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Foreword

How many children dream of one day becoming risk managers? I very much doubt little Carol
Jenkins, as she was called then, did. She dreamt about being a wild white horse, or a mermaid
swimming with dolphins, as any normal little girl does. As I start crunching into two kilos of
Toblerone that Carol Alexander-Pézier gave me for Valentine’s day (perhaps to coax me into
writing this foreword), I see the distinctive silhouette of the Matterhorn on the yellow package
and I am reminded of my own dreams of climbing mountains and travelling to distant planets.
Yes, adventure and danger! That is the stuff of happiness, especially when you daydream as a
child with a warm cup of cocoa in your hands.

As we grow up, dreams lose their naivety but not necessarily their power. Knowledge makes
us discover new possibilities and raises new questions. We grow to understand better the con-
sequences of our actions, yet the world remains full of surprises. We taste the sweetness of
success and the bitterness of failure. We grow to be responsible members of society and to
care for the welfare of others. We discover purpose, confidence and a role to fulfil; but we also
find that we continuously have to deal with risks.

Leafing through the hundreds of pages of this four-volume series you will discover one
of the goals that Carol gave herself in life: to set the standards for a new profession, that of
market risk manager, and to provide the means of achieving those standards. Why is market
risk management so important? Because in our modern economies, market prices balance the
supply and demand of most goods and services that fulfil our needs and desires. We can hardly
take a decision, such as buying a house or saving for a later day, without taking some market
risks. Financial firms, be they in banking, insurance or asset management, manage these risks
on a grand scale. Capital markets and derivative products offer endless ways to transfer these
risks among economic agents.

But should market risk management be regarded as a professional activity? Sampling the
material in these four volumes will convince you, if need be, of the vast amount of knowledge
and skills required. A good market risk manager should master the basics of calculus, linear
algebra, probability – including stochastic calculus – statistics and econometrics. He should be
an astute student of the markets, familiar with the vast array of modern financial instruments
and market mechanisms, and of the econometric properties of prices and returns in these
markets. If he works in the financial industry, he should also be well versed in regulations and
understand how they affect his firm. That sets the academic syllabus for the profession.

Carol takes the reader step by step through all these topics, from basic definitions and
principles to advanced problems and solution methods. She uses a clear language, realistic
illustrations with recent market data, consistent notation throughout all chapters, and provides
a huge range of worked-out exercises on Excel spreadsheets, some of which demonstrate
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analytical tools only available in the best commercial software packages. Many chapters on
advanced subjects such as GARCH models, copulas, quantile regressions, portfolio theory,
options and volatility surfaces are as informative as and easier to understand than entire books
devoted to these subjects. Indeed, this is the first series of books entirely dedicated to the
discipline of market risk analysis written by one person, and a very good teacher at that.

A profession, however, is more than an academic discipline; it is an activity that fulfils
some societal needs, that provides solutions in the face of evolving challenges, that calls for a
special code of conduct; it is something one can aspire to. Does market risk management face
such challenges? Can it achieve significant economic benefits?

As market economies grow, more ordinary people of all ages with different needs and risk
appetites have financial assets to manage and borrowings to control. What kind of mortgages
should they take? What provisions should they make for their pensions? The range of invest-
ment products offered to them has widened far beyond the traditional cash, bond and equity
classes to include actively managed funds (traditional or hedge funds), private equity, real
estate investment trusts, structured products and derivative products facilitating the trading of
more exotic risks – commodities, credit risks, volatilities and correlations, weather, carbon
emissions, etc. – and offering markedly different return characteristics from those of tradi-
tional asset classes. Managing personal finances is largely about managing market risks. How
well educated are we to do that?

Corporates have also become more exposed to market risks. Beyond the traditional expo-
sure to interest rate fluctuations, most corporates are now exposed to foreign exchange risks
and commodity risks because of globalization. A company may produce and sell exclusively
in its domestic market and yet be exposed to currency fluctuations because of foreign com-
petition. Risks that can be hedged effectively by shareholders, if they wish, do not have to
be hedged in-house. But hedging some risks in-house may bring benefits (e.g. reduction
of tax burden, smoothing of returns, easier planning) that are not directly attainable by the
shareholder.

