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Preface

In this text, the term optical represents the electromagnetic spectrum from microwaves to
the ultraviolet. This is because the quantum nature of the field becomes important in
light-matter interactions beginning with microwaves, and most propagation media are
opaque beyond the vacuum ultraviolet (0.1 wm). (Transparency begins again with x-rays.)
Also, the fundamental resonances of propagation media are rotational, vibrational, and
electronic, which are all within the realm of optical frequencies. Electronic spectroscopy
is complicated and, when possible, limiting our discussion to the onset of electronic
absorption greatly simplifies the treatment of electromagnetic propagation. The impor-
tance of spectroscopy to the field of optical propagation cannot be overemphasized, and
in many ways the central theme of Part I of this work is applied spectroscopy. This field,
traditionally part of physics and chemistry, has matured to the point that it is now essen-
tial to many electro-optical and photonic engineering applications.

Three basic components: a source, a receiver, and a medium in which optical energy
propagates (including windows on the source and detector) compose a typical optical
system. Many textbooks cover sources and detectors, but very few cover propagation in a
comprehensive way, incorporating the latest progress in theory and experiment concerning
the propagation medium. Advances in source and detector technologies have resulted in
greatly improved system performance. Frequently, the propagation medium limits per-
formance and must be considered in any analysis of a complete optical system. It is the
goal of this book to fulfill this need. The propagation medium can be atmospheric gases
and particles, solid-state components (e.g., protective windows, devices, and fiber wave-
guides), or water (e.g., seawater and biomedical fluids). The application may be
communication, remote sensing, photonic devices, imaging, or guidance. Physically based



viii PREFACE

models are developed and applied to diverse media. When the receiver and transmitter are
well characterized, then knowledge of the propagation medium can be obtained. This is
the important field of remote sensing. Remote sensing can be active (a source is used) or
passive (the medium being probed is the source) and is usually noninvasive. Also, knowl-
edge of the optical properties of semiconductors and insulators is essential to the design
of optoelectronic devices. For these reasons, optical propagation is crucial to the fields of
optical science and optical engineering.

This book can cover a full-year course on modern topics in optical propagation at the
upper graduate level or a one-semester course if topics are appropriately selected (e.g.,
laser light propagation, solid-state optics, optical propagation in the atmosphere, etc.).
It is based on a one-semester graduate-level course taught at The Johns Hopkins
University, G.W.C. Whiting School of Engineering, which uses an introductory laser
physics course as a prerequisite. A background in undergraduate electromagnetic theory
and elementary quantum mechanics is essential. It is also helpful to have some back-
ground in Fourier optics or diffraction theory.

Material presentation is in a style appropriate for students in engineering and applied
science, and for practicing scientists and engineers. Detailed derivations are used as
needed, but not when a good reference exists or a simpler approach, utilizing basic con-
cepts, is available. Extensive bibliographies and problem sets are listed at the end of each
chapter. Problems are intended to reinforce and extend chapter material. Simple applica-
tions are given as example exercises within the text and stressed in homework problems
as well. These aspects are important to those learning the field for the first time. Also,
I have used the text, as it has developed, as a reference to solve real-world problems at the
Applied Physics Laboratory. I believe the book contains enough detail and completeness
in the models presented to be useful to practicing engineers and scientists.

The text is structured as two units. A basic background concerning definitions, the-
oretical fundamentals, and experimental aspects of the linear interaction of light and
matter is presented in the first unit. Practical theoretical models should always lead to
measurable quantities. Specific models and computer codes concerning propagation of
optical energy in various media are covered in the second unit. The topics covered in
this unit are also sufficiently comprehensive and contemporary for use as a reference
source for practicing engineers and scientists. The presented material builds on
other textbooks and does not attempt to rewrite the entire subject. The text strives
to develop optical propagation in a variety of media from a general background in
classical and quantum electrodynamics. This unifies the discussion of propagation, as
opposed to other texts which treat solids and gases separately, for example. The result,
I hope, is a fundamental and contemporary development of optical propagation in linear
media.

Part I is based on Maxwell’s equations as applied to optical frequencies, an intro-
duction to spectroscopy of matter (gases, solids, and liquids), stationary-state quantum
mechanics, and electrodynamics (classical and quantum) at optical frequencies.
Electrodynamics covers the time-dependent interaction of light and matter. Emphasis is
on linear absorption, refraction, and single scattering phenomena. (Turbulence is not
covered here, since this requires additional background in the theory of random vari-
ables, and other excellent texts exist.) Time-domain and frequency-domain models are
developed. Time-domain models of the electric susceptibility are required for high-
bandwidth applications using finite-difference time-domain (FDTD) techniques.
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Formulas derived in this part are fundamental to understanding many practical models
of optical propagation. The main goal is to develop a theoretical foundation concerning
the general properties of the complex index of refraction at a level that is reasonably
complete but not too cumbersome. Also, measurement techniques are covered which
allow verification of the theory and the determination of material specific optical con-
stants for semiempirical models. In this way a general foundation is established to cover
a variety of media and applications.

Part IT develops practical models of the complex index of refraction, describing how
light propagates through matter as a function of temperature, pressure, and frequency, with
an emphasis on the similarities and differences between various media mentioned previ-
ously. These models are implemented by popular computer codes such as MODTRAN,
FASCODE, and OPTIMATR. The material presented in this book previously existed in
separate journal publications and reports and is therefore a unique and important feature of
the text. Propagation in the atmosphere of the earth, and optical properties of solids and
water-based media (e.g., seawater and biomedical fluids) are covered, emphasizing absorp-
tion and reflection, refraction, and scattering phenomena. Noise and background radiance
in a propagation medium are also covered. Beam and pulse propagation are presented as
the ultimate application of the prior chapters. Specific applications, such as remote sens-
ing, optical coatings, lasers, waveguides, material property calculations, and design
considerations, are presented to reinforce the topics covered.

The appendices address topics that would disrupt the flow of discussion in the main
text. Appendix 1, on symbols and units, is intended to define all the variables and con-
stants used in this text and list other symbols commonly used in the literature describing
propagation in various media. The fields of absorption and scattering for various media
have evolved independently, and the nomenclature is quite diverse. Appendix 2 lists spe-
cial functions used in the text. Appendix 3 lists Hilbert and Fourier transform pairs and
important relationships between them. Appendix 4 lists numerical values of model param-
eters for the complex index of refraction as developed in Part IT of the text for a variety of
optical media. This allows a fairly comprehensive characterization of optical properties.
An extensive reference list is also given. Appendix 5 presents the quantization of the elec-
tromagnetic field. This appendix is intended for the more advanced student who seeks a
more rigorous understanding of light-matter interaction.

An endeavor of this magnitude cannot be a singular effort. I have greatly benefited
from the help of many people. First, I wish to acknowledge my students who, through
their enthusiasm for the course material, have encouraged me to prepare this text. Also,
the correctness and readability of the text has been improved by their comments.
Second, the support to write the bulk of the text came from a Parsons and two Janney
Fellowships, and a J.H. Fitzgerald Dunning Professorship granted by the Applied
Physics Laboratory of the Johns Hopkins University. Much of the material in Part II of
the book represents work accomplished at the Applied Physics Laboratory. Third, 1
gratefully recognize the help and inspiration of Professor Richard I. Joseph, who
reviewed, with great thoroughness, the entire manuscript. His contributions have
greatly improved the quality and organization of the text. Next, I wish to acknowledge
Dr. William J. Tropf, my supervisor at the Applied Physics Laboratory for eleven years,
for finding problems for me that I could solve and the necessary encouragement
and support to complete the solution and its final publication. Also, many of my col-
leagues at the Applied Physics Laboratory and elsewhere deserve my thanks for their
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helpful reviews: Drs. George Birnbaum, William H. Carter, Donald D. Duncan, James
D. Franson, and Milton J. Linevsky. Jane Thomas prepared many of the illustrations for
the text. Last but not least, I wish to recognize the many sacrifices my family had to
endure for the sake of this manuscript.

It is said that we currently live in an information age. However, there is an important
distinction between information and knowledge. Knowledge is the ability to process
information. In the spirit of a recent book commemorating the 125th anniversary of the
University entitled Johns Hopkins Knowledge for the World, it is my intention to write
a book that provides insight and perspective in addition to information. Finally, it is my
sincere hope that the deficiencies of this text are overcome by its utility.
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Optical
Electromagnetics |

In this chapter, the optical spectrum is defined and subdivided into many sub-bands,
which are traditionally determined by transparency in various media. Propagation of the
electromagnetic field in vacuum, as based on Maxwell’s equations, and basic notions of
geometrical and physical optics, are covered. The theoretical and conceptual foundation
of the remaining chapters is established in this chapter and the next.

1.1 Introduction

Optical electromagnetic propagation is generally and often accurately described by
classical geometrical optics or ray optics. When diffraction or wave interference is of
concern, then the more complete field of physical optics is used. Geometrical optics
requires precise knowledge of the spatial and spectral dependence of the index of
refraction. This requires electrodynamics, which is most appropriately described by
quantum optics. These topics are covered in the first five chapters. The definitions of the
optical spectrum and the various models for describing propagation are introduced in
the following.

1.1.1 The Electromagnetic Spectrum

The optical electromagnetic field covers the range of frequencies from microwaves
to the ultraviolet (UV) or wavelengths from 10 cm to 100 nm. This is a very liberal
definition covering six orders of magnitude, yet the description of propagation is very
similar over this entire band, and distinct from radio-wave propagation and x-ray

3



4 OPTICAL PROPAGATION IN LINEAR MEDIA

Table 1.1 Definition of Spectral Regions

Wavelength Wave Number Frequency Energy
A [um] V[em™!] f [GHz] E [eV]

Soft x-ray <0.01 >124
Extreme UV 0.01-0.1 124-12.4
Vacuum UV 0.1-0.185 12.4-6.7
Air cutoff 0.185 6.7
Solar blind UV 0.185-0.3 6.7-4.1
Near UV 0.2-0.4 50,000-25,000 6.2-3.1
Visible 0.4-0.7 25,000-14,286 3.1-1.8
Near-infrared 0.7-2.0 14,286-5000 1.8-0.62
Mid-infrared 2.0-10.0 5000-1000
Far-infrared 10.0-100.0 1000-100
Submillimeter 100-1000 100-10
Millimeter waves 1000-10,000 10-1 300-30
Microwaves 10,000—10° 30-0.3
Radio waves >106 <0.3

propagation. A listing of the nomenclature for the different spectral bands within the
range of optical wavelengths is given in Table 1.1. Other commonly used units of spec-
tral measure such as wave number, frequency, and energy are also listed in the table.
These various quantities are related to wavelength by the following formulas:

c=Af, E=hf, and v=1/r= f/c (1.1)

where c is the speed of light (c = 2.99792458 x 10® m/sec), A is wavelength, f is fre-
quency in hertz, E is energy, h is Planck’s constant (h = 6.6260755(40) x 10734
J sec), and v is frequency in wave numbers (the number of wavelengths per centimeter).
Although wavelength is commonly used by applied scientists and engineers, frequency
is the most appropriate unit for the theoretical description of light—matter interactions.
Because of the importance of spectroscopy in the discussion of optical propagation, the
spectroscopic unit of wave number will be consistently used.

The spectral nature of electromagnetic propagation in any medium is determined by
the location of absorption bands and the type of scattering. Strong absorption charac-
teristics of a medium define the window or transparency regions. Regardless of the
medium, these absorption features generally involve transitions of electrons in atoms
and vibrational motions of bound atoms within molecules. Weak absorption features
and scattering determine the nature of propagation in the window region. The various
bands in Table 1.1 are typically determined by absorption features in various media.
The vacuum ultraviolet (VUV) cuts off at 0.1 ym because the transparency of typical
ultraviolet window materials, MgF, and LiF, end at this wavelength. Thus the extreme
ultraviolet (XUV) requires windowless operation and distinctly different sources. The
vacuum ultraviolet begins at 0.185 um because this is where molecular oxygen begins
to absorb strongly, thus requiring high-vacuum spectrometers. The solar blind UV is the
spectral region where sunlight is blocked by stratospheric ozone absorption and UV
propagation is good in the troposphere. The visible spectrum is determined by the trans-
parency of liquid water. The infrared (IR) is broken up into three different spectral



OPTICAL ELECTROMAGNETICS | 5

bands, the near-IR, mid-IR, and far-IR, based on the location of windows in water vapor.
The far-IR is largely opaque in the atmosphere because of a major absorption band of
water vapor. Transparency begins again at the submillimeter band and continues to
improve at millimeter waves and on to microwaves. Microwaves are further subdivided
into sub-bands based in part on water vapor and molecular oxygen absorption lines
occurring in the atmosphere.

Two additional mechanisms affecting propagation in transparent regions are scatter-
ing and turbulence. Scattering results from small-scale, large-amplitude spatial and
temporal fluctuations of density of the propagation medium. When the fluctuations are
small compared with a wavelength, Rayleigh scatter results. This type of scatter falls
off rapidly with decreasing frequency, thus emphasizing the blue end of a spectral
region. When the fluctuations are on the order of a wavelength, Mie scatter results.
This type of scatter has a relatively flat spectral response and results in the characteris-
tic white color of clouds, for example. Turbulence results from large-scale, small-
amplitude spatial and temporal variations of optical properties within the propagation
medium.

The emphasis in this text will be on absorption and single scattering, since a similar
background in electromagnetic theory can be used to describe these mechanisms.
Turbulence is more appropriately covered in terms of statistical optics and excellent
texts exist in this field (see references 1.10 and 1.11).

1.1.2 Classical and Quantum Concepts

The major distinction between optical and radar-/radio-frequency propagation is the
need to include a quantum description of the field and medium. Based on Eq. 1.1, the
energy is directly proportional to the frequency, so that at lower frequencies the energy
of a single quantum of the field (the photon) is small and not easily detected. Many pho-
tons are required for detection and thus a field (classical) description is adequate. At
optical wavelengths, single photon events and the discrete energy level structure within
the medium match photon energies and are important in describing absorption and scat-
tering mechanisms in detail. However, classical models are still very useful and
instructive, because optical measurements are generally time averaged over many
photon detections and a quantum description of the propagation media is not always
necessary. Hence, both classical and quantum models will be used to describe optical
propagation.

The most fundamental and practical description of optical propagation is given by
nonrelativistic quantum electrodynamics or the subfield, quantum optics (which is
quantum electrodynamics limited to low-energy optical frequencies). Quantum optics
is a detailed microscopic theory of photons and molecules (atoms) in the gas, liquid,
and solid phase, and their interactions involving quantum mechanics (Schrodinger’s
equation) and the quantized electromagnetic field. These combined theories lead to the
quantum oscillator model. Because of the scope and level of detail of this theory, it is
also the most complicated to present. The quantum-mechanical description of the
energy structure of matter within the realm of quantum optics is called spectroscopy.
This field considers the location, strength, and shape of spectral lines. Another fashion-
able subset of quantum electrodynamics is quantum electronics, which emphasizes
optical devices such as lasers and nonlinear optics. Quantum electronics is often
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presented within the context of semiclassical radiation theory. In this approach the
propagation medium is treated quantum mechanically, but the field is treated classically.
Thus, semiclassical radiation theory can be thought of as a bridge connecting spec-
troscopy with the classical version of Maxwell’s equations. It allows the treatment of
high field intensities interacting with matter. This is important in the description of laser
phenomena.

When the quantum nature of the field and medium is not relevant, such as elastic
scattering, refraction, or reflection, then classical electrodynamics or classical optics
can be used. This allows a simpler and equally valid approach based solely on
Maxwell’s equations, Newtonian mechanics, and Lorentz force relation. This theoreti-
cal foundation leads to the commonly used classical oscillator model. Historically, the
wave nature of light is the topic of physical optics or wave optics. The development of
this field predates the unifying work of Maxwell and is based on solutions of the wave
equation. Maxwell’s equations include the wave equation and therefore form a more
complete theory that describes the coupling of the field to the propagation media. As an
example application, the fields of Fourier optics and particle scatter are based on phys-
ical optics. Furthermore, when wave interference of the field is not relevant and the
frequency of the field is sufficiently high, then geometrical optics or ray optics can be
employed. This field also predates the development of Maxwell’s equations and is
based on the particle interpretation of light. This approach is consistent with classical
optics when based on a high-frequency asymptotic solution to the wave equation. It is
the simplest description of optical field propagation and often a good place to begin a
description of the propagation path. Optical engineers commonly use geometrical
optics to design optical systems. The field of radiometry also should be mentioned in
this introduction as a subfield to geometrical and physical optics.

Consequently, geometrical optics, as defined above, is a subset of physical optics,
and physical optics is a subset of classical optics. Classical optics is a subset of quan-
tum optics. This point is graphically illustrated in Fig. 1.1. Also, emphasis at the
beginning will be on classical optics and, as background is developed, the more com-
plete theories will be used. The first five chapters develop these important theories for
practical use.

The inclusion of relativistic theory into our models is not necessary to meet the goals
of this book. However, it is interesting to note that relativistic quantum mechanics
(Dirac theory) includes the effect of particle spin. Photons have integer spin. This leads
to polarization or the vector character of the electromagnetic field and will be handled
by conventional classical methods.

The following sections in this chapter and the next describe electromagnetic field
propagation based on Maxwell’s equations in vacuum and in linear matter, respectively.
In each section the classical aspects of the electromagnetic field and the propagation
medium are discussed in detail. The quantum nature of the propagation medium is
introduced in Chapter 3. Electrodynamics is then introduced in Chapters 4 and 5.
Chapter 4 develops the classical version, covering the classical oscillator model for
gases and solids, and elastic scattering for gases and particles. Chapter 5 presents
applied quantum electrodynamics at optical frequencies or quantum optics. The quan-
tum oscillator model is developed, which is the foundation for many of the practical
models of Part II. The sixth chapter of this first part discusses experimental tech-
niques to measure fundamental optical constants as dictated by the theory of the first
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QUANTUM OPTICS
Quantum
r— Oscillator
Model CLASSICAL OPTICS
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Radiation
Theo MAXWELL’S EQUATIONS
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(Spectroscopy)
PHYSICAL OPTICS
(Wave Optics)
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MECHANICS 1 GEOMETRICAL
Oscillator OPTICS
Model RADIOMETRY (Ray Optics)

Fig. 1.1 Tllustration of the relationship between and scope of the fields and subfields of quan-
tum optics, spectroscopy, classical optics, semiclassical radiation theory, physical optics, and
geometrical optics.

five chapters. The complementary interplay between theory and experiment is then
more fully appreciated.

1.2 Macroscopic Properties in Vacuum

It is instructive and relevant to begin the development of optical electromagnetics with
a discussion of plane-wave propagation in vacuum. The presence of matter greatly com-
plicates the description of optical propagation and it is useful to distinguish between
properties of the field and properties of the propagation medium. Furthermore, even
though true plane waves cannot be physically realized, an understanding of plane-wave
propagation allows a complete description of any function representing a realistic
propagating electromagnetic wave via Fourier analysis. Plane-wave propagation is
considered in unbounded and bounded vacuum.

1.2.1 Plane-Wave Propagation

The macroscopic properties of the electromagnetic field are represented by Maxwell’s
equations, which are founded in classical physics. Since plane waves form a complete
basis set spanning a function space (an infinite-dimension vector space with mono-
chromatic plane-wave functions as basis vectors), it is convenient and comprehensive
to begin with a plane-wave solution of Maxwell’s equations in unbounded vacuum or
free space. Other function basis sets, such as spherical waves, are also useful and will be
presented later. Solutions to Maxwell’s equations in bounded vacuum are also examined
in this section.
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1.2.1.1 Maxwell’s Equations in Free Space
Maxwell’s equations in unbounded vacuum are:

ob(r,t)

Faraday’s law: V x e(r,t) = — o (1.2)
od(r,?
Ampere’s law: V x h(r,?) = ;lt. ) (1.3)
and

Gauss’s law: V-d(r,r) = V-e(r,t) =0, (1.4)
V.b(r,t) = V-h(r,t) =0, (1.5)

with the free-space constitutive relations
d(r,t) = €pe(r,t) and b(r,t) = poh(r,?), (1.6)

where ¢€y(= 8.854188 x 107'2F/m) is the free-space permittivity, o(= 47 x
1077 H/m) is the free-space permeability, e is the electric field intensity in units of volts
per meter, d is the electric flux density in units of coulombs per meter squared, h is the
magnetic field intensity in units of amperes per meter, and b is the magnetic flux den-
sity in units of webers per meter squared. All lowercase vector symbols represent
time-domain quantities. (An attempt to consistently use MKS units is made, but this is
not always achieved because of the small size of optical wavelength and detectors; in
this case cm is often used.) Taking the curl of Faraday’s law and applying Gauss’s law,
a vector wave equation for e is obtained,

Vee(r.) = 4 6@ (1.7)
T a2 ’
where
1
= (1.8)
€00

To solve this partial differential equation, the Fourier transform will be employed.
It is defined for individual components of the field vector as!

o]

Hei(r,1)} = Ei(r,0) = /ei(l‘,t)e_j“”dt (1.9)
—00
and the corresponding inverse transform as
1 [e.¢]
FUE;(r,w)} = e;(r,1) = 7 / E;(r,w)e ' dw, (1.10)

—0Q
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where, for Cartesian coordinates,
e=eX+e,§+ e, i=x,y,z, and o =2nf.

Uppercase vector quantities are in the frequency domain with an amplitude that is
constant over a unit bandwidth. The Fourier transform of Eq. 1.7 is given by

e = E
V2E;(r.w) = —— Ei(r,o). (1.11a)
C

The electric field intensity is now in the frequency domain. The subscript i represents
the two different directions of polarization of the E-field. Without loss of generality, since
vacuum is isotropic, let E be polarized in the x-direction and propagate in the z-direction.
An orthogonal polarization in the y-direction also exists but its representation, at this
point, is analogous to x-direction field. (When accounting for the total field energy
(both polarizations) a multiplication factor of two must be used for unpolarized light.)
Thus, substituting E = E, (z,w)X into Eq. 1.11a we obtain

+ 2 E =0. (1.11b)
C

This is the standard one-dimensional scalar wave equation with the well-known
solution describing a monochromatic plane-wave field, with the radiation boundary
condition (E,(z — o) — e*/®%/¢) as given by

1 o 1 ‘o
E . (z,0) = EE;FOe_’TZ + EE;OeJFZ. (1.12a)

For arbitrary polarization and propagation direction, the solution is more generally
written as

1 NN B
E(r,0) = E1zgeif“ Ty EEaefk T (1.12b)

where k'= kX + k| § + k;Z is the wave vector with magnitude w/c (= 27/A) and
r = xX + y¥ + zZ is the position vector. This describes a plane wave with both forward
and backward (time-reversed) propagating components or, from a different perspective,
positive and negative frequency components. This concept will be useful later. Also,
observe that the plane-wave solution is not only time harmonic, but harmonic in space

as well. It is required that e, be real, thus
Ey=(E}) (1.13)

and Eq. 1.12a reduces to

E.(z,0) = Re[E,oe 7/ ¢7]. (1.14)
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This, in effect, is phasor notation and, as is customary, the Re[-] symbol will almost
always be suppressed in the notation from now on.2

The wave equation, as given by Eq. 1.11, can also be solved in a bounded rectangu-
lar region of free space with sides L,, L,, and L,. The boundary condition for a
metallic cavity, for example, is that the tangential E-field must vanish on the boundary.
This leads to standing-wave solutions (see Problem 1.7) of the form

mmy . AmZ

lmx
E.(r,w) = Eygcos

sin sin (1.15a)
L, L, L.
Imx mmy nmwz
E,(r,w) = E,psin — cos sin 1.15b
y(r,w) yo SIn 7 L, L. ( )
x| ommy nmz
E,(r,w) = E,ysin sin cos , (1.15¢)
L, L, L,
where Gauss’s law requires
L bot B+ By =0: (1.15d)
Lx x0 Ly y0 LZ 20 — Y, .
[, m, and n are integers, and are related to the wave vector according to
2 2 2 2
n o L[l m n
k —?—T[ (L_%+L_%+L_§> (1.15¢)

Such standing-wave fields are commonly discussed in textbooks on laser theory. For
a finite cavity, only modes with discrete frequencies can be supported. The number of
modes per unit volume with frequency less than f, pgy, must be a finite value and,
based on Eq. 1.15e, is given by (see Problem 1.5)

8 f3

= (1.15f)

PEM =
This is an important result that will be needed in Chapter 5.

1.2.1.2 Poynting Vector

The corresponding unbounded H-field solution comes from the solution of the frequency-
domain version of Faraday’s law, as given by

V x E(r,w) = —jouo H(r, w). (1.16)
Substituting Eq. 1.14 for E in Eq. 1.16, the following is obtained

1 »
Hy(z,0) = —Ey e /<%, (1.17)
No
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where no(= (o /eo)l/ 2) is the intrinsic impedance of free space and equals 377%2. At
optical frequencies, field quantities are not directly measured. Instead, optical detectors
typically measure time-average power density or radiance, L, in units of watts/
(cm? sr). In terms of field quantities this is the magnitude of the time-averaged time-
domain Poynting vector, (£ (¢)); (= (e(t) x h(#));), where (), is the time average as
defined by

T
1
@®b), = 5= / a(Ob() dt
)

where T is the observation time (usually much longer than an optical period). For a
monochromatic field the time-averaged Poynting vector is given by (see Problem 1.3)

|Ex0|2,\
Z.
2no

(1), =L = %Re [E(w) x H*(w)] = (1.18)

The monochromatic Poynting vector is a good approximation for single-mode con-
tinous wave (CW) laser light, but does not represent common polychromatic sources
(e.g., pulsed lasers and light bulbs). In that case, the individual electric and magnetic
fields are represented by a sum of monochromatic fields possessing different frequen-
cies, wy,, and phases, ¢,

E@) =) En(@n¢n) and H@) =Y Hu(@ndn),

and must be summed over all frequencies and phases. Substituting these expressions
into Eq. 1.18 leads to the result for a polychromatic time-averaged Poynting vector:

1
(L) =3Re [Z Ep (@) X By (@) + ) B (@) Hf(w1,¢z)i|-
m m#l
(1.19a)
For a stationary random polychromatic field, each component in the second term of

Eq. 1.19a is zero, and the sum is also zero. Thus, the time-averaged Poynting vector
becomes a spectral distribution function, as given by

|E o |2A c n
(LON=) 5 2 =560 |Enl’2. (1.19b)
m 0 m

The field polarization is arbitrarily chosen in the x-direction, consistent with the
monochromatic case. Power flows in the z-direction, only.
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A straight-line path is called rectilinear propagation and is consistent with the
approximations of a lossless, homogeneous, isotropic unbounded region used thus far.
Thus the electromagnetic field can be thought of as a light ray (ray optics), ignoring the
details of the electric and magnetic fields composing the electromagnetic wave. The
nonphysical condition of an unbounded medium containing rectilinear parallel rays
results in a number of practical limitations on this particular solution of Maxwell’s
equations:

1. No restrictions on the extent of the field in the xy-plane exist. The field fills all
space, requiring an infinite amount of energy.

2. Light does not always travel in a straight line, but can be bent.

3. Rays of light from other directions will intersect at some point in space (called a
caustic) causing infinitely high power density to exist?.

To resolve these limitations in this theory, finite boundaries and diffraction theory
must be included. It is of interest to describe a beam of light that is finite in the trans-
verse direction and not a plane wave over large distances. This increases the scope of
the initial problem to consider solutions with finite sources.

1.2.2 Diffraction: Physical Optics

As previously noted, the solution to the wave equation in unbounded vacuum of the
previous section has two serious problems. First, the field exists in all space as a plane
wave propagating in the z-direction with no limitations in the xy-plane, requiring infi-
nite energy. This cannot be a physical solution, since some limitation in the xy-plane
must exist. Second, when geometrical rays come to a focus or caustic, it occupies a
single point, requiring infinite energy density. This, also, is not a physical result. To
overcome these limitations, diffraction theory must be addressed. The following devel-
opment is more intuitive than rigorous but leads to meaningful results. More complete
derivations are available in the bibliography.

1.2.2.1 Spherical-Wave Representation

Recall that the plane-wave solution, given by Eq. 1.14, represents an electromagnetic
wave with planar wave fronts of infinite extent propagating in the positive z-direction,
as illustrated in Fig. 1.2. The solid lines in the figure represent z = constant planes,
where phase repeats a certain arbitrary value (determined by the constant) every wave-
length. This solution of the wave equation can be represented in other mathematical
forms, which will prove useful for further analysis. The plane-wave representation
resulted because of the choice of rectangular coordinates. Because sources of light can
often be approximated by point sources, spherical waves are also a meaningful basis
set, representing propagating fields.

Furthermore, an electromagnetic field generated by a finite source in the xy-plane can
be represented by an integration of point sources over the xy-plane aperture. This statement
is Huygens’ principle, and allows the examination of the consequences of a finite
source in a simple manner. (Point sources or impulse response functions are commonly
used in science and engineering.) Consider the three-dimensional point source located
at the origin of a spherical coordinate system in an unbounded medium,
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Fig. 1.2 Plane-wave propagation showing lines of constant phase in the xz-plane. The spacing
between the lines is one wavelength.
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—jk'r

dE . (r) = const E ds, (1.20)

r

where “const” is a constant to be determined later, = |r| and dS(= dxdy) is a sur-
face element in the xy-plane. This is a special function in applied mathematics and
engineering called a free-space Green’s function or impulse response function.
Equation 1.20 is the three-dimensional free-space Green’s function, and is the solution
of the wave equation with a delta-function point source and the radiation boundary
condition. Coulomb’s law for point charges is an example of such a three-dimensional
Green’s function (for £ = 0) and can be used to represent general charge distributions
when integrated over a specified volume.

1.2.2.2 Fresnel and Fraunhofer Diffraction

The construction of optical fields in terms of spherical waves from a point source is an
old concept originating with Fresnel, who in 1818, applied Huygens’ principle and
Young’s concept of interference to explain diffraction phenomena. To see this, consider
the spherical wave field such that x« z and y«z, and that the observed field is deter-
mined by sources in the xy-plane directly behind it along the z-axis. This means the
field is nearly a plane wave in the z-direction, this is known as the paraxial ray approx-
imation. Based on this assumption and a binomial expansion, the observation point is
given by

73

1 1
r:w/zz—{—xz—}—yz ~ Z+—(x2+y2)+0( ) (L.21)
Z—> 00 22

The analytical expression for an unbounded plane wave propagating in the positive
z half-space, in terms of spherical waves, is obtained by integrating over all coherent
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(identical phase) point sources in the xy-plane, as given by

o0 o0
t a1 Iy
E.(z.0) = = C_W[ & f dyEoe /50707, (1.22)
Z
—0oQ —0Q

The approximation in Eq. 1.21 is used in the phase term because this adequately
determines the locations of constructive and destructive interference, but a more relaxed
approximation can be used in the denominator factor of the Green’s function (e.g.,
r & 7). The result of the above integration must have the same result as Eq. 1.14, thus
the constant factor can be determined. The integrals are Gaussian, with well-known
solutions. The result is

J
t= =, 1.23
const = (1.23)

Now a representation of optical fields exist in the positive z-half-plane that can
account for the effects of finite beam apertures by allowing E? to be nonzero only over
the aperture.

Consider the double coordinate system in Fig. 1.3. A coordinate system is specified
for the plane of the observer, such that the location of the field at a point is specified by

r=Ir—r,l = V22 + (x — 5,2+ (y — ¥0)% (1.24)

Again, applying the paraxial ray approximation, given by |x —x,| « z and |y-y,| « z,
and expanding r by a binomial expansion, one obtains

2 2
X —X — 1
ro~ z+( o) +(y Yo) +o(=). (1.25)
200 2z 2z z3
Source plane Observer plane
X \ + Xy
/ E (*0:90)
r-r, =
/ (X’y X, i //,/
r ! 7
/ L
l_ ~ P S
T 4y, :

Fig. 1.3 Source and observer coordinates for electromagnetic field propagation, including dif-
fraction by a limiting aperture.
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Following the same procedure as before, an expression of the field in the x,y,-plane
of the observer as a function of a source in the xy-plane is obtained. The result is the
Fresnel formula of diffraction, as given by (dS = dxdy)

_ k’(“ x0)? +(,\ 7\:;) )
Ex (X0, Y0,2,0) = —e*/"Z / / dSE(x,y)e =/, (1.26)

—00 —00

which is valid only within the paraxial ray approximation (z> > [(x —Xo)*+(¥ = ¥6)*Inax)
and where E, is an aperture function defining the extent of a beam in the xy-plane. The
field expands and the spatial distribution changes beyond the xy-plane, thus losing uni-
form plane-wave properties.

To see this point more clearly, examine the integrand in the far field, where the
approximation

K = 1.27
z>>E(x —I—y)max—zR (1.27)

is valid. The parameter zp is called the Rayleigh range. The phase factor in the inte-
grand of Eq. 1.26 can be expanded to obtain

o2y I N
—JK\ ) K\ mhxm ) R e
e e e . (1.28)

Applying the far-field approximation, we obtain the Fraunhofer diffraction integral
in the paraxial approximation®, as given by

<

o0 o0
Ey(x0,Y0,2,0) = )»Z e eIt 0 : / /dxdyExo(x,y)ejkw?ﬂxejk/y?‘”y. (1.29)
—00 —00

The integral is of the form of a two-dimensional Fourier transform between a spatial
distribution of a field in a plane at z = 0 and spatial frequencies, «, and «, in the far-
field observation plane (k, =k'x,/z and k, =k'y,/z (see reference 1.5). The
two-dimensional spatial Fourier transform is defined as

oo 0
E(Kx, Ky)— Xy [EQ(X y) = / /dXdyEo(X,y)ejK*Xej'()'y,
—00 —O0

For visible wavelengths (A ~ 0.5 um) and 1 cm square aperture, and based on
Eq. 1.27, the far-field distance or Rayleigh range is approximately 200 meters. For a
uniformly illuminated aperture, the far-field pattern is composed of sinc functions (e.g.,
sin c(x) = sin(x)/x) in the x- and y-directions (see Problem 1.4). This field pattern will
continue to widen as the wave propagates, completely changing the uniform field



16 OPTICAL PROPAGATION IN LINEAR MEDIA

distribution pattern in the z = 0 plane. The Fraunhofer diffraction pattern of the radi-
ance is, based on Eq. 1.19,

O LG S 991 YC 8OV (130,

2o 2(z0)*no

where F,, is the two-dimensional spatial Fourier transform.

Diffraction theory also limits the minimum size of a focus, thus solving the problem

of caustics mentioned earlier. This is easily demonstrated using the Fraunhofer diffraction

integral and the time-bandwidth product of Fourier transform theory (Ax Ak, > 1/2).
Considering the far-field diffraction pattern of a large aperture lens, one obtains

) A
sine = ——,
4nD
where sinae = Ax,/z and D (= Ax) is the diameter of the focusing lens. For Ax, to be
zero (a point focus) requires an infinite-diameter lens, thus a finite field intensity at the
focus is always the case.

1.3 Optical Propagation in Vacuum

In practice, optical engineers and scientists are concerned about the propagation of light
in the form of CW or pulsed light beams. Applications for vacuum propagation include
remote sensing and communication links in space. The following two sections apply the
background obtained thus far to beam and pulse propagation in vacuum.

1.3.1 Beam Propagation

Generally, light-beam propagation is analyzed in terms of plane waves. This will be the
approach taken in the remaining chapters. However, realistic beams of light can only be
approximated by plane waves, and it is important to understand where this approximation
is valid. Beams of light from the spherical sun, for example, are essentially plane waves
to an observer on earth because of the great distance from the sun to the earth.

Laser beams are generated inside a resonant cavity. A stable spatial distribution of
the output beam is desired, which requires the beam profile to remain the same as it
propagates back and forth within the cavity. Furthermore, to minimize diffraction losses
also requires maintaining the field pattern as the wave propagates. Thus, diffraction
theory dictates that a field function which Fourier transforms into a function of the same
form is desired. This is the Gaussian class of beams, commonly produced by lasers and
customarily discussed in laser textbooks (see Bibliography). However, Gaussian
beams continue to expand upon propagation because of diffraction. To see this, con-
sider a circular beam in the xy-plane with a Gaussian distribution of the electric field
polarized in the x-direction, as given by

Eo(x,,0) = ==/, (1.31)
TTwW,

0
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where wy is the beam radius or waist at the 1/e field point, Eq is a constant and the
E-field is normalized such that

(e elNee)

/ /dXdyExo = Expo.

—00 —00

It is assumed in this formulation that, in the region of the z = 0 plane, the beam is
independent of z. Using Eq. 1.30 and the cosine Fourier transform, the far-field radi-
ance becomes

IEx00l® a2z 442y /w2
L(X,Y0,2) = =00 e 2(x2+20)/W*@) 1.32a
(orY02) = 5 0o (1320
where in the far-field limit
. 2z
lim w(z) = (1.32b)
700 k'wy

The angular divergence of the beam, Gpeam, can be determined from the beam radius
and the distance z, as given by

- (w(@) A
Bbear = tan! <T> ~ (1.33)

As the beam propagates, the far-field intensity distribution is maintained, but the
beam broadens and the radiance is attenuated. The beam divergence angle depends
inversely on the beam waist in the z = 0 plane. Thus, as w,, increases, the beam becomes
more like a plane wave.

With this insight from the far-field case, a general expression for a Gaussian beam
can be obtained, based on the Fresnel diffraction formula, in a straightforward
manner. Substituting Eq. 1.31 into Eq. 1.26 and using Eq. 1.28, the following result
is obtained:

2 42
j —jk'z ﬂk,(%"'%
Ey(X0,Y0,2) = k_ze e F ol Excs(x,,2)], (1.34a)
where
EX . /(X2+V2)
Ews(x,y,2) = —2e X 7w, (1.34b)
™o

The Fresnel diffraction integral becomes the spatial Fourier transform of a Gaussian
spherical wave, E,gs, with a complex radius of curvature, g, given by

112 (135)
gz Tiw '
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Performing the spatial Fourier transform, a mathematical expression for a Gaussian
beam is obtained:

Exwo _jw L)
Ey(X0.Y0:2) = ———e /0¥ @™ (1.36a)
Twow(z)
where the following functions are defined as
,71/2
2z
w(z) =wp |1+ (—2> , (1.36b)
k'wg
¥(z) = tan”" <£> (1.36¢)
k'w '
and
k'w?
7() =z+j70. (1.36d)

Examining the real and imaginary parts of g (z), we obtain the following more mean-
ingful expression:

2 W
7@ R@ kw) '

An explicit expression for R(z) is the point of Problem 1.8. Now the Gaussian
spherical-beam electric field becomes

E 00 Pk ) —i /(Xng/‘%) 7(X3+'v‘%
E,(X0,Y0,7) = ———e 1 KV@e /K e e T ue | (1.38)
Twow(z)

R(z) is the radius of curvature of the spherical wave and w(z) is the beam waist as
before. The Gaussian beam radiance is

E(x0,¥0, 2 E, 2 —2(15#",27)
|Ex(X0,Y0,2) _ | Exool e o | (1.39)

L X0sY0,2) = =
(x0:0:2) 2no 27 2wiw2(2)no

This describes a Gaussian beam from z = O to the far field. To see this, consider the
far-field limit

2Z_Z)x

w(z) = = ,
k’W() TTWo
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Fig. 1.4 Ray diagram of a Gaussian beam in two dimensions. Dotted lines indicate surfaces of
constant phase.

and Eqgs. 1.32a and 1.32b are obtained. A ray diagram of a Gaussian beam is illustrated
in Fig. 1.4. The dashed curves represent the wavefronts. Notice at the beam waist
(w(z = 0) = wy) the wavefronts are like a plane wave. Farther out, the wavefronts are
spherical. The rays are perpendicular to the wavefronts and indicate the direction of the
propagating Gaussian beam. Such beams are commonly produced by lasers.

A special beam profile represented by Bessel functions does not expand upon prop-
agation over limited, but useful, distances, and is called a diffraction-free beam (see
reference 1.7).

The lesson to be learned from this section is the importance of diffraction on propa-
gation of realistic beams of light over long distances or originating from small
apertures. The unbounded plane-wave solution of the previous section cannot be phys-
ically realized, although it can be closely approximated over practical distances. The
intuitive development of diffraction theory used here is a good introduction, but does
not replace more rigorous derivations based on Maxwell’s equations (see references 1.2,
1.7, and 1.8). The formulas obtained are adequate for the needs of this text. It can be
observed from Fig. 1.4 that the Gaussian beam can be represented by rectilinear rays
and plane waves over meaningful regions of the beam. For this reason, most of the
emphasis in this text will be on geometrical optics and the quantum nature of the
medium and field.

1.3.2 Pulse Propagation

There is great interest today in high-speed pulse propagation. An electromagnetic pulse
is composed of many frequencies. In fact, the narrower the pulse in the time domain,
the broader it is in the frequency domain. The time—bandwidth product of Fourier trans-
form theory states that

AtAf =1,

where At is the temporal pulse width and Af is the frequency bandwidth in hertz.
Thus, monochromatic solutions to the wave equation are not appropriate in this case
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Fig. 1.5 An electromagnetic pulse propagating in free space at three different times.

and new solutions must be found. To this end, it is straightforward to show that a func-
tion of the general form

fk'z —wt) = Ek'z — wt)e oD

is a solution to the wave equation, as given by Eq. 1.11. Figure 1.5 plots such a func-
tion with an optical frequency carrier at discrete times. The pulse propagates forward in
time with a velocity of w/k’ = ¢, the speed of light in vacuum. Because the propagation
medium is vacuum, the pulse propagates undistorted in time and space. Such a result
will not be obtained when the propagation medium is matter, especially as the band-
width increases. Further details can be found in reference 1.12.

1.1

1.2

1.3

Problems

A photon has an energy of 1 eV. Find the corresponding frequency in GHz,
wavelength in um and wave number in cm™!.

Show that the free-space plane-wave solutions satisfy Gauss’s laws
(V-B=0and V-D =0).

Show that the time average of the time-domain signals a(t) = |A| cos (ot + o)
and b(t) = |B| cos(wt + B) is given by

T

1 1 .

(a()b(t)), = T /a(t)b(t) dt = ERe [AB”]
-T

where A = |A|e/® and B = |B|e/? are the corresponding phasor quantities,

respectively, and that the observation time, 7, is long compared with the optical

period.
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1.4 Verify that Eqs. 1.15a—e satisfy Maxwell’s equations.

1.5 Verify Eq. 1.15f for the mode density in a finite volume. (Hint: Convert the
discrete sum to an integral in spherical coordinates. See Milonni and Eberly,
reference 1.11, for details.)

1.6 Show that

efjk’r

r

is a solution of the wave equation.
1.7 What is the far-field (Fraunhofer) diffraction pattern of the uniformly illumi-
nated rectangular aperture shown in Fig. P1.7.

b
A

Fig. P1.7

1.8 Derive Egs. 1.36 and 1.37 and show

1 k/ 2\ 2
R(z)=z+—(ﬂ) .
z 2

1.9 Show that Eq. 1.39 is consistent with the far-field formula given by Eq. 1.32a.
1.10 Verify that Eq. 1.40 is a solution to the wave equation as given by Eq. 1.7.

Notes

1 Engineers commonly choose e~/ and physicists e/, It is important to be consistent with
the time harmonic choice of the field.

2 Phasor notation requires assuming a time-harmonic field
e (r,t) = Re[ex(r) e""].
Using Eq. 1.10, over a finite bandwidth, and Eq. 1.14,
er(z,1) = Re [Exo |Af|efw(’-%)]

z
=eqcosw(t——).
c
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In the following, a unit bandwidth is assumed. Therefore, the frequency-domain amplitude
can be equated to the time-domain amplitude in size and dimension. Again this is consistent with
phasor notation.

3 The problem with caustics.

At a focus, geometrical optics breaks down because it predicts an infinite field intensity at the
focal point or curve (also called a caustic). To see this consider the figure below and the follow-
ing equations:

dSy = (Ry —d)(R, — d)dbd¢
and
dS, = R{R,dOd¢.

In geometrical optics the intensity is proportional to the ray density per unit area, thus the ratio
of dS; to dS) is of interest. The ratio of intensities at surface A to surface B (see figure below) is
proportional to

At the focal line Q’, R, = 0 and the intensity ratio goes to infinity, which is not physical.
Diffraction theory is needed to resolve this limitation.

4 The paraxial ray approximation is not necessary for the Fraunhofer diffraction integral, but
is useful for the description of beam propagation, the topic of the next section. A more general
Fraunhofer diffraction integral is obtained by examining the distance from the source to the field
point in three dimensions, as given by

r= |l' - r0| = \/(Z - Zo)z +(x = X{))z + (y - yo)zv

where r represents the source coordinates and I, represents the field or observer coordinates.
This expression can be rewritten, in general, as

172
rr

r=|r|<1—2—+— .
’ L2 g

It can be further simplified by a binomial expansion for |r,| large to be

~ r-r, 1
e A +0|—5)-
1o T, |2
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Because the dimensions of the source are much smaller than the observer distance in the far
field, the last term in |r|? can be dropped. The Fraunhofer diffraction integral, in general, then
becomes (see reference 1.2)

. o0 o0
Eo(r,,0) =——e KT / dx / dyEo(r)e’t wt .
Al Tolr
—00 —00

Applying the paraxial ray approximation to the above formula leads directly to Eq. 1.29.
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2

Optical
Electromagnetics Il

In this chapter the same basic topics are addressed as in the previous chapter, but now in
the presence of matter. This greatly complicates the description of optical propagation and
continues to be the primary topic of the remaining chapters. A formal structure is devel-
oped to handle absorption and scattering phenomena in general. The modeling of optical
propagation is reduced to having to know the complex index of refraction of the medium.

2.1 Macroscopic Properties in Matter

A macroscopic description represents the large-scale observable character of optical
propagation. At this level, many models are phenomenological, but lead to important
general properties, definitions, formulas, and the establishment of basic concepts.
Because microscopic models to be presented in future chapters contain considerable
detail, this section is an important prerequisite to the remaining text.

2.1.1 Plane-Wave Propagation and Linear Response Theory

Again, plane waves are a useful tool for the description of optical propagation. The
Poynting vector, causality, and Poynting’s theorem are used to develop and derive quan-
tities and relationships concerning radiometry and the flow of electromagnetic power at
optical frequencies.

2.1.1.1 Maxwell’s Equations in an Unbounded Medium

Consider Maxwell’s equations again, but in the presence of linear isotropic matter.
Now the constitutive relations will play a more important role and are the foundation of

25
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classical dispersion theory. Recall, Maxwell’s equations in the time domain and in
differential form:

ob(r,t)
Faraday’s law: V x e(r,t) = — a7 2.1)
. ad(r,1)
Ampere’s law:  V x h(r,t) = j(r,7) + Fra 2.2)
and
V.d(r, 1) = p(r1), (2.3)
Gauss’s laws:
V.-br,t)=0 2.4)
with the time-domain constitutive relations given by
o0
jx,r) = o,(r,t) x e(r,t) = /dt/a,(r,t') e(r,t—1t), t>t, (2.5)
—00
b(r,t) = p,(r,7) x h(r,1), (2.6)
and
d(r,t) = €(r,t) xe(r,t). 2.7

oy, Us, and €, are the phenomenological time-domain conductivity, permeability, and
permittivity, respectively, and are scalars because the medium is assumed isotropic.
Anisotropic media require o;, s, and ¢, to be dyadic, and this issue is addressed in
Chapter 4. The “*” operator signifies convolution as defined by Eq. 2.5. The relation-
ships between the free-space constants g and €y, and u; and €, are given by

we(r,t) = pwop,(r,t) [H/msec] and ¢ (r,t) = €p€,-(r,t) [F/msec], (2.8)

where i, (r,t) and €, (r,t) are the relative causal time-domain permeability and relative
causal time-domain permittivity, respectively, and have units of reciprocal time. o; has
MKS units of mhos per meter second (/(m sec)). For example, a material with an
instantaneous response for the permittivity has the following approximate form:

ds (1)
dt

&(r,t) X € [S(t) — x(r) h(t)} ,

where x (r) is the electric susceptibility, 6(¢) is the Dirac delta function, and A(?) is the
Heaviside step function. Since the constitutive parameters are driven by oscillating
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fields, they also oscillate in time. Time-dependent properties of these quantities are
addressed in the next section. Because of the complexity of the convolution relationship
between fields, time-domain solutions of Maxwell’s equations are not commonly
attempted. For this reason, most of the analysis presented here will be in the frequency
domain. However, high-speed and large-bandwidth systems can only be effectively
handled in the time domain. For this reason, computational procedures, such as finite-
difference-time-domain (FD-TD) technique, are emerging (see Ref. 2.3).

The Fourier transform of these time-domain constitutive parameters produces
frequency-domain parameters as given by

‘G/,T{Ef(rvt)} = E(ra Cl)), g{“’t(rat)} = M(r’w)a @{U{(r,t)} = U(rv C())

The frequency-domain parameters have the time dimension removed, thus
€-(w) and u,(w) are dimensionless quantities and o (w) has dimensions of mhos per
meter. Only general macroscopic properties of these parameters will be examined at
this time. A more detailed microscopic development is presented in Chapter 5.

The constitutive relations greatly complicate a time-domain solution of Maxwell’s
equations. For this reason, a frequency-domain solution is preferred because the
convolution integrals are not needed. The Fourier transform of the above equations and
the substitution of the constitutive relations into Maxwell’s equations results in the
following:

V X E,0) = —joul,0)H(r,w), 2.9)
V x H(r,w) = o (r,0)E(r,0) + jo e(r,0)E(r,w), (2.10)
V. er,w)E(,w) = p(r,w), (2.11)
and
V. ur,w)H(r,0) = 0. (2.12)

Taking the curl of Faraday’s law, one obtains the frequency-domain wave equation
for the electric field, E

1
V x —VxE(r,w) = (—jwo + o*€)E(r,w). (2.13)
n

The following assumptions are now made:

1. €, u, and o vary slowly with r such that spatial derivatives of €, u, and ¢ can be
ignored.
2. p = 0, the medium contains no net volume charge.

Then, Eq. 2.13 reduces to the frequency-domain wave equation,

VIE(r,0) = (jou(@)o (@) — o’ 1) (@) Er,0) = y2(0)Er,o), (2.14)
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where y (w)(= —jk'(w)) is called the propagation constant. In complex form, it is
given by

o(w)

y(w) = jw\/,u(w)E(w)<1 —J ) = Bra(®) + josp(w) (2.15)

we(w)

where B, (w) is the field absorption coefficient and os, (w) is the field phase coefficient.
To simplify the notation, define

(@) = & () (1 IO ) (2.16)

we(w)

€.(w) is a generalized permittivity, which includes contributions from free charges (via
the conductivity, o (w)) and bound charges (via the relative permittivity, €, (®)). It is
important to distinguish between these two very different processes. In the frequency
domain, all the constitutive parameters are also complex quantities. Therefore, the prop-
agation constant now becomes

y(w) = j% 1 (@)ec(@). 2.17)

As in Chapter 1, let E(r,w) be polarized in the x-direction and propagate in the
z-direction. Then a scalar wave equation is obtained:

V2E.(z.0) = y*(@) Ex(z,0). (2.18)
The solution for monochromatic forward-propagating light is
E (z2,0) = Eyoe 7% = E e Prl@eian (s (2.19a)
where E,o = E(z = 0). In the time domain, the steady-state solution becomes
ec(z,1) = expe P cos(wt — o fp2).

This field is attenuated and delayed or phase shifted as it propagates and the mean-
ing of B¢, (w) and o, (w) is now more clear. For arbitrary polarization and propagation
directions, the forward-propagating polychromatic electric field is expressed as

E(r,w) = Y Ep(w,)e /M@, (2.19b)

Again, optical detectors measure the time-averaged power. Thus, the time-averaged
Poynting vector is of interest, as defined by (recall Eq. 1.18)

1 S 2
(), = zRe[Ex(a))H;‘(w)] z [Watts/(m sr)]. (2.20)

To derive H, in terms of the electric field intensity, we use Faraday’s law and obtain,
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Hy = E, = —E,. (2.21)

Using these results, the magnitude of the time-averaged Poynting vector is the
frequency-domain radiance, L(z,w), which, in terms of the electromagnetic field
becomes

1
L(z,0) = [(L(z,0))] = —Re[

5 ] | Eo|? e 2Pr@), (2.22)

ni(w)

Most media in which light propagates are nonmagnetic, with i = po. Then, the
intrinsic impedance simplifies to

1 1
— = —./e. (2.23)
e Mo

It is of interest to find the real and imaginary parts of the propagation constant, 8y,
and oy, in terms of the generalized permittivity. Using Eq. 2.17, we have

Bra = Re <]%\/6_C) and oy, = Im(j%ﬁ).

It is convenient to define a new parameter representing the dielectric properties of a
medium, the complex index of refraction, n., by

e =n — jka = Jeo = /e, — je! (2.24)

where n is the index of refraction, k, is the index of absorption (also called the extinc-
tion coefficient in some publications), €’ is the real part of the relative permittivity and
€/’ is the imaginary part of the relative permittivity. Now, the field absorption and phase
coefficients become

B = "k, and oy, = —n. (2.25)
C C

The meaning of n and k, is similar to ay, and By,, respectively; n contributes to
phase effects during propagation (e.g., time delay) and k, contributes to attenuation of
the propagating beam caused by absorption. The complex index of refraction affects
refraction and reflection, as will be demonstrated later. Substituting these results into
Eq. 2.22, the radiance now becomes

|Ex0|2 2wk,
L(z,w) = n(w) exp | —

T z) . (2.26)
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The radiance at z = 0, L(0,w), is

o EP
L(z=0,0) = n(w) . (2.27)
2n,
The transmittance in an unbounded medium, 7., (z,w), is therefore defined as
L b
ro(aw) = 22 _ o (2.28)

LO,w)

The transmittance is dimensionless and always between zero and one. The power
absorption coefficient, 8,,(z, ®), is defined as

Bra(@) = 2B10(@) = 2% ka(@0) = —o—e (). (2.29)
c cn(w)

Normally B,, is called the absorption coefficient and the subscript p will be
dropped. It is a fundamental quantity concerning the description of optical propagation.
Expressed in terms of wave numbers, 8,5, (V) becomes

2mv
Babs (V) = 4 vk, (v) = o) e ). (2.30)

2.1.1.2 Temporal Dispersion and Causality

The fact that a medium cannot respond to the incident light field or power until after it
has been illuminated is called causality. This fundamental requirement produces impor-
tant symmetry properties and integral relationships between the real and imaginary
parts of the complex permittivity and mathematical relationships between the real and
imaginary parts of the complex index of refraction. These results will be of great use later.
Another definition of the complex relative permittivity, in terms of the complex elec-

tric susceptibility, x, is given by
&) =1+ x(w), (2.31)

and

€l(@) — jel (@) = 1+ x'(@) — jx"(@). (2.32)

Also, the constitutive relation given by Eq. 2.7 is redefined using the polarization
vector in the time domain, p(r,?),

d(r,t) = €.e(r,t) + p(r,1) (2.33)
where

p(rat) - 6()Xl‘(rvt) * e(rvt)' (234)
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X:(r,t) represents the time-domain response of a passive medium to the electric
field. Causality requires this response to come after the field excites the medium. Thus
X:(¢) (the spatial dependence of x is suppressed, since it is not relevant to the remain-
ing discussion) must contain a “turn on” function to account for causality. Therefore,
for positive values of time

x:(t) = h(t)x (1) (2.35)

where x (¢) is the dimensionless time-domain susceptibility and is a real function. A (z)
is the Heaviside step-function in units of reciprocal time and is given by

1 0 r<0
h(t)= (1 +sgn(t)) = {5 =0 (2.36)
2 1 t>0.

The frequency-domain susceptibility is the Fourier transform of the time-domain
susceptibility (Eq. 2.35) and becomes

[e¢]

X(@) =F (00} = / dix () e, (2.37)
0

This result leads to the following important properties:

1. The static susceptibility is the integral of the material response function over all
positive time. That is,

(o)

x(w=0) = / dix (). (2.38)

0

Therefore, the true static susceptibility requires an infinite observation time.
2. Based on Eq. 2.37 and the fact that x (¢) is real, we obtain the following symmetry
of the frequency-domain susceptibility about the origin of the frequency axis,

x(@) = x"(ew), x'(®)=yx'(-0), and x"(w)=-x"(-w). (2.3%)

The real part of the susceptibility is an even function of w, and the imaginary part
is an odd function. For the permittivity, based on Eq. 2.32, similar statements can
be made:

€ () =€f(—w), €.(w) =€ (—w), and € () =—€(—w). (2.39b)

Based on these results the static susceptibility must be real. Furthermore, it
similarly follows that the complex index of refraction must have the following
symmetry relationships:

n(w) =n"(—~w), n(w)=n(—w), and k,(w)=—k,(—w). (2.39¢)

These symmetry properties are illustrated in Fig. 2.1 for a medium with Debye,
vibrational, and electronic transitions, and are fundamental to realistic models of
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Fig. 2.1 The complex permittivity as a function of frequency representing various resonances in
a medium.

the susceptibility. More details concerning these different transitions will be presented
in Chapters 3 and 4. The symmetry of x (w) forces the shape of absorption and emis-
sion (time-reversed) processes to be matched. This symmetry requirement is a part of
what is called detailed balance.

