

�t2π
= γ

2π
, (5.88)

where γ is the reciprocal lifetime. A transition between two energy levels of a quantum
system, which results in the emission or absorption of a photon, will have an uncertainty
in the separation of the levels and therefore an uncertainty in the emitted photon frequency.
Therefore,

� ful = � flu = 1

h
(�Eu + �El) = 1

2π
(γu + γl) . (5.89)

These concepts are illustrated in Fig. 5.3. A spread in frequency about line center of the
transition results, which is the same for every molecule. The amount of spreading
depends on the nature of the interaction: small shifts for radiation damping and large
shifts for molecular-collision-driven conditions of the lower troposphere. A brief
discussion of these different mechanisms will follow.

Natural Line Shape The natural line shape, gN (ν − νo), is caused by fluctuations of
the background electromagnetic field (see Appendix 5). The effect is small but is impor-
tant in determining lifetimes of energy levels and astrophysical problems.

The line shape function, jN (ν), is based on an exponential autocorrelation function
(i.e., CN (τ) = exp (−γN τ)) and is a Lorentzian function,
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jN (ν − ν0) = 1

π

(
γN

(ν − ν0)
2 + γ 2

N

)
. (5.90)

γN is the half-width at half-intensity and related to the Einstein spontaneous emission
coefficient by (Ref. 5.10)

γN = Aul

2πc
= 1

2πctspontaneous
(5.91)

tspontaneous is the lifetime of the upper level and Aul is the Einstein A-coefficient.
Further, the line profile function becomes

gN (ν;ν0) = ν

ν0

tanh [hcν/(2kB T )]

tanh [hcν0/(2kB T )]
[ jN (ν) + jN (−ν)] . (5.92)

Near line center (ν ≈ ν0) and ν0 � γN ,

gN (ν;ν0) = jN (ν ≈ ν0) . (5.93)
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Fig. 5.3 Smearing of energy levels caused by external perturbations and the resulting line shape.



Natural line widths are very narrow, making this an excellent approximation. Further,
the line profile function, g(ν), is normalized as required by Eq. 3.31b within this approx-
imation.

Collision-Broadened Line Shape The collision-broadened line shape is essential for
accurate atmospheric propagation models. Long-path propagation simulations require
characterization of the line profiles far from line center, and the commonly used Lorentz
line profile function is not adequate. This point is readily made by observing that the
normalization condition of Eq. 3.31b cannot be satisfied by the simple Lorentz formula.
Thus, a more complete theory must be applied, and the work of Birnbaum and Cohen will
be followed because it leads to a simple, practical, and versatile line shape function (see
Ref. 5.22). Other formalisms are also possible, but lead to complicated numerical
techniques for a complete line profile representation. The Birnbaum–Cohen autocorrela-
tion function for a binary mixture is semiempirically chosen to satisfy detailed balance
(Eq. 5.78c) and is given by

C(τ ) = Ca(τ ) Cb(τ )

= exp
{[

τa2 − (τ 2
a2 + τ 2 − j2τ0τ

)1/2
]
/τa1

}

× exp
{[

τb2 − (τ 2
b2 + τ 2 − j2τ0τ

)1/2
]
/τb1

}
. (5.94)

Ca(τ) is the autocorrelation function for absorber–absorber and Cb(τ) is the autocorrela-
tion function for absorber–broadener interactions. The relaxation times τ1 and τ2

represent the long-time and short-time behavior of the autocorrelation function. τo is a
thermal time defined by

τ0 = h

4πkB T
. (5.95)

(For T = 298 K , τo = 1.29 × 10−14 sec.) The resulting line profile function and the
Lorentz line shape is illustrated in Fig. 5.4.

The long-time behavior of the autocorrelation function becomes

C (τ → ∞) = exp (−|τ |/τ1) , (5.96)

where the reciprocal of the relaxation time, τ1, is

τ−1
1 = τ−1

a1 + τ−1
b1 = γc = γca + γcb

for a binary mixture and γc is the usual collision-broadened half-width at half-intensity.
Based on the kinetic theory of gases, the temperature and pressure dependence of the
collision–broadened half-width is

γc = γcbo [ρb + (γcao/γcbo) ρa]
√

T , (5.97)

= γcbo (pb + Bpa)/T 1/2 ,
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where ρ = p/(kB T ) and the ratio γcao/γcbo is the dimensionless self-broadening coeffi-
cient, B. Table 5.1 lists B-values for various atmospheric absorbing gases relative to
nitrogen. The exponent of the temperature can vary between 0.5 and 1.0, based on
experimental results and more complete theories. The predicted pressure dependence
agrees very well with experimental data. This point is illustrated in Fig. 5.5. The curve
becomes linear when collisions dominate and the pressure is high enough. The
low-pressure half-width approaches the Doppler half-width, which will be covered in
the next section. Collision-broadened half-widths do vary with the rotational quantum
number, but only weakly with the vibrational quantum number.

The long-time autocorrelation function results in the near-line-center line shape
function. Substituting Eq. 5.94 into Eqs. 5.85 and 5.79 results in the following near-
line-center profile:

gNLC (ν; νi ) = ν

νi

tanh [hcν/(2kB T )]

tanh [hcνi/(2kB T )]
[ jNLC (ν) + jNLC (−ν)] (5.98)
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Table 5.1 Dimensionless Self-Broadening Coefficient, B,
Relative to Nitrogen and Near Line Center

Molecule B

H2O 5
CH4 1.3
N2O 1.24
CO 1.02
CO2 1.3
O3 1.0

Fig. 5.4 Birnbaum line shape as function of frequency compared to the Lorentz line shape.



and

jNLC (ν) = 1

π

(
γc(

ν − νi − γc,i
)2 + γ 2

c

)
(5.99)

where the conversion to wave numbers has been made (γc → 2πcγc). This result is
consistent with the FASCODE model (see Section 7.4) and, for hcν/kB T small, the
MPM model (see Section 7.4). Equation 5.99 includes a pressure shift term, γc,i , which
occurs in more general theories, producing a complex γc(γc,i = Im[γc]). Pressure shift
contributions are roughly 10–100 times smaller than Re[γc] and for this reason usually
are ignored. However, it can be important for laser or narrow-band system propagation
(e.g., atmospheric lidar) when operating near a spectral absorption line. The pressure and
temperature dependence is similar to the half-width as given by kinetic theory model,

γc,i = (γcbo,iρb + γcao,iρa
)√

T . (5.100)

The pressure shift is usually negative, depends on the quantum numbers of the absorp-
tion line, and is on the order of a few milli-wave numbers per atmosphere.

Many of the popular line shapes can be obtained from these formulas by using various
approximations. It should be noted that most of these approximations are not always
appropriate for the RF–millimeter region. Thus, when in doubt about the correct line
shape for a particular application, use the most general model.

One important shortcoming of this near-line-center model is that it does not include
line-mixing effects. That is, the coupling of neighboring lines, which results in the alter-
ation of the near-line-center line shape. This is important for O2 absorption of the
60 GHz band (see Ref. 5.28 and 5.29) and for CO2 (see Ref. 5.30 and 5.31), but greatly
complicates absorption line modeling. A relatively simple modified Lorentz line shape,
as given by Rosenkranz and applied to O2, is given by

ELECTRODYNAMICS II 205

Fig. 5.5 The half-width versus absorbing gas pressure for the 1110-0000 R(24) line of CO2
located in the 5 µm region.



jNLC(ν) = 1

π

(
γc + (ν − νi ) yi(

ν − νi − γc,i
)2 + γ 2

c

)
, (5.101)

where yi is the coupling constant, representing the effects of neighboring energy levels
on the levels involved in the transition.

The leading factor in the line shape profile, as given by

ν

ν0

tanh [hcν/(2kB T )]

tanh [hcν0/(2kB T )]
= H (ν, T ; ν0) , (5.102)

is an important part of this model and makes g(ν) more general than other shape func-
tions, such as developed in Chapter 4 and Section 5.3.3. Furthermore, g(ν) reduces to
other models in appropriate limits. The following examples illustrate this point.

Classical limit (h → 0)

gNLC (ν; ν0)
−→

h→0

(
ν

ν0

)2

[ jNLC (ν; ν0) + jNLC (−ν; ν0)] .

This result is consistent with the classical oscillator model of Eq. 4.33 for ν0 � 0.

v → 0

gNLC(ν; ν0)
−→

h→0
bν2/T

ν0 tanh (bν0/T )
[ jNLC(ν) + jNLC(ν)] ,

where b = hc/(2kB). The frequency-squared dependence is commonly observed at
microwave and millimetre-wave frequencies.

v = v0

gNLC(ν0; ν0) = [ jNLC(ν0) + jNLC(−ν0)] ,

Thus, at line center the profile is Lorentzian.

bν � T and bν0 � T (infrared approximation)

gN LC(ν; ν0)

−→
bν�T
bν0�T

ν

ν0
[ jNLC(ν) + jNLC(−ν)]

A plot of H(ν; ν0) is given in Fig. 5.6 as a function of ν for T = 296 K, showing the
low-frequency and high-frequency limiting forms of this function.

The short-time behavior of the autocorrelation function leads to the far-wing character
of the profile. The real part short-time behavior (τ → 0) of Eq. 5.94 becomes (ignoring
foreign gas effects)
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C(τ) −→
τ→0

e−τ 2/(2τa1τa2). (5.103)

The Gaussian form is consistent with theoretical models of the autocorrelation function
(Davies et al., Ref. 5.12). Thus a complete line shape is specified from line center to the
far wing. The far wing result has been obtained for the case of a single absorbing
molecule (i.e., C(τ) = Ca(τ)) and is given by (Birnbaum, Ref. 5.23)

gFW (ν; νi ) = ν

νi

tanh [hcν/(2kB T )]

tanh [hcνi/(2kB T )]
jFW (ν) (5.104)

and

jFW (ν) =
(τa2

2π

)1/2 1

τa1

exp (−2πc |ν − νi | τa2)

4π2 |ν − νi |1.5 exp [2πc (ν − νi ) τ0] . (5.105)

The exponential wing is consistent with experimental observation (see Refs. 5.23 and
5.35). The general far-wing result for a binary mixture can be obtained by solving a
convolution integral of the individual line shape functions ( ja and jb) in the far-wing
limit. Thus, given

ja(ν) = 1

2π

∞∫
−∞

dτ e− j2πcνCa(τ ) , (5.106a)

jb(ν) = 1

2π

∞∫
−∞

dτ e− j2πcνCb(τ ) , (5.106b)
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Fig. 5.6 H-function versus wave number for a line-center position of 100 cm−1 and T = 296 K.



and based on Eq. 5.79, the net line shape becomes

j(ν) =
∞∫

−∞
ja(x) jb

(
ν − νj − x

)
dx . (5.107)

Then using contour integration, in the far-wing limit, we obtain

jFW (ν) =
(τa2

2π

)1/2 1

τa1

exp (−2πc |ν − νi | τa2)

4π2 |ν − νi |1.5 exp [2πc (ν − νi ) τ0]

+
(τb2

2π

)1/2 1

τb1

exp (−2πc |ν − νi | τb2)

4π2 |ν − νi |1.5 exp [2πc (ν − νi ) τ0] . (5.108)

This approach can be expanded to include gas mixtures with more than two different
species of molecules. This is important for applications concerning propagation in plan-
etary atmospheres. In particular, the atmosphere of the earth contains nitrogen and
oxygen as primary broadeners of an absorbing gas.

The formula for the autocorrelation function given by Eq. 5.94 agrees with theoret-
ical and experimental results with regard to near-line-center and far-wing phenomena.
Because the function is continuous in time, a complete line shape function is specified.
The closed-form expression for the line shape has been obtained for a pure gas:

j(ν) = τ1

π
eτ2/τ1

e2πcν−τo Z−K1 (Z−)

1 + (2πcν−τ1)
2 + e2πcν+τo Z+K1 (Z+)

1 + (2πcν+τ1)
2 , (5.109)

where

ν± = ν ± ν0, Z± = [τ−2
1 + ν2

±/(2πc)2]1/2 (
τ 2

2 + τ 2
0

)1/2
(5.110)

and K1(Z±) is the modified Bessel function of the second kind of first order. This line
shape is consistent with the near-line-center results obtained earlier and in addition pro-
vides insight into the nature of the far wing as previously shown. Most importantly, a
complete line shape allows proper normalization according to Eq. 3.31b. The following
result is obtained:

∞∫
−∞

dν g(ν,ν0) =
(

1 + γ1γ2

γ0ν0

)
coth [hcν0/(kB T )] . (5.111)

For practical values of the parameters this line profile function is normalized to one.
A line shape formula for homogeneous collision-broadened lines has been devel-

oped that is compatible with the Phillips Laboratory HITRAN database. The line shape
has validity from line center to the far wing. Local line absorption and far-wing contin-
uum absorption can now be modeled in greater detail. The present formalism, however,
lacks line overlap or coupling effects. More advanced models are being developed to
address these issues in line shape theory (Refs. 5.26–5.31).
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5.6.3.2 Inhomogeneous Line Shapes

Doppler Line Shape The random kinetic motion of molecules is driven by the ther-
mal energy and causes a Doppler shift of the narrow homogeneously broadened
molecule. Molecules with different velocities will be shifted by different amounts, so
that a new line shape results in the form of an inhomogeneous Doppler profile.

Derivation of this effect begins with Doppler’s equation,

ν = (c − v)ν0

c
, or v = c(ν0 − ν)

ν0
, (5.112)

where v is the velocity of the molecule of mass m and ν0 the radiating frequency of the
molecule. Recall the Boltzmann factor for a system in thermal equilibrium,

f (E) = e−E/kB T . (5.113)

Using the classical formula for kinetic energy, E = 1
2 mv2, and the previous equations

it follows that

f (ν) = exp

(
−
(

c (ν − ν0)

ν0

)2 m

2kB T

)
. (5.114)

This represents the probability distribution of shifted frequencies due to velocity com-
ponents of the atoms parallel to the incident photon field. Since Doppler lines are very
narrow, it is valid to enforce normalization on the spectral density function, accounting
for absorption as well as emission, thus

∞∫
0

[ jD(ν − ν0) + jD(ν + ν0)] dν = 1. (5.115)

The Doppler spectral density function is commonly expressed as

jD(ν − ν0) = (ln 2)1/2

γD/
√

π
exp

(
− (ν − ν0)

2 (ln 2)

γ 2
D

)
, (5.116)

where the Doppler half-width at half-intensity is

γD =
(

2kB T ln |2|
mc2

)1/2

ν0 = 3.578 × 10−7

√
T

m
ν0, (5.117)

where T is the temperature in kelvins, m is the molecular mass in amu, and ν0 is the line-
center frequency in cm−1. Because Doppler lines are narrow, a good approximation is

gD(ν − ν0) ≈ jD(ν − ν0) . (5.118)
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Example 5.3 Find the Doppler half-width of H2O at T = 295 K and ν0 = 3600 cm−1.

The molecular mass of H2O is 18 amu, therefore the Doppler half-width is γD =
0.021 cm−1. The collision-broadened half-width for H2O at T = 295 K and a total
pressure of 1 atm is typically 0.07 cm−1. Thus, neither the Doppler nor the collision-
broadened line shape dominates. This situation is examined in the next section.

The Gaussian form is considerably different from the Lorentz function. The wings
in the Doppler line shape fall off much more rapidly. This heightens the function at line
center. A comparison of the two shapes for equal strength and width is given in Fig. 5.7.

Voigt Line Shape The Doppler line shape assumes the shifted homogeneous line
shapes are delta functions, which is usually a good approximation at very low pressures.
The natural line shape is always present in any experiment and, in problems of atmos-
pheric importance, collision broadening is present. Thus the pure Doppler profile is
never observed. A real line shape contains the effects of motion on the homogeneous
line shape absorbers. This is the Voigt line shape.

Figure 5.8 illustrates the shifted homogeneous line shape weighted by a Gaussian
(Doppler) distribution. This process can be thought of as a convolution of a homoge-
neous shape, gH (ν), through a Doppler profile. Thus,

gv(ν, ν0) =
∞∫

0

gH
(
ν, ν ′) [ jD

(
ν ′ − ν0

)+ jD
(
ν ′ + ν0

)]
dν ′. (5.119)

The resulting line shape is called the Voigt line shape, gv(ν). From the definition of the
above equation, the normalization condition can be seen to be satisfied:

∞∫
0

gv(ν, ν0) dν = 1. (5.120)
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Fig. 5.7 A comparison between the Doppler and Lorentz line shapes for equal line strength and
half-width.



The homogeneous line shape most often used is the Lorentz profile (but it may not
always apply). Substituting in the Lorentz and Doppler line shapes and ignoring the
emission term,

gv(ν, ν0) = γH

π3/2γD
(ln 2)1/2 H (ν, T )

∞∫
0

exp
{
−
[(

ν0 − ν ′)2 (ln 2)/γ 2
D

]}
[(ν − ν0) − (ν ′ − ν0)]

2 + γ 2
H

dν ′.

(5.121)

Making the following variable and parameter substitutions,

y = ν ′ − ν0

γD
(ln 2)1/2 , ξ(ν) = ν − ν0

γD
(ln 2)1/2 ,

and

a = γH

γD
(ln 2)1/2 ,

then Eq. 5.121 becomes

gv(ν, ν0) = γH

π3/2γ 2
D

(ln 2)(ln 2) H (ν, T )

∞∫
−∞

exp
(−y2

)
[ξ(ν) − y]2 + a2

dy. (5.122)

In the low-pressure limit the line profile is Doppler, and in the high-pressure limit the
line profile is collision broadened. The collision-broadened line shape dominates when
γc/γD > 4. The half-width of the Voigt shape connects these distinct pressure regions
as well. This fact can be seen in Fig. 5.5. No closed-form representation exists for
the Voigt profile, and numerical techniques are commonly used (see Ref. 5.36).
However, at line center a closed form solution can be obtained, using a complementary
error function, to be
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gv(ν0) =
(

ln 2

π

) 1
2 1

γD
ea2

erfc (a). (5.123)

5.6.4 Refractivity

Recall from Chapter 2 (Eq. 2.52a) that the index of refraction is the Hilbert transform
of the index of absorption. Substituting the expression for the index of absorption in
terms of the absorption coefficient into that expression, the following is obtained:

n (ν, T ) = 1 + 1

2π2

∑
i

SiP

∞∫
0

g
(
νi , ν

′)
ν ′2 − ν2

dν ′. (5.124)

The index of refraction (real part) comes from local line absorption phenomena based
on the Hilbert transform. In the transparent region of a medium where weak absorption
features contribute very little to the index of refraction, the refractive index is deter-
mined by distant line-center contributions of strong absorption bands. Thus the
following approximation can be made:

g(ν, νi ) ≈ δ (ν − νi ) + δ(ν + νi ) .

Substituting this expression into Eq. 5.124, we obtain a Sellmeier formula (recall
Eq. 4.18), as given by

n2(ν, T ) = 1 + 〈νRot 〉2�εRot(T )

〈νRot 〉2 − ν2
+
∑

i

〈νV ib〉2
i �εvib,i (T )

〈νV ib〉2
i − ν2

+
∑

k

〈νEl〉2
k�εEl,k(T )

〈νEl〉2
k − ν2

,

(5.125)

where 〈ν〉 is the average band position for rotational, vibrational, and electronic bands.
The sum on i represents the different vibrational bands of a gas. The sum on k repre-
sents the different electronic bands of a gas. The oscillator strength is

�ε(T ) = 8π

3hcε0
ρa

〈∣∣ dp
∣∣2〉

〈ν〉 tanh

(
hc〈ν〉
2kB T

)
(5.126)

for pure rotational bands and vibrational bands below 500 cm−1, and

�ε(T ) = 8π

3hcε0
ρa

〈∣∣ dp
∣∣2〉

〈ν〉 (5.127)

for vibrational and electronic bands (where the approximation tanh [hc〈ν〉/(2kB T )] ≈ 1
is used for line-center frequencies above 500 cm−1). The sum over all rotational lines
within the band negates the contribution from the rotational partition function. Thus the
only significant temperature dependence comes from the density of the gas. Equation
5.125 is identical to the classical formula of Eq. 4.18, except more details are repre-
sented by the model parameters, in particular the temperature dependence for
far-infrared absorption bands.
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When weak local line or anomalous dispersion is important, the complete near-line-
center profile must be used. A closed-form expression based on Eq. 5.124 cannot be
obtained in general. However, closed-form solutions in various limits within the colli-
sion broadened regime are tractable. The results are summarized below for frequencies
below 400 cm−1, where tanh [hcν/(2kB T )] ≈ hcν/(2kB T ) and above 500 cm−1, where
tanh [hcν/(2kB T )] ≈ 1 and T is in the range of typical atmospheric temperatures.

v < 400 cm−1

n2(ν) = 1 + [2πhc/(kB T )]
∑

i

Siνi {[(γi/νi ) jNLC (ν) − f (ν)]

+ [(γi/νi ) jNLC (−ν) − f (−ν)]} (5.128)

v > 500 cm−1

n2(ν) = 1 − 4π
∑

i

Si [ f (ν) + f (−ν)] , (5.129)

where the dispersion shape function is defined to be

f (ν) = 1

π

ν − νi

(ν − νi )
2 + γ 2

i

. (5.130)

The above formulas do not include line-mixing contributions (see Ref. 5.37). However,
line mixing should be a minor correction.

5.7 Quantum Electronics

As was demonstrated in Chapter 4, the classical oscillator model for vibrational transi-
tions had the same mathematical form whether the medium was in the gas phase or the
solid phase. This will basically remain true for the quantum oscillator model as well.
This point will be demonstrated in Chapter 8. However, electronic transitions in the
solid phase require a new model. The classical oscillator does not represent experi-
mental data at and above the bandgap. This is because the spectral shape is driven, not
by the surroundings of the oscillator, but by the density-of-states function for electronic
transitions.

Because the application of the models developed in this section emphasizes opto-
electronic devices using semiconductor materials, the traditional title is used.

5.7.1 Electronic Band-to-Band Transitions

The electronic band structure of solids and electronic density-of-states was introduced
in Chapter 3. We now consider transitions caused by photon absorption between these
bands to obtain the complex permittivity and absorption coefficient above the bandgap.
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The model derivation begins with Fermi’s golden rule for a harmonic perturbation
(Eq. 5.40),

�i→ f = 2π

h̄

∣∣∣〈 f |Ĥint |i〉
∣∣∣2δ(E f − Ei − h̄ω).

In this case, E f is the conduction band energy and Ei the valance band energy of an
electron. Thus for a direct bandgap semiconductor of bandgap energy Eg , the electronic
energy levels can be expressed as

E f = h̄2k2

2mc
+ Eg and Ei = − h̄2k2

2mv

. (5.131)

mc is the effective electron mass in the conduction band and mv is the effective vacant
electron (hole) mass in the valance band. The energy difference between the final and
initial electronic states is

E f − Ei = h̄2k ′2

2

(
1

mc
+ 1

mv

)
+ Eg = h̄2k ′2

2µe
+ Eg, (5.132)

where µe is the reduced mass.
The matrix element for a dipole moment operator coupled to a classical electromag-

netic field is

〈 f |Ĥint |i〉 =
(

q
∫

d3ru∗
f (r)e

− jk′
f ·rrui (r)e jk′

i·r
)

·
(

1

2
Ee jk′

opt ·R + 1

2
Ee− jk′

opt ·R
)

,

(5.133)

where Eq. 3.153 is used for the electronic wave function. As discussed in Chapter 3 for
vibrational modes, the optical wave vector is essentially zero, compared with the wave
vector representing lattice dimensions. Thus, we assert that k ′

opt ≈ 0. Furthermore, the
oscillating factors in the wave function are very rapid and reduce the transition proba-
bility, unless the condition k ′

i = k ′
f is met. (If no phonons are involved in the electronic

transition then it is called a direct bandgap transition.) That is, the maximum of the
valance band and the minimum of the conduction band align on the k ′-axis. Otherwise
an indirect bandgap exists (no alignment of the bands), which then involves the creation
of a phonon, as well as the conduction electron. Optoelectronic semiconductor materi-
als, such as GaAs and InP, have direct bandgaps. Employing these approximations,
Fermi’s golden rule for the electronic transition rate now becomes

�i→ f = 2π

h̄
q2|E|2

∣∣∣∣
∫

d3ru∗(r)ru(r)

∣∣∣∣
2

δ

(
h̄2k ′2

2µe
+ Eg − h̄ω

)
. (5.134)

The total number of valence to conduction band transitions per second can be computed
by multiplying the transition rate by the electronic density-of-states and integrating over
all k ′, as given by
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Ṅel = −
∫

�i→ f (k
′)ρ(k ′) dk ′. (5.135)

The rate of change is negative because the number of valance band electrons is decreas-
ing. Furthermore, to perform this calculation requires that the dipole moment operator
in the transition rate be explicitly described in terms of k ′ or momentum (p = h̄k ′).
It can be shown that the interaction Hamiltonian can be rewritten using the magnetic
vector potential, a (see Problem 5.17) as

qr · e = −q
p
m

· a (5.136)

where in the Coulomb gauge

e = −∂a
∂t

. (5.137)

Using the above result and Eq. 3.154 for the electronic density-of-states, Eq. 5.135
becomes

Ṅel = −2V

π h̄
q2|A|2

∫
|Vi f (k

′)|2δ
((

h̄k ′)2
2µe

+ Eg − h̄ω

)
k ′2 dk ′ (5.138)

where the reduced matrix element is

Vi f (k
′)|2 =

∣∣∣∣
∫

d3ru f (k
′)

p̂
m

ui (k
′)
∣∣∣∣
2

. (5.139)

Let us make the following variable substitution:

z = (h̄k ′)2

2µe
+ Eg − h̄ω.

It follows that

k ′(z) =
√

2µe

h̄2

(
z − Eg + h̄ω

)
and dk ′ = µe

h̄2

√
h̄2

2µe
(z − Eg + h̄ω)−

1
2 dz.

Making these substitutions into Eq. 5.138 and evaluating the integral, we obtain the
following result for the number of electronic transitions per unit time:

Ṅel = −V

π
q2|A|2|Vi f

[
k ′(0)

] |2 (2µe)
3/2

h̄4 (h̄ω − Eg)
1/2. (5.140)

The absorption coefficient above the bandgap can be obtained by applying Eq. 5.59 to
the above result, thus

βabs(ω) = 2q2(2µe)
3/2

cn(ω)ε0π h̄3 |Vi f
[
k ′(0)

] |2 (h̄ω − Eg)
1/2

ω
, (5.141)
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where we have used the relation |E |2 = ω2 |A|2 . Using Eq. 2.29, the corresponding
imaginary part of the complex permittivity (electric susceptibility) is obtained:

ε′′
r (ω) = χ ′′(ω) = 2q2(2µe)

3/2

ε0π h̄
|Vi f (k

′(0))|2 (h̄ω − Eg)
1/2

h̄2ω2
H

(
1 − h̄ω

Eg

)
, (5.142)

where H( ) is a Heaviside step function in the frequency domain. The absorption profile
is assumed to be homogeneous. The Hilbert transform of the above (see Appendix 3)
produces the real part of the complex susceptibility,

χ ′(ω) = 2q2

ε0π h̄

(
2µe

Eg

)3/2∣∣∣∣Vi f
[
k ′(0)

]∣∣∣∣
2( Eg

h̄ω

)2

×
[

2 −
(

1 + h̄ω

Eg

)1/2

−
(

1 − h̄ω

Eg

)1/2

H

(
1 − h̄ω

Eg

)]
(5.143)

Other electronic band-to-band transitions exist in real materials, and the above model
will refer to as E0 transitions. An example of this model compared with real complex
index data on GaAs is presented in Fig. 5.9.
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The inverse Fourier transform of the complex susceptibility (Eqs. 5.141 and 5.143)
leads to the time-domain susceptibility for the E0 region, as given by

χe0(t) = 2

π

A0

E1.5
ω0

{√
πω0t cos

(
ω0t + π

4

)
− πω0t

+π

[(
ω0t + 1

2

)
C

(√
2ω0t

π

)
+
(

ω0t − 1

2

)
S

(√
2ω0t

π

)]}
h(t), (5.144)

where

A0 = 2q2

ε0π h̄
(2µe)

3/2|Vi f
[
k ′(0)

] |2,
ω0 = Eg/h̄, and C(x) and S(x) are the Fresnel cosine and sine integral functions,
respectively. The details of this derivation are presented in Appendix 3. A plot of the
resulting time-domain electric susceptibility for the E0 transitions in GaAs is given in
Fig. 5.10. Because of the large bandwidth of this transition, the oscillations in the sus-
ceptibility decay very rapidly, on the order of femtoseconds.

5.7.2 Exciton Band Absorption

Excitons are electron–hole pairs that are bonded together to form a hydrogen-like struc-
ture. These are very weak, broad (at room temperature) structures that are important in
certain optoelectronic devices. In this case, excitons act independently and are distinct,
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thus a modified form of the classical oscillator model is applied. The lowest frequency
exciton is located at the bandgap and the complex permittivity is given by

χex0(ω) = Ax0

Eg − Ex0 − h̄ω − j�x0
+ Ax0

Eg − Ex0 + h̄ω − j�x0
. (5.145)

This function also satisfies the Kramers–Krönig relation. The model is applied to GaAs
absorption in Fig. 5.9 (Ax0 = 2.35 meV, �x0 = 3.5 meV, and Ex0 = 4.7 meV). Although
better agreement with measurement is obtained just above the bandgap, the model is
incorrect below the bandgap. This point will be discussed further in Chapter 8.

5.7.3 Band Edge Absorption and Urbach’s Rule

In 1953, Franz Urbach observed that the absorption coefficient of silver chloride
increased exponentially for increasing frequency near its bandgap energy. Urbach was
able to characterize the frequency dependence with a simple exponential curve. Further
improvements include temperature dependence, and now the formula is given by

βabs(E, T ) = βU0 exp [σs(E − Eg)/(kB T )], (5.146)

where βabs is the absorption coefficient (typically in cm−1), βU0 is a scaling coefficient
in units cm−1, Eg is the bandgap energy at absolute zero temperature, typically given in
units of eV, kB is Boltzmann’s constant, and T is temperature in kelvins. The exponent
factor σs was later discovered to be temperature dependent for some materials, and is
given by the following equation (see Ref. 5.43):

σs(T ) = σo
2kB T

Ep
tanh

Ep

2kB T
, (5.147)

where Ep is an effective acoustic phonon energy of the material. The absorption
coefficient, βabs , can then be used to calculate the transmittance. Figure 5.9 illustrates
the comparison of the Urbach model with experimental data as a function of frequency.
The representation is clearly quite good.

The following is a heuristic derivation of Urbach’s rule (see Ref. 5.44). No formal
derivation currently exists that fully explains the general applicability of this formula.

Because phonons are bosons, at thermal equilibrium the average number of phonons
in the j th mode (ωj ) is given by Eq. 5.15. The standard deviation of the phonon occu-
pation number Nj is

σN j = (〈N 2
j 〉 − 〈Nj 〉2)1/2 = 〈Nj

〉 (
1 + 1/〈Nj 〉

)1/2
. (5.148)

Thus phonons have comparatively large occupancy fluctuations. This will cause smear-
ing of the bandgap and the generation of exciton red-wing absorption near bandgap
frequencies. We assume that the effective local bandgap at a temperature T is the
bandgap at 0 K, Eg(0), minus a constant times the average phonon occupation number
for each direction:
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Eg(T ) = Eg(0) −
∑

i=x,y,z

A〈Ni 〉. (5.149)

Because the speed of light effectively freezes, in time, the fluctuating phonons propa-
gating in any local region of a solid, it is not necessary to compute the average number
and we can write

Eg,local(T ) = Eg(0) − A(Nx + Ny + Nz). (5.150)

Now the probability that a particular cell of the propagating medium contains a partic-
ular phonon occupation number Nx , Ny, Nz is

pn(T ) = e−(Nx +Ny+Nz)h̄ωp/kB T

(1 − e−h̄ωp/kB T )3
= pnx pny pnz, (5.151a)

where ωp
(= Ep/h̄

)
is the phonon frequency. At NTP and uv photon frequencies, the

phonon shifts must be large to be important. For such phonons, h̄ωp/(kB T ) is large and
it follows that

1 − e−h̄ωp/(kB T ) ≈ 1.

Therefore, Eq. 5.151a reduces to

pn(T ) = e−(Nx +Ny+Nz)h̄ωp/kB T . (5.151b)

Using Eq. 5.149 and solving for the phonon occupation number, the following is
obtained:

Nx + Ny + Nz = [
Eg(0) − h̄ω

]
/A, (5.152)

where Eg,local = h̄ω, because this local region couples to the photon field by phonon-
shifting the bandgap. The absorption coefficient must be proportional to pn as a
function of the various local bandgaps. Thus, substitution of Eq. 5.152 into Eq. 5.151b
suggests the following form of the absorption coefficient:

βabs(ν, T ) = βU0 e− σ(Eg(0)− h̄ω)/kB T (5.153)

where the constant σ is defined as

σ = h̄ωp

A
.

This result closely matches Urbach’s rule, as given by Eq. 5.145.
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Problems

5.1 Compute the vibrational partition function for a single harmonic oscillator,
given by

QV ib =
∑

v

gve−Ev/(kB T ), where gv = 1.

Compute the ratio of the number of molecules in the vibrational ground state
(v = 0) to the first excited state (v = 1) for νe = 1595 cm−1 at room temperature,
that is

Nv = 1

Nv = 0
= ?

5.2 Is the rotational partition function as given by Eq. 5.6 valid for OH? Check this
by performing a discrete sum (Eq. 5.3) and comparing the result with the closed-
form expression.

5.3 Find an expression for the band-limited irradiance of a planar blackbody, that is,
find

ν2∫
ν1

dνMBB(ν) = ?

Find the result for ν1 = 0 and ν2 = ∞.
5.4 Compute the power spectral density function jc(�ω) given

C(t) = e−γ t , γ = γr − jγi ,

where γ is in general complex, �ω = ω − ω0, and

jc(�ω) = 1

π
Re

[ ∞∫
0

dt e− j�ωt C(t)

]
.

5.5 What are the units of Slu given βabs [cm−1] and ν[cm−1].
5.6 Use the definition of line strength and the collision line shape jc(�ω),

jc(�ω) = 1

π

γc

(�ω)2 + γ 2
c

where γc = γ0 paT −1/2, to find the temperature and pressure dependence of the
absorption coefficient at line center (�ω = 0) for a medium containing only the
absorbing gas. Do the same for the far wing (�ω � γc).

5.7 Obtain a closed-form expression for the Voigt line shape at line center.
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5.8 Given that, for a diatomic molecule, the magnitude of the dipole moment
matrix element squared is proportional to J + 1, (a) determine the shape of the
pure rotational band for CO by computing the line-center absorption coeffi-
cient relative to the line J = 0 as a function of J -number (J = 1 to 30) at room
temperature (T = 295 K), and (b) the same for T = 600 K. (Assume all half-
widths are equal.)

5.9 Find the far-wing absorption coefficient for a binary gas mixture, explicitly
showing pressure and temperature dependence. (a) Use the Lorentz line shape.
(b) Use the Birnbaum–Cohen line shape.

5.10 Based on Eqs. 5.125 and 5.126, find the temperature and pressure dependence
of the index of refraction of a gas with all vibrational bands above 500 cm−1.
What is the temperature dependence of the refractive index as  ν goes to zero?

5.11 Differential absorption lidar (DIAL) can be used to measure the number
density of an absorbing species. To do this accurately requires that the absorp-
tion feature be temperature independent. Determine an expression, involving
the lower energy level of the transition, that minimizes the temperature
dependence of the line-center absorption coefficient of a gas in the collision-
broadened regime. (Use the quantum oscillator model.)

5.12 Based on the mode density within a cavity (from Chapter 1, Eq. 1.15f ) and the
Bose–Einstein distribution, obtain the blackbody formulas, as given by Eqs.
5.16a and b. The relationship between the energy density of the field, u, and the
power per unit area (Poynting’s vector) must be found to obtain Eq. 5.16b.

5.13 The direction of the dipole moment, d̂, and the direction of the electric field, 
êσ (σ = 1, 2), in many situations are random relative to one another. For this
reason, the magnitude of the dot product summed over all possible polariza-
tions can be averaged over all relative dipole orientations. For a TEM wave, the
two polarization directions and the direction of propagation form a complete
basis set, which spans 3-D coordinate space. Thus, the dipole direction can be
expressed in terms of the field coordinates, as given by

d̂ = (d̂ • ê1) ê 1 + (d̂ • ê2) ê 2 + (d̂ • k̂′) k̂′.

For real basis vectors, we have

∑
σ

(d̂ • eσ)2 = (d̂ • e1)
2 + (d̂ • e2)

2 = 1 − cos2 θd ,

where θd is the angle between the dipole moment and the direction of propa-
gation and |d̂ |2 = 1. Now integrate the above result over all angles θd and φd

to obtain the orientational average.
5.14 Derive the far wing form of the Birnbaum line shape for a binary mixture, as

given by Eq. 5.108.
5.15 Verify Eq. 5.116 for the Doppler line shape.
5.16 Verify Eq. 5.125, based on Eqs. 5.124 and 5.84.
5.17 Show that the first-order interaction Hamiltonian between the photon field and

a molecule

Ĥint = − q

m
p̂ • â
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can be expressed as

Hap = dp·
Hint: Since the oscillator is driven by the field, both the oscillator and field
change at the same rate in time and can be represented by the general form

f (t) = f0e jωt .

5.18 Verify Eq. 5.148 for the standard deviation of a boson occupation number.
5.19 Show that Birnbaum–Cohen autocorrelation function satisfies detailed balance

(Eq. 5.85b).
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6

Experimental Techniques

This chapter presents basic experimental techniques and various apparatus for measuring
the complex index of refraction and related quantities. Generally, measurements of trans-
mittance, reflectance, and emittance are made using spectrometers or lasers. Other
important techniques, which measure directly the real refractive index, n, the absorption
coefficient, βabs , and the scattering coefficient, βsca , such as interferometry, ellipsometers,
calorimetry, and scatterometers, are also introduced. Ultimately, experimental procedures
must be taught in the laboratory. Thus, devoting only one chapter to experimental tech-
nique and five to theory is not indicative of the importance of this fundamental topic.

By discussing the measurement of basic optical parameters, it is intended that the
concepts developed in the first five chapters will be reinforced. All of the theoretical
models developed in the previous chapters contain measurable parameters. Basic theory
often helps guide the design of a good experiment. Once data is available, it can be used
to check the assumptions of the theory. This interplay between experiment and theory
is an essential part of definitive work.

The chapter has two main parts; the first covers measurements of the real and imaginary
parts of the complex index of refraction and the second covers measurements of scattering.

6.1 Refractive Index and Absorption 
Coefficient Measurements

As established in Chapter 2, the characterization of bulk absorption mechanisms on
optical propagation is accomplished by the complex index of refraction. Considerable



effort was expended in Chapters 3, 4, and 5 to obtain models of the complex index.
Thus, at this point, we wish to find ways to experimentally measure the complex index
of refraction for various media.

The broad-band spectral response of a medium is commonly measured by a spec-
trometer. There are two main types of spectrometers, dispersive and interferometric.
Generally, spectrometers make broad-band transmission, emission, and reflection
measurements, and therefore indirectly measure, n̄. Interferometric measurements, are
the exception. Lasers, which feature narrow-band, high-intensity, highly directional
light are often used to complement and calibrate broad-band spectrometer measure-
ments. The highest accuracy measurements of the absorption coefficient are obtainable
by laser techniques, which can directly measure the components of the complex index.

6.1.1 Transmission and Reflection Measurements

Transmission and reflection measurements are the most common methods for deter-
mining optical properties of media. The strength of this approach is that broad spectral
coverage can be easily obtained with adequate accuracy (1% to 0.1%) for low-power
transmission windows and thin films. High-power optics and optical fibers are very sen-
sitive to small absorption coefficient values, and therefore other approaches are needed.
Also, other more precise techniques are used to determine the real part of the complex
index of refraction. Such alternate approaches will be described later.

Based on Chapter 2, it is known that transmittance measurements are sensitive to
both the real and imaginary parts of the complex index of refraction. Recall the specu-
lar transmittance formula for near-normal illumination by an unpolarized source,
ignoring scattering and interference, as based on Eq. 2.96 and Fig. 2.4,

τ [n̄(ν,T ), θi ] = {1 − R[n(ν,T ), θi ]}2 e−βabs(ν,T )d(θi )

1 − R2[n(ν,T ), θi ] e−2βabs(ν,T )d(θi )
, (6.1)

where the internal path length is

d(θi ) = d/ cos

[
sin−1

(
n1

n2
sin θi

)]

and d is the thickness of the medium. Furthermore, recall from Chapter 2 the definition
of the complex index and the relation between the absorption coefficient and the imag-
inary part of the complex index,

n̄(ν,T ) = n(ν,T ) − jka(ν,T ) and βabs(ν,T ) = 4πνka(ν,T ). (6.2)

At normal incidence, the magnitude of the single-surface power reflection coefficient
reduces to

R[n̄(ν,T ), θi = 0] = |n̄(ν,T ) − 1|2
|n̄(ν,T ) + 1|2 = [n(ν,T ) − 1]2 + k2

a(ν,T )

[n(ν,T ) + 1]2 + k2
a(ν,T )

. (6.3)

These formulas are the basis for analysis of most transmittance and reflectance 
measurements.
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For a gaseous medium, R is negligibly small and the transmittance depends only on
the absorption coefficient (which is now a function of pressure also) and path length.
Thus, in this case, a transmittance measurement is a straightforward way to obtain the
absorption coefficient of a gas without knowing the refractive index.

This is not the case for solids and liquids, and a second measurement must also be
made to completely determine the complex index, n̄. This is usually the reflectance (or
some other measure of the real part of the complex index of refraction). Then, by using
the total power law, the complex index can be obtained.

This approach and a variety of other experimental techniques are discussed in the
following after a brief introduction to spectrometers is completed.

6.1.1.1 Spectrometers and Broad-Band Measurements

Today, spectrometers are of two types, dispersive and interferometric. Dispersive spec-
trometers spatially separate the frequencies of an incident light beam. Prisms (refractive
elements) and gratings (diffractive elements) are used as the dispersive elements. Prisms
were first used by Isaac Newton (1672) to study the colors in sunlight. Basically, prisms
separate the frequencies because the refractive index increases monotonically with
increasing frequency, and by modern standards, are low-resolving instruments. Later,
they were replaced by diffraction gratings, which offer higher degrees of dispersion and
therefore higher resolution. The first high-quality gratings were made by Professor
Henry Rowland of Johns Hopkins University in the 1880s. The governing equation for
diffraction gratings was developed by Joseph Fraunhofer. It is called the grating equa-
tion and is given by

mλ = a(sin α ± sin β), (6.4)

where m is an integer representing the diffracted order, λ is the wavelength of the light
incident on the grating, a is the grating constant (distance between successive groves),
α is the angle of incident rays relative to the grating normal, and β is the angle of dif-
fraction relative to the grating normal.

The resolving power, R, of a diffraction grating is the ratio of the frequency to the min-
imum resolvable frequency difference between two closely spaced lines. It is given by

R = mw

a
, (6.5)

where w is the width of the grating. Substituting Eq. 6.4 for m, the resolving power
becomes

R = w
sin α ± sin β

λ
. (6.6)

Figure 6.1 is a diagram of a typical grating spectrometer for use in the infrared and
visible. Other configurations are used for various applications. For example, tunable
laser resonators often incorporate gratings in the Littrow configuration (α = β). Also,
concave gratings are commonly used in single-element ultraviolet spectrometers.

Rotation of the grating generates the frequency axis of the spectrum. A typical meas-
urement sequence begins with a background or reference measurement. This provides a

EXPERIMENTAL TECHNIQUES 227



calibration of the system at that moment. Then the sample is inserted into the beam and
another scan is made. The ratio of these two transmission (or reflection) measurements
is the transmittance, τ (or reflectance, ρ). Unfortunately, the background measurement
is never perfect, for a variety of reasons. The source can change temperature from the
time of the reference run to the sample run, vibrations in the building can cause slight
misalignment of the optics, and so on. It is best to keep the time between the reference
and sample runs to a minimum. However, no matter what approach is taken, τ will con-
tain errors. A good way to study some of these errors is take two consecutive
backgrounds, determine their ratio, and see how close to unity the system can come.
This ratio is called a baseline. As a rule of thumb, the experimental parameters should
be chosen so that the system noise level is on the order of, or less than, the baseline
drift. Baselines can be corrected when other information is available, such as laser
measurements or calibrating to a region with no loss. Unfortunately, no compensation
can be found for noise.

One partial solution to this background problem is a dual-beam spectrometer. Two
sample compartments are used, one for sample and one for reference using the same
split source. Thus sample and reference spectra are collected simultaneously. Of course,
a background-ratioed spectrum must still be taken to calibrate the system and the useful
signal is reduced. Dual-beam grating spectrometers have the best baseline stability and
greatest absolute accuracy of any spectrometer today.

Three fundamental problems limit grating spectrometer performance:

1. The grating position must be calibrated to obtain an accurate frequency axis.
2. The slits must be made narrower for higher resolution, thus the system throughput

is greatly reduced.
3. The time between the measurement of the first frequency and last frequency can

be very large, and the sample or system may have changed. (This last item can be
overcome if a linear detector array is used to simultaneously measure the spectrum
at the output slit.)

Today, most infrared spectroscopy is conducted with Fourier transform spectro-
meters. They are based on the Michelson interferometer, which is illustrated in 
Fig. 6.2.
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Fig. 6.1 Cernzy–Turner grating spectrometer system for visible and infrared measurements.



To see how the Fourier transform spectrometer (FTS) works, consider a single-
frequency source (i.e., a laser). Let the electric field incident upon the beamsplitter be
represented by

eBS(t) = e0 cos(ωt). (6.7)

The beam is divided into two equal beams, which travel a path length 2l and 2(l + δ)

to a mirror, which returns the beams to the beamsplitter. The distance δ is determined
by the moving mirror, which moves with constant velocity, v. Thus, δ becomes

δ = vt. (6.8)

By superposition at the beamsplitter the field transmitted to the sample compartment
becomes

esc(t) = 1

2
e0 cos(ωt + 2k ′l) + 1

2
e0 cos[ωt + 2k ′(l + δ)] (6.9)

where k ′ = 2πν . Using standard trigonometric identities, the above equation reduces to

esc(t) = e0 cos(k ′δ) cos(ωt + 2k ′l + k ′δ) . (6.10)

This is the form of an amplitude-modulated high-frequency carrier. Optical detectors
cannot respond to the carrier frequency, thus the intensity, Isc, as seen by a detector is
determined by a modulation envelope,

Isc ∝ |esc|2 = |e0|2 cos2(k ′δ) = I0sc cos2(k ′δ). (6.11)
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Fig. 6.2 The Fourier transform spectrometer.



Again using standard trigonometric identities, the above formula becomes

Isc = 1

2
I0sc
[
1 + cos(2k ′vt)

]
(6.12)

where Eq. 6.8 was used to represent δ. The moving mirror modulates the single-
frequency source, and an oscillating output intensity results. An observer who knows
the location of the moving mirror as a function of time can determine the frequency
spectrum of the source, based on the modulated beam spectral content by the above for-
mula. This basically explains how a Michelson interferometer can be used to obtain a
spectrum for a narrow-band source.

In the case of a broad-band spectrum, consider an incremental portion of that spec-
trum, then Eq. 6.12 can be applied in the following way:

Isc(k
′,δ)dk ′ = 1

2
I0sc(k

′)
[
1 + cos(2k ′δ)

]
dk ′. (6.13)

The total intensity at the detector as a function of time or the mirror displacement, δ, is
obtained by integration of the above equation over the wave vector,

isc(t) = isc(δ) = 1

2

∞∫
0

I0sc(k
′)
[
1 + cos

(
2k ′δ

)]
dk ′. (6.14)

This is a sum of two integrals, as given by

isc(δ) = 1

2

∞∫
0

I0sc(k
′) dk ′ + 1

2

∞∫
0

I0sc(k
′) cos(2k ′δ) dk ′. (6.15)

I0sc(k ′) is the spectral intensity that we wish to determine, based on the measurement
of isc(t). The first term in the above expression for isc(δ) is one-half the area under the
spectral intensity, or the total intensity of the light in the sample compartment. It can
also be expressed as

isc(0) =
∞∫

0

I0sc(k
′) dk ′. (6.16)

Therefore, the time-domain signal, or interferogram, as it is commonly called, is

isc(δ) − 1

2
isc(0) = 1

2

∞∫
0

I0sc(k
′) cos(2k ′δ) dk ′. (6.17)

This is an inverse Fourier transform relationship between the spectral intensity and the
time-domain interferogram. Thus the spectral intensity can be obtained directly by the
following:

I0sc(k
′) = 2

π

∞∫
0

[
isc(δ) − 1

2
isc(0)

]
cos(2k ′δ) dδ. (6.18)
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This relationship between the measured signal and the spectral intensity gives this spec-
trometer its name. The FTS offers a number of advantages over dispersive spectrometers.

1. Higher throughput is realized because slits are not used. However, high resolution
requires a highly collimated beam and thus a spatial filter (i.e., iris), which also
limits the throughput of the FTS, but not as much as the slits on a grating spec-
trometer. Thus higher resolution is possible with the FTS. Also, spectra can be
obtained more quickly and thus more accurately (less system drift). However, the
FTS is a single-beam instrument.

2. Usually, a stabilized He-Ne laser is used to calibrate the location of the moving
mirror. This can be done very precisely, and accurate line positions are obtained
with great ease as a result.

3. An entire spectrum is measured in one scan, which can be done fairly quickly. By
co-adding scans, the noise can be reduced by 

√
m (m is the number of scans).

For these reasons, the FTS is the main tool today in infrared spectroscopy. At visible
wavelengths, the stability of the moving mirror becomes an issue, and most commercial
spectrometers stop there. For UV and VUV, the grating spectrometer is used, exclusively.

The resolution of an FTS is determined by the distance traveled by the moving
mirror. That is, the frequency difference between two cosine waves is found by exam-
ining the cosine waves over an adequately long distance. The result is

�ν = 1

2δmax
, (6.19)

where δmax is the maximum distance traveled by the moving mirror.
No matter what type of spectrometer is used, it is desirable that the resolution be ade-

quate to measure spectra with no distortion to the spectral shape. This is not always the
case, and the system instrument function must then be considered. In the frequency
domain, the measured spectrum is the convolution of the ideal spectrum with the system
instrument function. This is stated mathematically as

Imeasured(ν) = Iideal(ν) ∗ Finstr(ν) (6.20)

The instrument function for a grating spectrometer is the diffraction pattern of the slits.
The instrument function for an FTS is determined by the chosen time-domain window
function. To avoid ringing in the spectrum, the interferogram must go to zero smoothly
at the end of the scan. A window function accomplishes this task. The distortion of an
unresolved spectrum can be significant. This point is illustrated in Fig. 6.3, for Doppler
lines with half-widths of 0.007 cm−1 measured with a resolution of 0.032 cm−1.

6.1.1.2 Spectrometer Accessories

Many accessories exist for handing special samples or extending the capability of the
sample compartment. We will consider transmissometers (single pass, multipath [i.e.,
White cells], and differential), reflectometers, photoacoustic cells, and total internal
reflection or circle cells.

Transmissometers A transmissometer measures the transmittance, τ , by ratioing a
transmission measurement with the sample present against a transmission measurement
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with no sample present. A cell is used for gases or liquids and, of course, a solid needs
no container. A single-pass transmissometer propagates a beam once though a sample,
as illustrated in Fig. 6.4. A background run is performed with no sample present for the
case of solids and with an empty cell in the case of gases and liquids or a nonabsorbing
medium that matches the refractive index of the sample (this is important if the probe
beam is focused within the sample).

In the case of gases, R is very close to zero, which simplifies Eq. 6.1. But gas absorp-
tion can be weak, often requiring long path lengths for accurate measurements.
Multipath cells, such as a White cell, are commonly used to obtain a long optical path
within an enclosure of reasonable size. The absorption cell assures reasonable unifor-
mity of the sample pressure and temperature. The White cell is composed of three
matched spherical mirrors, a field mirror, and two focusing mirrors, separated by the
radius of curvature, as shown in Fig. 6.5.
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Fig. 6.3 An ideal (unconvolved) spectrum of Doppler-broadened lines with half-widths of 0.007
cm−1 (dot) and corresponding convolved FTS spectrum (solid) using a Hamming window with a
resolution of 0.032 cm−1.

Fig. 6.4 A single-beam transmission/reflection measurement with a monochromatic source.



EXPERIMENTAL CONSIDERATIONS FOR WHITE-TYPE ABSORPTION CELLS White-type absorp-
tion cells represent an important option for experimental apparatus presently used for
the measurement of weak gas-phase absorption coefficients. Also, photoacoustic cells,
another sensitive experimental tool based on the photoacoustic effect (see below),
require calibration, which is usually accomplished by White cell measurements. White
cells have a high surface-to-volume ratio, which makes them less sensitive to out-
gassing of adsorbed contaminates on the cell walls. Because of their significance, a
detailed discussion of the nature of White cell experiments follows.

White cells measure the transmittance through a lossy medium. The transmittance is
the ratio of the transmitted flux, �t(n), attenuated by a lossy medium of path length
nL0, to the transmitted background flux, �B(n), where the White cell contains a loss-
less medium. It is often wise to match the pressure of the cell in the sample and
background runs to avoid cell motion effects. Furthermore, a reference detector (as
shown in Fig. 6.3) is commonly used to monitor and correct for instability of the input
flux. Thus, the measured transmittance is

τ = �t(n)/�Rt

�B(n)/�RB
, (6.21)

where
τ transmittance,
�Rt reference detector signal level during sample measurement,
�RB reference detector signal level during background measurement,
L0 base path length of cell, and
n number of traversals.

�Rt and �RB scale with �t(n) and �B(n), respectively to account for different power
levels of the source at the different times of the respective measurements. The trans-
mitted sample flux, �t(n), can be further expressed as

�t(n) = �0tρ
r (x,y,pH2O)Kt(t)e

−βabs nL0, (6.22)

where
ρ(x,y,pH2O) mirror reflectance as a function of location (x,y) on the mirror 

and of surface water vapor partial pressure,
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Fig. 6.5 White-type optics for long-path transmission set for four traversals. By tilting the focus-
ing mirrors, the number of traversals can be varied beginning at 4 to some upper number, which
can be a few hundred, depending on the size of the field mirror.



�0t flux level at input to White cell during sample measurement,
Kt(t) time-dependent intensity fluctuations caused by windows, 

amplifiers, detectors, mirror drift, and so on, and
r number of reflections inside cell (r = n−1).

To eliminate the time-dependent fluctuations, a time average over a number of meas-
urements is taken. Two experimental techniques have been used to accomplish this
averaging process.

Since the mirror reflectivity is a function of the position on the mirror surface and
cell vibrations can cause mirror drift, which misaligns the cell and changes the position
of the spots on the field mirror, intensity variations in the output beam can result. One
approach employs path-differencing averages over the mirror surface by changing the
path length while keeping the sample fixed and averaging over window, detector, and
other noise by taking many measurements at each path length. Another approach main-
tains the cell alignment throughout an experiment by using optical lasers to account for
the drift of the cell mirrors. By greatly reducing the mirror drift problem, no average
over the mirror surface is required.

The time-averaged sample flux is expressed as

〈�t(n)〉t = �0tρ
r (x,y,pH2O)〈Kt(t)〉t e

−βext nL0 . (6.23)

The background flux signal is similarly written (βabs = 0):

〈�B(n)〉t = �0Bρr (x,y,pH2O = 0)〈K B(t)〉t . (6.24)

Using Eq. 6.21, the time-averaged transmittance becomes

〈τ 〉t = 〈�t(n)〉t

〈�B(n)〉t

�RB

�Rt
.

Substituting Eqs. 6.23 and 6.24 into the above equation, we have

〈τ 〉t = Rr (x,y,pH2O)

Rr (x,y,pH2O = 0)

〈Kt(t)〉t

〈K B(t)〉t
e−βabs nL0, (6.25)

where the ratio

�0t

�0B

�RB

�Rt
= 1.

Sufficient time averaging requires that

〈Kt(t)〉t = 〈K B(t)〉t .

Therefore, the desired measurement of transmittance is

〈τ 〉t = ρr (x,y,pH2O)

ρr (x,y,pH2O = 0)
e−βabs nL0 . (6.26)
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To obtain the true absorption coefficient, βabs , the mirror reflectivity must be the
same in vacuum (or dry gaseous mixture) as it is with water vapor present at any pres-
sure. This point has proven to be a major obstacle in obtaining the true absorption
coefficient in humid samples. Water vapor is adsorbed by the mirrors, forming a very
thin film (∼1 µm). The thickness of the film will depend on mirror temperature and
partial pressure of water vapor in the cell. The effect on mirror reflectivity by water vapor
will also be frequency dependent (i.e., ρ decreases as ν increases). Interference effects
become more important as the wavelength approaches the film thickness. Absorption
and refractive index effects exhibit an irregular frequency dependence, since they are
related to resonance phenomena. Burch et al. (Ref. 6.8) reported that water vapor
adsorption did not cause major difficulties at room temperature with 10 Torr water
vapor and 36 reflections. However, Burch has reported that the 4 ìm region has major
water vapor adsorption problems.

In the case for solid and liquid transmittance measurements the single surface
reflectance must be considered. A general solution for the extinction coefficient, βext ,
based on Eq. 6.1, in terms of the transmittance and the single-surface power reflection
coefficient R, is

βext =
ln (2R2τ) − ln

[√
(1 − R)4 + 4R2τ 2 − (1 − R)2

]
d/ cos θ

. (6.27)

When R is constant over a spectral region, a different analysis procedure can be
used. Assuming R2 is small and exp (−βext d) is close to one, then the transmittance can
be expanded to be

τ = 1 − R

1 + R
e−βext d − R2(1 − e−2βext d) e−βext d

(1 + R)2
+ · · ·. (6.28)

Because R is basically a constant in frequency over the experimental range, this for-
mula can be used to directly reduce the transmittance to the extinction coefficient. The
last term shown in the expansion is small, typically less than 1% unless the absorption
is strong.

Differential Transmissometers In many cases, unwanted loss by the windows on a
gas absorption cell or on the surface of a solid cannot be removed with a vacuum or
sampleless background measurement. For example, water vapor, or oil from machines,
can condense on windows, causing an erroneous signal not compensated in an empty
cell background. In the case of liquids, the reflection between a cell and the sample is
not the same for an empty cell. Also, a transmission measurement of a solid includes
reflectance and surface absorption, which must be removed to obtain bulk extinctance.

A popular technique to solve these issues is called differential transmittance. It
involves two samples of different path lengths, L1 and L2. To see how it works, con-
sider the near-normal transmittance of two samples,

τ1 = (1 − R)2e−βext L1

1 − R2e−2βext L1
≈ (1 − R)2e−βext L1
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and

τ2 = (1−R)2e−βext L2

1−R2e−2βext L2
≈ (1−R)2e−βext L2 .

Assuming L1 > L2 and R2 	 1, then the following approximation can be made on the
ratio of the two transmittances:

τ1

τ2
= e−βext L1

e−βext L2
= e−βext (L1 − L2). (6.29)

Therefore, the bulk extinction coefficient becomes

βext = −1

L1−L2
ln

(
τ1

τ2

)
. (6.30)

We have assumed the surfaces or boundaries of the two samples are matched so that
surface effects will cancel. In practice, surface roughness or degree of polish and surface
contaminants can vary between samples. This will represent an error, usually small, to
any experiment.

In any measure of transmittance, τ , the accuracy is at best ±0.001. The problem is
in accounting for changes in the optical path of the spectrometer from a thick sample to
a thin sample if the sample is tilted or the beam is focused within the sample.

Transmissometer Technique for Unixial Materials The characterization of the com-
plex index for uniaxial crystals is more complicated, because two complex indices are
required and crystallographic orientation must be considered. However, based on Eqs.
4.81 and 4.82, a simple procedure can be formulated. First, near-normal transmittance
and reflectance measurements on a sample with the c-axis normal to the surface are
made to obtain the ordinary ray complex index of refraction. In fact, this information is
usually available for most uniaxial materials. Next, transmittance and reflectance meas-
urements using unpolarized light on a sample with the a- or b-axis normal to the surface
is collected. Knowing the o-ray transmittance and applying Eq. 4.81, the e-ray trans-
mittance is obtained. Then Eq. 4.82 is used to obtain the e-ray absorption coefficient,
knowing the e-ray single-surface power reflection coefficient.

TRANSMITTANCE MEASUREMENT LIMITATIONS After the transmittance has been recorded,
it is a straightforward matter to calculate the absorption coefficient using Eq. 6.1 and
the previous techniques. However, it is instructive to examine the influence that a small
uncertainty in internal transmittance has on the calculated value of βext(ν). This can be
done by looking at the differential of βext(ν) for constant path, L ,

dβext(ν) = − 1

L
ln

(
1 + dτ

τ

)
. (6.31)

Expanding the natural logarithm for dτ/τ small, we have
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dβext(ν) = − 1

L

[
dτ

τ
− 1

2

(
dτ

τ

)2

+ · · ·
]
. (6.32)

If only terms of order dτ are retained, the result can be expressed as a normalized
extinction coefficient error,

dβext(ν)

βext(ν)
= (ln τ)−1 dτ

τ
+ o((dτ)2). (6.33)

This expression gives the relative change in the extinction coefficient for a small change
in the transmittance, that is, it predicts the error that can be expected when the uncer-
tainty in the value of τ is known. Figure 6.6 shows a plot of the percent error in βext(ν)

for a given percent change in internal transmittance versus the extinction coefficient
path length product. From these results, it is clear that reasonable accuracy in the
extinction coefficient (1%) can only be achieved if there is substantial absorption.

A reasonable objective in designing a good transmittance experiment would be to
require that the uncertainty in absorption coefficient equal the uncertainty in the trans-
mittance measurement; looking at Eq. 6.33, this implies that ln(τ) = −1 or τ = 0.368.
This simply says that the optimum path length should be chosen such that

L = 1.0/βext(ν), (6.34)

where the value of βext(ν) is typical of a particular spectral range of interest.

Reflectometers Measurements of reflectance are usually made on a solid material in
regions of very high absorption (n ≈ ka ), where transmittance measurements are almost
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Fig. 6.6 Normalized percentage error in extinction coefficient (solid), the transmittance (dot)
and the normalized percent error in the transmittance (�τ/τ, for �τ = 0.005, dashed) plotted
versus the extinction coefficient path length product.



impossible, because extremely thin (i.e., microns) samples are required. Other experi-
mental techniques for determining the refractive index, n, are far superior in the regions
of transparency (i.e., ellipsometry, interferometry, and refractometry).

The magnitude of the single-surface reflectance, R, for normal incidence is given by
Eq. 6.3. Note that the real and imaginary parts of n̄ influence the reflectance. Thus a
complete description of a material’s optical properties can be obtained in the regions of
fundamental lattice vibrations and electronic transitions.

To obtain an absolute measure of the reflectance requires knowledge of the incident
flux. This is often obtained by using a ∼100% reflecting mirror in place of the sample. (In
the ultraviolet it is best to change the geometry of the experiment and directly measure
the incident flux.) Thus, based on the definition of reflectance presented in Chapter 2, we
have

ρ = �r (sample)

�i (mirror)
.

An example of a specular reflectometer attachment for spectrometer sample compart-
ments is illustrated in Fig. 6.7. Some offer angle variation measurements from 5◦ from
normal to 80◦ from normal. Experimental data on a polycrystalline solid is illustrated
in Fig. 6.8. (Diffuse reflectometers will be covered in Section 6.2.1.)

Experimental reflectance spectra can be analyzed in terms of the classical oscillator
model in a straightforward manner. In general, a measurement of |R| is not sufficient to
determine εr (ω) because phase information is missing. Recall that the classical oscilla-
tor model satisfies the Kramers–Krönig relationship and therefore provides the correct
relationship between ε′

r (ω) and ε′′
r (ω). Thus, it also allows for the construction of a

physically meaningful representation of εr (ω), using only the magnitude of R as input.

238 OPTICAL PROPAGATION IN LINEAR MEDIA

Fig. 6.7 Reflectometer attachment, adjustable for a range of incidence angles, for a broad-band
spectrometer.



This point has been extremely useful in optical material modeling efforts. In a crystal
with two or more atoms per unit cell, εr (ω) may be phenomenologically represented by
the classical oscillator model, as developed in Chapter 4,

εr (ν) = ε∞ +
∑

i

ν2
TOi�εi

ν2
TOi − ν2 + jν�i

,

where the νTOj represent the long-wavelength transverse optic mode frequencies. In
polar crystals the corresponding frequencies of the optically active longitudinal optic
modes, νLOj , are not equal to the νTOj s.

Equation 2.97 can be combined with the above equations for εr (ν) and R(ν) to give
formal expressions for the frequency dependence of either, εr (ν), or R(ν). Such
expressions can then be used in conjunction with experimental observations to infer the
three parameters for each mode. This is not a trivial problem, since the number of inde-
pendent parameters can be quite large for a multimode material. In fact, this approach
will not work in the electronic region because the mode density is to great and individ-
ual modes are indistinguishable. The classical oscillator representation is commonly
used to represent the complex permittivity of vibrational modes. The νLOs can then be
determined by using the analytic relations developed by Chang et al. (Ref. 10).

It is of considerable interest to be able to directly obtain the νLOs and νTOs without
having to determine simultaneously all the classical oscillator parameters. A number of
suggestions have been made as to how to do this. Chang et al. (Ref. 10 ) have suggested
that in the case of crystals with multimode damped oscillators, the νTOs may be identi-
fied with the maxima in |ε(ν)|, and while the νLOs with the minima in |εr (ν)|. Barker
(Ref. 11) has suggested identification of the νTOs with maxima in ε′′

r , and the νLOs with
maxima in Im [−1/εr ]. Unfortunately, these are not easily measurable quantities. The
following develops a technique in derivative reflectance spectroscopy.

Consider the reflectance spectrum in the wavelength domain, λ. The λTOs and λLOs
correspond to those points where dR/dλ is an extremum, that is, where d2R/dλ2 = 0.
In particular, the λTOs correspond to points where d2R/dλ2 = 0 and dR/dλ < 0,
whereas the λL Os correspond to points where d2R/dλ2 = 0 but dR/dλ > 0. A simple
heuristic argument shows that this method will work to the same extent that Chang’s
method is valid (Ref. 13).

To illustrate the utility of the proposed method, consider the particular case of Al2O3.
Barker (Ref. 11) has made a detailed best fit of reflectivity data to theory, and in this
way determined the set of parameters reproduced in Table 6.1. Also shown are the cor-
responding longitudinal-mode frequencies given by Barker (although he does not say
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Table 6.1 Parameters for Classical Oscillator Model of Al2O3 as Given by Barker (Ref. 6.12)

Mode # vjTO [cm−1] λjTO [µm] �εj �j/vjTO vjLO [cm−1]

1 385 ±1% 26.0 0.30 ±15% 0.015 ± 25% 388 ±1%
2 442 ±1% 22.6 2.7 ±4% 0.010 ±15% 480 ± 1%
3 569 ±1% 17.6 3.0 ±15% 0.020 ±15% 625 ±1%
4 635 ±1% 16.7 0.30 ±20% 0.020 ±20% 900 ±1%

ε∞ = 3.2



how they were determined). Using these parameters as inputs we numerically com-
puted, |εr (λ)|, and dR/dλ (λ[µm] = 104 (ν [cm−1])−1) and these results are plotted
in Fig. 6.8. The results of the longitudinal and transverse mode wave numbers deter-
mined by the present method are given in Table 6.2 and compared with the input values
given by Barker. The agreement is remarkably good.

The great utility of the present scheme to locate both the vLOs and vTOs is that it is
based on use of the reflectance alone. Such measurements are relatively easy to make.
An example derivative spectrum is shown in Fig. 6.9a, with the corresponding experi-
mental reflectance spectrum and model representation for polycrystalline Y2O3 shown
in part (b). Good starting values for the oscillator positions are obtained. The final
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Fig. 6.8 Plot of (a) |εr |, and (b) dR/dλ versus wavelength for room-temperature sapphire (o-ray).
The dashed lines locate the vLOs. The dotted lines locate the vTOs.

Table 6.2 Comparison of Modeled Optical Mode Frequencies Against the Results of Derivative
Reflectivity Technique

vTO [cm−1] vLO [cm−1]

Model Input Present Method Barker (Ref. 6.21) Result Present Method

385 382 388 387
442 441 480 483
569 567 625 628
635 635 900 905



Fig. 6.9 (a) Experimental derivative reflection spectrum of Y2O3. (b) Corresponding reflection
spectrum experimental and model fit.
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values are changed in order to obtain the best fit. In this case, some of the modes over-
lap and distort the measurement of the true oscillator frequency.

Starting values for the other oscillator parameters can be obtained from the reflectance
spectrum and the corresponding derivative spectrum. The Lyddane–Sachs–Teller relation
(Eq. 4.46) can be used to estimate the oscillator strengths. Also, the level of reflectance
between the TO and LO is indicative of the oscillator dampening factor (see Problem 6.6).

The ultimate goal of optical propagation experiments is to determine the complex index
of refraction. However, measurements of τ and ρ are indirect measurements of n̄, and this
limits our ability to accurately determine n̄. This is especially true for measurements of
weak absorption. Other such experimental approaches are discussed in the following.

Photoacoustic Cells When light is absorbed, energy is deposited in the medium in the
form of heat. A pressure or acoustic signal is generated, which is directly proportional
to the absorption coefficient. Thus, a direct measure of the absorption coefficient is
made, as opposed to transmittance measurements. This is important when the absorp-
tion is weak and transmittance measurements are inaccurate. This is also useful when
scatter is present as well as absorption. Photoacoustic cells are made that can be placed
inside the sample compartment of a spectrometer. The incident signal must be modu-
lated, since the acoustic signal is transient. This is ideal for a Fourier transform
spectrometer, which always has a modulated light signal. In this way the interferogram
is directly measured by a sensitive microphone.

Photoacoustic measurements require calibration. This is typically accomplished by
using a sample with a known absorption coefficient.

Photoacoustic signals can be obtained from strongly absorbing (opaque) solids (or
liquids) in a gas cell. The solid samples can be powders or unpolished bulk samples. For
these particular applications, photoacoustic cells offer unique capabilities.

However, because the broad-band light source is weak in intensity, the measurable
signal is also weak, unless the absorption is strong, and this approach generally offers only
a minor improvement over transmittance measurements. A laser source greatly enhances
the sensitivity this approach, and this is discussed in a later section.

Circle Cells When the absorption coefficient is very large, transmittance measure-
ments are almost impossible because the sample must be so thin. For small-volume
liquids in particular, the sample can partially evaporate away before the end of a meas-
urement. A circle cell can be used to solve this problem; it has path lengths on the order
of several microns for a sample with adequate volume.

The circle cell has a rod in the center of the cell, which guides the light probing the liquid
sample. The light rays are guided to reflect at critical angles so that total internal reflection
occurs. However, at the points of reflection in the crystal, an evanescent field exists in the
liquid. Thus the probe light rays are attenuated only by the evanescent field, which provides
a very short path length within the liquid of several microns. A diagram of a circle cell is
illustrated in Fig. 6.10. The name “circle cell” comes from Cylindrical Internal Reflection.

6.1.1.3 Laser Measurements

Spectrometers with broad-band sources provide spectral information on the optical
properties of a medium. However, the weak power of the source per frequency interval
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limits the signal-to-noise ratio and the accuracy of a measurement. Also, the limited res-
olution of spectrometers may not be adequate to obtain accurate transmittances. This is
especially true for the rapidly varying spectra of gaseous media. The laser offers
extremely high resolution with high flux. However, the spectrometer measurement is
always needed to see the full spectral structure of a medium. The laser transmittance
(reflectance) measurement can calibrate that spectrum at specific frequencies and give
insight on the effects of the limited resolution and signal-to-noise ratio of the spec-
trometer. Furthermore, the laser is, in many cases, polarized in a particular direction.
This property is very useful in anisotropic media, as well. Thus, narrow-band, high-
power laser measurements of transmission and reflection complement broad-band
coverage with low spectral power spectrometer measurements. Ideally, tunable lasers
(the spectroscopist’s dream) are used for such measurements.

The high spectral power a laser provides allows dual-beam experiments to be easily
realized. A beamsplitter is used to direct a small part of the beam to a reference detec-
tor and most of the intensity to the sample. The path lengths must be matched to
properly account for beam motion. The detectors, if two separate detectors are used,
also should be matched as close as possible.

6.1.2 Laser Techniques

One of the main motivations for using lasers to study optical properties is because of
requirements of laser optics. The much higher power levels require lower absorption
and scattering coefficients in window materials. Thus, more sensitive techniques are
needed than spectrometer measurements can provide. Using a laser as a source instead
of a blackbody or lamp is an improvement, but other experimental techniques are
needed to truly improve sensitivity to small extinction effects.

Because of the high spatial and temporal coherence with high power of the laser, exper-
imental techniques that directly measure the real and imaginary part of the complex index
of refraction are possible. Laser measurements of the absorption coefficient are accom-
plished by calorimetry and photoacoustics. These techniques offer the highest available
accuracy for measurements of the absorption coefficient, as indicated in Table 6.3.
Measurement of the index of refraction is accomplished by laser interferometry.

6.1.2.1 Laser Photoacoustics

This is similar to photoacoustics with a broad-band source and a spectrometer, only
now a laser source is used. Because the measured signal is proportional to the power
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Fig. 6.10 Diagram of circle cell optics.



absorbed in the medium, a high-power laser can produce a strong signal in weakly
absorbing media even over a short path. Thus significant improvement over broad-band
source spectrometers is obtained. The most sensitive measurements of the absorption
coefficient are made with this approach, and it is commonly applied to weakly absorb-
ing gases.

A chopped laser source is used, which produces a transient pressure signal, as shown
in Fig. 6.11, in a closed cell called a spectraphone. The strength of the signal rises expo-
nentially when the laser is on, and decays when the laser is off. A sensitive pressure
transducer or microphone is used to detect the signal. For a cylindrical cell of radius rc

and a Gaussian TEM00 laser beam, the measured pressure signal Ps is proportional to

Ps ∝ βabs�laser TRGCξ 2
1

16πCV r2
c m

, (6.35)

where �laser is the incident laser flux, T is the period of the chopped laser beam, RGC

is the gas constant, ξ1 is the first root of a zero-order Bessel function, CV is the specific
heat at constant volume, and m is the gram molecular weight of the gas. The above for-
mula is valid for T/(4τ) 	 1, where τ is the relaxation time of the pressure signal
response. From this equation the absorption coefficient can be obtained.

Limitations of this approach include window and wall noise. Window noise is
caused by low-level absorption by the window to the cell. High-quality windows are
required, but no material is free of bulk absorption and surface contamination absorp-
tion, is always a problem. Wall noise is caused by laser light interacting with the walls
of the cell. To keep this to a minimum a tightly focused well-aligned beam is desired.
The cell temperature must also kept as stable as possible. Also, because of the large sur-
face-to-volume ratio of the cell chamber, strongly absorbing impurities from wall
outgassing can be a major problem.
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Table 6.3 Sensitivity for Determining the Absorption Coefficient by
Various Experimental Methods Using Spectrometers and Lasers

Method Sensitivity [cm−1]

Differential spectrophotometry 5 ×10−3 − 2×10−3

Emittance spectroscopy 1×10−3 − 1×10−5

Laser calorimetry 1×10−4 − 5×10−6

Laser photoacoustics 1×10−6 − 1×10−10

Fig. 6.11 Waveforms for the incident chopped laser and corresponding pressure signal response
in a spectraphone.