Financial firms, of course, should be the experts at managing market risks; it is their métier.
Indeed, over the last generation, there has been a marked increase in the size of market risks
handled by banks in comparison to a reduction in the size of their credit risks. Since the 1980s,
banks have provided products (e.g. interest rate swaps, currency protection, index linked loans,
capital guaranteed investments) to facilitate the risk management of their customers. They
have also built up arbitrage and proprietary trading books to profit from perceived market
anomalies and take advantage of their market views. More recently, banks have started to
manage credit risks actively by transferring them to the capital markets instead of warehousing
them. Bonds are replacing loans, mortgages and other loans are securitized, and many of the
remaining credit risks can now be covered with credit default swaps. Thus credit risks are
being converted into market risks.

The rapid development of capital markets and, in particular, of derivative products bears
witness to these changes. At the time of writing this foreword, the total notional size of all
derivative products exceeds $500 trillion whereas, in rough figures, the bond and money mar-
kets stand at about $80 trillion, the equity markets half that and loans half that again. Credit
derivatives by themselves are climbing through the $30 trillion mark. These derivative markets
are zero-sum games; they are all about market risk management – hedging, arbitrage and
speculation.

This does not mean, however, that all market risk management problems have been
resolved. We may have developed the means and the techniques, but we do not necessarily
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understand how to address the problems. Regulators and other experts setting standards and
policies are particularly concerned with several fundamental issues. To name a few:

1. How do we decide what market risks should be assessed and over what time horizons?
For example, should the loan books of banks or long-term liabilities of pension funds
be marked to market, or should we not be concerned with pricing things that will not
be traded in the near future? We think there is no general answer to this question about
the most appropriate description of risks. The descriptions must be adapted to specific
management problems.

2. In what contexts should market risks be assessed? Thus, what is more risky, fixed or
floating rate financing? Answers to such questions are often dictated by accounting
standards or other conventions that must be followed and therefore take on economic
significance. But the adequacy of standards must be regularly reassessed. To wit,
the development of International Accounting Standards favouring mark-to-market and
hedge accounting where possible (whereby offsetting risks can be reported together).

3. To what extent should risk assessments be ‘objective’? Modern regulations of finan-
cial firms (Basel II Amendment, 1996) have been a major driver in the development of
risk assessment methods. Regulators naturally want a ‘level playing field’ and objective
rules. This reinforces a natural tendency to assess risks purely on the basis of statisti-
cal evidence and to neglect personal, forward-looking views. Thus one speaks too often
about risk ‘measurements’ as if risks were physical objects instead of risk ‘assessments’
indicating that risks are potentialities that can only be guessed by making a number of
assumptions (i.e. by using models). Regulators try to compensate for this tendency by
asking risk managers to draw scenarios and to stress-test their models.

There are many other fundamental issues to be debated, such as the natural tendency to focus
on micro risk management – because it is easy – rather than to integrate all significant risks and
to consider their global effect – because that is more difficult. In particular, the assessment and
control of systemic risks by supervisory authorities is still in its infancy. But I would like to
conclude by calling attention to a particular danger faced by a nascent market risk management
profession, that of separating risks from returns and focusing on downside-risk limits.

It is central to the ethics of risk managers to be independent and to act with integrity. Thus
risk managers should not be under the direct control of line managers of profit centres and
they should be well remunerated independently of company results. But in some firms this
is also understood as denying risk managers access to profit information. I remember a risk
commission that had to approve or reject projects but, for internal political reasons, could
not have any information about their expected profitability. For decades, credit officers in
most banks operated under such constraints: they were supposed to accept or reject deals a
priori, without knowledge of their pricing. Times have changed. We understand now, at least
in principle, that the essence of risk management is not simply to reduce or control risks but
to achieve an optimal balance between risks and returns.

Yet, whether for organizational reasons or out of ignorance, risk management is often con-
fined to setting and enforcing risk limits. Most firms, especially financial firms, claim to have
well-thought-out risk management policies, but few actually state trade-offs between risks and
returns. Attention to risk limits may be unwittingly reinforced by regulators. Of course it is not
the role of the supervisory authorities to suggest risk–return trade-offs; so supervisors impose
risk limits, such as value at risk relative to capital, to ensure safety and fair competition in
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the financial industry. But a regulatory limit implies severe penalties if breached, and thus
a probabilistic constraint acquires an economic value. Banks must therefore pay attention to
the uncertainty in their value-at-risk estimates. The effect would be rather perverse if banks
ended up paying more attention to the probability of a probability than to their entire return
distribution.

With Market Risk Analysis readers will learn to understand these long-term problems in a
realistic context. Carol is an academic with a strong applied interest. She has helped to design
the curriculum for the Professional Risk Managers’ International Association (PRMIA) quali-
fications, to set the standards for their professional qualifications, and she maintains numerous
contacts with the financial industry through consulting and seminars. In Market Risk Analy-
sis theoretical developments may be more rigorous and reach a more advanced level than in
many other books, but they always lead to practical applications with numerous examples in
interactive Excel spreadsheets. For example, unlike 90% of the finance literature on hedging
that is of no use to practitioners, if not misleading at times, her concise expositions on this
subject give solutions to real problems.