The inverse transform of Eq. 2.37 can be expressed as the sum of a cosine transform
and a sine transform, as given by

x: (1) = 1 /da) x'(w) cos(wt) + 1 / dw x" (o) sin(wt). (2.40)
2w 2

—00 —0Q

The cosine transform is even in ¢, and the sine transform is odd in ¢. That is, the time-
domain susceptibility can be expressed as a sum of an even function, x,.(¢), and an odd
function, x,,(t), thus

Xie(1) = h(@®)x (@) = Xre () + X0 (1).

Because the time-domain susceptibility is causal, it must be zero for ¢+ < 0. This
means the even and odd susceptibility functions must be equal for positive time so that
they cancel for negative time. This also implies that the noncausal susceptibility can be
expressed as

X (1) =2x10(t) = 2x1(1) for £=0. (2.41)

This result is useful because the time-domain susceptibility can now be determined
from either the real or imaginary parts of the frequency-domain susceptibility.

The frequency-domain representation of x (w) is also given by a convolution of the
time-domain components given in Eq. 2.35,

x(w) = Flh(®)} = F{x®)}. (2.42)
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The Fourier transform of the Heaviside step function is a well-known result given by

1 PP
Fh(t)}) = 38(@) — %E (2.43)

P indicates the Cauchy principle value integral operator and §(w) is the Dirac delta
function. Substituting this result into Eq. 2.42 and recalling that f(x) * §(x) = f(x),
one obtains

o .
X (@) = —P[— *1%«0}] —j[i %{x(r)}]. (2.44)
Tw 2 2

The time symmetry of x(¢) is odd (i.e., x(t) = —x(—t)). This statement is sup-
ported by the following arguments. Negative time represents time reversal or, in this
case, emission (time-reversed absorption). The negative sign indicates that population
inversion exists in the medium and that the gain coefficient is the negative of the
absorption coefficient. Emission is a source to the field. Thus, using the time-domain
Maxwell’s equations together with Egs. 2.33 and 2.34, the following form of the wave
equation in a nonconducting medium is obtained:

19% 1 3%pg 1 9%p,

= -, 2.45
c2 9t epc? 0t €oc? 0t (2.45)

where the subscript a indicates absorption and the subscript e indicates emission. p, is
a sink to the field and p, is a source to the field, and using Eq. 2.34, this justifies the
symmetry relationship of x (¢). Causality must also be present for emission, but now the
Heaviside step function is zero for positive time and unity for negative time. Therefore,
the time reversal of the turn on function must be

h(—=t) =[1—-h(@®)].

Based on these arguments, the time-domain response function x,(#) in the time-
reversed sense (¢t < 0) must be

X () = [1 = h(®)]x@).

The odd symmetry of x (#) now produces a negative x,(¢) as desired.
The Fourier transform of y (¢) is pure imaginary and therefore only the sine trans-
form exists, as given by

Flx 0} =—jFHix®)} (2.46)

where the subscript s indicates a Fourier sine transform. Substitution of these results
into Eq. 2.44 and equating real and imaginary parts, gives

x" (@) == Fix®)} (2.47a)

| =
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and

x'(®) = —P [i * X”(w)]. (2.47b)
Tw

Writing out the convolution integral leads to

X' (@) = lpf do X @) _ Hi {x" (). (2.482)
T w —w

This integral relationship between the real and imaginary parts of the susceptibility
is called a Hilbert transform, Hi{ }, or the Kramers—Kronig relation and is fundamental
to realistic models. The inverse transform is given by

¥'(@) = lP/ do X//(‘”) =Hi' {x (). (2.48b)
T w —w

These relations can also be applied to the permittivity, based on Eq. 2.31, to obtain
€/ () — 1 = Hi (€] () (2.49)

and
€/ (@) = Hi '{e/(w) — 1}. (2.49b)

This causal relationship must also hold between the components of the complex
index of refraction, thus

n(w) — 1 = Hi {k, (o)} (2.50a)

and
ka(@') = Hi {n(w) — 1}. (2.50b)
Using the symmetry properties of x'(w) and x”(w), the single-sided Hilbert trans-

form becomes

o0
2 / " /
(@) = ;P/da)’ %(‘”2 (2.51a)

o —w
0
with the corresponding inverse transform given by

K@)
w? = @?

o0
2
x'(@) = ~wP / dw (2.51b)

0
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The single-sided Hilbert transform for the complex index of refraction follows similarly
and is

o0
2 , Wk (o)
nw)—1=—Pfdw —> (2.52a)
b1 @ — w?
0
with the inverse transform given by
2, [ —1
k() = =P / do % (2.52b)
14 W' — w?

0

These are fundamental relationships of any causal system.

Because of the odd symmetry of x (¢), it must equal zero at ¢ = 0. Thus, x,(t = 0) =0,
also. Using this result with the inverse transform of Eq. 2.40, we obtain the following
integral relationship for x'(w) and €/ (w):

[ee] oo [e ]

/da) ¥ (@) = /da)x’(a)) =0= /da) [e/(w) —1]. (2.53a)

—00 0 0

This is a practical test for any physical model of the refractive index. In a similar
fashion, it can also be shown that for the real part of the index of refraction, the fol-
lowing is true:

[[n(a)) —1]dw = 0. (2.53b)
0

This is an interesting result that shows that the real part of the susceptibility and
index of refraction has equal area above and below unity. Based on Fig.2.1, the permit-
tivity above electronic transitions (x-ray region and above) is less than one, and
asymptotically approaches one as @ goes to infinity.

Also, based on Eqgs. 2.51a and 2.52a, the following relationships for the static sus-
ceptibility and for static index of refraction are obtained:

2 ® " /
X' (=0 == /dw’x ((f)) (2.54a)
4 '
0
and
2 k(o
n(cu:O)—l:—/da)/ a(@)
T 104
0
s (2.54b)
Cc abs (W
- T /dw’ w?

0

where Eq. 2.29 was used to obtain the last equation.
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Practical models, to be developed later, are required to satisfy these fundamental
symmetry properties and integral relationships of temporal dispersion and linear
response theory.

2.1.1.3 Poynting’s Theorem and Conservation of Power Flow

Previous discussion concerned propagation in unbounded media and macroscopic prop-
erties of the media. Realistic theories must include the effect of boundaries, and this
greatly complicates the problem of characterizing propagation.

Consider a bounded linear isotropic medium in the presence of an external optical
source, as shown in Fig. 2.2. The flow of optical power through the medium must be
conserved. A precise mathematical statement is obtained from Poynting’s theorem. We
begin with the time-domain Ampere’s and Faraday’s laws, and manipulate them in the
following way:

ab
Vxe~h=—(—)~h (2.55a)
ot
and
. od
e-Vxh=e-jt+e- o) (2.55b)

Subtract Eq. 2.55b from 2.55a and apply the following identity:

V-(exhy=(Vxe)-h—e-Vxh

along with the definition of the time-domain radiance, to obtain Poynting’s theorem in
point form,

Fig. 2.2 Tlluminated finite medium, where €, i, and o
are scalars. The medium is completely enclosed by a
surface S with volume V. Upon propagation through
the medium, the illuminating ray generates reflected
rays, bulk scattered rays, absorbed rays (which are
then emitted), and a transmitted ray.
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ab ) ad
V@B = h-ejoe o (2.56)

The time-domain version of Poynting’s theorem, as given by Eq. 2.56, leads to a
continuity equation for power flow, for © = o and o = 0 in a lossless medium,

9 0| L(t

where u(= ![(e-d) + (b-h)]) is the stored energy density of the electromagnetic
field. This result is useful when transient effects are important. A good example is the
propagation of a laser pulse inside a lossy resonator.

The corresponding frequency-domain result of Poynting’s theorem is obtained by
beginning with Eqs. 2.9 and 2.10, and following the same mathematical procedure as
above. Since the time-averaged Poynting vector is ultimately desired, we compute
E xH* and E* xH and add the results, yielding

V-Re[ExH] = —(Re[o] + wIm[e])|E[* — wIm [w][H|?. (2.57)

For a medium with no magnetic loss (i.e., Im [] = 0) and using Eqs. 1.18, 2.27, and
2.29, Eq. 2.57 reduces to the following important result concerning electromagnetic
propagation,

V-Re[ExH] =V L(w,r) = —%weo Im[e.(w,r)] |E(a),r)|2
(2.58)

= _ﬁabs(war)L(w’r)’

where L(w)(=14Re[E x H*]) is the frequency-domain time-averaged Poynting’s
vector or the spectral radiance vector. This is the frequency-domain continuity equation
for time-averaged power flow. For propagation in the z-direction, Eq. 2.26 is a solution
to the above equation when B, is independent of position. Based on Eq. 2.58, the
vector radiance is solenoidal if B, is zero (i.e., there are no sinks). If we also consider
a medium with gain and absorption, then a gain coefficient, B;4;,, must be added as a
source to the continuity equation, thus

V- L(w,r) = [—Baps (@,) + Beain(@,1)|L(@,1). (2.59)

Requiring thermal equilibrium, or that the medium is at constant temperature (steady
state), means absorption loss and gain must be equal, and the field of rays is again sole-
noidal. Thus,

V. L(r,») = 0. (2.60)

Within the framework of geometrical optics, this means the number of rays of light
entering a point equals the number leaving. This represents the time-averaged or steady-
state flow of power through a source-free point. Then, Eq. 2.60 is a statement of
conservation of power flow in the form of a source-free steady-state continuity equation
in a lossless medium.
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Further, consider a surface enclosing the medium and an incident ray upon the
medium, as illustrated in Fig. 2.2. The incident ray is reflected at the first and second
interface, as represented by I,; and I, respectively. A series of reflected rays is pro-
duced with the intensity decreasing as the number of reflections increases. Also, surface
roughness increases the angular spread of reflected rays. Scattered rays, I, are pro-
duced within the medium, due to refractive index fluctuations. Light is also absorbed
within the medium, as represented by I,,. The remaining intensity, I, is transmitted. The
volume integration of Eq. 2.60 over the volume, V, contained within the surface, S,
extends the conservation of power flow from a point to a realistic finite medium. Using
the divergence theorem, convert the volume integration to a closed surface integration

to obtain
///V~LdV=¢.L-ﬁdS=O. (2.61)
v S

The unit vector fi points outward perpendicular to the surface, so that incoming rays are
negative and outward rays are positive. Let the surface S be a sphere so that
dS = r2sin6 did¢ = r2d 2, where dS2 is a differential solid angle in units of steradi-
ans. Define the spectral radiant intensity vector, I(€2, ), as seen by an observer at a
distance r from the source, to be

(22, w) = L(Q, w)r* [watts/(sr unit bandwidth)]. (2.62)

Eq. 2.61 becomes, with the substitution of Eq. 2.62 and conversion to solid-angle
integration,

f (2, w) - HdQ = 0. (2.63)

The net or integrated radiant intensity entering and exiting the surface, S, is the sum
of the integrated incident, integrated reflected, integrated scattered, integrated emitted,
and integrated transmitted radiant intensity of light, as given by

?{I(Q,w) Q= — 7€ L(Quw) - AdQ; + 7{ L(QQ o) - dQ,
+ 7{ L(Q Qo) - A, + f L(QQ00) - Ad2
+ y{ (90 2u0) - HdD

s

=0

(2.64)

where €2; is the solid angle of the incident beam, €2, is the solid angle of reflection, €2
is the solid angle of scatter, €2, is the solid angle of emission, and €2; is the solid angle
of transmission. The magnitude of I(€2, w) is the radiometric quantity called the spec-
tral radiant intensity,  (2,w) (e.g., |I(2,w)| = I (2,w)). All unit vectors point in the
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outward direction from the volume. The net absorbed intensity, /,, is assumed to be
reradiated, so that the medium does not change temperature (the assumption of thermal
equilibrium). Thus, the net time-averaged absorbed power equals the time-averaged
integrated emitted power. The reflected light represents surface effects. The scattered
radiant intensity represents bulk scattering effects. These intensities are bidirectional
frequency-domain quantities which depend on the solid angle of incidence, €2;, and the
solid angle corresponding to the type of exiting light.

The closed surface integral over the spectral radiant intensity is the corresponding
spectral flux, ®(w), in units of watts per unit bandwidth. Flux is an especially impor-
tant radiometric quantity because it is directly measurable by common optical detectors.
Thus, based on Eq. 2.64, the following definitions are made:

D, (w) = fli(Qi, w) - 01 dQ2; = Net incident flux, (2.65a)

N
D, (Q;,w) = %I,(Qi,fzr, w) - ndS2, = Net reflected flux, (2.65b)
D (2, w) = ?{IS(SZi, Qs, w) - 1dQ; = Net scattered flux, (2.65¢)
®,(Q;, w) = %Ie(Qi, Qe, w) - 1dQ, = Net emitted flux, (2.65d)

S

and

D, (2, w) = %It(Q,-, Q;, w) - ndS; = Net transmitted flux. (2.65¢)

N

Kirchhoff’s radiation law states that the time-averaged power absorbed must equal
the time-averaged power emitted for a medium at constant temperature and for no ther-
mal conduction or convection losses. In general, the spectral emitted and absorbed flux
must be integrated over all frequencies for this to be true:

/@e(Qi,w)dw=f©a(Qi,w)dw. (2.66)
0 0

When the emitted and radiated power are in thermal equilibrium (e.g., like a black-
body), then integration over all frequencies is not necessary and the spectral power
emitted equals the spectral power absorbed. This can also be true in the narrow spectral
band field case if the absorption feature is also narrow band and uncoupled from its
environment. Thus, in this case it also true that

D, (Q2,0) = P,(Q)w). (2.67)
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Substituting these definitions into Eq. 2.64, we obtain
b =P, + D, + O, + D, (2.68)

Normalizing this expression relative to the incident flux, the important statement of
conservation of power flow is now obtained,

1 = p(20) + @ (i0) + daps (20) + T(Qj0) (2.69)

where the following definitions have been made:

D, (82;,0) .
p(R;,w) = ———— = total integrated reflectance, (2.70a)
®;(w)
D, (2,0) .
Qs0q (2;,0) = ————— = total integrated scatterance, (2.70b)
®;(w)
D, ($2;,w) :
yps (2;,0) = —————— = total integrated absorptance, (2.70¢)
D (w)
and finally
CDZ‘(Qi’w) . .
T(Qw) = W = total integrated transmittance. (2.704d)
ilw

Notice that these quantities are functions of angles of incidence and frequency only.
Equation 2.69 is also called the total power law. The sum of total integrated scatterance
and total integrated absorptance is generally defined as the total integrated extinctance,

Uexts
Aext (825,0) = aps (25,0) + Agea (2, ). (2.71)

Using this result, the total power law becomes
I = p(Q0) + 0ter (R, 0) + T(2,0). (2.72)

Another useful quantity is the spectral directional emittance, which is defined as

qDe (in CL))

c(Sho) = Dpp(w)

(2.73)

where @y, is the blackbody function representing the spectral emission of a medium
which totally absorbs all light at all frequencies in thermal equilibrium (this function
will be given explicitly in Chapter 5). When ®;(w) = ®;;(w), and based on Eq. 2.67,
the directional emittance equals the total integrated absorptance,

€(Q5,0) = agps (24, 0). (2.74)

The above equation is another form of Kirchhoff’s law of radiation.
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This section has presented the effects of boundaries of finite media on optical prop-
agation, and introduced the definition of several practical quantities. Further discussion
of bidirectional quantities will come later.

2.1.1.4 Radiation Transfer Equation Along a Path

Another useful equation governing electromagnetic power flow is the radiation transfer
equation (also called radiation transport equation), which is heuristically based on the
point form of Poynting’s theorem for time-averaged power flow in a homogeneous
medium (see Eq. 2.60). In this case, the concept of the continuity equation is used. The
radiance vector can be thought of as a current density of directed photons. Also, let the
radiance vector in Eq. 2.60 represent only the incident and transmitted radiance. Then
the field is no longer solenoidal and must include sinks, due to scattering and absorp-
tion along the path, and sources, due to path emission and scattering of external sources
into the path. These concepts are illustrated in Fig. 2.3. Also, the point form of
Poynting’s theorem must be applied carefully, since only the integral form has physical
meaning. Therefore, the propagation path is considered finite in size (macroscopic) and
can be represented by a series of connected spheres along a specified path, as shown in
Fig. 2.3. The point form is the limit of the spheres shrinking to a point, and therefore an
approximation. Based on this discussion, consider the following form of Eq. 2.60:

V. L, r)= —p_(0,1) +p, (@, 7). (2.75)

This is a statement of the conservation of steady-state photon flow when sources and
sinks exist. g, is related to the volume density of photon sources, and g_ is related to
the volume density of photon sinks. Equation 2.60 provides an explicit expression for
§_, as given by the following for multiple absorbers:

f-(o.r) = (Z Bubsi (@, r)) L(o.r). (2.76)

As discussed in the previous section, scattering also contributes to loss and, for the case
of single scattering (which will be described in Section 2.1.2), a scattering coefficient,
Bsca, 18 now defined, which is added to the absorption coefficient to obtain the net loss or
extinction coefficient,

,Bext = ﬂabs + ,Bsca~ 2.77)

\\\ External source
Az
Fig. 2.3 Radiation transfer along a

path in the z-direction. Li=L(z=0) L = L(z)
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Therefore, the sink term can be generalized to the form

$_(o.x) = (Z ﬂex,_,xw,r)) L(o.r), (278)

where B,,,; is the extinction coefficient of the ith species, representing photon loss
caused by absorption and single scattering. g is a source function accounting for emis-
sion along the path and scattering along the path by external sources into the field of
view of the receiver. Details of this function will be discussed later when background
radiance is added to the signal, which is introduced in Chapter 11.

The magnitude of the radiance vector is the radiance, and this is the quantity com-
monly used in the radiation transfer equation. Based on Eq. 2.78, Eq. 2.75 is rewritten
to obtain (suppressing for the moment w)

V-L{r) =VL(r)-§ = — (Z ﬂext,i(r)> L(r) + o, (r). (2.79)

The position vector, r, specifying the optical path, is made a function of the scalar
parameter, s. The propagation path is now described along an arc, s, with direction §
(see Fig. 2.6), therefore the differential equation for the radiation transfer equation
becomes

dL
VL)) -8 = T = (Z ﬁex,,,«s)) L(s) + 9, (5) (2.80)

or in differential form

dL = — (Z ﬁex,,i) Lds + g, ds.

This is the radiation transfer equation (also called the radiation transport equation)
for spectral radiance. In the literature on radiation transfer, the extinction coefficient is
commonly replaced by the extinction cross-section, expressed as

Bexti = Coext,i Pnis (2.81)

where C.,,; is the extinction cross-section of the ith species with units of area and p,;
is the corresponding particle volume density with units of reciprocal volume. In some
sense, the extinction cross-section can be visualized as an effective area blocking the
beam, resulting in attenuation (see Section 2.1.2).

To solve Eq. 2.80, consider first the homogeneous portion of this differential equa-
tion, as given by
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29 + (Z ﬂm,(s)> L(s) =0. 2.82)

The solution is easily obtained to be
L(s) = L(0) e~ "W (2.83)

where Top(s) is the optical depth as given by

0p6) = [ 3 Brwi(5)d5. (2.84)
0 i

This result is a generalization of Eq. 2.28, since B,,; now depends on position.
The inhomogeneous differential equation, as given by Eq. 2.80, can now be solved
by observing

deT()D(S)L(S) ton(s dL(s)
T e [ +L(s) (Zﬂ%(s)ﬂ

Since the factor in the brackets is equal to the source function, the solution to
Eq. 2.80 is obtained in a straightforward manner to become the radiation transfer equation
(reinserting w),

L(w, s) = L(w, 0)e~ @) 4 [ 9, (w,s)eor@ Nt @0 gg(2.85a)
0

More details on B,,; and g N will be developed in Chapters 3, 4, 5, and 11. The radi-
ation transfer equation is used when propagation within a medium is along a specified
path. Boundaries can be included by incorporating reflection coefficients at the appro-
priate points along the path.

Equation 2.85a is valid for spectrally dependent radiation transfer. However, many
practical electro-optical systems operate over a finite band of frequencies. For that case,
the measured radiance is band averaged according to

T(w,s)

T(w,s’)

L(s) = /da)L(a),s) = /dw[L(w,O)t(a),s)—i—/er(a),s/)
0

Aw Aw

ds’} (2.85b)

where the internal transmittance is
T(w,s) = e @)

If we ignore sources along the path (e.g., path radiance and scatter) and the source
radiance is constant over the spectral region of interest (Aw), then the band-averaged
transmittance is obtained to be
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where the substitution L(w,0) = L(0) - Aw has been made in Eq. 2.85b. L(0) is the
band-averaged radiance at the source.

Furthermore, in a real electro-optical system the spectral response of the detector
must be included in Eq. 2.85a, so that the measured radiance can be modeled. This is
accomplished by multiplying Eq. 2.85a by the detector spectral response or transfer
function, tf(w). The band integrated result is obtained by integrating over the band of
interest, as given by

s

L(s) = / do tf(a))[L(a), 0)z(w, 5) + / s (@, s)T((a“)) :)) ds} (2.85¢)

Aw 0

2.1.1.5 Total Power Law and Directional Dependence

Let us continue to examine, in more detail, the consequences of some of the defined
quantities used in the total power law. This approach is most useful when the propaga-
tion medium of interest is finite in extent, such as a window or mirror, and can be
enclosed by a surface. Consider, a finite slab of thickness d in thermal equilibrium with
the surrounding environment, and a beam of incident optical energy on its surface that
generates a reflected beam and an attenuated transmitted beam. The surface is not per-
fectly smooth, so that the reflected light will have an angular dependence, as indicated
by the definition of the reflected intensity. Also, the bulk medium scatters light in all
directions, as indicated by the definition of the scattered intensity. Thus, to completely
characterize the angular effects of scatter, both the solid angle of incidence and the solid
angle of the reflected or scattered light must be known. The quantities in Egs. 2.69 and
2.70 depend only on the angles of incidence, so more general definitions are needed.
The geometry is illustrated in Fig. 2.4a for reflectance measurements and 2.4b for scat-
terance measurements. Using the definitions of the flux (Eq. 2.65), a normalized
differential flux is given by

dq)r _ [r(Qis Qrv a))ér i} Ir(Qis Qra Cl)) Cos 9r

D;(w) B P (w) < = ®; (w) ds, (2.86)

where €, is a unit vector that points in the direction of the reflected rays. Based on the
above result, the following bidirectional reflection function is defined:

ao _ (%, Qr, )P (2.87)
er _10 L ry @ L .
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Fig. 2.4 (a) Three-dimensional geometry of focused incident light and the reflected beam defin-
ing a reflectance measurement. (b) Geometry of incident, reflected, and transmitted beams for a
semitransparent slab of thickness d.

0 (L2, ©,, w) is called the bidirectional reflectance distribution function (BRDF). For
single-ray reflection, reciprocity requires the following symmetry relation:

,O(Q[, Qr) = p(Qrs Ql)

Using the definition of scattered flux (Eq. 2.65c), a similar expression for
oea (25, Q2,, w), the bidirectional scatterance distribution function (BSDF), is also
defined to be

dd;
a2

= axa(in Q2 w)ch =1 (Qi» 2, (1)) cos 6, ;. (288)
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In these definitions of BRDF and BSDF, €2, covers the backward hemisphere and €2
represents the full sphere. (Also be aware that the cos 6, ; factor in Egs. 2.86 and 2.88
is not always kept in the definition of the BRDF and BSDF.) BRDF measurements are
for nontransmitting samples (e.g., mirrors, painted surfaces, etc.) and provide informa-
tion about surface roughness. BSDF measurements are for transparent samples (e.g.,
windows) and provide information about the surface and bulk scattering. Also, in this
development, the polarization state of the scattered optical fields has not been
addressed. It is assumed that the observer is not sensitive to polarization. This topic will
be further discussed later in the chapter. Furthermore, the details of scattering mea-
surements are presented in Chapter 6.

Differentiating Eq. 2.88 with respect to area, leads to the definition of irradiance, as
given by

L, — 4% (@ 2 ) (Q )M (2.89)
s = = O iy Nég . — U i» Nar is .
CTdAds, T O “ga T Y

where L, is the scattered radiance and M, is the incident irradiance.

Based on Eq. 2.86, the integral of the BRDF over €2, is the unidirectional
reflectance, as defined in Eq. 2.70a, and is also called the total integrated reflectance
(TIR). Similarly, the integral of the BSDF over €2; is the unidirectional scatterance or
the total integrated scatter (TIS). The BRDF and BSDF are now broken down as a prod-
uct of two factors, the total integrated quantity and a normalized solid-angle-dependent
function called the phase function, P, ,(£2;€2, ), for reflection and scatter, respectively.
The normalization condition on the phase function is

/ Pos( Qs ) d s = 1. (2.90)

The BRDF and BSDF are now written as
P(2:82,) = prp(§2:) Pr(£2;,2) (2.91a)
and
Qe (821,825) = Qgea, 115 (2;) Ps (£2,,€25), (2.91b)

respectively.

It is instructive to further break the phase function into specular and diffuse compo-
nents, separately representing the unscattered beam and the scattered light, respectively,
as given by the following for reflection:

Pr(QisQrvw) = PSr(Qis Qr’w) 8(91 + Qr) + PDr(inQrvw) (292)
and for scatter

Py (2, Q250) =Ps; (82,2, 0)[§ (2 + €25) + 8(€25 — )]

(2.93)
+ PDS (Qh sta)) .
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Specular components (Ps) represent the contributions from the reflected and trans-
mitted rays for a perfectly flat surface. Diffuse components (Pp) represent the effects
of surface roughness. For a uniform surface with randomly oriented roughness there
will be no dependence in the ¢-direction. Thus, scatter from the sample is invariant
under rotation by the angles ¢; and ¢,, and the phase function is a function of
60; and 6, ; only. For diffuse reflectance, the phase function has the interpretation of a
probability density function. It gives the probability of observing a reflected ray in a
particular direction, given a specific incidence angle, which now leads to the realm of
statistical optics.

For a passive medium with no surface roughness, no bulk scatter, and a collimated
ray bundle with incidence angle 6;, incident on the surface such that

p(0:,6,) = ps(6;)8 (6; + 6,)
and

7(6:.6) = 7,(6)8(6; — 0,).

Example 2.1 The diffuse component of a flat opaque medium with small-scale
random roughness (see Fig. 2.4a) is called Lambertian. The phase function is

Pp(6:,6,) = (cosb,)/m, (2.94)

and Pp is independent of the angle of incidence. The cos 6, factor accounts for the
projected illuminated-surface area of the sample. In the case of a transparent
sample with bulk and surface scatter, the phase function is 1/(2w) |cos6y|.
(Because an isotropic phase function is by definition a constant or equal in all
directions, the cos 6, factor is sometimes put into the definition of BRDF/BSDF.
But this change will alter the condition of normalization and is not adopted in
this text.)

The subscript S denotes specular or flat surface terms where the reflected angle
equals the negative of the incident angle and the transmitted angle approximately equals
the incident angle (for nearly parallel surfaces, see Fig. 2.4). Then the generalized total
power law reduces to the simple formula

Ty (0, @) 4 5 (0 ©) 4 Qaps (0 @) = 1. (2.95)

These deterministic specular terms are a function of the complex index of refraction
for spectrally averaged (i.e., the bandwidth of the incident beam washes out interference
effects) polarized light incident on a slab of thickness d, as given by (ignoring interfer-
ence, fluorescence, and diffraction)

[1 = R(8:0)1* exp(—PBas (@)d /c0s 8,)

75 (0hw) = 1 — R2(6;,0) exp(—2Bups (w)d /c0s 0,)

(2.96)
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R(6;,0) + R0, w)[1 — 2R(6;,w)] exp(—2Baps(w)d /cos 0,)
1 — R2(0;,w) exp(—2Baups(w)d /cos B,)

ps(Onw) = , (2.97)

and

1= R @)][1 — exp(—Buss(@)d /<05 8,)]
a0 = R Gy exp(—fas @) fcos8))

R(6,,w) is the single-surface Fresnel power reflection coefficient for polarized light as
a function of the angle of incidence, ;, wave number, and complex index of refraction.
For normal incidence, the above formulas can be applied for unpolarized light because
the Fresnel power reflection coefficients for the two different polarizations are equal.
Explicit formulas of R for unpolarized and polarized light will be presented in Chapter 4.
In general, the specular transmittance for unpolarized light is given by

1
Tunpolarized = E(fx + Tp)»

where 7, and 7, are the transmittances for two orthogonal polarizations (see Section
2.1.2.2). Similar expressions for the unpolarized reflectance are also necessary. The
factor exp(—Bups(w)d/cosb,) is the internal transmittance. S, (@) is the absorption
coefficient, and also will be discussed in more detail in Chapters 4 and 5. 6, is the
refracted angle within the medium, as defined in Fig. 2.4, and is related to 6; according
to the well-known Snell’s law of refraction,

. np .
sinf, = — siné,. (2.99)
np

Equations 2.96-2.98 are derivable from geometrical optics approximations (see
Problem 2.5a) or from a solution of Maxwell’s equations for a uniform infinite slab. The
denominator in Egs. 2.96-2.98 represents contributions from multiple reflections within
the slab. To find explicit formulas for transmittance, reflectance, and extinctance, including
the effects of scattering, requires physical optics, and this is developed later in this chapter.

Including the effects of interference leads to the Airy formulas, which include the
effects of phase of the field for a medium with parallel smooth surfaces (for a deriva-
tion, see Problem 2.5b and Born and Wolf, Ref. 2.1, and P. Yeh, Ref. 2.5 (lossless case).
Again, ignoring contributions from fluorescence, scattering, and diffraction, the specular
transmittance, reflectance, and absorptance, including interference, and for monochro-
matic light, now become

) - R'K (2.100)
T is = s .
ST @ 1 — 2RK cos(2wnsd cos 6,/c) + R2K?
R(1 — 2K cos Qanad cos b, K>
pst (Bneo) = ¢ cos (2wnad cos6a/c) + K°) 2.101)

1 — 2RK cos 2wnyd cosf,/c) + R2K?’
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and

(1+RK)(1-R)(1—-K)
1 — 2RK cos 2wnyd cosf,/c) + R2K?’

Aaps (0, w) = (2.102)

where again the internal transmittance is
K = exp (—Bups (w)d [c0s 6,),

the field reflection coefficient for light from medium 1 reflecting off medium 2 is
ri» = —r21, and the field transmission coefficient is #; = #,; (see Chapter 4 for more
information). The power reflection coefficient is R = |r|»|> and the power transmission
coefficient is T = t15t31, where T + R = 1. These formulas are useful for Fabry—Perot
interferometers and thin-film transmission calculations. Again, one needs to know the
complex index of refraction of the media involved. The finite bandwidth Equations,
2.96-2.98, can be obtained from the monochromatic Equations 2.100-2.102, by per-
forming a spectral average (or an angle average, see Problem 2.5c). At this point, the
problem of modeling the propagation of light is reduced to knowing the geometry of
the ray path and the complex index of refraction.

Thus far we have only considered conservation of power flow for integrated or uni-
directional quantities. This is because Poynting’s theorem and conservation of power
flow only have meaning if integration of the propagation terms covers a completely
enclosed surface. However, it is often necessary to consider a conservation law of power
flow for bidirectional quantities.

The bidirectional reflectance can be equated to the bidirectional emittance based on
the following arguments and Eq. 2.64. For a single incident ray propagating in a single
direction, the incident intensity is described by

L(Q,0) - fi=®;8(2 — ),

where €;- i = 1 and €, is a unit vector pointing in the direction of €2;. For a single ray,
only a single reflected ray, scattered ray, and so on, can exist. If we limit the solid-angle
integrals to these specific directions, since otherwise it is zero, a conservation relation
can be obtained for bidirectional quantities. In the limit of infinitesimal integration
limits, the following is obtained:

Ir(in Qra C()) -fi + IS(Qia QS’ Cl)) -fi + Ie(Qi’ 987 Cl)) -fi
; ; ;
L(2, Q, 0) - f
+ >, .

§(Q2— Q) =

Solid-angle integration is implied on each term in the above expression. That is, the
incident ray can only result in single reflected, scattered, emitted, or transmitted ray.
The delta function reminds us that integration is required to obtain a physically mean-
ingful statement. Using the definitions of bidirectional functions, as given by Eqgs. 2.87
and 2.88, the above equation becomes a statement of conservation of power flow, as
given by
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Region 1 6; : 0,0,
|

m

. n,
Region 2

Fig. 2.5 Emission and reflection between two semi-infinite regions.

8(9 - Qt) = p(QiaQra (U) +a‘vca(9i’ Qmw) + G(Qh Qes w) + ‘C(Qi’ Qt» a))

Consider the geometry of Fig. 2.5, with rays of light being emitted from the surface
at angle 6, into region 1 and an incident ray (at 6;) reflecting at angle 6, (= 6,), also in
region 1. In region 2, there are the corresponding refracted rays. These are semi-infinite
regions, so no light is transmitted (» = 0). The total power law for radiation generated
in region 2 and escaping from the surface into region 1 for a single ray is (now using
solid angles and combining reflectance and scatter into one term)

(2, Qe ) + p(, ) =8(Q— Q). (2.103)

The total power law for incident blackbody radiation from region 1 with the same
solid angle as the emitted light, onto region 2 is

abs (R, 2y, @) + (i, @, @) = §(Q — Q). (2.104)

The spectral bidirectional reflectance is the same for light rays in region 1 reflecting
off the surface as for light rays in region 2 reflecting off the interface between the two
regions. Thus, the following is true:

P(Qi, 2, 0) = p(Qe, 'y, ). (2.105)

Substituting the above equation into Eq. 2.103 and subtracting Eq. 2.103 from
Eq. 2.104, the desired result is obtained, relating internal emission to external bidirec-
tional reflectance:

€. Qe 0) +8(Q2 — Q) ~ 5(Q ~ Q) = Can (X, . ©)

(2.106a)
= (S(Q — Q,) - P(Qi, Qrv (1))

The directional emissivity is obtained by integrating over all internal sources, 2.
Using the principle of reciprocity, this is equivalent to integrating over all possible
external sources, €2;. Thus, the following useful relationship is obtained:

yge(sz’e, Q) d, = €(Qe, ) = 1 — fp(szi,sz,,w)dszi

=1-p(2, 0),

(2.106b)
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where 2, = 2,. Equation 2.106b remains true for a finite semitransparent medium,
when emitted light is observed at angles where no transmitted light from an external
source exists. Also, using reciprocity, the integration over incidence angles can be
changed to the reflected angles.

Example 2.2 Consider painted aluminum; the integrated transmittance must
equal zero. Therefore, using Eqs. 2.69 and 2.74, a simple expression for the direc-
tional emittance is found, similar to the above result,

(i, w) =1 — p(Q, w).

Near room temperature and below, it is much easier to measure the directional
reflectance using a laser than the weak emitted radiance from a surface because of
contaminating background radiance reflected from surrounding structures.

2.1.1.6 Formal Geometrical Optics

Thus far we have used the concept of the plane wave to incorporate loss and reflection
along a propagation path. This restricts the description of the optical path to a straight
line, which is seldom the case. The ability to specify the ray path in a medium of
nonuniform index of refraction is necessary for the discussion of practical problems.
This great need brings us to an introduction to geometrical optics.

Because of the importance of geometrical optics to optical propagation, a formal
development is presented. In this way the approximations and realm of validity of geo-
metrical optics can be precisely stated. The emphasis will be on obtaining a description
of the optical path.

Geometrical optics is a high-frequency asymptotic solution of Maxwell’s equations
to the zeroth order. An asymptotic expression becomes increasingly accurate as a
parameter in that expression becomes increasingly large. An asymptotic representation
of the electromagnetic field with frequency as the large parameter and the leading term
independent of frequency is desired. Such an expression is the Luneberg—Kline series
for E and H, as given by (see Ref. 2.6)

N o E,(r)
E(r) ~ e—]kox/f(r)”;) oy (2.107a)
and
, > H(r)
H(r) ~ e*fkowr)m;) Gy (2.107b)

Substituting these asymptotic expressions into the frequency-domain Maxwell’s
equations (Eqgs. 2.9-2.12) for the charge density p = 0, assuming that €,, i,, ando are
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constant in frequency, and using the relation kj = w/c, one obtains the following
expansion:

SOV E, (r) -y <cV X Ep (r) n cu(r?Hm(r)) ’ (2.108a)

J(,())m — Ja))m+1 (]w)m

H,,(r) cV x Hy,(r) ce(r)E,, (r) co ()Ep (1)
v - - - . (2.108b
Z O Gy ; ( (jeoy+! (jeoy™ (jeoy+! ) ( )

ZEm(r) V) = Z[ ¢ ( w(r) - — Ve, (r) + V - Ep (r))}, (2.108c)
(joo)™ o LGy ( )

m

and

— (jwo)™ — | (jo)mt! ( )

Based on Fig. 2.1, the assumption that the permittivity, permeability, and conductiv-
ity are frequency independent means that €,, 0, and u, are constant in frequency and
complex in general (although treated as real in the following). Grouping together terms
of the same order in w leads to the following sets of Maxwell’s equations to various
orders in w:

Order 0:
Vi (r) x Ey(r) = cuu(r)Hy(r), (2.109a)
Vi (r) x Hy(r) = — ce ()Ey(r), (2.109b)
Eo(r) - Vy(r) = 0, (2.109¢)
and
Hy(r) - Vi (r) = 0. (2.109d)

Equations 2.109¢ and 2.109d show that the E-field and H-field are perpendicular to
the direction of V.

Order 1:

Vi (r) x E1(r) = ¢V x Ey(r) + cu(r)Hy (1), (2.110a)

co(r)

Vir(r) x Hi(r) = ¢V x Hy(r) — ce, (r)E((r) — . Ey(r), (2.110b)
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Ei(r) - Vy/(r) = By - - fr) Ve, (r) + ¢V - Eqo(r), (2.110¢)
and '
Hmvam:mmyj%wmﬂfVHmy (2.110d)

and so on. For w large, the zero-order equations are the most significant, and are the
basis for geometrical optics. This is why geometrical optics is considered valid at high
or optical frequencies. The higher order equations contribute to the geometrical theory
of diffraction (GTD) and propagation in conductive media. GTD is commonly applied
to microwave theory and is beyond the scope of this text. References on GTD are given
in the Bibliography (see Refs. 2.6 and 2.7).

For a dielectric medium, the geometrical optic field is a transverse electromagnetic
(TEM) wave, thus Vi points in the direction of propagation. To see this for a simple
case, consider the surface function of constant phase for a plane wave (see Eq. 2.19)

Y =nd r 2.111)

where § is a unit vector pointing in the direction of propagation, and refractive index, n,
is a constant in frequency and position. Then (this is true in general)

Vi = ns. (2.112)

Since the surfaces, specified by ¥ = constant, are the wavefronts, based on
Eq. 2.112, the normal to these surfaces points in the direction of propagation. This con-
cept is illustrated in Fig. 1.4 for regions were the plane-wave approximation is valid.

Following the same procedure for deriving the wave equation in a nonmagnetic
medium, Eqs. 2.109a—d result in a more general expression valid for inhomogeneous
media, called the eikonal equation, as given by

VY (0)|* = n’(r). (2.113)

This is a more general result than Eq. 2.112, because » is a function of position but
is still independent of frequency. Again, it is of central interest to determine the time-
averaged Poynting vector for the case of geometrical optics. Keeping only the leading
terms in the Luneberg—Kline series leads to

(L) = %Re [Eo x Hg]. (2.114)

Using Eq. 2.109a for an expression of Hy, in terms of E,, and substituting into the
above equation results in

|Eo|*
§£ t =
(L) o

V. (2.115)

Based on the eikonal equation and the fact that the Poynting vector points in the
direction of propagation, it follows that
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|Eo|?

(Er,0) = 200

n(r)s (2.116)

where § is a unit vector pointing in the direction of propagation. This result is consistent
with Eq. 2.27, which was obtained for the unbounded plane wave. The above equation is
more general, since the index of refraction depends on position and a general path can be
used. Based on this result the eikonal equation can be written in vector form as

Vi (r) = n(r)s. (2.117)

Again this is a generalization of Eq. 2.112. The eikonal equation establishes a rela-
tionship between the complex index of refraction and the phase. This is a basic equation
of geometrical optics, because it allows one to calculate the ray path. Consider an arc of
length s with a position vector, r, locating a point P on the arc as illustrated in Fig. 2.6,
then in terms of differential arc lengths the unit vector, §, is expressed as

= fim 20 = 9T (2.118)

§= lim — = —. .
As—0 As ds

Using this result with the vector eikonal equation we obtain the following differen-

tial equation for the ray path in terms of the spatial variation of the real part of the
refractive index,

d

ary _¢ 2.119

Therefore, to completely specify a propagation problem within the context of geo-
metrical optics, the spatial dependence and magnitude of the index of refraction must

r

r,

Fig. 2.6 Ray path geometry.
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be known. Most practical problems concerning the propagation of light can be solved
within the limits of geometrical optics. For this reason most of the remaining text will
concentrate on understanding the complex index of refraction.

Spatial variations in the refractive index that are much larger than a wavelength lead to
refraction for continuous variation and reflection for discontinuous variation. When the
spatial variations of the index of refraction are on the order of the wavelength, then dif-
fraction effects are important and the geometrical optics description of refraction breaks
down. This becomes the topic of scattering, which is introduced in the next section.

Example 2.3 For n = constant, Eq. 2.119 reduces to

d’r
o,
ds?
which leads to the following solution:
r=sA+B.

This is an equation for a straight line path as expected, based on the plane-wave
solutions obtained in the first section.

2.1.2 Elastic Scattering: Physical Optics

Scattering phenomena are of concern when refractive index (real part) spatial variations
or fluctuations are on the order of a wavelength or less, and are categorized as either
elastic or inelastic. Variations in the refractive index are caused by particles (molecules,
aerosols, dust, fog, etc.), voids (bubbles in liquids or solids) or statistical fluctuations in
the density. Media fluctuation effects, much larger than a wavelength, are covered in
turbulence, which is outside the scope of this book. Elastic scattering refers to interac-
tions with a medium where no energy is given or taken away from the incident field.
Thus, the frequency of the incident light is unchanged by the interaction. Inelastic scat-
tering, on the other hand, represents scattering where the frequency of the incident light
has changed after the scattering interaction. Inelastic scattering involving vibrational
and rotational transitions in the scattering medium is called Raman scatter. Inelastic
scattering involving translational or acoustic transitions is called Brillouin scatter. To
simplify this introductory section, only elastic scattering will be considered.

2.1.2.1 Particle Scattering

In the previous section we showed that the absorption coefficient, 8,5, and the index of
refraction, n, affect the attenuation and phase of a propagating plane wave. These quan-
tities are based on resonant phenomena of the medium. Now, we will examine the
nonresonant process called particle scattering. This will lead to formulas for the scat-
tering coefficient, fi.,. A few restrictions will be applied to the development:

1. The scattered light has the same frequency as the incident light. Raman and
Brillouin scattering are ignored and only elastic scattering will be considered.
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2. The scattering particles are independent. One particle can be studied to understand
many particles.

3. Single scattering dominates, that is, the scattering by N particles is N times the
scattering function of one particle. Essentially, the incident light ray is scattered by
only one particle and sees no other. In the case of multiple scattering, more than
one particle interacts with an incident ray before it exits the medium. Single scat-
tering dominates when Bg,z < 0.1 or when B,z scales with the path length, z.

Scattering can be treated either as classical or as quantum phenomena. However, a
quantum approach is more important for molecular inelastic scatter, and practical scat-
tering problems must, also, address larger scatters (clouds, fog, dust, etc. in the earth’s
atmosphere and grain boundaries in polycrystalline solids). For elastic scatter, quantum
and classical models agree. Thus, scattering will be treated classically without any loss
of generality. Molecular scattering will be treated classically via Rayleigh scattering.

Consider an unpolarized uniform plane wave, E;(= Ej exp (—jk'z + jowt)), illumi-
nating a single particle, as shown in Fig. 2.7. The scattered field can be represented by
an unpolarized spherically outgoing wave (recall Eq. 1.20) given by

—jk'r+ jot
Es = S0, ¢5) ———Eio. (2.120)
jk'r
S(6s, ¢y) is called the amplitude function, much like an antenna pattern. (In general, the
amplitude function is bidirectional and depends on the solid angle of incidence as well.)
To simplify the following analysis the incident angle is fixed, forming a collimated
beam, as specified in Fig. 2.7. In terms of the incident field, the scattered field becomes

efjk’r+jk’z

E; = S(0, ¢3)fEi- (2.121)
Jjk'r

Again, in optics we are interested in the magnitude of the time-averaged Poynting
vector of the scattered field, or the scattered radiance, Lg.,,

E2 1S, )P

Lyo(S2) = e = M;, (2.122)
Incident Field Scattered Field Observed Field
N
N
TN - >|_ ]
E, E, E,

Fig. 2.7 Illustration of scattering phenomena.
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where M, is the incident irradiance (watts/cm?) and the amplitude function magnitude
squared takes on the unit 1/sr. Based on this formula and Eqgs. 2.62 and 2.65c, the inte-
grated scatter cross-section, Cy, is defined as

C —%dQC @)—¢ fﬂ2w®”2 (2.123)
sca — S sca s - Ml k2 .

where Cy,(€2,) is the scattering cross-section with units of area/steradian for fixed
angle of incidence, 6; = 0. For spherical particles, C,., is independent of 6;.

Since we are interested in attenuation or total extinction, the amplitude function in
the forward direction, S(6; = 0), is of interest. This represents the scattered field that
will be detected by the observer, and indistinguishable from the incident field. The for-
ward and backward scattered fields are special cases because interference from the
incident field must be included. Because of the small angles, it is a good approximation
to state in the plane of the observer (recall Eq. 1.21), that

Recall from Chapter 1 that this is the paraxial ray approximation. The total field at
the observer is the sum of the incident and forward scattered (for 6, = 0) fields and
becomes

(2.124)

0 —jk (x%+y
E,,=E,~+ES=E,~<1+S() L ))

Jk'

where

Pm)wﬁwﬂ
e = <

k'z

in the far field for z large, which is consistent with the single scatter approximation. The
observed radiance, to first order in S(0), is

) 2 */k’(v +y ) 2
IE; + Eg|"~ (1 — kTRe jS0)e = |E;|”. (2.125)

The first term is the unattenuated radiance. The second term represents loss or light
removed from the observer’s aperture. Integration of the second over the xy-plane gives
the general result for the forward direction extinction cross-section, Cy;,

47r
Cexi(6s = 0) = —Re[S(0)], (2.126)

where |E,|?> = (1 — C.;)|E;|*>. When the particle both absorbs and scatters, then the
forward extinction cross-section is the sum of the absorption cross-section, Cyp, and
the scatter cross-section caused by the presence of the particles, thus
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Coxt = Cyq + Caps (2127)

Equation 2.126 is the fundamental forward extinction formula for scattering. Notice
the similarity between this procedure for a blocking aperture and that for the transmit-
ting aperture of Section 1.2.1.2 and diffraction theory. Thus, the mechanism of loss is
more than a geometrical optics blocking of rays, but includes diffraction effects as well.
Also, because scattered light rays are bent around the particle, care must be used in the
measurement of C,,, to ensure that 8; > 0 rays are excluded from the field of view.

Now let us consider a cloud of scatterers, each independent and characterized by
their amplitude function, S; (6, ¢,). Again, we are interested in the intensities, but now
must worry about cross-terms, S; (05, ¢5)S; (0, ¢5), where i # j. However, the random-
ness of the phase means all the cross-terms average to zero. Thus, for single scattering,

L0y ¢0) = Y Lyi(0s ¢0) (2.128)

and it further follows (by integrating over all scatter directions, €2;)
C&‘a = Z Ci,.sup (2129)

The situation for 6,(= 6;) = 0 is different, the phase relationship between the inci-
dent and scattered fields is fixed and not random. In this case, the fields are added and

S(0) =) Si(0) (2.130)

and

Cext = Y Ciexr- (2.131)

Now, consider a slab with many scatters, as illustrated in Fig. 2.8. Assume all the
particles have the same S(6;, ¢5), are independent, and that there are N particles with a
particle number density p,. The field at the observer is influenced by scattering from all
particles in the slab, but the observed forward traveling wave is coherently influenced
only by the particles in the “active” volume of the slab, which coincides with a few cen-
tral Fresnel zones, as seen by the observer. For r large enough (r ~ z) then

1 K (2?)
E,=E; |1+ S(0) E —e = . (2.132)
~ Jjk'z

Converting the sum on N to a volume integration, we have

Z - Py /dV. (2.133)
N
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Incident Field . Scattered Field Observed Field

~

I PR

Fig. 2.8 Transmission through a slab of thickness z containing many particles.

Then, for k' = kj = 27 /A, in the vacuum outside the particles, Eq. 2.132 becomes

Z oo o]

1 ik, 62452

E, = E; 1+S(0)pp/dz’/dx/dy ——e T @

Jjko?
0 —00 —00

Completing the integration yields

2
E, =E; <1 — k_(/)szZS(O)) (2.134)

It is of great interest to relate this formalism for single scatter to the formalism
developed for absorption in Section 2.1.1.1. Consider the E-field at the observation
point in terms of a plane wave, of the form

Eo = Eo() e—jkonz’

just after propagation through a scattering medium with an effective index n. The
change in the field relative to a particle-free vacuum with n = 1 is

e—jk(’)ﬁz

= e KD ) — jkz(m — 1) (2.135)
e /%o*

for n close to 1. Then, recognizing that E; = E,g and using Eq. 2.134 leads to

|Eo|

Ei|

2
=1 jkpz@—1)=1- k—Zp,,zS(O). (2.136)
0

Then, single scattering phenomena are represented by a new complex index of
refraction,
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. 2 2
(ng —1) — jks = k—(,)3,0p (Im[S(O)] - J@PpRe[S(O)O . (2.137)

(ng — 1) is the real part of the scattering index and is usually close to zero, thus very
small compared with the normal index caused by absorption. &; is the imaginary part of
the scattering index, and includes the effects of particle scattering and absorption.
A scattering coefficient for nonabsorbing particles can be defined analogously to the
absorption coefficient using Eq. 2.29. Thus,

, 4
Bsca = 2kiks = k_{)szRe[S(O)]' (2.138)

Comparing this result to Eq. 2.126 for a single particle, we obtain the following rela-
tion for the extinction coefficient,

ﬁext O =6;) = ppcexr~ (2.139)

In this way, single scatter and absorption by particles are handled by a familiar for-
malism through the complex index of refraction.

If the particles are embedded in a dielectric medium, then the background absorp-
tion and refraction can be included in a straightforward manner. The combination of
background absorption and particle processes leads to the definition of the extinction
coefficient, B,x;, in terms of B,ps and By,

,Bext = ,Babs + ,Bxca (Gv = 91) (2140&)

The net index of refraction also becomes
Nper =0 + (n; — 1). (2.140b)

Now the total power law, as given by Eqgs. 2.96-2.98, can be modified to include
single scatter loss,

[1 = R(6®)1* exp [—Bexs (6 ) d /c0s 8]

) = R 0u0) X (2 ) d 03 0,1 (14D
Gy RO + RO = 2R G0 exp 2o Cr) dfeost)
T = R2(0,0) exp 2B (0u0) d /€05, ]
and

Oy = L= ROOUL —exp[—fon @) /c0sO1} | 1
Wexts Ui W) = 1 — R(6;,w) exp [—Bex: (B, w)d /cos 6,] . .
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oy 5(0;,w) is the total integrated extinctance. When B, = 0, the total integrated
extinctance reduces to the absorptance (Eq. 2.98). When B,,; = 0 and the particles are
nonabsorbing, the total integrated extinctance reduces to

aext,S(.Babx - O) = ,Bsca (et)d/ cos ea = axca,S(el’)a (2144)

where o4 s(6,) is the total integrated scatterance, and related to the integrated scatter
cross-section, as given by Eq. 2.123, according to

aycrLS(ei) = Csca (Qi)pl,d/cos ea = Cext(gi = Gs),opd/cos 9a~ (2145)

This result further develops the BSDF, as given in Eq. 2.91.

Since the transmittance, reflectance, and extinctance are integrated quantities, the
extinction coefficient changes, depending on the angular extent of the integration.
Transmittance and reflectance are specular and only considered in one direction. Based
on Eqs. 2.144 and 2.145, the total integrated scatter, on the other hand, is integrated over
all angles, which changes the functional form of the scatter coefficient to

Bsea(0i) = Cyq (9[),01,. (2.146)

This result is equivalent to Eq. 2.138, which considers the extinction in the trans-
mitted direction only. This equivalence is the point of the optical theorem (see Bohren
and Huffman, Ref. 2.9).

2.1.2.2 Polarization of Light

Thus far, the propagation medium has been linear and isotropic, and has not required a
detailed discussion of polarization of the electromagnetic field. It was assumed that the
polarization does not change during propagation. Because of the many different non-
spherical shapes of particles, the scattered field can have different polarization
properties from the incident field. A review of the characterization of light polarization
is presented in this section to prepare for the introduction of this topic.

Two categories are used to characterize polarization, the state or type of polarization
and the degree of polarization. Table 2.1 lists the various types of polarizations and the
corresponding designations.

Linear polarization is usually designated relative to an interface of discontinuous
indices of refraction and the plane of incidence, which includes both the incident and
reflected rays. When the E-field is in the plane of incidence, the light is vertically polar-
ized and parallel to the plane of incidence in the direction of the unit vector €. When
the E-field is perpendicular to the plane of incidence the light is horizontally polarized
and parallel to the surface in the direction of the unit vector €, . These concepts are illus-
trated in Fig. 2.9. The polarization vector has usually been assumed in the x-direction
in past discussions, but can be any direction perpendicular to the propagation direction.
Thus, to specify linear polarization in general requires a two-dimensional orthonormal
vector basis set, as given by

& =ag +be,, (2.147)



62 OPTICAL PROPAGATION IN LINEAR MEDIA

Table 2.1 States of Polarization

State Designation
Linear Horizontal, L, perpendicular, s, o
Vertical, ||, parallel, p,
Circular Right-handed
Left-handed
Elliptical Right-handed

Left-handed

where
a+b’=1=¢-¢& and é||'éJ_ =0
Orthonormal circular polarization basis vectors are complex, and given by

A | P A |
ekzﬁs"—i-jeL and 8L=ﬁ(e"—j£l), (2.148a)

for right and left circular polarization, respectively, where
€, €r=1=¢,-€ and &, & =0. (2.148b)

Any polarization can be expressed in terms of this basis set as well. Thus it is not
necessary to define a basis set for elliptical polarization.

The degree of polarization is an indication of the percentage of light that is polar-
ized. Light may be polarized to a high degree, as is the case for some lasers. Light may
be unpolarized, as is the case for blackbody radiation. Unpolarized light contains equal
amounts of statistically independent horizontally and vertically polarized light. Light
may also contain some levels of polarized and unpolarized light; this is referred to as
partially polarized. It may also be of interest for polarized light, to determine the degree

Ep
SN O Reflected
" ,/—
7 ARG
i itted

Fig. 2.9 Plane-wave reflection at a dielectric interface for parallel and perpendicular polarizations
in the plane of incidence.
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of linear or circular polarization within the polarized beam. This requires more sophis-
tication than just specifying the polarization state.

The choice of polarization basis sets does not indicate the state and degree of polar-
ization. To do this requires the four-component Stokes vector, as defined below and
computed using Eq. 2.19a,

I (E II +E E7), |E||0| +|Eol?

Q (E ED) | _1 |Ejol* — | E Lol (2.149)
U (E E* + E Ef ) 2 | 2E)0E% cosl(ap — aisp)z] ’

174 JUE, E* — EJ_E”> 2E 0 EY o sinl (o — a1gp)2]

All the Stokes vector components are real and measurable. [ is proportional to the
total radiance of the light (by a factor of 1/(2n), see Eq. 1.19), the sum of all polarized
and unpolarized light intensities. Q is a measure of the difference of horizontal and ver-
tical light and can be experimentally determined by using linear polarizers. Also, the
Stokes vector requires only three components when the light is completely polarized.
The fourth component determines the degree of polarization (see Born and Wolf,
Ref. 2.1, p. 30).

However, if unpolarized light is present in the beam then another measurement is
required to uniquely determine the degree of polarization. The polarizer can be rotated
+45° and the previous experiment repeated. Thus, the difference will change if the light
is polarized, but will not change if the light is unpolarized. The rotation of the polar-
ization basis vectors is accomplished by the following transformation

£, _ cosd sin@) (€,
¢ ) \—sin® cosd éll (2.150)

For 6 = 45°, the new orthonormal basis vectors, €, and € , become

1

. A a - L o 4
S’ZESH—’_SJ‘ and €+:E(£”_SL)’ (2.151)

as illustrated in Fig. 2.10. The corresponding E-field amplitudes in the €, and €_direc-
tions are

1 1
E = E(E|| +E,) and E, = E(E” +E)). (2.152)

To repeat the previous experiment requires computation of the difference of the
polarized intensities in the €, and €_reference frame. The result is

E,E: —E_E* = E\E% + E, E. (2.153)
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A ﬂ\
EJ.

Fig. 2.10 Rotation of polarization unit vector basis set.

This is the U component of the Stokes vector. As a linear polarizer is rotated, it
cannot distinguish between unpolarized and circularly polarized light. Thus the final
test is to look at the difference of right and left circularly polarized light.

