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Preface

In an article published in 1970 Professor A. Ehrenberg made the following
comment:
‘I feel that the kind of examples of statistical analysis that tend
to be considered in professional discussions...are so grossly
over-simplified as to make a pretentious mockery of real-life
situations and statistical consultancy.’

Examining some of the examples presented in many statistical text-
books, we were forced to agree with Professor Ehrenberg — a comparison
of the average weekly beer consumption of male college students living
in halls-of-residence with those not living on campus hardly gives the
flavour of most real-world consultancy problems!

So in an attempt to present the reality of statistical consulting we were
led to assemble the collection of papers that make up this text. Our aim
was to show that, in addition to statistical expertise of the type acquired
from standard textbooks and in courses held up and down the country,
the consultant statistician needs a number of other talents, foremost of
which is the ability and willingness to communicate with researchers in
other areas. We see this book as a complement to standard texts and ideally
we would like to see it adopted as a companion volume on statistics
courses, covering those parts of statistical consultancy which are not (and
perhaps cannot be) formally taught.

Since statistical problems arise in almost all areas of science, in medicine,
in industry, in marketing and in finance, so do problems related to
statistical consultancy. Adequate coverage of all these areas could only be
achieved in a text containing many hundreds of articles. Nevertheless in
the twelve contributions enclosed here we hope a relatively wide spectrum
of interests is catered for, and we believe that the problems identified and
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the general comments made will be applicable in areas not specifically dealt

with.

We have attempted to order chapters so that those dealing with similar
areas occur close to one another, although this is not always possible simply
because several chapters deal with more than one area of application.

The opening chapter presents an overview of the world of the statistical
consultant, exploring how different areas of work and different working
environments influence the opportunities and problems.

In Chapter 2 Tony Greenfield reminds us that one major difference
between British and Japanese industry is that in Japan many millions of
people are trained in the use of statistical methods. He presents a case for
greater employment of statistical consultants in manufacturing industry
and provides an entertaining series of anecdotes about the difficulties
which a consultant statistician can encounter.

Professor Barnett, in Chapter 3, presents three case studies, each of
which began with a request to ‘just help me to fit a straight line to these
data’. One is in archaeology and two are in medicine. He uses these
examples to show how real problems motivate methodological research,
and notes that few subjects can advance nowadays without the proper use
of statistical methods.

Crossover designs play a very important role in medical applications of
statistics, especially in clinical trials. Clayton and Hills (Chapter 4) present
an introduction to the merits and problems of such designs, and then show
how theoretical ideals are adapted to practical necessities by examining
the analysis of a real crossover design. They also give advice on prepara-
tion of the report, noting that different recipients — here a pharmaceutical
company and clinical investigator — will expect different things in the
report.

In Chapter 5 Cook and Pocock describe some of the ethical issues which
arose during a clinical trial, and illustrate the necessity of being able to
explain the analyses to the client.

Graham Dunn, in Chapter 6, shows how consultation can be aimed at
educating the client, so enabling them to conduct future analyses on their
own. He points out the importance of providing an analysis that the client
can understand.

Not all consultations are ideal from the statistician’s viewpoint. Jeffers
(Chapter 7) presents a case in which the consultant statistician had to do
his best with data arising from an experiment which was designed and
conducted without seeking statistical advice. The case in point is a study
of the topical subject of acid rain, and demonstrates how vital it is for the
statistician to have some specialist knowledge of the subject matter.
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In Chapter 8 Gower and Payne demonstrate how problems presented
to the statistical consultant can stimulate the development of both
methodology and computer programs.

Lewis (Chapter 9) describes how an unusual outlier problem arose
during an investigation of uneven sex ratios in moths. A follow-up on the
moths’ descendants shows that one cannot afford to be too dogmatic in
presenting the results to the clients.

In Chapter 10 Morgan, North and Pack describe collaboration between
university and industry, pointing out the special requirements of industrial
statistical consultancy, and showing how effective such collaboration can
be. They illustrate the benefits which can following from having a con-
sultancy unit attached to a university department of statistics.

Altham, in Chapter 11, describes a problem from manufacturing in-
dustry, and demonstrates how simulation can be effective in communi-
cating with the client.

Earlier chapters have described relatively small case studies. Aitkin and
Healey (Chapter 12) complement these by describing the management of
a study of modelling a large body of socio-economic data.

Finally, for those who wish to pursue further any of the non-statistical
aspects of consulting, we present a bibliography on statistical consultancy.

We hope that the material in this book will show the budding statistician
that statistical consultancy work provides a very broad spectrum of
interesting and intellectually stimulating problems. The working environ-
ments are equally varied, ranging from university mathematics depart-
ments, via specialist advisory units, to freelance industrial and commercial
work. Few other professions provide one with the opportunity to contribute
significantly to progress in such a wide diversity of disciplines.

Lastly it is a pleasure to express our sincere thanks to all our contributors
for the speed with which they responded to our invitation to submit articles
and for their forebearance when, where necessary, they were reminded of
‘deadlines’ (realistic or not!).

D. J. Hand
B. S. Everitt
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Statistical consultancy

D.J. HAND AND B.S. EVERITT

1 Introduction
Since this is a book about statistical consultancy, a good place to
start would be by considering the ideal consultation. Hyams (1971) has
given us a description of this:
To qualify a consultation as ideal is to deny its empirical
meaning. The ‘Ideal Consultation’ is not a consultation. It is a
working-together, a voluntary meeting of minds and union of
energies whose prime aim is to seek a ‘truth’. In such meetings
both parties are familiar with each other’s basic language. The
biologist has had a few courses in basic statistics and thus
recognises statistics as a unique and valuable discipline. The
statistician has also done his homework and has familiarised
himself with the names and the relationships of the fauna in the
experimenter’s jungle. Since knowledge and understanding breed
sympathy and respect, the researcher esteems the statistician as an
expert representative of this most important science. His ap-
preciation for the statistician’s unique contributions grows by
leaps and bounds with the experience of his individual talents.
Needless to say, the feeling is mutual. Meetings are stimulating;
they are productive in thought and in product. The work forms
a gestalt (the whole is greater than the sum of its parts). The
research poses challenging statistical problems that are fun to
work at: the sort of thing that keeps one busy at a scratch pad
during supper while the wife silently suffers (or throws a fit). In
unhurried time the deliberations proceed to a design, an experi-
ment, and an analysis that confirms everyone’s best hopes. The
(multiple) reports are easy to write. Sometimes the biologist’s
name is first, sometimes the methodologist’s; it hardly matters.
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These manuscripts are received enthusiastically by journal editors
and their ‘expert’ reviewers don’t give the team a hard time. First
experiments lead naturally to others and the information generated
finds a significant practical application. Ultimately it saves human
lives or curtails misery. Finally, but justly, the co-workers are
awarded the Nobel Prize in Medicine and quite naturally donate
their stipends to schools encouraging interdisciplinary approaches
to problem solving. ’

In practice there seem to be some slight (!) differences between this ideal
and the reality, so a natural question to ask is where are we going wrong,
or more realistically, what problems do consultant statisticians have to
contend with which disrupt such an ideal scenario?

2 The problems of statistical consultancy

The primary issue affecting realisation of the above ideal is, of
course, the relationship between the client and the consultant. This will
naturally depend on personalities, preconceptions of the role of the other
party, and the nature of the relationship between the individuals concerned.
We shall have more to say about these things below, but the sort of factors
involved are: how much statistics the client knows; whether he is prepared
to accept advice or is confident he knows the answers and is just seeking
confirmation; whether the consultant is a freelance statistician or a junior
member of a university department of which the client is the head; whether
it is to be a genuine collaboration or whether the statistician will merely
be acknowledged in some subsequent paper (and does he want this
anyway, if the client has ignored his advice?). Perhaps most important of
all is the question of whether the statistician is perceived as a scientist in
his own right. This sets the tone of the relationship.

A number of authors have examined the relationship by condensing
their experience of clients into a classification. Sprent (1970), for example,
produces the following seven classes:

1. The timid apologist who has little statistical knowledge and
expresses reluctance at wasting our time. It takes something akin
to a doctor’s bedside manner to put such people at their ease and
overcome their reluctance to seek help.

2. Significant difference and least significant difference (l.s.d.) ex-
perts. These are encouraged by misguided editors who think all
numerical results can be made respectable by quoting significant
differences or significance levels — often denoted by * or ** or ***,
a symbolism more appropriate to a hotel guide-book than a
serious scientific paper. The number of editors accepting 1.s.d.’s
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or asterisks as the ultimate in statistical sophistication is happily
declining. In my experience it is a characteristic of inveterate users
of significance levels that they do not know what they mean. Once
the meaning is explained to them more sophisticated ideas appeal
to them. The number of 1.s.d. experts might decrease if we pressed
for less emphasis on significance in elementary service courses.
3. The one-technique amateur statisticians. These are proficient at
just one technique and show great ingenuity at applying it even
when it is not relevant. It is worth some effort to expand their
statistical horizons.

4. The believers in sacred texts or computers, have been mentioned
in the previous section.

5. Experimenters with addled statistical ideas. These are the
people who assure you that, for example ““the object of random-
isation is to disperse treatments as widely as possible over the
experimental area,” or that they ‘“never use randomised blocks,
but always do factorial experiments instead”. It requires some
diplomacy to replace such misconceptions by useful knowledge.
6. The expert data handler who is not a statistician. Such a person
may be described as a born data handler who relies upon his
instincts when handling data. It is usually easy for the statistician
to collaborate with him, but one feels that he spends perhaps too
much time re-inventing known techniques if he proceeds without
some statistical help.

7. The statistically informed experimenter is always a pleasure to
work with. Not only does he understand our jargon, but he usually
sees to it that we understand that of his subject so far as is
necessary.

Hyams’ (1971) classification is also worth reading, yielding the categor-
ies: probabilist, numbers collector, sporadic leech, amateur statistician
and long distance runner. —

(If, at this point, the reader should feel we are being unfair on the client
in what is, after all, a two-party relationship, we hasten to reassure you
that the balance will be redressed below.)

We mentioned, above, the lack of statistical knowledge on the part of
the client. It is precisely because he lacks this knowledge, and is aware of
it, that he is calling upon the professional services of the statistician. A
more subtle source of potential pitfalls, however, lies in lack of expertise
the other way round. How much does the statistician know about the
client’s discipline? Inadequate knowledge can not only lead to difficulties
for the statistician in formulating the researcher’s questions in a way he



4 D. J. Hand and B. S. Everitt

can answer, but it can lead to fundamental misconceptions of the
researcher’s aims. Moses and Louis (1984) give an elegant little example
of'this, illustrating the importance of understanding what the measurements
mean and how they were obtained: the statistician is presented with two
measurements of phase angle, 10° and 350°, and works with their average
of 180°. Because of these sorts of difficulties Cox (1968) has suggested that
there should be texts describing other scientific disciplines specifically
aimed at statisticians, just as there are statistics texts aimed at other
scientists. Indeed, recognising this symmetry of the client/consultant
relationship, Sprent (1970) concludes his taxonomy of clients by saying:
‘Whether or not an experimenter fits neatly into one of the above
categories, a collaboration will never be helped by our sneering at his
statistical ignorance. I shudder to think how often I have appeared naive
when talking to experts in another field about their speciality.’

Several authors take the symmetry further, and suggest that one of the
roles of the consultant statistician should be as teacher, educating the
researcher in statistical methodology. From this it also follows that what
is an ‘optimal’ solution in practice may differ from what is ‘optimal’ in
theory. A complex multivariate repeated measures analysis of variance on
logged data may be perfect from the theoretical statistician’s viewpoint,
but if the client has no hope of understanding it then it is worse than
useless — worse because of the reaction it will provoke and the role
misconceptions it will create.

A problem which seems ubiquitous in modern life is lack of time. In
statistical consultancy this can manifest itself in two ways. The first is the
client’s lack of time: he needs an answer by tomorrow at the latest. This
might be because he is under pressure from his boss, because his business
will collapse if an answer is not available, or because he is presenting the
results at a conference the day after. It might simply be that he knows that
computers are immensely fast and so does not see any problem in
producing a result within a few minutes or hours at most. Of course, apart
from the basic misconceptions in this notion, it also reflects poorly on the
client’s understanding of the other pressures on the statistician. This is the
second kind of time pressure : the statistician’s lack of time. For statisticians
who function in a service capacity this can be a very serious problem. Often
there are ten other clients queuing outside the door while one is grappling
with the intricacies of some complex data set. The temptation, of course,
is simply to adopt the most straightforward procedure as a solution, and
then have to live with the feeling that one could have done so much better
if only one had had the time to consider the problem properly.

Often the complex data set referred to above was collected without first
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seeking the advice of a statistician. Not infrequently years of effort have
gone into collecting the data. This complaint, that the statistician was
called in too late, is a common one. At its worst it can lead to the waste
of vast sums of money or the abandonment of a PhD. Helen Kraemer
(quoted in Moses and Louis, 1984) says:
If consultation is at the post hoc stage, it may be that the
objectives cannot be accomplished (sampling bias, poor design,
etc.). It is the statistician’s responsibility to state this frankly. We
cannot do magic, and we can’t participate in cover-ups. It is as
well that researchers know our limitations in advance. This is a
particular problem when the first consultation takes place after a
research paper is rejected for publication because of poor method-
ology. Not much one can do!

(It is interesting, however, that Daniel (1969) says: ‘Some statisticians
would say that the only favourable time to enter a research project is at
its beginning. My own experience does not confirm this. I have entered
projects at all stages of their development. I do not see any connection
between my stage of entry and my success or failure.”)

Another pressure influencing the consultant/client relationship is the
less obvious one of ethical issues. These are, of course, well known in the
medical field and perhaps also in social applications of statistics. But they
occur elsewhere as well. An example would be in a university environment,
where moral problems can arise with the students seeking help: just how
much statistical advice should one provide? Whose PhD is it anyway?

3 A taxonomy of statisticians
We have presented, above, a typology of the client. In fairness we
must also present one such of the consultant. Hyams (1971) gives us the
following:
1. The Model Builder fits any and every data problem set to a
model he is presently interested in or knows something about. It
matters not whether he investigates the questions that are being
asked by the client or those that are biologically important. For
that matter, this type isn’t really interested in hearing the client’s
story. He had posed his own a priori questions before the client
knew him. The Model Builder is like the drunkard looking for his
lost key under the street lamp although he dropped it in the dark
alley. He justifies his search by pointing out that there is light in
the place he is looking.
2. The Hunter is the statistician counterpart of the Numbers
Collector who directs you to ‘mine the mountain’. The Hunter
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will subject every data set to an exhaustive and extensive computer
analysis. For a relatively simple problem with scanty data he will
ultimately present the investigator with 14 vertical inches of
print-out, containing 17 significant results. These numbers do not
bear a relationship to anything on the face of this earth except
themselves. While the client may initially accept these authoritative
materials with reverence, it will not take him long to figure out
that he has a bag of wind.

3. The Gong is a consultant who starts every conference by
drawing a bell-shaped curve.

4. The Traditionalist is convinced that nothing really important
has happened in statistics since R. A. Fisher and consequently
limits himself to a restrictive working vocabulary. He views the
computer as the devil’s work.

5. The Randomophiliac firmly believes that it doesn’t matter what
else you do, as long as you’ve randomised well. He is like the
mother who catches her 14 year old daughter in a sexually
compromising situation and admonishes her by saying “as long
as you don’t smoke, honey”.

6. The Quantophreniac’s position is: It doesn’t matter if you
observe what you want to so long as you get a hard measurement.
7. The More Data Yeller (he needs no further description).

8. The Nit Picker will always focus his attention on the incon-
sequential but debatable. He will enlarge minor issues out of
reasonable perspective and quickly reduce a real and tremendous
contribution to a potentially horrendous error in reality testing.
(My manuscripts are usually reviewed by this type.)

To these we might add the problem stealer (who decides that every
problem would make a perfect project for his students, to be begun next
summer; from this G. J. Goodhardt (1970) derives his ‘rule 1 of the
business — never consult an academic in October’) and the allied problem
solver (who, as Goodhardt (1970) says: ‘finds great interest, not in my
problem, but in some other problem that mine suggested to him. This may
take the form of a wider generalisation of the conditions which
unfortunately does not happen to include the special case I started with,
or a detailed description of the intricacies of estimation in small samples
when I have a sample of size 5000.’).

One hopes that this is just a list of inadequate types, the good and
competent ones having been omitted from the list.

These caricatures at least make it clear what we should strive to avoid.
Presented with them one might justifiably ask how we should go about
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training effective consultants. This question is dealt with in a number of
places (for example, Committee on Training of Statisticians for Industry,
1980; Boen, 1972; Griffiths and Evans, 1976; Tarter and Berger, 1972;
Watts, 1970; Zelen, 1969; and Zahn and Isenberg, 1983). This book is, we
hope, a further answer, complementing the advice on training given in the
above by exposing the reader to a taste of the wide range of problems that
will be encountered in the life of a statistical consultant.

4 Statistical domains

It has been suggested that after one’s formal training in statistics
(to BSc, MSc or PhD level) it then takes a further three years functioning
within a particular application environment before one attains sufficient
competence to act as an independent consultant. The reason for this will
be partly the need to acquire the personnel skills mentioned above, partly
the need to adjust to the problems of real data (missing values, outliers,
multiple sources, etc.), and partly the fact that different areas of application
place different degrees of emphasis on different techniques. The extent to
which this is true is illustrated by the fact that, even within statistics itself,
the technical term ‘theory of reliability’ has two quite distinct meanings.
One refers to the reliability of (for example) complex machines, and the
other to the consistency with which measuring scales yield identical results
(in the behavioural sciences).

Application domain is just one type of categorisation which can be used
to describe statistical consultancy work. A second is the working
environment. For example, the statistician might be an academic who
spends a small part of his time (voluntarily) advising people; or he might
work from a service unit, with his primary function being to advise; or
he might be a freelance consultant, who eats or goes hungry according to
the success of his consultancy work. These three types have very different
roles and requirements.

The academic can afford to look merely at interesting (to him) problems,
can afford to be sidetracked to more interesting ones (if a client does not
return for more advice it does not personally damage the statistician), and
he may not be part of a team.

The statistician within a service unit is obliged to answer, or attempt to
answer, the questions of anyone who knocks at his door. There is a danger
that the role of the statistician, as a scientist in his own right, will not be
properly perceived. Armitage (1970) says that as much as possible of the
service function should be handed over to the client himself. (In fact
Armitage prefers the term ‘advisory work’ unless there is a commercial
agreement, a point with which we agree.)
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For statisticians who fall into either of the above categories it is
essential for precise roles to be mapped out beforehand. Is it to be a col-
laboration, with both names appearing on any subsequent publications?

In contrast, for statisticians in the third class — that of the freelance
consultant — the roles are already well delineated. The financial motivation
sees to that.

5 Computers and statistical consultancy

Computers, of course, have revolutionised statistics. How many
of the case studies in this book would have been feasible without them?
But the real potential of computers is only just beginning to be realised.

The initial impact of computers was to speed up, to minutes, techniques
which previously would have taken days or weeks to apply by hand. This
has had the consequence of much more widespread application of these
methods and of pushing the applications further to bigger and more
complex problems. Much more interesting than this, however, has been
the development of new techniques for which the computer is absolutely
essential and which, without computers, just would not exist. Examples of
such children of the computer age are log-linear modelling, kernel density
estimation techniques, and bootstrap methods. There is no evidence that
progress in this direction has stopped. Developments are continuing, and
the advent of cven more potent computers makes the prospects truly
exciting.

Apart from the development of new techniques, developments in com-
puters seem likely to revolutionise statistical consultancy work from a
different direction, and one which could not have been predicted before
the computer age. This is that of interactive statistical graphics. The
approach to data analysis in laboratories with access to fast and high-
powered interactive graphics facilities is diverging from the more traditional
approach.

Returning from the frontiers to the more mundane, we find widespread
access to powerful statistical packages such as SPSS, SAS, BMDP, etc.
Such packages are easy to use. This means that they can be used by those
who are relatively untutored in statistics. They can equally easily be
misused. Hooke (1980) says: ‘Use [of statistics] has been replaced by
overuse and misuse. Regression is being used in foolish ways in the
neighbourhood of almost every computer installation.” And the rate of
errors in published analyses suggests that the problem is serious (see
White, 1979; Gore, Jones, and Rytter, 1977; and Altman, 1982).

We can hardly impose a moratorium on the use of such packages by
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those who are not professionally qualified, so this has motivated the
development of statistical expert systems, systems which statistically
inexperienced researchers can use to analyse data and which will protect
them from error. (See, for example, Gale (1985), Hand (1984, 1985),
Pregibon and Gale (1984). One of the earliest references to the possibility
of building this kind of statistical expertise into packages is Finney (1970).)
Whether such systems will serve statistics by preventing some of the
criticism which is currently misdirected at it, rather than at those who
misuse it, remains to be seen. In any case, it will clearly be a long time
before such systems can handle the kinds of problems to which this book
is addressed: that is, the problems which lie at the interface between
statistical expertise and expertise in the discipline of the client. Resolution
of such problems requires not only statistical knowledge, but also wider
knowledge of the world and the way it behaves.

6 Conclusion

The problems facing statisticians serving as consultants are
varied: varied not only in the origin of the data and the research questions
presented, but also in the kind of personal skills they will require the
statistician to possess in order to resolve the questions successfully.
Communicating with statistically and mathematically naive research
workers can be an exacting and, on occasions, a frustrating task, and
patience and tolerance are likely to be needed in good measure. Never-
theless, working as part of a team to solve practical problems can be very
exciting, and the intellectual rewards great. The statistician as an expert
on the formulation and manipulation of mathematical models and on
research methodology is in an ideal position to act as a catalyst in drawing
together members of a research team. In this central role the statistician
is far more than merely a second class mathematician.

To become successful consultants, students clearly need to acquire a
grasp of the practical problems they will encounter, in addition to the
theoretical expertise imparted by their courses. It is hoped that the diverse
range of real problems described in this collection will go some way
towards filling that need.

7 Further reading

At the end of this book we present a bibliography of work on the
practical aspects of statistical consultancy. General works which the
reader might find interesting are those by Sprent (1970), Hyams (1971),
Feinstein (1970), and the book by Boen and Zahn (1982).
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Consultants’ cameos: a chapter of
encounters

(The aetiology of a statistician’s paranoia!)

TONY GREENFIELD

What is life really like for the consultant faced with the clamour of
consulters, engineers, scientists, business managers, doctors, each of
whom believes that his is the only problem in the world worthy of your
attention? Can you always muster the humour, the assiduity, the
indominatability, and the extra ten hours a day that you need to cope with
it all? I admit it’s difficult and, just as you all have your tales to expose
these untutored needs of the job, here are some of mine, linked with the
odd word or two of advice. Some of them originate from my time in
industry, others from teaching hospitals, but the characters and attitudes
are ubiquitous.

It was a lovely day. Clouds bustled billowingly white in the warm summer
breeze under the bright blue sky. Too good to be indoors sweating over
a hot computer, I thought, as I locked my car and strode towards the office
building.

¢ Ah, just the man,” came an Ulster evangelical bellow. It was a consultant.
No, not one of us, but one of them. Genuflecting slightly, I tried to excuse
myself, but too late.

‘I just want to ask you a quick question,’ he said, and spread a file of
papers over the nearest car bonnet. The wind grabbed a handful and
distributed them among a dozen wheels. The boy scout in me raced around
retrievingly and then I realised he had me.

‘Perhaps, it’s too breezy here,” he said, ‘Let’s go to your office.’

‘I’'m sorry, but I already have a client waiting, and there’s a heap of
analysis that I’ve promised for others by tomorrow.’

‘Don’t worry. This will only take a moment.” He led the way to my
office, briefly acknowledging the waiting registrar with: ‘I’ll be out in a
minute.’
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At last words reached my lips. ‘I’m sorry, but no statistical question can
be put in just a minute let alone answered. Can you come back next
Monday?’

‘Oh no, it’s much more urgent than that. I have to write the paper at
the weekend. It’s the only time I’ve got. But I see you’re busy so I'll just
leave the file and will call back later.” And without fixing a date he left.

Two weeks passed and I was sitting with another consulter. The big man
entered and interrupted: ‘Have you looked through that file?’

‘Sorry, but I really have been too busy with existing commitments.’

‘Yes, yes, but this is quite urgent now. Do have a think about what
analysis would be best and I'll leave the data later.’

That evening he interrupted another session. ‘There’s the data,” de-
positing a heap of forms. ‘I'll look in tomorrow.’

‘Just a minute,’ I called after him. ‘How do you think I could manage
if all my clients demanded such an immediate response?’

‘Ah, but this isn’t just for anyone,” he said. ‘It’s for me.’

Next week he passed me in the corridor. ‘I don’t suppose you’ve had
a chance to look at my analysis yet? No? Well I really must make an
appointment with your secretary to discuss it with you.’

The file and data forms may still be sitting there yet.

At jazz concerts you may applaud at any moment. Any tricky drum roll
or sax trill will do but it is absolutely de rigueur if you recognise a long
lost favourite melody. The players don’t mind. They even like it. The
clapping urges them into further fanciful flights. But at an orchestral
concert you must keep mum. Not a murmur must leave your lips, nor a
plaudit pass your palms until after the final beat of the baton. A delicate
cough, no more, may be allowed between movements. But it was just then
that my shoulder was tapped. Not the same the consultant, but another
just the same. ‘Lucky I spotted you,” he whispered. ‘Can I have a word
with you in the interval?’
There are many more just like them.

My office door was closed and clearly marked ‘engaged’. I sat behind it,
determined not to be disturbed until I’d mastered a promising technique
offered in the latest journal by a leading theoretician with a sadly obscure
style. (Please note: we applied statisticians are truly grateful for the
continuing advances you offer us but wish you would make them easier
to understand quickly.) The door opened and the head of yet another said:
‘I can see you’re alone so I'll ignore the sign.’

The lesson is: employ a secretary who is not only charming as a
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receptionist but also tough and understanding and have her sit the other
side of your office door, not in a room down the corridor. And learn to
say ‘no’. Not to her of course but to them.

The idea that a statistician is just an artisan who does as he’s told and
doesn’t need to think, came shortly after a new boss was appointed above
me in the industrial laboratories. This coincided with the introduction of
a new staff grading system which was clearly designed to upset as many
people as possible. The new manager quickly made his mark. He was
better placed than the old hands to do this because he was able to grade
staff according to his snap perceptions of their jobs without being
influenced by past personal familiarities. ‘ Y our section provides a technical
service,” he said. ‘You are not scientists, but technicians. Naturally, as
section head, you will be graded as a senior technician.’

Appeal to professional qualifications, job advertisements, published
salary surveys and authorship lists in scientific journals, quickly overcame
this view and we became friends and, almost, equals. But the incident does
introduce an attitude that exists among some of our clients: that we are
simply technicians equipped with a bag of tools from which we must draw
the right one to tackle the job in hand. Very often the client will even tell
us which tool to use.

A man from an engineering research laboratory had read that the
F-distribution was that of the ratio of two chi-square variates, so he
brought me some chi-square estimates from a set of contingency tables
asking me to refer the ratios to my table of the F-distribution. When 1
demurred, saying that I should prefer first to understand the main research
problem before considering how the data should be treated and the
estimates tested, he challenged me with: ‘You are the statistician, aren’t
you? [Note the ‘the’, as if I were ‘the’ plumber.] Well let’s get on with
it. I just want a simple test doing and then I won’t waste any more of your
time.” I am happy to report that he left unsatisfied, but sad that his opinion
of me was ‘unhelpful’.

Another amateur statistician who knew just what he wanted was a general
practitioner who was comparing the incidence and treatment of myocardial
infarction in his country town with those of a neighbouring town.

He arranged a meeting with me and asked if two other members of my
department could be present. At the agreed hour he trooped in with his
entourage and suddenly there were eight of us sitting round the table. He
produced his pile of data forms and a list of instructions: the tables to be
printed, the tests to be done, and the timetable for the work. Tentative
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questions about the relevance of his plan surprised him for their effrontery.
After all, it was his research and any suggestion for treating the data in
a different way implied criticism of his own professionalism: we were there
to compute.

The lessons from both these examples are: avoid, if you can, getting
involved in any study so late in the day that you cannot influence its
definitions and design. Preliminary talks about a study should be between
you and the principal researcher only and not in a working group or
committee.

One of the advantages of an early meeting with just one person is that
it doesn’t matter if you know nothing at all about the subject of the study.
Indeed it’s often an advantage that will enable you to learn much more
than if you appeared to be knowledgeable. It will also help to clarify your
consulter’s own mind. Naivete is strength: admit your ignorance. Insist on
a clear description of what it’s all about from the most elementary level
possible. Simply keep asking questions with a bland look upon your face.
Even if you do understand much of the subject in advance, keep it to
yourself. Pretend an ignorance. Then occasionally allow some of your
knowledge to slip out, but do it as if you had just begun to see the picture,
as a tribute to the consulter and his ability to explain. Generally stick to
simple questions, like * What do you hope to achieve?’ and ‘How will you
know if you’ve done it?’ But also show your eagerness to learn some
elementary chemistry, physics, biology, or psychology from the consulter.
Many a person has left my office after an hour or more of such a
consultation, thanking me lavishly for all my help when in fact I have
contributed nothing except questions based on real or feigned ignorance.
Yet there is a real contribution here: it is forcing the consulter to think
clearly in a context that will make sense to those of us who are outside
his sphere of specialism.

Letting slip a little knowledge? Sometimes I can’t resist the temptation to
puncture a client’s pressurised ego. The trick is to find his weakness. In
the following example he pretended the weakness was mine so as to
conceal his own.

The rheumatologist responded well to my air of innocent ignorance. He
confessed to being a leading expert and implied that his leadership was
global. His gratuitous tutorial on the structure of joints and their
pathological processes was increasingly patronising until he said: ‘ This is
where free radicals come into play, but I won’t waste time explaining that
to you because you couldn’t possibly understand the theoretical
chemistry.’
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‘Oh don’t worry about that. I'm familiar with the physics of free
radicals, especially the superoxides.’

‘You are? But none of the biochemists in the hospital know about it!’

‘Ah, but I’'m a mathematician.’

Thank you, Stephen Potter.

There may even be occasions when, with some courage, it is worth
declaring your ignorance publicly. After all, the purpose of any meeting
should be to learn from each other and not to show how clever we are.
At a meeting to share knowledge about breast cancer between scientists
of mixed disciplines, a physician began to lecture us about the technique
of oestrogen receptor blockade. Within a few minutes it became apparent
that he expected us all to be as familiar as he was with histology, cytology,
endocrinology and the biochemistry of RNA mediated protein synthesis.
I couldn’t take it. So I stood up and, cupping my hands to my mouth,
bellowed ‘stop’ like the man who used to bring London’s traffic to a
sudden quiet standstill in the old wireless program ‘In Town Tonight’.

‘I really am sorry to interrupt you,’ I told him, ‘but I honestly do not
understand what you are talking about and I suspect there are others in
the audience who don’t either.” Heads were nodding in agreement. ‘ Could
you please start again?’

He was a very nice chap and took it very well. He started again with
a crystal clear exposition. An hour later not only the statisticians but some
of our more medical colleagues agreed they now understood the subject
better. I fancy that our lecturer may have done too.

Similarly, ignorance of statistical methods by the consulter is acceptable
if only he will admit it as honestly as you admit ignorance of his subject.
But it can pose problems. There were three arms in the drug trial: a
placebo and the new drug administered with two dosages. The response
was measured just before administration and at several subsequent times.
Although multiple z-testing seems, from what is published in the medical
journals, to be standard practice, a comparative time series analysis was
indicated and was done. But the client didn’t understand it and pleaded
with what you must all have heard many times: ‘ All I want is a P-value!’
But at least he knew he didn’t understand and was willing to be guided
through an explanation.

Hyams (1971) told us: ‘The consultant should not offer solutions that
are beyond the comprehension of the experimenter or his ability to
describe them.’

On the other hand, how do we deal with the man who is so ignorant that
he is totally confident of his false knowledge? Unless you can refer him
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to another consultant who will support you, perhaps the only way is to
let him sink in his own mire. But then, can you live with the knowledge
of the consequences?

An engineer asked me to derive a function relating the tilt of a ladle to
the volume of liquid steel remaining in it. The ladle was a truncated cone
s0, if it were tilted to pour out some steel the surface of the remaining steel
would be a conic section. If the edge opposite the pouring edge was
touching the ladle wall, the surface must form an ellipse. ‘Nonsense,” he
said, ‘the edges have different curvatures, so the surface must be
egg-shaped.’ I tried to assure him that a far greater mathematician than
me, a chap called Euclid who had lived in Alexandria two millennia before,
had settled the matter for all time. But he wouldn’t have it and went away.
His confidence in me was destroyed and now, somewhere, there is a
foundry whose casting yield never quite balances.

I was reminded of Good’s aphorism: ‘Half-baked ideas of people are
better than ideas of half-baked people.’

Others must be admired for their persistence.

Our statistical assistant came in. ‘ Doctor X wants me to analyse his data
to find an association between blood alcohol and sugar levels in a certain
class of patient.’

‘Have you told him he should see one of the lecturers first?’

‘Yes, but they’ve all told him to go away.’

‘Why’s that?’

‘He has only five observations,’

I couldn’t speak.

‘Will you see him please,’ said John. ‘I don’t know what to do.’

Doctor X appeared and confessed his story. He’d first approached a
member of the department more than six months before. He had had five
observations then and had been advised to write out his objectives as a
preliminary to designing an experiment and collecting more data. Instead,
he had written to the organisers of an international conference offering
to present the results of his research. He had then, at intervals of
several weeks, visited other statisticians and been given much the same
advice.

But he still had only five observations. The international conference was
next Thursday and he had 15 minutes allotted to address several thousand
specialists.

“You must withdraw immediately,” I told him. ‘ They’ll howl you off the
platform.’

*All I want is a simple answer,” he said. ‘Why can’t you statisticians be
more helpful?’



2 Consultants’ cameos: a chapter of encounters 17

His cussed nature allowed him no retreat, so I had to help him. My
advice was to show a plot of the five points, to declare that there seemed
to be an association but there was nothing at all certain, and to argue that
this might constitute a hypothesis on which further research might be
based. Simple enough?

Two weeks later I met him in the park. ‘You’ve survived then?

‘It was a triumph,” he said. ‘ They were all very interested and want me
to go back next time with more data.’

Then there are those with too much data.

The phone rang. ‘ Are you the statistician?’

‘Well, just one of a few about the place.’

‘T’ve just moved from Birmingham and was told you could help to move
my data file.’

‘Perhaps I could, but somebody in the computer centre would be better.
I’ll give you a name and phone number.’

‘Well, when that’s been done, may I talk to you about the analysis?’

‘What do you have in mind?

‘Nothing in particular. I thought we should just look through the data
to see if we can spot any relationships.’

‘Oh yes! And how much data is there?’

‘About 100 variables on each of about 10000 cases.’

I find it hard to sympathise with, let alone willingly help, a man who
has submitted 10000 patients to detailed examination and questioning and
who has, regardless of cost to the nation, printed 10000 forms, consumed
countless clerical hours for coding and data entry, and grabbed so much
precious computer time and storage space. Nor could I ignore the damage
it might do to my own reputation if it became known that I were
associated with such a pointless venture.

And don’t believe you can always control the publicity. In another study
there were only 99 cases but with 72 variables. Submitting to pressure, I
gave the client the correlation matrix he’d begged, but with the caveat that
this was only to let him get a feel for the data, that no inferences were to
be drawn until hypotheses had been clearly stated, used for the design of
an experiment upon which further data would be collected, and estimates
and tests properly done. Two years went by and I’d forgotten all about
it until a paper arrived on my desk, with his compliments, and me as a
co-author. The paper was based on those few correlations which had
happened to be high. He really believed he’d been nice to me.

The lesson from all these examples is: Do not embark on any project
until the objectives, constraints, costs, and publication proposals are
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properly documented in a letter, memorandum, or standard job
form.

If you do use a standard form, make sure it’s watertight. I was asked
to design a form for the local medical research ethical committee, to be
used by applicants for approval for their projects. Seizing the opportunity
to promote the indispensability of statistical consultancy, I included the
question: ‘Have you had statistical and/or computing advice? If so, from
whom?’” When the forms had been in use for some months I was reading
some applications and came across one that, at best, was dubious. Yet the
applicant had named a member of my department, implying that he had
approved it from the statistical viewpoint.

‘Has this man really consulted you?’ I asked the statistician.

‘Yes he has. And I advised him not to do it!’

The form has been changed. It now includes the statement: ‘If you name
a local statistical adviser attach a letter from him.’

My involvement with the medical research ethical committee exposed me
to the still persisting belief of some people that it is not the role of the
committee to question the scientific basis of a study including its experi-
mental design. You may be familiar with the sentiment: ‘ This is supervised
by Fred. Fred’s a very nice fellow and wouldn’t hurt a fly so the study will
certainly be done ethically.’

It is a role of the consultant statistician to sit on such committees. In
other sciences and in industry there are similar committees but their main
criterion is the economic management of resources rather than human
ethics. But, in either case, the vetting of their people’s research can lead
to difficult confrontations. A post graduate student attached to an
industrial laboratory proposed a study to determine the relationships
between various compositional and process variables and the mechanical
properties of a certain class of material. His intended tests would take just
under three years which, coincidentally, was the time covered by his
research grant. When 1 showed that experimental design would enable
better information to be obtained in only three months, the management
were pleased but the student was very upset for a while, believing I had
sabotaged his career. Fortunately he soon realised that there was more he
could do with his time.