In summary, if there is any good reason for not treating market risk management as a sepa-
rate discipline, it is that market risk management should be the business of all decision makers
involved in finance, with primary responsibilities on the shoulders of the most senior man-
agers and board members. However, there is so much to be learnt and so much to be further
researched on this subject that it is proper for professional people to specialize in it. These
four volumes will fulfil most of their needs. They only have to remember that, to be effective,
they have to be good communicators and ensure that their assessments are properly integrated
in their firm’s decision-making process.

Jacques Pézier
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Financial risk management is a relatively new discipline. It is driven internally by the need
for optimal returns on risk-based capital and, ultimately, by the survival of the firm. External
drivers include clients, who are typically risk averse, and industry regulators, whose objectives
are to protect investors and to promote competition, although their ultimate concern is for
financial stability in the global economy. In recent years market volatility has been rising
as trading focuses on increasingly complex instruments whose risks are extremely difficult
to assess. The origins of financial securities, futures and options go back several centuries,
yet we are only just beginning to understand how to quantify the risks of complex financial
products realistically, even though this makes all the difference between success and failure in
the financial industry.

I liken the risk management profession as it stands today to that of medicine in the eigh-
teenth century. Until this time general ill health in the population and continual outbreaks
of uncontrolled diseases were met with ignorance, masked by mumbo-jumbo, in the med-
ical profession. As a result average life expectancy was short and, for most, the quality of
life was poor. But in the nineteenth century a number of comprehensive texts such as Gray’s
Anatomy1 began to educate the medical profession. Such is the knowledge we have acquired
during the past two centuries that nowadays even a general practitioner must spend many years
in training. Modern medical training is very demanding, but as a result people live longer and
healthier lives.

Turmoil in the banking industry following a collapse of credit markets began soon after
I finished writing the Market Risk Analysis series. In September 2008 the Treasury-Eurodollar
(TED) spread (which in normal markets is about 5–10 basis points) exceeded 300 basis points,
and it remains above 200 basis points at the time of writing. The value of stocks around the
entire globe has fallen drastically and rapidly, reminiscent of the world stock market crash of
1929. To give the reader some idea of the extent of the losses: between the end of August
and mid November 1929 the benchmark Dow Jones Industrial Average Index of 30 US blue
chip stocks lost almost 50% of its value; from the end of April 2008 until the end of October
2008 it had lost almost 40% of its value. The US markets are not falling as much as stock
markets in most other countries and the dollar is stronger now than it has been for many years.
Several exchanges have suspended trading on more than one occasion, and even then several
markets have crashed by more than 10% in a single day. The currencies of some emerging

1 See http://en.wikipedia.org/wiki/Gray’s_Anatomy.
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markets, such as the Korean wan, have plummeted in value against the US dollar. Markets in
Europe have fallen more than 50% since the end of April, and some experts say further falls
are imminent at the time of writing.

Why is this happening? And what is the likely effect on the financial system? These ques-
tions are not easy to answer, as the crisis is still ongoing at the time of writing. All the reasons
for, and effects of, a catastrophe are usually revealed only after the event.

SUMMARY OF THE 2008 BANKING CRISIS

There is a trigger for all financial crises, and in this case the first crack appeared with the sub-
prime mortgage crisis in the US. During the years 2004–2006 stock markets across the globe
surged as the cost of credit reached all-time lows. New ways of securitizing loans meant that
counterparty credit quality mattered little to the salesman on commission. European banks,
and investors in countries where yields had been extremely low for years, flocked to buy
collateralized debt obligations (CDO) and similar new products. The main sellers were the five
largest investment banks: Goldman Sachs, Morgan Stanley, Merrill Lynch, Lehman Brothers
and Bear Stearns. Even retail banks began to rely on securitizing their loans and short-term
funding via the interbank market rather than on a deposit base.