Using the basis vectors as defined in Eq. 2.148 the E-field components can be found
by projection via the dot product,

N 1 .
E-& = Ez = E(EH —JjEL), (2.154a)
and
e 1 .
E-&§ = E.L = E(E” — jE)), (2.154b)

The difference of the right circularly polarized and left circularly polarized light
intensities becomes

ExEy — E E} = j (E\E] — E E). (2.155)

This represents the fourth component in the Stokes vector. From these measurements
the degree of polarization can be found, using the following formula:

VO P+ U+ V2

Degree of polarization = 7

(2.156)

When the degree of polarization is 0, the light is unpolarized. When it is 1, the light
is competely polarized. Partial polarization occurs when the degree of polarization is
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between 0 and 1. Also, the degree of polarization for linear and circular polarization can
be obtained by the following formulas:

JOTT?

Degree of linear polarization = 7

(2.157)
and

Vv
Degree of circular polarization = T (2.158)

Based on Eqgs. 2.149, 2.153, and 2.155, the Stokes parameters can be experimentally
determined according to the following equation:

1 L L
Q _ LV - Lh _ L — 2Lh
U =T1o L+ L. =T1o L —2L._ (2.159a)
\% Lp—L; L—-2L;
where (v = vertical, 7 = horizontal, + = +45°, — = —45°, etc., polarization), and
L=Ly+L,=L,+L_=ILg+1L;. (2.159b)

Four independent radiance measurements are required to determine the four inde-
pendent Stokes parameters. However, the results using seven radiance measurements
lead to direct physical interpretation and will be used in following discussions. In matrix
form, Eq. 2.159 becomes

L

1 1 0 0 0 0 0 é"
el _[o1 -1 0 00 o0 "1

Vv 00 0 0 01 -1 -

Lg

Ly

(T) is the transformation matrix between the Stokes vector space and a vector space
containing experimentally determined components based on radiance measurements
with polarizers. Thus, the Stokes vector is a practical representation of polarization and
allows the connection between theory (Eq. 2.149) and experiment (Eq. 2.159). The
inverse transform is also useful, and is given by
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1
L=—T)"'s (2.161)
no
where

2 0 0 0

1 1 0 0

1 1 -1 0 0

M7 =511 0o 1 o0

1 0 -1 0

1 0 0 1

1 0 0 -1

Based on Eq. 2.160, the Stokes vectors for standard states of polarization can be
directly determined, and are listed in Table 2.2. The Stokes vectors are normalized so
that / = 1 in the table.

2.1.2.3 Scattering and Polarization

When the scattering particle is spherical, the scattered light has the same state of polar-
ization as the incident light field. However, very few particles and molecules are
spherical in shape and, in general, the scattered field has a different polarization char-
acter relative to the incident field. Since the state and degree of polarization is
completely specified by the Stokes vector, it is desirable to have a transformation matrix
which produces the transmitted or scattered-field Stokes vector given the incident-field
Stokes vector. Such a matrix is called the Mueller matrix, (M), as defined by

Table 2.2 Normalized Stokes Vectors for Various States of Polarization

i
[

Vertical Horizontal

it

Right Left

Unpolarized

Linearly polarized

1
0
0

5° +45°

Circularly polarized
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I My Mp Mz My I;
O My My My My 0i

: U, M3 My Miz Miy U; (M)s; ( )
Vs My My Mgz My Vi

The Mueller matrix elements can be determined both experimentally and theoreti-
cally. Each matrix element is a bidirectional function of €2; and €2;.

Experimental determination of the Mueller matrix elements is based on Egs. 2.160 and
2.161, and the following transformation between the incident and scattered L vectors

Ly Xoo Xov Xon Xo+r Xo- Xor Xor L;
Lvs XUO va th Xv+ Xv— XUR XUL Lvi
Ly, Xno Xno Xpn Xpny Xu— Xnr Xnr Ly
Ls: L+s = X+0 X+v X+h X++ X+, X+R X+L L+i :(X)L,-.
L, Xo X.o X Xoo X X X, |11,
L g Xro Xro Xgrn Xrr Xr- Xgr Xre Lp;
Ly Xpo Xpv X X X Xir X1t Ly;

(2.163)

The (X) matrix represents 49 different but related experimental measurements
involving various combinations of previously mentioned polarizers. The subscript 0
indicates unpolarized light, v, vertical polarization, &, horizontal polarization, +, 45°
polarization, —, —45° polarization, R, right circular polarization, and L, left circular
polarization. The first subscript indicates the polarization of the incident light and the
last subscript indicates the polarizer used on the scattered or transmitted light before the
detector. These are more measurements than needed. However, this approach leads to
Mueller matrix elements with direct interpretation. The experimental Mueller matrix is
obtained by the following matrix transformation:

(M) = (T)(X)(T)"".

Performing the transformation, the experimentally determined Mueller matrix
becomes

(M)o =

5Xoo (Xov — Xon) (Xo+ — Xo-) (Xor — Xor)
l S(XUO - XhO) (va + Xhh) - (th + th) (Xv+ + th) - (Xh+ - Xuf) (XUR + XhL) - (XhR + XUL)
2| 5(X40—X0) Xpp+Xp) =Xy + X)) Xr +X ) - X1+ X1 ) Xyp+Xop) — (Xp+ Xip)
5(Xro — Xr0)  (Xro+ Xrn) — Xpo + Xgn)  (Xp+ +Xp-) — (X + Xr-)  (Xgrr + Xir) — (Xor + XrL)

(2.164)

To obtain this result the following relationships were used:

Xoo = Xov + Xon = Xot + Xo- = Xor + Xor-
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In this formulation of the Mueller matrix, the M;; component is related to the BSDF
or X,, when the incident and scattered fields, are properly defined (see Eq. 2.86). Thus,
the Mueller matrix represents all combinations of polarization states of the incident and
scattered fields, and each component is a bidirectional function of the solid angle of
incidence and the solid angle of scatter. The BSDF concept now has been generalized
to include polarization.

Theoretical determination of the Mueller matrix begins with the scattering matrix,
(S), which is based on a generalization of Eq. 2.121 by representing the incident and
scattered E-fields in terms of two orthogonal directions of polarization (vertical and
horizontal in this case). Therefore,

B, = ((Eo) = 0 (81209 @20 ) (B e b
"7\ Ens i\ S Q) Si(Ru ) ) \ En jkr :
(2.165)

Since we are interested in calculating optical field intensities and, ultimately, the
Stokes vector, an intermediate step is necessary. This step begins with the definition of
the coherency matrix, (C), defined as (see O’Neill, Ref. 2.10, Chapter 9)

(C) = (e(t) x €l(r)), = (; ?) (2.166)
yx yy

where x represents a direct or Kronecker matrix product, e’ is the Hermitian conjugate
of e and

1
J,'j = (eie;)[ = ERG[EIEJ*]

Using Eq. 2.165 and the definition of the coherency matrix, a relation between the
scattered and incident coherency matrices can be obtained, and is given by

1 S S)*
(© = e x &)y = a5 (B < (57BN = L2 ey, aen

This result can be compared to Eq. 2.122. To express the above equation in matrix
form requires reformatting the coherency matrix into a column vector, then

Jiexs S Sz Sua S» Jexi _
J 1 Siz Sie S Su i (S)
C = xys = — - w = —C 2168
' Jyxs K22 | S31 S Sat S Jyxi k22" ( )
Jyys S33 S Siz Swm Jyyi
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where
Sij =S S]*

The matrix transformation relationship between the coherency vector and the Stokes
vector is straightforward to express,

Jox + Jyy 1 0 0 1 T
_ Jxx - Jyy 1 0 0 —1 ny _ =
’ Jey + Jyx 01 1 0 Jox = (DC. (2.169)
J Uy = Jy) 0 j —j 0 Jyy

The inverse transform is also needed and is given by

1 1 0 0 1
1o o1 —j 01 _ m-1
c=5lo o1 Jllo|=Ds (2.170)
1 -1 0 0 \%

Using Egs. 2.162, 2.168, 2.169, and 2.170, the theoretical Mueller matrix can be
obtained from the following formula:

1

(M)th = —k’2r2

MES) M. (2.171)

The solution is

1
(M) = 52 X
2k"”r

(S11— 833+ 82— Sua) (St — 833 — S+ Saa)  (S12— Saa + 521 — Sa3) j(S21 — Saz — Si2 + S34)
(S13+ 831 + S2a+Sp)  (Si3+ 831 — S —Sw2)  (Sia+ 832+ 823+ Sa1)  j(Sia+ S32 — S23 — Sar)
J(S13 = 831 + S24 = S2) j(S13— 831 — S+ Sa2)  j(S1a — S22+ 823 — Sa1)  (Sia — S32 — So3 + Sar)

(2.172)

( (St + 82+ 833+ Saa)  (S11+ 833 — S22 — Saa)  (Si2+ Saa + So1 + Sa3) j(Sa1 + Saz — Si2 — S34)

Again the M;; component is the BSDF when both the incident and scattered fields
are unpolarized.

As an example, consider the characterization of a linear polarizer at an arbitrary
angle, & which is illuminated by a plane wave. The scattering matrix between the inci-
dent and transmitted fields is

Ey\ _ cos’& sin& cos & E,;
(Em) - <sin$ cosé  sin’E ) <Em ) (2.173)
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Table 2.3. Mueller Matrices for Various Polarizers

Vertical polarizer, & = 0° Horizontal polarizer, £ = 90°
1 100 1 -1 00
If1 100 -1 1 00
210 0 0 O 2 0 0 00
00 0O 0 000
45° polarizer, & = 45° —45° polarizer, & = —45°
1 010 1 0 -1 0
1jo 0o 00 1 00 0O
211 0 1 0 21-1 0 -1 0
00 00 00 0O
Right circular polarizer Left circular polarizer

L=
-

1 0 01 1 1
00 00 000 O
0000 000 O
1 0 01 -1 0 0 1

This equation is for plane-wave transmission, thus the multiplicative factor of Eq. 2.165 for spherical-wave propagation is

not appropriate.

Following the previously described procedure, the computed Mueller matrix becomes

1 cos 2& sin 2&
(M), — 1 cos2¢ cos?2¢ cos 2& sin 2&
=75 | sin2¢ sin2& cos2& sin?2¢
0 0 0

(2.174)

[N e)

Based on this result, the Mueller matrices for the linear polarizers needed to meas-
ure the Stokes vector components can be computed. The results are listed in Table 2.3,
which also contain Mueller matrices for circular polarizers.

2.2 Optical Propagation in Matter

The propagation of beams and pulses of light in matter are now briefly considered. This
section extends Section 1.3 for vacuum by updating previous equations for propagation
in matter.

2.2.1 Beam Propagation

Equation 1.39 for a Gaussian beam is easily extended to propagation in matter.
Consistent with the paraxial ray approximation, loss in the transverse directions can be
ignored. Thus, the Gaussian beam radiance in a lossy medium becomes
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2 2
n|E,(x0,Y0,2)l _ n | Exool e_z(xg_;,_yg)/uﬂ(Z)e_ﬂwz
219 2n2w3w2(z)n0 ’

L(xo’yovZ) = (2175)

where the substitution k — kyn (ki = 27r/A) is made, and the imaginary part of the
complex index is kept only in factors that dictate the z-propagation dependence.

2.2.2 Pulse Propagation

The variation of the index of refraction with frequency is called dispersion. If dispersion
can be ignored, then we need only change the speed of light in Eq. 1.40 to ¢ = ¢/n to
obtain a valid solution. However, if dispersion cannot be ignored, then finding solutions
to the wave equation is considerably more difficult. Furthermore, the frequency-domain
wave equation given by Eq. 2.14 ignores the transient response of the medium to the
electromagnetic field. To appreciate these points, let us examine the time-domain wave
equation. Following the same procedure as in Section 2.1.1.1, we obtain

1 d%e(r,t) 1 92

2 _ / / / /
v e(r,t) = C—ZT gﬁ dt X(f )M(f )e(r, t—t ) (2176&)

—00

If a time-harmonic field is chosen, then the frequency-domain wave equation is
obtained. However, pulses are inherently polychromatic, and time-harmonic solutions
are not appropriate. Knowledge of the time-domain susceptibility now becomes impor-
tant. If the time-domain electromagnetic pulse is slow compared with the dielectric
response of the propagation medium, then the field can be brought outside the convo-
lution integral, and frequency-domain solutions can be obtained. However, if the
electromagnetic pulse is fast and comparable to the speed of the dielectric response,
then it is best to solve the time-domain wave equation.

Equation 2.176a can be written more explicitly if we apply the step function in the
convolution and require ¢ > ¢":

1 0%, 1 92
¢t 012 c? 912
0

t
Vie(r, 1) = dt'y (e, t —1). (2.176b)

This is an integrodifferential equation that is difficult to solve. Numerical techniques,
such as finite-difference—time-domain (FD-TD), have been applied to obtain solutions
for optoelectronic device design.

2.3 Microscopic Properties in Matter

Thus far, the problem of optical propagation has been reduced to requiring a knowledge
of the spatial and spectral dependence of the complex index of refraction within the
propagation medium, field polarization, and the path geometry. The most fundamental
quantity is the complex index. This leads us to explore the microscopic nature of matter
for the derivation of meaningful models of the complex refractive index.
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2.3.1 The Dipole Moment

Most propagation media of interest are insulators with no net charge density. The
number of positive and of negative charges is equal. However, the nature of the charge
distribution determines the coupling of the incident electromagnetic field to the propa-
gation medium. The charge distribution is affected by the arrangement and type of
atoms composing the medium and field induced effects.

Consider the multipole expansion of an electric potential V(r), given the charge den-
sity p.(r), as stated by (see Chapter 4 of Jackson, Ref. 2.13)

V(r) = /|p€(r . 2.177)

The Green’s function can be expanded in terms of spherical harmonics, Y, (see
Appendix 2), where for r > r’

1 0 ! 1
=4y Y S YOl Y. (2178)

This allows the potential to be expanded as a sum of multipole moments. By substi-
tuting Eq. 2.178 into Eq. 2.177, the following sum is obtained:

V(r) —4;12 ‘”’” ’j"(e"’b), (2.179)

I

where the g;,,s are the multipole moments, as given by
Gim = / Y (9, ¢/)r/l,oc(r’) . (2.180)
It is instructive to calculate the first few terms of ¢;,,,. They are as follows:

1
qo0 = —F—¢,
AT

[ 3
qio = E/J/dp,zy (2.182a)
* 3 .
an = —4i-1 ==\ g (Hapa=Jkp,) (2.182b)

where g is the net charge of the medium and pg, is the dipole moment, defined as

(2.181)

and

Wap = -/.r’,oc(r’) &’ (2.183)
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Higher order terms in the expansion include quadrupole moments, octupole
moments, and so on. The strength of the potential decreases as the moments go to
higher order. Thus, the leading nontrival term in the expansion is always the most
important, and often the only one needed to represent the coupling of the electromag-
netic field to the propagation medium.

The relevant microscopic element, for the coupling of the electromagnetic field to a
neutral (¢ = 0) propagation medium, is the dipole moment. It is created by the separa-
tion of opposite charges, as illustrated below. The dipole moment strength, p4,(?), is the
product of the charge, ¢, and the charge separation, x(z),

Mgy (1) = gx(0). (2.184)

For a neutral medium with no dipole moment, the quadrupole moment becomes the
leading term; it is illustrated in Fig. 2.11. This is a very weak coupling term and is usually
not an issue for most optical media and path lengths. A medium with permanent dipole
moments is called polar. A medium with no permanent dipole moments is called nonpolar.

2.3.2 Polarizability

When an external electric field is present, the bound charge distribution of a medium is
altered. The dominant effect is the induction of new dipole moments and alignment of
permanent dipole moments by this external field. The degree to which this is done on a
single molecule is a measure of the frequency-domain electric molecular polarizability,
e mol (w), defined as

(qX(a))) = “‘ldp (0))) = Ue,mol (a))E (2185)

(udp) is the mean dipole moment vector and is proportional to the frequency-domain
macroscopic polarization vector, P(w), as given by

P(w) = p(My(@)) = € x (@)E(w) (2.186)

where p is the number of dipoles per unit volume. Generally, the mean dipole moment,
with no external field applied, is zero unless the material is an electret. Using the above

Dipole Quadrupole

Fig. 2.11 Tlustration of dipole and quadrupole moments.
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results, the relation between the susceptibility and the molecular polarizability is
obtained:

X(@) = L ool (@), (2.187)
€0

In this manner, macroscopic quantities can be related to microscopic properties of a
medium.

To further address the microscopic properties of the complex index of refraction
requires the consideration of the quantum structure of matter and how light couples to
that structure. This is the topic of the next three chapters.

2.1

2.2

2.3
24
2.5

Problems

For a nonmagnetic, nonconducting dielectric medium, show that the radiance, L,
can be expressed as

L= E?
= —cne .
) 0

An absorption line in a medium is represented by the imaginary part of the rel-

ative permittivity €’(v) = A8(v —vp) — A8(v + vp). Find the corresponding

real part of the relative permittivity using the Kramers—Kronig relation. What is

€.(0) and €/ (w» wp)?

Derive Eqgs. 2.51a, b from Eqgs. 2.48a, b.

Derive Eq. 2.53a, using symmetry properties of the susceptibility.

Consider an infinite slab of thickness d, with a single-surface power reflection

coefficient R, a single-surface power transmission coefficient 7 = 1-R, and a

one-pass loss factor K = exp(—Bapsd/cosb,).

(a) The slab is illuminated by a rectilinear polychromatic ray bundle as illus-
trated in Fig. P2.5. Derive the specular transmittance, tg, the specular

Reflected rays

\\\\ _________ |

Transmitted rays

Fig. P2.5
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reflectance, pg, in terms of Rand K, and verify Eqs. 2.96 and 2.97.
According to the total power law,

s+ ps = 1 — daps,s

where oy s 1s the absorptance. Find the expression for o s in terms of
Rand K, as well, and show that for a lossless slab oy s(K = 1) = 0.
(Hint: Use ray optics and obtain a series representation of the net transmit-
ted power and reflected power rays.)

(b) Derive the corresponding formulas for transmittance, reflectance, and

absorptance, and with monochromatic illumination, thus including the
effects of interference. Now the rays represent field quantities. Let the field
reflection coefficient, r = |r|exp (jo,), and field transmission coefficient,
t = |t| exp (jo,), must be used. (Note: R = |r|>and T = |¢|*. The details of
these coefficients in terms of the complex index of refraction are presented
in Chapter 4.)

(c) Perform a spectral average on the transmittance of part (b) and show agree-

2.6

2.7

2.8
2.9
2.10

ment with the transmittance of part (a). Thus, evaluate the following:

o3

2
1 1
Ty = (Tgr) = o [TSI()»)d)L =5 / Ts7(p) do,
0

A

where ¢ = 2wn; (cos 6) d/c. Then use contour integration to solve the inte-
gral on ¢.
Based on Eqgs. 2.74 and 2.98, show that a measurement of the emissivity is a
direct measurement of the absorption coefficient when the internal transmit-
tance is close to one (K > 0.9). Also, show that the emissivity is

1 - R,

when the absorption coefficient times the material thickness is large.
(a) Derive Eq. 2.119 from the eikonal equation. (b) Find the ray path in the
xz-plane, given the spatial variation of the index of refraction is

niz)=1+a+bz

for a ray initially directed in the x-direction and a and b small.

Verity Eq. 2.85.

Verify Eq. 2.126.

Start with Eq. 2.132 and derive Eq. 2.134. (Hint: This problem requires find-
ing the solution to

o0

/ dteI",

—00

Then let, a = ;in(l)(a — jb).

Then consult Gradshteyn and Ryzhik, Ref. 2.11.)
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2.11

2.12

21

2.2

2.3

24

2.5
2.6

2.7

2.8
2.9

2.10
2.11

2.12

2.13

Show, for B,,; = 0 and 6, = 0, that Eq. 2.145 is true based on Eq. 2.143 in the
single scatter limit.

For a spherical particle, the off-diagonal elements of the scattering matrix are
zero. Obtain the Mueller matrix for this case.
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Spectroscopy of Matter

It is critical to understand the nature of the propagation medium in terms of the avail-
able resonances which couple to the electromagnetic field. The detailed specification of
the complex index of refraction as a function of frequency is the subject of spec-
troscopy. Since propagation media cover all phases of matter, the spectroscopy of gases,
solids, and liquids is introduced in this chapter. Topics are not exhaustively covered, but
rather with sufficient depth to support the practical applications that will come later.
The chapter begins with a formal review of topics covered in stationary-state quantum
mechanics necessary for the development of spectroscopy. The next section develops
models to calculate spectral line positions, which are necessary to characterize a spectral
line. The full development of spectral line parameters is not only the goal of this chapter
but the next two as well. The remaining sections address the essential elements of the
spectroscopy of gases, solids and liquids. Both classical and quantum models are used.

3.1 Quantum Mechanics |

Time-independent quantum mechanics allows the description of the quantized energy
level structure of matter. This is the central topic of this chapter. Time-dependent quan-
tum mechanics is necessary for the development of a theory covering transitions
between stationary-state energy levels and is the topic of Chapter 5.

3.1.1 Early Quantum Mechanics and Light

The classical concept of light is that of an oscillating continuous wave field, as pre-
sented in the first two chapters. This is consistent with the classical electrodynamics

77
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based on Maxwell’s equations. However, the work by Planck on blackbody radiation
and Einstein on the photoelectric effect showed that optical fields also have a quantized
or particle-like nature.

Planck, in 1900, suggested that the energy of light, E, be quantized according to

E =hf[7] (3.1)

where f is frequency (sec™!) and % is Planck’s constant (7 = 6.6260755(40) x 103
J-sec). This allowed a theoretical description of blackbody radiation for the first time.
However, it was Einstein, who, a few years later, made Eq. 3.1 more credible by
applying it to explain the photoelectric effect.Only light of a certain frequency or
greater, incident upon a material, can induce a current. A light field with the same
radiance but lower frequency will not induce a current. This also required the energy
of light to be quantized in packets or particle-like quantities. This notion of quantized
light was further verified by the Compton effect (1923), which states that light will
be deflected by an electron much like a particle—particle interaction. These wave
packets or particles of light are called photons. The wave packet concept, as illus-
trated in Fig. 3.1, is commonly used to describe quantum-mechanical particles. The
particle is contained within the packet, thus the precise position of the particle is
uncertain.

This work showed that light has a particle nature, as well as the previously estab-
lished wave nature (interference and diffraction of physical optics). This dual nature of
light is naturally incorporated into quantum mechanics which requires all particles to
have a characteristic wavelength or De Broglie wavelength, A, expressed as

A=—, (3.2)
p

where p is the momentum. This equation, first expressed in 1924 by De Broglie, can
also be written as

hk' = p (3.3)

where i = h/2m and k' = 2 /A and is called the magnitude of the wave-vector. Thus,
electrons, protons etc., must also have a wave—particle duality just like the photon.

P@)T

z
Fig. 3.1 The wave packet representation of a photon, indicating the probable location of the
quantized particle.
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The energy of a photon, because of its wave nature, cannot be precisely determined
if anything is known about it in time. This statement can be intuitively made by using
E = hf and the time-bandwidth product of Fourier transform theory. Thus given

1
AE =hAf and AfAt > —,
4
then
h
AEAt > > 3.4)

This statement is the Heisenberg uncertainty principle, which is fundamental to
quantum physics. The uncertainty principle applies to Fourier transform or conjugate
pairs, like time and energy or position and momentum. Simply put, the temporal and
spectral character of the photon cannot be simultaneously stated with infinite precision.

The modern notion of the photon is based on the quantization of the electric and
magnetic fields. These fields are assumed to be generated by harmonic oscillators. By
quantizing these harmonic oscillators the electric and magnetic fields can be described
in terms of raising and lowering operators which denote creation and annihilation of a
photon with a particular frequency, direction, and polarization.

A vacuum state or field is one which contains no photons. However, the harmonic
oscillator representation of the photon requires a zero point energy or a background
fluctuation of the field. Photons are being created and annihilated by electron and
positron pair creation and annihilation. This creates a fluctuation in the vacuum state.
Thus, an excited atom in vacuum can be induced to emit a photon with energy equiva-
lent to the energy difference between the excited and lower states of the atom by this
fluctuating background field. This is called spontaneous emission.

Spontaneous emission is a noise source in many systems and is an example of quan-
tum noise. In propagation problems one must consider the noise of a medium that will
add to the noise of the source and detector. More details of the quantized electro-
magnetic field are presented in Appendix 5, after more background material is developed
in Chapters 4 and 5.

3.1.2 Formal Introduction

We have already discussed the Heisenberg uncertainty principle in relation to the photon
and its description in terms of a wavepacket. Again the uncertainty principle is stated as

(Ax) (Ap) = %

or

(AE) (A1) > g

The language of quantum physics is not in terms of the exact location or momentum
of a particle but rather in terms of a distribution function that represent the probability
that it will have a certain location or momentum. The Heisenberg uncertainty principle
also suggests this notion. This explanation is called the Copenhagen interpretation.
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In general, a probability density function is normalized as

oo

/P(x) dx =1. 3.5)

—00

For example, P(x)dx can represent the position of a particle between x and x + dx
with a certain probability. A general function of x, f(x), has an expectation value,
(f(x)), defined as

(f(x) = f J(x)p(x) dx. (3.6)

Also of interest is the variance of the function, defined as

(f(x) = (FOON? = (f20)) — () = [Af(0)]% (3.7

The standard deviation is the square root of the variance, Af(x). In this manner,
observable quantities with corresponding uncertainties can be calculated.

Quantum mechanics, like any field of physics, can be formulated in terms of the fol-
lowing basic postulates:

1.

2.

Each particle in a physical system is described by a wave function, ¥ (r,7). This
function and its spatial derivative, Vi, are continuous, finite, and single valued.
In dealing with classical quantities such as position, r, energy, E, and momentum,
p, we must relate these quantities with abstract quantum-mechanical operators
defined in the following way:

Classical Variable Quantum Operator
Position X, r X, ¢

J @), flr) f(X), f@®)
Momentum p(x), p(r) ‘Th% _Th
Energy E _Th 3 or H

The hats (") indicate an operator as opposed to a variable. H is the system
Hamiltonian and equals the total system energy, thus

H=T+V, (3.8)

where T is the kinetic energy and V is the potential energy.

. The probability of finding a particle with wave function v in the volume dx dy dz

is Y*Yrdx dy dz. The product ¥* is normalized according to

/memh=L (3.9)
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where dr = dx dy dz. The integration is over all space. Thus ¥*v () (= |y ()]?)
is interpreted as a probability density function. The expectation value, (Q), of any
variable Q is calculated from the wave function by using the operator Q,,, as
defined in postulate 2, is given by

() = / W Qo dr. (3.10)

4. Operators which commute produce observable quantities or expectation values
that can be simultaneously determined with high accuracy. However, operators that
do not commute produce observable quantities that cannot be determined simulta-
neously. This is the case for operators whose classical variable analogs are Fourier
transform pairs, such as p and r. Because of its importance, commutation is des-
ignated by the commutation bracket, [ ]. For example,

(RDs — PeX) v (x) = [&, po ] W(x) = — jh(x).

The proof of this is left as an exercise in Problem 3.2.

5. Quantum mechanics must include classical mechanics in the appropriate limits,
that is when:
(a) The particles are large enough for wave motion to be neglected.
(b) A continuum of energy levels exists.
(¢) h — 0 approaches the “classical limit.”

3.1.3 Wave and Matrix Mechanics

The total energy function for a particle is called its Hamiltonian. It is the kinetic plus
potential energy (i.e., H=T+V=12m?»+ V() = p*/2m) + V(r)) The total
energy and i are important parts of wave mechanics as represented by the Schrodinger
wave equation, which determines the time and spatial evolution of these quantities. It is
stated as

A d N
Ay (r,0) = —jh% (.11a)
or, expanding the Hamiltonian for a particle in a potential,
h*v? . 0y (x,1)
— Yrt)+ VEH Y@, =—jh . (3.11b)
2m ot

For a time-harmonic solution of the form
Y(r,t) = Y(r)e’”

and a time-independent potential, we obtain the stationary-state Schrodinger wave
equation, the basis for wave mechanics, as given by
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272

Y (r) + V() ¥ (r) = haw, ¥ (r) .

2m

Based on Eq. 1.1, fiw, = E,, and the above equation reduces to
Hn(r) = Epyn(r). (3.12)

Thus, stationary-state quantum mechanics is formulated as an eigenvalue problem
with eigenfunctions, v,(r), eigenvalues, E,, and quantum numbers, n (n can represent
more than one number). The quantized energy structure of a system described by the
Hamiltonian is the resulting energy eigenvalues. This approach, first proposed by
Schrodinger in 1926, is commonly called “wave mechanics.”

Another approach to describe quantum-mechanical phenomena was put forward by
Heisenberg. It is called “matrix mechanics” and is mathematically isomorphic to wave
mechanics. It offers a very useful, compact notation, called Dirac notation, emphasiz-
ing operators, eigenvalues, and quantum numbers. The statement of normalization of
the probability density function is now defined by

(nln) = 1, (3.13)

where (n| is a “bra” vector and |n) is a “ket” vector (from the word “bracket’). The
expectation value is (Q) = (n |Q,,p| n), where the operator is represented by a matrix.
n represents the relevant quantum numbers of a system, and the spatial dependence is
suppressed. The wave function, v, (r), is expressed as

Yn(r) = (r|n). (3.14)
The corresponding stationary-state wave equation or eigenvalue equation is given as
Hin) = E,|n), (3.15)
similar to Eq. 3.12. The expectation value of the Hamiltonian operator becomes
(n|Hn) = E,{nn)
and applying Eq. 3.13, the above equation reduces to
(H) = E,. (3.16)
Generally, the ket vector |n) is denoted in terms of the set of system quantum numbers:
In) = |J,v),
for the case of molecular vibrating rotor. J is the rotational quantum number and v is
the vibrational quantum number.

An operator is Hermitian or self-adjoint if it satisfies the following relation:

(n|H|m) = ((n|H)*|m), (3.17)
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or in integral form

/ Y (H) dr = / (H,) Y dr. (3.18)

When the Hamiltonian of the system satisfies H = H*, real energy eigenvalues are
required, that is

(n|H|n) = E, = (n|H*|n) = E}". (3.19)

Operators of physically observable quantities must be Hermitian and yield real
eigenvalues.

The eigenstates, |n ), form a basis set which spans the function space allowed by the
governing differential equation, and are usually chosen to be orthonormal. An ortho-
normal basis set has the inner product property that

(n|n) = é,up. (3.20)

The unit or identity operator, i, is often useful and is defined as

i:/dr|r><r| or i:Z|n><n| (3.21)

for either continuous or discrete systems, respectively. Using Egs. 3.14, 3.20, and 3.21,
it follows that the wave functions are orthonormal also, thus

/dl'lﬂ:f(l') wn (I') - an/n . (322)

In this manner the Dirac notation of matrix mechanics can be converted to the spa-
tially dependent wave function of wave mechanics.

3.1.4 Single-Particle Propagation

As an example, consider the propagation of a free particle (e.g., V(r) = 0) along the
z-axis. The wave function solving the Schrédinger equation in this case is

VU (z) = Ae /¥ 4 Belk, (3.23)

where k' = (2mw/h) based on Eq. 3.3 and p?/(2m) = E. This solution is for the spe-
cial case when the particle momentum is known precisely, which also means the
particle position is completely unknown (see Problem 3.1). A more realistic solution
can be represented by a linear combination of functions in the form of Eq. 3.23 for dif-
ferent values of momentum or k. Now the momentum will have a nonzero uncertainty
and the particle position will have a finite uncertainty based on the Heisenberg uncer-
tainty principle. For propagation in the forward direction, a general solution of the wave
function for free-particle propagation is

o0
Y(z,t) = f Ak el ®®t g=iKz g (3.24)

—0Q
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Let the momentum uncertainty, Ak’, be 2¢ centered about k(’), thus
ky—e <k’ <kj+e. (3.25)

Expand (k) about k;, in the form of a Taylor series, to obtain

d
oK) = wy+ (K — ké)(d—,i‘i) +oon (3.26)
%

Substituting this result into Eq. 3.24, we obtain the following form for this particu-
lar free-particle wave function:

o0

Y (z,0) = eI boemen) / AK')e

—00

*j(k'*kf))[zf(a%)kat] dk’ (3.27)

Therefore, general free-particle wave functions must be of the form

d .
V(z,t)=A [z - (f) ti| e~/ oz o) (3.28)
p

0

This represents a traveling wave solution with an envelope function, defining the prob-
able particle location in space. This wave function is called a wave packet. An illustration
of the result in terms of the probability density function, ¥ *v, is shown in Fig. 3.1. This
envelope function in Fig. 3.1 satisfies the realistic boundary condition that v (+00) — 0.
The velocity of the wave packet is called the group velocity and is given by

do (3.29)
Vo = —_— . .
£ \ak ),

0

The wave packet does not represent the size of the particle, but its probability of
location and momentum. The particle is contained within the wave packet. These are
fundamental concepts of quantum mechanics and are very different from our classical
understanding of particle propagation.

3.2 Introduction to Spectroscopy

Spectroscopy is the field of study which characterizes the energy level structure of matter.
In particular, it covers the location of spectral lines and the interaction of light and matter.

3.2.1 Line Position, Strength, and Shape

The energy structure of an atom or a molecule is composed of discrete or quantized
energy levels. At optical frequencies, the quantum nature of molecular structure is
important. This concept is illustrated in Fig. 3.2 for a two-level system. A photon has a
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photon E,

Fig. 3.2 Photon absorption in a two-level system.

characteristic frequency, fp, which must be proportional to the final and initial energy
level difference, such that E; — E; = hfj, if the photon is to be absorbed by this two-
level system. All other frequencies do not interact (to first order, e.g., scattering is
excluded), and propagate beyond the molecule. Energy is removed from the photon
field at precisely the frequency fy. Thus a spectral line is observed at f; because of the
absence of energy relative to the incident photon field.

A real spectral line has an integrated amplitude (or strength, S;) and a half-width, y;,
because the energy levels are not single valued, but instead have a distribution of energies
caused by photon fluctuations, collisions from other molecules, electric fields, magnetic
fields, and thermal motion. The resulting absorption feature is illustrated in Fig. 3.3.

The strength of the ith absorption line is defined as the entire area under the absorp-
tion curve, Bup,i (v). Thus,

oo
S = /,Babs,,- dv. (3.30)
0

Line strength is, therefore, independent of frequency. The profile or line shape func-
tion of the transition is defined as

gw;vo, Vi),

Bavs(V)

Vo 14

Fig. 3.3 Absorption coefficient of a spectral line, where vy = (Ef — E;)/hc = fy/c where c is
the speed of light.
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where y; = half-width at half-maximum and vy = line-center wave number (which is
directly proportional to frequency). Thus the absorption coefficient of a single line can
be broken down into two factors: the line strength and the line shape profile,

Baps,i(v) = Sig(v;vo, i) (3.31a)

The definition of S; as given by Eq. 3.30 requires the line shape profile to be nor-
malized as

o0

/g Vi vo ;) (3.31b)
0

Also, as discussed in Section 2.1.1.2, the odd symmetry of the index of absorption
requires the absorption coefficient to be even, based on Eq. 2.30. Based on Eq. 3.31 and
the symmetry of the absorption coefficient, the line profile function must then have even
symmetry (in classical theory only):

g) = g(=v). (3.32)

This chapter shall be concerned with determining the position, vy, of an absorption
line. In Chapters 4 and 5 the nature of the strength, S;, and profile function, g(y ), will be
developed more completely. At infrared frequencies only molecules, not atoms, can
strongly couple to the electromagnetic field. Atoms do not have rotational and vibrational
spectra. Of course, no molecule has only one spectral line and a sum over all spectral lines
must be made to compute the total absorption as a function of frequency. Therefore,
replacing yp with y;, the ith line position, and summing over all spectral lines, we have

Buvs () = Basi V) = Y Sig(vi vivi)- (3.33)

Substituting the above equation into Eq. 2.54b and converting to angular frequency
(w = 2mcv), the following sum rule is obtained:

nw)—1=2< ZSP/d ' g(“’) (3.34)

w? — w?

The Hilbert transform of g(w) is now defined to be d(w), the dispersion profile.
Thus, the forward single-sided Hilbert transform is

d(@) = %P/ w’w,gz(& (3.352)

— 2
0

and the corresponding inverse transform is

o0
4 d(
g(@) = —w’P / wz(i“’)z (3.35b)
T [0} w

0
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Based on the symmetry of the spectral line profile function and Eq. 3.35a, the dis-
persion profile is an even function in frequency (d(w) = d(—w)). Using these results,
Eq. 2.34 becomes

n(w)—1= cZS,-d(a); ;). (3.36a)

Again the sum is over all spectral lines. Based on Eq. 2.53b, the following condition
on the dispersion profile is obtained:

/ dwd(w) =0. (3.36b)
0

These definitions and relationships are fundamental to realistic models of the com-
plex index of refraction and to the discussion of optical propagation. They are applied
to models in Part II of this text.

3.2.2 Dipole Moments and Selection Rules

Strength and line position of a molecular transition are influenced by the nature of the
intramolecular bond, and by the configuration and mass of the atoms forming the mol-
ecule. A molecule with a dipole moment can couple to the photon field. The strength
of the dipole moment partially determines the strength of the transition. The masses of
the atoms, the relative positions, and the bond strengths determine the line positions of
the transitions (for rotational and vibration—rotation spectra). Recall that the dipole
moment is defined as

MKap = 4T

It is illustrated in Fig. 3.4. An example of an ionically bonded gaseous molecule is
HCI, and an ionically bonded solid is NaCl. The simplistic figure below is for a diatomic
molecule. Molecules with dipole moment interactions will be emphasized because they
are, by far, the strongest and therefore the most important in absorption spectroscopy.
Infrared-active rotational spectra require molecules with permanent dipole moments
(e.g., H,0, O;, and CO). Such molecules are called polar molecules.

In materials with proper structural symmetry and electron affinity (e.g., diamond, N,
O,, and CO,) no dipole is formed, thus pg, = 0. Such materials are called nonpolar.
Nonpolar molecules typically have covalent bonds. Then quadrupole moments are most

M, m_
+q r -q

Fig. 3.4 Tllustration of dipole moment for an ionic bond, where M, = mass of positive ion and
m_ = mass of negative ion, and ¢ is the charge magnitude.
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important to the transition probability (the exception is a collision-induced dipole).
These are very weak transitions, usually not important to optical propagation. Nonpolar
molecules have no rotational spectra. Certain vibrational motions can break the symme-
try, creating a temporary dipole moment and become infrared active.

Infrared-active vibrational spectra require molecules with only a change in the
dipole moment caused by the asymmetric relative motions of the atoms within the mol-
ecule. Therefore, if the relative vibrational motion of the atoms within a nonpolar
molecule is asymmetric, then a dipole moment may be produced and vibrational spec-
tra can exist. This point can be stated mathematically by considering a Taylor series
expansion of the dipole moment transition expectation value (explained in more detail
in Chapter 5) about the equilibrium position, r,, of a molecule. Thus,

Oa
(JrvplplJivi) = (Jrvplpapol Jivi) +( Jrvp |:8—rp} r—r)ldivi)+---, (3.37)

where (r |Jv) = ¥y, (r) represents the wave function of the molecule with the rota-
tional quantum number, J, and the vibrational quantum numbers, v. (There are 3N — 5
vibrational modes for linear molecules and 3N — 6 otherwise; N is the number of atoms
in the molecule. This is because every atom has three degrees of freedom for its motion,
thus 3N. As a molecule there are three translational degrees of freedom, thus 3N — 3.
A linear molecule has two degrees of freedom for rotation, otherwise there are three.
Subtracting the rotational degrees of motion leaves only the vibrational modes of the
system.) An illustration of vibrational motion in common molecules in the atmosphere
of the earth is given in Fig. 3.5.

In the case of pure rotational transitions, the first term must exist for a molecule to
be infrared active. The second term is unimportant. In the case of vibrational transitions,

Diatomic structures
N, 0,0 <« QO »><-0O—>

Triatomic structures
V2

Vi Bending

V3
Antisymmetric

CO,,N,0 Symmetric
<~ O->0<-O0— ?$? «<O—> O <O

" e xld g i

Fig. 3.5 Configurations and vibrational modes of diatomic and triatomic atmospheric molecules.
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the second term must exist for a molecule to be infrared active. Polar molecules are
typically strong absorbers of infrared radiation and have spectra from the far-infrared
(pure rotational) to throughout the mid-infrared (vibration—rotation bands). Water vapor,
for example, is the most important absorber of infrared radiation in the troposphere.

Based on Eq. 3.37, the selection rules are determined. For pure rotational transi-
tions, J; — J; = AJ = 1. For vibration—rotation transitions, vy —v; = Av =1 and
AJ = %1, 0. The different rotational selection rules form distinct groups of lines or
branches. AJ = —1 corresponds to the P-branch, AJ = 0 is the Q-branch, and AJ =1
is the R-branch. These selection rules are discussed further in the following sections on
line position.

A dipole moment can also be induced in molecules by an external electric field.
Dipole moment strength is proportional to the external-field frequency and electronic
polarizability, o,, which results from electronic cloud distortion by the incident light
field. This mechanism is important for Rayleigh and Raman scattering. Rayleigh scat-
ter is elastic, thus the incident-field frequency equals the scattered-field frequency.
Raman scatter is inelastic; the scattered-field frequency is shifted relative to the incident
field, revealing internal rotational and vibrational structure. The selection rules change to
AJ = £2,0, where AJ = —2 is called the O-branch and AJ = 2 is the S-branch, and
Av = %1, forming the stokes (Av = —1) and antistokes (Av = 1) vibrational bands.

A special case of interest to tropospheric propagation is collision-induced absorp-
tion (CIA) of N, and O,. Strong collisions by neighboring molecules induce a dipole
moment that exists only during the duration of the collision. Because the collisions are
very brief, the line widths are very broad, and individual transitions merge into a broad
band structure. This type of featureless absorption is called continuum absorption.
More will be said about this phenomenon in Chapter 7.

3.3 Spectroscopy of Gases

Fortunately, nature has greatly simplified the study of spectroscopy by sufficiently sep-
arating the fundamental energies of rotational, vibrational, and electronic transitions
such that

Eo > Evip> Eo.

The energy structure of each dynamics problem can be solved separately and treated
independently in the zeroth order. Couplings between the different types of energy
structures is then treated as a perturbation to the zeroth order system.

Rotational spectra typically occur in the far-infrared (0.1 to 100 cm™!) and exist only
for molecules with permanent dipole moments. Vibrational spectra typically occur in
the mid-infrared and near-infrared (100 to 10,000 cm™!) and only exist for molecules.
Electronic spectra exist for atoms and molecules, and typically occur in the visible
(weak bands) and ultraviolet (strong absorption bands which determine the end of opti-
cal transparency in a medium). Since the topics in this book are generally concerned
with infrared and visible phenomena, electronic structure will not be covered in detail.

The development begins with rotation spectra in the vibrational and electronic
ground state, then vibration—rotation spectra in the electronic ground state, and closes
with a brief description of electronic spectra.
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3.3.1 Rotational Spectroscopy

The weakest energy structures in molecules are purely rotational and are part of all
other transitions. The simplest molecule is the diatomic molecule, which has only one
unique axis of rotation and thus only one degree of rotation. For this reason, diatomic
molecules are covered first. A polyatomic molecule requires, in general, three rotational
degrees of freedom, and is more complicated to describe.

3.3.1.1 Diatomic Molecules

The simplest molecule is diatomic, and analytical models can be obtained in a straight-
forward manner. In the following, it is assumed that the system is in the vibrational
ground state (e.g., rigid rotor) and electronic ground state. Because of the importance
of the quantized energy level structure in gas-phase spectroscopy, it is instructive to
set up the rigid-rotor problem in quantum mechanics. Let us begin with the time-
independent Schrodinger wave equation,

Hy(r) = EY(r).

The Hamiltonian for a rotating system is needed. In the case of a rigid rotor, the
rotational kinetic energy is

1, J?

where [ is the moment of inertia, as given by

2
I = E m;ry,
i

J = lw is the angular momentum, and w is the rotational frequency of the rotor.

The diatomic model can be simplified by using a center-of-mass coordinate system
in the following way. The center of mass is defined to be at the origin and is determined
by the following conditions:

E mir;=0 and ri+r2=r,.
i

The equilibrium separation of the atoms is r,. This leads to the following result for
the moment of inertia:

I =mri +myry = pu'r?, (3.39)
where the following definitions are used,

my mj
r=———T Ip=——iTe, (3.40a)
my + mo my + my
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and p’ is the reduced mass, given by

w = 2z (3.40b)
mip + my

r1 and r, are distances from the atoms “one” and “two”, respectively, to the center of
mass (CoM) point of the system. The two-body diatomic model is then transformed into
a single body of reduced mass, |V, rotating about an origin r, away. This model is illus-
trated in Fig. 3.6. Thus, instead of considering the rotation of the dumbbell, we can
equally well consider the rotation of a single particle of mass u’ at a fixed distance r,
from the axis of rotation. This reduces the two-body problem to the tractable single-
body problem.

The Hamiltonian for a freely rotating body is composed of the rotational kinetic
energy with no potential energy, thus based on Egs. 3.38 and 3.39 the following opera-
tors are generated:

R ~2 h2V2
F=r __ and V(@E#) =0
2u 2

where J = pre, p is the tangential momentum operator, and V(#) is the potential. The
stationary-state Schrodinger wave equation now becomes

h*v?

_ 0

Y (r) = EY(r). (3.41)

Choosing spherical coordinates, the corresponding wave function is v (r.,0,¢), where
r = constant = r, for a rigid rotor. Based on these results, let us solve the stationary-state

(a) Diatomic Molecule Rotation

Fig. 3.6 Rigid-rotor model is illustrated in two steps:
(a) two-body model and (b) the corresponding one-
body model. X
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Schrodinger equation as given by

2 1.2
L <sin9w(9’¢))+ L 0V _ 2urk b (a2

sinf 96 90 sin29 992 #2

Assuming that the wave function is separable, the following substitutions are made:
v(0,9) = 0O (0) P(¢), and u’rg = [. The wave equation now becomes

sinf 9 (. 90(6) 20 N, 1 309
@w)%(sme 86 )+(h_2E>Sm9‘ o) apr O

The two sides of the above equation must equal a constant, M2 independent of either
6 or ¢, because each side depends on a different variable. Therefore, a separate equa-
tion involving ®(¢) is obtained, thus

1 d*®(¢)
M? = ——— 3.44
O(¢p) do? G449
with the solution
O(p) = AeM?  Be/M9. (3.45)

The boundary condition for a periodic function requires ®(¢) = P (¢ + 27) because
of the rotational nature of the problem, therefore

Ae MP 4 Be/MP — pe=IMPe=iM2T | BoiMéeiM2T (3.46)
The boundary condition will be satisfied if e*/#?" = 1, where
M =0 41,42, 43, .. .. (3.47)

Now consider the right-hand side of Eq. 3.42 involving ® (),

sind d (. dO(0) 21 .2 2
— 0 ——— —E 0=M". 3.48
©©) 40 (sm 70 ) + <h2 )sm ( )

Letting x = cos 6, the above equation becomes

, d*O(6) de®) (21 M?
(=) — = =2 — <§E—1_—xz) 0(0) = 0. (3.49)

This is a well-known differential equation with associated Legendre functions as
solutions if



SPECTROSCOPY OF MATTER 93

21
E=JU+1), where M| <J=0,1,23, ... (3.50)

This condition requires the rotational energy levels to be quantized according to the
following formula:

n2J(J+1)

57 (3.51)

Egot =

Writing the rotational frequency of a rigid rotor in units of wave numbers, we have

E g h
— = JJ +1). 3.52
he 8n2lc V+D ( )

VRat =

Spectroscopic notation expresses the rotational energy level in wave numbers by a
term value, F(J), where

Ve = F(J) =B, J(J+1) and Be:L_ (3.53)
8m2c
B, is defined as the equilibrium rotational molecular constant valid for r = r,. Notice
that the energy of a rotational level depends only on J, not on M. There are 2J + 1
values of M for each J and, therefore, 2J + 1 unique wave functions, ¥ (.., ¢), for
a particular rotational energy level specified by J. For situations like this the energy
level is called degenerate. In this case the degeneracy, gy, is equal to (2J + 1). A rota-
tional energy level diagram is depicted in Fig. 3.7. Using the selection rule of AJ =1,
a series of spectral lines are formed with a regular interval between lines.
The rotational constant determines the spacing between these lines. Thus light mole-
cules have broad rotation bands and heavy molecules have narrow-band formation.
The resulting wave functions for the rigid rotor are spherical harmonics. A listing of
these functions for various J and M values can be found in Appendix 2.

Example 3.1 Consider the diatomic molecule '2C'60, given r, = 1.128 A, m; =
12 amu, and m, = 16 amu; what is the value of B,?
The reduced mass is

W = 6.857 amu = 1.138 x 107 3g
where 1 amu = 1.6604 x 10~2% grams and the moment of inertia is
I =u/r?=1.448 x 107%gcm?.
Therefore, based on Eq.3.53, the equilibrium rotational constant is
B, =1931cm".

The value B, = 1.9313 cm™! has been experimentally verified (see reference 3.4).

The location of a pure-rotation spectral line, representing a transition between two
adjacent energy levels, is computed using the following formula:
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568, y I=7
A
E 42B, vy J=6
n
€
r 30B, J=5
y 20B, J=4
12B, y I=3
6B, J=2
B, — T J=1
0 J=0
I N N B
2B, 4B, 6B, 8B, 10B, 12B, 14B, v

Observed spectral line locations

Fig. 3.7 Pure rotational energy structure and spectral line location of a diatomic molecule.

A ERoI

=F(J+1)-F({)=2B.(J+1), (3.54)

where J is the rotational quantum number of the lower state. The separation between
adjacent spectral lines is 2B,. This regular spacing is characteristic of diatomic rota-
tional spectra and is illustrated in Fig. 3.7. Notice that AJ = 1 was chosen for this
computation. It is called a selection rule and is based on nonzero values of the transi-
tion matrix element of the dipole moment, as based on Eq. 3.37,

q{Jrlr|Ji) # 0. (3.55)

The verification of this selection rule is the point of Problem 3.5. The foundation for
this rule requires examination of the time-dependent Schrodinger wave equation, which
is discussed in Chapter 5.

3.3.1.2 Polyatomic Molecules

Pure rotational bands typically exist from millimeter waves to the far-infrared. The
formulas for rotational spectral line positions vary for different types of molecules.
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Molecules are classified as linear (e.g., N,, O,, H,, CO, OH, CO,, N,0, OCS, HCN),
spherical top (e.g., CH,), symmetric top (e.g., NH;, CH;D, CH,Cl, C,H), and asym-
metric top (e.g., H,0, O;, SO,, NO,, H,0,, H,S). Energy level structure is specified by
the term value, F(J)(= E/(hc)), and at most three rotational constants (A, B, and C;
one for each direction), both in cm™!. In general, there are three rotational degrees of
freedom (J,, Jp, and J,.) and three corresponding quantum numbers (J, K,, and K,),
as illustrated in Fig. 3.8. However, symmetry of the molecular structure can reduce the
number of independent quantum numbers. The rotational term value functions with the
degeneracy factor g, for the various types of molecules are as follows:

e Linear molecules (one independent rotational motion),
F(J)=BJ(J+1) and g;=2J+1. (3.56)
e Spherical-top molecules (A = B = C) (one independent rotational motion),
F(J)=BJ(J+1) and g5 = 2J+ 1) (3.57)

e Symmetric-top molecules (two independent rotational motions),
e prolate (A > B = (),

2W+1 K=o,
FU,K)=BJ(J +1)+ (A — B)K*> and g1={2(2j+1) PIPRNCED
e oblate (A = B > (),

2+1  K=0,
FU,K)=BJ(J +1) + (C — B)K? and gjz{z(;H) k20 G

e Asymmetric-top molecules (A > B > C) (three independent rotational motions).
F(J, K4 K;) is treated as an intermediate state between oblate and prolate
symmetric tops. Thus a precise statement depends on the molecule and the degree
of asymmetry. For more information on this class of molecules see Herzberg
Ref. 3.5.

Fig. 3.8 Directions of angular momentum for a
general polyatomic rotor. US Je
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The rotational constants are defined as

h h d h
o 8n2l,’ B= 8n2cl),’ and € = 8n2cl,’ (3.60)
where 1,, I, and I, are the molecular moments of inertia. Values of rotational constants
of atmospheric molecules are listed in Table 3.1. Line positions are calculated by using
the selection rule AJ = Jr — J; =1 and Eqgs. 3.8-3.11. For linear and symmetric top
molecules the result is

Vg = F(Jp) — F(J;) = 2BJ; [em™']. (3.61)

The purpose of this section is to develop insight into the nature of molecular rota-
tional structure. For example, the rotational constants of water vapor are much larger
than any other molecule listed of importance to atmospheric propagation. This means
the rotational band structure of water vapor covers a much larger spectral range than the
rotational structure of other molecules.

Also, water vapor is an asymmetric molecule requiring three quantum numbers. This
produces a rich irregularly spaced spectrum, as depicted in Fig. 3.9. Because of this
(and other properties), water vapor plays an important role in every infrared spectral
region.

3.3.2 Vibrational Spectroscopy

Vibration bands of gases typically exist in the mid-infrared. Atmospheric infrared win-
dows are defined by the locations of these vibrational frequencies. Again, this section
will begin with a detailed presentation of vibrational motion in diatomic molecules.

Table 3.1 Rotational Constants of Common Atmospheric Gases*

Molecule A [em™ B [cm™] C[em™]
H, — 60.853 —
OH — 18.871 —
NO — 1.7046 —
CO — 1.9314 —
CO, — 0.3902 —
N,O — 0.4190 —
H,0 27.877 14.512 9.285
O, 3.553 0.445 0.395
CH, — 5.249 —

N, — 2,010 —

0, — 1.44566 —
NH, 6.196 9.9444 —
SO, 2.0274 0.3442 0.2935
NO, 8.0012 0.4336 0.4104
H,S 10.374 8.991 4732

*From Herzberg (Refs. 3.4, 3.5).
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Fig. 3.9 Pure rotational band of nitrogen-broadened water vapor for Puyo = 0.02 atm, py, =
0.98 atm, and T'= 296 K.

3.3.2.1 Diatomic Molecules

At this point we recognize that not only will a diatomic molecule rotate, but it will also
vibrate along the bond axis. To see this, consider the classical notion of two balls con-
nected by a spring, with spring constant S, as shown in Fig. 3.10.

Using Newton’s third law and reducing the two-body problem to a single-body prob-
lem, as in the case of the rigid rotor, the motion of the vibrating diatomic molecule can
be described as

d2
’ drt(f) = —B,r(1) — 1), (3.62)

where ' is the reduced mass, B; is a spring constant, and r(¢) is the distance between
the atoms. It is convenient to define the variable

m, A, m,
%/—/

Fig. 3.10 Model for the vibrating diatomic mole- I,

cule, where m, and m, are the masses of the atoms,

B, is the spring constant of the restoring force, and r, )

is the equilibrium separation between the atoms.
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q(t) =r(t) —re, (3.63)

where 7, equals the time-independent equilibrium separation. Then, substituting
Eq. 3.63 into Eq. 3.62, we obtain the homogeneous differential equation

d> B
(P + %) q() =0. (3.64)

With the initial condition g (¢t = 0) = 0, the solution to this equation is

q(t) = qosinwot, where wy = Ly (3.65)

/

In quantum mechanics, we are interested in the potential energy as part of the system
Hamiltonian, thus

F=-VV(g) and V(@) = %ﬂsc}z. (3.66)

Using the Hamiltonian for a particle in a harmonic potential as given above, the
Schrodinger wave equation is

n d*y(q)
ZM/ dqz

1
+ Eﬁsq%(q) = EY(q). (3.67)

Making the substitution v/ (¢) = exp (—agq?) ®(¢) , we obtain

/ s 2 /
() — 4aq®(q) + [(4a2 - th ) g+ :2E - Za} ®(q) =0. (3.68)

Hermite’s differential equation can be obtained if the following substitutions are
made:

Then, Eq. 3.68 reduces to

h |:2/,L/E u wo

d(x) — 2xd'(x) + 5 :| d(x) =0. (3.69)
Wao | h
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Furthermore, impose the following quantization condition on the coefficient of the
last term in the above equation:

2UWE ! h
[u _Mwo} —2v. wherev=0,1,2.3, ... (3.70)

h? o | wWao
This leads to Hermite’s differential equation, of the form
Q" (x) — 2xP(x) + 2vP(x) =0, (3.71)

with the corresponding energy eigenvalues
1
Evib = ha)() v+ 5 . (372)

The functions ®(x) are the Hermite polynomials. The wave function then becomes

¥(q) = exp (—aq?) d>< “;"’q).

Converting Eq. 3.72 to wave numbers, the vibrational term value for a harmonic
oscillator is defined to be

Eviv _ Gy =" (y 4 ! + 1 (3.73)
= V) = V- ) =Wipr|lVT 5] :
he he 2 b 2

The factor v,;;, is the vibrational resonant frequency. Notice that for v = 0, a nonzero
vibrational energy still exists. It is called the zero-point energy and is a consequence of
the Heisenberg uncertainty principle. Since p and ¢ are contained in the system
Hamiltonian and do not commute, the energy cannot be known with certainty. This is a
nonclassical result, but it is not of concern in spectroscopy, since spectral lines are gen-
erated by energy level differences.