But a dispute with a Very Important Person can lead to permanent
personal severance. For even though the committee procedure should
protect the anonymity of its members, the nature of some criticism makes
its source obvious to the VIP. In a study of the use of acupuncture for the
prevention of vomiting when narcotics are administered, the VIP intended
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to use historical controls who had had an anti-emetic drug instead of the
acupuncture. This was because he hadn’t thought of the acupuncture trial
until after the original series. I opposed the use of historical controls
believing, for several reasons (see also Pocock, 1983), that they would
almost certainly lead to biased results:
1 The rules and forms for the study had not been specified before
the historical treatment series.
2 There may have been a change in the type of patient available
for treatment.
3 The examining clinician might be more restrictive, either deliber-
ately or subconsciously, in his choice of patients for acupuncture.
4 Those who evaluated the response might be influenced by the
knowledge of the different treatment.
5 Patients’ attitudes might be different if they knew they were being
studied as a special group.
6 It would be difficult to deal with the refusals because even the VIP
could not know which of historical controls would have refused.
There were some other reasons for opposing the study but these were the
main ones. They led to long arguments, high emotions, and permanent
loss of friendship.
Lesson: It is difficult to maintain cool scientific critical detachment.

It may surprise budding consultants that even when researchers acknowl-
edge that statistical advice is sound and of great economic value, the
advice is not always taken. _

A problem with giant oil rigs is that their welded node plates may
eventually fail because of fatigue. A collection of laboratories decided to
study the geometries, the welding methods, and the operating conditions
that might be controlled to reduce the risk of fatigue failure. They designed
a massive experiment costing several million pounds. In effect, each
laboratory would study the effect of one factor. This is dubbed “classical
experimentation’ which every applied statistician knows to be grossly
inefficient when more than a few factors are involved. Such experiments
still persist and it should be part of a consultant’s training to prepare to
counter the classical.

In the case of the oil rigs, somebody did mention the possible inefficiency
of their proposed study and I was asked to advise. It was quite difficult
because there were 12 factors with from two to five levels each, giving a
possible design space of 576000 points except that some of them were
barred by constraints. A fractional design could yield all the necessary
information at about a tenth of the cost of their original proposal: a saving
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of millions. However, although they paid for the advice, they did not take
it because conservatism among the majority of laboratories forced them
to stay with the classical and it was not possible for me to tour them all
and to convert each in turn.

It will surely have occurred to you by now that most of the anecdotes of
consultations are tales of woe. But these are where the lessons are to be
learned. Most research reports are synthetic (as Descartes told us in his
Methods of Discourse long ago) and are thereby dishonest because they
only report success and the authors’ brilliance, omitting the failures and
wild goose chases. In personal terms, I enjoy being associated with
unqualified success. In professional terms we should all be honest and
objective with our colleagues, even if it hurts: this is implicit in our
professionalism. We gain by recognising and talking about our mistakes
and those of our colleagues.

I have been associated closely with only two major multicentre studies.
The first was bad and the second was good.

The cot death study (officially ‘A multicentre study of post neonatal
mortality’) aimed, among other things, to describe the epidemiology of
children who died between the ages of one week and two years. It involved
three years of data collection from eight centres. There were in that time
in those centres about 1000 deaths and data were collected for about the
same number of controls who were matched for age only. The data were
coded onto 15 separate forms for each case, resulting in 1852 variables
whose values were punched onto 45 80-column cards. I joined the study
as the data collection period was drawing to a close. And found some
problems.

There were several laudable achievements from the study. One of the
most outstanding was the wide acceptance of home visiting of the
bereaved families as a valuable social service as well as a means of
investigation. Another was the acceptance of the case conference as a
valuable seminar for people from the local health services with a mutual
interest. The study also clearly demonstrated the difficulties of getting
totally committed and willing participation from all those who must
cooperate fully if any venture of this nature is to succeed. Yet I remain
sceptical of the study for the following reasons.

1 There was an absence of:
« plans for data processing
« a pilot study, and hence of a pilot study analysis and a pilot
study report that should have been used in designing the main
study



2 Consultants’ cameos: a chapter of encounters 21

« a full explicit set of hypotheses to be tested, or even any clearly
stated hypotheses

« a clear protocol for all data collection and coding, and hence
of coding consistency

« any protocol for data analysis with reference to prior stated
hypotheses

« any management scheme and progressing system

« training for standardisation of the participants: coders, inter-
viewers, pathologists, health visitors, clinicians

2 The forms were largely useless for coding data for statistical
analysis with reference to hypotheses on test. There were far too
many variables and yet no core set of information that was
recorded for every case.

3 There was poor cooperation between clinicians and pathologists
with a history of personal clashes.

4 There was a history of major decisions during the course of the
study that altered its course.

5 There was bland disregard by some of the pathologists of some
of the questions on the forms.

6 There were difficulties in obtaining some population data.

7 There was staggered entry into the study by centres and by
districts within the centres.

8 There was continuing discussion, even long after the end of the
observation period, about detailed objectives.

These problems led me to make the following brief notes for consideration
in the organisation of any future multicentre study.

1 Exact dates for observation should be agreed by all centres and
areas within centres to avoid the problem of staggered entry.

2 All jobs should be standardised before the pilot study and again
before the main study. This means training all observers and
coders.

3 A system should be established for reporting all births in partici-
pating districts to the study so that controls can be properly
chosen.

4 Similarly, all deaths in the districts should be reported to the
study.

5 At least six months should be spent preparing the ground, in
explaining in detail the full protocol and the rationale for it to all
workers involved.

6 There should be a system for collecting information that does not
require any hospital notes to be borrowed by the study centre.
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The multicentre study for the evaluation of the medical effects of the seat
belt legislation followed these points as closely as their relevance indicated.
Patients from car accidents arriving at eight hospitals in England, two in
Scotland, one in Wales and four in Northern Ireland in the year before
and the year after the introduction of the mandatory wearing of seat belts
in the front seats of cars were compared. The study was designed to
supplement the national statistics for dead and injured victims of road
traffic accidents by showing the effect of the legislation on patients with
injuries of different severities and by establishing the relative frequencies
of injuries to specific organs before and after legislation. In any major
survey such as this, with many variables and cases, it is tempting to indulge
in data-dredging: continuing to look through the data to discover effects
that have not been thought of beforehand. It is always possible to think
of new ways of presenting data as you dredge through it and think of new
effects to test. This would certainly lead to spurious inferences and a great
waste of time. To avoid this danger, we stated in advance a small number
of the most important hypotheses: only 17. Although we did not restrict
our statistical analysis to these hypotheses, we confidently claimed statis-
tical significance only when it was based on a prior hypothesis.

The next examples illustrate the value of getting involved with the dirty
end of the problem. It is not enough for a statistical consultant to stay
seated behind his desk and say: ‘State your objectives and I shall design
your experiment’; or ‘Bring me your data and I shall analyse them.” You
must dive into the deep end and discover the real difficulties of experimental
management and the real sources of error in data collection. A few
practical examples:

A long time ago, when steel was still made in open hearth furnaces, there
was a trial to discover the best technique for sampling the liquid metal
during the course of steelmaking so that it could be analysed to determine
the oxygen content. All the samples couldn’t be taken at the same time,
because the oxygen content changes. The trial was an inter-laboratory one
with representatives from eight laboratories. Each was testing three
sampling techniques during both the oxidising period of the steelmaking
and the reducing period. We all stood on the deck at the side of the
frothing inferno: I with my stopwatch and sampling schedule, shouting
orders to the participating chemists. Each stepped forward at my command
to thrust his sampler into hell. Some fell off and dissolved (the samplers,
not the chemists). Eventually, each solidified sample was sliced into several
for repeat oxygen determinations. Finally, there should have been 840
determinations but, because of losses, there were only about 530 and the
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dataset was very unbalanced. Lack of experience and confidence urged me
to seek the advice of a well-known academic. ‘ Tell them to do it again,’
he said.

Staying with oxygen, I planned another inter-laboratory trial for
determining the low oxygen content (weight in parts per million) of rolled
steel bar. A length of bar was cut into 2-centimetre pieces which were
numbered and randomly allocated: nine pieces to each of ten laboratories.
It was clear, when the results were returned, that there were some outliers.
The question about outliers is: what should be done about them? Should
they be rejected because they are obviously wrong’ as some people argue,
or should they be retained because they do represent the natural distribution
of errors of determination? My own view is that we should try to find out
why the measurements are so far out. Are there errors in measurement,
in calibration, in test procedures, or in the source material? Checking back
through the randomisation plan, I found that the three furthest outliers
had been neighbours in the original bar. This suggested a physical fault,
but it could be a coincidence. The three pieces were retrieved from the
laboratories. Microscopic examination showed blow holes in the specimens
which accounted for their high oxygen determinations. There was now
complete physical justification for excluding these three values from the
analysis which then showed no exceptional outliers.

Another example of the value of involvement with the practical side of
research came from a paediatrician who was developing a technique to
determine the gastric emptying and secretion rates of babies. This involved
putting measured amounts of water into the stomach, with varying
concentrations of dye, at several times, withdrawing small amounts with
a tube and syringe and measuring the dye concentrations in the samples.
The development was being done using laboratory flasks to simulate the
babies’ stomachs. The data he gave me behaved very strangely and it was
only when I sat in the laboratory with him and actually did some of the
procedures myself that I was able to identify several sources of biasing
error, such as unmeasured residual liquid in the tube and inadequate
graduation of the syringe. But even more important: it helped me to
understand more clearly the physical and biological context.

Experience will lead the consultant to be suspicious of data and to be
sceptical of claims by the researcher so that it may be possible to identify
sources of error without moving from the desk.

A metallurgist had a series of 32 casts made in the laboratory’s 10-kg
furnace to estimate the effects on toughness of several alloying elements.
Manganese was specified to be constant throughout at 1.5 per cent but the
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resulting chemical analysis showed a little variation about that figure. ‘ But
there’s no need to include it in the statistical analysis,” he assured me,
‘because the variation is completely random and is so small as to have no
effect on the mechanical properties.” A simple plot of the data supported
his belief, but the next day I asked him if there had been any change in
the operating practice after the fifteenth cast. He was surprised but
checked the laboratory log book and found that one operator had made
the first 15 casts and another the next 17. He was even more surprised
when 1 told him that I had suspected this from the manganese figures,
having done a cusum analysis.

Incidentally, this was the same experiment in which regression analysis
gave a negative coeflicient for vanadium in predicting toughness. ‘ Ridicu-
lous,” he said. ‘Everyone knows that if you want a tougher spanner, you
buy one with some vanadium in it. Your computer program is obviously
wrong.” I knew it wasn’t, and appealed to him to think again about the
effect of vanadium at the levels he’d used and in the presence of other
alloying elements, considering also the interactive terms that had been
estimated. Two days later he returned. ‘The results are exactly what
should have been expected,’ he said. Which again reinforces the point that
you should make the consulter document his detailed expectations; that
is: record his prior hypotheses.

The counterpart of the consulter who treats you as a technician, is the one
who believes you are a brilliant originator. The distribution of responses
to an anaesthetic was skewed. I logged them and the distribution became
symmetrical. The research anaesthetist thought this was an amazing
discovery and wanted to write a joint author paper on the ‘original
technique’. Fortunately he didn’t publish without asking me first. But
beware, there are some who will!

I was describing the logrank test for survival data comparisons to a
small group. Afterwards a man, whom I didn’t know, borrowed my foils
for a few minutes. I suspect he photocopied them and am living in dread
of reading a paper in which he credits me with originating this ‘useful test’.

A final point is a grumble about consulting fees. Many statistical
consultants sell their services too cheaply. I suspect this is because, as
academics, they already have adequate salaries and see part of the
reward for consulting as the source of material for teaching.

Peter had studied the waiting and processing times in an engineering
works and had devised a new scheduling system. He didn’t know how
much to charge for his work.



2 Consultants’ cameos: a chapter of encounters 25

‘How much will your system save them?’ I asked.

‘At least £20000 a year.’

‘Well charge them £2000.’

Two weeks later he told me he’d been paid £100 and was happy with
it.

The 1 per cent rule is often recommended for the independent consultant.
Decide on a fair annual salary for yourself then charge a fee of 1 per cent
of that for every consulting day. But you may find that the consulter knows
Peter.

However, when you are estimating time, never forget Hofstadter’s law:
‘Every job takes longer than expected, even after taking into account
Hofstadter’s law.’

Summary of advice for the consultant

o Try to be knowledgeable about all basic science and its
applications.

« Play dumb.

« Never give as much information to your clients as you get in
return.

« Charge high.

« The best advice is usually simple advice.

« Don’t be too willing to help. If your plate is full say ‘no’ to more.

« Lock the door, switch off the telephone, and refuse to discuss
professional problems in the car park or concert hall.

« Work to appointments.

« Don’t do emergency #-tests for the man who must submit his
paper tomorrow.

» Document prior hypotheses.

« Insist on equal status.

« Avoid late involvement.

« Refuse to dredge data.
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Straight consulting

V.BARNETT

The existence of a strong consulting interest in a university department of
statistics (perhaps operating through the provision of a statistical advisory
service to colleagues throughout the university) can provide vital lifeblood
to that department. It enables the department to keep a high standard
within its organisation, in demonstrating that staff are interested, com-
mitted and competent in helping others in applied disciplines with the
inevitable statistical problems that they face. In return, it provides the
statistics department with a most valuable source of material for teaching
within a real-life context, for postgraduate students’ projects, and indeed
for the development of fundamental new research.

Apart from a willingness to undertake such advisory work the consultant
statistician does need to have, or to develop, some rather special skills.
Some aspects of this matter are discussed in Barnett (1986). I have talked
elsewhere of the role of the consultant statistician as ‘Jack of all trades —
master of one’ (Barnett, 1976) and this ubiquitous nature is very much a
required characteristic. It is essential that the consulting statistician is able
to immerse himself quickly, in an almost chameleon-like manner, in the
intricacies of the client’s special area (be it heart valves or horse teeth) and
to offer the sympathetic communicating manner of the archetypal psychol-
ogist in drawing out his client and, at the end of the day, in handing
back intelligible, and sometimes not necessarily welcome, conclusions.
As I remarked earlier (Barnett, 1976):

He must be versed in, and capable of handling, the vast array of
statistical ideas and methods per se. To understand and innovate
he needs sound mathematical knowledge.... But...what is of
paramount importance is the ability to apply statistical knowledge
to real problems. In this respect ‘the statistician must be a
translator and communicator: he needs to understand enough of
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other people’s disciplines to appreciate their problems. He must
express these in statistical terms, in cooperation with the experi-
mentalists, develop and use appropriate tools, and most impor-
tant, communicate answers in an understandable way. So it would
seem that he has a somewhat wider brief than many—as a
mathematician-statistician, a computer, a lay philologist (physic-
ian, nuclear physicist, you name it) and not least a communicator
(this latter facility is not usually regarded as the stock in trade of
the scientist!). All in all he needs to be master of his own statistical
trade, but Jack of many others.
An apologetically phrased request from a client to ‘just help me to fit
a straight line to these data’ will be very familiar to most statistical
consultants. Although the request is superficially a modest one it is
surprising how often there is a sting in the tail. We shall consider three
tales where the opening remark was as above, but the developments were
quite distinct. In more than one of the cases there was a need for the
production of new and sophisticated methodology to sort out the problems.
In all cases the modelling aspect was not straightforward and required a
great deal of probing in communication with the client. With at least one
of the problems the outcome was quite counter-intuitive, which placed
serious demands on the consultant in trying to sell his ideas to the client.
The three problems that we shall consider in the sphere of ‘fitting
straight lines’ arose from the areas of archaeology and medicine, and the
methods fortuitously involve us in considering different aspects of the
study of a specific field of study: the use of structural and functional
relationships. This topic of ‘regression with errors in both variables’ is one
in which much still remains to be done from the methodological point of
view, although important results have been produced over recent years,
sometimes indeed from the very sorts of practical problems described
below.

1 Firstly fossils, but not straightforward

As a young and raw member of academic staff my first consulting
experience came as a sharp shock. An archaeology PhD student just
needed a little help in fitting a straight line to some data on the lengths
and breadths of a particular type of (orientatable) fossil shell! The typical
data set is illustrated in Figure 1.

Initial relief at just a linear regression problem soon evaporated. There
were so many counter indications. The relationship looked non-linear:
should we fit a polynomial model? But no: the client gave his assurance
that the archaeologists had always believed that lengths (x) and breadths
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() were linearly related. On probing, however, he recalled a ‘somewhat
irrelevant’ piece of information: that there is a fundamental change of
shape of the shell with maturity. Perhaps then we were needing a piecewise
linear model with an unknown change-point for the slope parameter. In
regression terms the model might be

oh+Bix+e (x < xp) )
- {a2+ﬁ2x+3 (x = x)

with (o — o)+ x,(f; — ) = 0 and some appropriately assumed (perhaps
normal) distribution for ¢ to represent the error structure. Even this
model with its essentially four-dimensional basic parameter space
(o, %, By, Bas X, with a single linking relationship) and single nuisance
parameter (the variance of the normal distribution) was by no means an
easy one to fit. Indeed at the time (over 20 years ago) relatively little was
known about this problem. Some proposals had been made by Sprent
(1961) and Quandt (1958). There was soon to be a relative avalanche of
work on this topic with major contributions by Hinkley, Quandt, Watts
and others (see the annotated bibliography of Shaban, 1980). However,
much still remains to be done.

Of course nowadays one also has powerful computer packages (such
as GLIM) that can handle the fitting of generalised linear models but the
model (1), though apparently simple in structure, is even out of this class.

Fig. 1. Fossil data
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But the problem does not rest there. The model (1) implies an asymmetry
of relationship between x and y, with x error-free and y measured with
error ¢ (or at least an interest in a conditional relationship: the form of
y given x). Neither of these was true. Both x and y were error-prone to
a similar degree and the archaeologists were not wishing to predict y from
x, but to describe the intrinsic (piecewise linear) relationship between
them. So we needed a more sophisticated linear model than the linear
regression model. One possibility is a linear functional model where x and
y are assumed to take the form

xX=u+e @
| y=vtn
where the error variables ¢, # are uncorrelated and possibly normal
N(0, 6?) and the relative values of 42 and a3 reflect the relative inaccuracies
of measurement of the two variables. The model is then completed by
declaring that

v=a+pu 3)
and that we observe a specific number (the sample size) of unknown values
Uy, Uy, ..., U, of u. Thus we have two basic parameters a, § and n+2

nuisance parameters (63, 6%; u,, u,, ..., u,); or four and n respectively, if
o? and o% are of importance as basic accuracy measures for the system.

The difficulties in handling the linear functional model (2) and (3) are
now well known (see, for example, Kendall and Stuart, 1973, Chapter 29),
with irresolvable inconsistency of estimation when using the maximum
likelihood method. (We shall pursue this in more detail later.)

But we are still not at the end of our difficulties with this problem. We
really need a piecewise linear functional model where (3) is replaced by

{ ou+Biu (< uy)
U =
+Bru (u>uy)

subject to (a; — o)+ uy(f;, —fB,) = 0. Even to date no-one seems to have
come up with a reasonable method of estimating or testing the parameters
in the model (2) and (4). To replace (4) with a non-linear form such as
v= o+ pu+yu® leads to a somewhat more tractable model (see, for
example, Dolby and Lipton, 1972) but it is of course not really appropriate
for the job in hand.

So a ‘simple’ problem from a quarter of a century ago still awaits a full
solution: the problem of the day had to be handled with the customary
modicum of expedient ad hoccery!

4)
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2 Functional protein
We have already remarked that an essential characteristic of a
university statistics department is its function as a support service for
research and professional work across the spectrum of applied disciplines.
Whether this is achieved formally through an organised statistical advisory
service, or more casually through the goodwill of individuals in contact
with their colleagues in other departments, there is an inevitable flow of
benefit in both directions. Few subjects nowadays can advance without the
proper use of statistical methods: a do-it-yourself application of computer-
based statistical packages is fraught with dangers and we are still far from
the realisation of custom-made expert systems (should this ever be a
serious prospect)! In reverse, regular contact with assorted practical
problems provides the statistician with a flow of research stimuli and
invaluable sources of down-to-earth teaching material. The range of topic
areas will be rich: perhaps extending from ancient history to zoology. But
one thing is sure. If the organisation has a medical school a large
proportion of the clients knocking on the statistical consultant’s door will
inevitably be doctors.
It was from just such a source that my second problem arose. A research
physician showed me some data on the protein levels in the blood and
urine, respectively, of some patients at different dose levels of a drug. (The

Fig. 2. Data on protein levels
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problem is further described in Barnett (1970, 1976).) Typically, such a
(suitably transformed) data set appeared as illustrated in Figure 2. Again
the request was ‘just to fit a straight line’: in this case the research interest
included demonstrating statistically the long-held medical view that the
protein levels in the two sites were intrinsically linearly related.

Once more the complexities began to be apparent. Both variables were
subject to errors of measurement: clearly of fairly substantial order to
judge from the scatter plot. Furthermore there was no interest in predicting
one level from the other. It was a symmetric relationship that was being
sought. So again a linear functional model had some appeal in the form
described by (2) and (3) above. That is, we declare x = u+e¢, y = v+ with
u and v related by v = a+ Su. In the functional model we further specify
that u is a non-random variable: it takes a specific set of well-defined (but
unknown) values u,, u,, ..., u,.

Suppose we complete the model by assuming that ¢ and # are uncorre-
lated, N0, o) and N(0, o), respectively. This might be so if the u;
correspond to distinct patients. We could try to employ the maximum
likelihood approach to estimate the n+4 parameters u,, u,, ..., 4,, 63, 6%,
o and B. The log-likelihood is proportional to

L(x,y|u,0%,0% 0, )= —nln(c,0,)
_lﬁ (xl—ul)z_lf (yi_a_ﬂui)z' (5)

2 2
27 ot 29 o}

One critical likelihood equation takes the form
4% = prat ()

with dramatic implications! Here is an extreme form of inconsistency
which clearly makes it impossible to draw sensible inferences about the
relative values of o3/62 and B! (Consider how to distinguish different
slopes from different ratios of error variance in a scatter diagram.)

So how do we resolve this difficulty? It is not alleviated (as it is for the
related linear structural model of Section 3) by knowledge of the values of
o3 or a3 or the ratio 1 = g%/02 (and it is in any case hard to imagine
realistic situations where such knowledge would exist). For non-normal
error structure we can use ad hoc estimators based on ratios of cumulants
(Geary, 1943) but this is vulnerable to sharp fluctuations if we encounter
near-zero values of the cumulants in the denominators. Alternatively, we
might be able to simultaneously sample a further instrumental variable of
appropriate type and exploit the extra information it provides (see, for
example, Reiersol, 1945), or use variance components (Tukey, 1951).
Special cases of this are the grouping methods of Wald (1940) or Bartlett
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(1949) where the data set is divided into non-overlapping subsets and the
centroids of the two extreme subsets are joined.

The earliest effort to distinguish formally models and examine anomalies
is due to Lindley (1947). For the linear functional model specifically, Solari
(1969) analysed the nature of the difficulty and showed that it arose
essentially from the fact that whatever the value of § the log-likelihood (5)
can be made to approach infinity: no maximum likelihood estimation of
B is possible!

Reviews of results for linear functional (and structural) models up to
about 1974 are given by Kendall and Stuart (1973, Chapter 29) and Sprent
(1969, Chapters 3, 6 and 8). More recent resuits are briefly described in
the Section 4 below.

So what are we to do about the protein level data? In fact, further
probing exhibiting extra features of the problem which lead eventually to
a full maximum likelihood solution and to the fitting of the apparently
strangely placed ‘ line of best fit’ shown in Figure 2. How can one possibly
justify such a bizarre conclusion to the client? Essentially by a lay version
of the following heuristic statistical argument.

We have seen above the difficulty that arises from using the unreplicated
linear functional model (qua (2) and (3)) — equivalent to assuming each
observation to have arisen independently (for example, from different

3 Fig. 3. Behind the protein data (numbers indicate relative weights)
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drug levels on separate patients) and with constant error variances, ¢ and
o2. These assumptions, and that of normality, would be difficult to validate
in view of the relatively small sample size. However, Figure 2 casts some
immediate doubt on the assumed consistency of the error variances: it
looks as if they might increase with the true protein levels # and v. Far
more important, however, was the almost casual comment by the client
that ‘of course, the observations do not all arise from different drug
levels’. In fact there were only five drug levels administered respectively
to groups of 6, 4, 3, 6 and 10 patients. These groups are indicated in Figure
3 from which we do indeed note that the variability seems to increase with
the protein level (or correspondingly with changes in the drug level).

So we are really dealing with a linear functional model with replication
and we might now expect the anomalous behaviour of the maximum
likelihood to occur no longer. Dorff and Gurland (1961) have considered
various ad hoc estimators for the replicated case. But why not try
maximum likelihood? This turned out to be quite feasible, even for the
rather more complicated heteroscedastic model needed in this problem.
Study of several other data sets gave plausibility to a model which said
that var(g) and var(y) both increased with the underlying protein levels u
and v, but in constant proportion to each other. Specifically, the model now
becomes

xij = ui+£i]'
Vi = Uy

where i denotes which of the p drug levels is appropriate, and #; is the
number of observations at that drug level. The error model assumes that
&;; and #;; are independent N(0, %) and N(0, xa?%) (with empirical support
for 62 increasing with u;).

It is now feasible to set up and employ the appropriate more complex
form of the likelihood (cf. (5)). It turns out that we cannot obtain explicit
(closed-form) expressions for the maximum likelihood estimators of
o B, k, 0%, ...,0%, u, ..., u,, but they exist in well-behaved forms and
their asymptotic standard errors can be obtained explicitly. The estimators
themselves have to be determined by an iterative numerical procedure in
any practical situation and that is what yielded the odd-looking ‘line of
best fit’ in Figure 2.

However, an interesting interpretation of the results is available. In
comparison with the likelihood equations for an unreplicated homosced-
astic model it is clear that each group of observations (each drug dose
level) can be thought of as having an ‘equivalent sample size’ of n;/c?
(i=1,2, ..., p). Estimating ¢? from the data, this concept of ‘equivalent

} (i=12...p; j=12..m) 7
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sample sizes’ for the groups leads to relative weights of 46, 5, 4, 11 and
2 (cf. sample sizes 6, 4, 3, 6, 10). It is as if we have just five points of vastly
different weight to which we fit our ‘ best straight line’. Figure 3 shows the
resulting configuration in terms of which the fitted line now becomes quite
plausible.

Of course one would want to do (or to try to do) much more with a
problem of this type: examining many data sets and taking specific
account of dose levels of the drug. But for illustrative purposes it provides
another intriguing example of the complexity of ‘ simple’ problems, of how
things are not always what they seem and of how frequently we need to
do a bit more research on the way to solving the problem. But who would
have expected that the maximum likelihood solution for the replicated
linear functional relationship has not been previously published: perhaps
someone knows an earlier reference than Barnett (1970)!

3 Heavy breathing
Another medical enquiry (the basis of Barnett, 1969) came from
a general practitioner over the 'phone. He wondered if someone at the
university could just help a little with the statistical aspects of a research
study! It concerned the use of two different types of instrument (a
Spirometer: the normal equipment, and a Vitalograph: newly designed)
for measuring human lung function. The matter of interest included how
much air can be expelled in a single sustained expellation: a crucial
measure of ‘heavy breathing’! The particular measure we shall discuss is
the so-called vital capacity (VC) which expresses the volume of the lungs.
The VC can be measured by either instrument. When it was established
that it had in fact been measured on each machine over the same set of
patients, and that relative calibration and relative accuracy were the
matters of interest, warning bells began to sound. The principal features
were errors of measurement on each variable, the need to estimate a
symmetric rather than a conditional relationship, and the relative values
of the two error variances, and no replication. Could we be in trouble

again?
Once more it was sensible to try a model
x=u+e
) ®)
y=ov+ng
with
v =a+pu, ®

where x and y are the observed VCs on the Spirometer and Vitalograph,
respectively, and ¢ and 5 are the measurement errors. Some informal
investigation of the data (a typical example with over 70 patients is shown
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as Figure 4) supported a normal structure. Also, it was more reasonable
here to think of the u (and v) values as coming from a population
(distribution) of patients rather than taking prescribed fixed values. So u
is now thought of as a random variable, and (10) and (11) constitute a
linear structural relationship model. Specifically, the model was completed
by assuming that u, ¢, 7 are independent, My, 62), N(0, 0%) and N0, ¢3)
respectively.

Until about 1940 there was no distinction between different possible
models in the study of ‘regression with error in both variables’, neither
was there any attempt to obtain standard errors of the slope and intercept
parameters, or to estimate the basic error components in the two variables
(i.e. the error variances, which characterise the scatter about the linear
relationship). None the less, there was active interest in the problem from
as early as the 1870s (Adcock, 1878; Kummel, 1879), through the work
of Pearson (1901) and numerous papers in the statistical and economics
journals of the 1920s and 1930s. All the work was concerned with ad hoc
estimation of the slope and intercept parameters, much of it repetitive
(frequently discovering the rather useless prospect of minimising the sum
of squares of perpendicular deviations), and many papers mainly expressing
critical attitudes towards other writers’ proposals. Of course, in the
absence of a formulated model (or models), the arguments remained
intuitive and personal. Also it was impossible to discuss the wider issues
of estimate accuracy and assessment of error variances. As we remarked

Fig. 4. Vital capacity data
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above, it was Lindley (1947) who set the subject on its feet and began to
reveal some of the awkward features of the models from the standpoint
of parameter estimation.

These are readily illustrated for the linear structural model. Essentially,
(uy, v1), (U, V), ..., (u,, v,) constitutes a random sample from a bivariate
normal distribution

N p, o+ Bu, 03+ 02, a3+ fPa?, fot)

The sample means, variances and covariance #, 7, s2, 52, s,,, are minimal
sufficient and the maximum likelihood estimators of a, 8, u, 62, 6% and 632
must be functions of them: indeed we should only need to equate the
sample moments to their expected values and solve the resulting equations.
But there’s a big problem! We have five statistics and six parameters: so
no unique solution. In fact, f is unidentifiable, in distinction from o2, o?
and 2.

It has been pointed out that if we know ¢? or a2, or 62/aZ, or a2 and 62
then we can obtain the maximum likelihood estimators of the other
parameters (see, for example, Madansky, 1959; Barnett, 1967; Birch,
1964). But these are hardly likely prospects! We could also use ad hoc
methods (cumulants, grouping, instrumental variables, variance compo-
nents, etc.) as for the linear functional model. (The case of normal error
structure causes the most problems!)

So we seem to have encountered a snag with the current problem. If only
measurements had been taken twice, on half the number of patients! Such
replication would have avoided the unidentifiability problem.

But again we had not been told the whole story in many respects:
statistical and circumstantial. It fact it turned out that a sort of replication
was present, arising from the fact that each instrument had been used by
two operatives on each patient, even though it was anticipated that
different relationships might hold for each operative as well as each
instrument. Regarding each of the four instrument/operative combina-
tions as a separate ‘instrument’ we might consider extending (8) and (9)
in a quite new direction to a set of six simultaneous pairwise linear
structural relationships (all pairs from four ‘instruments’). The data set
with n =72 is shown in Table 1 (from Barnett (1969) where the four
variates were denoted y,, y,, ¥, and y,.

The general model is thus one with p instruments used on n patients
yielding observations (x,;, x5, ..., X;,;)) (j =1, 2, ..., n) where

Xy = U+ &y (10)
The unobserved u;; are observations of random variables U; related by
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and the unobserved ¢; come. from independent error distributions:
N0, 6%). To complete the model we assume

Uy ~ My, 0%) (14

where ~ means ‘is distributed as’. (See Barnett (1969) for more details.)

Table 1. Readings of vital capacity for the 72 patients on the four
instrument [ operative combinations

Yo N Ya Vs Yo B2 Ve Vs

3450 3530 4030 3720 1060 1000 850 600
1310 1320 1610 1600 2000 1800 1270 1700
3820 3720 4150 3700 2280 2280 2380 2350
2110 2880 2740 2520 1940 1800 1670 1580
1860 1420 1540 1690 2580 2700 2850 2110
1940 1780 2020 1800 1400 1440 1680 1480
2360 2260 2430 2350 1260 1100 1000 1030
2880 2920 2650 2860 2320 2420 2360 2360
1980 1720 1800 1660 2000 1940 1980 1980
3120 3180 3250 3040 2400 1900 1470 1740
1760 1630 1390 1200 2880 2980 3240 3140
1480 1760 1700 1640 3420 3150 3200 3200
1840 1660 1400 1650 1000 1130 650 840
3580 3480 3680 3960 1400 1400 1350 1380
1880 2000 2090 2070 1880 1710 1600 1350
2400 2320 2550 2480 1280 1260 1160 1330
2220 2120 2290 2270 3120 3000 3110 3250
2540 2500 2620 1960 3770 3340 3900 3700
920 1200 640 1030 3420 3220 3120 3290
2240 2160 2300 2300 2740 2880 2850 2880
2240 2130 2030 2140 2840 2920 2710 2750
2260 2510 2400 2450 3800 3740 3440 3400
3860 4180 3980 3680 2100 1680 1650 1930
2780 2100 1890 2000 1820 1400 1060 1050
2220 1400 1840 1360 1400 1320 1350 1100
1880 1820 1900 1840 2200 1680 1640 1110
940 960 1060 1000 1940 1900 1820 1270
2480 2220 2150 2150 3260 3200 3250 3270
1660 1780 1760 1800 1960 1940 1890 1920
4040 4180 4000 3770 1320 1260 1140 1000
2540 2560 2080 2250 2840 3060 3650 3510
1780 1700 1390 1200 2060 1840 1720 1780
1280 1300 800 1130 2200 1970 1900 2270
1940 2060 2030 1880 1260 1150 860 1150
1760 2000 1860 1860 3040 2840 2850 2670
2040 1660 1470 1160 2140 2180 2560 2720

Reproduced from: V. D. Barnett, Simultaneous pairwise linear structural relation-
ships. Biometrics, 25, 129-42, 1969. With permission from the Biometric Society.
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This richer class of models includes the difficult two-variable case; we
need only to set p = 2.

We are interested in estimating the parameters a;, 8, (i = 2, ..., p) and
o} (i=1,2, ..., p)to assess relative calibration, and accuracy, respectively
for the different instruments.

We need, however, to be careful about what we mean by calibration.
Williams (1969) has drawn the important distinction between (a) absolute
calibration and (b) comparative calibration.

In (a) the aim is to interpret readings obtained on a non-standard
method in terms of what would have been obtained on some standard
method (usually the non-standard method is more economical in some
sense). This is merely the prediction problem of classical regression
analysis and few problems arise (inverse prediction is a possible difficulty:
see Williams (1969)). It is worth noting that this approach does not allow
us to talk about the relative accuracy of the two methods.

(b) is typified by the present multiple instrument problem. We want a
set of ‘conversion formulae’ relating results on any pair of instruments:
these define the basic relationships between results on the different
instruments, uncontaminated by measurement errors, or inherent natural
variation. In particular ‘common relative calibration’ corresponds to an
underlying linear relationship of slope 1, through the origin, i.e.
0, =0;8,=1(G{=1,2,..., p). Here we have to allow for the measurement
errors on all variables, and cut through them to estimate the basic
calibration relationships.

To see the advantages of more than one relationship we note that
(X, X, ..., X)) is p-variate normal with means o;+pf;p, variances
pio®*+o} and covariances f; 8,02 (i,j=1,2,...,p;0,=0;p,=1). The
minimal set of sufficient statistics has dimension p(p+3)/2 (the means,
variances and covariances) while there are now 3p parameters. Consider
the case p = 3. We have nine sufficient statistics and nine parameters and
have only to equate sample moments X, and s;; to their expected values
to obtain the maximum likelihood estimators:

A= Xy, 6% = 513503/513
B2 = S33/13 Ba = Sy3/S19, Op = xz_‘ﬂz X, O = xa_Baxo
o} =su—hie* (=123
This is a nicely balanced situation with no problem of unidentifiability.
Furthermore, asymptotic standard errors are easily obtained (Barnett,
1969).

Consider general values of p. The numbers of sufficient statistics and
parameters are as follows.
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p(p+3)/2
)/ sufficient statistics 3p parameters Condition
2 5 6 unidentifiable
3 9 9 ‘balanced’
4 14 12
5 20 15

identifiable

So unidentifiability is unique to the case p = 2! For p > 2 there are no
formal obstacles to applying maximum likelihood, although explicit
expressions for estimators cannot be obtained beyond the balanced case
p = 3. But this presents no serious problem. Iterative solutions are feasible
(or even approximate solutions based on subsets of three out of the p
relationships) and asymptotic standard errors are obtainable. For details
see Barnett (1969).

The special nature of the unidentifiability problem for the p = 2 case is
further highlighted by considering another extension of the model: to all
multilinear structural relationships between any m out of p variables
(2 <m < p). In this wider class again m = p =2 stands out as a sore
thumb — and only one other case, that of a single bilinear structural
relationship (p = 3, m = 3) (see Barnett, 1979).

Another intriguing prospect arises. We have referred to the use of
instrumental variables to try to overcome the unidentifiability problem for
a single linear structural relationship. Earlier proposals of this type
suffered from being essentially impractical. The required conditions were
seldom likely to be satisfied. But why not exploit the simplicity of the
balanced case (m = 2, p = 3) and merely seek as instrumental variable any
one further measure which is linearly structurally related to the two
variables of principle interest? This is often quite readily achieved.

So to return to our original lung function problem, we can summarise
the situation as follows. An apparently simple problem of linear relationship
seemed to suffer from an insurmountable problem of anomalous behaviour
of the estimators. What seemed an added complexity (additional linear
structurally related variables) in fact yielded a sort of replication and
enabled a solution to be found. In the process it opened up a new area of
research on this topic and finally shed light on another way forward on
the original anomalous situation of a single linear structural relationship.
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4 Have we finished?