6.1.2.2 Laser Calorimetry

This approach is similar to photoacoustics, except that a sensitive thermometer is used
to measure the temperature change of a weakly absorbing sample illuminated by a laser
rather than a pressure sensor measuring an acoustic signal. Laser calorimetry is com-
monly applied to solids intended for high-power laser windows. The thermometer is a
thermocouple in contact with the edge of the sample. The center of the sample is illu-
minated by a TEM00 laser beam. Typically the sample is in vacuum. The absorption
coefficient is obtained from measuring the rate of change of the sample temperature
with the laser on and off, as given by the following equation (Ref. 6.15):

βabs(T1) ≈ m
Cp

LPτ

2n

n2 + 1

[(
dTrise

dt

)
T1

+
∣∣∣∣dTdecay

dt

∣∣∣∣
T1

]
, (6.36)

where m is the sample mass, Cp is the specific heat at constant pressure, L is the sample
thickness, Pτ is the transmitted power, and n is the index of refraction at the laser fre-
quency. The assumption made to obtain this equation is βabs L 	 1. The measured signal
voltage is similar to that obtained in laser photoacoustic measurements (see Fig. 6.11).

Laser calorimetry measurements are sensitive to both surface and bulk absorption.
In fact, surface absorption, due, for example, to residuals from polishing, can dominate
low-level loss of a window. This technique has proven useful in studies of surface
preparation. This is done by making measurements on identically prepared samples of
different thicknesses.

Window materials with scattering introduce errors to calorimetry measurements.
First, the thermocouple can be directly illuminated by laser radiation and produce heat-
ing not caused by sample absorption. Second, the optical path in the sample has been
altered (increased) by an unknown amount and the absorption coefficient cannot be
accurately determined. This is especially true in high-index materials where a relatively
small critical angle exists and a significant amount of scattered light is reflected back
into the material.

6.1.2.3 Laser Interferometry

Laser interferometry is used to measure the real part of the index of refraction. A typi-
cal setup, using a Michelson interferometer similar to the one discussed in Section
6.1.1.1, is shown in Fig. 6.12. In this case, a gas cell is placed in one of the arms of the
interferometer. Absolute measurements of the refractive index can be obtained on gases
by beginning the experiment at vacuum. As gas is injected into the cell, the optical path,
nL , of the arm changes and fringes can be counted on the detector. Very sensitive detec-
tion schemes are used that are capable of measuring changes much less than the
wavelength of light being used. Since L is constant throughout the experiment, the
index of refraction is directly measured as a function of gas pressure. A measurement
with the cell in vacuum is needed to calibrated the experiment. Sensitivity down to
±0.0000005 in the index of refraction can be easily obtained.

This procedure can also be used to obtain the thermo-optic coefficient (dn/dT ) of a
solid. In this case, the gas cell is replaced with a temperature-controlled cell capable of
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holding a window sample. As the index of refraction of the window changes, the opti-
cal path changes, and this causes the fringe to change on the detector. The expansion
coefficient of the material must also be known, since this is part of the temperature-
dependent optical path (dnL/dT = (dn/dT )L + n(d L/dT )). Absolute measurements of
the index cannot be made because the sample cannot be introduced slowly enough to
keep track of the fringe count.

6.1.3 Ellipsometry

Ellipsometers are part of a more general subclass of polarization sensitive reflectome-
ters called reflection polarimeters. The experiment consists of a collimated polarized
monochromatic source illuminating a material, and the detection of the state of polar-
ization of the reflected light. A typical configuration is shown in Fig. 6.13. Ellipsometer
measurements are typically made on thin films covering a substrate (determining the
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Fig. 6.12 A Michelson interferometer for measurements of the refractive index.

Fig. 6.13 Experimental layout of
an ellipsometer.



thickness and n of the film) or on a bulk sample (determining n and ka ). Measurements
are made with monochromatic sources, such as lasers, or filtered broad-band sources.

The fundamental equation of ellipsometry can be obtained in a straightforward
manner. Consider the ratio of the field reflection coefficients for p- and s-polarizations
(e.g., as given by Eqs. 4.68 and 4.70) incident upon a bulk sample. The field reflection
coefficients are complex in general. Thus, the ratio is also complex, and is given by

rp

rs
= r = tan ψ e− j�. (6.37)

An ellipsometer measures the parameters ψ and �. The procedure of the measurement
involves rotating the polarizer and analyzer until the reflected intensity from the sample
is zero. The polarizer is in the incident beam and the analyzer is in the reflected beam,
as indicated in Fig. 6.13.

The details of the data analysis are to involved to discuss here, and it is intended that
the references at the end of the chapter be consulted.

6.1.4 Refractometry

Refractometers require that the sample to be measured be in the shape of a prism with
apex angle, α. The deviation angle, D, as defined in Fig. 6.14, is measured as a func-
tion of the incidence angle, θ1, under the condition that it is a minimum. For this reason
this approach is called the minimum deviation technique. Based on the knowledge of
these two angles, the index of refraction of the sample can be determined. This is a pop-
ular technique, used for many common optical materials. The index of refraction is only
determined in regions of transparency.

The relationship between the deviation angle and the incidence angle, and the index
of refraction can be obtain in a straightforward manner. Based on Snell’s law (Eq. 4.72)
and geometric principles, the following relationships are obtained:

sin θ1 = n sin θ2,

sin θ4 = n sin θ3,

θ2 + θ3 = α, and

θ1 + θ4 = α + D.

(6.38)
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Fig. 6.14 Geometry of a refractometer
experiment.



Solving for the minimum deviation angle for variation in θ1 requires that

dD

dθ1
= 0.

Based on the last equation in 6.38, the above requirement can be rewritten in terms of
θ1 and θ2:

dθ1

dθ4
= −1. (6.39)

With a little algebra, the following result is obtained:

cos θ1

cos θ2
= cos θ4

cos θ3
. (6.40)

The equation is satisfied when θ1 = θ4 and θ2 = θ3. This means the deviation angle is
a minimum when the optical arrangement is symmetric. Using this result and Snell’s
law, the following relationship for the index of refraction is obtained:

n = sin θ1

sin θ2
= sin

(
1
2 (D + α)

)
sin
(

1
2α
) . (6.41)

When the experiment is repeated for different frequencies, the dispersion of a material
can also be determined. Highly accurate (±0.00001) measurements of the refractive
index have been made with this technique.

6.1.5 Broad-Band Interferometry

Samples that are flat and parallel exhibit interference in the transmitted beam (recall 
Eq. 2.100). For a lossless spectral region in a medium (K = 1 and R is real), Eq. 2.100
becomes the common Airy formula

τ(ν) = [1 − R(ν)]2

1 − 2R(ν) cos [4πνn(ν)L cos θa] + R(ν)2
. (6.42)

The transmittance for near-normal incidence is illustrated in Fig. 6.15 for a diamond
etalon. A cyclic modulation pattern is generated with the spectral distance between
adjacent peaks termed the free spectral range, FSR(v,T ). Based on Eq. 6.42, the trans-
mission peaks are located at

4πvn(ν)L = 2πm, (6.43)

where m is the order or mode number. For regions of zero dispersion the free spectral
range becomes

FSR(v,T ) = 1

2n(v,T )L(T )
. (6.44a)

One-hundred percent transmittance is usually not achieved because the sample is not
perfectly flat and some spectral averaging is occurring. In Fig. 6.15, the solid curve is
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a fit to measured data. It is a linear combination of Eqs. 6.42 and 2.96. Broad-band
transmittance measurements with high-resolution spectrometers offer a convenient
means of accurately measuring the index of refraction as a function of frequency and
temperature. Unfortunately, unless a very large signal-to-noise ratio is achieved, signif-
icant modulation must be observed, and samples with large refractive index (n > 2)
work best.

Nonetheless, a measurement of FSR(ν) and the sample thickness allows the index of
refraction to be determined. As the index of refraction changes with frequency, so does
the FSR, and spectral dispersion can be obtained as well. A general solution of Eq. 6.43
including dispersion, leads to the following differential equation:

ν
dn(ν)

dν
+ n(ν) = 1

2L FSR(ν)
. (6.44b)

This is a first-order differential equation with the following general solution for the
index of refraction:

n(ν) = 1

ν

⎛
⎝ν0n(ν0) −

ν0∫
ν

dν ′

2L FSR(ν′)

⎞
⎠ for ν <ν0, (6.45a)

and

n(ν) = 1

ν

⎛
⎝ν0n(ν0) +

ν∫
ν0

dν ′

2L FSR(ν′)

⎞
⎠ for ν >ν0, (6.45b)
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Fig. 6.15 Transmittance of a CVD diamond etalon 512 µm thick at room temperature.



where ν0 is the spectral point of minimum dispersion, thus Eq. 6.44a can be applied and
the index of refraction can be determined. The integral between transmission peaks is
1/(2L), because the FSR between peaks is a constant. Thus, the determination of the
index of refraction is reduced to a simple counting of peaks according to

n(νm) = 1

νm

(
ν0n(ν0) − m

2L

)
for ν <ν0, (6.46a)

and

n(νm) = 1

νm

(
ν0n(ν0) + m

2L

)
for ν >ν0, (6.46b)

where m = 0,1,2,. . . , and νm locates the transmission peaks. This technique is attrac-
tive because it does not require highly accurate peak locations, which is difficult to
obtain in a low-finesse spectrum. For high accuracy in the index of refraction, precise
knowledge of the sample thickness must be available. This often requires thick samples,
which in turn requires higher spectral resolution from the spectrometer.

Temperature measurements of the index of refraction can also be accomplished with
this approach. The temperature change in FSR of a window of thickness L, together
with the thermal expansion coefficient (αex , see Chapter 8), can be used to determine
the change in refractive index with temperature:

dFSR(T )

dT
= d

dT

(
1

2n(T )L(T )

)
= −FSR ·

(
1

n

dn

dT
+ 1

L

d L

dT

)

= −FSR ·
(

1

n

dn

dT
+ αex

)
.

(6.47)

ALTERNATIVE APPROACHES At a fixed temperature, the measured free spectral range can
be fit (e.g., least squares) to a polynomial in ν. Assuming a polynomial form for n(ν)

as well, the coefficients can obtained from knowledge of FSR. The procedure is outlined
in mathematical form below:

FSR(ν) = A0 + A1ν + A2ν
2 + · · · = 1

2n(ν)L
= 1

2(n0 + B1ν + B2ν2 + · · ·)L
.

Assuming that n0 � B1ν, B2ν
2, we obtain leads to the following solution for n0 and the

B coefficients,

n0 = 1

2A0L
, B1 = −A12n2

0L , and B2 = B2
1

n0
− A22n2

0L .

For high accuracy, precise knowledge of the sample thickness must be available. 
This requires thick samples, which in turn requires higher spectral resolution from the
spectrometer.
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Perhaps a better approach is to use a Sellmeier model for n(ν) and explicitly deter-
mine the dispersion in Eq. 6.44b. Then a nonlinear least-squares fit to that equation can
be performed. The results will be in the form of Sellmeier model parameters.

6.1.6 Emissometry

When the temperature of the sample is near, or exceeds, the temperature of a source
used for transmission measurements, then radiation from the sample is noise to the
detector, and this degrades any transmission measurement. It is more straightforward,
in this case, to use the sample as the source and measure the emitted light directly. This
technique is called emissometry, and still requires a reference for system calibration,
which can be as simple as a standard blackbody radiator at a known temperature.

Based on the formula for absorptance and Kirchhoff’s law (Eqs. 2.98 and 2.106), the
emittance from a flat polished surface is related to the single-surface power reflection
coefficient and the bulk absorption coefficient in the following manner for a sample of
thickness L:

ε(θ,ν) = {1 − R [θ, n(ν)]} (1 − e−βa(ν)L/cos θa
)

1 − R [θ, n(ν)] e−βa(ν)L/cos θa
.

The emitting object must be in thermal equilibrium. θa is the refracted angle, which is
related to θ by Snell’s law, and the angle θ specifies the observer’s angle. For a sample
that also contains bulk and surface scatter, care must be exercised in the interpretation
of the data. The optical path within the material is altered, and a rough surface changes
the emitted radiation pattern as discussed in Chapter 2.

In the limit of strong absorption (τ = 0), the emittance is determined by the first sur-
face reflection, such that

ε(ν, θi ) = 1 − R [ n(ν), θi ] . (6.48)

Because there is no transmission, the reflectance equals the single-surface power reflec-
tion coefficient. There are two distinct spectral regions for this case. One is for
n − 1 ≈ ka , which occurs in the one-phonon region. This region exhibits highly varying
emittance, characteristic of a reflectance spectrum in the one-phonon region. The other is
for n − 1 � ka > 0.01, which occurs in the two-phonon region. This is the spectral region
of highest emissivity for a bulk material. In fact, the emittance can be very close to one.

In the limit of weak absorption (βaL < 0.1) the emittance is determined by the
absorption coefficient and the sample thickness, L,

ε(θ,ν) = βa(ν)
L

cos θa
. (6.49)

In this way, a measure of the emittance can be a direct measure of the bulk absorption
coefficient and thus potentially more accurate than high-temperature transmittance
measurements, as suggested by Table 6.3. A diagram of a typical emissometer is shown
in Fig. 6.16.

When a sample has bulk scatter and the infrared emittance is less than 0.5, then 
the method of sample heating must be carefully considered. A regular furnace will have
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broad-band infrared emission that will be scattered into the field of view of the detec-
tor to some level. This is a noise source to the emittance measurement. A technique to
avoid this problem is to laser-heat the sample. The laser should operate in the two-
phonon region of a material where the absorption is high and the reflectance low.
Depending on the power of the laser and the size of the sample, very high temperatures
can be obtained. An example of a measurement using this approach is illustrated in Fig.
6.17. Note the clean measurement of the multiphonon edge. Furthermore, by measur-
ing the emission in the two-phonon region, a measurement of the sample temperature
can be made. Since the two-phonon region is close to a blackbody (ε ≈ 1) and features
very little temperature dependence in the emittance, pyrometric techniques can be used
to remotely determine temperature. This is useful for two reasons. First, a measurement
of the sample temperature is made at the same location as the low level emittance meas-
urement. Also, a thermometer in contact with the material can introduce radiation noise
and act as a means of thermal conduction, cooling the sample. Thus, a contact meas-
urement of surface temperature is not always desirable. Consult the reference at the end
of the chapter for more detailed discussion of this approach.

6.2 Scatter Measurements

Scatter measurements are important for understanding and characterizing the propaga-
tion loss and imaging properties of a medium, stray light effects from surfaces, and
polarization characteristics of reflected light. Two classes of scatter measurements are
typically made, by scatter-angle-dependent scatterometers and scatter-angle- independent
integrating spheres.

6.2.1 Scatterometers

Scatterometers, which measure angular-dependent scatter, can be classified as two 
distinct types: those that measure over a sphere (BSDF) and those that measure over 
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a hemisphere (BRDF). When a medium is opaque, then only hemispheric measure-
ments are needed. When a material is transparent, then the full sphere enclosing the
sample must be measured. A description of a general scatterometer, ignoring polariza-
tion and assuming no φs dependence, is given in the following.

A direct measurement of the incremental scattered flux, ��sca(θs,θi ), per incre-
mental steradian, �	s , is proportional to the phase function, P(θs,θi ), as given below:

��sca(θs,θi )

�i�	s
= αsca(θs,θi ) = αsca(θi )P(θs,θi ), (6.50)

where �i is the incident flux from a directional source (i.e., a laser) and αsca(θs,θi ) is
the bidirectional scatter distribution function (BSDF) and αsca(θi ) is the total integrated
scatter (TIS), as defined in Chapter 2. Similar quantities are defined for BRDF meas-
urements. In practice, the measured fluxes are detector voltages (usually a large-area
detector is used). Since there is no dependence on φs , only measurements on the 
θs -direction within the plane of incidence are required. The incremental angular step
size of θs for the experiment should be less than 1/2/�	s . These concepts are illustrated
in Fig. 6.18.

The scatterance is constrained by the total power law to be

αsca = 1 − τs − ρs (6.51)

for a medium with no absorption (e.g., αabs = 0). That is, the specular transmittance
and reflectance must not be included in the data analysis. It is important to maintain the
conservation of power flow in a valid measurement.
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Fig. 6.17 High-temperature near-normal emittance spectra of single crystal sapphire (o-ray) 1
mm thick from 950 to 1930 K. The sample was heated in vacuum by a CO2 laser.



Integration of both Eq. 6.50 with respect to d	s leads to the TIS,

�sca

�i
= αsca , (6.52)

where the phase function is normalized according to Eq. 2.89. This result can be
checked against a direct measurement of the TIS as obtained by a integrating sphere
(see next section). Agreement also validates the assumption of no φs dependence.

The incremental solid angle, �	s , can be determined from the experimental geometry.
It is given by the following formula:

�	s = 2π(1 − cos φd). (6.53)

Based on Fig. 6.18 and for r � d (the detector radius),

�	s = 2π

⎛
⎜⎝1 − r

r
[
1 + ( d

r

)2] 1
2

⎞
⎟⎠ ≈ πd2

r2
. (6.54)

The detector area, Ad, is πd2 and the incremental solid angle viewed by the detector is

�	s → AD

r2
(6.55)

Using this result in Eq. 6.50 completes the information needed to experimentally
determine the BRDF or BSDF of a sample. To complete any directional scatter experi-
ment, a measurement must be taken with no sample present to characterize the
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Fig. 6.18 The geometry of a bidirectional scattering measurement.



background scattering level. This determines the noise level of the detector and the
beam quality of the laser.

It is often interest to compare a BSDF measurement of one material with that of
another. To do this meaningfully, the different Fresnel reflection coefficients for each
material must be taken into account. This can be done for an absorption-free material
by scaling the incident flux by (1 − R)/(1 + R) for forward scatter and by 2R/(1 + R)

for backward scatter. Therefore, a scaled scatterance function, α′
sca(θs,θi ), is defined as

α′
sca (θs,θi ) =

{
αsca

(
π
2 > θs > −π

2 , θi
)

1+R
1−R ,

αsca
(−π

2 > θs > π
2 , θi

)
1+R
2R .

Ideally, such a comparative scatter measurement would be done in an index-matched
fluid, so that surface reflectance would be eliminated. But this is not easy to implement,
and the above definition becomes useful.

The results of BRDF measurements in the plane of incidence with an angular reso-
lution of 2◦ at 0.6328 µm on a white paper label are shown in Fig. 6.19a as a function
of the reflection angle referenced to the surface normal. Two angles of incidence are
used, one normal to the sample (θi = 0) and at 48◦. The near specular reflectance is
broadened in the 48◦ case relative to the normal incidence case because the illuminated
footprint on the sample broadens as the sample is rotated. The dropouts in the experi-
mental curves occur when the detector blocks the incident beam. The results are fit to
the following formula:
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Fig. 6.19 (a) Measured and modeled BRDF for a piece of label paper illuminated at 0.6328 µm.
(b) BRDF of Spectralon at a wavelength of 0.6328 µm.



BRDF(θr , θi ) = 0.012Pdi f f (θr , θi , 4, 0.07) + 0.13Pdi f f (θr , θi , 2, 0.8)

+ 0.007Pdi f f (θr ,−θi , 3, 0.3) + 0.5PLam(θr ).

The first two terms represent near specular and diffuse components, which are also a
function of the angle of incidence. The third term represents weak diffuse light retrore-
flected back to the source. The last term represents the Lambertian scattering
component of the BRDF (see Example 2.1). The Lambertian component is independ-
ent of the angle of incidence and the dominant diffuse term. The functional form used
to represent the BRDF is based on Eq. 2.91. The phase function that is used in the above
formula is given by

Pdi f f (θr ,θi ,n,a) = n
(
1.15 − 3.3

n2 + α1.1 10 − n
n

) |cos(θr )|
π6.2α

(
1 − n − 2

10 + 0.9(α − 0.5)2
)−1

∣∣∣ α
cos θi

∣∣∣n−1

|θr + θi |n +
∣∣∣ α

cos θi

∣∣∣n .

It is only approximately normalized, but works for a variety of painted or unpolished
surfaces. The integration over all angles of the BRDF is the TIR and the result for
normal incidence is 0.64, suggesting the label was an off-white color. Figure 6.19b plots
the BRDF of SpectralonTM, a commercially available near-Lambertian surface. The
model fit is expressed below,

BRDF(θr ,θi ) = 0.27Pdi ff (θr ,θi ,2, 0.8) + 0.73PLam(θr ),

and shows how close to Lambertian the sample actually comes.
By examining the nature of the BRDF, the optical quality of reflecting surfaces can

be determined. Such information is commonly needed in optical design where stray
light is a concern or high-quality images are required. Also the emissive properties of
surface can be obtained.

6.2.2 Integrating Spheres

An integrating sphere is a nearly closed spherical chamber that typically has a diffuse
reflectance coating of high reflectivity on the interior and ports for a large-field-of-view
detector, light beam entrance, and light beam exit. This three-port configuration is illus-
trated in Fig. 6.20. Also, four-port configurations can be used for scattering
measurements. The TIR of the coating should be close to one. All scattered light is col-
lected, and thus this is a measurement of the total integrated scatter.

The common sequence of measurement for a three-port sphere is as follows. First
the sphere must be calibrated. Essentially, this means the surface reflectance of the
sphere, ρsphere , must be measured. To do this, the exit port is closed and all the incident
light is scattered within the sphere. The ratio of the detected flux to the incident flux is
given by

�d

�i
=

Ad
As

ρsphere

1 − ρsphere

(
1 − Ae

As
− Ad

As

) , (6.56)
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where As is the internal surface area of the sphere, Ad is the area of the detector port,
and Ae is the area of the entrance and exit ports (assuming they are equal). This equa-
tion can be solved to obtain the reflectance of the sphere.

In the next step, the exit port is opened and a sample is placed inside the sphere. The
incident beam is aligned so that the reflected and transmitted beams exit the integrating
sphere. In this way, only scattered light can reach the detector. Now, the ratio of the
detected flux to the incident flux is given by

�d

�i
=

Ad
As

αsca

1 − ρsphere

(
1 − 2 Ae

As
− Ad

As

) . (6.57)

This equation can be solved to obtain the TIS of the sample.
Measurements of the integrated forward- and back-scatterance are also made with

integrating spheres. This is accomplished by placing the sample in the entrance port for
integrated forward-scatterance and in the exit port for integrated back-scatterance. From
these measurements the forward- to back-scatter ratio can be obtained.

Problems

6.1 List the strengths and weaknesses of spectrometer and laser transmissometers.
Do the two experimental approaches complement one another?

6.2 List experimental techniques that directly measure the absorption coefficient.
When are such approaches superior to transmittance measurements?

6.3 Find the mathematical expression for the interferogram of a FTS for the spectrum
illustrated in Fig. P6.3.

6.4 (a) Given Eq. 6.1 and knowing R and τ , solve for βabs(ν), that is, obtain 
Eq. 6.27. (b) Can this approach be used when scatter is present?
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Fig. 6.20 Typical configuration of a three-port integrating sphere.



6.5 It is computationally convenient to express τ, ρ, and α to first order as

τ ≈ (1 − R)2 e−βabs L ,

ρ ≈ R + R(1 − 2R)e−2βabs L ,

and

α ≈ βabs L .

However, these expressions do not satisfy the total power law! Make a consis-
tent set of approximations to τ, ρ, and α that will satisfy the total power law.

6.6 Show that the single-surface reflection coefficient, R, for normal incidence,
reduces to the first-order form

R(ωTO < ω ≤ ωL O , θi = 0) = 1 − a(ω)�,

where (ω2
TO − ω2)2 � (ω�)2 and a(ω) depends on the classical oscillator

parameters for a single-mode oscillator.
6.7 Derive Eq. 6.41, which determines the index of refraction of a prism from the

minimum deviation technique.
6.8 Show that the free spectral range, FSR(ν), for normal incidence and zero dis-

persion is

FSR(ν) = 1

2n(ν) L
,

based on the Airy formula. Also, obtain Eq. 6.44b, which includes dispersion.
6.9 Verify the solution for n(ν) given in Eq. 6.45.

6.10 Compute the TIS for the white label BRDF formula given in Section 6.2.1.
(Note: The result is 0.62.)

6.11 Derive Eq. 6.57.
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7

Optical Propagation in
Gases and the Atmosphere
of the Earth

Propagation within the atmosphere is an important consideration concerning the per-
formance of many electro-optical systems. An electro-optical system can be described
as containing three basic components: source, detector, and propagation medium.
Because of the quality of source and detection systems today, often the limiting factor
in overall system performance is the propagation medium. Thus a thorough discussion
of the atmosphere and various mechanisms of attenuation is required. Absorption, 
scattering, and turbulence are the dominant mechanisms of signal loss and distortion.
This chapter covers gaseous absorption and scattering in the atmosphere of the 
earth. Turbulence is not covered, and the reader is referred to other texts (see Chapter 1,
Refs. 1.10 and 1.11).

7.1 The Atmosphere of the Earth

The atmosphere surrounds and protects the earth in the form of a gaseous blanket that
acts as the transition between the solid surface of the earth and the near-vacuum of the
outer solar atmosphere. It acts as a shield against harmful particle radiation, meteors,
and high-energy photons. The dynamics of the atmosphere drive the weather on the sur-
face. It provides for life itself as part of the earth’s biosphere. Thus optical propagation in
this medium has many important characteristics and consequences. These include mete-
orological optics, infrared and visible astronomy, remote sensing, and electro-optical
systems performance in general. Therefore, it is appropriate to begin this chapter with
an introduction to the nature of the atmosphere.



7.1.1 Atmospheric Structure

The atmosphere is composed of gases and suspended particles or aerosols at various
temperatures and concentrations as a function of altitude and azimuth. The variations in
altitude show a marked structure. Six main horizontal layers form the stratified struc-
ture of the atmosphere, as shown in Fig. 7.1. The lowest is the troposphere, which
extends from ground level to approximately 11 km (36,000 ft or 7 mi.). The tempera-
ture in this layer generally decreases with increasing altitude at the rate of 6.5 K/km.
However, variations can exist on this rate, which creates interesting refractive effects.
The pressure varies from one atmosphere at sea level to a few tenths of an atmosphere
at the top of this layer. Most of the important atmospheric attenuators exists in the tro-
posphere (i.e., H2O, CO2, clouds, fog, aerosols in general). Water vapor is most
important at lower altitudes, for example, due to evaporation over the ocean as part of
the marine boundary layer. Also, this is the region of highest pressure or density and
therefore has the highest molecular scatter. Aerosols in the troposphere are composed
of dust particles, smoke, sea spray, and others with surface-based origins. The next layer
is the stratosphere, which extends up to 50 km (30 mi.). In this layer, ozone, which 
protects life on the surface from ultraviolet radiation, is found. Ozone starts to signifi-
cantly absorb at and below 0.3 µm, thus extending protection from these high-energy
photons relative to molecular oxygen (which begins to strongly absorb below 0.185 µm).
Particles in this layer can remain for a long time. Above the stratosphere is the mesos-
phere. This layer begins at 50 km and extends to 90 km. Most models concerning
optical propagation in the atmosphere end with this layer. Above the mesosphere is the
ionosphere, which is important for radiowave propagation. However, the plasma reso-
nances that give it reflective properties at radio frequencies are too slow for optical
frequencies, and this layer is optically transparent. Also molecules in the ionosphere
undergo photochemical dissociation. Thus, the chemical composition significantly
changes at this altitude. The ionosphere extends up to nearly 300 km. Above the iono-
sphere are the thermosphere and the exosphere, and they are influenced by high-energy
solar radiation and the joining of the atmosphere of the earth to the solar atmosphere.
The outermost altitude is approximately 500 km or 300 miles.

7.1.2 Gas Composition

Table 7.1 lists uniformly mixed, dry atmospheric gases (up to 100 km altitude) and their
abundances. These molecules do not vary significantly in relative concentration with
time and with altitude, as illustrated in Fig. 7.2. Nitrogen and Oxygen are by far the
most abundant. Oxygen has relatively narrow absorption bands at 60 Ghz (2 cm−1)
because of a magnetic dipole moment, at 760 nm (13,158 cm-1) and has strong absorp-
tion in the ultraviolet (the Schumann–Runge bands). Otherwise, neither gas has
dipole-allowed infrared spectra. Only weak collision-induced-absorption bands (CIA)
in N2 and O2 can be observed for very long tropospheric propagation paths. However,
these molecules are very important for Rayleigh scattering (see Section 7.3) and refrac-
tive index (see Section 7.2.4) calculations. The inert gases contribute very little to
optical propagation phenomena.

The other molecules like CH4, N2O, and CO have pronounced infrared spectral features
(see Section 7.2) in the atmosphere, even though they have very minor concentrations.
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Their importance is localized to these spectral features, however. Some seasonal varia-
tion is observed in these gases as well, due to fuel burning and other effects.

Some of the most important molecules impacting propagation have variable con-
centration. This list is shown in Table 7.2 and includes H2O, CO2, and O3. Water vapor
exists primarily in the troposphere and is highly variable from day to day, from season
to season, with altitude, and for different geographical locations. Carbon dioxide varies
seasonally with a maximum during the early spring and a minimum during the late
summer to early fall, and is uniformly mixed with altitude up to 80 km. These points
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Fig. 7.1 Atmospheric structure as a function of altitude.



are illustrated in Figs. 7.2 and 7.3. The variable nature of these important atmospheric
gases makes the prediction of atmospheric propagation at infrared frequencies a chal-
lenge. Furthermore, the concentration of water vapor also influences particle scattering.

At this point, it is useful to review the many different units used to quantify the
amount of H2O in the air. This text will consistently use pressure or number density to
indicate the water vapor concentration. Unfortunately, uniform representation is seldom
the case in the literature, and unit conversion often needs to be known.

1. Water vapor partial pressure, pH2O , are commonly given in kilopascal (kPa), 
millibars (mb), Torr (mm Hg), and atmospheres (atm), where 101.3 kPa = 760
Torr = 1013 mb = 1 atm.

2. Relative humidity, rh, is the ratio of pH2O to the saturation vapor pressure, Es(T ),

rh =
(

pH2O

Es(T )

)
× 100%. (7.1)
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Table 7.1 Gases Present in Standard Amounts in a Dry Atmosphere 
(CRC Handbook of Chemistry and Physics, Ref. 7.6)

Constituent Volume Ratio [%] Parts per Million

Nitrogen, N2 78.084 ± 0.004 —
Oxygen, O2 20.946 ± 0.002 —
Argon, Ar 0.934 ± 0.001 —
Neon, Ne 0.001818 18.18 ± 0.04
Helium, He 5.24 × 10−4 5.24 ± 0.004
Krypton, Kr 1.14 × 10−4 1.14 ± 0.01
Xenon, Xe — 0.087 ± 0.001
Hydrogen, H2 — 0.5
Methane, CH4 — 1.75
Nitrous oxide, N2O

a — 0.5 ± 0.1

aHas varying concentration in polluted air.

Fig. 7.2 Vertical profiles of mixing ratio relative to nitrogen of selected species at equinox
(Allen et al., Refs 7.1, 7.2; Goody and Yung, Ref. 7.3, with permission).



Es(T ) is computed by the following formula with an accuracy of 0.1% (Leibe, Ref. 7.5):

Es(T ) = 2.4096

(
300

T

)5

10( 10 − 2950.2
T ) [kPa], (7.2)

where T is temperature in kelvins. Table 7.3 lists values of Es(T ) based on the
above formula.

3. Absolute humidity, a, is defined as

a = 2170pH2O

T

[
g/m3], (7.3)
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Table 7.2 Atmospheric Gases Present in Variable Amounts (CRC Handbook of Chemistry and
Physics, Ref. 7.6)

Constituent Volume Ratio [%] Parts per Million

Ozone, O3 — 0–0.3 (tropospherica)
— 1–7 (20–30 km)

Water vapor, H2O 0–2 —
Carbon dioxide, CO2 0.035 351 ± 4
Carbon monoxide, COa — 0.19
Nitric acid vapor, HNO3 — (0–10) × 10−3

Ammonia, NH3 — Trace
Hydrogen sulfide, H2S — (2–20) × 10−3

Sulfur dioxide, SO2
a — (2–20) × 10−3

Nitrogen dioxide, NO2 — Trace
Nitric oxide, NO — Trace
CFC-11 — 3 × 10−4

aHas varying concentration in polluted air.

Fig. 7.3 Molecular concentration of CO2 at Mauna Loa Observatory, Hawaii as a function 
of year. Both long-term trend (smooth curve given by CO2 concentration = 311 + 0.395
(Year−1950) + 0.0148 (Year−1950)2) and seasonal changes (oscillatory curve) are shown
(Bacastow et al., Ref. 7.4).



where pH2O is in kPa and T in K. This formula can be obtained from the ideal gas
law, Pi = ρi kB T .

7.1.3 Particle Composition

Particles vary not only in chemical composition and concentration but also in size (from
about 0.01 to 10 µm) and shape (spheres, ellipsoids, rods, etc.). Therefore, the descrip-
tion of atmospheric particles is far more difficult than the description of atmospheric
molecules. The range of sizes varies for different types of particles, as Table 7.4 indi-
cates. A particle with one size is called monodisperse. A particle with a distribution of
sizes is called polydisperse. Size distribution functions specify the concentration of a
particle size as a function of particle radius. Height distribution functions specify the
concentration as a function of altitude. The first 2 km is a mixed region, and particle
characteristics depend greatly on the nature of the surface. In the mid-tropospheric
region, the height distribution is exponential much like molecular pressure. At stratos-
pheric altitudes, particle concentrations are driven by volcanic activity. Generally,
simple shapes are assumed for model calculations (e.g., spheres, rods); however, shape
distribution functions are needed also. Two basic classes of particles determine the
majority of scattering attenuation in the atmosphere: aerosols and hydrometers.

Aerosols have radii less than 1 µm. Because these particles are very small, they are
suspended in the atmosphere. Scattering by aerosols greatly increases broad-band opti-
cal attenuation over molecular scattering, and is called haze. Particles have the highest
concentration levels near the surface of the earth and therefore, the highest levels of
haze are also near the surface of the earth. This point is readily verified by observing
the color of the sky as a function of zenith angle. Overhead, the sky is a distinctive blue,
because of molecular Rayleigh scattering, but toward the horizon, the color becomes
whiter. This is because the path length increases in the particle-rich lower atmosphere.
Examples of aerosols are smog, smoke, fine soil particles, cosmic dust, clouds, and fog.
Particles that contain moisture add another dimension to the description as the humid-
ity must also be known. A dry particle acts as a condensation nucleus and grows in size.
The particle becomes more spherical and scatter loss is enhanced.

The second class of particles is called hydrometers, which are water-dominated par-
ticles in the liquid or solid state. Examples include the many types of clouds, mist, fog,
rain, freezing rain, hail, snow, and ocean spray. These particles are typically larger than
1 µm, and stay suspended for shorter periods of time than aerosols because they are
more massive.
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Table 7.3 Saturation Vapor Pressure of H2O (CRC Handbook of Chemistry and Physics, Ref. 7.6)a

T [K] Es [kPa] T [K] Es [kPa]

250 0.0760 300 3.535
260 0.1958 305 4.75
270 0.4701 310 7.228
280 0.991 320 10.540
290 1.919 330 17.202
295 2.64

aThe following polynomial fit represents Es with a standard deviation of ±0.024 kPa: ln (Es) = 17.323−
3.7496 × 103T −1 − 2.3061 × 105T −2 .



The detailed discussion of particle distribution functions and particle scattering is
delayed until Chapter 10, since the optical properties of solids (see Chapter 8) and water
(see Chapter 9) must be covered first.

7.1.4 Pressure Variation with Altitude

As the altitude increases, the total atmospheric pressure decreases almost exponentially,
as illustrated in Fig. 7.4. To see this, consider a column of gas. The incremental pressure,
dp, from an incremental altitude, dz, caused by its weight in a gravitational field is

dp = −ρm(z)g dz, (7.4)

where ρm is the mass density and g is the gravitational acceleration. However, ρm must
vary with altitude, z. Now let us use the ideal gas law, to obtain

ρm (z) = mρ(z) = mp(z)

kB T (z)
, (7.5)

where ρm(z) is the average mass density, ρ(z) is the number density, and m is the 
average mass per molecule for a dry atmosphere (28.964 amu for z < 100 km, for a humid
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Table 7.4 Radius Range for Various Types of Particles

Type Radius [µm] Concentration [cm−3]

Air molecules 10−4 1019

Aiken nucleus 10−3–10−2 104–102

Aerosol 10−2–1 103–10
Fog 1–10 100–10
Cloud 1–10 300–10
Raindrops 102–104 10−2–10−5

Fig. 7.4 The 1976 U.S. Standard Atmospheric Pressure as a function of altitude (�). The solid
curve, as given by p(z) = 1013 exp(−0.145z), is a fit to the data (see Eq. 7.8b).



atmosphere m → m(z)). Thus, substituting this result into Eq. 7.4, we obtain the 
following first-order differential equation:

dp

p(z)
= − m(z) g

kB T (z)
dz. (7.6)

The general solution (for m constant) is obtained in a straightforward manner to be

p(z) = p(0) exp

⎛
⎝−mg

kB

z∫
0

dz′

T (z′)

⎞
⎠ . (7.7)

Now, let us assume T (z) = T0 + az , which is the case for the Standard Troposphere
(1976 U.S. Standard Atmosphere), where a = −6.5 K/km and T0 = 288 K. The solu-
tion of the above differential equation leads to the following result for the vertical
pressure profile:

p (z) = p (0)

(
T (z)

T0

)−mg
akB

(7.8a)

The numerical value of the exponent in this equation for the U.S. Standard Troposphere
(z < 10 km) is 5.255.

The temperature dependence above the troposphere is not linear. In the stratosphere
the vertical temperature profile is almost constant. The atmospheric temperature profile
as a function of altitude for the 1976 U.S. Standard Atmosphere is plotted in Fig. 7.5 up
to an altitude of 100 km. Based on this figure, the variation from ground to 100 km is
modest, staying within ±20% of the mean value of 235 K. In the isothermal limit 
(i.e., T (z) = T0), the solution of Eq. 7.7 simplifies to
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Fig. 7.5 The 1976 U.S. Standard Atmospheric Temperature profile as a function of altitude.



p(z) = p(0) exp

(−mgz

kB T0

)
= p(0) exp

(
−34.16z

T0

)
, (7.8b)

where z is expressed in kilometers, and T0 in kelvins. Since the temperature variation is
small for limited ranges of altitude, this is a good approximation (especially for the
stratosphere). Using an average temperature for the first 100 km of 235 K and using
p(0) = 1013 mb, Eq. 7.8b was used in Fig. 7.4 to obtain the solid curve.

These formulas can be used to form a piecewise continuous representation of the
total pressure and uniformly mixed gas partial pressure variation of the real atmosphere
with altitude, given the temperature profile.

7.2 Molecular Absorption and Refraction

This section begins with a discussion of molecular absorption in the window regions of
the atmosphere. Reviews of experimental data, empirical models, and theoretical
models are presented. Molecular absorption dominates the optical properties of the
atmosphere in the infrared and ultraviolet. The section then closes with a discussion of
atmospheric refraction.

7.2.1 Absorption by Atmospheric Gases

Absorption by molecules defines the atmospheric windows and is an important mecha-
nism of tropospheric attenuation at all millimeter and infrared wavelengths, especially
in the marine or relatively humid environments. Therefore, the understanding and accu-
rate modeling of absorption by atmospheric molecules are important to atmospheric
remote sensing, open-air communication, infrared imaging systems, long-path laser
propagation, electro-optical systems, radar, and atmospheric meteorology. The green-
house effect of the atmosphere of the earth is caused by absorption of blackbody
radiation in the 10 µm region from the surface. The absorbed energy heats the atmos-
phere, causing an increase in global temperature. Figure 7.6a shows low-resolution
infrared transmittance of the atmosphere and demonstrates the importance of water
vapor over other atmospheric constituents (Shaw, Ref. 7.7). The H2O absorption bands,
along with those of CO2, define the atmospheric window regions in the infrared. At mil-
limeter and microwave wavelengths, the rotational band of O2 at 60 GHz and local
rotational lines of H2O determine the window regions. Figure 7.6c shows the water
vapor absorption coefficient for the millimetre–microwave region.

The main rotational and vibrational bands have been extensively characterized by
many investigators (Benedict and Calfee, Ref. 7.8; Gates et al., Ref. 7.9; Camy-Peyret
and Flaud, Ref. 7.10). This work has resulted in a compendium of absorption-line
parameters representing 31 different gases, maintained by the Phillips Laboratory at
Hanscom Air Force Base (formerly the Geophysics Directorate and the Air Force
Geophysics Laboratory), which represents a significant contribution to absorption cal-
culations. Details of this database are discussed in Section 7.2.2. The database contains
parameters for weak absorptions lines in the window regions. However, this informa-
tion is, in general, not as accurate as that of the main bands, and work continues to
improve the spectral line parameters.
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Fig. 7.6 (a) Low-resolution solar spectrum compared with laboratory spectra of atmospheric
gases (Shaw, Ref. 7.7, with permission). Synthetic water vapor local line structure plus contin-
uum for a homogeneous path in (b) 10 µm region and (c) microwave–millimeter wave region.
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The comparatively weak absorption that does occur in the window regions can be
described as arising from two distinct sources, local line and continuum absorption, as
illustrated in the high-resolution computed spectrum of Fig. 7.6b for the 10 µm window
region. Weak absorption bands of CO2 and HDO, along with other H2O absorption lines
in the window regions, compose the local line contribution. The continuum contributes
an additional, gradually varying, frequency-dependent background to total absorption.
A general empirical form for the continuum absorption coefficient is often used to 
represent eperimental data:

βcont(ν,T, pf 1, . . . pf i , pa) = pa

RGC T

imax∑
i=1

[
CFi (ν,T )pf i + Cs(ν,T )pa

]
, (7.9)

where Cs is the self-broadening coefficient of the absorbing gas, CFi is the foreign
broadening coefficient due to the ith type foreign gas, pa and pf i are the absorber and
foreign gas partial pressures, respectively, and RGC is the ideal-gas constant
(McClatchey et al., Ref. 7.11). The above formula is consistent in form with a far-wing
expansion of the collision-broadened absorption coefficient given in Chapter 5 (recall
Problem 5.9). This point will be used later to obtain simple mathematical formulas for
continuum absorption. The equation can be rewritten for the case of two broadening
gases (imax = 2), to obtain

βcont(ν,T ) = CF1(ν,T )

RGC T
pa[pf 1 + F(ν,T )pf 2 + B(ν,T )pa], (7.10)

where F = CF2/CF1 and B = Cs/CF1 are the dimensionless foreign and self-broaden-
ing coefficients. Near line center, B has a typical value of 5 for water vapor relative to
nitrogen (see Table 5.1). In the real atmosphere, the effects of oxygen broadening must
also be included. The dimensionless broadening coefficient F accounts for oxygen rel-
ative to nitrogen. However, many laboratory experiments ignore the effects of oxygen
and use only nitrogen as the broadening gas along with the absorbing gas.

7.2.1.1 Water Vapor Absorption

The strong dipole moment and light hydrogen atoms composing water vapor result in
strong, broad rotational absorption bands (high B) and high vibrational frequencies.
Also, water vapor is an asymmetric top, thus all the bands are active and feature dense
irregular spectra (as illustrated in Fig. 3.9 for the pure rotational band). Thus, water
vapor absorption is important in every infrared window region of the atmosphere.

Fundamental Bands To determine atmospheric window locations and index of refraction
contributions, knowledge of band strength and position of the strongest absorption bands is
important. Table 7.5 lists band origins and integrated intensities, S′

n(T ), defined by

S′
n (T ) = 1

ρa

∫
B and D

dν βabs(ν,T ) [cm] ,

for several important water vapor absorption bands throughout the infrared. The integrated
intensity is the sum of all the line strengths within a band, divided by the absorber density.
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All bands listed originate from the ground state. The locations of the bands match the
experimentally observed locations in Fig. 7.6a. It is clear that the these strong absorption
bands of water vapor define the atmospheric window regions to be 8–12 µm, 3–5 µm,
2–2.5 µm, 1.5–1.77 µm, 1.18–1.31 µm, and 1–1.1 µm. For shorter near-visible wave-
lengths, water vapor absorption plays a more minor role.

Window Regions As previously mentioned, molecular absorption in the window regions
manifests itself as local line and continuum-type absorption. Narrow-band systems can
often minimize local line effects but not continuum absorption. Broad-band systems
must account for both.

LOCAL LINE ABSORPTION Local line structure within the 10 µm and 4 µm water vapor
window regions has been experimentally observed using an FTS and a long-path White
cell (Benedict et al., Ref. 7.8.; Gates et al., Ref. 7.9). Field measurements of local line
structure in the 10 µm region have been reported by Rinsland et al. (Ref. 7.16). 
The 1–1.1 µm local line structure based on experimental data has been reported by
Gallery et al. (Ref. 7.17). The data demonstrate the importance of the rich local line
structure in the case of water vapor and the need for experimental data to validate the
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Table 7.5 Integrated Intensities of the Major Water Vapor Bandsa (Goody and Yung, Ref. 7.3,
with permission).

Band Origin [cm−1] Isotope Upper Vibrational State (ν1ν2ν3) Sn(295 K) × 1021 [cm]

0.0 H16OH 000 52700.0
0.0 H17OH 000 19.4
0.0 H18OH 000 107.0

1588.28 H18OH 010 21.0
1591.33 H17OH 010 3.82
1594.75 H16OH 010 10400.0

3151.63 H16OH 020 75.4

3657.05 H16OH 100 487.0
3707.47 H16OD 001 1.42
3741.57 H18OH 001 13.9
3748.32 H17OH 001 2.52
3755.93 H16OH 001 6930.0

5234.98 H16OH 110 37.2
5331.27 H16OH 011 804.0
6871.51 H16OH 021 57.4
7201.48 H16OH 200 52.9
7249.93 H16OH 101 747.0

8807.0 H16OH 111 49.8
9000.0 H16OH 012 1.6

10238.72 H16OH 121 2.1
10613 H16OH 201 10.0

11032 H16OH 003 2.4

12151.26 H16OH 211 0.93

13820.92 H16OH 301 1.08
14318.80 H16OH 103 0.2

aThe lower state is the ground state 000. Sn for isotopes is calculated on the basis of the total number of molecules of all 
isotopic species. n indicates the vibrational quantum numbers for a particular transition.



HITRAN database. The HITRAN database represents local line structure based on
experimental data and/or theoretical calculations. This database is described in more
detail in Section 7.2.2. The database contains information on the line position, strength,
lower energy level, foreign half-width, half-width temperature dependence, and the
self-half-width. For many applications this is adequate information to develop propa-
gation models of the atmosphere. The accuracy of the information varies for the weak
lines in window regions. Line position and lower energy level are known very well, line
strength is usually within 10%, and half-widths are known to 20%. The self-half-width
is important for accurate local line characterization. For broad-band applications, the
average dimensionless self-broadening coefficient value of B = 5 can be used.

However, laser propagation, such as remote sensing systems using narrow-band
lasers, needs a more through characterization of local line structure. The pressure shift
parameter, as defined by Eq. 5.99, must be known when the frequency of the laser cor-
responds closely to the location of an absorption line. For water vapor in particular, this
is an important effect. Experimental observations of the pressure shift in the 2 µm
window indicate that it is generally to the red. The self-shift is smaller than the half-
width in magnitude, and the nitrogen shift is less than one-tenth of the nitrogen
half-width magnitude. The pressure shift for water vapor is unusually large, compared
with other common atmospheric molecules. It is attributable to the large dipole moment
and is an important aspect of accurate local line characterization. Table 7.6 lists NTP
values for the self-, oxygen, and nitrogen half-width, and self- and nitrogen shift for a
few water vapor absorption lines in the 2 µm window region.

The effects of oxygen broadening must also be considered. Since most experimen-
tal data are taken with nitrogen-buffered water vapor samples, the broadening effects of
oxygen must be known for realistic atmospheric models. Based on the definition of F ,
given by Eq. 7.10, the near-line-center dimensionless foreign broadening coefficient is
needed for oxygen relative to nitrogen. The R(20) CO2 laser line at 975.930 cm−1 is nearly
coincident with a water vapor absorption line at 975.943 cm−1 (unshifted location). CO2
laser White cell transmittance and laser photoacoustic measurements of the absorption
coefficient as a function of oxygen partial pressure indicate F = 0.62 ± 0.07 (Peterson
et al., Ref. 7.47; Nordstrom et al., Ref. 7.51) for that line. It is assumed that this result
can be applied to lines in this region in general. More accurate determination can be
made by high-resolution spectrometer measurements. High-resolution FTS measure-
ments in the 2 µm region show that the average value of F is 0.55 ± 0.05 (Sova et al.,
Ref. 7.18). Values of F for individual lines are listed in Table 7.6. F depends on the 
rotational quantum number. Taking the average value of F to be 0.55, a dimensionless 
air-broadening coefficient, Fair, of 0.91 is obtained. This means the air-broadened half-
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Table 7.6 Half-Width and Shift Parameters for H2O Absorption at T = 296 K in the 2 µm Region
(Sova et al., Ref. 7.18)

Line Position Nitrogen-Half-Width Self-Half-Width Oxygen-Half-Width Self-Shift Nitrogen-Shift
[cm−1] [cm−1/atm] [cm−1/atm] [cm−1/atm] [cm−1/atm] [cm−1/atm]

4757.906 0.103 0.477 0.055 −0.194 −0.009
4758.212 0.0607 1.07 0.024 −0.249 −0.007
4796.554 0.002 0.671 0.049 −0.142 −0.011
4948.155 0.0895 0.944 0.051 −0.156 −0.021



width values are 9% less than the nitrogen-broadened values. For many narrow-band
applications, this correction cannot be ignored.

CONTINUUM ABSORPTION In 1942, Elsasser (Ref. 7.19) recognized a continuum in the
8–13 µm window region, which he attributed to the far wings of the strong, nearby rota-
tional and ν2 vibrational rotational bands of H2O. Further verification of this nonlocal
line absorption feature was provided by Yates and Taylor (Ref. 7.20), who studied
infra-red attenuation along horizontal paths at sea level. Solar spectra studies also indi-
cated continuum absorption in the 8–13 µm window (Adel, Anthony, and Roach and
Goody, Refs. 7.21–7.23). The nature of the continuum, judged by those measurements,
was uncertain. It could be due to far wings (far from the band center) of strong absorption
bands or to scattering and absorption by particulates.

In an effort to determine the cause of continuum absorption in the 8–13 µm window,
Bignell et al., in 1963, examined solar spectra while monitoring the atmosphere for aerosol
concentrations and studying CO2 far-wing contributions. He concluded that the amount of
continuum absorption observed could not be explained by aerosol attenuation or far-wing
absorption by CO2 (Ref. 7.24). An attempt was then made to model the continuum by far
wings of the bordering H2O bands. The important contribution from this initial work was
the realization of major water vapor contributions to the continuum. A second paper by
Bignell, in 1970, described a careful examination of water vapor absorption in the window
regions by use of a multiple-traversal absorption cell and grating spectrometer (Ref. 7.25).
Two important characteristics of the 8–13 µm window as noted: (a) a large ratio of water
vapor self-to-foreign-gas broadening ability (see Eq. 5.97) and (b) a strong negative tem-
perature dependence. Neither of these findings were anticipated on the basis of the far-wing
approaches of Bignell’s et al. 1963 paper (Ref. 7.24). Also reported by Bignell was a sim-
ilar, but much weaker, continuum absorption in the 4 µm region. (The 4 µm region also
features a collision-induced absorption band of nitrogen (Crawford et al., Ref. 7.26;
Susskind and Searl, Ref. 7.27). The band is of comparable strength to the water vapor con-
tinuum in the earth’s atmosphere. It is a smooth absorption band showing no structure;
thus, it is often referred to as the nitrogen continuum. Also, a far-wing continuum of CO2
beyond the ν3 band head is observed between 4.0 and 4.1 µm (Winters et al., Ref. 7.28).
These other continua will be discussed later (see Sections 7.2.1.2 and 7.2.1.4).

Since those initial experimental efforts to characterize water vapor continuum
absorption, many measurements have been made. They fall into three categories: (a)
measurements within the earth’s atmosphere or field measurements, (b) laboratory
measurements using a long-path cell and a spectrometer with a broad-band source, and
(c) laboratory measurements using a long-path cell or a photoacoustic cell with a laser
source. Although continuum absorption was first observed through long-path field
measurements, its precise characterization requires control and knowledge of the prop-
agation path. The effects of turbulence, particulate scattering, temperature variations,
and partial-pressure variations are difficult to determine in a field measurement. Thus,
laboratory measurements are needed to characterize the pressure and temperature
dependence of each atmospheric constituent. Spectrometer measurements determine
the frequency dependence of the window regions, that is, local lines and continuum
absorption. Laser measurements are limited to discrete frequencies, but because of the
laser’s higher power and stability, greater accuracy can be obtained; this is particularly
true for photoacoustic techniques. Laboratory transmission measurements require very
long path lengths (∼1 km or longer) and thus are difficult to obtain. The photoacoustic
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cell, on the other hand, is compact (about 30 cm) but still maintains considerable sen-
sitivity. Of course, field measurements will have the final say in the validation of
atmospheric propagation computer codes.

As a result of these experiments, a good characterization of the commonly used
window regions exists today. An excellent review of the field is given by the work of
Hinderling et al. (Ref. 7.29) and Grant (Ref. 7.30). They emphasize the 8–14 µm
window region, which, along with the millimeter-wave window, is the most extensively
measured. A review of the latest continuum experimental data and empirical models
covering all the window regions is given in the following subsections, followed by a
brief review of theoretical models used to explain the experimental data.

Millimeter-Wave Window The microwave–millimetre-wave atmospheric window is
used extensively today. Atmospheric transparency is very good at the low-frequency end
of this window, but absorption phenomena become more important as the frequency
increases. Figure 7.7 shows continuum absorption from 10 to 1000 GHz (total absorp-
tion minus local lines). The solid line represents an empirical formula given by Gaut
and Reifenstein (Ref. 7.32), as given by

βcont( f ) = (1.08 × 10−6)ρa

(
300

T

)1
2
(

PT

101

)
f 2 [

km−1], (7.11)

where ρa is the water vapor mass density in g/m3, PT is the total pressure in kPa, and 
f is th frequency in GHz. The plotted points indicate experimental data. The frequency-
squared continuum dependence is expected, based on Eq. 5.98 in the low-frequency
limit. Although the above formula correctly demonstrates the frequency dependence of
the continuum, it does not represent the observed temperature and pressure dependence.
More recent work by Liebe (Ref. 7.36) uses a continuum formula, fitted to experimental
data at 138 GHz, of the form

βcont( f ) = 4.73 × 10−8 f 2

(
300

T

)3

pa

[
pf + 31.6

(
300

T

)7.5

pa

]
[km−1] (7.12)

where f is in GHz, T is in kelvins, and pa and pf (pf = PT – pa) are in kPa. A strong
dependence on the water vapor partial pressure is shown (B � 5; recall B = 5 at line
center for water vapor, see Table 5.1 and Eq. 7.10). The continuum absorption coefficient
calculated using Eq. 7.12 is smaller than that calculated using Eq. 7.11 because of
improved local line modeling.

On the basis of additional work by Liebe and Layton (Ref. 7.37), and Liebe (Ref. 7.38),
B grows as the frequency decreases from 833 to 110 GHz, as demonstrated in Table 7.7.
This dependence is expected if the far-wing fall-off due to nitrogen collision is more rapid
than the far-wing fall-off due to water vapor collisions. Based on the far-wing model of
Birnbaum (see Chapter 5), the following empirical formula (valid for f < 1000 GHz and
βcont in km−1) is obtained (Thomas, Ref. 7.39)

βcont( f ) = (4.73 × 10−8) f 2θ4 pa
(

pf + 40.9e−0.0025 f θ6.5 pa
)
. (7.13)

where θ = (300/T ), T is in kelvins, and pressure is in kPa.
As Eqs. 7.12 and 7.13 both indicate, B is a strong function of temperature. This is not
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expected based on simple Lorentz line shape theory. Although Liebe (Refs. 7.36–7.38)
chooses to represent his data in power-law form, a comprehensive study at 213 GHz by
Llewellyn-Jones shows that the self-broadening coefficient, Cs , fits an Arrhenius plot of
the functional form

Cs(ν,T ) ∝ eb/T , (7.14)

where b = 5 × 104 K and Cs is defined in Eq. 7.9. Figure 7.8 illustrates the experi-
mental results of Llewellyn-Jones out to 213 GHz. Again, a strong negative temperature
dependence is observed at this frequency.

In summary, the millimeter-wave water vapor continuum falls off as frequency
squared, has an enhanced self-broadening contribution that grows with decreasing fre-
quency, and has a strong negative temperature dependence.

The 8–12 µm Window This important atmospheric window has been studied by
many investigators for three reasons. Room-temperature blackbody radiation peaks
within this spectral window (recall Fig. 5.1). Thus, atmospheric heating by ground radi-
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Fig. 7.7 Water vapor continuum absorption coefficient as a function of frequency. The solid line
is an empirical fit to the experimental data points as given by Eq. 7.11 (Gaut and Reifenstein, 
Ref. 7.32). The plotted points are (▲) (Becker and Autler, Ref. 7.33), (•) (Frenkel and Woods, 
Ref. 7.34) and (■) (Burch, Ref. 7.35) for T = 300 K, PT = 101 kPa, and ρa = 10−3 kg/m3

(Waters, Ref. 7.31).



ance depends on the vertical absorptance of the atmosphere. This is a crucial compo-
nent of climate models. Also, night-vision systems, which use the infrared spectrum to
view thermal radiation from targets, often use the 8–12 µm window. The last application,
which requires knowledge of the water vapor continuum, is atmospheric remote sensing.
The water vapor continuum in this spectral region is strong and cannot be ignored.

Figure 7.9a shows the self-broadening water vapor continuum coefficient, Cs as
a function of frequency between 7 and 22 µm at 296 K. The experimental data come
from long-path White cell transmittance measurements with spectrometers and CO2
lasers and photoacoustic measurements with CO2 lasers. The spectrometer was tuned 
to microwindow regions where no or minimal local line absorption contributions are made.
In Fig. 7.9, the spectrometer data (×), have some local line contamination because they
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Table 7.7 Experimental Frequency Dependence of B(ν,300) (Liebe, Ref. 7.38)

f [GHz] ν [cm−1] B(ν,300)

110 3.7 32
138 4.6 31.6
213 7.1 20
833 27.8 7.4

Fig. 7.8 Temperature dependence of millimeter-wave water vapor continuum quadratic term.
Solid curve represents empirical fit to data as given by Eq. 7.14 (Llewellyn-Jones, Ref. 7.40).



are strong in this near-band region. The solid curve represents a fit to discrete spec-
trometer measurements at locations with virtually no contribution from the now weak
local lines. The laser frequencies selected (+) have minimal local line contribution. 
For this reason, the laser data act as an upper bound to the true continuum level. The
data scatter is an indication of the success of separation of continuum from local line
absorption. Thus, overall, the experimental data directly represent the water vapor con-
tinuum. The self-broadening coefficient decreases exponentially as the frequency
increases and then increases above 1050 cm−1. The diode laser measurement by
Montgomery (Ref. 7.45) and spectrometer measurements by Burch (Ref. 7.53) defi-
nitely establish the upward trend toward the ν2 band. The same functional dependence
is exhibited by the nitrogen-broadening coefficient, CN , as shown in Fig. 7.9b, but the
rate of change is more rapid. Thus, B(= CS/CN ) increases as the frequency increases
away from the rotational band and then decreases toward the ν2 band. Long-path White
cell and photoacoustic laser measurements indicate that B can be quite large. Values
ranging from 100 to 700 have been measured in the 10 µm region with CO2 lasers
(Peterson et al., Ref. 7.43). Figure 7.10 illustrates a single-frequency spectrometer 
(900 cm−1) and laser measurement (952.881 cm−1) as a function of the water vapor par-
tial pressure. The total pressure is maintained at 101 kPa (1 atm) with nitrogen as the
foreign broadener. Notice the nearly parabolic nature of the absorption coefficient. Based
on Eq. 7.10, this indicates strong water vapor–water vapor interaction contributions.

The observed temperature dependence at 944.195 cm−1 (10.6 µm) features a rapid
decrease with increasing temperature, as illustrated in Fig. 7.11, just as in the millime-
ter window region. The temperature dependence has the following functional form over
a wide temperature range (Hinderling et al., Ref. 7.29),

Cs(ν,T ) = Cs(ν,T0)e
b(1/T −1/T0), (7.15)

where Cs (944.195 cm−1, 296 K) = 1.83 × 10−22 cm−2/(atm molecule) and b = 1680 K.
This result at 10.59 µm is also consistent with other measurements in the 8–12 µm region.
This point is made in Fig. 7.11 as well by comparing the same exponential function with
temperature dependent data at 1000 cm−1 and 1203 cm−1.

Based on experimental data and Birnbaum’s line shape formula in the far-wing limit,
a simple formula for the nitrogen-broadened water vapor continuum absorption coeffi-
cient from 400 to 1400 cm−1 and for typical atmospheric temperatures is given by

βcont(ν,T,pH2O ,pN2) = 7.34 × 1026(pH2O/T )(CN (ν,T )pN2

+ Cs(ν,T )pH2O) [km−1],
(7.16)

where

CN (ν,T ) = [3.7 × 10−21 exp (−0.01ν) + 5.5 × 10−33 exp (0.016ν)]

× exp (1680(1/T − 1/T0)

Cs(ν,T ) = [2.45 × 10−20 exp(−0.0051ν) + 1.9 × 10−29 exp(0.0125ν)]

× exp(1680(1/T − 1/T0).

p is in atmospheres, ν is in wave numbers, and T0 = 296 K. The units of the broaden-

280 OPTICAL PROPAGATION IN LINEAR MEDIA



Fig. 7.9 (a) Self-broadening coefficient [cm2/(atm molecule)] as a function of wave number from
300 to 1400 cm−1 at T = 296 K. (b) Nitrogen broadening coefficient [cm2/(atm molecule)] as a
function of wave number from 300 to 1400 cm−1 at 296 K. The dotted curve is a model fit to the
experimental data as given by Eq. 7.16. The dashed curve is the CKD model (Clough et al., 
Ref. 7.67) scaled to room temperature using Eq. 7.15. [x and solid curve – spectrometer measure-
ments (Burch et al., Ref. 7.53), � – diode laser measurement (Montgomery, Ref. 7.45), + – CO2
laser measurements (Hinderling et al., Ref. 7.29; Peterson et al., Ref. 7.43; Ryan et al., Ref. 7.44).]
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ing coefficients are cm2/(atm molecule). The dashed curves in Figs. 7.9–7.11 come
from this model. The temperature dependence of the nitrogen broadening coefficient
comes from measurements by Hinderling et al. (Ref. 7.29). Good agreement with many
different experimental data sets is obtained.

An excellent review of experimental measurements in the 10 µm region by Grant
(Ref. 7.30) makes the following additional points:

1. Oxygen does not broaden as effectively as nitrogen and must be included in a 
realistic model of the earth’s atmosphere. A dimensionless broadening coefficient
of F = 0.55 ± 0.12 for oxygen relative to nitrogen was determined by Thomas
(Ref. 7.50) for continuum absorption based on CO2 laser measurements. Using 
Eq. 7.10, this means air has an effective broadening of 0.906 relative to nitrogen
(i.e., Cair (ν,T ) = 0.906CN (ν,T )).

2. Understanding the local line structure is critical in determining the true continuum.
Line positions are known reasonably well; however, line strength, shift, and 
half-width are not known with enough accuracy.

Long-path field measurements by Devir et al. (Ref. 7.52) are in excellent agreement
with the laboratory measurements of Burch and Alt (Ref. 7.42), and Peterson et al. 
(Ref. 7.43) in this window region concerning the water vapor continuum. The measured
spectral range of Devir extends the range covered by Burch and Alt and shows the 
water vapor continuum increasing with increasing frequency. The minimum occurs near
1050 cm−1 (9.0 µm). The characterization of 8–12 µm continuum absorption appears to
be well in hand on the basis of the agreement between laboratory and field measurements.

The 3–5 µm Window The 3–5 µm continuum region has a frequency dependence
that differs from those of the millimeter and 8–12 µm regions. Figure 7.12 displays a
nearly parabolic dependence with a minimum at a wave number of 2600 cm−1. As shown
by the spectrometer measurements of Burch and Alt (Ref. 7.42), and Burch 
(Ref. 7) (Fig. 7.12a), the self-broadening coefficient has a double exponential fall-off
from 2000 cm−1 up to 2600 cm−1. Long-path CO laser transmittance measurements
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Fig. 7.10 Water vapor partial pressure dependence of the absorption coefficient at 900 cm−1

(Burch and Alt, Ref. 7.42) and 945.98 cm−1 (Peterson et al., Ref. 7.43).



(Thomas, Ref. 7.50) near 2000 cm−1 verify the data by Burch (Ref. 7.42). The contin-
uum becomes relatively flat around 2600 cm−1. Figure 7.12a also shows long-path
White cell DF laser measurements taken under atmospheric conditions, which indicate
continuum absorption levels roughly 50% higher than those indicated by Burch and Alt
(Ref. 7.42). As in the case for CO2 laser measurements, local line absorption distorts
the data, and care must be taken in the interpretation. The observed level of continuum
absorption in the 4 µm region is roughly an order of magnitude less than that in the 
10 µm region. The self-broadening coefficient increases as the wave number
approaches 3200 cm−1 because the 2ν2 band is located there.

Long-path nitrogen-broadened CO, DF, and HF laser transmittance measurements
near room temperature indicate large values for B in this continuum region, ranging
from 10 to 20 at 5 µm to approximately 50 to 60 at 4 µm and back down to 10 at 3 µm.
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Fig. 7.11 Temperature dependence of self-broadening coefficient in the 10 µm region. (At
944.195 cm−1: x – Burch and Alt, Ref. 7.42; ♦ – Loper et al., Ref. 7.46; � – Peterson, Ref. 7.47;
and + – Aref’ev and Dianov-Klokov, Ref. 7.48. At 1000 cm−1: � – Thomas, Ref. 7.50; + – Burch
and Alt, Ref. 7.42; and x – Varanasi, Ref. 7.49. At 1203 cm−1: x − Montgomery, Ref. 7.44.)



This trend is represented in Fig. 7.12b, which shows wave-number-dependent CN at
room temperature. Recall that B is the ratio Cs/CN .

A strong negative temperature dependence is again observed for the self-broadening
coefficient. Figure 7.13 shows the results of laboratory long-path spectrometer meas-
urements by Burch and Alt. The temperature dependence at 2400 cm−1 exhibits an
exponential fall-off similar to that in the 10 µm and millimeter regions. However, the
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Fig. 7.12. 4 µm water vapor continuum region at T = 296 K. (a) Cs(ν, 296) vs. wave number
and (b) CN (ν, 296) vs. wave number. The experimental data is indicated by x – Burch and Alt,
Ref. 7.42; � – Thomas, Ref. 7.50; ♦ – White et al., Ref. 7.54 and Watkins et al., Ref. 7.56. The
solid curve is from Eq. 7.17. The dashed curve is the CKD model (Clough et al., Ref. 7.67) scaled
to room temperature using Eq. 7.15.



curves at 2500 and 2600 cm−1 show double exponential trends. The nature of the water
vapor continuum in this window region is more complicated than the other windows
previously discussed.

More experimental data are needed to generate a meaningful empirical model of the
continuum absorption coefficient. However, an attempt at representing the existing data
is given by the following empirical formula for nitrogen-broadened water vapor con-
tinuum absorption coefficients valid from 1900 to 3000 cm−1,

βcont = 7.34 × 1026(pH2O/T )
[
Cs(ν,T )pH2O + CN (ν,T )pN2

]
[km−1] (7.17)

where the broadening coefficients are given by

Cs(ν, T ) =
[1.6 × 10−11 exp(−0.013ν) + 7.0 × 10−22 exp(−0.002ν)] exp [1450 (1/T − 1/T0)]

+[1.0 × 10−41 exp(0.014ν) + 1.5 × 10−26 exp(0.0021ν)] exp [6000 (1/T − 1/T0)]

and

CN (ν,T ) = (296/T )
[
5.6 × 10−10 exp (−0.016ν) + 2.5 × 10−23 exp (−0.002ν)

+ 2.0 × 10−45 exp (0.016ν) + 5.4 × 10−31 exp (−0.0045ν)
]
.
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Fig. 7.13 Plots of the water vapor self-broadening coefficients at 2400 (x and dash–dot), 2500
(� and solid) and 2600 (♦ and dotted) cm−1 versus reciprocal temperature (Burch and Alt, Ref.
7.42). The curves are generated by Eq. 7.17.



p is in atmospheres, ν is in wave numbers, and T0 = 296 K. The units of the broadening
coefficients are cm2/(atm molecule). This model is represented in Figs. 7.12 and 7.13.

To appreciate the importance of local line characterization as part of continuum
measurements by laser techniques, Fig. 7.14 illustrates the total absorption coefficient
(local plus continuum) as a function of wave number. The spectrum is computed based
on the HITRAN database and Eq. 7.17. The experimental data points come from White
et al. (Ref. 7.54) and Mills (Ref. 7.55).

Again, long-path field measurements by Devir et al. (Ref. 7.52) are in good agreement
with Burch and Alt (Ref. 7.42) in this window region concerning the water vapor contin-
uum. The results of Devir et al. (Ref. 7.52) also point out the importance of the water
vapor continuum between 4.5 and 5.0 µm. In this region, local line contributions can also
be significant, thus masking to some extent water vapor continuum absorption. Another
interesting observation, based on the field measurements of Devir et al. (Ref. 7.52), is an
absorption feature in the water vapor continuum at 4.8 µm. The water vapor continuum
frequency dependence is approximately exponential in this region except for the absorp-
tion band, which adds to the exponential background. Liquid water is known to have an
association band at 4.8 µm, thus suggesting that the anomalous feature is caused by
water vapor. More work is needed on this problem to fully appreciate this observation.

Field measurements between 4.1 and 3.8 µm reveal that other continuum sources
exist. The far blue wing beyond the band head of the fundamental ν3 band of CO2 (Kyle
et al., Ref. 7.57; Delaye and Thomas, Ref. 7.58) and the collision-induced absorption
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Fig. 7.14 The absorption coefficient (pH2O = 14.3 Torr, pN2 = 745.7 Torr, and T = 296 K) as a
function of wave number. The experimental data points come from DF laser measurements by
Watkins et al. (Ref. 7.56) and Mills (Ref. 7.55).



band of nitrogen (Van Kranendonk, Ref. 7.59, Sheng and Ewing, Ref. 7.60; Reddy and
Cho, Ref. 7.61; Shapiro and Gush, Ref. 7.62; Moskalenko et al. Ref. 7.63) also con-
tribute to continuum-type absorption in this window region and will be discussed later
(see Sections 7.2.1.2 and 7.2.1.4).

The 2.0–2.5 µm Window This window region has not received the same attention
as the longer wavelength windows; as a result, no experimental continuum absorption
has been previously reported. This spectral window is currently being used for eye-safe
atmospheric lidar. Knowledge of the water vapor continuum needs to be known for this
and any other long path application.

Measurements (Ref. 7.43), however, indirectly suggest that continuum absorption does
exist. Transmission measurements on hot (T = 685 K) high-pressure (up to 4.8 MPa)
water vapor show the continuum absorption in the 2.1 and 4 µm regions (Fig. 7.15).
Absorption levels at 4 µm are consistent with the extrapolated values from the curves in
Fig. 7.13. The point to be made is that a similar continuum absorption process occurs in
the 2.1 µm region, as shown in Fig. 7.15. If we assume that an extrapolation to lower tem-
perature follows the same trend as at 4 µm, then a continuum exists in the 2–2.5 µm
window that is very similar to the 3–5 µm window under normal atmospheric conditions.

The 1.7–1.5 µm Window and Beyond Figure 7.15 shows the beginning of the
continuum centered at 1.6 µm. Again, this suggests a water vapor continuum in this
window region at a weaker level than at 4 and 2 µm. Based on this observation, it is
expected that every window in the infrared has a water vapor continuum at some
absorption level. This level should become weaker as the frequency increases.
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Fig. 7.15 Pure water vapor absorption coefficient at T ≈ 686 K and three different pressures as
indicated.



The 1 µm window water vapor continuum has been measured by a novel interfero-
metric calorimeter technique (Fulghum and Tilleman, Ref. 7.64). A pulsed Nd-glass laser
is used to heat a nitrogen-buffered water vapor sample placed in the arm of a He-Ne
Mach–Zehnder interferometer. Variations in the index of refraction due to the heating
cause measurable fringe shifts proportional to the absorption coefficient. The resulting
continuum absorption coefficient measured at 9466 cm−1 is 6 × 10−10 cm−1 for a water
vapor partial pressure of 17.5 Torr buffered by nitrogen to a total pressure of 1 atm at
30◦C. Thus, the water vapor continuum is roughly two orders of magnitude weaker near
1 µm than at 4 or 2 µm. Many further measurements to determine the water vapor par-
tial pressure dependence and temperature dependence are needed.

The tragedy of experimental water vapor continuum characterization is that, unlike
nitrogen and CO2 experiments, it presently cannot be done at high pressure. High-pressure
water vapor measurements also require high-temperature and thus a theoretical under-
standing of the continuum absorption temperature dependence is needed in order to
extrapolate back to atmospheric temperatures.

Concepts and Models No universal interpretation of continuum absorption by
water vapor presently exists. Clearly, far wings must play a role in continuum absorp-
tion because of the observed frequency dependence in every infrared window, and work
is continuing to find a line-shape theory valid in the very far wing (Clough et al., 
Refs. 7.66, 7.67; Zuev and Fomin, Ref. 7.68). The major shortcoming of most line
shape theories is the failure to predict the observed strong negative temperature depend-
ence characteristic of all the window regions. [The exception is the recent work of Ma
and Tipping (Ref. 5.26) in the millimeter wave and infrared windows.] But this weak-
ness is the very strength of an alternative hypothesis to explain the water vapor
continuum: the water dimer (a polymer containing two molecules). The formation of
water vapor dimers has a strong negative temperature dependence that closely matches
the temperature dependence of the continuum absorption in the 10 µm region based on
Eq. 7.15 (bdimmer = 1800 K; the model uses b = 1680 K). However, this near match
does not occur in the microwave window or in the 4 µm window. This approach also
requires dimer absorption bands to account for the continuum. However, the hypothesis
would require a dimer absorption band in every water vapor window, a condition that has
not been experimentally found or theoretically shown [Hinderling et al. and Bohlander 
et al.]. Furthermore, measurements on supersaturated water vapor indicate that dimer
absorption is an order of magnitude too small to account for the water vapor continuum
at 10 µm [Hinderling et al.]. In spite of these shortcomings, the dimer hypothesis
demonstrates the importance of understanding short-range water vapor–water vapor
interactions to explain the continuum absorption temperature dependence.