The selection rule for vibrational transitions is Av = 1 or —1 for absorption or emis-
sion, respectively. The location of vibrational spectral lines is computed by taking the
difference of the term values for the upper and lower levels,

Gw+1) — G) = vuip. (3.74)

All vibrational transitions occur at the same wave number, since the above result is
independent of v. This is a result of the harmonic approximation to the potential.

The solution of the harmonic oscillator is one of the most fundamental results of
quantum mechanics. It allows the quantum-mechanical description of any oscillatory
phenomena. To apply this formalism to some systems requires an algebraic solution
within the formalism of matrix mechanics. This is accomplished in the following
discussion.

The stationary-state Schrédinger equation in Dirac notation is given by

Hlv) = E,|v),

where for the harmonic oscillator
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H _1 P2 2 2
(p,q)—§ ;-i-w mq- . (3.75)

The Hamiltonian can be simplified by reducing the momentum and position opera-
tors in the following way:

P = ﬁ and Q =+/mg, where P = Q. (3.76)

Substituting the above definitions into Eq. 3.75, we obtain the following Hamiltonian:
1
H(P,Q) = 5 (P? + 0*Q?%). (3.77)

Also, based on Eq. 3.76 and [ p,q] = jh, the commutation relation between P and Q
becomes

[P, Q] = jh. (3.78)

A useful perspective on the harmonic oscillator problem is obtained by defining new
operators, as given by

A 1 .

al = —(Zha))l/z (wQ + jP) (3.79)
and

n 1 .

a= W(Q)Q — jP). (3.80)

Then, based on these definitions and Eq. 3.78, the commutator bracket for the new
operators becomes

[a.a']=1. (3.81)

Substituting Eqgs. 3.79 and 3.80 into Eq. 3.77, the system Hamiltonian can be
expressed in terms of the a operators to be

H(P,Q)= = (P’ + 0’ Q%) =ho (&T& + %) (3.82)

1
2
Therefore, the energy eigenvalue equation is written as
a1
hw aa—i—i |v) = E,|v) (3.83)

or in standard eigenvalue equation form

a‘ap) = (—w - —)|v). (3.84)
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Eigenvalue problems require that an operation on a function produces a number
times the function, thus

a‘a|v) = number |v) = v |v)

Therefore, the numerical factor on the right-hand side of Eq. 3.84 must equal the
number, v, and solving for E, we obtain

1
E,=hw <v + E) , (3.85)

which is a result analogous to Eq. 3.72. Thus, v is the energy quantum number. The
operator a'a is called the number operator, because it yields the number of vibrational
quanta a particular system has.

What do the operators a" and a represent? To answer this question, consider the fol-
lowing arguments. Let us find the eigenvalues of the operator a, as defined by

aln) = Anlm), (3.86)

where the numbers A, and m need to be determined. The Hermitian conjugate form of
this equation is given by

(n)|a" = (m| Az (3.87)

Based on the previous two equations, it follows that the inner product of a state
against the same state is

(n|a*a|n) = (m|A%A,|m) =A% (3.88)

where it is assumed that the eigenvectors are orthonormal. Now, based on Egs. 3.84 and
3.85, the following can be stated:

|Anl* = (v|a'alv) = (v|v]v) = v. (3.89)

Therefore, the eigenvalue of the operator a can be expressed in terms of the energy
quantum number, as

Am = /. (3.90)

Further, the eigenvector can be determined by the following arguments. Consider the
post operation of the operator a on an eigenvector with the number operator operating
on the eigenstate, |v), as given by

a(a‘alv)) =valv). (3.91)
Rearranging the parentheses in the above equation, in the following manner,
aa’ (alv)) = valv)

and using the commutation relation, as given by
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aa' =1+da,
we obtain
a'alm) = (v—1)|m). (3.92)

The operator on the eigenvector, |m), is the number operator. Therefore, the quan-
tum number of the eigenvector must be

lm) =lv —1).
The solution to Eq. 3.86 now becomes

alv) = Jvlv — 1). (3.93)

The operator a lowers the quantum number of the eigenstate and, for this reason, it
is called a lowering operator.

Also, let us examine the Hermitian conjugate of the lowering operator. Consider the
following eigenvalue equation:

a'lv) = B,|n), (3.94)

where B, and n are numbers to be determined. The Hermitian conjugate form of this
equation is given by

(v ’& = Brf(n| . (3.95)

In a similar fashion to the previous development, we compute the expectation value
of the following operator, which also equals | B, |2:

B> = (vl|aa’|v) = (v|(1+a'a)|v)=1+0v. (3.96)

Therefore, the eigenvalue of the operator @' can be expressed in terms of the quan-
tum number, v, as given by

B, =+1+v. (3.97)

Furthermore, the eigenvector can be determined in a similar manner as before.
Consider the number operator operating on Eq. 3.94, which becomes after simple alge-
braic manipulation

ata(a'lv)) = A +v)(a'|v). (3.98)
Based on Egs. 3.94 and 3.97, the above equation reduces to
a‘aln) = (1+v)In). (3.99)
This is the number operator operating on the state |n), which means
In) =1lv+1)
must be true. Therefore, the solution to Eq. 3.94 is given by

a'lvy=vv+1|v+1). (3.100)
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a' is called a raising operator because it raises the quantum number of the eigenvector.
(The raising and lowering operators are very useful tools when the electromagnetic field is
quantized in Appendix 5.)

Note The raising operator can be used to specify a state in general in the
following way:
@

[v) NG

0)

where |0) is the ground state.

The harmonic oscillator is only an approximation to a real potential function. It is
valid only for systems in the lowest energy levels and even then does not give a detailed
description of a system. A realistic potential is composed of attractive and repulsive
potentials. The binding force in a polar molecule is the electrostatic attraction between
unlike charges. The atoms can only get so close because the electronic clouds sur-
rounding the nucleus begin to overlap and this is not allowed by the Pauli exclusion
principle (see Merzbacher Ref. 3.2). Also, the repulsive force between the two (or
more) positive nuclei will also have an effect when the atoms are close enough. The
resulting potential is the sum of these components, forming a potential well with a min-
imum at the equilibrium separation between the atoms, r,. This description is illustrated
in Fig. 3.11.

Many intramolecular and intermolecular potential functions have been proposed;
here are two popular examples:

Leonard—Jones potential (or Van der Waals, also called 612 potential):

A B
V(r) = T e (3.101a)
Morse potential:
V(r) = Do+ Do (1 — e ), (3.101b)
V@) o
T f ; Repulsive potential
e
15 : :
r 0 ‘ : T L2
T Attractive potential
Dy

I
'
'

v

Fig. 3.11 Realistic intermolecular potential function between two atoms composing a molecule.
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where Dy is the dissociation energy and r, is the equilibrium position as defined
in Fig. 3.11. Near the bottom of a realistic potential well the function is harmonic
(see Fig. 3.11). To see this, consider the Morse potential function, for r — r, small:

2
Vi) ==Do+ Do ft=[1=aC—r)+5 ¢ —r*+ |}
1 (3.102)
~ —Dy + Eﬂx (r — re)2 + anharmonic terms.

The Morse potential will be of interest later, mainly because it allows an exact solu-
tion to the Schrodinger equation. Thus, the anharmonicity is represented to all orders.
The one-dimensional wave equation with the Morse potential is

n* d?

o Elﬁ()f) + Do {1 —exp[—a(x — x)IY* ¥ (x) = (Do + Eu) ¥ (x). (3.103)

The corresponding energy eigenvalues are

[(+2)-5(+3) ]
E,=hwp| ([v+=z)—=(v+= — Dy (3.104)
2 J’ 2

where wy is the fundamental vibrational frequency, v =0, 1,2,3, ..., Upax < (' = 1)/2
and
y 4Dy
j=l—) (3.105)
ha)o

The wave function in the rotational ground state is

1 Ja U Tth—2v—1+4i)\’ 5Bl ity g k20t
l/f(x)_\/zﬁr(k—u)(; TG+ D) )e ©0 e L

where k = (871D0)]/2 Jah, 7z =ke"“*) and L"™(z) is the associated Laguerre polyno-
mial. Another consequence of an anharmonic potential is that Av = £1, £2, 43, ....
Thus overtone bands are now allowed.

In general, the energy values of the one-dimensional anharmonic oscillator are given by

1 1\? 1\’
E, = —Dy+ hw, (v—i—E)—ha)exe <v+§> + hw,y, (v—i—E) +..., (3.106)

where w, = wy, and x, and y, represent anharmonic corrections. Converting to wave
numbers,

E, D, 1 1\* 1\’
G(v):%:—h—g—l—vB(v—}—E)—vexe(v—}—E) +VeyE(U+§> +--- (3.107)
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where G (v) is the vibrational term value. Vibrational spectral line locations are computed
by examining the differences between energy levels. To first order in the anharmonicity,
this is

3\ 1\’
wipb =G +1) —GW) =v, — vexg[ (v + 5) — (v + 5) } (3.108a)
After some simple algebra, the result is
Vyip = Ve — 2VeX (v + 1). (3.108b)

Vibrational transitions which originate above the ground state are shifted to lower
frequencies relative to the fundamental.

Now let us combine the rotational and vibrational motions, which we have thus far
considered separately. As the nonrigid molecule rotates with increasing energy, it
stretches until it ultimately flies apart. This is called centrifugal distortion, and it adds
a correction term to the rotational term value of the form

F(J)=B,J(J +1) = D,J*(J + 1), (3.109)
where

4B}
D, = —=¢.
@y

(3.110)

The rotational constant B, must also be modified, since r, in the moment of inertia,
1, is the equilibrium separation, which changes for anharmonic vibrations as a function
of the vibrational level. Thus,

1
Bv:Be—oze<v+§>+--~, (3.111)

where ¢, is a correction factor listed as a molecular constant in tables (e.g., see Herzberg,
Ref. 3.4). Further, a correction is also needed for the centrifugal distortion term,

D, =D, + B, (U-I—%). (3.112)

Based on these results, it follows that
F,(J)=B,J(J+1) =D, J*(J+1*+--- (3.113)

(usually D, is very small and can be neglected for J small). Now the energy levels of
a vibrating rotator can be expressed as

T(w,J)=GWw)+ F,(J)

! 1 (3.114)
=ve<v+§)—vexe(\z+§> 4+ BJT+ D) =D, J* T+ 12+,
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Fig. 3.12 Vibration-rotation energy level diagram (Herzberg, Ref. 3.4).

The corresponding energy level diagram is illustrated in Fig. 3.12.

We are now ready to compute the positions of infrared vibration—rotation bands. As
before, Av = 1, but now AJ = %1 is possible. Thus for each vibrational transition there
are two separate bands or branches of rotational lines that will exist. For AJ =1, an
R-branch is formed and for AJ = —1, a P-branch is formed. To see this, consider the
energy level difference for Av =1and AJ =1,

VR=GW~+1) —GW) + For(J + 1) — F,(J). (3.115a)

Substituting Eqgs. 3.107 and 3.113 for the vibrational and rotational term values and
ignoring the D rotational constant, the result for the R-branch line position is

VR = Ve — 20X (v 4+ 1) + (By1 — B))J? + 3Byt — B))J + 2By (3.115b)

The corresponding energy level differences for the P-branch are computed in a sim-
ilar manner according to

vp=Gw+1)-GWw)+ Fnu(J—1)—F,(J). (3.116a)
The result for the P-branch line position is

vp = Ve — 20X, (v + 1) + (Byy1 — B,)J? — (Byy1 + Bu)J. (3.116b)
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Ignoring second-order effects in the rotational constant (B, &~ B, = B,), we have
the following simple formulas:

VR = Vo — 2V X, (v + 1) +2B.J + 2B, (3.117)
for the R-branch lines with AJ = 1, and
vp =V, — 20.x.(v + 1) — 2B, J (3.118)

for the P-branch lines with AJ = —1. A particular transition is denoted as
P(J) or R(J), where J is the lower-level quantum number. Note that the P-branch is
below the vibrational transition frequency and the R-branch is above. An experimental
vibrational spectrum of carbon monoxide is shown in Fig. 3.13.

Also in Fig. 3.13, secondary bands appear which are red shifted and weaker than the
main band. These are isotopic bands in which one of the atoms in the molecule is an
isotope. For example, in CO the main band is '2C!60, and the red-shifted band is from
the isotope 13C!00. Since the 13C atom is heavier, it is slower in vibration and rotation.
The amount of the shift is determined by the ratio of the reduced masses (diatomic):

Uisotope M,
- Ve = M/isompe =p. (3119)
For the rotational constant B, it can be shown that
Bisotore — p’B, . (3.120)

1-0 '12C¥$Q Vibrational transitions
P-Branch R-Branch

0.8
0.4 N

Transmittance

0 1 I 1 !
2000 2050 2100 2150 2200 2250

Wave number [1/cm]

Fig. 3.13 Vibration—rotation bands of CO, showing the fundamental (1-0) of the main isotope
12C160 and the fundamental of 13C!60.
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This is very useful knowledge for problems in atmospheric propagation with CO, or
CO lasers. Because these gases also exist in the atmosphere, the very transition that pro-
duces the laser radiation can also be an important absorber of that radiation in the
atmosphere. Thus isotopic CO, and CO lasers will have improved propagation charac-
teristics, because laser power will be unchanged but the atmospheric absorption will be
greatly reduced. (CO, lasers are very popular for many electro-optic systems in the
atmosphere and many companies offer isotopic CO, in the gain media.)

3.3.2.2 Polyatomic Molecules

A polyatomic molecule can have many more modes of vibration than the simple diatomic
molecule. The number of possible vibrational modes is determined from the degrees of
freedom of the particular system. Each atom can, in general, move in three directions. In
a molecule with N atoms, there are 3N degrees of freedom describing the motion.
Choosing a central coordinate system allows the description of motion of the molecule in
three directions. Also the system can rotate in three different directions. Then the number
of independent modes of vibration is 3N — 6, where the “6” accounts for three degrees of
rotation and three degrees of translation. In the case of a linear molecule (i.e., CO,,
diatomics, etc.) the number of vibrational modes is 3N — 5, since only two independent
rotational modes exist. The vibrational modes describe motion of the atoms relative to one
another. When this motion is linear and with a fixed relative phase, a special set of vibra-
tional modes are generated. Such vibrational modes are called the normal modes of
vibration. Not all the modes will necessarily be infrared active. In a nonpolar molecule a
dipole moment must be created by asymmetric vibrations of the atom, otherwise no
dipole will exist and the modes are called “infrared inactive.” The study of symmetry
properties regarding the arrangement of atoms within a molecules is called group theory.
Group theory can be used to determine the activity of a molecule but is beyond the scope
of this text (see Herzberg, Ref. 3.4, and Burns, Ref. 3.8, for further references).

The vibrational term value function, G( ), for a polyatomic molecule with no degen-
eracy is

1 1 1
G(vl,vz,v3,. . ) = Xi:\/,‘ (U,‘ + 5) + szik (U,’ + 5) <Uk + E) 5 (3121)

i k=i

where v; is the vibrational quantum number of the ith mode, v; is the ith harmonic
vibrational mode frequency, and x;; (= xi;) accounts for an harmonic correction. Most
vibrational bands observed in the atmosphere originate from the vibrational ground
state (where 0 = v = v, = - - -). The centers of such bands are calculated to be

GO (v]7v27v3" . ’) =G (U15v29v37‘ . ') -G (0507 07 .. ')

= Zv()ivi + ZZXOikvivka
i

i k>i

(3.122)

where

1
Voi = Vi +xii + E];xik
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and
Xoik = Xix (ignoring higher powers).

If, for the ith mode, v; = 1, then the transition is called fundamental. Fundamental
normal-mode vibrational frequencies of atmospheric molecules are listed in Table 3.2.
When v; > 1, overtone bands result, which are harmonics of the fundamental.
Combination bands involve transitions employing different vibrational modes. When
the initial state of the molecule is not the ground state, hot bands result, with the fol-
lowing term value formula:

G(vr,vi) = Go(vrr, vy2, Vg3, . .) — Go(vi1, Vin, Vi3, - . ), (3.123)

where vy; represents the vibrational quantum number matrix of the final and initial states,
respectively. Values of vibrational frequencies squared depend inversely on the reduced
mass of the vibrating system and directly on the bond strength. Thus molecules with light
atoms will have the highest vibration frequencies. Again, water vapor is such a molecule.

Rotational—vibrational spectra include the perturbation effect that rotational motion
has on the vibrational energies. The allowed rotational transitions become AJ = %1, 0
which results in P, Q, and R-branch structure (see Herzberg, Refs. 3.4 and 3.5). Net
term value energies of the vibrating rotor become

T, J)=G)+ F,(J). (3.124)

Applying the selection rules leads to formulas predicting line position which can be
found in Herzberg.

Table 3.2 Fundamental Vibrational Frequencies of Atmospheric Molecules?

Degeneracy
Molecule v, [em™] v, [em™] vy [em™] v, [em™] g1 &2 &3 8w
CO 2143 1
H, 4401.21° 1
OH 3735.21 1
NO 1904.0 1
N, 2359.6P 1
0, 1580.40 1
Cco, 1388.2b 667.4 2349.2 1 2 1
N,O 2223.8 588.8 1284.9 1 2 1
H,0 3652 1594.7 3755.7 1 1 1
H,S 2614.6 1182.7 2627.5 1 1 1
NO, 1319.7 749.8 1617.7 1 1 1
O, 1110 705 1042.1 1 1 1
SO, 1151.3 517.6 1361.7 1 1 1
NH; 3336.2 932.5 3443.6 1626.1 1 1 2 2
CH, 2916.5 1533.6 3019.5 1310.8 1 2 3 3

4From Herzberg (Refs. 3.4, 3.5).
YInfrared inactive.
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As an example of this, let us consider the nonpolar linear molecule CO,. It has three
atoms, thus 3(3) — 5 = 4 modes of vibration. They are illustrated below.

CO, Normal Vibrational Mode Structure

1. vi: Symmetric stretch mode
2 and 3. v,: Bending mode
(In the plane of the paper and perpendicular to the plane of this paper)
4. v3: Asymmetric stretch mode

—0 @ -0

0 @0

The v, vibrational mode is twofold degenerate and requires two quantum numbers,
as designated by v}. Thus four vibrational quantum numbers are necessary to describe
vibrational motion in CO,:

v v% V3.

The vibrational ground state is designated as 0000, the first v; vibrational state is,
1090, and so on. Employing this notation with Table 3.2, we obtain

v; = 10°0 — 00°0 = 1388 cm ™',
vy = 01°0 — 00°0 = 667 cm™!,
v3 = 00°1 — 00°0 = 2349 cm™!.

Because of the symmetry of the v; mode, it is infrared inactive. However, the other two
vibrational modes are infrared active and are important absorption bands in the earth’s
atmosphere. (In fact, the v, band contributes to the greenhouse effect in the atmosphere of
the earth.) Each one of the bands will, of course, have rotational structure as well. The
familiar P- and R-branches are present, and AJ = 0 also becomes possible (but not
always), thus Q-branches may also appear. An example of the v3 vibrational band of CO,
is shown in Fig. 3.14. Figure 3.15 also has a vibrational energy level diagram for CO,.

Another example of great interest to us is H,O because of its importance to atmos-
pheric propagation and propagation in seawater (liquid phase). It has 3(3) — 6 = 3
vibrational modes: the bending mode (v,), the symmetric stretch (v), and the asym-
metric stretch (v3). Because of the light hydrogen atoms in H,O, high vibrational
frequencies are possible, as opposed to other atmospheric gases.

Therefore, water vapor has strong absorption bands throughout the infrared. This
fact, coupled with the large rotational constants of water vapor, explains why water
vapor dominates attenuation of infrared photons by absorption in the lower atmosphere.
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Fig. 3.14 CO, v; vibration—rotation band.

Also, the absorption spectrum of the gas and liquid phase of water has determined why,
in evolution, natural selection has chosen the eye’s visible spectrum.

3.3.3 Electronic Spectroscopy

Electronic absorption bands typically exist in the ultraviolet for atmospheric molecules and
involve transitions of outermost orbital electrons within the molecule. These transitions
mark the end of optical transparency in the atmosphere. Thus it is not necessary to present
a detailed description of the entire band structure, but rather the beginning absorption edge.
The most important molecules in this case are O, and O;, since these molecules begin
absorbing at lowest ultraviolet frequencies of the atmospheric gases. Also, electronic tran-
sitions of N, and O, contribute significantly to the real part of index of refraction
throughout the infrared and visible.

E
»
V=2
V=3
V,= 5
V=2 V=4
V=1
V,=3
V=1
! V=2
V=1
vV, VoV, ViV,

Fig. 3.15 Vibrational energy level diagram of CO,.
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Fig. 3.16 Potential energy curves for two electronic states of a diatomic molecule (McCartney,
Ref. 3.7, with permission).

Figure 3.16 illustrates a ground-state electronic level and an excited electronic level.
Within these electronic states are vibrational energy structures and within the vibra-
tional structures are rotational structures. The transition between these electronic
energies contains many possible vibration—rotation bands, as Fig. 3.5 demonstrates. A
series of absorption bands results, which characterizes the beginning of electronic band
absorption. Oxygen begins strong absorption at 195 nm with the Schumann-Runge
bands. Ozone, found primarily in the stratosphere, begins absorbing at 300 nm.

3.4 Spectroscopy of Solids

Solids do not have rotational spectra because the molecules are relatively fixed in posi-
tion and cannot rotate, but they do have vibrational motion of the lattice sites and
electronic transitions. The solid state adds a new look to these now familiar phenom-
ena, especially the regular structure of crystals. Also, continuous bands, not discrete
energy structures, are observed in solids, as opposed to gases. For this reason, a classi-
cal description of solid-state vibrational structure is used. Crystalline structure will be
emphasized at this time and applied later to both single- and polycrystalline materials.
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3.4.1 Lattice Vibrations and Phonons

When we discussed polyatomic molecules in the gas phase we stated that there are
3N — 6 vibrational modes. The “6” corresponded to three rotational modes and three
translational modes. N represented the number of atoms in the molecule. Now, since no
rotational motion is allowed, the number of normal vibrational modes (which are also
optical modes) becomes

3N -3,

where the second term, “3”, represents the number of translational modes. However, in
a solid, the translational modes become acoustic modes, which are also vibrational in
nature. Thus, there are actually 3N vibrational modes in a solid. The nonacoustic vibra-
tional modes are called optical modes because they typically occur at infrared
frequencies, which are higher frequencies than acoustic vibrations. Also, N now repre-
sents the number of atoms in a primitive unit cell or basis (which can be more than the
number of atoms in the molecule). The primitive unit cell contains the basic configura-
tion of the atoms, which is repeated in the crystal to form the macroscopic solid. Thus
a solid can have many possible vibration modes. For example, NaCl has one molecule
for each primitive unit cell, thus N = 2. The number of possible optical modes becomes
three. Of course, not all of these are distinct infrared active modes. Because of symme-
try, many modes will be degenerate or will have no dipole moment and, therefore, be
optically inactive. Also, as is the case for NaCl, more optical modes are actually
observed because of crystal defects and impurities.

3.4.1.1 One-Dimensional Diatomic Lattice

Let us begin the discussion of lattice vibration by considering the simple problem of a
one-dimensional lattice with two atoms per unit cell. In this case, the number of opti-
cal modes is one ( = N — 1). Therefore, one optical mode and one acoustic mode are
expected. A diagram of this lattice is illustrated in Fig. 3.17. This will be a classical
treatment, which will be very useful to us later, because the energy levels occur in bands
and only broad spectral features can be observed.

Consider an infinite one-dimensional diatomic chain of a polar molecule. The nega-
tive atom has a mass M and the positive atom has a mass m. They are separated by the
equilibrium distance a and held together by a Hooke’s law force with spring constant
Bs. This means, as before, we have assumed a harmonic potential. Now, let the atom
have a small displacement from equilibrium, as shown in Fig. 3.18. v represents dis-

Fig. 3.17 The one-dimensional diatomic lattice. m is the positive ion, M is the negative ion,
is the spring constant representing the bond between atoms, and a is the equilibrium distance
between atoms.
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n Up+g

Fig. 3.18 Lattice site displacements.

placements of the negative atoms and u represents the displacements of the positive
atoms. The subscripts locate the particular atom in the linear chain.
The lattice potential energy is (considering only nearest neighbors)

oo
V,(u,v) = Z [%(un — v,,)2 + %(vn — u,,+1)2i| centered about v, (3.125)

n=1

and

oo
V.(u,v) = Z [%(vn — u,,)2 + %(un — vn_l)z] centered about u,,.  (3.126)

n=1

Using, F = —|VV| and F = m(d*v/dt?), we have the following coupled differ-
ential equations:

d*u, d
5 = ViV, =— Vi = Bs(up + vyt — 2u,) (3.127)
dt ou,
and
d*v,
M 5 = _VUVU = - Vv = ,Bs(unJrl +u, — 2Un)' (3128)
dt vy

Assuming traveling wave solutions for #, and v,, we have
U, = ue I ka=—on (3.129a)
and
—j[(2n+l)k/u — wr]

U =ve . (3.129b)

Upon substitution into Eqs. 3.127 and 3.128, we find the following results:
—motu = B, [v (efk’“ + e*fk’“) - 2u] (3.130)

and

—Mav = B, [u(ejk/a e iKay 2v] : (3.131)
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A solution will exist if the two equations are independent. Thus the determinant of
the coefficient matrix must be zero:

me - zﬂs .Bx (ej’ka + eij,ka)

Buea te iy M2 —28, |~ (3-132)

Evaluating the determinant, we obtain the following dispersion relation between

w and k/,
, B 1 4sin*ka
o= E B - (3.133)
2 w m

where u' = [mM/(m + M)] is the reduced mass, just as in a diatomic gas.

A plot of w(k’) is shown in Fig. 3.19 for £’ > 0 only, since the curve is symmetric
about k' =0 (i.e., w(k’) = w(—k’)). Also, the solution is periodic in k¥’ with period
mr/a. This is a useful property, and the interval

is called the first Brillouin zone.
It is instructive to examine the dispersion relation for the simple case of the k' ~ 0
limit. Two solutions are possible,

28,\"2 u M
w = p , and — =~ —— (optic branch) (3.134)
" v m
and
26, \'*, u ,
o~ k'a, and — = l(acoustic branch). (3.135)
m+M v
T
@B " ”
Optic Branch (2B /m)
w(k")
M>m
(ZBS/M)UZ
Acoustic Branch
{
0 K n/2a

Fig. 3.19 The w versus k' plot for a linear diatomic chain in the positive half of the first Brillouin
zone.
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One solution represents the optic branch, because it can be excited by high frequen-
cies (infrared). The acoustic branch supports lower frequency modes. The solutions for
k' = /(2a) are listed in Fig. 3.19. For this case, the lattice site position amplitude
ratios are given by

_ oo (i.e., v = 0) (optic branch),
v
and

_ 0 (i.e., u = 0) (acoustic branch).
v

The corresponding motion of the atoms, as indicated by the ratio of the position
components, is illustrated in Fig. 3.20 for both ¥’ = 0 and 7 /(2a). Note that the optic
branch represents lattice motions consistent with an applied electric field (at optical fre-
quencies) in the direction of the lattice and propagates perpendicular to the lattice. The
acoustic branch represents compression waves or sound wave phenomena which prop-
agate in the direction of the lattice.

From this model of the diatomic linear chain, the linear monatomic lattice can be
directly understood. Setting M = m reduces Eq. 3.133 to a single formula, from which
the following dispersion relation is obtained:

w= 2(%)1/2 ‘sin (k%)‘ . (3.136)

Now only one branch exists, the acoustic, as expected.

Vn-1 Uy Vn Up 4

®) - T~ T00 ) T000 -0~ 7000 )T -0
Vn-1 Uy Vn Upt1

@ +-0~T000_ ) 5000-0~ 000 )~ T000-0~T000{_ )~ T000-0-

— -

Vn-1 U, Vn Up+1

@ =0T T~ T000 ) T000 -0~ 7000 )T -0
I
V-1 U Vn Uptq

Fig. 3.20 Tllustration of lattice motion for (a) k" = 0 optic branch, (b) k¥’ = 0 acoustic branch,
(¢) k' = 7/2a optic branch, and (d) k' = 7 /2a acoustic branch.
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The group velocity, vg, can be computed for each branch based on the dispersion
relation and is defined as

dw
Ug = %
For the optic branch at ¥’ &~ 0 and k' ~ 7/(2a), the group velocity is

OB _
e =0.

For the acoustic branch, the group velocity is

28, '\
vl = (m+M) a = vy (3.137)

where v, is the speed of sound in a diatomic crystal for k' ~ 0. Thus, the optic
branch cannot support the transport of vibrational energy along the direction of the one-
dimensional lattice for ¥’ ~ 0, but the acoustic branch can. The optic branch supports a
standing wave and the acoustic branch supports a traveling wave.

Also notice that the wavelength of optical radiation, A (about 1000 to 0.1 um), is
much greater than the spacing between the lattice site, a (about 3 to 4 A). Thus to match
the wavelength of optical light the lattice has a very small value of k. For this reason,
many problems dealing with optical properties of solids are solved in the “long wave-
length limit,” that is, £’ ~ 0.

3.4.1.2 Three-Dimensional Lattice

Many important points can be learned from the one-dimensional lattice problem, but
it is too simplistic to represent other important issues of real materials. To complete
this introduction to solid-state spectroscopy we must discuss the three-dimensional
lattice.

Three-dimensional lattice structures can be represented by seven different crystal
systems with 14 different unit cells. These systems are listed in Table 3.3 and the unit
cell structures are illustrated in Fig. 3.21. The coordinate system used in their descrip-
tion is illustrated in Fig. 3.22. These different groupings represent three classes of
importance to optical propagation in crystals. They are cubic, uniaxial, and biaxial, and
are indicated in Table 3.3. Most optical crystals are either cubic or uniaxial; very few
are biaxial. Cubic structures have the most symmetry, therefore fewer optical modes are
expected and the material is more isotropic in character. Uniaxial structures have two
directions of different symmetry and therefore two sets of vibrational modes, which
depend on the crystal orientation. The properties of this class of material differ in the
two directions. Biaxial structures differ in all three space directions and therefore have
different vibrational modes and material properties in these directions as well. The
importance of, and differences between, these classes concerning optical propagation is
demonstrated in the next chapter.



Table 3.3 Organization of Crystal Systems

System No. of Lattice Types Axes and Angles Optical Designation
Cubic 3 a=b=c cubic
o = /3 =y = 90°
Hexagonal 1 a=b#c uniaxial
a=p=90°
y = 120°
Tetragonal 2 a=b#c ”
o = ﬁ =y = 90°
Trigonal 1 a=b=c ?
a=B=y <120°, #90°
Monoclinic 2 a#b+#c biaxial
a=p=y=90#p
Orthorhombic 4 a#b+#c ”
a=p=y=90°
Triclinic 1 a#b#c ?
aFBFy
o e
>
cuBIC-P cuBIC-F
HEXAGONAL-P TRIGONAL-R
TETRAGONAL-P TETRAGONAL-T
v, AP
D
L~
TRICLINIC-P MONOCLINIC-P MONOCLINIC-8

ORTHORHOMBIC-I

ORTHORHOMBIC-F

ORTHORHOMBIC-P

g==4

ORTHORHOMBIC-C

Fig. 3.21 The crystallographic systems and space lattices (Burns, Ref. 3.8, with permission).
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Fig. 3.22 Crystal axes and angles.

Each system structure has unique symmetry properties which determine mode
degeneracy and infrared activity. This requires group theory of space structures and is
not covered here, but can be found in the solid-state references at the end of this chap-
ter (see Refs. 3.8 and 3.9).

Because of the additional dimensions, other vibration and acoustic modes are now
possible. In one dimension only, modes in the direction of the lattice exist and are called
longitudinal. For the case of the one-dimensional diatomic lattice, one mode is longitu-
dinal acoustic (LLA) and the other is longitudinal optical (LO). Now transverse modes are
possible, where the lattice site oscillations are perpendicular to the direction of the bonds
between the atoms, as illustrated in Fig. 3.23. Such modes can have an optic branch or
an acoustic branch, and are called transverse optic (TO) and transverse acoustic (TA).
For a crystal with one atom per unit cell, there are three acoustic modes, one longitudi-
nal and two transverse. For a crystal with two atoms per unit cell, there are three acoustic
modes (one LA and two TAs) and three optic modes (one LO and two TOs). Dispersion
curves for various monatomic and diatomic crystals are shown in Fig. 3.24.

3.4.1.3 Vibrational Density-of-States

Many vibrational states can exist in a solid, and it is useful to define a density-of-states
function, p(w). It is the number of vibrational states between w and w + dw within a
volume L3, as defined by (see Kittel, Ref. 3.9)

Fig. 3.23 Two-dimensional lattice showing transverse modes (Burns, Ref. 3.8, with permission).



120 OPTICAL PROPAGATION IN LINEAR MEDIA
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Fig. 3.24 Dispersion curves for Na, Si, and KBr (Burns, Ref. 3.8, with permission).

L 3
p(@)dw = dN = (E) /d3k’, (3.138)
shell

where N is the number of modes and p(w) is normlized according to

(o]

/,o(w)dw: 1. (3.139)
0
Based on Eq. 3.135, the frequency is directly proportional to the wave vector, k’, for

the acoustic branch. Thus, the number of acoustic vibrational modes less than &’ is
obtained by integrating Eq. 3.138 over the entire volume. The result is
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L\ 4n ;3 V?
N = e —k = s
27 ) 3 6m2v}

where the volume V = L3. The vibrational density-of-states in the Debye approxima-
tion (considering only acoustic modes) is obtained by differentiating the above result
with frequency. The normalized result is given by

3.?)2 w S a)max
p(w) = { Omax , (3.140)
0 W > Wpax

where w,,,, 1S the maximum acoustic frequency the lattice will support. This is, in gen-
eral, a crude approximation, good only for small w (e.g., acoustic modes), but useful for
many applications. An example of a real density-of-states function is shown Fig. 3.25
for a monatomic crystal. This model does give a relatively good representation of the
acoustic density-of-states.

Optical-mode density-of-states structure is more complicated, and no generic model
exists.

3.4.1.4 Phonons

In solid-state physics, lattice vibrations are often called phonons. A phonon is a quan-
tized lattice vibration or a traveling wave packet with many similar characteristics of a
photon (the particle of light). Thus the vibrational motion of a lattice can behave like a
particle (wave packet).

| | ‘
A\
= 015 / |
g /[l
% / 1
z 01 T
z |
E Z |
£ 005 // |
]
s /// |
0 | |
0 5 10 15

Phonon energy [meV]

Fig. 3.25 An example of a real p(w) for Na. Note the sharp cutoff near 15 meV. The dashed
curve is the approximate Debye function.
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3.4.2 Electronic Structure

Electronic transitions in a solid begin at the material’s bandgap. This generally marks
the end of a material’s useful transparency. Above the bandgap, the material is reflec-
tive. Solid-state electronic spectroscopy is broad band, and is complicated by the many
possible transitions. However, electronic structure is fundamental to understanding the
nature of the bonds forming the solid and thus many of the material properties.

3.4.2.1 Band Structure

As in the case of vibrational structure, it is instructive to begin with a one-dimensional
lattice. However, the problem will be posed within the formalism of quantum mechan-
ics, because of the importance of energy level splitting in electronic band formation.
This point is illustrated in Fig. 3.26 for diamond. Consider carbon atoms in the gas
phase; the energy level structure is discrete and clearly defined. As the atoms come
together to form the solid, the energy levels split N-fold, where N is the number of
atoms. A covalent bond is formed by the new energy levels that are below the gas phase
ground state levels because the system seeks the state of least energy.
Recall, the stationary-state Schrédinger equation in one-dimension,

& 2
i(zx) + %[E — V@Y @) =0.

Choose a periodic square potential such that V(x +d) = V(x), as illustrated in
Fig. 3.27. For an infinitely long one-dimensional solid, V (x + nd) = V (x) also holds
for any integer n. This arrangement approximates a lattice with the outermost electron
in the atom at each lattice site trapped in the potential well between lattice sites.

5 T
Conduction band
0 electrons
4N states
ol _
%
Eﬂ Bandgap 6N states (2p)
L;:) 2N electrons
=5 2N states (2s) -
2N electrons
4N electrons
4N states Valence band
. —»]
-10 | | | |
0 2 4 6 8 10

Atomic separation [Angstroms]

Fig. 3.26 The formation of energy bands as a function of atomic separation for diamond (Pankove,
Ref. 3.10).
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Fig. 3.27 Periodic potential of a one-dimensional linear monatomic lattice.

Based on the nature of the potential, choose a periodic solution of the form
Y (x) = ux)e*™, (3.141)
where u is periodic, as
u(x +nd) = u(x). (3.142)

Solve separately for 1 (x) in two regions: (1) for V(x) = 0 and (2) for V(x) = V,.

1. For V(x) =0 and 0 < x < a, the Schrodinger equation reduces to

2mE
(Df. n :—2> ¥ (x) = 0. (3.143)
The solution is
¥ (x) = Ae/*" + Be ™/, (3.144)
where
2mE :

2. For V(x) =V, and a < x < a+ b (assuming V, > E (i.e., bound electrons)),
the Schrédinger equation becomes (D, = d/dx)

(D2 _ 2m(V, — E)

o ) ¥ (x) = 0. (3.146)
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The solution in this region is

V¥ (x) = CeP* + De P~ (3.147)
where
2m(V, — E)\ 2
B= <m(h—2)> . (3.148)

Rearranging Eq. 3.141, we have
u(x) = ¥(x)e /*x, (3.149)

Then, substituting into the above equation the solutions for ¢ (x), the corresponding
solutions for u(x) in the two regions are as follows:

ui(x) = Ae/@ ¥ 4 Be /@Y for0 <x <a (3.150a)
and
Ur(x) = CeP=7K% 4 De=B+iK" forq < x <a+b. (3.150b)

The boundary conditions in this case are that

dyr(x)
dx

¥(x) and

are continuous functions everywhere. Thus u and ' must also be continuous every-
where. Therefore, at x = 0 we have u(0) = u(d) and u,(0) = u,(0), which results in
the following conditions:

A+ B =C+ D (continuity of u(x))

and
jla—kKYA—jla+k)B=(B—jkC— B+ jk)D (continuity of u’(x)).

Furthermore, since u(x) must have the same periodicity of V (x), then ¥ must have
the same values at x = a and x = —b,

A/ @—K)a | pei@+k)a _ co=(B=ik)b | pe(B+ikb
(3.151a)
uy(a) = us(—b)

and similarly for i/,
J (o —K) AeT@9 — j (o + k) Be™I () = (B — jk') Ce=(P=iK)P

(3.151b)
— (B + jk) D)y (@) = uy (—b)

For a solution of these four simultaneous homogeneous equations to exist, we
require the determinant of the coefficients to vanish, which results in
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Fig. 3.28 Band structure of one-dimensional monatomic solid.

,32—0(2

sinh Bb sin aa + cosh Bb cosaa = F(aa) = cosk’(a +b). (3.152)

This equation is not tractable analytically and leads to the graphical solution shown
in Fig. 3.28. Values of F(xa) < 1 are valid solutions and define an energy band struc-
ture which we expect for solids. The lowest energy band is called the valance band and
the first excited energy band is called the conduction band.

3.4.2.2 Electronic Density-of-States

In three dimensions, electronic band structure becomes more complicated, because it
now varies with crystallographic direction, just as was the case for vibrational structure.
This point is illustrated in Fig. 3.29 for the case of the electronic k’-space diagram for
a-sapphire. At the bandgap, the energy structure of the valence and conduction bands
is parabolic in nature. This is an important characteristic function near the bandgap for
many optoelectronic devices. A brief development is presented below.

In a three-dimensional cubic box of length L, the wave function for a periodic poten-
tial takes the form

V() = u(r)ef ", (3.153)

where the function u is periodic in three dimensions in a similar fashion to the one-
dimensional case given by Eq. 3.142. The periodicity of the wave function requires the
wave vector to be quantized according to

2
K = Tm
L;

)

wherei =x,y,zand L=L, =L, =L,. In k’-space, the volume, V, per electronic
state is

873
——, where V=LL,L..
%
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Fig. 3.29 (a) k’-space energy band structure for single-crystal sapphire. (b) The corresponding
density-of-states (DOS) function for sapphire (French, Ref. 3.12a, with permission).

The electronic density-of-states, p(k'), is defined as the number of electronic states
per band, with a value of k' between k" and k’ + dk’. This is determined by computing
the volume of states in a spherical shell times two, for the two different spin states,
divided by the volume per electronic state, thus

’ ’ 14 2 . ’ klzv ’
p(K) dk' =2k sintdf dg | dk' = - dk (3.154)
shell

For a given k', the associated kinetic energy of a conduction band electron is given by

h2k12

E®) ==,
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where m.. is the effective mass of an electron in the conduction band. A similar formula
is obtained for an electron in the valence band, where the effective mass becomes m,,.
To convert the density-of-states to a function of energy, use

o(E)dE = p(K') dF'.

Using the above formulas, the following result for the electronic density-of-states is
obtained:

1 2mev \>?
p(E) = —2v< o ) E'Y?, (3.155)
where m.., is either the mass of an electron in the conduction band or the valence band.

3.4.2.3 Excitons

An exciton is a bound electron-hole pair, formed by an electron in a conduction band
with a hole (absence of an electron) in the valence band. It has many properties similar
to that of a hydrogen atom. The spectrum of an exciton is similar to that of hydrogen
and occurs near the bandgap of the host material. The bond length varies depending on
the host medium. Long bond lengths are found in semiconductors and short bond
lengths are found in insulating materials.

3.5 Spectroscopy of Liquids

Liquids can be thought of as a transition phase for matter between gases and solids.
Thus we expect to see broad continuous spectral features, as is typical for condensed
phase media at spectral locations similar to gas-phase spectra. This, it turns out, is basi-
cally true for vibrational structure but not for rotational structure. The rotational motion
is hindered because of collisions with nearby neighboring molecules, and optically
manifests as broad-band spectra, typically in the microwave.

From the point of view of the most important optical propagation media, one liquid
stands out, water. The dielectric properties are needed for solving atmospheric scatter
problems by fog, clouds, and sea spray, and absorption problems within seawater and
biological fluids. Thus understanding the spectroscopy of water is fundamentally
important to two common propagation media.

Liquid-phase spectroscopy is complicated and will only be surveyed here. The sim-
ilarities with gases and solids are emphasized.

3.5.1 Orientational Polarizability

For the case of polar molecules in the liquid phase the molecules rotate to align them-
selves to an applied field. This produces what is called orientational polarizability. A
relaxation time is given for a particular system to do the orientational process, it is
called the Debye relaxation time. For water it is found to be 75 ~ 107! sec.
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The Debye relaxation process accounts for the damped rotation of the water mole-
cule in the liquid state. The conductivity relaxation process accounts for the damped
translational motion of the ionic charge carrier. Debye, in 1913 (Ref. 3.13), approxi-
mately determined the Debye relaxation time, tp, by considering Stoke’s law converted
for a rotating sphere and Brownian motion. The following formula was obtained:

8 na’
= ,
P T

(3.156)

where 7 is the viscosity of water, a is the radius of water molecule and kg is the
Boltzmann’s constant. Surprisingly, this formula predicts reasonably well the observed
relaxation time of water, which is on the order of 1 x 10~!! sec. Figure 3.30 shows the
Debye absorption band peaked at a wavelength of ~ 10,000 um (= ctp).

Microwave ovens use this absorption band to heat food. Infrared ovens (the common
oven) use vibrational absorption bands for coupling energy into a medium. The amount
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Fig. 3.30 The index of absorption, k_, and index of refraction, n, as a function of wavelength for

s R

liquid water at room temperature and one atmosphere pressure.
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of energy absorbed is proportional to the absorption coefficient and not the index of
absorption. They are linearly related by frequency as given by Eq. 2.30.

Note In the case of seawater, one must also consider the free-carrier contribu-
tions to the complex index of refraction. Intuitively, the relaxation time, t., of the
translational motion of the ionic charge carrier in water should be similar to the
rotational relaxation of the water molecule. Following a similar approach to Debye,
the conductivity relaxation time can be approximately found by examining the
charge density and by applying Stoke’s law and Brownian motion. The result is

6nr]bx§
.= —, 3.157
T, T ( )

where b is the radius of the charge carrier and x is the 1/e point of the charge dis-
tribution. Substituting into the formula numbers for seawater and assuming that
a ~ b and xg, one finds that tp ~ ..

Thus, the microwave absorption coefficient is significantly lower than the infrared
absorption coefficient. This is why microwave ovens heat a volume more uniformly and
therefore quickly, and infrared ovens primarily couple to the surface and require more
time to heat the entire medium.

3.5.2 Vibrational and Electronic Structure

Vibrational structure of the gas phase will also appear in the liquid phase; however, the
location of the observed vibrational band will be shifted from the gas-phase location.
Obviously, the intramolecular potentials have changed. Also, continuous band structures
are observed. An example of this is the liquid H,O spectrum in Fig. 3.30. The
v, and v (v; and vs stretch bands combined) bands, as listed in Table 3.2 for the gas
phase, are clearly present. Notice that no rotational structure is seen within the vibrational
bands, only smooth bands. Also, new bands have appeared due to “intermolecular” poten-
tials between molecules. vr is the translation band caused by collisions by surrounding
water molecules that hinder the translational motion of the absorbing molecule. v, is the
librational band caused by hindered rotations of two interacting molecules. The molecules
rock about a hydrogen bond as they try to rotate. v4 is the association band caused by
combinations of other bands (v, + vz ). Table 3.4 lists the location and identification of
observed vibration bands of water. The strong absorption peak at 2.9 um is commonly
used for tissue ablation in biomedical applications.

The vibrational bands decrease in strength as the frequency increases. The minimum
index of absorption occurs in the visible, which is a window region in water bordered
by vibrational absorption bands to the low-frequency side and electronic absorption
bands and scatter loss to the high-frequency side. This fact, plus the origin of life from
seawater, is why we see in the visible spectrum. In fact, as discussed in Chapter 1, the
visible spectrum is defined by liquid water absorption.

Pure water has reasonably good transparency out to 0.22 pum. Then electronic
absorption bands rapidly increase in strength to end transmission at shorter wave-
lengths. More will be written about the optical properties of water in Chapter 9.
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Table 3.4 Vibrational Bands of Water

Band Location

Band Identification [em™] [um]
vr 170 588

v 590 16.95
vy 1640 6.097
Va 2130 4.695
Vg 3390 2.950
Vs + 1y 5125 1.951
2vg 6875 1.454
vy + 2v 8400 1.190
3y 10,250 0.975

Problems

(a) Verify that solution given by Eq. 3.23 satisfies the Schrodinger wave equa-
tion. (b) Show that this solution represents the momentum with no uncertainty
and that the particle position is unknown for forward propagating particles
(B = 0) in a finite region [-L, L].

Show that x and p, do not commute, that is, show that [X,p.]y¥(x) =
(xXpx — pxX)Y (x) = — jhp (x).

A common line shape function is the Lorentz profile, given by

g —vy) = —éo
T (v—1v,)2+y?
Does this line shape function satisfy the normalization condition

oo

/g(\) — Vo, J/)dV =1?
0

Does the Lorentz line shape satisfy Eq. 3.32?

Compute B, in cm™! for OH-, N,, and CO,, given r, = 0.97 A, 1.094 10\, and
1.15 10\, respectively (for CO,, r, is the distance from the O atom to the C atom).
Which of these molecules have permanent dipole moments, thus observable
rotational spectra?

Compute (J, |,udp|J,-) # 0, thus show that the selection rule for rotational spec-
trais AJ = %1.

Given the energy eigenvalues of the Morse potential,

E, N 1 1 N 1\?
T = UU v ~ - v ~ ’
hc 2 j’ 2

plot the energy level structure for j/ = 10 and v, = 1000 cm~!. What is the dis-
sociation energy?
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What is the fotal number of possible normal vibrational modes for CH, and SF,?
(a) How do isotopes of the atoms affect rotational and vibrational spectra of
molecules? Calculate the isotopic shift of '3C!°0O from the main isotope
12C160 vibrational band. (b) Show that B, = p2B,, where

w

risotope "

p:
125

(Consider diatomic molecules only.) (¢) Why do molecules that contain light
atoms have rotational and vibrational bands that are broad compared with
those of molecules of all heavier atoms?

For the case of Raman bands and collision-induced bands (i.e., O, and N,,
which are important in atmospheric propagation), transitions for
Av =1land AJ = £2, 0 are allowed. Compute the locations of the spectral
line in terms of the quantum numbers and the molecular constants. Assume the
vibrational motions are purely harmonic and D, ~ 0. A S-branch is formed for
AJ = 2,a Q-branch is formed for AJ = 0 and an O-branch is formed for AJ =
—2, a Q-branch is formed for Aj = 0 and an O-branch is formed for j = 2.
How does the spacing between spectral lines compare with pure rotational
spectra and the R- and P-branch of vibration—rotation spectra?

Water vapor absorption bands determine the infrared windows of the atmos-
phere. Given that

vy = 1595 cm™!,

v = 3652 cm™!,
and

vy = 3756 cm™ .

Plot the energy level diagram for H,O and then compute the location of the com-
bination overtone bands: 2v,, vy, v3, 2vy +v3, v +v3, v + Vo + v3, and,
2v; + v3. Plot the location of these bands on a wave number axis and predict the
location of atmospheric windows. (Ignore anharmonic corrections, but don’t forget
CO, to get a complete picture!)

A more realistic crystalline one-dimensional lattice is illustrated in Fig. P3.11
for M > m.

Fig. P3.11
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Solve for the dispersion relation w (k’) = ?. This problem uses the molecular
approximation, where f; > ;. Thus the bonding within the molecule is
greater than the bonding between molecules.

Derive the normalized Debye acoustic density-of-states distribution function
as given by Eq. 3.140, knowing that p () «x @? for 0 < @ < wna, and zero
otherwise.

Compute the acoustic two-phonon density-of-states, p2(w), given that the one-
phonon density-of-states function, p;(w), is the Debye function (see Eq. 3.140).
The two-phonon density-of-states is computed by convolution as given by

(@) = p1(w) * p1(w).

Derive the normalized electronic density-of-states function.
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4

Electrodynamics I:
Macroscopic
Interaction of Light
and Matter

Thus far, we have developed the properties of the electromagnetic field at optical
frequencies, based on Maxwell’s equations. These equations further give a classical
macroscopic perspective on the coupling of the propagation media to the field, as
presented in Chapter 2. The macroscopic properties of a medium are based on averaged
microscopic properties. The microscopic energy structure of matter was presented in
Chapter 3, covering gases, solids, and liquids by employing mostly quantum models.
We now proceed to the next level of development, the dynamic description of the
interaction between the optical field and the propagation medium as a function of the
field frequency and propagation media variables (e.g., energy structure, temperature,
and pressure). In this chapter, the classical electromagnetic field is coupled to discrete
frequency oscillators via Newton’s equation of motion. This approach leads to the
popular classical oscillator model, often presented in introductory books on lasers. The
classical oscillator model is an incomplete theory and can be only a semiempirical
model. In the next chapter, a more detailed and comprehensive approach, which also
includes statistical and quantum mechanics, is used leading to robust semiclassical and
quantum oscillator models. This chapter and the next are the basis for the applied
models presented in Part II of this book.

133
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4.1 Classical Electrodynamics

Classical electrodynamics is based on Maxwell’s equations, as given in Chapter 2
(Egs. 2.1-2.6), and the Lorentz force relation, as given below:

F =¢q[E + (v x B)]. 4.1)

These equations cover the classical description of the interaction of light and matter.
The first term in Eq. 4.1 represents coupling of the electric field to the medium. As dis-
cussed in Chapter 2 (Section 2.2), the leading mechanism for this is the electric dipole
moment. To see that this is the coupling mechanism in the first term, consider the potential
function driving this force,

F=-VV()=—-V(—¢gr-E).

The above expression contains the dipole moment, as defined in Chapter 2.
The second term in Eq. 4.1 represents coupling of the magnetic field to the medium.
It is a weaker effect and will not be considered, since most propagation path lengths are
too short for this coupling mechanism to be important.

In the classical limit, the electromagnetic field energy flow is considered continuous.
When many photons compose the field, this is a good approximation and can often be
applied. A good example of the success of this approximation is the fruitful field of
physical optics.

Two approaches can be used to formulate this problem. One is a detailed micro-
scopic theory and the other is a phenomenological macroscopic theory. It is instructive
to consider the macroscopic approach first. This approach leads to simple phenomeno-
logical classical models, which demonstrate basic concepts and are surprisingly practical.
Detailed classical microscopic models are not presented, since they will ultimately be
replaced by more complete microscopic quantum models (see Chapter 5).

4.2 Classical Oscillator Model

The classical oscillator model (also called the Lorentz oscillator model) is largely
phenomenological in nature but is commonly used to represent the real and imaginary
parts of the complex index of refraction as a function of frequency for a wide variety of
media. It is commonly presented in textbooks covering the topic of lasers.

4.2.1 Gases at Low Density

Assuming the medium is at low density (e.g., a gas), then the Newtonian equation of
motion for an electron (or any other binary system), bound to a nucleus by a restoring
force produced by a harmonic potential (recall Eqs. 3.65 and 3.66) and driven by an
external electric field e(Z,r) propagating in the Z-direction, is given by

mx(t) + mUx(t) + mwl x(t) = qe(Z,1), 4.2)

where m is the electron mass (or the reduced mass for diatomic vibrating or rotating
nuclei, see Eq. 2.64), I is a phenomenological damping constant, g is the charge of the
mass, and wy is the system oscillation frequency. R(#) defines an external coordinate
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e(Zt) « +  electron

nucleus

__________ Ra) y

Fig. 4.1 Coordinate systems for the electromagnetic field (upper case italic) and atomic oscillator
(lower case).

system that locates the nucleus of the moving atom and the spatial dependence of the
incident electromagnetic field. The oscillator frequency, wy, is obtained from Chapter 3.
Because the nucleus is much more massive than the electron, we assume the motion of
the nucleus can be ignored. To simplify the problem, a system with only two energy
levels or one transition frequency is considered. Later, a sum over all possible transi-
tions will be performed. x(¢) denotes the internal coordinate system of the oscillator and
represents the relative motion between the opposite charges of the nucleus and the
outermost electron. Figure 4.1 illustrates the geometry for an electron oscillating about
a nucleus driven by an external electromagnetic wave. As previously argued, magnetic
field effects are weak and therefore ignored. Also, the strength of the electric field is low,
such that it does not distort the molecule to reveal anharmonic effects in the potential.

Then, assume time-harmonic (or monochromatic) behavior as x(¢) = X (w) exp(jwt)
and e(Z,t) = E(Z,w) exp(jwt). Making these substitutions, Eq. 4.2 is converted to the
frequency domain and becomes

—mo?X(w) + jmFCoX(w) + mwjX(w) = ¢E(Z, »). (4.32)

This is now an algebraic equation with the following solution for the electron position
X(w):

X(@) = (@} o + jol) E(Z. o). (43b)

Now, based on Eq. 2.183, the frequency-domain dipole moment vector, pg, (@), created
by this oscillator model becomes

2
tap(@) = ¢X() = % (@2 — &+ jol) E(Z,0). (4.4)

The direction of X is the same as the polarization direction of the E-field. That is, the
dipole moment of this system aligns with the field.

If there are N, absorbing molecules per unit volume V with a number
density p, (= N,/V), and using Eqs. 2.31, 2.34, 2.184, and 2.185, then the
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relationship between the applied electric field and the dipole moment of the medium is
given by

Pa(bap(@)) = P(Z,0) = o x (0)E(Z,w)
and

@) = e @eo = o+ PN _ (14 (e, 4.5)
[E(Z,0)]
P(Z,w) is the polarization vector, € is the free-space permittivity, €,(w) is the relative
permittivity, and x (w) is the electric susceptibility, as defined in Chapter 2. Further,
based on these definitions and Eq 4.4, we sum over all allowed transitions to obtain

3 pa(q¥/m)E(Z, w)

P(Z,0) = pa ) (Hapi(@)) = @ a1 juT)

i

(4.6)

Here wy is replaced by w; representing multiple oscillators. The sum on i is over all
allowed rotational, vibrational, and electronic transitions of the medium. Using Eqgs. 4.5
and 4.6, the complex relative permittivity becomes

2
pa( %),

&(w)=1+ _ 4.7
(@ = Z wf —? + jol';’ @7
To somewhat reduce the notation, define
q}
A€; = p, 7 (4.8a)
m;w;€o

Ag; is related to the oscillator strength and is directly proportional to number density.
For an ideal gas (noninteracting), the density is related to temperature and pressure
according to

Pa
kpT’

Pa =

Thus, in general, Ag; is a function of temperature and pressure,

Aé,‘ = Aéio—, (48b)

where Tp and p,o are the reference temperature and reference pressure, respectively,
and Ag; is the value at the reference conditions. Ag;q is often listed for standard tem-
perature and pressure (STP) (e.g., To = 273 K and p,o = 1 atm) conditions or for
normal temperature and pressure (NTP) (e.g., To = 296 K and p,o = 1 atm) conditions.
Equation 4.8b is needed when the permittivity at different conditions is desired.
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1.5 T T T T

Relative permittivity

Wave number [1/cm]

Fig. 4.2 The real, €/(v), and imaginary, €, (v), parts of the relative permittivity for a gas-phase
oscillator centered at vo = 10 cm™!, an oscillator strength of Ae = 0.01 and a full-width at
half-maximum, I’ = 0.2 cm™.