Is there nothing more to be said about the study of functional and
structural relationships? On the contrary, it is still a rich research area.
Much has been achieved over the last 10 years or so, including different
representations (for example, through factor analysis: see Theobald and
Mallinson, 1978), ultrastructural models which extend but imbed both the
functional and structural cases (see, for example, Dolby, 1976), non-linear
functional models (see, for example, Dolby and Lipton, 1972: there is
perhaps a fundamental osbtacle to an equivalent non-linear structural
model) and Bayesian methods (see, for example, Lindley and El-Sayyad,
1968). So it is still a very fertile area, and much more useful work can be
expected both in employing such models to solve important practical
problems and in using such problems to stimulate important new
methodology.
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A two-period crossover trial

D.CLAYTON AND M. HILLS

1 Introduction

In a crossover clinical trial with two treatment periods each
patient starts by receiving one of the treatments in the first period and then
crosses over to receive the other treatment during the second pericd.
Referring to the two treatments as A and B, there are thus two groups of
patients: those starting with A and crossing over to B (group 1) and those
starting with B and crossing over to A (group 2). Equal numbers of patients
are allocated at random to the two groups but drop-outs can cause the
final numbers to be unequal. Trials like these frequently figure in
consultancy work because interpreting the results from them can be
difficult, both for the physician and the statistician. On this occasion the
client, a pharmaceutical company, asked us to analyse the results from a
crossover trial in which the response to treatment took the form of a
continuous 24-hour electrocardiogram.

The trial was one of a number, carried out under varying conditions,
in which a new drug was compared with a standard treatment. We knew,
therefore, that our analysis would not be viewed in isolation but as part
of a whole body of evidence, and that it might well form part of a
submission to a regulatory authority such as the FDA (Food and Drugs
Authority, USA). This meant that any analysis we carried out would have
to meet the following requirements:

(i) the statistical method used should be simple and easily understood
by someone reading our report along with those from other trials;
(ii) the analysis should provide an estimate of the size of the treatment
difference;
(ii)) any assumptions made in the analysis should be justified.
We tried to meet these requirements by using a simple graphical technique
combined with a distribution-free estimate of the amount by which one
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distribution is shifted in location relative to another. The theoretical basis
for the analysis of two-period crossover trials has been reviewed by Hills
and Armitage (1979). The discussion below has much in common with their
treatment of the problem but we would hope that the graphical extension
we propose below will help to clarify the argument for non-statisticians.

In a typical crossover trial the response to treatment for each patient
is observed twice, once for each period. We shall be concerned with a
quantitative response to treatment and shall regard the two responses as
observed values of the variables (1}, ¥,), where Y, refers to the response
for period 1 and ¥, to the response for period 2. The expected values of
(Y, Y,) will be denoted by (6,,, 85,) for group 1 and (fg,, 8,,) for group
2. This notation indicates which treatment is used during each period for
the two groups.

The shift in location of the distribution of Y], from group 2 to group
1is equal to 8,, — 0p,, the treatment difference for period 1. Similarly the
shift in location for the distribution of Y;, in the other direction, from
group 1 to group 2, is 8,, — 0g,, the treatment difference for period 2. The
hope is that these two treatment differences will be the same, so that a
pooled estimate based on both periods can be used. If they are not, then
the treatment difference in period 1 is the only one with any clinical
meaning so that we would only use the results from period 1.

A simple way of checking that the treatment differences are the same
in both periods, and of obtaining a pooled estimate if they are, is to change
from the variables (Y, 1;) to new variables (Z,, Z,) where Z, = (Y, - Y,),
Z, =} H+1,).

From the definition of Z,

E(Z,|group 1) = 4(0,,—0g,)
E(Z,|group 2) = }(0g,—0.4,)
so that the shift in location from group 2 to group 1 for Z, is
H(Oa1—082) —(0p, — 042)} = H(Oa1—0p1) + (04— Op,)} )]
Similarly, from the definition of Z,,
E(Z,|group 1) = §(05, + 0gs)
E(Z,| group 2) = }(6p, +0,,)
so that the shift in location from group 2 to group 1 for Z, is
(a1 +085) — (01 +045)} = (04— Ony) — (022 —Ony)}- V)

It follows that if there is no shift in location for Z, then from equation
(2) the treatment difference is the same in both periods and from equation
(1) an estimate of its value may be obtained from the shift in location for
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Z,. This method is particularly useful where a pooled distribution-free
estimate of the treatment difference is required.

A plot of Z, against Z, for all patients in the trial, distinguishing
between those in group 1 and those in group 2, thus provides a simple and
convenient summary of the results: if the shift between groups in a
horizontal direction is small then the shift between groups in a vertical
direction is an estimate of the treatment difference (see Figure 1). It is also
possible to assess from the plot whether the distributions of Z, and Z,
within two groups differ in more complex ways than a shift in location.
If they do, then this suggests that the observed values of ¥; and ¥, should
be transformed in some way (usually by taking logs) so that the treatment
effects are more nearly constant over the patients on the transformed scale,
and hence that the distribution of the resulting values of Z, differ only by
a shift in location. The assumption that two distributions differ only by
a shift in location is important when making a distribution-free estimate
of the shift and it is usually worth looking at the two cumulative relative
frequency curves for Z, (and for Z,), as well as at Figure 1, in order to
check that the assumption is valid.

When the distributions of Z, for the two groups provide strong evidence
of a shift, and therefore of different treatment effects in the two periods,
there is often considerable interest in why this might have occurred. One
possibility is ‘carry-over’, where the effect of the treatment in period 1
carries over into period 2. This could account for unequal treatment
differences in the two periods if the carry-over effect from treatment A
differs from the carry-over effect from treatment B. Another possibility
in that the response changes with time so that it tends to be much lower

Fig. 1. Idealised Z,/Z, plot
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(say) in the second period than the first, with the result that there is less
room for the treatment differences to be expressed in the second period,
causing it to be smaller than in the first period.

One difficulty with the two-period crossover trial is that the test for
equal treatment differences in the two periods based on Z, may not be very
sensitive as the variability in Z, (= }(¥; + 1;)) includes variability in the
overall level of response between subjects, which may be rather large.

This has led some investigators to use three periods, still with two
treatments, and to use the treatments in the order A-B-B for group 1 and
B-A-A for group 2. The difference between the two treatments is then
assessed using Z, = ¥, —4(Y;+ Y;), where 1, Y,, Y, refer to the responses
for periods 1, 2 and 3 respectively, and the carry-over is assessed by using
Z,=Y,— Y, Both Z, and Z, are now influenced only by variation within
subjects, a feature which makes the three-period two-treatment design an
attractive proposition where practical considerations allow its use. A more
theoretical discussion of three-period designs is given by Kershner and
Federer (1981) who show that, in the presence of residual effects, the
ABB+ BAA design is four times as efficient as the alternative ABA + BAB
design.

Another improved design incorporates a placebo ‘washout’ period be-
tween the two periods of active drug therapy. This was used in the trial
reported below and, as we shall see, in addition to minimising pharmaco-
logical carry-over effects, also allows a more powerful test for differential
carry-over. However, use of placebos is often not ethically acceptable
and in such cases the three-period design is to be recommended.

2 The trial

The trial we consider was a comparison of two anti-arrhythmic
drugs in the treatment of ventricular premature complexes (VPCs)
(Kjekshus, Bathen, Orning and Storstein, 1984). VPCs are disturbances
of normal heart rhythm, and are visible on an electrocardiographic trace.

Figure 2a illustrates the ECG trace corresponding to a normal heart
beat and shows the normal QRS complex flanked by the P and T waves.
In a VPC, the QRS complex is abnormal in shape and occurs abnormally
early (Figure 2b). While occasional VPCs occur in the normal heart, they
occur much more frequently in patients suffering from various forms of
heart disease.

A number of drugs have been shown to be effective in suppressing
VPCs, but the condition is a chronic one and no permanent cure is
effected. Thus, for the comparison of two such drugs, a crossover design
may be considered.
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This trial compared a new compound (Flecanide acetate) with an
established anti-arrythmic drug (Disopyramide) in a two-period crossover
design. Each active drug was given for a two-week period. Although
patients with frequent VPCs are at increased risk of sudden death, there
is no firm evidence that drugs which suppress VPCs bring a corresponding
benefit in survival. There is no clinical consensus that such patients should
be routinely treated with anti-arrythmic agents and in these circumstances
it was felt to be ethically acceptable to incorporate ‘washout’ periods in
the design, during which patients would be treated with placebo. There
was a one-week washout period on entry to the trial before the first active
period, a further one after the first active period and before the second,
and a final one on completion of the second active period. Thus, each
patient was in the trial for a total of seven weeks.

The purpose of placebo washout periods is to minimise any residual
effects of treatments given to patients before their entry to the trial, and
to minimise ‘carry-over’ of effects from the first active period into the
second. Since patients are randomised for the two treatment order groups,
the former effect will not cause a bias but a washout period might improve
the efficiency of the trial by more closely controlling the initial conditions.

Fig. 2. ECGs (a) the normal electrocardiogram, (b) a premature
aberrant complex (marked X)
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Carry-over between the two active periods is, however, a more serious
problem and, as we shall see, data collected during the washout periods
can be useful evidence for its occurrence. In the present study, the
elimination of both drugs from plasma is relatively rapid, the half-life
being of the order of one day. Thus, a one-week washout period is
adequate to ensure that no trace of the first active drug remains during the
second active period.

The frequency of arrythmic complexes was determined by recording the
ECG for the last 24 hours of each week of the trial. The measurements
were made as far as possible without disturbing the patient’s normal way
of life by using a portable medical data recorder capable of recording 24

Table 1. Ventricular premature complexes per 24 hours

Week 1 2 3 4 5 6 7
\-'—J \—.'-’
(placebo)  (active) (placebo) (active) (placebo)

Group A Flecanide Disopyramide
0 2 5 5 6 6 0
X 2352 1557 6229 1527 2554 7603
1180 4 144 5274 1 12 1162
153 X 22 41 0 1 0
15008 77 222 23950 12759 11735 20040
2611 638 X 700 1201 14272 2792
1610 0 0 5976 0 2 154

1961 6 0 94 2075 68 X
63346 21262 2317 50579 49617 15932 83862

X 366 217 26300 13452 19943 37682
173 98 13 268 74 17 X
2873 0 6 473 12 30 1005
20702 0 0 2761 5 173 6570
160 11 913 x 466 2064 X
Group B Disopyramide Flecanide
579 1364 3640 866 453 47 b
674 17 138 649 1 7 1468
16868 4663 41 6016 336 2108 7066
0 143 1 9 0 1 26
9534 * * 45 12 740 1
3356 5050 4912 1014 12284 7648 1829
X 1167 758 1133 372 X 2019
4448 2682 X 2057 8216 1756 312
9930 13025 10714 X X X 158
37274 19718 25881 18925 0 14 17747
624 8 2 820 0 0 271

x data missing because of unanalysable tapes.
* data missing because of discontinuation of drug.
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hours of ECG on a C120 cassette. Each recording concerns some 1000000
heart beats, and was processed by a high-speed computer analyser. A
number of different types of abnormality are counted by the analyser, but
we shall consider here only the data concerning total frequency of VPCs;
this data is shown in Table 1.

Each row of the table shows the total VPCs recorded for one patient
in each of the seven 24-hour recordings. Although 30 patients were
originally randomised, the table gives data for only 25 patients. Two
patients died during the study, and three had to be withdrawn owing to
their developing serious complications. Of the remaining 25, plasma
analysis showed that two patients had not taken the drug (Disopyramide)
and the readings during that active period were discounted. Ambulatory
electrocardiographic recording in free-living subjects presents some prac-
tical difficulties, and it is perhaps not surprising that some of the tapes
proved to be unanalysable.

3 The response

We now consider the problems we encounter when relating the
real data of Table 1 to the theoretical background discussed in the opening
section.

The first problem is that each patient was, ideally, measured on seven
occasions, while our theory calls for only two response measures, ¥; and
Y,. It might be argued that condensing the data from seven to two
observations per patient should be avoided since some information must
be lost. However, the analysis of the total data is difficult, since we can
be almost sure that the assumption of independent errors is invalid in a
sequence of observations in time. The problem for the consultant is to find
a method of analysis which provides accurate point and interval estimates
of the relative efficacy of the treatments; makes a relatively efficient use
of the data; and is comprehensible to the scientific community to whom
the work is addressed. This compromise is not always an easy one and we
should not worry too much about modest losses of efficiency if the other
two aims are achieved. It is worth remembering that there are many
practical, ethical and clinical reasons for patients being seen regularly
during a trial, and measurements are often taken because the patient is
there rather than for any strong scientific purpose. Thus, we should not
be afraid to lump together some measurements and discard others.

In this trial we average the two readings in each active period to form
Y, and ¥,. In so doing we may also solve another problem, that of missing
observations: when both measurements are available we take their
average, but if either is missing we simply take the measurement which is
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present. When both measurements are missing, then the responses ¥, or ¥,
cannot be estimated and hence neither can the contrasts Z, and Z,. In such
cases no information can be salvaged without strong assumptions and we
must omit that patient from this analysis.

Table 2(a) shows these simplified data. Purists would argue that the fact
that some measurements are based upon 48 hours recording and some are
only 24 hours gives them different precisions and this information should
be carried forward into the later analysis. This is, however, a case in which
the small gain in efficiency does not justify the increased complexity of the
analysis.

A more serious concern is whether this procedure, which amounts to
replacing missing observations by the average of the available observations,
might cause bias. This would occur if the process causing loss of data were

Table 2. The transformed data

(b) log. (VPCs+3})
(a) VPCs per 24 hours

Period 1 Period 2
First drug Period 1 Period 2 () ()
Flecamide 3.5 6 1.39 1.87
1954.5 2040.5 7.58 7.62
74 6.5 431 1.95
22 0.5 3.11 0.00
496.5 12247 6.21 9.41
638 7736.5 6.46 8.95
0 1 —0.69 041
3 1071.5 1.25 6.98
11789.5 32774.5 9.37 10.40
291.5 16697.5 5.68 9.72
55.5 455 4.03 3.83
3 21 1.25 3.07
0 89 —0.69 4.49
426 1265 6.14 7.14
Disopyramide 2493 250 7.82 5.52
71.5 4 4.36 1.50
2352 1222 7.76 7.11
72 1 4.28 0.41
* 376 * 593
4981 9966 8.51 9.21
962.5 372 6.87 5.92
2682 4986 7.89 8.51
11896.5 * 9.83 *
22799.5 7 10.03 2.01
5 0 1.70 —0.69

* data missing because of discontinuation of drug.
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related either to the level of response, or to the treatment itself. Here,
however, the pattern of missing values indicates no such problems.

The third problem which these data present is their extreme variability;
the counts range over several orders of magnitude. In such cases it is
usually necessary to transform the data before proceeding to further
analysis. The procedure of data transformation is one of the most difficult
problems in statistical consultancy as the rationale which underlies it is
almost universally misunderstood by non-statisticians. The most common
misconception is that the main reason for transformation is to make the
data more closely normally distributed, and this encourages a widespread
mistrust of transformation, too often regarded as a statistician’s device
to force data into his techniques rather than to further scientific under-
standing,

In fact, we have no need to assume a normal distribution in the analysis
to be presented below. Indeed in small studies where there is scarcely
enough data to examine normal assumptions adequately, normal theory
methods should be avoided if possible in favour of distribution-free
methods. The reason for transformation of the observations is to find an
appropriate scale on which the assumptions of our model are at least an
adequate approximation to reality. The important assumptions are (i)
additivity of the effects of period and treatment, and (ii) additivity of these
systematic effects and the other extraneous random influences. These
assumptions are necessary for the scientific purpose of separately estimating
these components in the total response of the patient. Without the first
additivity assumption it is not possible to estimate separately an index of
relative efficacy of treatments from this data. The second assumption
holds that the variance of the response is not affected systematically by
treatment or period. This is sometimes referred to as the assumption of
‘homoskedasticity’, but is more simply regarded as a special kind of
additivity assumption. As we have indicated, the assumptions of the
analysis can be examined by plotting the contrast Z, against Z,.

Clearly, however, there is no hope of the additivity assumptions holding
true on the original scale of measurement (VPCs per 24 hours), because
the data vary over several orders of magnitude and those patients tending
to show greater VPC frequencies also appear to show a greater lability of
response. In such cases the natural first choice is to log-transform the
observations. This must improve matters and still leads to a readily
interpretable analysis since a linear contrast is expressible in terms of a
ratio of the measurements on the original scale.

We encounter a difficulty when taking logs because some of the counts
are zero. The best practical method for dealing with this is to use the
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empirical log transformation log (#+1) in place of logn where n is the
observed frequency. A formal justification of adding } to the frequency is
given by Snedecor and Cochran (1967) but for our purposes the precise
choice of 1 as a ‘handicap’ to each frequency is not too critical since we
later use rank methods. The empirical log-transformed VPC counts are
shown in Table 2(b) and by simple inspection can be seen to exhibit a more
regular pattern than those in Table 1.

Technically, if we are to choose the transformation to optimise the fit
of the additive model, we should adopt formal criteria and take account
of the estimation of the transformation in determining the sampling
variances and significance of our estimates. For example, we might find
the transformation from the power-law family of parametric transforma-
tions investigated by Box and Cox (1964) in which a single parameter picks
a particular transformation (including both logarithms and identity
transformations). Recent work generalises this to allow non-parametric
estimation of the transformation. However, in practice, we are probably
justified in ignoring these refinements. Where possible we work with the
original scale but when, as here, the measurements are positive values
which vary widely, then the log scale is natural. We need only abandon
these natural scales if there is evidence for major deviation from the model
assumptions.

At this point it is relevant to comment upon a procedure which is
becoming widespread in the analysis of pharmaceutical trials and is
potentially seriously misleading. This involves transformation of the
original observations to ranks; i.e. replacing each observation by its
position in the ranking of all observations. These rank values are then
analysed asif they were genuine observations. The original of this procedure
is a paper by Conover and Inman (1981) which advocates this strategy as
a ‘bridge between parametric and non-parametric statistics’. While, in
certain areas, this procedure reproduces simple well-known non-parametric
methods, in general it is not well founded. In the analysis of the crossover
trial the reason for transformation is for the separation of period and
treatment effects and we transform for additivity. There is no reason why
the transformation to ranks should be a good transformation to additivity;
indeed there is every reason why this scale, which is bounded at both ends,
is likely to prove inappropriate for linear modelling.

A correct rank-invariant approach involves non-parametric estimation
of the scale transformation to additivity. However, such methods are in
their infancy and lead to some difficulties of interpretation. Where
possible, therefore, we recommend analysis on one of the natural scales,
but adopt distribution-free methods for testing and estimating the treat-
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ment effects on this scale. In the next section we show that this strategy is
successful here, despite the initially daunting distribution of observations.

4 The analysis
The observed values of ¥, and ¥, are shown in Table 2. They are
transformed counts for each treatment period using the transformation

Y = log (number of VPCs+1})

The values of Z,=3}Y,—Y,) are plotted against the values of
Z, = (Y, + Y;) in Figure 3. Inspection of this figure suggests that there is
no shift between groups in the horizontal (Z,) direction, so the treatment
difference is the same in both periods, but there is a shift between groups
in the vertical (Z,) direction. This impression is further corroborated by
the cumulative relative frequency curves which are used to display the
observed distributions of Z, and Z, in the two groups. Figure 4 shows the
two distributions of Z, to be close, while Figure 5 shows the two
distributions of Z, to have the same shape but different locations.
Formal tests of significance and estimations of shift based on the
Wilcoxon rank sum test are shown in Table 3. Note that when using this
method the estimated shift is found from the median of the 14 x9 = 126
differences between an observation from group 1 and an observation from
group 2, not from the difference between the medians. The 959 confidence
intervals for this shift are also distribution-free and represent the maximum
and minimum value, é say, which may be added to all the observations

Fig. 3. Z,/Z, plot for the data of Table 2
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of Z, (or Z,) in group 2 so that a Wilcoxon test for a location shift is
not significant at the 5% level.

The formal test of significance for Z, shows that there is no evidence
that the treatment difference changes from period 1 to period 2 and the
pooled estimate for the treatment difference (from Z,) is —1.71 with
confidence limits —2.84 to —0.56. This estimate is on the transformed
scale and corresponds to a value for the ratio of the frequency of VPCs
on Flecanide to that on Disopyramide of e~1-7! = 0.81 with confidence

Fig. 4. Cumulative relative frequency curves for Z,
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limits from e~2-8 = (.06 to e7°-3¢ = 0.57. Thus the new drug reduces the
frequency of VPCs to something between 69 and 579, of what it would
be on the existing treatment.

The plot of Z, against Z, in Figure 3 shows that, as expected, the
variability in Z, within groups is larger than that of Z,: the range within
groups for Z, is about twice that for Z,. Thus the test for equal treatment
differences in the two periods (based on Z,) is rather insensitive by
comparison with the test and estimate based on Z,. Fortunately, in this
case, we have data from the placebo periods and can use this to back up
the evidence from Z,. The most likely reason for unequal treatment effects
in the two periods is differential carry-over, mentioned in the introduction.
We can test for this by checking the difference (placebo 3 minus placebo
2) between groups. The placebo 2 observation will contain any carry-over
from Flecanide in group 1 and Disopyramide in group 2. Similarly the

Table 3. Results of Wilcoxon tests: crossover analysis

Z, Z,

Median for group 1 (n = 14) -0.53 4.02
Median for group 2 (n = 9) 1.15 6.39
Estimated shift from group 2

to group 1 —1.71 —0.68
95.3%, confidence limits for —2.84 —4.3

the shift —0.56 1.6
Significance of the shift (P) 0.005 0.64

Fig. 6. Cumulative relative frequency curves for placebo differences
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placebo 3 observation, will contain any carry-over from Disopyramide in
group 1 and from Flecanide in group 2. Thus the contrast, 1 (placebo 3
minus placebo 2) should show a shift from group 1 to group 2 equal to
the difference in the carry-over effects of the drugs. The two distributions
are shown in Figure 6 and a Wilcoxon rank sum test confirms that there
is no significant shift between them (P = 0.45). This test is based on the
distributions of differences between placebo periods within the same
subject and these have about the same variability as values of Z,. (The
ranges for the placebo differences and for Z,, within groups, are both
about 3.)

Had there been any suspicion of differential carry-over we would have
had no choice but to restrict our analysis to the data gathered in the first
period, and here we show this analysis for the sake of comparison. One
possibility is simply to estimate the treatment effect by the location shift of
the distribution of ¥, from group 2 to group 1. Theoretically, however,
one might expect that a more efficient analysis should be in terms of the
changes (Y; - Y;), from the first placebo baseline observations, ¥,. These
analyses are shown in Table 4.

The analysis of ¥; shows a significant treatment difference but, as
expected, at a less stringent level, the width of the 959 confidence interval
for the treatment difference being considerably larger than for the corre-
sponding interval based upon Z,. Interestingly, the analysis of (¥,— ¥) is
considerably less successful, partly because of a loss of a further three
observations owing to unanalysable ECG tapes in the placebo period.
These analyses demonstrate clearly the gain in efficiency achievable with
crossover design when its assumptions are met.

Table 4. Results of Wilcoxon tests: parallel group analysis

K K-1,

Number of observations

Group 1 14 12

Group 2 10 9
Median

Group 1 4.17 -2.34

Group 2 7.79 —0.49
Estimated shift, group 2

to group 1 —-295 —2.45
95% confidence limits —5.62 —6.51

for the shift —0.41 +0.47

Significance of shift 0.015 0.08




56 D. Clayton and M. Hills

5 The report

When writing the report of the analysis of a clinical trial it is
important to bear in mind that the report must serve at least two different
purposes. It is a report to the company developing the new drug and also
to the investigators who carried out the scientific work. These are different
audiences with slightly different concerns and expertise.

Let us consider, first, the needs of the pharmaceutical company. No
drug will ever be granted a marketing licence without extensive trials and
any one trial will form only one small part of a comprehensive programme.
Such programmes are rather loosely subdivided in phases and the
premarketing phases are from phase 1 (studies in healthy volunteers) to
phase 3 (final controlled clinical trials under realistic conditions). The
economy and efficiency of crossover trials makes them a very attractive
choice of method at phases 1 and 2 when, for example, different dose levels
might be contemplated, but the fact that each period of active treatment
is of necessity rather short makes them less attractive for phase 3 testing.
Thus, the place of crossover trials is predominantly in phases 1 and 2 and
here the prime aim is to obtain reliable estimates of efficacy of the drug
in different groups of patients, in different doses, and compared with
different alternative therapies. Ultimately, reports concerning all trials in
the testing programme must be brought together to form a submission to
drug regulatory bodies.

Statistical significance testing has little to contribute to this process.
What is required is a report which clearly sets out a model for drug efficacy
and provides point and interval estimates. The report must also examine
critically the model assumptions. The US drug regulatory authority
explicitly requires that evidence from crossover trials be accompanied by
internal evidence that carry-over effects were not present.

In an ideal world the needs of the clinical investigators would be little
different from those of the pharmaceutical company but in reality a style
of presentation of statistics in medical journals has developed which
makes crossover trials rather hard to present in an acceptable manner. The
‘unobtrusive’ style for statistics in medical journals consists of presenting
simple tabulations or graphs of the data, liberally decorated with statistical
significance levels. It would be quite commonplace to use the data of Table
1 presented either graphically or in table form in terms of conventional
summary statistics, such as mean and standard deviation, for each of the
seven measurements in each group. This satisfies the clinician’s desire to
see response profiles for the treatment groups rather in the same manner
as the progress of two individual patients might be displayed, but is
irrelevant to the proper analysis of the data. Clinical trials are comparative
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studies which are concerned with differential response of individuals to
different treatments. In the crossover trial where treatments are compared
within individuals, the analysis must be primarily concerned with differences
between responses rather than with their absolute values. However, there
continues to be some resistance among clinicians to tabulation of the
differences, Z,. We hope that the Z,/Z, plot of Figure 3 will become
acceptable for displaying the results of crossover trials. It contains all the
relevant data for estimation of effects and for criticisms of the model in
a readily understood form.

Another problem of presentation arises because of the use of the
logarithmic transformation so that, for example, Z, represents change on
a scale which may be unfamiliar to a clinician. With the use of the log
transformation, the additive model on which the analysis depends may be
expressed as a multiplicative model on the original scale. By taking
antilogs, additive treatment effects on the log transferred counts may be
expressed as multiplicative effects and these are much more readily
understood.

The analysis of the crossover trial relies heavily upon a linear model, as
do many analyses in modern applied statistics. The familiarity which
statisticians develop towards these models is very definitely not shared by
researchers in other disciplines, and communication can be difficult. This
is particularly the case when, as here, transformation of data is necessary.
However, with care and with simple graphical aids, analysis may be
performed, and presented to the client in a comprehensible manner.
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Consultancy in a medical school,
illustrated by a clinical trial for
treatment of primary biliary cirrhosis

D.G.COOK AND S.J. POCOCK

The role of academic statisticians in a university medical school can be
quite varied. In addition to teaching commitments, their research activities
may be classified into three broad areas:

(1) availability as a statistical consultant to advise and provide
technical assistance for the statistical aspects of any worthwhile
research projects;

(2) to undertake more in-depth scientific collaboration on a limited
number of research projects that contain a major statistical
element; such projects will often be primarily motivated within
the statistician’s own department, but may sometimes arise from
contacts outside the medical school;

(3) to undertake methodological research in medical statistics to
develop new approaches to the design and analysis of medical
investigations.

The balance of time that each statistician devotes to these three areas will
depend on the nature of their appointment, their own particular aptitudes,
the opportunities that arise in each area and the general policy of the
department and medical school in which they work.

In our case, the Department of Clinical Epidemiology and General
Practice at the Royal Free Hospital School of Medicine in London has
active research programmes in epidemiology and clinical trials so that the
principal research effort is directed towards scientific collaboration and
methodological research. This requires applied statisticians to expand
their activities into non-statistical areas, by acquiring the necessary
knowledge of the medical and epidemiological issues relating to the
collaborative research. That is, statisticians have to become project-oriented
whereby their efforts will be directed towards advancing medical knowl-
edge. Any statistical details, particularly the use of complex mathematical
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or computational procedures, must be genuinely relevant to the medical
problem and must not impair the ability to communicate findings to
non-statistical colleagues. In general we feel that the skill to communicate
beyond their own profession needs much greater emphasis in the training
of graduate statisticians.

At the Royal Free, we have had to decide how to organise a statistical
consultancy service to the medical school. There are limited resources
available for this general consultancy because of the more in-depth
collaborative and methodological research mentioned above. Therefore
our emphasis is on: (a) an advisory service to all ‘reasonable people’
seeking statistical help; (b) more detailed technical assistance to a limited
number of projects and; (c) occasionally a more substantial scientific
collaboration (an example of which forms the bulk of this chapter).

The advisory service is mainly about short-term one-off consultations
whereby some fundamental issue in study design or statistical analysis
needs sorting out. Advice is often straightforward, indeed some statisticians
are not enamoured by the trivial level (statistically) of many such
consultations. However, in practice the statistician can derive considerable
stimulus from such exposure to a wide variety of medical problems.
Providing advice can be a very time-consuming business and hence we
have found this best organised by having a statistician available one
afternoon every week in a statistics clinic at which ‘customers’ can book
appointments. Of course, off-the-cuff enquiries are still dealt with on
occasions but this rationalisation of statistical advice has generally im-
proved its handling both from the point of view of statisticians and
‘customers’.

In general, the lack of resources prevents us from providing a more
detailed technical service for analysing other people’s data. Most projects
wish to remain self-sufficient in that respect anyway and routine ‘number
crunching’ is an unrewarding activity for an experienced statistical
scientist. Nevertheless, we do undertake some limited technical help,
usually in analysis but occasionally in design aspects of the problem. The
analysis issues we tackle ourselves usually go beyond the knowledge of the
client; problems such as analysis of survival data, multiple regression or
analysis of variance.

The art of the matter is then to present these analyses and their
interpretation back to the investigator in a form that they can clearly
understand. In practice, we have sometimes arranged such analyses to be
undertaken by a graduate student for an hourly fee.

The most rewarding aspect of statistical consultancy arises when
communication between the statistician and the researcher moves into a
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more long-term scientific collaboration: the medical investigator wishes to
explore fully the statistical aspects of their research and the statistician
wishes to be absorbed into the scientific purpose of the whole project so
that their role is no longer peripheral. Because of the time commitment
this requires, a statistician can only achieve such a role in a limited number
of projects at one time and these will often be confined to just one or two
medical departments.

At the Royal Free School of Medicine we have built up such a
relationship with some members of the Academic Department of Medicine.
To illustrate how such collaborative statistical activities can unfold, the
remainder of this chapter describes the development of our contribution
to one particular clinical trial.

1 Initial contact

In 1980 we were approached by Dr Owen Epstein, a clinician
from the Medical Unit at the Royal Free Hospital, concerning the analysis
of a placebo-controlled randomised clinical trial of the drug D-
Penicillamine (D-P) for the treatment of primary biliary cirrhosis (PBC),
a rare liver disease. The trial was a single-centre trial and had been
recruiting patients at the Royal Free since 1973. When the clinician
approached us there had been two deaths out of 55 patients on treatment
compared with eight out of 32 on placebo.

Although based on a small number of deaths, the difference looked
highly significant, which is precisely what had prompted the clinician to
contact us. In fact there was no provision in the trial protocol for when
the trial results should be analysed. Since no predetermined stopping rule
existed we faced a problem: by analysing the trial at a time when the
clinician felt that a difference had become apparent, a bias in favour of
finding a statistically significant difference would exist. On the other hand,
it was unethical to continue the trial if the treatment was beneficial. In the
event a compromise solution was reached: it was decided that a more
definitive analysis would be undertaken six months later.

2 Some comments on the trial design and clinical background
PBC is a chronic progressive liver disease of unknown cause,
which is thought to be an essentially auto-immune disease. There is no
effective treatment. From the onset of symptoms the median survival is
around 13 years. However, in many cases a correct diagnosis may not be
made for several years after symptoms appear.
Since the Royal Free is a referral centre for patients from all over Britain
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and abroad, one could expect that survival of those in the trial would be
shorter. D-P is an immuno-suppressive drug which is also effective in
lowering liver copper. Since PBC is often complicated by retention of
copper in the liver this suggested D-P as a possible therapeutic agent.

D-P is fairly toxic and side effects occur frequently. These require
careful monitoring and often lead to withdrawal of treatment. Thus,
although the trial was designed to be double blind with a placebo control,
the patient’s physician often became aware of the treatment, because
of side effects. However, this should not be a major problem, since
the outcome measure is patient survival. In 1972 when the trial was being
set up, a statistician was consulted and it was decided that, since so many
withdrawals were expected from the D-P group, randomisation should be
unbalanced: two-thirds of patients were entered on D-P and one-third on
placebo. According to the current consensus, which strongly recommends
analysis of clinical trials on an ‘intention to treat’ basis (i.e. patients are
included for analysis in the group to which they were randomised,
irrespective of whether treatment has stopped or not), this imbalance was
perhaps unnecessary though it did enable the physicians to gain greater
experience of giving D-P treatment. Randomisation was carried out via
the hospital pharmacist who supplied blinded drug packages according to
a sequence of treatment assignments (D-P or placebo) in random permuted
blocks.

3 The first analysis and publication

By the time of the first formal analysis, 5 (9%;) of 55 D-P treated
patients and 10 (31%,) of 32 placebo patients had died. A check was made
to see that no large imbalances in prognostic factors existed between the
treated and control groups at entry. All such differences were small and
were such as to suggest that the treated group had a slightly worse
prognosis at entry. This point is taken up again in the second analysis
which we carried out in 1984 described below. The main analysis was a
comparison of the two survival curves (Figure 1) using the logrank test.
Since no patients with early-stage disease (stages 1 and 2) had died, the
analysis was restricted to those with more advanced disease at entry
(stages 3 and 4). It is worth noting that one of the reasons for preferring
the logrank test to fitting Cox regression models (which would have
allowed adjustment for prognostic factors) was that such models are far
more difficult to communicate to physicians. At this stage of involvement
in the trial, statistical complexity appeared counterproductive. Since the
difference was so highly significant (P < 0.01 using the logrank test) the
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clinical investigator and ourselves decided it was unethical not to publish

the findings. These appeared in The Lancet in June 1981 (Epstein et al.,

1981) with the following conclusion:
The excellent prognosis of patients with PBC in its early histo-
logical stages, and the failure of D-P to prevent histological
progression from early to late stages, suggests that D-P treatment
should not be given to patients with PBC in the early (stage 1 or
2) histological phase of the disease. D-P treatment is recommended
to patients once liver biopsy has demonstrated histological results
typical of later stage 3 or 4 PBC.

4 After publication: continuing the trial?

A decision now had to be taken on whether or not the trial should
continue. The decision had to be made against the background of two
other even smaller trials, both of which had shown no significant survival
benefit on D-P treatment (Matloff, Alpert, Resnick and Kaplan, 1982;
Triger, Manifold, Cloke and Underwood, 1980).

In the event, entry to the trial was stopped, but those patients already
entered were continued in the trial on their current treatment. This

Fig. 1. Survival curves from first analysis in patients with late
histological stage (stages 3 and 4) PBC. Below horizontal axis,

n = number of penicillamine-treated patients and placebo-treated
patients with late-stage histology at risk of dying at each time period
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somewhat curious decision reflects the ethical and scientific dilemma
posed by the apparently conflicting findings of three rather small trials. It
seemed particularly important to continue follow-up of patients already
in the trial so that the potential advantage of D-P treatment could be more
definitively resolved. Such a policy might seem to conflict with the Lancet
paper’s conclusion, but in practice it is extremely difficult to achieve the
right balance of ethical and scientific judgement, particularly when the
disease is rare and further trials are unlikely to take place.

5 Second analysis 1984
In January 1984 we performed a further and more detailed
analysis. The trial now had 98 patients (11 more patients entered between
first analysis and stopping entry) with a median follow-up of 48 months.
There were 18 (309, ) deaths of 61 penicillamine patients compared with
16 (43%) deaths of 37 placebo patients. Survival still favoured the
penicillamine group (Figure 2), but the difference was no longer statistically
significant (P = 0.09 using a logrank test). Restricting analysis to patients
in the late stage (stages 3 and 4) made the difference less significant, since
three patients in the early stage (stages 1 and 2) had now died: one on
treatment and two on placebo.
Had our first analysis merely reflected the bias we had feared? That is,
did the timing of publication occur when the treatment difference was

Fig. 2. Survival curves from second analysis in all patients. Below
horizontal axis, # = number of penicillamine-treated patients and
placebo-treated patients at risk of dying at each time period
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somewhat inflated? Possibly, yet the survival curves still favoured the
treated group even if the difference was no longer significant at the 59
level: P = 0.09 is not that far removed.

6 Prognostic factors

We decided to look in more detail at the data, in particular at the
importance of the following variables measured on entry: age; liver copper
(Cuy); stage (based on a liver biopsy, and scored from 1 to 4); hepatomegaly
(a binary variable indicating an enlarged liver); granulomas (a binary
variable indicating the presence of granulation tissue in the liver); and
several biochemical markers in the blood: albumin, bilirubin, aspartate
transaminase (AST), alkaline phosphatase (AP) and IgM (a measure of
immune status). Some of the variables were highly skewed and were log
transformed before analysis.