Because of the lack of closed-form line shape models or fast numerical techniques
for line-by-line water vapor continuum absorption calculations, they are commonly
characterized by empirical models. One such model, developed at JHU/APL and Ohio
State University, uses a far-wing model with a semiempirical line shape and the
HITRAN line data (see Section 7.2.2). The model has been applied to the 10 and 4 µm
window regions and reproduces the experimental data as a function of frequency, pres-
sure, and temperature. An example is the curve in Fig. 7.17. The water-vapor-broadened
far wing falls off less rapidly than the nitrogen-broadened far wing; thus, the self-broad-
ening coefficient grows as the line shape extends from the line center. This is the trend
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observed in all the data. The line shape is normalized, and the line-center function is
experimentally verified. The far wings of a line shape represent a very small percentage
of the total area under an absorption line contour. Nonetheless, it is interesting to note
that the magnitude of the continuum absorption can be calculated from the far-wing
contributions by this model. Contributions to the 10 µm region are dominated by far
wings of the very strong rotational band of water vapor on the long-wavelength side of
that window, whereas the 4 µm continuum absorption arises from the bordering strong
vibrational bands of almost equal strength. That difference between sources explains
the difference between the frequency dependence of the 10 µm continuum region and
that of the 4 µm continuum region (see Figs. 7.9 and 7.12). Unfortunately, this model
is not valid in the millimeter region and does not fully represent the recent progress in
line shape theories, as discussed in Chapter 5. The success of this model, therefore, is
by no means a statement of the validity of a far-wing interpretation of continuum
absorption, but rather a statement of its feasibility.

The continuum models for the popular Air Force Geophysics Laboratory codes 
FASCODE and LOWTRAN are based on the efforts of Clough et al. (Refs. 7.66, 7.67),
who used far-wing concepts to represent the water vapor continuum throughout the
entire infrared region. The experimental data previously described are reasonably rep-
resented by these codes (see Figs. 7.9 and 7.12). The strength of this approach and the
previously mentioned approach over the APL model is accounting for the fluctuation
dissipation theorem in enforcing detailed balance across the entire line shape. This
results in a more physically meaningful far wing and a more versatile line shape over-
all. However, the water vapor line shape still requires an empirical basis. In this case it
was found that to achieve agreement with measurement, the mid-wing needed to be
super-Lorentzian and the far-wing sub-Lorentzian as illustrated in Fig. 7.16, using the
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Fig. 7.16 χ -function plot for water vapor line shape at room temperature. The solid curve is for
self-broadening and the dashed curve is for nitrogen-broadening (Clough et al., Ref. 7.67, with
permission).



so-called χ -function. The χ -function is the ratio of the applied line shape function to
the Lorentz line shape, as given by

χ(ν) = jc(ν)

jL(ν)
.

The theoretical work of Ma and Tipping (Ref. 5.26) also produces this line shape for
water vapor by appropriately choosing the intermolecular potential functions.

On the basis of these far-wing models, the water vapor continuum is extrapolated to
higher frequencies beyond 4 µm in LOWTRAN-7 and FASCODE-2. As the previous
section indicates, direct experimental evidence rarely exists beyond 4 µm. Thus, the
extrapolated continuum values must be applied with great care. Figure 7.17 illustrates
this point by comparing the water vapor continuum models of LOWTRAN-6 and the
APL model from 500 to 18,000 cm−1. The figure also shows another continuum-type
loss mechanism, molecular Rayleigh scattering, based on the LOWTRAN-7 model.
The conditions used in the calculation are for a horizontal path with pH2O = 2.0 kPa,
pN2 = 99.0 kPa, and T = 295 K. The APL model has been extended beyond 4 µm by
using the same empirical far-wing parameters of the ν1 and ν3 vibrational bands for all
vibrational bands to higher frequencies. The fundamental vibrational band far-wing
parameters do not vary greatly; thus, this is a reasonable approximation. Fair agreement
between the two models exists in the region of the 10 µm window. Good agreement 
is obtained in the 4 µm region and throughout the infrared. Figure 7.17 illustrates
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Fig. 7.17 A comparison of water vapor continuum absorption models (Thomas, Ref. 7.50) and
molecular Rayleigh scattering (see Section 7.3) in a homogeneous path.



another interesting point. Continuum absorption decreases with increasing frequency,
and scattering loss increases with increasing frequency. Thus, for a particular set of
atmospheric conditions, an optimal atmospheric window can be selected. Of course,
local line effects must be included in a broad-band system, but a narrow-band system
can avoid local line attenuation.

Although no definitive interpretation of the water vapor continuum exists, the exper-
imental and theoretical evidence indicates that far-wing absorption contributions by the
bordering strong water vapor bands play a dominant role. The evidence is based largely
on the frequency dependence of the continuum in all spectral windows reviewed 
(i.e., the shape of the continuum as a function of frequency and growth of the dimen-
sionless broadening coefficient, B, away from a band as a function of frequency). The
shortcoming of the far-wing approach is prediction of the temperature dependence, but
the character of a far wing must be driven by close binary interactions much like the
creation of a dimer, which nearly exhibits the observed temperature dependence in the
10 µm window region.

7.2.1.2 Carbon Dioxide Absorption

Carbon dioxide (main isotope) is a symmetric (i.e., nonpolar) linear molecule. It has a
small rotational constant, B (see Table 5.1), thus dense compact spectra. The dominant
fundamental vibrational frequencies of the main isotope are listed in Table 7.8. Only the
bending (ν2) and the asymmetric stretch (ν3) vibrational modes of the main isotope are
infrared active.

Vibrational Bands The locations of CO2 and H2O absorption bands define the bound-
aries of infrared atmospheric windows. Table 7.8 lists the location and integrated band
strength (see Section 7.2.1.1 for definition) of the most important vibrational bands,
including isotopic bands.

Because CO2 does not have a permanent dipole moment, the rotational band is not
infrared active. The absorption bands near 667 cm−1 are important contributors to the atmos-
pheric greenhouse effect because of the proximity to the peak of the room-temperature
blackbody curve. The 4.3 µm (ν2 band) divides the 3–5 µm window region into two parts.
Otherwise, the other CO2 bands coincide with water vapor absorption bands.

Window Regions In the window regions of the atmosphere, local line absorption by
weak absorption bands of CO2 is most important. The only continuum-type absorption
of concern is the blue wing of the ν3 fundamental band.

LOCAL LINE ABSORPTION Weak vibrational bands in the 10 and 5 µm regions have sig-
nificant local line effects for long-path propagation. In particular, the vibrational
transitions used in the CO2 laser also occur in the atmosphere. Laser radiation is at the
line center of the atmospheric CO2 absorption lines. For this reason, isotopic CO2
(because of the different masses the vibrational frequencies are slightly shifted) is pre-
ferred for optimal atmospheric propagation. Again, it is recommended to consult the
HITRAN database for details of the band structure. A typical line shift parameter for
nitrogen-broadened CO2 is approximately −0.008 cm−1/atm at 2 µm.
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CONTINUUM ABSORPTION Carbon dioxide continuum-type absorption occurs near 
4.1 µm. It is the blue wing of the 4.3 µm absorption band, as illustrated in Fig. 7.18 for
pure and N2-broadened CO2. The figure also shows a line-by-line calculation based on
Birnbaum’s line shape (Ref. 5.23). The shape of the wing is duplicated, but the magni-
tude is not because line mixing is not included in the model. However, a simple scaling
factor allows good agreement with experimental data (Kyle et al., Ref. 5.23). The wing
is exponential in nature as Birnbaum’s model (described in Chapter 5, Ref. 5.23) pre-
dicts, and covers the spectral region from 2400 to 2500 cm−1.

Based on the data in Fig. 7.18 and the theories discussed in Section 5.4.3, a simple
empirical formula for the CO2 continuum absorption coefficient (far blue wing of the
ν3 band), βcont, valid for typical atmospheric conditions, is given by

βconst = 9.0 × 103

(
T0

T

)2.5

p2
CO2

exp
[−5.0 × 10−2 (ν − 2350)

]

+ 1.623 × 103

(
T0

T

)2.5

pCO2 PN2 exp
[−4.47 × 10−2 (ν − 2350)

]
,

(7.18)
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Table 7.8 Band Locations and Integrated Intensities of Carbon Dioxidea (Goody and Yung, Ref. 7.3,
with permission)

Band Origin Upper State Lower State Sn(295 K ) × 1020

[cm−1] Isotope (ν1ν
1
2ν3) (ν1ν

1
2ν3) [cm]

618.03 16O12C16O 1000 0110 14.4
647.06 16O12C16O 1110 1000 2.22
648.48 16O13C16O 0110 0000 8.6
662.37 16O12C18O 0110 0000 3.3
667.38 16O12C16O 0110 0000 827.0
667.75 16O12C16O 0220 0110 64.9
668.11 16O12C16O 0330 0220 3.82
688.68 16O12C16O 1110 1000 1.49
720.81 16O12C16O 1000 0110 18.5

2271.76 16O13C16O 0111 0110 8.18
2283.49 16O13C16O 0001 0000 97.0
2311.68 16O12C16O 0331 0330 1.23
2319.74 16O12C18O 0111 0110 2.58
2324.15 16O12C16O 0221 0220 30.8
2327.59 16O12C16O 1001 1000 11.8
2327.43 16O12C16O 1001 1000 19.3
2332.11 16O12C18O 0001 0000 33.3
2337.64 16O12C16O 0111 0110 767.0
2349.15 16O12C16O 0001 0000 9600.0

3580.33 16O12C16O 1111 0110 8.04
3612.84 16O12C16O 1001 0000 104.0
3632.92 16O13C16O 1001 0000 1.60
3714.78 16O12C16O 1001 0000 150.0
3723.25 16O12C16O 1111 0110 11.4

4853.62 16O12C16O 2001 0000 0.81
4977.83 16O12C16O 2001 0000 3.50
5099.66 16O12C16O 2001 0000 1.09

6972.58 16O12C16O 0003 0000 0.15

aSn for isotopes is scaled according to the fractional isotopic abundance.



Fig. 7.18 Experimental absorption coefficient divided by the density squared for (a) pure CO2 at
T = 296 K and (b) N2-broadened CO2 at 296 K. Also shown are calculations based on Eq. 7.18
and a line-by-line calculation based on Birnbaum’s line shape (Delaye and Thomas, Ref. 7.58).
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where pCO2 and pN2 are in atmospheres, βcont is in km−1, and T0 is equal to 296 K. The
first term is the pure CO2 contribution and the second term is the CO2–N2 contribution.
The temperature factor exponent of 2.5 comes from the partition function (1/T from
Eq. 5.6), the half-width temperature dependence (~.0.5 from Eq. 5.154), and the
absorber density (1/T ). A similar model, empirically derived, has been proposed by
Roney et al. (Ref. 7.74) and validated against field measurements over the temperature
range 252–303 K.

7.2.1.3 Absorption by Other Gases

Other absorbing gases in the atmosphere of the earth are of low concentration but can
be important in limited spectral regions. Only band or local line absorption needs to be
considered. An important class of these gases is pollutants.

Methane Methane is a spherical-top nonpolar molecule with nine fundamental vibra-
tional modes. Degeneracies reduce the number of observable vibrational bands to four,
with three bands infrared active (see Table 3.2). Brown gives a recent discussion on
methane absorption bands (Brown, Ref. 7.75). Table 7.9 lists the location and integrated
intensity of the most important vibrational bands.

Ozone Ozone is an asymmetric-top polar molecule with three active fundamental
vibration bands and an active rotational band. Table 7.10 lists the band locations and the
integrated intensities for the most important bands of concern to propagation in the
atmosphere. A number of vibrational bands exist in the 10 µm window region and are
easily observed when the stratosphere is part of the transmission path. Also, ozone has
important electronic transitions that limit the amount of ultraviolet radiation from
reaching the surface of the earth (Molina and Molina, Ref. 7.76). These electronic
bands are illustrated in Fig. 7.19. Ozone strongly absorbs out to 300 nm, but continues
to absorb more weakly out to 350 nm.
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Table 7.9 Vibrational Bands of Methanea (Goody and Yung, Ref. 7.3, with permission)

Band Origin [cm−1] Isotope Upper State (ν1ν2ν3ν4) Sn(295) × 1020 [cm]

1302.77 13CH4 0001 5.7
1310.76 12CH4 0001 504.1
1533.37 12CH4 0100 5.5

2612 12CH4 0002 5.4
2822 13CH4 0101 4.3
2830 12CH4 0101 38.0
3009.53 13CH4 0010 29.3
3018.92 12CH4 0010 1022.0
3062 12CH4 0201 17.4

4223 12CH4 1001 24.0
4340 12CH4 0011 40.8
4540 12CH4 0110 7.2

aThe lower state is the ground state 000. Sn for isotopes is calculated on the basis of the total number of molecules of all 
isotopic species.



Nitrous Oxide Nitrous oxide is a linear polar molecule with a rotational and three
vibrational modes (the bending is degenerate). The atomic arrangement within the mol-
ecule is N–N–O. This is an asymmetric structure, and a permanent dipole is produced.
Thus, the pure rotational band and all three normal vibrational modes are infrared
active. Table 7.11 lists band locations and integrated intensities of absorption bands
important to atmospheric propagation.

Oxygen Molecular oxygen is a nonpolar diatomic molecule. Thus, first-order dipole
rotational and vibrational bands do not exist. However, because of the high concentration
of oxygen in the atmosphere, higher order effects are important. It has a rotational absorp-
tion band through magnetic dipole transitions at 60 GHz and a nonresonant band near 
10 kHz. The fundamental vibration band at 1557.379 cm−1 exists as a collision-
induced absorption band and is discussed below (see Section 7.2.1.4). Oxygen 
has near-infrared electronic bands used in lidar for the remote sensing of temperature.
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Table 7.10 Infrared Bands of the Main Isotope of Ozonea (Goody and Yung, Ref. 7.3, with 
permission)

Band Origin [cm−1] Upper State (ν1ν2ν3) Lower State (ν1ν2ν3) Sn(295) × 1020 [cm]

0.00 000 000 41.3

700.93 010 000 62.8

1015.81 002 001 17.4
1025.60 011 010 45.0
1042.08 001 000 1394.0
1103.14 100 000 67.1

2057.89 002 000 11.1
2110.79 101 000 113.4

3041.20 003 000 11.0

a Sn for isotopes is calculated on the basis of the total number of molecules including all isotopic species.

Fig. 7.19 Electronic absorption bands of ozone (a) Hartley and (b) Huggins (Goody and Yung,
Ref. 7.3, with permission; Molina and Molina, Ref, 7.76).



Table 7.12 lists the locations and integrated intensities of the near-infrared bands.
Figure 7.20 plots the oxygen absorption cross-section versus wavelength in the ultravi-
olet region, which determines the end of atmospheric transparency in the troposphere.
The air cutoff begins within the Schumann–Runge bands.

Carbon Monoxide Carbon monoxide is a diatomic polar molecule. The fundamental
vibration frequency is at 2143.27 cm−1 with an integrated band intensity of 9.81 × 10−18

cm. Figure 3.13 plots experimental low-pressure absorption coefficient of pure CO
versus wave number. The formation of the P- and R-branch structure is clear. Also, a
weak isotopic band (13C16O) is observed. The line positions of CO are well known, and
CO can be used as a frequency standard (Guelachvili and Rao, Ref. 7.77).

Trace Gases The previous gases significantly contribute to attenuation of radiation in
the atmosphere. Trace gases make only minor contributions, and represent pollutants
and gases formed naturally in the upper atmosphere. The list includes the freons, NO,
SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, HCN, H2O2, C2H2, C2H6,
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Table 7.12 Near-Infrared Band of Molecular Oxygen (Goody and Yung, Ref. 7.3, with permission)

Band Origin [cm−1] Electronic Transition Vibrational Transition Band Intensity [cm]

Infrared bands
6327.033 a ← X 0 ← 1 1.13 × 10−28

7882.425 a ← X 0 ← 0 1.82 × 10−24

9365.877 a ← X 1 ← 0 8.63 × 10−27

Red bands
11564.516 b ← X 0 ← 1 7.80 × 10−27

12969.269 b ← X 1 ← 1 9.42 × 10−26

13120.909 b ← X 0 ← 0 1.95 × 10−22

14525.661 b ← X 1 ← 0 1.22 × 10−23

15902.418 b ← X 2 ← 0 3.78 × 10−25

Table 7.11 Infrared Bands of Nitrous Oxidea (Goody and Yung, Ref. 7.3,
with permission)

Band origin [cm−1] Upper State (ν1ν
1
2ν3) Sn(295) × 1020 [cm]

0.00 0000 Not listed

588.77 0110 118

1168.13 0200 39
1284.91 1000 996

2223.76 0001 5710

2462.00 1200 33
2563.34 2000 135

3363.97 0201 11
3480.82 1001 197

aThe lower state is the ground state 000. Only the main isotope is considered.



and so on. Molecular constants for some of these gases can be found in Tables 3.1 and
3.2. Detailed line parameter values of these gases are contained in the HITRAN data-
base, and the reader is expected to use this convenient means of describing the
spectroscopic properties of these gases (see Section 7.2.2). Table 7.13 summarizes
some basic information on the main isotope of a few trace molecules (Goody and Yung,
Ref. 7.3).

7.2.1.4 Oxygen and Nitrogen Continua

The nitrogen continuum, due to collision-induced absorption in the fundamental vibra-
tion band, occurs between 4.7 and 3.8 µm; thus, in the earth’s atmosphere, it is masked
by CO2 absorption down to 4.1 µm. Figure 7.21a illustrates pure nitrogen spectra at a
variety of temperatures. The temperature dependence of the integrated intensity divided
by the density squared is also shown in Fig. 7.21b. A minor temperature dependence is
observed over the range of atmospheric temperatures, and this dependence is modeled
by the theory of Van Kranendonk. Following the work of Sheng and Ewing (Ref. 7.60),
we obtain

1

ρ2
a

∫
β(ν) dν = 1.376 × 10−1 J (T ∗) [cm4mol−2] (7.19)
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Fig. 7.20 Electronic transitions of molecular oxygen in the ultraviolet (Goody and Yung, Ref. 7.3,
with permission).



where

J (T ∗) = 12π

∞∫
0

x−8 {exp[−(4/T ∗)(x−12 − x−6)]
}

x2dx, and

T ∗ = T

100
.

(7.20)

The solid curve in Fig. 7.21b is Eq. 7.20. The coefficient in front of J(T*) in Eq. 7.19
is obtained by scaling to the experimental data. The band is structureless because the
brief duration of the collision determines the lifetime of the induced dipole moment,
and this produces broad spectral lines. The broad absorption lines blend together to
form the observed continuous absorption spectrum.

In the earth’s atmosphere, the effects of oxygen collisions on nitrogen continuum
absorption must also be considered. A dimensionless broadening coefficient, B, of 1.28
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Table 7.13 Trace Gas Absorption Bands

Molecule Classification Quantum Numbers Band Locations [cm−1] Integrated Intensity [cm]

NO2 Asymmetric top
000–000 0.0 2.16 × 10−19

010–000 749.65 5.38 × 10−19

001–000 1617.85 7.11 × 10−17

111–010 2898.19 1.06 × 10−19

101–000 2907.07 2.88 × 10−18

SO2 Asymmetric top
000–000 0.0 2.58 × 10−18

010–000 517.75 3.90 × 10−18

100–000 1151.71 3.52 × 10−18

001–000 1362.03 3.08 × 10−17

101–000 2499.87 3.95 × 10−19

NH3 Symmetric top
0000–0000 0.0 1.77 × 10−17

0100–0000a 931.64 1.08 × 10−17

0100–0000s 968.12 1.12 × 10−17

0001–0000s 1630.00 2.05 × 10−18

0001–0000a 1630.34 2.05 × 10−18

HCl Linear
0–0 0.0 8.07 × 10−18

1–0 2885.98 4.52 × 10−18

2–0 5667.98 1.07 × 10−19

HF Linear
0–0 0.0 5.17 × 10−17

1–0 3961.44 1.55 × 10−17

2–0 7750.79 4.96 × 10−19

HNO3 Asymmetric top
Rotational 0.0 5.81 × 10−19

ν5 879.11 1.26 × 10−17

2ν9 897.42 9.84 × 10−18

ν2 1709.57 2.01 × 10−17
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Fig. 7.21 Collision-induced absorption in the fundamental vibration band of N2. (a) Band shape
at various temperatures and (b) integrated intensity versus temperature (Thomas, Ref. 7.50).

was measured by Moskalenko et al. (Ref. 7.63) relative to oxygen (B is 0.78 when 
relative to nitrogen). Another gas that may be important to nitrogen continuum models
is water vapor. Because of the strong dipole moment of water vapor over the quadru-
pole moment of nitrogen, collisions between water vapor and nitrogen could be very
effective in inducing a dipole moment in nitrogen. Thus, the much smaller concentra-
tion of water vapor over nitrogen could be neutralized by a large broadening coefficient.
The value of B relative to water vapor has not yet been determined. Field measurements
suggest this may be important and capable of explaining observed discrepancies
between atmospheric measurements and laboratory measurements on pure nitrogen
(Thomas, Ref. 7.50). A recent analysis of the nitrogen continuum is given by Roney et
al. (Ref. 7.74).

The collision-induced pure rotation band of nitrogen also exists and is important for
millimeter-wave propagation modeling in the atmosphere. A simple formula for calcu-
lating the absorption coefficient [km-1] is given by

βcontN2( f ) = πap

75
(pN f )2

(
300

T

)4.5

(1 − 1.2 f 1.510−5)

where ap = 1.4 × 10−10, pN, the nitrogen partial pressure, is in kPa and f is frequency
in GHz.

The oxygen collision-induced absorption vibration band or continuum is centered at
1556 cm−1 and is masked by the strong ν2 vibration band of water vapor in the tropo-
sphere. It is very similar in nature to the nitrogen collision-induced absorption band.
The oxygen continuum is important for very long path attenuation in the stratosphere.
Figure 7.22 illustrates this collision-induced absorption band as a function of frequency
(Van Kranendonk, Ref. 7.59).



7.2.2 HITRAN Database

High-resolution calculations require a detailed database of spectral line parameters in
order to compute the formulas given in Chapter 5. With projected computer capabilities
of the future, computationally intensive atmospheric transmission codes will become
more standard. Thus the endeavor to improve and maintain such a database is vital to
satisfy the demands of current modeling requirements. The Phillips Laboratory
Geophysics Directorate (formally Air Force Geophysics Laboratory [AFGL]) was the
United States center for the HITRAN database from the late 1960s (see Ref. 7.78) until
recently. The database is now at the Atomic and Molecular Physics Division, Harvard-
Smithsonian Center for Astrophysics. The latest version of the database became
available in 2000. A comprehensive description of the HITRAN database (describing
the 1992 database) is available in the Journal of Quantitative Spectroscopy and
Radiative Transfer (Rothman et al., Ref. 7.79; also a review, Ref. 7.80).

The HITRAN2000 database is a line-by-line compilation of 1,080,000 spectral lines
characterized by eight different parameters (line position, strength, half-width, lower
energy level, etc.) representing 38 different molecules of atmospheric importance. The
database covers the spectral region from 0 to 23,000 cm−1. Table 7.14 lists the various
molecules with the relative isotopic abundance. Table 7.15 shows the parameter format
used to organize the data. Each molecule is identified by the number in Table 7.14 along
with an indication of the relative isotopic abundance (given by 1 for most abundant, 
2 second most abundant, etc.). Line position, νi , is given in wave numbers (cm−1). Line
strength, S′, is given in cm−1/(molec cm−2) (or cm) at T = 296 K and pa = 1 atm. To
find, S of Eq. 5.84, from the HITRAN definition of line strength, S′, use

S [cm−2] = NApa S′/RGC T = 7.3388 × 1021
( pa

T

)
(S′[cm]) (7.21)
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Fig. 7.22 The fundamental absorption band of oxygen for a path length of 40 meters. The den-
sities are: pure oxygen 9.59 Amagats; oxygen–nitrogen mixture, ρO2 = 1.09 Amagats, ρN2 = 56
Amagats; oxygen–argon mixture, ρO2 = 1.12 Amagats, ρAr = 57.9 Amagats (Shapiro and 
Gush, Ref. 7.62, with permission). (Note: 1 Amagat is the STP ratio of pressure in atm to 
temperature in K.)



Table 7.14 Molecular Species on HITRAN Database with Isotopic Abundance

Relative Natural Relative Natural
Molecule (#) Isotope Abundance Molecule (#) Isotope Abundance

H2O(1) 161 0.9973
181 0.0020
171 0.0004
162 0.0003

CO2(2) 626 0.9842
636 0.0111
628 0.0040
627 0.0008
638 0.00044
637 0.000009
728 0.000002

O3(3) 666 0.9928
668 0.0040
686 0.0020

N2O(4) 446 0.9904
456 0.0036
546 0.0036
448 0.0020
447 0.0004

CO(5) 26 0.9904
36 0.011
28 0.0020
27 0.0004

CH4(6) 211 0.9952
311 0.0111
212 0.00059

O2(7) 66 0.9952
68 0.0040
67 0.0008

NO(8) 46 0.9940

SO2(9) 626 0.9454
646 0.0420

NO2(10) 646 0.9916

NH3(11) 4111 0.9960
5111 0.0036

HNO3(12) 146 0.9891

OH(13) 61 0.9975
81 0.0020
62 0.00015

HF(14) 19 0.99985

HCI(15) 15 0.7576
17 0.2423

HBr(16) 19 0.5068
11 0.4930

HI(17) 17 0.99985

ClO(18) 56 0.7559
76 0.2417

OCS(19) 622 0.937
624 0.0416
632 0.0105
828 0.000004
822 0.0019

H2CO(20) 126 0.9862
136 0.0111
128 0.0020

HOCl(21) 165 0.7558
167 0.2417

N2(22) 44 0.9928

HCN(23) 124 0.9852

CH3Cl(24) 215 0.7490
217 0.2395

H2O2(25) 1661 0.9949

C2H2(26) 1221 0.9776

C2H6(27) 1221 0.9770

PH3(28) 1111 0.99955

COF2(29) 269 0.98654

SF6(30) 29 0.95018

H2S(31) 121 0.94988

HCOOH(32) 12661 0.983898

HO2(33) 16 0.995107

O(34) 6 0.997628

ClONO2(35) 5646 0.74957

NO+(36) 46

HOBr(37) 169 0.5056
161 0.4919

C2H4(38) 221 0.9773
231 0.02196
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Table 7.15 Example of Direct Image of Parameters on 1986 HITRAN Database

iso Mo Frequency ν0 Intensity S′ |R|2 γair γs EM n δ or γ ν ′ ν ′′ Q′ Q′′ IER IREF

31 800.276500 4.316E-25 3.777E-07 .0599 .0000 1162.00600 .76 0.00000 2 1 24 18  6 25 17  9 382 0
281 800.287000 2.270E-23 4.717E-05 .0750 .0000 1483.94700 .50 0.00000 2 1 17  7 18  7 381 0
101 800.301900 4.680E-23 2.421E-07 .0630 .0000 105.93600 .50 0.00000 2 1 8  4  4 − 9  3  7 − 84 0
31 800.304700 1.286E-24 1.131E.05 .0618 .0000 1637.93510 .76 0.00000 2 1 59  9 51 58  8 50 382 0
31 800.322500 1.243E-23 1.274E-07 .0610 .0000 720.65800 .76 0.00000 2 1 16 15  1 16 14  2 382 0
101 800.322700 1.840E-22 2.195E-07 .0630 .0000 277.86000 .50 0.00000 2 1 26  2 24 −25  1 25 − 84 0
23 800.326900 5.380E-26 2.668E-05 .0793 .1103 1327.41920 .75 0.00000 8 3 R  13 186 0
271 800.332030 1.100E-22 3.212E-02 .1000 .0000 2354.24000 .50 0.00000 19 14 4  8 382 0
101 800.361600 1.910E-22 2.278E-07 .0630 .0000 277.80700 .50 0.00000 2 1 26  2 24 +25  1 25 + 84 0
31 800.379600 7.380E-24 7.554E-07 .0602 .0000 707.21200 .76 0.00000 2 1 15 15  1 15 14  2 382 0
101 800.416400 5.300E-23 1.025E-05 .0630 .0000 851.01800 .50 0.00000 2 1 45  2 44 +44  1 43 + 84 0
271 800.416750 1.330E-22 2.035E-02 .1000 .0000 2221.36110 .50 0.00000 19 14 3  8 382 0
31 800.434100 4.273E-25 2.225E-05 .0618 .0000 1982.04700 .76 0.00000 3 2 50 10 40 49  9 41 382 0
22 800.444000 7.390E-26 1.396E-04 .0653 .0846 1844.81880 .75 0.00000 8 3 R  38 186 0
101 800.447000 5.180E-23 1.002E-05 .0630 .0000 851.04100 .50 0.00000 2 1 45  2 44 −44  1 43 − 84 0
21 800.451200 3.210E-26 1.731E-05 .0661 .0872 2481.56150 .75 0.00000 14 6 P  37 186 0

FORMAT (I2, I1, F12, 1P2E10.3, 0P2F5.4, F10.4, F4.2, F8.5, 2I3, 2A9, 3I1, 3I2)
= 100 characters per transition

This format corresponds as follows:
Mo - I2 Molecule number
iso - I1 Isotope number (1 – most abundant, 2 – second, etc.)
ν - F12.6 Frequency in cm−1

S′ - E10.3 Intensity in cm−1/(Molec • cm−2) @ 296 K
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R - E10.3 Transition probability in Debyes2 (presently lacking internal partition sum)
γ - F5.4 Air-broadened half-width (HWHM) in cm−1/atm @ 296 K
γs - F5.4 Self-broadened half-width (HWHM) in cm−1/atm @ 296 K
E ′′ - F10.4 Lower state energy in cm−1

n - F4.2 Coefficient of temperature dependence of air-broadened half-width
y - F8.5 Shift of transition due to pressure (presently empty; some coupling coefficients inserted)
ν ′ - I3 Upper state global quanta index
ν ′′ - I3 Lower state global quanta index
Q′ - A9 Upper state local quanta
Q′′ - A9 Lower state local quanta
IER - 3I1 Accuracy indices for frequency, intensity, and half-width
IREF - 3I2 Indices for look up of references for frequency, intensity, and half-width

IER code for frequency when used: IER code for intensity and half-width:

IER estimated error in wave number IER estimated error in wave number
0 ≥1. or undefined 0 Undefined
1 ≥0.1 and <1.0 1 Default or constant
2 ≥0.01 and <0.1 2 Average or estimate
3 ≥0.001 and <0.01 3 ≥20%
4 ≥0.0001 and <0.001 4 ≥10% and ≤20%
5 ≥0.00001 and <0.0001 5 ≥5% and ≤10%
6 <0.00001 6 ≥2% and ≤5%

7 ≥1% and ≤2%
8 <1%
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where T is in kelvins and pa is in atm. The transition probability, R(= 3 × 1036∑ |µdp|Iab/gl), where Iab is the isotopic abundance, is listed next in debyes squared.
Air-broadened (collision) half-widths, γc0air (= γcair (T0)), are given in cm−1/atm for

T = 296 K. Self-broadened half-widths, γc0a, are given in the same units where avail-
able. (Otherwise Table 5.1 must be used.) The lower state energy, En(= El), is given in
cm−1. The temperature dependence of the collision half-width follows a power law of
the form

γc = γc0(T0/T )n, (7.22)

where, based on Eq. 5.97,

γc0 = γc0air pair + γc0a pa,

and pair + pa = 1 atm. Based on the kinetic theory of gases, n is 0.5. However, exper-
imental data and more complete theories have shown that n = 0.5 is not always obeyed.
For this reason, the database also lists n, the coefficient of temperature dependence of
the air-broadened half-width.

Collisions with the absorbing molecule also produce shifts of line position. This is
called pressure shift, γc,i (see Eq. 5.138), and is generally a weak effect. A location for
this parameter is included on the database. Coupling coefficients, yi , are given, account-
ing for line mixing (see Section 5.6.3.1, and Eq. 5.101) for a few gases (e.g., O2) in this
position as well.

The quantum numbers of the upper and lower levels are listed next. The last two
entries cover data accuracy and references.

The HITRAN database is available from Dr. L.S. Rothman, Atomic and Molecular
Physics Division, Harvard-Smithsonian Center for Astrophysics or ONTAR Corp., 9 Village
Way, North Andover, MA 01845-2000 (www.ontar.com).

Other databases exist as well, and one is worth mentioning briefly. The GEISA data-
base is maintained by a French group and is very similar to the HITRAN database. It
includes molecules of importance to other planetary atmospheres and therefore may be
a useful source for molecules not included in HITRAN.

7.2.3 Band Models

Realistic models of the atmosphere that include aerodynamics, surface effects, and
clouds, as well as propagation, cannot handle detailed line-by-line absorption calcula-
tions. Also, broad-band systems do not require high-resolution models for meaningful
calculations. For these reasons, simplified models of vibration and rotation absorption
bands are often used.

7.2.3.1 Introduction

The most practical approach to computing atmospheric broad-band absorption (trans-
mittance) is to use an approximate, mathematically workable model of the band
structure. This assumes that line positions and strengths are distributed in a way that can
be represented by a simple mathematical formula. Band models compute transmittance
averaged over a spectral band as defined by
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τ(ν) = 1

�ν

ν + �ν
2∫

ν− �ν
2

τ(ν) dν. (7.23)

The most commonly used band models are listed below (from LaRocca, Ref. 7.82a, 
p. 5.11):

1. The Elsasser, or regular model, assumes spectral lines of equal strength, equal
spacing, and identical half-widths. The transmission function is averaged over an
interval equal to the spacing between the line centers.

2. The statistical, or random model, originally developed for water vapor, assumes
that the positions and strengths of the lines are given by a probability function. The
statistical model was worked out by Mayer [Ref. 7.82b] and (independently) by
Goody [Ref. 7.82c].

3. The random-Elsasser model is a generalization of the Elsasser and the statistical
models. It assumes a random superposition of any number of Elsasser bands of dif-
ferent strengths, spacings, and half-widths.

4. The most accurate, presently available model, is the quasi-random model, pro-
vided the averaging interval can be made sufficiently small. It requires the greatest
amount of computation of all the models.

Assuming that the shape of a single spectral line for a homogeneous path containing
a single absorbing gas is represented by the Lorentz formula, the absorptance for an
arbitrary path is given by

(1 − τ̄ )�ν = αabs�ν =
∫
�ν

[
1 − exp

(
− 1

π

∫
path

S′γρa

(ν − ν0)
2 + γ 2

dz

)]
dν. (7.24)

This limits the model to the collision broadened regime, which is valid for lower alti-
tudes. Assuming γ is independent of position; Eq. 7.24 then further reduces to

αabs�ν =
∫
�ν

[
1 − exp

(
− S′

π

∫
path

γ w

(ν − ν0)
2 + γ 2

)]
dν, (7.25)

where w = ∫pathρadz (= ρaz for a homogeneous path), and is defined as the absorber
amount in cm−2.1

A plot of single-line absorptance versus frequency is shown in Fig. 7.23 for differ-
ent path lengths, or for different values of w. For a short optical path of length z1, the
absorption is small, even at the line center. For a long path of length z3, the center of
the line is completely absorbed and any further increase in path length would only
change the absorption in the wings of the line. Absorption by paths of length equal to
or greater than z2 is considered strong-line absorption.

If, in Eq. 7.25, one assumes that the interval �ν is such that substantially the entire
line is included, then the limits of integration can be taken from −∞ to ∞ without intro-
ducing significant error. When these limits are used, Eq. 7.25 can be solved exactly for
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the total absorptance. Ladenburg and Reiche (Ref. 7.83) have evaluated the integral to
obtain

αabs�ν = 2πγψe−ψ [I0(ψ) + I1(ψ)] , (7.26)

where ψ = S′w/(2πγ ) and I0 and I1 are modified Bessel functions. For weak-line
absorption (ψ 	 1), Eq. 7.26 reduces to

αabs�ν = 2πγψ = S′w . (7.27)

and absorptance is linear with the absorber amount, w. Under conditions of strong-line
absorption, ψ is large and Eq. 7.26 reduces to

αabs�ν = 2
√

S′γ w, (7.28)

known as the square-root approximation. The above formulations for a single spectral line
are also valid for absorption when many spectral lines are present but do not overlap.

7.2.3.2 LOWTRAN Method

This method is empirical, yielding a form for the transmittance given by (wave number
resolution = 20 cm−1)

τ(λ) = f [Gν,w,Pn] = f [G(λ),w∗], (7.29)

where
Gν = spectral coefficients, independent of temperature and pressure, derived from the

HITRAN database with a resolution of 20 cm−1 and data points every 5 cm−1

w = absorber amount for path from z0 to z =
∫ z

z0
ρa(z′) dz′,

P = net atmospheric pressure, and
w∗ = equivalent absorber amount = w[P/P0(T0/T )1/2]n,
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Fig. 7.23 Absorbance versus frequency for a single line and for different path lengths or
absorber amounts.



where P0 = 1 atm and T0 = 273 K. This is a single-parameter band model that depends
only on w∗(P,T ), a density–path-length variable times pressure divided by the square
root of temperature raised to an empirical exponent n, and does not fully represent the
correct temperature dependence. For this reason, LOWTRAN calculations should be
checked against more complete models (such as FASCODE, introduced in Section
7.4.4.2) before a series of similar calculations are made. The pressure and temperature
factor in w∗ represents contributions from absorption line half-widths. The spectral
coefficients, Gν , are spectrally averaged according to the formula

Gν(T0) = 〈S′(T0,ν)〉�ν.

Gν is determined from the HITRAN database degraded to 20 cm−1 resolution and at a
fixed temperature (T = 273 K). Such an approach ignores the temperature dependence
of the Boltzmann factor and partition function. This is particularly important at the band
edges, where the rotational line J number is high.

The functional form of τ is determined empirically for three classes of atmospheric
gases: water vapor, ozone, and uniformly mixed gases (CO2, CH4, N20, etc.). Figure 7.24
illustrates these different curves (McClatchey et al., Ref. 7.84; Fenn et al., Ref. 7.85). The
details of the band structure are represented empirically by τ, which greatly simplifies the
previously described band model approach. Setting n in Eq. 7.29 to zero or unity, we
will obtain the weak-line or the strong-line approximation, respectively. The mean
values of n are determined to be 0.9 for H2O, 0.75 for the uniformly mixed gases, and
0.4 for ozone. The fact that such simple curves can be generated by a diverse database
is the strength of the LOWTRAN method. Figures 7.25 to 7.27 present the Gv functions
for ozone, water vapor, and the uniformly mixed gases, respectively, from 0 to 5000 cm−1.
The equivalent absorber amount is

w∗ =
∞∫

0

ρa
(
z′)( P

P0

√
T0

T

)n

dz′. (7.30)
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Fig. 7.24 LOWTRAN empirical 
transmittance functions versus log10
of the equivalent opticaldepth (Gνw∗)
(Fenn et al., Ref. 7.85).



Fig. 7.25 Absorption coefficient Gν for ozone from 350 to 5000 cm−1 (Fenn et al., Ref. 7.85).

Fig. 7.26 Absorption coefficient Gν for water vapor from 350 to 5000 cm−1 (Fenn et al., Ref. 7.85).
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The absorber density must be known as a function of altitude. Standard curves are used
for specific latitudes and time of year (McClatchey et al., Ref. 7.84). An example for
water vapor is given in Fig. 7.28.

7.2.3.3 MODTRAN Method

The single-parameter LOWTRAN approach is upgraded by a two-parameter 
MODTRAN (Refs. 7.3, 7.4) model, which features 2 cm−1 resolution. MODTRAN is
also supported by Phillips Laboratory. The main goal of MODTRAN is to improve tem-
perature dependent calculations. Significant improvements are listed below:

1. A 2 cm−1 resolution (FWHM) band model is used, so that spectral parameters are
calculated every wave number.

2. A more realistic temperature-dependent model is implemented. This is accom-
plished by using the partition function in Eq. 5.118 for line strength temperature
dependence, which is now included in the spectral parameter.

3. The molecules represented include water vapor, carbon dioxide, ozone, nitrous
oxide, carbon monoxide, methane, oxygen, nitric oxide, sulfur dioxide, ammonia,
and nitric acid.

4. High-altitude transmittance/radiance calculations are allowed, up to 60 km, where
local thermal equilibrium (LTE) is satisfied. This is made possible by including the
Voigt line shape (see Chapter 5) in the band model formalism. The Voigt line shape
also represents the pressure dependence of the band more accurately.

5. The Curtis–Godson approximation is used, which replaces an inhomogeneous 
path with a homogeneous one by using average values for the various band model
parameters.
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Fig. 7.27 Absorption coefficient Gν for the uniformly mixed gases from 350 to 5000 cm−1

(Fenn et al., Ref. 7.85).



Fig. 7.28 Values obtained for model atmospheres tabulated for the so-called standard seasonal
conditions (LaRoccha, Ref. 7.82a).
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Examples of the MODTRAN band model improvements are given in Section 7.4.

7.2.4 Refractive Effects of the Atmosphere

Precise spatial measurements within the atmosphere by remote electromagnetic tech-
niques require equally precise knowledge of the effects of atmospheric refraction.
Astronomical observations near the horizon must account for refraction. Ground-to-
ground line-of-sight communication links must account for the variable refractive
nature of the atmosphere. This is because the ray path is not rectilinear. Thus, atmos-
pheric refractivity must be understood as a function of observer’s position, range,
frequency, and atmospheric pressure and temperature. At infrared through ultraviolet
frequencies, refractivity primarily depends on the vertical temperature profile, and an
explicit relationship between refractivity and temperature is obtainable for a dry atmos-
phere. At microwave frequencies, the vertical water vapor profile also contributes
significantly to refraction. In this section, a model for the atmospheric index of refrac-
tion is constructed and a geometrical optics solution of the eikonal equation for the
optical ray path is developed for the earth coordinate system in the lower atmosphere.
For example, this is needed to precisely locate low-altitude lidar measurements. Also, a
more general model is presented for astronomical observations.

The real part of the atmospheric index of refraction is a function of pressure, tem-
perature, and frequency. Many interesting low-altitude refractive effects exist because
of tropospheric variations in density and water vapor partial pressure as a function of
position. Atmospheric refraction situations are broken down into three main categories;
astronomical, terrestrial and geodesic. Astronomical refraction addresses ray-bending
effects of objects outside the atmosphere of the earth relative to an observer within the
atmosphere. Terrestrial refraction considers the case when both object and observer are
within the atmosphere of the earth. Geodesic refraction is a special case of terrestrial
refraction where the object and observer are at low altitudes, as is commonly the case
for surveying.

This section begins with a discussion of atmospheric index of refraction models at
optical frequencies and then examines different propagation effects caused by refractive
index variations.

7.2.4.1 Index of Refraction of Atmospheric Gases

Because of their abundance, nitrogen and oxygen make significant contributions to the
refractivity of the earth’s atmosphere. These molecules have no infrared bands of
importance to the refractive index, thus only electronic bands need to be considered for
a model valid from near DC to the ultraviolet. Based on the work of Edlen (Ref. 7.89),
a simple Sellmeier-type model for the dry atmospheric refractivity, NDry, can be
obtained (Fenn et al., Ref. 7.90):

NDry = (n − 1) × 106 =
(

237.2 + 527.3ν2
1

ν2
1 − ν2

+ 11.69ν2
2

ν2
2 − ν2

)
PDry/T (7.31a)

with the corresponding Cauchy model given by
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NDry = (776.2 + 4.36 × 10−8ν2)
PDry

T
, (7.31b)

where ν is the wave number in cm−1, ν1 = 114000.0 cm−1, ν2 = 62400.0 cm−1, PDry is
the total dry air pressure in kilopascals (kPa), and T is the temperature in kelvins. This
model is valid up to altitudes where the mixing ratio between O2 and N2 is fixed and
over the spectral region from 0.2 to 2000 µm. Equation 7.31b compares well with other
models (Lorah and Rubin, Ref. 7.91; and Barrell and Sears, Ref. 7.92). Based on Eq. 7.7
for total pressure and given the temperature profile, the altitude dependence can also be
included in the dry air refractivity,

NDry[ν,T (z)] = (776.2 + 4.36 × 10−8ν2)
P(z0)

T (z)
exp

⎛
⎝−mg

kB

z∫
z0

dz′

T (z′)

⎞
⎠, (7.31c)

where z0 is the initial altitude, m is the average molecular mass of the atmosphere, g is
gravitational acceleration, and kB is Boltzmann’s constant. For altitudes up to 100 km,
mg/kB equals 34.16 K/km.

Moist air requires an additional term that accounts for water vapor. Based on the
work of Hill and Lawrence (Ref. 7.93) a Sellmeier-type term is obtained that represents
the electronic transition contributions of pure water vapor:

NH2O = 651.7ν2
3

ν2
3 − ν2

PH2O/T , (7.32a)

and the corresponding Cauchy model is

NH2O = (651.7 + 5.23 × 10−8ν2)PH2O/T (7.32b)

where ν3 = 111575.0 cm−1 and PH2O is in units of kPa. The net refractivity for a humid
atmosphere in the visible and near-infrared is the sum of NDry plus NH2O .

The model becomes more complicated at infrared wavelengths because the strong
infrared vibration–rotation bands of water vapor must be considered. The importance of
water vapor is demonstrated by the refractivity at radar frequencies, which is the sum
of all oscillator strengths, as given by (Refs. 7.93, 7.94)

NRf = (777.4PDry/T + 717PH2O/T ) + 3.744 × 106 PH2O/T 2. (7.33)

The RF refractivity can vary from 250 to 500 over the range of sea-level atmospheric
temperatures and water vapor partial pressures (Ref. 7.95). Most of this variability is
caused by water vapor. In particular, the last term in Eq. 7.33 represents the rotational
band of water vapor. A model can be constructed, based on Eqs. 5.125 and 5.126, and
Table 7.5, allowing reasonable prediction of refractivity at infrared wavelengths.
Temperature- and pressure-dependence of the band strength is determined by the gas
number density. The exception is the rotational band, where because of the low-
frequency band center, the tanh function in Eq. 5.126 contributes another factor of 1/T
to the band strength. Table 7.16 lists parameters for a refractivity Sellmeier model that
includes the effect of water vapor. This Sellmeier model reproduces available experi-
mental data at visible and microwave frequencies (Gray, Ref. 7.97; Crain, Ref. 7.98)
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and allows reasonable predictions (± 0.5 N units) at infrared frequencies for a humid
atmosphere. More accurate line-by-line models are possible, but will be more numeri-
cally complicated. A small discrepancy also exists between NDry(ν = 0), predicted
from Table 7.16, and NRf from Eq. 7.33, which can be explained by the neglected con-
tributions of the 60 GHz O2 band and other minor contributions from CO2, N2O, and
CH4 infrared absorption bands. A plot of atmospheric refractivity based on this
Sellmeier model is given in Fig. 7.29. This figure clearly points out the differences in
refractivity in the different spectral window regions of the atmosphere. At microwave
frequencies, refractivity is very sensitive to water vapor density and is larger in magni-
tude than for the other spectral regions. The visible and infrared are regions of minimal
refractivity. Refractivity at infrared and higher frequencies depends mostly on temper-
ature and very weakly on water vapor density. The ultraviolet refractivity is large and
features strong dispersion.
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Table 7.16 Oscillator Parameters for Atmospheric
Refractivity

Mode
Number νi [cm−1] �εa

i

1 ∞ 4.744 × 10−4 PDr y/T
2 114000.0 1.046 × 10−3 PDr y/T
3 62400.0 2.338 × 10−5 PDr y/T
4 111575.0 1.303 × 10−3 PH2O/T
5 3740.0 1.480 × 10−5 PH2O/T
6 1595.0 1.158 × 10−4 PH2O/T
7 125.0 7.488 PH2O/T

2

aPDr y, PH2O are in kilopascals, T is in kelvins.

Fig. 7.29 Atmospheric refractivity for T = 288 K, PDry = 99 kPa, and PH2O = 2 kPa
(dotted curve) and T = 288 K, PDry = 101 kPa, and PH2O = 0 kPa (solid curve), as a
function of frequency in units of wave number.



7.2.4.2 Earth–Atmosphere Ray Path Geometry

Given that the index of refraction depends on density and the density of the atmosphere
depends on altitude (see Section 7.1), then light propagating in the atmosphere will be
bent (typically toward lower altitudes or regions of higher density). The density of the
atmosphere does not vary greatly in the horizontal direction and only vertical structure
need be considered in most cases. To describe the ray path analytically, a suitable coor-
dinate system must be used, such as illustrated in Fig. 7.30. The surface of the earth and
the structure of the atmosphere can be conveniently represented by a spherical coordi-
nate system, as given by

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

In the above coordinate system for a spherically symmetric atmosphere, the angle θ(r),
satisfying the eikonal equation, is expressible as (Born and Wolf, Ref. 1.8, p. 123)

θ(r) =
r∫

r0

dr ′

r ′
√

n2(r ′)r ′2
const2 − 1

, (7.34)

where const is a constant and r0 is the initial altitude of the optical path. The constant
const is unspecified, which prevents immediate application of this formula. It will be
determined later by comparing it with the limiting form of another solution via the
eikonal equation. The above model is very general and allows rapidly varying vertical
structures and long path lengths to be handled in a straightforward manner. It will be
useful for astronomical refraction.
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Fig. 7.30 Earth–atmosphere
coordinate system.



The above geometry puts the origin of the coordinate system at the center of the
earth, and this is not a practical location. It is more natural to locate the origin on the sur-
face at the location of the observer. Thus, translating along the r-direction by the radius
of the earth, re, one obtains

r = re + z′ = re

(
1 + z′

re

)
= reη. (7.35)

This leads to the definition of a prime coordinate or earth coordinate system for small
angles θ and φ as illustrated in Fig. 7.30 and stated as

x ′ = rθ = ηreθ

y′ = rθφ = ηreθφ

z′ = r − re = (η − 1)re.

(7.36)

x ′ and y′ represent arc-lengths along the surface of the earth. The small-angle approx-
imation is valid for surface ranges up to 600 miles (i.e., θ does not exceed 10◦).
Although this is a logical coordinate system for describing beam propagation in the
atmosphere, it has the unfortunate property that the metric in the x ′- and y′-directions
changes with altitude. This is described by the metric tensor, g, for this coordinate
system,

g =
(

η2 0 0
0 η2 0
0 0 1

)
. (7.37)

This coordinate system is orthogonal because the metric tensor is diagonal. The metric
tensor is useful because it allows the definition of differential operators in a curvilinear
coordinate system (see Stratton, Ref. 4.1).

Let us now examine geometrical optics to find the ray path within this coordinate
system, given a refractive index profile. Of particular interest is transforming the vector
eikonal equation as given by Eq. 2.117 to the earth coordinate system. For nearly hori-
zontal propagation, it is known that Maxwell’s equations are modifiable by replacing
n(r ′) by η(z′)n(r ′) and treating the coordinate system as rectangular (see Freehafer 
et al., Ref. 7.106). This approach is also consistent with evaluating the gradient, given the
metric tensor of Eq. 7.37, for nearly horizontal propagation. Thus the eikonal equation
becomes

�ψ(r ′) = η(z′)n(r ′)ŝ = m(r ′)ŝ. (7.38)

m(r ′) is the commonly used modified refractive index. Effectively, this refractive index
profile correction accounts for the curvature of a spherical earth. It is worth noting that
η(z′) can be modified to include deviations from a spherical surface (mountains, etc.).
Since n is close to one, then

m(r ′) = n(r ′) + z′

re
. (7.39)

For re = 6378.4 km, then 1/re = 1.568 × 10−4 km−1.
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Geometrical optics equations in two dimensions (x ′z′-plane) describing the ray 
path in the earth coordinate system assuming a vertically varying atmosphere (i.e.,
m(r ′) = m(z′)), are given by the following form of the eikonal equation (see Eq. 2.119
and Born and Wolf, Ref. 1.8)

d

ds

(
m(z′(s))

dx ′(s)
ds

)
= 0,

d

ds

(
m(z′(s))

dz′(s)
ds

)
= dm(z′)

dz′ .

(7.40a)

Given the vertical atmospheric refractivity, these equations can be used to describe the
optical ray path. Note that the gradient of the refractivity determines the ray path. The
following boundary conditions are applied at x ′ = 0 for a ray initially launched at z′

0
with slope tan δ,

at z′ = z′
0,

dx ′

ds
= cos δ and

dz′

dx ′ = tan δ, (7.40b)

where (dx ′)2 + (dz′)2 = (ds)2 is satisfied. To be consistent with the approximations
leading to Eq. 7.38, δ must be kept small. The differential, ds, is the incremental path
length. It can be expressed in terms of the vertical incremental path by solving the first
equation in Eq. 7.40a with the boundary conditions of Eq. 7.40b and requiring the
above equation to be satisfied. This process leads to the following useful relationship:

ds = dz′√
1 − m2(z′

0)

m2(z′) cos2δ

. (7.41a)

Integration along s yields the path length in a refractive atmosphere, thus

s(z′) =
z′∫

z′
0

dz′′√
1 − m2(z′

0)

m2(z′′)cos2δ

, (7.41b)

where s(z′
0) = 0.

Again applying the above boundary conditions, to the second equation in Eq. 7.40a,
reduces the two equations to a single differential equation, as given by

d2z′(x ′)
dx ′2 = m(z′)

m2(z′
0)

sec2δ
dm(z′)

dz′ = sec2δ

2m2(z′
0)

dm2(z′)
d ′z

. (7.42)

By inverting the above differential equation to solve for x ′(z′), an integral equation can
be obtained for δ ≥ 0,

x ′(z′,δ) = reθ(z′) =
z′∫

z′
0

dz′′√
m2(z′′)
m2(z′

0)
sec2δ − 1

. (7.43a)
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The quantity in the square root must be positive for a real path, thus m(z′) sec δ must be
greater than m(z′

0) for all z′ ≥ z′
0. This is the case for a standard atmosphere and other

conditions (see Section 7.2.4.5), but will not be satisfied for trapping
(m(z′) = m(z′

0) for all z′, δ = 0) or ducting (see Section 7.2.4.6). For z′ < z′
0 and δ < 0,

the solution for x ′(z′) is

x ′(z′,δ) =
z′

0∫
z′

dz′′√
m2(z′′)
m2(z′

0)
sec2δ − 1

. (7.43b)

When z′ = 0 the ray grazes the surface of the earth or terminates there. This locates 
the optical horizon. These integral equations are the basis for terrestrial refraction for
any m-profile that satisfies m(z′) sec δ > m(z′

0). Note that Eq. 7.43a is of a somewhat
similar form to Eq. 7.34.

Although Eqs. 7.43a and b are useful for most cases, they require numerical solu-
tion. Possible exact solutions of Eq. 7.42 for z′(x ′) also should be examined. Equation
7.42 can be simplified by assuming m(z′) can be represented by a polynomial. Let us
examine Eq. 7.42 when the modified index is expressible in the general quadratic form,

m(z) = 1 + A + Bz + Cz2. (7.44)

The coefficients, A, B, and C are functions of temperature, total atmospheric pressure
(dry), water vapor partial pressure, and frequency. Using the above form for m(z′),
Eq. 7.42 simplifies to

d2z′(x ′)
dx ′2 = 1 + A + B ′

z + Cz′2

(1 + A + Bz′
0 + Cz′

0
2
)2

(B + 2Cz′) sec2δ (7.45a)

with the initial boundary conditions that

z′(x ′ = 0) = z′
0 and

dz′

dx ′ (x ′ = 0) = tan δ. (7.45b)

Also, it is of interest at infrared, visible, and ultraviolet frequencies to establish the
relationship between the ray path and the vertical temperature profile. This can be done
in a straightforward manner by assuming that m(z′) ≈ 1(e.g., A + Bz′ + Cz′2 	 1 or
z′ < 20 km). For low-altitude propagation modeling, this is an excellent approximation.
Also using Eqs. 7.31c and 7.39, the gradient of the modified index can be determined.
Based on Eq. 7.42, the resulting differential equation then becomes

d2z′

dx ′2 = dm(z′)
dz′ sec2δ = sec2δ

re
− (7.762 × 10−4 + 4.36 × 10−14ν2)P(0)

T 2(z′) cos2δ

×
(

dT(z′)
dz′ + mg

kB

)
exp

⎛
⎝−mg

kB

z′∫
0

dz′′

T (z′′)

⎞
⎠.

(7.46)

The approximations are consistent with applications supporting low-altitude refraction
and this differential equation is the basis for refractivity models used for geodesic
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refraction. Also, Eq. 7.44 leads to z′(x ′) rather than x ′(z′), which is the function of prac-
tical interest.

The above approaches are fundamentally different from past ray-trace methods. One
common approach is to apply Snell’s law to a vertically stratified medium with layers
of constant refractivity. A better approach is based on the eikonal equation applied to a
vertically stratified atmosphere with layers of constant refractive gradient. The layer
thickness must be thin enough so that the refractivity is accurately modeled. The ray
path is then determined by integrating along the layers. These past models are numerically
intensive because many layers are needed, which is not an issue for past applications.
However, Raman and DIAL lidar require considerable signal processing to achieve the
final results, especially when high spatial resolution is required and efficient ray-path
models are needed. The approaches given above provide this efficiency by using at least
a quadratic representation of the refractivity and can be plotted in a flat or spherical
earth geometry. As the next section will show, ray tracing is not always necessary at low
altitude, since a closed-form solution to the eikonal equation is obtainable if the vertical
refractive profile is quadratic in altitude.

7.2.4.3 Terrestrial and Geodesic Refraction

An interesting solution to Eq. 7.46 is terrestrial refraction within the troposphere. In this
region the temperature decreases linearly (T (z′) = T0 + az′) with altitude as discussed
in Section 7.1. Thus Eq. 7.7 is used to represent the pressure as a function of altitude.
A Taylor series expansion of Eq. 7.7 generates an expression for the pressure with rea-
sonable accuracy in polynomial form. To third order in the expansion, it is

P(z)

P(0)
= 1 − mg

kB T0
z + 1

2

(
mg

kB T0

)(
a

T0
+ mg

kB T0

)
z2

− 1

6

(
mg

kB T0

)(
a

T0
+ mg

kB T0

)(
2a

T0
+ mg

kB T0

)
z3 + · · · .

(7.47)

For a standard atmosphere (P(0) = 101.3 kPa, T0 = 288K, and a = −6.5 K/km), the
above equation becomes

P(z) = 101.3 − 12.0z + 0.577z2 − 0.0141z3, (7.48)

where z is in km. This formula agrees closely with values for the U.S. 1976 Standard
Atmosphere in the troposphere. Using this result and knowing the temperature depend-
ence with altitude, a cubic polynomial for visible and infrared refractivity as a function
of altitude can be obtained from Eq. 7.31,

N (z,ν) =(272.6 + 1.53 × 10−8ν2)(1 − 0.096z + 3.5 × 10−3z2

− 5.94 × 10−5z3).
(7.49)

Based on Eq. 7.39, the modified refractivity is

M(z,ν) = N (z,ν) + 156.8z. (7.50)
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Based on Eqs. 7.46 and 7.47, an explicit differential equation can be obtained, where a
quadratic representation of the modified index is used. The result is

d2z′(x ′)
dx ′2 = (B + 2Cz′) sec2δ, (7.51a)

where the coefficients B and C are frequency dependent as,

B(ν) =
[

156.8 − η(ν)
P(0)

T0

(
34.16

T0
+ a

T0

)]
× 10−6 [km−1], (7.51b)

C(ν) = η(ν)
P(0)

T 2
0

17.08(3a + 34.16) × 10−6 [km−2], (7.51c)

and based on Eq. 7.31b, the dispersion factor is defined to be

η(ν) = 776.2 + 4.36 × 10−8ν2, (7.51d)

where ν has units of wave numbers. The solution of Eq. 7.51a, using the boundary con-
ditions of Eq. 7.45b, for the ray path is obtained in a straightforward manner to be

z′(x ′,δ) =
(

z0′ + B

2C

)
cosh

(
sec δ

√
2Cx ′

)
+ sin(δ)√

2C
sinh

(
sec δ

√
2Cx ′

)
− B

2C
. (7.52)

This result describes the path an optical ray takes as it propagates through the lower
atmosphere (z′ < 20 km). The coefficient B represents the reciprocal radius of curva-
ture of the ray to the zeroth order or in regions of constant refractivity gradient. It is this
term that is used in many ray-tracing procedures. The quantity 1/(Bre) is called the
refraction coefficient and can be used to correct the geometric horizon to the optical
horizon (see Eq. 7.55). For a typical standard atmosphere (dN/dz′ = −40), the value of
1/Bre is approximately 1.33 or 4/3. (This procedure is often referred to as the 4/3 earth
correction).

The function z′(x ′) is in terms of a rectangular coordinate system. To plot results in
a curved earth or spherical coordinate system, the following transformation is used to
obtain z′

e,

θ(x ′,z′) = sin−1

(
x ′

re + z′

)
,

z′
e = (re + z′) cos

[
θ(x ′,z′)

]− re.

In the case of the 1976 U.S. Standard Atmosphere model, Eqs. 7.47 and 7.48 can be
applied and results are plotted in Fig. 7.31a for a curved earth.

For near-horizon observations within the lower troposphere (i.e., when√
2C ′

x 	 1 and δ ≈ 0), Eq. 7.52 reduces to a quadratic form, as given by

z′(x ′) = z′
0 + δx ′ + B + 2Cz′

0

2
x ′2. (7.53)
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This formula can be used to compute the location of the optical horizon, x ′
oh , when

B + 2Cz′
0 > 0. This occurs when z′(x ′) = 0 for the smallest downward-looking angle,

δoh . Solving Eq. 7.53, for an observer located at x ′ = 0 and altitude z′ = z′
0, we obtain

x ′
oh =

√
2

B + 2Cz′
0

√
z′

0 = 103

√√√√√ 2z′
0(

dM(z′)
dz′

)
z′ = z′

0

(7.54a)

where the units are km. The optical horizon angle, δoh, is

δoh = −
√

(4Cz′
0 + 2B)z′

0 = −10−3

√
2

(
d M(z′)

dz′

)
z′ = z′

0

z′
0. (7.54b)

For low altitudes, z′
0 	 1 km, B � 2Cz′

0, and the 1976 U.S. Standard Atmosphere (i.e.,
B = 130 × 10−6 km−1), a simple formula for x ′

oh is obtained:

x ′
oh = 124

√
z′

0 [km].
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Fig. 7.31 (a) 1976 U.S. Standard Atmosphere (a = −6.5K/km, dN/dz′ = −26 km−1) and 
(b) temperature inversion (a = 90 K/km, d N/dz′ = −136 km−1 λ = 0.5 µm and z′

0 = 0.01 km).



This result closely compares to other published formulas for the optical horizon
(McCartney, Ref. 7.99). Thus, an observer at altitude, z′

0 can see beyond the geometri-
cal horizon (x ′

gh = (2re)
1/2z′1/2

0 = 113z′1/2
0 km). How far beyond the geometrical

horizon depends on the refractivity gradient, B (for a constant m-gradient profile). In
terms of the refraction coefficient, the optical horizon is

x ′
oh = x ′

gh

√
1

Bre
. (7.55)

The formula for calculating the optical horizon, x ′
oh , (in nautical miles) given the

observer altitude (in units of feet), in a standard atmosphere is given by

x ′
oh = 1.14z′1/2

0 [nmi].

The accuracy of Eq. 7.43 depends on deviations of atmospheric density from standard
which are almost always present. Temperature inversions are a good example of a
common deviation from standard and are illustrated in Fig. 7.31b. This point is dis-
cussed further in future sections after the discussion of astronomical refraction.

7.2.4.4 Astronomical Refraction

The prior formulas for terrestrial refraction cannot be applied to long ray paths that 
propagate completely through the atmosphere and for near-vertical viewing angles.
Therefore, for the development of astronomical refraction models, we return to 
Eq. 7.34, which does not use the approximations that lead to Eq. 7.42 and the modified
index.

The boundary condition of Eq. 7.45b can be applied to determine the unknown con-
stant, const , in Eq. 7.34. In spherical coordinates, Eq. 7.45b becomes

dx ′

dz′ = cot δ = re
dθ(r)

dr
at z′ = z′

0.

The solution of Eq. 7.34, imposing the above conditions, leads to

const = n(z′
0)(re + z′

0) cos δ.

Thus, for an observer at altitude z′
0 viewing an astronomical object at an altitude z′

above a spherically stratified earth, the refracted path zenith angle for δ ≥ 0 is

θ(z′,δ) =
z′∫

z′
0

d ′′z

(re + z′′)
√

[n(z′′)(re+z′′)]2

[n(z′
0)(re+z′

0)]
2 sec2δ − 1

. (7.56a)

The above equation has been applied by astronomers and navigators for many years to
correct for atmospheric refraction. An approximate solution has been obtained by
Garfinkel (Ref. 7.102) for a standard atmosphere. For general index of refraction 

OPTICAL PROPAGATION IN GASES 321



vertical profiles, numerical techniques to obtain the refracted path are necessary. 
A simple variable substitution leads to the following equivalent form for Eq. 7.56a:

θ(Z(z′,δ),δ) =
cos δ∫

Z(z′,δ)

1√
1 − Z ′(z′′, δ)2

d Z ′
dn[Z ′(z′′,δ)]

dz′′
C(δ)

Z ′(z′′,δ) + 1
, (7.56b)

where the following substitutions have been made:

C(δ) = n(z′
0)(re + z′

0)

sec δ
, Z(z′, δ) = n(z′

0)(re + z′
0)

n(z′)(re + z′)
cos δ, and

Z ′(z′′, δ) = n(z′
0)(re + z′

0)

n(z′′)(re + z′′)
cos δ.

The above integral can be solved exactly when the index of refraction is constant. This
is essentially true above the atmosphere of the earth (n ∝ 1). Within the atmosphere a
numerical approach is needed. A reasonably efficient numerical approach is to apply
Gauss–Chebyshev quadrature to the above integral. The implementation of a 200-term
Gauss–Chebyshev quadrature from z′

0 to (z′
1 =) 100 km and the exact solution for con-

stant index from 100 km to z′ leads to the following approximate form:

θ(z′,δ) =
200∑
i=1

π f (Z ′
i (z

′
1,δ),δ)

200
+ sin−1

(
re + z′

0

re + z′
1

n(z′
0) cos δ

)

− sin−1

(
re + z′

1

re + z′ cos δ

)
,

(7.56c)

where the first argument of f ( ) is defined as

Z ′
i (z

′
1,δ) = cos δ + Z(z′

1,δ)

2
+ cos δ − Z(z′

1,δ)

2
cos

(
2i − 1

400
π

)

and the function is

f (Z ′
i ,δ) =

√[
Z ′

i − Z(z′
1,δ)
]
(cos δ − Z ′

i )√
1 − Z ′

i
2

1(
dn[z′′(Z ′)]

dz′′

)
Z ′

i

C(δ)

Z ′
i

+ 1
.

Of particular interest is the computation of the deviation angle, δdeν , as a function of
the inclination angle (or elevation angle  = π/2 − δdeν ), as defined in Fig. 7.32. The unre-
fracted ray path can be determined exactly from Eq. 7.56 for n constant. The result is

θunre fr (z
′,δ) = sin−1(cos δ) − sin−1

(
re + z′

0

re + z′ cos δ

)
.
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The difference between the unrefracted and refracted inclination angles is the deviation
angle, δdeν(z′

0,δ). It is given in terms of the refracted and unrefracted zenith angles by

δdeν(z
′
0, δ) = θunre fr (z

′,δ) − θ(z′,δ) + re + z′
0

re + z′ (sin θunre fr − sin θ). (7.57)

This result is checked by computing the angular deviation of an astronomical object
observed through the 1976 U.S. Standard Atmosphere. Table 7.17 lists the results based
on prior data and this approach. The temperature profile as given by Fig. 7.5 is that of the
Standard Atmosphere and is used in conjunction with Eq. 7.31c to provide a model of the
vertical refractivity. Using this profile, Eq. 7.57 reproduces the results of Table 7.17.

It is interesting to note that the angular extent of the sun is 32 arc-min and the max-
imum deviation or refraction correction angle for a standard atmosphere is 34.5
arc-min, thus even though the setting sun is below the geometrical horizon it can still
be observed. Note also from Table 7.17 that the refraction correction angle varies across
the angular extent of the sun near the horizon and thus the sun appears more flattened
at the bottom than at the top. This point is illustrated in Fig. 7.33, which shows a pho-
tograph of the setting sun and the corresponding computed shape based on the above
model. The photo was taken during the summer at an elevation on approximately 130 m.
The temperature at the observer was 31°C. Typical variations in atmospheric index of
refraction cause an uncertainty in refraction correction angles listed in Table 7.17 with
an RMS deviation of 0.16 arc-sec (Schaefer and Liller, Ref. 7.103). Also, the Standard
Atmosphere refractivity profile seldom occurs in the lower troposphere and significant
differences from the standard deviation angle do occur. Commonly observed mirage
effects testify to variability of atmospheric conditions.

Also, dispersion of the refractive index causes the refraction correction angle to vary
slightly for different frequencies (colors). Thus, the setting sun disappears one color at
a time, red first, blue last. This refractive condition explains the observance of the
“green spot” (Aden and Meinel, Ref. 7.100) at sunset when the horizon is exceptionally
clear in a standard atmosphere. The popular but rarely observed “green flash” requires
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Fig. 7.32 Illustration of the
angle of deviation.



Fig. 7.33 The flattening of the setting sun just above the the horizon, an example of astronomi-
cal refraction.
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ducting phenomena (Ref. 7.100) and this situation is presented in the last section.)
Dispersion effects can also be computed using Eqs. 7.55 and 7.56 by including the fre-
quency dependence of the index of refraction. For example, Greenler’s book contains a
photo of Venus near the horizon (Ref. 7.101). The color separation of the image is dis-
tinct and estimated to be 0.006° degrees from red to green. This value is consistent with
the computed angle, based on the above model, for the 1976 U.S. Standard Atmosphere.

7.2.4.5 Subrefractive, Superrefractive, and Trapping Effects

As mentioned previously, the standard refractive profile of the atmosphere hardly ever
exists, and corrections to this special case must be made if high accuracy is required.
Either the atmospheric index of refraction increases less rapidly (or even decreases)
with altitude than standard, which produces subrefractive conditions, or the atmos-
pheric index increases more rapidly with altitude, which produces superrefractive
conditions. Such conditions produce non normal images or mirages. Subrefractive
effects are termed inferior mirages and superrefractive effects are also called superior
mirages (Ref. 7.101). Because these are nonstandard processes, detailed knowledge of
the temperature and pressure as a function of position are required to calculate such
effects along an optical path. Subrefractive effects typically occur over a hot surface
such as a road in the summer time. An apparent reflective surface is observed because
the rays are bent upward, toward the cooler, denser air. Superrefractive effects typically
occur over cold surfaces, such as snow or ice. A good example is the fata morgana, which
can produce amplified images of rough snow and make them appear as pillars or walls
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Table 7.17 Sea-level Refraction Correction Angles for Elevation Angles of Astronomical Lines
of Sight Through a Standard Atmosphere

Observed Altitude Refraction Correction Observed Altitude Refraction Correction
[deg min] [min] [deg] [min]

0 00 34.5 11 4.9
15 31.4 12 4.5
30 28.7 13 4.1
45 26.4 14 3.8

1 00 24.3 15 3.6
15 22.5 16 3.3
30 20.9 17 3.1
45 19.5 18 2.9

2 00 18.3 19 2.8
15 17.2 20 2.6
30 16.1 25 2.1
45 15.2 30 1.7

3 00 14.4 35 1.4
4 30 10.7 50 0.8
5 9.9 55 0.7
6 8.5 60 0.6
7 7.4 65 0.5
8 6.6 70 0.4
9 5.9 80 0.2

10 5.3 90 0.0



on the horizon (Ref. 7.101). Figure 7.31b illustrates the ray path for superrefractive con-
dition. Trapping is a special case of superrefraction and exists when the refractivity
gradient matches −1/re . The modified index is zero and the ray path matches the curva-
ture of the earth. Based on Eq. 7.54a, the optical horizon goes to infinity when trapping
occurs. This situation frequently occurs in the arctic region, when the earth appears
abnormally flat (Ref. 7.16). It is called the Hillingar effect. Figure 7.34 plots the ray path
as a function of range for dM/dz′ = 0.
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Table 7.18 Refractivity Gradients for Different Refractive Conditions

Refractivity Gradient Modified Refractivity 
[km−1] Gradient [km−1] Category

dN/dz > 0 dM/dz > 157 Subrefractive
0 > dN/dz > −79 157 > dM/dz > 78 Standard
−79 > dN/dz 78 > dM/dz Superrefractive
dN/dz = −157 dM/dz = 0 Trapping

Fig. 7.34 The atmospheric ray path for green light in a trapping environment: (a) flat earth geometry
and (b) spherical earth geometry.



The different refractive conditions of the atmosphere are commonly categorized
according to ranges of vertical refractivity or vertical modified refractivity gradient.
They are listed in Table 7.18 lists them below. This categorization is useful but not com-
plete, since higher order derivatives are not considered. Higher order derivatives are
needed to describe ducting phenomena.

7.2.4.6 Ducting Effects

A duct is an atmospheric dielectric waveguide that limits electromagnetic ray propagation
to one-dimensional (horizontal) spreading, maintaining intensity for long distances.
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Fig. 7.35 Ray path in a ducting atmosphere for an observer at 0.25 km and frequency of 20,000
wave numbers. (a) Modified refractivity profile as a function of altitude. (b) The ray path in a flat
earth geometry for viewing angles of δ = −0.004 (solid black), − 0.002 (solid gray), 0 (solid heavy
black), 0.002 (dash–dot), and 0.004 (dash) radians. (c) The ray path in a spherical earth geometry
for δ = −0.004, 0, and 0.004 radians (bottom curve = surface of the earth). All distances are in km.



This condition requires a layered atmosphere with a high-index layer surrounded by
low-index layers (this can occur during a temperature inversion). Good visual examples
are the rarely observed “green flash,” the Novaya Zemlya effect, and the more common
serrated edge of the setting sun (Refs. 7.12–7.16).

To understand how ducting may occur, consider Eq. 7.52. When C is negative, the
hyperbolic functions become oscillatory. Thus the rays do not diverge, as they normally
do, but remain within a fixed altitude range. For example, given B = 2.2 × 10−4 and
C = −3.15 × 10−4, an atmospheric waveguide is formed, as illustrated in Fig. 7.35a.
This represents a high-density layer above a low-density layer. The resulting ray path is
computed based on Eq. 7.52 for flat-earth and curved-earth geometries. The results are
plotted in Fig. 7.35. A duct height, z′

duct, can be defined, based on Eq. 7.43. A ray cannot
propagate above the altitude where m(z′

duct) ≈ m(z′
0), since δ is kept small. A more

useful definition that allow for multiple angles is m(z′
duct) = m(0). Thus, in a ducting

environment, the maximum altitude (Eq. 7.43) that can be evaluated is z′
duct . This point

is illustrated in Fig. 7.35a. The duct height is approximately 0.7 km. The ray trace in 
Fig. 7.35b shows no rays above this height for the range of angles chosen.