With substitution of Eq. 4.8, the complex relative permittivity for a low-pressure
ideal gas can be rewritten as

2
€l@) — jel@) =1+ ~ @i A€ (4.9)

2 — 0+ jol;

Solving the above equation for the real and imaginary parts of the complex relative
permittivity, the following classical oscillator model for gaseous media is obtained:

, a)l.eri (a)l.2 — w?)
f@=1+) @ — 0 L) (4.10a)

i

and

1 a)l.eria)F,-
=) PRk (4.10b)

1
Figure 4.2 illustrates these permittivity functions for a gaseous medium with a single
oscillator as a function of wave number.
The permittivity of a noninteracting gaseous mixture is obtained by summing over
each type of gas in the mixture, as given by

2 2
a)f’iAesy,»(a)” — W)

€ (w) =1 +ZZ o —w2)24}(wrsi)2 (4.11a)
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and

2
a)s iAes,,-a)l"s,,-

HOEDY Z o _~w2)2 P (4.11b)

The index s represents each type of molecule in the mixture. It is important
to remember that Ae,; depends on the number density of the s-type molecule that it
represents.

At the resonance frequency, the real part of the relative permittivity exhibits anom-
alous dispersion, which connects the low- and high-frequency limits of the dielectric
constant. These functions also satisfy the required symmetry properties established in
Section 2.1.2. The classical oscillator model is useful because it satisfies these basic
physical properties.

Further recall that, based on Egs. 2.29 and 2.30, and assuming n(w) is constant in the
vicinity of the absorption feature, the absorption coefficient is obtained:

Babs (@) = 47 vkg (@) = 22 ky(@) = —€/ ().
C

nc

Substituting Eq. 4.10b for €/(w), we have the following result:

Bune (@) w? Z a)izAG,-F,' 4.12)
s(@) = — . .
ab ne (0? — ?)? + (wl)?

i
This result can be broken down into the factors discussed in Chapter 2, the line strength

and the line shape. First consider the near line center absorption coefficient
(w =~ w; £ 8), where Eq. 4.12 reduces to

2 2 A (L
uster = 2 Y — 2184 (5)

ne S Quw; + 86)2(6)? + 4 (24r)’

(4.13)

Then, for § small (w; » §), and ignoring the mixing or coupling of adjacent absorption
lines,

na)ier,- W 2, 1
Bavs (@) =Y (5) ju(@) L7, (4.14)

- 2nc i

where the dimension of f,;; is reciprocal length and

1 Vi

- 4.15
7 (0 — ) + ¥} @19

JjL(w) =

is the Lorentz line shape (illustrated in Fig. 3.3), with y; = I'; /2 representing the half-
width at half-maximum. Comparing Eq. 4.14 and Eq. 3.33, we obtain the line profile
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Fig. 4.3 Comparison of the absorption coefficient as given by the classical oscillator model
(solid) to the Van Vleck—Weisskopf model in the near-line-center approximation (dotted).
The same absorption line parameters are used as given in Fig. 4.2.

function for the near line center classical oscillator model:

na)ieri

2
g(w>=<wﬁ) ju@ and S = 4.16)

i 2nc

Then, the absorption coefficient can be expressed in the familiar form, as defined in
Chapter 3:

Babs (@) = Z S;g(w) near line center.

This equation agrees with the form stipulated in Section 3.2.1 (Eq. 3.33). The line pro-
file function, g(w), as defined above, is called the Van Vleck—Weisskopf line shape
function. (At infrared and higher frequencies it simplifies to the Lorentz line shape.)
Figure 4.3 compares the absorption coefficient as computed according to Eq. 4.12 with
that as given by Eq. 4.14. The agreement at line center is very good, and the two
functions disagree away from line center as expected.

The Van Vleck—Weisskopf and Lorentz line shapes are only valid near line center
and cannot satisfy the normalization condition given by Eq. 3.31b. These line profile
functions are not valid in the wing (Jw; — | > y;) of an absorption line. A more
complete line profile description is presented in Chapter 5. The description of the line
wing is important in optical propagation, because systems are designed to operate away
from strong absorption features and in the region of absorption line wings.

The real part of the permittivity, €, (w), is related to the complex index of refraction
by the expression

€ (0) = n*(v) — kX (w). 4.17)
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In the region of transparency (i.e., n >k, and a)l2 — 0> wI}), a simple expression for
the real part of the index of refraction is obtained:

n*(w) =1 +Z ©AG (4.182)

2

This formula is known as Sellmeier’s equation and is a convenient way of representing
the index of refraction of gases (and also liquids and solids, as will be shown later) in
spectral regions of transparency. Another common formula is a simplification of the
Sellmeier equation when w; » w, and is called the Cauchy model. It is given by

1 1« A¢\
n(w):1+§ZAei+ (52 — )w. (4.18b)

1 l

This model is appropriate when electronic oscillators dominate and infrared oscillators
can be ignored. This is the case for atoms and nonpolar molecules, which have no vibra-
tional spectra (e.g., Ar, N,, O,).

Although the classical oscillator model is simplistic, it has one very useful property:
it satisfies the Hilbert transform or the Kramers—Kronig relation (see Appendix 3).
From an experimental point of view, this is a very important fact. Reflectance meas-
urements are easy to make, but only the reflectance magnitude is obtained. However,
to determine the real and imaginary parts of the permittivity, phase information must
also be obtained, and this is not as easy. The Kramers—Kronig relation provides the
phase information given only the magnitude so that the complex permittivity can be
determined in a meaningful way. Knowing the permittivity, the complex index of
refraction can be found directly. Recall that

it =(n— jk)? =€ =€ — je/,
for n > 0 and real, and k, > O and real; then

n? — k2 — j2nk, = €. — je. (4.19)

Now, solving for 7 and &, in terms of €] and €/, we obtain

n= <1 (ler| + € )>E (4.20)

and
k, = G (I — e;)>7 - E— 4.21)
2(3 (lesl +¢7))°

The second solution for k, is numerically more stable, since the imaginary part of the
permittivity is often much smaller than the real part. The real and imaginary parts of the
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Fig. 4.4 The real and imaginary parts of the complex index of refraction. The same absorption
line parameters are used as given in Fig. 4.2.

complex index of refraction are plotted in Fig. 4.4 for the same conditions used to gen-
erate Fig. 4.2. The same basic functional forms are observed as those for the complex
permittivity. To apply this model to high densities, the effect of neighboring molecules
must be considered and the Lorentz-Lorenz formula is needed.

4.2.2 Lorentz-Lorenz Formula

As the density of a gas increases, the molecules become closer together and the electric
fields of local molecules must be considered. The polarization P, in this case, is

P=yp; Mg = picteEppe 4.22)

where p; is the concentration of dipoles in number per unit volume, «, is the mean
polarizability, and Ey, is the local electric field. Ej, includes not only the externally
applied field but also the internal field caused by neighboring dipoles. For a cubic
geometry, the local polarization field is

P (4.23)
360 ’
The net local field is now expressed as
P
Epe = Eoxt + —, (4.24)
360

where E,,; is the external electric field imposed on the media. Therefore, substituting
Eq. 4.24 into Eq. 4.22,
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P = (piate) (Eext + L) . (4.25)
360

This leads to the susceptibility and permittivity,

P iUWe
Pl =% . (4.26)
€0 — 3Pile

|60Eext|
Solving for the mean polarizability, we have

iYe r_1
e (&= 1) (4.27)
3¢ (6 +2)

the Clausius—Mossotti relation. This formula is commonly used at microwave frequen-
cies, where €,(w =~ 0) = ¢;. Letting n? =¢,, and considering infrared and visible
frequencies,

2_1 iUWe
" ‘—p“ (4.28)

n2+2|

9
36()

and the Lorentz—Lorenz relation is obtained. It accounts for the effect of internal-
field-induced dipoles on the refractive index.

Collision-induced dipoles may also be of concern, and this adds more terms to the
Lorentz—Lorenz expression, as given by

n?—1

T = ARPi+ Brol + Crpl (4.29)

where the coefficients Ag, Br, and Cy are the first, second, and third refractive virial
coefficients, respectively. Bg represents the contributions to the mean polarizability
from interacting pairs of molecules or atoms. Cg represents contributions from three
particle interactions. These coefficients become significantly weaker as the number of
interacting particles increases; usually Ag and By are sufficient for most applications.
This formula is very useful for modeling the refractive index of high-pressure gases.
Parameters for the Lorentz—Lorenz formula are listed in Appendix 4 for specific gases.

4.2.3 Solids and the Classical Oscillator Model

Let us return to the discussion in Chapter 3 concerning the spectroscopy of lattice vibra-
tions. Now, externally excite the lattice with an electromagnetic field and also recognize
that the lattice motions are damped in a real crystal. This approach is often used to
represent electronic transitions as well, but below the bandgap energy in the Sellmeier
approximation.
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The damping term accounts for coupling of the excited vibrational mode to other
vibrational modes through anharmonicities in the potential energy and other effects thus
far ignored. Now the system differential equations (see Eqs. 3.127 and 3.128) become

md*u, du,
R + mFW + Bs[2u, — (Vo + Vu—)] = ¢gE (4.30)
and
Md?v, dv,
7 + MT dt + Bs [2v, — (u, + un+1)] = _an 4.31)
where
duy, dv,
mr 2™ and MFd—Vt (4.32)

are the damping terms. Let us again (see Chapter 3, Section 3.4.1.1) assume time-
harmonic solutions for the diatomic lattice positions of the form

u, = ue(@ka—on) @ _ gy eiet (4.332)
and
v, = ve /L@tDRa—or] (4.33b)

Upon substitution of the above functional form into Egs. 4.30 and 4.31, one finds the
algebraic equations

—mo*u+ jmTou + By [Zu - (ejk’” + efjk’“)v] =qEy gl2nk'a (4.34a)
and
MoV + jMT v + B, [2v - (ef"’“ n e*f"’“)u] — _gEye/ @ DKa (434p)
For k' ~ 0 (long-wavelength condition), the solutions for u and v become

E —(g/M)E
— % and v = 2(q/—).0, (4.35)
wj — o + jol wj — ©* + jol’

where

2
w2 2P
%

for optic mode frequencies and ' is the reduced mass as defined in Chapter 3.

The dipole moment in this case must account for the motion of the opposing charges
and hence

Hap = gu—v). (4.36)
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The total polarization is again

P = pa(py, ), (4.37)

where p, is the number density of dipoles. However, this accounts only for vibrational
contributions, not electronic. Thus combining Eqgs. 4.35-4.37 and Eq. 3.134, the
relative permittivity becomes

2
wy(€5 — €00)

W) =€+ ———"—"""—, 4.38

@ =6t S T (4.38)

where ¢, = €,(w = 0) is the static dielectric constant and €, is the high-frequency

permittivity constant accounting for the low-frequency extrapolation of electronic
transition contributions. Of course, most materials have more than one vibrational
frequency, so that in general ¢, (w) becomes

szGi

€ (w) = €0 + Z m 4.39)

where

€ =€t Y A€, (4.40)

When €, > 1, it accounts for high-frequency (usually vacuum and extreme ultraviolet)
electronic contributions. A more complete model includes the frequency dependence of
electronic transitions in an approximate manner by writing

20
() _1+ZL"MF (4.41)
k

where the sum on k now includes electronic resonances. A simplification of this
formula is often used to represent the index of refraction as a function of frequency in
the transparent (window) regime of solids. For w? — @ » I';w, we have

Elec Vibra 2A6'
i

e,(a))_nz(a))—l+z “)"Ae" S+ Y

w7 — »?

(4.42)

i

This is the Sellmeier equation, and is identical in form to the formula for gases.
However, Ae and I' have somewhat different interpretations for solids. A table of
coefficients for a variety of solid materials is available in Appendix 4 (Table A4.4). This
is a very useful model for accurately characterizing the optical properties of solids at a
constant temperature, and is commonly used to represent the real part of the complex
index of refraction for solids in a semiempirical manner.

An example of this solid-state classical oscillator model is given for a typical solid
in Fig. 4.5 for €, = 2, a single oscillator with a strength of Ae = 2, a line center
frequency of 250 cm~!, and a width factor of I' = 10 cm~!. The real and imaginary
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Fig. 4.5 The complex permittivity as a function of frequency. (a) The real
(solid) and imaginary (dotted) parts with the following oscillator parameters: €, = 2,
Ae =2, vy=250cm™!, and T'/(27c) = 10cm™!. (b) The magnitude of the complex
permittivity and the corresponding reciprocal scaled up by a factor of 10.

parts of the relative permittivity are illustrated as a function of frequency in part (a).
Notice that the real part can be negative above the resonant frequency. The point
where the real part becomes positive again is a special frequency and is designated vy ¢ .
The significance of this will be explored shortly. Also plotted in part (b) of this
figure is the magnitude of the relative permittivity and the corresponding reciprocal.
These functions peak at the oscillator frequencies, vo(= vrp) and vzp, and provide a
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Fig. 4.6 The complex index of refraction as a function of frequency. (a) The real (solid) and
imaginary (dotted) part using the same oscillator parameters as in Fig. 4.5. (b) The corresponding
absorption coefficient.

useful means of determining these important frequencies. The real and imaginary parts
of the complex index of refraction can be computed based on Eqgs. 4.19—4.21, and are
plotted in Fig. 4.6 along with the absorption coefficient. These functions have a differ-
ent appearance from the relative permittivity function of Fig. 4.5. The absorption
coefficient is broadened in the blue wing to account for the additional contributions of
the longitudinal mode. This is a new aspect of the model, as opposed to the gas-phase
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results, and will be characteristic also of noncrystalline solids and liquids that have
similar oscillator parameters.

In Chapter 3, we discussed the existence of transverse and longitudinal optical
modes. w; in the above model is the transverse optical mode frequency, or wro ;.
To see the how w; plays a part in this model, consider the case when €, = 0 and then
solve Maxwell’s equations for longitudinal excitation. (As Fig. 4.5 indicates,
€, (wro) = 0.) In Chapters 1 and 2 we considered transverse (TEM) fields that satisty
V-D=0(ie,D=¢€E&and k' = k/Z). Thus

V.-D=K -D=¢k -E=ekE 3 - =0. (4.43)

However, another solution can occur when € = 0. Then k' = kX becomes possible, or
a longitudinal mode exists. This can happen near resonances in a crystal (or solids in
general), as illustrated in Fig. 4.5. Thus, we must specify both wrp andw;o when
discussing the vibrational structure of a solid. The longitudinal oscillation frequency
can be found by plotting the reciprocal of the magnitude of €, () as illustrated in part (b)
of Fig. 4.5.

For €, (wrp) = 0 and a single resonance with no damping, Eq. 4.39 becomes

2
Po _ & (4.44)

2
Wro €00

This is the Lyddane—Sachs-Teller (LST) relationship. Based on this relationship, vz¢,
as indicated in Fig. 4.5, equals 353.6 cm™!. It is also straightforward to show that

2 2
— er
Yo "% @ (4.45)
C()TO — @ €0

This shows that wyp and w; are related by the strength of the resonance. For example,
when a mode is infrared inactive (Ae = 0), then wrp equals w;p. For multiple
resonances, the LST relation becomes

2 9
l—[ww,i & :6r(w)' (4.46)

2 2
i @Pro,; —@ €oo

For I' = 0, the wrps are the poles and the w; s are the zeroes of the permittivity func-
tion. All real materials have damping, and the above analysis suggests the following
four-parameter model for the complex permittivity:

2 2

win; — o + jol'o;

(@) = € [ | ;-'_ — (4.47)
i W0, — @+ jol'ro,

In this case, the wrps are the maxima and the w;ps are the minima of the permit-
tivity function. When I'rg = ', this four-parameter oscillator model is identical to
the three-parameter classical oscillator model. This is usually the case for cubic
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materials and around room temperature for all solids. However, at high temperature in
biaxial and uniaxial crystalline materials, I'7p # I'1p, the four-parameter model is
needed for the best fit to experimental data.

4.2.3.1 Anharmonic Potential Considerations

In the discussion so far, we have used a harmonic potential. This can be seen by exam-
ining the restoring force in Eq. 4.2 and the potential expansion in Eq. 3.102. By taking
the gradient of the leading harmonic term in the potential, we obtain a force in the form
used in Eq. 4.2. To make our model more complete, let us consider anharmonic terms
in the potential. Letting I' = 0, Eq. 4.2 is rewritten as an undriven oscillator,

¥+ wfx 4+ rax* + A*bxP - = 0.

A is a dummy parameter that helps to keep track of the order in the potential expansion.
At the end of the analysis it will be set to one. Assume that x can be expanded in the
following perturbation expansion:

X = xo 4+ Ax; +A%xy 4 -

Substituting the expansion of x into the above differential equation and separating
according to order, we obtain to the following set of equations:

Zeroth order, A0
).C.0+Q)§XQ =0= x = Ael®"
First order, \!

¥+ wjx) = —axg = —aA%e*".

Based on the source term in the above first-order differential equation, let the harmonic
solution for x(¢) take the form of an oscillator at the second harmonic of x((¢), thus

x1(t) = Be/*™".

Substituting this solution into the first-order differential equation leads to the following
condition on the coefficients:

30iB = aA’.
Second order, 2

X2 + a)(z)xz + 2ax1xg + bxg = 0.

The forms chosen for xo and x| suggest that

X () = Cel*™'.
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Substituting the various orders of x into the second-order differential equations,
we obtain following relationship:

8wiC = 2aAB +bA>.

Now drive the lattice with an external electric field oscillating at the second-harmonic
frequency of the fundamental lattice vibrations (i.e., at w =~ 2wy). The first-order
differential equation now becomes

q

¥+ wix; = —aA?e + LEeI.
m

The solution of this equation leads to an oscillator amplitude resonating at the second
harmonic lattice vibration frequency, as given by

qE/m

B = M
Qwp)? — w?

This result leads to a second-harmonic response of the dielectric permittivity. As we
shall see in Chapter 8, this is called two-phonon absorption or, in general, multiphonon
absorption. All harmonics can be obtained by a similar procedure. The second-order
differential equation driven by an external field at the third harmonic of the fundamental
lattice vibration frequency is given by
%2 + @?xy + 2ax1xp + be = iEej’”t.

Solving this equation leads to a third-harmonic response of the lattice to the electro-
magnetic field, as given by

_ gE/m
 Gwy)? —w?’

Multiphonon absorption is important in the optical properties of solids, because it deter-
mines the infrared edge of transparency and contributes to the infrared refractive index,
as we shall see in more detail in Chapter 8. The lesson to this exercise is the importance
of considering the anharmonic ramifications of a real potential.

4.2.4 Time-Domain Susceptibility for Lattice Vibrations

The classical oscillator model is particularly convenient in this case, because the time-
domain susceptibility can be obtained in closed form by evaluating the inverse Fourier
transform of the frequency-domain formula given by Eq. 4.9. Based on Eq. 2.37, the
inverse Fourier transform is defined to be

[ |
fo®) = Flen@) = 11= 5 [ len@ ~ edo.  as)
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Fig. 4.7 Time-domain susceptibility for intrinsic GaAs at room temperature due only to
the fundamental lattice vibration (i =0, wy = 5.054 x 10'3 rad sec™!, Aey =2.09, and Ty =
4.679 x 10''rad sec™!).

Evaluating the above equation, the time-domain electrical susceptibility due to lattice
vibrations, x,,(t) (recall €,, = €, + €,) becomes

(- (%)
Xtv(t) = Zw%Aeie*r‘itﬂ
i 2
a)l2 — (Fi/4>

where h(t) is the Heaviside step function, and w = 2w cv. Such information is needed
in high-speed microwave device design using FD-TD techniques. A plot of this func-
tion for the single vibrational mode of intrinsic GaAs is given in Fig. 4.7. The figure
demonstrates that the intrinsic impulse response of GaAs at microwave frequencies is
that of a damped oscillator in the picosecond regime.

h(t) (4.49)

4.2.5 Free Carriers and Debye Relaxation

Both free-carrier effects and Debye relaxation are important in understanding the
electrical (microwave to millimeter wave) properties of seawater and water. Free carrier
effects dominate the infrared properties of metals and are important for many semicon-
ductors as well. Debye relaxation is observed in some solids also, but at radio frequencies
or lower. In metals, the charge carrier is the negatively charged electron. Holes and elec-
trons exist in semiconductors and positive and negative hydrated ions exist in seawater.
A general and introductory understanding of the optical properties of metals,
the microwave-infrared properties of semiconductors, and microwave properties
of aqueous solutions (e.g., seawater) can be obtained from the development of
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Drude’s theory (1900). It is a limiting form of the classical oscillator model when the
external field frequency, w, is above all oscillator frequencies, ;.

To see how the properties of mobility influence the impedance of materials, consider
the standard definition of conductivity for an electrically neutral medium

N
o(@) =Y _lleilpsittsi(@) + le_ilp-ip—i(@)], (4.50a)

i=1

with the condition that

N
Y (esipri +e-ip-) =0, (4.50b)

i=l

where p.; is the number density per unit volume of the ith + charge carrier, e ; is the
charge of the ith & charge carrier, 4 ; is the carrier mobility of the i th & charge carrier,
and N is the number of carrier types (solutes for an aqueous solution). Since most elec-
trolytes composing the ocean, and holes and electrons in semiconductors, are 1:1 (i.e.,
the number of positive and negative particles generated is the same for an intrinsic
material), it is assumed that

leqilpsi = le_ilp—i = pe;i = charge density. (4.51)

The conductivity for a single 1:1 charge carrier type simplifies to

0 = pc(s + ). (4.52)

A simple expression for the carrier mobility can be obtained from the following
equations:

V
o = % 4.53)
and
d{v
- <dj> b meTa(ve) = Je|E, 4.54)

where (v) is the mean velocity (or drift velocity) of the charge carrier, m.. is the mass
of the charge carrier, I'y is the damping constant, |e| is the charge of the charge carrier,
and E is the applied electric field. Let (v-) and E be time harmonic as e/®’. The solution
of Eq. 4.54 results in the following relations for the mobility:

Mo, + le]
————, where o+ =

1+jrw—i’ myly

p(w) = (4.55)



152 OPTICAL PROPAGATION IN LINEAR MEDIA

Substituting this result into Eq. 4.52, the frequency-dependent conductivity becomes

Ho,+ Ho,—
o(w) = pe — + - . 4.56
(w)=p <1+]% 1+Jrﬂ) (4.56)

In a metal the only charge carrier is the electron. In electrolytic solutions, it can be
assumed that the damping forces will be similar for both the positive and negative
charge carriers. Therefore,

ry~r-=r. (4.57)

I" is the reciprocal of the conductivity relaxation time. This interpretation is easily seen,
based on Eq. 4.54. When the applied E-field is turned off, the charge carriers relax back
to equilibrium and the mean velocity becomes

v) = (v(t = 0))e ", (4.58)

The conductivity relaxation time, 1/ I'y, is designated t. .. Thus, it follows that

00,+ 00,—

o(w) = 4.59a
) = ons T 14 jot_ (4:3%)
where the DC conductivity for each charge carrier is
ei|te e_|t..-
004+ = ,oc,+| L and oy = ,oc,_| T . (4.59b)
my m_

This simple model breaks down when the mean free path of the charge carrier is greater
than the skin depth, §(w) (= 2/Bups(w)). This leads to the so-called anomalous skin
effect, which is typically important at low temperatures for good metals.

Debye relaxation represents the orientational polarizability of a polar molecule to an
applied electric field commonly observed in liquids (GHz frequencies) and solids (mHz
frequencies). Essentially, it is hindered rotational motion converted to a vibrational
mode. As was the case for electrical conduction, no restoring force exists, thus the
differential equation describing this phenomenon is the same as Eq. 4.54. The complex
relative permittivity for orientational polarizability is of a similar form to the free-
carrier process and becomes (see Debye, Ref 4.2)

AGD

&) =1+ xpl@=1+—",
1+ jotp

(4.60a)

where tp is the Debye relaxation time. Figure 4.8 illustrates the frequency-domain
complex permittivity and the complex index of refraction for Debye relaxation with
parameter values typical of a liquid. The Fourier transform of the frequency-domain
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Fig. 4.8 (a) The complex permittivity due to Debye relaxation as a function wave number for
Aep =40 and T'p/(2c) = 0.1 cm™!. (b) The corresponding complex index of refraction as a
function of wave number.

susceptibility leads to the time-domain susceptibility for Debye relaxation,
Ae D
xp(t) = — P (=t/Tp)h(1). (4.60b)
D
Recall from Chapter 2 that the relative permittivity (bound-charge phenomena) can

be redefined to include conductivity (free-carrier phenomena) in the following manner:

€(w) = () + xe(w) =€ (w) — j %:)) (4.61)

Substituting Eq. 4.59b for a single carrier type (N = 1) into the above equation, we
obtain

. 00.+/€0 . 00,-/€o
€ =€, — - — ~ . 4.62
(w) () ]a)—i—szrmL ]w—l—]wzrc,_ (4.62)
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To be consistent with the previously developed classical oscillator model for gases and
solids, we use the conductivity damping parameter. Then the above term for free-carrier
effects becomes

(,()2 (,()2 _
(@) =€ (@) — 54— — L (4.63a)
@*— joley w?— jol._
where w,, + is the plasma frequency, as defined by
2
of, = Lol _ pe (4.63b)

m+€o miéo'

The plasma frequency marks the upper spectral limit of the free-carrier effect (see
Fig. 4.8). Based on Eq. 4.59, for a single carrier, the DC conductivity is:

2 2
w €0 w, _€p

Pt iy (4.63¢)
Tey T._

Odc =

The corresponding time-domain susceptibility for free-carrier phenomena becomes

2
Fxe (@)} = xe(t) = %(1 —exp(=Tc1)h(1). (4.63d)

Converting to wave numbers and writing out €,(w) for both Debye relaxation and
resonant phenomena plus conductivity, the net complex permittivity is

Aep V2 A€; U,z,,Jr v‘,%,,
Gc(V)=1+m+Z R Ve el
]UFD i Vi v +JV2]‘[C Vo= JVoae VI I Ve
(4.64)

where I'p = 1/7p. The real and imaginary parts of the general permittivity are

A€ V2 A€ (v? — v? v
) =1+ D 2+Z 21 Zil 23‘2_ - 11" 5 (4.65a)
Lru2(2) TR (n) v (R)
and
vAeDleT—C vAzA-svzL V2o
. _ i i ¢ pP2mc
€ (v) = 717-2 + Z ; " 712 I\ + ; T2 (4.65b)
1+v2(2F”—D‘> i (7 —v) 4w (m) v +v(2ﬂc)

respectively. This is the correct procedure to add together these three different phe-
nomena. Debye relaxation, bound-charge resonances, and free-carrier processes are not
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Fig. 4.9 (a) The complex permittivity due to free-carrier conduction in a typical metal as a func-
tion wave number for v, = 3.3 x 10* em™! and T./(27c) = 147 cm™!. (b) The corresponding
complex index of refraction as a function of wave number.

always additive in terms of the complex index of refraction. Since at optical frequen-
cies the complex index of refraction is commonly used, combining these phenomena
must be approached with care.

Figure 4.9 illustrates the complex permittivity and the complex index of refraction
for a typical conductive medium with a DC conductivity of 1.2 x 107 U/m. The inter-
section of the real and imaginary parts of the complex index of refraction occurs near the
plasma frequency. Generally, this model works well at infrared frequencies but becomes
less accurate at visible frequencies because interband transitions become important.

Figure 4.10 compares the absorption coefficient of a metal, as depicted in Fig. 4.9
with that of a moderate conductor with a DC conductivity of 1.2 x 103 U/m. The
conductivity relaxation time is the same for both cases (I'./(2m¢) = 147cm™"). Notice
the relative change in the shape of the functions in the two different cases. The large
plasma frequency of the metal dominates the optical properties. However, as the plasma
frequency becomes lower, charge carrier relaxation effects can be observed.
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Fig. 4.10 The absorption coefficient as a function of wave number for a good
(09 = 1.2 x 107 U/m) and moderate conductor (v, = 330 cm™! and op = 1.2 x 10°* U/m). The
same conductivity relaxation time is used in both cases (I'. /(2w ¢c) = 147 cm™).

The contribution from conductivity has the same form as the bound charge permit-
tivity when v is much greater than the maximum v;. Thus, when the photon energy is
above the bandgap energy of a medium, valance band electrons are excited into the
conduction band and free-carrier properties dominate, as expected.

Equation 4.65 provides a comprehensive model as a function of frequency (wave
number), combining the effects of conductivity, orientational polarizability, rotation,
vibration, and electronic transitions, that matches experimental data fairly well for
many cases. This classical model satisfies the symmetry relations given by Eq. 2.39b
and the Hilbert transform given by Eq. 2.49a, which in part explains the model’s util-
ity. However, this model has a number of serious limitations, which require corrections
beyond the classical approach used here.

A list is given below:

1. No temperature dependence beyond density is specified.

2. The model only predicts loss; no gain is allowed, preventing thermal equilibrium
and lasers.

3. Line strength and line width cannot be computed with this model.

The classical oscillator model does not explain all observations. Despite the limitations
of such classical macroscopic models, they are successfully used within the regions of
validity, in the solid-state optical properties code OPTIMATR, which is described in
Chapter 8. Important corrections to this classical model will be introduced at that point.

4.2.6 Dyadic Permittivity

Thus far, we have considered only isotropic media. However, many important window
materials are anisotropic (i.e., Al,O,, SiO,, MgF, etc., see Appendix 4). In particular
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they can be uniaxial. To understand how this affects the optical properties, it is neces-
sary to develop the concept of the dyadic complex permittivity. In general, for a
Cartesian coordinate system, XY Z, the relationship between D and E is

Dx €xx €xy €xz Ex
D= (Dy) = (GYX €yy Eyz) (Ey) Z(E)Z E. (466)

Dy €7x €zvy €77 Ez
The corresponding susceptibility and complex index of refraction are also dyadic. The
dyadic permittivity represents the effect the electric field has on the medium in other
directions in addition to the direction of polarization. Transforming into a coordinate

system that matches the geometry of the unit cell, xyz, the permittivity matrix (dyad)
can be made diagonal, thus

Dx €Exx 0 0 Ex
(Dy ) = ( 0 €, 0) <Ey ) . (4.67)
D, 0 0 e, E,

Z

The values of the diagonal elements are called the principal values, and they determine
the type of optical material, that is, whether it is cubic, uniaxial, or biaxial:

cubic = € = €y = €,

uniaxial = €, = €,y F# €,

and
biaxial = €, #€,, F€,; and €, F €.

For cubic materials, the optical properties are called isotropic, and the dyad can be
replaced by a single scalar value, as was done in Chapter 2. For uniaxial materials, the
z-axis is aligned with the crystallographic c-axis. Light that propagates in this direction
only experiences €,, and€,, and the medium appears isotropic. For this reason, the
light ray that enters along the c-axis is called the ordinary ray. Light that enters along
the a- or b-axis will experience different permittivities, depending on the polarization,
and is called the extraordinary ray. Crystals that satisfy the condition €,, > €,, are
called positive uniaxial, and for €,, < €., are called negative uniaxial. Because of the
variation with direction of the biaxial type materials, they are seldom used in optical
systems.

4.3 Reflection and Refraction at a Plane Boundary

For TEM waves, two polarizations completely describe the E-field orientation, as
discussed in Chapter 2. The geometry was also presented in Fig. 2.9. The Fresnel
formulas on reflection and transmission at an interface are commonly derived in text-
books on electromagnetic theory (see Jackson, Ref. 4.4, p. 281, for example). It is
assumed the reader is familiar with this derivation, and therefore only the results are
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presented here. Two cases are considered. The first is for cubic materials, and the
second is for uniaxial materials that have the crystallographic c-axis in the direction of
the normal to the interface surface. Unfortunately, very little published literature exists
on solutions for the reflection coefficients of uniaxial materials.

When the E-field is in the plane of incidence, it is called p-polarization or vertical
polarization. When the E-field is perpendicular to the plane of incidence it is called
s-polarization or horizontal polarization. This notation is used in the following.

4.3.1 Cubic Media

For cubic media:
_ _ _ =2
€xx = €yy = €, = €ol1".
The field reflection, r},, and transmission, #|,, Fresnel formulas for propagation from

medium 1 to medium 2 are given as follows (see Ref. 4.1):

p-Polarization

npcos; —njcos 6, 72 cos 0, — n’— sin%6;
Fpio = = — = = 21, (4.68)
n1cos 6 + 12086, 72 cosb; 4 /> — sin®6;
where n = ny/n; for n; real and
2n; cos b; 71 cos 6;
12 = = — = = p21- (4.69)
1, cosf; + ny cos b 1, cos 6;
s-Polarization
n1cosf; —nycosb, cosO; — /> — sin6;
I'si2 = — — = 5 — = —Fs21, (470)
€086 +-13¢080;  cosh,; + /i — sin®6;
where n = np/n; for n; real and
21 cos b; 71 cos 6;
lyio = = — = = s21- (471)
1, cos8; + no cos 6, 1, cos 6;
Recall that Snell’s law is given by
nisin6; = ny sinb;, 4.72)

where the refracted angle, 6;, is complex and the angle of incidence, 6;, is real.
ry; and tp; are the field reflection and transmission coefficients for propagation from
medium 2 to medium 1, respectively. The relationship between r, and r,,, and #,, and
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t,, is called the principle of reversibility. The single-surface Fresnel power coefficients
for reflection (R) and transmission (7') are directly obtained according to the following
formulas for p- and s-polarization,

R, = |rpl? 4.73)
and
115 COS 6, )
T,, = tys 4.74
P n10059,|p’| ( )

Based on these formulas, and substituting the complex index of refraction of medium 2
when medium 1 is vacuum, we have the following useful results:

_ (@ —cos 0:)? + b?

= 4.75
" (a+cos6;)? + b2 (4.752)
and
R —R (a — sin6; tan 6;)? + b? (4.75b)
P\ (a + sin6; tan 6;)% + b2 ’

where the terms a and b are defined as

612:

{[(n2 — k2 — sin? )% + 4n2k2)% + (n® — k2 — sin? 9,-)} (4.762)

N =

and

b = {[(n2 — k2 — sin? 0,)% + 4n%k2)% — (n* — k2 — sin? e,»)}. (4.76b)

N =

The principle of reversibility and Snell’s law require that
Ri>=Ryy and T =T. 4.77)
Also, it can be shown by simple algebra that
R, + T, =1 (4.78)
For unpolarized light, the single-surface power reflection coefficient becomes

1
Runpol = E(Rs + Rp) 4.79)

For partially polarized light, the single-surface power reflection coefficient becomes
Rpp = (1 - DOP)Runpol + [st + (1 - x)Rp]DOP

where DoP is the degree of polarization as defined in Chapter 2 and x is the fraction of
polarized light in the R, direction. Other basis sets for the type and direction of
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polarization can be used. The spectral dependence of the reflection coefficient is shown
in Fig. 4.11a for an insulator modeled by the classical oscillator model using the
parameters listed in Fig. 4.5. Note that above the one-phonon region the reflection is
very low. In fact there is a spectral point where the reflection coefficient comes very
close to zero, called the Christiansen frequency. Example plots of Ry, R, and Ry,per
as a function of the illumination angle are illustrated in Fig. 4.11b for different values
of ny/n; and k,, for k,; = 0.

4.3.2 Biaxial and Uniaxial Media
For uniaxial media

2

€r =€y = €oii> and €, = i1’

The general solution for the uniaxial reflection coefficients is very complicated
(see Lekner, Ref. 4.6). However, solutions for special cases have been obtained. Let the
z-axis be the crystallographic c-axis and the surface normal, then, R, and R, become

2
nyn,cos; — (ng — sin? 05)1/2
R, = — (4.80a)
non, cos6; + (n2 — sin” 6;)
and
cos6; — (n2 —sin? 6;)!/2 :
R, = n (4.80b)
cost; + (n2 —sin” 6;)!/?

Obviously, if n, = n,, then the cubic results are obtained.

The near-normal transmittance for a plane-parallel uniaxial dielectric slab of thick-
ness d with the c-axis on the surface (90° material), illuminated by unpolarized light
and including the effects of interference, is given by

T = %(r(, +7,), (4.81)
where
foe =72 2exp(—47rvdkit?l(?;j::sij;ej;;;)R—(itixp(—87{vdk,,,e)Rg’e (4.82)
and

2
1 —ng.
R, = .
14+n,,
This is a useful result, because the e-ray absorption coefficient can be obtained know-
ing the e-ray index of refraction and the o-ray complex index of refraction.
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In general, when dealing with polarized light the transmittance, reflectance, and
soon, must be broken down into components that distinguish polarization as well. Thus,

To =Tso + Tpo and T, = Ty + Tpo-

For biaxial media:

2

=2
v, and € = eon;.

€xx = eoﬁi, €yy = €N

Uniaxial and biaxial materials are birefringent, that is, light linearly polarized in one

direction experiences a different refractive index than light polarized in a different

direction. The description of the effective index is best handled by the well-known
index ellipsoid, as given by

SRR (4.83)

This formula is commonly applied to phase matching that involves second-harmonic
generation in nonlinear optical materials. When n, = n, the uniaxial case is obtained.

4.4 Single Scattering

The definition of, and introduction to, single scattering was presented in Chapter 2.
Now specific formulas will be derived for the complex index of refraction for scatter
that depend on frequency, temperature, and media composition. Two general models are
presented, Rayleigh scatter for gases and small-scale structures and Mie scatter for
particles.

4.4.1 Rayleigh Scattering

A general solution for particles of arbitrary shape can be obtained if the size, a, of the
particle is much smaller than the wavelength, A, of the incident light. A good example
is the scattering of visible light (1 & 5000 A) by atoms and molecules (a ~ 1-5 A).
The mechanism of this scattering is through the mean electronic polarizability, o,.
The electrons or dipoles in the molecule try to orient to the E-field of the incident light.
No absorption takes place because this is not a resonant condition; however, the mole-
cule does respond to incident fields with frequencies below the resonance frequency.
A dipole is induced in the illuminated molecule, which then quickly radiates in all
directions. We will consider elastic reactions (collisions) (recall that an inelastic colli-
sion produces Raman scattering); thus the molecule radiates, because of this stimulation,
at the frequency of the incident field. This is Rayleigh scattering.

For an isotropic polarizability ({ugy) = . E;, where E, is the incident field), the scat-
tered electric field radiating from a single particle with an electric dipole moment in the
far field limit is (see Jackson, Ref. 4.4, p. 395)

12 : /2 Lo
E, — k' (p,,) sin 6y ik _ k' E; sin 6, s (4.84)

dmegr dmegr
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Fig. 4.12 Geometry of scattering pattern in the xz-plane by a dipole for (a) p-polarization
(vertical polarization) with the dipole in the xz-plane and (b) s-polarization (horizontal polariza-
tion) with the dipole in the y-direction.

The angle 6, is the angle between the dipole moment direction and the direction of
propagation, as illustrated in Fig. 4.12. The scattered irradiance is obtained, using
Egs. 2.19b, 2.20, and 4.84, as

w*|or,|?sin’ O, g

Ls(@) = 3272c3epr? | Eiol™

(4.85)

This result shows the characteristic w* frequency dependence of Rayleigh scattering.
Because of the strong decrease in the scatter strength as the frequency decreases,
molecular Rayleigh scatter is important at visible and ultraviolet frequencies and not at
infrared and lower frequencies.

An observer in the xz-plane at an angle 6 from the x-axis sees a different scattering
pattern depending on the incident light polarization. For s-polarization in the xz
scattering plane (see Fig. 4.12), 6; = 90°, and no 6-dependence is observed. For
p-polarization, 6; = 90° — 6 in the xz scattering plane. In terms of the scattering
matrix and incident light fields, the observed scattered field for s- and p-polarizations,

becomes
.13 —jk'r ojk'z
Epe) _ [ 7K (eos0 00 | €7 7eT7 ([ Eopi ) (4.86)
E 4 e 0 1 jk'r Eosi
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Fig. 4.13 The phase function for Rayleigh scatter as a function of scatter angles: (a) polar plot,
(b) rectangular plot.

Notice that the scattering matrix is diagonal, which is the case for spherical particles.
In the far field of a small particle, the nonspherical shape does not contribute to the
radiation pattern or the amplitude function. Thus, for the wavelength much greater than
the particle size, the scattered field is insensitive to the particle shape. Also, note that
Rayleigh scatter emphasizes s-polarized light.

Based on the definitions of Chapter 2 (Egs. 2.62, 2.66, 2.123, and 2.145), the angular
scattering cross-section C;,(6) for unpolarized incident light is one-half the sum of the
s- and p-polarized scatter intensities, thus

L0) (I +cos* k" |e|?

Csea(0) = 4.87
a®) = = . (4.87)
Based on Egs. 2.89, 2.91, and 4.87, the phase function for Rayleigh scatter is:
3 2
P;(0) = —(cos“6 + 1). (4.88)
167

A plot of this phase function is displayed in Fig. 4.13.
Based on the development of Chapter 2 for nonabsorbing particles (molecules), the
net extinction cross-section equals the integration of the angular scatter cross-section

over all solid angles. Thus,
Coxt = 2n/sin9 d9C,.,(0).
0

Evaluating the integral for Eq. 4.87, the following result is obtained:

ko |?

—_—. 4.89
6l (459)

Coxt =



ELECTRODYNAMICS | 165

Recalling the relation between the extinction cross-section and the scattering coefficient
(Eq. 2.139), we obtain a useful result for the Rayleigh scatter coefficient in gases as a
function of frequency and gas density:

2
g)“pplae(w)l . (4.90)

2

1
Bsca(@, pp) = ppCexi(@, pp) = 6_71( €

c

Substituting the Lorentz—Lorenz formula (Eq. 4.28) for the polarizability of a gas, the
scattering coefficient becomes

_ 3w* n*(w) — 1 2 49]
Bual@) = 3 (n2(w) +2> , 4.91)

representing the net attenuation caused by scatter. This is the scattering coefficient
commonly used for molecular Rayleigh scattering with unpolarized light, and » is the
index of refraction of the medium. For normal temperature and pressure (NTP,
T = 298K and P = 1 atm) gases, the index of refraction is approximately unity. Based
on this result and using the ideal gas law, we obtain

o*[n%(0,P,T) — 1] ksT
6mctP

ﬂsca(a)» P» T) = s (492)

where P is the total pressure, T is temperature, and k, is Boltzmann’s constant.
Multiplying this result by the path length yields the total integrated scatter, o/sc,.
The Rayleigh scatter coefficient for gases is further developed in Chapter 7 and applied
to optical propagation in the atmosphere of the earth. This formula can be used to
explain the blue sky and the changing colors of the sun at sunset and sunrise, as illus-
trated in Fig. 4.14. When polarization is important, the Mueller matrix formalism can
be used as introduced in Chapter 2. The development of the Mueller matrix for
Rayleigh scattering is left to the reader (see Problem 4.13).

4.4.2 Mie Scattering

Mie scattering describes a general solution to Maxwell’s equations for particles of
arbitrary size and refractive index but limited to spherical shape. This is a very useful
model commonly applied to particle scattering. Nonspherical and noncylindrical
particle geometries are very difficult to solve and the Mie model is generally the only
option for interpretation of measurements. Also, because particles are often randomly
oriented, nonspherical particles average out to have spherical-particle scattering
properties.

We begin with Egs. 2.9-2.12 for a nonmagnetic lossy medium with no net charge.
The vector wave equation is obtained directly for both the electric and magnetic fields.
These fields are solenoidal and related to one another by the curl (Faraday’s and
Ampere’s laws). It can be shown that the vector wave equation of fields with these
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Fig. 4.14 Spectral power output of the sun above the atmosphere (solid line). Solar output at the
surface of the earth for 0° zenith angle (dotted line). Solar output of the sun at the surface of the
earth for the sun at the horizon (dashed line).

characteristics can be reduced to a scalar wave equation (see Bohren and Huffman,
Ref 4.9, Chapter 4, and Stratton, Ref. 4.1, Chapter 6). This procedure is outlined below.
Begin with the following vector wave equation:

V2M(r) — y>M(r) =0, (4.93)

where M is solenoidal. It can represented by a the curl of a constant radial vector and a
scalar function, as given by

M(r) =V x ay(r). (4.94)

In this way, the vector field is guaranteed to be solenoidal. Substituting this definition
of M into the vector wave equation, we obtain a scalar wave equation in ¥,

V2 (r) — y*y(r) = 0. (4.95)

Thus, solving for ¥ also leads to solutions to M. Another vector, orthogonal to M,
is also generated by ¥ (or M) and is defined by

N{r) = j— (4.96)

This vector field is also solenoidal. The electromagnetic fields E and H can be
represented as a linear combination of the vector fields M and N.
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Fig. 4.15 Geometry of a plane-wave illuminated spherical particle of radius ¢ and complex

index of refraction 71;.

The solution of Eq. 4.95 in spherical coordinates with the appropriate boundary con-
ditions is a long and tedious story that has been told in many other texts (see Bohren
and Huffman, Ref. 4.9, Chapter 4, and Stratton, Ref. 4.1, Chapter 6). The geometry is
illustrated in Fig. 4.15. Parts of the problem have been solved in Chapter 3 (Section
3.3.1.1). We shall emphasize the results in the form of the scattering matrix (Eq. 2.165),

given by the following equations:

2 1
8100 = 3 s [ (0550 + b ()7, 6]

m

and

2 1
$200 = 3 o [ (60 00) + by (677 01,

m

where x = k'a = 2mwan, /1, a = |a| is the particle radius and is a constant,

Y, (X)), (X) — Y, (X)), (7X)
ny, (Mx)E) (x) — &, (x)Y;, (nx)

am(x) =

and

_ Y @)Y, () — mYm ()Y, (1x)

b (x) = 2 " nx)
) = o GOEL (¥) — e (E) Y, ()

(4.97a)

(4.97b)

(4.98a)

(4.98b)

where n = n;/n, is the complex index of refraction ratio and the Riccati—Bessel

functions are

YU (X) = xjm(x) and &, (x) = xh’) (x)



168 OPTICAL PROPAGATION IN LINEAR MEDIA

and j, (x) is the spherical Bessel function and 4" (x) is the spherical Hankel function
of the first kind, and

P! (cos b,
i (0) = (€0 (4.992)
sin O
and
@) dP! (cos6y) (4.99b)
‘Cm s) = T o > .
doy
where P! (where [ = 1) are the associated Legendre functions. These special functions

are listed in Appendix 2.
Based on Eq. 2.123, the scatter cross-section for spherical particles illuminated by
unpolarized light is

1
Coea = 5773 / d (IS1(0)1* + 1S:69)1%) . (4.100)

4

Figure 4.16a illustrates the angular dependence of the scatter cross-section for spheri-
cal particles with n = 1.33 and k = 1 x 1075 in the Rayleigh limit, when the radius and
wavelength are comparable and for large particles. The angular dependence can be
considerably different, from Rayleigh scatter to when the particle size and wavelength
become comparable. The figure shows the angular pattern for the size parameter x =
0.1, 1, and 10. As x increases above one, the angular structure greatly increases. Of par-
ticular note, as x increases, the forward-scattered and back-scattered amplitudes become
very different. This is a major indicator of the relative particle size, knowing the wave-
length. In Fig. 4.16b, the M, component of the Mueller matrix is plotted. This plot
shows the relative amplitudes of the scatter in the different regimes of x.

The corresponding extinction cross-section for spherical particles illuminated by
unpolarized light is

Cout (k') = i—ZRe[Sl (05 = 0) + 52(6; = 0)]. (4.101)

In the real world, particles within any group are not identical and can cover a wide
range of sizes and shapes. Assuming that randomly oriented particles scatter as spheres,
then shape is not an important parameter. However, any extinction coefficient requires
the consideration of spherical particles of different radii. Thus, the particle density must
be a function of the particle radius. The extinction coefficient for Mie scatter now
becomes

o0

Bext = / drCey (r)pp(r). (4.102)

0
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Specific particle distribution functions depend on the medium and are most appropri-
ately discussed in Part IT of this text.

In the Rayleigh limit (x < 1), the Mie equations are greatly simplified and are very
useful at infrared and microwave wavelengths. The resulting scattering field amplitudes
for scattering and absorbing particles of uniform radius, a, n; = 1, are (see Bohren and
Huffman, Ref. 4.9)

and S,(6,) = S cos (6y). (4.103)
The corresponding extinction coefficient illuminated by unpolarized light is
8n%a’ n*—1 2ra (n* -1\ n* 427" + 38
e = —— Lo | B (g (B ) BT
A n-+2 A \n"+2 2n" +3

2
128n5a6pp -1
+———Re . (4.104)

304 a2 +2

Absorption is a higher order process over scatter and dominates the extinction
coefficient. However, in many cases, the imaginary part of the complex index of
refraction is very small, and absorption and scatter loss are comparable in magnitude.
The corresponding scattering coefficient is

-1

n242

128n5a6pp

o : (4.105)

ﬂsca =

‘ 2

This compares closely to the result given for molecular scatter in Eq. 4.91, but now the
dependance of the particle radius explicitly appears. When the particle is nonabsorbing
(e.g., n is real), then the extinction and scattering coefficients are equal. A plot of the
extinction coefficient and the scatter coefficient as a function of the imaginary part of
the particle complex index of refraction is shown in Fig. 4.17. For k, of the particle
below 1 x 107*, By, and Byeq are equal. Thus only the real part of the refractive index
is relevant and the particle is effectively nonabsorbing in this case. This is also the case
for the plot of Fig. 4.16b. The large change in the scatter amplitude from x = 0.1 to 1
is indicative of the a® dependence in Eq. 4.104. For x much greater than one, the M,
component or the scatter coefficient basically depends on the area of the particle. This
is a much weaker dependence on the particle size than in the Rayleigh limit and
explains the reduced rate of increase from x = 1 to 10 in Fig. 4.16b.

4.4.3 Rayleigh—-Gans Scattering

Rayleigh—Gans scattering considers particles of arbitrary size but with small changes in
the index of refraction relative to the surrounding medium. This is a common situation
in solids and liquids.
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Fig. 4.17 A comparison between the extinction coefficient and the scatter coefficient as a
function of k, for a particle witha = 0.05 um, A = 1 um,n = 1.33, and p, = 10* cm™3 for Mie
scatter in the Rayleigh limit.

The Rayleigh—-Gans model is valid when
In—1] <1, (4.106)

where n = n;/n,, as in Mie theory. In this limit, it can be shown that the scattered field
is independent of the scattering particle size. To see this, recall that, in the limit,
Eq. 4.106 is true:

_ N
n—1x —,
Vv
where N is the number of dipoles per unit volume, V. Consider a coherent sum of small
volume elements, dV, over the total volume of a particle in the single scatter limit
(e.g., 2k’a |n — 1] «1). The Mie formulas in the Rayleigh limit (Eqs. 4.103) can be
applied to the small volume elements. The net result is obtained by integrating the
scatter matrix elements over all volume elements. (The details of this procedure are
given in Bohren and Huffman, Ref. 4.9, Chapter 6.) The results are given in the
following, consistent with the definition of the scatter matrix as given by Eq. 2.165,

jk/3 B
S1(0,¢9) = g(n - DHVf,9), (4.107a)

-k/3
S0, ¢) = JZ—T[(E— V@, ¢)cos @), (4.107b)
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Fig. 4.18 Rayleigh—-Gans scattering geometry for an arbitrary particle (Bohren and Huffman,
Ref. 4.9).
where
1 b A g
£, ¢) = v f e WRE &) (4.107¢)
Vv

is called the form factor. The geometry is illustrated in Fig 4.18.

4.1

4.2

4.3

4.4

Problems

Obtain a Cauchy model for the index of refraction of dry air at NTP (normal
temperature and pressure, 296 K and 1 atm) using the parameters listed in
Appendix 4 and the fact that dry air is composed of 79% N,, 20% O,, and 1% Ar.
Starting with the classical oscillator model for solids (€, = 1),

2
w; AE,‘
@@ =1+Y T

i

obtain the Sellmeier model (I'; = 0) in the common form

A2 A¢;

2 i
n —1=§ -
i )‘2_)‘1‘2

Now compute the index of refraction of CaF, at A =5um, given
Ae; = 0.5675888,  A; = 0.050263605 pm; Aey; = 04710914, 1y =
0.1003909 pum; Ae; = 3.8484723, 13 = 34.649040 pm.

Using the index of refraction computed above for CaF, at A = 5 um. Compute
both R, and R for an angle of incidence of 54.4°. Comment on the transmission
characteristics at that angle.

Compute the transmittance, reflectance, and emittance of a dielectric slab
of thickness L = 1 cm, given that the complex index of refraction of the slab is



4.5

4.6

4.7
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in=1727—j3.8 x 107 for v =1000cm™', T =295K, and 6 =0° (ie.,
normal incidence). The medium outside the slab is vacuum.

(a) Convert the classical oscillator model (Eq. 4.9) from angular frequency
to wave numbers [cm~!]. For v, =400cm™!, Ae¢; =3, € =2, and
I'1/Qmcvy) = 0.01, plot e/ (v), €/ (v), and 1/|€, (v)| from v = 0 to 1000 cm™.
Also, plot R for 8 = 0° over the same spectral range. What mathematical
formulas can be used to explain the relationship between all these curves?

(b) Show that the classical oscillator model, in general, satisfies

o0

f(e;(a)) —1)dw = 0.

0
(c) Also evaluate the integral

o0

/‘dwﬁabs (w)

0

for the classical oscillator model given by Eq. 4.12 for a single mode. Then con-
struct the line strength and line shape function for the classical oscillator model.
(Hint: For parts (b) and (c), apply contour integration, as demonstrated in
Appendix 3.)

Using the Hilbert transform (or Kramers—Kronig relation) show that

1 S;
=145 2
n(v) + 252 Xl: vi2 —2

given

Bav) =D Si8(v — v)

where 8(v) is a Dirac delta function. How does the index of refraction vary with
density? Why is the index of refraction often greater in the RF than in the visible?
How does the index of refraction vary with the line position and line strength?

A dielectric slab waveguide can be used for optical propagation. The reflectiv-
ity at the boundary of the slab will determine loss of a geometrical optics ray.
For the geometry and refractivity shown in Fig. P4.7, determine |R,| and |R;]|.
Is this a good waveguide?

n, =1

n,=1.7
0,=67° i

n, =1
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4.8 At low number density (i.e., atmospheric densities), N, the ideal gas law
(pV =nRgcT) can be used to express density in terms of pressure and tem-
perature. Find that expression and compute the NTP (7 = 296 K and P = 1
atm) number density of an ideal gas.

4.9 Show that the conductive permittivity is obtained from the dielectric permit-
tivity (classical oscillator model) when @ is much greater than the bandgap
frequency. Explain why this occurs (or why Ge appears metallic).

4.10 Show that the Debye and free-carrier models satisfy a Hilbert transform.

4.11 Verify Eqgs. 4.75a and b based on Eqs. 4.73, 4.68, and 4.70.

4.12 Using the concepts of Rayleigh scattering, explain why the sky is blue and
sunsets are yellow to red even though the sun appears white. The wavelength
of blue light (sky blue that is) i; ~0.48 um, yellow light is 0.61 um and red
light is 0.65 um. Give numerical evidence to support your explanation. (Note:
It will take more than Rayleigh scattering to completely explain the blue sky;
think about the nature of the source and the receiver, also.)

4.13 (a) What is the ratio of forward scatter (¢ = 0) to back scatter (6 = 7) for
Rayleigh scattering?

(b) Determine the Mueller matrix for Rayleigh scatter. Then compute the
scattered Stokes vector for unpolarized incident light. Comment on the angular
dependence of the polarization of scattered light.

414 For a particle with n =1.33, k=1x 10", x = 0.1 (Rayleigh limit),
A =0.5 pum, and p, = 100 cm™3, compute the extinction coefficient in km™!.
What is the corresponding extinction cross-section?

Bibliography

General
4.1 J.A. Stratton, Electromagnetic Theory, McGraw-Hill (1941).

Section 4.2

4.2 P. Debye, Polar Molecules, Dover (1957).
4.3 P.W. Milonni and J.H. Eberly, Lasers, Wiley-InterScience (1988).
4.4 J.D. Jackson, Classical Electrodynamics, 2nd Ed., Wiley (1975).

Section 4.3

4.5 P. Yeh, Optical Waves in Layered Media, Wiley-InterScience (1988).

4.6 J. Lekner, “Reflection and Refraction by Uniaxial Crystals,” J. Phys. Condens. Matter 3,
6121-6133 (1991). J. Lekner, Theory of Reflection, Martinus Nijhoff (1987).

4.7 A. Yariv, Introduction to Optical Electronics, Holt, Rinehart and Winston (1971).

Section 4.4

4.8 H.C. Van de Hulst, Light Scattering by Small Particles, Dover (1981).
4.9 C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles,
Wiley-InterScience (1983).