Table 1 shows that the two groups were broadly similar at entry into
the trial, though what differences do exist suggest that the D-P group had
a somewhat worse prognosis. Contrary to popular belief, formal
significance testing is inappropriate here since it has no sensible basis in
a randomised trial and fails to indicate the clinical importance of any
differences in prognostic factors. One variable in 20 should have a
treatment difference which is statistically significant at the 59 level by

Table 1. Comparison of treatment groups at entry to trial

Placebo Penicillamine
General
Number of patients 37 61
Mean age (years) (range 30-77) 55 53
Laboratory
Bilirubin* (g/1) 27 30
Albumin (g/1) 42 43
AST* (units/1) 40 51
AP* (KAU/D) 54 65
IgM* (g/1) 52 48
Cu* (ug/g dry weight) 162 183
Histologic
Stage 1 4) 200 4 110
Stage 2 7}30%’ 16,33/’
Stage 3 17 46 22 369
Stage 4 9249 19 31%
Hepatomegaly present 32% 289,

* Geometric means.
KAU, King Armstrong units.
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definition, while non-significant differences between groups at entry may
still affect the treatment comparison if the variable in question is strongly
prognostic (Altman, 1985). As an example, and in the light of subsequent
results, it is worth noting that the ¢-value for the difference in baseline
bilirubin levels between treatment groups is 0.9.

Table 2 gives the p-values for each variable’s association with patient
survival, using a univariate proportional hazards model. This indicates the
powerful influence that some variables (for example, bilirubin) have on
patient survival.

We used a stepwise procedure based on the proportional hazard model
to determine which combination of prognostic factors was most suitable
for predicting patient survival. Variables were entered sequentially if they
were significant at the 59/ level, while any variables in the model which
became non-significant were dropped. We ran this both starting from the
null model and from the model including all variables.

Since no deaths occurred in those without hepatomegaly, entering it
into the Cox regression model amounted to restricting our analysis to
those 78 patients with hepatomegaly. No estimate of the relative hazard
is possible. In practice we found that the model obtained by restricting
analysis to those without hepatomegaly excluded stage, but was otherwise
identical. We ended up with a model which included albumin, (log)AST,
(log)AP and stage (or hepatomegaly). Hepatomegaly and stage are highly
confounded.

The omission of bilirubin was a surprise, since it is generally accepted

Table 2. Univariate analyses

t-statistic for

Variable hazard coefficient p-value
(log)bilirubin 5.6 0.0001
Albumin —49 0.0001
(log)AST 44 0.0001
Hepatomegaly * 0.0001
Stage (1 &2v.3&4) 3.1 0.0017
(log)Cu 32 0.001
Granulomas 1.9 0.06
Age 1.3 0.21
(log)IgM —-1.0 0.32
(log)AP —0.1 0.90
Treatment 1.7 0.09

* Calculated using logrank test since no patient without
hepatomegaly died.
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as the single most important clinical prognostic indicator. However, (log)
bilirubin is highly correlated with (log)AST (r = 0.06) and the choice is
not so clear-cut that we would expect AST to be preferred in all data sets.
In fact bilirubin was the single most important indicator, but became
non-significant once both albumin and AST were included. What we can
say is that albumin is an important prognostic factor independent of
bilirubin or its correlates. The inclusion of AP was also unexpected, since
it was nowhere near significant in the univariate analysis. It was decided
to retain it in the model since our clinical collaborators had noticed that
before death AP tended to fall in some patients which is in agreement with
the negative coefficient. In fact there was some indication that the effect
was greater in patients with later stage disease at entry.

7 Goodness of fit

There are essentially two assumptions inherent in our model: (i)
the assumption of proportionality and (i) the additivity of different
factors in contributing to the log hazard. Many goodness of fit tests are
now available (see, for example, Kay, 1984). However, it is unrealistic to
expect them to have much power in such a small data set. We merely
dichotomised each variable on the basis of its distribution and looked at
the cumulative hazards on a univariate basis to ensure they did not cross.

8 Treatment difference after allowing for prognostic factors

Table 3 gives the result of fitting a proportional hazards model
including both prognostic variables and treatment as a dichotomous
variable. The P-value for treatment is now 0.04. However, caution is
required here just as we were cautious of dismissing a treatment effect
when looked at on its own. The 959 confidence limits for the treatment

Table 3. Significant prognostic variables and their regression
coefficients in the final Cox regression model

Regression Standard

Variable Scoring coefficient error P

Albumin g/l -0.25 0.057 0.0001

AST log, (value 2.69 0.526 0.0001
in units/1)

AP log, (value —1.14 0.394 0.0039
in units/1)

Stage 1&2=0 1.53 0.626 0.0146

3&4=1
Treatment Placebo = 0 —0.78 0.377 0.0394

D-P=1
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coefficient are wide (—1.53, —0.02). That is, we are 959/ certain that the
effect of D-P is to multiply the hazard by between 0.22 and 0.98. Such
uncertainty reflects the small number of deaths in the trial and its
consequent lack of power for detecting even relatively large treatment
effects.

9 Instability of the model

The choice of prognostic variables influenced both the magnitude
of the estimated treatment effect and its significance. If AP was dropped
from the final model then the P-value for treatment was only 0.09. A
model including only bilirubin gave a P-value of 0.03 for treatment, while
if albumin was added P became 0.22. This instability was entirely due to
changesin the estimated treatment coefficient, the standard error remaining
stable. Such instability is disconcerting, but not unusual given the size of
the trial.

Since the P-value and confidence limits for the treatment are so
dependent on the choice of covariates, it is desirable that the selection of
variables be taken into account when calculating them. One method of
achieving this is to use bootstrap methods (Gong, 1982). That is, one
generates new data sets by randomly sampling with replacement from the
observed data set. One might thus generate 500 data sets, each with 98
observations, select the covariates for each data set as before, and then
estimate the treatment effect. The resulting distribution of the 500 estimated
treatment coefficients could then be used to make statements about the
probable magnitude of the treatment effect. We are currently looking into
this possibility, but for the present we return to our more conventional
analysis.

10 Interpreting the proportional hazards model

Whatever the analysis, the results must be understood by the
clinician. When research findings are being reported the analysis should
not only be valid; its presentation should be understood by the non-
statistical reader. This was why no proportional hazard models were fitted
in the first paper: they would have obscured the simple message concerning
a treatment effect. If any imbalance in prognostic factors had existed in
favour of the D-P group then we might have acted differently.

In the reanalysis such simplicity was insufficient. However, even to the
statistician the hazard coefficients in Table 3 are of limited value; to the
clinician they are gobbledegook. To communicate the results of such an
analysis, further interpretation is required.
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Proportional hazard models are appearing increasingly in the medical
literature. After one paper (Schlichting et al., 1983) an editorial ‘surviving
proportional hazards’ (Elashoff, 1983) appeared in Hepatology illustrating
the need felt by clinicians to comprehend the analysis of such data and
the difficulty they have in doing so.

While familiarity is leading to general acceptance of such papers, this
does not always mean greater comprehension. Statisticians need to be
more than just consultants in such studies. They need to be fully involved
in design, analysis and interpretation, but most of all they must com-
municate a complex analysis to an audience with limited numerical skills.
Only by communicating successfully will statisticians maintain respect; if
they do not succeed then, as survival packages become more accessible and
better documented, there lurks the danger of analyses without the
statistician.

11 Adjusted survival curves

A survival curve is far better understood by a clinician than is the
hazard function. In the absence of covariates it is a straightforward matter
to calculate the Kaplan-Meier survival curves for each treatment separately
(Figure 2). When covariates are involved it seems logical to calculate
estimated survival curves for the placebo and D-Penicillamine groups for
central values of the covariates. We do not present such curves here since
they differ little from Figure 2, but an example in which the difference is
quite dramatic is to be found in Christensen et al. (1985). Instead of basing
the estimated curves on the final model, an alternative approach is
available both within the SAS procedure PHGLM and within BMDP2L.
It is possible to calculate the log-likelihood function separately for the
placebo and treated groups; the two components are then added to yield
the overall likelihood which is maximised for parameter estimation. It is
assumed that the regression parameters are the same within each stratum,
though no assumption is made concerning the relationship of treatment
and the hazard. The underlying survival curves can then be calculated for
each treatment group adjusting all covariates to central values. The
advantage of this stratified approach is that proportionality of hazards is
not assumed between treatment groups.

12 Conclusions concerning the trial

In retrospect the PBC trial was always too small to answer
satisfactorily the question of treatment efficacy, which is not to say that
nothing was gained from it. (James (1985) reviews the results from seven
controlled trials of D-P for the treatment of PBC, including the Royal Free
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trial.) It seems possible that D-Penicillamine is of some benefit in the
treatment of PBC, but we are still some way short of the certainty we
would like and we do not know whether the benefit is minimal or a major
clinical advance. Clearly the lack of a stopping rule in the protocol
created problems, but the major problem was one of sample size.

Suppose we were planning the trial from scratch and we performed a
sample-size calculation. If the five-year survival without treatment was
409, and we were interested in detecting a reduction of 259 in five-year
mortality from 409, to 309/, then to stand a 909, chance of detecting such
a difference at the 59, significance level we would require 470 patients on
each treatment followed for five years. No trial of PBC has ever approached
this size and it would clearly require a multi-centre trial at an international
level to do so.

It is worth making the point that in a situation where a clinician
approaches a statistician to calculate the sample size for a prospective
clinical trial, the clinician’s estimate of a hoped-for reduction in mortality
is likely to be highly optimistic. Trials planned on the basis of such
estimates frequently turn out too small.

A further point is that PBC is a disease with a long natural history. It
is therefore unlikely that patients with early-stage disease at entry will die
during the course of the trial. Thus they add little to the power of the trial.
Similarly there may be patients with advanced disease at entry who will
die before any treatment can have an effect. Sample-size calculations
should, but often do not, take account of this natural history of the
disease.

We are currently using the data from the D-Penicillamine trial to look
carefully at the natural history of PBC. Each patient’s bilirubin was
measured every three months from their entry into the trial. We wish to
use this to predict better when a patient becomes at high risk of dying. This
is relevant, for example, in deciding when patients are candidates for liver
transplants. From the clinical point of view, what is required is a
prediction that a patient is likely to die, within two years say, unless
transplanted, but this prediction must be made before the patient becomes
too ill for a transplant to be carried out. In this context one obvious
extension of the proportional hazards model is to make the coefficient for
bilirubin time-dependent and these issues are being further explored.

Lastly, we are faced with the problem of how to communicate the
updated findings of this trial to a general medical audience. The estimated
magnitude of treatment difference is somewhat reduced compared with the
initial publication in 1981 but it is generally difficult to get such updated
information into a major medical journal. This illustrates the general
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problem of how statistically significant findings based on small numbers
may lead to investigators (and statisticians) conveying more enthusiastic
conclusions regarding therapeutic progress than are really justified. Further
emphasis needs to be given to such ‘ publication bias’ and perhaps medical
journals should offer opportunities for authors to provide short updates
of their trial data to keep the medical public fully informed.

13 Some general remarks
We chose to present the above experiences with a clinical trial, not
because it was an earth-shattering piece of research but because it
illustrates several of the issues that statisticians are likely to encounter
when consulting. First, we were only consulted at the analysis stage,
though admittedly another statistician had been superficially involved in
the initial design. One ‘parrot cry’ from statisticians is to be consulted
when the project is being planned. Although this is obviously desirable,
if every investigator were to do so we would all be grossly overwhelmed
with design problems. Thus, when investigators do make first contact with
data in hand we do not usually find it rewarding to adopt a militant
enquiry about why they had not come earlier. To build up an effective
relationship it is best to tackle the investigator’s immediate problems
rather than lecture him or her about the past. Similarly, in choosing an
appropriate analysis strategy one should consider the fact that simple
techniques presented clearly can enhance communication more readily
than sophisticated methods which the investigator may have difficulty in
comprehending. As the relationship progresses, the interested investigator
will become more receptive to advanced techniques and then it is possible
to work together on how to report such methods in the medical literature.
On the whole relatively few statistical consultations can be expected to
lead to a close and continuing scientific collaboration or to an interesting
opportunity for methodological research. However, by adopting an
effective style of communication with each investigator, the applied
statisticians can greatly enhance their own opportunity for a stimulating
and varied career in medical research.
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6

The analysis of response latencies

G. DUNN

1 Introduction

As a statistical consultant and teacher in a multi-disciplinary
research establishment such as the Institute of Psychiatry one is faced with
many types of statistical problem. One also has to learn to cope with a
wide range of statistical abilities and /or experience in the clients. Not only
may the client not have any proficiency in the use of statistics and
computers, but there are also wide variations in the overall approach to
research in the different disciplines. Anthropologists, psychiatrists, psy-
chologists and hiochemists have very different views about the role of
research and the way it should be carried out. Clearly a statistical
consultant has an obligation to provide advice about good experimental
or survey design together with a description and explanation of the
appropriate methods of analysis. Perhaps the exact nature of the advice
will depend on the background of the client and the context in which the
client is carrying out the research. But, if the consultation is taking place
in an academic setting, such as a postgraduate medical school, what else
should be provided? Should one expect the client to learn to use a
computer and carry out the analysis? Yes. Ideally, I think that the
consultant statistician should be regarded as a teacher rather than as a
‘boffin’ to be used to help generate the right answers. Given this view,
should the analysis be kept simple (but perhaps not as ‘perfect”’ as it might
have been if carried out by the expert) or should it be relatively soph-
isticated? Psychophysiological experiments, for example, often involve
relatively complex designs for the collection of repeated measurements on
relatively few human volunteers or patients. Should the resulting data be
analysed using the repeated-measures options from a complex program
such as MANOVA from the spssx package (SPSS Inc., 1983) or should the
client be encouraged to consider a few relevant contrasts and analyse them
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using simple z-tests or the analysis of variance? The simple approach is
more readily followed and understood by the statistically naive client and
his or her peers. The complete analysis, on the other hand, conveys more
information even though it may go well beyond the research workers’
essential needs.

In this chapter I present a fairly detailed picture of an example of the
handling of a particular type of repeated measurement. These measure-
ments are of latencies or response times involving the possibilities of
censoring and competing risks. They were generated by a psychological
experiment involving the recall of pleasant or unpleasant memories. As a
statistical consultant my primary concern was to teach the client (a
psychiatrist, Dr Din Master) how to look at and analyse data resulting
from this and future experiments. The material has also been used as an
introduction to survival data and the corresponding statistical models for
other research workers in the psychiatric and behavioural sciences (see
Dunn and Master, 1982; Everitt and Dunn, 1983, chapter 10).

2 Background: the basic experiment

In the basic experiment, subjects are presented with stimulus
words on a visual display unit and are asked to think of pleasant and
unpleasant memories associated with these words (Lishman, 1974). The
time between the presentation of the stimulus and the subsequent memory
recall is recorded and, in this chapter, will be referred to as a recall latency
or recall time. It has been shown that, on average, subjects who are not
depressed recall pleasant memories faster (or more easily) than unpleasant
ones. Depressed subjects, however, tend to recall unpleasant memories
faster than pleasant ones (Lloyd and Lishman, 1975). Normal subjects
who have been made to feel sad using various experimental techniques can
also be shown to recall unpleasant memories more easily then pleasant
ones (Teasdale and Fogarty, 1979).

The details of the experiments on memory recall times are as follows.
Each subject is seated in front of a CBM model 4032 desk-top computer
and the procedure explained using practice word lists. Subjects are
presented with a sequence of words (such as ‘black’ or ‘table’) on the
computer’s screen, one at a time, each word being preceded by an
instruction to try to remember a pleasant or unpleasant experience or
event associated with the word. Requests for pleasant and unpleasant
memories alternated in the sequence. In the full experiment different
groups of subjects can be given different word sequences.

Pressing the keyboard bar produces the stimulus word, along with the
reminder of the category of recall required. Successful recall of a memory
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is indicated by the subject again pressing the bar. The computer records
the time between the first and second pressings of the bar. If a recall cannot
be achieved within 15 seconds of the first bar-press, the stimulus word is
replaced by an instruction to clear the mind and, when ready, to proceed
with the next word. In this case the recall time is recorded as a censored
observation of 15 seconds. Following each successful recall, the stimulus
word is replaced by an instruction to rate the memory as mildly,
moderately or very pleasant (or unpleasant).

A period of practice is given until the experimenter is sure that the
procedure is fully understood by the subject. In total, 48 stimulus words
are presented, half requiring pleasant and half requiring unpleasant
recalls. To summarise, a single subject produces 48 recall times, 24 for
pleasant memories and 24 for unpleasant ones. Each recall time can be
censored at 15 seconds, and quite often is. Finally, for each recall there

Table 1. Memory recall times (t) for one male subject
(Taken from Dunn and Master, 1982).

Observed survival

Pleasant Unpleasant function

1.07 1.45 0.96

1.11 1.67 0.92

1.22 1.90 0.88

1.42 2.02 0.83

1.63 2.32 0.79

1.98 2.35 0.75

2.12 2.43 0.71

2.32 2.47 0.67

2.56 2.57 0.63

2.70 3.33 0.58

2.93 3.87 0.54

297 433 0.50

3.03 5.35 0.46

3.15 5.72 0.42

3.22 6.48 0.38

3.42 6.90 0.33

4.63 8.68 0.29

4.70 9.47 0.25

5.55 10.00 0.21

6.17 10.93 0.17

7.78 15+ 0.13/0.17*
11.55 15+ 0.08/0.17*
15+ 15+ 0.08/0.17*
15+ 15+ 0.08/0.17*

* The first number, refers to pleasant memories, the
second to unpleasant ones.
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is competition between mildly, moderately or very pleasant (or unpleasant)
memories. For the preliminary phase of the description of the analysis,
however, the intensity of the effect associated with the memories is
ignored. An example of data collected for a single male subject (me) is
shown in Table 1. The observations have been ranked and given an
associated value of the survival function to aid interpretation.

3 Preliminary analysis

The aim of the preliminary analysis was two-fold: first, to look
at the responses from one or two subjects to get an idea of any consistent
patterns in the data and to help in decisions concerning the choice of a
statistical framework within which to analyse the main data set, and,
second, to use the limited amount of trial data to help teach the client (and
other potential clients) how to look at and explore this type of data for
himself.

As far as the first aim was concerned, the main properties of the data
are fairly clearly shown by a plot of the survival curves obtained from
Table 1 (see Figure 1). There is clearly a distinct ‘shoulder’ to the left of
these curves, indicating that there appears to be a minimum recall time.
That is, there is a brief period when a memory recall cannot be obtained.
This period corresponds to a combination of the time to understand the
stimulus word at presentation and the physical reaction time to press the
bar once a recall has been achieved. The minimum response time varies
from one subject to another and from one word type to another, but the
variability is relatively minor compared with estimates of recall rates after
the minimum recall times have been allowed for. This allowance can be

Fig. 1. Survival curves for pleasant (@) and unpleasant (W) memories
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made for each memory type within each subject by deducting the
minimum observed latency from all the observed latencies. Alternatively,
a simpler rough-and-ready way involves subtracting 1 second for all
observed latencies. The resulting times will be referred to as the transformed
latencies.

A plot of the logarithm of the survival function against the transformed
latencies derived from Table 1 gives two lines that are roughly straight,
indicating that memories are being recalled at random with a constant
recall rate; that is, the latencies follow the negative exponential distribution.
The two types of memory recall within each subject can therefore be
summarised by estimates of these rates. These estimates are obtained by
dividing the total number of successful recalls by the sum of all of the
appropriate transformed latencies (that is, including the times for censored
observations although these did not lead to successful recalls).

We can now turn to the second aim of the preliminary analysis: to
educate the client. At the onset of the study the client had approached me
to discuss the analysis of a large set of data which, at that time, was still
being collected (see Master, Lishman and Smith, 1983). In previous work
(see Lloyd and Lishman, 1975 or Teasdale and Fogarty, 1979) the
latencies had been summarised for each type of memory and for each
subject separately by mean recall times. The mean recall times were
calculated by dividing the total amount of time spent by the subject trying
to achieve recalls of a particular type of memory by the total number of
trials for that type of memory (that is, censored observations were treated
as if the subjects actually had recalled a memory at the time of censoring).
This appears to be quite a sensible approach to many statistically naive
laymen and the main challenge facing the consultant statistician here was
to persuade the client to use the censored observations in a different way
from the uncensored ones (that is, to use the appropriate rate of recall
derived from the transformed latencies rather than the mean recall time).
The result of this persuasion has been that the client and his peers have
adopted the more appropriate summary statistic, but in practice have
always presented it in parallel with the defective one. Even though the
collectors of this type of data admit that the crude mean recall time is
defective, they are loath to abandon it completely in favour of a rate
estimate. It is strange that even the median recall time, which would have
been much more preferable to the arithmetic mean, does not appear to
hold any attraction for psychiatrists.

But what difference does ignoring both the highly skewed distribution
of the latencies and the fact that some of them are censored make? Not
as much as I would have expected.
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Consider, for example, the data in Table 1. If these latencies are
transformed by replacing ¢ by #—1 (assuming that the mean recall time
is approximately 1), a log-linear exponential model can be fitted to the
data using GLIM (Baker and Nelder, 1978; Aitkin and Clayton, 1980). The
significance to the effect of changing from pleasant to unpleasant memories
can be found by fitting either one survival curve or two survival curves
to the data. G? for the difference in fit of the two models is 3.07 with 1
degree of freedom (P < 0.08). A simple z-test on the raw data yields a
t-statistic of 1.53 with 46 degrees of freedom (P < 0.06 for a two-tailed
test). Obviously, however, the discrepancy will increase as the number of
censored observations increases.

4 The final product

The implication of the initial description of the various analyses
carried out on Table 1 was that the larger body of data would be analysed
using some form of proportional hazards model (Dunn and Master, 1983).
However, a single-stage analysis of a large set of repeated measures of
response latencies involving two or more within-subject contrasts (pleasant
versus unpleasant; mild versus moderate effect; or mild versus strong
effect), possible censoring and competing risks, together with the possibility
of group influences (male versus female, for example), did not appear to
be a very attractive proposition!

When the main data set was eventually ready to be analysed, the work
was undertaken by a second consultant statistician, Alan Smith (see
Master, Lishman and Smith, 1983). He chose to analyse the data in two
stages. First, the latencies of each type were summarised by rate estimates
as explained in Section 3 above. A development of the simple exponential
model was made to allow for competing risks (David and Moeschberger,
1978). That is, each of the two types of memory (pleasant or unpleasant)
were further classified into three sub-groups, depending on the rated
intensity of recall. The rate for mildly pleasant memories, for example, can
be estimated from the total number of mildly pleasant recalls and the total
time spent trying to recall pleasant memories in general (moderately and
very pleasant recalls are treated here as further examples of censoring).

To summarise, the first stage of the analysis yielded a set of six summary
statistics for each subject (rates from mildly, moderately and very pleasant
memories and for mildly, moderately and very unpleasant ones). The
second stage of the analysis involved the use of simple significance tests
to compare these rates both within and between subjects. The reader is
referred to Master, Lishman and Smith (1983) for details. This two-stage
approach is straightforward and relatively easy for the client to understand.



78 G. Dunn

The second stage could have been made more complicated through the use
of repeated-measures analysis of variance programs, but I doubt if this
would have added much.

Following the publication of the paper by Master, Lishman and Smith
(1983), I was again approached for help in the design and analysis of
experiments involving the use of response latencies. It was assumed that
the above two-stage procedure would be adopted as a standard method
of approaching the analysis of any of the sets of data to be generated in
future experiments. As a result of this it was decided that the microcomputer
used to collect the latency data would also be programmed to carry out
the initial estimation of the required recall rates (allowing for minimum
response times, censoring and competing risks, if necessary). The output
of the first stage of the analysis then formed the raw data for a second stage
to be performed on a different (larger) computer using standard statistical
packages such as spss.

The final product of the consultation with the statisticians was not the
analysis of a particular set of latencies but a general strategy for their
collection and subsequent analysis. The design of the experiments could
be any one of the repeated-measures designs already familiar to
experimental psychologists (see Winer, 1971). The analysis could involve
the simple use of straightforward significance tests for specified within-
subject or between-subject contrasts or the relatively sophisticated use of
a repeated-measures analysis of variance/covariance program such as
MANOVA in SPssX (SPSS Inc., 1983).

5 Discussion

In the introduction to this chapter it was asked what the basic
strategy should be in the analysis of repeated-measures designs. Should the
main criterion, apart from validity, be one of simplicity? I have indicated
in Sections 3 and 4 above how a set of data, which, when first encountered,
would appear to defy a simple analysis, can be analysed in a fairly easy
and straightforward way. There may be more technically perfect ways of
approaching a complex set of survival data but I doubt whether the client
or his peers would have much chance of following it.

In the context of the type of data set given as an example in this chapter,
the client has to be able the understand and cope with several important
problems.

(i) The design of the experiment. This varies from one experiment to
another, and of course, can be as simple or as complex as the
client wishes it to be. My own view is that most of the experimental
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designs used in this area should be simpler than most clients
would wish.
(ii) Censoring.
(iii) Competing risks (perhaps introduced as a generalisation of the
idea of censoring, or vice versa).
(iv) Repeated measures (of two classes: repeated latencies of one type
and parallel rate estimates for the different types of memory).
Once the client has understood the problems, the solutions of them can
be quite straightforward. The solutions to the problems of repeated
measurements will depend as much as anything on the tastes of the
statistical consultant and on the statistical knowledge of the client. I, as
a statistical consultant, prefer the simpler solutions, and I am sure that a
statistically naive client does also. This does not mean, however, that the
simple solutions can be provided without thought. If any corners are to
be cut, if any simplifications to the analysis are to be made, then there is
still a requirement for someone with sufficient experience and knowledge
to know what simplifications are appropriate and what corners can be cut
without threatening the validity of the resulting analysis. Simplicity does
not imply that the statistical consultant becomes redundant, but that the
consultant becomes more a source of advice and knowledge rather than
another pair of hands to analyse the data for the client.
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Acid rain and tree roots:
an analysis of an experiment

J.N.R.JEFFERS

1 Introduction

The ideal form of statistical consultation starts with a discussion
between the research worker and the statistician on the design of the whole
research project, as well as the design of any component experiments or
surveys. In this way, the statistician can ensure that all the data that are
collected can be fitted together into a comprehensive model of the pro-
cesses that underlie the phenomena being investigated. Only then does
he help the research worker to identify the factors to be controlled or
varied throughout the research, and the variables to be measured. The
methods of mathematical analysis that will be used to test hypotheses, or
to estimate parameters, then follow logically from the design of the whole
project and its component experiments.

Unfortunately, very little consultation with statisticians follows this
ideal pattern. Indeed, few research organisations have enough statisticians
for more than a very small proportion of research projects to be planned
with the active collaboration of the statisticians. What frequently happens,
therefore, is that the statistician is consulted long after the data have been
collected, and, by definition, long after the design of the investigation has
been fixed and partly executed. It is also only very seldom that much
thought will have been given to the integration of several (or many)
experiments or surveys, so that, if the statistician is consulted at all, it will
usually be about the analysis and interpretation of a single experiment or
survey, without much regard for the whole investigation into which the
individual research activities fit.

Increasingly, because of the ready availability of statistical packages on
computers, research workers do not see the need to discuss their results
with statisticians, and still less seek advice on the types of analysis which
they should use. There are many reasons given for this apparent avoidance
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of consultation, ranging from the inaccessibility of statisticians, through
the desire to reduce delays in the publication of results that may be
imposed by statisticians who insist on going back to the origins of the
research rather than answering a simple question, to a genuine lack of
appreciation of the difficulties of the interpretation of data, especially
when those data are derived from experimental or survey designs which
are less than efficient, if not actually invalid. Nevertheless, it is an un-
fortunate fact that much of what reaches the statistician for advice only
does so because the research worker has already encountered difficulties
in the analysis or interpretation of the data. The statistician’s main task
is then to retrieve what he can from a situation which has often been made
more difficult by a failure to impose effective standards on the design of
research and on the collection of data. The scale of the problem, in the
absence of direct advice from a collaborating statistician, can be seen by
the number and content of the questions contained in simple checklists on
experimental design and sampling (Jeffers, 1978, 1980).

Even where effective arrangements for the provision of statistical advice
are made within a research organisation, the problem may be complicated
by collaboration with other research organisations. Thus, one organisation
may find itself obliged to work with designs which have been created by
others, often without the benefit of advice. While it might be wiser on
occasion to avoid getting into this situation, there are times when it is
necessary to accept something which is less than ideal, and to make the
best of the data which can be derived from the research. Such situations
often provide a major challenge to the consultant statistician, as well as
placing some constraints on what he would like to say about the design of
the research generally.

The data described in this chapter were derived from an experiment
designed by one organisation upon which was grafted an investigation by
a second organisation. Only when the data had been collected was it
realised by the second organisation that the interpretation of these data
involved problems of analysis that had not been anticipated in the ways
in which the data were collected. As is often the case in such situations,
the problem is to extract the maximum information from the data that are
now available rather than to advise on how the required information could
be obtained efficiently and economically through an ideal design.

2 Background

A good deal of concern has recently been focused on the problem
of acid precipitation, and the effects of acid rain and sulphur deposition
on plants (Jacobson, 1984). Much of the research on such effects has
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concentrated on the above-ground parts of plants, but there is strong
evidence that soils are also affected, as well as the roots of plants. Of
particular importance is the possible effect of acid precipitation on
long-lived organisms such as trees, and one theory is that acid precipitation
has an adverse effect on the fine roots of such trees. Such an effect may
be partly due to the direct damage of the roots themselves, but it may also
be due to changes in the uptake of essential nutrients such as phosphates
and nitrates.

Most fine roots of forest trees have an intimate relationship with
symbiotic fungi known as mycorrhizas. Essentially, the role of these
mycorrhizas is to enhance the nutrient uptake of the tree roots, possibly
because of their ability to explore a greater volume of soil than the roots
themselves and the associated root hairs. It was suspected that acidic
pollutants might have an effect, not only on the survival of roots, but also
on their mycorrhizal associates, possibly by selecting acid-tolerant species.
Destruction of the root and mycorrhizal structures as a result of pollution
would seriously affect the nutrient uptake of the trees, and research is
therefore desirable on the extent of such effects.

The data included in the analysis described in this chapter were derived
from an investigation of the effects of acid precipitation on the roots of
seedlings of Scots pine. The seedlings were grown in four specially
constructed lysimeters, each 0.8 m in diameter and 1.35 m deep, on an
undisturbed humo-ferric podzol from the Lower Greensand series. All of
the lysimeters received an artificial rain solution representing the compo-
sition of rain at Birkenes in south Norway, but for two of the lysimeters
this artificial rain was acidified to pH 3.0 with sulphuric acid. All of the
simulated rainfall applications were equivalent to an annual rainfall of
1500 mm, characteristic of south Norway.

The primary objectives of the investigation were:

(i) to assess the effects of the acid solution on the biomass of the root
system of the Scots pine seedlings;

(ii) to assess the nature of the mycorrhizal symbionts in both the
control and acid-treated lysimeters, and possibly to identify
acid-tolerant species;

(iii) to identify changes in the mycorrhizal structure due to acid
treatment by examination of thin sections of fine root material;

(iv) to compare the phosphate deficiency of surface roots in order to
determine changes in root physiology due to the effects of the acid
solution.

Three years after the initiation of the experiment, two soil cores, each with
a diameter of 2.5 cm and an approximate depth of 35 cm, were taken from
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each of six colour-coded sectors of the lysimeters. The sampling positions
within each sector were stratified, so that one core in each sector came
from identically located points on the inner portion of the sector and the
other core came from the outer portion of the sector. The litter layer from
each sector was removed, and the core itself cut into 3 cm sections,
corresponding to depth horizons, to a depth of 30 cm. The remaining
fraction below 30 cm was kept as a separate sample. The litter and soil
horizons were placed into individual pre-labelled self-seal polythene bags
for transportation to the laboratory, where the cores were stored at 4 °C
before subsequent processing.

The fine root length in each depth horizon and segment was estimated
by a modified line intersect method with the aid of a Quantimet image
analyser. The total number of root tips in each of seven mycorrhizal types
was counted for each sample (Dighton, Skeffington and Brown, 1986).
Because of the time involved in processing the samples, it was only
possible to extract roots from one of the two cores taken from each
segment. Alternate inner and outer cores were used, but this distinction
between inner and outer samples is not used in the following analysis. A
bioassay of the phosphorus uptake of the roots was also made, but only
the root tip data are considered in this chapter.

3 Experimental design

The above description of the lysimeter experiment does not
explicitly define any particular design as being appropriate to the analysis
of the data derived from the experiment. In essence, there are two
replications of each of the control and acid-treated lysimeters, and these
could, perhaps, be regarded as following one of the possible six permuta-
tions of a 2 x 2 randomised block experiment (Figure 1). There is no
evidence, however, that the assumed blocks have been used constructively
to take up extraneous experimental errors. As an alternative, the allocation
of the treatments could be regarded as completely randomised.

The division of the lysimeters into six sectors imposes a further
restriction on the selection of the sample cores. Given the limited
replication of the treatments to the lysimeters, it is tempting to use the
differences between sectors within lysimeters as measures of the experi-
mental error, but the systematic nature of the division into sectors poses
problems for the analysis. The six cores from each lysimeter cannot be
regarded as completely random samples from the lysimeters. The sectors
were coded by colours indicating their position in relation to the centre
of the lysimeter, and it is possible that the position of the sectors would
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reflect differences due to drainage or the application of the simulated
precipitation.

The original intentions of the investigators of the effects of acid rain on
the mycorrhizas was to analyse the root tip data by a four-factor analysis
of variance, the four factors being treatment (control versus acid), sectors,
depths, and mycorrhizal type. However, it quickly became apparent that
the sectors, depths and mycorrhizal types could not be regarded as
experimental factors in such an analysis. Rather, the recorded number of
root tips at each 3 cm depth horizon belonging to each of the mycorrhizal
types should be regarded as the variables of a 7 x 11 multivariate set. Any
efficient analysis of the data, therefore, should acknowledge the existence
of the whole set of variables, as opposed to simply analysing each variable
separately.

4 Exploratory analysis

The first step in any statistical analysis today is to make the data
machine readable to allow the appropriate analysis to be done quickly and
conveniently on a computer. The data in Table 1 were therefore stored on

Fig. 1. Lysimeter layout (sectors coded in colours: G green; B blue, V
violet; Y yellow; R red; O orange)
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Table 1. Effects of acid rain on Scots pine seedlings, mycorrhizal types

Depths (cm)

Type 0-3 36 69 9-12 12-15 15-18 18-21 21-24 24-27 27-30 30-33

Lysimeter 5, control

A 219 30 26 86 25 25 0 0 0 12 0

B 171 23 29 18 22 21 0 0 0 0 0

C 74 83 22 16 124 58 0 0 0 0 0
Y{D 0 0 0 2 19 0 0 0 0 0 0
E 11 11 16 0 0 0 0 0 0 1 0

F 0 0 0 8 24 116 40 0 0 0 0

\ G 33 5 3 1 1 2 0 0 1 0 0

A 539 94 144 62 77 0 15 18 5 22 8

B 0 0 0 3 0 0 0 0 0 0 0

C 80 38 25 38 53 0 27 11 5 0 2
vViD 0 0 0 0 0 0 0 0 0 0 0
E 87 86 73 59 0 0 0 0 0 0 3

F 358 0 0 188 0 0 0 0 0 0 0

G 4 2 5 4 2 0 0 0 3 0 0

A 548 106 57 12 16 0 0 0 0 0 0

B 833 452 95 0 108 0 0 0 0 0 0

C 133 172 24 2 4 0 0 0 0 0 0

o4y D 0 0 43 0 0 0 0 0 0 0 0
E 53 8 1 0 5 0 0 0 0 0 0

F 4 20 0 0 0 0 0 0 0 0 0

G 4 3 3 0 1 0 0 0 0 0 0

([ A 452 55 146 51 9 35 40 28 14 20 5

B 75 0 0 0 0 0 0 0 0 0 0

C 138 119 88 22 13 13 5 10 0 13 1

B<( D 0 27 0 0 0 0 0 0o 0 0 0
E 13 7 0 0 0 0 0 0 0 0 0

F 298 12 148 0 0 0 0 8 0 0 0

\ G 10 4 1 0 0 1 1 1 0 0 0

A 330 110 88 33 17 26 8 23 0 21 34

B 28 0 0 0 0 0 0 10 0 42 4

C 155 80 38 30 15 8 0 5 0 0 4
G(D 125 0 0 0 0 0 0 0 0 0 0
E 20 13 0 0 0 0 0 0 0 0 0

F 358 26 0 0 0 0 0 0 0 0 0

G 3 2 1 2 4 0 0 1 0 0 0

A 287 107 12 20 16 0 0 0 0 31 10

B 426 465 411 31 2 0 0 0 0 24 2

C 36 19 7 18 12 0 0 3 0 5 5

R¢{ D 0 0 11 0 0 0 0 0 0 3 0
E 23 2 1 1 0 0 0 0 0 2 0

F 57 80 0 0 0 0 0 0 0 0 0

G 0 1 1 0 0 0 0 3 0 0 0
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Table 1. (cont.)
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Table 1. (cont.)

Depth (cm)
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a floppy disk after being input and checked on a microprocessor. Before
proceeding to any formal analysis, however, it is the author’s strong
preference to do some exploratory data analysis to see what the data
themselves say about the nature of the variation which has been generated
by the experiment.