Whenever there is uncertainty in a free market economy, this promotes a cycle in which
optimism can lead to exuberance, followed by doubt and finally panic. The basic principle
underlying the CDO is sound – after all, if the senior tranche of a mortgage-backed secu-
rity corresponds to two-thirds of the whole and the recovery rate on defaulting mortgages is
50%, it would only be affected if more than two-thirds of the creditors defaulted! So we had
reason to be optimistic in the mid 2000’s and there was a strong market for these new yield-
enhancement vehicles. A fundamental problem was that their pricing lacked transparency.
Because of the very considerable pricing model risk – the mark-to-model prices being cru-
cially dependent on the assumptions made – doubts began to infiltrate the exuberance. And,
as doubt turned to panic, the market dried up, so market prices became even more unreliable
than the model prices. Given the mark-to-market accounting framework used by banks, a huge
liquidity risk appeared in the trading book, and this was not covered by the bank’s regulatory
capital.

As liquidity fell out of the CDO market, banks turned to the interbank market to fund their
liquidity gap. Because cash-rich banks demanded such high levels of collateral guarantees,
other banks – and hedge funds, some of which were very highly leveraged – had great dif-
ficulty rolling over credit lines. Hedge funds were hit particularly hard. As the bull market
turned, the values of their investments began to fall, and they had less collateral than usual to
meet these larger guarantees. They have been forced to liquidate investments to meet collat-
eral calls, increasing the downward pressure on stocks. The result was a crash in market prices
across the globe during October 2008, with emerging stock markets and currencies being the
worst hit, as US and European hedge funds liquidated their holdings in emerging markets.

The full extent of the current financial crisis first began to unfold in September 2008, with
the failure of three of the five largest investment banks and of the US insurance giant AIG
which, like the huge financial conglomerates Fannie Mae and Freddie Mac a few months
before, was bailed out by the US government. Speculative short selling on the last two major
investment banks, Goldman Sachs and Morgan Stanley, spread to the many retail banks in
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various countries that had been actively operating in capital markets since the repeal of
the Glass-Steagall agreement in 1999,2 either buying CDOs or using proprietary trading in
derivatives to boost profits. All three Icelandic banks defaulted, and with this some savers
in other countries lost their capital. Then volatility in banking sector stocks spilled over into
energy, commodities and related stocks, on fears of a falling demand for oil and raw materials
with the onset of a global recession.

Eventually governments responded by increasing deposit protection, lowering interest rates
and providing additional liquidity. As a last resort, schemes for partial nationalisation of
banks have been proposed – schemes that include caps on the remuneration of executives
and traders – along with bans on short selling to attempt to stem the slide in stock prices.
Regulators disregarded anti-monopoly laws as distressed banks were taken over by large cash-
rich retail banks. The banking sector has now moved towards oligopolistic competition, with
a few huge conglomerates such as JP Morgan dominating the markets. Given the unthinkable
threat of a collapse of the global banking system in which the general public lose their savings,
most governments have now raised deposit insurance ceilings.

CAUSES AND EFFECTS OF THE CRISIS

A catalyst for this particular crisis was Alan Greenspan’s policy of promoting US growth
by keeping US interest rates low. After the Russian crisis in 1998 US treasury rates were
also brought down, but as the market recovered interest rates were raised to prevent inflation
increasing. During the technology crash in 2001 and 2002 US interest rates were brought
down to about 1%, which encouraged increased consumption and promoted US exports, and
thus revived the US economy. After the recovery started Greenspan did not raise interest rates
quickly enough. There were no fears of inflation. Yet, every time interest rates are held too
low for too long, it creates a bubble. This time the bubble was caused by an ‘easy credit’ envi-
ronment, culminating in the ‘credit crunch’ which marked the beginning of the 2008 financial
crisis.

The main factor underlying this financial crisis is the intrinsic instability in the banking
system resulting from the lack of unified and intelligent principles for the accounting, regula-
tion, and risk management of financial institutions. These principles have evolved separately
in each framework, each without sufficient regard for the other two disciplines.

One of the major derivatives markets is driven by the different accounting frameworks used
by banks and their clients. Differences between the principles of cost (or value) accounting
used by non-financial companies on the one hand, and the mark-to-market (MtM) accounting
used by banks in their trading books on the other hand, drives the market for interest rate
swaps and their derivatives. Of course, companies will try to finance themselves by issuing
bonds, but short term liquidity gaps are financed by taking loans from banks. Banks prefer to
lend at a floating rate because this has very low risk in MtM accounting. On the other hand,

2 The Glass-Steagall agreement of 1933 was named after the two US senators who proposed it in response to the 1929 stock market
crash. Under this agreement retail banks and commercial banks were depository taking institutions, and only investment banks traded
in capital markets, to create secondary markets for the bond issues they underwrote. The agreement was repealed in 1999, allowing
retail and commercial banks to trade in capital markets, but investment banks were still not allowed to take deposits. The net effect of
this asymmetry was that retail and commercial banks were better funded than investment banks. In September 2008 Goldman Sachs
and Morgan Stanley were granted the status of ‘bank holding companies’, allowing them to take deposits. So, the distinction between
retail and commercial banks on the one hand, and investment banks on the other, is disintegrating.
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floating rate notes and bonds have high risk in cost accounting, so companies prefer to take
loans at fixed rates, which have low risk in cost accounting. Thus, banks double their business,
issuing low risk notes and then offering interest rate swaps for floating into fixed rates. And,
since fixed rates have high risk in MtM accounting, they use derivatives on interest rate swaps
to hedge.