5

Electrodynamics Il:
Microscopic Interaction of
Light and Matter

Although the primarily phenomenological theory of absorption and refraction of light
by matter, based on classical models as presented in Chapter 4, is very useful, it is
incomplete and often inadequate. A more complete and accurate picture of electrody-
namics is given by the theory of quantum optics, and that is the topic of this chapter.
The models developed in this chapter are more detailed and therefore more complicated
than the phenomenological models of Chapter 4. The most robust models, which are
applied in Part II, are presented in this chapter. The quantum models accurately repre-
sent experimental data and allow extrapolation and interpolation of such data. Many
practical computer based models concerning optical propagation are based on this
theory.

The theory of elastic scatter as presented in Chapter 4 is consistent with quantum
optics and is not presented again. (However, inelastic scatter must address the quantum
nature of the scattering medium.)

5.1 Quantum Optics

Quantum optics is not completely covered in this chapter. Entire textbooks are devoted to
this diverse and comprehensive topic covering optics (see Refs. 5.1-5.3). The emphasis of
this book is on absorption and reflection spectroscopy. Now details of internal structure
of the medium impacting light-matter interaction are examined. The classical oscillator

175
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model is upgraded by semiclassical radiation theory and a quantum oscillator model is
developed. Semiclassical radiation theory is based on a quantized medium coupled to a
classical field. It is often applied to laser theory, where near-line-center stimulated emis-
sion dominates. The quantum oscillator model again utilizes the quantized medium and
classical field, but with more attention to detailed balance between absorption and emis-
sion. It satisfies causality and the fundamental symmetry relationships established in
Chapter 2. These quantum optics models are more complete formalisms and provide
solutions to the shortcomings of classical electrodynamics.

Of particular interest to propagation in gaseous media is the line shape in the far
wing. To achieve long path lengths, propagation near line center of a resonance must be
avoided. Line shape models in quantum optics accurately represent much of the
frequency and temperature dependence observed in experimental data. For this reason
a full discussion of line shapes has been postponed until this chapter.

In Part II of this book, the quantum oscillator model is used to represent the complex
index of refraction of a variety of media with good success. The semiclassical model is
also useful because it allows upgrades (i.e., temperature dependence and population
distributions) to parameters in the commonly used classical oscillator model. Part II is
a testimony to the great utility of quantum optics and applied spectroscopy. The optical
scientist and engineer of today must be aware of these powerful tools.

5.2 Statistical Distribution Functions

This section is intended to provide the necessary background for Sections 5.4 and 5.6.
We will begin with a brief discussion of energy distribution functions for various types
of many body systems in thermal equilibrium. The models presented here are founded
in statistical mechanics and the reader is referred to the bibliography for a deeper
understanding.

5.2.1 Maxwell-Boltzmann Statistics

For a medium or single particle in thermal equilibrium with its environment at
temperature 7', the distribution of energy E; within the system is given by

gie*Ei/(klfT)

o)

where kp is Boltzmann’s constant (1.380622 x 10716 erg/K) and g; is the degeneracy of
energy level E;. Q(T) is the partition function, such that

fup(Ep) = (5.1)

> fus(Ed) = 1. (5.2)
E;

Thus, the partition function normalizes the distribution function to satisfy the above
condition. Therefore, it is given by

() =) gie /D, (5.3)
E;
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In an ensemble of N particles, the number of particles with energy E; becomes

e Ei/tksT)
N; = Nfyg(E;) = Ngj——— . 5.4
Jus(E;) 8 o) (5.4)

Note that the sum of N; over all energies must equal the total number of particles in the
system, thus

Zg e—Ei/(ksT)
Z N=N-‘——0 - N.
o)

Particles that satisfy this distribution law are called boltzons (like fermions and
bosons). Molecules and atoms are examples of boltzons. The internal energy distribu-
tion at thermal equilibrium of rotational, vibrational, and electronic motion follows
Sfus(E).

In general, the net internal energy of a molecule is the sum of the rotational, vibra-
tional, and electronic energies. However, because of the large differences between these
different types of energies in molecules, the partition function can be approximately
expressed by the following product:

O710t(T) = Qp1(T) Qvin(T) Qrot(T)

—E —Evyi —Egot(J
Eon (55 o) B £52). o

This ignores interactions between the different types of molecular energies. Over the
range of typically encountered temperatures, Qr; = 1and Qv = 1 are good approxi-
mations. Knowledge of the rotational partition function is always important. A listing
is given, according to the class of molecule (see Chapter 3), in the following section.

5.2.1.1 Diatomic Molecules

Because the rotational energy levels are often closely spaced, the sum is converted to
an integral (see Example 5.1 below). The general rotational partition function for a
diatomic molecule becomes

8m2LkpT 1 T
oh? o 1.4388B,°

Qro(T) = (5.6)

where o is a symmetry number with o = 2 when homonuclear molecules are considered
(for N,, O,, etc.) and o = 1 otherwise (for CO, HF, etc.). B, can be found in Table 3.1 for
various diatomic molecules.
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Example 5.1 The rigid rotor for AB (non-homonuclear) molecules has the
following formula for its rotational energy levels:

E; =hcB,J(J +1), where g5 =2J+1)

and the rotational quantum number is J = 0,1,2,3.... The partition function for a
system in the electronic and vibrational ground state is

Qro(T) = Z(ZJ + Dexp <—]€Z—CTBeJ(J + 1))_

J=0
Because of the closeness of rotational energy levels (e.g., B, is small), we will convert
the sum to an integral. Thus
00
Qro(T) = / dJ (2] + eV,
0
where the following substitution is made:

hc

- p.
YT kT

This is a good approximation for most atmospheric molecules of interest. The
resulting rotational partition function is

1 kgT
o(T) = — = B2
Orot(T) 3 = heB,

The diatomic molecule has only one vibrational mode. Thus the vibrational partition
function for a purely harmonic potential becomes (see Chapter 3)

o hevy \ —hevg \ 17!
Qvip(T) = ;exp <—kB—Tv> = [1 - exp( T )] ) (5.7)

The ground-state energy is set to zero, since it is not relevant to population calculations.
The electronic partition function, Qg;(T) ~ 1 for most temperatures of interest (e.g.,
near room temperature).

5.2.1.2 Polyatomic Molecules

The rotational energies for the various polyatomic molecules are listed in Section
3.3.1.2 and applied using Eq. 5.3 to obtain the partition function.

Linear Molecules Based on Eq. 3.56 the same energy eigenvalues are obtained for
linear polyatomic molecules as for diatomic molecules, thus the partition functions are
also the same.
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Symmetric-Top Molecules Based on Egs. 3.58 and 3.59, the partition function
becomes

K=00

hc 2 > he
. kBT J:Z“q kBT

QRur =

Q=

K=

(5.8)

As before, heBfkpT and hc(A — B)/(kpT) are small and the sums can be replaced by
integrals, thus for prolate symmetric tops

ﬁ(SnzlakBT)l/z <87121kaT>

QRut = 12 12

_Jm( T N\ T
T o \1.43884 1.4388B ) ° (5.9)

Spherical-top molecules are a special case of the prolate symmetric top where
A = Borl, = I,. This substitution into the above formulas produces the rotational
partition function for the spherical top.

Similarly, the rotational partition function for the oblate case (o is a symmetry
number as previously defined) is

Jr( T \" T
o ) 5.10
Okt =~ ~\ T2388C 1.4388B (5.10)

Asymmetric Top The rotational partition function for the asymmetric top is

V7 (872 LksT\'"? (872 Lok T\'"? (872 Lk T\
Orot = ~— 3 - -3 ) (5.11)

The vibrational partition function for polyatomic molecules within the unperturbed
harmonic oscillator approximation, and ignoring the zero point energy, becomes

> hcv hcv hcv,
Qvip(T) = Z exp (— |:—1v1+—zvz+...+ Un])

V1,02, U, =0

—1 —1 -1
= |:1 —exp (;};C;l >i| |:1 — exp (;};C;z)} |:1 — exp (;:;?")} , (56.12)

where 7 is the number of normal vibrational modes of the molecule.
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5.2.2 Fermi-Dirac Statistics

Two states per orbital are available to fermions (half-integer spin particles, e.g.,
electrons). Thus the occupancy number, N, must equal 1 or 0. The thermally averaged
value of the occupancy of an orbital is the ratio of the term in the grand sum with N =1
to the sum of the terms with N = 0 (E = 0) and N = 1 (E = E). The average number
of fermions in an energy level E is

e—E/ksT 1

(N(E)) = Lo BT = CE/ksT +1

= frp(E). (5.13)

This is the Fermi—Dirac distribution function for fermions at thermal equilibrium.

5.2.3 Bose-Einstein Statistics

Any number of bosons (integer spin particles) can occupy a single state with energy E.
The ensemble average of the occupancy number, N, must consider all available states
and is given by

o0 o0
S Ne NE/ksT S NxV
N=0

(N(E)) = "= =N o BT (5.14)
e—NE/kgT xN

The geometric series in the above expression contains the following closed form sums:

o0 ; 1 o ; d o ) x
;x =1—x and nX:(;nx =xEnX=(;x =m.

The average boson occupation number for a system of bosons in thermal equilibrium
with a particular energy, E, becomes

—E/kgT 1

e
o Bkl — B/ ] fBe(E). (5.15)

(NE)) = —

This is the Bose—Einstein distribution function, fzg. Photons are bosons and must sat-
isfy the Bose—FEinstein distribution function.

A good example is the blackbody radiance and irradiance functions,
Lpg(v) and Mpg(v), respectively, given E = hcv is the photon energy. It describes the
total energy density or spectral distribution of radiation from a medium in thermal equi-
librium that is a perfect absorber at all frequencies. The radiated energy per unit volume
and unit bandwidth is the photon energy times the number density of modes per unit
bandwidth (see Eq. 1.15f) times the Bose—FEinstein distribution function, fgg(hcv), as
given by

dpem 8mhvie
Sfpe(hcv) = ehev/(sT) _ 1

[Jem™ cm], (5.16a)
dv

Uupp (U) = hcv
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where hc/kp = 1.43879 [cm K]. To obtain the power per unit area-bandwidth integrated
over all directions, ugp is multiplied by the speed of light (see Chapter 2),

8 hv3c? D)
CMBB(V) = m [W cm Cm] . (516]3)

This is the total spectral radiated power per area-unit bandwidth for a perfect blackbody
radiating in all directions. The blackbody radiance, L g5 (v), is obtained by dividing by
47 steradians,

2hcv3

Lgs(v) = T —1 [W/(cm? st cm™1)]. (5.17a)

Because the blackbody radiance is also used as a function of wavelength, it is of
interest to convert Lgg(v) to Lgg(L). Remember radiance is per unit bandwidth, thus
the equality between Lgg(v) to Lgg()) is given by

Lpg(v)|dv| = Lps(R)|dA|.

Using this relation, the blackbody radiance as a function of wavelength becomes

2hc? 1

Lps(2) = 5 T — 1 (5.17b)

The blackbody irradiance from a surface is obtained by integrating the radiance
times cos 8 over all solid angles within a hemisphere. The result is

MBB(U) =7TLBB(U). (5183)

Mg (v) is illustrated in Fig. 5.1 for typical temperatures of the surface of the earth and
solar photosphere.

It is often of interest to obtain the integrated irradiance over all frequencies. A closed-
form solution results, as given by

oo

/dUMBB(U) =

0

2k 4 4
Tt =os T (5.18b)

where ogg = 5.671 x 1078 W/(m2K#) is called the Stefan—Boltzmann constant.
Another related result of common interest is a band limited integration of the blackbody
irradiance. For an integration between the spectral points A; and A, the result is

A2

DMy () = o5y T | F (1€ F e 5.18
/ (X)) = Osp kT )~ T ) | (5.18¢c)

Al
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Fig. 5.1 Spectral distribution of blackbody irradiance function at two different temperatures.

where

15 & 3 32 6x 6
Fay=—Y e (T 422 424 2,
W=D (n TR A +n4)

In summary, molecules are boltzons and must satisfy the Maxwell-Boltzmann
distribution function, fysz(E). Electrons are fermions and must satisfy the Fermi—Dirac
distribution function, frp(E). Integer spin particles, such as photons and phonons, are
bosons and must satisfy the Bose—Einstein distribution, fpr(E). These are all energy
distribution functions for systems in thermal equilibrium.

5.3 Quantum Mechanics Il

This section presents the time-dependent perturbation expansion of the Schrodinger
wave equation. Also, the density matrix formalism is developed and applied to the semi-
classical oscillator model. This provides the necessary tools to model the interaction of
light and matter in a more complete manner, including the temperature dependence of
the complex index of refraction. The development is not intended to be rigorous, but to
provide the insight to properly apply the theory.

5.3.1 Time-Dependent Perturbation Theory

In quantum mechanics, only a few problems can be solved exactly. Thus techniques are
used that allow approximate solutions based on exact solutions. This is called
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perturbation theory. Examples of stationary-state perturbation theory are suggested in
Chapter 3 (i.e., rotational motion added to vibrational motion, and anharmonicity
corrections to the harmonic oscillator). Now we are interested in dynamic solutions to
the time-dependent Schrodinger equation. Consider a system Hamiltonian of the form

H(t) = Hy + Hin (1), (5.19)

where Hj has an exact solution to the time-independent Schrddinger equation and
H;,(¢) is a time-dependent interaction Hamiltonian and represents a perturbation to the
stationary-state system.

The probability that a system will change from an initial state |s(z)) to some final
state (s7(¢)| is

Py = [(sT0)Is'®)) . (5.20)

|si(t)) and (s/ (t)| are describable in terms ofAtime-independent eigenfunctions of 1:10.
This leads to the time development operator, S(¢), as defined by

Is'(£)) = Sgo0 (1) i) (5.21a)

for initial states before and during the interaction, and after the interaction
(/)] = (f154(0), (5.21b)

for final states. |i) and | f) are stationary-state eigenfunctions generated by Hy. Based
on the general solution to the time-dependent Schrodinger equation, as given by Eq.
3.11, the form of the time development operator becomes

t
Sray =exp | 1 / [+ B ] (5.220)
0

and for the Hermitian conjugate operator
. t
S3(r) = exp %’ / Hodt' | =851 (). (5.22b)
0

Thus, 3‘0 () is unitary. S’g (t) lacks the interaction Hamiltonian because the perturbation

comes before the final state. (This will not always be true when steady-state collisions

by other molecules [or systems] are considered.) The time dependence is now contained in

the operator and not in the wave function. This approach is called the Heisenberg picture.
Now, the transition probability becomes

(1880 Sror (1) 1)

Pi~>f

18y () S (0) 1)1 (5.23)
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Let the time development operator product be expressed as a single operator,
V() = 5570870 (1), (5.24)

Based on the time-dependent Schrodinger equation, the equation of motion for this
operator becomes

LW A A A A
—JhT =8, () Hips (1) S0 () V (1), (5.25)
where the unit operator,
S5 =1

is used. Solving the differential equation, we obtain

t
V(1) = exp % f SSYE) Hine (1) S0ty dt' |5 where Ve =0) =1. (5.26)
0

The expansion of this operator in terms of the integral over time must be performed
carefully so that correct operator sequence is maintained. The time ordered perturbation
expansion of V' (t)is

=1

vy =1+ (%) /d//dﬂ/... / dr™ [Sgl(ﬂ)ﬁm,(z’)so(z’)]
n=l 0 0

0

x [ﬁo—l(r’/)ﬁim(r”)ﬁo(r”>] - [30-1(r<">>1€nm(r<">)§o<r<">>] NGEY)

To first order in this expansion, V(t) becomes (the higher order terms in Eq. 5.27 lead
to phenomena in nonlinear optics)

t
Uiy =1+ % f dr [3‘0—1 (') B (z’)SO(z’)] . (5.28)
0
Now, to first order the transition probability becomes (recall the orthogonality require-

ment on the stationary eigenstates, (f|i) =,y = 0 for i # f, as presented in Section
3.1.3),

SH | ~.

Py= f dt' (f185 1"y Hin (1) So (1)) | (5.29)
0
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Furthermore, recognizing that So contains the zero-order Hamiltonian and that the
eigenstates are determined by this Hamiltonian, the operation on the initial state by the
time development operator simplifies to

.

t
So(0)]i) = exp /dt’ﬁo li) = er B i) (5.30)
0

Similarly, 3(; ! operating on the final state, simplifies to
(185" @) = (flexp (—%Eﬂ)- (5.31)

Therefore, based on the above results, the transition probability between two stationary
eigenstates to first order reduces to

2

1 4 ) ~
P ;= 2 ‘/ dr'e™ N (f | Hin (£)0)] (5.32)
0
where Ef — E,‘ = ha)o.
5.3.2 Fermi’s Golden Rule
Assume the interaction Hamiltonian, I-AI,-n,(t), is time harmonic, that is,
Hing (1) = Hip &7 (5.33)

Substituting the above form of the interaction Hamiltonian into the transition
probability yields

' 2

1 3 . 7 o J (0 —wp)t’
Proy = = |(F Ul [ i@ (5.34)
0

Evaluating the above integral, we obtain

2

1 R ejAwt 1
P_r=— Hipli) | = - 5.35
s hzkf| tn>(JAw ]Aw) (5.35)
where Aw = @ — wy. With some simple manipulation, this reduces to
Py = LBt (5.36)
i—f = 5 | x A int |l . .
RN NAYD) it
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1 10
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Fig. 5.2 A plot of Eq. 5.37 for ¢ = 10 sec. As ¢ increases the function narrows and peaks at
Aw = 0. The integral on Aw of this function is 27¢.

The time-dependent factor of the above result represents strong transient behavior of
the system due to the instantaneous turn on of the perturbation. Real systems cannot do
this, and we are interested in the result at long time. In the limit of # — oo, the transient
effects decay away and this function goes into the form of a delta function, thus

sinAwt/2|?

Aol | = 2rt8(Aw). (5.37)

—>00

This point is illustrated in Fig. 5.2. Therefore in the limit, the transition probability
becomes

21 Ao
Piy= h—ztl(lemtll)l $(Aw). (5.38)

The transition rate, I, is defined as the transition probability per unit time. Based on
the above result for P;_, r and dividing by ¢, we obtain Fermi’s golden rule for harmonic
perturbations,

2 Ao
Liny= h—2I<f|I£m|z>| §(Aw), (5.39)
or converting the argument of the delta function to energy,

2 A
Pivp = 2 W Hin|1)"0 (Ef — E; = ho). (5.40)
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This formula is fundamental to the description of linear absorption and emission phe-
nomena. The importance is further emphasized by the choice of name given by Enrico
Fermi.

5.3.3 Density Matrix Formalism

The density matrix formalism allows the combination of the probability and statistics
of quantum and statistical mechanics in a straightforward manner. Since we are inter-
ested in characterizing large numbers of molecules, this approach makes a lot of sense.
Now, macroscopic models can be obtained with a microscopic basis. Therefore, more
complete and useful models result from this practical formalism.

Consider a time-dependent wave function expanded in terms of a time-independent
stationary-state basis set |n),

(@) =) cal®)ln). (5.41)

n=0

The coefficients, c¢,(¢), are the time-dependent portion of the time-dependent
wavefunction. The expectation value of some observable parameter, A, is of vital interest
and is given by

The averaged (i.e., over time or ensemble average over molecules) expectation value is
denoted with an overbar, thus

(A) =) cucy, (m|Aln). (5.42)

=0
=0

3s

At this point the microscopic expectation value becomes a macroscopic quantity
as desired. Now, define the density matrix element and the expectation value matrix
element as

~

Pam () = C,,(l‘)(,‘;kn(t) and A, = (m|A|n), (5.43)

respectively. Since p,,, = p},,, p is a Hermitian matrix. The averaged expectation value
is now expressed as a matrix product,

<Z> = E pnmAmn~ (544)
n=0
m=0
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In matrix notation the averaged expectation value can be written in a more compact
form as

(A) = Z (Z pnmAmn> = nz(;('oA)”" (5.45)

n=0 \m=0

=Tr(pA),

where Tr () is a trace operator, which produces the sum of the diagonal elements. Thus,
the trace is written out as

Tr(p) = pir+p2+p3+--- (5.46)

Furthermore,
Tr(p) = a1 + [ +cs)P +--- =1

since the wave function inner product is normalized to one (i.e., (¥|Y) = 1). Thus, the
lca|? coefficients are interpreted as the probability that the nth state is occupied. In a
thermally averaged system, the density matrix elements become constant in time and
form a diagonal matrix with the diagonal elements equal to Boltzmann factors in a
Maxwell-Boltzmann distribution. Thus, based on Eq. 5.1, it follows that

gie*Ei/ksT

M Tom

Also, density matrix elements can be generated by the following operator:

Pnm = CnCpy = (Y ) (Y lm) = (n|plm). (5.47)

Thus, the density matrix operator is defined as

p =¥l (5.48)

Based on the time-dependent Schrodinger equation, the equation of motion for the
density matrix operator can be obtained in the following manner. For the bra version of
the wave function defined by Eq. 5.41, the Schrodinger wave equation is written

d
i “gl"” = " W1k He
k=0

(Note that (y|m) = c;;(t).) In a similar fashion the ket wave function produces the
following wave equation:

dnly)
o _;Hnukw

_]h
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Now differentiating the density matrix with respect to time and using the above results,
we obtain the following equation of motion:

J1bum =Y (Puk Him — Hok piom) (5.49a)
k

or in more compact notation using commutator brackets,

jh— =pH —Hp =[p,H]. (5.49b)

5.4 Semiclassical Oscillator Model

The quantized propagation medium is limited to two energy levels and interacts with a
classical field, producing a semiclassical oscillator model. This approach leads to a
tractable solution without use of perturbation theory. This means the semiclassical
oscillator model can be applied to interactions with high-intensity fields, such as inside
laser resonators.

To obtain a semiclassical oscillator model, consider a two-level quantum system
with states |1) and |2). As previously described in Chapter 4, consider the following
Hamiltonian for dipole moment coupling of the electromagnetic field with a medium:

H(t) = Ho+p,, e(Z,1). (5.50)

The differential equations describing time evolution of the density matrix are derivable
from the equation of motion (Eq. 5.49), and become

jhpmn = ;OmnEn - Empmn + Z(pmkukn - umkpkn) : e(Z’t) . (551)
k

Considering a two-level system (e.g., n, m, k = 1,2), using Eq. 1.12 for the electric field
and converting energy to frequency, the above equation becomes

.z - 1 jw —jw
J1 P = 1O pn + 5 Y (Pt — Bancpin) - (B + E*e ™), (5.52)
k

where w,,, = E,, — E,,. The time-harmonic nature of the wave function, as stated in
Section 3.1.3, is contained in the c-coefficients. The lower energy level can be defined as
a reference state against which the upper state frequency is measured. Thus, the time-
harmonic factor (e/®") exists only in the c,(¢) coefficient. Based on this convention, the
time-harmonic factor only exists in the off-diagonal density matrix elements, as given by

p21(t) = par (e’ and  pp(t) — pra(t)e /",
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Example 5.2 The interaction Hamiltonian, as stated in Eq. 5.50, is the same
coupling mechanism used in Chapter 4, which applies the Lorentz force relation.
This can be understood by converting the force equation of Eq. 4.1 to work or
energy on a negative charge in the electric dipole approximation, as follows:

—VH,:(r, 1) = F(t) = ge(Z,1).
Solving for the interaction Hamiltonian, one obtains
Hint(r’ t) = —qr- e(Zv t) = l‘l‘dp : e(Z’ t) s

which agrees wi}th Eq. 5.50. However, it is important to realize that this
Hamiltonian is, in general, incomplete, and represents linear coupling only.

Making this substitution into Eq. 5.52, we obtain to the following set of differential
equations

ez . 1 * —2jwi j *
Jhon = 5(1012”21 “E+ piapor - E*e 7 — ppppog; - Ee¥ — piapoy -EY)  (5.53a)
T 1 j * * —2jw
Jhpn = 5(:021!112 -Ee¥" + pyippn - E* — poio12 - E — parprn - Efe %) (5.53b)
and
ez . 1 * ,—j2ot s sk
Jhpo1 = h(w — wr1)p21 + 5(022“21 —M21p011) - (E+ E¥e ) =—jhpy,.  (5.53¢)

The high-frequency terms cannot be detected and essentially average to zero over
typical observation times. These terms can be dropped in the so-called rotating wave
approximation. Egs. 5.53a—c now become

: J Hoi -E 3, - E
=-2 - 54
o1t > (012 . P (5.54a)

where for a Hermitian operator p;; = p; and

. Jj w,-E*  py-E
—_7 - 5.54b
P22 = ) (;021 7 7 /012> ( )

W -E
T

fo1 = ply = —j(@— @) pa — %(/522 — 1) (5.54¢)



ELECTRODYNAMICS I 191

Relaxation processes, such as adiabatic collisions, must also be included in this model.
This type of collision will not affect the population distribution, therefore only
Eq. 5.54c needs to be modified. It is

) . J M -E
P21 =[—-y — j(w—wi)]pa + 5(011 — p22) P (5.55)

where y represents collisional relaxation processes. It is assumed that the transition
probability (1) will not change rapidly. In the quasi-steady state p,; ~ 0, an expression
for p;; is obtained to be

Wi E
(P11 — p22) 55~

P = o o = jy

= ph(w). (5.56)

The equation set given by Eq. 5.54 can now be reduced to two equations in
p11(w) and py(w). This is accomplished by substituting the steady-state solution of
021(w) and pjr(w) into Egs. 5.54a and 5.54b. The result is

_ [n21 - E|

2
e (P11 — p22) Y

(@ —)2 472 —hn(1). (5.57)

p1) =

The p;; density matrix element times the total population, N, is the population of the
ith state, N,. That is, the rate of change of the upper state population must be equal and
of opposite sign to the rate of change of the lower level population. This is true for a
closed system in thermal equilibrium. After multiplying through by the number of
absorbing molecules, N, Eq. 5.57 becomes,

: 7|pos - EP? . \
Ny = _T(Nl — Ny jL(w) = —N», (5.58)

where j (w) is the Lorentz line shape as defined by Eq. 4.15. The quantity between the
equal signs in the above equation can also be thought of as a photon absorption rate. This
quantity is also the negative of stimulated emission rate. Spontaneous emission is miss-
ing in this model. The semiclassical theory of radiation used in laser theory adds
spontaneous emission in a heuristic manner (see Milonni and Eberly, Ref. 5.8).

A model for the absorption coefficient can be obtained based on Eq. 5.58, because
the absorption process is dominantly a stimulated process. Also, based on Eq. 2.80 for
no external sources and no scatter loss, the absorption coefficient is

(dL /ds)

IBabs = - I .
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Furthermore, the change in incremental radiance per incremental path is the photon
energy times the incremental number of photons absorbed, N,, per incremental time
divided by the volume, thus

dL _ hoN,
ds vV '

The rate of change of the number of photons absorbed must equal the rate of change of
the population of the lower energy level, that is,
N, =N,

Combining these results yields the formula for the absorption coefficient,

—hwN, (w) _Tw

%cneoV|E|2 " henVeg

Babs (@) = 1y, - €2 (N1 = N2) jr (@) . (5.59)

€ is the unit vector pointing in the direction of polarization. In a gas or for randomly
polarized light, an orientational average is needed on the dot product between the direction
of the dipole moment and the electric field. The details of the calculation are left as an
exercise (see Problem 5.13). The absorption coefficient, as a function of wave number
and including orientational averaging, becomes

873y

Iatl*(0r — pu)jr(v), (5.60)
3]16071

ﬂabs (V) =

where the substitution p = N/V is made, and the subscripts 1 and 2 are changed to [
(lower state) and u (upper state), respectively. The population densities are dependent
on the energy level and therefore the frequency. This can be seen by using Eq. 5.4 to
obtain the following:

3
,Babs (V, T)=

8
SZ - Wt 0a (frip (E1) — fup(Er + V))ijL(V)- (5.61)
neg Vo

Substituting the explicit formulas for the Maxwell-Boltzmann distribution, ignoring
degeneracy, the absorption coefficient becomes

—E/kgT

77.’31) € V.
% Il (1 —e BTy i vy, (5.62)

8
Pt 0 = Sy Moy "

This result can be broken down into the standard form of line strength and line shape
functions. The line strength is

3 e—Ei/ksT

81 vy
|uul|2pa

_ 7hCU()/kBT
Shnes o) 1—e ) (5.63a)

Siu (T) =
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and the line shape profile is

(1 _ efhcv/(k,gT)) v

=TTt AL (5.63b)

gv) =
It is interesting to compare this result with the classical oscillator model. First, the popu-
lation difference factor now appears in the line strength. This is an important improvement.
The line profile functions agree when hev/(kgT) < 1 and hevy/(kpT) < 1. Typically
this will be the microwave region.

Although great progress has been made with the semiclassical oscillator model, it is
still incomplete. This is easily demonstrated by realizing that Eq. 5.63b does not satisfy
the symmetry condition of Eq. 3.32. Section 5.6 presents a new development which
addresses this important point. Furthermore, the description of spontaneous emission is
missing in this model. Spontaneous emission represents the majority of light sources in
use today (i.e., incandescent and fluorescent light bulbs). The next section addresses
this important topic.

5.5 The Einstein Relation and Spontaneous Emission

We begin by considering a medium in thermal equilibrium (constant temperature or
steady state) in which the rate of the number of photons absorbed equals the rate of the
number of photons emitted. Otherwise, the internal energy in the medium would be
increased or decreased and the net temperature will change. Thus,

dea _ de(r (5 64)
dt abs B dt em '

where N, is the photon occupation number with mode number m and polarization o .
These time derivatives are related to the transition rate, I, by

derr
( o ) = NyI',_,, = rate of photons absorbed (5.65a)
abs
and
deU .
o = N, I'y—; = rate of photons emitted, (5.65b)

where N, and N, are the number of absorbing molecules in the lower (/) and upper (1)
transition levels, respectively. I[';_,,, is the transition rate from the lower energy level to
the upper energy level, and conversely for I';,_,;.

For stimulated processes the transition rate is proportional to electromagnetic field
radiance. This can be seen by examining Fermi’s golden rule in Eq. 5.40, given the
interaction Hamiltonian in Eq. 5.50. For a system in thermal equilibrium, the field radi-
ance must obey the blackbody formula and satisfy a Bose—Einstein distribution. Given
this fact and the fact the upper and lower populations must satisfy a Maxwell-Boltzmann
distribution, Eq. 5.64 cannot be satisfied. Thus, thermal equilibrium cannot be satisfied,
and we know from experience that this is not true.
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In 1917, Albert Einstein realized this dilemma and proposed the following solution.
There must be two types of emission, stimulated and spontaneous. Spontaneous emission
does not require illumination by an external field to occur. Thus the upper to lower transi-
tion rate is modified in the following way:

Ly = upg(V) By + Au (5.66a)

and in a consistent fashion the lower to upper transition rate is
sy = ugg(v) By, . (566]3)

A, is called the Einstein A-coefficient, and B,;and B;, are called the Einstein
B-coefficients. Substituting the above transition rates into Eqgs. 5.65 and 5.64, using
Eq. 5.4, and solving for the field energy density, we obtain the following expression:

Ay 1

ugs (V) = B_u/ 1By, x hcv 1
guBul P kBT

upp(v) is the blackbody spectral energy density formula (Eq. 5.16a) when

A,
@B = guBu and =% = 8zhcv?. (5.67)

ul

Thus, the requirement of the existence of spontaneous emission allows thermal equi-
librium between bosons and boltzons to be satisfied.

The Einstein relation for an interaction system of photons and molecular oscillators
in thermal equilibrium is obtained by substituting Eqs. 5.65 and 5.66 into Eq. 5.64,
to obtain

Naupp (V)Blu = Nuulups (U)Bul + Aul] . (568)

The result is important because it describes a distinction between stimulated processes
by direct illumination and nonstimulated processes.

If no stimulating field is present (i.e., u(v) = 0), then spontaneous emission is the
only radiative process that occurs. Since the time rate of change of photons emitted
must equal the negative of the time rate of change of the upper population level, we
have

Nu = _Nma = _NuAul- (569)

Solving the differential equation, we obtain a description of an exponentially decaying
population:

Ny(1) =N, (0) exp (—Ay1). (5.70)
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Thus, the reciprocal of the Einstein A-coefficient is the lifetime, 7, of the upper level
for transitions between levels u and /. The net lifetime, 7,,, of the upper level is the sum
of all allowed transitions from the upper level, thus

1
— = Z A (5.71)
1

Tu

Finally, spontaneous emission is not spontaneous, but a causal phenomenon. The
correct interpretation comes from electromagnetic field quantization, as presented in
Appendix 5. Spontaneous emission by an oscillator is caused by collisions with other
molecules or when in vacuum by background field fluctuations that occur randomly all
the time. Furthermore, field quantization rigorously describes stimulated emission, and
absorption. Stimulated emission duplicates the frequency, polarization, and direction of
the incident photon, thus explaining why lasers have unique coherence properties over
conventional sources. The details are beyond the scope and purpose of this book, but it
is important to be aware of the correct cause of this phenomenon.

5.6 Quantum Optics of Low-Density Gases

Quantum electrodynamics is one of the most successful theories ever developed by
mankind. The name is often associated with high-energy physics. However, this funda-
mental theory contains a comprehensive description of the electromagnetic field and
molecular systems, and can be applied to many topics at much lower energies. Quantum
electrodynamics at optical frequencies is often referred to as quantum electronics
(which emphasizes optical devices, usually solid state) or quantum optics (which
emphasizes the electromagnetic field, but includes light-matter interactions). Since the
emphasis of this section is on light—matter interaction with gases, the name quantum
optics is preferred.

The main objective of this section is to provide the fundamental line shape and line
strength formulas for optical propagation models concerning the atmosphere of the
earth (e.g., those used in commercially available computer codes such as FASCODE
and MODTRAN). In particular, the complete description of the line shape function
away from line center is addressed. This is a practical consideration because long-path
propagation does not occur when the frequency of the field matches the line center
frequency of an absorption line.

The HITRAN database is used in conjunction with FASCODE and MODTRAN, and
provides absorption line parameters of atmospheric molecules. A theoretical model of
the absorption coefficient is developed, which utilizes this database and is consistent
with current models. The description and application of these models are the topics of
Part II of this book.

5.6.1 Formal Development

As in prior sections, the first-order light-matter interaction Hamiltonian is the dipole
moment operator coupled to a classical electromagnetic field, as given by (suppressing
the spatial dependence of the field)
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1 Jjot —jot
Hin (1) = Wap (1) - €(1) = Wgp (1) - 7 (BT +E*e 1)

This interaction Hamiltonian will be assumed weak, since our applications concern
propagation in window regions where absorption line wings are important. The use of
a classical field is valid when stimulated emission and absorption processes dominate.
Such an approximation ignores spontaneous emission, which is the process of conven-
tional light sources (i.e., blackbody radiation and fluorescence). As the previous section
shows, spontaneous emission is required to satisfy thermal equilibrium. A propagating
field within a medium in thermal equilibrium that does not saturate the medium pres-
ents a minor perturbation to thermal equilibrium, and spontaneous emission can be
ignored.

Fermi’s golden rule for the above interaction Hamiltonian, initially assuming that
Map is time independent, is

2

e [1(f lap-E 1) *8 (@i — @) + |(fftap E|i) 1?8 (wif + 0)].  (5.72)

Fi—)f =

The first term represents absorption and the second term represents the time reversed
process of emission. Recall the integral representation of the Dirac delta function,

1 oo
S(wif —w) = 7 / dte/“e It
—00

Then, knowing hw;y = E;y — E; and using Egs. 5.30 and 5.31, Fermi’s golden rule can
be modified to include the time-dependent dipole moment operator in the following
intuitive manner:

[o.¢]
Tl jot (715 —jHot/h j Hot /1 .
i = oo e [ e (hap(© ANl gy O - )
—00
o0

1 ; ‘A o
+5- / dre™ I ile™ A0 gy )/ | ) ( 1ty (0)- E1) | (5.73)

—00

Notice that the pre- and post-operators on the dipole moment are of the form of time
development operators. Using the Heisenberg representation for the time-dependent
dipole moment operator we obtain

flap(1) = eI My, 0y F0i /P, (5.742)

Furthermore, the effect of collisions by external molecules can now be handled by the
addition to the zero-order system Hamiltonian of a collision Hamiltonian, H,(¢). Thus,

H(t) = Hy + H.(1). (5.75)



ELECTRODYNAMICS I 197

Applying the above Hamiltonian, the time-dependent dipole moment operator now
includes the dynamics of collisions, and the transition rate becomes

1 T : . " . .
Ii ”[ /dref‘”’(imd,,(O)E‘|f><f|ud,,(r>-E|z>

T w2
Ul X
o / dze-”“’<i|udp<t>~E|f><f|ud,,<0>-E'|l>]’ (5.76)
where
flap(1) = €1 g, (0)e A1 (5.74b)

As discussed in Chapter 2, the susceptibility is a causal function and directly propor-
tional to the dipole moment. Thus, the dipole moment is causal as well. After removing
the turn-on function, it is an odd function in time (i.e., uqp(t) = —pap(—1)), just like
the susceptibility. With this insight, and realizing that the first matrix element product
represents absorption, we have

i—1l and f—u
and the second term represents stimulated emission, thus
i—u and f— I,
where [ indicates the lower state and « indicates the upper state, Equation 5.76 becomes

(o]

T [ 1 ot 111 . .
Fisw = E[Z / dt e’ (l|figp (0)- E"|u) (u|iap (1) Ell)

—00

—(llrap (0)-E |u) (u|rap (—1)- E*Il)}- (.77

Now examine the dipole moment matrix element product in the above equation,
(1ap (0)- E*|ue) (u|frap (1)- E 1)

Expanding the Heisenberg dipole moment operator, we obtain

fiap (1) = efjlfli.t/hefjlflot/h ﬁdp(o)ejﬁgz/hejﬁot/h
= 5. (1hap(0) S (t)e 7",
Using this expanded form of the dipole moment operator and then inserting unit oper-

ators between the time-independent dipole moment operator and the time development
operators, the matrix element becomes
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D (i (0)- E*|ue) (u] S (1)) (1 wap (0)- E LY (' S (1)) e

7
= [(ulfiap O)-E* D> Y (/| ()Y (1] Se () 1) e
u', '

= | <M “:ldp (O)'E*|l> |2C([)eijwult

where C () is an autocorrelation function. Substituting this result into the transition rate
and using the Fourier transform defined by Eq. 1.9, we obtain

~ 2 1 o fa—Jjout —jwut
L= (ulfbap - EIDI"— o {7 C (1) — e C(=1) }.

=
2h?
The principle of detailed balance or microscopic reversibility requires the following
relation between the two correlation functions (see Milonni and Eberly, Ref. 5.8)

—h . .
exp ( kB‘;“l) e IOl C(1) = e/l C(—1). (5.78a)

Defining the variable t =t — ji/(2kpT), the above relation can also be rewritten as

; : _ . h
eJeuT (r +J ) = e JouTC (—'[ + ]—> . (5.78b)

h
2k3T 2kBT

Suppressing the frequency shift factors, the more commonly stated result is obtained

h h
C j =C|-— j . 5.78
(tﬂzksT) ( TﬂszT) 789

The time-reversed variable is written as —t = —f — jh/(2kpT), because the Boltzmann
factor cannot change sign, since it is time independent. Thus the complex time variable
must exist in the upper half-plane. Any complete theory of spectral line shapes must
satisfy this fundamental relation. Using Eq. 5.78a, the transition rate becomes

T R ) —nw 1 oy
Uisu = W|(u|udp'E|l)| |:1 - eXp(kBT )}g Fle/C(}.  (5.79)

The Fourier transform of an autocorrelation function is the power spectral density func-
tion, j(w), according to the Wiener—Khintchine theorem. The power spectral density
function is an important part of the line shape function. To ensure that the resulting line
shape function will satisfy the symmetry properties, the following reconfiguration is
performed:
(1 — eihw/kuT) (1 +e7Meltat) i ¥ {ejwfirC(T)}
(1 + e—hw/kBT) 27T

= tanh ( 22\ @) + j(—)
= tan (2kBT)[J w) + j(—w)].

Based on Eq. 5.69, the rate of change of population in the time of the state |i) with
energy Ej is
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Ni=—N Ty,

Substituting this population rate into Eq. 59 for the absorption coefficient, we obtain

g — —hoN,  2hoNT, (5.80)
abs = %CVLEQ |E()|2 \%4 N CI’lG()V |E()|2 ' '

Substituting Eq. 5.79 for I';_,,, produces the following fundamental result:

Tw N;
cnegh V

N R hw
Babs (@) = [{u|Rgp - £|l)|2tanh<

%, T) (o) +j(=»)], (5.81)
where E =E(€ and £€ is a unit vector pointing in the direction of polarization. For gases
and amorphous materials, the dipoles are randomly oriented relative to the field polariza-
tion. An orientational average removes the dot product in the matrix element and
produces a multiplicative factor of one-third (see Problem 5.13). Also, the above result
accounts for only one polarization direction and there are two. Therefore, we must also
multiply the above result by a factor of two. Finally, the derivation thus far considers only
one transition and many overlapping absorption lines are often present. Thus, we sum
over all initial states to obtain the following result:

2 1 hw
Babs (@) = Z ﬂ,Oazg |lldp.u1|2 tanh (
]

3cnegh 2kp T>[f (0) +j(-w)], (5.82)

where p,; = N;/ V.
Using the Maxwell-Boltzmann distribution for p,;/g; and converting to wave num-
bers, we obtain the quantum oscillator model for the absorption coefficient,

e—Ei/ksT h
2 cv
abs u tanh | —— / i (—
Bavs (V) = 6th Z o |hdp.u | tan (szT) )+ j(=v)]
=D Sug (5:83)
]
where the line strength and line shape functions are given by
5, = Smv e n o |Rdp.u| tanh hev (5.84)
lu — 367160/’1 Q(T) Pa udp,ul 2kBT 5 .
and
, tanh (;;;;)
gW) = ————=[j(v) + j(=v)]. (5.85a)

VI tanh (2’2‘ “IT>

Jj (v) is the power spectral density function or the Fourier transform of the time depend-
ent autocorrelation function, C(t), which describes the time evolution of the state of the
absorbing molecule, and is expressed by
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oo
jv) = 2i f dt e /FevTel2ment O (1) (5.85b)
& —00
where the autocorrelation function for a gas mixture is given by the product of individual
autocorrelation functions,

C(t)=Cu(r)Cp(t)---Cp(r), and g) =g(—v).

The subscripts designate the different types of molecules composing the gas. The nor-
malization condition on j(v) is

[e¢]

/dvj(v) =1 for C(0)=1.

0
Note that j(v) is a real and even function. More details on the autocorrelation function
will be given in Section 5.6.3.

5.6.2 Line Strength

To complete the line strength expression requires specifying the partition function, Q(7),
the lower energy level E; and the matrix elements |ugp,|*. The partition functions are
given for each class of molecule in Section 5.2.1. A polynomial representation of the
partition function is often used to include coupling of rotational and vibrational motion.
The lower energy levels are computed by the formulas of Chapter 3.

The matrix elements can be found by evaluation of | lep|2- This has been done for
certain molecules. Some analytical results are given below.

For rotational transitions in diatomic molecules in the electronic ground state, the
matrix elements for the R- and P-branches are (see Herzberg, Ref. 5.15)

| x J+1 for AJ =1 (5.86a)
and
hap|” o J for AJ=-1. (5.86b)

For vibrational transitions with the Morse anharmonic potential as given by Eq. 3.101b,
the matrix element is (see Scholz, Ref. 5.38)

g*h T(m+n+1)
8m2cvou’ n2T(m + 1)

2
“‘ldp,nml =

J'G =1=2m)[j' = 1=20m+m]IT (j' = m —n)

(5.87)
(j'—=1=2m —n)2I'(j' —m)

where n represents the number of vibrational quanta or the number of phonons in the tran-
sition and cannot exceed m,,,,. The transitions originate from the initial state m. I'() is a
gamma function.

Also, matrix elements and lower energy levels for many gases are provided by the
HITRAN database (see Section 7.2.2).
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5.6.3 Line Shape Profiles

The most general classification of line shapes is either as homogeneous or inhomogeneous
broadening. Homogeneous broadening means that all molecules have the same basic
line shape characteristics. That is, if a line shape is observed for a collection of molecules,
the same line shape will be observed for each molecule. Examples are natural broadening
(radiation damping) and collision broadening. Inhomogeneously broadened lines
represent a collection of shifted homogeneously broadened lines. Thus, each molecule’s
line shape may be completely different from the total line shape of a collection of
molecules. Examples are Doppler broadening, nonuniform electric and magnetic fields
in Stark and Zeeman effects, and inhomogeneities in a medium (such as crystalline
strains and defects in solids). These concepts should become more clear when Doppler
broadening is thoroughly treated.

5.6.3.1 Homogeneous Line Shapes

Two related cases will be considered. These are radiation damping (natural broadening)
and collision broadening. Consider a perturbation to a quantum system, whether it be an
incident photon or colliding molecule that will smear the energy level structure. Due to
this probabilistic nature, an uncertainty results in observing the effects of the perturbation.
This is manifested by the Heisenberg uncertainty principle,

AxAp = AtAE =~ h.
Using AE = hAf, where Af is the change in frequency,

1 1 y
ANMAf~R — > ANf =—=—, 5.88
f 2 f At2r 2m (5.88)
where y is the reciprocal lifetime. A transition between two energy levels of a quantum
system, which results in the emission or absorption of a photon, will have an uncertainty
in the separation of the levels and therefore an uncertainty in the emitted photon frequency.
Therefore,

1 1

These concepts are illustrated in Fig. 5.3. A spread in frequency about line center of the
transition results, which is the same for every molecule. The amount of spreading
depends on the nature of the interaction: small shifts for radiation damping and large
shifts for molecular-collision-driven conditions of the lower troposphere. A brief
discussion of these different mechanisms will follow.

Natural Line Shape The natural line shape, gy (v — v,), is caused by fluctuations of
the background electromagnetic field (see Appendix 5). The effect is small but is impor-
tant in determining lifetimes of energy levels and astrophysical problems.

The line shape function, jy(v), is based on an exponential autocorrelation function
(i.e., Cny(t) = exp (—yn7)) and is a Lorentzian function,
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Fig. 5.3 Smearing of energy levels caused by external perturbations and the resulting line shape.

1
N —wy) = = ((y—N) . (5.90)

T V—V())z‘l‘)/]%]

yy is the half-width at half-intensity and related to the Einstein spontaneous emission
coefficient by (Ref. 5.10)

Ayl 1

VN == ——-—
2mc 2mClypontaneous

(5.91)

tspontancous 15 the lifetime of the upper level and A,; is the Einstein A-coefficient.
Further, the line profile function becomes

(ive) = v tanh [hcv/(2kpT)]
SN AVH0) = anh [heve/ (2kp T)]

Lin (W) + jn(=v)]. (5.92)

Near line center (v =~ vy) and vy > yw,

gn(vivg) = jn(v = vp). (5.93)
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Natural line widths are very narrow, making this an excellent approximation. Further,
the line profile function, g(v), is normalized as required by Eq. 3.31b within this approx-
imation.

Collision-Broadened Line Shape The collision-broadened line shape is essential for
accurate atmospheric propagation models. Long-path propagation simulations require
characterization of the line profiles far from line center, and the commonly used Lorentz
line profile function is not adequate. This point is readily made by observing that the
normalization condition of Eq. 3.31b cannot be satisfied by the simple Lorentz formula.
Thus, a more complete theory must be applied, and the work of Birnbaum and Cohen will
be followed because it leads to a simple, practical, and versatile line shape function (see
Ref. 5.22). Other formalisms are also possible, but lead to complicated numerical
techniques for a complete line profile representation. The Birnbaum—Cohen autocorrela-
tion function for a binary mixture is semiempirically chosen to satisfy detailed balance
(Eqg. 5.78c) and is given by

C(r) = Cu(r) Cp(7)

— exp {[m —(th+1° - j2‘Co‘E)1/2:|/‘Ca1]

X exp {[r;,z — (rb22 +12— j2r01:)]/2]/r;,1} . (5.94)

C, (1) is the autocorrelation function for absorber—absorber and C,(7) is the autocorrela-
tion function for absorber—broadener interactions. The relaxation times t; and 1
represent the long-time and short-time behavior of the autocorrelation function. t, is a
thermal time defined by

_ h
T AxkpT

T (5.95)

(For T =298K, 1, = 1.29 x 10~!* sec.) The resulting line profile function and the
Lorentz line shape is illustrated in Fig. 5.4.
The long-time behavior of the autocorrelation function becomes

C(t — o0) =exp(—|tl/T1), (5.96)

where the reciprocal of the relaxation time, ty, is

—1 —1 —1
T =T, =+ Ty = Ve = Vea + Veb

for a binary mixture and y, is the usual collision-broadened half-width at half-intensity.
Based on the kinetic theory of gases, the temperature and pressure dependence of the
collision—broadened half-width is

Ye = Ycbo [,Ob + (Vcao/ycbo) pa]ﬁ’ (597)

= Yebo (Pb + Bpa)/T"?,
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Fig. 5.4 Birnbaum line shape as function of frequency compared to the Lorentz line shape.

where p = p/(kpT) and the ratio Y.q,/Vebo 1S the dimensionless self-broadening coeffi-
cient, B. Table 5.1 lists B-values for various atmospheric absorbing gases relative to
nitrogen. The exponent of the temperature can vary between 0.5 and 1.0, based on
experimental results and more complete theories. The predicted pressure dependence
agrees very well with experimental data. This point is illustrated in Fig. 5.5. The curve
becomes linear when collisions dominate and the pressure is high enough. The
low-pressure half-width approaches the Doppler half-width, which will be covered in
the next section. Collision-broadened half-widths do vary with the rotational quantum
number, but only weakly with the vibrational quantum number.

The long-time autocorrelation function results in the near-line-center line shape
function. Substituting Eq. 5.94 into Egs. 5.85 and 5.79 results in the following near-
line-center profile:

v tanh [hcv/2kpT)]
v; tanh [hcv; [k T)]

gne (v v) = [ince () + jnre (—v)] (5.98)

Table 5.1 Dimensionless Self-Broadening Coefficient, B,
Relative to Nitrogen and Near Line Center

Molecule B
H,0 5
CH, 1.3
N,O 1.24
CcO 1.02
Co, 1.3

0, 1.0
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Fig. 5.5 The half-width versus absorbing gas pressure for the 11'0-00°0 R(24) line of CO,
located in the 5 pm region.

and

1 C
Jnee ) = — ( v 5 ) (5.99)
T\ —vi—vei) +¥2

where the conversion to wave numbers has been made (y, — 2mcy,). This result is
consistent with the FASCODE model (see Section 7.4) and, for Acv/kgT small, the
MPM model (see Section 7.4). Equation 5.99 includes a pressure shift term, y, ;, which
occurs in more general theories, producing a complex y,.(y.; = Im[y,]). Pressure shift
contributions are roughly 10-100 times smaller than Re[y,] and for this reason usually
are ignored. However, it can be important for laser or narrow-band system propagation
(e.g., atmospheric lidar) when operating near a spectral absorption line. The pressure and
temperature dependence is similar to the half-width as given by kinetic theory model,

Ye,i = (ycbn,ipb + ycan.ipa)ﬁ- (5100)

The pressure shift is usually negative, depends on the quantum numbers of the absorp-
tion line, and is on the order of a few milli-wave numbers per atmosphere.

Many of the popular line shapes can be obtained from these formulas by using various
approximations. It should be noted that most of these approximations are not always
appropriate for the RF—millimeter region. Thus, when in doubt about the correct line
shape for a particular application, use the most general model.

One important shortcoming of this near-line-center model is that it does not include
line-mixing effects. That is, the coupling of neighboring lines, which results in the alter-
ation of the near-line-center line shape. This is important for O, absorption of the
60 GHz band (see Ref. 5.28 and 5.29) and for CO, (see Ref. 5.30 and 5.31), but greatly
complicates absorption line modeling. A relatively simple modified Lorentz line shape,
as given by Rosenkranz and applied to O,, is given by
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o= ) Sion

1
Jnee(v) = —
e T <(U -V — Vc,i)z + 2

where y; is the coupling constant, representing the effects of neighboring energy levels
on the levels involved in the transition.
The leading factor in the line shape profile, as given by

v tanh [hcv/(2kpT)]
v tanh [hcvg/(2kgT)]

=H©,T;w), (5.102)

is an important part of this model and makes g(v) more general than other shape func-
tions, such as developed in Chapter 4 and Section 5.3.3. Furthermore, g(v) reduces to
other models in appropriate limits. The following examples illustrate this point.

Classical limit (h — 0)

2
v . .

gnee (Vi Vo) hso <v_> Lince (Vs vo) + jnre (—v; vo)l.
0

This result is consistent with the classical oscillator model of Eq. 4.33 for vy > 0.
v—=>0
¥ T

gnvec (Vs vo) a0 Vo tanh (bvo/ T) Linee W) + jnec W],

where b = hc/(2kp). The frequency-squared dependence is commonly observed at
microwave and millimetre-wave frequencies.

V=Y

gnrc (vo; vo) = [jncc(vo) + jnrc(—vo)l,
Thus, at line center the profile is Lorentzian.

bv>T and byy> T (infrared approximation)

—

Vo, .
gnre (s vo) :;?;TT " Linee (V) + jnee(=v)]

A plot of H(v; vp) is given in Fig. 5.6 as a function of v for 7 = 296 K, showing the
low-frequency and high-frequency limiting forms of this function.

The short-time behavior of the autocorrelation function leads to the far-wing character
of the profile. The real part short-time behavior (t — 0) of Eq. 5.94 becomes (ignoring
foreign gas effects)
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Fig. 5.6 H-function versus wave number for a line-center position of 100 cm™! and 7 = 296 K.

) — e T/ Qtt) (5.103)
The Gaussian form is consistent with theoretical models of the autocorrelation function
(Davies et al., Ref. 5.12). Thus a complete line shape is specified from line center to the

far wing. The far wing result has been obtained for the case of a single absorbing
molecule (i.e., C(r) = C,(r)) and is given by (Birnbaum, Ref. 5.23)

v tanh[hev/(2kpT)] .
or tanh [hev; /@ 1)1 7Y O G109

grw(v; v) =

and

ra2)1/2 1 exp(—2mc|v —v;i|T40)

— exp[2mc (v —v;) 1ol . (5.105)
21

Jrw () = (

Tal 472 v — |13

The exponential wing is consistent with experimental observation (see Refs. 5.23 and
5.35). The general far-wing result for a binary mixture can be obtained by solving a
convolution integral of the individual line shape functions (j, and jj) in the far-wing
limit. Thus, given

(o]

1 A

Ja) = - / dr e 17 C, (1), (5.1062)
1 .

o) = o f dr ey (2, (5.106b)

—00
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and based on Eq. 5.79, the net line shape becomes

[ee]

jv) = / Ja®) jp(v — vj — x) dx. (5.107)

—00

Then using contour integration, in the far-wing limit, we obtain

ra2>1/2 1 exp (—2mc |v — vi| T42)

Jrw (v) = (2;;

exp [2mc (v — v;) T
- YN p [27zc¢ ( ) 7o]

(tb2>1/2 1 exp (—2mc |v — vi| Tp2)

5 exp [2mc (v — v;) 1] . (5.108)

1 472 v — y |13

This approach can be expanded to include gas mixtures with more than two different
species of molecules. This is important for applications concerning propagation in plan-
etary atmospheres. In particular, the atmosphere of the earth contains nitrogen and
oxygen as primary broadeners of an absorbing gas.

The formula for the autocorrelation function given by Eq. 5.94 agrees with theoret-
ical and experimental results with regard to near-line-center and far-wing phenomena.
Because the function is continuous in time, a complete line shape function is specified.
The closed-form expression for the line shape has been obtained for a pure gas:

T o/ echv_r,, 7 Kl (Z_) 62n0v+r,, Z+K1 (Z+)

—e
b4 1+ Qrev_t)? 1+ Qrevyn)?

Jj) = , (5.109)

where
ve=viv,  Ze=[r2+02/Qr)?] (2 +) (.110)

and K(Z.) is the modified Bessel function of the second kind of first order. This line
shape is consistent with the near-line-center results obtained earlier and in addition pro-
vides insight into the nature of the far wing as previously shown. Most importantly, a
complete line shape allows proper normalization according to Eq. 3.31b. The following
result is obtained:

/ dv g(v,vp) = <1 + M) coth [hevo/ (kg T)] . (5.111)
e YoVo

For practical values of the parameters this line profile function is normalized to one.