7.3 Molecular Scattering

Scattering phenomena dominate in the visible and near-UV, whereas absorption phenom-
ena dominate in the vacuum-UV and -IR. Generally, molecular scatter by atmospheric
gases is weak but can dominate over other loss mechanisms in the ultraviolet. Particle
scatter is always present, to some degree, in every spectral window.

7.3.1 Molecular Rayleigh Scatter

Based on Sections 7.2.4 and 4.4.1, the scatter coefficient for molecular Rayleigh scat-
ter in a dry atmosphere can be obtained to be (in cm−1)

βsca(ν) = 32π3

3NA
η2(ν)

PDry

RGC T
ν4, (7.58)

where RGC is the ideal gas constant, NA is Avogadro’s number (NAkB = RGC), PDry is
in atm, T is in K and η(ν) = (n(ν) − 1)RGC T/PDry(= 6.452 + 3.62 × 10−10ν2) . By
defining the function η(ν), the pressure and temperature dependence of the molecular
Rayleigh scatter coefficient is explicitly indicated. This result assumes an isotropic
polarizability of atmospheric molecules. This is seldom the case, and a depolarization
factor δ must be included in the following empirical manner:

βsca(ν) = 32π3

3NA
η2(ν)

PDry

RGC T
ν4

(
6 + 3δ

6 − 7δ

)
, (7.59)

where δ = 0.035 for air. Figure 7.36 plots the Rayleigh scatter coefficient for sea-level
conditions from 1000 cm−1 to the air cutoff. Notice the strong attenuation in the UV,
thus molecular scatter provides some protection against the UV rays from the sun.
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7.3.2 Blue Sky Background

The blue sky is an example of molecular Rayleigh scatter. To fully appreciate this fact,
we must consider the radiant source (the sun), propagation medium (the atmosphere),
and detector (the human eye). In Chapter 5, it was suggested that the photosphere of the
sun is in thermal equilibrium and radiates like a 5900 K blackbody. Although this is true
in the infrared, it is not an accurate representation in the visible and ultraviolet. The real
sun features a non-thermal-equilibrium radiation peak in the blue spectral region above
the thermal-equilibrium level and is below the thermal-equilibrium level in the ultravi-
olet, as illustrated in Fig. 7.37a. Using this solar irradiance model and the spectral
response function of the eye plotted in Fig. 7.37b with the source-free radiation transfer
equation, we obtain yields the observed sky radiance. Thus, using Eqs. 7.59, 4.88, and
2.85, we have the sky radiance as a function of wavelength, zenith angle and altitude:

Lsky(λ,θ,z) =
z∫

z0

βsca(λ, z′)Ps(θ)Msolar (λ) e(τOD(λ,z′,θ)−τOD(λ,z,θ)) d ′z
cos(θ)

. (7.60)

For an observer at different altitudes viewing the clear sky at a 45° angle with the sun
directly overhead, the sky radiance can be obtained. Figure 7.37b illustrates the results.
Note that the observed radiance peaks at 0.49 µm, the color of the blue sky. There is
also some minor ozone absorption, which weakly reduces the green and yellow portions
of the spectrum and enhances the purity of the blue sky color. The blue sky color is also
observed at altitudes of 10 km (typical airplane altitude); however, above 20 km, the
darkness of space begins to dominate. More complete models for background radiance
are presented in Chapter 11.
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Fig. 7.36 Molecular Rayleigh scatter coefficient for PDr y = 1 atm and T = 288 K, based on 
Eq. 7.59.



7.4 Applications and Computer Codes

7.4.1 Remote Sensing of Gases

The history of optical remote sensing begins with early astronomy. Knowledge of the
sun, moon, and planets was based on remote sensing using visible wavelengths. When
spectroscopic techniques were developed, the useful spectrum extended beyond the vis-
ible and into the infrared and ultraviolet. Information on temperature, molecular
species, and concentration became available. Today, optical remote sensing represents
the ability to measure the nature of a medium at a distance in a noninvasive manner.
This section is only an introduction to this topic, and coveris a few established tech-
niques (Ref. 7.138 for overview).

7.4.1.1 Boltzmann Thermometer for Gases

This technique is based on the quantum oscillator formula for the absorption coefficient
and a medium in rotational and vibrational thermal equilibrium. Consider two absorp-
tion lines closely spaced (e.g., within the tuning range of your laser or high-resolution
spectrometer) of the same molecular species that originate from transitions between
two different vibration–rotation energy levels. A measurement of the line-center trans-
mittance of equal path length is made for each absorption line. The corresponding
line-center absorption coefficient ratio of line 1 at ν01 to line 2 at ν02 is

ln τ(ν01)

ln τ(ν02)
= βabs1(ν01)

βabs2(ν02)
= S1g(ν01)

S2g(ν02)
. (7.61)
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Fig. 7.37 (a) Solar irradiance model compared with a blackbody at 5900 K. (b) Observed sky
radiance for a 45° viewing angle and the sun at 0° zenith.



The quantum oscillator formula for the line strength (recall Eq. 5.84) is

S(T ) = ρa
8π3ν0

3hn

e−El/kB T

Q(T )
tanh

(
hcν0

2kB T

)∑
| dp|2

= ρa S′
0(T0)

e−El/kB T

Q(T )

Q(T0)

e−El/kB T0

tanh
(

hcν0
2kB T

)
tanh

(
hcν0

2kB T0

)
(7.62)

where S′
0 is the line strength related to the HITRAN listing (with reference temperature

T0 = 296 K). Furthermore, at line center, the line profile function can be simplified to
the power spectral density function (i.e., g(ν0) = j (ν0)) and the absorption coefficient
ratio becomes

S′
01

S′
02

exp

(
(El1 − El2)

T − T0

kB T0T

) ( tanh[hcν01/(2kB T )]
tanh[hcν01/2(kB T0)]

)
(

tanh[hcν02/(2kB T )]
tanh[hcν02/(2kB T0)]

) j (ν02)

j (ν02)
. (7.63)

Assuming a vibration–rotation band is being used and ν01 ≈ ν02, then Eq. 7.61 becomes

βabs(ν01,T )

βabs(ν02,T )
= S′

01

S′
02

exp

(
(El1 − El2)

T − T0

kB T0T

)
j (ν01,T )

j (ν02,T )
. (7.64)

Solving the above equation for T, one obtains

T = T0

1 − kB T0
El1−El2

ln
(

ln[τ(ν01)]
ln[τ(ν02)]

S′
02

S′
01

j (ν02)

j (ν01)

) . (7.65)

When the line shape is Doppler dominated, the line center result then becomes

jD(ν0) = (ln 2)1/2

γD
√

π
, (7.66a)

where the Doppler half-width is given by Eq. 5.173. Since the line-center frequencies
are similar, the Doppler half-widths are essentially equal, and it follows that

jD(ν02)

jD(ν01)
= 1.

When the line shape is collision broadened, the line-center result is

jc(ν0) = 1

πγc
. (7.66b)

The collision-broadened half-width, γc, is a function of the rotational quantum number and
does vary from line to line. The degree of variation is not strong but can be important
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for lines with considerably different rotational quantum number. The ratio of collision-
broadened power spectral density functions is given by

jc(ν01)

jc(ν02)
= γc1

γc2
.

This approach is independent of the absorber concentration and path length (see Gearhart
and Thomas, Ref. 7.109).

7.4.1.2 Lidar Equation

Lidar stands for light detection and ranging and is similar in many ways to radar. Lasers
are commonly used as sources for lidar systems, and for this reason lidars are also
called “ladars” or laser radars. Lidars are configured in a variety of different ways for a
variety of different applications covering hard target ranging, atmospheric remote sens-
ing of aerosols, temperature, water vapor, pollutants, wind velocity, and so on.

To understand how lidar works, let us begin with the lidar equation. The received
power from a target is proportional to the transmitter power times the transmittance to
the target at a distance R, times the back reflectance (or back scatter) within the receiver
acceptance solid angle, times the transmittance back to the receiver. An efficiency
factor, ξ , is also included to account for loss due to imperfections in the optics. In the
form of an equation for the received power (flux), �r [W], this becomes

�r (R) = �tτ(R)�	ρ(0, π)τ(R)ξ + �background + �detector , (7.67)

where �t is the transmitter power, �	 = A0/R2 is the acceptance solid angle [sr] for a
telescope with collector area A0, R is the range, τ is the transmittance, ρ(0,0) is the
BRDF for the case of back-reflectance [sr−1] into the receiver acceptance angle (i.e.,
θi = 0 and θr = 0), �background is the background flux, and �detector is the noise-equivalent
power for the detector system. Equation 7.67 assumes that the target completely intercepts
the illuminating beam. The BRDF is used for hard targets, and the BSDF is used for 
distributed targets. In the latter case, for a monostatic system, the BSDF is written in terms
of the volume back-scatter coefficient. Based on the definition of the BSDF, and in the
single-scatter limit, the BSDF can be expressed in terms of the angle-dependent-scatter
coefficient,

αsca(0,π) =
(

dβsca(θs)�R

2π sin θs dθs

)
θs =π

. (7.68)

�R is called the range cell and represents the range resolution. The minimum range cell
is related to length of the laser pulse. In general, it is related to the laser pulse duration
and speed of the receiver. The volume back-scatter coefficient is defined to be

βVol =
(

dβsca(θs)

sin θs dθs

)
θs =π

. (7.69)

Thus in a similar fashion to Eq. 7.67, the lidar equation applied to media with distrib-
uted scatters then becomes

332 OPTICAL PROPAGATION IN LINEAR MEDIA



�r (R) = �t�RβVol A0τ
2(R)ξ/(2πR2) + �background + �detector (7.70)

This equation is relevant when molecular, and aerosol (see Chapter 10), back-scatter are
used to obtain a return signal. Such a lidar can be used to map aerosol and/or molecu-
lar density as a function of position. To distinguish between aerosol returns and
molecular returns, a multiple-frequency lidar is needed.

Another application of the above equation is to determine the concentration or tem-
perature as a function of position of a molecular species that absorbs in the atmosphere.
One common approach is called differential absorption lidar, or DIAL. A DIAL lidar
measures the average transmittance, 〈τ 〉, over a range cell, �R, and from this the aver-
age line-center absorption coefficient at that location in space can be determined. Two
frequencies from the transmitter are used. One is tuned to the line center of an absorp-
tion line and the other tuned to a nearby spectral location with no absorption. In this
manner, all the parameters in the lidar equation are matched, except the transmittance
function. The ratio of the on line return to the off-line return as a function of range
becomes

�on(R)

�of f (R)
= exp

⎛
⎝−2

R∫
0

[
βext(νon,R′) − βext(νof f , R′)

]
dR′

⎞
⎠ . (7.71)

The transmittance function assumes a narrow-band source (or receiver) so that the
absorption feature is fully resolved. The extinction coefficient is the sum of the absorp-
tion coefficient and the scatter coefficient in the single-scatter limit. Since the off-line
extinction coefficient is due to only scatter loss and the scatter loss is the same for both
on- and off-line frequencies, the difference produces the on-line absorption coefficient.

In the lower troposphere, collision broadening dominates the line shape. The for-
mula for the line-center absorption coefficient (ν = ν0) for this case, based on Eqs. 7.62
and 7.66b (in km−1), is

βabs(ν0,T,pa,pf ) = 7.33882 × 1026 pa

T
S0

e−El/kB T

e−El/kB T0

Q(T0)

Q(T )

1

πγc(T,pa,pf )
(7.72)

where for a binary mixture the half-width is

γc(T,pa,pf ) = (γca0 pa + γc f 0 pf )

(
T0

T

)n

, (7.73)

S0, γca0, γc f 0, El, and n come from the HITRAN database. The partial pressures,
pa and pf , are in atm, and T0 = 296 K. Even though the spectral line parameters listed
in the HITRAN database are incomplete and often not of sufficient accuracy to support
DIAL measurements, they are sufficiently accurate for line selection, since the line-
center frequency, lower energy level, and line strength are all that are needed. The
partition function ratio is typically given by

Q(T0)

Q(T )
=
(

T0

T

)m

, (7.74)
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where m is 1 for O2 and CO2, and 1.5 for H2O (recall Chapter 5). Substituting for the half-
width and partition function into Eq. 7.72, we obtain

βabs(ν0,T,pa,pf ) = 7.33882×1026 pa

T0
S0

e−El/kB T

e−El/kB T0

(
T0

T

)1 + m − n 1

π(γca0 pa + γc f 0 pf )
.

(7.75)

The absorption coefficient can be broken up into two factors; one depends on absorber
pressure and the other depends on temperatures. To determine the absorber concentra-
tion, it is desired to find a line with little temperature dependence. To determine the
temperature requires a gas with a known concentration, such as a uniformly mixed 
gas. In either case, we wish to invert Eq. 7.75 to obtain the absorption coefficient. 
The result is

βabs(pa,T ) = 1

2

d

dR
ln

(
�of f (R)

�on(R)

)
. (7.76)

TEMPERATURE SENSITIVITY OF SPECTRAL LINES To find the sensitivity of the absorption
coefficient to temperature, the derivative of the absorption coefficient with respect to
temperature is needed. It is given by

dβabs(ν0,T,pa,pf)

dT
= 7.33882 × 1026 pa S0

T0π(γca0 pa + γc f 0 pf )

e−El/kB T

e−El/kB T0

(
T0

T

)1 + m − n[ El

kBT 2
− 1 + m − n

T

]
.

The above equation is plotted in Fig. 7.38 as a function of El (in cm−1) for various 
temperatures for the case of CO2 (n = 0.75, m = 1). Below a certain lower energy
level value (determined by El = (1 + m − n)T /1.4398 cm−1 and desired for tempera-
ture- insensitive lines), the derivative is negative, and above that value it is positive.
Based on this plot, temperature-sensitive lines must have the largest possible value 
of El .

Evaluating the derivative and changing from differential to incremental values, the
DIAL signal is obtained to be

βabs(R) = 1

2�R

(
�of f (R + �R)

�of f (R)
− �on(R + �R)

�on(R)

)
. (7.77)

�R is the range cell, as defined earlier. From this equation, the absorber pressure or
local temperature can be determined at R + �R/2.

Three-Wavelength DIAL Greater sensitivity to temperature in the DIAL technique
can be obtained if the Boltzmann factor (exp [−E1/(kB T )]) in Eq. 7.75 can be isolated
from the partition function, density, and half-width power-law temperature dependence.
Unfortunately, these factors compete against one another for the net temperature
dependence of the absorption coefficient. The Boltzmann factor will dominate if the
lower energy level is large enough. To enhance the temperature dependence of the
DIAL technique, a ratio of absorption coefficients for two different absorption lines is
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desired. Since the partition function, density, and half-width have the same temperature
dependence from line to line, these factors cancel upon ratioing.

To implement this technique in DIAL, the line-center absorption coefficient of two
candidate lines must be measured. This requires three laser frequencies (or wave-
lengths), two matching the line-center frequencies of absorption lines, and the third is
off-line for a reference. Based on Eq. 7.75, the ratio of the absorption coefficient for two
different lines (ν01 ≈ ν02) is

βabs(ν01,T )

βabs(ν02,T )
= S01

S02
exp

(
(El1 − El2)

T − T0

kB T0T

)
γca02 pa + γc f 02 pf

γca01 pa + γc f 01 pf
. (7.78)

Solving for T , one obtains a result similar to Eq. 7.65, as given by

T = T0

1 − kB T0
El1−El2

ln (ax)
(7.79)

where

x = βabs1

βabs2
and a = S01(γca02 pa + γc f 02 pf )

S02(γca01 pa + γc f 01 pf )
.

The subscript “1” pertains to the line at ν01 and “2” pertains to the line at ν02. The result-
ing temperature uncertainty, �T, for �x = 0.02 is plotted in Fig. 7.39 as a function of
x for the short-range (weak) pair of O2 absorption lines. For typical spring mid-latitude
temperatures (~288K ), x ≈ 5.5 and �T ≈ 0.2 K. This represents an improvement by
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Fig 7.38 Derivative of the line-center absorption coefficient for CO2 with respect to temperature
(times 100) as a function of the lower transition energy for different temperatures. (Dashed curves
represent ±15 K about 295 K solid curve.)



a factor of 5 over the two-wavelength DIAL technique. Similar results can be obtained
for other gases. The key in this approach is to have the lower energy levels in the lines
selected as far apart as possible.

7.4.2 Synthetic Spectra

Another useful application of the quantum oscillator model of the absorption coefficient
is the computation of synthetic spectra. This is easily accomplished using the HITRAN
database. Assuming no coupling (or line mixing) between absorption lines exists, the
net absorption coefficient (in km−1) as a function of frequency is

βabs(ν0,T,pa,pf ) =∑
i

7.33882 × 1026 pa

T
S′

0i
e−Eli /(kB T )

e−Eli /(kB T0)

Q (T0)

Q (T )
gV (ν,T,νi ,γci ,γD,pa,pf ),

(7.80)

where, for a binary mixture, the collision half-width is

γc(T,pa,pf ) = (γca0 pa + γc f 0 pf )

(
T0

T

)n

, (7.81)

γca0i is the self-broadened half-width, γc f 0i is the foreign broadened half-width, ni is
the temperature exponent for the collision half-width, S0i is the NTP line strength, and
Eli is the lower energy level of the ith line. These parameters all come from the
HITRAN database. The index i represents all lines within the spectral interval of inter-
est. The partial pressures, pa and pf , are in atm, and T0 = 296 K. An example of a
synthetic spectrum, based on the HITRAN database, is shown in Fig. 3.9.

336 OPTICAL PROPAGATION IN LINEAR MEDIA

Fig. 7.39 Three-wavelength DIAL temperature uncertainty as a function of the absorption coef-
ficient ratio for the short range O2 line pair.



7.4.3 Human Breath Spectra

Of the infrared active gases, humans exhale carbon dioxide (4% is typical) and water
vapor. Carbon dioxide is greatly concentrated over atmospheric levels because of
processed oxygen in the lungs. Spectroscopic analysis of breath can be used for bio-
medical diagnostics.

7.4.4 Computer Codes

Many of the models previously discussed are contained in atmospheric transmission codes,
which provide a powerful tool for quantifying atmospheric effects. The most commonly
used codes are maintained by Phillips Laboratory at Hanscom Air Force Base,
Massachusetts. They are LOWTRAN, MODTRAN, and FASCODE, and are briefly
described below. These codes allow for complex atmospheric transmittance and radiance
(see Chapter 11) calculations based on absorption and scattering phenomena for a variety
of path geometries and atmospheres. LOWTRAN is a low-resolution (20 cm−1) code,
MODTRAN is a moderate resolution (2 cm−1) code, and FASCODE is a high-resolution
code (specified by user). FASCODE uses the HITRAN database directly, and LOWTRAN
and MODTRAN use the HITRAN database indirectly to determine band model spectral
parameters. The widespread availability and use of these codes make extensive figures and
tables on atmospheric transmittance and radiance calculations of limited value.

7.4.4.1 LOWTRAN and MODTRAN

LOWTRAN is the name of a series of computer codes beginning with LOWTRAN2
(first available in 1972) and ending with the most recent version LOWTRAN7 (first
available in 1989) (see Refs. 7.113–7.119). LOWTRAN calculates the transmittance
and/or radiance for a specified path through the atmosphere based on the LOWTRAN
band model previously discussed, molecular continuum absorption, molecular scatter-
ing, rain models, fog models, and aerosol absorption and scattering models. Radiance
calculations include atmospheric self-emission, solar and/or lunar radiance single-
scattered into the path, direct solar irradiance through a slant path to space, and multi-
ple-scattered solar and/or self-emission of atmospheric radiance into the path. The
model covers the spectral range from 0 to 50,000 cm−1 at a resolution of 20 cm−1. The
band model spectral parameters are tabulated every 5 cm−1.

The atmosphere is represented as 32 layers from 0 to 100 km altitude. Layer thick-
ness varies from 1 km thicknesses up to an altitude of 25 km, 5 km for altitudes from
25 to 50 km (the top of the stratosphere), and the last two layers are 20 and 30 km thick,
respectively. Detailed structure just above the land or sea is not represented by this
model, and thus model predictions can be inaccurate if nonstandard conditions exist
(see Section 7.1). Attenuation and refractive effects are calculated for each layer and
summed along the path. The physical characteristics of each layer are determined by
inputs and predetermined standard models (see Table 7.19 for possible inputs into
LOWTRAN 6) of various regions, path geometries, and seasons. The option for a user-
defined atmosphere based on meteorological data also exists. The atmosphere is
assumed to be in thermal equilibrium, thus the code should not be used above 100 km
(thus the model is valid below the ionosphere).
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Figures 7.40 through 7.42 illustrate typical LOWTRAN outputs for various types of
atmospheres, spectral regions, mechanisms of attenuation, path emission, and path
geometries. Figure 7.40 illustrates the transmittance in the infrared, showing the win-
dows from 800 to 1200 cm−1 and from 2000 to 3000 cm−1. Note that the far-infrared,
window is dominated by the water vapor continuum and the other window is dominated
by local line absorption. Figure 7.41 displays the transmittance in the near infrared
region. It demonstrates the importance of aerosol scattering in a low-altitude marine
environment. Figure 7.42 shows the transmittance as a function of wave number in the
near-infrared and visible. Note the absence of absorption band loss in the visible and
the importance of molecular scatter loss.

LOWTRAN has been successfully validated against field measurements (Devir 
et al., Refs. 7.120, 7.121) and is widely used for many broad-band system performance
studies. However, the single-parameter band model used in LOWTRAN has limited
validity concerning temperature dependence. Calculations above and below room tem-
perature should be checked against more physically complete codes such as
FASCODE. In particular, LOWTRAN works best at low altitudes with moderate tem-
peratures. High-altitude calculations (>40 km) will have the least accurate results.
Because of the limited resolution of LOWTRAN, it should not be applied to laser prop-
agation modeling when local line absorption in important.

MODTRAN is identical to LOWTRAN, except it contains the MODTRAN band
model, as previously described in Section 7.2.3.3. Thus, MODTRAN offers moderate res-
olution (2 cm−1) calculations with improved temperature and pressure dependence over
LOWTRAN for non-NTP conditions. Figure 7.43 compares a MODTRAN transmittance
spectrum with a LOWTRAN transmittance spectrum and clearly demonstrates the
improved representation when resolution is an issue. Furthermore, high-altitude (<60 km)
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Fig. 7.40 LOWTRAN calculation of the 10 and 4 µm window regions for the mid-latitude
summer model and horizontal sea-level path of 5 km. The solid curve represents the total trans-
mittance, the dot–dash curve the water vapor local line contributions, and the dotted curve the
water vapor continuum.



calculations by MODTRAN are more valid than LOWTRAN calculations. In this case,
LOWTRAN 7 does not accurately model the radiance at low temperature, producing sig-
nificant error.

These codes are available from the Geophysics Directorate, Phillips Laboratory,
PL/GPOB Hanscom AFB, MA 01731-3010. A PC version with a user-friendly interface
is commercially available from ONTAR Corporation (978-681-4585, www.ontar.com).
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Fig. 7.41 LOWTRAN calculation for the subartic winter model with the navy maritime aerosol
model at sea level and a 10 km horizontal path. The solid curve is the total transmittance, the
dot–dash curve represents water vapor absorption band contributions, and the dotted curve 
represents aerosol contributions.

Fig. 7.42 LOWTRAN calculation of the near-IR and visible regions for the tropical model and
a horizontal path at 1 km altitude with a path length of 25 km. The solid curve represents the total
transmittance and the dash–dot curve represents molecular scattering.

www.ontar.com


Table 7.19 LOWTRAN 6 Inputs

Input Options

Model Atmosphere Mid-latitude summer model
Mid-latitude winter
Tropical
Subartic summer
Subartic winter
Meteorological data input
1962 Standard Atmosphere

Type of atmospheric path Slant path to space
Horizontal path
Slant path

Mode of execution Transmittance
Radiance
Radiance w/ scattering
Trans. solar irradiance

Temperature and pressure altitude profile Mid-latitude summer, etc.
Water vapor altitude profile Mid-latitude summer, etc.
Ozone altitude profile Mid-latitude summer, etc.
Radiosonde data are to be input Yes/no
Suppress profile output Yes/no
Temp. at boundary Surface temp.
(0.0 – T @ 1st level)
Surface albedo 0 – 1
(0.0 – blackbody)
Extinction type and default range Rural – VIS = 23 km

Rural – VIS = 5 km
Navy maritime
Maritime – VIS = 23 km
Urban – VIS = 5 km
Tropospheric – VIS = 50 km
User-defined − VIS = 23 km
Fog advection – VIS = 0.2 km
Fog radiation – VIS = 0.5 km
No aerosol attenuation

Seasonal aerosol profile Determined by model
Spring–summer
Fall–winter

Aerosol profile and extinction type Background stratospheric
Moderate/Aged volcanic
High/fresh volcanic
High/aged volcanic
Moderate/fresh volcanic

Air mass character 0
Inclusion of cirrus attenuation Yes/no
Use of army (VSA) for aerosols Yes/no
Surface range (0.0 − Default) —
Current wind speed (m/sec) —
24 hr average wind speed (m/sec) —
Rain rate —

340



7.4.4.2 FASCODE

FASCODE is a high-resolution line-by-line atmospheric transmission computer code,
which uses the HITRAN database (see Section 7.2.2). FASCODE employs a fast algo-
rithm for computing the line shape, which is the basis of the code’s name. The Voigt
line shape is used for general validity in atmospheric spectra calculations. The code
contains the same broad-band models as used in LOWTRAN and MODTRAN for 
continuum absorption and scattering. It has also been developed by Phillips Laboratory. 
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Fig. 7.43 Comparison between a MODTRAN calculation (solid curve) and LOWTRAN calcu-
lation (dotted curve) for the same atmospheric conditions and path geometry.

Fig. 7.44 FASCODE calculation for a 100 meter horizontal path in a U.S. Standard Atmosphere
in the 2 µm region, showing CO2 bands centered at 2.01 and 2.06 µm. The other absorption lines
are primarily water vapor.



A PC-version is also commercially available from ONTAR corporation. An example
output of a high-resolution transmittance spectrum in the 2 µm region is shown in 
Fig. 7.44. FASCODE is required for laser propagation modeling and other cases requir-
ing high resolution.

This code is available from the Geophysics Directorate, Phillips Laboratory,
PL/GPOB Hanscom AFB, MA 01731-3010. A PC version with a user friendly interface
is commercially available from ONTAR Corporation (978-681-4585, www.ontar.com).

Problems

7.1 (a) Given that the absorption coefficient, βabs , equals 0.2 km−1 at a single laser
frequency, calculate the absorptance for a homogeneous 10 km path. (b) The
above value of the absorption coefficient is typical of the 10 µm region in the
troposphere. How would absorption change in the stratosphere?

7.2 The absorption coefficient in the atmospheric window regions can be expressed
by the formula

βabs(ν,T ) = pa
[
Cs(ν,T )pa + CF(ν,T )pf

]
(RGC T )

.

When the partial pressure dependence of βabs is nearly linear or quadratic with
respect to pa , what is the dominant mechanism of absorption for each case? (Recall
absorption by water vapor.)

7.3 (a) Explain the nature of the N2 and O2 continua. (b) Explain the nature of the
water vapor and carbon dioxide continua.

7.4 At what optical wavelengths are atmospheric scattering effects typically dominant
and at what wavelengths are atmospheric absorption effects typically dominant?

7.5 In an atmospheric window region, the absorption coefficient of CO2 is 0.05 km−1

at sea level. Compute the vertical transmittance through the atmosphere of the
earth. Compute the corresponding slant path transmittance for a path 30◦ from
the vertical. (Assume an isothermal model for the atmosphere.)

7.6 Construct a model of the index of refraction (real part) for a humid atmosphere
valid over all optical frequencies based on Eqs. 7.31b, 7.32, and 7.33, and 
Table 7.5, which contains integrated intensities divided by absorber density, ρa :

Sint

ρa
=
∫

Band

dνβabs(ν)

ρa
[cm],

and band-center locations of infrared water vapor absorption bands. The Cauchy
approximation is adequate for the electronic band contributions, but the
Sellmeier model is needed for infrared bands. Can you explain the 1/T2 factor
in the pure water vapor term for RF refractivity? Are CO2 vibrational bands
important in a model for the atmospheric index of refraction? (Compare your
results with Table 7.16.)

7.7 Derive the formulas for the optical horizon distance (Eq. 7.54a) and angle 
(Eq. 7.54b), beginning with Eq. 7.53. How does the optical horizon vary for the
different types of refracting atmospheres as listed in Table 7.18?
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7.8 Show that Eq. 7.43a leads to Eq. 7.52 when Eq. 7.44 is used for the modified
index of refraction.

7.9 Although lidar is commonly accomplished with lasers, they are not necessary;
lidar systems can be realized with incoherent broad-band sources. This
changes the analysis to one similar to band model theory. (a) Examine the
behavior of Eq. 7.25 when αabs(�ν = 1 cm−1) is between 0 and 0.5 (ψ < 1
but not necessarily 	 1) as a function γ, w, and S′ .
Hint: From Abramowitz and Stegun (eds.) Handbook of Mathematical
Functions, Dover (1965).

In(z) =
(

1

2
z

)n ∞∑
k = 0

(
1
4 z2
)k

k!�(n + k + 1)
.

(b) Plot your approximate result against the exact solution given by Eq. 7.26 as
a function of w for γ = 0.1 cm−1 and S′ = 1 cm−2.

7.10 A UV lidar system for measuring molecular Rayleigh returns is to be designed.
The laser is an unpolarized, tripled Nd:YAG operating at 355 nm with a pulse
energy of 50 mJ and pulse width, τp, of 15 ns. The receiver contains a 12-inch
diameter telescope and a photomultiplier tube detector with a noise equivalent
power (NEP) of 10−15 watts and a bandwidth of 500 MHz. The dominant atmos-
pheric loss mechanism in the near uv is molecular scatter. Assume the system
efficiency is 30% and an isothermal atmosphere with a surface temperature 
235 K. (a) Use the lidar equation to compute the maximum vertical range for a
single shot with a spatial resolution of τpc/2 and a minimum signal-to-noise 
ratio of 10. (b) How would the lidar equation be modified to handle a near-
vertical slant path range and near-horizon (horizontal) paths, including atmos-
pheric refraction?

7.11 Differential absorption lidar (DIAL) can be used to measure the number den-
sity of an absorbing gaseous species. To do this accurately requires that the
absorption feature be temperature independent. Determine an expression,
involving the lower energy level of the transition, that minimizes the tempera-
ture dependence of the line-center absorption coefficient of a gas in the
collision-broadened regime. (Use the quantum oscillator model of Chapter 5.)

7.12 Derive Eq. 7.65. Obtain the line-center line shape ratio within this equation for
the Voigt line shape.

7.13 Find the volume back-scatter coefficient for molecular Rayleigh scatter. With
this result, obtain the ratio of received power to transmitted power for a molec-
ular back-scatter lidar. What information can be obtained from such a system?

7.14 Derive Eq. 7.79.
7.15 Compute a synthetic spectrum of the absorption coefficient of air-broadened

water vapor using the spectral parameters listed in Table P7.15. The temperature
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Table P7.15

ν0 [cm−1] S0 [cm] El [cm−1] γca0 [cm−1] γc f 0 [cm−1] n

6677.3296 1.78 × 10−23 1201.9 0.301 0.068 0.68
6670.4590 7.93 × 10−24 206.3 0.460 0.098 0.59



is 295 K, the water vapor partial pressure is 10 Torr and the total pressure is
one atmosphere. The units of the various spectral parameters are typical of the
HITRAN database.

7.16 A CO2 laser is composed of 80% N2, 19% He, and 1% CO2 at a total pressure
of 20 Torr at room temperature. The index of refraction at 10 µm of N2 is
1.00029, He is 1.00003, and CO2 is 1.00042 at NTP (1 atm and T = 298 K).
(a) Find the index of refraction for this laser mixture. (b) The laser mode 
positions of the resonant cavity containing this gain medium will be shifted as
the pressure of the gain medium changes. Find

(
dn

dp

)
T

= ?,

where p is the total pressure of the gain medium and T is the temperature. (c)
Considering that CO2 lasers have been constructed with 100 Hz bandwidth and
stability, is pressure variation of the index of refraction a significant concern
for flowing gas lasers?

Note

1 The basic unit for the absorber amount is g cm−2, or alternatively, molecules cm−2. These
units refer to the amount of absorber in a transmission path confined within an imaginary
cylindrical volume, one square centimeter in cross-section. Other units are used in the
case of water vapor where one considers the resulting depth of water if the vapor in 
the cylinder were all condensed. The units are “precipitable centimeters,” pr cm. In the
case of the atmospheric compressible gases, the amount of absorber is treated as if it were
compressed within the cylinder until sea-level atmospheric pressure is reached. The
length of the resulting gas volume would then be designated “atmospheric centimeters,”
atm cm.
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8

Optical Propagation 
in Solids

This chapter emphasizes the linear optical properties of solids as a function of fre-
quency and temperature. Such information is basic to understanding the performance of
optical fibers, lenses, dielectric and metallic mirrors, window materials, thin films, and
solid-state photonic devices in general. Optical properties are comprehensively covered
in terms of mathematical models of the complex index of refraction based on those dis-
cussed in Chapters 4 and 5. Parameters for these models are listed in Appendix 4. 
A general review of solid-state properties precedes this development because the choice
of an optical material requires consideration of thermal, mechanical, chemical, and
physical properties as well.

8.1 Solid-State Optics

This section introduces the classification of optical materials and surveys other material
properties that must be considered as part of total optical system design involving solid-
state optics.

8.1.1 Classification of Materials

Solid-state materials can be classified in several ways. The following are relevant to
optical materials.

Three general classes of solids are insulators, semiconductors, and metals. Insulators
and semiconductors are used in a variety of ways, such as lenses, windows materials, fibers,
and thin films. Semiconductors are used in electrooptic devices and optical detectors.



Metals are used as reflectors and high-pass filters in the ultraviolet. This type of classifi-
cation is a function of the material’s electronic bandgap. Materials with a large
room-temperature bandgap (Eg > 3eV) are insulators. Materials with bandgaps between
0 and 3 eV are semiconductors. Metals have no observable bandgap because the conduc-
tion and valence bands overlap. Optical properties change drastically from below the
bandgap, where the medium is transparent, to above the bandgap, where the medium is
highly reflective and opaque. Thus, knowledge of its location is important. Appendix 4
lists the bandgaps of a wide variety of optical materials.

To characterize a medium within the region of transparency requires an understand-
ing of the mechanisms of low-level absorption and scattering. These mechanisms are
classified as intrinsic or extrinsic. Intrinsic properties are the fundamental properties
of a perfect material, caused by lattice vibrations, electronic transitions, and so on, of
the atoms composing the material. These processes cannot be altered without changing
materials. Extrinsic properties are caused by impurities, defects, degree of polish, grain
boundaries, and other flaws introduced by the limitations of the manufacturing process.
These effects can always be improved by better processing techniques. Extrinsic effects
represent the real material properties rather than the ideal or intrinsic properties. The
optical properties in transparent regions are often dominated by extrinsic effects. If an
undesirable extrinsic spectral feature is found in a material, then a more optimal man-
ufacturing process can be found to reduce the feature to an acceptable level. If, however,
the feature is intrinsic, then a new material must be found. A good example is the SiO2
class of optical fiber in use today. The first fiber had limited transmission range because
of extrinsic absorption and scattering. It took many years of development to improve
the manufacturing process to produce the nearly intrinsically limited fibers of today.
Thus, it is important to distinguish between these two types of material properties.

Another type of important classification is based on the material structure. Optical
materials can be crystalline, polycrystalline, or amorphous (noncrystalline). Single-
crystal materials are the most structured and are highly regular from the microscopic to
the macroscopic. Good examples are salts, minerals, some ceramics, most semicon-
ductors, and metals. Recall from Chapter 3 that crystalline structures are further divided
into cubic, uniaxial, and biaxial subclassifications. Many of the physical properties of
crystalline materials vary with direction and are tensor in nature. Polycrystalline mate-
rials are formed from hot-pressed crystalline powders, chemical vapor deposition
(CVD) and other methods. These materials are easier to make in large sizes and vari-
ous shapes than crystals. Good examples are optical ceramics (e.g., spinel, yttria and
AlON) and CVD materials such as ZnS, ZnSe, and diamond. Because of the random
orientation of the powder grains, physical properties of polycrystalline materials are
isotropic. Amorphous materials lack long-range order and are typically mechanically
weaker, and have more scatter and higher thermal conductivity than the crystalline
counter part. However, they are easily manufactured and represent most of the solid-
state optical elements in use today. Examples are glasses and plastics. Glasses of high
optical quality (low scatter and absorption in the near-IR and visible) are commonly
available. The physical properties of amorphous materials are isotropic to first order.

8.1.2 Thermal, Mechanical, and Chemical Properties

It is not enough to know only the optical properties of a material when designing a
system. The thermal, mechanical, and chemical properties must also be known to
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ensure satisfactory performance. For example, an optical window in a vacuum system
must have the strength to withstand atmospheric pressure to avoid catastrophic failure.
Also, material properties are interrelated. For example, materials with high strength
require light atoms. As we know from Chapter 3, light atoms mean high lattice vibra-
tion frequencies and thus limited infrared transparency. For this reason, materials that
transmit in the 8–12 µm region are usually not as hard and strong as materials that trans-
mit in the 3–5 µm region. The following introduces various relevant physical and
chemical properties.

8.1.2.1 Thermal Properties

Thermal properties of importance to optical design are the melting temperature, phase
transition temperatures, ability to store heat (heat capacity or specific heat), thermal
expansion, and heat conduction. Specific values of these quantities are found in Table 8.1.
A good example is the design of a high-power window for a laser. It is desired that the
window does not break and does not distort the transmitted beam. This requires a mate-
rial with low specific heat, high thermal conductivity, and low thermal expansion. These
thermal properties are discussed below.

Heat Capacity Heat capacity is the change in thermal energy (heat) of a material per
unit mass corresponding to a 1◦ change in temperature. Most of the thermal energy is
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Table 8.1 Thermal Properties of Selected Optical Materials

Melting Thermal 
Temperature Specific Conductivity CTE × 106

Material [K] Heat T [K] [W/(mK)] T [K] [K−1] T [K]

Al2O3 2300 0.18 298
(o-ray) 35.1 299 5.6 293
(e-ray) 33.0 296 5.0 293

BaF2 1550 11.7 286 18.4 273–573
BeO 2800 0.26 320 370 300 6.3 293
BP 2270 0.17 298 350 300 3.0 300
C(diamond) 3770 0.12 298 2200 293 1.38 17–300
CaF2 1630 0.204 273 10 273 24 293–333
GaAs 1240 0.76 273 52 300 5.7 291–560
Ge 1210 0.074 273–373 59 293 6.1 298
KBr 1000 0.104 273 4.8 319 39 273
MgAl2O4 2320 0.026 441 13.8 308 5.9 313
MgF2 1528 0.24 298 21 300

(o-ray) 14 310
(e-ray) 8.9 310

NaCl 1070 0.20 273 6.5 298 40 273
Si 1690 0.18 298 163 313 3.1 373–473
SiO2 1740 0.17 273

(o-ray) 10.7 323 8.0 273–353
(e-ray) 6.2 323 13.4 273–353

Fused silica 1983 0.18 295 1.4 295 0.5 295
ZnS 2100 0.12 273 27 300 6.7 300
ZnSe 1790 0.081 295 13 300 7.1 300



stored in the acoustic modes, until very high temperatures are reached that can excite
the optical modes. Based on the theory of Debye, the heat capacity as a function of tem-
perature is

CV = 9NkB

(
T

θD

)3
xD∫

0

x4ex dx

(ex − 1)2
, (8.1)

where x = h̄ω/kB T, xp = h̄ωp/kB T = θp/T , θD is the Debye temperature, ωD is the
Debye frequency (the maximum fundamental frequency of the lattice), and N is the number
of atoms per mole. The heat capacity is illustrated in Fig. 8.1 for a variety of materials as a
function of temperature. As the temperature increases above the Debye temperature, the
heat capacity approaches a constant value, as given by the law of Dulong and Petit:

CV = 3NkB . (8.2)

Specific heat is the heat capacity of a material relative to the heat capacity of water
(CV = 4.184 J/(gK) at 14◦C). Specific heat is therefore dimensionless, and values for
various materials are listed in Table 8.1.

Coefficient of Thermal Expansion (CTE) The thermal expansion of a material is
related to the degree of anharmonicity and the depth of the potential well binding the
molecules together. To see this, consider the mean value of the separation between the
atoms, as given by

〈r〉 =

∞∫
0

dr re−V (r)/kB T

∞∫
0

dr e−V (r)/kB T

. (8.3)

356 OPTICAL PROPAGATION IN LINEAR MEDIA

Fig. 8.1 Heat capacity as a function of a normalized temperature for a number of materials 
(Burns, Ref. 8.2, with permission).



Using the Morse potential and the expansion as given by Eq. 3.102, the following
result is obtained to terms in the potential of order (r – re)4:

〈r〉 = re + 3kB T

4D0a2
, (8.4)

where re locates the minimum potential energy. Expansion is caused by odd-powered
anharmonic terms in the intermolecular potential. Thus, materials with highly symmet-
ric potentials and low anharmonicity have low thermal expansion. Good examples are
diamond and oxides. Also, materials with deep potential wells have low thermal expan-
sion, such as the ceramic oxides.

The linear thermal expansion coefficient, αex , is the fractional change in length, 〈r〉,
per incremental temperature change:

αex = 1

〈r〉
d〈r〉
dT

≈ 1

re

d〈r〉
dT

. (8.5)

Cubic anharmonic terms lead to a temperature-independent thermal expansion coef-
ficient, depending on the depth of the well and the degree of anharmonicity. Higher
odd-order anharmonic terms will provide temperature-dependent terms in the thermal
expansion coefficient. Values of the coefficient of thermal expansion for optical materi-
als are listed in Table 8.1 for a specific temperature or over a temperature range.

Thermal Conductivity Intrinsic thermal conductivity, κp, of an insulator depends on
phonon–phonon scattering, which impedes the flow of phonons carrying the thermal
energy. Materials with highly harmonic potentials have very high thermal conductivity,
because such potentials do not scatter phonons. A real material always has some degree
of anharmonicity, and a wide variety of thermal conductivities are expected, as demon-
strated in Table 8.1. A simple formula for κp is given by

κp = 〈d〉v Cv

3
, (8.6)

where 〈d〉 is the phonon mean free path and v is the speed of sound in the medium. As
the temperature increases, the phonon cross-section increases, depending on the degree
of anharmonicity of the material, and 〈d〉 decreases. The temperature dependence of the
thermal conductivity depends on Cv(T ) at low temperature and 〈d〉 at high temperature.
The thermal conductivity as a function of temperature for a variety of materials is illus-
trated in Fig. 8.2.

Extrinsic thermal conductivity depends on the degree of order of the material. That
is, a high number of defects and impurities create many strong scattering centers in the
material impeding the flow of heat. Thus the thermal conductivity of a glass is always
lower than that of the single crystal form of the same molecule.

8.1.2.2 Mechanical Properties

The relevant mechanical properties are the hardness to maintain polish and material
strength to avoid structural failures.
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Hardness The hardest known material, at this time, is diamond. However, this is 
not a common optical element, and many other softer materials are often used. A
simple scale for specifying hardness is the Moh scale, which is based on the ability of
one material to scratch another. Specific materials are listed below in order of their
ranking:

1. Diamond
2. Sapphire (corundum)
3. Topaz
4. Quartz
5. Orthoclase
6. Apatite
7. Fluorite
8. Calcite
9. Gypsum

10. Talc

Strength Of particular interest is the elastic limit (flexure apparent elastic limit), Fa,
of a material. This indicates the strength of a material so that it will not break under a
load. A good example is a vacuum window. Table 8.2 lists apparent elastic limits for
various materials.

Simple formulas (Ref. 8.1) can be used to design window thickness (d) to diameter
(dia) ratios for clamped and unclamped circular windows for vacuum chambers or pres-
sure vessels. Clamped and unclamped windows are illustrated in Fig. 8.3. Including a
safety factor of four, circular windows can be specified according to the formula
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Fig. 8.2 Thermal conductivity as a function of temperature for a variety of optical materials.



d

dia
≥ const

(
P

Fa

)1/2

, (8.7)

where P is the pressure difference across the window and const equals 0.866 for
clamped windows and 1.06 for unclamped windows. Again, including a safety factor of
four, rectangular windows can be specified according to the formula

d

dia
≥ const b

(
P

Fa(1 + c2)

)1/2

, (8.8)

where P is the pressure difference across the window, const equals 1.23 for clamped
windows and 1.5 for unclamped windows, b is the length of the window, and c is the
length-to-width ratio.
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Table 8.2 Apparent Elastic Limit (Mechanical Strength) for Various Windows

Apparent Elastic Limit, Fa

Material [psia]a [kPa]

Al2O3 70000 482000
BaF2 3900 26700
BK7 glass 5600 38590
Diamond (crystalline) 400000 2760000

(CVD) 58000 400000
CaF2 5300 36500
CaF2 (polycrystalline) 8000 55100
CsI 810 5580
KRS-5 3800 26200
LiF 1580 10900
KCl 330 2270
KCl (polycrystalline) 1600 11000
KBr 160 1100
MgF2 7200 49000
MgAl2O4 (polycryst. spinel) 26000 179000
NaCl 350 2400
NaCl (polycrystalline) 1400 9650
Polyethylene 3100 21400

a14.7 psia = 101.3 kPa = 1 atm.

Fig. 8.3 Illustration of clamped and unclamped windows.



Example 8.1 Design a circular clamped window, 2 inches in diameter, made of
Al2O3, for an InSb focal plane array that requires a vacuum dewar. What is the nec-
essary thickness?
Using Fa = 70,000 psia and P = 14.7 psia in Eq. 8.7, the required thickness is
0.025 inches. This is a very thin window, indicating the high strength of sapphire.

8.1.2.3 Chemical Properties

The most important chemical property is water solubility. Humidity of the earth’s
atmosphere can damage window materials, this being particularly true for the alkali
halides. If the surface is attacked by chemicals in the environment about the window,
then the optical properties can be greatly affected. The water solubility of a number of
optical materials is listed in Table 8.3. To help interpret the numbers, BaF2 is virtually
unaffected by a humid atmosphere but will spot if subjected to liquid water. Thus, mate-
rials less soluble than BaF2 are stable in a humid atmosphere. KBr will easily spot and
cannot be breathed upon. Materials more soluble than KBr must be protected from
water vapor or used in very dry environments.

Good references for these effects are The Infrared Handbook (Ref. 8.4) and the CRC
Handbook of Laser Science and Technology (Ref. 8.3), which are listed at the end of
this chapter.
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Table 8.3 Solubility of Selected Crystals in Water

Solubility  Solubility 
Crystal Temp. [°C] [g/100 g of Water] Crystal Temp. [°C] [g/100 g of Water]

Al2O3 20 insoluble CdF2 20 4.4
AgBr 20 12 × 10−6 KDP 25 33.0
CdS 18 1.3 × 10−4 KCl 20 34.7
AgCl 20 1.5 × 10−4 NaCl 20 36.0
MgO −20 6.2 × 10−4 ADP 20 36.8
ZnS (hexagonal) 18 6.9 × 10−4 KBr 20 65.2
CaCO3 25 1.4 × 10−3 CsI 25 85.5
CaF2 20 1.51 × 10−3 NaNO3 20 88.0
MgF2 18 8.6 × 10−3 NaBr 20 91.0
SrF2 20 1.17 × 10−2 KFa 18 92.3
KRS-5 20 < TlBr CsBr 25 124.0
TlBr 20 4.76 × 10−2 KI 20 144.0
PbF2 20 6.4 × 10−2 CsT 61 160.0
BaF2 25 0.12 LiIa −20 164.0
LiF 18 0.27 NaIa 20 185.0
KRS-6 20 < TlCl CsCl 20 186.0
TlCl 20 0.32 CaI2

a 20 209.0
PbCl2 −20 0.99 CsF 18 368.0
NaF 20 4.2

aStable solid in contact with saturated solution is a hydrated form rather than an anhydrous salt.



8.2 Absorption and Refraction

The intrinsic optical properties of any material are determined by three basic physical
processes: free carriers, lattice vibrations, and electronic transitions. However, the dom-
inant physical process depends on the material. All materials have contributions to the
complex index of refraction from electronic transitions. Metals and semiconductors are
additionally influenced by free-carrier effects. The strength of these effects depends on
the carrier concentration, and is very important in metals. Insulators and semiconduc-
tors also require the characterization of the lattice vibrations (or phonons) to fully
understand the optical properties.

In the range of transparency, more subtle aspects of material composition and struc-
ture become important, such as impurities and defects. Intrinsic Rayleigh scattering is
a very weak effect, but is important in long-path optical fibers and UV-transparent mate-
rials. Extrinsic scattering, caused by defects or grains in polycrystalline solids, is
typically much larger than Rayleigh scattering. Impurity and defect absorption features
can be of great concern, depending on the spectral region.

8.2.1 Crystalline Insulators

The temperature, T , and frequency, v (in wave numbers), dependence of the real part of
the index of refraction, n(ν,T ) (index of refraction), are determined by the dominant
physical processes previously mentioned. Figure 8.4a illustrates this point for the case
of an insulating polar crystal. The value of n(ν,T ) is essentially the sum of the strengths
of all oscillators with fundamental oscillation frequencies above ν. Minor contributions
near the infrared edge of transparency come from multiphonon contributions. Thus, the
temperature dependence of those oscillations must be known to fully characterize
n(ν,T ) at any frequency. Figure 8.4a also indicates regions of validity for the popular
Sellmeier and Cauchy models.

The temperature and frequency dependence of the imaginary part of the index of
refraction, ke(ν,T ) (index of extinction), are more involved and require consideration
of not only the dominant physical processes but also higher order processes, impurities,
and defects, as illustrated in Fig. 8.4b. The spectral regions of the fundamental oscilla-
tions are opaque. Transparency of a nonconducting thin film (thickness on the order of
1 µm or less) ranges from below the minimum active transverse optical vibrational
mode, to above the maximum longitudinal optical vibrational mode, and ends at the
material’s bandgap. Transparency of a bulk insulator (thickness 0.1–1 cm) is deter-
mined by three different absorption edges. Far-infrared transparency ends in the region
of two-phonon difference bands and the one-phonon red wing (the low-frequency side
of the absorption band). Infrared transparency of a bulk solid begins in the region of
three-phonon sum bands (essentially the third harmonic of the one-phonon bands).
Visible/ultraviolet transparency ends at the Urbach tail, which can be phenomenologi-
cally interpreted as thermal fluctuations in the bandgap energy. For most window
applications involving low power levels, the absorption coefficient needs to be known
down to 10−3 cm−1. Transparency for optical fibers (thickness 1 km or greater) and high-
power laser windows requires low-level absorption below 10−3 cm−1. For such low
absorption, higher order intrinsic processes, extrinsic impurities, and material defects
become important.
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The temperature dependence of intrinsic Rayleigh scattering will not be considered
because it is usually too small to be of concern. Extrinsic scatter in polycrystalline mate-
rials has been observed to be constant with temperature for low-expansion materials.
Impurity and defect absorption, which may be significant, are highly material and man-
ufacturing-process dependent and cannot be properly treated within the limits of this
chapter. A brief discussion will be presented in a later section.
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Fig. 8.4 Optical properties of a typical polar crystalline insulator at room temperature: (a) index
of refraction and (b) absorption coefficient.



8.2.1.1 One-Phonon and Electronic Band Transitions

The optical properties of an insulating material can be completely specified by the
complex index of refraction, n̄ (ν,T ), or the complex relative permittivity, εr (ν,T ),
where ν is the wave number (reciprocal wavelength). In the following, only intrinsic
absorption phenomena will be considered. Materials are opaque in the spectral region
of first-order processes. Thus, reflection measurements must be used to obtain the opti-
cal properties. As discussed in Chapter 6, the magnitude of the spectral reflectance is a
routine measurement. In opaque regions, the reflectance becomes the single-surface
reflection. Based on the models of Chapter 4, the magnitude of the single-surface
reflectance, R, of a medium (at normal incidence) is given by

R = (n − 1)2 + k2
a

(n + 1)2 + k2
a

. (8.9)

Generally, a measurement of R is not sufficient to determine εr (e.g., both n and ka ).
Hence, it is necessary to describe the relationship between n and ka . The “classical
oscillator model” can be used to represent εr in terms of the lattice vibrations (recall
from Chapter 4),

εr (ν,T ) = ε∞(T ) +
∑

i

�εi (T )ν2
i (T )

ν2
i (T ) − ν2 + j�i (ν, T )ν

, (8.10)

where �εi , �i , and νi are the ith mode strength, line width, and long-wavelength
transverse optical frequency, νTO , respectively. The sum on i is over all transverse opti-
cal modes. This model is well known to adequately describe n in the infrared and radar
frequency regions. Using Eq. 8.10, the static dielectric constant, εs(T ) = ε′

r (0,T ),
becomes

εs(T ) = ε∞(T ) +
∑

i

�εi (T ). (8.11)

The implied frequency dependence of �i represents a cutoff beyond the one-phonon
region blue wing caused by anharmonicities of the potential. This is not unexpected, since
the classical oscillator model required modification in the far wing for gas phase absorp-
tion as well. No exact theory exists, thus the cutoff function is empirically chosen to be

�i (ν,T ) = �i (T )

⎧⎨
⎩

1 ν ≤ νcutof f,

exp

(
−α

[(
ν

νcutof f

)2
− 1

])
ν ≥ νcutof f,

(8.12)

where α and νcutof f are arbitrary parameters. Good results are obtained by choosing
α = 4 and νcutof f as the highest infrared-allowed longitudinal-optical-mode frequency.
Although those values for α = 4 and νcutof f are not unique, they are adequate for the pres-
ent purpose. Now, the fundamental phonon bands can be joined with higher order phonon
bands without the distortion of the one-phonon blue wing, as illustrated in Fig. 8.5. 
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The figure also shows experimental data from transparent regions that clearly indicate
the need for the blue-wing cutoff. The next section will present models of multiphonon
sum and difference bands that will complete the complex index of refraction model in
regions of transparency.

Another commonly used “pole-fit” model features four parameters per transition, as
given by the expression (Lyddane et al., Ref. 8.9)

εr (ν,T ) = ε∞(T )
∏

i

ν2
i LO(T ) − ν2 + jν�i LO(ν,T )

ν2
i (T ) − ν2 + jν�i (ν,T )

, (8.13)

where the additional subscript LO indicates longitudinal-optical-mode parameters. A
product instead of a sum is now used. Equation 8.13 in the static limit reduces to the
Lyddane–Sachs–Teller relation

εs

ε∞
=
∏

i

ν2
i LO

ν2
i

. (8.14)

This is a statement similar to Eq. 8.11, except now in the form of a product.
As an introduction to the temperature dependence of the complex index of refrac-

tion, n̄(ν,T ) = n(ν,T ) − jka (ν,T ), consider the Lorentz–Lorenz formula,

n2 − 1

n2 + 2
= 1

3ε0
ρ(T ) αe(ρ,T ), (8.15)
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Fig. 8.5 Absorption coefficient as a function of frequency for pure sapphire at T = 295 K, show-
ing the one-phonon model with the cutoff (solid curve) and the one-phonon model without the
cutoff (dashed curve). Experimental data points (o and x) show experimental multiphonon
absorption.



where ρ is the number density of oscillators per unit volume (= N/V, where N is the
number of oscillators and V is volume) and αe is the polarizability. The derivative of n
with respect to T becomes

2nε0
dn

dT
= (n2 + 2)(n2 − 1)

{
1

3ρ

(
dρ

dT

)
+ 1

3αe

[(
∂αe

∂ρ

)
T

dρ

dT
+
(

∂αe

∂T

)
ρ

]}
. (8.16)

Furthermore, the derivative of volume, V (T )(= (L0 + Lαex T )3) with respect to temper-
ature can be written to first order in terms of the linear coefficient of expansion, αex , as

dV

dT
= 3V αex . (8.17)

Now, Eq. 8.16 can be rewritten in a more meaningful form:

2nε0
dn

dT
= −(n2 + 2)(n2 − 1)αex

[
1 − V

αe

(
∂αe

∂V

)
T

]
+ (n2 + 2)(n2 − 1)

3αe

(
∂αe

∂T

)
V

. (8.18)

The first term depends on changes in volume with respect to temperature. Thermal
expansion is the dominant contributor. Lithium (Ref. 8.6) is able to show a direct pro-
portionality between the expansion coefficient and dn/dT for the alkali halides. The
second term represents the temperature changes in the polarizability. The polarizability
is determined by two fundamental processes in an insulating material, electronic tran-
sitions and vibrational transitions. The electronic transitions contribute to the index of
refraction from the ultraviolet/visible region to DC. The vibrational transitions also con-
tribute to the index of refraction from the far-infrared to DC. They are more temperature
sensitive than the electronic transitions, thus dn/dT in the far-infrared below the 
optical phonons is usually positive and greater than dn/dT in the visible/IR.

A more detailed discussion of the temperature dependence of the lattice vibrations
is given in the following. As Eq. 8.10 suggests, the reflectance is a function not only of
frequency but also of temperature. Experiments reported by Jasperse et al. (Ref. 8.10)
have demonstrated that the optical parameters �εi and νi have a linear temperature
dependence, while calculations by Maradudin and co-workers have successfully uti-
lized a quadratic temperature dependence for �i at high temperatures. A theoretical
calculation by Wallis and Maradudin (Ref. 8.12) has shown that the temperature
dependence of νi and �i comes from cubic anharmonic terms in the lattice potential
energy. The origin of the temperature dependence of the mode strengths, �εi , is not
well established but can be understood by considering the static dielectric constant.
Szigeti (Ref. 8.14) has shown that not only do anharmonic terms in the lattice potential
energy contribute to the temperature dependence of εs(T ), but also that a contribution
arises from terms in the dipole moments that are of higher order in the displacement
coordinates. These latter higher order terms have their origin in the deformation of the
electronic shells.

The temperature dependence of the transverse-mode frequencies, νi , and the mode
strengths, �εi , can be represented by quadratic equations of the form

νi (T ) = νi (T0) + a1i · (T − T0) + a2i · (T − T0)
2 (8.19a)
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and

�εi (T ) = �εi (T0) + b1i · (T − T0) + b2i · (T − T0)
2, (8.19b)

where T0 is a reference temperature (typically room temperature) and a1i , a2i , b1i

and b2i are mode- and material-specific constant coefficients that are empirically deter-
mined. The dependence of the line width on temperature can be described by a
quadratic equation in T:

�i

νi
(T ) = �i

νi
(T0) + c1i · (T − T0) + c2i · (T − T0)

2, (8.19c)

where T0 is again a reference temperature and c1i and c2i are also mode- and material-
specific constant coefficients. The high-frequency permittivity, ε∞, is temperature
dependent and is represented by

ε∞(T ) = ε∞(T0) + e∞ · (T − T0). (8.19d)

Note that e∞ = dε∞/dT = 2n∞ (dn∞/dT ); thus, in most cases, e∞ can be deter-
mined from visible dn/dT measurements in a spectral region of low dispersion.

Table 8.4 lists the model parameters of Y2O3, based on the previously discussed 
temperature–dependent formulas. The parameters are determined from reflectance
spectra, as shown in Fig. 6.9. A comparison is made between the experimental data and
the one-phonon-model representation. The fit to the experimental data as a function of
temperature is good, justifying the model, as demonstrated in Fig. 8.6 for sapphire. This
model of the complex index of refraction is important for spectral-emissivity calcula-
tions and index of refraction calculations from microwave to ultraviolet over a wide
range of temperatures. Classical oscillator parameters are given for a wide variety of
optical materials in Appendix 4 using the format of Table 8.4.
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Table 8.4 Optical Constants of Y2O3 Classical Oscillator Parametersa

Mode νTOi (T0) a1i �εi (T0) b1i �i/νTOi (T0) c1j c2i

[cm−1] [cm−1 K−1] [K−1] [K−1] [K−2]

1 120.0 0.01 0.2 — 0.035 — —
2 172.0 0.01 0.1 — 0.025 — —
3 182.0 0.01 0.15 — 0.025 — —
4 241.0 0.0072 0.200 8.10 × 10−5 0.025 1.46 × 10−5 —
5 303.0 0.0144 2.600 6.24 × 10−4 0.0135 3.35 × 10−5 —
6 335.0 0.0109 1.749 −3.55 × 10−4 0.0115 2.38 × 10−5 —
7 371.0 0.0109 2.651 6.38 × 10−5 0.021 2.51 × 10−5 —
8 415.0 0.0109 0.040 3.55 × 10−5 0.011 3.24 × 10−5 —
9 461.0 0.0144 0.050 3.55 × 10−5 0.015 1.80 × 10−5 —
10 490.0 0.0180 0.005 3.55 × 10−6 0.018 2.12 × 10−5 —
11 555.0 0.0210 0.095 9.36 × 10−5 0.025 1.21 × 10−5 —
12b 72100.0 — 2.579 1.40 × 10−4 — — —

aT0 = 295 K and ε∞(T ) = 1.00.
bElectronic transition.



Fig. 8.6 (a), (b), and (c) Temperature dependence of line position, νi , line strength, �εi , and damp-
ing factor divided by the line position, �i/νi , respectively, for sapphire o-ray. (d) Reflection spectra of
sapphire o-ray at two temperatures (◦ T = 295 K and ♦ T = 773 K) compared with model (solid line).
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In the region of transparency (i.e., n � ka and (ν2
i – ν2) � �i (ν)) a simple expression

for the real part of the temperature–dependent index of refraction is obtained, based on
Eqs. 8.10 and 4.42:

n2(ν,T ) = 1 +
∑

i

ν2
i (T )�εi (T )

ν2
i (T ) − ν2

. (8.20)

Recall that this convenient equation for n(ν,T ) is known as Sellmeier’s formula. The
sum is over all transitions, thus ε∞ = 1. Further approximations on Eq. 8.20 for n(ν),
below the lowest vi, leads to the Cauchy formula, as given by

n(ν) = A + Bν2 + Cν4. (8.21)

Differentiating Eq. 8.20 with respect to temperature leads to the thermo-optic 
coefficient, similar in form to Eq. 8.16. The oscillator strength is related to the ith oscil-
lator polarizability, as defined in Section 2.3.2 (e.g., ε0 �εi = ρ�αi ). With this
substitution, the following expression is obtained (assuming �αi is independent of ρ):

∂n(ν,T )

∂T
= 1

2nε0

∑
i

ραi

(
1

�αi

∂�αi

∂T
− 3αex + 2ν2/νi

ν2
i − ν2

∂νi

∂T

)
, (8.22a)

where ∂ρ/∂T = −3ραex , αex is the linear coefficient of expansion, and

αi = �αiν
2
i

ν2
i − ν2

. (8.22b)

For materials with large electronic polarizability and small volume expansion (e.g., the
oxides), the values of dn/dT in the visible and IR are small and positive. This is in con-
trast to experimental results for the alkali halides and the fluorides, which have negative
dn/dT because of significant volume expansion and smaller polarizabilities. Based on
Eqs. 8.19a–c, dn/dT is linear in temperature to first order. Also, as the frequency
approaches an absorption band, the magnitude of dn/dT increases. In the microwave
region, the static dielectric constant (see Eq. 8.11) includes strong contributions from
the lattice vibrations. Thus, the value of the net polarizability can greatly increase, and
dεs/dT is usually positive. Figure 8.7 illustrates the experimental frequency and tem-
perature dependence of n(ρ) and εs(T ) for the ordinary ray of sapphire. The solid curve
in Fig. 8.7b shows the temperature range of validity of the linear approximations used
in obtaining Eqs. 8.19b and 8.19d (see Appendix 4).

Dispersion of n (typically stated as dn/dλ, λ = 1/ν) can also be easily computed
based on Eq. 8.20. The resulting formula is

∂n(λ,T )

∂λ
= −λ

n

∑
i

λ2
i �εi

(λ2 − λ2
i )

2
. (8.23)

The magnitude of dispersion depends on the location and strength of the oscillators.
The wavelength locating the minimum dispersion point of a material is important for
long-path, high-bandwidth optical fibers.
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Unfortunately, electronic transitions, which drive optoelectronic device perform-
ance, cannot be modeled in such a straightforward manner as vibrational transitions.
This is because most electronic transitions are coupled together to form broad homo-
geneous absorption bands. Thus, the shape of the density-of-states function determines
the spectral response, which is seldom in the functional form of the classical oscillator
model. In the following, the models developed by Adachi (see Ref. 8.19) are used to
represent the complex permittivity as a function of frequency and temperature.

Figure 8.8 illustrates the energy band structure for GaAs. The various electronic inter-
band transitions, from valence to conduction band, peak at various critical point (CP)
locations. The transitions are designated as E0, E0 + �0, E1, E1 + �1, and E2(� indi-
cates energy level shifts caused by spin–orbit coupling). Most of the various transitions
are indicated in Fig. 8.8. The figure shows that GaAs is a direct bandgap semiconduc-
tor. Thus the complex susceptibility model developed in Chapter 5 can be applied.
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Fig. 8.7 (a) The frequency dependence of the room-temperature index of refraction and (b) the
temperature dependence of the static dielectric constant for the ordinary-ray of Al2O3. The solid
curve represents one-phonon model plus multiphonon model.



The E0 and E0 + �0 transitions of GaAs are located at the center of the Brillouin
zone (� point where k ′

opt ≈ 0). The E0 transition is the first intrinsic electronic absorp-
tion band and is located at the bandgap energy. The shape of this band is determined by
the density-of-states for parabolic energy distributions in phase space. The next elec-
tronic absorption band is the E0 + �0. Based on Eqs. 5.142 and 5.143, the complex
electric susceptibility function for these two homogeneous transitions is given by

χ ′′
0 (ω) = A

(h̄ω)2

(
(h̄ω − E0)

0.5 H(χ0 − 1) + 1

2
(h̄ω − E0 − �0)

0.5 H(χs0 − 1)

)
, (8.24a)

which represents the imaginary part and

χ ′
0(ω) = A0

E1.5
0

[
f (X0) + 1

2

(
E0

E0 + �0

)1.5

f (Xs0)

]
, (8.24b)

which represents the real part, where A0 is an amplitude parameter, E0 and E0 + �0

are the bandgap energies (see Appendix 4, Table A4.6),

f (X) = 1

X2
[2 − (1 + X)0.5 − (1 − X)0.5 H(1 − X)],

X0 = h̄ω

E0
, and Xs0 = h̄ω

E0 + �0
.

H(z) is a Heaviside step function such that H(z ≥ 0) = 1 and H(z < 0) = 0. The
inverse Fourier transform of the first half of Eq. 8.24 leads to the time-domain suscep-
tibility for the E0 region, given by Eq. 5.144. A plot of the resulting time-domain
susceptibility for the E0 transition in GaAs is given in Fig. 5.10.
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Fig. 8.8 Energy band structure of
room temperature GaAs (Burns, 
Ref. 8.2, with permission).



The E1 and E1 + �1 transitions are located at the L-point in the Brillouin zone.
Again, the shape of these bands is driven by the density-of-states function in this region
of the energy band structure, as illustrated in Fig. 8.8. The corresponding complex per-
mittivity for these transitions is given by (Adachi, Ref. 8.19)

χ ′′
1 (ω) = 1

X2
1

{
B∗

01 − Im [B1 ln(h̄ω − E1 + j�)]
}

+ 1

X2
1s

{
B∗

02 − Im [B2 ln(h̄ω − E1 − �1 + j�)]
}
,

(8.25a)

which represents the imaginary part and

χ ′
1(ω) = Re

[
− B1

X2
1d

ln(1 − X2
1d) − B2

X2
1sd

ln(1 − X2
1sd)

]
, (8.25b)

which represents the real part, where E1 and E1 + �1 are the bandgap energies, � is a
damping parameter common to both transitions, B∗

01 = πB1 and B∗
02 = πB2 at room

temperature,

X1d = h̄ω + j�

E1
, and X1sd = h̄ω + j�

E1 + �1
.

The corresponding time-domain response can be obtained in analytical form if the
damping parameter is set to zero. This is a reasonable approximation because � 	 E1

(see Appendix 4). Then the complex permittivity for a single E1-type band simplifies to

χ ′
1(ω) = − B

X2
ln(1 − X2) − j

πB

X2
H(X − 1), (8.26)

where X = h̄ω/E . The inverse Fourier transform of Eq. 8.26 leads to the time-domain
electric susceptibility for E1-type transitions, as given by

χe1(t) = 2B
E

h̄

[
sin

(
E

h̄
t

)
− E

h̄
tCi

(
E

h̄
t

)]
h(t), (8.27)

where Ci(x) is the cosine integral function. The details of the derivation are presented
in Appendix 3.

The E2 transitions are the strongest and are inhomogeneous in nature, because they
occur in several closely spaced homogeneous regions of the energy band structure.
However, Adachi (Ref. 8.19) employed only two modes (located at E2 and E ′

0), which
are characterized by the classical oscillator model of the form

χ ′′
2 (ω) = C2 X2γ2

(1 − X2
2)

2 + X2
2γ

2
2

+ C0 X ′
0γ0

(1 − X ′
0

2
)2 + X ′

0
2
γ 2

0

, (8.28a)
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representing the imaginary part and

χ ′
2(ω) = C2(1 − X2

2)

(1 − X2
2)

2 + X2
2γ

2
2

+ C0(1 − X ′
0

2
)

(1 − X ′
0

2
)2 + X ′

0
2
γ 2

0

, (8.28b)

representing the real part, where the C and γ (= �/E2) parameters are listed in
Appendix 4,

X2 = h̄ω

E2
and X ′

0 = h̄ω

E ′
0

.

Electroreflectance measurements have shown a multitude of modes in this region
(Adachi, Ref. 8.19). Assuming all the modes in this band are properly represented, then
the correct time-domain susceptibility for E2 type transitions can be obtained from the
application of Eq. 4.49.

Excitons near the bandgap must also be included in a complete model. A model for
the complex frequency-domain susceptibility for the E0 exciton is given by Eq. 5.145.
The next significant exciton is associated with the E1 band. The complex permittivity
in this case is given by

χ1ex(ω) = B1x

E1 − Ex1 − h̄ω − j�
+ B2x

E1 + �1 − Ex1 − h̄ω − j�
. (8.29)

The inverse Fourier transform of Eq. 4.145 leads to the time-domain susceptibility
for the E0 exciton, as given by

χ0ex(t) = 2
A0x

h̄
e− �0x

h̄ t sin

(
E0 − Ex0

h̄
t

)
h(t). (8.30)

A similar formula is obtained for the E1 excitons.
Table A4.6 lists the parameter values for all the electronic transition models for

GaAs. The parameters are temperature dependent and follow a simple linear depend-
ence of the form

F(T ) = F(T0) + aT .

The corresponding temperature coefficients are also listed in Table A4.6. The linear
fits to the model parameter values listed by Adachi (Ref. 8.19) cover the temperature
range from 22 to 754 K. Good agreement is obtained. Optical materials with infrared
bandgaps (e.g., semiconductors) have very temperature-sensitive optical constants, thus
the inclusion of temperature dependence is critical for real device modeling.

The net electronic relative permittivity is the sum of all of the band susceptibilities pre-
viously discussed plus higher frequency contributions represented by ε1∞ (see Table A4.6).
The real and imaginary parts of the permittivity are given by

ε′
re(ω) = χ ′

0(ω) + χ ′
1(ω) + χ ′

2(ω) + χ ′
0ex(ω) + χ ′

1ex(ω) + ε1∞, (8.31a)
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and

ε′′
re(ω) = χ ′′

0 (ω) + χ ′′
1 (ω) + χ ′′

2 (ω) + χ ′′
0ex(ω) + χ ′′

1ex(ω), (8.31b)

respectively. The net time-domain susceptibility is also the sum of the individual time-
domain susceptibilities, as given by

χ(t) = χ0(t) + χ1(t) + χ2(t) + χ0ex(t) + χ1ex(t). (8.31c)

The electronic time-domain susceptibility for GaAs is plotted in Fig. 8.9. Electronic
transitions are very rapid, in the femtosecond regime.

To obtain the complex index of refraction from the complex permittivity the follow-
ing formulas are used,

ne(ν) =
[

1

2

(√
ε′

re
2(ν) + ε′′

re
2(ν) + ε′

re(ν)

)]0.5

(8.32a)

and

βabs(ν) = 2π

ne(ν)
νε′′

re(ν), (8.32b)

where ν is frequency in wave numbers. The Adachi model is compared with frequency-
domain experimental data for the room-temperature complex index of refraction (Palik,
HOC I, Ref. 8.1) in Fig. 8.9. Good agreement is obtained between the experimental data
and the model for the index of refraction and the absorption coefficient.

The net first-order permittivity for bound-charge phenomena is the sum of the elec-
tronic and vibrational permittivities, as given by

εr (ω) = χrv(ω) + εre(ω). (8.33)

Classical oscillator model parameters for GaAs can be found in Table A4.5. In this
manner, a comprehensive complex index of refraction model accounting for first-order
transitions is obtained that allows wide frequency and temperature representation.

8.2.1.2 Higher Order Phonon Processes

The classical oscillator model represents the fundamental lattice vibrations or one-
phonon transitions in a material and the Adachi models represent the electronic
transitions. But the absorption coefficient obtained from the model is valid only in the
vicinity of the one-phonon frequencies. The absorption coefficient needs to be known in
the regions of transparency as well, requiring a description of multiphonon absorption
bands in which more than one-phonon excitation occurs upon the absorption of a single
photon. The millimeter-wave region is dominated by the one-phonon red wing and mul-
tiphonon difference bands. The IR region is dominated by multiphonon sum bands.

Recall from Chapter 3 that the net absorption coefficient is generally expressed as

βabs(ν,T ) =
∑

l

Slu(T ; νlu)g(ν,T ; νlu), (8.34)
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Fig. 8.9 The infrared to ultraviolet complex index of refraction of GaAs at room temperature as
a function of wave number where (a) is the real part and (b) is the absorption coefficient. The
boxes are experimental data points from Palik HOC I and the solid curves represent the Adachi
model using the parameters from Table A4.6. (c) The corresponding time domain susceptibility
of GaAs.
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where νlu is the center frequency of the transition from level l to level u, Slu(T ) is the
transition strength, g(ν,T ) is the spectral distribution function, and the sum is over all
initial states. Based on the quantum oscillator model of Chapter 5, the strength and
shape functions are expressed as

Slu = 8π3νlu

3hn
ρa

e−El/kB T

Q(T )
tanh

(
hcνlu

2kB T

)
|µdp|2 (8.35)

and

g(ν,T ) = ν

νlu

tanh
(

hcν
2kB T

)
tanh

(
hcνlu
2kB T

) [ j (ν) + j (−ν)] , (8.36)

respectively, where h is Planck’s constant, ρa is the density of dipoles per unit volume,
El is the lower energy of the transition, Q(T ) is the partition function, kB is
Boltzmann’s constant, |µdp|2 is the dipole matrix element, and j (ν) is the Fourier trans-
form of the dipole autocorrelation function or power spectral density. On the basis of
this theory, the low-frequency (i.e., <50 cm−1) absorption coefficient falls off as ν2 mul-
tiplied by the line shape function. A simple ν2 fall-off will dominate in two cases. The
first is the far red wing of an absorption band and the second is for broad line shape
functions featuring very little frequency dependence throughout a band. These condi-
tions are met for many materials of interest in the far infrared, because the absorption
is dominated by intrinsic processes. Thus, a simple formula such as

βabs(ν,T ) = A(T )ν2 (8.37)

can be used to represent experimental data of these materials.
Based on the classical oscillator model of Eq. 8.10, the one-phonon red wing (e.g.,

in the limit as ν → 0) absorption coefficient becomes

β1p(ν → 0,T ) = A1p(T )ν2 =
(

2π

n(ν = 0,T )

∑
i

�εi (T )�i (ν,T )

ν2
i (T )

)
ν2. (8.38)

Even though Eq. 8.38 comes from a phenomenological model, this extrapolation to the red
wing works for many materials (see Table 8.5). In addition to the one-phonon contribu-
tions, difference bands of two and three phonons must also be included. Detailed models
are extremely difficult to obtain, and thus only empirical formulas are currently used.