The simplest way of summarising the 7 x 11 matrix of observations for
each segment is to count the total number of root tips in the core, and these
total numbers are given in Table 2 and Figure 2. Although these totals are
not strictly random samples from each lysimeter, Figure 3 shows the range
of variation in the totals of a box-plot diagram (Tukey, 1977). Clearly, the
total range of variation does not vary markedly from lysimeter to

Table 2. Total numbers of root tips in sectors of lysimeters

Control Acid-treated

Sector 5 7 6 8

Yellow 1378 1103 657 1137
Violet 2140 1712 889 973
Orange 2707 1340 339 1694
Blue 1893 1638 1251 950
Green 1664 1995 1183 684
Red 2134 1565 419 968

Fig. 2. Total number of root tips

3000~ Control: lysimeter 5 3000 ~ Acid: lysimeter 6
2000 2000 -
1000 1000
0 0 Y|V|O|IBJ|G]|R
3000~ Control: lysimeter 7 3000 - Acid: lysimeter 8
2000 ~ 2000 -
1000 1000 [~
‘'y|[v|o|B]|G|R 'Y|v|O|BjG|R
0 0



90 J. N. R. Jeffers

lysimeter, but the mid-spread for the acid-treated lysimeter 6 is larger than
for the other three lysimeters, and acid-treated lysimeter 8 has a very small
mid-spread which effectively makes the two extreme values outliers to the
remaining four values. The medians of the two acid-treated lysimeters are
less than those of the two control lysimeters, suggesting a reduction in the
total number of root tips to about half of those found in untreated soils.

An alternative presentation of the total numbers of root tips is given in
Table 3 as a median polish (McNeil, 1977) of the two-way relationship
between sectors and lysimeters. Again, there are marked differences
between the components for the acid-treated and control lysimeters, but
the analysis also suggests that there are small, but consistent, effects of the
sectors. The residuals from the two-way median polish are plotted in
Figure 4, but do not suggest any particular pattern, even after trying
various alternative configurations of the sectors to reflect possible drainage
patterns within the lysimeters.

Fig. 3. Range of variation in total number of root tips: box-plot
diagrams

0 1000 2000 3000

J-:': ° Control: lysimeter 5

:':} Control: lysimeter 7
—_‘j:—— Acid: lysimeter 6
° —b— ° Acid: lysimeter 8

0 1000 2000 3000
Lower Upper
quartile Median quartile Mid-spread
Control § 1664 2003 2140 476
Control 7 1340 1602 1712 372
Acid 6 419 773 1183 764

Acid 8 950 971 1137 187
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The average numbers of root tips in each 3 cm depth horizon for each
lysimeter are given in Table 4 and plotted in Figure 5. The numbers of root
tips decline rapidly with depth, from just under 1000 at a depth of 3 cm
in the control lysimeters and less than 500 in the acid-treated lysimeters
to less than 50 at the lower depths in both control and acid-treated soils.
The principal effect of the acid treatment, therefore, is to reduce the
numbers of root tips in the top 3 cm of the soil.

Finally, the numbers of root tips with different mycorrhizal associations
in each lysimeter are given in Table 5. The principal effect of the acid
treatment appears to have been a large reduction in the numbers of root
tips associated with types B and F, and a rather smaller reduction of those
with type A. It is notable, however, that only one of the control lysimeters

Table 3. Two-way median polish of total numbers of root tips

Control Acid-treated
Typical
Sector 5 7 6 8 value
Yellow —224 —-127 101 549 —380
Violet 104 48 —100 —48 54
Orange 497 —498 —825 448 228
Blue —104 23 310 -23 5
Green -313 390 252 279 -5
Red 174 -23 —494 23 -22
Typical values 693 321 —353 —321 1289

Fig. 4. Residuals for median polish

Control

Control
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had any substantial numbers of root tips associated with type F. Table 5
does not show the effect of depth on the changes in numbers of root tips,
but, as most of the effects of the acid treatment occurred in the top 3 cm
of the solil, it can be assumed that most of the effects on the root tips with
different mycorrhizal associations occurred near the surface.

Table 4. Average numbers of root tips in each 3 cm
horizon of cores

Control Acid-treated
Depth
(cm) 5 7 6 8
0-3 998 968 320 461
3-6 377 187 140 206
6-9 255 158 91 208
9-12 121 82 68 38
12-15 110 21 38 21
15-18 38 2 26 15
18-21 16 6 24 26
21-24 20 31 30 42
24-27 5 49 30 30
27-30 33 39 12 16
30-33 13 16 12 4

1000

Control
A == Acid-treated

800

600

400 |

Numbers of root tips

200 |
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The exploratory analysis, therefore, suggests a marked reduction in the
total number of root tips of the Scots pine seedlings after three years as
a result of the acid treatment. Most of this reduction took place in the
top 3cm of the soil, and is related to three of the possible seven
mycorrhizal associations. What we now require is a more thorough
analysis of the data, providing precise estimates of the effects. Ideally, we
would also like a reasonably simple model of the experimental system
which would perhaps be used to make predictions against which to plan
future research.

5 Analysis
The formal analysis of the data of Table 2, which will now be
addressed, illustrates quite well the problems posed by the design of the
experiment. It will be worthwhile, therefore, to spend a little time exam-
ining some alternative analyses in more detail.
If we assume that the control and acid treatments were allocated to the
four lysimeters at random, and that the cores from the six sectors in each
lysimeter also represent random samples of the soil in the lysimeters, the

Table 5. Average numbers of root tips for mycorrhizal types

Control Acid-treated

Mycorrhizal

type 5 6 7 8

A 696 670 440 542
B 549 433 18 9
C 309 278 162 366
D 36 20 29 55
E 83 145 118 84
F 291 7 13 2
G 19 7 11 10

Table 6. Analysis of variance of total numbers of root tips

Degrees of  Sum of
Source of variation freedom squares Mean square F-ratio

4263051.04  4263051.04
Between lysimeters 775002.75 387501.38

Within lysimeter 5 1049401.33 209880.27

Controls versus acid 1
2
5
Within lysimeter 7 5 475678.83 95135.77
5
5

11.00

Within lysimeter 6 735501.33 147100.27
Within lysimeter 8 577041.33 115408.27
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appropriate analysis of variance of the untransformed total numbers of
root tips per core is as in Table 6. One possible test of the mean difference
in numbers of root tips per core between control and treated soils is given
by the F-ratio

F(1,2) =4263051.04/387501.38 = 11.00

While this value of the F-ratio looks encouragingly high, the very small
number of degrees of freedom for the denominator of this ratio effectively
precludes the mean difference being shown as statistically significant.
Expressing the same result in another way, the mean difference between
the numbers of root tips per core in control and acid-treated soils is
estimated by

1771.6—928.7 = 842.9

with a standard error estimated by 1/(387501.384/12) = 179.7, but the
size of the difference necessary for it to be shown as significant, even at
the 59, level of probability, is equivalent to

179.7xv/2x 12 d.f) = 179.7x /2 x4.303 = 1093.5

The lack of replication of treated and untreated lysimeters makes it
impossible to ascribe significance to the effects of treatments based on
differences between lysimeters treated alike.

An alternative measure of variability, increasing the number of degrees
of freedom for a test of significance, or an estimate of the mean difference,
is the ‘within lysimeter’ variance derived from the individual cores.
However, before proceeding, it is first necessary to test the homogeneity
of the ‘within lysimeter’ variances. For the control lysimeters, the F-ratio

F(5, 5) = 209880.27/95135.77 = 2.21
does not exceed the tabulated value of F for the 5% level of probability
of 7.15. The two variances may therefore reasonably be pooled to give an
estimated common variance of 152508.01 for the ‘within lysimeter’
variability of the control lysimeters. Similarly, for the acid-treated lysi-
meters, the F-ratio

F(5, 5) = 735501.33/577041.33 = 1.27

is again not significant at the 59, probability level and the two variances

may be pooled to give an estimated 131254.27 for the common ‘within

lysimeter’ variance of the acid-treated lysimeters. Finally, the F-ratio for

the comparison between the control and acid-treated variances is given by
FQ10, 10) = 152508.01/131254.27 = 1.6

and suggests that all of the variances can be pooled to give a common
‘within lysimeter’ variance of 141881.14. Alternatively, the heterogeneity
of all four variances can be tested simultaneously by Bartlett’s test
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(Snedecor, 1946) giving an adjusted chi-square of 0.82 with 3 degrees of
freedom, again not significant even at the 5%, level of probability.

This pooled ‘ within lysimeter’ or ‘between cores’ variance enables two
further F-ratio tests to be performed. First, the F-ratio of the comparison
of control and acid-treated lysimeters is given by

F(1, 20) = 4263051.04/141881.15 = 30.04

which far exceeds the tabulated value of F for the 19, probability level.
Moreover, the F-ratio for the differences between lysimeters treated alike
is given by

F(2,20) = 387501.38/141881.14 = 2.73
which does not exceed the tabulated value of F for the 5% probability
level. If, therefore, the ‘within lysimeter’ variances can be regarded as
valid estimates of the ‘ between core’ variances, the difference between the
numbers of root tips per core in the control and acid-treated soils is
statistically significant, and there are no significant differences between the
numbers of root tips per core in the soils of lysimeters treated alike. The
difference in numbers of root tips per core between the control and
acid-treated soils is estimated as

1771.6—928.7 = 842.9
with a standard error

v (2x141881.14/12) = 153.8

The reduction in the number of root tips per core resulting from treatment
with dilute sulphuric acid is approximately 489, . As the volume of each
core was 161.7 cm, these total numbers can be readily converted to
numbers of root tips per cubic centimetre, and Table 7 summarises the
results of the analysis so far.

The above analysis assumes that the ‘within lysimeter’ samples were
taken at random within each lysimeter. In fact, the randomisation of the
samples was restricted, two cores being taken from each of six sectors
coded by colours in Figure 1. For the data of Table 1, only one of these
cores was examined in detail, and the data therefore represent the numbers

Table 7. Summary of numbers of root tips per
core and per cubic centimetre

Total no. of root Total no. of root

Treatment tips per core tips per cm?®
Control 17724105 11.0+0.7
Acid 9294109 5.7+0.7

Difference 843 +154 52+1.0
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of root tips found in each of one core taken at random from each of the
six sectors. As it is quite likely that there would be some effect of the
orientation of the sectors on the distribution of the numbers of root tips,
it is appropriate to examine the numbers of root tips in each sector, and
Table 8 gives an analysis of variance identifying the sectors, and the
interaction between the effects of the sectors and the comparison between
the control and treated soils. Because the sectors represent a systematic
division of the surface area of the lysimeters, it is necessary to calculate
two ‘error’ terms (Cochran and Cox, 1950). One of these ‘errors’ applies
to the comparison of sectors and the treatment. The appropriate F-ratio

tests
F(5,5) =102238.85/17853.30 = 5.73

and
F(5,5) =86753.45/360696.97 = 0.24

indicate a significant (P = 0.05) difference between the numbers of root
tips per core in the sectors, but no significant interaction between the
effects of the sectors and the acid treatment. Table 9 and Figure 6 show
the numbers of root tips per core for each sector, and indicate that the
numbers of root rips were significantly less in the yellow sectors of the
lysimeters than in some of the other sectors. No obvious reason has been
advanced for this difference, and, fortunately, it has not interacted with
the effect of the acid treatment.

6 Effect of depth

The preliminary analysis of the data summarised in Table 4 and
Figure 5 suggested a marked reduction in the number of root tips with
depth in the soil, but did not seek to characterise the relationship between
the numbers of root tips and depth. Inspection of the curves representing

Table 8. Analysis of variance testing differences between sectors

Degrees of Sum of
Source of variation freedom squares Mean square F-ratio

Control versus acid 1 4263051.04 4263051.04
Between lysimeters 2 775002.75 387501.38
Sectors 5 511194.25 102238.85 } 573
Error 1 5 89176.50 17853.30 ’
Treatments versus 5 433767.25 86753.45

sectors } 0.24
Error 2 5 1803484.90 360696.97

Total 23 7875676.61
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Table 9. Average numbers of root tips per core in
colour-coded sectors

Sector No. of root tips
per core

Yellow 1069

Red 1272

Green 1382

Violet 1429

Blue 1431

Orange 1520

Standard

error 66.8

Fig. 6. Diagrammatic representation of numbers of root tips in each
sector
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the average number of root tips per core in each 3 cm horizon suggests
a range of possible relationships, including exponential, logarithmic and
hyperbolic regressions, for example

Exponential y=a+blnx
Logarithmic Iny = a+bx
Hyperbolic Iny=a+blnx

Table 10 shows the proportion of the variability in the numbers of root
tips per horizon accounted for by six possible regression relationships.
Clearly, none of these regressions is ‘best’ for all of the lysimeters, but
overall the regression of the logarithm of the number of root tips on the
logarithm of depth accounts for a consistently high proportion of the
variability.

Table 11, therefore, gives the calculated values of the regression
constant and coefficient for the relationship between the logarithm of the
number of root tips on the logarithm of depth for each lysimeter, together

Table 10. Variability accounted for by six possible regressions of
numbers of root tips on depth of soil horizon

Proportion of total variability

Control Acid

Regression 5 7 6 8

Inyonx 0.820 0.343 0.863 0.737
yonlnx 0.836 0.672 0.857 0.833
Inyoninx  0.861 0.532 0.944 0.796
vyonx 0.751 0.479 0.756 0.676
yonx 0.697 0.517 0.724 0.707
Vyonyx 0861 0.615 0.863 0.781

Table 11. Parameters of regressions of log numbers of root tips on log
depth for each lysimeter, and for control and acid-treated lysimeters

Proportion of Regression Regression
Lysimeter variability constant coefficient
5 0.861 9.54119 —2.03032
7 0.532 8.24055 —1.68775
6 0.944 7.31835 —1.32647
8 0.796 8.14692 —1.65012
Control 0.872 8.82215 —1.76511

Acid 0.892 7.75491 —1.48371
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with the correlation coefficients. Except for lysimeter 7, for which the
regression accounts for only about 539/ of the variation, the regressions
generally account for at least 809, of the variation in the number of root
tips. However, as can be seen from the table of residuals in Table 12, the
fitted curves are not entirely satisfactory because the pattern of residuals
shows systematic departures from the predicted values. The same relation-
ship is fitted to the average numbers of root tips in each horizon for the
control and acid-treated lysimeters in Table 13. Again, while the general
trend of the fitted curves is approximately right, there are systematic
patterns in the residuals from the fitted values.

Table 12. Residuals from fitted regressions of log numbers of root tips on
log depth for individual lysimeters and averages of control and
acid-treated lysimeters

Residual (actual —fitted)

Depth
(cm) 5 7 6 8 Control  Acid
3 498.7 —3743 313 102.8 -72 66.8
6 —10.7 -29 0.3 —26.7 49 -9.5
9 —-93.7 —64.9 -9.1 —1164 —659 —60.0
12 —30.8 —25.0 117 19.0 -—16.9 5.6
15 —53.2 17.9 35 18.8 —8.8 12.6
18 1.2 27.0 6.7 14.0 21.3 11.5
21 12.8 16.8 2.7 -3.6 20.7 0.4
24 1.8 —13.2 -1 —23.6 —-0.7 —15.2
27 12.6 —34.1 —11.1 —153 —6.5 —12.7
30 —19.7 ~272 4.2 -29 -193 1.1
33 -15 —5.6 3.1 6.6 —-0.3 5.2

Table 13. Total number of root tips in 3 cm horizons

Depth (cm) Control Acid
0-3 982.75 390.25
3-6 282.08 172.92
6-9 206.17 149.58
9-12 101.33 52.83

12-15 65.75 29.42

15-18 20.00 20.50

18-21 10.75 25.08

21-24 25.58 36.08

24-27 26.67 30.25

27-30 36.00 13.92

30-33 14.50 7.83
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While it is possible to fit the actual values by polynomial curves of up
to the fifth degree, these curves give very little insight into the underlying
ecology of the distribution of root tips with depth. The principal question
is whether the slight increases in numbers of root tips at the lower depths
are ‘real’. A variety of possible forms of analysis might be suggested,
including the fitting of series of exponential curves representing mycorrhizas
associated with particular strata, but such exercises are essentially periph-
eral to the main purpose of interpreting the results of the experiment.

Table 14, therefore, gives the average numbers of root tips per cm? in
each horizon, together with the appropriate standard errors (SE), derived
from a series of analyses of variance similar to that given in Table 8 for
total numbers of root tips. Expressed as numbers per cubic centimetre, the
density of root tips declined rapidly from 67 at the surface to 4.5 at a depth
of 12-15 cm. The only statistically significant differences in numbers of
root tips, however, was in the surface 0-3 cm. Below a depth of 15 cm,
there were only one or two root tips per cubic centimetre in both sets of
lysimeters.

7 Effect of acid treatment on numbers of root tips with different

mycorrhizal associations and at different depths

The numbers of root tips with different mycorrhizal associations
and at varying depths for both control and acid-treated lysimeters are given
in Tables 15-18 and Figure 7. The effect of the acid was to reduce the
numbers of root tips with mycorrhizal associations A, B and F, but this
effect was almost entirely confined to the top 6 cm of the soil. Below 6 cm,
there were no significant effects of the acid treatment.

Table 14. Number of root tips per cubic centimetre
in 3 cm horizons

Depth (cm) Control Acid SE
0-3 66.9 26.5 448
3-6 19.2 11.6 3.58
69 14.0 10.2 2.51
9-12 6.9 3.6 1.47

12-15 4.5 2.0 1.26

15-18 1.4 1.4 0.65

18-21 0.7 1.7 0.46

21-24 1.7 2.5 0.83

24-27 1.8 2.1 0.56

27-30 2.4 0.9 0.64

30-33 1.0 0.5 0.28
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As for the total numbers of root tips, the consistently best fit for the
average number of root tips with any one mycorrhizal association was
given by a power law regression of the form

y=ax®
The parameters of the fitted regressions for control and acid treatments,
and for each of the mycorrhizal associations are given in Table 19.

Table 15. Average numbers of root tips by depth and mycorrhizal types:
control

Mycorrhizal type

Depth (cm) A B C D E F G
0-3 383 318 100 19 67 90 6
3-6 79 87 80 2 21 12 2
69 84 60 33 5 9 13 2
9-12 45 5 26 1 7 18 1

12-15 19 11 23 2 1 10 1

15-18 7 2 7 0 0 3 1

18-21 6 0 5 0 0 0 0

21-24 16 2 7 0 0 0 1

24-27 15 2 4 0 3 3 0

27-30 19 6 5 0 6 0 0

30-33 9 1 4 0 0 0 0

Fig. 7. Effects of acid treatment on proportional numbers of root rips
with different mycorrhizal types

v I

Control Acid



102 J. N. R. Jeffers

8 Conclusions

Fortunately, the results of the experiment were fairly clear-cut.
Simulation of acid rain by a weak solution of sulphuric acid reduced the
number of root tips in Scots pine seedlings from 1770 to 930 in a complete
core with a diameter of 2.5 cm and a depth of 35 cm. However, the effect
of the acid treatment was confined to the surface layers, reducing the
numbers of root tips from 77/cm?® in untreated soils to 27/cm? in the top
3 cm in the acid-treated soils and from 20/cm?® to 12/cm3 between 3 cm

Table 16. Average numbers of root tips by depth and mycorrhizal types:
acid

Mycorrhizal type
Depth (cm) A B C D E F G
0-3 211 7 106 15 42 5 4
3-6 56 2 66 23 23 1 2
69 101 2 29 2 13 1 1
9-12 26 1 17 1 8 0 0
12-15 21 0 6 0 2 0 1
15-18 12 0 7 0 1 0 0
18-21 12 0 9 0 3 0 0
21-24 18 0 14 0 4 0 0
24-27 18 1 5 1 5 0 1
27-30 10 0 2 0 1 0 0
30-33 6 0 2 0 0 0 0

Table 17. Average numbers of root tips per cubic centimetre by depth and
mycorrhizal type: control

Mycorrhizal type

Depth (cm) A B C D E F G
0-3 261 216 68 1.3 46 6.1 0.4
3-6 5.4 59 54 0.2 14 0.8 0.1
6-9 5.7 41 23 0.4 0.6 0.9 0.1
9-12 3.0 03 18 0.1 0.5 1.2 0.1

12-15 1.3 07 16 0.1 0.0 0.7 0.1

15-18 0.5 01 05 0 0 0.2 0.0

18-21 0.4 0 03 0 0 0 0.0

21-24 1.1 0.1 05 0 0.0 0 0.0

24-27 1.0 0.1 03 0 0.2 0.2 0.0

27-30 1.3 04 0.3 0.0 0.4 0.0 0.0

30-33 0.6 00 03 0 0.0 0.0 0.0
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and 6 cm. Below 15 cm, the acid treatment had no significant effect on
numbers of root tips of the Scots pine seedlings. Moreover, the effect of
the weak sulphuric acid solution was largely confined to root tips with
mycorrhizal associations of types A, B and F.

In a very real sense, the experimenters were lucky. If there had been
significant interactions between the effects of the acid treatment, depths
and mycorrhizal types, it would have been very difficult to interpret those
interactions, given the limited replication of the control and acid treatment,
and the systematic sampling of the cores within the lysimeters. If, in

Table 18. Average numbers of root tips per cubic centimetre by depth and
mycorrhizal types: acid

Mycorrhizal type
Depths (cm) A B C D E F G
0-3 14.4 0.5 7.2 1.0 2.8 03 0.3
3-6 3.8 0.1 4.5 1.6 1.6 0.1 0.2
69 6.9 0.2 20 0.1 0.9 0.1 0.1
9-12 1.7 0.1 1.2 0.0 0.5 0 0.0
12-15 1.4 0 04 0 0.1 0 0.0
15-18 0.8 0 0.5 0 0.1 0 0.0
18-21 0.8 0 0.6 0 0.2 0 0.0
21-24 1.2 0 0.9 0 0.3 0 0.0
24-27 1.2 0.0 0.3 0.1 0.3 0 0.1
27-30 0.7 0.0 0.2 0 0.1 0 0.0
30-33 0.4 0.0 0.1 0 0 0 0

Table 19. Parameter of power law equations for the regressions of
numbers of root tips per horizon on lower depth of horizon

Control Acid

Mycor- Proportion Proportion
rhizal Regression Regression of Regression Regression of

type constant coefficient  variability constant coefficient  variability
A 1536 —1.515 0.801 876 —1.832 0.860

B 5123 -2.421 0.854 17 —1.023 0.840

C 899 —1.561 0.917 833 —1.593 0.866

D 105 -1.724 0.834 102 —1.590 0.597

E 502 —-1.944 0.546 259 —1.529 0.691

F 1848 —2.332 0.754 19 —1.348 0.802

G 41 —1.601 0.802 14 —1.220 0.715
Total 6873 —1.765 0.871 2333 —1.483 0.891
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addition, there had been a marked pattern in the distribution of the root
tips in the different sectors of the lysimeters, resulting from drainage of
the application of the treatments, effective analysis might have been
impossible. Even with the present relatively uncomplicated results, there
remain some aspects of the analysis which need further examination, for
example the variation in numbers of root tips with depth in the different
sectors of the lysimeters.

9 Alternative designs

No analysis of the results of an experiment is complete without
a review of desirable modifications to future experiments. The most
obvious requirement in this particular experiment is for greater replication,
if possible, of the treated and untreated lysimeters. Having only two
replications of these treated and untreated lysimeters provides too few
degrees of freedom for comparisons between whole lysimeters. As a result,
it was necessary to use the differences between samples taken from sectors
within lysimeters treated alike as estimates, possibly invalid, of the
experimental errors. Ideally, any repeated experiment of this kind would
require four or five lysimeters for each treatment, as well as for the control.
The obvious objection to such a recommendation, however, is that it
would greatly increase the amount of work, not only in the application
of controlled or acidified simulated rain, but also in the counting of root
tips in the sample cores from each lysimeter. Even with the present limited
experiment, it was found impossible to analyse more than one core from
each of the six sectors in each lysimeter.

A possible alternative, though admittedly likely to cause practical
difficulties, would be to divide each lysimeter into two, by placing an
impermeable barrier across its diameter. The control and acid treatment
could then be applied at random to one half of each lysimeter, thus
providing a simple split-plot experiment, with repeated samples within
each of, say, three sectors within each half of the split lysimeter. Such an
arrangement would certainly complicate the application of the treatment,
as care would need to be taken to see that none of the acidified rainfall
spilled into the untreated half, quite apart from the difficulty of ensuring
an impermeable barrier between the soils of the two halves. Nevertheless,
this split plot would probably be the most satisfactory arrangement if, as
is almost certain, only a limited number of lysimeters could be provided.
Arrangements would have to be made to ensure that any collected solutes
from the soils were separated at the base of the lysimeter. The experimental
difficulties are perhaps formidable, but not necessarily impossible.

A further important question is related to the effectiveness of dividing
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the lysimeters into sectors, and taking samples from each of the sectors.
This restriction imposed upon the randomisation ensures a relatively even
distribution throughout the lysimeters, but also complicates the subsequent
analysis. There is little evidence in the present data to suggest that much
advantage has been gained from the division of the lysimeters into sectors,
and an equivalent number of completely random samples or cores taken
from the lysimeters would probably have been as effective. Nevertheless,
the control implied by the division into sectors might have been useful if
there had been detectable effects due to drainage or the application of
treatments because of the orientation of the lysimeters. On the whole, the
practice that was adopted in the present experiment was probably
desirable, and would have been even more valuable if both cores from each
sector had subsequently been assessed.

Finally, the shape of the curves of the distribution of numbers of root
tips with depth suggests that it would have been sufficient to record
numbers of root tips in 6 cm horizons rather than in the more detailed
3 cm horizons. The reduced number of horizons would still have given six
points along a curve, probably sufficient to determine an empirical
relationship between the number of root tips and depth. Indeed, it would
have been preferable to have had records from both cores and from each
sector for the smaller number of horizons, rather than the 11 horizons for
only one core from each sector.

10 Discussion
The experiment described in this chapter highlights a number of
the problems which regularly beset the working statistician. Although most
experimenters recognise that it is desirable to consult a statistician before
the experiment is committed to a particular design, for a variety of
reasons most experiments are still designed without the benefit of such
advice. Either a statistician is not available at the right time, or it is felt
that the advice of a statistician is likely to complicate the research to such
an extent that experimenters will avoid seeking it. There is a quite strongly
held view among experimenters that statisticians always ask for more
replication than can be provided, and hence jeopardise the research by
suggesting that it is not worth doing unless sufficient replication can be
provided. There is, of course, some truth in this allegation, and, equally,
some truth in the view that, unless an experiment can be done with
adequate replication, and with due regard to the size of the difference
which it is important to be able to detect, the research may indeed not be
worth doing.
Having obtained the results of the experiment, most experimenters will
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then look for ways to analyse the data, and only, at this stage, recognise
that some help is needed from a qualified statistician. Somewhat reluctantly,
the experimenter consults the statistician, only to be told what he knew
in the first place, i.e. that the difficulties of the analysis are largely due to
the original design. Sometimes, however, the problems of analysis lie in
an incorrect perception of the form of the appropriate analysis. In the
absence of the fairly extensive statistical training which is often necessary
for the analysis of even apparently simple types of data, most experimenters
will hunt for an appropriate form of analysis in a textbook, or, more
recently, at the nearest computing centre.

Indeed, the introduction of the electronic computer as the by now
almost ubiquitous method of analysing data has, if anything, made
matters worse. A vast range of analytical procedures have now been
programmed, and are available, through a variety of statistical packages,
to any user willing to master the somewhat daunting language in which
the program description is written, including the instructions for preparing
the data for input to the computer. It is now desperately easy for wholly
inappropriate techniques to be used in the analysis of data, simply because
the methods are available and accessible through a local computing centre.
With the advent of desk-top microprocessors, complete with extensive
packages of analytical techniques on disks and tapes, a high proportion
of the data collected in scientific research never receives any adequate
consideration or analysis. The experimenters will process their own data
unless they recognise that there is a problem, or unless the results of the
analysis are sufficiently bizarre for them to be alerted to the deficiencies
of the analytical technique. Statisticians have not yet found an answer to
this problem, but it is one which needs our urgent consideration if a great
deal of valuable research is not to be wasted, not only by inadequate
design, but also by inappropriate, and sometimes misleading, analysis.

Finally, it is perhaps worth stressing that, even with the use of
computers, the adequate analysis of experimental data is an extremely
time-consuming occupation. As a simple rule of thumb, a well-designed
experiment will require approximately 10 times the amount of time for the
analysis as was taken in the actual collection of the data. If the experiment
was badly designed, the time for analysis may increase to 30 or even 100
times the time taken to actually collect the data. The value of good design
is therefore very considerable, and emphasises the importance of early
consultation with the statistician when the research is being planned.

The following abbreviated checklist asks some of the most important
questions that any experimenter needs to answer. A fuller checklist is
available in Jeffers (1978).
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1 Have you stated clearly and explicitly the objectives of the
experiment and the reasons for undertaking it?

2 Have you defined carefully the population about which you are
seeking to make inferences from the results of the experiment?

3 Are the experimental treatments sufficiently well defined for the
experiment to be repeated, and are they realistic?

4 Have you calculated the numbers of replications necessary to give
the desired precision to the estimates or tests of significance
derived from the experiment?

5 Does your choice of experimental design allow for the meaning-
ful interpretation of the results?

6 Have the treatments and controls been allocated to the plots of
the experiment by an explicit randomising procedure?

7 Are the measurements to be made in the experiment meaningful
and relevant to the objectives of the experiment?

8 Are you aware of the problems that may be encountered during
the analysis of the results of the experiment?
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On identifying yeasts and related
problems

J.C.GOWER AND R. W. PAYNE

1 Introduction

It was in 1960 that J.C.G.¥ initially became interested in problems
of classification in the sense of constructing classes of individuals. This
type of problem contrasts with the use of the term ‘classification’ in
classical statistics which is concerned with discrimination, that is the
problem of assigning an individual to one of several a priori classes.
Sneath (1957) had written a paper in the Journal of General Microbiology
about a computer program that he had developed for generating a hier-
archical classification of bacterial strains. His approach was to compute
coefficients (the simple matching and related coefficients) that gave a
measure of the similarity between each pair of strains as judged by their
abilities, either ‘present’ or ‘absent’, to thrive on a selection of nutritive
bases. Sneath used a simple hierarchical classification algorithm, now
termed the single-linkage algorithm, in which strains are successively
grouped, the pair of groups fusing at each stage which have the biggest
similarity between any pair of strains, one from each group. Similar work
was reported from the USA by Sokal and Michener (1958) (classifying
bees) and Rogers and Tanimoto (1960) (botanical classification) while
Williams and Lambert (1959), in Southampton, were concerned with the
ecological classification of quadrats based on the presence/absence of
plant species within quadrats sampled from a region. It was the newly
available computers that stimulated these and other scientists to investigate
problems that had not previously been viewed as amenable to a numerical
approach. It is notable that none of this early work was done by
professional statisticians or computer scientists. Indeed statisticians were

t To avoid circumlocutions, when it is necessary to distinguish between the
authors, initials will be used. R.W.P. became involved in 1972, on joining
Rothamsted.
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slow to take an interest in this area, and in some cases reacted as if the
fact that the word ‘classification’ was not being used in its statistical sense
of discrimination implied inadequacy in the work (see, for example, the
discussion following Cormack (1971)). Of course the subject has grown
enormously since 1971 but much still remains to be done to attain a proper
theoretical treatment of the many problems involved: see Jardine and
Sibson (1971) for a beginning. This development is an excellent example
of how theoretical statistics often develops from an applied stimulus rather
than vice versa but it is not the main theme of the present paper.

The problem that initiated J.C.G.’s interest in classification came from
Dr Margaret Pleasance, a scientist at the Agricultural Research Council’s
Low Temperature Research Station (LTRS) in Cambridge. The LTRS
later split into two institutes, the Food Research Institute (FRI) in
Norwich and the Meat Research Institute (MRI) located in Langford near
Bristol. In 1985 these two institutes, together with part of the National
Institute for Research in Dairying, near Reading, merged to form a single
multi-site Institute of Food Research. Thus the ‘low temperatures’ of
interest to the LTRS were those associated with food storage, and
bacterial activity was a major concern. Dr Pleasance had read the paper
by Sneath and wondered whether similar methods could help her in the
classification of a major bacterial group. Accordingly J.C.G. set to work
to write a suitable computer program (in machine code) and this led to
an interest in coefficients of similarity, algorithms for hierarchical classifi-
cation and in the scientific underpinning of classification. Many applica-
tions followed in collaboration with many scientists, often taxonomists.
The starred items in the list of references give an indication of the diversity
of the organisms studied. The original programs have been steadily
developed by G.J.S.Ross and now form a package named Clasp
(Classification Program) whose main features have also been incorporated
into Genstat.

Classification is only one of three major concerns of taxonomists, the
others being (i) evolution and (ii) how to identify species. There is a belief
that if the course of evolution were accurately known then this would
supply a tree giving the best (usually referred to as the most natural)
hierarchical classification which would necessarily offer the best basis for
identification. Whether there is much truth in this belief is unsubstantiated
but it cannot be denied that the course of evolution is not known
accurately for any group of animals or plants and that only the sketchiest
information is usually available. Indeed because of this paucity of infor-
mation the argument is commonly reversed and what is deemed to be the
best classification strongly influences notions of evolution. Perhaps part
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of the difficulty is the predilection, very strongly influenced by Linnaeus,
that taxonomists have for hierarchical classifications. Because evolution
too is usually thought of, at least in broad terms, as a hierarchical process
representable by a tree structure, there is a tendency to confuse the two
different problems.

What is meant by best in the above discussion is controversial. There
are two major divisions among taxonomists: the Cladists, who try to build
up evolutionary trees directly by minimising some measure of the number
of character changes as one moves between adjacent nodes of a putative
evolutionary tree; and the Pheneticists, who base hierarchical classifications
on measures of overall similarity (i.e. similarity coefficients). This division
is reinforced by considerations of the different types of characteristics
admitted ; whether they have basic genetic content such as DNA or amino
acid sequences that might be thought of as specially likely to contain
evolutionary information, or whether phenetic characters, traditionally
used by taxonomists, that are mainly concerned with (visual) resemblance
are to be used. For a recent discussion of the differing views see the various
papers in Felsenstein (1983). Thus best may be defined in terms either of
minimising measures of evolutionary change or of maximising measures
of resemblance as approximated by tree structures. A third approach is
to separate taxomony from evolutionary speculation by regarding it as an
information system in which information on species can be retrieved
efficiently. This approach is favoured by Gilmour (1937) who sums it up
in the statement that a system of classification is the more natural the more
propositions there are that can be made regarding its constituent classes.
Gower (1974) gave a mathematical formalisation, termed maximal pre-
dictive classification, in which each non-hierarchic class is characterised by
a class predictor which indicates the state of each character displayed by
the majority of the species in the class. It is perhaps no surprise that it is
simple to assign to maximal predictive classes; one merely needs to know
which class predictor corresponds most closely to the specimen being
examined. This association with the identification of species is an important
general aspect of the informational approach, which taken to its conclusion
gives yet another definition of the best classification as the one that makes
identification most efficient. Maximal predictive classification has been
implemented in Genstat and used with many sets of organisms; in
particular, Barnett, Bascombe and Gower (1975) discuss maximal pre-
dictive aspects of the classification of yeast species. The relationship
between classification and identification is discussed further by Gower
(1973, 1975) and the development of methods for identification is dis-
cussed in the following.
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2 Identification keys

Whereas statistical discriminant analysis is concerned with assign-
ing a sample to one of a few, often two, populations in the presence of
uncertainty, taxonomists are more concerned with assigning to one of
several hundred populations when uncertainty often plays a minor role,
because qualititative characteristics can be found that vary little, or not
at all, within all or some populations. Thus a methodology has to be
worked out for general identification problems of this latter kind.

Taxonomists have been concerned with this problem for several hundred
years and nearly every botanical handbook contains a key to help identify
plants. An identification (or diagnostic) key has a tree-structure where
each node corresponds to a diagnostic question ‘Which one of a named
set of attributes does the specimen to be identified possess?” The outcome
determines which branch of the tree to follow and hence the next
diagnostic question and ultimately the correct identification. Often there
are only two attributes, concerning the presence and absence of a
particular character or the reponse to a binary test, but multi-state
characters or tests are permissible.

Traditionally keys have, perforce, been constructed by hand and often
embody the lifetime’s experience of their designers. Very often such keys
are influenced by evolutionary notions and therefore may not be the most
efficient; that is a shorter or easier-to-use key may exist. There may be a
need for several keys for the same group of organisms; for example a
botanical key using floristic characters is useless when the specimen to be
identified is not in flower. The mechanisation of the two very different
processes of (i) constructing keys and (ii) the actual process of identification,
made much slower progress than had that of forming classifications,
perhaps because of the scepticism of traditional taxonomists. Apart from
our own work, other pioneers were Hall (1970), Pankhurst (1970), Morse
(1971) and Daliwitz (1974). Sneath and Sokal (1973), pp. 388—400, give
an account of the situation at that time.

J.C.G. was aware of the problem early on but first considered it in detail
in 1964 when Dr T. Webster of the National Institute of Agricultural
Botany (NIAB) consulted him on the possibility of distinguishing between
some 40 varieties of field bean. The diagnostic key approach turned out
to be inappropriate because the small differences between varieties were
more consistent with a set of 40 overlapping populations separable by a
discriminant analysis.

For many years, J.C.G. had been consulted by Dr J. A. Barnett of FRI
(and later working at the University of East Anglia) on problems
concerned with yeasts, some of which simply involved standard statistical
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techniques while others, like the establishment of metabolic pathways
based on the capacity of various species to grow on different nutrients,
were more complicated. In 1968, Dr Barnett had to identify thousands of
strains of yeast isolated from fruit. At that time, it was appropriate to base
identification on the responses of each strain to 40 physiological tests and,
because many of the tests took two weeks to complete, for any one yeast
it was imperative to do all the tests simultaneously. Hence, as few tests as
possible had to be used. Accordingly, Dr Barnett made a list of 68 species
which, from publications, seemed to represent most kinds of yeast
associated with fruits. Assuming that about 909, of his isolates would be
identifiable as belonging to some of these species he asked the question
‘What is the minimum number of tests needed for distinguishing between
these species?’” At that time, there was no simple answer to his question
because there were three possible responses to each test, namely: positive,
negative or query. A partial solution to his problem, that was applied to
the fruit yeasts (Barnett, 1971; Buhagiar and Barnett, 1971), involved
making a form of diagnostic key. This was the first step towards generating
identification keys for all yeast species. By 1970 about 360 species of yeast
were recognised.