A line shape formula for homogeneous collision-broadened lines has been devel-
oped that is compatible with the Phillips Laboratory HITRAN database. The line shape
has validity from line center to the far wing. Local line absorption and far-wing contin-
uum absorption can now be modeled in greater detail. The present formalism, however,
lacks line overlap or coupling effects. More advanced models are being developed to
address these issues in line shape theory (Refs. 5.26-5.31).
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5.6.3.2 Inhomogeneous Line Shapes

Doppler Line Shape The random kinetic motion of molecules is driven by the ther-
mal energy and causes a Doppler shift of the narrow homogeneously broadened
molecule. Molecules with different velocities will be shifted by different amounts, so
that a new line shape results in the form of an inhomogeneous Doppler profile.
Derivation of this effect begins with Doppler’s equation,
(c —v)vy c(vo —v)

V=——— o v=————, (5.112)
c Vo

where v is the velocity of the molecule of mass m and v, the radiating frequency of the
molecule. Recall the Boltzmann factor for a system in thermal equilibrium,

f(E) = e E/ksT | (5.113)

Using the classical formula for kinetic energy, E = %mvz, and the previous equations

it follows that
2
Foy=exp (- (ST _m (5.114)
Vo ZkBT ' ’

This represents the probability distribution of shifted frequencies due to velocity com-
ponents of the atoms parallel to the incident photon field. Since Doppler lines are very
narrow, it is valid to enforce normalization on the spectral density function, accounting
for absorption as well as emission, thus

f[jD(v — o) + o 4 vo)]dv = 1. (5.115)
0

The Doppler spectral density function is commonly expressed as

Jp(v —wo) = (5.116)

(In 2)'/? (_ (v —vp)? (In 2))

——__exp
Yo/ Yb

where the Doppler half-width at half-intensity is

2kpTIn 2]\ /2 T
YD = <B—121||) vo = 3.578 x 1077,/ — vy, (5.117)
mc m

where T is the temperature in kelvins, m is the molecular mass in amu, and v is the line-
center frequency in cm~!. Because Doppler lines are narrow, a good approximation is

gp(v —vp) = jp(v — ). (5.118)



210 OPTICAL PROPAGATION IN LINEAR MEDIA

0.5 T T T T I

045

Absorption coeff.

Wave number/Halfwidth

Fig. 5.7 A comparison between the Doppler and Lorentz line shapes for equal line strength and
half-width.

Example 5.3 Find the Doppler half-width of H,O at 7'= 295 K and vy = 3600 cm™".

The molecular mass of H,O is 18 amu, therefore the Doppler half-width is yp =
0.021 cm™!. The collision-broadened half-width for H,O at 7 = 295 K and a total
pressure of 1 atm is typically 0.07 cm~!. Thus, neither the Doppler nor the collision-
broadened line shape dominates. This situation is examined in the next section.

The Gaussian form is considerably different from the Lorentz function. The wings
in the Doppler line shape fall off much more rapidly. This heightens the function at line
center. A comparison of the two shapes for equal strength and width is given in Fig. 5.7.

Voigt Line Shape The Doppler line shape assumes the shifted homogeneous line
shapes are delta functions, which is usually a good approximation at very low pressures.
The natural line shape is always present in any experiment and, in problems of atmos-
pheric importance, collision broadening is present. Thus the pure Doppler profile is
never observed. A real line shape contains the effects of motion on the homogeneous
line shape absorbers. This is the Voigt line shape.

Figure 5.8 illustrates the shifted homogeneous line shape weighted by a Gaussian
(Doppler) distribution. This process can be thought of as a convolution of a homoge-
neous shape, gy (v), through a Doppler profile. Thus,

oo

go(v, 1) = /gH(v, v’) [jD(v’ — vo) + jD(v’ + vo)] dv'. (5.119)
0
The resulting line shape is called the Voigt line shape, g, (v). From the definition of the
above equation, the normalization condition can be seen to be satisfied:

oo

/gv(v, vo) dv =1. (5.120)
0
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Fig. 5.8 Voigt line shape illustration. The dotted curves are the Doppler-shifted homogeneous
line shape components of the Voigt line shape.

The homogeneous line shape most often used is the Lorentz profile (but it may not
always apply). Substituting in the Lorentz and Doppler line shapes and ignoring the
emission term,

exp [(vo — v/)z (In 2)/)/5“ /
o dv
[(v—=vo) — (V' —v)]" + vy

g(v, w) = 3/2 (In 2)2 H (v, T)/
(5.121)

Making the following variable and parameter substitutions,

v =g 12, 12
y=——(n2) §w) = (1 2)
VYD YD
and

=1 (n 212,
VYD

then Eq. 5.121 becomes

(n2) e ()
gv(v, 1) = 3/2 2 (In 2) H (v, )f o) y] e dy. (5.122)

In the low-pressure limit the line profile is Doppler, and in the high-pressure limit the
line profile is collision broadened. The collision-broadened line shape dominates when
v./vp > 4. The half-width of the Voigt shape connects these distinct pressure regions
as well. This fact can be seen in Fig. 5.5. No closed-form representation exists for
the Voigt profile, and numerical techniques are commonly used (see Ref. 5.36).
However, at line center a closed form solution can be obtained, using a complementary
error function, to be
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I—

In2 1 2
gv(vo) = <—) —e“erfc (a). (5.123)
T YD

5.6.4 Refractivity

Recall from Chapter 2 (Eq. 2.52a) that the index of refraction is the Hilbert transform
of the index of absorption. Substituting the expression for the index of absorption in
terms of the absorption coefficient into that expression, the following is obtained:

mvn_u——zppf;“)d’ (5.124)

The index of refraction (real part) comes from local line absorption phenomena based
on the Hilbert transform. In the transparent region of a medium where weak absorption
features contribute very little to the index of refraction, the refractive index is deter-
mined by distant line-center contributions of strong absorption bands. Thus the
following approximation can be made:

g, v) e —v)+8(v+v).

Substituting this expression into Eq. 5.124, we obtain a Sellmeier formula (recall
Eq. 4.18), as given by

n?w, T) =1+

’

(VRor)? A€o (T) n Z (vip)i Aeyip i (T) n Z (Ve A€ (T)

(VRor)? — 12 — (vyip)] — V2 — (e — V2

(5.125)

where (v) is the average band position for rotational, vibrational, and electronic bands.
The sum on i represents the different vibrational bands of a gas. The sum on k repre-
sents the different electronic bands of a gas. The oscillator strength is

8 (k] he(v)
Ae(T)_3hC€0pa ) tanh(2k3T> (5.126)

for pure rotational bands and vibrational bands below 500 cm~!, and

|Hd11 }

Al = 3P

(5.127)

for vibrational and electronic bands (where the approximation tanh [hc(v)/(2kgT)] =~ 1
is used for line-center frequencies above 500 cm™!). The sum over all rotational lines
within the band negates the contribution from the rotational partition function. Thus the
only significant temperature dependence comes from the density of the gas. Equation
5.125 is identical to the classical formula of Eq. 4.18, except more details are repre-
sented by the model parameters, in particular the temperature dependence for
far-infrared absorption bands.
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When weak local line or anomalous dispersion is important, the complete near-line-
center profile must be used. A closed-form expression based on Eq. 5.124 cannot be
obtained in general. However, closed-form solutions in various limits within the colli-
sion broadened regime are tractable. The results are summarized below for frequencies
below 400 cm~!, where tanh [hcv/(2kgT)] ~ hcv/(2kgT) and above 500 cm~!, where
tanh [hcv/(2kpT)] ~ 1 and T is in the range of typical atmospheric temperatures.

v < 400 cm™!

() =1+ 2rhe/(ksTIY_ Svi ([i/vi) Jnze ) — f )]
+ 10i/v) dwze (=v) = f(=0)]} (5.128)

v > 500 cm™!

n*(v) =1 —4x Z Si[fw)+ f(=w], (5.129)
where the dispersion shape function is defined to be

1 Vv — v
f(V) = ;7(‘) — vi)2+ yiz.

(5.130)

The above formulas do not include line-mixing contributions (see Ref. 5.37). However,
line mixing should be a minor correction.

5.7 Quantum Electronics

As was demonstrated in Chapter 4, the classical oscillator model for vibrational transi-
tions had the same mathematical form whether the medium was in the gas phase or the
solid phase. This will basically remain true for the quantum oscillator model as well.
This point will be demonstrated in Chapter 8. However, electronic transitions in the
solid phase require a new model. The classical oscillator does not represent experi-
mental data at and above the bandgap. This is because the spectral shape is driven, not
by the surroundings of the oscillator, but by the density-of-states function for electronic
transitions.

Because the application of the models developed in this section emphasizes opto-
electronic devices using semiconductor materials, the traditional title is used.

5.7.1 Electronic Band-to-Band Transitions

The electronic band structure of solids and electronic density-of-states was introduced
in Chapter 3. We now consider transitions caused by photon absorption between these
bands to obtain the complex permittivity and absorption coefficient above the bandgap.
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The model derivation begins with Fermi’s golden rule for a harmonic perturbation
(Eq. 5.40),

27 A2
Liey = = (F1Huli)| 8CE; = Ei = o).

In this case, E is the conduction band energy and E; the valance band energy of an
electron. Thus for a direct bandgap semiconductor of bandgap energy E,, the electronic
energy levels can be expressed as

nk* nk*

EFr=—+FE, and E; =—
£ 2mc+ 8 !

(5.131)

2m, "

m. is the effective electron mass in the conduction band and m, is the effective vacant
electron (hole) mass in the valance band. The energy difference between the final and
initial electronic states is

E E—hzk,2 Ly +E—h2k’2+E (5.132)
T e omy £ 2ue Y '

where . is the reduced mass.
The matrix element for a dipole moment operator coupled to a classical electromag-
netic field is

A _ o 1. . 1 0
(F | Hili) = (q / d3ru;(r>ef“r"rui(r)ef"i"> : (EEeJ"wR + EEeﬂwR> ,
(5.133)

where Eq. 3.153 is used for the electronic wave function. As discussed in Chapter 3 for
vibrational modes, the optical wave vector is essentially zero, compared with the wave
vector representing lattice dimensions. Thus, we assert that k; ,, ~ 0. Furthermore, the
oscillating factors in the wave function are very rapid and reduce the transition proba-
bility, unless the condition k| = k} is met. (If no phonons are involved in the electronic
transition then it is called a direct bandgap transition.) That is, the maximum of the
valance band and the minimum of the conduction band align on the k’-axis. Otherwise
an indirect bandgap exists (no alignment of the bands), which then involves the creation
of a phonon, as well as the conduction electron. Optoelectronic semiconductor materi-
als, such as GaAs and InP, have direct bandgaps. Employing these approximations,
Fermi’s golden rule for the electronic transition rate now becomes

27 ) ) 2 27,2

e

/ d*ru* (r)ru(r)

The total number of valence to conduction band transitions per second can be computed
by multiplying the transition rate by the electronic density-of-states and integrating over
all £/, as given by
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Ny = — / Tie (K (k') dE . (5.135)

The rate of change is negative because the number of valance band electrons is decreas-
ing. Furthermore, to perform this calculation requires that the dipole moment operator
in the transition rate be explicitly described in terms of k' or momentum (p = hk’).
It can be shown that the interaction Hamiltonian can be rewritten using the magnetic
vector potential, a (see Problem 5.17) as

gr-e=—gL .a (5.136)
m
where in the Coulomb gauge
e= 22 (5.137)
ot '

Using the above result and Eq. 3.154 for the electronic density-of-states, Eq. 5.135
becomes
()’

: 2V
Ny = ——q2|A|2/|wf(k’)|25 L 4t E,—ho|k?dk  (5.138)
h 2k,

where the reduced matrix element is
N 2
Vi (k)P = V Prup () 2w k)] . (5.139)
m

Let us make the following variable substitution:

k)
24

z +E; —ho.

It follows that

(z — Eq + hw)"2dz.

2/”l‘€ / e hz
k'(z) = \/ 2 (= E¢+hw) and dk' = 2\ 2

Making these substitutions into Eq. 5.138 and evaluating the integral, we obtain the
following result for the number of electronic transitions per unit time:

2 Q2ue)*?

. 1% ,
Ny = _;q2|A|2|v,-f [£'(0)] e (ho — Eg)'/%. (5.140)

The absorption coefficient above the bandgap can be obtained by applying Eq. 5.59 to
the above result, thus

247 21e)

(hw — E)'/?
cn(w)eomh’ Vit |2 -
0

Buvs (@) = [¥' ()] : (5.141)
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Fig. 5.9 The room-temperature absorption coefficient near the bandgap of intrinsic GaAs.

where we have used the relation |E|> = w? |A|*. Using Eq. 2.29, the corresponding
imaginary part of the complex permittivity (electric susceptibility) is obtained:

2% Q2ue)*?

€ (w) = x (0) = oh

oo (ho — Eg)'? _ho
|Vip(k'(0))] A H(1 £ ) (5.142)

where H () is a Heaviside step function in the frequency domain. The absorption profile
is assumed to be homogeneous. The Hilbert transform of the above (see Appendix 3)
produces the real part of the complex susceptibility,

202 /2 32 2 /B N\2
X () = — (e i
eomh \ E, hw
B\ /2 hoo\ /2 "
x 2—<1+—w> —<1——“’> H(l——w) (5.143)
Eg Eg Eg

Other electronic band-to-band transitions exist in real materials, and the above model
will refer to as E; transitions. An example of this model compared with real complex
index data on GaAs is presented in Fig. 5.9.

Vir [K(0)]
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Fig. 5.10 The time-domain electric susceptibility for the E, transition of GaAs at room
temperature.

The inverse Fourier transform of the complex susceptibility (Eqgs. 5.141 and 5.143)
leads to the time-domain susceptibility for the Ej region, as given by

2 A
Xeo(t) = —Owo{«/na)ot cos (wot + %) — Twyt

T ELS

sol(on e ) ()¢ o= D)3 (55 o o

where
2q2 3
Ao = ——Qu)** 1 Vir [K' (0] 2,
0 eonh(“) Vi [K'O)] |

wy = E,/h, and C(x) and S(x) are the Fresnel cosine and sine integral functions,
respectively. The details of this derivation are presented in Appendix 3. A plot of the
resulting time-domain electric susceptibility for the E, transitions in GaAs is given in
Fig. 5.10. Because of the large bandwidth of this transition, the oscillations in the sus-
ceptibility decay very rapidly, on the order of femtoseconds.

5.7.2 Exciton Band Absorption

Excitons are electron—hole pairs that are bonded together to form a hydrogen-like struc-
ture. These are very weak, broad (at room temperature) structures that are important in
certain optoelectronic devices. In this case, excitons act independently and are distinct,
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thus a modified form of the classical oscillator model is applied. The lowest frequency
exciton is located at the bandgap and the complex permittivity is given by

Axo + Axo
Eg_EXO_ha)_jFXO Eg_ExO"i_hw_jer.

Xexo(®) = (5.145)

This function also satisfies the Kramers—Kronig relation. The model is applied to GaAs
absorption in Fig. 5.9 (A0 =2.35 meV, ',y = 3.5 meV, and E, = 4.7 meV). Although
better agreement with measurement is obtained just above the bandgap, the model is
incorrect below the bandgap. This point will be discussed further in Chapter 8.

5.7.3 Band Edge Absorption and Urbach’s Rule

In 1953, Franz Urbach observed that the absorption coefficient of silver chloride
increased exponentially for increasing frequency near its bandgap energy. Urbach was
able to characterize the frequency dependence with a simple exponential curve. Further
improvements include temperature dependence, and now the formula is given by

Babs(E, T) = Buo exp [os(E — E,)/(kgT)], (5.146)

where B, is the absorption coefficient (typically in cm™), By is a scaling coefficient
in units cm™, E, is the bandgap energy at absolute zero temperature, typically given in
units of eV, kp is Boltzmann’s constant, and T is temperature in kelvins. The exponent
factor oy was later discovered to be temperature dependent for some materials, and is
given by the following equation (see Ref. 5.43):

2kgT E,
05(T) = 0,——tanh——, (5.147)
E, 2kpT

where E, is an effective acoustic phonon energy of the material. The absorption
coefficient, 8,55, can then be used to calculate the transmittance. Figure 5.9 illustrates
the comparison of the Urbach model with experimental data as a function of frequency.
The representation is clearly quite good.

The following is a heuristic derivation of Urbach’s rule (see Ref. 5.44). No formal
derivation currently exists that fully explains the general applicability of this formula.

Because phonons are bosons, at thermal equilibrium the average number of phonons
in the jth mode (w;) is given by Eq. 5.15. The standard deviation of the phonon occu-
pation number N; is

172

an; = ((N?) = (ND)) 2 = (N;) (1 + 1/(N})) (5.148)

Thus phonons have comparatively large occupancy fluctuations. This will cause smear-
ing of the bandgap and the generation of exciton red-wing absorption near bandgap
frequencies. We assume that the effective local bandgap at a temperature 7 is the
bandgap at 0 K, E,(0), minus a constant times the average phonon occupation number
for each direction:
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E((T) = E,0) — > A(Ny). (5.149)

i=x,y,2
Because the speed of light effectively freezes, in time, the fluctuating phonons propa-

gating in any local region of a solid, it is not necessary to compute the average number
and we can write

Eg,lacul(T) = Eg(o) - A(Nx + Ny + Nz) (5150)

Now the probability that a particular cell of the propagating medium contains a partic-
ular phonon occupation number N, N, N; is

e~ (NetNy+Noha, / kT

pu(T) = = Pnx PnyPnz> (5.151a)

(1 _ efhw,,/kBT)3

where w,, (= E,/h) is the phonon frequency. At NTP and uv photon frequencies, the
phonon shifts must be large to be important. For such phonons, iiw,, /(kpT) is large and
it follows that

1 — e hop/ksT) .
Therefore, Eq. 5.151a reduces to
pu(T) = e~ Wt Nyt Noha, [ksT (5.151b)

Using Eq. 5.149 and solving for the phonon occupation number, the following is
obtained:

N:+ Ny + N, = [E,(0) — howl/A, (5.152)

where E, 0.t = hw, because this local region couples to the photon field by phonon-
shifting the bandgap. The absorption coefficient must be proportional to p, as a
function of the various local bandgaps. Thus, substitution of Eq. 5.152 into Eq. 5.151b
suggests the following form of the absorption coefficient:

Bans (v, T) = By e E@—he/ksT (5.153)

where the constant o is defined as

This result closely matches Urbach’s rule, as given by Eq. 5.145.
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Problems

Compute the vibrational partition function for a single harmonic oscillator,
given by

Qvip =Y _ge " where g, =1.
v

Compute the ratio of the number of molecules in the vibrational ground state
(v = 0) to the first excited state (v = 1) for v, = 1595 cm™! at room temperature,
that is

N, =1 _o

N, =0

Is the rotational partition function as given by Eq. 5.6 valid for OH? Check this
by performing a discrete sum (Eq. 5.3) and comparing the result with the closed-
form expression.

Find an expression for the band-limited irradiance of a planar blackbody, that is,
find

V2

/dUMBB(U) =7

Vi

Find the result for v = 0 and v, = o0.
Compute the power spectral density function j.(Aw) given

Cy=e™, y=v—jv

where y is in general complex, Aw = @ — wy, and
. 1 —JjAwt
je(Aw) = —Re dre™2"C@r) |.
b4
0

What are the units of S;, given Bups[cm~!] and v[cm™!].
Use the definition of line strength and the collision line shape j.(Aw),

1 Ve
VI B
JelA) = R+ 77

where y. = yop,T /2, to find the temperature and pressure dependence of the
absorption coefficient at line center (Aw = 0) for a medium containing only the
absorbing gas. Do the same for the far wing (Aw > y,).

Obtain a closed-form expression for the Voigt line shape at line center.
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Given that, for a diatomic molecule, the magnitude of the dipole moment
matrix element squared is proportional to J + 1, (a) determine the shape of the
pure rotational band for CO by computing the line-center absorption coeffi-
cient relative to the line J = 0 as a function of J-number (J = 1 to 30) at room
temperature (7' = 295 K), and (b) the same for 7 = 600 K. (Assume all half-
widths are equal.)

Find the far-wing absorption coefficient for a binary gas mixture, explicitly
showing pressure and temperature dependence. (a) Use the Lorentz line shape.
(b) Use the Birnbaum—Cohen line shape.

Based on Egs. 5.125 and 5.126, find the temperature and pressure dependence
of the index of refraction of a gas with all vibrational bands above 500 cm™!.
What is the temperature dependence of the refractive index as v goes to zero?
Differential absorption lidar (DIAL) can be used to measure the number
density of an absorbing species. To do this accurately requires that the absorp-
tion feature be temperature independent. Determine an expression, involving
the lower energy level of the transition, that minimizes the temperature
dependence of the line-center absorption coefficient of a gas in the collision-
broadened regime. (Use the quantum oscillator model.)

Based on the mode density within a cavity (from Chapter 1, Eq. 1.15f) and the
Bose-Einstein distribution, obtain the blackbody formulas, as given by Egs.
5.16a and b. The relationship between the energy density of the field, u, and the
power per unit area (Poynting’s vector) must be found to obtain Eq. 5.16b.
The direction of the dipole moment, d, and the direction of the electric field,
€, (o =1, 2), in many situations are random relative to one another. For this
reason, the magnitude of the dot product summed over all possible polariza-
tions can be averaged over all relative dipole orientations. For a TEM wave, the
two polarization directions and the direction of propagation form a complete
basis set, which spans 3-D coordinate space. Thus, the dipole direction can be
expressed in terms of the field coordinates, as given by

d=(d-€)&, + -£,)&, + @ -KK.

For real basis vectors, we have
D @d-e)? =(d-g)? + (d-g)? =1—cos’b,,

where 6, is the angle between the dipole moment and the direction of propa-
gation and |d |2 = 1. Now integrate the above result over all angles 6, and ¢4
to obtain the orientational average.

Derive the far wing form of the Birnbaum line shape for a binary mixture, as
given by Eq. 5.108.

Verify Eq. 5.116 for the Doppler line shape.

Verify Eq. 5.125, based on Eqs. 5.124 and 5.84.

Show that the first-order interaction Hamiltonian between the photon field and
a molecule

A

I-Iint:_ l’\){l

3|
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can be expressed as

A

Hap = lldp'E .

Hint: Since the oscillator is driven by the field, both the oscillator and field
change at the same rate in time and can be represented by the general form

f(t) = foel.

5.18 Verify Eq. 5.148 for the standard deviation of a boson occupation number.
5.19 Show that Birnbaum—Cohen autocorrelation function satisfies detailed balance
(Eq. 5.85b).
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6

Experimental Techniques

This chapter presents basic experimental techniques and various apparatus for measuring
the complex index of refraction and related quantities. Generally, measurements of trans-
mittance, reflectance, and emittance are made using spectrometers or lasers. Other
important techniques, which measure directly the real refractive index, n, the absorption
coefficient, f,p,, and the scattering coefficient, .., such as interferometry, ellipsometers,
calorimetry, and scatterometers, are also introduced. Ultimately, experimental procedures
must be taught in the laboratory. Thus, devoting only one chapter to experimental tech-
nique and five to theory is not indicative of the importance of this fundamental topic.

By discussing the measurement of basic optical parameters, it is intended that the
concepts developed in the first five chapters will be reinforced. All of the theoretical
models developed in the previous chapters contain measurable parameters. Basic theory
often helps guide the design of a good experiment. Once data is available, it can be used
to check the assumptions of the theory. This interplay between experiment and theory
is an essential part of definitive work.

The chapter has two main parts; the first covers measurements of the real and imaginary
parts of the complex index of refraction and the second covers measurements of scattering.

6.1 Refractive Index and Absorption
Coefficient Measurements

As established in Chapter 2, the characterization of bulk absorption mechanisms on
optical propagation is accomplished by the complex index of refraction. Considerable
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effort was expended in Chapters 3, 4, and 5 to obtain models of the complex index.
Thus, at this point, we wish to find ways to experimentally measure the complex index
of refraction for various media.

The broad-band spectral response of a medium is commonly measured by a spec-
trometer. There are two main types of spectrometers, dispersive and interferometric.
Generally, spectrometers make broad-band transmission, emission, and reflection
measurements, and therefore indirectly measure, 7. Interferometric measurements, are
the exception. Lasers, which feature narrow-band, high-intensity, highly directional
light are often used to complement and calibrate broad-band spectrometer measure-
ments. The highest accuracy measurements of the absorption coefficient are obtainable
by laser techniques, which can directly measure the components of the complex index.

6.1.1 Transmission and Reflection Measurements

Transmission and reflection measurements are the most common methods for deter-
mining optical properties of media. The strength of this approach is that broad spectral
coverage can be easily obtained with adequate accuracy (1% to 0.1%) for low-power
transmission windows and thin films. High-power optics and optical fibers are very sen-
sitive to small absorption coefficient values, and therefore other approaches are needed.
Also, other more precise techniques are used to determine the real part of the complex
index of refraction. Such alternate approaches will be described later.

Based on Chapter 2, it is known that transmittance measurements are sensitive to
both the real and imaginary parts of the complex index of refraction. Recall the specu-
lar transmittance formula for near-normal illumination by an unpolarized source,
ignoring scattering and interference, as based on Eq. 2.96 and Fig. 2.4,

{1 = RIn(v.T), 6]} e Pt
1 — R2[n(v,T), 6;] e~ 2an(v1d(@)

tn(w,T), 6] = (6.1)

where the internal path length is

d6;) = d/ cos [sinl (ﬂ sin@,-ﬂ
n,

and d is the thickness of the medium. Furthermore, recall from Chapter 2 the definition
of the complex index and the relation between the absorption coefficient and the imag-
inary part of the complex index,

nw,T) =nWw,T) — jk,(v,T) and Pups(v,T) =4mvk,(v,T). (6.2)
At normal incidence, the magnitude of the single-surface power reflection coefficient
reduces to
(., T) — 11> [n(,T) — 11> + k2(v.T)

Rn(v,T),0; =0] = - .
[I’l(\), )v 0] |I7l(]),T)+1|2 [n(v’T)+l]2—|—k3(U,T)

(6.3)

These formulas are the basis for analysis of most transmittance and reflectance
measurements.
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For a gaseous medium, R is negligibly small and the transmittance depends only on
the absorption coefficient (which is now a function of pressure also) and path length.
Thus, in this case, a transmittance measurement is a straightforward way to obtain the
absorption coefficient of a gas without knowing the refractive index.

This is not the case for solids and liquids, and a second measurement must also be
made to completely determine the complex index, 7. This is usually the reflectance (or
some other measure of the real part of the complex index of refraction). Then, by using
the total power law, the complex index can be obtained.

This approach and a variety of other experimental techniques are discussed in the
following after a brief introduction to spectrometers is completed.

6.1.1.1 Spectrometers and Broad-Band Measurements

Today, spectrometers are of two types, dispersive and interferometric. Dispersive spec-
trometers spatially separate the frequencies of an incident light beam. Prisms (refractive
elements) and gratings (diffractive elements) are used as the dispersive elements. Prisms
were first used by Isaac Newton (1672) to study the colors in sunlight. Basically, prisms
separate the frequencies because the refractive index increases monotonically with
increasing frequency, and by modern standards, are low-resolving instruments. Later,
they were replaced by diffraction gratings, which offer higher degrees of dispersion and
therefore higher resolution. The first high-quality gratings were made by Professor
Henry Rowland of Johns Hopkins University in the 1880s. The governing equation for
diffraction gratings was developed by Joseph Fraunhofer. It is called the grating equa-
tion and is given by

mM = a(sina =+ sin 8), (6.4)

where m is an integer representing the diffracted order, A is the wavelength of the light
incident on the grating, a is the grating constant (distance between successive groves),
« is the angle of incident rays relative to the grating normal, and 8 is the angle of dif-
fraction relative to the grating normal.

The resolving power, R, of a diffraction grating is the ratio of the frequency to the min-
imum resolvable frequency difference between two closely spaced lines. It is given by

rR="" (6.5)
a

where w is the width of the grating. Substituting Eq. 6.4 for m, the resolving power
becomes

R:Wsinai:sinﬁ. ©6.6)

Figure 6.1 is a diagram of a typical grating spectrometer for use in the infrared and
visible. Other configurations are used for various applications. For example, tunable
laser resonators often incorporate gratings in the Littrow configuration (o = ). Also,
concave gratings are commonly used in single-element ultraviolet spectrometers.

Rotation of the grating generates the frequency axis of the spectrum. A typical meas-
urement sequence begins with a background or reference measurement. This provides a
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Fig. 6.1 Cernzy-Turner grating spectrometer system for visible and infrared measurements.

calibration of the system at that moment. Then the sample is inserted into the beam and
another scan is made. The ratio of these two transmission (or reflection) measurements
is the transmittance, t (or reflectance, p). Unfortunately, the background measurement
is never perfect, for a variety of reasons. The source can change temperature from the
time of the reference run to the sample run, vibrations in the building can cause slight
misalignment of the optics, and so on. It is best to keep the time between the reference
and sample runs to a minimum. However, no matter what approach is taken, t will con-
tain errors. A good way to study some of these errors is take two consecutive
backgrounds, determine their ratio, and see how close to unity the system can come.
This ratio is called a baseline. As a rule of thumb, the experimental parameters should
be chosen so that the system noise level is on the order of, or less than, the baseline
drift. Baselines can be corrected when other information is available, such as laser
measurements or calibrating to a region with no loss. Unfortunately, no compensation
can be found for noise.

One partial solution to this background problem is a dual-beam spectrometer. Two
sample compartments are used, one for sample and one for reference using the same
split source. Thus sample and reference spectra are collected simultaneously. Of course,
a background-ratioed spectrum must still be taken to calibrate the system and the useful
signal is reduced. Dual-beam grating spectrometers have the best baseline stability and
greatest absolute accuracy of any spectrometer today.

Three fundamental problems limit grating spectrometer performance:

1. The grating position must be calibrated to obtain an accurate frequency axis.

2. The slits must be made narrower for higher resolution, thus the system throughput
is greatly reduced.

3. The time between the measurement of the first frequency and last frequency can
be very large, and the sample or system may have changed. (This last item can be
overcome if a linear detector array is used to simultaneously measure the spectrum
at the output slit.)

Today, most infrared spectroscopy is conducted with Fourier transform spectro-
meters. They are based on the Michelson interferometer, which is illustrated in
Fig. 6.2.
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Fig. 6.2 The Fourier transform spectrometer.

To see how the Fourier transform spectrometer (FTS) works, consider a single-
frequency source (i.e., a laser). Let the electric field incident upon the beamsplitter be
represented by

egs(t) = ey cos(wt). 6.7)

The beam is divided into two equal beams, which travel a path length 2/ and 2(/ 4 §)
to a mirror, which returns the beams to the beamsplitter. The distance § is determined
by the moving mirror, which moves with constant velocity, v. Thus, § becomes

§ = vt. (6.8)

By superposition at the beamsplitter the field transmitted to the sample compartment
becomes

1 1
e (t) = Eeo cos(wt + 2k'l) + §e0 cos[wt + 2k’ (I + §)] (6.9)

where k' = 27 v. Using standard trigonometric identities, the above equation reduces to
e, (t) = egcos(k'8) cos(wt + 2k'1 + k') . (6.10)

This is the form of an amplitude-modulated high-frequency carrier. Optical detectors
cannot respond to the carrier frequency, thus the intensity, /., as seen by a detector is
determined by a modulation envelope,

Lo o |ese|?> = |eg|? cos®(k'8) = Ios. cos>(k'S). (6.11)
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Again using standard trigonometric identities, the above formula becomes
1
I, = EIOSC [1 + cos(2k’vt)] (6.12)

where Eq. 6.8 was used to represent §. The moving mirror modulates the single-
frequency source, and an oscillating output intensity results. An observer who knows
the location of the moving mirror as a function of time can determine the frequency
spectrum of the source, based on the modulated beam spectral content by the above for-
mula. This basically explains how a Michelson interferometer can be used to obtain a
spectrum for a narrow-band source.

In the case of a broad-band spectrum, consider an incremental portion of that spec-
trum, then Eq. 6.12 can be applied in the following way:

1
L (K,8)dk = Elo_yc(k’) [1 + cos(2k’8)] dk'. (6.13)
The total intensity at the detector as a function of time or the mirror displacement, &, is
obtained by integration of the above equation over the wave vector,

ige(t) = ise(8) = % / Lose (k") [1 4 cos (2k'8)] dK'. (6.14)
0

This is a sum of two integrals, as given by

o0 o0
1 1
i5c(8) = 3 flosc(k’) dk’ + > /losc(k/) cos(2k'8) dk'. (6.15)
0 0

Iosc (k) is the spectral intensity that we wish to determine, based on the measurement
of i,.(t). The first term in the above expression for i;.(6) is one-half the area under the
spectral intensity, or the total intensity of the light in the sample compartment. It can
also be expressed as

o0

isc(o) = fIOSC(k/) dk'. (6.16)
0
Therefore, the time-domain signal, or interferogram, as it is commonly called, is

o0

isc(8) — %iSC(O) = % /Iosc(k’) cos(2k'8) dk’. (6.17)
0

This is an inverse Fourier transform relationship between the spectral intensity and the
time-domain interferogram. Thus the spectral intensity can be obtained directly by the
following:

oo

Tose (k) = % / |:isc(8) - %iSC(O)] cos(2k'8) ds. (6.18)

0
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This relationship between the measured signal and the spectral intensity gives this spec-
trometer its name. The FTS offers a number of advantages over dispersive spectrometers.

1. Higher throughput is realized because slits are not used. However, high resolution
requires a highly collimated beam and thus a spatial filter (i.e., iris), which also
limits the throughput of the FTS, but not as much as the slits on a grating spec-
trometer. Thus higher resolution is possible with the FTS. Also, spectra can be
obtained more quickly and thus more accurately (less system drift). However, the
FTS is a single-beam instrument.

2. Usually, a stabilized He-Ne laser is used to calibrate the location of the moving
mirror. This can be done very precisely, and accurate line positions are obtained
with great ease as a result.

3. An entire spectrum is measured in one scan, which can be done fairly quickly. By
co-adding scans, the noise can be reduced by /m (m is the number of scans).

For these reasons, the FTS is the main tool today in infrared spectroscopy. At visible
wavelengths, the stability of the moving mirror becomes an issue, and most commercial
spectrometers stop there. For UV and VUYV, the grating spectrometer is used, exclusively.

The resolution of an FTS is determined by the distance traveled by the moving
mirror. That is, the frequency difference between two cosine waves is found by exam-
ining the cosine waves over an adequately long distance. The result is

1
B 28’710.)( '

Av (6.19)

where 8,4, is the maximum distance traveled by the moving mirror.

No matter what type of spectrometer is used, it is desirable that the resolution be ade-
quate to measure spectra with no distortion to the spectral shape. This is not always the
case, and the system instrument function must then be considered. In the frequency
domain, the measured spectrum is the convolution of the ideal spectrum with the system
instrument function. This is stated mathematically as

Imeasured(v) = Iideal(v) * Finstr(v) (620)

The instrument function for a grating spectrometer is the diffraction pattern of the slits.
The instrument function for an FTS is determined by the chosen time-domain window
function. To avoid ringing in the spectrum, the interferogram must go to zero smoothly
at the end of the scan. A window function accomplishes this task. The distortion of an
unresolved spectrum can be significant. This point is illustrated in Fig. 6.3, for Doppler
lines with half-widths of 0.007 cm™! measured with a resolution of 0.032 cm™!.

6.1.1.2 Spectrometer Accessories

Many accessories exist for handing special samples or extending the capability of the
sample compartment. We will consider transmissometers (single pass, multipath [i.e.,
White cells], and differential), reflectometers, photoacoustic cells, and total internal
reflection or circle cells.

Transmissometers A transmissometer measures the transmittance, 7, by ratioing a
transmission measurement with the sample present against a transmission measurement
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Fig. 6.3 An ideal (unconvolved) spectrum of Doppler-broadened lines with half-widths of 0.007
cm™! (dot) and corresponding convolved FTS spectrum (solid) using a Hamming window with a
resolution of 0.032 cm™!.

with no sample present. A cell is used for gases or liquids and, of course, a solid needs
no container. A single-pass transmissometer propagates a beam once though a sample,
as illustrated in Fig. 6.4. A background run is performed with no sample present for the
case of solids and with an empty cell in the case of gases and liquids or a nonabsorbing
medium that matches the refractive index of the sample (this is important if the probe
beam is focused within the sample).

In the case of gases, R is very close to zero, which simplifies Eq. 6.1. But gas absorp-
tion can be weak, often requiring long path lengths for accurate measurements.
Multipath cells, such as a White cell, are commonly used to obtain a long optical path
within an enclosure of reasonable size. The absorption cell assures reasonable unifor-
mity of the sample pressure and temperature. The White cell is composed of three
matched spherical mirrors, a field mirror, and two focusing mirrors, separated by the
radius of curvature, as shown in Fig. 6.5.

Reference
detector
Ii I&
—10
I—
I Transmitted signal
r detector
Reflected signal
detector

Sample

Fig. 6.4 A single-beam transmission/reflection measurement with a monochromatic source.
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Fig. 6.5 White-type optics for long-path transmission set for four traversals. By tilting the focus-
ing mirrors, the number of traversals can be varied beginning at 4 to some upper number, which
can be a few hundred, depending on the size of the field mirror.

EXPERIMENTAL CONSIDERATIONS FOR WHITE-TYPE ABSORPTION CELLS White-type absorp-
tion cells represent an important option for experimental apparatus presently used for
the measurement of weak gas-phase absorption coefficients. Also, photoacoustic cells,
another sensitive experimental tool based on the photoacoustic effect (see below),
require calibration, which is usually accomplished by White cell measurements. White
cells have a high surface-to-volume ratio, which makes them less sensitive to out-
gassing of adsorbed contaminates on the cell walls. Because of their significance, a
detailed discussion of the nature of White cell experiments follows.

White cells measure the transmittance through a lossy medium. The transmittance is
the ratio of the transmitted flux, ®,(n), attenuated by a lossy medium of path length
nLg, to the transmitted background flux, ®g(n), where the White cell contains a loss-
less medium. It is often wise to match the pressure of the cell in the sample and
background runs to avoid cell motion effects. Furthermore, a reference detector (as
shown in Fig. 6.3) is commonly used to monitor and correct for instability of the input
flux. Thus, the measured transmittance is

= D (n)/ Or, ’ 6.21)
@5 (n)/ Prp
where
T transmittance,
(O reference detector signal level during sample measurement,
DOrp reference detector signal level during background measurement,
Ly base path length of cell, and
n number of traversals.

Dg; and dgp scale with &, (n) and dg(n), respectively to account for different power
levels of the source at the different times of the respective measurements. The trans-
mitted sample flux, ®,(n), can be further expressed as

®,(n) = Do o (xX,y, pro) K, (t)e P, (6.22)

where
p(xX,y,Prmo0) mirror reflectance as a function of location (x,y) on the mirror
and of surface water vapor partial pressure,
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Dy, flux level at input to White cell during sample measurement,

K1) time-dependent intensity fluctuations caused by windows,
amplifiers, detectors, mirror drift, and so on, and

r number of reflections inside cell * = n—1).

To eliminate the time-dependent fluctuations, a time average over a number of meas-
urements is taken. Two experimental techniques have been used to accomplish this
averaging process.

Since the mirror reflectivity is a function of the position on the mirror surface and
cell vibrations can cause mirror drift, which misaligns the cell and changes the position
of the spots on the field mirror, intensity variations in the output beam can result. One
approach employs path-differencing averages over the mirror surface by changing the
path length while keeping the sample fixed and averaging over window, detector, and
other noise by taking many measurements at each path length. Another approach main-
tains the cell alignment throughout an experiment by using optical lasers to account for
the drift of the cell mirrors. By greatly reducing the mirror drift problem, no average
over the mirror surface is required.

The time-averaged sample flux is expressed as

(@/(n)); = Posp” (x,y. pr,o) (K (1)),e7 Pt (6.23)
The background flux signal is similarly written (8,,5s = 0):
(D)) = Popp" (x,y. pmo = 0)(Kp());. (6.24)

Using Eq. 6.21, the time-averaged transmittance becomes

0y, = A2 P
T (@p(n)), D

Substituting Eqs. 6.23 and 6.24 into the above equation, we have

o, = Ry mmo) KO g,

= , 6.25
R"(x,y,pmo = 0) (Kp(1)), (023

where the ratio

Po Drp
%B CDRt

=1

Sufficient time averaging requires that
(Ki (1)) = (Kp(1)):-
Therefore, the desired measurement of transmittance is

<r)[ — 'Or (x’y’pHZO) e_ﬁab:”LO'

- (6.26)
pr(xvyvabO = O)
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To obtain the true absorption coefficient, B,p,, the mirror reflectivity must be the
same in vacuum (or dry gaseous mixture) as it is with water vapor present at any pres-
sure. This point has proven to be a major obstacle in obtaining the true absorption
coefficient in humid samples. Water vapor is adsorbed by the mirrors, forming a very
thin film (~1 wm). The thickness of the film will depend on mirror temperature and
partial pressure of water vapor in the cell. The effect on mirror reflectivity by water vapor
will also be frequency dependent (i.e., p decreases as v increases). Interference effects
become more important as the wavelength approaches the film thickness. Absorption
and refractive index effects exhibit an irregular frequency dependence, since they are
related to resonance phenomena. Burch et al. (Ref. 6.8) reported that water vapor
adsorption did not cause major difficulties at room temperature with 10 Torr water
vapor and 36 reflections. However, Burch has reported that the 4 im region has major
water vapor adsorption problems.

In the case for solid and liquid transmittance measurements the single surface
reflectance must be considered. A general solution for the extinction coefficient, B,
based on Eq. 6.1, in terms of the transmittance and the single-surface power reflection
coefficient R, is

In (2R?7) — In [\/(1 "R+ 4R —(1— R)Z]

Peur = d/cos6

(6.27)

When R is constant over a spectral region, a different analysis procedure can be
used. Assuming R? is small and exp (—B.x:d) is close to one, then the transmittance can
be expanded to be

1—R pod R2(1 _ e—Zﬂmd) e Pextd N 6.28)
e ext — e, .
1+R (1+ R)?

T =

Because R is basically a constant in frequency over the experimental range, this for-
mula can be used to directly reduce the transmittance to the extinction coefficient. The
last term shown in the expansion is small, typically less than 1% unless the absorption
is strong.

Differential Transmissometers In many cases, unwanted loss by the windows on a
gas absorption cell or on the surface of a solid cannot be removed with a vacuum or
sampleless background measurement. For example, water vapor, or oil from machines,
can condense on windows, causing an erroneous signal not compensated in an empty
cell background. In the case of liquids, the reflection between a cell and the sample is
not the same for an empty cell. Also, a transmission measurement of a solid includes
reflectance and surface absorption, which must be removed to obtain bulk extinctance.

A popular technique to solve these issues is called differential transmittance. It
involves two samples of different path lengths, L; and L,. To see how it works, con-
sider the near-normal transmittance of two samples,

_ (1 = R)2e Peuln

~ — _ﬂﬂ,\'ll‘l
[~ R, ~ U= R)e
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and

I_R 26*/34’,”142
T, = U-Rye 2 (1—R)%e Perel2,
1— R2e—2Beul
Assuming L; > L, and R? < 1, then the following approximation can be made on the
ratio of the two transmittances:

Tl e_ﬁenLl

— — aBexu(L1—Ly)
e 1= Lo, (6.29)

Therefore, the bulk extinction coefficient becomes

B oo (6.30)
= —Iny{ — ). .
ext Li—L, o

We have assumed the surfaces or boundaries of the two samples are matched so that
surface effects will cancel. In practice, surface roughness or degree of polish and surface
contaminants can vary between samples. This will represent an error, usually small, to
any experiment.

In any measure of transmittance, 7, the accuracy is at best £0.001. The problem is
in accounting for changes in the optical path of the spectrometer from a thick sample to
a thin sample if the sample is tilted or the beam is focused within the sample.

Transmissometer Technique for Unixial Materials The characterization of the com-
plex index for uniaxial crystals is more complicated, because two complex indices are
required and crystallographic orientation must be considered. However, based on Eqgs.
4.81 and 4.82, a simple procedure can be formulated. First, near-normal transmittance
and reflectance measurements on a sample with the c-axis normal to the surface are
made to obtain the ordinary ray complex index of refraction. In fact, this information is
usually available for most uniaxial materials. Next, transmittance and reflectance meas-
urements using unpolarized light on a sample with the a- or b-axis normal to the surface
is collected. Knowing the o-ray transmittance and applying Eq. 4.81, the e-ray trans-
mittance is obtained. Then Eq. 4.82 is used to obtain the e-ray absorption coefficient,
knowing the e-ray single-surface power reflection coefficient.

TRANSMITTANCE MEASUREMENT LIMITATIONS ~ After the transmittance has been recorded,
it is a straightforward matter to calculate the absorption coefficient using Eq. 6.1 and
the previous techniques. However, it is instructive to examine the influence that a small
uncertainty in internal transmittance has on the calculated value of 8., (v). This can be
done by looking at the differential of 8,,,(v) for constant path, L,

dBexi (V) = —% In <1 + dr—t) . (6.31)

Expanding the natural logarithm for dt/r small, we have



EXPERIMENTAL TECHNIQUES 237

1|{de 1 [/dr\?
dﬂexl(v)z_z T_E ? +-- . (6.32)

If only terms of order dt are retained, the result can be expressed as a normalized
extinction coefficient error,

dﬂext (V) _

(hn)*ld—r +0((d7)?) (6.33)
ﬂexl(‘}) N T ' '

This expression gives the relative change in the extinction coefficient for a small change
in the transmittance, that is, it predicts the error that can be expected when the uncer-
tainty in the value of 7 is known. Figure 6.6 shows a plot of the percent error in B, (V)
for a given percent change in internal transmittance versus the extinction coefficient
path length product. From these results, it is clear that reasonable accuracy in the
extinction coefficient (1%) can only be achieved if there is substantial absorption.

A reasonable objective in designing a good transmittance experiment would be to
require that the uncertainty in absorption coefficient equal the uncertainty in the trans-
mittance measurement; looking at Eq. 6.33, this implies that In(r) = —1 or T = 0.368.
This simply says that the optimum path length should be chosen such that

L =1.0/Bex:(v), (6.34)

where the value of B,,,(v) is typical of a particular spectral range of interest.

Reflectometers Measurements of reflectance are usually made on a solid material in
regions of very high absorption (n = k,), where transmittance measurements are almost

100

10
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] 1
0 10.01 0.1 1 10

Extinction coef. optical path product

Fig. 6.6 Normalized percentage error in extinction coefficient (solid), the transmittance (dot)
and the normalized percent error in the transmittance (At /7, for At = 0.005, dashed) plotted
versus the extinction coefficient path length product.
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impossible, because extremely thin (i.e., microns) samples are required. Other experi-
mental techniques for determining the refractive index, n, are far superior in the regions
of transparency (i.e., ellipsometry, interferometry, and refractometry).

The magnitude of the single-surface reflectance, R, for normal incidence is given by
Eq. 6.3. Note that the real and imaginary parts of 7 influence the reflectance. Thus a
complete description of a material’s optical properties can be obtained in the regions of
fundamental lattice vibrations and electronic transitions.

To obtain an absolute measure of the reflectance requires knowledge of the incident
flux. This is often obtained by using a ~100% reflecting mirror in place of the sample. (In
the ultraviolet it is best to change the geometry of the experiment and directly measure
the incident flux.) Thus, based on the definition of reflectance presented in Chapter 2, we
have

_ . (sample)
"~ @, (mirror) '

An example of a specular reflectometer attachment for spectrometer sample compart-
ments is illustrated in Fig. 6.7. Some offer angle variation measurements from 5° from
normal to 80° from normal. Experimental data on a polycrystalline solid is illustrated
in Fig. 6.8. (Diffuse reflectometers will be covered in Section 6.2.1.)

Experimental reflectance spectra can be analyzed in terms of the classical oscillator
model in a straightforward manner. In general, a measurement of |R| is not sufficient to
determine €, (w) because phase information is missing. Recall that the classical oscilla-
tor model satisfies the Kramers—Kronig relationship and therefore provides the correct
relationship between €/ (w) and € (w). Thus, it also allows for the construction of a
physically meaningful representation of €, (), using only the magnitude of R as input.

M4
or Sample

Mirror Tilt Scr%

Fig. 6.7 Reflectometer attachment, adjustable for a range of incidence angles, for a broad-band
spectrometer.
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This point has been extremely useful in optical material modeling efforts. In a crystal
with two or more atoms per unit cell, €, (w) may be phenomenologically represented by
the classical oscillator model, as developed in Chapter 4,

2 .
V70i A€i

Er(V) zéoo+z B)

— V24 ol
7 Vio; — Ve + vl

where the vrp; represent the long-wavelength transverse optic mode frequencies. In
polar crystals the corresponding frequencies of the optically active longitudinal optic
modes, vip;, are not equal to the vrp;s.

Equation 2.97 can be combined with the above equations for €,(v) and R(v) to give
formal expressions for the frequency dependence of either, €,(v), or R(v). Such
expressions can then be used in conjunction with experimental observations to infer the
three parameters for each mode. This is not a trivial problem, since the number of inde-
pendent parameters can be quite large for a multimode material. In fact, this approach
will not work in the electronic region because the mode density is to great and individ-
ual modes are indistinguishable. The classical oscillator representation is commonly
used to represent the complex permittivity of vibrational modes. The v;ps can then be
determined by using the analytic relations developed by Chang et al. (Ref. 10).

It is of considerable interest to be able to directly obtain the v;os and vrgs without
having to determine simultaneously all the classical oscillator parameters. A number of
suggestions have been made as to how to do this. Chang et al. (Ref. 10 ) have suggested
that in the case of crystals with multimode damped oscillators, the vros may be identi-
fied with the maxima in |€(v)|, and while the v;ps with the minima in |¢,(v)|. Barker
(Ref. 11) has suggested identification of the vyps with maxima in €/, and the v.ps with
maxima in Im[-1/¢,]. Unfortunately, these are not easily measurable quantities. The
following develops a technique in derivative reflectance spectroscopy.

Consider the reflectance spectrum in the wavelength domain, A. The A7ps and A;ps
correspond to those points where dR /dA is an extremum, that is, where d°R /dA* = 0.
In particular, the Arps correspond to points where d’R/d)\> =0 and dR/d)\ < 0,
whereas the A7 s correspond to points where d’R/dA* = 0 but dR/d) > 0. A simple
heuristic argument shows that this method will work to the same extent that Chang’s
method is valid (Ref. 13).

To illustrate the utility of the proposed method, consider the particular case of Al,O.
Barker (Ref. 11) has made a detailed best fit of reflectivity data to theory, and in this
way determined the set of parameters reproduced in Table 6.1. Also shown are the cor-
responding longitudinal-mode frequencies given by Barker (although he does not say

Table 6.1 Parameters for Classical Oscillator Model of Al,O, as Given by Barker (Ref. 6.12)

Mode # Viro [cm‘l] )\,ﬂ‘() [/Lm] Aéj Fj/VjTO ViLo [cm‘l]
1 385+ 1% 26.0 0.30£15% 0.015+25% 388+ 1%
2 442 +1% 22.6 2.7+4% 0.010+15% 480+ 1%
3 569 £ 1% 17.6 3.0 15% 0.020+ 15% 625+ 1%
4 635+ 1% 16.7 0.30 £20% 0.020 £20% 900 £ 1%

€5 = 3.2
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Fig. 6.8 Plot of (a) |¢,|, and (b) dR/d versus wavelength for room-temperature sapphire (o-ray).
The dashed lines locate the v;ps. The dotted lines locate the vrps.

how they were determined). Using these parameters as inputs we numerically com-
puted, |e,(A)|, and dR/d* (A[um] = 10* (v [cm™'])~") and these results are plotted
in Fig. 6.8. The results of the longitudinal and transverse mode wave numbers deter-
mined by the present method are given in Table 6.2 and compared with the input values
given by Barker. The agreement is remarkably good.

The great utility of the present scheme to locate both the v, os and vrps is that it is
based on use of the reflectance alone. Such measurements are relatively easy to make.
An example derivative spectrum is shown in Fig. 6.9a, with the corresponding experi-
mental reflectance spectrum and model representation for polycrystalline Y,05 shown
in part (b). Good starting values for the oscillator positions are obtained. The final

Table 6.2 Comparison of Modeled Optical Mode Frequencies Against the Results of Derivative
Reflectivity Technique

vro [em™] Vio [em™]
Model Input Present Method Barker (Ref. 6.21) Result Present Method
385 382 388 387
442 441 480 483
569 567 625 628

635 635 900 905
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Fig. 6.9 (a) Experimental derivative reflection spectrum of Y,0,. (b) Corresponding reflection
spectrum experimental and model fit.
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values are changed in order to obtain the best fit. In this case, some of the modes over-
lap and distort the measurement of the true oscillator frequency.

Starting values for the other oscillator parameters can be obtained from the reflectance
spectrum and the corresponding derivative spectrum. The Lyddane—Sachs—Teller relation
(Eq. 4.46) can be used to estimate the oscillator strengths. Also, the level of reflectance
between the TO and LO is indicative of the oscillator dampening factor (see Problem 6.6).

The ultimate goal of optical propagation experiments is to determine the complex index
of refraction. However, measurements of 7 and p are indirect measurements of 7z, and this
limits our ability to accurately determine 7. This is especially true for measurements of
weak absorption. Other such experimental approaches are discussed in the following.

Photoacoustic Cells When light is absorbed, energy is deposited in the medium in the
form of heat. A pressure or acoustic signal is generated, which is directly proportional
to the absorption coefficient. Thus, a direct measure of the absorption coefficient is
made, as opposed to transmittance measurements. This is important when the absorp-
tion is weak and transmittance measurements are inaccurate. This is also useful when
scatter is present as well as absorption. Photoacoustic cells are made that can be placed
inside the sample compartment of a spectrometer. The incident signal must be modu-
lated, since the acoustic signal is transient. This is ideal for a Fourier transform
spectrometer, which always has a modulated light signal. In this way the interferogram
is directly measured by a sensitive microphone.

Photoacoustic measurements require calibration. This is typically accomplished by
using a sample with a known absorption coefficient.

Photoacoustic signals can be obtained from strongly absorbing (opaque) solids (or
liquids) in a gas cell. The solid samples can be powders or unpolished bulk samples. For
these particular applications, photoacoustic cells offer unique capabilities.

However, because the broad-band light source is weak in intensity, the measurable
signal is also weak, unless the absorption is strong, and this approach generally offers only
a minor improvement over transmittance measurements. A laser source greatly enhances
the sensitivity this approach, and this is discussed in a later section.

Circle Cells When the absorption coefficient is very large, transmittance measure-
ments are almost impossible because the sample must be so thin. For small-volume
liquids in particular, the sample can partially evaporate away before the end of a meas-
urement. A circle cell can be used to solve this problem; it has path lengths on the order
of several microns for a sample with adequate volume.

The circle cell has a rod in the center of the cell, which guides the light probing the liquid
sample. The light rays are guided to reflect at critical angles so that total internal reflection
occurs. However, at the points of reflection in the crystal, an evanescent field exists in the
liquid. Thus the probe light rays are attenuated only by the evanescent field, which provides
a very short path length within the liquid of several microns. A diagram of a circle cell is
illustrated in Fig. 6.10. The name “circle cell” comes from Cylindrical Internal Reflection.

6.1.1.3 Laser Measurements

Spectrometers with broad-band sources provide spectral information on the optical
properties of a medium. However, the weak power of the source per frequency interval
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Toroid

Fig. 6.10 Diagram of circle cell optics. Circle Optics

limits the signal-to-noise ratio and the accuracy of a measurement. Also, the limited res-
olution of spectrometers may not be adequate to obtain accurate transmittances. This is
especially true for the rapidly varying spectra of gaseous media. The laser offers
extremely high resolution with high flux. However, the spectrometer measurement is
always needed to see the full spectral structure of a medium. The laser transmittance
(reflectance) measurement can calibrate that spectrum at specific frequencies and give
insight on the effects of the limited resolution and signal-to-noise ratio of the spec-
trometer. Furthermore, the laser is, in many cases, polarized in a particular direction.
This property is very useful in anisotropic media, as well. Thus, narrow-band, high-
power laser measurements of transmission and reflection complement broad-band
coverage with low spectral power spectrometer measurements. Ideally, tunable lasers
(the spectroscopist’s dream) are used for such measurements.

The high spectral power a laser provides allows dual-beam experiments to be easily
realized. A beamsplitter is used to direct a small part of the beam to a reference detec-
tor and most of the intensity to the sample. The path lengths must be matched to
properly account for beam motion. The detectors, if two separate detectors are used,
also should be matched as close as possible.

6.1.2 Laser Techniques

One of the main motivations for using lasers to study optical properties is because of
requirements of laser optics. The much higher power levels require lower absorption
and scattering coefficients in window materials. Thus, more sensitive techniques are
needed than spectrometer measurements can provide. Using a laser as a source instead
of a blackbody or lamp is an improvement, but other experimental techniques are
needed to truly improve sensitivity to small extinction effects.

Because of the high spatial and temporal coherence with high power of the laser, exper-
imental techniques that directly measure the real and imaginary part of the complex index
of refraction are possible. Laser measurements of the absorption coefficient are accom-
plished by calorimetry and photoacoustics. These techniques offer the highest available
accuracy for measurements of the absorption coefficient, as indicated in Table 6.3.
Measurement of the index of refraction is accomplished by laser interferometry.

6.1.2.1 Laser Photoacoustics

This is similar to photoacoustics with a broad-band source and a spectrometer, only
now a laser source is used. Because the measured signal is proportional to the power
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Table 6.3 Sensitivity for Determining the Absorption Coefficient by
Various Experimental Methods Using Spectrometers and Lasers

Method Sensitivity [cm™]
Differential spectrophotometry 5x1073-2x1073
Emittance spectroscopy 1x1073 - 1x1075
Laser calorimetry 1X10™* - 5x107°
Laser photoacoustics 1x1076 - 1x10710

absorbed in the medium, a high-power laser can produce a strong signal in weakly
absorbing media even over a short path. Thus significant improvement over broad-band
source spectrometers is obtained. The most sensitive measurements of the absorption
coefficient are made with this approach, and it is commonly applied to weakly absorb-
ing gases.