It is straightforward to show (see Problem 8.10) that in the high-temperature limit
(hcν 	 kB T ) the n-phonon difference-band temperature dependence varies as

βnp(ν,T ) = Anp

(
T

T0

)n−1

ν2. (8.39)

Thus, experimental data in this high-temperature limit can be represented by the for-
mula

βabs(ν,T ) =
∑

n

βnp(ν,T ), (8.40)
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and using Eqs. 8.38 and 8.39 the absorption coefficient becomes

βabs(ν,T ) =
ν→0

[
2π

n(0, T )

∑
i

�εi (T )�i (ν, T )

ν2
i (T )

+ A2p
T

T0
+ A3p

(
T

T0

)2
]
ν2

= A(T )ν2.

(8.41)

Based on Eq. 8.41, the far-infrared absorption coefficient increases with increasing
temperature and the frequency squared. This frequency dependence is demonstrated for
the ordinary ray of sapphire and quartz in Fig. 8.10a. Temperature-dependent data is
needed to determine the contributions from two-phonon and three-phonon difference
bands. Figure 8.10b compares experimental data for sapphire to the model based on the
parameters given in Table 8.5 and Eq. 8.41. A good fit is obtained from above 200 K to
1000 K for a variety of wave numbers. The fact that the absorption coefficient does not
go to zero as the temperature goes to zero is a clear indication of the existence of the one-
phonon red wing. The one-phonon red wing is frequently ignored in interpreting
far-infrared absorption data, and this is not correct. Extrapolation to lower frequencies
more typical of millimeter-wave frequencies works reasonably well at room tempera-
ture. However, the temperature dependence may change because three-phonon
contributions will be greater at frequencies below two-phonon absorption than this
simple model represents. This fact is demonstrated in Fig. 8.10; the model underpredicts
the experimental absorption coefficients at 50 cm−1 at elevated temperatures, Whereas
the higher frequency curves show good agreement at high temperature.

The absorption coefficient also increases with increasing temperature at the infrared
edge of transparency above the Debye temperature. This region is dominated by multi-
phonon sum bands. Fortunately, in this case, there are theoretical models that accurately
characterize the absorption loss, and one such model only requires a few material-
dependent parameters.

There are several models that have been developed to describe multiphonon absorp-
tion. Criteria of simplicity, minimum number of parameters, and an exact solution to the
Schrödinger equation for an anharmonic potential that allows general applicability have
led to models based on the Morse interatomic potential, which (recall from Chapter 3)
is given by

V (r) = −D0 + D0 {1 − exp[−a(r − re)]}2.
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Table 8.5 The Far-infrared Absorption Coefficient Parameters for T0 = 295 K

Material A(T0) [cm2] A1p(T0) [cm2] A2p [cm2] A3p [cm2]

MgO — 6.1 × 10−4

SiO2 o-ray 1.07 × 10−4 8.9 × 10−5

e-ray 8.2 × 10−5 1.39 × 10−4

Al2O3 o-ray 9.15 × 10−4 2.2 × 10−4 4.7 × 10−4 2.2 × 10−4

e-ray 1.28 × 10−3 8.6 × 10−4

Y2O3 2.1 × 10−3 8.4 × 10−4

MgAl2O4 2.2 × 10−3 1.6 × 10−3

ALON 1.1 × 10−3 —
ZnS 5.8 × 10−4 9.8 × 10−4

NaCl 1.2 × 10−2 3.0 × 10−3 9.0 × 10−3



D0 is the dissociation energy, re is the location of the equilibrium position,
a = ω0

(
µ′/2D0

)1/2
, ω0 is the fundamental lattice-vibration frequency, and µ′ is the

reduced mass. The potential is plotted in Fig. 8.11. Both classical and quantum-
mechanical models exist. The Morse potential includes anharmonic effects to all 
orders. These characteristics make this model much simpler than others. The strong
anharmonic nature of the true potential for most materials means that the harmonic-
oscillator perturbational approaches have questionable validity and require major
correction factors.
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Fig. 8.10 Comparison of experimental data with the JHU/APL model for the far-infrared absorp-
tion coefficient as a function of (a) frequency and (b) temperature, for the ordinary ray of Al2O3.



A brief discussion of the quantum-mechanical Morse-potential multiphonon model
is presented here. Assumptions used in the model, besides use of the Morse potential,
are as follows:

1. A single generalized dissociation energy is sufficient.
2. No impurities and defects are considered, that is, only intrinsic properties are

of interest.
3. Phonon density-of-state functions quickly approach the Gaussian form dictated by

the central-limit theorem as the order of the harmonic increases.

The solution of the stationary-state Schrödinger wave equation using the Morse
potential produces the following energy eigenvalues (recall from Chapter 3)

Em = h̄ω0

[(
m + 1

2

)
− 1

j ′

(
m + 1

2

)2
]
,

where m is an integer, m = 0,1,2,3,… , mmax ≤ 1/2( j ′ − 1), h̄ = h/(2π), and
j ′ = 4D0/(h̄ω0).

Based on Eqs. 8.34-8.36 the absorption coefficient βabs for a single oscillator as a
function of temperature T and wave number ν is

βabs(ν,T ) = 8π3ρν

3hQ(T )n
tanh

(
hcν

2kB T

) mmax∑
n = 1

mmax−n∑
m = 0

e−Em/kB T |µdp,nm |2 j (ν,νnm), (8.42)

where

νnm = En+m − Em

hc
= ν0

[
n − 1

j
(n2 + 2nm + n)

]
= Nν0. (8.43)
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Fig. 8.11 Energy diagram of vibration energy level structure for the Morse potential as a func-
tion of intermolcular separation [Å].



n represents the number of vibrational quanta or the number of phonons in the transi-
tion and can not exceed mmax . Thus transitions originate from an initial state m. The
transition matrix element for the Morse potential is given by Eq. 5.87. For dominantly
ionic bond materials, dissociation energy is large, thus m 	 j ′ (i.e., below the material
melting temperature) is generally true. Applying this approximation, then the dipole
transition matrix element as given by Eq. 5.87 reduces to

| dp,nm |2 ≈ q2h

8π2cν0µ′
(m + n)!

m!n2 j ′(n−1)
. (8.44)

Substituting the above result into Eq. 8.42, we obtain the single oscillator absorption
coefficient

βabs(ν,T ) = K
νtanh

(
hcν

2kB T

)
ν0 Q′(T )

mmax∑
n = 1

j ′−(n−1)

n2

mmax−n∑
m=0

(m + n)!

m!
e−γM j (ν − νnm), (8.45)

where the following parameter substitutions have been made

Q′(T ) =
mmax∑
m = 0

exp(−γM), γ = hcν0

kB T
, K = πρq2

3cµ′n
and M = m

(
1 − 1

j ′

)
− m2

j ′ .

Note In the classical or continuum limit, where j ′ → ∞ (that is hcν 	 4D0), and
T large (γ 	 1), the absorption coefficient at integer multiples of the fundamental
oscillator frequency reduces to

βabs(nν0, T ) ≈ Kn!

(
kB T

4D0

)n−1

j (0), (8.46)

which agrees with the classical result (Ref. 8.24). Therefore, for high temperature
the multiphonon sum band absorption coefficient follows the same power law as
for multiphonon difference bands.

The model at this point represents a single oscillator without considering band struc-
ture created by many closely spaced oscillators in a lattice. As discussed in Chapter 3,
the bringing together of many oscillators broadens the energy level structure into a con-
tinuum of states. The spectral shape of these vibrational bands is specified by the
vibrational density-of-states function. The net absorption coefficient, βabs,net, for a solid
is the integration of the individual oscillator absorption coefficient, βabs, over all appro-
priately weighted oscillators as given by the n-phonon vibrational density-of-states,

βabs,net(ν,T ) =
mmax∑
n=1

∞∫
0

dν0Sn(ν0,T )g(ν,Nν0)ρn(Nν0). (8.47)

Following the development of Boyer et al. (Ref. 8.29), the transition line shape func-
tion is considerably narrower than the vibrational density-of-states distribution and can
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be approximated by a Dirac-delta function sum (e.g., j(ν,Nν0) = δ (ν − Nν0) + δ(ν +
Nν0)). Evaluating the integral leads to the following fundamental result:

βabs,net(ν, T ) =

K tanh

(
hcν

2kB T

) mmax∑
n=1

ρn(ν) + ρn(−ν)

n2 Q′(T )

mmax − n∑
m=0

(m + n)!

m!

exp
(
− hcνM

kB T N

)
j ′(n−1)

, (8.48)

where

Q′(T ) =
mmax∑
m=0

exp

(
− hcνM

kB T N

)
, j ′(ν) = 2D0n

hcν

[
1 +

√
1 − hcν(n + 1)

nD0

]
,

ρn(ν), the n-phonon density-of-states, is given by

ρn(ν) =
∞∫

0

dν ′ρn−1(ν
′)ρ1(ν − ν ′). (8.49)

The n-phonon density-of-states function is determined by an n-fold convolution of the
one-phonon density-of-states. In terms of the individual n-phonon absorption coeffi-
cients in standard form, the net absorption coefficient is

βabs,net(ν,T ) =
mmax∑
n=1

βabs,n(ν,T ) =
mmax∑
n=1

Sn(ν,T )[ρn(ν) + ρn(−ν)], (8.50)

where the n-phonon band strength is

Sn(ν,T ) = K tanh

(
hcν

2kB T

)
1

n2 Q′(T )

mmax−n∑
m = 0

(m + n)!

m!

exp
(
− hcνM

kB T N

)
j ′n−1

.

The n-phonon density-of-states function, ρn(ν), is the probability of finding 
n-phonons in the lattice whose energies add up to hcν. It is required that this function
be normalized according to

∞∫
0

ρ1(ν) dν = 1. (8.51)

Using Eq. 8.49, it can be shown that all ρn(ν) values normalize to unity. As n increases,
if the vibrational modes are reasonably close together, ρn(ν) rapidly becomes Gaussian.
This is a manifestation of the central-limit theorem. (For sapphire, even ρ2(ν) can be
somewhat approximated by a Gaussian profile.) Based on the results of Boyer et al.
(Ref. 8.29), Sparks and Sham (Ref. 8.30), and the asymptotic expansion of the central-
limit theorem, ρn(ν) can be approximately represented by the form

ρn(ν) = 1

σ ′
n

√
2π

[
1 − α3√

n
(3x − x3)

]
exp

(
− x2

2

)
; n ≥ 3, (8.52)
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where

x = ν − nα1νmax

σ ′
n

. (8.53)

The standard deviation of the distribution is

σ ′
n = α2νmax

√
n. (8.54)

The coefficients α1, α2, and α3 are determined from the moments of the density-of-
states distribution, as defined by

α1 = 〈ν〉
νmax

, α2 =
(〈ν2〉 − 〈ν〉2

)1/2

νmax
, (8.55a)

and

α3 = 〈ν3〉 − 3〈ν2〉〈ν〉 + 2〈ν〉3

6
(〈ν2〉 − 〈ν〉2

)3/2 , (8.55b)

based on the standard formula for the spectral moments

〈νr 〉 =
∞∫

0

dνρ1(ν)νr , r = 1, 2, 3. (8.56)

Here νmax is the maximum fundamental lattice-vibration frequency. It is taken to be
the maximum longitudinal-optical-mode frequency of the crystal. νmax is experimen-
tally determined for each material from far-infrared reflectance spectra. A derivative
reflection-spectroscopy technique, as described in Chapter 6, can be used to determine
the values in a straightforward manner. This approach works for dominantly ionic bond
materials such as the alkali halides, oxides, and fluorides.

The shape of the distribution is determined by three parameters: α1, the distribution
mean normalized by νmax ; α2, the distribution standard deviation normalized by
νmax ; and α3, the distribution skewness divided by 6. The parameters α1, α2, and α3 are
directly determined from ρ1(ν). In the case of sapphire, an approximate density-of-
states function is given by Billard et al. (Ref. 8.32), as illustrated in Fig. 8.12. The
results are α1 = 0.537, α2 = 0.213, and α3 = 0.052. However, in practice, the α2

parameter requires modification, because the true phonon distribution function, ρn(ν),
goes to zero at nνmax . Thus, the value for α2 is too large and can artificially produce
steps in the net absorption coefficient caused by the assumption of a Gaussian phonon
distribution function. Based on sapphire absorption data, a simple but effective empiri-
cal correction is used. By letting α2 = 0.153 and multiplying the strength by N (i.e.,
Sn → NSn ) yields an increased slope in the net βabs caused by the narrower ρn(ν). In
this way, a smooth and realistic representation of the absorption coefficient is obtained.
Because material transparency typically begins with the three-phonon band, a simple
rule for the edge of transparency of ionic materials can be obtained from the density-
of-states parameters according to
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νtrans ≈ 3α1νmax. (8.57)

The statistical parameters for the density-of-states function varies somewhat for dif-
ferent classes of materials. The crystalline and polycrystalline oxides and fluorides use
the same values as sapphire (see Appendix 4). The alkali-halides require a slightly dif-
ferent set of numbers; α1 = 0.530, α2 = 0.145, and α3 = 0.052. Unlike other oxides,
quartz and fused silica feature well separated one-phonon frequencies, and in this case
the statistical parameters are α1 = 0.510, α2 = 0.140, and α3 = 0.052.

Figure 8.13 illustrates the structure of βabs,net(ν,T ) in terms of βabs,n(ν,T ), the
absorption coefficient of a single n-phonon process. The individual βabs,n values are
nearly Gaussian in shape, yet the sum produces a nearly exponential curve for βabs,net,
as commonly observed in experiment. Based on this observation, the following empir-
ical formula has been used by Deutsch to represent experimental data on a variety of
optical materials:

βabs(ν) = A exp(−aν), (8.58)

where A and a are material-dependent parameters. This model does not represent the
temperature dependence, since more complete models, such as previously developed in
this Section, are needed to adequately accomplish this.

Now the temperature dependence of the multiphonon sum-band edge can be under-
stood in a straightforward way. From very low to roughly room temperature, the
absorption coefficient is nearly constant, because the vast majority of oscillators are in the
ground state (m = 0). Thus, the Boltzmann factors are temperature insensitive. At high
temperature, when the upper levels achieve enough population according to a Boltzmann
distribution, then photon absorption for m > 0 becomes important. Also, the dipole
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Fig. 8.12 Approximate one-phonon density-of-states function for sapphire. (N is a normalization
factor.)



matrix element increases with increasing m. Thus, the absorption coefficient increases
with increasing temperature because the Boltzmann distribution increases the popula-
tion of the upper vibrational states and absorption from higher vibrational states
(m > 0) increases in strength as m increases. Figure 8.14 illustrates this point by com-
paring model predictions against experimental data for Al2O3, and NaCl. Figure 8.15
illustrates the comparison of the experimental and model frequency dependence. Good
agreement is obtained. This multiphonon sum-band model has been successfully
applied to a variety of window materials, and Appendix 4 lists model parameters for
many such optical materials. Three parameters, besides the phonon density-of-states sta-
tistical parameters, are needed to specify a material; K the scaling constant representing
the dipole density, D0 the dissociation energy, and νmax the maximum longitudinal-opti-
cal-mode frequency. All of these parameters can be determined from room-temperature
measurements. Thus the model provides a means of predicting βabs(ν,T ) as a function
of temperature for a material with known βabs(ν,T0) at a fixed temperature T0.

Although the above figures suggest excellent agreement for a wide variety of mate-
rials, this multiphonon sum model has limitations. The first is illustrated in Fig. 8.16 for
quartz. In this case, the density-of-states function has structure in the two- and three-
phonon regions and is not approximated by the Gaussian approximation with sufficient
accuracy until at least the four-phonon absorption band. A reflection spectrum of quartz
o-ray is shown in Fig. 8.16a. It shows a wide separation between two strong one-
phonon bands. Therefore the n-phonon density-of-states function requires more
convolutions or higher order phonon absorption to obtain a near Gaussian form.

Another limitation of the multiphonon sum band model is that it works only for
materials which are dominantly composed of ionic bonds. Many materials of optical
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Fig. 8.13 n-Phonon absorption bands for room-temperature sapphire (o-ray) absorption coeffi-
cient at room temperature.
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Fig. 8.14 (a) Temperature dependence of multiphonon absorption at fixed wave numbers for
Al2O3 (▲ Deutsch, Ref. 8.35; • Billard et al., Ref. 8.32; and � Thomas et al., Ref. 8.34). 
(b) Temperature dependence of the multiphonon absorption coefficient at fixed wave numbers for
NaCl (■ Boyer et al., Ref. 8.29; • Namjoshi and Mitra, Ref. 8.13; Deutsch, Ref. 8.35; � Barker, 
Ref. 8.36 and ▲ Harrington and Hass, Ref. 8.37).

Fig. 8.15 (a) Frequency dependence of the multiphonon absorption coefficient at three fixed
temperatures for sapphire ordinary-ray (Ref. 8.34). Curves A and B are experimental for T = 295
and 775 K, respectively. The curves marked C are generated by the multiphonon model. 
(b) Frequency dependence of the one-phonon and multiphonon absorption coefficient at room
temperature for NaCl.



importance are composed of mixed ionic and covalent bonds or are purely covalent. In
this case, the covalent-bond vibrational modes are typically too weak to show up in a
reflection spectrum and thus the density-of-states function cannot be fully determined,
because, as previously mentioned, νmax cannot be correctly found from a reflection
spectrum only. This is the case for mixed-bond materials such as ZnS, ZnSe, and GaAs,
and purely covalent-bond materials such as diamond, silicon, and germanium.

Some insight into how this problem may be overcome can be obtained from the
infrared absorption spectrum of diamond, as illustrated in Fig. 8.17. Diamond is purely
covalent, with no fundamental infrared active vibrational modes. Intrinsic diamond is
completely transparent below the bandgap except for second, third, and higher order
multiphonon absorption bands. The two-phonon cutoff (2νmax ) is twice the fundamental
Raman frequency at 1332 cm−1. Also, to obtain a fit to the experimental data, the phonon
density-of-states function required considerable modification relative to the other ionic
materials studied. For the optical density-of-states, ρO2(ω), the Gaussian statistical
parameters were significantly modified to α1 = 0.814, α2 = 0.12, and α3 = 0.05.
However, the two-phonon red wing is poorly modeled by this density-of-states function
as indicated in Fig. 8.17. Diamond absorptance near 10 µm is of particular interest
because many infrared sensors operate at this atmospheric window. Evidence indicates
that the absorption in this region is caused by two-phonon acoustic–acoustic interac-
tions. Normally, pure acoustic multiphonon absorption would not be measurable
because it is obscured by strong one-phonon optical mode absorption. Diamond has
very high acoustic frequencies owing to its strong bonds, and the lack of fundamental
absorption unmasks the pure acoustic contribution. This contribution is modeled by
applying a Debye acoustic single-phonon density-of-states distribution, ρa1(ω), as
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Fig. 8.16 Room-temperature (a) far-infrared reflection spectrum and (b) midwave absorption
coefficient for quartz o-ray.



The maximum acoustic frequency of diamond, ωa,max = 1183 cm−1, is used for the
acoustic density-of-states cutoff frequency. The Gaussian function is used for the optical
phonon density-of-states. Combining these two functions and requiring the normalization
condition of Eq. 8.51, the resulting net two-phonon density-of-states function is

ρ2(ω) = 0.91ρo2(ω) + 1

9
ρa2(ω). (8.60)
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Fig. 8.17 Comparison of experimental and theoretical multiphonon absorption for Type IIa dia-
mond at T = 295 K. (Solid line – multiphonon model, dashed line – experimental data: ♦ – laser
calorimetry measurements, and + – experimental data from HOC II, Palik, Ref. 8.58.)
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ω6
max

0 ≤ ω ≤ ωmax .

(8.59)

given by Eq. 3.140. Higher order (nth) acoustic phonon distributions are computed by
convolving this distribution with the (n − 1)-phonon distribution as specified by Eq. 8.49.
For the case of the two-phonon acoustic distribution function, ρa2(ω), the result is



The density-of-states function for n ≥ 3 is only composed of the optical contributions
and is a Gaussian function.

The multiphonon band strength for diamond requires the full solution of the transi-
tion matrix element as given by Eq. 5.87. This is because the dissociation energy is
small and the maximum lattice vibration frequency is large, making the approximation
used for ionic materials invalid. This improves the model representation of the n ≥ 3
multiphonon absorption bands and the temperature dependence in general. Figure 8.17
illustrates the agreement between experimental data on natural type IIa diamond and
this multiphonon model at room temperature.

The two-phonon acoustic contribution, although weak, is important because it lies in
the 8–12 µm atmospheric window frequently used by infrared sensors. Note that our
selected value of 1183 cm−1 is consistent with the highest observed acoustic frequency
for diamond, which is 1185–1191 cm−1 (longitudinal acoustic frequency at the X criti-
cal point). Diamond uniquely offers the opportunity to study the two-phonon red wing.
Weak higher order multiphonon absorption bands are important for high-power dia-
mond laser windows. The agreement between theory and experiment validates the
existence of the four-phonon band in diamond.

The multiphonon sum band model can also be applied to refractive index modeling
at frequencies near the two- and three-phonon bands. Although room-temperature mul-
tiphonon contributions to the real index are typically very small compared with
one-phonon contributions, they are important for two cases in the infrared: 1) when the
optical propagation path through a material requires knowledge of the refractive index
beyond two decimal places and 2) when a material is heated to high temperatures. In
the first case, the cumulative effect of the multiphonon contributions to the index over
a large optical distance can be significant. In the second case, the magnitude of the
higher order multiphonon modes increase significantly with increasing temperature,
since the temperature dependence of the nth mode is approximately T n−1.

An expression for multiphonon contributions to the real part of the index of refrac-
tion is derived using the Kramers–Krönig (Hilbert transform) relationship and the
previously described multiphonon absorption model in a straightforward manner.
Based on Eqs. 8.50 and 3.34, the multiphonon refractive index, nmp(ν,T ), can be
expressed as

nmp(ν,T ) − 1 = 1

2π2

mmax∑
n=1

P

∞∫
0

Sn(ν
′,T )

[
ρn(ν

′) + ρn(−ν ′)
]

ν ′2 − ν2
dν ′. (8.61)

Although ρn(ν) can vary significantly for different values of n (i.e., different multi-
phonon modes), the frequency dependence of Sn(ν,T ) for a given n is most important
in the vicinity of the peak of the density-of-states function and is relatively constant in
frequency over that region. By neglecting the frequency dependence of Sn , and evalu-
ating it at the peak of the n-phonon density-of-states function, an approximate
expression for the real index can be obtained and is given by

nmp(ν,T ) − 1 ≈ 1

2π2

mmax∑
n=1

Sn(νn,T )δn(ν), (8.62)
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where

δn(ν) = P

∞∫
−∞

ρn(ν
′)

ν ′2 − ν2
dν ′ (8.63)

and ν̄n = nα1νmax. The dispersion profile, δn(ν), is the Hilbert transform of the density-
of-states function. The skewness factor in the phonon density-of-states function, given
by Eq. 8.52, is a minor correction, important for the absorption model but, not neces-
sarily for a refraction model. Therefore, the phonon density-of-states function is
simplified to a Gaussian function,

ρn(ν) ≈ 1

σ ′
n

√
2π

e
−x2

2 (8.64)

where

x = ν − νn

σ ′
n

and σ ′
n = α2νmax

√
n.

Substituting the above density-of-states function into Eq. 8.63, we obtain result

δn(y) = 1

2σ ′
n

2√π
P

∞∫
−∞

dt
e−(t −wn)

2

t2 − y2
, (8.65)

where the following variable changes have been made:

wn = νn√
2σ ′

n

, y = ν√
2σ ′

n

, and t = ν ′
√

2σ ′
n

.

To solve Eq. 8.65, it is helpful to rewrite the Gaussian function in integral form, as 
given by

e−(t −wn)
2 = 2√

π

∞∫
0

ds e−s2
cos [2s(t − wn)]

and also apply the trigonometric identity for angle differences,

cos [2s(t − wn)] = cos(2st)cos(2swn) + sin(2st)sin(2swn).

After some straightforward algebra, the multiphonon dispersion profile now simpli-
fies to

δn(y) = −1

σ ′2
n y

∞∫
0

dse−s2
cos(2swn)sin(2sy). (8.66)
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This result can be reduced to a tractable form by applying the trigonometric identity

2 cos(2swn)sin(2sy) = sin [2s(y − wn)] + sin [2s(y + wn)] .

The multiphonon dispersion profile finally becomes

δn(y) =
−1

2yσ ′
n

2

[∞∫
0
ds e−s2

sin [2s(y + wn)] + sgn(y − wn)
∞∫
0
dse−s2

sin(2s|y − wn|)
]

.
(8.67)

The integrals in the dispersion profile are in the form of Dawson integrals, as given by

D(a) =
∞∫

0

ds e−s2
sin(2sa). (8.68)

Polynomial representations and asymptotic solutions exist for the Dawson integral and
are presented in Appendix 2. In terms of the Dawson integral, and substituting back to
wave numbers, the multiphonon dispersion profile becomes

δn(ν) = −1√
2σ ′

nν

[
D

(
ν + νn√

2σ ′
n

)
+ sgn(ν − νn)D

(
|ν − νn|√

2σ ′
n

)]
. (8.69)

Substituting this result into Eq. 8.62, we obtain the solution for the multiphonon refrac-
tive index, nmp(ν,T ),

nmp(ν,T ) − 1 ≈ −√
2

4π2ν

mmax∑
n=1

Sn(νn,T )

σ ′
n

[
D

(
ν + νn√

2σ ′
n

)
+ sgn(ν − νn)D

(
|ν − νn|√

2σ ′
n

)]
.

(8.70)

The initial assumptions of a spectrally constant Sn(ν,T ) and simple Gaussian density
of vibrational states must be tested. This is accomplished by applying Eqs. 2.54b (for
g(ω) ≈ δ(ω)), 3.30, 3.36a, and 3.36b. It is required that

Sn(νn, T ) =
∞∫

0

dνβabs,n(ν,T ), δ(0) = 1

ν2
n

and

∞∫
0

dν δ(ν) = 0.

The first condition is met with reasonable accuracy. However, the dispersion formula
does not satisfactorily satisfy the last two requirements for the case sapphire because of
approximations made at the beginning of the derivation. Deviations on the order of 10%
exist. The two- and three-phonon density-of-states are not Gaussian, and this has
resulted in a slightly incorrect dispersion profile. An empirical correction is made that
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significantly improves the agreement with the above requirements by multiplying the
dispersion profile, δn(ν), by the following function:

0.09 tanh [(ν − νn)0.01] + 1.

Now agreement with the above conditions is within a few percent.
The corrected multiphonon index of refraction is a summation of nth order phonon

modes. The anomalous dispersion curves for the multiphonon model, as given by Eq. 8.69
times the correction factor, have been calculated for the ordinary ray of sapphire, and
are shown in Fig. 8.18. The dispersion profile for each n-phonon process from n = 2
to 4 is illustrated. As expected, the profile broadens as n increases. The net multiphonon
refractive index can be computed based on Eq. 8.70, and is illustrated in Fig. 8.19 for
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Fig. 8.18 Multiphonon anomalous dispersion curves, δn(ν) versus wave number calculated for
the second-, third-, and fourth-order phonon modes.

Fig. 8.19 Multiphonon contributions (n = 2- through 4-phonon modes) to the index of refrac-
tion for sapphire (o-ray) at 295 K.



room-temperature sapphire (ordinary ray). The curve includes the contributions for n = 2
through 4. Only two- and three-phonon anomalous dispersions are significant because
the n-phonon band strength, Sn(ν̄n,T ) , decreases rapidly for increasing n. However,
since the strength increases as T (n−1), at very high temperatures 3- and 4-phonon con-
tribution can become important. Thus, a complete model of the complex index of
refraction as a function of temperature and frequency must include one-phonon, multi-
phonon, and electronic contributions.

Table 8.6 compares the real index values calculated with the Sellmeier model to the
values calculated with the one-phonon/electronic model and the sum of the one-phonon
and multiphonon models (see Appendix 4 for parameter values). From these results, it
can be seen that the multiphonon contributions to the real index of refraction at 295 K
are small but important for many design applications. (They generally affect the mag-
nitude of the real index in the third decimal place at room temperature.) The Sellmeier
model is only valid at the temperature of the data set it represents (normally room tem-
perature). The phonon model (one and multiphonon), plus a Sellmeier model for
electronic transitions, accurately represents the temperature and frequency dependence,
and therefore provides a more complete representation. Table 8.6 demonstrates that the
model closely matches the precision of the room-temperature Sellmeier model
(±0.00002).

Normally, absorption and refraction processes are additive in the permittivity and not
in the complex index. However, because the multiphonon contributions to the complex
index of refraction are comparatively small relative to first-order phonon processes,
they can be directly added to the first-order complex index with good accuracy.

The intrinsic multiphonon complex index of refraction is important in determining
transmittance in materials used for windows and fibers. Two- through four-phonon
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Table 8.6 Comparison of Calculated Values of the Real Index of Refraction for Sapphire (o-Ray)
at 295.0 K in the Spectral Region of Transparency. Values Calculated with the One-phonon/
Electronic and Multiphonon Models are Compared with Values Calculated with the Sellmeier
Model (i.e., �n = n – nSellmeier )

One-Phonon/Electronic One-Phonon/Electronic and
Frequency Sellmeier Model Multiphonon Model
v [cm−1] Model nSellmeier n �n n �n

1800.0 1.58807 1.5921 +0.0041 1.58814 +0.00007
1900.0 1.60774 1.6112 +0.0034 1.60778 +0.00004
2000.0 1.62402 1.6271 +0.0029 1.62403 +0.00001
2100.0 1.63768 1.6403 +0.0026 1.63768 0.00000
2200.0 1.64927 1.6516 +0.0022 1.64926 −0.00001
2300.0 1.65919 1.6612 +0.0020 1.65917 −0.00002
2400.0 1.66776 1.6696 +0.0018 1.66773 −0.00003
2500.0 1.67522 1.6768 +0.0016 1.67518 −0.00004
2600.0 1.68176 1.6832 +0.0014 1.68171 −0.00005
2700.0 1.68753 1.6888 +0.0013 1.68747 −0.00006
2800.0 1.69264 1.6938 +0.0012 1.69258 −0.00006
2900.0 1.69719 1.6983 +0.0011 1.69714 −0.00005
3000.0 1.70127 1.7023 +0.0010 1.70122 −0.00005



bands are important for window material characterization. Two- through six-phonon
bands are important for optical fibers.

8.2.1.3 Transparency Near the Bandgap and Urbach’s Rule

Just as in the case for infrared transparency, higher order processes are needed to repre-
sent the absorption edge below the bandgap. As discussed in Chapter 5, Urbach’s rule
represents the absorption coefficient below the bandgap of a material. The temperature-
and frequency-dependent formula is given by Eqs. 5.146 and 5.147. Figure 8.20 illustrates
the comparison of the Urbach model with experimental data on fluorides as function of
frequency for a variety of temperatures. The representation is clearly quite good over a
wide range of temperatures. Urbach tail model parameters are listed in Appendix 4 
(Table A4.4) for a limited number of materials when experimental data is available. This
model has been found to work for a wide variety of insulators and semiconductors.

8.2.1.4 Extrinsic Effects

Extrinsic optical effects are those caused by the manufacturing process. They can be
categorized as structural, and as defects and impurities.

Good examples of materials with structural extrinsic properties are polycrystalline
and amorphous (glass) materials. Polycrystalline materials are formed by hot-pressing
a powder composed of high-purity single crystals to full density. Glasses are considered
supercooled liquids. They have no long-range order and are made by fusing molten
materials together and then rapidly cooling to prevent crystallization. Polycrystalline
materials and glasses are easier to make in large sizes and in various shapes, than the
single crystal counterpart. Therefore, they are less expensive than single crystals. High-
quality optical polycrystalline and amorphous materials are commercially available.
Glasses are commonly used in visible optical systems (e.g., cameras, projectors etc.).

Defects and impurities in all types of material structure affect the optical properties.
Since defects and impurities are usually in very small concentrations, they only affect
the absorption coefficient in local spectral regions and have virtually no effect on the
refractive index. A good example of impurity absorption is hydrogen in oxides such as
sapphire, quartz, spinel, etc. The hydrogen bonds to oxygen and gives rise to an extrin-
sic vibration band near 3 µm, which is characteristic of OH (see Table 3.2). The
spectral location varies with the host material. An example of this is presented in 
Fig. 8.21 for yttria (Y2O3). (Another example for fused silica is shown in Fig. 8.23.)
Because the impurity level varies from sample to sample, the strength of the impurity
absorption feature varies as well. Thus each sample must be measured to determine the
absorption level.

8.2.2 Amorphous Insulators: Glasses

Most commercially available optical window materials for near-infrared and visible
applications are glasses. Glasses are easily shaped and finished so that component cost
can be much less than crystal-based optical elements. A wide variety of optical proper-
ties are available, giving designers great flexibility in meeting the requirements for a
particular application.
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Fig. 8.20 The absorption coefficient near the bandgap of LiF, CaF2, SrF2, and BaF2 for a variety
of temperatures. The straight-line fits are the Urbach tail model and the points are experimental
data (Tomiki and Miyata, Ref. 8.43, with permission).
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A glass is an amorphous solid because it lacks long-range order. But it is a special
kind of amorphous material, because it is also a nonequilibrium state of matter that hap-
pens to be very stable. Glasses can be classified as high-viscosity liquids. For example,
glass windows in old buildings are slightly thicker at the bottom than at the top! Another
characteristic feature of a glass is that it has a transition temperature above which it
abruptly changes thermodynamic properties (e.g., heat capacity, thermal expansion)
from crystal-like to liquid-like quantities. This temperature is called the glass transition
temperature, which is much less than the melting temperature. This represents the upper
temperature limit for any application involving glass optics.

Most common glasses are composed of oxides, in particular, silicates (SiO2), borates
(B2O3), and phosphates (P2O3). Usually a variety of other oxides in minor concentration
compose most glasses as well. Perhaps the most important oxide glass is fused silica. It is
the main material composing most glasses, optical fibers, and desert sand. The infrared
reflectance spectrum for fused silica is plotted in Fig. 8.22. Because of the lack of long-
range order, the vibrational modes have considerably broadened over that of crystalline
quartz (see Fig. 8.16). This tends to shift the infrared edge of transparency to higher fre-
quencies. Figure 8.23 plots the experimental absorption coefficient and compares the
multiphonon model (see Appendix 4 for the model parameters) to these results. The model
is extrapolated to the near-infrared where optical fiber communication systems operate.
Experimental points from a GeO2-doped silica fiber are also shown for comparison.

The popular glass BK7 is primarily composed of borates and silicates and is classi-
fied as a borosilicate crown glass. Figure 8.24a shows infrared reflectance and
transmittance spectra of BK7 glass. The spectra are similar to fused silica, indicating
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Fig. 8.21 Hydroxyl (OH−) impurity absorption in yttria for T = 295 K. The solid squares repre-
sent the absorption coefficient based on laser calorimetry data and the solid triangle represents
the scatter coefficient from a laser scatterometer measurement. The solid curve is experimental
data. The dashed curve is the scatter coefficient. The dash–dot curve is a model for the extinction
coefficient and the dotted curve is a model for the absorption coefficient.



Fig. 8.22 Infrared reflectance spectrum of fused silica at T = 295 K (◦ – experimental points,
solid curve – classical oscillator model fit).

Fig. 8.23 Comparison of the experimental (◦ and ♦) and theoretical multiphonon absorption
coefficient (solid curve) as a function of frequency for fused silica at room temperature. The dashed
curve represents Rayleigh scattering loss.
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that BK7 is dominantly silica based (50% to 70%). OH impurity absorption in BK7
limits useful transparency to 2.5 µm. Most glasses are transparent into the near-infrared.
Unfortunately, optical property characterization typically does not exist for wave-
lengths longer than 1 µm. The short-wavelength ultraviolet edge of transparency of
BK7 glass is shifted to 300 nm from roughly 160 nm for high-purity fused silica.

Another useful characterization of a glass is a measure of dispersion in the visible.
This is commonly accomplished with the Abbe number, νd . It is defined as

νd = nd − 1

nF − nC
, (8.71)

where nd, nF, and nC are the indices of refraction at 587.6, 486.1, and 656.3 nm, respec-
tively. The Abbe number for BK7 is 64.17. The adjustment of the composition of the
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Fig. 8.24 The room-temperature infrared (a) reflectance and (b) transmittance for BK7 glass for
two different thicknesses.



glass alters the dispersion. The great variety of dispersion that is available is a great aid
to lens designers.

The index of refraction of many glasses is commonly represented by the empirical
Schott glass formula, as given by

n2(λ) = A0 − A1λ
2 + A2λ

−2 + A3λ
−4 + A4λ

−6 + A5λ
−8.

This formula is applied from 0.365 to 1.014 µm with a precision of ±0.000005. The
Schott glass formula can be obtained from an expansion of the Sellmeier formula. In
fact, an equivalent Sellmeier model will work equally well, but uses fewer parameters
and offers greater spectral coverage. This is important, since optical glasses transmit
beyond 1 µm. Based on Fig. 8.23, pure fused silica transmits out to 4 µm. Given today’s
interest in optics at 1.55 µm, it is necessary to extend the characterization of the index
of refraction of glasses throughout the near infrared. Sellmeier models for a limited set
of glasses are given in Appendix 4.

The magnitude and dispersion of the refractive index of a glass can be adjusted by
changing the glass composition. Oxides with heavier cations increase the index of
refraction and shift the electronic transitions to lower frequencies, thus increasing dis-
persion. Oxides with lighter cations lower the refractive index and shift electronic
transitions to higher frequencies, thus decreasing dispersion. For example, in an optical
fiber, the inner core is composed of pure SiO2 doped with GeO2 to increase the refrac-
tive index of silica, and the outer cladding is SiO2 doped with B2O3 to decrease the
refractive index of silica. A modified Sellmeier equation can be used to compute the
refractive index of a multicomponent glass. For a glass composed of silica and germa-
nia of the form xGeO2:(1− x)SiO2 where 0 ≤ x ≤ 1, the Sellmeier formula becomes

n2(x,λ) = 1 +
∑

i

[
�εsilica,i + x(�εgermania,i − �εsilica,i )

]
λ2

λ2 − [λsilica,i + x(λgermania,i − λsilica,i )
] ,

where the Sellmeier parameters for germania and silica can be found in Appendix 4.
This model assumes that the changes in oscillator strength and location are linear in x,
which may not always be the case.

Other types of glasses also exist, such as fluorides and calcogenides. They offer
transparency farther into the infrared than oxide glasses, but are not as durable as oxide
glasses and therefore are seldom used unless the application demands mid-infrared (flu-
orides) and longwave infrared (calcogenides) transparency. For example, fluoride glasses
are attacked by water.

8.2.3 Semiconductors

A class of optical materials with established optoelectronic importance that continues
to grow is semiconductors. Many applications involving semiconductors are currently
being considered requiring high speed, compactness, and high reliability. This includes
photonic and optoelectronic devices in the form of sources (light emitting diodes and
lasers), detectors (PIN, quantum well, and APD photodiodes), modulators and switch-
ing devices. The main materials of interest are Si, GaAs, InP, AlxGa1−xAs, InGaAs,
InGaP, PbSnTe, and In1−xGaxAsyP1−y.
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Many semiconductor devices operate at frequencies near the bandgap energy,
which must have a direct bandgap for transmitting devices. For the materials of inter-
est this covers the near-infrared. For example, the room-temperature bandgap of GaAs
is 1.52 eV (0.815 µm); however, the ternary semiconductor bandgap can be tuned by
adjusting the element concentrations. Thus, devices can be made for the important
communication wavelengths of 1.3 and 1.5 µm. Furthermore, tunable mid-infrared (3
to 6 µm) laser sources are made from PbSnTe. Also, pure intrinsic semiconductor
materials, such as Ge, Si, and GaAs, are commonly used as infrared windows and
lenses. Device structures can be as common as the pn-junction or as novel as multiple
quantum wells. Current semiconductor lasers with low thresholds are made of hetero-
junction structures, were the junction is composed of two different materials with
different bandgaps. Multiple quantum well devices offer greater design flexibility for
achieving desired properties. Fundamental to device design and operation is the com-
plex index of refraction in both the time and frequency domain as a function of
frequency and temperature.

Because of the low-energy bandgap of semiconductors, free-carrier effects are
important, especially at elevated temperatures. Thus, semiconductor optical properties
require the characterization of free carriers, phonon bands, and electronic transitions.
Complete frequency-domain characterization above the bandgap of most of these semi-
conductor materials has been accomplished by Adachi (Ref. 8.19) in the form of the
standard permittivity models, as presented in Section 8.2.1.1. In the following, intrinsic
semiconductor materials are briefly examined, and then extrinsic materials commonly
used in optoelectronic devices are discussed.

8.2.3.1 Intrinsic Properties

Intrinsic properties are those of the ideal pure material. For many materials, intrinsic
properties can be obtained. Free-carrier effects are covered first, followed by phonon
effects and then electronic processes at the bandgap.

Free Carrier Low-energy bandgap semiconductors (Eg ≤ 0.65 eV) possess strong
free-carrier absorption near room temperature at microwave frequencies. As these mate-
rials are moderately heated, absorption by free carriers becomes significant for the
infrared. This is because of thermally generated negative carriers in the conduction
band and positive carriers in the valence band. The negative carriers are electrons and
the positive carriers are called holes. The intrinsic carrier concentration as a function of
temperature closely follows a Boltzmann factor dependence as given by

ρcarrier (T ) = ρ0carrier

(
T

T0

)3
2

exp

[
− Eg

2kB

(
1

T
− 1

T0

)]
,

where T0 is a reference temperature. Based on Eq. 4.63b and the above result, the
plasma frequency for each carrier type as a function of temperature becomes,

ωp(T ) =
√

ρp(T )

mε0
e = ωp0

(
T

T0

)3
4

exp

[
− Eg

4kB

(
1

T
− 1

T0

)]
.

398 OPTICAL PROPAGATION IN LINEAR MEDIA



According to Eq. 4.55, the carrier mobility is related to the carrier damping parameter.
Using an empirical relationship for the temperature-dependent mobility, the following
temperature-dependent model for the carrier damping parameter is obtained:

�c(T ) = �c(0)

(
T

T0

)2.6

.

Figure 8.25 plots the computed transmittance for germanium (Eg = 0.664 eV) and sil-
icon (Eg = 1.11 eV) using the temperature-dependent free-carrier model (Eq. 4.63 with
the above temperature-dependent parameters for each carrier type). The infrared free-
carrier absorption coefficient decreases with increasing frequency as ν−2, as predicted
by the free-carrier model presented in Chapter 4. This is the case for silicon and ger-
manium. However, the conductivity relaxation time is frequency dependent, which is
not represented in the Drude model. The nature of the frequency response depends on
the charge-carrier scattering mechanism. There are two types of scatters that impede
carrier motion, phonons and impurity ions. Also, recall that there are two types of
phonons, acoustic and optical. The experimental absorption coefficient fall-off for
acoustic phonons is ν−1.5, for optical phonons is ν−2.5, and for ion impurities is ν−3.5.
In most materials a combination of effects occurs. For example, phonon scattering dom-
inates in n-doped silicon and germanium and the net fall-off is ν−2. For n-doped GaAs
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Fig. 8.25 The transmittance of intrinsic germanium (30 	 cm) and silicon (2 × 105	 cm) at 
different temperatures (model parameters are listed in Appendix 4).



a more rapid fall-off is observed, where βabs ∝ ν−3. Thus ion impurity scattering must
be playing a role.

Phonons Purely covalent semiconductors, such as Si and Ge, have no infrared active
phonon absorption bands to first order. This is the same situation for diamond, which
possesses a large bandgap and was discussed with the other insulating materials. The
optical properties are very similar, but because of the more massive atoms of Si and Ge,
the vibrational frequencies are lower (see Fig. 8.26). Thus the multiphonon absorption
bands occur at lower frequencies. Table 8.7 lists the Raman frequencies for the purely
covalent type IV semiconductors along with diamond. Recall that the integer multiple
of the Raman frequency in diamond marks the location of the phonon bands. The same
is true for Si and Ge. Materials with ionic bonds have infrared active phonon bands. A
good example is GaAs. Figure 8.26 plots the absorption coefficient of GaAs as a func-
tion of photon energy. Also plotted in this figure is the multiphonon absorption
coefficient of Si; notice the lack of one-phonon structure and the comparatively weaker
two-phonon structure than that of GaAs. Also purely covalent bonded materials that do
not have a symmetrical structure can have infrared active vibrational modes. A good
example in this case is SiC.

The frequency-domain classical oscillator model accurately represents the permit-
tivity of semiconductor phonon bands, just as it did for insulators. Also, recall that the
classical oscillator blue wing requires modification to match experimental absorption
coefficient data (see Eq. 8.12). Another aspect of characterization that is important for
high-speed, high-bandwidth applications of semiconductor materials is the time-
domain response. If the classical oscillator model is used to represent the complex
index of refraction, then a closed-form time-domain result can be obtained, as was
demonstrated in Section 4.2.4. The result for room-temperature GaAs is presented in
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Fig. 8.26 The room-temperature absorption coefficient of doped and intrinsic GaAs and Si as a
function of photon energy.



Fig. 4.7. However, because of the blue-wing modification, the time-domain representa-
tion given is incomplete for very short-time behavior (probably on the order of
picoseconds). Each of the classical oscillator parameters, ωi,�εi, and �i is temperature
dependent. The optical properties of semiconductors are very temperature sensitive, and
it is important to include this dependence in a realistic model.

Electronic Transitions High-speed (100 GHz and greater) optoelectronic and pho-
tonic devices are currently in the research phase of development. There is great need for
modeling performance of such devices, which will ultimately lead to computational
design and evaluation tools of the future. A full solution to the time-domain Maxwell’s
equations is required. This is necessary because of the high speed and bandwidths
involved, the component size, and the inhomogeneous nature of the media. The standard
frequency-domain approaches are not always practical because Maxwell’s equations are
solved assuming monochromatic, steady-state behavior. The transient response of materials
is now important as well as frequency-dependent complex index of refraction of device
materials, and the time domain is a more natural setting for such problems. One promising
numerical approach for solving Maxwell’s equations uses a finite-difference–time-domain
(FD-TD) technique. This requires knowledge of the time-domain characterization of the
intrinsic and extrinsic optical properties of the materials used in a device. For realistic
modeling, temperature dependence must be known as well. Such information currently
does not exist to a satisfactory level.

Applying the Adachi models of Section 8.2 yields a comprehensive representation of
the intrinsic complex index of refraction for direct bandgap materials. The model can
be applied to indirect bandgap semiconductors as well. Recalling Section 5.7.1, an elec-
tron and phonon transition are required, thus k ′

f = k ′
i + k ′

phonon . Based on Eq. 5.133, the
net transition probability is much smaller than direct bandgap transitions (see Fig. 8.26,
which compares the absorption coefficient of Si and GaAs). The imaginary part of the
susceptibility near the bandgap in this case is represented by (Adachi, Ref. 8.19)

χindirect(ω) = G

(h̄ω)2

(
h̄ω − Eid

g ± h̄ωphonon
)2

H

(
1 − Eid

g ± h̄ωphonon

h̄ω

)
,

where Eid
g is the indirect bandgap energy, ωphonon is the phonon frequency, and G is a

scaling parameter. Because of the weakness of the indirect band transition, the real part
is insignificant and can be ignored. Model parameters for a variety of semiconductor
materials are listed in Appendix 4 (Tables A4.6–A4.9).
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Table 8.7 The Raman Active Vibrational Frequencies of 
Type IV Materials

Material Raman Frequency [cm−1]

Diamond 1332.4
Silicon 519.5
Germanium 300.6



8.2.3.2 Extrinsic Properties

Semiconductor materials are commonly doped to alter some electrical property in a
controlled manner. This is also the case for optical properties. Figure 8.26 shows the
important effect of p- and n-doping has on free-carrier absorption levels in GaAs. Such
an effect can be used to provide RF shielding to an optical window. The equilibrium or
intrinsic carrier density is related to electron and hole concentrations by

ρ2
i = ρnρp.

For an intrinsic semiconductor the electron and hole carrier density are equal. An n-
doped semiconductor requires an impurity that has a valence greater than the host thus
donating an electron. A p-doped semiconductor requires an impurity that has a valence
less than the host, thus removing or accepting an electron. Therefore, impurity concen-
trations are denoted as either ρdonor or ρacceptor . The number density for electrons in an
n-doped semiconductor is given by

ρn(T ) = 1

2

(
ρdonor +

√
ρ2

donor + 4ρi (T )

)
.

The corresponding number of holes in the doped material is obtained by applying the
above formula for the intrinsic carrier density, thus

ρdoped
p (T ) = ρi (T )2

ρ
doped
n (T )

.

A similar set of equations are used for a p-doped semiconductors where n is replaced
p, and p is replaced by n. Figure 8.26 plots the absorption coefficient for n-doped GaAs.

Extrinsic semiconductor structures are often used in making optoelectronic devices.
Such devices usually operate near the bandgap, of the material. This is where disper-
sion is high and absorption is beginning to become significant. An exciton band also
exists near the bandgap, as illustrated in Fig. 8.26. The location of the exciton band
affects the complex index of refraction and thus optical propagation. The exciton band
is also influenced by external electric fields, and this allows optical and electronic cou-
pling. A particular class of optoelectronic devices based on this effect are called SEED
(Self-Electro-optic Effect Devices). Precise knowledge of such optical properties is
required for careful design of any optoelectronic device.

8.2.4 Metals

High concentrations of free electrons exist in metals at any temperature, because the con-
duction and valance bands overlap. Thus, microwave and infrared properties of metals
are dominated by free-carrier effects, as described in Section 4.2.5. Free-carrier model
parameters are listed in Appendix 4 (Table A4.5) for a variety of metals. Figure 8.27
compares the complex index model based on Eq. 4.63 with experimental data for 
gold. Good agreement is shown throughout the far-infrared and infrared. This result is
true for all metals. However, from the near infrared to ultraviolet, interband electronic
transitions become important, and significant deviations from the free-carrier model
exist. This is demonstrated in Fig. 8.28, which plots the experimental and modeled
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Fig. 8.27 Free-carrier contributions to the infrared properties of gold in terms of the real and
imaginary parts of the complex index. The figure compares experimental values (n, � and k, ◦)
to a free-carrier model using parameters from Appendix 4 (n, solid and k, dotted).

Fig. 8.28 The room temperature complex index of refraction of aluminum from the infrared to
ultraviolet. The figure compares experimental values (n, � and k, ◦) to a free-carrier model using
parameters from Appendix 4 (n, solid and k, dotted).
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n and k values of aluminum as a function of wave number from the far infrared to the
ultraviolet. The classical oscillator model is used to represent the interband transitions
for aluminum (see Appendix 4 for parameter values). This improves the agreement in
the infrared, but discrepancies in the visible do exist.

The strong absorption exhibited by metals makes them excellent optical reflectors.
Figure 8.29 plots the near normal reflectance of a variety of metals from the infrared to
the ultraviolet. Although the far-infrared reflectance of metals is uniformly good, they
deviate considerably as the ultraviolet is approached. At ultraviolet frequencies, most
metallic reflectors are poor and must be used at oblique angles to be efficient. Only alu-
minum is useful in the ultraviolet, but it rapidly loses reflectance in the vacuum ultraviolet.

8.3 Scattering

For perfect crystals, with no variation of the index of refraction and a perfect surface, scat-
tering is manifested by specular reflection only. This is rarely, if ever, the case because of
materials defects, isotopic variations, surface roughness, and so on. Intrinsic scatter in crys-
tals is difficult to compute, but will be of Rayleigh form. Formulas for intrinsic scatter in
glasses do exist. Extrinsic scatter must, in general, be empirically characterized.

8.3.1 Intrinsic

Intrinsic scatter for single-crystal solids will be Rayleigh in character and at a fairly low
level for most optical materials.
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Fig. 8.29 Metal mirror near-normal reflectance for ultraviolet, visible, and infrared frequencies.



8.3.2 Extrinsic

Extrinsic scatter is composed of two types, bulk and surface. Surface scatter depends on
the quality of the polish. Bulk scatter depends on the internal structure of a material.

Extrinsic bulk scatter occurs in processed materials such as polycrystalline solids. A
combination of scatter mechanisms exist in this case. Rayleigh, Rayleigh–Gans, and
geometrical blocking all make contributions. The emphasis will vary, depending on the
frequency of interest. A simple empirical scatter model is commonly used. The scatter
coefficient is given by

βsca(ν) = A + Bνb + Cν4. (8.72)

Only the single-scatter phenomenon is considered in this model. Recall that this
requires that βsca L 	 1. Scatter is usually temperature independent, depending on the
structural stability of the materials as a function of temperature. Figure 8.30 displays
the scatter coefficient as a function of frequency and the phase function for a polycrys-
talline window material. The frequency dependence is fairly linear (b ≈ 1), indicating
a wide distribution of scatter sizes. The phase function has the unusual feature of a peak
at 1◦. This suggests that a particular scatter size is most common. From the phase func-
tion, the modulation transfer function (MTF) can be obtained.

Although highly polished materials are required for many applications, it is perhaps
equally worthwhile to consider a rough surface for an optical black. A Lambertian sur-
face is desired, which also absorbs light and allows multiple reflections. Although black
paints contain absorbing material, it is assumed that k 	 n. Thus the surface reflectance
is dominated by the real part of the complex index of refraction only. In the BRDF
measurements made, two distinct phenomena are observed. A percentage of the BRDF
is completely diffuse (or Lambertian) and independent of the angle of incidence, and the
remaining portion of the BRDF follows an angle-averaged, power reflection coefficient
Fresnel equation and depends on the angle of incidence.

From the development in Chapter 2, the formula for a Lambertian BRDF is

ρLam(θr ) = ρLam

π
cos θr . (8.73)

ρLam is the Lambertian hemispherical reflectance, as defined by

ρLam =
∫

hemisphere

ρLam(θr ) sin(θr ) dθr dφr . (8.74)

The diffuse (Fresnel coefficient dependent) portion of the BRDF typically takes the
mathematical form of a power-law function of the form (sin θr + sin θi )

−m . To obtain a
normalizable representation, a Lorentz-type phase function is used. Based on this intu-
ition, a Fresnel-based BRDF model suitable for many rough surfaces, is given by

ρFres(θi ,θr ) = Raνe(θi ,α,n)
ρTIR − ρLam

ρTIR
N

(αcos θi )
m−1 cos θr

(sin θr + sin θi )m + (αcos θi )
m , (8.75)

where α is the half-width at half maximum, N is a normalization factor that satisfies 
Eq. 2.90, and Raνe is the total integrated reflectance (see Eq. 2.91) or the angle-averaged
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Fresnel reflection coefficient, as given by the following empirical form:

Raνe(θi ,α,n) =

π
2∫

0
[�(θ − θi + α) − �(θ − θi − α)] R(θ,n)dθ

π
2∫

0
[�(θ − θi + α) − �(θ − θi − α)] dθ

, (8.76)

where �(θ) is the Heaviside step function and R(θi,n) is the Fresnel power reflection
coefficient for unpolarized light and k 	 n, as given by
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Fig. 8.30 (a) The scatter coefficient as a function of wavelength and (b) the phase function as a
function of scatter angle for room-temperature polycrystalline AlON (Al23O27N5).



R(θi ,n) = 1

2

⎡
⎣(n2 cos θi −

√
n2 − sin2θi

n2 cos θi +
√

n2 − sin2θi

)2

+
(

cos θi −
√

n2 − sin2θi

cos θi +
√

n2 − sin2θi

)2
⎤
⎦. (8.77)

To check the reasonableness of the model for Raνe , examine α, as α approaches
π/2. Then Raνe becomes independent of θi (the same is true for the phase function).
Therefore, the Fresnel BRDF model approaches the Lambertian case in the limit of
α → π/2. Equation 8.76 satisfies this test. A more rigorous approach for obtaining Raνe

can be constructed by processing the phase function in Eq. 8.75. Information on the sur-
face roughness is contained in the phase function. However, this requires a
deconvolution between the phase function and the Fresnel reflection coefficients, which
makes the analysis more complicated.

The hemispherical reflectance factor is the integration of Eq. 8.75 over the back
hemisphere, resulting in the following

ρFres(θi ) = ρTIR(θi ) = Raνe(θi ,n,α). (8.78)

For this to be true, over the range of typical values of α(<π/2) and m, the phase
function must be normalized according to

N
∫

hemisphere

(αcos θi )
m−1 cos θr

(sin θr + sin θi )m + (αcos θi )
m sin(θr + θi ) dθr dφr = 1 (8.79)

Fig. 8.31 plots the experimental and modeled BRDF for flat polyurethane (θi = 12.8◦)
and epoxy (θi = 17◦) paints illuminated by a He-Ne laser operating at 0.633 and 
3.39 µm wavelengths as a function of the reflection angle. The angular 
resolution is 2◦. The model sums the Lambertian and diffuse (Fresnel coefficient
dependent) reflectance pieces together. Model parameters for the polyurethane paint are
ρLam = 0.006, ρTIR = 0.019, m = 3, n = 1.32, and α = 0.06 radians. Model para-
meters for the epoxy paint are ρLam = 0.012, ρTIR = 0.045, m = 2, n = 1.5, and
α = 0.55 radians.

8.4 Computer Codes and Examples

The models previously presented provide more than physical insight into the optical
properties of materials. Because of the sound physical basis for these theories, mean-
ingful interpolations and extrapolations can be made as a function of frequency and
temperature. This is very useful for obtaining accurate and comprehensive information
on material properties when experimental data is lacking. Unfortunately, this quite often
is the case. Furthermore, models provide a precise and convenient means of communi-
cating optical properties data and represent an improvement over conventional figures
and tables. The formulas are easily programmed on a computer, providing quick and
easy access to the complex index of refraction for many optical materials, such as those
listed in Appendix 4. These results can then be used to calculate transmittance, reflectance,
absorptance, scatterance, and emittance of fibers, windows and thin films, scatterance of
aerosols, dispersion, and thermal-optic effects for optical design applications. Such a
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Fig. 8.31 Experimental (solid) and modeled (dashed) BRDF of (a) polyurethane paint
(θi = 12.8º) illuminated by a He-Ne laser operating at 0.633 µm wavelength and (b) epoxy paint
(θi = 17º) illuminated by a He-Ne laser operating at 3.39 µm wavelength as a function of the
reflection angle. (The dropouts near 10º and 20º occur because the illuminating beam is blocked
by the detector.)
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computer code and database can potentially enhance system design and performance
modeling. Considering that the atmospheric codes MODTRAN and FASCODE have
been developing for over 30 years and are widely recognized for their utility, it is sur-
prising that no similar past effort exists for a solid–state optics code.

8.4.1 OPTIMATR

Early efforts at JHU/APL (1988–89) to characterize the infrared properties of primarily
crystalline insulators resulted in a FORTRAN-based computer code, called PHONONB.
This code contained one-phonon, multiphonon sum band absorption, and Sellmeier
models for approximately 30 materials (primarily oxides, fluorides, and alkali halides).
The code calculated the complex index of refraction in terms of n and βabs as a function
of frequency (in wave numbers) and temperature.

Based on the interest in and utility of PHONONB, this work continued, and a more
comprehensive version was developed in 1993, called OPTIMATRTM. This code also
contains the one-phonon, multiphonon sum band absorption, Sellmeier (for room tem-
perature) models, and in addition, Urbach tail, free-carrier, and scatter models for over
70 optical materials (crystals, glasses, semiconductors, and metals), as listed in
Appendix 4. The code calculates n, βabs, and βsca, as a function of frequency in cm−1

(or wavelength in µm) for fixed temperatures as chosen by the user. Urbach tail model-
ing extends the spectral range of characterization up to a material’s bandgap. Free-
carrier modeling allows metals and semiconductors to be included. Scatter models in
OPTIMATR typically characterize extrinsic properties in spectral regions of trans-
parency. Thus OPTIMATR represents microwave, infrared, visible, and ultraviolet
optical materials. An example output for sapphire is listed in Table 8.8.

The code contains a data file, which stores the parameters for the various optical
property models. The parameters represent the intrinsic properties as completely as pos-
sible. This is important because it depicts the ideal optical properties. Extrinsic
properties are also included, but not completely because these properties vary from
material to material. This is important for polycrystalline and amorphous materials. In
some cases the extrinsic properties, such as impurity absorption, must be specified by
the manufacturer to be meaningful.

Such an optical property database is essential for optical lens design (including the
effects of spectral and temperature dispersion), thin-film design, system performance
analysis, aerosol scatter calculations, and many other optical system design problems.
Currently, optical property data is quite dispersed among reference books and journal
articles, and generally available for limited spectral region and typically, room temper-
ature. Having the physically based models to interpolate and extrapolate the
experimental data as a function of frequency and temperature greatly and reliably
extends the optical property data base available in the literature. OPTIMATRTM is com-
mercially available from Echoscan, Inc. (www.echoscaninc.com).

8.4.2 Reflectance and Emittance Calculations of Bulk 
Materials and Coatings

The following examples are presented to demonstrate the utility of the optical property
models presented in this chapter to common applications in optics.
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Example 8.2 Specular reflectance as a function of the refractive index

When the index of refraction is real (βabs = 0) the material is transparent; based on
Eq. 2.97, the specular reflectance becomes

ρs(n,θi ) = Rs(n,θi )

1 + Rs(n,θi )
+ Rp(n,θi )

1 + Rp(n,θi )
. (8.80)

Figure 8.32 is a plot of ρs(n,0) for normal incidence for a lossless medium. Low-
index materials, such as the fluorides, have high transparency with no antireflective
coating. High-index materials such as GaAs (n = 3.3), Ge (n = 4.0), Si (n = 3.4),
on the other hand, lose nearly 50% of the light by reflection with no other loss
mechanism present. Oxides have a range of indices from 1.6 to 1.9 and typically
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Table 8.8 OPTIMATRTM Output for o-Ray of Sapphire at T = 295 K

Material Name: Al2O3 o-ray
Minimum Wave number = 100.0 cm−1

Maximum Wave number = 2500.0 cm−1

Temperature (K) = 295.0 (Sellmeier Model used)

Wave numbers Index of Absorption Scatter
[cm−1] Refraction Coefficient [cm−1] Coefficient [cm−1]

100.0 3.100237 .000E+00 —
200.0 3.259553 .000E+00 —
300.0 3.671500 .000E+00 —
400.0 4.666635 .000E+00 —
500.0 2.643119 .889E+01 —
600.0 .266841 .362E+02 —
700.0 .049241 .986E+02 —
800.0 .054489 .193E+03 —
900.0 .160193 .278E+03 —

1000.0 .899295 .304E+03 —
1100.0 1.153252 .258E+03 —
1200.0 1.296547 .177E+03 —
1300.0 1.389662 .102E+03 —
1400.0 1.455000 .508E+02 —
1500.0 1.503199 .232E+02 —
1600.0 1.540053 .105E+02 —
1700.0 1.569015 .521E+01 —
1800.0 1.592273 .292E+01 —
1900.0 1.607737 .170E+01 —
2000.0 1.624024 .953E+00 —
2100.0 1.637684 .516E+00 —
2200.0 1.649270 .271E+00 —
2300.0 1.659192 .145E+00 —
2400.0 1.667763 .807E−01 —
2500.0 1.675223 .467E−01 —



have reflectance losses around 10%. These materials often require antireflection
coatings to reduce transmission loss. A simple antireflection coating is a thin film
of another optical material with an index of refraction equal to the square root of
the bulk material. A good example of this is MgF2 (n = 1.38, n2 = 1.90) coatings
on high-index oxides. The index of refraction at microwave frequencies is much
larger than the corresponding infrared/visible values and therefore the reflectance
is much higher. For this reason, microwave windows are often made as etalons to
avoid reflectance loss in limited spectral regions.

Example 8.3 Thin-film mirrors

Optical properties of thin films are based on the properties of the bulk material.
However, thin films are often not full density and bulk properties must be appro-
priately scaled.

Thin-film devices are band filters and mirrors. A common application is the design
of highly reflective multilayer (2N layers) laser resonator mirrors. The single-surface
reflection coefficient formula for a 2N -layer coating composed of two different
materials (with indices n2 and n3) on a substrate with index n1 is

R(N ) =

⎛
⎜⎝1 −

(
n1
n4

) (
n3
n2

)2N

1 +
(

n1
n4

) (
n3
n2

)2N

⎞
⎟⎠

2

. (8.81)

For example, for n4 = nair = 1.0028, n2 = 1.38, n3 = 2.35, and n4 = 1.543, the
reflection coefficient for N = 7 is 0.999. This is impossible to achieve with a
metallic mirror in the visible.
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Fig. 8.32 The reflectance for normal incidence as a function of the refractive index for a flat
window in air (βabs = 0).



Example 8.4 Emittance

Direct measurements of near-room-temperature emissivity of a surface are difficult to
perform because of high-level room-temperature background noise. Cryogenic enclo-
sures are required. This is an expensive and cumbersome approach. For this reason,
measurements of reflectance and transmittance are made to infer the emissivity. When
a surface is opaque only the reflectance is needed. Since a bright external source can
be used (in this case a laser) the background radiance is not a problem.

Recalling the discussion in Chapter 2, the directional emissivity is obtained by
integrating over all internal sources, 	′

e . Using the principle of reciprocity, this is
equivalent to integrating the external reflectance over 	r . Thus, the following rela-
tionship is obtained:

ε(	e,ω) = ε(	i,ω) = 1 −
∫

hemisphere

ρ(	r ,	i ,ω) d	r = 1 − ρhem(	e,ω). (8.82)

This is a useful result. Furthermore, Eq. 8.82 remains true for a finite semitrans-
parent medium, when emitted light is observed at angles where no transmitted light
from an external source exists.

The spectral hemispherical emittance is also desired for many applications 
in electro-optics. It is the integral of Eq. 8.82 times cos θ over a hemisphere as
given by

ε(ω) = 1

π

2π∫
0

π
2∫

0

ε(ω,θ,φ) cos θ sin θ dθdφ. (8.83)

The total hemispherical emittance is also desired for thermal calculations. It is
defined as

ε = 1

σ T 4

∞∫
0

ε(ω)Mbb(ω) dω, (8.84)

where σ is the Stefan-Boltzmann constant, 5.6697 × 10−8 W/(m2 K4), T is temper-
ature, and Mbb is the blackbody irradiance.

The two-phonon region of insulators features high emissivity and can be used
to determine the surface temperature by single-band or two-color pyrometer tech-
nique. Figure 8.33 illustrates the normal emittance of the o-ray of sapphire at a
temperature of 750 K. Knowing the emittance in the two-phonon region, which is
stable with temperature, and applying the blackbody formula allows the measure-
ment of temperature from a ratio of measured emission at two different frequencies.
Further discussion on pyrometry is given in Section 8.4.5.

8.4.3 Athermal Materials

It is often of interest to design an optical system that is insensitive to temperature vari-
ations. The optical path is the index of refraction times the path length (nL). The thermal
change in the optical path becomes
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dnL

dT
= nL

(
1

L

dL

dT
+ 1

n

dn

dT

)
. (8.85)

The first term in the above expression is the thermal expansion and is almost always
positive for window materials. Thus, to make the material athermal, it is desired to have
a material with a negative thermo-optic coefficient (dn/dT ). Consultation of Appendix 4
indicates that fluorides and alkali halides are candidate athermal materials. Applications
include lens system design and solid-state laser gain media. For laser design, the impor-
tant formula is resonator output frequency, given by

νm(T ) = πm

2n(T )L(T )
.

8.4.4 Optical Fibers

Optical fibers offer tremendous improvement in data transmission bandwidth over con-
ducting wires and coaxial cables, because carrier frequencies can be in the near infrared
and visible (1013 to 1015 Hz). Furthermore, because of low-loss glasses, long propaga-
tion distances in dielectric waveguides are now possible. Full utilization of this
technology is not yet realized because of limited-bandwidth modulators and detectors.

Geometrical optics solutions will be presented for various fiber geometries.
Geometrical optics offers a simple interpretation for understanding optical waveguides
and is thus a good place to begin. Physical optics solutions are more complete and gen-
eral, but more difficult to obtain.

8.4.4.1 Geometrical Optics Solutions

A typical optical fiber has a central core and an outer cladding as illustrated in Fig. 8.34.
Common values for silica fiber core radius and outer cladding radius are in the range
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Fig. 8.33 Normal emittance of o-ray of sapphire at T = 750 K.



r1 ≈ 3–10 µm and r2 ≈ 125 µm, respectively. Recall Snell’s law from Chapter 4 
(Eq. 4.72) and the angle convention defined in Fig. 2.5, to obtain

cos α1

cos α2
= n2

n1
, (8.86)

where α1,2 are the complementary angles to ψ . Total internal reflection occurs at the
complementary critical angle αc, given by

αc = cos−1

(
n1

n2

)
. (8.87)

Thus, α2 = 0◦ and no transmission of light into medium 2 occurs. Light is contained
within the guide. (A more complete solution shows that total internal reflection is not
100% with some very minor loss because of evanescent fields in the cladding.)

Coupling of Light into a Fiber Consider a bundle of rays incident on the end of a
fiber, as illustrated in Fig. 8.35. Due to refraction at the core interface, it follows that

sin α′

sin α1
= n1 (from Snell’s law).

Thus, rays within the cone α′
c will propagate with minimal attenuation because they are

within the internal critical angle, where n0 sin α′
c = n1 sin αc must be satisfied. Now it

is convenient to define the relative refractive index difference, �, as
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Fig. 8.34 Optical fiber construction.

Fig. 8.35 Coupling of light rays
into a fiber.



� ≡ n2
1 − n2

2

2n2
1

≈ n1 − n2

n1
for n1 − n2 	 n1. (8.88)

Therefore, the internal critical angle as a function of the relative refractive index
becomes

αc = cos−1

(
n2

n1

)
= cos−1

(
n1

n1
− n1 − n2

n1

)
= cos−1(1 − �).

For � small, the following approximation can be made using a binomial expansion

cos2αc = (1 − �)2 ≈ 1 − 2�, thus 2� ≈ 1 − cos2αc = sin2αc.

Using the above formula, we obtain

αc ≈ sin−1(
√

2�) ≈
√

2� for � 	 1. (8.89)

Now, the numerical aperture, NA, becomes

NA = sin α′
c = n1 sin αc ≈ n1

√
2�. (8.90)

Example 8.5 For n1 = 1.5 and � = 0.01. Then,

NA = 1.5(0.02)
1
2 = 0.21 and

α′
c = 12.25◦.

Modes in a Fiber Figure 8.36 illustrates two different ray optic modes in a fiber. For
the case that αc > α1 > α2, the modes will propagate. Thus, many modes can exist in
a fiber. However, each mode will travel a different distance and thus arrive at the detec-
tor at different times at the end of the fiber, creating pulse spreading. Thus, it is often
the case that single-mode operation is desired. The following condition can be used to
ensure single-mode operation; let
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Fig. 8.36 Ray modes propagating in a fiber.



V = n1k ′
0a(2�)

1
2 = k ′

0a(NA). (8.91)

where k ′
0 = 2π/λ and a is the core radius. For V > 2.4, multimode operation exists

and for V < 2.4, single-mode operation occurs.

Example 8.6 Find the required fiber radius for single-mode operation using the
Example 8.4 result for NA. Thus, NA = 0.21 and

V = k ′
0 a(0.21)

V = 2π a
λ
(0.21) < 2.4

.·. a
λ

< 1.82.

At near-visible wavelengths (e.g., λ ≈ 1 µm, requires a ≈ 2 µm), very fine radius
fibers result.

8.4.4.2 Dispersion and Propagation Time

To understand the dispersion characteristics of a fiber, consider the group velocity, as
given by

vg =
(

∂k ′

∂ω

)−1

.

Using the fact that k ′ = k ′
0n1, we obtain

vg = c

n1

(
1 + ω

n1

∂n1
∂ω

) = c

n1

(
1 − λ

n1

∂n1
∂λ

) . (8.92)

Define the refractive propagation time, τn , to be

τn = L/vg, (8.93)

where L is the length of fiber. Substituting Eq. 8.92 into Eq. 8.93, we obtain

τn = L

c

(
n1 − λ

∂n1

∂λ

)
. (8.94)

The refractive propagation time has two parts; the first term accounts for zero disper-
sion and the second term accounts for dispersion. The second term is the change in
propagation time due to dispersion and is expressed as

�τn = −L
λ

c

∂n1

∂λ
. (8.95)
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Consider an expansion of n1(λ) about a point λ0 of the following form:

n1(λ) = n1(λ0) + �n1

�λ
�λ ≈ n1(λ0) + ∂n1

∂λ
�λ.

Substituting the above result into Eq. 8.95, we obtain

�τn = −L
λ

c

∂2n1

∂λ2
�λ. (8.96)

This important result shows that minimum change occurs at the wavelength of mini-
mum dispersion.

Another dispersion term is caused by the different mode propagation paths, as illus-
trated in Fig. 8.36. The axial velocity is

va = vg cos α

and the transverse velocity is

vt = vg sin α.

Obviously, the axial velocity determines the arrival time, thus it is desirable to have α ≈ 0
and va ≈ vg − αvg ≈ vg(1 + α)−1 . Therefore, the modal propagation time becomes

τm + �τm = L

va
≈ L

vg
(1 + α). (8.97)

Again two terms are formed, the change in modal propagation time is

�τm ≈ L

vg
α. (8.98)

Single-mode operation avoids this problem characteristic of multimode waveguides.
(The index of refraction is also weakly nonlinear [n = no + N2 I ] and this is called
waveguide dispersion. This is very important because for single-mode operation the
waveguide dispersion and refractive index dispersion can cancel and dispersion-free
propagation exists. This is the topic of solitons.)

8.4.4.3 Spectral Transmission Properties

Internal transmittance is given by

τ∞ = e−βL .

(Internal transmission loss is often expressed in dB km−1 = 4.34 [β km−1]. See 
Table A1.4.) It is of interest to determine the spectral location of the minimum intrinsic
extinction coefficient. This occurs at the intersection of multiphonon absorption coeffi-
cient and Rayleigh scatter coefficient. This point is illustrated in Fig. 8.37 for a variety
of fiber materials.