Yeasts are, of course, a commercially important group of organisms in
baking, brewing, wine making and in medicine, and correct identification
of strains can be crucial. The initial Rothamsted programs for constructing
keys, written by Bridget Lowe and Bruce Lauckner, were of limited use
because output was in a coded form that was not readily interpretable.
Pankhurst’s program gave good readable output and was used as the basis
for the first published computer generated key to the yeasts (Barnett and
Pankhurst, 1974). Subsequent work involved R.W.P. in collaboration
with Dr Barnett and also Dr D.Yarrow, a yeast taxonomist from the
Centraal bureau voor Schimmelcultures at Delft, Netherlands.

Starting in 1972, the earlier programs were replaced by the program
Genkey (Payne, 1975, 1978, 1985). This can construct probabilistic and
non-probabilistic keys as well as other identification aids such as diagnos-
tic tables and polyclaves. Probabilistic methods become necessary when a
stage is reached on the tree where no diagnostic questions exist that
separate species with certainty. A diagnostic table is a species x character
table arranged in lexicographic order and is used to identify a specimen
as one would use a dictionary. A polyclave is a set of punched cards, one
for each character-state, and with a position on the cards allocated to each
species. To use a polyclave see, for example, Payne, Lamacraft and White
(1981). Genkey was used to construct the keys and tables in the book 4
Guide to Identifying and Classifying Yeasts (Barnett, Payne and Yarrow,
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1979) and to construct and typeset those in Yeasts: Characteristics and
Identification (Barnett, Payne and Yarrow, 1983). Genkey has been
written, as far as possible, in Standard Fortran, allowing versions to be
produced for seven computer ranges and it is in use in eight countries.

3 Methodology

Quite apart from their economic importance the yeasts have
provided a very challenging set of data that has stimulated the development
of both methodology and computer programs (Payne, 1983). The large
number of species that have been described (497 at 1 November 1984)
provides clear motivation for the use of computers for key construction;
the size of the data set allows study by simulation, using randomly selected
subsets of the species, to investigate the behaviour of various methods
suggested for constructing keys (see Payne and Dixon, 1984). Most
importantly, the construction of the keys and tables for identifying yeasts
has not only exploited most of the known techniques but also has required
new methods to be developed that are briefly described in the remainder
of this section.

3.1 Key construction

The most efficient key is usually defined as that with the smallest
expected number of tests (or characters) per identification or, where the
tests have different costs, that with minimum expected cost of identification.
These expectations may take count of the a priori probabilities of the
different species or all species may be assumed equiprobable. To find such
a key for any particular set of species is an N-P complete problem and so
is not feasible for large sets of data, like the yeasts. Thus heuristic methods
are used which construct the key sequentially, selecting first the test that
‘best’ divides the species into sets (set k for test i containing the species
that can give result & to that test) then selecting the best test to use within
each set, and so on until the sets each contain only one species and are
thus at the endpoints of the branches.

The ‘best’ test is usually determined by some selection criterion function.
The earliest functions considered only binary tests and allowed for neither
differing costs nor variable responses (i.e. where members of the same
species give different results to a test). The ‘best’ test was then taken to
be the one that divided the species into sets of most nearly equal size. With
the yeasts many responses are variable. Others are unknown — some tests
may never have been recorded for some of the rarer species — and must
also be treated as variable. Gower and Barnett (1971) developed a function
that allowed for unknown responses to binary tests but this does not
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readily extend to tests with different costs nor to tests with more than two
responses, as was noted by Gower and Payne (1975), who compared
existing criteria and derived new ones with a better mathematical justifi-
cation. Further functions with a mathematical derivation were produced by
Brown (1977) but the necessary principle for incorporating differing costs
was due to Dallwitz (1974) whose function, for test i, represents the
expected cost of completing the identification of a specimen starting at the
current point of key, assuming that test i is used next. Dallwitz assumed
that the key would be completed by branches with equal lengths. Payne
(1981) derived similar criteria, (i) assuming that the key is completed
optimally (which, for species with unequal prior probabilities, does not
necessarily generate branches with equal lengths) and (i) for more
pessimistic (or realistic) assumptions; it was also shown that different
functions were appropriate for variable and for unknown responses.
Payne and Dixon (1984) performed simulations to study the behaviour of
some of these criteria, using both the yeasts and artificial data, and found
that no criterion was uniformly better than the others. This result supports
the strategy adopted in Genkey, which offers several criteria among which
users may choose.

3.2 Irredundant test sets

Many of the tests involved in the identification of yeasts take up
to 14 days to complete. Hence, it is usual to do all the tests that occur in
the key, simultaneously, before the key is used (instead of doing only those
tests required sequentially on the particular branches taken through the
key). Thus the total number, or total cost, of all the different tests in the
key becomes the main measure of its efficiency. A set of tests that contains
no redundant tests, i.e. tests that can be omitted without causing any pair
of species to become indistinguishable, is termed irredundant. Clearly both
the set of tests of minimum size and the set with minimum (total) cost are
irredundant, since otherwise a better set could be obtained by deleting one
(or more) redundant tests.

An algorithm had been devised, in several different contexts, for
constructing all irredundant sets. Full details and the original references
are given in the review paper by Payne and Preece (1980). The implemen-
tation in Genkey contains various short cuts, devised by Willcox and
Lepage (1972) and Payne and Preece (1980), to improve efficiency.

Irredundant test sets can also be devised to allow a particular species
to be distinguished from all the other species and all such sets for a
particular species can be constructed by an adaptation of the same
algorithm. However, for some of the species in Barnett, Payne and Yarrow
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(1983), there were so many sets that it was not feasible to consider them
all. When this occurs, sequential algorithms are generally used, in which
tests are selected one at a time until all the required pairs of species can
be distinguished. Improved criteria for selecting these tests were devised
and modifications were made to allow users a choice of several different
sets, to cater for different preferences for tests, as had also been done by
Barnett, Payne and Yarrow (1979), using the original (non-sequential)
algorithm.

Fig. 1. One of the smaller keys from Barnett, Payne and Yarrow (1983)

Key No. 12: Yeasts that utilize methanol (test no. 52 positive)

Key involving physiological tests only

Yeasts in Key No. 2
37 Candida boidinii
46 Candida cariosilignicola
59 Candida entomophila

251 Hansenula henricii

255 Hansenula minuta

258 Hansenula nonfermentans
259 Hansenula ofunaensis

Tests ia Key No. 12

I o-Glucose fermentation
16 p-Glucosamine growth
21 L-Rhamnose growth

102 Candida maris

261 Hansenula philodendra

22 Sucrose growth

108 Candida methanosorbosa 262 Hansenula polymorpha 27 Salicin growth

109 Candida methylica 267 Hansemda wickerhamii 36 Erythritol growth

116 Candida nemodendra 337 Pichia kodamae 39 L-Arabinitol growth

147 Candida nitratophila 338 Pichia lindneri 42 Galactitol growth

127 Candida pignalioe 341 Pichia methanolica 54 Nitrate growth

428 Candida pinus 346 Pichia naganishii 77 0.1%, Cycloheximide growth
149 Candida sonorensis 353 Pichia pastoris

155 Candida succiphila 356 Pichia pini number of different tests 10

246 Hansenula capsulata
250 Hansenula glucozyma

371 Pichia irehalophila

Key No. 12
Negative Positive
| Nitrate growth 2 17
2 Erythritol growth 3 8
3 Salicin growth 4 6
4 Galactitol growth.....cvvevvvrrerrerennerienens 5 i
5 p-Glucose i Candida maris rorvnrernnennnr Pichia pastoris
6 L-Arabinitol growth le fe 7
Pichia lindneri
7 L-Rhamnose growth..........oorvnvenniririnns Candida Pichia lindneri
8 Galactitol growth, 9 14
9 Sucrose growth 10 13
10 Salicin growth n 12
11 0.1% Cycloheximide growth Candida pinus Pichia
12 0.1% Cycloheximide growth Pichia kodamae Pichia meth,
Pichia pini Pichia pini
13 L-Rh growth, Candida philc Pichia ishii
14 p-Glucose i Candida dendr 15
15 p-G ine growth 16 Candida
16 0.1% Cycloheximide growth Pichia kodamae Pichia
17 Erythritol growth 13 2
18 p-G ine growth 19 24
19 L-Arabinitol growth 20 2
20 0.1% C; imide growth henricii
21 L-Rhamnose growth..............coccuvrueneee 22 23
22 Salicin. growth Candida pignaliae la minuta
23 0.1% Cycloheximide growth la henricii glucozyma
24 Galactitol growth 25 fi i
25 Salicin growth Candida p Condida
26 Sucrose growth 27 33
27 L-Rhamnose growth..........cccoovevvvinennne 28 30
28 D-Glucose i Pphilodendr 29
29 Salicin growth Candida boidinii e
3 o-G ine growth 3
31 Salicin growth 32 23
32 p-Glucose ferm kerh Candida
33 oGl ine growth polymorp Candida
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33 Printing the keys

For publication it is important to make the printed keys as short
as possible. Subject to constraining the tests to be used to the chosen
irredundant set as explained in Section 3.2, it is still useful to construct
an efficient key, as described in Section 3.1, as this tends to decrease the
length of the printed key. Further savings can be made by using one of
the compact representations of Payne, Walton and Barnett (1974), as
shown in Figure 1, also by the use of reticulation (Payne, 1977), which
allows duplicate sections, that can arise in a printed key when responses
are variable, to be printed only once. Even so, the 18 keys presented by
Barnett, Payne and Yarrow (1983) occupy 90 pages.

34 Keys to the genera

A major characteristic used for distinguishing between yeast
genera is the mode of sexual reproduction rather than the nutritional
characteristics that are most convenient for identification. Consequently
many of these nutritional characteristics vary over the species within the
genera and there are many pairs of genera for which there is no one test
that can distinguish the species of the first genus from those of the second.
Thus keys to identify genera cannot be constructed in the same way as
those for species. Similar problems can also occur with groupings defined
by taking a particular level of a hierarchical classification. Payne, Yarrow
and Barnett (1982) showed how to adapt the methods of Section 3.2 to
such situations.

35 Computer-based identification programs
Identification keys have the disadvantage that the user is generally

given no choice as to which tests to use (see, for example, Payne and Preece,
1980 and Payne, 1980). Also, with most keys, an error in applying or
observing any of the tests will lead to an incorrect identification (although
Payne and Preece (1977) describe how extra tests can be incorporated to
protect against this or how to construct subsidiary keys to check the
identification obtained from the main key). These disadvantages can be
overcome by computer-based identification systems that incorporate
test-selection algorithms similar to those in key construction programs.

The Yeast Identification Program of Barnett, Payne and Yarrow (1985)
lists the yeast species consistent with any observed set of test results; if there
is more than one such species, a set of tests can be selected to complete
the identification. Errors in results already observed can be allowed for and
extra tests can be selected to guard against later errors. The program also
enables users to list yeasts that have a specified set of characteristics as may
be desired, for example, in industrial applications.
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4 Conclusion

Perhaps the main interest in this report is that it records collab-
oration between scientists and statisticians that has covered a period of
well over 20 years. This is by no means atypical, as effective consulting
calls for a statistician who has a good understanding of the field of applica-
tion and this can only be built up over time. Not only does background
knowledge aid initial communication between statistician and client but
it also reduces misunderstandings and helps the statistician to recognise
(a) areas where he might unsuspectedly be able to make a contribution and
(b) difficulties that might not surface otherwise. The impression given by
some textbooks in applied statistics, that a statistician armed solely with
a battery of techniques can be an effective consultant in almost any field
of application, is nonsense. The interplay between statistical ideas and
those provided by clients, in our case taxonomists, is a stimulus that leads
to fruitful and useful work for both parties. Unusually for a statistical
problem, probability has played little part in the work discussed. Indeed
some would say that therefore the work is not statistical. We would not
agree with this view, holding that the essential feature of a statistical
problem is that it be concerned with the analysis of data. In our opinion
some statisticians are too rigid in what they accept as a valid statistical
problem. It is our clients who have the problems and it is our job as
statisticians to do what we can to help without worrying too much about
demarcation disputes. In taxonomy the line between probabilistic and
non-probabilistic models is a fine one. Taxonomists concerned with
identification will, very sensibly, proceed as far as they can by using
characteristics that are constant within species. As a last resort, to separate
out overlapping species, probabilistic methods must be used and this is the
strategy that we have followed.

Thus starting with some experience of taxonomic problems, an enquiry
about constructing taxonomic keys has led not only to providing software
to cover the initial problem but also to the study of several methodological
problems whose solutions, as evidenced by the references, have made the
process of identification more efficient, more reliable and more flexible. The
bulk and detailed information of identification keys has naturally led to
a study of the technological problems of computer-aided book printing.
With the information already in computer-readable form, it is now
possible to typeset keys directly (Payne, 1984) and even to generate and
automatically typeset descriptions of the species (Barnett, Payne and
Yarrow, 1983). This avoids the possibility of transcription errors, which
in a key would be disastrous, and also very much reduces production costs.

The development of the project has involved much reading and we have
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thus become aware of related work in coding theory, computer science,
pattern recognition, the theory of questionnaires, psychology, search
theory, etc.; see the review of Payne and Preece (1980). We note the close
links with medical diagnosis, especially the approach nowadays associated
with work on expert systems. We hope that our work may be of use to
those working in these other areas, to other statisticians who are asked
about similar problems and to all those concerned with identification.
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Uneven sex ratios in the light-brown
apple moth: a problem in outlier
allocation

TOBY LEWIS

One of the phenomena investigated by P. W. Geier and co-
workers at the CSIRO Division of Entomology, Canberra, in a series of
studies (Geier and Springett (1976), Geier and Briese (1977), Geier and
Oswald (1977)) of the light-brown apple moth, Epiphyas postvittana
(Walker), was the tendency for males to be consistently less abundant than
females in samples drawn from Australian field populations. The existence
of a heritable condition (‘Q-condition’) in ‘carrier’ females of the light-
brown apple moth, which caused them to produce predominantly female
progenies, was established by Geier and Briese (1977). A further extensive
investigation of the Q-condition was carried out by Geier and Briese in
1978. In this connection they consulted me (at the time a visiting member
of the CSIRO Division of Mathematics and Statistics at Canberra) with
regard to the modelling of some aspects of their data, and I give an account
here of the statistical work (published as part of Geier, Briese and Lewis
(1978)) which I carried out in support of their research. Apart from its
statistical content, it perhaps has some interest as a cautionary tale about
the pitfalls which a statistician may encounter in offering too dogmatic an
interpretation of a researcher’s results.

1 The problem

The problem was outlined as follows in a letter to me from
Dr D. T. Briese, quoted here with his permission:

...As you can see in Fig. la, the distribution of the percentage

males per sample in the laboratory stock appears simple enough.

I have assumed it would be binomial with a [p-value] of 0.511

males. However, we recently reared progeny from individual

females collected in the field over a wide part of South-eastern

Australia and Tasmania. These contain some females which

produce either no males or a very few males in their progeny.
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(Parthenogenesis does not occur in this species, and mating is
obligatory for reproduction.) The...distribution of sex ratio in
these field samples is shown in Figs 1b and lc.... Considered
overall the distribution appears to be a combination of two

Fig. 1. Sex ratios in LBAM (light-brown apple moth) as percentage of
males per sample
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binomial ones. If individual locations are considered, . . .the basic
pattern of the distributiont appears to be the same, although the
relative frequencies of the peaks vary.

My main concern is whether there is a frequency distribution
that can describe the overall field data, and whether one can
consider there to be a range of this type of distribution which
would fit the sex ratio data of individual localities. . ..

A secondary problem arises with the actual frequency distribu-
tion of the percentage of ‘Q’ type females (the...females [pro-
ducing few or no males]) in individual samples?. . .Is there a type
of frequency distribution which could describe this?...

In statistical terms we can say that, in the population studied, field-collected
adult females of the light-brown apple moth produced progenies whose
sizes (n) were mostly in the range 30-70. If adult female i (i=1,2, ...)
produced progeny of size n; consisting of m; males and f; = n, —m, females,
the proportion of males m;/n; is the (observed) sex ratio. We can denote
it by 8, since it estimates a sex ratio parameter 6, associated with parent
female i. The great majority of the progenies in the study (‘normal-type’
progenies) contained comparable numbers of male and female offspring,
implying #-values at or near 4. By contrast, about 59, of the progenies
(‘Q-type’ progenies) had few or no males, and implied very small #-values.
Essentially what the entomologists wanted was a satisfactory probability
model for these data.

2 The data
The full set of data consisted of the numbers of males and females
in progenies of 439 field-collected female moths from 68 different localities
in Australia. By way of illustration, the data for four of these 68 localities,
Murray Bridge, Tailem Bend, Muswellbrook and Sale, are set out in Table
1, comprising 60 of the 439 progenies. These had been chosen by Dr
Briese, with pooling of the data from the neighbouring localities Murray
Bridge and Tailem Bend, as ‘.. .two of the samples containing a relatively
high proportion of “ Q" type females, plus one (Sale) which is apparently
made up only of normal females’.
By inspection, 413 of the 439 progenies had been allocated initially to
the normal-type group, as having sex ratio values m;/n; consistent with a
binomial B(n;, #) model for m; with 6§ ~}; for example, in Table 1,

+ Dr Briese gave histograms of the Murray Bridge/Tailem Bend and Muswellbrook
data listed below in Table 1, and of the proportions Q,/T; of Q-type females
from the data listed in Table 4. These histograms are not reproduced here.
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progenies p = 3to p =7 of the Murray Bridge set were so allocated, as
also progenies p = 7 to p = 12 of the Tailem Bend set, progenies p = 7 to
p = 22 of the Muswelibrook set, and all the Sale progenies. This left 26
progenies which were allocated initially to the Q-type group. The frequency
distribution of the 413 sex ratios m;/n; (j = 1, ..., 413) is given in grouped
form in Table 2. (In the analysis, the ungrouped exact values were used.)
Note that a binomial distribution could not be expected to model these
data exactly, since the sex ratios are based on a range of different progeny

T. Lewis

sizes n;; see distribution of progeny sizes on page 125.

Table 1. The data for four of the 68 localities

Locality
Murray Bridge, Tailem Bend, Muswellbrook, Sale,
South Australia  South Australia ~ New South Wales Victoria
(locality no. 15)  (locality no. 16)  (locality no. 38)  (locality no. 27)
L,=7 Te=12 Ty =22 T,=19
Progeny
no. mg fi o omi/ng omg fy omg/ng o omy fi omy/ng omy fio omg/my
p=1 0 21 0 0 60 0 0 61 0 21 36 0.368
2 0 20 0 0 51 ¢ 0 48 0 6 9 0400
3 26 32 0.448 0 14 0 0 42 0 26 35 0.426
4 29 35 0453 1 54 0.018 0 35 0 22 27 0449
5 25 30 0455 2 53 0.036 1 42 0.023 26 31 0.456
6 18 18 0.500 7 47 0.130 1 29 0.033 24 26 0.480
7 34 20 0.630 3 9 0.25 11 18 0.379 28 28 0.500
8 14 26 0.350 22 31 0415 33 33 0.500
9 16 23 0410 27 34 0.443 24 24 0.500
10 24 24 0.500 29 33 0.468 31 30 0.508
11 39 31 0.557 24 27 0471 29 27 0.518
12 40 22 0.645 29 33 0.468 34 29 0.540
13 - 25 28 0.472 35 28 0.556
14 26 23 0.531 26 20 0.565
15 38 33 0.535 31 22 0.585
16 14 12 0.538 26 17 0.605
17 23 19 0.548 30 19 0.612
18 31 25 0.554 13 8 0.619
19 20 14 0.588 36 22 0.621
20 6 4 0.600
21 34 22 0.607
22 127 0.632

T; number of field-collected aduilt female moths from locality /

n; size of progeny i; my,f; numbers of male and female offspring in this progeny

(my+f; = n;); my/n; = sex ratio

——— suggested boundary between Q-type and normal-type progenies (entomologists’ initial

classification)
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Range of values of n; Frequency
6-10 6
11-20 18
21-30 21
3140 51
41-50 53
51-60 160
61-70 98
71-77 6
413

Table 2. Frequency distribution of 413 sex ratios initially classified as
normal

Value of §; = m,/n, Value of 8; = m,/n;
(to nearest 0.01) Frequency (to nearest 0.01) Frequency
0.17 lm=1,n=06)
0.25 1m=3,n=12)
0.31 1 0.51 11
0.32 0 0.52 28
0.33 3 0.53 25
0.34 2 0.54 24
0.35 4 0.55 24
0.36 3 0.56 13
0.37 3 0.57 15
0.38 6 0.58 12
0.39 4 0.59 7
0.40 3 0.60 9
0.41 10 0.61 14
0.42 14 0.62 11
0.43 10 0.63 4
0.44 12 0.64
045 21 0.65 2
0.46 14 0.66 0
0.47 24 0.67 3
0.48 23 0.68 2
0.49 15 0.69 2
0.50 29

0.75 1(m=9,

n=12)
413
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Details of the remaining 26 sex ratios, which because of their low values
were allocated provisionally to the Q-type group, are listed in Table 3.
Finally, Table 4 shows the distribution over the 68 localities /
(I=1, ..., 68) of the total number T; of field-collected adult female moths,
the number Q, of these which were initially classified as Q-type, and the
number N, which were initially classified as normal-type (Q,+ N, = T)).

3 Statistical analysis
Taking the numbers of males m,; in the 439 progenies studied
to be independent observations from binomial distributions B(n;, 6,)
(i=1,...,439), the primary problem was essentially to model the 439
parameters §;. In addition, there was the secondary problem indicated by
Dr Briese, to find a satisfactory model for the data of Table 4.
We use subscript i to refer, as above, to all the progenies studied,

Table 3. 26 progenies initially allocated to Q-type group

Progeny &
/ Locality / kK my  f n Sex ratio my/n,
4 Cotter River 1 0 51 51 0
5 Mildura/Merbein 2 0 26 26 0
8 Waikerie 3 18 40 58 0.310
15 Murray Bridge 4 0 21 21 0
Murray Bridge 5 0 20 20 0
16 Tailem Bend 6 0 60 60 0
Tailem Bend 7 0 51 51 0
Tailem Bend 8 0 14 14 0
Tailem Bend 9 1 54 55 0.018
Tailem Bend 10 2 53 55 0.036
Tailem Bend 11 7 47 54 0.130
18 Nhitl 12 2 59 61 0.033
34 Tascott 13 0 33 33 0
36 Wangi Wangi 14 13 34 47 0.277
38 Muswellbrook 15 0 35 35 0
Muswellbrook 16 0 48 48 0
Muswellbrook 17 0 61 61 0
Muswellbrook 18 0 42 42 0
Muswellbrook 19 1 42 43 0.023
Muswellbrook 20 1 29 30 0.033
45 Swansea 21 0 19 19 0
Swansea 22 0 51 51 0
Swansea 23 0 15 15 0
Swansea 24 0 50 50 0
Swansea 25 6 55 61 0.098
46 Bicheno 26 14 29 43 0.326
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subscript j to refer to normal-type progenies and subscript &k to refer to
Q-type progenies. For the 413 observations (my, f;; n;) (=1, ..., 413)
summarised in Table 2, the briefing from Dr Briese suggested the simple
model of a common parameter 6 near 0.5. Testing the null hypothesis

H,:0; = 6 (V)) )

against the alternative H,: unrelated 6;s, the difference between the
maximised log likelihoods L, and L, under the two hypotheses is

L-L,= (? m; logmj+§,fj logf;—X n;logn))
J
—(MlogM+FlogF—NlogN) (2)

Table 4. Distribution of numbers of Q-type and normal-type
Jfemales (initial allocation) collected at the 68 localities

Number of
o N, T, =0,+N, localities
0 2 2 10
0 3 3 11
0 4 4 6(7)
0 5 5 89
0 6 6 4
0 7 7 3
0 8 8 1
0 9 9 3
0 10 10 1
0 12 12 3
0 13 13 2
0 14 14 1
0 15 15 2
0 16 16 1
0 19 19 1
1 2 3 1
1 3 4 32
1 4 5 1 (0)
1 7 8 1
1 11 12 1
2 5 7 1
5 5 10 1
6 6 12 1
6 16 22 1

68

Total number of Q-type females collected (provisional allocation):
7x142+5+2x6 = 26. Figures in brackets give final allocation.
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where M = X m;, F = X f;, N = X n;. This comes to 198.66, so the deviance
2L, - L,) corresponding to the economisation of 412 parameters in using
the simpler model is 397.3, which is clearly non-significant when tested
as a value of y%,,.

Turning now to the 26 observations (m,, f;; ) (k =1, ..., 26) in Table
3, it was obvious (and confirmed statistically below) that the parameters
8, could not reasonably be taken to be all equal, although perhaps most
of them could. But since from the entomological point of view only one
category of non-normal condition was being posited, namely the Q-
condition, a single model was called for which would fit all the non-normal
sex ratios. A mixed-binomial model suggested itself, in which there was
a population of 6,-values corresponding to the population of adult Q-type
females; the number of males m;, in a progeny of size n,, would then have
a mixed-binomial distribution (over all Q-type progenies of this size),
namely the average of the binomial distributions B(n,, 6,) with respect to
the 8,-distribution.

An obvious model to try for the mixing distribution, with support
confined to 0 £ 6 £ 1 as required, was a beta distribution, this being
simple, tractable and flexible. Taking this distribution in the form

_ Mo+p)
80 = Fayrp)

we get the new null hypothesis

o+ p) (n,c) Ia+m)(B+f)
Hy: P(m, =m|n,) =
e =) = Ty \m ) Fat )
(f=n-mk=1,...,26),
to be tested against the old alternative H, : unconnected 6,.
The log likelihood L(x, f) under HY is, apart from a constant, of the
form

g (1—-0p-t (06, 3

@

L(e, B) = Zk) {log(a+m,—1)+log(x+m;—2)+...+loga

+log(B+/fp—1) +log(B+/f,—2)+... +1log B
—log(a+B+n,—1)—log(a+B+n,—2)—...
—log (a+p)}. 5

Thus the solution &, # of 0L/ = 0, OL/Jf = 0 was easily obtained by
iterative calculations on sums of reciprocals, giving a maximised likelihood
L(&, B) = L¥ under HX. The value of this was —43.30, and the maximised
likelihood under H, (unrelated 8,s) was L, = —15.43; so the deviance, to
be tested as a value of yZ, for the fit of the two-parameter model (4) to
the 26 sex ratios, was 55.7, a highly significant value (P ~ 0.0025).
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In the light of this failure of the proposed model to fit the data
satisfactorily, Table 3 was re-examined. Clearly while most of the observed
sex ratios were at or near zero, three of them, listed in Table 5, stood out
as unusually high in relation to the rest. These three values 18/58, 13/47
and 14/43 were in fact upper outliers with respect to the model (4) for the
Q-type data. At the same time the initial classification of the data had
placed them in Table 3 rather than Table 2 because they were unusually
low in relation to {; in other words, they had been declared to be lower
outliers with respect to the model (1). Could a home now be found for them,
if not under one roof then under the other?

Note the difference from the usual problem of outlier identification, in
which we have an outlying value (or set of outiying values) which are
extreme with respect to some main population; we wish to judge by a
discordancy test whether or not it is statistically reasonable to regard the
outlier (or outliers) as belonging, though extreme, to the main population.
If found not reasonable then the outlier is judged discordant and requires
a separate probability model from the main population. Here we have a
different problem. Our outlying values lic between two main populations
and are extreme with respect to both; we wish to allocate each outlier to
one or other of the populations and thus avoid setting up separate models
for them. Is this statistically reasonable, and if so how should the
allocation be done?

On taking a further look at Table 5, it appeared that the values of m,,
while much lower than the respective values of in,, were not after all very
implausible as observations from binomial distributions B(n,, #) with
8~ 1 in a large data set of size 416 say. For the Waikerie progeny,
P(m;, < 18) = 0.0029 assuming a B(58, 1) distribution; the corresponding
lower tail probabilities for the Wangi Wangi and Bicheno progenies are
0.0018 and 0.0164. An approximate discordancy test can be carried out
for the three outliers en bloc, using the test statistic

TN;w3 = [3/‘_3‘(1)"3‘(2)_"(3)]/0 (6)

given in Barnett and Lewis (1984, p. 189; or 1978, p. 112). Here the outliers
are x, = 0.277, x5, = 0.310, x5, = 0.326, and they are to be tested for

Table 5. Three progenies requiring possible re-allocation

k (Table 3) Locality m;, S n, Sex ratio
3 Waikerie 18 40 58 0.310
14 Wangi Wangi 13 34 47 0.277

26 Bicheno 14 29 43 0.326
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discordancy in relation to an assumed normal distribution N(yu, ¢?) with

known mean yu (here u = 0.5) and known variance ¢°. In fact, the three

binomial proportions have different variances on the null hypothesis,

namely (0.5)2/47, (0.5)%/58 and (0.5)2/43, so giving a2 the smallest of these

values ensures a conservative test. The value of the test statistic (6) is then
(1.5—0.913)4/58/(0.5) = 8.94.

This is to be judged in relation to the tabulated 5% and 19, points given
in Barnett and Lewis (1984, p. 385; or 1978, p. 306). Our sample size is
n = 416, but the entries in the table stop at n = 100:

5% point 19 point
n=40 7.15 7.90
n=>50 7.34 8.17
n =100 8.11 8.83

Obviously 8.94 is non-significant for n = 416, so the three progenies of
Table 5 are consistent with the main normal-type data set of Table 2.

At the time, I revised the calculation of deviance (2) to include the three
progenies in Table 5; the number of assumed normal-type progenies went
up from 413 to 416, and I found 2(L,—L,) = 422.53 which again is
non-significant as a value of y2,,. For these 416 progenies M = 10613,
N = 20976, and a common value 8 could be assumed for the underlying
sex ratios ¢;, with a point estimate 6 =10613/20976 = 0.506 and ap-
proximate 959, confidence limits

0.506 + 1.96+/(0.506 x 0.494/20976),
ie. 0.499, 0.513. )

Were there any further progenies besides the above three that could be
reclassified from Q-type to normal-type? No. The least unlikely candidate
from Table 3 was m;, = 7, f,, = 47 (k = 11), with sex ratio 7/54 = 0.130.
This can be tested for discordancy, to a good approximation, as a lower
outlier in a sample of size 417 from a normal distribution with known
mean u = 0.5 and known variance a2, choosing for ¢2 the value (0.5)%/54
(note that the mean of the 417 sample sizes n; is 50.4, so the test is on
the conservative side). The test statistic Ty,,, given in Barnett and Lewis
(1984, p. 188; or 1978, p. 111) has value —5.24, highly significant
(P ~ 0.00004).

The transfer of these three progenies to the normal-type group removed
the three entries k = 3, k = 14 and k = 26 from Table 3 and reduced the
number of proposed Q-type progenies from 26 to 23. Repeating the
calculations based on (4) and (5) for the reduced set, maximum likelihood
estimates of & and f in (4) were obtained as & = 0.331, # = 18.15, giving
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L* = L(& B) = —88.21, while L, corresponding to unrelated 8,5 was
—71.96. The deviance, to be tested as a value of %, for the fit of model
(4) to the 23 sex ratios, was thus 32.49. This value is rather large
(P = 5.2%,) but not so large as to discredit the mixed-binomial model (4).
It seemed obvious to me, in the light of the above analysis, that the three
‘borderline’ progenies in Table 5 were clear candidates for exclusion from
the Q-type set and inclusion in the normal-type set, and I reported to the
entomologists in the following terms:
.. .statistical analysis. . .makes it clear that the three observations,
(m, n) = (14, 43), (18, 58) and (13, 47), must be allocated to the
normal group, making its size 416 and reducing the number of
Q-type females in the survey to twenty-three. ...The allocation
of all the observations to normal or Q-type is...clear cut and
unambiguous in this analysis.
I was wrong! In a further part of Dr Geier and Dr Briese’s experimental
programme, observations were made of the sex ratios in ‘second-
generation’ progenies produced by female moths belonging to some of the
‘first-generation’ progenies (k = 9, 10, 11, 12, 25, 26) in Table 3. One such
daughter moth in the Bicheno progeny m = 14, f = 29, n = 43 produced
progenym = 1, f = 14, n = 15, establishing that the original field-collected
mother was of Q-type, and not of normal type! So it emerges, at the end
of the day, that the allocation of the three progenies in Table 5 should be
two (Waikerie and Wangi Wangi) to normal and one (Bicheno) to Q-type.
We end up with 415 normal-type progenies out of the 439; the value
of # and the 95% confidence limits for # remain as in (7). What about the
fit of model (4) to the enlarged set of 24 Q-type sex ratios, a model which
I had previously been sure could not be extended to cover more than the
extreme 23? Including now the Bicheno sex ratio 14/43, the revised
estimates of the parameters were

& =0.209, f=6.65.

The information matrix was readily estimated from the second derivatives
of (5), giving the estimated standard errors (SE) and correlation as

SE(4) = 0.105, SE(B) =4.28, p(&, ) =0.709

The deviance 2(L, — L*) for the fit of model (4) to the 24 sex ratios came
out to 42.24. Testing this as a value of y2, we get a P-value of 0.0058 or
about 1 in 170. Under the guidance of the overriding entomological
evidence, we accept that an event with this small (but not incredibly small)
outside chance has occurred.
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4 Modelling the Q-type ratios

One question remained, the ‘secondary problem’ raised by Dr
Briese at the end of his letter: could a satisfactory model be found for the
proportions of Q-type adults in the samples collected at the 68 different
localities? The data are in Table 4; the four revised frequencies given there
in brackets correspond to the reclassification from Q to N of the two
‘borderline’ females collected at Waikerie and Wangi Wangi.

On examination, one noted a remarkable similarity between the distri-
bution over localities of the proportions Q,/T; of Q-type females (Table
4) and the distribution over Q-type females of the proportions m; /n; of
male progeny (Table 3). Using the figures for the final allocation to Q-type
and normal groups, characteristics of the two samples are as follows:

The 68 Q-type ratios The 24 sex ratios

Q,/T, my/n
Mean 0.038 0.029
Standard deviation 0.110 0.071
Skewness coefficient 2.97 3.26
Peakedness coefficient 11.0 13.3

For whatever reason the distributions appear to be remarkably similar in
shape. This suggested it would be reasonable to model the two data sets
in a similar way. Just as a binomial model B(n,, 8,) can reasonably be
assumed for m;, so a binomial model B(T;, ¢,) can reasonably be assumed
for Q,, where the ¢;s(/ =1, ..., 68) are parameters associated with the
respective localities /. It was then natural to attempt to fit the data (Q,, 7))
by a mixed-binomial model of form (4), based on a mixing distribution
of form (3) for the ¢;s. This proved to be a very satisfactory fit; curiously
enough, the data (Q,, T;) and the data (m,, n;) could reasonably be fitted
by the same distribution.
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Collaboration between university
and industry

B.J.T. MORGAN, P. M. NORTH AND S. E. PACK

1 Introduction

In this paper we describe two of the several different ways in
which statisticians in a university can act as consultants for industry. In
both cases the consulting is effectively carried out by more than one
statistician, but there the similarity ends. We hope that these examples will
provide a flavour of the activities of an applied statistics department and
an applied statistics research unit working together within a university. A
number of problems are considered, including: the analysis of dominant
lethal assay data; the analysis of quantal assay data incorporating time
to response; the analysis of pain data relating to episiotomy; the analysis
of aggression in mentally handicapped patients.

2 The analysis of dominant lethal assay data

Tables 1 and 2 present two sets of data from the paper by
Haseman and Soares (1976). In each case, for over 500 litters of mice, the
number of dead fetuses was recorded. Tables | and 2 are control groups
from dominant lethal assays (taken from Haseman and Soares, 1976). In
this experiment a drug’s ability to cause damage to reproductive genetic
material, sufficient to kill the fertilised egg or developing embryo, is tested
by dosing a male mouse (typically) and mating it to one or more females.
A significant increase in fetal deaths is indicative of a mutagenic effect.

As in many areas of statistics, typically two questions arise:

(1) Can we describe such sets of data in a relatively simple manner?
(2) How might we make comparisons between such data sets?

In the simplest response to (2), 7-tests may be used to make the
comparison. Following a Freeman-Tukey binomial transformation, a
t-test results in an approximately standard normal test statistic of 2.04,
significant at the 59, level. Alternatively, a t-test based on Kleinman’s
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Table 1. Population no. 1 of Haseman and Soares: observed frequency
distribution of fetal death and fitted frequencies under the beta-binomial

Number of dead fetuses (x)

Litter
size(n) O 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2
1.8 0.2
2 2
1.7 03
3 3
23 06 0.1
4 5 1 1
50 1.6 04 01
5 2 2
26 1.0 03 0.1
6 2 2
25 1.0 04 0.1
7 2 2 2 1
41 19 07 02 0.1
8 6 1 1 1
49 25 1.1 04 0.1
9 2 3 1
31 1.7 08 03 0.1
10 2 4 2 2
49 28 14 06 02 0.1
11 19 11 3 3
166 10.8 52 25 1.1 04 0.2
12 33 24 11 5 4 4 1
359 226 124 62 29 1.2 0.5 0.2 0.1
13 39 27 12 6 5 2 1
38.3 251 144 76 37 1.7 07 0.3 0.1
14 3 30 14 6 6 1
36.2 245 146 80 42 20 09 04 0.2 0.1
15 38 22 18 4 2 1
323 226 139 79 43 22 1.1 0.5 0.2 0.1
16 13 16 14 4 3 1
18.5 13.3 84 50 28 1.5 0.8 04 0.2 0.1
17 8 4 3 03 2 1 1
77 56 37 22 13 07 0.4 0.2 0.1
18 4 2 1
23 1.8 12 07 04 03 0.1 0.1
19 2 1
1.0 07 05 03 02 01 0.1
20 1

=]
w
=]
()
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()
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weighted estimator (Kleinman, 1973) produces a corresponding test
statistic of 2.61, significant at the 19, level.