In relation to the underlying securities markets and in relation to world gross domestic
product (GDP) the volume of financial derivatives traded is huge. At the end of 2007 the total
notional outstanding on bond issues was about $80 trillion and the value of company stocks
was about $40 trillion. Relatively few stock and bond holders hedge their positions because
securities are often held by investors that hope to make a profit over the long term. Thus
the notional size of the derivatives market required for investors to hedge is a small fraction
of $120 trillion. Many companies involved with importing and exporting goods hedge their
exposures to exchange rate fluctuations, and to rising interest rates. The size of these exposures
is related to the value of all goods produced in the world economy. World GDP was about $75
trillion in 2007, so corporate hedging activities should amount to some small fraction of this.
Thus the two hedging activities should result in a derivatives market with notional size being
just a small fraction of $200 trillion. However, the total notional size of derivatives markets in
2007 was about $600 trillion.

Before the crisis, the daily average trading volume (DATV) on derivatives exchanges was
about $2 trillion. Foreign exchange forward contracts had DATV of between $2 and $3 tril-
lion, and other over-the-counter (OTC) derivatives trading amounted to about $1 trillion per
day. Most of these contracts had a very fast turnover rate – in fact, the vast majority of
futures contracts are held for just a few days. Average daily production of goods and ser-
vices, as measured by world GDP, was about $0.3 trillion per day. So the DATV on derivatives
was about twenty times greater than daily world GDP. Very approximately, about one-tenth
of the volume traded is used for hedging. The remaining trades must be for speculative
purposes.

Speculative traders include proprietary traders, hedge funds, companies making bets and
day traders. They trade in capital markets for the purpose of making profits over a short-term
horizon, which distinguishes them from investors, who buy-and-hold. Approximately half of
the speculators in the derivatives markets are proprietary traders in banks.

When interest rates are cut banks turn to the capital markets to make profits by increasing
the volume of their speculative trading. As a result, huge bonuses are often paid to successful
proprietary traders and their managers. But why should banks bet with the money of their
savers and their clients? Apart from the possibility that they may be better at speculation
than ordinary investors, because of better information or cheaper access to markets,3 banks
need to create a liquid market in order to price derivatives. Their market makers provide OTC
derivatives, making money on the bid-ask spread, quoting prices that are based on the cost of
hedging. So they need a liquid market for their hedging instruments, which include futures
and options. We absolutely need speculative trading in options, because the volume of trad-
ing creates a market where there is no reliable theoretical price. A case in point is the CDO
market. But we do not necessarily need speculative trading on futures, because we know how
to calculate the fair price of a futures contract. One reason why there was approximately $25
trillion of speculative trades on futures last year is that senior managers and proprietary traders

3 For instance, Salomon Brothers used to make the market for US junk bonds, so they could see the entire market and take positions
accordingly.



Preface xxxiii

0

10

20

30

40

50

60

70

80

90

Ja
n-

90

Ja
n-

91

Ja
n-

92

Ja
n-

93

Ja
n-

94

Ja
n-

95
Ja

n-
96

Ja
n-

97

Ja
n-

98

Ja
n-

99

Ja
n-

00

Ja
n-

01

Ja
n-

02

Ja
n-

03

Ja
n-

04

Ja
n-

05
Ja

n-
06

Ja
n-

07

Ja
n-

08

The Vix Volatility Index, January 1990 – October 2008

are being driven by greed to acquire huge bonuses. This is why the recent nationalisation deals
for UK banks has included a clause for limiting remuneration.