8.4.5 Pyrometry

Pyrometry is the noninvasive radiometric determination of a target temperature. Remote
measurements are possible, requiring no contact with the target. This can be accomplished
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with a single-element optical detector, a spectrometer, or an imaging camera. The two-
phonon region in solids presents an ideal spectral region for the remote measurement of
surface temperature. The band-averaged emittance is near one (see Fig. 8.33, the two-
phonon region is between 1000 and 1500 cm−1) and independent of temperature. (See
Terry et al., Ref. 8.57 for an example.)

To calibrate the sensor a variable temperature cavity blackbody is viewed that
matches the optical path of the experiment and the electronic recording equipment. The
average number of counts is determined as a function of temperature. The measured
counts are then converted to radiance. The theoretical blackbody spectral radiance,
Lbb(ν,T ), in W/(cm2 sr cm), is used in the calibration procedure to determine the band-
averaged computed radiance, according to

Lcomputed(T ) =
∫

band

Lbb(ν,T )SRF(ν) dν
[
W/
(
cm2 sr

)]
, (8.99)

where SRF(ν) is the system transfer function, T is temperature in kelvins, and ν is wave
number in cm−1. This requires mathematical representation of the system transfer func-
tion of all the components in the optical path.

The ability to compute the measured blackbody radiance allows direct conversion of
counts to radiance. This is accomplished by a least-squares linear fit of measured camera
counts to the computed radiance, as specified by

Lmeasured(T ) = Counts(T ) − α

β
, (8.100)

where α is the camera background and β is a scaling factor to obtain radiance in
W/(cm2 sr). The agreement between the measured and computed radiance as a function
of temperature is typically very good.

The last step is to invert Eq. 8.100 to obtain the temperature. This is accomplished
by equating the measured radiance (Eq. 8.100) to the computed radiance (Eq. 8.99). 
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Fig. 8.37 Optical fiber loss curves for a variety of optical materials.



In general, the inversion of this complicated equation to obtain temperature is not tractable.
However, the following function accurately fits the computed radiance as given by Eq. 8.99:

L fit(T ) = exp

(
a + b

T
+ c

T 2

)
. (8.101)

This functional form allows a tractable solution for temperature, knowing the band-
limited blackbody radiance of the target.

The practical application of imaging pryometry usually requires the remote meas-
urement of temperature of a nonblackbody surface. Thus, the spectral and spatial
aspects of the target radiance must be known. Corrections for the nonblackbody char-
acter must be incorporated into Eq. 8.100. The correction factor is determined by
computing the band-averaged emittance, as defined by

ε(T ) =

∫
band

Lbb(ν,T ) ε(ν,T )SRF(ν) dν

∫
band

Lbb(ν,T )SRF(ν) dν

, (8.102)

where ε(ν,T ) is the spectral emittance. In Eq. 8.100, it is assumed that the target is a
blackbody (i.e., Lmeasured (T ) = 〈Lbb〉band (T )). For a nonblackbody or graybody 
target, Lmeasured (T ) = ε(T ) 〈Lbb〉band (T ) in Eq. 8.100 must be replaced by
Lmeasured(T )/ε(T ). Obviously, it is desirable that ε be independent of temperature.

Problems

8.1 A 15 cm diameter KCl window is needed for a vacuum chamber. The window
will be clamped to prevent the window from falling when the chamber is
brought up to air pressure. How thick must the window be made?

8.2 Sapphire has a complex index of n = 1.75 and βabs = 0.94 cm−1 at 2000 cm−1

frequency and 295 K. Find the spectral emissivity, ελ, for a slab with thickness
L = 0.6 cm for viewing the surface in the normal direction.

8.3 Recall, in the long-wavelength limit (k ′ → 0) the optical mode frequencies,
ωTO , are given by

ωTO ≈
(

2βs

µ′

)1
2

,

where βs is the spring constant and µ′ the reduced mass.
(a) For polar diatomic molecules, plot the beginning of infrared transparency

against the reduced mass. Assume that νTO is directly proportional to νmax .
Use Appendix 4 as a reference for νmax and then use Eq. 8.57 to find νtrans .
Obtain an expression for νtrans(µ

′). How does it compare with the above 
formula? Explain the observed trend for the alkali halides.

(b) Plot the bandgap energies, which mark the end of visible transparency for the
alkali halides, as a function of the reduced mass. What is the relationship you
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obtain in this case, and what can be said about the range of transparency
(from the IR to the UV) for these materials?

8.4 Using the Sellmeier formula for n, compute the dispersion formula, dn/dλ.
What characteristics are required for materials with low dispersion?

8.5 Infrared transparency in solids is determined by multiphonon sum band absorp-
tion. Explain the nature of this absorption mechanism and how it is related to
one-phonon bands.

8.6 A window material 1 cm thick with scatter but no absorption loss and an index
of refraction of 1.5 is observed to transmit 50% of the incident light to a detec-
tor with a ±7◦ acceptance angle about the specular direction. Assuming that the
total integrated scatter (TIS) is 0.5, what is the specular contribution to the
transmittance?

8.7 Using the classical pole-fit model for εr (ν,T ), as given by

εr (ν,T ) = ε∞(T ) +
∑

i

�εi (T )ν2
i (T )

ν2
i (T ) − ν2 + j�i (ν,T )ν

,

show, for ν 	 νi and ν → 0, that the following equations are true:

n(ν,T ) =
√

εr (0,T ) +
(∑

i

�εi (T )

2ν2
i (T )

√
εr (0, T )

)
ν2

and

βabs(ν,T ) = 4πνka(ν,T ) =
(

2π√
εr (0,T )

∑
i

�εi (T )�i (ν,T )

ν2
i (T )

)
ν2.

8.8 Find the magnitude of the single-surface power reflection coefficient at an
interface between two lossy media, for normal incidence (Fig. P8.8).
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8.9 Show that the n-phonon density-of-states function satisfies the following nor-
malization condition:

∞∫
0

dνρn(ν) = 1, given

∞∫
0

dνρ1(ν) = 1.

8.10 Based on Eq. 8.45, show that the multiphonon sum band model for the nth
phonon band absorption coefficient, (a) is independent of temperature for T → 0

Fig. P8.8



lim
T →0

βabs,n(ν, T ) = K (n − 1)!

(
1

j ′

)(n−1)

g(ν − nν0).

and (b) reduces to the classical limit for h → 0 ( j ′ → ∞ and T → large),

lim
h→0

βabs,n(ν,T ) = K n!

(
kB T

4D0

)n−1

g(ν − nν0).

8.11 Verify Eq. 8.39 for the far-infrared difference band temperature dependence
using the fact that

βnp ∝ N n
p tanh

(
hcν

2kB T

)
ν

where Np is the phonon occupation number (remember phonons are bosons).

Athermal Optical Materials

8.12 Based on Table 8.1 and Table A4.5 (Appendix), find materials such that

d(nL)

dT
≈ 0,

where n is the index of refraction (real part) and L is the path length.

Dispersion

8.13 Find materials with visible transparency and good IR transparency with mini-
mum dispersion from the visible to the IR. This combination of properties is
desirable for visible alignment of IR system optics.

Dielectric Mirror

8.14 Design a high-reflectance dielectric mirror on a glass substrate with an index
of refraction of 1.6. Use two different coating materials, one with a low refrac-
tive index and the other with a high refractive index. Determine the coating
materials and the number of layers to achieve a reflectance of 0.99.

Lasers

8.15 A ruby laser of length L(= 10 cm) and output wavelength of 0.694 µm, uses a
Fabry–Perot resonator with the mirrors at each end of the rod. The mode loca-
tions are given by

νm(T ) = cm

2n(T )L(T )
[Hz]

where n is the index of refraction, c is the speed of light, and m is an integer
index.
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(a) Find the thermal change in the mode position,

dνm

dT
= ?,

given

dn

dT
= 12 × 10−6 [K −1],

1

L

d L

dT
= 7 × 10−6 [K −1] ,

and the background permittivity of the host medium (Al2O3) is

εr = 1 +
∑

i

Aiλ
2

λ2 − λ2
i

,

where A1 = 1.4313493, A2 = 0.65054713, A3 = 5.3414021,
λ1 = 0.0726631 µm, λ2 = 0.1193242 µm, and λ3 = 18.028251 µm.

(b) For a required coherence time of 1 µsec in a flashlamp pumped ruby laser,
is this thermal effect significant? (Note: A flashlamp produces a significant
amount of nonuniform heating as well as optical pumping energy. Thus
thermal stability and uniformity are not easily obtained. This is especially
true for pulsed laser operation where the flashlamp is pulsed also.)

8.16 Semiconductor lasers are frequency tunable by changing the junction tempera-
ture. For a GaAs laser operating at a wavelength 0.8 µm with a thickness of
L = 100 µm and room-temperature index of refraction of 3.32, find the fre-
quency tuning rate, as given by

dνm

dT
=?,

where

dn

dT
= 250 × 10−6[K −1],

1

L

d L

dT
= 5 × 10−6 [K −1].

Optical Fibers

8.17 Using the Sellmeier model given in Appendix 4 for fused silica, find the wave-
length of minimum dispersion. How is the minimum dispersion point affected
by germania doping? Obtain a formula that describes the effect. Why is the
minimum dispersion wavelength significant for femtosecond pulse transmis-
sion in an optical fiber?

Pyrometry

8.18 Obtain an explicit expression for temperature from Eqs. 8.100 and 8.101. Also,
correct for the graybody character of the surface.
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9

Optical Propagation 
in Water

From a basic physics perspective, liquids are the least understood state of matter. Yet
this medium plays an important role in the process of life on this planet. The human
body is largely composed of liquids, and three-quarters of the surface of the earth is
covered by seawater. The main liquid of interest in this chapter, and to the applied sci-
entist and engineer, is water. The importance of understanding the optical properties of
water cannot be overemphasized.

9.1 Optical Properties of Pure Water

The chapter appropriately begins with a discussion of the optical properties of pure
water, since it is the main ingredient in seawater and in biomedical fluids. Pure water is
an insulator with a strong dipole moment and an effective electronic band edge in the
ultraviolet near 0.16 µm (62,500 cm−1). Absorption near the band edge shows similar
structure to that observed in solids. Water has extensive infrared vibrational bands just
as in the gas phase. Dipoles in a liquid can partially rotate in response to the polariza-
tion of the incident microscopic field, and Debye relaxation bands occur in the
microwave region.

9.1.1 Debye Relaxation

A permittivity model for Debye relaxation was presented in Chapter 4 by Eq. 4.60. This
is an important mechanism that describes the optical properties of liquids at far-infrared



and microwave frequencies. Figure 9.1 presents a comparison of experimental optical
constant data collected at approximately 298 K and at a pressure of 1 atm to a single
oscillator Debye model of the form

εD(ω,T ) = ε∞(T ) + �εD(ν,T )

1 + j 2πcν
�D(T )

, (9.1)

using the values �εD = 74.335, ε∞ = 3.97, and �D/2πc = 0.65 cm−1. Recall that the
dampening parameter corresponds to the Debye relaxation time, τD , according to

τD = 1/�D = 8.162 × 10−12 sec. (9.2)

Good agreement with observation is obtained up to about 10 cm−1 (300 GHz). Then two
processes cause deviation from the Debye model. One is contributions from higher fre-
quency vibrational modes, which are discussed in the next section. The other is the
Debye blue absorption wing overpredicts the true absorption level and requires a cutoff
function. Recall that a similar cutoff function is required for the classical oscillator
model as given by Eq. 8.12. In this case, the oscillator strength is empirically modified
to become

�εD(ν) = �εD

{
1 ν ≤ 20�D

exp(−0.002(ν − 20�D) 20�D ≤ ν

}
. (9.3)
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Fig. 9.1 A comparison of experimental optical constant data to the Debye relaxation model pre-
sented in the text for pure water at room temperature (T = 298 K) and a pressure of one
atmosphere. (x – experimental n, Querry et al., Ref. 9.1; � – experimental k, Querry et al., Ref. 9.1;
dash–dot curve – Debye model for nD ; and dashed curve – Debye model for kD using Eq. 9.1.)



The three parameters in the Debye model are temperature dependent. A least-squares
fit to an Arrhenius-type function of temperature, representing the Debye relaxation time
data from 0° to 75° C, yields

τD(T ) = 5.39

T
e1835.5/T p sec. (9.4)

The temperature dependence of the static dielectric constant, ε′(0), from 0° to 100° C
is represented by

εs(T ) = 87.740 − 0.40008(T − 273) + 9.398 × 10−4(T − 273)2

− 1.41 × 10−6(T − 273)3.
(9.5)

Once the temperature dependence of ε∞(T ) is known, then the temperature dependence
of �εD(T ) can be determined from Eq. 9.1. The pressure dependence of the Debye
model parameters is weak and unfortunately not well characterized.

9.1.2 Vibrational Modes

Throughout the infrared, vibrational absorption bands dominate the optical properties
of pure water. Figure 9.2 plots experimental index of refraction and absorption coeffi-
cient data for pure water in the infrared region based on data from Querry et al. 
(Ref. 9.1). The vibrational bands of water are identified, along with the corresponding
classical oscillator model parameters, in Table 9.1. There are similarities between water
vapor vibrational band structure and pure water spectra. First, note the similarity
between the water vapor continuum spectra of Fig. 7.17 and Fig. 9.2. Both show an
exponentially decreasing background in the absorption coefficient with vibrational
band structure on top. Second, for every fundamental vibrational band in water vapor
there is a corresponding fundamental band in liquid water. As Table 9.1 indicates, there
are also new intermolecular vibrational modes in liquid water. The first is the hindered
translation band, νT. The second is a hindered rotation band called the libration band,
νL . The first two bands have no gas-phase counterpart because these motions are not
hindered in a gas. They represent hindered movement of normal gas-phase motion in a
liquid state with much higher density. The next vibration band is the bending mode, νB,
which corresponds to the ν2 band in the gas phase. The association band, νA, has no cor-
responding gas-phase band, but is also found in ice spectra. It is most likely a
combination band of νB + νL . The next vibrational mode is the strongly absorbing
stretching mode, νS . The remaining vibrational bands in liquid water are combination
or overtone bands of these previously mentioned bands, as designated in Table 9.1. The
strength of these bands decreases as the frequency increases such that a transparency
window opens in the visible.

The classical oscillator model is again modified to account for the vibrational band
blue-wing cutoff just as in the solid-state case (recall Eq. 8.12). The functional form is
different, however, and an exponential function is empirically chosen (similar to the
gas-phase line shape correction to the Lorentz line shape discussed in Section 5.6.3) as
given by

OPTICAL PROPAGATION IN WATER 429



Fig. 9.2 The far-infrared to near-infrared spectrum of the complex index of refraction of pure
water at room temperature and one atmosphere pressure: (a) absorption coefficient versus wave
number (x – experimental from Querry et al., Ref. 9.1; dashed curve represents the classical oscil-
lator model), and (b) index of refraction versus wave number (� – experimental from Querry 
et al., Ref. 9.1; solid curve represents the classical oscillator model).
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�i (ν) =
{

�i ν ≤ νi + �i

�i exp(−0.0028(ν − νi − �i ) νi + �i ≤ ν

}
. (9.6)

This modification is crucial in obtaining a good fit to the experimental absorption coef-
ficient as demonstrated in Fig. 9.1. Other attempts in the past to fit the classical oscillator
model to experimental data have been successful for the real part of the complex index
only. This is a first attempt to obtain a model representation of the full complex index of
refraction of water.

The room-temperature index of refraction in the near-infrared and visible region also
can be represented by the Sellmeier model. Converting Eq. 8.20 to wavelength, one obtains

n2(λ) = 1 +
∑

i

Siλ
2

λ2 − λ2
i

. (9.7)

Based on the above equation, the Sellmeier parameters for the index of refraction 
of water from 0.16 to 2.0 µm and at a temperature of 20°C are listed in Table 9.2. 
Two modes represent electronic transitions and one mode represents the combined 
contribution of the many infrared vibrational bands of water. The same electronic 
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Table 9.1 Vibrational and Electronic Mode Parameters (at T0 = 296 K) of Pure Water for the
Classical Oscillator Model at One Atmosphere Pressure

Spectral Thermal
Band Location Spectral Shift Strength Thermal Slope Full-Width

Identification νi [cm−1] [cm−1/K] �εi [1/K] �i [cm−1]

Vibrational

Hindered
translation, νT 175 −0.2 1.481 — 200

Libration, νL 595 −0.7 0.841 — 408
Bending, νB 1642 −0.1 0.02 — 91
Association, νA 2127 −0.9 0.0055 — 350
2νB 3248 — 0.005 — 115
Stretching, νS 3387 0.418 0.052 −3 × 10−4 230
νS + νL _ 3985 — 5 × 10−5 — 200
νS + νB 5125 — 3 × 10−4 — 265
νS + νA 5600 — 2 × 10−5 — 500
2νS 6875 — 7 × 10−5 — 400
2νS + νB 8400 — 2.5 × 10−6 — 500
3νS 10250 — 7.5 × 10−7 — 650
3νS + νB 11750 — 4.2 × 10−8 — 700
4νS 13300 — 3.5 × 10−8 — 1000
5νS 15900 — 4.5 × 10−9 — 1600
6νS 18500 — 4.0 × 10−10 — 2000

Electronic

71684.6 — 0.335 −2.65 × 10−4 —
−3.2 × 10−6(T − T0)

155038.8 — 0.421 —



transitions are also listed in Table 9.1. Figure 9.3a compares the Sellmeier model to
experimental data from Querry et al.(Ref. 9.1).

The visible index of refraction has a strong temperature dependence, as demonstrated
by the following formula based on experimental data at a wavelength of 0.5893 µm:

n0.5893(T ) = 1.333 − a(T − T0) − b(T − T0)
2, (9.8)

where T0 = 19.9 ◦C, a = 9.46036 × 10−5 ◦C−1, and b = 1.231257 × 10−6 °C−2. This
result is used to determine the temperature-dependent strength parameters for the elec-
tronic transition in Table 9.1. The spectral shift values in Table 9.1 are obtained from
Pinkley et al. (Ref. 9.6), and Eisenberg and Kauzmann (Ref. 9.2). The functional forms for
temperature-dependent line position and strength are the same as Eqs. 8.19a and 8.19b.

The index of refraction change with pressure is also important for optical systems
operating in the deep ocean. The change in visible refractive index with respect to pres-
sure is experimentally determined to be

dn

dp
= 1.5 × 10−2 atm−1

at T = 0°C.

9.1.3 Electronic Band Edge

In the ultraviolet region, two exponential absorption features are clearly indicated, as
illustrated in Fig. 9.3b from 45,000 to 60,000 cm−1. In a similar fashion to solids, these
can be interpreted as the Urbach edge (given by Eq. 8.59) and the weak absorption tail
(given by Eq. 8.68). The corresponding Urbach tail parameters for water are Eg = 7.439 eV,
βU0 = 1.1 × 105 cm−1, and σs = 0.37. The weak-absorption tail model parameters aree
βwa0 = 5.5 × 10−12 cm−1 and E0 = 0.27 eV. These functions provide a good fit to exper-
imental observations until the scatter properties dominate in the visible. This fact should
not come as a surprise, since other amorphous materials (e.g., glasses) also exhibit simi-
lar behavior.

9.1.4 Scattering

Bulk scattering in a pure liquid is based on intrinsic density and temperature fluctua-
tions. The fluctuating volume is small in size or has a small change in the refractive
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Table 9.2 Sellmeier Model Parameters for Room-temperature
(NTP) Liquid Water Index of Refraction

Location

Mode Strength [µm] [cm−1]

1 0.42295 0.0644866 155070.98
2 0.33452 0.139532 71668.15
3 0.15797 3.42372 2920.80



Fig. 9.3 The near-infrared to ultraviolet spectrum of the complex index of refraction of pure
water at room temperature and one atmosphere pressure (from Querry et al., Ref. 9.1): (a) index
of refraction versus wave number (experimental from � – Querry et al., Ref. 9.1, and + – Lauscher,
Ref. 9.4; solid curve represents the classical oscillator model [Table 9.1]); (b) extinction coeffi-
cient versus wave number (x – experimental from Querry et al., Ref. 9.1, ◦ – Jerlov scatter model, 
Ref. 9.10 [Eq. 9.9], and dotted curve represents the classical oscillator, electronic band edge, and
scatter models).
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index, thus Rayleigh-type scatter is observed. Scatter measurements on room-temperature
high-purity water by Morel fit the following:

βsca(ν) = 1.3875 × 10−22ν4 n2(ν)

n2(20,000)
. (9.9)

This function and experimental data points are plotted in Fig. 9.3b. The data from
Querry et al. are above the Morel data, suggesting that the water purity for the Querry
data set is not the same as the Morel data set, or that there is some other absorption or
scattering mechanism present in this spectral region. It is most likely that the extinction
coefficient of water from 20,000 to 40,000 cm−1 is dominated by scatter. The phase
function for pure water is slightly different than for isotropic Rayleigh scatter, account-
ing for anisotropy in the water molecule. It is given by the following formula:

Pseawater (θ) = 0.06225 (1 + 0.835cos2θ). (9.10)

9.2 Seawater

This section begins with a brief introduction to optical oceanography. The ocean has two
useful spectral windows in which electromagnetic energy can propagate practical dis-
tances. One is at extremely low frequencies (ELF, from 1 to 1000 Hz) and the other is the
visible region. For high-data-rate communication or remote sensing with reasonable spa-
tial resolution, the optical spectrum must be used. Thus, detailed knowledge of the optical
properties of seawater is important in the implementation of these and other technologies.

9.2.1 Introduction to Optical Oceanography

A basic understanding of the physical and chemical properties of seawater is a neces-
sary requirement for the operation of any electro-optical system in the ocean. A brief
introduction to ocean structure relevant to optics, chemical and particle composition,
and pressure dependence is given in the following sections.

9.2.1.1 Ocean Structure

Of critical importance to optical oceanography are the ocean surface and the illumina-
tion depth of the ocean. The ocean surface is an important component of the weather on
earth. The high heat capacity of water moderates the air temperature above the ocean.
Thus, the ocean surface temperature is an important measure for weather model input.
Since water and seawater are nearly blackbody in the longwave IR, simple radiometric
techniques can be used to measure surface temperature.

The ocean surface is not smooth, but rough with a wide variety of temporal and spa-
tial scales. Tidal waves have very long periods (12–24 hours), swell waves with periods
on the order of minutes are generated by remote storms, wind-generated waves have
periods on the order of seconds, and capillary waves have periods on the order of 
millisecond. Wind and capillary waves are the most important to optical systems.
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Based on Fig. 9.3, the minimum extinction coefficient of pure water is 1 × 10−2 m−1

located at 21,000 cm−1 (0.476 µm). This means that only 2% of blue light from a source
at the surface makes it to a depth of 400 m. All other wavelengths are extinguished at
this depth. Below 400 m we expect the ocean to become a very dark place. This is why
very little biological life exists below this illumination depth and what life does exist is
very different from that of the upper ocean.

9.2.1.2 Ocean Chemical Composition

Pure seawater is a solution that contains no organic chemicals, no gas, and no particles.
It is dominantly composed of water and the following common solutes: NaCl, MgSO4,
CaCl2, K2CO3, and Ca(HCO3)2. Pure seawater contains many other minor constituents.
The solutes separate into hydrated ions that give seawater electrical conduction proper-
ties. The most abundant positive and negative ions composing seawater are listed in
Table 9.3, along with the relative concentration to other solutes.

The salinity of seawater is defined as the ratio of the solute mass to the total mass of the
solution. The typical salinity of seawater in the deep ocean is 35 parts per thousand (‰).
Salinity is lowered in coastal regions near the mouth of a river where fresh water is
added. Salinity is increased in regions of high evaporation, such as in the Mediterranean
sea. Salinity varies in the upper portion of the ocean, typically in the mixed region, and
then becomes nearly constant with depth.

Organic materials composed of hydrocarbons, carbohydrates, proteins, vitamins,
lipids, and humic acids are also dissolved or exist as very fine particles in the ocean.
Most dissolved organic material does not absorb in the visible. But some compounds,
called yellow matter or yellow substance, strongly absorb the short wavelengths of 
visible light and rapidly weaken as the wavelength approaches red light. Organic mate-
rial in the ocean is dominantly composed of dissolved matter.

9.2.1.3 Ocean Particle Composition

Marine particles have a variety of sources. They are terrigenous (from rivers and wind),
phytoplankton cells, bacteria, detritus (decomposed cells and small skeletons of zoo-
plankton), volcanic ash, and cosmic (meteorites). The concentration of particles varies
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Table 9.3 Ion Composition in Seawater

Parts per
Relative Thousand Percentage as

Ion Concentration of Seawater Free Ion [%]

Na+ 30.61 10.7 99
Mg++ 3.69 1.3 87
Ca++ 1.16 0.4 91
K+ 1.1 0.38 99

Cl− 55.04 19.3 100
SO4

− 7.68 2.7 50
HCO3

− 0.41 0.14 67
Br− 0.19 0.07 100



for different locations, but ranges from 0.01 to 0.13 mg/l (g/cm3). A large portion of
oceanic particles are organic in nature. A representative relative index of refraction (to
that of water) for organic particles is 1.05 and for inorganic particles is between 1.15 to
1.2. Although the majority of particles are less than a micron in diameter, particles as
large as 1 mm can be found. Large particles have a strong influence on the scattering
properties of the ocean. An empirical formula is used to compute the number of parti-
cles larger the diameter d ,

N = N0d−γ ,

where γ is typically between 1 and 4. Terrigenous particles are very small, typically less
than 1 µm. On the other hand, biological particles are typically larger than 1 µm. The
character of the particle composition depends on location (e.g., location to rivers and
land mass) and water temperature, which affects the organic content of the ocean. The
shape of particles in the ocean is extremely varied. This is especially true for the large
numbers of unicellular and multicellular phytoplankton that exist in the ocean. For
example, one group of phytoplankton, the diatoms, has approximately 10,000 species.
There are over nine different groups of phytoplankton.

9.2.1.4 Pressure Variation with Depth

Water is an incompressible fluid, thus the mass density in Eq. 7.4 is independent of
depth, and

dp = −ρm g dz. (9.11a)

The mass density of seawater is 1035 kg m−3. Solving the above equation yields a simple
formula for seawater pressure as a function of depth,

p(z) = p(0) − ρm gz = 101.3 × 103 − 101.4 × 102z [Pa] z < 0, (9.11b)

where z is has units of meters. The result shows that the water pressure increases lin-
early with depth by 1 atm every 10 m.

9.2.2 Absorption and Refraction

The optical properties of pure seawater are similar to pure water except at microwave
frequencies. The complex index of refraction is only slightly altered in the visible
because of the addition of dissolved salts. In general, seawater contains dissolved
organic material and suspended particles as well. These additional constituents are vari-
able, which complicates the optical characterization of seawater.

Seawater is a conductor with a conductivity of 4.8 /m, corresponding to a salinity
of 35% (parts per thousand). Thus, free-carrier effects significantly contribute to the
complex index of refraction. The charge carriers in this case are massive hydrated ions
due to the dissolve salts. The conductivity relaxation time is expected to be much longer
than that of metals. In fact, based on the discussion in Section 3.5.1, we expect the con-
ductivity relaxation time to be similar to the Debye relaxation time. Using Eq. 4.65 with
the above values for seawater conductivity and conductivity relaxation time, the pure
seawater complex index of refraction can be computed. The results are displayed in 

Ω
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Fig. 9.4 for the millimeter to far-infrared. The plasma frequency for seawater can be
computed based on Eq. 4.63b. The result is 1.37 cm−1, or 41 Ghz. The plasma frequency
effectively marks the end of significant contributions to dielectric properties from free-
carrier effects. This is especially true for water, since the strong Debye and vibrational
absorption bands begin above 0.1 cm−1. Thus, above this frequency, seawater is a dielec-
tric in nature, and below this frequency, seawater is a conductor in nature. Also, until
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Fig. 9.4 The complex index of refraction of room-temperature pure seawater with a salinity of
35% compared with pure water. (The solid curves are for comparison with pure water absorption
as shown in Figs. 9.1. and 9.3 In upper plot, x shows data from Mobley, Ref. 9.9.)



the ultraviolet region is reached, the solutes in seawater have virtually no effect on the
pure seawater absorption coefficient. The visible index of refraction, however, is affected
by the salinity. Based on the study of Sager (Ref. 9.5) at 0.5893 µm, the index of refraction
of seawater at a temperature 293 K as a function of salinity (s in parts per thousand) is

(nsw(s) − 1) × 104 = 18.347s + 3330. (9.12)

Dissolved organic material affects the absorption coefficient of seawater. A simple
model for the absorption coefficient of yellow matter is given by

βabs(λ) = βabs,ym(λ0) exp [−0.014(λ − λ0)] , (9.13)

where λ is in nm. Values of βabs,ym(440) range from near zero to 19 m−1. The lowest values
are in the open ocean and highest values are in land-based lakes and rivers.

9.2.3 Scattering

Pure seawater, with no large particulates, scatters approximately 30% more than pure
water. (Scattering by large particles in the ocean will be covered in the next chapter.)
Therefore, Eq. 9.9 can be multiplied by 1.3 to obtain the scatter coefficient for particle-
free seawater. The phase function for pure seawater is the same as for pure water (see
Eq. 9.10).

The minimum extinction coefficient of pure water and pure seawater occurs in the
blue, where vibrational absorption ends and scatter begins. This is a situation similar to
that observed for oxide glasses, which exhibit minimum loss in the near-IR, as dis-
cussed in Chapter 8. This is why illumination at depths below 100 m begins to be
predominantly blue and back-scattered light in clear ocean water is blue.

9.3 Applications

The optical properties of water are commonly applied to systems involving oceano-
graphy and biomedicine. A few examples are given in the following sections.

9.3.1 Ocean Reflectance and Emittance

The magnitude of normal reflectance from water varies considerably for different spec-
tral regions. The reflectance is highest in the microwave and lowest in the long-wave
infrared. This point is illustrated in Fig. 9.5, which uses the model for the complex
index of refraction for pure water described in the first section. Because water is opaque
for most practical thicknesses and has low infrared reflectance, the infrared emittance
is near one. Also recall the locations of the gas-phase absorption bands of water
(Chapter 7), which will block light in the regions of anomalous dispersion. Thus the
regions of high reflectance are blocked from sensors, and water is nearly a blackbody
throughout the infrared for all practical purposes. These facts allow the surface temper-
ature of the ocean to be remotely measured with a simple pyrometer (see Problem 9.4).

Although the reflectance of water in the visible is low for normal incidence, at oblique
angles the reflectance is nearly one. This is the case for all dielectrics (recall Chapter 4,
Section 4.3). Also because the ocean surface is not smooth, some level of oblique 
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reflection of sunlight always occurs no matter what the angle of the sun and observer. This
leads to a phenomenon called glint. At sunset, a glint corridor is formed that appears as a
yellow stripe on the surface of the ocean (or sea or lake).

The BRDF of the ocean surface depends on wind speed and direction and is highly
variable. It is a topic in statistical optics and is beyond the scope of this book. The
reader is referred to Ref. 9.12 in the bibliography at the end of this chapter for further
information.

9.3.2 Biomedical Media

As mentioned in the introduction to this chapter, the human body is largely composed
of water. The optical properties of biological tissue and fluids are dominated by the
optical properties of water. Water in the body contains 7% NaCl. Such solutions are
called saline solutions. The near-infrared optical window in the human body is created
by the infrared fall-off of vibrational band absorption in water with increasing fre-
quency and the decrease of hemoglobin absorption with decreasing frequency from the
visible. The window occurs in the region of 0.7–0.8 µm. Hemoglobin spectra are dis-
played in Fig. 9.6 for a hemoglobin concentration of 1 millimolarity. The normal
concentration of hemoglobin in human blood is 2 millimolarity. Figure 9.6 shows that
the transmission through the body (a thin part such as a finger tip) changes based on the
amount of oxygen in the blood. This fact is used by anesthesiologist to noninvasively
monitor the oxygen content of blood (see Harris et al., Ref. 9.13).

The human eye is a visible light sensor that is nearly spherical in shape with approx-
imately by a 2.5 cm diameter. It is composed of an outer surface called the cornea, a
lens, and a focal plane array on the back inner surface called the retina. The central
region of the eye is primarily composed of water called the vitreous humor. Thus for
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Fig. 9.5 The infrared reflectance of NTP pure water for normal incidence (Querry et al., Ref. 9.1).



light to reach the retina it must transmit through water. The cornea blocks the UVC and
UVB bands. The cornea and lens block the UVB and UVA bands. Visible light and IRA
light (out to 1.3 µm) transmits to the retina. Wavelengths longer than 1.3 µm are
absorbed by the water in the vitreous humor and prevented from reaching the retina. 
The transmittance through 2.5 cm of water is plotted in Fig. 9.7.

Since the retina is the most sensitive component of the eye, the transmission proper-
ties of water are an important considertation concerning eye safety. Based on Fig. 9.7,
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Fig. 9.6 Absorption coefficient of oxygenated and deoxygenated hemoglobin normalized to a
concentration of 1 millimolarity (Harris et al., Ref. 9.13).

Fig. 9.7 The transmittance through 2.5 cm of liquid water at a temperature of 293 K and pressure
of 1 atm.



intense visible and near-infrared light can reach and damage the retina. Wavelengths
outside this region will not propagate to the retina, but can damage other components
of the eye. For example, long-term exposure to UV light will damage the lens of the
eye. Cataract formation is the accumulation of UV damage over many years. Mid-wave
and long-wave infrared heat the eye and can cause thermal damage.

There are a variety of applications in biomedical optics today. Many of them depend
on knowledge of the optical properties of water.

Problems

9.1 Compute the normal spectral emittance of pure water at 10 µm based on the
complex index values in Fig. 9.2.

9.2 Explain the difference in performance between microwave cooking (N3 GHz)
and infrared cooking based on Figs. 9.1 and 9.2.

9.3 Compute the complex index of refraction in the microwave region (0.01–1 cm−1)
for fresh water with a conductivity of 1 × 10−3 	/m.

9.4 Devise a technique to measure the surface temperature of the ocean using
infrared pyrometry. Justify your approach using the optical properties models in
this chapter. Show that radiation from the surface originates from a region very
close to the surface. How does the surface emissivity vary with temperature and
viewing angle?

9.5 Explain how ocean color can be used to determine water clarity.

Bibliography

Section 9.1

9.1 M.R. Querry, D.M. Wieliczka, and D.J. Segelstein, “Water,” in Handbook of Optical
Constants of Solids II, E.D. Palik (ed.), Academic Press (1991).

9.2 D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford
University Press (1969).

9.3 A. Morel, “Optical Properties of Pure Water and Pure Seawater,” in Optical Aspects of
Oceanography, N.G. Jerlov and E.S. Nielsen (eds.), Academic Press (1974).

9.4 F. Lauscher, Optik der Gerwasser.“Sonnenund Himmelstrahlung im Meer und in
Gewassern,” in: Handbuch der Geophysik, pp. 723–763, Springer (1955).

9.5 G. Sager, “Zur Refraktion von Licht im Meerwasser,” Beitr. Meersek. 33, 63–72 
(1974).

9.6 L.W. Pinkley, P.P. Sethna and D. Williams, “Optical Constants of Water in the Infrared:
Influence of Temperature,” J. Opt. Soc. Am. 67, 494–499 (1977).

Section 9.2

9.7 K.S. Stowe, Ocean Science, Wiley (1979).
9.8 K.S. Shifrin, Physical Optics of Ocean Water, American Institute of Physics (1988).
9.9 C.D. Mobley, “The Optical Properties of Water,” in Handbook of Optics, 2nd Ed., 

Vol. I, M. Bass (ed.), sponsored by OSA, published by McGraw-Hill (1995). C.D.
Mobley, Light and Water, Radiative Transfer in Natural Waters, Academic Press (1994).

OPTICAL PROPAGATION IN WATER 441



9.10 N.G. Jerlov, Marine Optics, Elsevier Oceanography Series (1976).
9.11 M.E. Thomas, “The Electrical Properties of Seawater (Including Conductivity

Relaxation),” JHU/APL STD-R-1071, Contract N00024-83-C-5301, July 1984.

Section 9.3

9.12 R.E. Walker, Marine Light Field Statistics, Wiley Interscience (1994).
9.13 A.P. Harris, M.J. Sendak, R.T. Donham, D.D. Duncan, and M.E. Thomas “Absorption

Characteristics of Human Fetal Hemoglobin at Wavelengths Used in Pulse Oximetry,”
J. Clin. Monitor. 4, 175–177 (1988).

9.14 V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical
Diagnosis, Tutorial Texts in Optical Engineering, Vol. TT38, SPIE Press (2000).

9.15 D.D. Duncan, S.L. Jacques, and P.C. Johnson (eds.), SPIE Proceedings Laser Interaction
XII: Photochemical, Photothermal and Photomechanical 4257, 21–24 January 2001.

9.16 D.C. Winburn, Practical Laser Safety, 2nd Ed., Marcel Dekker (1990).
9.17 D.A. Atchison and G. Smith, Optics of the Human Eye, Butterworth-Heinemann (2000).

442 OPTICAL PROPAGATION IN LINEAR MEDIA



443

10

Particle Absorption 
and Scatter

Particles are composed of solids and/or liquids, thus the bulk optical properties of these
media must be known before propagation modeling within a medium of suspended par-
ticles (called aerosols when in air) can begin. We return to our discussion of
propagation in the atmosphere and oceans of the earth that began in Chapters 7 and 9,
and we now include attenuation by small particles.

10.1 Particle Distributions and Composition

Particles vary in size, shape, concentration, and composition. Size and concentration
distributions are described in the following two sections. The composition of the most
common particles is presented in the last section. Unfortunately, a representation of
shape variation does not exist.

10.1.1 Particle Size Distribution Function

As mentioned in Chapter 4 (Section 4.4.2 on Mie scattering), a collection of real
aerosols will have a range of different radii. This is called a polydisperse medium.
Various models are used to represent particle size distributions. One commonly used
model for particle number density as a function of radius is the modified gamma distri-
bution function, as given by

ρp(r) = Arα exp(−brγ ), (10.1)



where A, b, α, and γ are empirically determined parameters. This function represents
the number of particles per unit volume and unit radius as a function of radius r. The
total particle number density is obtained by integrating ρp(r) over all r . The result is

ρp =
∞∫

0

dr ρp(r) = Ab− α + 1
γ

γ
�

(
α + 1

γ

)
. (10.2)

The particle radius having maximum population, called the modal radius, rN , is com-
puted to be

rN = α
1
γ

bγ
. (10.3)

Size distribution parameters for various types of aerosols such as hazes, fogs, clouds,
and rain are listed in Table 10.1. Figure 10.1 illustrates this model for type L haze and
a cumulus cloud.

A bimodal modified gamma distribution is used for particles in the ocean, of the form

ρ(r) = A1r2 exp (−52rγ1) + A2r2 exp (−17rγ2), (10.4)

where 0.145 ≤ γ1 ≤ 0.195 and 0.192 ≤ γ2 ≤ 0.322. The first term represents small
particles less than 0.5 µm in diameter such as small colloids and viruses. The second
term represents particles greater than 0.5 µm in diameter such as large colloids, bacte-
ria, and plankton.

10.1.2 Particle Vertical Concentration Profile

The vertical distribution of atmospheric aerosol number density is highly variable and
requires real-time measurements. However, a general structure is commonly observed. In
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Table 10.1 Modified Gamma Function Parameters for Various Atmospheric Particles
(Deirmendjian, Ref. 10.1 and Shettle, Ref. 10.2).

Aerosol Type ρp [cm−3] A [cm−(3+α)] α γ b rN [µm]

Haze M 100 5.3333 × 104 1 0.5 8.94433 0.05
Haze L 100 4.9757 × 106 2 0.5 15.1186 0.07
Haze H 100 4.000 × 105 2 1.0 20.0 0.10
Cumulus cloud 250 2.604 3 1.0 0.5 6.0
Stratus cloud 250 210.0 2 1.0 0.6 3.33
Strato-cumulus 250 52.734 2 1.0 0.75 2.67
Alto-stratus 400 6.268 5 1.0 1.111 4.5
Nimbo-stratus 200 7.676 2 1.0 0.425 4.7
Cirrus cloud 0.025 2.21 × 1012 6 1.0 0.09375 64
Thin cirrus cloud 0.5 0.01187 6 1.0 1.5 4
Heavy fog (advective) 20 2.70 × 102 3 1.0 0.3 10.0
Moderate fog (radiative) 20 6.075 × 102 6 1.0 3.0 2.0
Rain M 10−3 5.333 × 105 1 0.5 8.94433 50
Rain L 10−3 4.976 × 107 2 0.5 15.1186 70
Hail H 10−5 4.000 × 104 2 1.0 20.0 100



the boundary layer (usually the first couple of kilometers above the surface of the earth)
the concentration decreases exponentially. Such aerosols are referred to as haze, and
representative concentration levels are listed in Table 10.1. The aerosol concentration in
the mid to upper troposphere is constant at about 300 cm−3. A simple empirical formula
for the vertical number density profile is given by (Jaenicke, Ref. 10.5)

ρp(z) = ρp(0)

[
exp

(
− z

|hp|
)

+
(

ρpB

ρp(0)

)α]α

, (10.5)

where α = ±1(α = 1 when hp > 0, α = −1 when hp < 0) and ρpB ≈ 300 cm−3. Values
of hp range from 0.8 to 1.2 km for continental regions, and −0.29 to 0.44 km for mar-
itime regions; it is around 2 km for desert regions.

Particle concentrations in the ocean are much higher than in the atmosphere. Small
particles (diameter < 0.5 µm) are on the order of 108 cm−3 and large particles (diameter >
0.5 µm) are on the order of 104 cm−3.

10.1.3 Particle Composition

The chemical composition of aerosols in the troposphere strongly depends on location,
such as urban, rural, maritime, and desert. In other words, it depends on the surface
character of the earth for a particular region. In addition, all regions have some level, of
water vapor content. Many aerosols are hygroscopic or act as condensation nuclei and
therefore will contain water at some level, depending on the relative humidity. Dryer
particles exist during the winter and wetter particles exist during the summer. Regions
of high humidity (near 100%) lead to the formation of fog (near ground level) and
clouds (higher altitude regions), which are particles dominantly composed of water.
High-altitude clouds, such as cirrus, exist at subfreezing altitudes and are composed of
ice particles (optical property model parameters for ice type Ih are listed in Table A.4.4).
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Fig. 10.1 Particle size distribution curves for haze L and cumulus cloud based on the models in
Table 10.1.



Maritime aerosols are wet, and contain the salts that are in the ocean (see Table 9.3),
although this can change as chemical reactions occur. Desert aerosols are typically
composed of dry silica (SiO2). Urban particles are composed of sulfate, nitrate, and
ammonium compounds. A greater diversity of particle composition for urban areas
exists because of anthropogenic sources. The burning of fossil fuels produces soot or
carbon-based particles, for example. Rural and urban areas include organic particles
such as pollen. Small organic aerosols such as spores, viruses, and bacteria exist in rural
and urban environments as well. Such particles are a concern for public health.

In the stratosphere, particles originate from volcanic-type activity and reside there
for a long time (years), since this layer only weakly mixes with the troposphere. At even
higher altitudes, particles can have extraterrestrial origins, such as disintegrated meteors.

10.2 Particle Absorption and Scatter

Particle scatter adds complexity, utility, and beauty to atmospheric and ocean propaga-
tion phenomena. A great variety of particle compositions, size distributions,
concentrations, and shapes exist. Now the optical properties of solids (Chapter 8) and
liquids (Chapter 9) composing the particles must be known. Infrared lidars for atmos-
pheric remote sensing would have no measurable return without atmospheric aerosols.
Also, imaging and communication systems operating within the atmosphere are adversely
affected by scatter.

10.2.1 Extinction Coefficient

Recall that the extinction coefficient for particles is the integral of the particle extinction
cross-section times the size distribution function, as given by Eq. 4.102. The particle
concentration, the integral of the size distribution function, is variable in time and location.
Once the particle composition and corresponding complex index of refraction are known,
the cross-section can be determined. Thus the cross-section is a quantity of fundamental
importance that dictates frequency and angle dependence of the scattered light.

Intuitively, the scatter cross-section should be related to the geometrical cross-sec-
tion. Larger particles scatter more light than small particles with the same concentration
level. For the case of a sphere, the geometrical cross-section is the area of a circle that
is constrained to the surface of the sphere and the center of the circle, as given by

CGeo(r) = πr2, (10.6)

where r is the radius of the particle. Of course, the actual cross-section depends on the
complex index of refraction, and actual cross-sections can be greater than or less than
Csca . Nonetheless, real particle cross-sections are typically close in magnitude to the geo-
metrical cross-section. Thus a comparison with Eq. 10.6 is a useful check on the
reasonableness of a computed or measured cross-section value. For this reason, the scat-
ter efficiency, Qsca , is often used to represent a normalized cross-section. It is defined as

Qsca(r) = Csca(r)

πr2
. (10.7)
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The observed frequency dependence of the scatter cross-section for aerosols is sim-
ilar to Eq. 8.72. Often only the middle term is needed to represent scatter in the visible
and near-infrared.

Figure 10.2 illustrates the strength and wavelength dependence of the extinction coef-
ficient for various types of aerosol and fog extinction, and molecular Rayleigh scatter
coefficient. A large dynamic range is observed. Note that molecular scatter dominates
over haze scatter loss in the ultraviolet. In the visible both types of scatter are important.
In the infrared, aerosol scatter dominates. On the other hand, the scattering properties
of fog and clouds are fairly flat with wavelength. This explains the whitish color during
the day and the insulating effect clouds have at night. Infrared radiation emanating from
the surface of the earth peaks around 10 µm wavelength (see Fig. 5.1), where water and
ice strongly absorb, and is blocked by clouds to some extent. Thus, the night-time air
temperature does not change much. The same clouds will keep the surface of the earth
cooler during the day because of strong back-scatter of sunlight with peak intensity in
the visible.

The results in Fig. 10.2 are consistent with the bulk index of refraction of the parti-
cles and Mie theory. Cumulus and stratus clouds contain large liquid water particles that
are spherical in shape. Variations in aerosol size distribution functions create the dis-
tinction in the scatter properties.

The extinction coefficient is the sum of the absorption coefficient and the scatter
coefficient. The scatter properties of particles are of great importance to many applica-
tions in ocean and atmospheric optics. For this reason, it is also useful to represent
scatter with the volume scatter coefficient. This quantity was partially introduced in
Chapter 7 (Eq. 7.69) as the derivative of the angle-dependent scatter coefficient with

PARTICLE ABSORPTION AND SCATTER 447

Fig. 10.2 Scatter coefficient as a function of wavelength for a purely molecular atmosphere and
various visibility ranges (Wright et al., Ref. 10.3).



respect to the scatter angle. If the phase function is constant over the receiver solid
angle, then the product of the scatter coefficient and the phase function is the volume
scatter coefficient, as given by

βVol(λ, θ) = βsca(λ)P(θ) , (10.8)

with units of reciprocal length times reciprocal steradians. Consistent with Eq. 7.69, the
volume back-scatter coefficient is the volume scatter coefficient evaluated at 180◦. This
quantity is needed for the lidar equation (Eq. 7.70).

10.2.2 Visibility Range

A useful and simple measure of the importance of scatter loss is the visibility range, Rv

It is defined as

Rv = 1

βext
ln

(
C

ε

)
, (10.9)

where C is the inherent contrast of the target being viewed and ε is the threshold contrast
of the observer. In the visible, no significant particle absorption occurs and it is often jus-
tified to replace βext with βsca . The meteorological range is defined for a high-contrast
target (C = 1), and for a 2% threshold contrast at a visible wavelength of 0.55 µm, to be

RM = 3.912

βsca
. (10.10)

For an aerosol-free lower atmosphere, only molecular scatter loss dominates the scatter
coefficient, and therefore RM = 391.2 km. Obviously, this is seldom the case, and
aerosol scatter loss is always a limiting factor in atmospheric visibility (see Fig. 10.2).

An extension of Eq. 10.5 for the extinction coefficient that includes wavelength
dependence has been empirically determined by Kruse et al. (Ref. 10.7) to be

βext(λ) = 3.912

Rv

(
0.55

λ

)0.585R0.33
v

, (10.11)

where Rv is in km. This is an approximate result that can be applied when no other
information on scatter loss is available.

10.2.3 Henyey–Greenstein Phase Function

A commonly used phase function for approximately representing polydisperse aerosols
or ocean particles is the Henyey–Greenstein phase function as given by

PH−G(θ) = 1

4π

1 − g2(
1 + g2 − 2g cos θ

)3/2 , (10.12)
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where g is called the asymmetry parameter, defined for any phase function as

g = 〈cosθ〉 = 2π

π∫
0

dθ cos(θ)P(θ). (10.13)

The phase function is normalized according to Eq. 2.90. Because there is no surface
involved in particle scatter, the cos θ factor involving the dot product of the scattered
ray from a point and the unit normal on an enclosing sphere is always one. A plot of 
the Henyey–Greenstein phase function for different values of g as a function of θ is pre-
sented in Fig. 10.3a.

g is a measure of the net angular area in the forward or backward direction of the
phase function. For example, if the phase function is isotropic, g = 0. For the case of
the Henyey–Greenstein phase function, the asymmetry parameter is built into the func-
tion. One way to experimentally determine g is to measure the forward-to-back-scatter
ratio and then apply the following formula:

for
PH−G(0)

PH−G(π)
= x, then g =

√
x − 1√
x + 1

. (10.14)

Figure 10.3b shows the forward-to-back-scatter ratio as a function of g for the
Henyey–Greenstein phase function. As g approaches ±1, the forward-to-back-scatter
ratio becomes very large.

The Henyey–Greenstein phase function is intended to represent the forward-to-back-
scatter ratio, but does not accurately represent the shape of the phase function. There is
no physical reason to believe that the forward-to-back-scatter ratio dictates the phase
function shape. Thus, this phase function must be carefully applied. It is popular
because it is computationally simple. This trait is desirable for complex models such as
those used in radiation transfer calculations.

10.2.4 Humidity and Cross-Section

When the humidity of the atmosphere is above 70%, a dry-particle cross-section is
increased in size by the absorption of water. This is especially true for hygroscopic par-
ticles (see Table 8.4). The particle size increases as the humidity increases. The exact
process is complicated and beyond the scope of this book. The fact that humidity
increases the size of aerosols explains why summertime haze is thicker in appearance
than in the wintertime.

10.3 Scatter and Atmospheric Optics

Although the accomplishment of understanding scattering phenomena within the
atmosphere of the earth is rewarding, it does not compare to the simple joy of obser-
ving the beauty of the atmospheric light show caused by scattering that is often
displayed. The following discusses a few commonly observed phenomena in atmospheric
optics.
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10.3.1 Raindrops and Rainbows

Rainbows are a back-scatter phenomenon that can be explained by spherical waters
droplets and geometrical optics. The large size of the raindrop, when compared with the
wavelength of light, allows a geometrical optics interpretation. Figure 10.4 illustrates
the location of sunlight, raindrops, and observer necessary for rainbow observation. The
white light that enters the spherical raindrop is refracted at the interface of a dispersive
medium, which causes the white light to separate into distinct colors. The light then
experiences total internal reflection at the back of the raindrop. The primary rainbow
undergoes only one refection and the secondary rainbow has two reflections. For this
reason, the secondary rainbow displays the color spectrum in reverse order to the primary
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Fig. 10.3 (a) Henyey–Greenstein phase function for different values of g. (b) The forward-to-
back-scatter ratio as a function of g.



rainbow, as illustrated in Fig. 10.4. The light then exits the raindrop to be viewed by an
observer who faces in the opposite direction to the sun (toward the antisolar point).
Only raindrops at certain altitudes, given the angle of incidence of the sunlight, can
experience total internal reflection, and thus efficient back-scatter, that is observable.
Thus the rainbow has a limited spatial display to a single observer. Also, raindrops
below those raindrops that produce an observable rainbow tend to back-scatter the sun-
light directly back (small angles of incidence) to the observer. For this reason, a whitish
hue often appears within the rainbow. Rainbows can also be formed by dew on the
ground, or the mist from a water fountain. It is important that the particle size be large
to observe a standard rainbow. If the particle size is small and uniform, as is sometimes
the case for fog, then diffraction effects will dominate over geometrical refraction and
a white bow will appear.

10.3.2 Ice Crystal Effects

Ice crystals are present all the time in the upper atmosphere and therefore can produce
effects observable during any season. Ice crystals have a hexagonal cross-section that
are either thin (platelets) or thick (pencil-like rods) as illustrated in Fig. 10.5. The size
of suspended ice crystals range from 50 to 300 µm, thus geometric optics can be used
to understand the ice crystal light show. The first and fairly common phenomenon to be
described is the 22◦ halo seen around the sun or moon. The hexagonal shape of ice par-
ticles can be fit into a 60◦ prism. Applying Snell’s law (Eq. 4.72) along with the index
of refraction of ice at visible wavelengths (n = 1.3), the resulting deviation angle is 22◦

(see Problem 10.5). Of course, for this effect to be observed the particles must be uni-
formly oriented.

10.3.3 Clouds and Cloud Color

Clouds in the atmosphere of the earth are composed of either liquid water particles or
ice particles, depending upon the altitude. In order for clouds to form, the air must have
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Fig. 10.4 Geometrical illustration of rainbow formation for both the primary and secondary bows.



100% humidity and condensation nuclei must be available. Thus the base height of a
cloud is at the dew point temperature (that temperature in which the air mass must be
cooled to reach saturation). The base height of a cloud is also called the condensation level.
Since the air temperature normally decreases with increasing altitude (see Chapter 7),
rising humid air will frequently experience these conditions and form clouds.

Cloud formations are classified as stratus, cumulus, and cirrus. Stratus clouds have
a horizontally layered structure. Cumulus clouds are puffy in form and often appear as
cotton balls in the sky. Stratus and cumulus clouds are composed of spherical water par-
ticles and exist within the troposphere. The exception is the large cumulonimbus cloud
(also called thunderhead), which can extend into the stratosphere. Cirrus clouds are
wispy and feathery in structure and occur at high altitudes. They are composed of ice
particles such as illustrated in Fig. 10.4. Notice that these particles are not spherical in
shape. Thus polarization-sensitive lidars can be used to distinguish between water and ice
clouds. Particle size distribution functions for these cloud types are listed in Table 10.1.

As mentioned previously, most clouds appear white to all observers. This is because
of near-uniform scattering at all visible frequencies, due to the large particle size, when
compared with the wavelength of visible light, and the fact that the particle absorption
is low, thus light penetrates through the cloud. Also, because of multiple scattering, the
light intensity is diffuse. This is true for reflected as well as transmitted light. However,
there are cases when clouds are not white. If the cloud is so thick, as is the cumu-
lonimbus, that no transmitted light occurs, then the cloud is dark. Also, at the time of
sunrise or sunset, the spectral content of sunlight is spatially separated, and distinct
colors exist at various altitudes. Thus, transmitted and reflected light from clouds can
feature these distinct colors, often yellows and reds.

10.3.4 Fog

Fog is very much like a low-altitude cloud that forms on the ground. There are two main
types of fog, radiative and advective. Radiation fog is caused by radiative heat loss in
an air mass that cools the air to the dew point. This type of fog is also called ground
fog. Radiation fog typically forms at night as the air cools. Advection fog forms when
warm moist air moves over a cold surface. This often occurs in coastal regions where
air over warm water moves inland over the cooler ground. Particle size distribution
functions for these fog types are listed in Table 10.1. Fog significantly affects transmit-
tance in the visible and near-infrared. The mid- and long-wave infrared spectral regions
are not as sensitive to fog. These points are illustrated in Fig. 10.6
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(hexagonal plate and prism [pencil
shaped]).



10.4 Scatter and Ocean Optics

The effective index of refraction for computing scatter cross-sections of particles in the
ocean is reduced by the background index of refraction of water (1.3). This yields
smaller cross-sections than would be obtained for a particle suspended in air. However,
the ocean is a condensed medium and much higher particle concentrations exist 
(see Section 10.1.2). The net result is that the extinction coefficient for the ocean is large,
compared with that of the atmosphere. For example, the visibility range for pure sea-
water (using Eq. 10.10) and βext (γ = 0.55 µm) = 0.066 m−1 is 59 m. Of course, if the
wavelength is changed to 0.45 µm, then the visibility range increases to 206 m. This is
the very best visibility range the ocean can offer, since these values are for pure seawa-
ter. A visibility of 200 m for the atmosphere is considered very poor. Now, if we include
particle scatter and yellow-matter absorption, the poor visibility often observed in
coastal regions can be understood.

Visibility range is often inferred in the ocean by submerging a white disk. The depth at
which the disk is no longer visible determines the state of clarity of the water. Such a meas-
urement leads to so-called apparent “optical properties” of the ocean. Such information can
be used to obtain some idea of the scatter and absorption characteristics of the ocean.

The color of deep ocean water is a combination of back-scattered sunlight and
reflected skylight. On cloudless days, the dominant effect is the bulk back-scatter of
sunlight. Since the longest paths penetrating the ocean are the deep blue portions of the
visible spectrum in the range 0.42–0.47 µm, the strongest back-scattering will occur in
this wavelength band. This explains the deep blue color often observed over the ocean.
On cloudy days, when the sun is blocked, the ocean has a gray appearance similar to
that of the clouds. In this case the bulk back-scatter light is weak and sky reflectance
dominates the color.
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Fig. 10.6 Transmittance through a uniform fog with a visibility of 1 km for a 1 km horizontal path.



The spectrum of sunlight that penetrates the ocean becomes more and more attenuated
as the depth increases. The rate of attenuation depends on frequency. For the case of pure
seawater, the minimum loss occurs in the blue. Thus we expect as an observer goes deeper
and deeper into the ocean the light of the sun becomes more and more blue. This point is
illustrated in Fig. 10.7, which plots the computed solar spectral irradiance covering the vis-
ible spectrum transmitted to depths of 1, 10, and 100 meters. It is clear that the spectrum
becomes more blue as the depth increases. It is also important to realize that blue light is
the most heavily scattered of the available frequencies from the sun. The red portion of the
spectrum is strongly absorbed. Thus at a depth of 100 m, blue light is observed in all direc-
tions. Of course, based on the visibility range, as discussed above, the ocean ultimately
becomes a very dark place at depths below 200 m. The character of life below that depth
changes significantly relative to our experience with life near the surface of the earth.

10.5 Computer Codes and Examples

MODTRAN, a moderate resolution atmospheric transmission code, was initially intro-
duced in Chapter 7. It includes a variety of scatter models for particles describing
important propagation effects in the atmosphere. A useful example is the blurring effect
that is produced by light propagating through a scattering medium. These topics are
covered in the following sections.

10.5.1 MODTRAN

The transmission and radiation effects of low-altitude haze, fog, stratospheric aerosols,
and clouds are represented by MODTRAN. In this case, high spectral resolution is not
necessary, and the moderate resolution of MODTRAN is fine. In fact, MODTRAN is
one of the main codes available for atmospheric propagation calculations.
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Fig. 10.7 Transmitted solar spectral irradiance (W/(cm2 µm)) for three different depths in pure
seawater.



Atmospheric aerosols significantly affect propagation loss in the visible and near-
infrared. They have less of an effect on transmission in the mid- and long-wave infrared
than in the visible. This point is demonstrated in Fig. 10.6, which is an example of 
a MODTRAN 3 computation for fog. This point is further illustrated in Fig. 10.8a,
which compares the transmittance from the infrared with the ultraviolet for two differ-
ent visibility ranges. Visibility is primarily determined by haze. (Other visibility ranges
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Fig. 10.8 (a) The transmittance from ground to space through the atmosphere during the late
spring at noon. (b) The solar scattered radiance for an observer looking up with the same time
and atmospheric conditions as the 23 km visibility case in part (a).



are selectable by the user.) The curves are generated using MODTRAN 3. Figure 10.8b
plots the scattered solar radiance for an atmosphere with 23 km visibility. The general
spectral shape of the scattered radiance is determined by scatter at the low- and middle-
frequency regions and by ozone absorption at the high-frequency end.

10.5.2 Imaging within Scattering Media

The performance of an imaging system that operates within the atmosphere or ocean is
degraded by scatter, resulting in a blurred image. This phenomenon can be quantita-
tively represented by the point spread function (PSF). The PSF is the Fourier transform
of the optical transfer function (OTF). In the single scatter limit and for small scatter
angles, it has been shown that OTF becomes (Wells, Ref. 10.12),

OTF(ρz) = e−βsca z + (1 − e−βsca z) OTFsca(ρ, z), (10.15a)

where

OTFsca(ρ, z) = e−βsca z[1− f (ρ)] − e−βsca z

1 − e−βsca z
, (10.15b)

and

f (ρ) =
∫

4π

P(θ) d	

1∫
0

J0(k
′ρu sin θ) du , (10.15c)

P(θ) is the phase function, J0( ) is a zero-order Bessel function of the first kind,
ρ = λκ( f l), λ is the mean wavelength, κ is the spatial frequency, and fl is the focal
length of the imaging system. The first term in Eq. 10.15a represents OTF for unscat-
tered light. The light has been attenuated but not redirected. Thus the image will be less
intense with no blur effect. The second term represents OTF for scattered light. In this
case, the image component obtained is blurred. It is not surprising to see that the phase
function is involved in calculating the scatter OTF. Examples of OTF and PSF are illus-
trated in Fig. 10.9. The low spatial frequencies are unaffected and OTF decays to the
unscattered light level as the spatial frequency increases.

Problems

10.1 Given the particle distribution function in Eq. 10.1, verify the result for the total
particle density in Eq. 10.2.

10.2 Propose a technique using a multifrequency lidar to distinguish between
molecular and particle returns.

10.3 Show that the Henyey–Greenstein phase function is normalized according to
Eq. 2.90.
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10.4 Apply Snell’s law and geometrical optics to verify the back-scatter angles
listed in Fig. 10.4 for the primary and secondary rainbows. Consider green light
with a wavelength of 0.5 µm.

10.5 Apply Snell’s law and geometrical optics to verify the forward-scatter angle of
ice crystals. Consider green light with a wavelength of 0.5 µm.
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11

Propagation Background
and Noise

Noise from the detector and source is always considered in a system design study.
However, as an optical field propagates, it acquires additional noise and background
radiance from the path defined by the source and by the field of view of the detector.
This is typically in the form of propagation path emission and background emission,
and bulk scattering within the propagation medium and surface scattering at the propa-
gation medium boundaries of hot-object radiation (e.g., the sun) into the sensor field of
view. In many cases this severely limits system performance. Also, in a passive system
when no source is present, the background radiance is the signal of interest.

11.1 Path and Background Emission

Path emission can be modeled by the radiation transfer equation given by Eq. 2.85a. The
source function, ℘+(s), must now be given an explicit representation. Figure 11.1 illus-
trates the incremental emittance per incremental length and bandwidth along an optical
path in thermal equilibrium. The source function becomes this emittance ratio times the
blackbody radiance at that location, as given by

℘+(s) = �ε(s)

�s
LbbT (s) . (11.1)

Using this result and for no source at the beginning of the path (i.e., L(0) = 0), the radi-
ation transfer equation for the path radiance becomes,



L path(s) =
s∫

0

�ε(s ′)
�s ′ LbbT(s ′) e(τOD(s ′)− τOD(s)) ds ′. (11.2)

Ignoring boundaries (i.e., reflectance) within a medium, the incremental emittance can
be expressed solely in terms of the internal transmittance along an incremental path, thus

�ε(s ′) = 1 − τ(s ′) = 1 − e−βabs (s ′)�s ′
. (11.3)

The incremental path length can be made arbitrarily small, so that the following sim-
plification can be made:

�ε(s ′) ≈ βabs(s
′)�s ′. (11.4)

Substituting this result into Eq. 11.3, the path radiance at s then becomes

L path(s) =
s∫

0

βabs(s
′)LbbT(s ′) e(τOD(s ′)− τOD(s))ds ′

= e−τOD(s)

s∫
0

LbbT (s ′) eτOD(s ′)dτOD(s ′),

(11.5)

where the following substitution is made.

dτOD(s ′) = βabs(s
′) ds ′.

When a solid or liquid boundary is present, multiply Eq. 11.5 by (1 − ρ).
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Fig. 11.1 Incremental emittance along an optical path described by s for a medium in thermal
equilibrium.



Consider the simple case when T (s ′) = T0 is a constant, then the solution to Eq. 11.5 is

L path(s) = Lbb(T0)(1 − e−τOD(s)) = εpath(s)Lbb(T0) , (11.6)

as expected. With this insight, a common numerical approach can be developed. Layer
a propagation medium into stratified N-regions of constant temperature, as illustrated in
Fig. 11.2. Then Eq. 11.5 is broken up into a sum of integrals over the constant temperature
regions for a vertically downward path to an observer at z1. Defining the transmittance
from zi to z1 to be

τi,1 = e−τOD(zi ), (11.7)

substituting s = zN+1 – z, and using Eq. 11.6, the general solution to Eq. 11.5 becomes

L path(z1) =
N∑

i=1

Lbb(Ti )(τi,1 − τi+1,1). (11.8)

For slant-path radiance, take the vertical transmittance to the cse δ power, where δ is
the elevation angle. For spectral band considerations, the path radiance must be inte-
grated over the spectral region of interest, thus

Lband
path (s) =

λ2∫
λ1

e−τOD(s,λ)

s∫
0

Lbb(T (s ′), λ)eτOD(s ′,λ)ds ′dλ. (11.9)

Because the transmittance in a window region is relatively flat, a band-averaged value
can be used, as defined in Eq. 7.23. Now the only wavelength-dependent quantity is the
blackbody radiance. The band-integrated blackbody radiance is defined to be
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Fig. 11.2 Down-welling radiance in a vertically stratified N-layered medium with each layer at
constant temperature Ti .



Lband
bb (T ) =

λ2∫
λ1

Lbb(T, λ)dλ. (11.10)

The path emission model can be applied to two cases. One is path emission coming
from the path taken by the source to the receiver. The other is emission within the field
of view of the receiver but outside the field of view of the source. This is a type of back-
ground emission coming from within the propagation medium. Background emission
from surfaces is another source of noise to the receiver and will be considered next.

To determine the background emission from a surface (the ground, a building, etc.),
the directional emittance must be known. As presented in Chapter 2, it is obtained by
integrating over all internal sources, 	′

e . Using the principle of reciprocity, this is equiv-
alent to integrating the external bidirectional reflectance over 	r . The BRDF is a
commonly used characterization for many surfaces and can be easily measured. Thus,
the following relationship for the directional emittance is obtained in terms of the total
integrated reflectance (see Eq. 2.106a):

ε(	e,ω) = ε(	i,ω) = 1 −
∫

hemisphere

ρ(	r,	i,ω) d	r = 1 − ρTIR(	e,ω). (11.11)

This is the desired result where the viewing solid angle is 	e . Recall that Eq. 11.11
remains true for a finite semitransparent medium in thermal equilibrium, when emitted
light is observed at angles where no transmitted light from an external source exists.

For a Lambertian surface the total integrated reflectance is constant with viewing
angle. Thus, the directional emittance is also constant. This is true for a flat surface,
spherical surface, and cylindrical surface. As an example, consider the sun. The solar
disk has a constant radiant output. The moon also has a constant reflected radiance for
the same reason.

The spectral hemispherical emittance is also often desired as a figure of merit for a
surface. It is defined as

ε(ω) = 1

π

2π∫
0

π
2∫

0

ε(ω,θ,φ) cos θ sin θ dθ dφ. (11.12)

The total hemispherical emittance is also often desired, and given by

ε = π

σSB T 4

∞∫
0

ε(ω)Lbb(ω) dω ,

where σSB is the Stefan–Boltzmann constant (5.6697 × 10−8 W/(m2 K4), T is tempera-
ture, and Lbb is the blackbody radiance.

The source function for emitted radiance from a surface at ss is given by

℘+(s) = ε(	e,s)Lbb(Tsurface)δ(ss). (11.13)
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Based on Eq. 11.11 and substituting Eq. 11.13 into Eq. 2.85, the emitted surface radi-
ance measured by an observer then becomes

Lsurface(	e) = [1 − ρTIR(	e)]Lbb(Tsurface)e
[τOD(ss )−τOD(s)] (11.14)

11.2 Scattering into the Path

Scattering into the path can also be modeled by the radiation transfer equation, given
by Eq. 2.85. Two distinct sources must be considered, scattered light from within the
propagation medium and reflected light from the boundaries. The source function now
becomes the scattered or reflected intensity per unit volume. Based on Eq. 2.88 for bulk
scatter, the incremental scattered radiance per incremental path element from an exter-
nal source (not necessarily in the direct field of view of the receiver), Lext , into the field
of view of the observer is expressed as

℘+(	i,	s,s) = αsca(	i,	s(s))�	i (s)Lext(	i )

�s
. (11.15)

The concept is illustrated in Fig. 11.3. Following a procedure similar to that used in the
first section and recalling Eq. 2.91, the BSDF can be decomposed into a product of the
total integrated scatter and the phase function. Also, in the single scatter approximation,
based on Eqs. 2.145 and 2.146, the total integrated scatter is the scatter coefficient times
the incremental path length. Thus,

αsca(	i,s) = βsca(	i,s)�s.

Substituting these results into Eq. 11.15, the following expression for the scatter source
function is obtained:

℘+(	i,	s,s) = βsca(	i,s)Ps(	i,	s,s)Mext(	i ), (11.16)
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Fig. 11.3 Incremental scatter-
ance created by an external
source along an optical path.



where the irradiance, Mext = �	Lext . Based on Eq. 2.85 with no source present, the
scattered radiance into the field of view of an observer is

Lsca(	i,	s,s) =
s∫

0

βsca(	i, s ′)Ps(	i,	s,s
′)Mext(	i )e

[τO D(s ′)−τO D(s)]ds ′. (11.17)

To obtain the observed irradiance, Eq. 11.17 must be integrated over the solid angle of
the detector.

A similar expression for the reflected radiance from an opaque surface at a fixed
location, sr , along the path can be obtained for reflected light by replacing the BSDF by
the BRDF in Eq. 11.15. Also, the incremental path element shrinks to a single point on
the reflecting surface. Thus, the source function in this case becomes

℘+(	s) = ρ(	i,	r )Mext(	i )δ(sr ). (11.18)

Based on the radiation transfer equation (Eq. 2.85) with no source present and using the
above source function, the reflected radiance measured by an observer is

Lref l(	i,	r, s) = ρ(	i,	r )Mext(	i ) e[τOD(sr )− τOD(s)]. (11.19)

Example 11.1 Consider a surface illuminated uniformly in all directions 
with irradiance Mext . Using Eq. 11.18 and integrating both sides with solid angle, 
the reflected radiance within the solid angle �ωr , ignoring propagation loss,
becomes

Lref l(	r ) = Mext

π

∫
hemisphere

d	iρ(	r,	i ).

Recall that the irradiance divided by π is the radiance, and based on reciprocity,
the above equation becomes

Lref l(	r ) = Lext

∫
hemisphere

d	rρ(	i,	r ) = LextρTIR(	r ).

Thus, the observed reflected radiance depends only on the single solid angle of the
receiver.

11.3 Photon Noise

The background radiance, as presented so far, represents a nearly constant flux level to
a detector. Of course, the dynamics of a scene will introduce a temporal behavior, but
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this is often a slow variation. The observed temporal variation is in part due to photon
fluctuations. This appears as noise on the measured signal in addition to the noise of the
detector (see Boyd, Ref. 11.3). The statistics of photon fluctuations differs if the source
of photons comes from stimulated emission or spontaneous emission. Since background
radiance is normally from spontaneous emission sources, we will consider fluctuations
from that source type only. This means applying the Bose–Einstein distribution function
introduced in Chapter 5.

Based on Eq. 5.148, the standard deviation (root mean square) of the number of
bosons (photons) is √

〈�N 2〉 =
√

〈N 〉 + 〈N 2〉 (11.20)

In terms of the fluctuations in radiance or radiance noise, we use Eq. 5.15 and 5.17a to
convert the above equation to

√
�L2

BB =
√

2hc2ν3L BB + L2
BB . (11.21)

Knowing the geometry of the receiver, the fluctuations in the light field power can be
obtained. The large fluctuations predicted by Eq. 11.21 are significantly reduced by
including the observation time and the detector bandwidth as well in a real detection
system (see Boyd, Ref. 11.3).

11.4 Examples of Path Emission and Scatter

A variety of examples are presented in this section to demonstrate background radiance
in optical systems.

11.4.1 Clear Sky Radiance

An interesting application of Eq. 11.8 that includes the slant-path correction is the
band-averaged sky radiance as a function of the zenith angle. This is an important con-
sideration for infrared systems operating in the 8–12 µm and 3–5 µm window regions.
A reasonably accurate model can be simply generated by using a two-layer model of
the atmosphere. This works because an observer near the surface of the earth sees radi-
ance dominated by two different temperatures: the surface temperature in the horizontal
direction and an effectively lower temperature radiance in the vertical direction. For 
N = 2, Eqs. 11.8–11.10, the band-integrated sky radiance becomes

Lband
sky (θ) = Lband

bb (T1)(τ
sec θ
1,1 − τ

sec θ
1,2 ) + Lband

bb (T2)(τ
sec θ
1,2 − τ

sec θ
1,3 ). (11.22)

Using the following relationships for the transmittance

τ 1,1 = 1 and τ 1,3 = τ 1,2τ 2,3, (11.23)
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Eq. 11.20 reduces to

Lband
sky (θ) = Lband

bb (T1) −
{[

Lband
bb (T1) + Lband

bb (T2)τ
sec θ
2,3 − Lband

bb (T2)
]
τ 1,2

} τ
sec θ
1,2

τ 1,2
.

(11.24)

Based on the above result, the following semiempirical formula for sky radiance is pro-
posed:

Lband
sky (θ) = A − B exp[−C(sec θ − 1)], (11.25)

where

A = Lband
bb (T1), B =

[
Lband

bb (T1) + Lband
bb (T2)τ 2,3 − Lband

bb (T2)
]
τ 1,2 and

C = − ln(τ 1,2).

It is assumed that B is independent of θ and

τ 2,3 = τ 0.6
1,2 .

Thus, A represents the in-band horizontal radiance and C is an effective optical depth of
the first layer. A–B is the in-band vertical radiance. This model has been successfully
applied to the 8–12 µm window region sky radiance by Saunders (Ref. 11.4) in the vicin-
ity of Boston, Massachusetts over an entire year. The coefficients change with the
expected seasonal variability of surface temperature (275 ≤ T1 ≤ 295 K) and water
vapor content. The effective temperature of the second layer is T2 ≈ 260 K and is rela-
tively constant with season. Figure 11.4 plots the winter sky radiance as a function of the
zenith angle based on this model and using the parameters determined by Saunders.
Equation 11.25 can be applied to other spectral regions (e.g., 3–5 µm) as well.
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Fig. 11.4 Wintertime clear sky radiance as a function of the zenith angle near Boston,
Massachusetts for A = 2550 µW cm−2 sr−1, B = 2270 µW cm−2 sr−1, and C = 0.062.



In this model, a rectangular coordinate system is used. For realistic predictions near
the horizon, the effects of earth curvature also must be considered. This is accomplished
by employing Eq. 7.41a for n = 1 in the equation for the optical depth,

τOD(zi ) =
zN+1−zi∫

zN+1−z0

βabs(z
′)

dz′√
1 − (re+z0)2

(re+zi )2 sin2θ

.