A chopped laser source is used, which produces a transient pressure signal, as shown
in Fig. 6.11, in a closed cell called a spectraphone. The strength of the signal rises expo-
nentially when the laser is on, and decays when the laser is off. A sensitive pressure
transducer or microphone is used to detect the signal. For a cylindrical cell of radius r,
and a Gaussian TEM,, laser beam, the measured pressure signal P is proportional to

lgabs q)laser TRGC‘g,-:l2

P, «
167 CyrZm

(6.35)

where @, is the incident laser flux, T is the period of the chopped laser beam, Rgc
is the gas constant, &; is the first root of a zero-order Bessel function, Cy is the specific
heat at constant volume, and m is the gram molecular weight of the gas. The above for-
mula is valid for 7/(4t) « 1, where 7 is the relaxation time of the pressure signal
response. From this equation the absorption coefficient can be obtained.

Limitations of this approach include window and wall noise. Window noise is
caused by low-level absorption by the window to the cell. High-quality windows are
required, but no material is free of bulk absorption and surface contamination absorp-
tion, is always a problem. Wall noise is caused by laser light interacting with the walls
of the cell. To keep this to a minimum a tightly focused well-aligned beam is desired.
The cell temperature must also kept as stable as possible. Also, because of the large sur-
face-to-volume ratio of the cell chamber, strongly absorbing impurities from wall
outgassing can be a major problem.

Vi Input Ve Output

Vo |_ Vi
| |

T 2T' t T 2T' t

Fig. 6.11 Waveforms for the incident chopped laser and corresponding pressure signal response
in a spectraphone.
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6.1.2.2 Laser Calorimetry

This approach is similar to photoacoustics, except that a sensitive thermometer is used
to measure the temperature change of a weakly absorbing sample illuminated by a laser
rather than a pressure sensor measuring an acoustic signal. Laser calorimetry is com-
monly applied to solids intended for high-power laser windows. The thermometer is a
thermocouple in contact with the edge of the sample. The center of the sample is illu-
minated by a TEM,,, laser beam. Typically the sample is in vacuum. The absorption
coefficient is obtained from measuring the rate of change of the sample temperature
with the laser on and off, as given by the following equation (Ref. 6.15):

13 (Tl) Cp 2n <dT”'Sg ) + ‘ deecav
abs ~m—- ]
T

LP, n?+1 dr dt

j| , (6.36)
T

where m is the sample mass, C, is the specific heat at constant pressure, L is the sample
thickness, P; is the transmitted power, and n is the index of refraction at the laser fre-
quency. The assumption made to obtain this equation is B,5s L « 1. The measured signal
voltage is similar to that obtained in laser photoacoustic measurements (see Fig. 6.11).

Laser calorimetry measurements are sensitive to both surface and bulk absorption.
In fact, surface absorption, due, for example, to residuals from polishing, can dominate
low-level loss of a window. This technique has proven useful in studies of surface
preparation. This is done by making measurements on identically prepared samples of
different thicknesses.

Window materials with scattering introduce errors to calorimetry measurements.
First, the thermocouple can be directly illuminated by laser radiation and produce heat-
ing not caused by sample absorption. Second, the optical path in the sample has been
altered (increased) by an unknown amount and the absorption coefficient cannot be
accurately determined. This is especially true in high-index materials where a relatively
small critical angle exists and a significant amount of scattered light is reflected back
into the material.

6.1.2.3 Laser Interferometry

Laser interferometry is used to measure the real part of the index of refraction. A typi-
cal setup, using a Michelson interferometer similar to the one discussed in Section
6.1.1.1, is shown in Fig. 6.12. In this case, a gas cell is placed in one of the arms of the
interferometer. Absolute measurements of the refractive index can be obtained on gases
by beginning the experiment at vacuum. As gas is injected into the cell, the optical path,
nL, of the arm changes and fringes can be counted on the detector. Very sensitive detec-
tion schemes are used that are capable of measuring changes much less than the
wavelength of light being used. Since L is constant throughout the experiment, the
index of refraction is directly measured as a function of gas pressure. A measurement
with the cell in vacuum is needed to calibrated the experiment. Sensitivity down to
£0.0000005 in the index of refraction can be easily obtained.

This procedure can also be used to obtain the thermo-optic coefficient (dn/dT) of a
solid. In this case, the gas cell is replaced with a temperature-controlled cell capable of
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Fig. 6.12 A Michelson interferometer for measurements of the refractive index.

holding a window sample. As the index of refraction of the window changes, the opti-
cal path changes, and this causes the fringe to change on the detector. The expansion
coefficient of the material must also be known, since this is part of the temperature-
dependent optical path (dnL/dT = (dn/dT)L + n(dL/dT)). Absolute measurements of
the index cannot be made because the sample cannot be introduced slowly enough to
keep track of the fringe count.

6.1.3 Ellipsometry

Ellipsometers are part of a more general subclass of polarization sensitive reflectome-
ters called reflection polarimeters. The experiment consists of a collimated polarized
monochromatic source illuminating a material, and the detection of the state of polar-
ization of the reflected light. A typical configuration is shown in Fig. 6.13. Ellipsometer
measurements are typically made on thin films covering a substrate (determining the

Monochromatic
light source

Detector

Polarizer

Analyzer

Compensator
(Quarter wave plate)

Thin film
Fig. 6.13 Experimental layout of
Sample an ellipsometer.
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thickness and n of the film) or on a bulk sample (determining n and k,). Measurements
are made with monochromatic sources, such as lasers, or filtered broad-band sources.
The fundamental equation of ellipsometry can be obtained in a straightforward
manner. Consider the ratio of the field reflection coefficients for p- and s-polarizations
(e.g., as given by Eqgs. 4.68 and 4.70) incident upon a bulk sample. The field reflection
coefficients are complex in general. Thus, the ratio is also complex, and is given by

'y —tanye . (6.37)

)

An ellipsometer measures the parameters ¢ and A. The procedure of the measurement
involves rotating the polarizer and analyzer until the reflected intensity from the sample
is zero. The polarizer is in the incident beam and the analyzer is in the reflected beam,
as indicated in Fig. 6.13.

The details of the data analysis are to involved to discuss here, and it is intended that
the references at the end of the chapter be consulted.

6.1.4 Refractometry

Refractometers require that the sample to be measured be in the shape of a prism with
apex angle, «. The deviation angle, D, as defined in Fig. 6.14, is measured as a func-
tion of the incidence angle, 6, under the condition that it is a minimum. For this reason
this approach is called the minimum deviation technique. Based on the knowledge of
these two angles, the index of refraction of the sample can be determined. This is a pop-
ular technique, used for many common optical materials. The index of refraction is only
determined in regions of transparency.

The relationship between the deviation angle and the incidence angle, and the index
of refraction can be obtain in a straightforward manner. Based on Snell’s law (Eq. 4.72)
and geometric principles, the following relationships are obtained:

sinf; = n sin6,,

sinf; = n sinbs,
6, + 63 = «, and
0y +60s=a-+ D.

(6.38)

Source

Fig. 6.14 Geometry of a refractometer Detector

experiment.
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Solving for the minimum deviation angle for variation in 6; requires that

dD
R
do;

Based on the last equation in 6.38, the above requirement can be rewritten in terms of
6, and 6,:

a4 _ (6.39)
do, ’

With a little algebra, the following result is obtained:

cos 6, COS Oy

= . (6.40)
cos b, cos 63

The equation is satisfied when 6; = 6,4 and 6, = 65. This means the deviation angle is
a minimum when the optical arrangement is symmetric. Using this result and Snell’s
law, the following relationship for the index of refraction is obtained:

_ sinf; _ sin (3(D + )
T osinG, sin (%a) '

(6.41)

When the experiment is repeated for different frequencies, the dispersion of a material
can also be determined. Highly accurate (+0.00001) measurements of the refractive
index have been made with this technique.

6.1.5 Broad-Band Interferometry

Samples that are flat and parallel exhibit interference in the transmitted beam (recall
Eq. 2.100). For a lossless spectral region in a medium (K = 1 and R is real), Eq. 2.100
becomes the common Airy formula

[1— RW)P
1 —2R(v)cos[4mvn(v)L cos6,] + R(v)?

T(v) = (6.42)

The transmittance for near-normal incidence is illustrated in Fig. 6.15 for a diamond
etalon. A cyclic modulation pattern is generated with the spectral distance between

adjacent peaks termed the free spectral range, FSR(v,T). Based on Eq. 6.42, the trans-
mission peaks are located at

4rvn(v)L =2mm, (6.43)

where m is the order or mode number. For regions of zero dispersion the free spectral
range becomes

1

(6.44a)

One-hundred percent transmittance is usually not achieved because the sample is not
perfectly flat and some spectral averaging is occurring. In Fig. 6.15, the solid curve is
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Fig. 6.15 Transmittance of a CVD diamond etalon 512 pm thick at room temperature.

a fit to measured data. It is a linear combination of Eqgs. 6.42 and 2.96. Broad-band
transmittance measurements with high-resolution spectrometers offer a convenient
means of accurately measuring the index of refraction as a function of frequency and
temperature. Unfortunately, unless a very large signal-to-noise ratio is achieved, signif-
icant modulation must be observed, and samples with large refractive index (n > 2)
work best.

Nonetheless, a measurement of FSR(v) and the sample thickness allows the index of
refraction to be determined. As the index of refraction changes with frequency, so does
the FSR, and spectral dispersion can be obtained as well. A general solution of Eq. 6.43
including dispersion, leads to the following differential equation:

dn(v) 1
v

This is a first-order differential equation with the following general solution for the
index of refraction:

Vo

] &
n(v) = " von (vo) — / WVR(V’) for v <y, (6.452)
and
) = [von( )+/v dv’ f (6.45b)
V) = — V Vi S — orv >y .
" y | oo 2L FSR(V') 0

Vo



250 OPTICAL PROPAGATION IN LINEAR MEDIA

where vy is the spectral point of minimum dispersion, thus Eq. 6.44a can be applied and
the index of refraction can be determined. The integral between transmission peaks is
1/(2L), because the FSR between peaks is a constant. Thus, the determination of the
index of refraction is reduced to a simple counting of peaks according to

1
n(y) = — (von(vo) - ﬁ) for v <y, (6.46a)
VU 2L
and
1 m
n(vy,) = — (von(vo) + —) for v>vy, (6.46b)
Vm 2L
where m = 0,1,2,..., and v, locates the transmission peaks. This technique is attrac-

tive because it does not require highly accurate peak locations, which is difficult to
obtain in a low-finesse spectrum. For high accuracy in the index of refraction, precise
knowledge of the sample thickness must be available. This often requires thick samples,
which in turn requires higher spectral resolution from the spectrometer.

Temperature measurements of the index of refraction can also be accomplished with
this approach. The temperature change in FSR of a window of thickness L, together
with the thermal expansion coefficient (., see Chapter 8), can be used to determine
the change in refractive index with temperature:

dFSR(T) d 1 1 dn 1dL
e (V= _FSR-[- ===
dT dT \2n(T)L(T) ndT | LdT
(6.47)
FSR Ldn +
= - N Uey | -
ndT

ALTERNATIVE APPROACHES At a fixed temperature, the measured free spectral range can
be fit (e.g., least squares) to a polynomial in v. Assuming a polynomial form for n(v)
as well, the coefficients can obtained from knowledge of FSR. The procedure is outlined
in mathematical form below:

1 1
2n(v)L ~ 2(ng+ Bjv + Bav2 +-- )L’

FSR(v) = Ag + A1v + Ap? + - =

Assuming that ny > Bjv, B>v?, we obtain leads to the following solution for n( and the
B coefficients,

1 B
ny = m, Bl :_AlzngL’ and Bzz n—(l)—AZanL

For high accuracy, precise knowledge of the sample thickness must be available.
This requires thick samples, which in turn requires higher spectral resolution from the
spectrometer.
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Perhaps a better approach is to use a Sellmeier model for n(v) and explicitly deter-
mine the dispersion in Eq. 6.44b. Then a nonlinear least-squares fit to that equation can
be performed. The results will be in the form of Sellmeier model parameters.

6.1.6 Emissometry

When the temperature of the sample is near, or exceeds, the temperature of a source
used for transmission measurements, then radiation from the sample is noise to the
detector, and this degrades any transmission measurement. It is more straightforward,
in this case, to use the sample as the source and measure the emitted light directly. This
technique is called emissometry, and still requires a reference for system calibration,
which can be as simple as a standard blackbody radiator at a known temperature.

Based on the formula for absorptance and Kirchhoff’s law (Egs. 2.98 and 2.106), the
emittance from a flat polished surface is related to the single-surface power reflection
coefficient and the bulk absorption coefficient in the following manner for a sample of
thickness L:

{1—R[O6,n(v)]} (1 — e*ﬂa(V)L/cosea)
1 — R[0, n(v)] e=PaL/cost,

€6,v) =

The emitting object must be in thermal equilibrium. 6, is the refracted angle, which is
related to 6 by Snell’s law, and the angle 6 specifies the observer’s angle. For a sample
that also contains bulk and surface scatter, care must be exercised in the interpretation
of the data. The optical path within the material is altered, and a rough surface changes
the emitted radiation pattern as discussed in Chapter 2.

In the limit of strong absorption (z = 0), the emittance is determined by the first sur-
face reflection, such that

€, 0)=1—-R[n(),6]. (6.48)

Because there is no transmission, the reflectance equals the single-surface power reflec-
tion coefficient. There are two distinct spectral regions for this case. One is for
n — 1 ~ k,, which occurs in the one-phonon region. This region exhibits highly varying
emittance, characteristic of a reflectance spectrum in the one-phonon region. The other is
forn — 1>k, > 0.01, which occurs in the two-phonon region. This is the spectral region
of highest emissivity for a bulk material. In fact, the emittance can be very close to one.

In the limit of weak absorption (8,L < 0.1) the emittance is determined by the
absorption coefficient and the sample thickness, L,

L
€O.v) = fu(v) . (6.49)

In this way, a measure of the emittance can be a direct measure of the bulk absorption
coefficient and thus potentially more accurate than high-temperature transmittance
measurements, as suggested by Table 6.3. A diagram of a typical emissometer is shown
in Fig. 6.16.

When a sample has bulk scatter and the infrared emittance is less than 0.5, then
the method of sample heating must be carefully considered. A regular furnace will have
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Fig. 6.16 Diagram of a typical emissometer.

broad-band infrared emission that will be scattered into the field of view of the detec-
tor to some level. This is a noise source to the emittance measurement. A technique to
avoid this problem is to laser-heat the sample. The laser should operate in the two-
phonon region of a material where the absorption is high and the reflectance low.
Depending on the power of the laser and the size of the sample, very high temperatures
can be obtained. An example of a measurement using this approach is illustrated in Fig.
6.17. Note the clean measurement of the multiphonon edge. Furthermore, by measur-
ing the emission in the two-phonon region, a measurement of the sample temperature
can be made. Since the two-phonon region is close to a blackbody (¢ ~ 1) and features
very little temperature dependence in the emittance, pyrometric techniques can be used
to remotely determine temperature. This is useful for two reasons. First, a measurement
of the sample temperature is made at the same location as the low level emittance meas-
urement. Also, a thermometer in contact with the material can introduce radiation noise
and act as a means of thermal conduction, cooling the sample. Thus, a contact meas-
urement of surface temperature is not always desirable. Consult the reference at the end
of the chapter for more detailed discussion of this approach.

6.2 Scatter Measurements

Scatter measurements are important for understanding and characterizing the propaga-
tion loss and imaging properties of a medium, stray light effects from surfaces, and
polarization characteristics of reflected light. Two classes of scatter measurements are
typically made, by scatter-angle-dependent scatterometers and scatter-angle- independent
integrating spheres.

6.2.1 Scatterometers

Scatterometers, which measure angular-dependent scatter, can be classified as two
distinct types: those that measure over a sphere (BSDF) and those that measure over
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Fig. 6.17 High-temperature near-normal emittance spectra of single crystal sapphire (o-ray) 1
mm thick from 950 to 1930 K. The sample was heated in vacuum by a CO, laser.

a hemisphere (BRDF). When a medium is opaque, then only hemispheric measure-
ments are needed. When a material is transparent, then the full sphere enclosing the
sample must be measured. A description of a general scatterometer, ignoring polariza-
tion and assuming no ¢, dependence, is given in the following.

A direct measurement of the incremental scattered flux, A®,.,(6;,6;), per incre-
mental steradian, A2, is proportional to the phase function, P(6;,6;), as given below:

A q)sca (ef > 91)
W = Qyeq (05,0;) = @5ca(0;) P (65,0;), (6.50)
where ®; is the incident flux from a directional source (i.e., a laser) and o, (0,,6;) is
the bidirectional scatter distribution function (BSDF) and «, (6;) is the total integrated
scatter (TIS), as defined in Chapter 2. Similar quantities are defined for BRDF meas-
urements. In practice, the measured fluxes are detector voltages (usually a large-area
detector is used). Since there is no dependence on ¢, only measurements on the
6-direction within the plane of incidence are required. The incremental angular step
size of 6, for the experiment should be less than 1/2 /AS2;. These concepts are illustrated
in Fig. 6.18.
The scatterance is constrained by the total power law to be

Ogea = 1 — T3 — oy (6.51)

for a medium with no absorption (e.g., aups = 0). That is, the specular transmittance
and reflectance must not be included in the data analysis. It is important to maintain the
conservation of power flow in a valid measurement.
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Fig. 6.18 The geometry of a bidirectional scattering measurement.
Integration of both Eq. 6.50 with respect to d€2, leads to the TIS,
¢Y5‘a
— = Olycq, 6.52
@l sca ( )

where the phase function is normalized according to Eq. 2.89. This result can be
checked against a direct measurement of the TIS as obtained by a integrating sphere
(see next section). Agreement also validates the assumption of no ¢; dependence.

The incremental solid angle, A2, can be determined from the experimental geometry.
It is given by the following formula:

AQ; =21 (1 — cosdy). (6.53)

Based on Fig. 6.18 and for r » d (the detector radius),

r d?
AQy=27n|]l——m—-— | = —. (6.54)

1 2

@]

The detector area, Ay, is md? and the incremental solid angle viewed by the detector is

Ap

r
Using this result in Eq. 6.50 completes the information needed to experimentally
determine the BRDF or BSDF of a sample. To complete any directional scatter experi-
ment, a measurement must be taken with no sample present to characterize the
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background scattering level. This determines the noise level of the detector and the
beam quality of the laser.

It is often interest to compare a BSDF measurement of one material with that of
another. To do this meaningfully, the different Fresnel reflection coefficients for each
material must be taken into account. This can be done for an absorption-free material
by scaling the incident flux by (1 — R)/(1 + R) for forward scatter and by 2R /(1 + R)
for backward scatter. Therefore, a scaled scatterance function, «’ . (6;,6;), is defined as

sca
6;)
6) Lk
Ideally, such a comparative scatter measurement would be done in an index-matched
fluid, so that surface reflectance would be eliminated. But this is not easy to implement,
and the above definition becomes useful.

The results of BRDF measurements in the plane of incidence with an angular reso-
lution of 2° at 0.6328 pm on a white paper label are shown in Fig. 6.19a as a function
of the reflection angle referenced to the surface normal. Two angles of incidence are
used, one normal to the sample (§; = 0) and at 48°. The near specular reflectance is
broadened in the 48° case relative to the normal incidence case because the illuminated
footprint on the sample broadens as the sample is rotated. The dropouts in the experi-
mental curves occur when the detector blocks the incident beam. The results are fit to
the following formula:

I
=]

T
Useq (7 >0y > —

’

; (QY 79i) =

aSCd

SIERSTE
x

)
’
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Uscq (—5 > 6 >
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Fig. 6.19 (a) Measured and modeled BRDF for a piece of label paper illuminated at 0.6328 pm.
(b) BRDF of Spectralon at a wavelength of 0.6328 pm.
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BRDF (0, 6;) = 0.012 P47 (6, 6;, 4,0.07) + 0.13 Py (6, 6;, 2, 0.8)
+ 0.007 Pyifr (6, —6;, 3, 0.3) + 0.5 P10 (6,).

The first two terms represent near specular and diffuse components, which are also a
function of the angle of incidence. The third term represents weak diffuse light retrore-
flected back to the source. The last term represents the Lambertian scattering
component of the BRDF (see Example 2.1). The Lambertian component is independ-
ent of the angle of incidence and the dominant diffuse term. The functional form used
to represent the BRDF is based on Eq. 2.91. The phase function that is used in the above
formula is given by

n—1

n (115 — 33 4 o1110=1) |6og(6,)| ot

76.20(1 — 52+ 0.9(c — 0.572) ' |6, +6;|" +

Pdiff(erseiansa) = n-

cos 6;

It is only approximately normalized, but works for a variety of painted or unpolished
surfaces. The integration over all angles of the BRDF is the TIR and the result for
normal incidence is 0.64, suggesting the label was an off-white color. Figure 6.19b plots
the BRDF of Spectralon™, a commercially available near-Lambertian surface. The
model fit is expressed below,

BRDF (6,,0;) = 0.27 Pg;41(6,,6;,2, 0.8) + 0.73 P4, (0,),

and shows how close to Lambertian the sample actually comes.

By examining the nature of the BRDF, the optical quality of reflecting surfaces can
be determined. Such information is commonly needed in optical design where stray
light is a concern or high-quality images are required. Also the emissive properties of
surface can be obtained.

6.2.2 Integrating Spheres

An integrating sphere is a nearly closed spherical chamber that typically has a diffuse
reflectance coating of high reflectivity on the interior and ports for a large-field-of-view
detector, light beam entrance, and light beam exit. This three-port configuration is illus-
trated in Fig. 6.20. Also, four-port configurations can be used for scattering
measurements. The TIR of the coating should be close to one. All scattered light is col-
lected, and thus this is a measurement of the total integrated scatter.

The common sequence of measurement for a three-port sphere is as follows. First
the sphere must be calibrated. Essentially, this means the surface reflectance of the
sphere, O phere, must be measured. To do this, the exit port is closed and all the incident
light is scattered within the sphere. The ratio of the detected flux to the incident flux is
given by

A
& _ A_jpsphere (6 56)

CDi 1- losphere (1 - ﬁ_i - %\1)
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Fig. 6.20 Typical configuration of a three-port integrating sphere.

where Aj; is the internal surface area of the sphere, A, is the area of the detector port,
and A, is the area of the entrance and exit ports (assuming they are equal). This equa-
tion can be solved to obtain the reflectance of the sphere.

In the next step, the exit port is opened and a sample is placed inside the sphere. The
incident beam is aligned so that the reflected and transmitted beams exit the integrating
sphere. In this way, only scattered light can reach the detector. Now, the ratio of the
detected flux to the incident flux is given by

o 2 %sca
3“’ - A — (6.57)
i 1 - losphere (1 - 2A_i - A_;I)

This equation can be solved to obtain the TIS of the sample.

Measurements of the integrated forward- and back-scatterance are also made with
integrating spheres. This is accomplished by placing the sample in the entrance port for
integrated forward-scatterance and in the exit port for integrated back-scatterance. From
these measurements the forward- to back-scatter ratio can be obtained.

Problems

6.1 List the strengths and weaknesses of spectrometer and laser transmissometers.
Do the two experimental approaches complement one another?

6.2 List experimental techniques that directly measure the absorption coefficient.
When are such approaches superior to transmittance measurements?

6.3 Find the mathematical expression for the interferogram of a FTS for the spectrum
illustrated in Fig. P6.3.

6.4 (a) Given Eq. 6.1 and knowing R and 7, solve for B,;s(v), that is, obtain
Eqg. 6.27. (b) Can this approach be used when scatter is present?
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INCY)

sc0

Fig. P6.3

It is computationally convenient to express 7, p, and « to first order as

T~ (1— R e Pl

p ~ R+ R(1 —2R)e Pl
and
o~ ,BahsL .

However, these expressions do not satisfy the total power law! Make a consis-
tent set of approximations to 7, p, and « that will satisfy the total power law.
Show that the single-surface reflection coefficient, R, for normal incidence,
reduces to the first-order form

R(wro < w < wro,0; =0) =1—a(w)T,

where (0}, — 0*)*> (wI")? and a(w) depends on the classical oscillator
parameters for a single-mode oscillator.

Derive Eq. 6.41, which determines the index of refraction of a prism from the
minimum deviation technique.

Show that the free spectral range, FSR(v), for normal incidence and zero dis-
persion is

FSR(v) =

1
2n(v) L’

based on the Airy formula. Also, obtain Eq. 6.44b, which includes dispersion.
Verify the solution for n(v) given in Eq. 6.45.

Compute the TIS for the white label BRDF formula given in Section 6.2.1.
(Note: The result is 0.62.)

Derive Eq. 6.57.
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7

Optical Propagation in
Gases and the Atmosphere
of the Earth

Propagation within the atmosphere is an important consideration concerning the per-
formance of many electro-optical systems. An electro-optical system can be described
as containing three basic components: source, detector, and propagation medium.
Because of the quality of source and detection systems today, often the limiting factor
in overall system performance is the propagation medium. Thus a thorough discussion
of the atmosphere and various mechanisms of attenuation is required. Absorption,
scattering, and turbulence are the dominant mechanisms of signal loss and distortion.
This chapter covers gaseous absorption and scattering in the atmosphere of the
earth. Turbulence is not covered, and the reader is referred to other texts (see Chapter 1,
Refs. 1.10 and 1.11).

7.1 The Atmosphere of the Earth

The atmosphere surrounds and protects the earth in the form of a gaseous blanket that
acts as the transition between the solid surface of the earth and the near-vacuum of the
outer solar atmosphere. It acts as a shield against harmful particle radiation, meteors,
and high-energy photons. The dynamics of the atmosphere drive the weather on the sur-
face. It provides for life itself as part of the earth’s biosphere. Thus optical propagation in
this medium has many important characteristics and consequences. These include mete-
orological optics, infrared and visible astronomy, remote sensing, and electro-optical
systems performance in general. Therefore, it is appropriate to begin this chapter with
an introduction to the nature of the atmosphere.

263
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7.1.1 Atmospheric Structure

The atmosphere is composed of gases and suspended particles or aerosols at various
temperatures and concentrations as a function of altitude and azimuth. The variations in
altitude show a marked structure. Six main horizontal layers form the stratified struc-
ture of the atmosphere, as shown in Fig. 7.1. The lowest is the troposphere, which
extends from ground level to approximately 11 km (36,000 ft or 7 mi.). The tempera-
ture in this layer generally decreases with increasing altitude at the rate of 6.5 K/km.
However, variations can exist on this rate, which creates interesting refractive effects.
The pressure varies from one atmosphere at sea level to a few tenths of an atmosphere
at the top of this layer. Most of the important atmospheric attenuators exists in the tro-
posphere (i.e., H,O, CO,, clouds, fog, aerosols in general). Water vapor is most
important at lower altitudes, for example, due to evaporation over the ocean as part of
the marine boundary layer. Also, this is the region of highest pressure or density and
therefore has the highest molecular scatter. Aerosols in the troposphere are composed
of dust particles, smoke, sea spray, and others with surface-based origins. The next layer
is the stratosphere, which extends up to 50 km (30 mi.). In this layer, ozone, which
protects life on the surface from ultraviolet radiation, is found. Ozone starts to signifi-
cantly absorb at and below 0.3 um, thus extending protection from these high-energy
photons relative to molecular oxygen (which begins to strongly absorb below 0.185 pum).
Particles in this layer can remain for a long time. Above the stratosphere is the mesos-
phere. This layer begins at 50 km and extends to 90 km. Most models concerning
optical propagation in the atmosphere end with this layer. Above the mesosphere is the
ionosphere, which is important for radiowave propagation. However, the plasma reso-
nances that give it reflective properties at radio frequencies are too slow for optical
frequencies, and this layer is optically transparent. Also molecules in the ionosphere
undergo photochemical dissociation. Thus, the chemical composition significantly
changes at this altitude. The ionosphere extends up to nearly 300 km. Above the iono-
sphere are the thermosphere and the exosphere, and they are influenced by high-energy
solar radiation and the joining of the atmosphere of the earth to the solar atmosphere.
The outermost altitude is approximately 500 km or 300 miles.

7.1.2 Gas Composition

Table 7.1 lists uniformly mixed, dry atmospheric gases (up to 100 km altitude) and their
abundances. These molecules do not vary significantly in relative concentration with
time and with altitude, as illustrated in Fig. 7.2. Nitrogen and Oxygen are by far the
most abundant. Oxygen has relatively narrow absorption bands at 60 Ghz (2 cm™!)
because of a magnetic dipole moment, at 760 nm (13,158 cm'!) and has strong absorp-
tion in the ultraviolet (the Schumann-Runge bands). Otherwise, neither gas has
dipole-allowed infrared spectra. Only weak collision-induced-absorption bands (CIA)
in N, and O, can be observed for very long tropospheric propagation paths. However,
these molecules are very important for Rayleigh scattering (see Section 7.3) and refrac-
tive index (see Section 7.2.4) calculations. The inert gases contribute very little to
optical propagation phenomena.

The other molecules like CH,, N,O, and CO have pronounced infrared spectral features
(see Section 7.2) in the atmosphere, even though they have very minor concentrations.



OPTICAL PROPAGATION IN GASES 265

Temperature (mi)
o, ; Pressure
c (Atm)
500 —1220
Exosphere
400
—1200
Thermosphere
300
200 — 800
tonosphere Noctiucent ., 1%

. Soads y 0.00001 Atm
£ 100 — s . - s 0.0001 Atm
] Mesosphere
3 e Meteorites
£ .
<

20 0.001 Atm
40

0.01 Atm
30
20

~.1 Atm
10

0 Weather Rain 7%, 1 Atm

Fig. 7.1 Atmospheric structure as a function of altitude.

Their importance is localized to these spectral features, however. Some seasonal varia-
tion is observed in these gases as well, due to fuel burning and other effects.

Some of the most important molecules impacting propagation have variable con-
centration. This list is shown in Table 7.2 and includes H,O, CO,, and O,. Water vapor
exists primarily in the troposphere and is highly variable from day to day, from season
to season, with altitude, and for different geographical locations. Carbon dioxide varies
seasonally with a maximum during the early spring and a minimum during the late
summer to early fall, and is uniformly mixed with altitude up to 80 km. These points
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Table 7.1 Gases Present in Standard Amounts in a Dry Atmosphere
(CRC Handbook of Chemistry and Physics, Ref. 7.6)

Constituent Volume Ratio [%] Parts per Million
Nitrogen, N, 78.084 £ 0.004 —
Oxygen, O, 20.946 £ 0.002 —
Argon, Ar 0.934 £ 0.001 —
Neon, Ne 0.001818 18.18 £ 0.04
Helium, He 5.24 x 1074 5.24 +0.004
Krypton, Kr 1.14 x 107* 1.14 £0.01
Xenon, Xe — 0.087 £ 0.001
Hydrogen, H, — 0.5
Methane, CH, — 1.75
Nitrous oxide, N,O* — 0.5+0.1

2Has varying concentration in polluted air.

are illustrated in Figs. 7.2 and 7.3. The variable nature of these important atmospheric
gases makes the prediction of atmospheric propagation at infrared frequencies a chal-
lenge. Furthermore, the concentration of water vapor also influences particle scattering.

At this point, it is useful to review the many different units used to quantify the
amount of H,O in the air. This text will consistently use pressure or number density to
indicate the water vapor concentration. Unfortunately, uniform representation is seldom
the case in the literature, and unit conversion often needs to be known.

1. Water vapor partial pressure, pm,0, are commonly given in kilopascal (kPa),
millibars (mb), Torr (mm Hg), and atmospheres (atm), where 101.3 kPa = 760
Torr = 1013 mb = 1 atm.

2. Relative humidity, rh, is the ratio of py,o to the saturation vapor pressure, E(T),

h = ( Pr:0 ) x 100%. (7.1)

Es(T)

-

0,

Altitude (km)

L I L
0
o' 10 100 10 107 10° 1070 10* 10% 10?2 10! 1

Mixing ratio

Fig. 7.2 Vertical profiles of mixing ratio relative to nitrogen of selected species at equinox
(Allen et al., Refs 7.1, 7.2; Goody and Yung, Ref. 7.3, with permission).
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Table 7.2 Atmospheric Gases Present in Variable Amounts (CRC Handbook of Chemistry and

Physics, Ref. 7.6)

Constituent

Volume Ratio [%] Parts per Million

Ozone, O,

Water vapor, H,O
Carbon dioxide, CO,
Carbon monoxide, CO?
Nitric acid vapor, HNO,
Ammonia, NH,
Hydrogen sulfide, H,S
Sulfur dioxide, SO,*
Nitrogen dioxide, NO,
Nitric oxide, NO
CFC-11

— 0-0.3 (tropospheric?)
— 1-7 (20-30 km)
0-2 —
0.035 351 £ 4
— 0.19
— (0-10) x 1073
— Trace
— (2-20) x 1073
— (2-20) x 1073
— Trace
— Trace
— 3x 1074

@Has varying concentration in polluted air.

E(T) is computed by the following formula with an accuracy of 0.1% (Leibe, Ref. 7.5):

5
E,(T) = 2.4096 <_> 100253

300

10 —2950.2 )

T [kPa], (7.2)

where T is temperature in kelvins. Table 7.3 lists values of E (7T") based on the

above formula.

3. Absolute humidity, a, is defined as

400

380

360

340

320

Carbon dioxide concentration [ppm]

a

N 2170[?[-120

7 [g/m’], (7.3)

30(1950 1960

1970 1980 1990 2000 2010
Year

Fig. 7.3 Molecular concentration of CO, at Mauna Loa Observatory, Hawaii as a function
of year. Both long-term trend (smooth curve given by CO, concentration = 311 + 0.395
(Year—1950) + 0.0148 (Year—1950)2) and seasonal changes (oscillatory curve) are shown

(Bacastow et al., Ref. 7.

4).
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Table 7.3 Saturation Vapor Pressure of H,O (CRC Handbook of Chemistry and Physics, Ref. 7.6)

T [K] E; [kPa] T [K] E, [kPa]
250 0.0760 300 3.535
260 0.1958 305 4.75
270 0.4701 310 7.228
280 0.991 320 10.540
290 1.919 330 17.202
295 2.64

aThe following polynomial fit represents E; with a standard deviation of +0.024 kPa: In(E;) = 17.323—
3.7496 x 10T~ —2.3061 x 10°T 2.

where pp,o is in kPa and T'in K. This formula can be obtained from the ideal gas
law, P, = ,OikBT.

7.1.3 Particle Composition

Particles vary not only in chemical composition and concentration but also in size (from
about 0.01 to 10 um) and shape (spheres, ellipsoids, rods, etc.). Therefore, the descrip-
tion of atmospheric particles is far more difficult than the description of atmospheric
molecules. The range of sizes varies for different types of particles, as Table 7.4 indi-
cates. A particle with one size is called monodisperse. A particle with a distribution of
sizes is called polydisperse. Size distribution functions specify the concentration of a
particle size as a function of particle radius. Height distribution functions specify the
concentration as a function of altitude. The first 2 km is a mixed region, and particle
characteristics depend greatly on the nature of the surface. In the mid-tropospheric
region, the height distribution is exponential much like molecular pressure. At stratos-
pheric altitudes, particle concentrations are driven by volcanic activity. Generally,
simple shapes are assumed for model calculations (e.g., spheres, rods); however, shape
distribution functions are needed also. Two basic classes of particles determine the
majority of scattering attenuation in the atmosphere: aerosols and hydrometers.

Aerosols have radii less than 1 um. Because these particles are very small, they are
suspended in the atmosphere. Scattering by aerosols greatly increases broad-band opti-
cal attenuation over molecular scattering, and is called haze. Particles have the highest
concentration levels near the surface of the earth and therefore, the highest levels of
haze are also near the surface of the earth. This point is readily verified by observing
the color of the sky as a function of zenith angle. Overhead, the sky is a distinctive blue,
because of molecular Rayleigh scattering, but toward the horizon, the color becomes
whiter. This is because the path length increases in the particle-rich lower atmosphere.
Examples of aerosols are smog, smoke, fine soil particles, cosmic dust, clouds, and fog.
Particles that contain moisture add another dimension to the description as the humid-
ity must also be known. A dry particle acts as a condensation nucleus and grows in size.
The particle becomes more spherical and scatter loss is enhanced.

The second class of particles is called hydrometers, which are water-dominated par-
ticles in the liquid or solid state. Examples include the many types of clouds, mist, fog,
rain, freezing rain, hail, snow, and ocean spray. These particles are typically larger than
1 um, and stay suspended for shorter periods of time than aerosols because they are
more massive.
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Table 7.4 Radius Range for Various Types of Particles

Type Radius [um] Concentration [cm™]
Air molecules 1074 10"

Aiken nucleus 10731072 10*-10?
Aerosol 10721 10°-10

Fog 1-10 100-10
Cloud 1-10 300-10
Raindrops 10>-10* 1072-107°

The detailed discussion of particle distribution functions and particle scattering is
delayed until Chapter 10, since the optical properties of solids (see Chapter 8) and water
(see Chapter 9) must be covered first.

7.1.4 Pressure Variation with Altitude

As the altitude increases, the total atmospheric pressure decreases almost exponentially,
as illustrated in Fig. 7.4. To see this, consider a column of gas. The incremental pressure,
dp, from an incremental altitude, dz, caused by its weight in a gravitational field is

dp = _pm(Z)g dZ7 (74)

where p,, is the mass density and g is the gravitational acceleration. However, p,, must
vary with altitude, z. Now let us use the ideal gas law, to obtain

mp(z)
kBT(Z) ’

Pm (2) = mp(z) = (1.5)

where p,,(z) is the average mass density, p(z) is the number density, and m is the
average mass per molecule for a dry atmosphere (28.964 amu for z < 100 km, for a humid

100 T I I T T

80 "'

60 [~ .

Altitude [km)]

20 — -

| | I | {

0
1-107% 1-107%  0.01 0.1 1 10 100
Pressure [kPa]

Fig. 7.4 The 1976 U.S. Standard Atmospheric Pressure as a function of altitude (0). The solid
curve, as given by p(z) = 1013 exp(=0.145z), is a fit to the data (see Eq. 7.8b).
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atmosphere m — m(z)). Thus, substituting this result into Eq. 7.4, we obtain the
following first-order differential equation:

dp mie
—_— = ———dz
p(2) kT (2)

The general solution (for m constant) is obtained in a straightforward manner to be

(7.6)

. mg i d7
p(z) = p(0)exp % T | (1.1
0

Now, let us assume 7' (z) = Ty + az, which is the case for the Standard Troposphere
(1976 U.S. Standard Atmosphere), where a = —6.5 K/km and 7y = 288 K. The solu-
tion of the above differential equation leads to the following result for the vertical
pressure profile:

T(Z)>W (7.8a)

p ) —P(O)( T
The numerical value of the exponent in this equation for the U.S. Standard Troposphere
(z < 10 km) is 5.255.

The temperature dependence above the troposphere is not linear. In the stratosphere
the vertical temperature profile is almost constant. The atmospheric temperature profile
as a function of altitude for the 1976 U.S. Standard Atmosphere is plotted in Fig. 7.5 up
to an altitude of 100 km. Based on this figure, the variation from ground to 100 km is
modest, staying within +20% of the mean value of 235 K. In the isothermal limit
(i.e., T (z) = Ty), the solution of Eq. 7.7 simplifies to

o
(o)
o
80 ™ o ]
o
O
—_ (@)
E 60 o ]
= (@)
= o
£ o
< 40 o —
(o]
20 [~ -]
TropOfphere
0 1
200 250 300

Temperature [K]

Fig. 7.5 The 1976 U.S. Standard Atmospheric Temperature profile as a function of altitude.
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34.167
o )’

p() = p(0) exp (%ﬁ;) = p(0)exp (—

(7.8b)

where z is expressed in kilometers, and 7p in kelvins. Since the temperature variation is
small for limited ranges of altitude, this is a good approximation (especially for the
stratosphere). Using an average temperature for the first 100 km of 235 K and using
p(0) = 1013 mb, Eq. 7.8b was used in Fig. 7.4 to obtain the solid curve.

These formulas can be used to form a piecewise continuous representation of the
total pressure and uniformly mixed gas partial pressure variation of the real atmosphere
with altitude, given the temperature profile.

7.2 Molecular Absorption and Refraction

This section begins with a discussion of molecular absorption in the window regions of
the atmosphere. Reviews of experimental data, empirical models, and theoretical
models are presented. Molecular absorption dominates the optical properties of the
atmosphere in the infrared and ultraviolet. The section then closes with a discussion of
atmospheric refraction.

7.2.1 Absorption by Atmospheric Gases

Absorption by molecules defines the atmospheric windows and is an important mecha-
nism of tropospheric attenuation at all millimeter and infrared wavelengths, especially
in the marine or relatively humid environments. Therefore, the understanding and accu-
rate modeling of absorption by atmospheric molecules are important to atmospheric
remote sensing, open-air communication, infrared imaging systems, long-path laser
propagation, electro-optical systems, radar, and atmospheric meteorology. The green-
house effect of the atmosphere of the earth is caused by absorption of blackbody
radiation in the 10 um region from the surface. The absorbed energy heats the atmos-
phere, causing an increase in global temperature. Figure 7.6a shows low-resolution
infrared transmittance of the atmosphere and demonstrates the importance of water
vapor over other atmospheric constituents (Shaw, Ref. 7.7). The H,O absorption bands,
along with those of CO,, define the atmospheric window regions in the infrared. At mil-
limeter and microwave wavelengths, the rotational band of O, at 60 GHz and local
rotational lines of H,O determine the window regions. Figure 7.6c shows the water
vapor absorption coefficient for the millimetre—microwave region.

The main rotational and vibrational bands have been extensively characterized by
many investigators (Benedict and Calfee, Ref. 7.8; Gates et al., Ref. 7.9; Camy-Peyret
and Flaud, Ref. 7.10). This work has resulted in a compendium of absorption-line
parameters representing 31 different gases, maintained by the Phillips Laboratory at
Hanscom Air Force Base (formerly the Geophysics Directorate and the Air Force
Geophysics Laboratory), which represents a significant contribution to absorption cal-
culations. Details of this database are discussed in Section 7.2.2. The database contains
parameters for weak absorptions lines in the window regions. However, this informa-
tion is, in general, not as accurate as that of the main bands, and work continues to
improve the spectral line parameters.
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The comparatively weak absorption that does occur in the window regions can be
described as arising from two distinct sources, local line and continuum absorption, as
illustrated in the high-resolution computed spectrum of Fig. 7.6b for the 10 um window
region. Weak absorption bands of CO, and HDO, along with other H,O absorption lines
in the window regions, compose the local line contribution. The continuum contributes
an additional, gradually varying, frequency-dependent background to total absorption.
A general empirical form for the continuum absorption coefficient is often used to
represent eperimental data:

Imax

D [Cr.Tpsi+ Cw.Tpa],  (1.9)

i=1

Pa
RgeT

ﬁconl(vv T, Pris -« Pris pa) =

where C; is the self-broadening coefficient of the absorbing gas, Cp; is the foreign
broadening coefficient due to the ith type foreign gas, p, and py; are the absorber and
foreign gas partial pressures, respectively, and Rgc is the ideal-gas constant
(McClatchey et al., Ref. 7.11). The above formula is consistent in form with a far-wing
expansion of the collision-broadened absorption coefficient given in Chapter 5 (recall
Problem 5.9). This point will be used later to obtain simple mathematical formulas for
continuum absorption. The equation can be rewritten for the case of two broadening
gases (imax = 2), to obtain

Cri(v,T)
ﬂconr(VvT) = —pa[pfl + F(VaT)pr + B(VaT)Pa], (710)
RgceT

where F = Cp,/Cry and B = Cy/CF; are the dimensionless foreign and self-broaden-
ing coefficients. Near line center, B has a typical value of 5 for water vapor relative to
nitrogen (see Table 5.1). In the real atmosphere, the effects of oxygen broadening must
also be included. The dimensionless broadening coefficient F' accounts for oxygen rel-
ative to nitrogen. However, many laboratory experiments ignore the effects of oxygen
and use only nitrogen as the broadening gas along with the absorbing gas.

7.2.1.1 Water Vapor Absorption

The strong dipole moment and light hydrogen atoms composing water vapor result in
strong, broad rotational absorption bands (high B) and high vibrational frequencies.
Also, water vapor is an asymmetric top, thus all the bands are active and feature dense
irregular spectra (as illustrated in Fig. 3.9 for the pure rotational band). Thus, water
vapor absorption is important in every infrared window region of the atmosphere.

Fundamental Bands To determine atmospheric window locations and index of refraction
contributions, knowledge of band strength and position of the strongest absorption bands is
important. Table 7.5 lists band origins and integrated intensities, S;,(7'), defined by

S,2<T>=pi / v By (0,7 [cm],

a
Band D

for several important water vapor absorption bands throughout the infrared. The integrated
intensity is the sum of all the line strengths within a band, divided by the absorber density.
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Table 7.5 Integrated Intensities of the Major Water Vapor Bands? (Goody and Yung, Ref. 7.3,
with permission).

Band Origin [cm™] Isotope Upper Vibrational State (v;v,v3) S,(295 K) x 102! [cm]
0.0 H!°OH 000 52700.0
0.0 H!70H 000 194
0.0 H!SOH 000 107.0
1588.28 HISOH 010 21.0
1591.33 H0H 010 3.82
1594.75 H!°0OH 010 10400.0
3151.63 H!°OH 020 754
3657.05 H!°0OH 100 487.0
3707.47 H!%0OD 001 1.42
3741.57 HI30H 001 13.9
3748.32 H!”0H 001 2.52
3755.93 H!°0OH 001 6930.0
5234.98 H!°OH 110 37.2
5331.27 H!°0OH 011 804.0
6871.51 H!°OH 021 57.4
7201.48 H!°OH 200 52.9
7249.93 H!°0OH 101 747.0
8807.0 H!°0OH 111 49.8
9000.0 H!%OH 012 1.6
10238.72 HI60H 121 2.1
10613 H!6OH 201 10.0
11032 H!%OH 003 2.4
12151.26 H!°0OH 211 0.93
13820.92 H!°0OH 301 1.08
14318.80 H!%0OH 103 0.2

“The lower state is the ground state 000. S, for isotopes is calculated on the basis of the total number of molecules of all
isotopic species. n indicates the vibrational quantum numbers for a particular transition.

All bands listed originate from the ground state. The locations of the bands match the
experimentally observed locations in Fig. 7.6a. It is clear that the these strong absorption
bands of water vapor define the atmospheric window regions to be 8§—12 um, 3-5 pm,
2-2.5 wm, 1.5-1.77 um, 1.18-1.31 wm, and 1-1.1 pm. For shorter near-visible wave-
lengths, water vapor absorption plays a more minor role.

Window Regions  As previously mentioned, molecular absorption in the window regions
manifests itself as local line and continuum-type absorption. Narrow-band systems can
often minimize local line effects but not continuum absorption. Broad-band systems
must account for both.

LocaL LINE ABSORPTION  Local line structure within the 10 um and 4 um water vapor
window regions has been experimentally observed using an FTS and a long-path White
cell (Benedict et al., Ref. 7.8.; Gates et al., Ref. 7.9). Field measurements of local line
structure in the 10 um region have been reported by Rinsland et al. (Ref. 7.16).
The 1-1.1 um local line structure based on experimental data has been reported by
Gallery et al. (Ref. 7.17). The data demonstrate the importance of the rich local line
structure in the case of water vapor and the need for experimental data to validate the



OPTICAL PROPAGATION IN GASES 275

HITRAN database. The HITRAN database represents local line structure based on
experimental data and/or theoretical calculations. This database is described in more
detail in Section 7.2.2. The database contains information on the line position, strength,
lower energy level, foreign half-width, half-width temperature dependence, and the
self-half-width. For many applications this is adequate information to develop propa-
gation models of the atmosphere. The accuracy of the information varies for the weak
lines in window regions. Line position and lower energy level are known very well, line
strength is usually within 10%, and half-widths are known to 20%. The self-half-width
is important for accurate local line characterization. For broad-band applications, the
average dimensionless self-broadening coefficient value of B= 5 can be used.

However, laser propagation, such as remote sensing systems using narrow-band
lasers, needs a more through characterization of local line structure. The pressure shift
parameter, as defined by Eq. 5.99, must be known when the frequency of the laser cor-
responds closely to the location of an absorption line. For water vapor in particular, this
is an important effect. Experimental observations of the pressure shift in the 2 um
window indicate that it is generally to the red. The self-shift is smaller than the half-
width in magnitude, and the nitrogen shift is less than one-tenth of the nitrogen
half-width magnitude. The pressure shift for water vapor is unusually large, compared
with other common atmospheric molecules. It is attributable to the large dipole moment
and is an important aspect of accurate local line characterization. Table 7.6 lists NTP
values for the self-, oxygen, and nitrogen half-width, and self- and nitrogen shift for a
few water vapor absorption lines in the 2 um window region.

The effects of oxygen broadening must also be considered. Since most experimen-
tal data are taken with nitrogen-buffered water vapor samples, the broadening effects of
oxygen must be known for realistic atmospheric models. Based on the definition of F,
given by Eq. 7.10, the near-line-center dimensionless foreign broadening coefficient is
needed for oxygen relative to nitrogen. The R(20) CO, laser line at 975.930 cm™! is nearly
coincident with a water vapor absorption line at 975.943 cm™! (unshifted location). CO,
laser White cell transmittance and laser photoacoustic measurements of the absorption
coefficient as a function of oxygen partial pressure indicate F = 0.62 £ 0.07 (Peterson
et al., Ref. 7.47; Nordstrom et al., Ref. 7.51) for that line. It is assumed that this result
can be applied to lines in this region in general. More accurate determination can be
made by high-resolution spectrometer measurements. High-resolution F7S measure-
ments in the 2 wm region show that the average value of F is 0.55 £ 0.05 (Sova et al.,
Ref. 7.18). Values of F for individual lines are listed in Table 7.6. F' depends on the
rotational quantum number. Taking the average value of F to be 0.55, a dimensionless
air-broadening coefficient, Fy;,, of 0.91 is obtained. This means the air-broadened half-

Table 7.6 Half-Width and Shift Parameters for H,O Absorption at 7 = 296 K in the 2 ;tm Region
(Sova et al., Ref. 7.18)

Line Position  Nitrogen-Half-Width ~ Self-Half-Width ~ Oxygen-Half-Width  Self-Shift Nitrogen-Shift

[em™1] [cm™1/atm] [cm™1/atm] [cm™1/atm] [cm™1/atm] [cm™1/atm]
4757.906 0.103 0.477 0.055 -0.194 -0.009
4758.212 0.0607 1.07 0.024 -0.249 —-0.007
4796.554 0.002 0.671 0.049 —0.142 -0.011

4948.155 0.0895 0.944 0.051 -0.156 -0.021
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width values are 9% less than the nitrogen-broadened values. For many narrow-band
applications, this correction cannot be ignored.

CONTINUUM ABSORPTION  In 1942, Elsasser (Ref. 7.19) recognized a continuum in the
8—13 um window region, which he attributed to the far wings of the strong, nearby rota-
tional and v, vibrational rotational bands of H,O. Further verification of this nonlocal
line absorption feature was provided by Yates and Taylor (Ref. 7.20), who studied
infra-red attenuation along horizontal paths at sea level. Solar spectra studies also indi-
cated continuum absorption in the 813 um window (Adel, Anthony, and Roach and
Goody, Refs. 7.21-7.23). The nature of the continuum, judged by those measurements,
was uncertain. It could be due to far wings (far from the band center) of strong absorption
bands or to scattering and absorption by particulates.

In an effort to determine the cause of continuum absorption in the 8—13 um window,
Bignell et al., in 1963, examined solar spectra while monitoring the atmosphere for aerosol
concentrations and studying CO, far-wing contributions. He concluded that the amount of
continuum absorption observed could not be explained by aerosol attenuation or far-wing
absorption by CO, (Ref. 7.24). An attempt was then made to model the continuum by far
wings of the bordering H,O bands. The important contribution from this initial work was
the realization of major water vapor contributions to the continuum. A second paper by
Bignell, in 1970, described a careful examination of water vapor absorption in the window
regions by use of a multiple-traversal absorption cell and grating spectrometer (Ref. 7.25).
Two important characteristics of the 8—13 um window as noted: (a) a large ratio of water
vapor self-to-foreign-gas broadening ability (see Eq. 5.97) and (b) a strong negative tem-
perature dependence. Neither of these findings were anticipated on the basis of the far-wing
approaches of Bignell’s et al. 1963 paper (Ref. 7.24). Also reported by Bignell was a sim-
ilar, but much weaker, continuum absorption in the 4 um region. (The 4 pm region also
features a collision-induced absorption band of nitrogen (Crawford et al., Ref. 7.26;
Susskind and Searl, Ref. 7.27). The band is of comparable strength to the water vapor con-
tinuum in the earth’s atmosphere. It is a smooth absorption band showing no structure;
thus, it is often referred to as the nitrogen continuum. Also, a far-wing continuum of CO,
beyond the v; band head is observed between 4.0 and 4.1 um (Winters et al., Ref. 7.28).
These other continua will be discussed later (see Sections 7.2.1.2 and 7.2.1.4).

Since those initial experimental efforts to characterize water vapor continuum
absorption, many measurements have been made. They fall into three categories: (a)
measurements within the earth’s atmosphere or field measurements, (b) laboratory
measurements using a long-path cell and a spectrometer with a broad-band source, and
(c) laboratory measurements using a long-path cell or a photoacoustic cell with a laser
source. Although continuum absorption was first observed through long-path field
measurements, its precise characterization requires control and knowledge of the prop-
agation path. The effects of turbulence, particulate scattering, temperature variations,
and partial-pressure variations are difficult to determine in a field measurement. Thus,
laboratory measurements are needed to characterize the pressure and temperature
dependence of each atmospheric constituent. Spectrometer measurements determine
the frequency dependence of the window regions, that is, local lines and continuum
absorption. Laser measurements are limited to discrete frequencies, but because of the
laser’s higher power and stability, greater accuracy can be obtained; this is particularly
true for photoacoustic techniques. Laboratory transmission measurements require very
long path lengths (~1 km or longer) and thus are difficult to obtain. The photoacoustic
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cell, on the other hand, is compact (about 30 cm) but still maintains considerable sen-
sitivity. Of course, field measurements will have the final say in the validation of
atmospheric propagation computer codes.

As a result of these experiments, a good characterization of the commonly used
window regions exists today. An excellent review of the field is given by the work of
Hinderling et al. (Ref. 7.29) and Grant (Ref. 7.30). They emphasize the 8-14 um
window region, which, along with the millimeter-wave window, is the most extensively
measured. A review of the latest continuum experimental data and empirical models
covering all the window regions is given in the following subsections, followed by a
brief review of theoretical models used to explain the experimental data.

Millimeter-Wave Window The microwave—millimetre-wave atmospheric window is
used extensively today. Atmospheric transparency is very good at the low-frequency end
of this window, but absorption phenomena become more important as the frequency
increases. Figure 7.7 shows continuum absorption from 10 to 1000 GHz (total absorp-
tion minus local lines). The solid line represents an empirical formula given by Gaut
and Reifenstein (Ref. 7.32), as given by

B 300\ [ P B
Beon: (f) = (1.08 x 10 6)/%(7) (ﬁ)fz [km 1], (7.11)

where p, is the water vapor mass density in g/m3, Pr is the total pressure in kPa, and
f is th frequency in GHz. The plotted points indicate experimental data. The frequency-
squared continuum dependence is expected, based on Eq. 5.98 in the low-frequency
limit. Although the above formula correctly demonstrates the frequency dependence of
the continuum, it does not represent the observed temperature and pressure dependence.
More recent work by Liebe (Ref. 7.36) uses a continuum formula, fitted to experimental
data at 138 GHz, of the form

300 300

3 7.5
ﬂwm(f)=4.73><10_8f2<7> Pu |:Pf+31~6<T> pa} [km™'1 (7.12)

where f is in GHz, T is in kelvins, and p, and pr(py = Pr —p,) are in kPa. A strong
dependence on the water vapor partial pressure is shown (B > 5; recall B=5 at line
center for water vapor, see Table 5.1 and Eq. 7.10). The continuum absorption coefficient
calculated using Eq. 7.12 is smaller than that calculated using Eq. 7.11 because of
improved local line modeling.

On the basis of additional work by Liebe and Layton (Ref. 7.37), and Liebe (Ref. 7.38),
B grows as the frequency decreases from 833 to 110 GHz, as demonstrated in Table 7.7.
This dependence is expected if the far-wing fall-off due to nitrogen collision is more rapid
than the far-wing fall-off due to water vapor collisions. Based on the far-wing model of
Birnbaum (see Chapter 5), the following empirical formula (valid for f < 1000 GHz and
Beons in km™1) is obtained (Thomas, Ref. 7.39)

Beont (f) = (4.73 x 107%) £20* p,, (py + 40.9e7005/ 905 p ) . (7.13)

where 6 = (300/T), T is in kelvins, and pressure is in kPa.
As Eqgs. 7.12 and 7.13 both indicate, B is a strong function of temperature. This is not
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expected based on simple Lorentz line shape theory. Although Liebe (Refs. 7.36—7.38)
chooses to represent his data in power-law form, a comprehensive s