Proprietary trading by banks increases liquidity, but it may also increase volatility. Tra-
ditionally, banks are short volatility because investors want to be long volatility – it is an
excellent diversification instrument. If there is no liquid market for volatility, banks will
simply overcharge on the spread, which is one of the reasons why implied volatility usu-
ally exceeds historical volatility. The markets for variance swaps on European and US stock
indices have been surging, making pure volatility a new, liquid asset. However, the informed
banks would have temporarily stopped writing variance swaps at the onset of the banking cri-
sis in mid September 2008, leaving only those in ignorance of the huge sums that could be
lost on these positions to take the knock. Near the end of October 2008 the Vix jumped up
to almost 80%, its highs during previous crises rarely exceeding 40%, as shown in the figure
above, so the banks that sold variance swaps in September 2008 could have lost millions of
dollars.4

WHAT COULD (OR SHOULD) HAPPEN NOW?

As this book goes to press many large banks are cutting down on their proprietary trading
businesses, reducing the number of employees and the bonuses that are paid. If banks and
their employees no longer have the incentive to use proprietary trading to increase profits, or
if their trading is curtailed by regulators or governments, the size of the current OTC deriva-
tives markets will dramatically reduce. Yet banks will always seek new ways to increase their
profits. So new, unregulated and (probably) misunderstood markets, like the CDO market, will
still be created.

Very often, the demand for and supply of derivatives arises from differences in accounting
rules. For instance, the swaps market, which is the largest of all derivatives markets, is driven

4 Vix is the implied volatility index of the S&P 500 index.
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by differences between cost and market-to-market accounting. As long as we have no unified
accounting framework for all market participants, new derivatives markets will be created.
However, given the time it has taken to agree on accounting standards in IAS39,5 we should
not expect much change in the near future.

This huge casino, in which many times world GDP is bet every year, has proved impossible
to regulate. Regulators always respond to crises by tightening rules and increasing the mini-
mum level of risk capital to be held by banks. But this exacerbates the problem, since the only
way out of the current crisis is to create liquidity. Injecting taxpayers’ money into the capital
markets is only a temporary solution; what is needed now is a complete reform of financial
regulations. This does not necessarily mean tighter control on market operations, or increases
in the minimum level of risk capital held by banks. Indeed, there may be government pressure
to loosen regulation in order to establish a leading financial centre.

The new Basel Accord, which took eleven years to develop, failed to control the sys-
temic risk in financial markets. And the reason it has failed is that regulators are too fixed
on detailed calculations of value at risk in their ‘bottom-up’ regulatory capital framework.
That is, they have been focusing on micro-managing the banks in their jurisdiction, and not
on macro-financial decision making under uncertainty. What may be needed now, in addition
to curtailing the proprietary trading by banks, is a top-down, differential system of capital
charges, with the major banks that pose the greatest systemic threat holding proportionally
higher capital reserves than minor banks.

This last spectacular failure in financial markets calls for a revision of the global banking
system. This does not necessarily mean the wholesale nationalisation of banks, or even a
return to socialist principles. That would indeed be an admission of failure, especially for
Russia and the Eastern European countries that have only recently embraced capitalism. Free
capital markets are essential to globalisation, and globalisation is essential for the health of the
world’s economy. To prevent the next crisis being even more critical that this one, an urgent
reform of the accounting, regulation and risk management principles that underpin financial
markets is required.

After each market crash – e.g. following the burst of the technology bubble in the early part
of this decade, and following the Russian debt default in 1998 – governments try to promote
growth by cutting interest rates and by injecting capital into the financial system. And, to be
effective, each time they have to inject more capital and introduce more drastic cuts in interest
rates than before. This is because the banking system is unstable, and markets have recovered
only by sowing even deeper seeds for the next crisis. Unless drastic reforms of the system are
made in the near future, even more drastic action will be required to resolve the next crisis,
when it comes.

And what about financial risk management, and market risk management in particular –
what reforms are needed now? A fundamental distinction must be drawn between risk man-
agers and risk analysts. A good risk manager should be adept at making decisions under
uncertainty, and for this he needs to be well-informed about the basic economic principles
that underpin price formation in capital markets. And risk managers, like all managers, should
be held accountable for their actions. Unfortunately, the opposite is usually the case. If a bank
encounters problems due to bad management, then senior executives and directors can leave
to join another firm, often with guaranteed bonuses on top of a six-figure salary.

5 These standards were developed by the International Accounting Standards Board. See http://www.iasb.org.
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Risk analysts and financial engineers – for whom these books are designed – use mathe-
matical models to measure risk, and to price illiquid products using arbitrage pricing theory.
The assumptions made by these models need constant testing and refining, so that superior
models can be developed. With greater confidence in mark to model prices, and in portfolio
risk assessment, it may be easier to stem the panic when the next crisis comes. Clearly, bet-
ter education in quantitative risk analysis is the key to developing effective risk models and
accurate pricing models for financial institutions.