The vertical dependence of the absorption coefficient must at least follow the total pres-
sure fall-off as given by

βabs(z
′) = βabse−0.145z′

,

where z′ is in km. The ratio of the optical depth, including earth curvature, to the opti-
cal depth in a rectangular earth as a function of the zenith angle is plotted in Fig. 11.5.
The result is a decrease in the optical depth as the horizon is approached. The correc-
tion is significant at the largest zenith angles. However, the sky radiance near the
horizon is that of a blackbody because the propagation path is optically thick. This
means the sky radiance in that direction is not sensitive to the optical depth and the cor-
rection for a curved earth is generally not important.

11.4.2 Detector Window Radiance

Detectors often require protection from the outside environment. Also, some detectors are
cooled, which requires a vacuum environment and a vacuum window. For these reasons,
detectors often have windows in front of them at ambient temperature. The window has
two effects on detector performance. The window will irradiate the cold detector region,
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Fig. 11.5 The ratio of the optical depth including earth curvature to the optical depth in a rectan-
gular earth as a function of the zenith angle.



thus warming it, and possibly providing background radiance in the spectral region the
detector is operating. The latter effect becomes important when viewing a weak source.

For example, consider a sapphire window in front of an InSb detector. The detector
is sensitive out to 5.5 µm. For a window 2 mm thick, with uniform temperature, the
window emittance can be approximated by

ε = βabsd,

where d is the window thickness. The room-temperature absorption coefficient of sap-
phire at 5 µm is 0.95 cm−1, thus the window emittance is 0.19. Furthermore, InSb has
peak sensitivity around 5 µm. Clearly, window radiance is a concern in this case, limiting
sensor performance. If the window temperature is nonuniform in depth, then Eq. 11.5
or Eq. 11.8 must be applied.

11.4.3 Atmospheric Spectral Radiance

Just as the atmosphere absorbs radiant energy, as discussed in Chapter 7, it must emit
energy to maintain thermal equilibrium. A measurement of the down-welling spectral
radiance in the mid-wave infrared of the atmosphere is presented in Fig. 11.6. This radi-
ance is a background source to infrared sensors operating in the atmosphere. It can also
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Fig. 11.6 The down-welling spectral radiance of a clear atmosphere at night. The upper black-
body curve is at the local air temperature of the observer.



be used to remotely sense chemical species (see Fig. 11.6) in the atmosphere and obtain
vertical temperature and water vapor profiles. This can be accomplished by using down-
welling (ground-based spectroradiometer) or up-welling (space-based spectroradiometer)
spectral radiance .

As an example, a technique for obtaining a low-spatial-resolution vertical tempera-
ture profile from down-welling mid-wave spectral radiance is presented. Consider a
highly absorbing, temperature-insensitive spectral point (recall Fig. 7.37), νT 0, within
the ν3 band of 12CO2. In this case, the path length for 1% transmittance is only several
meters. This is why the blackbody curve in Fig. 11.6 at the local air temperature agrees
with measured atmospheric radiance in the vicinity of the CO2 band. Let the first layer
be that thickness, then based on Eq. 3, the observed radiance becomes

L path(z0,νT 0) = 0.99Lbb(T0,νT 0). (11.26)

T0 can also be determined by a thermometer above the sensor, thus this measurement
also calibrates the instrument. T0 can be determined radiometrically if the instrument is
calibrated, but changes in the system with time make continuous recalibration desirable.
Next, choose a second temperature-insensitive spectral point, νT 1, with a somewhat
smaller absorption coefficient, then the transmittance will be to a greater range. Let the
height of the second layer be such that τ2,0 ≈ 0.01. Then the solution of Eq. 11.8
becomes

L path(z0,νT 1) = Lbb(T0,νT 1)
[
1 − τ1,0(νT 1)

]
+ Lbb(T1,νT 1)

[
τ1,0(νT 1) − 0.01

]
.

(11.27)

Solving for the blackbody radiance at νT 1, from the second layer yields

Lbb(T1,νT 1) = L path(z0) − Lbb(T0, νT 1)
[
1 − τ1,0(νT 1)

]
τ1,0(νT 1) − 0.01

. (11.28)

Using the blackbody formula, the temperature, νT 1, now can be determined. In general,
for the Kth layer the blackbody radiance at νTK is given by

Lbb(TK,νTK ) =
L path(z0,νTK ) −∑K−1

i = 0 Lbb(Ti ,νTK )τi,0(νTK )
[
1 − τi+1,i (νTK )

]
τK 0(νTK ) − 0.01

,

(11.29)

where

τK,0 =
K∏

k = 1

τk,k−1. (11.30)

The temperature is obtained by inverting the blackbody equation. However, only a 
few of the available spectral points have absorption coefficients that are relatively 
insensitive to temperature. Thus a low-spatial-resolution temperature profile results. 
A measured vertical temperature profile using this technique is presented in Fig. 11.7.
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The measured (path-averaged) points are compared with a curve generated by an
ascending balloonsonde. The spectroradiometer measurement takes 2 minutes. The 
balloonsonde takes 2 hours to ascend to the top of the troposphere. Thus two spectro-
radiometer measurements are presented that were collected during the ascent of the
balloon. Good agreement between these two different techniques is demonstrated.

To sharpen the spatial resolution of this radiometric technique, temperature-sensitive
spectral lines must now be used. Since the standard troposphere has a linear vertical tem-
perature profile, the temperature-insensitive results are used to obtain a least-squares
fitted vertical temperature profile. Then an iterative procedure can be used to obtain the
final profile. In this manner, the vertical temperature profile can be constructed with rea-
sonable spatial resolution, depending upon the spectrometer resolution, number of
spectral points used, and system noise. The accuracy can be checked by computing the
down-welling spectral radiance using standard computer codes employing the HITRAN
database (i.e., FASCODE) and comparing with the measured radiance spectrum.
To this point we have assumed a clear atmosphere and have ignored contributions from
aerosols and clouds. Clouds, in particular, will terminate the vertical path radiance.
However, the presence of clouds can be detected by looking in the microwindows
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Fig. 11.7 Vertical temperature profile of the troposphere measured with an infrared spectrora-
diometer (x and ◦) and a balloonsonde (solid curve). The spectroradiometer data points are fit to
a linear function (dotted curve).



between water vapor emission lines. For clear sky conditions we expect low spectral
radiance in these windows. If a cloud is present, the spectral radiance background will
significantly increase in the microwindows.

11.4.4 Solar Reflection and Scatter

The solar irradiance outside the atmosphere of the earth can be closely approximated
by multiplying the solar blackbody radiance by the solid angle subtended by the sun,

Msolar (ν) = Lbb(Tsun,ν)
πr2

sun

R2
sun

, (11.31)

where rsun (= 6.9638 × 105 km) is the radius of the sun, Rsun (= 1.4968 × 108 km) is
the mean distance from the sun to the earth and Tsun (= 5800 K) is the temperature of
the photosphere. However, this model breaks down for frequencies above 20,000 cm−1

(below 0.5 µm) and the sun becomes a non-thermal-equilibrium radiator. An empirical
fit to experimental data yields a more accurate model. Equation 11.31 is modified
according to the following formula:

Msolar (λ) = [L(Tsun, λ) f 1solar (λ) + f 2solar (λ)]
πr2

sun

R2
sun

, (11.32)

where

f 1solar (λ) = 1 − [6(0.45 − λ) − 10(0.45 − λ)2] h(0.45 − λ)

and

f 2solar (λ) = 800 exp

[
(λ − 0.335)2

0.001

]
+ 280 exp

[
(λ − 0.372)2

0.000065

]

+ 665 exp

[
(λ − 0.413)2

0.00016

]
+ 450 exp

[
(λ − 0.47)2

0.00055

]

− 90 exp

[
(λ − 0.55)2

0.0002

]
− 80 exp

[
(λ − 0.735)2

0.03

]
.

A comparison of the extraterrestrial solar irradiance model to experimental data is pre-
sented in Fig. 11.8. solar light reaches the earth collimated or unidirectional with a total
band-integrated irradiance at the top of the atmosphere of 1.39 kW/m2. The irradiance at
the surface of the earth is affected by atmospheric transmittance and therefore is variable.

Solar scatter reflected from a surface can be computed using Eq. 11.18 and substi-
tuting Msun for Mext . For a Lambertian surface and a lossless path to the receiver, the
reflected radiance becomes

Lre flsolar (θr,ν) = ρTIR

π
cos θr Msolar (ν), (11.33)

assuming the receiver spatially resolves the angle dependence. For reflected light from
land the above formula is often used. For reflected light from the ocean surface, a non-
Lambertian BRDF is used (see Ref. 11.10).
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Fig. 11.9 (a) Sky spectral radiance for the solar angle at 0° zenith and the observer at 85° zenith.
(b) Sky spectral radiance at three different wavelengths as a function of observer angle.

Fig. 11.8 Spectral irradiance of the sun above the atmosphere of the earth. The +s are experi-
mental data points and the curve is Eq. 11.32. The dotted curve is the spectral radiance of a
blackbody at T = 5800 K.
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As sunlight propagates through the atmosphere of the earth, it is scattered and absorbed.
The path is inhomogeneous and depends on the solar zenith angle. The observed solar
irradiance depends on the viewing angle as well. Equation 11.17 is used to compute the
scattered spectral radiance to an observer. A good example of this was presented in
Chapter 7 (Section 7.3.2) concerning solar scattered light by molecules. This lead to an
explanation of the blue sky background. If aerosols are present in the path, the sky back-
ground whitens when viewing near the horizon. This point is illustrated in Fig. 11.9a,
which shows a whiter background with aerosols present than with a pure molecular
atmosphere. The aerosol model used in the calculations for Fig. 11.9 employs Eq. 10.5 for
the vertical concentration profile, where ρp(0) = 400 particles per cm3, hp = 1.1 km−1,
and ρpB (0) = 0. The Henyey–Greenstein phase function is also used, with g = 0.8. This
produces a narrow and highly forward-scattered phase function. The aerosol scatter
cross-section is 4×10−9 cm2 for all wavelengths. Figure 11.9b shows the scattered
spectral radiance for the above conditions as a function of observer angle. In the vicin-
ity of the sun, the scattered radiance shows the shape of the forward phase function.
Based on Mie theory the phase function depends on the particle size. Thus 
a measurement of this sky radiance can yield important information about the particles
scattering the light. Also, Fig. 11.9b shows an angle dependence very different from
purely molecular scatter, which is almost constant with observer angle. This is another
aspect of the different phase functions for the two different sizes of particles.

Problems

11.1 Compute the path radiance for the conditions of Problem 7.5. Use the standard
vertical temperature profile of the atmosphere, as given in Fig. 7.5.

11.2 Beginning with Eq. 11.5, derive Eq. 11.8.
11.3 Determine the reflected solar radiance of a Lambertian ocean surface as a 

function of the solar angle.
11.4 Assuming that the reflectance of the moon is 10%, independent of frequency,

and Lambertian, compute the reflected radiance of sunlight by a full moon.
What is corresponding irradiance of the full moon to an observer on earth?

11.5 Verify Fig. 7.37 for molecular Rayleigh scatter. Use Eqs. 7.59 and 4.88 to 
generate the figure.
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Appendix 1

Symbols and Units

Table A1.1 lists symbols with the corresponding meaning and units used in this book. An
attempt is made to consistently use MKS units, however, convention does not always allow
this. Also, the defined symbols are used consistently throughout the text. However, absorp-
tion and scattering phenomena in various media were developed separately, and a variety
of different symbols are often used for the same quantity. This is very disturbing to a stu-
dent trying to learn the material for the first time. For this reason, an attempt is made to use
the most common symbols with both sets of literature and to otherwise select symbols in
the most unambiguous way. When the usage should clearly indicate the meaning, the same
symbol is used for two different quantities. Fortunately, this is rarely the case.

Table A1.1 Symbols, Nomenclature, and Units

Symbol Meaning Unitsa

a Absolute humidity gm−3

a = Csca/Cext Single-scatter albedo —
an and bn Complex Mie coefficients —
b Time-domain magnetic flux density Wm−2

B Frequency-domain magnetic flux densityb Wm−2

Cext Extinction cross-section m2

Cabs Absorption cross-section m2

Csca Scatter cross-section m2

CV Heat capacity J µg−1K−1

c Speed of light in vacuum (2.99792458 × 108) m/s
C(τ) Autocorrelation function sec−1cm

(continued)
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Table A.1 Symbols, Nomenclature, and Units—cont’d

Symbol Meaning Unitsa

d Time-domain electric flux density Cm−2

D Frequency domain electric flux densityb Cm−2

e (2.7182818284) —
e Elementary charge (1.60217733(49) × 10−19)c C
e Time-domain electric field intensity Vm−1

E Energy J
E Frequency-domain electric field intensityb Vm−1

Es(T) Saturation vapor pressure kPa
g Gravitational acceleration (9.80665) ms−2

g(ν) Line shape function cm
h Planck’s constant (6.6260755(40) × 10−34) J sec
h Time-domain magnetic field intensity Am−1

H Frequency-domain magnetic field intensityb Am−1

I Radiant intensity Wsr−1

Iν Spectral radiant intensity W sr−1 cm
[I Q U V] Stokes vector —
j

√−1 —
j(ν) Spectral density function cm
ka Index of absorption —
ks Index of scatter —
ke Index of extinction or attenuation —
kB Boltzmann’s constant (1.380658(12) × 10−23) J K−1

k ′ = 2π/λ Wave vector magnitude m−1

L Radiance (also sterance) W cm−2 sr−1

� Poynting vector (time domain) W cm−2 sr−1

M Irradiance W cm−2

M Modified refractivity —
m Mass kg
me Mass of an electron (9.1093897(54) × 10−31) kg
mp Mass of a proton (1.6726231(10) × 10−27) kg
mn Mass of a neutron (1.6749286(10) × 10−27) kg
m Modified index of refraction —
n̄ = n − jk Complex refractive index —
N Number of particles —
NA Avogadro’s number (6.0221367(36) × 1023) Particles mol−1

N Refractivity —
n Index of refraction real part —
P, p Pressure Pa
P(θ ), Pi(θ ) Phase functions —
� Source function Wm−2 sr Hz
q Electric charge C
Qext Extinction efficiency —
Qabs Absorption efficiency —
Qsca Scatter efficiency —
Qback Back-scatter efficiency —
Q(T) Partition function —
R, r Distance m
R Reflection coefficient
rh Relative humidity —
r Particle radius m
RGC Gas constant = 82.0575 atm cm3 K−3 mol−1

Rv Visibility range km
Rm Meteorological range km
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Table A.1 Symbols, Nomenclature, and Units—cont’d

Symbol Meaning Unitsa

S1 and S2 Dimensionless complex field amplitudes —
Si Line strength of ith line cm−1 km−1

t Time sec
T Temperature K
T Transmission coefficient
V Volume m3

w Absorber amount
x = k ′r Dimensionless size parameter —
x,y, z Cartesian coordinates (z directed upward) m
zR Rayleigh range m
αex Expansion coefficient K−1

αext Extinctance (absorptance plus scatterance) —
αabs Absorptance, absorptivity —
αsca Scatterance —
αe Electronic polarizability —
βext Extinction coefficient or km−1

extinction cross-section per unit volume
βabs Absorption coefficient or km−1

absorption cross-section per unit volume
βsca Scattering coefficient or km−1

scatter cross-section per unit volume
� Full-width at half-maximum cm−1

γ Half-width at half-maximum cm−1

δ Depolarization factor —
ε Emittance, emissivity —
ε0 Permittivity of free space (8.8541878 × 10−12) Fm−1

εr Relative permittivity —
ζ Zenith angle rad or degrees
�,ϕ Polar, azimuthal angles rad or degrees
κ Spatial frequency m−1

κp Thermal conductivity Wm−1 K−1

λ Wavelength µm
µ = cos θ —
µ′ Reduced mass kg
µ0 Permeability of free space (4π × 10−7) Hm-1

µr Relative permeability —
ν Wave number (1/λ) cm−1

π Pi (3.1415926535) —
ρi Number density of species i (Ni/V) cm−3

ρm Mass density g cm−3

ρp(r) Particle size distribution function cm−3 µm−1

ρ Reflectance, reflectivity —
σ Conductivity m−1

σb Back-scatter cross-section m2

σSB Stefan-Boltzmann constant (5.6697 × 10−8) W m−2 K−4

τ Transmittance, transmissivity —
τOD Optical distance or depth —
� Flux W
χ Electric susceptibility —
ω Angular frequency (2π f ) rad sec−1

	 Solid angle sr

a— indicates a dimensionless quantity.
bFrequency-domain field quantities are defined for a unit bandwidth of one to be consistent with phasor notation.
cDigits in parentheses indicate the standard deviation uncertainty in the last digits of the given value.

	



Table A1.2 lists commonly used unit conversions in optical propagation computa-
tions. Table A1.3 lists constants used in various models discussed in the text. Table A1.4
lists conversion factors between various units for the power absorption coefficient. The
field absorption coefficient has units of nepers per meter.
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Table A1.2 Unit Conversions

1 amu = 1.6605654 × 10−27 kg
1 cm−1 = 30 GHz
1 eV = 8065.5 cm−1 = 1.602189 × 10−19 J
1 µm = 1000 nm = 10,000 Å
1 atm = 760 Torr = 1013.25 mb = 14.7 psia = 101.325 kPa = 1.01325 × 105 N m−2

1 in = 2.54 cm
1 dB/km = 2.3026 × 10−6 cm−1

1 cal = 4.185 J
1 Debye = 3.33564 × 10−30 C m

Table A1.3 Additional Useful Constants

hc/kB = 1.438786 × 10−2 m K
Mean radius of earth = 6.378388 × 103 km
Mean radius of sun = 6.9638 × 105 km
Mean distance from earth to sun = 1.4968 × 108 km
Mean angle of the solar photosphere as observed on earth = 31.988 arc min
Average molecular weight of the atmosphere (below 90 km) = 28.964 amu

Table A1.4 Unit Conversions for the Absorption Coefficient (Given the Row Unit to Convert to
the Column Unit Multiply by the Number in the Column)

βabs cm−1 m−1 km−1 dB km−1

cm−1 1 102 105 4.3429 × 105

m−1 0.01 1 103 4.3429 × 103

km−1 10−5 10−3 1 4.3429
dB km−1 2.3026 × 10−6 2.3026 × 10−4 0.23026 1
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Appendix 2

Special Functions

Special functions of importance to applied spectroscopy and optical propagation are
listed in the following.

The rigid rotor wavefunctions are associated Legendre functions in θ and complex
exponential functions in φ. The net functions are spherical harmonics and are listed in
Table A2.1.

Table A2.1 Spherical Harmonics Ylm(θ,φ)

Y0,0 = ( 1
4π

)1/2
(A2.1)

Y1,−1 = ( 3
8π

)1/2
sin θ e jφ (A2.2)

Y1,0 = ( 3
4π

)1/2
cos θ (A2.3)

Y1,1 = −( 3
8π

)1/2
sin θ e− jφ (A2.4)

Y2,−2 = ( 15
32π

)1/2
sin2θ e2 jφ (A2.5)

Y2,−1 = ( 15
8π

)1/2
sin θ cos θ e jφ (A2.6)

Y2,0 = ( 5
16π

)1/2
(3 cos2θ − 1) (A2.7)

Y2,1 = −( 15
8π

)1/2
sin θ cos θ e− jφ (A2.8)

Y2,2 = ( 15
32π

)1/2
sin2θ e−2 jφ (A2.9)



The Hermite–Gaussian functions are

φn(ξ) = Nn e−ξ 2/2 Hn(ξ), (A2.16)

where the normalization factor is

Nn = (2nn!
√

π)−1/2, (A2.17)

with the following normalization condition on φn :

〈φn|φn〉 =
∞∫

−∞
φ∗

n (ξ)φn(ξ) d(ξ) = 1. (A2.18)

The function D(x) given by Eq. 8.56 is the Dawson integral. To implement Eq. 8.56
in a computer program, it is necessary to simplify the expression for D(x), when x is
large. A series approximation for D(x) can be derived in this case. To obtain the large x
approximation for D(x), we note that D(x) satisfies the differential equation

dD(x)

dx
+ 2x D(x) = 1. (A2.19)

Assuming a solution of Eq. (A2.19) of the form
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These functions are orthonormal, satisfying the following normalization condition:

2π∫
0

π∫
0

|Ylm(θ), φ)|2 sin θ dθdφ = 1. (A2.10)

The solution to the quantum-mechanical harmonic oscillator produces Hermite–Gauss
functions for the wave function. These functions contain Hermite polynomials, and are
listed in Table A2.2.

Table A2.2 Hermite Polynomials, Hn(ξ)

H0(ξ) = 1 (A2.11)

H1(ξ) = 2ξ (A2.12)

H2(ξ) = 4ξ 2 − 2 (A2.13)

H3(ξ) = 8ξ 3 − 12ξ (A2.14)

H4(ξ) = 16ξ 4 − 48ξ 2 + 12 (A2.15)



D(x) =
∞∑

k=0

Dk

x2k+1
, for large x, (A2.20)

we have, upon substitution of the above equation into Eq. A2.19 and equating like
powers of x, the recurrence relation

2D0 = 1,

2Dk = (2k − 1) Dk −1, k ≥ 1
(A2.21)

for the unknown coefficients Dk. It is directly verifiable that these equations are solved by

Dk = 1 · 3 · 5 · · · (2k − 1)

2k+1
, k ≥ 1 (A2.22)

where, based on Eq. A2.22, D0 = 1/2. Combining the results of Eqs. A2.20 and A2.22
gives the form

D(x) = 1

2x

[
1 +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2n x2n

]
. (A2.23)

The series can be truncated after n = 5 for reasonable accuracy and works well for x
values greater than 3.

For values of x less than 3, the integral expression for D(x) (Eq. 8.56) can be evalu-
ated using common numerical integration techniques, such as Simpson’s rule.
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Fig. A2.1 Dawson integral, D(x) versus x generated using a numerical integration of Eq. 7.56 for
x ≤ 3 and Eq. A2.23 for x > 3.



The Dawson integral, based on the above numerical techniques, has been imple-
mented in Fortran and is plotted in Fig. A2.1. For x-values less than 3, D(x) was
calculated by integrating with Simpson’s rule. For this integration, the interval from 
0 to x was divided into 15 equal increments. For x-values greater than 3, Eq. A2.23 was
used to calculate D(x). (Note that only the first five terms of the series are needed.) 
In Table A2.3, the computed values for D(x) are compared to values found in a mathe-
matical handbook (Ref. A2.1). Good agreement is obtained.

Bibliography
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Table A2.3 Comparison of Dawson Integral Values

x-Value D(x), Computed D(x), Handbooka % Difference

0.02 0.019995 0.0199947 0.001501
0.20 0.194751 0.1947510 0.000000
0.50 0.424436 0.4244364 0.000094
1.00 0.538080 0.5380795 0.000093
1.50 0.428251 0.4282491 0.000444
2.00 0.301350 0.3013404 0.003186
2.94884 0.182033 0.181915 0.064865
3.0151 0.177110 0.177226 0.065453
4.0825 0.126542 0.1265439 0.001501
5.00 0.102134 0.102134 0.000000

10.0 0.050254 0.0502539 0.000199
14.1421 0.035444 0.0354440 0.000000

aSee Handbook of Mathematical Functions, Ref. A2.1, p. 319.
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Appendix 3

Hilbert and Fourier
Transforms

Functions that satisfy a Hilbert transform are of great importance to the development of
practical models of the permittivity. Table A3.1 lists Hilbert transform pairs, as defined
by Eq. 2.48, where x = ω′ and y = ω. The Hilbert transform is a linear operator.

Because of the importance of the classical oscillator model, a proof is presented to
demonstate that it is a causal model. The mathematical statement of the Hilbert transform

Table A3.1 Hilbert Transform Pairs

χ ′′(x) χ ′(y)

χ ′′(x − a) χ ′(y − a)

dχ ′′(x)

dx

dχ ′(y)

dy

xχ ′′(x) + 1
π

∞∫
−∞

dxχ ′′(x) yχ ′(y)

δ(x − a)
1

π(a − y)

x�

(a2 − x2)2 + (x�)2

a2 − y2

(a2 − y2)2 + (y�)2

γ

x2 + γ 2
− y

y2 + γ 2

1
x H(x − a), a > 0, x �= a

1

πy
ln

∣∣∣∣ a

y − a

∣∣∣∣ , y �= a



(or Kramers–Krönig relation) for the classical oscillator model, as given in Chapter 2,
can be compactly restated as

εr (ω) = 1 + j

π
P

∞∫
−∞

[εr (ω
′) − 1]

ω′ − ω
dω′. (A3.1)

Furthermore, recall εr (ω) = 1 + χ(ω), and for a single oscillator that

χ(ω) = j

π
P

∞∫
−∞

χ(ω)

ω′ − ω
dω′ and χ(ω) = ω2

0�ε

ω2
0 − ω2 + j�ω

. (A3.2)

To prove that the classical oscillator model satisfies the Hilbert transform, we factor the
susceptibility function into the form

1

ω2
0 − ω2 + j�ω

= −1

(ω − ω+)(ω − ω−)
= − 1

(ω+ − ω−)

(
1

ω − ω+
− 1

ω − ω−

)

where ω is now complex and

ω± = j
�

2
±
√

ω2
0 −

(
�

2

)2

.

Only these poles will be included within the contour, as shown in Fig. A3.1. The 
residue theorem can be applied to evaluate the integral. The result is

χ(ω) = −2
∑

i =+,−
Res

ω′ = ωi

χ(ω′)
ω′ − ω

− Res
ω′ = ω

χ(ω′)
ω′ − ω

.

Evaluating the residues, the susceptibility function is obtained and the equality is
proven. Thus, the classical oscillator model satisfies the Kramers–Krönig relation or the
Hilbert transform. For this reason, the simplistic classical oscillator model is very useful
in representing physical systems.
We desire the time-domain function

F(t) = 1

2π

∞∫
−∞

dω e jωtχ(ω) (A3.3)

where χ(ω) is the complex frequency-domain susceptibility:

χ(ω) = χ ′(ω) − jχ ′′(ω). (A3.4)

Recall that χ ′(ω) and χ ′′(ω) satisfy the symmetry conditions
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χ ′(−ω) = χ ′(ω) ,

χ ′′(−ω) = −χ ′′(ω)
(A3.5)

(e.g., χ∗(ω) = χ(−ω)). Substituting Eq. (A3.4) into Eq. (A3.3) and making use of 
Eq. (A3.5), we obtain 

F(t) = 1

π
[E(t) + O(t)] , (A3.6)

where

E(t) =
∞∫

0

dω χ ′(ω) cos ωt (A3.7a)

and

O(t) =
∞∫

0

dω χ ′′(ω) sin ωt. (A3.7b)

(Note that E(−t) = E(t) and O(−t) = −O(t).)
We now restrict our attention to the case of t > 0 and prove that E(t) = O(t). The

Kramers–Krönig relation (Hilbert transform) between the real and imaginary parts of
the permittivity takes the form

χ ′(ω) = P

π

∞∫
−∞

dω′ χ ′′(ω)

ω′ − ω

= P

π

∞∫
0

dω′χ ′′(ω)

[
1

ω′ − ω
+ 1

ω′ + ω

]
.

(A3.8)
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Fig. A3.1 Contour integration path enclosing the poles in the complex ω-plane.



Here P denotes a principal value. We now make use of the well-known result that

P
1

x
= lim

ε→0

1

x + jε
+ π jδ(x). (A3.9)

Substituting Eq. (A3.9) into Eq. (A3.8) gives for ω>0

χ ′(ω) = jχ ′′(ω) + 1

π

∞∫
0

dω′χ ′′(ω′)
(

1

ω′ − ω + jε
+ 1

ω′ + ω + jε

)
. (A3.10)

We now substitute Eq. (A3.10) into Eq. (A3.7a):

E(t) =
∞∫

0

dω cos ωt

⎡
⎣ jχ ′′(ω) + 1

π

∞∫
0

dω′χ ′′(ω′)
(

1

ω′ − ω + jε
+ 1

ω′ + ω + jε

)⎤⎦

= j

∞∫
0

dωχ ′′(ω) cos ωt + 1

π

∞∫
0

dω′χ ′′(ω′)G(t,ω′), (A3.11)

where

G(t,ω′) ≡
∞∫

0

dω cos ωt

(
1

ω′ − ω + jε
+ 1

ω′ + ω + jε

)
. (A3.12)

The evaluation of this integral is straightforward:

G(t,ω′) =
∞∫

−∞
dx cos t (x − ω′)

(
x − jε

x2 + ε2

)

= 2 jε cos(tω′)

∞∫
0

dx cos t x

x2 + ε2
+ 2 sin tω′

∞∫
0

dx x sin t x

x2 + ε2

= [−π j cos(tω′) + sin(tω′)
]

e−ετ .

(A3.13)

Taking the limit ε → 0, we have, on substituting Eq. (A3.13) into Eq. (A3.11), that

E(t) =
∞∫

0

dω′χ ′′(ω′) sin ω′t

= O(t).

(A3.14)

Whence, we have, using the time-reversal properties of E and O, that
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F(t) = 2O(t)

π
, t ≥ 0

= 0, t ≤ 0,

(A3.15)

where H( ) is the Heaviside step function.
For Case I we have

O(t) = BE0

h̄
Ô(τ ), (A3.16)

where

Ô(τ) =
∞∫

1

dx

x2
sin τ x (A3.17)

and

τ ≡ E0

h̄
t. (A3.18)

Integration by parts gives

Ô(τ) = sin τ + τ

∞∫
1

dx

x
cos xτ

= sin τ − τ Ci(τ)

(A3.19)

where Ci is the cosine integral (see Abramowitz and Stegun, Ref. A3.2):

Ci(z) ≡ −
∞∫

z

du
cos u

u
. (A3.20)

For Case II we have

O(t) = BE0

h̄
Ô(τ ) (A3.21)

where τ is given by Eq. (A3.18) and

Ô(τ) =
∞∫

1

dx

x2

√
x − 1 sin τ x, (A3.22)

which upon integrating by parts gives
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Ô(τ) = τ P(τ) + 1

2
Q(τ), (A3.23)

with

P =
∞∫

1

dx

x

√
x − 1 cos xτ,

Q =
∞∫

1

dx

x
√

x − 1
sin xτ.

(A3.24)

P(τ) can be rewritten as

P(τ) = R(τ) − S(τ), (A3.25)

where

R =
∞∫

1

dx√
x − 1

cos τx

S =
∞∫

1

dx

x
√

x − 1
cos τx .

(A3.26)

R may be directly obtained from integral tables:

R =
√

π

τ
cos
(
τ + π

4

)
. (A3.27)

To obtain S, we first compute dS/dτ :

dS

dτ
= −

∞∫
1

dx√
x − 1

sin τ x

=
√

π

2τ
(sin τ + cos τ)

(A3.28)

from tables. Whence,

S(τ) = −
√

π

2

τ∫
o

dτ ′
(

sin τ ′ + cos τ ′
√

τ ′

)
+ S(τ = 0)

= π

[
1 −

{
S

(√
2τ

π

)
+ C

(√
2τ

π

)}] (A3.29)
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where the S( ) and C( ) are Fresnel integrals:

(
C(z)
S(z)

)
=

z∫
0

dt

( cos π
2 t2

sin π
2 t2

)
, (A3.30)

and based on Eq. (A3.26),

S(τ = 0) = π.

To find Q, we first compute dQ/dτ :

d Q

dτ
=

∞∫
1

dx√
x − 1

cos xτ

=
√

π

2τ
(cos τ − sin τ)

(A3.31)

from tables. Whence

Q(τ) = π

[
C

(√
2τ

π

)
− S

(√
2τ

π

)]
. (A3.32)

Combining Eqs. (A3.23), (A3.25), (A3.27), (A3.29), and (A3.32), we have

Ô(τ) =√
πτ cos

(
τ + π

4

)
− πτ

+ π

[(
τ + 1

2

)
C

(√
2τ

π

)
+ (τ − 1

2

)
S

(√
2τ

π

)]
.

(A3.33)

Using Eq. (A3.15), the time-domain result for the two cases is obtained directly,

FI (t) = 2

π

BE0

h̄

[
sin

E0

h̄
t − E0

h̄
tCi

(
E0

h̄
t

)]
(A3.34a)

and

FII (t) = 2

π

BE0

h̄

[√
π

E0

h̄
t cos

(
E0

h̄
t + π

4

)
− π

E0

h̄
t

]

+ π

[(
E0

h̄
t + 1

2

)
C

(√
2E0t

π h̄

)
+
(

E0

h̄
t − 1

2

)
S

(√
2E0t

π h̄

)]
.

(A3.34b)
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Appendix 4

Model Parameters for
Gases, Liquids, and Solids

This appendix contains several tables of model parameter values for specific gases,
solids, and liquids. All the models have been previously developed in the text. Thus the
appendix provides the practical information needed to apply the models to real media.

A4.1 Model Parameters for Gases

Table A4.1 lists Sellmeier model (see Eq. 4.18a) parameters for various gases and is
valid over the wavelength range from about 3 to 0.3 µm for STP conditions (T =273K
and P = 1atm). This is a single-oscillator model of the general form

1

2
[n2(λ) − 1] = n(λ) − 1 = λ2 A0

λ2 − λ2
0

. (A4.1)

Only electronic transitions are represented, thus this model should not be applied in the
infrared unless vibrational modes are included.

Since the electronic transitions in gases dominate the index of refraction in the
regions of visible transparency, the Cauchy model (see Eq. 4.18b) is often applied to
gases. Table A4.2 lists Cauchy model parameters of the form

n(λ) − 1 = A0

(
1 + B

λ2
+ C

λ4

)
(A4.2)



for various gases with validity from the visible to the near-infrared. Of course, if the
molecule has no infrared-active vibrational or rotational modes (e.g., Ar, O2, and N2),
then the model is valid from the visible to the microwave.

To scale the model parameters to other pressures and temperatures, Eq. 4.8a is
applied. Only the A coefficient needs to be scaled in the following way:

A(p, T ) = A0
p

T

273

1
,

where T is temperature in kelvins and p is pressure in atmospheres. The index of refrac-
tion of gaseous mixtures (such as the atmospheres of planets) can be obtained by
applying Eq. 4.11 in the Sellmeier approximation with the parameters in Table A4.1.
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Table A4.1 Sellmeier Model Parameters for Various Gases at STP (Ref. A4.1)

Gas A0 λ0 [µm]

Ar 277.3 × 10−6 0.073
Br2 1093.2 × 10−6 0.152
Cl2 759.5 × 10−6 0.097
CO 327.3 × 10−6 0.090
CO2 437.5 × 10−6 0.080
H2 136.3 × 10−6 0.085
He 34.7 × 10−6 0.051
H2O 245.6 × 10−6 0.092
HCl 435.3 × 10−6 0.092
HBr 593.5 × 10−6 0.102
HI 883.1 × 10−6 0.117
H2S 619.1 × 10−6 0.107
Kr 418.6 × 10−6 0.084
N2 294.5 × 10−6 0.073
Ne 66.6 × 10−6 0.048
NH3 364.6 × 10−6 0.105
NO 288.2 × 10−6 0.086
N2O 496.6 × 10−6 0.089
O2 265.3 × 10−6 0.084
SO2 641.5 × 10−6 0.100
Xe 681.8 × 10−6 0.100

Table A4.2 Cauchy Model Parameters for Various Gases at STP (Refs. A4.1, A4.2)

Gas A0 B [µm2] C [µm4]

Ar 277.83 × 10−6 5.6 × 10−3

N2 294.0 × 10−6 5.6 × 10−3

He 34.8 × 10−6 2.3 × 10−3

H2 136.1 × 10−6 7.5 × 10−3 73 × 10−6

O2 269.7 × 10−6 1.38 × 10−3 467 × 10−6

Dry Air 287.57 × 10−6 4.63 × 10−3 120 × 10−6

Ethane 736.5 × 10−6 9.08 × 10−3

CH4 426.0 × 10−6 14.41 × 10−3



Gases at high density also require the refractive virial coefficients, as defined by 
Eq. 4.29, for the computation of the infrared/visible refractive index. Values for these
coefficients are listed in Table A4.3.

To include gas-phase absorption phenomena, the HITRAN database needs to be
applied. This is discussed in Chapter 7 (Sections 7.2.2. and 7.4.2).

A4.2 Model Parameters for Solids

Table A4.4 lists the various optical materials that have been characterized in terms of
the models discussed in Chapter 8. Included in the listing are the optical models that 
are available for a specific material. Based on this information, one can determine
whether the spectral region’s model calculations are valid. Also included are the space
group (2— cubic, 1— uniaxial, — biaxial, and 0 amorphous) and the melting 
temperature.
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Table A4.3 Refractive Virial Coefficients for Various Gases at Room
Temperature and at a Wavelength of 0.633 µm (Refs. A4.3–A4.5)

Gas AR [cm3 mol−1] BR [cm6 mol−2]

N2 4.45 0.75
He 0.52
Ar 4.2 1.49
CO2 6.65 3.2
SF6 11.35 36.0

Table A4.4 Optical Property Models Available for Various Solids

Name SP# Tmelt [K] νLOMAX [cm−1] Eg [eV] CO SM FC MP UT SC

Insulators

Oxides

ADP o-ray 122 463.0 1500.0 7.0 Y Y N N N N
ADP e-ray 122 463.0 1500.0 7.0 Y Y N N N N
Al2O3 o-ray 167 2319.0 914.0 9.0 Y Y N Y Y N
Al2O3 e-ray 167 2319.0 871.0 9.0 Y Y N Y Y N
AlON poly 227 2323.0 969.0 6.50 Y Y N Y Y Y
BeO o-ray 186 2725.0 1095.0 10.60 Y Y N N N N
BeO e-ray 186 2723.0 1083.0 10.60 Y Y N N N N
BeO poly 186 2725.0 1100.0 10.60 Y N N Y N N
Cr2O3 o-ray 167 2602.0 — — Y N N N N N
Cr2O3 e-ray 167 2602.0 — — Y N N N N N
GeO2 o-ray 136 1388.0 815.0 5.60 Y N N N N N
GeO2 e-ray 136 1388.0 811.0 5.60 Y N N N N N
Y2O3:HfO2 225 3074.0 680.0 4.50 Y Y N N N N
Ice Type Ih (H2O) 194 0.0 3134.5 8.1 Y Y N N N N
KDP o-ray 122 526.0 1500.0 7.0 Y Y N N N N

(continued)



Table A4.4 Optical Property Models Available for Various Solids—cont’d

Name SP# Tmelt [K] νLOMAX [cm−1] Eg [eV] CO SM FC MP UT SC

Oxides

KDP e-ray 122 526.0 1500.0 7.0 Y Y N N N N
KNbO3 nx 38 1373.0 842.0 3.30 Y Y N N N N
KNbO3 ny 38 1373.0 838.0 3.30 Y Y N N N N
KNbO3 nz 38 1373.0 827.0 3.30 Y Y N N N N
KTP(KTiOPO4) nx 33 1172 995.0 3.60 Y Y N N N N
KTP(KTiOPO4) ny 33 1172 1136.20 3.60 Y Y N N N N
KTP(KTiOPO4) nz 33 1172 1119.0 3.60 Y Y N N N N
LiNbO3 o-ray 161 1513.0 878.0 4.65 Y Y N N Y N
LiNbO3 e-ray 161 1513.0 869.0 4.65 Y Y N N Y N
MgAl2O4 poly 227 2408.0 869.0 7.75 Y Y N Y Y Y
MgO 225 3073.0 725.0 7.80 Y Y N Y N N

Quartz

SiO2 o-ray 152 845.0 1235.0 8.40 Y Y N N N N
SiO2 e-ray 152 845.0 1235.0 8.40 Y Y N N N N
TiO2 o-ray 136 2128.0 831.0 3.03 Y Y N N N N
TiO2 e-ray 136 2128.0 796.0 3.04 Y Y N N N N
Y2O3 poly 206 2711.0 620.0 6.08 Y Y N Y Y Y
La2O3:Y2O3 poly 206 2670.0 612.0 6.0 Y Y N Y N Y
YAG 230 2193.0 841.0 7.01 Y Y N N Y N
Y203:ZrO2 225 3110.0 668.0 5.60 Y Y N Y N N

Alkali-halides

AgBr 225 705.0 138.0 2.79 Y Y N N Y N
AgCl 225 728.0 193.0 3.44 Y Y N N Y N
CsBr 221 908.0 112.0 6.90 Y Y N N N N
CsI 221 898.0 90.0 6.30 Y Y N Y N N
KBr 225 1007.0 166.0 6.84 Y Y N Y Y N
KCl 225 1044.0 213.0 7.83 Y Y N Y Y N
KF 225 1131.0 326.0 10.80 Y Y N N N N
KI 225 954.0 150.0 5.89 Y Y N Y Y N
KRS-5 221 696.0 90.0 2.60 Y Y N N N Y
LiF 225 1121.0 673.0 12.75 Y Y N Y Y N
NaBr 225 1020.0 209.0 6.77 Y Y N N Y N
NaCl 225 1074.0 268.0 8.02 Y Y N Y Y N
NaF 225 1296.0 414.0 10.70 Y Y N N Y N
NaI 225 933.0 181.0 5.67 Y Y N N Y N
TlBr 221 733.0 116.0 3.10 Y Y N N N N
TlCl 221 703.0 173.0 3.43 Y Y N N Y N

Fluorides

BaF2 225 1641.0 338.0 10.16 Y Y N Y Y N
CaF2 225 1691.0 479.0 11.23 Y Y N Y Y N
MgF2 o-ray 136 1536.0 621.0 11.80 Y Y N Y Y N
MgF2 e-ray 136 1536.0 625.0 11.80 Y Y N N Y N
PbF2 225 1103.0 337.0 5.0 Y Y N N N N
SrF2 225 1750.0 389.0 10.67 Y Y N Y Y N
YLF o-ray 88 1098 566.0 7.0 Y Y N N N N
YLF e-ray 88 1098 600.0 7.0 Y Y N N N N
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Table A4.4 Optical Property Models Available for Various Solids—cont’d

Name SP# Tmelt [K] νLOMAX [cm−1] Eg [eV] CO SM FC MP UT SC

Others

AlAs 216 2013.0 402.0 2.95 Y Y N N N N
AlN o-ray 186 3273.0 895.0 5.88 Y Y N N N N
AlN e-ray 186 3273.0 888.0 5.74 Y Y N N N N
BN (cubic) 216 3239.0 1338.0 8.0 Y N N N N N
BP 216 1398.0 834.0 6.0 Y Y N N N N
CaLa2S4 220 — 314.0 2.70 N N N Y N N
Diamond (C) 227 4713.0 1332.0 6.50 Y Y N Y Y N
GaN o-ray 186 3048.0 746.0 3.70 Y Y Y N N N
GaN e-ray 186 3048.0 744.0 3.50 Y Y Y N N N
GaP 216 1730.0 403.0 2.27 Y Y N N N N
ZnS (cubic) 216 1973.0 347.0 3.54 Y Y N N N N

Glasses

As2S3 glass 0 583.0 358.0 — Y Y N N N N
As2Se3 glass 0 533.0 255.0 — Y Y N N N N
BK7 glass 0 1250.0 1230.0 7.70 Y Y N N Y N
GeO2 glass 0 1388.0 811.0 5.60 Y Y N N N N
Silica (glass) 0 1983.0 1263.0 8.40 Y Y N Y N Y

Semiconductors

CdS o-ray 186 2023.0 306.0 2.58 Y Y N N Y N
CdS e-ray 186 2023.0 300.0 2.58 Y Y N N Y N
CdSe o-ray 186 1513.0 212.30 1.89 Y Y N N Y N
CdSe e-ray 186 1513.0 212.10 1.90 Y Y N N Y N
CdTe 216 1315.0 169.0 1.65 Y Y N N Y N
GaAs 216 1511.0 292.10 1.50 Y Y N N N N
Germanium (Ge) 227 1211.0 300.60 0.664 Y Y Y N N N
InAs 216 1215.0 240.0 0.41 Y Y N N N N
InP 216 1335.0 345.0 1.43 Y Y N N Y N
PbS 225 1386.0 212.0 0.41 Y Y N N N N
PbSe 225 1351.0 115.90 0.27 Y Y Y N N N
PbTe 225 1197.0 116.0 0.31 Y Y Y N N N
Silicon (Si) 227 1687.0 519.50 1.10 Y Y N N N N
SiC (cubic) 216 3103.0 969.0 2.40 Y Y N N N N
VO2 poly (26C) 14 2240.0 710.0 0.75 Y N N N N N
VO2 poly (80C) 136 2240.0 700.0 2.0 Y N Y N N N
ZnSe 216 1373.0 251.0 2.70 Y Y N N N N
ZnTe 216 1512.0 206.0 2.56 Y Y N N Y N

Metals

Aluminum (Al) 225 933.5 — 0.0 N N Y N N N
Cobalt (Co) 194 1768.0 — 0.0 N N Y N N N
Copper (Cu) 225 1357.0 — 0.0 N N Y N N N
Gold (Au) 225 1337.0 — 0.0 N N Y N N N
Iron (Fe) 229 1811.0 — 0.0 N N Y N N N
Lead (Pb) 225 600.0 — 0.0 N N Y N N N
Molybdenum (Mo) 229 2896.0 — 0.0 N N Y N N N
Nickel (Ni) 225 1728.0 — 0.0 N N Y N N N

(continued)



Table A4.5 lists the model parameters for all the materials indicated in Table A4.4.
All of the models represented are discussed in Chapter 8. This database is used by the
computer code OPTIMATR, which is also described in Chapter 8. The classical oscil-
lator model parameters are listed in the same way and with the same dimensions as 
Table 8.5. The most accurate representation of the refractive index (the precision is 
in the fourth or fifth decimal place) is given by the Sellmeier model, limited to room
temperature only. The lower and upper spectral bounds of validity for applying the
Sellmeier model are also listed.

496 OPTICAL PROPAGATION IN LINEAR MEDIA

Table A4.4 Optical Property Models Available for Various Solids—cont’d

Name SP# Tmelt [K] νLOMAX [cm−1] Eg [eV] CO SM FC MP UT SC

Metals

Palladium (Pd) 225 1827.0 — 0.0 N N Y N N N
Platinum (Pt) 225 2041.0 — 0.0 N N Y N N N
Silver (Ag) 225 1235.0 — 0.0 N N Y N N N
Titanium (Ti) 194 1941.0 — 0.0 N N Y N N N
Tungsten (W) 229 3695.0 — 0.0 N N Y N N N
Vanadium (V) 229 2183.0 — 0.0 N N Y N N N

SP#: Space group number.
Tmelt: Melting temperature [K].
νLOMAX : Maximum longitudinal optical vibration frequency [cm−1].
Eg: Bandgap of material at T =295 K [eV].
CO: Classical oscillator model available (Y = yes).
SM: Sellmeier model available (T = 295 K) (Y = yes, N = no).
FC: Free carrier model available (Y = yes).
MP : Multiphonon model available (Y = yes).
UT: Urbach tail model available (Y = yes).
SC: Scatter model available (Y = yes).

Table A4.5 Solid-State Complex Index of Refraction Model Parameter

Insulators

Oxides

Material [ADP o-ray] Space group #: 122

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 290.10 .0 43.2 .000E+00 .000 .000 .000
2 105861.40 .0 1.30 −.983E–04 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 12

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
1 105861.40 1.29899
2 290.06 43.1736

Bandgap [eV]: 7.000000



APPENDIX 4 497

Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [ADP e-ray] Space group #: 122

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 346.70 .0 12.0 .000E+00 .000 .000 .000
2 107875.20 .0 1.16 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 6

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
1 107875.20 1.16217
2 346.72 12.0200

Bandgap [eV]: 7.000000

Material [Al2O3 o-ray] Space group #: 167

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 384.0 −.63E−02 .330 .716E−04 .110E−01 .230E−04 .000
2 439.0 −.72E−02 2.77 .336E−03 .400E−02 .222E−04 .000
3 568.10 −.11E−01 2.99 .203E−03 .105E−01 .760E−06 .109E−06
4 633.0 −.14E−01 .145 .303E−03 .110E−01 .185E−04 .000
5 805.90 −.19E−01 .185E−01 .165E−03 .240 .382E−03 .000
6 83805.30 .0 .650 .340E−04 .100E−03 .000 .000
7 137621.40 .0 1.43 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 4

Multiphonon model parameters:
α1 = .5370 νmax = 914.0000
α2 = .1530 D0 = 14000.0
α3 = .0520 K = 1.4630E+07

Sellmeier parameters: Lower & upper wave number: 1818.000–50000.000
Mode Location Strength
1 137621.40 1.43135
2 83805.30 .650547
3 554.70 5.34140

Bandgap [eV]: 9.000000

Urbach tail model parameters:
Absorption constant [cm−1] : 130000.0
Exponential constant, σ0 : .7500000
Effective Phonon Energy, Ep [eV] : .1000000E−07

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [Al2O3 e-ray] Space group #: 167

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 399.50 −.24E−01 6.78 .137E−02 .210E−01 .392E−04 .170E−07
2 584.0 −.25E−01 1.70 −.890E−04 .360E−01 .575E−04 .440E−07
3 750.0 −.59E−01 .200E−01 .890E−04 .150 .148E−03 .000
4 810.0 .0 .000 .000E+00 .100E−03 .000 .000
5 82201.10 .0 .551 .350E−04 .100E−03 .000 .000
6 135082.60 .0 1.50 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 2

Multiphonon model parameters:
α1 = .5370 νmax = 871.0000
α2 = .1530 D0 = 9800.000
α3 = .0520 K = 8.1640E+06

Sellmeier parameters: Lower & upper wave number: 1818.000–50000.000
Mode Location Strength
1 135082.60 1.50398
2 82201.10 .550691
3 498.20 6.59274

Bandgap [eV]: 9.000000

Urbach tail model parameters:
Absorption constant [cm−1] : 130000.0
Exponential constant, σ0 : .7500000
Effective Phonon Energy, Ep [eV] : .1000000E−05

Material [AlON poly] Space group #: 227

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 346.0 −.71E−02 1.0 .374E−03 .160 .357E−04 .000
2 395.0 −.71E−02 .400 .180E−03 .130 .714E−04 .000
3 495.0 −.71E−02 3.33 .251E−03 .200 .117E−03 .170E−06
4 634.0 −.11E−01 1.32 .293E−03 .150 .653E−04 .690E−07
5 768.0 −.22E−01 .160 .900E−04 .850E−01 .442E−04 .550E−07
6 920.0 −.36E−01 .300E−01 .208E−04 .500E−01 .542E−04 .000
7 97503.90 .0 2.14 .887E−04 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Multiphonon model parameters:
α1 = .5370 νmax = 969.0000
α2 = .1530 D0 = 11500.0
α3 = .0520 K = 7.6670E+06

Sellmeier parameters: Lower & upper wave number: 4350.000–25000.000
Mode Location Strength
1 97503.90 2.13750
2 530.0 4.58200

Bandgap [eV]: 6.500000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Urbach tail model parameters:
Absorption constant [cm−1] : 9770.000
Exponential constant, σ0 : .1660000
Effective Phonon Energy, Ep [eV] : .0000000

Scatter Model Parameters:
Rayleigh Coeff. (ν4 Dependence) : 0.0000E+00
Mie-like Coeff. (ν A Dependence) : 2.8900E−05
Mie-like Exponential Constant (A) : 1.01

Material [BeO o-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 724.0 .0 4.02 .000E+00 .160E−01 .000 .000
2 126454.20 .0 1.92 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 1429.000–22727.000
Mode Location Strength
1 126454.20 1.92274
2 1029.54 1.24209

Bandgap [eV]: 10.60000

Material [BeO e-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 680.0 .0 4.68 .000E+00 .160 .000 .000
2 116414.40 .0 1.92 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 1429.000–22727.000
Mode Location Strength
1 116414.40 1.96939
2 954.23 1.67389

Bandgap [eV]: 10.60000

Material [BeO poly] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 710.0 .0 3.70 .000E+00 .220E−01 .000 .000
2 790.0 .0 .450E−01 .000E+00 .900E−01 .000 .000
3 865.0 .0 .400E−01 .000E+00 .100 .000 .000
4 900.0 .0 .100E−01 .000E+00 .900E−01 .000 .000
5 955.0 .0 .250E−01 .000E+00 .900E−01 .000 .000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

6 1050.0 .0 .100E−02 .000E+00 .200E−01 .000 .000
7 116700.0 .0 1.84 .343E−04 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Multiphonon model parameters:
α1 = .5370 νmax = 1100.000
α2 = .1530 D0 = 15000.0
α3 = .0520 K = 1.0000E+07

Bandgap [eV]: 10.60000

Material [Cr2O3 o-ray] Space group #: 167

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 306.0 .0 .100 .000E+00 .327E−01 .000 .000
2 417.0 .0 .400 .000E+00 .192E−01 .000 .000
3 444.0 .0 .150 .000E+00 .158E−01 .000 .000
4 532.0 .0 5.35 .000E+00 .282E−01 .000 .000
5 613.0 .0 .500 .000E+00 .196E−01 .000 .000

ε∞ = 6.200000 dε∞/dT = .0000000
Allowed IR Modes: 4

Bandgap [eV]: .0000000

Material [Cr2O3 o-ray] Space group #: 167

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 303.0 .0 .100 .000E+00 .330E−01 .000 .000
2 419.0 .0 .500E−01 .000E+00 .120E−01 .000 .000
3 444.0 .0 .120 .000E+00 .135E−01 .000 .000
4 538.0 .0 4.90 .000E+00 .335E−01 .000 .000
5 613.0 .0 .430 .000E+00 .147E−01 .000 .000

ε∞ = 6.100000 dε∞/dT = .0000000
Allowed IR Modes: 2

Bandgap [eV]: .0000000

Material [GeO2 o-ray] Space group #: 136

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 334.0 .0 8.70 .000E+00 .160E−01 .000 .000
2 655.0 .0 .850 .000E+00 .380E−01 .000 .000
3 708.0 .0 .790 .000E+00 .370E−01 .000 .000

ε∞ = 4.600000 dε∞/dT = .0000000
Allowed IR Modes: 3

Bandgap [eV]: 5.600000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [GeO2 e-ray] Space group #: 136

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 552.0 .0 5.80 .000E+00 .310E−01 .000 .000

ε∞ = 4.100000 dε∞/dT =.0000000
Allowed IR Modes: 1

Bandgap [eV]: 5.600000

Material [Y2O3:HfO2] Space group #: 225

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 230.0 .0 2.50 .000E+00 .250 .000 .000
2 320.0 .0 2.50 .000E+00 .200 .000 .000
3 380.0 .0 2.0 .000E+00 .200 .000 .000
4 410.0 .0 3.50 .000E+00 .258 .000 .000
5 470.0 .0 .260 .000E+00 .140 .000 .000
6 530.0 .0 .400E−01 .000E+00 .100 .000 .000
7 580.0 .0 .400E−01 .000E+00 .100 .000 .000
8 64541.10 .0 1.96 .252E−04 .100E−03 .000 .000
9 157728.70 .0 1.35 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Sellmeier parameters: Lower & upper wave number: 1800.000–27400.000
Mode Location Strength
0 368.70 10.4100
1 64541.10 1.95580
2 157728.70 1.34500

Bandgap [eV]: 4.500000

Material [Ice Type Ih*] Space group #: 194

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 63.66 .119 .1198 .195E−3 .568 .125E−2 .000
2 158.52 −.378E−1 .5977 −.992E−3 .342 −.415E−3 .000
3 203.37 .510E−1 .3879 −.128E−2 .196 −.353E−3 .000
4 234.59 −.109 .0000 .144E−2 −.094 .118E−2 .000
5 260.17 −.658E−2 .2053 −.364E−3 .316 −.104E−3 .000
6 670.14 .154 −.6474E−1 .878E−3 .340 −.267E−3 .000
7 794.87 .294E−1 .1072 −.138E−4 .147 −.100E−3 .000
8 867.63 .424E−1 .8906E−1 −.172E−3 .441E−1 .212E−3 .000
9 1237.98 −.402 .6920E−3 .437E−4 .191 −.225E−3 .000

10 1460.54 −.278 .3153E−1 −.436E−4 .417 −.136E−2 .000
11 1584.18 .224 .1565E−1 .287E−4 .260 −.485E−3 .000

* T0 = 0 K in this case. Model is valid from 100 to 273 K in the infrared. In the visible and near-infrared it is valid at T = 266K.
Ice Type Ih is uniaxial, but the distinction between the o-ray and e-ray hasn’t been measured. Thus, only a single listing is
given for both rays.

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Mode νi a1i �εi b1i �i/νi c1i c2i

12 2242.86 −.117 .2006E−2 .174E−4 .556E−1 .819E−4 .000
13 3194.95 −.277 .1520E−2 .649E−4 .312 −.101E−2 .000
14 3134.50 .370 .1683 −.461E−3 .940E−1 −.250E−3 .000
15 3332.88 .479E−1 .2120E−2 .472E−4 .347E−1 −.402E−4 .000
16 3386.35 .221 −.5046E−2 .505E−4 .739E−2 .120E−2 .000
17 4201.36 −.718 .1064E−4 .648E−6 .478 −.184E−4 .000
18 4863.31 .395 .6746E−3 −.143E−5 .182 −.478E−3 .000
19 6092.93 .235 .1564E−3 −.374E−6 .122 −.222E−3 .000
20 6618.72 .144 .1130E−3 −.113E−6 .111 −.246E−3 .000
21 7800.0 — .43EE−5 — .115 —
22 9700.0 — .6E−6 — .103 —
23 11050.0 — .92E−7 — .109 —
24 12700.0 — .27E−7 — .110 —
25 15000.0 — .55E−8 — .113 —
26 18000.0 — .2E−8 — .106 —
27 65012.2 — .0614147 — .00001 —
28 114396.97 — .6391084 — .00001 —

ε∞ = 1.000000 dε∞/dT = .0000000

Sellmeier parameters: Lower & upper wave number: 10000–30000
Mode Location Strength
1 65012.2 .0614147
2 114396.97 .6391084

Bandgap [eV]: 8.1

Material [KDP o-ray] Space group #: 122

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 299.60 .0 33.9 .000E+00 .000 .000 .000
2 108800.0 .0 1.26 −.187E−03 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 12

Sellmeier parameters: Lower & upper wave number: 9433.000–25000.000
Mode Location Strength
1 108800.0 1.25662
2 299.62 33.8991

Bandgap [eV]: 7.000000

Material [KDP e-ray] Space group #: 122

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 351.0 .0 5.76 .000E+00 .000 .000 .000
2 110797.10 .0 1.13 −.285E−03 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 6
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
1 110797.10 1.13109
2 350.98 5.75675

Bandgap [eV]: 7.000000

Material [KNbO3 nx] Space group #: 38

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 187.0 .0 1.96 .000E+00 .160E−01 .000 .000
2 243.0 .0 21.7 .000E+00 .193 .000 .000
3 270.0 .0 2.50 .000E+00 .148E−01 .000 .000
4 534.0 .0 3.65 .000E+00 .356E−01 .000 .000
5 47214.0 .0 3.93 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 4

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
1 47214.0 3.93280

Bandgap [eV]: 3.300000

Material [KNbO3 ny] Space group #: 38

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 56.0 .0 713. .000E+00 1.02 .000 .000
2 195.0 .0 3.84 .000E+00 .154E−01 .000 .000
3 511.0 .0 2.66 .000E+00 .607E−01 .000 .000
4 50787.0 .0 3.79 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 3

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
1 50787.0 3.79360

Bandgap [eV]: 3.300000

Material [KNbO3 nz] Space group #: 38

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 190.0 .0 .900E−01 .000E+00 .158E−01 .000 .000
2 290.0 .0 10.8 .000E+00 .110 .000 .000
3 299.0 .0 .810 .000E+00 .134E−01 .000 .000
4 607.0 .0 2.53 .000E+00 .511E−01 .000 .000
5 53850.0 .0 3.38 .000E+00 .000 .000 .000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 4

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
1 53850.0 3.38360

Bandgap [eV]: 3.300000

Material [KTP(KTiOPO4) nx] Space group #: 33

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 158.70 .0 .450 .000E+00 .252E−01 .000 .000
2 171.0 .0 .210 .000E+00 .117E−01 .000 .000
3 210.30 .0 .300E−01 .000E+00 .950E−02 .000 .000
4 221.0 .0 .250 .000E+00 .181E−01 .000 .000
5 250.0 .0 .300E−01 .000E+00 .360E−01 .000 .000
6 265.0 .0 .250 .000E+00 .377E−01 .000 .000
7 289.0 .0 1.40 .000E+00 .311E−01 .000 .000
8 301.0 .0 .380 .000E+00 .299E−01 .000 .000
9 318.50 .0 .550 .000E+00 .283E−01 .000 .000

10 342.0 .0 .320 .000E+00 .439E−01 .000 .000
11 363.70 .0 .690 .000E+00 .687E−01 .000 .000
12 404.0 .0 .800E−01 .000E+00 .198E−01 .000 .000
13 426.0 .0 .500E−01 .000E+00 .235E−01 .000 .000
14 467.0 .0 .800E−01 .000E+00 .257E−01 .000 .000
15 486.0 .0 .150 .000E+00 .267E−01 .000 .000
16 499.0 .0 .200E−01 .000E+00 .200E−01 .000 .000
17 556.50 .0 .500E−01 .000E+00 .270E−01 .000 .000
18 594.0 .0 .300E−01 .000E+00 .202E−01 .000 .000
19 639.0 .0 .100 .000E+00 .235E−01 .000 .000
20 781.0 .0 .160 .000E+00 .320E−01 .000 .000
21 812.0 .0 .400E−01 .000E+00 .185E−01 .000 .000
22 975.0 .0 .700E−01 .000E+00 .154E−01 .000 .000
23 987.0 .0 .180 .000E+00 .172E−01 .000 .000
24 46569.60 .0 .837 .000E+00 .000 .000 .000

ε∞ = 2.167470 dε∞/dT = .0000000
Allowed IR Modes: 47

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
0 Infinity 1.16747
1 46569.60 .837330
2 654.40 4.00000

Bandgap [eV]: 3.600000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [KTP(KTiOPO4) ny] Space group #: 33

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 181.0 .0 .600E−01 .000E+00 .166E−01 .000 .000
2 202.0 .0 .400E−01 .000E+00 .500E−02 .000 .000
3 221.50 .0 .200 .000E+00 .158E−01 .000 .000
4 231.0 .0 .230 .000E+00 .195E−01 .000 .000
5 243.0 .0 .600E−01 .000E+00 .165E−01 .000 .000
6 268.70 .0 .350 .000E+00 .186E−01 .000 .000
7 291.20 .0 .600 .000E+00 .343E−01 .000 .000
8 331.50 .0 1.13 .000E+00 .241E−01 .000 .000
9 380.0 .0 .700 .000E+00 .395E−01 .000 .000

10 393.70 .0 .400 .000E+00 .356E−01 .000 .000
11 416.20 .0 .220 .000E+00 .601E−01 .000 .000
12 499.0 .0 .100E−01 .000E+00 .401E−01 .000 .000
13 553.70 .0 .800E−01 .000E+00 .217E−01 .000 .000
14 596.20 .0 .300E−01 .000E+00 .151E−01 .000 .000
15 631.20 .0 .130 .000E+00 .317E−01 .000 .000
16 673.70 .0 .400E−02 .000E+00 .450E−02 .000 .000
17 698.70 .0 .280 .000E+00 .286E−01 .000 .000
18 826.20 .0 .100E−01 .000E+00 .242E−01 .000 .000
19 863.70 .0 .200E−02 .000E+00 .289E−01 .000 .000
20 970.0 .0 .150 .000E+00 .820E−02 .000 .000
21 1019.0 .0 .200 .000E+00 .790E−02 .000 .000
22 1035.0 .0 .110 .000E+00 .155E−01 .000 .000
23 1119.0 .0 .100E−01 .000E+00 .890E−02 .000 .000
24 45175.40 .0 .836 .000E+00 .000 .000 .000

ε∞ = 2.192290 dε∞/dT = .0000000
Allowed IR Modes: 47

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
0 Infinity 1.19229
1 45175.40 .835470
2 636.60 4.00000

Bandgap [eV]: 3.600000

Material [KTP(KTiOPO4) nz] Space group #: 33

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 167.0 .0 .700E−01 .000E+00 .240E−01 .000 .000
2 178.70 .0 .110 .000E+00 .336E−01 .000 .000
3 203.70 .0 .200 .000E+00 .172E−01 .000 .000
4 213.0 .0 .400 .000E+00 .940E−02 .000 .000
5 235.0 .0 .500 .000E+00 .298E−01 .000 .000
6 260.0 .0 .450 .000E+00 .104E−01 .000 .000
7 268.0 .0 2.50 .000E+00 .168E−01 .000 .000
8 288.0 .0 .200 .000E+00 .347E−01 .000 .000
9 311.0 .0 1.40 .000E+00 .225E−01 .000 .000

10 326.0 .0 .400 .000E+00 .215E−01 .000 .000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Mode νi a1i �εi b1i �i/νi c1i c2i

11 385.0 .0 .700 .000E+00 .260E−01 .000 .000
12 400.0 .0 .140 .000E+00 .200E−01 .000 .000
13 428.70 .0 .150 .000E+00 .210E−01 .000 .000
14 458.70 .0 .190 .000E+00 .327E−01 .000 .000
15 540.0 .0 .300E−01 .000E+00 .352E−01 .000 .000
16 585.0 .0 .200E−01 .000E+00 .427E−01 .000 .000
17 622.50 .0 .130 .000E+00 .482E−01 .000 .000
18 687.50 .0 .740 .000E+00 .393E−01 .000 .000
19 958.70 .0 .370 .000E+00 .125E−01 .000 .000
20 991.20 .0 .300E−01 .000E+00 .910E−02 .000 .000
21 1023.70 .0 .200E−01 .000E+00 .780E−02 .000 .000
22 1043.70 .0 .900E−01 .000E+00 .960E−02 .000 .000
23 1096.20 .0 .100E−01 .000E+00 .820E−02 .000 .000
24 42694.50 .0 1.07 .000E+00 .000 .000 .000

ε∞ = 2.254110 dε∞/dT = .0000000
Allowed IR Modes: 47

Sellmeier parameters: Lower & upper wave number: 9434.000–25000.000
Mode Location Strength
0 Infinity 1.25411
1 42694.50 1.06543
2 731.44 4.00000

Bandgap [eV]: 3.600000

Material [LiNbO3 o-ray] Space group #: 161

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 152.0 .0 22.0 .000E+00 .921E−01 .000 .000
2 236.0 .0 .800 .000E+00 .508E−01 .000 .000
3 265.0 .0 5.50 .000E+00 .453E−01 .000 .000
4 322.0 .0 2.20 .000E+00 .342E−01 .000 .000
5 363.0 .0 2.30 .000E+00 .909E−01 .000 .000
6 431.0 .0 .180 .000E+00 .278E−01 .000 .000
7 586.0 .0 3.30 .000E+00 .597E−01 .000 .000
8 670.0 .0 .200 .000E+00 .701E−01 .000 .000
9 46082.0 .0 2.51 .000E+00 .000 .000 .000

ε∞ = 2.391980 dε∞/dT = .0000000
Allowed IR Modes: 9

Sellmeier parameters: Lower & upper wave number: 3226.000–25000.000
Mode Location Strength
0 Infinity 1.39198
1 46082.0 2.51118
2 606.0 7.13330

Bandgap [eV]: 4.650000

Urbach tail model parameters:
Absorption constant [cm−1] : .6000000E+08
Exponential constant, σ0 : .7500000
Effective Phonon Energy, Ep [eV] : .6000000E−01
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [LiNbO3 e-ray] Space group #: 161

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 248.0 .0 16.0 .000E+00 .847E−01 .000 .000
2 274.0 .0 1.0 .000E+00 .511E−01 .000 .000
3 307.0 .0 .160 .000E+00 .814E−01 .000 .000
4 628.0 .0 2.55 .000E+00 .541E−01 .000 .000
5 692.0 .0 .130 .000E+00 .708E−01 .000 .000
6 47619.10 .0 2.26 .000E+00 .000 .000 .000

ε∞ = 2.324680 dε∞/dT = .0000000
Allowed IR Modes: 4

Sellmeier parameters: Lower & upper wave number: 3226.000–25000.000
Mode Location Strength
0 Infinity 1.32468
1 47619.10 2.25650
2 385.88 14.5030

Bandgap [eV]: 4.650000

Urbach tail model parameters:
Absorption constant [cm−1] : .6000000E+08
Exponential constant, σ0 : .7500000
Effective Phonon Energy, Ep [eV] : .6000000E−01

Material [MgAl2O4 poly] Space group #: 227

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 307.0 −.10E−01 .400 .168E−03 .800E−01 .357E−04 .000
2 488.0 −.14E−01 2.70 .819E−03 .600E−01 .145E−03 .000
3 505.0 −.14E−01 1.20 −.345E−03 .800E−01 .101E−03 .000
4 585.0 −.10E−01 .900E−01 .355E−04 .100 .357E−04 .000
5 667.0 −.71E−02 .800 .416E−03 .700E−01 .357E−04 .000
6 818.0 −.10E−01 .200E−01 .867E−04 .110 .717E−04 .000
7 99980.0 .0 1.90 .307E−04 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 4
Multiphonon model parameters:
α1 = .5370 νmax = 869.0000
α2 = .1530 D0 = 15500.0
α3 = .0520 K = 1.7440E+07

Sellmeier parameters: Lower & upper wave number: 4310.000–28571.000
Mode Location Strength
1 100080.0 1.89300
2 527.0 4.40200

Bandgap [eV]: 7.750000

Urbach tail model parameters:
Absorption constant [cm−1] : 10900.0
Exponential constant, σ0 : .1640000
Effective Phonon Energy, Ep [eV] : .1000000E−07

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Scatter Model Parameters:
Rayleigh Coeff. (ν4 Dependence) : 0.0000E+00
Mie-like Coeff. (νA Dependence) : 8.7600E−07
Mie-like Exponential Constant (A) : 1.35

Material [MgO] Space group #: 225

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 401.0 −.29E−01 6.60 .732E−03 .190E−01 .587E−04 .000
2 640.0 −.45E−01 .500E−01 .116E−03 .160 .564E−04 .000
3 72716.50 .0 .846 .000E+00 .100E−03 .000 .000
4 140358.0 .0 1.11 .000E+00 .100E−03 .000 .000

ε∞ = 2.960000 dε∞/dT = .3790000E−04
Allowed IR Modes: 1
Multiphonon model parameters:
α1 = .5370 νmax = 725.0000
α2 = .1530 D0 = 13000.0
α3 = .0520 K = 6.3860E+06

Sellmeier parameters: Lower & upper wave number: 1850.000–29410.000
Mode Location Strength
0 140357.80 1.11103
1 72716.50 .846008
2 371.80 7.80853

Bandgap [eV]: 7.800000

Material [SiO2 Quartz o-ray] Space group #: 152

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 394.0 .0 .330 .000E+00 .700E−02 .000 .000
2 450.0 .0 .820 .000E+00 .900E−02 .000 .000
3 697.0 .0 .200E−01 .000E+00 .120E−01 .000 .000
4 797.0 .0 .110 .000E+00 .900E−02 .000 .000
5 1072.0 .0 .670 .000E+00 .710E−02 .000 .000
6 1163.0 .0 .100E−01 .000E+00 .600E−02 .000 .000
7 1227.0 .0 .940E−02 .000E+00 .110 .000 .000
8 128.0 .0 .600E−03 .000E+00 .390E−01 .000 .000
9 84034.0 .0 .176 .000E+00 .000 .000 .000

10 94340.0 .0 .518 .000E+00 .000 .000 .000
11 166666.0 .0 .663 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 8

Sellmeier parameters: Lower & upper wave number: 14000.000–54000.000
Mode Location Strength
1 166666.0 .663044
2 94340.0 .517852
3 84034.0 .175912
4 1131.0 .565380
5 482.0 1.67530

Bandgap [eV]: 8.400000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [SiO2 Quartz e-ray] Space group #: 152

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 364.0 .0 .680 .000E+00 .140E−01 .000 .000
2 495.0 .0 .660 .000E+00 .900E−02 .000 .000
3 509.0 .0 .500E−01 .000E+00 .140E−01 .000 .000
4 539.0 .0 .100E−01 .000E+00 .400E−01 .000 .000
5 778.0 .0 .100 .000E+00 .100E−01 .000 .000
6 1080.0 .0 .670 .000E+00 .690E−02 .000 .000
7 1220.0 .0 .110E−01 .000E+00 .150 .000 .000
8 84034.0 .0 .215 .000E+00 .000 .000 .000
9 94340.0 .0 .503 .000E+00 .000 .000 .000

10 166666.0 .0 .666 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 4

Sellmeier parameters: Lower & upper wave number: 14000.000–54000.000
Mode Location Strength
1 166666.0 .665721
2 94340.0 .503511
3 84034.0 .214792
4 1137.40 .539173
5 507.60 1.80761

Bandgap [eV]: 8.400000

Material [TiO2 o-ray] Space group #: 136

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 189.0 .0 70.8 .000E+00 .135 .000 .000
2 381.50 .0 .995 .000E+00 .500E−01 .000 .000
3 508.0 .0 3.0 .000E+00 .700E−01 .000 .000
4 35285.80 .0 3.04 .000E+00 .000 .000 .000

ε∞ = 2.873000 dε∞/dT = .0000000
Allowed IR Modes: 3

Sellmeier parameters: Lower & upper wave number: 6666.000–23256.000
Mode Location Strength
0 Infinity 1.87300
1 35285.0 3.04000

Bandgap [eV]: 3.030000

Material [TiO2 e-ray] Space group #: 136

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 172.0 .0 148. .000E+00 .340 .000 .000
2 34447.10 .0 3.94 .000E+00 .000 .000 .000

ε∞ = 3.256000 dε∞/dT = .0000000
Allowed IR Modes: 1

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Sellmeier parameters: Lower & upper wave number: 6666.000–23256.000
Mode Location Strength
0 Infinity 2.25600
1 34447.13 3.94100

Bandgap [eV]: 3.040000

Material [VO2 poly (26C)] Space group #: 14

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 227.50 .0 .100 .000E+00 .200E−01 .000 .000
2 285.0 .0 3.30 .000E+00 .600E−01 .000 .000
3 324.0 .0 1.95 .000E+00 .180E−01 .000 .000
4 355.0 .0 7.40 .000E+00 .800E−01 .000 .000
5 392.50 .0 1.0 .000E+00 .300E−01 .000 .000
6 478.0 .0 .200 .000E+00 .800E−01 .000 .000
7 530.0 .0 .650 .000E+00 .450E−01 .000 .000
8 700.0 .0 .250 .000E+00 .550E−01 .000 .000
9 6210.10 .0 1.99 .000E+00 .520 .000 .000

10 7742.90 .0 1.72 .000E+00 .480 .000 .000
11 9597.90 .0 1.27 .000E+00 .530 .000 .000
12 12178.90 .0 1.16 .000E+00 .550 .000 .000
13 23954.50 .0 .490 .000E+00 .150 .000 .000
14 27583.90 .0 .482 .000E+00 .260 .000 .000
15 30648.80 .0 .747 .000E+00 .365 .000 .000
16 34681.60 .0 .866 .000E+00 .390 .000 .000
17 46941.10 .0 .884 .000E+00 .560 .000 .000