A less pragmatic approach is to model each data set, in response to (1),
and then make comparisons using the fitted models. Within any one litter
one might suppose that deaths have a binomial distribution with probability
D, say, of death for each fetus. A model for which p does not vary over

Table 2. Population no. 3 of Haseman and Soares: observed frequency
distribution of fetal death and fitted frequencies under the beta-binomial

Number of dead fetuses (x)

Litter
size(n) O 1 2 3 4 5 6 7 8 9
1 7
6.5 0.5
2 7
6.0 0.9 0.1
3 6
4.8 1.0 0.2
4 5 2 1
6.1 1.5 03 0.1
5 8 2 1 1 1
9.3 2.8 0.7 02
6 8
5.4 1.8 0.6 02
7 4 4 2 1
7.1 2.6 09 03 0.1
8 7 7 l
9.2 3.7 14 05 02
9 8 9 7 1 1
15.3 6.5 27 1.0 04 0.1
10 22 17 2 1 1 1
248 11.0 49 21 08 03 0.1
11 30 18 9 1 2 1 1
335 157 73 33 14 06 02 0.1
12 54 27 12 2 1 2
509 248 122 58 26 1.1 04 02 0.1
13 46 30 8 4 1 1 1
455 230 11.7 59 28 13 05 02 0.1
14 43 21 13 3 1 1 1
40.0 209 11.1 5.7 2.9 1.4 0.6 0.3 0.1
15 22 22 5 2 |
242 130 71 38 20 10 05 02 01
16 6 6 3 1 1
7.6 4.2 24 1.3 07 04 02 0.1
17
18 3 2 1

2.5 1.5 09 05 03 02 01
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litters is usually regarded as far too simple for data of this kind, and in
one approach, considered by Williams (1975), p is given a beta distribution
over litters.

Under the beta-binomial model, the probability of x dead fetuses in a
litter of n mice is given by

_(n\ B(x+a,n—x+p)
Pr(x) —( ) B f) ,

where a, f are the parameters of the beta distribution assumed for the
binomial probability of response. If we adopt a more stable parameter-
isation in terms of u = a/(a+ f), and @ = (x+ ) ! then the beta-binomial
mean and variance are, respectively, nu, and nu(l — ) (1+¢(n—1)), with
the parameter ¢ = /(1 + 6) representing the necessary variance-inflation,
relative to the binomial distribution, with results as 8 — 0.

The fitted values are shown in Tables 1 and 2, and clearly provide a good
qualitative description of the data. We obtain the parameter estimates
given below together with asymptotic measures of error (y;, 8; denote the
parameter values for group i, and L, denotes the maximised log-likelihood,
i=1,2).

1, = 0.0901 (0.0045), u, =0.0739 (0.0042)

8, = 0.0730 (0.0107), 6, =0.0813 (0.0123)

for0 < x<n,

For each set of data we see that the binomial model, resulting as 8 — 0,
would give a poor fit, as standard confidence intervals for 8; do not contain
0, =0,i=1,2. See also Table 3; justification of a likelihood-ratio test is
given in Prentice (1986).

The maximised log-likelihood values are L, = —777.79, and
L, = —701.33. As a quantitative test of goodness-of-fit, we simulate 99
additional sets of data, separately from each group, simulating from the
fitted beta-binomial models above, and for each data set computing the
maximum log-likelihood values. We find that L, is ranked 33rd largest out
of the sample of 100 values of L,, with values ranging from —734.22 to
—815.25, and L, is ranked 46th largest in the corresponding sample of 100
values of L,, with values ranging from —634.42 to —746.55. In each case
therefore these values confirm the earlier impression of a satisfactory fit
to the data.

In using the models for comparing the two data sets we may be
interested in testing hypotheses of the kind:

Casel Hy: py=u,,0,=0, versus Hy: pu, # u,, 0, #0,
Case 2 Hy: py=p,, 0, #6, versusH,: y, # pu,, 0, #0,.
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For Case 1, the likelihood-ratio test statistic is 8.25, and the Wald test
statistic is 8.26, results significant at the 2.5% level. For Case 2, the
likelihood-ratio test statistic is 6.16, and the Wald test statistics is 6.25,
both results again significant at the 2.59/ level. (For details of the Wald
test see, for example, Silvey (1975, p. 115).)

These three different approaches to comparing the data of Tables 1 and
2 thus all result in conclusions of a significant difference, but with varying
strengths of significance. While the beta-binomial model provides an
adequate description of the data, one might also wonder whether other
models might provide a better fit. For example, Altham (1978) and
Kupper and Haseman (1978) propose a correlated binomial distribution,
and Paul (1984) and Pack (1986a) consider the beta-correlated binomial
distribution.

Fitting a variety of models to the data of Tables 1 and 2 produces the
maximum log-likelihood values of Table 3. These values emphasise the
earlier conclusion that the standard binomial distribution is unsuitable for
these data. There is a suggestion that the beta-binomial is better than the
correlated binomial, but that the beta-binomial fit for the second data set
could be improved.

Obvious questions arise from the above analyses: need a statistician
become involved in fitting fairly complex probability models to such data,
and, if so, at what stage should the model development end? Might much
simpler t-tests be adequate for comparisons? A review of the literature
reveals a large amount to recent research activity in this area. Smith (1983)
provides an algorithm for fitting the beta-binomial, and an approximate
approach using GLIM is described by Brooks (1984). Pregibon (1982)
considers robust analysis. Vuataz and Sotek (1978) and Paul (1982)
suggest that in general the beta-binomial fits data better than the correlated
binomial model, yet James and Smith (1982) encounter problems fitting

Table 3. Maximised log-likelihood values from fitting a variety of models
to the data of Tables 1 and 2

Model

Beta- Mixture
Correlated Beta- correlated  of two
Binomial binomial binomial binomial binomials

Table 1 —842.62 —801.69 =771.79 —776.38 —~782.45
Table 2 —745.06 —732.19 —701.33 —695.94 —686.23
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the beta-binomial model, finding it lacks robustness with respect to
outlying values. More generally, from papers such as: Vuataz and Sotek
(1978), Gladen (1979), Haseman and Soares (1976), Haseman and Kupper
(1979) and Shirley and Hickling (1981), there is conflicting evidence
regarding power and type I error rates.

More typical than the data sets of Tables 1 and 2 are experiments
resulting in 2040 litters. From investigation of real and simulated data
sets of this kind, Pack (1985, 19864, b) has been able to conclude that for
much data arising from the dominant lethal assay, the most useful models
are likely to be the beta-binomial and a mixture of binomials. For
comparative experiments the beta-binomial is likely to be preferred, and
overall it has been found in this case that likelihood-ratio tests are at least
as powerful as the simpler t-tests mentioned above, and in certain
situations they can be significantly more powerful.

The time necessary to review the literature, consider the problems and
conduct the experiments before such conclusions can be reached is
unlikely to be available to the average consultant. In this case the work
was done by the Scientific Computing and Statistics Department of the
Wellcome Research Laboratories at Beckenham, collaborating with the
University of Kent through a linked Science and Engineering Research
Council studentship (CASE award), to allow a research student, Simon
Pack, to work for a PhD in statistics through consideration of these
problems. A particular feature of the Wellcome data was the repeat
mating of male rats with different females over time. This led to a
broadening of the research work, and to a consideration of other
toxicology experiments in which time plays an important role. We shall
consider one such example in the next section.

3 Analysis of quantal assay data with time to response

Table 4 presents examples of the data to be considered here. These
data were analysed by Diggle and Gratton (1984), who used Monte Carlo
inference to fit the implicit stochastic model of Puri and Senturia (1972).
An alternative approach has been suggested recently by Carter and
Hubert (1984), and Jarrett (1984) has investigated a ‘MICE’ index which
is sometimes used to summarise such data. An early analysis of similar
data is provided by Boyce and Williams (1967).

The data can be viewed as constrained and censored survival data — see,
for example, Aranda-Ordaz (1983) and Wolynetz (1979) —and it is a
survival analysis approach that we developed here.

Let us suppose that we have D dose levels, {d;}, and also that observations
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are taken at times {f;}, with n; individuals responding in the interval,
(- ), for 1 <ig D.

If the probability that an individual beetle given dose d; dies iu (¢;_,, ;)
is written as p;;, then we model p;; by:

pi; = F(t;, d)—F(t;_,, dy),
with

a.
Ky, dy) = l-k—el—@’ (1

where g; is a function of the dose d;, but #;; also incorporates time to
response.
Experimentation with fitting different models resulted in the following

model to describe the data for males and for females:

F(t, d)™' = (1+e~@utoe 10gdy) (1 4 179p).
For themales, the maximum-likelihood parameter estimates, with estimated
asymptotic standard errors, are

&, = 4.63 (0.46),

&, = 3.37 (0.33),

¢ = 2.70 (0.14),

B = 14.28 (2.38),

Table 4. Hewlett's flour beetle data

Dose (mg/cm?):0.20 0.32 0.50 0.80

Sex: M F M F M F M F
Group size: 144 152 69 81 54 44 50 47

Time (days)

1 3 0 7 1 5 0 4 2
2 14 2 17 6 13 4 14 9
3 24 6 28 17 24 10 22 24
4 31 14 44 27 39 16 36 33
5 35 23 47 32 43 19 44 36
6 38 26 49 33 45 20 46 40
7 40 26 50 33 46 21 47 41
8 41 26 50 34 47 25 47 42
9 41 26 50 34 47 25 47 42
10 41 26 50 34 47 25 48 43
11 41 26 50 34 47 25 48 43
12 42 26 50 34 47 26 48 43
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with estimated asymptotic correlation matrix

& | 0976
& | —0.171 —0.152

P

¢ | —0.105 —0.093 0.834
& é p

For the females, the maximum-likelihood parameter estimates, with
estimated asymptotic standard errors, are

&, = 2.61(0.27),

a, = 2.61(0.22),

¢ = 3.48 (0.20),

B = 57.05(14.83)

with estimated asymptotic correlation matrix,

6 | 0937

g, | —0.047 —0.031

¢ | —0.035 —0.023 0.906
| & 4 B

Fitted values are given in Table 5. The agreement appears to be good,
especially as the model only contains four parameters. The residual
deviances and corresponding degrees of freedom are: for males 48.39(48),

Table 5. Hewlett's flour beetle data: fitted values

Dose (mg/cm?):0.20 0.32 0.50 0.80

Sex: M F M F M F M F
Group size: 144 152 69 81 54 44 50 47

Time (days)

1 3.0 0.4 3.1 0.6 32 0.5 3.2 0.7
2 14.1 42 149 54 154 50 153 6.8
3 261 115 275 148 283 135 283 184
4 338 177 356 228 367 208 36.6 284
5 381 213 402 274 414 250 414 343
6 406 232 428 299 441 273 440 373
7 421 242 443 312 457 285 456 390
8 43.0 248 452 319 467 292 466 399
9 435 251 459 324 473 296 472 404
10 439 253 463 326 477 298 476 407
11 442 255 466 328 480 300 479 410
12 444 256 468 329 482 301 482 41.1

13 446 256 469 330 484 301 483 412
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and for females 49.94(48), again indicative of a good fit. The chi-square
approximation for the deviance was checked using simulation, and found
to be satisfactory.

Fitting the same model to both male and female data sets produced a
deviance of 139.91 on 100 degrees of freedom (d.f.), and so a likelihood-
ratio test statistic of the hypothesis that (a,, «,, ¢, f) does not vary with
sex is 41.58, extremely significant when referred to chi-square tables on
four degrees of freedom.

One way of investigating this difference further is as follows: we can
assume that only (o, a,) does not vary with sex. The residual deviance is
then 128.38 on 98 degrees of freedom, highly indicative of a significant
effect of sex on (a,, o,), suggesting in fact that males are more susceptible
than females. Conversely, if we assume that only (¢, f) does not vary with
sex the residual deviance is then 110.70 on 98 degrees of freedom,
suggesting that the distribution of time-to-death differs between sexes,
males having a smaller mean time-to-death than females. Both of these
conclusions were reached also by Diggle and Gratton (1984), after a much
more complicated analysis.

In the example considered here, a fraction of the flour beetles survived
at each dose. In other examples (see, for example, Kooijman, 1981; Carter
and Hubert, 1984) for which that does not appear to be the case, simpler
models of the form

logit F(¢;, d;) = y,+7; log t;+7; logd;

have been fitted with success to describe the data. These are proportional
odds models (see McCullagh, 1980; Bennett, 1983). An alternative ap-
proach which has also been useful is to fit proportional hazard models (see
Cox, 1972), and work is continuing on the relative merits of these two
different types of model for this kind of data.

Here, as in the example of the last section, probability models are
constructed to describe sets of data in as parsimonious a way as possible,
and then provide a suitable framework for comparisons.

4 Aspects of CASE awards

The advantages and disadvantages of CASE studentships have
been detailed by Jones, Morgan and Wetherill (1983), and the Welicome
CASE award is no exception. The Wellcome statistician, David Smith,
has provided constant and invaluable input into the research programme.
However, active dominant lethal toxicology work ceased at Beckenham
virtually as the CASE studentship began. This eventuality was not
anticipated during the lengthy period of time in which the case for the
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award was prepared, the grant application made and approved, and a
student secured. A wealth of historical data provided an excellent start to
the project, but the anticipated interaction with active toxicologists was
lacking. Fortunately the topic of Section 3, which did not arise directly
from the Wellcome data, led on to consider experiments in which
knocked-down insects could recover, and by chance an excellent supply
of data from such experiments was available from Wellcome (but now at
Berkhamsted). Work is currently underway on modelling these data,
which seem to require implicit models, in the terminology of Diggle and
Gratton (1984). CASE studentships frequently take the supervisor, as well
as the student, into uncharted waters. A problem with research in an
unfamiliar area is that one may not be as aware as one should be of recent
relevant work. Thus the paper of Farewell (1982), in which he indepen-
dently proposes the model (1), was only discovered, after the work had
been done, as a footnote to the discussion of Kalbfleish, Krewksi and
Van Ryzin (1983).

The Wellcome CASE award grew out of contact with the Applied
Statistics Research Unit (ASRU) at Kent, which in turn developed as a
result of our extensive industrial links, quite often through CASE awards
(see Jones, Morgan and Wetherill, 1983). ASRU now provides another
way in which the university may collaborate with industry. The luxury of
three months, let alone three years, for consultancy work done by ASRU
is simply not possible, as the examples of the next two sections dem-
onstrate.

5 ASRU consultancy on clinical trials

ASRU is a self-financing group which therefore needs to attract
regular contract work from industry, government, research stations, etc. for
its continuing existence. It has to be flexible enough to be able to meet
work demands as they currently exist at any given time, in whatever area
of statistics. One area that has always featured prominently in ASRU’s
work is that of clinical trial analysis, a subject which is also discussed
elsewhere in this volume.

For such work there is certainly not time available to carry out extensive
literature searches, try out increasingly complex modelling approaches
and, perhaps, develop new methodology, as there would be-in, for
example, CASE projects such as the one described in Sections 2 and 3. The
client company is now the paymaster and typically requires a rather
specific piece of work to be carried out. The request rarely extends beyond
the analysis of the data arising out of the trial in question, with no
provision for possibly interesting and desirable follow-up work. As the
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earlier sections indicate, however, other means exist for organising such
research. Occasionally, a client’s request may be very specific, in which
case it is conceivable that it might contravene advice that would have been
given by ASRU. As an agent contracted to do the specified work, ASRU
would then still give its advice, but carry out the work it is contracted to
do unless this is really diametrically opposed to its own judgement! This
is one feature of consultancy that is not likely to occur in any other type
of university-industry collaboration. Most importantly, client companies
often require the work to be carried out to very tight deadlines. Since
requests may arise at any time of the year, it is only by having a group
such as ASRU that a university is then in a position to meet such demands.
Reports may have to be produced in standard style, and contain familiar
methodology, or novel methods comprehensively referenced or described,
often for eventual submission to drug regulatory authorities. While this
kind of observation may come as second nature to an industrial statistician,
such concepts may be quite new to a statistician with a more exclusively
academic background. Reports usually have to be written so that they can
be understood by non-statisticians, for example clinicians, as well as by
statisticians. ASRU work provides its statisticians with regular oppor-
tunities to interact with non-statisticians (but this is likely to be true of
much statistical consultancy anyway). However, on the other hand, ASRU
consultancy is also sometimes carried out with a client company’s statis-
tician as the direct contact, leaving the ASRU statistician at least one
person removed from the experimenter: this is less likely to be true in more
standard consultancy work. A further feature which is particularly
pertinent to ASRU’s work is the need to respect absolutely the
confidentiality of its arrangements with clients — who at any one time may
include a number of competing companies within, for example, the
pharmaceutical industry.

The data analysis tasks undertaken in the clinical trials area by ASRU
on behalf of clients are often fairly straightforward in nature, though
sometimes slightly non-standard features exist, or points of interest arise
to be followed up. For example, in a recent study questioning the necessity
of routine episiotomy for mothers at delivery (Harrison et al., 1984), the
pain score data listed in Table 6 were obtained for the group of patients
undergoing episiotomy and for the group sustaining a second-degree tear.
A comparison between the distributions of pain scores in the two groups
can be made at each measurement time by constructing the corresponding
contingency tables, in which patients are classified by ‘treatment’ group
and severity of pain. (Note that this itself already introduces the problems
of multiple testing and non-independence of tests, which bedevil a lot of
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clinical trials analysis. Further comment on repeated measurement anaIysis
is made below.) A standard analysis of one of the resulting contingency
tables would consist of computing the Pearson’s chi-squared statistic for
the data, and assessing that for significance. For data such as those given
in Table 6, however, such an analysis would be wasteful of the information
inherent in the ordered nature of the pain score data. Methods for the
analysis of ordered contingency tables have already been well documented
(see, for example, Everitt, 1977, pp. 51 and 100 and the sections following
them) but, more recently, the models of McCullagh (1980), and the
program for fitting them, PLUM, provide a useful approach to such data.
An underlying continuous distribution of pain severity is postulated for
each group of patients, and a test (based on analysis of deviance) for
difference in location of the distributions is carried out. We would expect
such a test to have more power in detecting group differences than the
standard Pearson’s chi-square approach, though in the case of the data
of Table 6 significant differences (at the 59 level) are still not detected.
Simple inspection of the data reveals that in this example the result is not
at all surprising.

The analysis of repeated measurements is an area which is frequently
encountered in ASRU clinical trials work. Figure 1 illustrates a common
situation. It shows the patient group mean profiles of aggression scores
in a trial lasting 12 weeks (plus 4 weeks run-in) and in which observations
were recorded daily, later to be summarised by weekly periods. This trial
was a multicentre parallel-group study, with five centres taking part, and

Table 6. Severity of pain recorded over first four days after delivery in 77
patients (figures are numbers of patients)

Day 1 Day 2 Day 3 Day 4

Pain am pm am. pm am. pm. am. p.m.

Patients undergoing episiotomy (n = 40)

None 3 2 6 12 16 17 24 26
Mild 18 17 24 14 15 14 11 8
Moderate 10 14 8 14 7 7 3 4
Severe 8 6 2 — 2 2 1 2
Very severe 1 1 — — — — —
Patients sustaining second-degree tear (n = 37)

None 7 5 6 13 16 17 22
Mild 15 15 22 20 15 12 16 9
Moderate 11 13 7 8 8 7 4 6
Severe 2 2 3 3 1 2 — —

Very severe 2 2
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was designed to assess the efficacy of a treatment, with placebo control,
in the control of aggression in mentally handicapped patients. Acts of
aggression were scored by hospital staff on a scale of 1 to 5, according to
the following key: 1, well behaved; 2, mood uncertain; 3, overt regression
or attempted aggression; 4, additional medication required to control
patient; 5, seclusion required. The clinician may ask the ill-defined
question of whether the profiles are significantly different. If so, the
clinician might be interested to know when they first became significantly
different and, in some instances, when the profiles first start coming
together again. Although such questions may appear to the clinician to
be very straightforward, they are not simple to handle statistically. Work
on answering such questions is currently being undertaken at Kent.
Repeated measurement analysis procedures are readily available at
present; an example is the BMDP 2V procedure (Dixon, 1981). This
provides a test for the difference between the global means, and also for
linear, quadratic, or high-order component of the time-treatment interac-
tion. The Kent work (Kenward, in preparation) involves a step-by-step
analysis through time, the successive tests that are carried out being
conditioned on the previous ones. Forward and backward stepping is
envisaged. With such follow-up research work, a method of funding,
outside the normal ASRU contractual arrangement with a client, usually

Fig. 1. Group means and standard errors of mean weekly aggression
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needs to be found. The work on repeated measurement was carried out
by a member of the statistics department, illustrating again how the
department and the Unit can work together to mutual benefit.

Many clinical trials have patient withdrawals. If there are many of these
and, especially, if they may be treatment related, great care is needed in
carrying out the data analysis. Such an example arose in a study recently
handled by ASRU. The study, concerning patients suffering from rheu-
matoid arthritis, involved 20 centres in each of which 16 patients were to
be recruited and allocated to one of three treatment groups (two active
treatments, one placebo). In fact, only 224 patients from 15 centres
entered the trial and, of these, only 92 completed it. In this particular
example the early stopping of the trial because of the decision to stop
development of the drug under study (a decision which was made
independently of the trial) led to a large number of ‘withdrawals’.
However, in addition, the data for some visits had to be excluded from
analysis because of the non-compliance of patients with the visit times laid
down. Table 7 shows the number of patients in the trial at each visit whose
data could be analysed.

Gould (1980) suggested an approach for handling data from trials
where there are a substantial number of withdrawals. He suggests that
before this, even as recently as 1976 (Peto et al., 1977) there appeared to
be no satisfactory method described in the literature. His own approach
consists in ordering the reasons for withdrawal, for example, from adverse
reaction to treatment to complete recovery, and assigning scores with a
corresponding ordering to be used as imputed values in the analysis.
Gould’s approach, then, provides a useful start in the search for appropriate
methodology for handling the treatment-related withdrawal problem.
There is little doubt, however, that it would repay further research. This

Table 7. Numbers of patients at each visit of a rheumatoid
arthritis study with data appropriate for analysis: visits ranged
over one year

Trial visit Treatment Treatment
number Control group  group A group B

1 56 55 112

2 53 53 107

3 51 53 98

4 47 49 90

5 47 40 80

6 25 30 67

7 20 20 51
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again illustrates how ASRU consultancy can identify problem areas which
invite follow-up work.

A further feature of the trial referred to above was the multivariate
nature of the study. This is common in studies in the rheumatoid arthritis
area, where a number of possible related variables are measured. This
complicates the issue of handling the withdrawals data if they are to be
handled in a multivariate way. For example, Gould points out that his
approach may not be feasible when the responses are multivariate. On the
other hand such data raise the question of whether multivariate methods
can usefully be used when handling clinical trials analyses. The analysis
of biochemical laboratory data is another common area in clinical trials
where this possibility of using multivariate approaches arises. Despite
interest in the pharmaceutical industry in such approaches, little seems to
have been done in this area, though some initial work has been done at
Kent and again further research would be worthwhile.

6 ASRU consultancy in other areas
Clinical trials work is not the only area of ASRU’s industrial
liaison activities where tight deadlines are important to the client. This can
affect the way a project is planned and carried out. In an ideal situation,
which is more likely to exist for projects set up in a conventional way, a
logical and thorough progression through the research can be planned.
For a research project set up through ASRU, circumstances may dictate
that progress by stages is the best compromise possible. Thus, in recent
work in collaboration with ICI Plant Protection Division on the population
dynamics of the Screech Owl, Otus asio, reported by North (1985), in
which particular attention was paid to the effect of an additional force of
mortality, initial results from the study were required at very short notice.
Yet this was an example, like the one described in the early sections, where
an extensive preliminary literature search was both appropriate and
necessary. Sometimes, of course, the literature search carried out for one
project may benefit another later project. Despite the constraints, however,
projects of considerable mutual benefit can grow from such inauspicious
beginnings. This particular owl modelling work provided input to the
student teaching programme at Kent, in the form of a Postgraduate
Diploma project (Boddy, 1985) and led to further research (North and
Boddy, in preparation). The work was drawn on data collected in an
extensive, long-running study of Screech Owls (Van Camp and Henny,
1975) to provide a basis for population modelling of Leslie matrix type,
in a deterministic framework, and for a stochastic equivalent.
Not all ASRU work, however, is tied to such tight time constraints. A
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recent example concerned a study of the effects of environmental stresses
on soil microbiological activity, in collaboration with Shell Research Ltd,
Sittingbourne. The client in this instance, a biologist who does not claim
particular statistical expertise in the area of microbiological field trials,
was happy to leave the statistician with an entirely free hand. There was
also a realistic amount of time allowed for the work, enabling a fairly
thorough analysis of an extensive data set to be carried out. A most
rewarding (statistically and biologically) project resulted, in which an
array of multivariate methods were applied to a data set of high quality
and interest content.

In some of the ASRU consultancy work, it is the objectivity of the
analysis, in an issue which is likely to be controversial, which may be
sought by the client. The respectability provided by the backing of an
academic institution also becomes a factor in such cases. Clearly, in these
instances especially the project must be set up in conditions that allow
ASRU to be professionally satisfied with its results and conclusions.
However, these points are not so different from conditions which might
prevail if a client were seeking the advice of an individual academic expert
as a consultant.

A prominent feature of ASRU’s work over the years, developed
through industrial liaison in existence even before the Unit was established,
has been the development of user-friendly statistical software. This has
resulted in the computer effectively acting as the consultant, as the
products have approached the status of expert systems. Work of this type
began with the development of interactive computer software in coopera-
tion with ICI plc, Mond Division, to assist scientists in designing their
experiments through ‘conversation’ with the computer: see Jones (1980).
Further work to extend this software is desirable, and planned. This was
followed by the development of the multiple regression analysis package,
U-REG, again developed in conjunction with ICI plc, but now available to
anyone, which generated a considerable amount of academic research,
culminating in the monograph of Wetherill et al. (in preparation).

Work in similar vein, this time supported by the Overseas Development
Administration, has led to the development of a user-friendly survey
analysis package, U-SP, suitable for running on microcomputers. This
work did not arise out of industrial contact, but from a sample surveys
course run regularly at Kent for overseas statisticians. However it is
anticipated that U-sp should now be able to play a part in industrial
applications.

Related research has gone on at Kent in parallel with the development
of U-sp. One PhD project involved the study of methods of imputation
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(Laurence, in preparation). Whether or not these have a place in an
automatic approach to survey analysis is not clear, though the weight of
opinion seems to favour the view that in general they do not: more needs
to be done on this. A second PhD project, still ongoing, involves the study
of model-based approaches to inference from samples surveys, and their
comparison with more classical approaches (Wafula, in preparation).

The mention of courses illustrates another role that the Unit is able to
play, in conjunction with the statistics department, namely to provide a
consultancy service through extra-mural courses. This is becoming an
increasingly prominent part of the activities at Kent, but is a commitment
which cannot be undertaken lightly, involving as it does intensive expen-
diture of staff time and effort — often at times when many academics might
be thinking of undertaking other activities, such as research. This arises
since, by necessity, most extra-mural courses must be run during vacations,
though courses for clients on-site can be given more easily during term
time.

A final feature of ASRU consultancy work which sets it apart from
other forms of university—industry liaison is the question of costing the
projects handled. As a self-financing group ASRU clearly needs to make
realistic charges for the work it undertakes while also charging at levels
considered by its clients to be reasonable. Understandably, most clients
prefer to have a scale of charges for a project agreed before its start. This
can lead to problems for ASRU. Unit staff can sometimes have difficulties
due to unfamiliarity with the in-house routine of a client for handling its
data, possibly related to lack of access to the standard software used
in-house. More fundamentally, of course, by its very nature, the problems
and points of interest of a statistical analysis (which, inevitably, take up
more time) only tend to reveal themselves as the analysis progresses, and
may not have been anticipated at the stage of setting up a contract for the
work. Sometimes more flexible costing arrangements can be employed,
which can work to the mutual benefit of both parties. All this is, however,
quite far removed from the considerations of collaborative work like that
described in the early sections of this chapter, thus completing the
spectrum of features relating to statistical liaison with industry from a
university group.
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Inspection for faulty components
before or after assembly of
manufactured items

P. M. E.ALTHAM

Summary

A problem in quality control, supplied by Marks and Spencer plc
in the particular context of garment manufacture, is described. A fixed
number of components is to be assembled to produce a finished item in
the factory. Each component has a small probability of being faulty, and
any component can be inspected before the item is assembled, if necessary
being replaced by a perfect component. The finished item is checked for
faults at the factory, and depending on the outcome of this checking may
be sent to the store as perfect, or sold as a second, or repaired. A BasIC
program is described, whose purpose is to help the manufacturer to decide
which components, if any, should be inspected before assembly, and to
illustrate the process by a simulation. The optimisation and statistical
inference aspects of the problem are discussed.

Preamble

I am sure most university statisticians find that the experience of
statistical consulting is essential to their professional well-being and
sanity, as well as often being great fun, affording a glimpse into other
worlds besides their own department or university. Like many statisticians,
I find ‘research’ and ‘consulting’ are not readily disentangled, and indeed
to separate one’s activities into these two areas is probably rather
unhealthy. However, there is obviously a danger that if one’s research is
too much problem-driven, one may be subject to a series of random
impetuses, so that the net direction may be rather unclear. To guard
against this, we all need to be able to stand back from time to time and
reflect on our rather random collection of problems; to work out which,
if any, are worth pursuing further, to work out whether there are any
connections, possibly worth exploiting, between these problems. The
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advantage of keeping an open mind about the type of problem one is
prepared to handle is that one is then very positively stimulated to try to
keep up with one’s subject in a broad sense, rather than just plough one
or two very deep furrows.

I found the experience of consulting described in this chapter very
educational, even if (not very surprisingly) there were no new theorems,
earth-shattering or otherwise, to be proved. My colleagues at Marks and
Spencer rightly insisted that a proper study of the problem meant that 1
must visit several factories, to see various types of garment inspection in
operation. Having the manufacturing process explained to me over the
noise of the machines, and over the noise of Radio 1, was a fairly rude,
though not at all unwelcome, contrast to the quiet of my university office!
While I found the visits to the factories and to Marks and Spencer’s Head
Office immensely interesting, sitting in the quiet of my office with pencil,
paper and computer was of course a very substantial part of the enterprise.
My first attempts to pose and solve the problem, in the language of
mathematics/probability, did not go down at all well with my clients and
this, I must confess, left me temporarily a little dashed; I had been quite
proud of my elegant, Cambridge-style formulation. I have spent many
years emphasising to my students the importance of good communication
with one’s clients, and at one stage in this project it looked as if I myself
was in danger of failing rather badly in this respect. However, at this point
the microcomputer (in spite of its reputation as having a great potential
for time-wasting) came to the rescue, and it’s still hard for me to think of
any better way to present the results, particularly to people who are not
all that interested in the mathematics but just want a simple numerical
answer. [ am obviously not a professional programmer, but simply use the
programs as a means to an end. Examples of the output of my programs
are given at the end of the chapter; since the main body of the chapter
was written, the format of the output has been modified somewhat,
following comments from potential users. Probably a programming expert
could have some fun revamping the programs into a slicker form. For me
the programming exercise played a very important role in familiarising
myself with my then new microcomputer and Basic. Mainframe computing
would have been too unwieldy for this problem; I needed to be able to
demonstrate the results on a portable computer, and on a computer that
is easily available and affordable by factories in the UK.

Since the main body of the chapter was written, Marks and Spencer
have generously agreed that the programs may be made more widely
available, for the financial benefit of Cambridge University, so steps are
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being taken with the help of the University’s Wolfson Industrial Unit to
promote the work.

1 Introduction

This problem was supplied by Marks and Spencer plc, and I am
very grateful to them for the opportunity to work on an interesting and
worthwhile question. For me the problem arose in the particular context
of quality control of fabric faults in garments made from woven fabrics.
However, the general problem of how best to inspect for faults in a
manufactured item consisting of a number of individual components, each
of which is prone to faults, and when no inspection is entirely error-free,
is of course very widespread. As a problem in quality control it may have
been tackled before, but if so I am unaware of it.

To revert to a particular example of this problem, consider the
manufacture of a shirt. The fabric supplied to the factory is cut into the
shirt components (termed ‘panels’) and, because the fabric is never quite
perfect, there is a slight chance that one or more of the panels for a given
shirt may have a fabric fault. The manufacturer has a number of options
open to him. He can arrange for all, some or none of the panels to be
inspected for fabric faults before the shirt is sewn, and then any panels
found to be faulty could be replaced by perfect ones. The panels are then
sewn together to form the shirt, and the finished item is given a final
inspection. At this stage there are several possibilities:

(i) the garment is perfect and is sent to the Marks and Spencer store

as such;

(ii) it is found by the factory to be faulty, and is sold as a ‘second’;

(iii) it is found to be faulty, repaired at the factory, and then sold;

(iv) it is faulty, but sent in error to the store.
In the examples on which I worked, this last event had only a very small
chance of occurring but, because of the huge total numbers of garments
produced, even a rare event is not economically negligible.

(In the formal statement and solution of the problem that follows,
posstbility (iii) is not taken into account, but given the relevant extra
information the solution could easily be generalised to remedy this.)

My problem then was the following: what advice can a statistician give
to the manufacturers about the best methods of inspection for fabric
faults? Since the problem is not confined to the manufacture of shirts, nor
even to the manufacture of garments, it will be discussed in a rather
general framework.
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2 Formal statement of the problem

The item manufactured consists of n components, which we call
a,, ..., a,. Some of these may be faulty when supplied to the factory.
Initially we consider the following two methods of inspection for faults in
the finished item. (For simplicity, faults incurred during assembly of
components are ignored: they would affect both schemes equally.)

Scheme 1. component inspection

Before the assembly of an item, each component a,, ..., a, is
checked, and if found to be faulty, replaced by a perfect component. The
cost of replacing a faulty a; is £p;. After assembly, the whole item is
checked: if any component is found to be faulty the item is sold as a
‘second’; otherwise the item is sold to the customer at the full price. If
the customer subsequently finds he has been sold a faulty item, then the
factory incurs a financial penalty.

Scheme 2: no component inspection

This is as in scheme 1, but without the inspection of individual
components before assembly. Thus this scheme is cheaper in terms of
inspection costs, but could result in more faulty items being produced.

3 Notation and solution
Let 7; = Pr (g; has one or more faults) i =1, ..., n. (Usually =,
would be small, n; < 0.05 say.)

In the case where q; is a panel of fabric of area A4;, and fabric faults occur
in a Poisson process, rate A per unit area of fabric, then we would find that
; = 1 —exp (—A4,), so that for 14, small, n, = 14,.

Assume that if the factory sends a perfect item to the customer, it
receives an amount £P; if it sells a faulty item as a ‘second’ it receives an
amount £8, and if it has the misfortune to sell a faulty item as a perfect
one, it incurs a penalty £F. Clearly in most practical cases we would find
P > S, though in some cases the difference between P and S is not
substantial.

Note that the net penalty F may be negative for the following reason.
If the factory supplies a faulty item to the customer, and the customer
returns it to the factory, then the factory generally has to pay the
transport cost, but may subsequently be able to sell the item as a second,
in which case F may be negative. However, if the faulty item has to be
scrapped, then F will certainly be positive.

In what follows we make no assumptions about the manufacturer’s
profit; we work only in terms of the (expected) amount of money received
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by the manufacturer per item. Manufacturers may understandably not
wish to divulge their desired profit per item, and this quantity is not
required in the quantitative-assessment of the scheme for detecting faults
in the components.

The problems arise here because, however well-trained and careful the
inspectors are, they can never be completely perfect; they are bound to
miss faulty components or faulty finished items occasionally. Thus, let

ap = Pr (faulty item noted as faulty at final inspection)
Br = Pr (faulty item missed at final inspection),

so that az+fr =1 (and generally ap would be large, say > 0.95). We
ignore the possibility that a perfect item is wrongly noted as faulty;
similarly for perfect components.

Finally let

o, = Pr (a faulty component g, is noted as faulty at initial
inspection for scheme 1)
and let
B; = Pr (a faulty component a; is missed in scheme 1)
=l—-o,i=1,..,n

and let £C be cost of inspection of the » components before assembly in
scheme 1. Presumably C is a function of a,, ..., a,,.

We are now in a position to compare schemes 1 and 2 by deriving the
amount received by the manufacturer per item produced, say £Y; for
scheme i. (In practice establishing numerical values for the above quantities
7, ..., B;, C may not be straightforward.) From a very simple-minded
point of view, we would then say that scheme 2 is cheaper than scheme
1if E(Y;) > E(Y;): thatis, if the expected amount received per item is larger
for scheme 2 than for scheme 1. However, the manufacturer may well have
other criteria in mind besides expected cost, and so we may like to take
a closer look at the difference between the two schemes by comparing the
distributions of Y, and Y,, if necessary by simulation. Furthermore, from
the point of view of the customer’s goodwill, the manufacturer will want
to know the probability that an item sold to the customer as perfect
actually is perfect. This probability for scheme 1 is clearly going to be
greater than the corresponding probability for scheme 2.