Each financial crisis has a disastrous effect on the global economy, so the lives of ordinary
people are adversely affected. I believe these crises can and will be avoided, but only when
financial risk managers acquire the knowledge, skills and framework they really need to oper-
ate effectively in their profession. The recent crisis has shown that there is an urgent need
for growth and change in the entire financial industry and in the financial risk management
profession in particular.

An important and fundamental change must be to start educating risk analysts properly, so
that their managers really understand the risks that banks and other financial institutions are
taking, as far as this is possible. Risk is a mathematical concept: it is a measure of uncertainty.
So risk managers or, at least, their trusted analysts, need to understand mathematics first,
before they can even begin to understand risk.

There are two international financial risk management associations, the Professional Risk
Managers’ International Association (PRMIA) and the Global Association of Risk Pro-
fessionals (GARP).6 These associations provide entry-level qualifications for financial risk
management. The PRM qualification is at a higher level than the FRM or the Associate PRM,
but even the four exams for the full PRM qualification can be passed with only one year of
part-time study.

In the UK medical doctors must undergo a minimum of 5 years’ full-time study, and to
rise to senior positions they must take tough examinations every few years. Health risk man-
agement is so important to the economy that our National Health Service offers a regular
programme of free vaccinations and free screenings for cancer, heart disease, and so forth.
Why, then, have banks been treating financial risk management so casually, placing inap-
propriately qualified people in senior positions and taking less than adequate care over the
education of their junior staff? Financial risk management is such a vast subject that to learn
what we need to provide effective risk management in today’s complex and volatile markets
should take many years of full-time study, just as it does for medical doctors.

ABOUT THE MARKET RISK ANALYSIS SERIES

Sitting at my desk, writing this preface – the very last item on the agenda of the Market Risk
Analysis series – I feel a huge sense of relief that the punishing work schedule I have been
setting myself has nearly reached its conclusion. When I started out, five years ago, I did not
intend to write four books. I just wanted to write one book: a book that describes all that a
market risk analyst should know about building market value-at-risk (VaR) models; to explain
everything in great detail so that readers came away with something they could actually use to
educate themselves, without the need for formal courses. I also wanted to provide numerous
practical examples, showing how to implement the theory that I cover in all types of financial

6 See www.prmia.org and www.garp.com.
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markets. That is why I put every idea that I possibly could into a simple, interactive Excel
workbook, with real financial data on equities, currencies, interest rates and commodities; this
way, readers experience the idea ‘hands-on’, right from the start, and I truly believe this is a
fantastic learning tool for an intelligent, self-motivated reader.7

I soon realized that in rising to this challenge I had set myself a very considerable task.
To fully understand all aspects of market VaR as it is (or should be) used by major financial
institutions today, the analyst needs to understand a good deal of mathematics, especially
statistics and financial econometrics, as well as knowing about financial markets, the type of
instruments traded in these markets, how to price them, why we hedge them and how to hedge
them properly. It is a huge agenda – and this is just for the market risk analyst! As a result,
there are numerous references to the earlier volumes of Market Risk Analysis in this book.

Please do not buy these books if you think you can be a financial risk analyst without under-
standing much mathematics. It is important to distinguish between risk management and risk
analysis. Whilst I very often refer to risk management, this book series is called Market Risk
Analysis, because it focuses on the mathematical modelling of market risks. A financial risk
manager requires the same skills as any business manager, including a capacity for leadership,
some knowledge of economics and of psychology and a superficial, not necessarily detailed,
understanding of the technical side of the business. By contrast, the financial risk analyst’s
profession requires a very broad and in-depth knowledge of financial markets, finance theory,
mathematics, statistics and econometrics.

One of the first developments in the financial risk management profession was to categorize
risks into three broad types, labelled market, credit and operational risk. This was convenient
because quite different techniques are used to assess each type of risk. My definition of market
risk is the risk resulting from adverse moves in prices of liquid financial instruments. Market
risk therefore includes credit spread risk, just as it includes interest rate risk. The probability
of default affects credit spreads, so credit risk affects spread risk. But the scope of these books
does not extend to credit risk analysis, just as monetary policy affects base interest rates but
the theory of economic policy decision making is not within the scope of these books.

This book series is not, at least primarily, about the risk management of financial markets; it
is called Market Risk Analysis, because it deals with market risk in the narrow sense, defined
above, and when risk management (as opposed to risk analysis) is discussed it is market risk
management, not credit or operational risk management. In particular, please do not buy these
books if you want to learn about credit risk analysis, or about credit risk management, or about
collateralized debt obligations and counterparty default. Neither should you buy these books
if you want everything in one volume. At this level of detail, such a book would be more than
1500 pages long, and not easy to carry around with you. Also, there are separate markets for
the earlier volumes in the series; not everyone in the finance industry wants to learn how to
assess risk in a VaR framework.