ε∞ = 5.600000 dε∞/dT = .0000000
Allowed IR Modes: 8

Bandgap [eV]: .7500000

Material [Y2O3 poly] Space group #: 206

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 120.0 −.10E−01 .200 .000E+00 .350E−01 .000 .000
2 172.0 −.10E−01 .100 .000E+00 .250E−01 .000 .000
3 182.0 −.10E−01 .150 .000E+00 .250E−01 .000 .000
4 241.0 −.72E−02 .200 .710E−04 .250E−01 .146E−04 .000
5 303.0 −.14E−01 2.60 .624E−03 .135E−01 .335E−04 .000
6 335.0 −.11E−01 1.75 −.355E−03 .115E−01 .238E−04 .000
7 371.0 −.11E−01 2.65 .638E−04 .210E−01 .251E−04 .000
8 415.0 −.11E−01 .400E−01 .355E−04 .110E−01 .324E−04 .000
9 461.0 −.14E−01 .500E−01 .355E−04 .150E−01 .180E−04 .000

10 490.0 −.18E−01 .500E−02 .355E−05 .180E−01 .212E−04 .000
11 555.0 −.21E−01 .950E−01 .936E−04 .250E−01 .121E−04 .000
12 72100.0 .0 2.58 .140E−03 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 16
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Multiphonon model parameters:
α1 = .5370 νmax = 620.0000
α2 = .1530 D0 = 12000.0
α3 = .0520 K = 2.2500E+07

Sellmeier parameters: Lower & upper wave number: 825.000–45000.000
Mode Location Strength
1 72100.0 2.57771
2 436.0 3.93485

Bandgap [eV]: 6.080000

Urbach tail model parameters:
Absorption constant [cm−1] : 8222000.
Exponential constant, σ0 : .6880000
Effective Phonon Energy, Ep [eV] : .1870000E−01

Scatter Model Parameters:
Rayleigh Coeff. (nu^4 Dependence) : 0.0000E+00
Mie-like Coeff. (nu^A Dependence) : 2.0800E−08
Mie-like Exponential Constant (A) : 1.82

Material [La2O3:Y2O3 poly] Space group #: 206

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 235.0 −.72E−02 .150 .723E−04 .400E−01 .529E−04 .000
2 294.0 −.52E−02 3.10 .208E−03 .400E−01 .831E−04 .000
3 327.0 −.63E−02 1.60 −.687E−03 .370E−01 .256E−04 .000
4 364.0 −.52E−02 2.80 .521E−03 .380E−01 .440E−04 .000
5 407.0 −.10E−01 .400E−01 .208E−04 .250E−01 .172E−04 .000
6 451.0 −.15E−01 .530E−01 .447E−04 .370E−01 .318E−04 .000
7 477.80 −.12E−01 .500E−02 .409E−05 .400E−01 .529E−04 .000
8 550.0 −.72E−02 .950E−01 .113E−03 .320E−01 .879E−04 .000
9 115.0 −.10E−01 .200 .000E+00 .350E−01 .000 .000

10 167.0 −.10E−01 .100 .000E+00 .250E−01 .000 .000
11 177.0 −.10E−01 .150 .000E+00 .250E−01 .000 .000
12 74711.60 .0 2.56 .165E−03 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Multiphonon model parameters:
α1 = .5370 νmax = 612.0000
α2 = .1530 D0 = 12000.0
α3 = .0520 K = 2.0900E+07

Sellmeier parameters: Lower & upper wave number: 4100.000–25000.000
Mode Location Strength
1 .13 2.56446

Bandgap [eV]: 6.000000

Scatter Model Parameters:
Rayleigh Coeff. (ν4 Dependence) : 0.0000E+00
Mie-like Coeff. (νA Dependence) : 4.4700E−05
Mie-like Exponential Constant (A) : .99

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Material [YAG] Space group #: 230

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 122.30 .0 .875E−01 .000E+00 .860E−02 .000 .000
2 163.40 .0 1.48 .000E+00 .172E−01 .000 .000
3 177.50 .0 .135 .000E+00 .400E−02 .000 .000
4 220.0 .0 .436 .000E+00 .150E−01 .000 .000
5 289.70 .0 .583 .000E+00 .157E−01 .000 .000
6 330.20 .0 .751 .000E+00 .190E−01 .000 .000
7 372.50 .0 .498 .000E+00 .150E−01 .000 .000
8 387.30 .0 .763E−01 .000E+00 .400E−02 .000 .000
9 394.50 .0 .515 .000E+00 .230E−01 .000 .000

10 429.0 .0 1.18 .000E+00 .600E−01 .000 .000
11 450.0 .0 .778 .000E+00 .750E−01 .000 .000
12 478.0 .0 .355E−01 .000E+00 .750E−01 .000 .000
13 516.50 .0 .653E−01 .000E+00 .400E−01 .000 .000
14 569.20 .0 .627E−01 .000E+00 .128E−01 .000 .000
15 692.0 .0 .416 .000E+00 .300E−01 .000 .000
16 728.0 .0 .170 .000E+00 .290E−01 .000 .000
17 785.0 .0 .792E−01 .000E+00 .250E−01 .000 .000
18 91324.0 .0 2.29 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 17

Sellmeier parameters: Lower & upper wave number: 2500.000–25000.000
Mode Location Strength
1 91324.0 2.29300
2 561.0 3.70500

Bandgap [eV]: 7.012000

Urbach tail model parameters:
Absorption constant [cm−1] : 212500.0
Exponential constant, σ0 : .5600000
Effective Phonon Energy, Ep [eV] : .3720000E−01

Material [Y2O3: ZrO2] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 411.0 .0 9.45 .000E+00 .100 .000 .000
2 59974.0 .0 2.12 .000E+00 .100E−03 .000 .000
3 159890.0 .0 1.35 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Multiphonon model parameters:
α1 = .5370 νmax = 668.0000
α2 = .1530 D0 = 9700.000
α3 = .0520 K = 6.0000E+07
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Oxides

Sellmeier parameters: Lower & upper wave number: 2000.000–27700.000
Mode Location Strength
1 59974.0 2.11779
2 159890.0 1.34091
3 411.20 9.45294

Bandgap [eV]: 5.600000

Alkali-halides

Material [AgBr] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 80.0 .0 9.27 .000E+00 .190 .000 .000
2 34264.20 .0 1.24 .000E+00 .000 .000 .000
3 999999.0 .0 2.45 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 14925.000–20408.000
Mode Location Strength
0 Infinity 2.45000
1 34264.20 1.24168

Bandgap [eV]: 2.790000

Urbach tail model parameters:
Absorption constant [cm−1] : 15000.0
Exponential constant, σ0 : 1.000000
Effective Phonon Energy, Ep [eV] : .0000000

Material [AgCl] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 105.0 .0 9.54 .000E+00 .135 .000 .000
2 41005.60 .0 .946 .000E+00 .000 .000 .000
3 96241.40 .0 2.06 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 476.000–18518.000
Mode Location Strength
1 96241.40 2.06251
2 41005.61 .946146
3 141.13 4.30079

Bandgap [eV]: 3.440000

Urbach tail model parameters:
Absorption constant [cm−1] : 1600000.
Exponential constant, σ0 : .8000000
Effective Phonon Energy, Ep [eV] : .0000000

(continued)



514 OPTICAL PROPAGATION IN LINEAR MEDIA

Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Material [CsBr] Space group #: 221

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 75.0 .0 3.57 .000E+00 .600E−01 .000 .000
2 103.0 .0 .113 .000E+00 .160 .000 .000
3 59825.90 .0 .830 .000E+00 .000 .000 .000
4 110418.80 .0 .953 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 256.000–27778.000
Mode Location Strength
1 84.02 2.84717
2 59825.89 .830381
3 110418.80 .953379

Bandgap [eV]: 6.900000

Material [CsI] Space group #: 221

One-phonon model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 62.0 .0 3.27 .000E+00 .700E−01 .000 .000
2 85.0 .0 .600E−01 .000E+00 .150 .000 .000
3 45872.0 .0 .192E−01 .000E+00 .100E−03 .000 .000
4 48544.0 .0 .518 .000E+00 .100E−03 .000 .000
5 54054.0 .0 .150 .000E+00 .100E−03 .000 .000
6 56497.0 .0 .653E−01 .000E+00 .100E−03 .000 .000
7 61350.0 .0 .626E−01 .000E+00 .100E−03 .000 .000
8 68027.0 .0 .261 .000E+00 .100E−03 .000 .000
9 76923.0 .0 .687 .000E+00 .100E−03 .000 .000

ε∞ = 1.275870 dε∞/dT = .0000000
Allowed IR Modes: 1
Multiphonon model parameters:
α1 = .5300 νmax = 90.00000
α2 = .1450 D0 = 1800.000
α3 = .0520 K = 2.0000E+05

Sellmeier parameters: Lower & upper wave number: 200.000–34483.000
Mode Location Strength
1 435602.70 .346173
2 68212.80 1.0 809
3 55248.60 .285518
4 47169.80 .397432
5 62.10 3.36054

Bandgap [eV]: 6.300000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Material [KBr] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 114.0 −.26E−01 2.27 .548E−03 .720E−01 .796E−04 .621E−06
2 146.50 −.34E−01 .400E−01 .606E−03 .160 .677E−03 .000
3 168.50 −.26E−01 .800E−01 .458E−03 .140 .397E−03 .000
4 53476.0 .0 .156 −.123E−03 .100E−03 .000 .000
5 57803.0 .0 .198E−01 .000E+00 .100E−03 .000 .000
6 68493.0 .0 .792 .000E+00 .100E−03 .000 .000

ε∞ = 1.394080 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5300 νmax = 166.0000
α2 = .1450 D0 = 2350.000
α3 = .0520 K = 2.1000E+05

Sellmeier parameters: Lower & upper wave number: 385.000–25000.000
Mode Location Strength
1 126.70 1.95755
2 56385.07 .442023
3 99207.92 .919413

Bandgap [eV]: 6.840000

Urbach tail model parameters:
Absorption constant [cm−1] : .6000000E+10
Exponential constant, σ0 : .7740000
Effective Phonon Energy, Ep [eV] : .1050000E−01

Material [KCl] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 141.50 −.34E−01 2.34 .777E−03 .230E−01 .150E−04 .556E−06
2 189.50 −.29E−01 .900E−01 .371E−03 .170 .193E−03 .000
3 212.0 −.30E−01 .550E−01 .920E−04 .780E−01 .150E−03 .000
4 235.50 −.86E−02 .200E−01 .211E−03 .400E−01 .353E−03 .000
5 61728.0 .0 .189 −.103E−03 .100E−03 .000 .000
6 76336.0 .0 .416 .000E+00 .100E−03 .000 .000
7 100000.0 .0 .305 .000E+00 .100E−03 .000 .000

ε∞ = 1.264860 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5300 νmax = 213.0000
α2 = .1450 D0 = 2840.000
α3 = .0520 K = 6.3000E+05

Sellmeier parameters: Lower & upper wave number: 695.000–45500.000
Mode Location Strength
1 119569.40 .747836
2 64977.30 .426266
3 105.20 4.68671

Bandgap [eV]: 7.834000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Urbach tail model parameters:
Absorption constant [cm−1] : .1260000E+11
Exponential constant, σ0 : .7450000
Effective Phonon Energy, Ep [eV] : .1350000E−01

Material [KF] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 194.0 .0 3.60 .000E+00 .000 .000 .000
2 79365.10 .0 .292 .000E+00 .000 .000 .000

ε∞ = 1.550830 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 455.000–66666.000
Mode Location Strength
0 Infinity .550830
1 79365.10 .291620
2 194.0 3.60000

Bandgap [eV]: 10.80000

Material [KI] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 102.0 .0 2.14 .000E+00 .840E−01 .000 .000
2 144.0 .0 .280 .000E+00 .300 .000 .000
3 45662.0 .0 .161 .000E+00 .100E−03 .000 .000
4 53476.0 .0 .442 .000E+00 .100E−03 .000 .000
5 57143.0 .0 .412 .000E+00 .100E−03 .000 .000
6 77519.0 .0 .165 .000E+00 .100E−03 .000 .000

ε∞ = 1.472850 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5300 νmax = 150.0000
α2 = .1450 D0 = 2000.000
α3 = .0520 K = 2.0000E+05

Sellmeier parameters: Lower & upper wave number: 200.000–40000.000
Mode Location Strength
0 Infinity 1.63797
1 57142.86 .412220
2 53475.94 .441630
3 45662.10 .160760
4 144.01 .335710
5 102.0 1.92474

Bandgap [eV]: 5.890000

Urbach tail model parameters:
Absorption constant [cm−1] : .6000000E+10
Exponential constant, σ0 : .8300000
Effective Phonon Energy, Ep [eV] : .4500000E−02
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Material [KRS-5] Space group #: 221
Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 60.80 .0 12.4 .000E+00 .000 .000 .000
2 22222.0 .0 .451E−01 .000E+00 .000 .000 .000
3 28571.0 .0 1.12 .000E+00 .000 .000 .000
4 40000.0 .0 1.67 .000E+00 .000 .000 .000
5 66666.0 .0 1.83 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 200.000–17000.000
Mode Location Strength
1 60.76 12.3802
2 22222.0 .451337E−01
3 28571.0 1.12104
4 40000.0 1.66756
5 66666.60 1.82940

Bandgap [eV]: 2.600000

Scatter Model Parameters:
Rayleigh Coeff. (nu^4 Dependence) : 0.0000E+00
Mie-like Coeff. (nu^A Dependence) : 5.8300E−13
Mie-like Exponential Constant (A) : 2.20

Material [LiF] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 306.0 .0 6.80 .000E+00 .600E−01 .000 .000
2 503.0 .0 .110 .000E+00 .180 .000 .000
3 135575.0 .0 .930 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5300 νmax = 673.0000
α2 = .1450 D0 = 6500.000
α3 = .0520 K = 7.2000E+06

Sellmeier parameters: Lower & upper wave number: 1667.000–25000.000
Mode Location Strength
1 137155.40 .925563
2 354.0 5.12820

Bandgap [eV]: 12.75000

Urbach tail model parameters:
Absorption constant [cm−1] : 90030.0
Exponential constant, σ0 : .2300000
Effective Phonon Energy, Ep [eV] : .0000000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Material [NaBr] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 134.0 .0 3.80 .000E+00 .000 .000 .000
2 53191.50 .0 .244 .000E+00 .000 .000 .000
3 56818.20 .0 .240E−02 .000E+00 .000 .000 .000
4 68965.50 .0 .188 .000E+00 .000 .000 .000
5 80000.0 .0 1.10 .000E+00 .000 .000 .000

ε∞ = 1.067280 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 294.000–47619.000
Mode Location Strength
0 Infinity .672800E−01
1 80000.0 1.10463
2 68965.50 .188160
3 56818.20 .243000E−02
4 53191.50 .244540
5 133.99 3.79600

Bandgap [eV]: 6.770000

Urbach tail model parameters:
Absorption constant [cm−1] : .6000000E+10
Exponential constant, σ0 : .7650000
Effective Phonon Energy, Ep [eV] : .1070000E−01

Material [NaCl] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 83.10 −.71E−02 .500E−01 .848E−03 .165 .164E−03 .000
2 163.60 −.39E−01 3.20 .665E−03 .520E−01 −2.77E−05 .690E−06
3 232.0 −.35E−01 .380E−01 .137E−03 .780E−01 .206Ε−03 .000
4 253.0 −.38E−01 .500E−01 .143E−03 .880E−01 .205E−03 .000
5 63291.0 .0 .260 −.108E−03 .100E−03 .000 .000
6 78125.0 .0 .387 .000E+00 .100E−03 .000 .000
7 100000.0 .0 .484 .000E+00 .100E−03 .000 .000
8 200000.0 .0 .198 .000E+00 .100E−03 .000 .000

ε∞ = 1.000550 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5300 νmax = 268.0000
α2 = .1450 D0 = 4000.000
α3 = .0520 K = 8.5000E+05

Sellmeier parameters: Lower & upper wave number: 448.000–54054.000
Mode Location Strength
1 200000.0 .187895
2 100000.0 .497649
3 78125.0 .384897
4 63291.14 .259500
5 163.67 3.47400

Bandgap [eV]: 8.025000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Urbach tail model parameters:
Absorption constant [cm−1] : .1200000E+11
Exponential constant, σ0 : .7570000
Effective Phonon Energy, Ep [eV] : .1003000E−01

Material [NaF] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 246.0 .0 3.0 .000E+00 .190E−01 .000 .000
2 375.0 .0 .700E−01 .000E+00 .135 .000 .000
3 85470.10 .0 .328 .000E+00 .000 .000 .000

ε∞ = 1.415720 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 600.000–66666.000
Mode Location Strength
0 Infinity .415720
1 85470.10 .327850
2 246.50 3.18248

Bandgap [eV]: 10.70000

Urbach tail model parameters:
Absorption constant [cm−1] : .1000000E+11
Exponential constant, σ0 : .6900000
Effective Phonon Energy, Ep [eV] : .1650000E−01

Material [NaI] Space group #: 225
Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 116.0 .0 4.27 .000E+00 .000 .000 .000
2 58823.50 .0 1.53 .000E+00 .000 .000 .000

ε∞ = 1.478000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 250.000–40000.000
Mode Location Strength
0 Infinity .478000
1 58823.50 1.52300
2 116.0 4.27000

Bandgap [eV]: 5.666000

Urbach tail model parameters:
Absorption constant [cm−1] : .6000000E+10
Exponential constant, σ0 : .8450000
Effective Phonon Energy, Ep [eV] : .8500000E−02

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Alkali-halides

Material [TlBr] Space group #: 221

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 45.0 .0 26.3 .000E+00 .140 .000 .000
2 32645.60 .0 1.85 .000E+00 .000 .000 .000
3 999999.0 .0 2.31 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 12987.000–23256.000
Mode Location Strength
0 Infinity 2.31028
1 32645.60 1.84780

Bandgap [eV]: 3.100000

Material [TlCl] Space group #: 221

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 60.0 .0 31.0 .000E+00 .150 .000 .000
2 35550.50 .0 1.65 .000E+00 .000 .000 .000
3 999999.0 .0 1.91 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 13514.000–23256.000
Mode Location Strength
0 Infinity 1.91159
1 35550.50 1.65125

Bandgap [eV]: 3.430000

Urbach tail model parameters:
Absorption constant [cm−1] : 40000.0
Exponential constant, σ0 : 1.040000
Effective Phonon Energy, Ep [eV] : .7000000E−02

Fluorides

Material [BaF2] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 188.0 −.12E−01 4.50 −.168E−02 .690E−01 −0.0141 .402E−06
2 236.0 −.44E−01 .960E−01 .395E−03 .210 .126E−03 .000
3 278.0 −.44E−01 .150E−01 .178E−03 .150 .168E−03 .000
4 328.0 −.47E−01 .140E−01 .129E−03 .125 .386E−03 .000
5 90117.0 .0 .507 −.481E−04 .100E−03 .000 .000
6 173042.0 .0 .634 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Fluorides

Multiphonon model parameters:
α1 = .5370 νmax = 338.0000
α2 = .1530 D0 = 4300.000
α3 = .0520 K = 4.3390E+06

Sellmeier parameters: Lower & upper wave number: 961.000–38461.000
Mode Location Strength
1 173043.30 .643356
2 91174.30 .506762
3 215.60 3.82610

Bandgap [eV]: 10.16200

Urbach tail model parameters:
Absorption constant [cm−1] : .4170000E+09
Exponential constant, σ0 : .5800000
Effective Phonon Energy, Ep [eV] : .4000000E−01

Material [CaF2] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 259.40 −.25E−01 4.40 −.562E−03 .900E−02 −0.014 .355E−06
2 333.0 −.69E−01 .850E−01 .701E−03 .144 .267E−03 .000
3 368.0 −.68E−01 .780E−01 .151E−03 .210 .186E−03 .000
4 416.0 −.43E−01 .500E−02 .271E−04 .900E−01 .448E−03 .000
5 469.0 −.71E−01 .180E−01 −.355E−04 .250 .524E−03 .000
6 99610.60 .0 .471 −.374E−04 .100E−03 .000 .000
7 198951.10 .0 .568 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5370 νmax = 479.0000
α2 = .1530 D0 = 7500.000
α3 = .0520 K = 7.3500E+06

Sellmeier parameters: Lower & upper wave number: 1020.000–45454.000
Mode Location Strength
1 198951.10 .567589
2 99610.60 .471091
3 288.60 3.84847

Bandgap [eV]: 11.22800

Urbach tail model parameters:
Absorption constant [cm−1] : .1330000E+11
Exponential constant, σ0 : .6100000
Effective Phonon Energy, Ep [eV] : .4500000E−01

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Fluorides

Material [MgF2 o-ray] Space group #: 136

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 248.0 −.54E−02 2.23 .254E−03 .115E−01 .253E−05 .494E−07
2 408.50 −.20E−01 .220 .716E−04 .165E−01 .484E−04 .000
3 447.0 −.40E−01 1.10 .734E−04 .250E−01 .351E−04 .160E−06
4 535.0 −.18E−01 .500E−01 .716E−04 .300 .207E−03 .240E−06
5 105692.10 .0 .399 .122E−04 .100E−03 .000 .000
6 230499.30 .0 .488 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 3

Multiphonon model parameters:
α1 = .5370 νmax = 621.0000
α2 = .1530 D0 = 5750.000
α3 = .0520 K = 2.4420E+06

Sellmeier parameters: Lower & upper wave number: 1430.000–50000.000
Mode Location Strength
1 230500.0 .487551
2 105692.20 .398750
3 420.30 2.31204

Bandgap [eV]: 11.80000

Urbach tail model parameters:
Absorption constant [cm−1] : .1144000E+09
Exponential constant, σ0 : .2400000
Effective Phonon Energy, Ep [eV] : .0000000

Material [MgF2 e-ray] Space group #: 136

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 399.0 .0 2.70 .000E+00 .480E−01 .000 .000
2 556.0 .0 .100E−01 .000E+00 .800E−01 .000 .000
3 110178.70 .0 .505 .170E−05 .100E−03 .000 .000
4 271424.80 .0 .413 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 1430.000–50000.000
Mode Location Strength
1 271425.0 .413440
2 110178.80 .504975
3 420.70 2.49049

Bandgap [eV]: 11.80000

Urbach tail model parameters:
Absorption constant [cm−1] : .2860000E+08
Exponential constant, σ0 : .2400000
Effective Phonon Energy, Ep [eV] : .0000000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Fluorides

Material [PbF2] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 102.0 .0 24.4 .000E+00 .180 .000 .000
2 35555.0 .0 .167E−01 .000E+00 .000 .000 .000
3 58327.90 .0 1.31 .000E+00 .000 .000 .000
4 999999.0 .0 .670 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 840.000–33333.000
Mode Location Strength
1 999999.0 .669593
2 58327.91 1.30863
3 35554.91 .167064E−01
4 125.51 2007.89

Bandgap [eV]: 5.000000

Material [SrF2] Space group #: 225

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 217.0 .0 4.0 .000E+00 .170E−01 .000 .000
2 316.0 .0 .700E−01 .000E+00 .250 .000 .000
3 92583.80 .0 .371 −.290E−04 .100E−03 .000 .000
4 177651.80 .0 .678 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Multiphonon model parameters:
α1 = .5370 νmax = 389.0000
α2 = .1530 D0 = 4750.000
α3 = .0520 K = 4.5000E+06

Sellmeier parameters: Lower & upper wave number: 870.000–47620.000
Mode Location Strength
1 177651.80 .678059
2 92583.80 .371405
3 250.60 3.34853
Bandgap [eV]: 10.67000

Urbach tail model parameters:
Absorption constant [cm−1] : .1350000E+10
Exponential constant, σ0 : .6000000
Effective Phonon Energy, Ep [eV] : .4400000E−01

Material [YLF o-ray] Space group #: 88

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 143.0 .0 2.60 .000E+00 .133E−01 .000 .000
2 292.0 .0 .750 .000E+00 .750E−02 .000 .000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Fluorides

Mode νi a1i �εi b1i �i/νi c1i c2i

3 326.0 .0 .960 .000E+00 .550E−02 .000 .000
4 424.0 .0 .850 .000E+00 .417E−01 .000 .000
5 103639.50 .0 .708 .000E+00 .000 .000 .000

ε∞ = 1.387570 dε∞/dT = .0000000
Allowed IR Modes: 4

Sellmeier parameters: Lower & upper wave number: 3846.000–44444.000
Mode Location Strength
0 Infinity .387570
1 103639.50 .707570
2 1400.30 .188490

Bandgap [eV]: 7.000000

Material [YLF e-ray] Space group #: 88

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 106843.50 .0 .849 .000E+00 .000 .000 .000

ε∞ = 1.310210 dε∞/dT = .0000000
Allowed IR Modes: 4

Sellmeier parameters: Lower & upper wave number: 3846.000–44444.000
Mode Location Strength
0 Infinity .310210
1 106843.50 .849030
2 860.80 .536070

Bandgap [eV]: 7.000000

Others

Material [AlAs] Space group #: 216

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 361.80 .0 1.90 .000E+00 .221E−01 .000 .000
2 31455.40 .0 3.02 .000E+00 .129 .000 .000
3 36617.30 .0 3.03 .000E+00 .463 .000 .000

ε∞ = 2.114000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 4545.000–17857.000
Mode Location Strength
0 Infinity 1.07920
1 35435.90 6.08400
2 362.10 1.90000

Bandgap [eV]: 2.950000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Others

Material [AlN o-ray] Space group #: 186

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 671.60 .0 8.02 .000E+00 .000 .000 .000
2 58309.0 .0 1.38 .000E+00 .000 .000 .000

ε∞ = 3.139900 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 2000.000–45454.000
Mode Location Strength
0 Infinity 2.13990
1 58309.0 1.37860
2 665.30 3.86100

Bandgap [eV]: 5.880000

Material [AlN e-ray] Space group #: 186

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 659.30 .0 8.51 .000E+00 .000 .000 .000
2 57273.80 .0 1.62 .000E+00 .000 .000 .000

ε∞ = 3.072900 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 2000.000–45454.000
Mode Location Strength
0 Infinity 2.07290
1 57273.80 1.61730
2 665.30 4.13900

Bandgap [eV]: 5.740000

Material [BN (cubic)] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 1065.0 .0 2.60 .000E+00 .380E−01 .000 .000

ε∞ = 4.500000 dε∞/dT = .0000000
Allowed IR Modes: 1

Bandgap [eV]: 8.000000

Material [BP] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 37453.20 .0 6.84 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Others

Sellmeier parameters: Lower & upper wave number: 15873.000–22222.000
Mode Location Strength
1 37453.20 6.84100

Bandgap [eV]: 6.000000

Material [CaLa2S4] Space group #: 220

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Multiphonon model parameters:
α1 = .5370 νmax = 314.0000
α2 = .1530 D0 = 2200.000
α3 = .0520 K = 5.3400E+05

Bandgap [eV]: 2.700000

Material [Diamond (C)] Space group #: 227

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 57142.0 .0 .331 .460E−04 .100E−03 .000 .000
2 94339.0 .0 4.34 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Multiphonon model parameters:
α1 = .8000 νmax = 1332.000
α2 = .1300 D0 = 5300.000
α3 = .1500 K = 1.1430E+05

Sellmeier parameters: Lower & upper wave number: .000–50000.000
Mode Location Strength
1 57142.0 .331000
2 94339.0 4.33600

Bandgap [eV]: 6.500000

Urbach tail model parameters:
Absorption constant [cm−1] : .4230000E+12
Exponential constant, σ0 : .5850000
Effective Phonon Energy, Ep [eV] : .0000000

Material [GaN o-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 560.0 .0 4.10 .000E+00 .300E−01 .000 .000
2 39062.0 .0 1.75 .000E+00 .000 .000 .000

ε∞ = 3.600000 dε∞/dT = .0000000
Allowed IR Modes: 1
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Others

Sellmeier parameters: Lower & upper wave number: 1000.000–25000.000
Mode Location Strength
0 Infinity 2.60000
1 39062.50 1.75000
2 560.0 4.10000

Free carrier model parameters: (Carrier Density = 0.0 E+00)
Plasma Frequency [cm−1] : 4750.000
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 600.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: 3.700000

Material [GaN e-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 533.0 .0 5.08 .000E+00 .320E−01 .000 .000

ε∞ = 5.350000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 1000.000–10000.000
Mode Location Strength
0 Infinity 4.35000
1 533.0 5.08000

Free carrier model parameters:: (Carrier Density = 0.0 E+00)
Plasma Frequency [cm−1] : 4750.000
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 600.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: 3.500000

Material [GaP] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 349.40 .0 .700E−03 .000E+00 .600E−01 .000 .000
2 358.40 .0 .300E−03 .000E+00 .335E−01 .000 .000
3 363.40 .0 2.06 .000E+00 .300E−02 .000 .000
4 29000.0 .0 2.57 .000E+00 .000 .000 .000
5 42700.0 .0 4.13 .000E+00 .000 .000 .000
6 58000.0 .0 1.39 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 800.000–12500.000
Mode Location Strength
1 58140.0 1.39000
2 42735.0 4.1310

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Others

Material [ZnS (cubic)] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 274.0 .0 1.98 .000E+00 .300E−01 .000 .000
2 280.0 .0 .900 .000E+00 .550E−01 .000 .000
3 290.0 .0 .250 .000E+00 .550E−01 .000 .000
4 298.0 .0 .400E−01 .000E+00 .350E−01 .000 .000
5 305.0 .0 .300E−01 .000E+00 .250E−01 .000 .000
6 333.0 .0 .200E−02 .000E+00 .400E−01 .000 .000
7 31826.60 .0 .340 .543E−03 .100E−03 .000 .000
8 56837.0 .0 3.76 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 952.000–18182.000
Mode Location Strength
1 31823.80 .339040
2 56837.0 3.76069
3 295.10 2.73124

Bandgap [eV]: 3.540000

Glasses

Material [As2S3 glass] Space group #: 0

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 163.0 .0 .480 .000E+00 .150 .000 .000
2 309.0 .0 .980 .000E+00 .900E−01 .000 .000
3 340.0 .0 .440 .000E+00 .170 .000 .000
4 22222.20 .0 .119 .000E+00 .000 .000 .000
5 28571.40 .0 .877 .000E+00 .000 .000 .000
6 40000.0 .0 1.92 .000E+00 .000 .000 .000
7 66666.70 .0 1.90 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Sellmeier parameters: Lower & upper wave number: 833.000–17857.000
Mode Location Strength
1 66666.66 1.89837
2 40000.0 1.92230
3 28571.43 .876513
4 22222.22 .118870
5 365.15 .956990

Bandgap [eV]: .0000000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Glasses

Material [As2S3 glass] Space group #: 0

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 101.0 .0 .700 .000E+00 .190 .000 .000
2 218.0 .0 1.17 .000E+00 .110 .000 .000
3 246.0 .0 .380 .000E+00 .230 .000 .000
4 28835.10 .0 6.69 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Sellmeier parameters: Lower & upper wave number: 8700.000–12050.000
Mode Location Strength
1 28835.06 6.69060

Bandgap [eV]: .0000000

Material [BK-7 glass] Space group #: 0

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 218031.20 .0 .549 .000E+00 .000 .000 .000
2 86182.50 .0 .723 .000E+00 .000 .000 .000
3 993.20 .0 .983 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Sellmeier parameters: Lower & upper wave number: 4300.000–27400.000
Mode Location Strength
1 218031.20 .548753
2 86182.45 .722599
3 993.23 .982884

Bandgap [eV]: 7.700000

Urbach tail model parameters:
Absorption constant [cm−1] : .2940000E+13
Exponential constant, σ0 : .2000000
Effective Phonon Energy, Ep [eV] : .0000000

Material [GeO2 germainia glass] Space group #: 0

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 844.50 .0 .854 .000E+00 .000 .000 .000
2 64949.40 .0 .718 .000E+00 .000 .000 .000
3 144985.10 .0 .807 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

(continued)



Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Glasses

Sellmeier parameters: Lower & upper wave number: 2326.000–27778.000
Mode Location Strength
0 844.46 .854168
1 64949.40 .718158
2 144985.10 .806866

Bandgap [eV]: 5.600000

Material [SiO2 Fused silica (glass)] Space group #: 0

Classical Oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 460.0 .0 .780 .000E+00 .500E−01 .000 .000
2 797.0 .0 .840E-01 .000E+00 .700E−01 .000 .000
3 1046.0 .0 .170 .000E+00 .700E−01 .000 .000
4 1080.0 .0 .330 .000E+00 .170E−01 .000 .000
5 1105.0 .0 .050 .000E+00 .700E−01 .000 .000
6 1193.0 .0 .3300E-01 .000E+00 .80E−01 .000 .000
7 86028.0 .0 .408 .350E−04 .100E−04 .000 .000
8 146190.0 .0 .696 .000E+00 .100E−04 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: −1

Multiphonon model parameters:
α1 = .530 νmax = 1263.0
α2 = .160 D0 = 13000.0
α3 = .0520 K = 5.0000E+06

Sellmeier parameters: Lower & upper wave number: 2700.000–47620.000
Mode Location Strength
1 146189.60 .696166
2 86027.90 .407943
3 1010.50 .897479

Bandgap [eV]: 8.400000

Scatter Model Parameters:
Rayleigh Coeff. (ν4 Dependence) : 5.000E-21
Mie-like Coeff. (ν A Dependence) : 0.000E+00
Mie-like Exponential Constant (A) : .0

Material [ZBL glass] Space group #: 0

Sellmeier parameters: Lower & upper wave number: 2000–10000
Mode Location Strength
1 54945.05 0.265
2 483.09 1.22
3 263.85 1.97

0
3 28986.0 2.57000
4 363.40 2.05600

Bandgap [eV]: 2.880000

530 OPTICAL PROPAGATION IN LINEAR MEDIA
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Material [CdS o-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 241.0 .0 3.13 .000E+00 .230E−01 .000 .000
2 20710.30 .0 .181 .000E+00 .000 .000 .000
3 42332.0 .0 3.97 .000E+00 .000 .000 .000
ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 7143.000–19608.000
Mode Location Strength
0 Infinity .000000
1 42331.98 3.96583
2 20710.28 .181139

Bandgap [eV]: 2.584000

Urbach tail model parameters:
Absorption constant [cm−1] : .2700000E+10
Exponential constant, σ0 : 2.170000
Effective Phonon Energy, Ep [eV] : .0000000

Material [CdS e-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 234.0 .0 3.51 .000E+00 .170E−01 .000 .000
2 19640.50 .0 .700E−03 .000E+00 .000 .000 .000
3 21416.10 .0 .267 .000E+00 .000 .000 .000
4 44589.10 .0 3.97 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 7143.000–19608.000
Mode Location Strength
1 44589.14 3.97479
2 21416.13 .266808
3 19640.52 .740800E−03

Bandgap [eV]: 2.584000

Urbach tail model parameters:
Absorption constant [cm−1] : .2700000E+10
Exponential constant, σ0 : 2.170000
Effective Phonon Energy, Ep [eV] : .0000000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Material [CdSe o-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 172.0 .0 3.09 .000E+00 .407E−01 .000 .000
2 20988.80 .0 1.77 .000E+00 .000 .000 .000

ε∞ = 4.224300 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 454.000–10000.000
Mode Location Strength
0 Infinity 3.22430
1 20988.77 1.76800
2 172.01 3.12000

Bandgap [eV]: 1.887000

Urbach tail model parameters:
Absorption constant [cm−1] : .9000000E+09
Exponential constant, σ0 : 2.200000
Effective Phonon Energy, Ep [eV] : .2800000E−01

Material [CdSe e-ray] Space group #: 186

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 166.0 .0 3.86 .000E+00 .482 .000 .000
2 21462.0 .0 1.89 .000E+00 .000 .000 .000

ε∞ = 4.200900 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 454.000–10000.000
Mode Location Strength
0 Infinity 3.20090
1 21461.99 1.88750
2 166.0 3.64610

Bandgap [eV]: 1.902000

Urbach tail model parameters:
Absorption constant [cm−1] : .5000000E−07
Exponential constant, σ0 : 2.200000
Effective Phonon Energy, Ep [eV] : .2800000E-01

Material [CdTe] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 141.0 .0 3.10 .000E+00 .468E-01 .000 .000
2 23149.60 .0 3.46 .000E+00 .000 .000 .000

ε∞ = 3.758900 dε∞/dT = .0000000
Allowed IR Modes: 1
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Sellmeier parameters: Lower & upper wave number: 333.000–5000.000
Mode Location Strength
0 Infinity 2.75890
1 23149.64 3.45918
2 102.97 6.34600

Bandgap [eV]: 1.650000

Urbach tail model parameters:
Absorption constant [cm−1] : .3000000E+13
Exponential constant, σ0 : 4.390000
Effective Phonon Energy, Ep [eV] : .0000000

Material [GaAs] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 268.70 .0 2.0 .000E+00 .890E-02 .000 .000
2 24497.80 .0 7.50 .000E+00 .000 .000 .000

ε∞ = 3.360000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 909.000–7143.000
Mode Location Strength
0 Infinity 2.36000
1 24500.0 7.49690
2 269.0 1.93470

Bandgap [eV]: 1.500000

Material [Germanium (Ge)] Space group #: 227

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 15076.10 9.2 6.75 .929E−02 .000 .000 .000
2 160.70 −.31E−01 .214 .415E−03 .000 .000 .000

ε∞ = 9.269480 dε∞/dT = −.6040000E-02
Allowed IR Modes: 0

Sellmeier parameters: Lower & upper wave number: 833.000–5000.000
Mode Location Strength
0 Infinity 8.26948
1 15076.08 6.74739
2 160.68 .213905

Free carrier model parameters: (Carrier Density = 7.5 E+13 cm−3)
Plasma Frequency [cm−1] : 1489.0
Relaxation Frequency [cm−1] : 49.3

Bandgap [eV]: 0.664

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Material [InAs] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 218.0 .0 2.48 .000E+00 .183E−01 .000 .000
2 3920.0 .0 .710 .000E+00 .000 .000 .000

ε∞ = 11.10000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 320.000–2703.000
Mode Location Strength
0 Infinity 10.1000
1 3920.03 .710000
2 219.0 2.75000

Bandgap [eV]: .4100000

Material [InP] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 303.70 .0 2.79 .000E+00 .115E−01 .000 .000
2 15966.80 .0 2.32 .000E+00 .000 .000 .000

ε∞ = 7.255000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 4762.000–10526.000
Mode Location Strength
0 Infinity 6.25500
1 15966.79 2.31600
2 303.63 2.76500

Bandgap [eV]: 1.430000

Urbach tail model parameters:
Absorption constant [cm−1] : .8000000E+08
Exponential constant, σ0 : 1.350000
Effective Phonon Energy, Ep [eV] : .0000000

Material [PbS] Space group #: 225

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 71.0 .0 133. .000E+00 .211 .000 .000
2 12987.0 .0 15.9 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 1000.000–2860.000
Mode Location Strength
1 12987.0 15.9000
2 71.0 133.200

Bandgap [eV]: .4100000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Material [PbSe] Space group #: 225

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 39.0 .0 180. .000E+00 .615 .000 .000
2 7299.30 .0 21.1 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 1000.000–2000.000
Mode Location Strength
0 Infinity .000000
1 7299.30 21.1000

Free carrier model parameters: (Carrier Density = 1.0 E+17)
Plasma Frequency [cm−1] : 419.0000
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 20.00000
Temperature Derviative [cm−1/K] : −.2200000E−01

Bandgap [eV]: .2700000

Material [PbTe] Space group #: 225

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 32.0 .0 370. .000E+00 .313 .000 .000
2 6397.90 .0 30.0 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 800.000–2500.000
Mode Location Strength
1 6397.90 30.0460

Free carrier model parameters: (Carrier Density=1.0 E+01)
Plasma Frequency [cm−1] : 1320.000
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 30.00000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .3100000

Material [Silicon (Si)] Space group #: 227

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 32701.10 1.3 10.7 .100E−02 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Sellmeier parameters: Lower & upper wave number: 900.000–7353.000
Mode Location Strength
1 33165.68 10.6684
2 8812.50 .304350E−02
3 9.06 1.54133

Free carrier model parameters: (Carrier Density = 1.0E+10 cm−3)
Plasma Frequency [cm−1]: 270.8
Relaxation Frequency [cm−1]: 62.4

Bandgap [eV]: 1.11

Material [β-SiC (cubic)] Space group #: 216
Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 793.0 .0 3.30 .000E+00 .600E−02 .000 .000
2 61162.0 .0 5.57 .000E+00 .000 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 14500.000–21275.000
Mode Location Strength
1 61162.0 5.57050

Bandgap [eV]: 2.400000

Material [VO2 poly (80C)] Space group #: 136

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 23712.50 .0 .830 .000E+00 .290 .000 .000
2 29439.0 .0 1.20 .000E+00 .350 .000 .000
3 42747.0 .0 2.12 .000E+00 .300 .000 .000

ε∞ = 4.170000 dε∞/dT = .0000000
Allowed IR Modes: 1

Free carrier model parameters: (Carrier Density = 1.0E+01]
Plasma Frequency [cm−1]: 33875.0
Temperature Derviative [cm−1/K]: .0000000
Relaxation Frequency [cm−1] : 10000.0
Temperature Derviative [cm−1/K] : .0000000
Bandgap [eV] : 2.000000

Material [ZnSe] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 205.0 −.14E−01 3.0 .392E−03 .220E−01 .330E−04 .181E−06
2 218.0 −.36 .500E−01 .180E−03 .800E−01 .291E−03 .000
3 250.0 −.25E−01 .500E−02 .106E−03 .500E−01 .615E−03 .000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Semiconductors

Mode νi a1i �εi b1i �i/νi c1i c2i

4 26400.40 .0 .628 .908E−03 .100E−03 .000 .000
5 52066.20 .0 4.30 .000E+00 .100E−03 .000 .000

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 556.000–18182.000
Mode Location Strength
1 52066.20 4.29802
2 26400.40 .627766
3 212.80 2.89556

Bandgap [eV]: 2.700000

Material [ZnTe] Space group #: 216

Classical oscillator model parameters:
Mode νi a1i �εi b1i �i/νi c1i c2i

1 177.0 .0 2.32 .000E+00 .170E−01 .000 .000
2 26478.80 .0 2.98 .000E+00 .000 .000 .000

ε∞ = 4.302300 dε∞/dT = .0000000
Allowed IR Modes: 1

Sellmeier parameters: Lower & upper wave number: 333.000–18182.000
Mode Location Strength
0 Infinity 3.30230
1 26478.80 2.98190
2 177.0 2.63580

Bandgap [eV]: 2.556000

Urbach tail model parameters:
Absorption constant [cm−1] : .1000000E+16
Exponential constant, σ0 : 2.800000
Effective Phonon Energy, Ep [eV] : .5000000E−01

Metals

Material [Aluminum (Al)] Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 119000.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 660.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Metals

Material [Cobalt (Co)] Space group #: 194

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 32000.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 295.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Copper (Cu)] 6/1/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 59600.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 73.20000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Gold (Au)] 6/1/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 72800.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 215.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Iron (Fe)] 6/1/92 Space group #: 229

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 33000.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 147.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Metals

Material [Lead (Pb)] 6/1/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 59400.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 1630.000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Molybdenum (Mo)] 6/1/92 Space group #: 229

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 60200.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 412.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Nickel (Ni)] 6/1/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 39400.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 352.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Palladium (Pd)] 6/1/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 44000.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 124.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

(continued)
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Metals

Material [Platinum (Pt)] 6/3/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 41500.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 558.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Silver (Ag)] 6/1/92 Space group #: 225

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 72700.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 145.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Titanium (Ti)] 6/1/92 Space group #: 194

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 20300.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 382.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Material [Tungsten (W)] Space group #: 229

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 51700.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 487.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000
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Table A4.5 Solid-State Complex Index of Refraction Model Parameter—cont’d

Metals

Material [Vanadium (V)] Space group #: 229

ε∞ = 1.000000 dε∞/dT = .0000000
Allowed IR Modes: 0

Free carrier model parameters: (Carrier Density = 0.0E+00)
Plasma Frequency [cm−1] : 41600.0
Temperature Derviative [cm−1/K] : .0000000
Relaxation Frequency [cm−1] : 489.0000
Temperature Derviative [cm−1/K] : .0000000

Bandgap [eV]: .0000000

Adachi model parameters for semiconductors are listed in Tables A4.6–A4.8. The
Adachi models represent the optical properties above the bandgap and are described in
detail in Chapter 8.

Table A4.6 Adachi Model Parameters for GaAs that Are Least-Squares Fit to a Linear
Function in Temperature Covering the Temperature Range from 22 to 754 K Where
T0 = 0 K

Parameter T0 Value Slope [K−1] Units

E0 1.543 −0.000440 eV
E0 + �0 1.874 −0.000431 eV
A 4.259 −0.002425 eV1.5

Ex0 0.0047 eV
A0x 0.00235 0.0 eV
�0x 0.0035 0.000073 eV
E1 3.075 −0.000598 eV
E1 + �1 3.296 −0.000583 eV
B1 4.0 0.0 —
B∗

01 12.380 −0.000414 —
B2 2.0 0.0 —
B∗

02 6.201 −0.000178 —
� 0.073 0.000138 eV
Ex1 0.05 eV
B1x 1.1 0.0 eV
B2x 0.55 0.0 eV
E ′

0 4.511 −0.000412 eV
E2 4.959 −0.000487 eV
C2 1.014 −0.001408 —
γ2 0.080 4.18 × 10−5 —
C0 0.739 0.0093 —
γ0 0.043 0.00228 —
E I D

g 1.73 eV
D 24.2 —
ε1∞ 1.388 −0.00786 —
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Table A4.7 Room Temperature Adachi Model Parameters for a Variety of Binary Semiconductor
Compounds

Parameter GaP GaSb InP InAs InSb Units

E0 2.74 0.72 1.35 0.36 0.18 eV
E0 + �0 2.84 1.46 1.45 0.76 0.99 eV
A 13.76 0.71 6.57 0.61 0.19 eV1.5

E1 3.70 2.05 3.10 2.50 1.80 eV
E1 + �1 3.71 2.50 3.25 2.78 2.30 eV
B1 6.36 6.68 4.93 6.59 6.37 —
B11 9.49 14.29 10.43 13.76 12.26 —
� 0.06 0.09 0.10 0.20 0.16 eV
E2 5.0 4.0 4.7 4.45 3.9 eV
C2 2.08 5.69 1.49 1.78 1.78 —
γ2 0.132 0.290 0.092 0.108 0.318 —
E I D

g 2.26 0.76 2.05 1.07 0.93 eV
D 4.6 7.4 60.4 20.8 19.5 —
ε1∞ 0.1 1.0 1.6 2.8 3.1 —

To find out how to apply the B11 coefficient see Ref. A4.38 in the reference section concerning this table.

Table A4.8 Room Temperature Adachi Model Parameters for Ternary Semiconductor Alloy
Alx Ga1−x As

x

Parameter 0.00 0.099 0.198 0.315 0.419 0.491 0.590 0.700 0.804 Unit

E0 1.42 1.54 1.67 1.83 1.97 2.08 2.24 2.42 2.59 eV
E0 + �0 1.77 1.88 2.00 2.15 2.30 2.40 2.55 2.73 2.90 eV
A 3.45 4.21 4.58 8.80 8.96 12.55 15.40 23.20 30.63 eV1.5

E1 2.90 2.90 3.06 3.13 3.19 3.24 3.32 3.43 3.56 eV
B1 6.37 6.37 6.37 6.05 5.73 5.73 5.41 5.41 5.09 —
B11 13.08 9.99 11.27 11.05 10.89 10.22 10.41 9.55 10.21 —
� 0.10 0.10 0.10 0.11 0.11 0.12 0.12 0.12 0.12 eV
E2 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 eV
C2 2.39 2.31 2.09 2.30 2.45 2.22 2.32 1.76 1.35 —
γ2 0.146 0.129 0.127 0.135 0.138 0.127 0.131 0.103 0.08 —
E I D

g 1.73 1.79 1.85 1.92 1.96 1.97 2.00 2.03 2.07 eV
D 24.2 21.3 19.0 16.1 13.8 10.0 9.2 8.1 7.0 —
ε1∞ 1.6 1.4 1.2 0.6 0.5 0.3 0.0 −0.3 −0.4 —

To find out how to apply the B11 coefficient see Ref. A4.35 in the reference section concerning this table.
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Table A4.9 Room-Temperature Adachi Model Parameters for Quaternary
Semiconductor Alloy In1−xGaxAsyP1−y

Parameter Unit

E0(y) = 1.35 − 0.72y + 0.12y2 eV
E0 + �0(y) = 1.466 − 0.557y + 0.129y2 eV

A(y) = 5.4 − 4.2y eV1.5

E1(y) = 3.163 − 0.590y + 0.33y2 eV
E1 + �1(y) = 3.296 − 0.466y + 0.26y2 eV

B1(y) = 4.91 − 3.85y + 2.78y2 —
B2(y) = 0.09 + 2.65y − 1.26y2 —
�(y) = 0.14 − 0.10y + 0.10y2 eV
E2(y) = 4.72 − 0.31y − 0.01y2 eV
C2(y) = 1.30 + 3.70y − 2.10y2 —

γ2(y) = 0.093 + 0.256y − 0.124y2 —
E I D

g (y) = 2.05 − 0.85y eV
D(y) = 60.4 − 83.9y + 44.2y2 —

ε1∞ = 2.1(y < 1) —

x = 0.1896y/(0.4176 − 0.0125y) for lattice matching to InP.
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Appendix 5

Electromagnetic Field
Quantization

The quantization of the electromagnetic field is essential for a complete understanding
of light–matter interactions. This appendix presents the essential elements of the deriva-
tion, without too much detail, leading to the general result. The important lessons from
this development concern spontaneous emission and mode replication by stimulated
emission. More complete derivations can be found in the references (Goldin, Ref. A5.1;
Marcuse, Ref. A5.2).

Free-space electromagnetic field propagation can also be described by the magnetic
vector potential, a(t), as defined by

b(r,t) = ∇× a(r,t). (A5.1)

where b is the magnetic flux density. This definition ensures that the b-field is sole-
noidal by the vector identity

∇ · ∇ × a(r,t) = ∇ · b(r,t) = 0 . (A5.2)

The electric field is related to the magnetic vector potential through Faraday’s law.
Thus, in point form

∇ × e(t) = −∂b(t)

∂t
= −∇ × ∂a(t)

∂t
. (A5.3)

e(r, t) is uniquely determined within an arbitrary scalar potential function, φ(r, t), by the
above equation. Therefore, the electric field can be written as



e(t) = −∂a(t)

∂t
− ∇φ(t). (A5.4)

In free space, the e-field is also solenoidal, and this leads to the following condition;

∇ · e(t) = 0 = − ∂

∂t
∇ · a(t) − ∇2φ(t). (A5.5)

The Coulomb gauge condition is applied, which requires

∇ · a(r,t) = 0. (A5.6)

Therefore, the scalar function satisfies Laplace’s equation,

∇2φ(r,t) = 0, (A5.7)

with the solution φ(r) = 0 in a source-free region, since φ must go to zero at r =± ∞.
Thus the b- and e-fields can be described in terms of a single vector potential, as given by

b(r,t) = ∇ × a(r,t) (A5.8)

and

e(r,t) = −∂a(r,t)
∂t

. (A5.9)

Consider a TEM electromagnetic field in a one-dimensional cavity of length L. Assume
the e-field is polarized in the x-direction and propagating in the z-direction, and is given by

ex(t) = ex0 sin k ′z sin ωt. (A5.10)

The corresponding magnetic vector potential has the same polarization as the e-field
and the mathematical form can be compared with Eq. 1.15a for no y dependence and 
l = 0; the result is

ax(t) =−ax0 sin k ′z cos ωt, (A5.11)

where ωax0 = ex0. Based on Eq. 5.71, the magnetic flux density is

by(t) =−k ′ax0 cos k ′z cos ωt. (A5.12)

The total energy stored within the cavity volume, Ex, for this x-polarized field is

Ex = 1

2

∫
V

d3r

(
ε0e2

x + 1

µ0
b2

y

)
. (A5.13)
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Letting the cavity have a cross-sectional area of A and substituting the results of Eqs. A5.10
and A5.12, we obtain

Ex = A

2
ε0

⎛
⎝e2

x0 sin2ωt

L∫
0

dz sin2k ′z + ω2a2
x0 cos2ωt

L∫
0

dz cos2k ′z

⎞
⎠, (A5.14)

since ω = k ′/
√

ε0µ0. The boundary conditions within the cavity require that the e-field
go to zero at z = 0 and z = L , thus (recall Eq. 1.15e)

k ′ = k ′
m = πm

L
, (A5.15)

where m = 0,±1,±2,±3, . . . . The following result for single mth mode energy is
obtained after integration of Eq. A5.14:

Emx =
(

V ε0

4

)
(e2

x0m sin2 ωmt + ω2
ma2

x0m cos2 ωmt), (A5.16)

where V = AL is the cavity volume. The total energy is obtained by summing over all
modes and polarizations. This result is similar in form to Eq. 3.77 for the total energy
in a vibrating system. This suggests that the electromagnetic field can be quantized in
a similar fashion. To see this, define the following quantities:

Pmx(t) = −ex0m

(
V εo

2

)1/2

sin ωmt (A5.17)

and

Qmx(t) = ax0m

(
V εo

2

)1/2

cos ωmt . (A5.18)

Then, Eq. A5.16 becomes

Emx = 1

2

[
P2

mx(t) + ω2
m Q2

mx(t)
]
. (A5.19)

Note that Pmx(t) = dQmx(t)/dt, as is the case for vibrating systems. This form of the
total energy of the electromagnetic field is analogous to the result for the simple 
harmonic oscillator Hamiltonian. Thus, this TEM wave propagating in a bounded
region described in terms of harmonic oscillations, can be quantized by enforcing the
commutation relation

[Pmx , Qlx ] = j h̄δml . (A5.20)

The conjugate pair field operators, the magnetic vector potential and the electric field,
are now expressible in terms of the raising and lowering operators âmσ (t) and â†

mσ (t),
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respectively, where σ is an index for the two possible polarization directions. Based on
Eqs. 3.79 and 3.80, Pmσ and Qmσ can be expressed as

Pmσ (t) = j

(
h̄ωm

2

)1/2 [
âmσ (t) − â†

mσ (t)
]

(A5.21)

and

Qmσ (t) =
(

h̄

2ωm

)1/2 [
âmσ (t) + â†

mσ (t)
]
. (A5.22)

Thus, equating Eqs. A5.17–A5.21 and Eqs. A5.18–A5.22, the conjugate pair electro-
magnetic field operators become

êmσ (t) = êσ0m

2 j

(
e jωm t − e− jωm t

) =
(

h̄ωm

V ε0

)1/2 1

j

[
âmσ (t) − â†

mσ (t)
]

(A5.23)

and

âm(t) = âσ0m

2

(
e jωm t + e− jωm t

) =
(

h̄

ωm V ε0

)1/2 [
âmσ (t) + â†

mσ (t)
]
. (A5.24)

is a unit vector and indicates the direction of polarization. This suggests that the time
dependences of the lowering and raising operators are

âmσ (t) = âmσ e jωm t and â†
mσ (t) = â†

mσ e− jωm t . (A5.25)

A raising operator, â†
mσ , represents the emission of a photon at frequency ωm and shall

be called a creation operator. A lowering operator, âmσ , represents the absorption of a
photon at frequency ωm and shall be called an annihilation operator.

Recall the above results are for a single-dimension cavity mode. In general, a three-
dimensional cavity must be considered. A Comparison of Eqs. A5.10, A5.11, A5.23,
and A5.24 with Eqs. 1.15a–e suggests the following spatially dependent field operators
summed over all the cavity modes and polarizations, as given by

ê(r, t) =
∞∑

m =−∞

2∑
σ=1

êmσ (r,t)

=
∑
m, σ

1

j

[
h̄ωm

2V ε0

]1/2 (
âmσ e j (ωm t−k′

m·r) − â†
mσ e− j (ωm t−k′

m·r)
) (A5.26)

and

â(r, t) =
∞∑

m=−∞

2∑
σ=1

âmσ (r,t)

=
∑
m,σ

[
h̄

2ωm V ε0

]1/2 (
âmσ e j (ωm t−k′

m·r) + â†
mσ e− j (ωm t−k′

m·r)
) (A5.27)
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â and ê are the conjugate pair operators for the electromagnetic field just as r̂ and p̂ are
for a particle. The sum on m is for all positive and negative values, thus forward- and
backward-propagating solutions are included. The first term in the field operator repre-
sents photon annihilation (or photon absorption by a molecule) and the second term
represents photon creation (or photon creation by a molecule). The general results for
the quantized electromagnetic field can be obtained in a more rigorous fashion. This is
also a more tedious approach, which does not offer any needed additional insight. For
more information, the interested reader is referred to the bibliography at the end of this
chapter concerning textbooks on quantum optics.
The net eigenstate for the electromagnetic field is the product of all eigenstates for each
mode. It is

|N0σ, N1σ, N2σ, N3σ, . . . , Nmσ, . . .〉 (A5.28)

where Nmσ is the photon occupation number and represents the number of photons in
the mode m with polarization σ. When all the photon occupation numbers are zero, the
eigenstate is called the vacuum state. In terms of this formalism for the quantized elec-
tromagnetic field, the net energy stored in a TEM electromagnetic wave is given by the
following elegantly simple equation:

E =
∑
m,σ

h̄ωm

(
Nmσ + 1

2

)
. (A5.29)

Based on the similar development of the molecular harmonic oscillator, this is not a sur-
prising result. In the vacuum state a zero point energy exists. This is caused by random
matter–antimatter reactions, which create photons and random photon reactions, which
create matter and antimatter. Thus, the net number of photons is always fluctuating and
the probable photon energy can never be zero, even in vacuum. This fluctuation level is
small, but does have some important consequences. For example, these vacuum fluctu-
ations are regarded as the cause of spontaneous emission, the most common source of
photon radiation. The photon occupation number in Eq. A5.29 represents stimulated
processes. Thus, a stimulated emission photon is a exact copy of the incident photon in
polarization, frequency, and direction. This explains the high coherence observed in
laser sources.
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Absolute humidity, 267
Absorber amount, 305
Absorption coefficient, 30, 192, 199
Absorption coefficient above the 

bandgap, 215
Absorption cross-section, 57
Acoustic branch, 116
Acoustic modes, 113
Adachi model, 373
Advection fog, 452
Aerosols, 286, 443
Airy formulas, 48, 248
Al2O3. See Sapphire
Aluminum, 404
Amorphous materials, 354
Amorphous solid, 394
Ampere’s law, 8, 26
Amplitude function, 56
Angular momentum, 90
Anharmonic oscillator, 104
Annihilation operator, 550
Anomalous dispersion, 138
Antistokes vibrational band, 89
Associated Laguerre polynomial, 104
Associated Legendre function, 92, 479

Association band, 129, 429
Astronomical refraction, 311
Asymmetric stretch mode, 110
Asymmetric-top molecules, 95
Asymmetry parameter, 449
Asymptotic solution, 51
Athermal, 413
Atmospheric index of refraction models, 311
Atmospheric particles, 268
Autocorrelation function, 198

Band averaged, 43
Band-averaged transmittance, 43
Bandgap, 122
Band models, 305
Bending vibrational mode, 110
Biaxial crystals, 117, 157
Bidirectional emittance, 49
Bidirectional reflectance distribution function

(BRDF), 45
Bidirectional scatterance distribution function

(BSDF), 45
Birefringence, 162
Birnbaum–Cohen autocorrelation 

function, 203
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BK7 glass, 394
Blackbody irradiance, 181
Blackbody radiance, 180, 181
Boltzons, 177, 182
Bose–Einstein distribution function, 180
Bosons, 180
Bra vector, 82
BRDF measurements, 255
Brillouin scatter, 55
Brillouin zone, 115

Carbon dioxide continuum-type 
absorption, 292

Carbon monoxide, 296
Carrier damping parameter, 399
Carrier mobility, 151
Cauchy model, 140
Causality, 30
Caustic, 12
Centrifugal distortion, 105
Circle cell, 242
Circular polarization, 62
Cirrus clouds, 452
Classical oscillator model, 6, 137
Clausius–Mossotti relation, 142
Coherency matrix, 68
Collision broadening, 201
Collisional relaxation processes, 191
Collision-broadened half-width, 203
Collision-broadened line shape, 203
Collision-induced absorption, 89, 297
Combination bands, 109
Commutation bracket, 81
Commutator bracket, 100
Commute, 81
Complex electric susceptibility, 30
Complex index of refraction, 29, 139
Complex permittivity, 147
Complex radius of curvature, 17
Complex relative permittivity for 

a low-pressure ideal gas, 137
Complex susceptibility, 216
Conduction band, 125
Conductivity, 26, 151
Conductivity relaxation time, 152
Conjugate pair electromagnetic field 

operator, 550
Conservation of power flow, 40
Continuity equation, 37
Continuum absorption, 273
Copenhagen interpretation, 79
Coulomb gauge, 215

Creation operator, 550
Cubic crystals, 117, 157
Cumulus clouds, 452

Damping constant, 134
Dawson integral, 480
De Broglie wavelength, 78
Debye relaxation, 150, 152, 427
Debye relaxation time, 127, 152, 428
Degenerate states, 93
Degree of circular polarization, 65
Degree of linear polarization, 65
Degree of polarization, 61, 64, 159
Degrees of freedom, 88
Density matrix formalism, 187
Density matrix operator, 188
Density-of-states function, 119
Derivative reflectance spectroscopy, 239
Detailed balance, 32
DIAL lidar, 332
Diamond, 385
Diatomic molecule, 90
Differential absorption lidar, 332
Differential transmittance, 235
Diffraction gratings, 227
Diffraction theory, 12
Diffuse components, 46
Dimensionless broadening coefficient, 273
Dimensionless self-broadening 

coefficient, 204
Dipole moment, 72
Dirac delta function, 33, 196
Dirac notation, 82
Directional emissivity, 50
Directional emittance, 40
Dispersion, 71, 368
Dispersion profile, 86, 388
Dispersion relation, 115
Dispersive spectrometers, 227
Dissociation energy, 377
Doppler half-width at half-intensity, 209
Doppler spectral density function, 209
Drude’s theory, 151
Dry atmospheric refractivity, 311
Duct, 327
Dyadic complex permittivity, 157

E0 transition, 370
E1-type transitions, 371
E2-type transitions, 372
Earth coordinate system, 315
Eikonal equation, 53
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Einstein A-coefficient, 194, 202
Einstein B-coefficient, 194
Einstein relation, 194
Elastic scattering, 55
Electric flux density, 8
Electromagnetic field quantization, 195
Electronic absorption bands, 111
Electronic density-of-states, 126
Electronic field intensity, 8
Electrons, 398
Ellipsometers, 246
Emissometry, 251
Energy, 4
Equation of motion, 189
Excitons, 127, 217, 372
Expectation value, 81
Extinction coefficient, 29, 41, 60, 235, 446
Extinction coefficient error, 237
Extinction coefficient for Mie scatter, 168
Extinction cross-section, 42, 57
Extraordinary ray, 157
Extraterrestrial solar irradiance model, 471
Extrinsic properties, 354
Extrinsic scatter, 405

Fabry–Perot interferometers, 49
Far field, 15
Faraday’s law, 8, 26
Far-wing limit, 208
FASCODE, 337
Fermi–Dirac distribution, 180
Fermions, 180
Fermi’s golden rule, 186
Field absorption coefficient, 28
Field phase coefficient, 28
Finite-difference-time-domain (FD-TD), 71
Fog, 445, 452
Forward-to-back-scatter ratio, 449
Fourier transform, 8
Fourier transform spectrometers, 228
Fraunhofer, 15
Free-carrier, 150
Free-carrier absorption, 398, 402
Free particle, 83
Free-space permeability, 8
Free spectral range, 248
Frequency, 4
Frequency-domain radiance, 29
Frequency-domain wave equation, 27
Fresnel, 15
Fresnel formulas, 158
Fresnel power coefficients, 159

Fresnel power reflection coefficient, 48
Fundamental transitions, 109
Fused silica, 394

GaAs, 373
Gain coefficient, 33
Gaussian beam divergence, 17
Gaussian beam radius, 17
Gaussian beam waist, 17
Gaussian beams, 16, 70
Gauss’s law, 8, 26
Generalized permittivity, 28
Generalized total power law, 47
Geodesic refraction, 311
Geometrical cross-section, 446
Geometrical optics, 51
Geometrical theory of diffraction, 53
Glasses, 392
Grating equation, 227
Graybody, 419
Green flash, 323
Green spot, 323
Group velocity, 84, 117

Half-width, 85
Hardness, 358
Harmonic oscillator, 99
Harmonic potential, 98
Heat capacity, 355
Heaviside step function, 26, 31
Heisenberg picture, 183
Heisenberg uncertainty principle, 79
Henyey–Greenstein phase function, 449
Hermite polynomials, 99, 480
Hermite’s differential equation, 98
Hermitian operator, 82
High-frequency permittivity, 144
Hilbert transform, 34, 483
Hilbert transform for the complex index of

refraction, 35
Hindered translation band, 429
HITRAN database, 300
Holes, 398
Homogeneous broadening, 201
Horizontal polarization, 158
Hot bands, 109
Huygens’ principle, 12
Hydrometers, 268
Hygroscopic, 445

Ice crystals, 451
Imaginary part of the scattering index, 60
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Index ellipsoid, 162
Index of absorption, 29
Index of refraction, 29
Indirect band transition, 401
Inelastic scattering, 55
Infrared-active, 88
Inhomogeneous broadened lines, 201
Inner product, 83
Insulators, 354
Integrating sphere, 256
Interferogram, 230
Intrinsic carrier concentration, 398
Intrinsic properties, 354
Intrinsic scatter, 404
Ionosphere, 264
Irradiance, 46
Isothermal limit, 270
Isotope, 107

Ket vector, 82
Kinetic energy, 80
Kirchhoff’s radiation law, 39
Kramers–Kronig relation, 34

Ladars, 332
Lambertian, 47
Lambertian hemispherical reflectance, 405
Laser beams, 16
Laser calorimetry, 245
Laser interferometry, 245
Librational band, 129, 429
Lidar, 332
Lidar equation, 332
Line shape function, 85
Line shape, 199
Line shape profile, 193
Line strength, 85, 192, 199
Linear isotropic matter, 25
Linear molecules, 95
Linear polarization, 61
Linear polyatomic molecules, 178
Line-mixing effects, 205
Littrow configuration, 227
Local line absorption, 273
Longitudinal acoustic, 119
Longitudinal optical, 119
Longitudinal oscillation frequency, 147
Longtidudinal mode, 146
Lorentz line shape, 138
Lorentz–Lorenz, 142
Lowering operator, 102, 549

LOWTRAN, 307, 337
Luneberg–Kline series, 51
Lyddane–Sachs–Teller relationship, 147, 364

Magnetic field intensity, 8
Magnetic flux density, 8
Magnetic vector potential, 547
Matrix element, 200
Matrix mechanics, 82
Maximum fundamental lattice-vibration 

frequency, 381
Maxwell–Boltzmann distribution 

function, 182
Maxwell’s equations, 26, 27
Maxwell’s equations in unbounded vacuum, 8
Mesosphere, 264
Metals, 354, 402
Methane, 294
Michelson interferometer, 228
Microscopic reversibility, 198
Minimum deviation technique, 247
Modal propagation time, 417
Modal radius, 444
Modified gamma distribution function, 443
Modified refractive index, 315
Modified refractivity, 318
MODTRAN, 309, 337, 454
Moh scale, 358
Molecular oxygen, 295
Molecular Rayleigh scatter, 328
Moment of inertia, 90
Monochromatic Poynting vector, 11
Monochromatic, 9
Morse potential, 104
Mueller matrices for the linear polarizers, 70
Mueller matrix, 66
Multiphonon dispersion profile, 388
Multiphonon model, 378
Multiphonon refraction index, 389
Multiphonon sum band model, 387
Multipole expansion, 72

Natural broadening, 201
Natural line shape, 201
n-doped semiconductor, 402
Negative uniaxial, 157
Nitrogen continuum, 297
Nitrous oxide, 295
Nonpolar, 73
Nonpolar molecules, 87
Normal modes of vibration, 108
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Normal temperature and pressure (NTP), 136
n-phonon density-of-states, 380
Number density, 135
Number operator, 101
Numerical aperture, 415

Oblate symmetric top, 179
O-branch, 89
Optic branch, 116
Optical beams, 70
Optical electromagnetic field, 3
Optical horizon, 320
Optical horizon angle, 320
Optical modes, 113
Optical theorem, 61
OPTIMARTM, 409
Ordinary ray, 157
Orientational polarizability, 127, 152
Oscillator strength, 136
Overtone bands, 109
Oxygen broadening of spectral lines, 275
Oxygen collision-induced absorption, 299
Ozone, 294

Paraxial ray approximation, 14
Partially polarized light, 159
Particle volume density, 42
Particles in the ocean, 444
Partition function, 176
Path emission, 459
P-branch, 89
P-branch lines, 107
p-doped semiconductor, 402
Permeability, 26
Permittivity, 26
Perturbation theory, 183
Phase function, 46
Phase function for Rayleigh scatter, 164
Phonons, 121
Photoacoustic cells, 242
Photon occupation number, 193
Photons, 78
Physical optics, 6
Plane waves, 7
Plasma frequency, 154, 398
Point spread function, 456
Polar, 73
Polarizability, 73
Polarization, 9, 61
Polarization vector, 30, 136
Polar molecules, 87

Polyatomic molecule, 90, 108
Polychromatic field, 11
Polycrystalline materials, 354
Polydisperse medium, 443
Positive uniaxial, 157
Potential energy, 80
Power reflection coefficient, 49
Power spectral density function, 198
Power transmission coefficient, 49
Poynting vector, 11
Poynting’s theorem, 36
p-polarization, 158
Pressure shift term, 205
Primitive unit cell, 113
Principle of detailed balance, 198
Principle of reversibility, 159
Probability density, 80
Probability density function, 81
Propagation constant, 28
Pulses of light, 70
Pure seawater, 435
Pure water, 427
Pyrometry, 417

Q-branch, 89
Quadrupole moments, 73
Quantum electrodynamics, 5, 195
Quantum electronics, 5, 195
Quantum mechanics, 77
Quantum numbers, 82
Quantum optics, 5, 195
Quantum oscillator model, 5, 199
Quasi-random model, 305

Radiance, 11
Radiation damping, 201
Radiation fog, 452
Radiation noise, 465
Radiation transfer equation, 42
Radiometry, 6
Radius of curvature, 18
Rainbows, 450
Raising operator, 103, 549
Raman scatter, 55, 89
Random–Elasser model, 305
Random model, 305
Ray path, 54
Rayleigh–Gans model, 171
Rayleigh limit, 170
Rayleigh range, 15
Rayleigh scatter, 89
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Rayleigh scatter coefficient in gases, 165
R-branch, 89
R-branch lines, 107
Reciprocity, 45
Rectilinear propagation, 12
Reduced mass, 91
Reflectance measurements, 226
Refractive propagation time, 416
Refractive virial coefficients, 142
Refractometers, 247
Regular model, 305
Relative casual time-domain permeability, 26
Relative casual time-domain permittivity, 26
Relative humidity, 266
Resolution of an FTS, 231
Rigid-rotor, 90
Rotating wave approximation, 190
Rotational energy level, 93
Rotational molecular constant, 93
Rotational partition function, 178

Salinity of seawater, 435
Sapphire, 381
S-branch, 89
Scalar wave equation, 28
Scatter cross-section, 57
Scattering coefficient, 41, 60
Scattering index, 60
Scatterometers, 252
Schrodinger wave equation, 81
Schumann–Runge bands, 112
Selection rules, 89
Self-adjoint operator, 82
Sellmeier formula, 212
Sellmeier’s equation, 140, 144
Semiclassical oscillator model, 189
Semiclassical radiation theory, 6
Semiconductors, 354
Single crystal materials, 354
Single scattering, 56
Single-sided Hilbert transform, 34
Sky radiance, 465, 473
Snell’s law of refraction, 48, 158
Solar irradiance, 471
Spatial Fourier transform, 15
Special flux, 39
Specific heat, 356
Spectral hemispherical emittance, 462
Spectral lines, 84
Spectral radiance, 37
Spectral radiant intensity, 38

Spectral radiant intensity vector, 38
Spectroscopy, 5
Specular reflection, 46
Specular reflectometer, 238
Specular transmittance, 48
Spherical-top molecules, 95
s-polarization, 158
Spontaneous emission, 79, 194
Standard atmosphere, 318
Standard deviation, 80
Standard temperature and pressure (STP), 136
Static dielectric constant, 144, 363
Static index of refraction, 35
Static susceptibility, 35
Stationary-state Schrodinger wave, 81
Stefan–Boltzmann constant, 181
Stimulated emission, 195
Stokes vector, 63
Stokes vibrational band, 89
Stratosphere, 264
Stratus clouds, 452
Strong-line absorption, 305
Subrefractive conditions, 325
Sum rule, 86
Superrefractive conditions, 325
Surface radiance, 463
Symmetric stretch mode, 110
Symmetric-top molecules, 95

Term value, 93
Terrestrial refraction, 311, 318
Theoretical Mueller matrix, 69
Thermal conductivity, 357
Thermal equilibrium, 37
Thermal expansion coefficient, 357
Thermal time, 203
Time domain, 26
Time-averaged Poynting vector, 28
Time-domain constitutive relations, 26
Time-domain electrical susceptibility, 150
Time-domain susceptibility for 

Debye relaxation, 153
Time-domain susceptibility for E0 region, 217
Time-domain susceptibility for 

free-carrier, 154
Time-domain wave equation (TDWE), 71
Total hemispherical emittance, 462
Total integrated absorptance, 40
Total integrated extinctance, 40, 61
Total integrated reflectance (TIR), 40, 46
Total integrated scatter (TIS), 46
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Total integrated scatterance, 40, 61
Total integrated transmittance, 40
Total power law, 40, 60
Trace operator, 188
Transition probability, 185
Transition rate, 186
Translation band, 129
Translational modes, 113
Transmissometer, 231
Transmittance in an unbounded 

medium, 30
Transmittance measurements, 226
Transverse acoustic, 119
Transverse optic, 119
Trapping, 326
Troposphere, 264
Two-phonon acoustic distribution 

function, 386

Uniaxial, 117, 157
Unit conversions, 478
Unpolarized light, 159
Urbach tail model, 218, 392

Vacuum state, 551
Valance band, 125
Van Vleck–Weisskopf line shape, 139
Vertical polarization, 158

Vibrational bands of water, 429
Vibrational partition function, 178
Vibrational term value, 105
Vibrational transitions, 99
Visibility range, 448
Voigt line shape, 210
Volume back-scatter coefficient, 332
Volume scatter coefficient, 448

Water, 127
Water solubility, 360
Water vapor absorption, 274
Water vapor continuum absorption, 276
Water vapor continuum absorption 

coefficient, 280, 385
Water vapor partial pressure, 266
Wavefronts, 53
Wave function, 80
Waveguide dispersion, 417
Wavelengths, 4
Wave number, 4
Wave packet, 84
Weak-lone absorption, 306
White-type absorption cells, 233

Yellow matter, 435

Zero-point energy, 99
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