We start with scheme 2, since it is the simpler one. Consider the
manufacture of a particular item. Define the indicator random variables,

A; =0 if the ith component is perfect } thus E(A,) = m;,

A; =1 if the ith component is faulty i=1..n
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Put Z,=(1—4,),...,(1—4,), thus
Z, =1 if and only if all components are perfect,
Z,=0 otherwise.

If Z, =0, then a faulty item will be produced, so what we then need to
worry about is whether the final inspection after assembly picks it up.
Hence, if Z, = 0, define Iy = 1 if the secondary inspection finds the item
faulty, Iy = 0 otherwise. (Note there is a certain oversimplification here,
since presumably the more faulty components in the finished item, the
higher the probability that the inspector finds the item faulty; we are
assuming this probability is constant.) Thus we simply take E(/g| Z, = 0)
as op. We see that

,=+P if Z,=1,
,=+4+S if Z,=0 and =1,
Y,=—F if Z,=0 and I;=0,

from which it follows that

Y, = PZ,+(1-Zy) (Is S—F(1 - Iy))
Hence

E(Y,) = Po,+ (1 —0,) (0g S— FPp)
where 6, = E(Z,) = (1—n,) ... (1—m,,).

Now consider the manufacture of a particular item under scheme 1.
Take the indicator variables 4; as before, and define new variables B, as
follows:

if A; = 0 define B; =1,
if A, = 1 define B; = 1 with probability a;,
[ B; = with probability 1—o;,.

Thus, for component g;, there are three possibilities:

(i) it is initially perfect, in which case 4, = 0 and B; =1,

(ii) it is initially faulty, and the preliminary inspection finds the fault,
in which case 4, =1, B; =1, and a cost p; of replacement is
incurred,

(iii) it is initially faulty but preliminary inspection misses the fault, in
which case 4; = 1, B; =0, and there is no replacement cost.

Thus a perfect item is assembled if and only if B, ... B, = 1; define
Z, = B, ... B,. Define I as the outcome of the secondary .inspection as
before; thus, given Z, = 0, take

I = 1 with probability oy,
I = 0 with probability fg.
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Hence the reader may verify that

Y, = P—ﬁ::piAiBi—C, it z,=1,

Y, = S—%piAiBi—C, if Z,=0 and =1,

Y, = —F—é::piAiBi—C, if Z,=0 and I5=0.

Hence we may write

Y,=—-C-Xp; A, B+ PZ,+(1-2Z)) (+SIg—F(1-Iy))
where (4,, B)), ..., (4,, B,) are independent, and

E(A;) = my, E(B;|A; = 1) = o, E(B;|4; =0) =1,

and

E(I5| Z, = 0) = ap, E(Z,) = 9, say.
Hence

E(4;B) =m0,
and

E(Y)) = —C=Xp;%7;+ Po,+(1-9,) (4 Sop — Ffy).
The quantity &; is the probability that scheme i produces a perfect item:

| 6,= 111 (- B)
and

0, = 1711[ (1—-m)

so that clearly J, > J,, as we would expect.

For example, with » = 10, z; = 0.05 for all i and 8; = 0.01 for all i, we
find J, = 0.995,4, = 0.599.

The probability that an item supplied to the customer as perfect is
actually perfect, with scheme 1, is 8,/[J; + (1 — ;) Bg], which will clearly be
a little higher than J,.

4 Discussion of results, and presentation

Schemes 1 and 2 are two extremes in possible methods of
inspection. Note that with a; as the accuracy of inspection of the ith panel
in scheme 1, a; > 0 for i = 1, ..., n corresponds to the inspection of every
panel before assembly, but the manufacturer may actually prefer to take
o; > 0 for some values of i, and o, = 0 for the remaining i, depending on
the fault rates #; and replacement costs p, for the individual panels. Of
course if he takes o; = 0 for all i, then scheme 1 reduces to scheme 2, the
case of no panel inspection.
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What the manufacturer really wants to know from the statistician, in
deciding on the best method of inspection, is the numerical value of

E(Y)) = P6,+(1—6,) (Sog—Fpp)— C(oy, .., &)
—%t:piainb 4.1

where 6, = I1? (1 —n; + 7, ;).

The most effective way of presenting the results of (4.1) was to use a
microcomputer program. The formula involves too many parameters for
a simple graphical presentation or book of tables to be a practical
possibility, so I wrote a program in BBC Basic. This had the great
advantage that, using the nice notation of the indicator variables described
in Section 3, I was able to demonstrate the validity of (4.1) by simulation.
This is especially suitable for the layman, who probably is unfamiliar with
terms such as ‘expectation’, but finds long-run convergence to the
expected value quite convincing.

Examples of the output from the two relevant programs are given in
Tables 1 and 2. Note that the examples are for very small scale problems,
with rather unrealistically high fault rates, and only rather small numbers
of simulations, for reasons of economy of space in this chapter. The
programs are designed to be as user-friendly as possible. The user simply
types in the values of the appropriate parameters after each question. The
program deals with a slightly more general problem than those given in
schemes 1 and 2 above, to allow for the fact that not all faulty items sent
to the store will be detected and returned to the factory. Thus the user is
asked to specify the rate of detection of the faulty item at the store; this
would tend to be higher for an expensive item than a cheaper item. The
outcome of the simulations in Table 1 shows the state of the panels in
brackets, ‘OK’ or ‘DUD’, and following the brackets, the state of the
whole item, again ‘OK’ or ‘DUD’. In Table 2, which shows the outcome
of the program demonstrating panel inspection, the initial state of the
panel is shown in the brackets as ‘OK’ or ‘DUD’, and its state after panel
inspection is shown as ‘ok’ or ‘dud’. The state of the whole item,
following panel inspection, is shown after the brackets as ‘OK’ or ‘DUD’.
The last figure for each simulation shows the amount received by the
manufacturer for that particular item, allowing for panel replacement if
that occurred.

For listings of the programs please write to the author.
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Table 1

INSPECTION FOR FABRIC FAULTS, WITH NO PANEL INSPECTION PRIOR
TO ASSEMBLY OF GARMENT
Copyright P. M. E. Altham 1985 for Marks and Spencer plc

If you make an error in what follows, you can probably correct it by the DELETE key.
Otherwise just press ESCAPE & then type RUN
Do not press BREAK

IF YOU WANT EACH SIMULATION PRINTED OUT, ANSWER 1, ELSE 0? 1
IF FACTORY SENDS PERFECT ITEM TO STORE, IT GETS? 10

IF FACTORY SELLS FAULTY ITEM AS A SECOND, IT GETS? 6

IF FACTORY SENDS FAULTY ITEM TO STORE, IT INCURS PENALTY? -3
NUMBER OF PANELS? 4

Now give fault rate for each panel, between 0 and 1

1 FAULT RATE FOR THIS PANEL? 0.01
2 FAULT RATE FOR THIS PANEL? 0.01
3 FAULT RATE FOR THIS PANEL? 0.02
4 FAULT RATE FOR THIS PANEL? 0.1

Now give accuracy of final inspection at factory, between 0 and 1
ACCURACY OF FINAL INSPECTION? 0.8

Now give rate of detection of faulty item at store, between 0 and 1
DETECTION? 0.5

PERFECT ITEMS SENT TO STORE 86.445%

SECONDS PRODUCED, & DETECTED AT FACTORY 10.844%;
FAULTY ITEMS SENT TO STORE 2.711%

RTMSt FROM STORE 1.356 as 9, of all items made

This means that of the items sent to the store, we expect a proportion to be returned to
factory of 1.520%

EXPECTED AMOUNT RECEIVED PER ITEM 9.471
Percentage loss on contract due to rtms and seconds 5.287%
NUMBER OF SIMULATIONS? 10

(DUD DUD DUD DUD) DUD,FAULT SPOTTED, SECOND 6.000
(OK OK DUD DUD) DUD,FAULT SPOTTED, SECOND 6.000
(OK OK OK OK) OK, PERFECT ITEM 10.000
(OK OK OK DUD) DUD,FAULT SPOTTED, SECOND 6.000
(OK OK OK OK) OK, PERFECT ITEM 10.000
(OK OK OK OK) OK, . PERFECT ITEM 10.000
(OK OK OK OK) OK, PERFECT ITEM 10.000
(OK OK OK OK) OK, PERFECT ITEM 10.000
(OK OK OK DUD) DUD,FAULT SPOTTED, SECOND 6.000
(OK OK OK OK) OK, PERFECT ITEM 10.000
OUTCOME OF SIMULATIONS

MEAN RECEIVED PER ITEM 8.400, SE 2.066
Here we assume that any faulty item sent to the store will be an rtm
NUMBER OF SIMULATIONS 10.000

NUMBER OF PERFECTS 6.000 60.000%,
NUMBER OF SECONDS 4.000 40.000%,
FAULTY GOODS TO STORE 0.000 0.0009,

+ RTM and rtm are abbreviations for ‘returned to manufacturer’.
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Table 1 (cont.)

If you want more simulations with same parameters type GOTO 290(return)

If you want to change the parameters type RUN(return)

>RUN

INSPECTION FOR FABRIC FAULTS, WITH NO PANEL INSPECTION PRIOR
TO ASSEMBLY OF GARMENT

Copyright P. M. E. Altham 1985 for Marks and Spencer plc

If you make an error in what follows, you can probably correct it by the DELETE key.
Otherwise just press ESCAPE & then type RUN
Do not press BREAK

IF YOU WANT EACH SIMULATION PRINTED OUT, ANSWER 1, ELSE 0? 0
IF FACTORY SENDS PERFECT ITEM TO STORE, IT GETS? 12

IF FACTORY SELLS FAULTY ITEM AS A SECOND, IT GETS? 0

IF FACTORY SENDS FAULTY ITEM TO STORE, IT INCURS PENALTY? 2
NUMBER OF PANELS? 6

Now give fault rate for each panel, between 0 and 1

FAULT RATE FOR THIS PANEL? 0.1
FAULT RATE FOR THIS PANEL? 0.1
FAULT RATE FOR THIS PANEL? 0.01
FAULT RATE FOR THIS PANEL? 0.02
FAULT RATE FOR THIS PANEL? 0.05
FAULT RATE FOR THIS PANEL? 0.001

Now give accuracy of final inspection at factory, between 0 and 1
ACCURACY OF FINAL INSPECTION? 0.8

Now give rate of detection of faulty item at store, between 0 and 1
DETECTION? 1

PERFECT ITEMS SENT TO STORE 74.582%,

SECONDS PRODUCED, & DETECTED AT FACTORY 20.3349;
FAULTY ITEMS SENT TO STORE 5.084%,

RTMS FROM STORE 5.084 as % of all items made

This means that of the items sent to the store, we expect a proportion to be returned to
factory of 6.381%

EXPECTED AMOUNT RECEIVED PER ITEM 8.848
Percentage loss on contract due to rtms and seconds 26.265Y%,
NUMBER OF SIMULATIONS? 10

OUTCOME OF SIMULATIONS

MEAN RECEIVED PER ITEM 12.000, SE 0.000
Here we assume that any faulty item sent to the store will be an rtm
NUMBER OF SIMULATIONS 10.000

A AW —

NUMBER OF PERFECTS 10.000 100.000%;
NUMBER OF SECONDS 0.000 0.000%,
FAULTY GOODS TO STORE 0.000 0.000°,

If you want more simulations with same parameters type GOTO 290(return)
If you want to change the parameters type RUN(return)
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Table 2

INSPECTION FOR FABRIC FAULTS, WITH PANEL INSPECTION BEFORE
FINAL ASSEMBLY OF GARMENT

Copyright P. M. E. Altham 1985 for Marks and Spencer plc

If you make an error in what follows, you can probably correct it by DELETE key.
Otherwise just press ESCAPE & then type RUN

Do not press BREAK

IF YOU WANT EACH SIMULATION PRINTED OUT, ANSWER 1, ELSE 0? 1
IF FACTORY SENDS PERFECT ITEM TO STORE, IT GETS? 10

IF FACTORY SENDS FAULTY ITEM AS A SECOND, IT GETS? 8

IF FACTORY SENDS FAULTY ITEM TO STORE, IT INCURS PENALTY? 2
NUMBER OF PANELS? 6

Give fault rate between 0 and 1

FAULT RATE FOR THIS PANEL? 0.01
FAULT RATE FOR THIS PANEL? 0.1
FAULT RATE FOR THIS PANEL? 0.01
FAULT RATE FOR THIS PANEL? 0.01
FAULT RATE FOR THIS PANEL? 0.05
FAULT RATE FOR THIS PANEL? 0.02

REPLACEMENT COST OF THIS PANEL? 0.5
REPLACEMENT COST OF THIS PANEL? 0.5
REPLACEMENT COST OF THIS PANEL? 0.5
REPLACEMENT COST OF THIS PANEL? 0.6
REPLACEMENT COST OF THIS PANEL? 1

REPLACEMENT COST OF THIS PANEL? 0.7

Give accuracy rate between 0 and 1 (1 corresponds to perfect inspection, 0 to no
inspection)

NB If you set accuracy of inspection of a panel to 0, then in effect this panel is not
inspected prior to assembly

ACCURACY OF INSPECTION OF THIS PANEL? 0
ACCURACY OF INSPECTION OF THIS PANEL? 0.99
ACCURACY OF INSPECTION OF THIS PANEL? 0.8
ACCURACY OF INSPECTION OF THIS PANEL? 0.8
ACCURACY OF INSPECTION OF THIS PANEL? 0
ACCURACY OF INSPECTION OF THIS PANEL? 0.90
ACCURACY OF FINAL INSPECTION? 0.95

Now give rate of detection of faulty item at store, between 0 and 1
DETECTION? 1

PERFECT ITEMS SENT TO STORE 93.393%, PRICE 10.000 EACH
SECONDS PRODUCED, & DETECTED AT FACTORY 6.276%,,
PRICE 8.000 EACH

FAULTY ITEMS SENT TO STORE 0.330%

RTMS FROM STORE 0.330 as 9, of all items made; COST 2.000 EACH

This means that, of the items sent to the store, we expect a proportion to be returned to
the factory of 0.3529,

EXPECTED AMOUNT RECEIVED PER ITEM 9.764

AU EBWN—= AN DWN—

N BN —
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Table 2 (cont.)

Percentage loss on contract due to seconds & rtms 2.418%
(NB This does not take account of the cost of the panel inspection itself; this cost would
presumably depend on the accuracy of the panel inspection)

SIMULATIONS, where for simplicity we assume any faulty item sent to the store will be
an rtm

NUMBER OF SIMULATIONS? 15
(OK ok DUD ok OK ok OK ok OK ok OK ok) OK,

PERFECT ITEM 9.500

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(DUD dudOK ok OK ok OK ok OK ok OK ok) DUD,

FAULT SPOTTED, SECOND 8.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok DUD dud OK ok) DUD,

FAULT SPOTTED, SECOND 8.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok)y OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok} OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

OUTCOME OF SIMULATIONS

MEAN RECEIVED PER ITEM 9.700, SE 0.702
NUMBER OF SIMULATIONS 15.000

NUMBER OF PERFECTS 13.000 86.6677,
NUMBER OF SECONDS 2.000 13.333%,
NUMBER OF RTMS 0.000 0.000%,
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Table 2 (cont.)

If you want more simulations with the same parameters, type GOTO 370 (return)

If you want to vary accuracy of panel inspection, type GOTO 270

>GOTO 270
1.000 ACCURACY OF INSPECTION OF THIS PANEL?  0.99
2.000 ACCURACY OF INSPECTION OF THIS PANEL? 0.99
3.000 ACCURACY OF INSPECTION OF THIS PANEL?  0.99
4.000 ACCURACY OF INSPECTION OF THIS PANEL?  0.99
5.000 ACCURACY OF INSPECTION OF THIS PANEL?  0.99
6.000 ACCURACY OF INSPECTION OF THIS PANEL?  0.99

ACCURACY OF FINAL INSPECTION?  0.95

Now give rate of detection of faulty item at store, between ¢ and 1

DETECTION? 1

PERFECT ITEMS SENT TO STORE 99.800% , PRICE 10.000 EACH
SECONDS PRODUCED, & DETECTED AT FACTORY 0.1907;,
PRICE 8.000 EACH

FAULTY ITEMS SENT TO STORE 0.0109;

RTMS FROM STORE 0.010 as % of all items made; COST 2.000 EACH

This means that, of the items sent to the store, we expect a proportion to be returned to
the factory of 0.010%;

EXPECTED AMOUNT RECEIVED PER ITEM 9.866

Percentage loss on contract due to seconds & rtms 1.355%

(NB This does not take account of the cost of the panel inspection itself; this cost
would presumably depend on the accuracy of the panel inspection)

SIMULATIONS, where for simplicity we assume any faulty item sent to the store will be
an rtm
NUMBER OF SIMULATIONS? 15

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,

PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok DUD ok OK ok) OK,
PERFECT ITEM 9.000

(OK ok DUD ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 9.500

(OK ok OK ok OK ok OK ok DUD ok OK ok) OK,
PERFECT ITEM 9.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000




166 P. M. E. Altham

Table 2 (cont.)

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok DUD ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 9.500

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

OUTCOME OF SIMULATIONS

MEAN RECEIVED PER ITEM  9.800, SE 0.368

NUMBER OF SIMULATIONS 15.000

NUMBER OF PERFECTS 15.000 100.000%;

NUMBER OF SECONDS 0.000 0.000%,

NUMBER OF RTMS 0.000 0.000%,

If you want more simulations with the same parameters, type GOTO 370 (return)
If you want to vary accuracy of panel inspection, type GOTO 270

>GOTO 270
1.000 ACCURACY OF INSPECTION OF THIS PANEL?
2.000 ACCURACY OF INSPECTION OF THIS PANEL?
3.000 ACCURACY OF INSPECTION OF THIS PANEL?
4,000 ACCURACY OF INSPECTION OF THIS PANEL?
5.000 ACCURACY OF INSPECTION OF THIS PANEL?
6.000 ACCURACY OF INSPECTION OF THIS PANEL?

ACCURACY OF FINAL INSPECTION? 095

Now give rate of detection of faulty item at store, between 0 and 1

DETECTION? 1

PERFECT ITEMS SENT TO STORE 81.301%;,, PRICE 10.000 EACH
SECONDS PRODUCED, & DETECTED AT FACTORY 17.764%;,
PRICE 8.000 EACH

FAULTY ITEMS SENT TO STORE  0.935%

RTMS FROM STORE 0.935 as 9, of all items made; COST 2.000 EACH

oCcoooC

This means that of the items sent to the store, we expect a proportion to be
returned to the factory of 1.137%

EXPECTED AMOUNT RECEIVED PER ITEM 9.533

Percentage loss on contract due to seconds & rtms 4.904%

(NB This does not take account of the cost of the panel inspection itself; this cost would
presumably depend on the accuracy of the panel inspection)
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Table 2 (cont.)

SIMULATIONS, where for simplicity we assume any faulty item sent to the store will be

an rtm

NUMBER OF SIMULATIONS? 15

(OK ok OK ok OK ok OK ok DUD dud OK ok) DUD,
FAULT SPOTTED, SECOND 8.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,

PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok DUD dudOK ok OK ok OK ok OK ok) DUD,
FAULT SPOTTED, SECOND 8.000

(OK ok OK ok OK ok OK ok OK ok OK oky OK,

PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK OK DUD dudOK ok OK ok OK ok OK ok) DUD,
FAULT SPOTTED, SECOND 8.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,

PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

(OK ok OK ok OK ok OK ok OK ok OK ok) OK,
PERFECT ITEM 10.000

OUTCOME OF SIMULATIONS

MEAN RECEIVED PER ITEM 9.600, SE 0.828
NUMBER OF SIMULATIONS 15.000

NUMBER OF PERFECTS 12.000 80.0009,
NUMBER OF SECONDS 3.000 20.0009;
NUMBER OF RTMS 0.000 0.0009;

If you want more simulations with the same parameters, type GOTO 370 (return)
If you want to vary accuracy of panel inspection, type GOTO 270
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5 An optimisation approach to the problem
We consider the problem of maximising E(Y,), the expected

amount received per item, with respect to «,, ..., &,, the panel inspection
rates, subject to 0 < a; < 1 for each i. (In practice it may be impossible
to attain o; = 1, so that the constraint 0 < o; < max (o) may be more
realistic.)

Put P! = P—Sop+ Ffig; this is the coefficient of J, in (4.1). Then we
seek to maximise, say,

n
Aoy, ..., a,) =P, —C(ay, ..., an)—leiaini.

Now if n is large (say »n > 10) and =, small (say x; < 0.01), then
0, =~ 1-X7 n(l —a;) is a reasonable approximation.

Of course it is impossible to make further progress in maximising
Ay, ..., a,) without some assumptions about C(a, ..., &,), the cost of the
panel inspection. Suppose therefore that

Cloy, .. o4y) = X Cilaw),

where Ci(e) is the cost of inspecting panel i at accuracy a;. Thus we
assume that the cost of inspecting several panels is simply additive in the
individual inspection costs. Then

Roy, ..., o) = gloy, ..., &) say,

where n n n

gloy, ..., a,) =P 21: ”i“i—zl Pi“i’zi—zi Ci(o)
and so

og o _ __dCi

fori=1,...,n
If we make a further simplifying assumption and take

Cilw) = ks o,

i.e. the cost of inspecting panel i depends linearly on the accuracy, then
we see that g(«,, ..., a,) is a linear function of («,, ..., @), and

0
== (P —p)m—k;
(2

Thus, if (P! —p;) n;—k; > 0, it is optimal to take a; as near to 1 as possible
while, if this quantity is negative, then we should take a; = 0, i.e.

do not inspect panel i/ before assembly if Pln; < p; n,+k;.
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Now the assumption that C; is linear in «; is probably unrealistic, since
presumably, while C,(a;) is an increasing function of «;, we would expect

that

i

da, is larger for o, near 0 or 1 than for a; near 0.5.

However, the optimal solution given above may continue to be a good
enough approximation even when we relax the condition of linear cost of
panel inspection.

6
()

(ii)

(iii)

Suggestions for further work

For a particular problem in which C(a, . . ., &) could be fairly well
specified, it would be interesting to explore more rigorously the
optimisation problem posed above.

In the approach outlined here, we assumed that all components
were equally ‘important’ in determining whether the whole item
was ‘DUD’ or ‘OK’. In fact some components may be more
critical than others; for example in a complicated machine we
might find that the machine failed to work at all if certain key
components were faulty, or perhaps worked not quite all of the
time if certain other components were faulty. So far my approach
has been to give all the components the same ‘status’ but, having
established the basic notation, it would not be difficult to allow
the components different relative statuses.

Similarly, my approach has been quite simple-mindedly binary;

components, and items, are either ‘DUD’ or ‘OK’. It would be
interesting to generalise the problem to allow for varying degrees
of faultiness in a component or an item.
In a practical problem, it may be fairly straightforward to assess
costs such as P, S, F and p;, but assessing fault rates =,
particularly when they are known to be very small, may be a
harder problem for the statistician. If the manufacturer is primarily
interested in the optimal choice of a,, ..., «, then it will not be
necessary to estimate ,, ..., m, with great precision. For example,
we would probably take a; = 0 as long as we could be reasonably
certain that

Pln; < pymi+k;,

ie. w; < k;/(P'—p,).
However, in general the desired accuracy of estimation of the
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parameters (z;) would probably depend on the desired accuracy
in estimating E(Y,) and J,; this may not be very easy to handle.
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Statistical modelling of the EEC
Labour Force Survey: a project
history

M. AITKIN AND R. HEALEY

1 Background

From June 1981 to July 1984 the Centre for Applied Statistics
(CAS) at the University of Lancaster held three one-year contracts with
the Statistical Office of the European Commounities in Luxembourg. The
aim of these contracts was to determine whether mathematical models
could be used to summarise the information on, and reduce the volume
of tabulation of, unemployment rates from the biennial Labour Force
Survey published by the Statistical Office.

The results of these studies are presented elsewhere (Aitkin and Healey,
1984b, 1985), and are fully documented in the contract reports on the three
individual studies (Aitkin and Healey, 1982, 1983, 1984a). In this chapter
we briefly describe the two contracting organisations, the terms of
reference of the studies, how the studies were managed, and the use made
of the results.

2 The Statistical Office of the European Communities

The Statistical Office of the European Communities (abbreviated
hereafter to the multilingual acronym EUROSTAT) is a large directorate
of the European Economic Community responsible for collating and
disseminating information about the activities of the member states of the
EEC. EUROSTAT appoints its staff from the Statistical Offices of
individual member countries, and by direct recruitment for specialised
positions.

EUROSTAT has the responsibility for collating the information col-
lected by the central statistical offices of the EEC member countries,
particularly that from the very large Labour Force, Structure of Earnings
and Agriculture surveys; for ensuring the consistency of the definitions
used as the basis of the national surveys; and for publishing the collated
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results through the Office of Official Publications, EUROSTAT’s own
publishing house. Since the readership of EUROSTAT’s publications is
drawn from all the member states, most of these publications have to be
translated into at least the four main languages of the community: French,
German, Italian and English.

Historically EUROSTAT has restricted itself to publishing ‘factual’
cross-tabulations of the results of large-scale surveys, and has left the task
of interpreting the tabulated data to the reader.

3 The Centre for Applied Statistics
The Centre for Applied Statistics is a research and consulting
centre of the University of Lancaster. Since its establishment in 1979 the
Centre has been involved in a wide range of projects: the development of
direct likelihood inference, applications of generalised linear models in
medical and social statistics, the development and application of variance
component models for clustered survey designs and school effectiveness
studies, and the development of software for a wide range of applications.
The Centre provides statistical consulting services both inside and
outside the University. A small number of staff are supported directly by
the University; other staff are supported by Economic and Social Research
Council (ESRC) research programmes and projects, by internal funding
of specific data-analysis projects associated with survey work carried out
by other departments, and by external contracts with organisations such
as EUROSTAT.

4 Aims of the projects

The aims of the projects were to assess if and how the use of linear
models could help with the interpretation of raw survey data, to investigate
the feasibility of data reduction by using linear models, and to demonstrate
the practicability of using such methods on large-scale survey data.

5 Reports and papers
The basic requirement for project reporting within each contract
was to produce a draft report by the mid-point of each project year, and
a final report by the end of each contract. The draft report for each year
largely consisted of details of results from the first half of the contract
period and a statement of intent for the work outstanding in the remainder
of the contract. The final report reviewed the research carried out against
the objectives set out in the work programmes and made recommendations
for future work.
In addition to the formal reports made during the studies, a number of
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papers were produced both internally and externally and a number of
seminars were given on both the statistical methodology and computational
aspects of the work.

Work began in summer 1981 analysing French and Italian data from
the 1979 Labour Force Survey, in the form of large contingency tables of
counts of employed and unemployed individuals. These data had been
extensively analysed by EUROSTAT and many of the interesting features
in the data had already been identified, but were not made known to the
Centre.

In November 1981 a seminar was held at EUROSTAT at which the
overall methodology was reviewed and the first results presented. The final
report on this project (H/81/46) showed that the modelling approach
could reveal important features of the data, and patterns of age- and
industry-related unemployment were identified. These patterns were very
largely consistent with EUROSTAT’s prior knowledge, except in a few
cases which were attributed to data quality.

The second work programme for 1982-3 took data from the 1981
Labour Force Survey for France and Italy and demonstrated the stability
of the French estimates over the two successive surveys. In addition,
considerable effort was expended searching for methods of model fitting
which could reduce computer processing time.

The third contract 1983—4 took data from the seven other member states
of the community and attempted to identify a common model for the
underlying structure of employment for each country, and to identify
departures from the model in terms of the sampling designs used. This
work was largely documented and discussed at a seminar held in Luxem-
bourg in November 1983, together with the results of various other
research projects aimed at analysing large-scale survey data. The pro-
ceedings of the seminar have subsequently been published (see Aitkin and
Healey, 1984b) and a more technically comprehensive overview is given,
in Aitkin and Healey (1985).

During the summer of 1983, work was completed on developing a
version of the iterative scaling algorithm, required for fitting large models,
for use on the ICL Distributed Array Processor (DAP). A copy of this
program, developed in conjunction with the Centre’s ESRC research
programme, is now available through the DAP Support Unit at Queen
Mary College, Mile End Road, London. The work leading to the
development of the program was presented at the Parallel Computing 83
conference and is documented in Healey and Davies (1984).

The 1983—4 contract also involved the examination of methods of
interpreting the parameter estimates derived from the models used, the
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assessment of goodness of fit through residual screening, and the develop-
ment of simple graphical presentations for the results of the modelling.

6 Work programmes

Each contract had associated with it a work programme indicating
the broad areas into which research should be directed. In general, these
programmes did not require that specific analyses be performed, but
suggested a possible class of analyses which could be investigated. None
the less, the programmes formed a basis for the contracted work for the
duration of each contract. The 1982-3 programme is reproduced below
to show the level of direction contractually required by EUROSTAT. The
day-to-day work of the project was subject to variation from these
programmes, and we frequently responded to developments arising from
EUROSTAT’s own analyses of the data.

Work programme for Project H(82)70(228)

1. Background

The work conducted by the University of Lancaster for the Statistical
Office of the European Communities has demonstrated on data from
two member countries, France and Italy, the feasibility of fitting a
model to partially aggregated data of one large and typical survey,
namely the 1979 Labour Force Survey.

The work has shown that the results are interpretable and that the
results are stable in that changes in the specification of some part of
the model do not produce large changes in the estimates provided for
other parts of the model. There exists therefore the possibility of
making radical changes in the way in which data from this survey and
probably other surveys are published. There are however a number of
problems to be solved before this method could pass into routine use.

2. The problems

Before complete confidence can be given to the principle of reporting

the parameters of a model rather than the cells of a table, it is

essential that:

« the stability within any one survey should be demonstrated even
more positively on the data of all member countries

« stability or near stability should be demonstrated over short to
medium periods of time from one survey (1979) to the next (1981).
It is known that structures do not normally change radically over
short periods and it is important that such changes as are found
should be interpretable in the light of knowledge of external
changes. The 1981 data will become available after mid-summer
1982.

« the economics of computation and the choice of algorithms require
further clarification. It is already known that the quantity of
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computation required will exceed the effective capacity of the

relatively small computer available to the University of Lancaster.
Before any such procedures could pass into routine use, it would be
necessary to integrate a version of the GLIM package, modified in the
light of conclusions on the algorithms, into other software used on the
Commission computers. This requires in the short run, the
development of various GLIM macros, and subroutines. Longer run, it
would mean interfacing with the SIGISE system.

3. The Centre for Applied Statistics of the University of Lancaster is
therefore commissioned to extend its work on the 1979 and 1981
surveys. The objectives of this work are:

« to compare the models obtained on the 1979 and 1981 surveys for
France and Italy, and to liaise with EUROSTAT and with the
Centre d’Analyse Statistique des Structures et des Flux, Université
de Paris X, in investigating the reasons for any instability in the
models.

« to extend the analysis of the rate of unemployment, commenced on
the 1979 data by deriving a uniform family of models for all
Member States for the 1981 survey. These models will include the
variables, age, sex, region, previous economic activity. They will, if
it is practical, take into account the duration of unemployment. It is
recognised that this last variable presents problems in the
construction of models which it may be desirable to avoid by
replacing unemploying rate as the dependent variable by the
variable ¢ proportion of potential working time lost through
unemployment’. The choice of dependent variable will be agreed
between the Centre for Applied Statistics and EUROSTAT.

« (in so far as may be practical) to extend the analysis to such other
aspects of the Labour Force data as may be agreed between the
Centre for Applied Statistics and EUROSTAT. If it should not be
feasible to incorporate data on the duration of unemployment into
the model described in the previous paragraph, then a separate
analysis of the structure of unemployment is likely to be the next
priority.

«to advise EUROSTAT on the problems which may be met with the
other aspects of the Labour Force Data and other surveys and
specifically to give advice, if requested, relevant to the analysis of
data of the Structure of Earnings Survey.

4. Because the quantity of computation likely to be required is beyond
the resources of the computer available to the Centre for Applied
Statistics, and because the long-term intention is that facilities for
running this work are required on the computers of the Commission,
the University of Lancaster is requested to carry out the bulk of

this work using terminals to access the 2900 computers of the
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Commission at Luxembourg via EURONET and to develop the
procedures by which this work could be handled later by staff of
EUROSTAT.

7 Guidelines for consultancy projects

As with any large organisation, EUROSTAT has set standards
by which external consultancy projects are run. These standards are
provided to contractors as guidelines. The guidelines provide a framework
within which contractors are expected to carry out their work. They cover
personnel, meetings with the Commission, reports, permits and licenses,
secrecy, liability, results and royalties, subcontracting, non-performance,
resolution of disputes and amendments to the contract.

8 Contract details

Contract payments were tied to the delivery of the interim and
final study reports. EUROSTAT reserved the right to ask for further
clarification of points raised in the reports within one month of receipt of
the final report. The structure of the payments was 309, at the start of the
contract, 309, on receipt of the draft report and 409, on the acceptance
of the final report.

Payments for the first two contracts were made in pounds sterling, and
for the final contract in the Commission’s internal accounting unit (ECU).
Fluctuations in currency rates made some change in the overall value of the
last contract in local currency.

In addition to the fixed price of the contract, the Centre was reimbursed
for the cost of computer time and for travel and subsistence when such
travel was made at the Office’s request.

Over the three years of the contracts their value to the University was
£83000. The contracts paid for one full-time research fellow, the part-time
secondment of one permanent Centre staff member and Centre and
University overhead costs. Temporary consulting staff were appointed to
cover the secondment of the permanent staff member.

9 Hardware available
The three projects led to the development of much software, not
least of which was a communications package written by the Centre
Assistant Director, Brian Francis, to assist in the transfer of data between
various machines used.
In the first year of the project the University’s ICL 2960 computer was
used running under the DME 2900 operating system. Subsequently the
Commission’s ICL 2982 running under VME/B was used, and the
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ICL DAP at Queen Mary College and an ACT SIRIUS 1 at Lancaster
which allowed dial-up access to all of the other machines. In the later stages
of the final contract some theoretical aspects of the study were investigated
using the University’s VAX 11/780 running under VMS.

10 Monitoring performance

One of the more difficult aspects of working in a research
environment is the problem of setting realistic project targets. All three of
the contracts held were ‘ open-ended’ in the sense that there were always
aspects of the work programmes where more effort could be expended.

The short-term nature of the contracts required a firm determination to
concentrate on key aspects of the programmes and to use the other
elements of the programmes as back-up tasks when a major obstacle was
encountered or as supplementary work towards the end of the contract.

The strategy adopted was to pursue a number of main strands of research
and to switch between strands in the event of unforeseen difficulties such
as machine unavailability, or when clarification of particular points was
required from someone who was unavailable.

As in many projects with a large research component, the amount of
effort to be put into each task could not be easily estimated in advance,
and following on from this the attendant milestones could only be guessed
at.

This created some problems in project control which were overcome by
setting out each chapter in the final report as a separate task and keeping
a ‘rolling’ draft report constantly updated as work on each task progressed.
At the end of each contract only a minimum of effort was required to edit
the rolling draft report and to add final conclusions and a management
summary.

11 Assessing completion

As with many research projects, assessing completion of the
project is a rather arbitrary process. The many project deadlines required
us to draw the line for the current work as the completion date for each
final report arrived. It is in the nature of this kind of project that some
avenues are only partially explored, if they are not omitted entirely.

12 Personnel

During the three years over which the contracts ran, a roughly
similar staffing structure was maintained. The structure was a director
responsible for deciding the priorities to be assigned to the various strands
of the work programme and also acting as a technical advisor on the more
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difficult theoretical problems; working for and responsible to the director
was a research fellow who was responsible for implementing policy
decisions agreed with the director and for the day-to-day running of the
project and documentation of the analyses carried out. In addition to this
permanent establishment, other members of the Centre were available on
an ad hoc basis both formally and informally.

13 Working on short-term contracts

On all three contracts the appointment of the research fellow was
based on a fixed one-year contract. As the subsequent contracts depended
on the acceptance and implementation of the previous year’s results, there
was considerable pressure during the period immediately before the end
of a contract to seek fresh employment on a ‘safety net’ basis.

This form of employment was injurious not only to the research fellow
but also to the Centre, as in the longer term better prospects must arise
outside the Centre. Recently, the Centre has been able to adopt a more
flexible policy of employing a research fellow on the expectation of
obtaining funding externally to the University. This at least provides some
security but less than could be offered by, say, a rolling two-year
contract.

14 Variety of research contracts

One of the major advantages to a department structured like the
Centre is the opportunity for cross-fertilisation of ideas by researchers
working in different but related areas. Thus the more pressing technical
problems can be talked through, and a wide range of opinions and
analyses can be brought to bear on how best to attack these problems.

15 Conclusions

(i) In as far as the aims of the projects were to show that
modelling of large-scale survey data is feasible, and that the results of the
fitted models may be easily interpreted, the project’s aims were successfully
realised.

The longer-term use of the conclusions of these studies can only be
guessed at, but some indication is given by the proceedings of the
EUROSTAT seminar on analysing large-scale data sets. EUROSTAT
plays a complex and political role in its delicate job of trying to influence
the various Statistical Offices of the Community to provide its raw data in
a form that has a common base. Further, EUROSTAT is limited in its
resources, and a major commitment to enhancing its output at the cost
of additional computation will take some time to evaluate.
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At least the studies showed those who were tabulating raw data at
EUROSTAT that modelling can produce results which help to highlight
anomalies in the data and may provide simple but more informative
descriptions of the data, which may be valuable for many users wanting
more detailed tabulations than currently produced.

(ii)) These projects provided the Centre with an interesting research area
whose results could have great practical benefit. In addition, the projects
provided funds to strengthen the establishment of the Centre during a
critical period of growth.
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