Why did I write this book? To answer this fully I should first explain why I changed my
agenda and wrote the precursors, starting with Volume I: Quantitative Methods in Finance.
I started teaching mathematics to non-mathematicians over 20 years ago, and have con-
tinued to develop materials that allow intelligent students with relatively little quantitative
background to undertake a fast-track course in mathematics that is oriented towards their spe-
cialism. For the past five years I have been teaching a course in Quantitative Methods for

7 I have constructed 140 Excel workbooks for the examples, figures, tables and case studies in this series. That is about 1500
spreadsheets in total. Phew!
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Finance to master’s degree students at the ICMA Centre. In 10 weeks I need to bring students
up to scratch in Excel as well as equipping them with the basic knowledge of calculus, linear
algebra, statistics, econometrics and numerical methods, and how these subjects are used for
financial applications. So each year I teach finance through mathematical applications in a very
pedagogical way, sometimes in a single class with over 200 students having disparate quan-
titative backgrounds. I decided to write the first volume with two purposes in mind – as a set
text for my Quantitative Methods for Finance course and similar courses (there are plenty) and
to provide a fast-track route to intelligent, independent readers who want a succinct, targeted
and pedagogical exposition of the mathematical knowledge required by a market risk analyst.

What about Volume II: Practical Financial Econometrics? When I was young I trained as
an algebraist, developed only a passing interest in game theory, unfortunately, and at the time
that my work focused on econometrics (because I had to teach it) I was drawn into financial
econometrics by consultancy work. Thus, during the 1990s and well before most real aca-
demic econometricians discovered this veritable motorway into finance, I was accidentally
positioned as one of the better known financial econometricians in the industry. Then I wrote
Market Models – but this book is now over seven years old – so why not write a more rigorous,
complete and up-to-date financial econometrics text for the Market Risk Analysis series?
Volume II is primarily aimed at market risk professionals working in portfolio management
or for hedge funds, students on Finance master’s courses, and academic researchers. But a
secondary purpose is that Volume II is required knowledge for all serious market risk ana-
lysts, and most of the material covered is pre-requisite for readers of this book, at least if they
want to gain an in-depth understanding of advanced VaR models.

During the past few years I have developed research interests in continuous time finance:
in volatility theory and in option pricing and hedging in particular. Volatility theory is a com-
plex subject, and there are only a few texts in this area that are accessible to non-specialists.
Believing that I could write a comprehensive and clear exposition of volatility theory, option
pricing and hedging, I decided to augment the text for Volume III: Pricing, Hedging and Trad-
ing Financial Instruments to include interest rate sensitive instruments, futures and forwards,
describing the markets but with an emphasis on the efficient pricing and hedging of portfo-
lios containing such instruments. The final chapter of Volume III draws the previous chapters
together by describing the mapping of portfolios of different classes of financial instruments;
this way, Volume III lays the essential finance theory foundations for the VaR models that are
described in this book.

Although the four volumes of Market Risk Analysis are very much interlinked, each volume
serves a different purpose. Volume IV: Value-at-Risk Models could be adopted as a stand-alone
text for an advanced course in Market Risk, but only for students who have already gained
a good knowledge of quantitative methods, financial econometrics, finance theory, financial
markets and financial instruments. Readers would benefit by working through the previous
volumes before reading this one, or they may use the numerous cross-references to earlier
volumes that are provided in the text. This requires a considerable investment of time and
money. Although I hope that many university courses will adopt these books as core texts,
my main purpose is to provide a self-study programme for readers wishing to gain a proper
foundation for the job of market risk analysis. Dedicated and intelligent readers should be able
to understand the material in all four books with one or two years of full-time study.

The aim of Market Risk Analysis is to define a syllabus for education in market risk analy-
sis, from the basics to the most advanced level of understanding we have today, to set standards
for the profession of market risk analyst, and to provide the means whereby the required skills
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may be attained. When I have time, I hope to develop a professional Market Risk Analyst
qualification, with four exams based on each of these books and of a level equivalent to a
challenging master’s degree course.

The target readership for Market Risk Analysis, Volume IV: Value-at-Risk Models includes
risk analysts in banks and finance-related firms such as software companies, insurance firms,
investment companies and hedge funds; academics researching into market risk and/or fore-
casting with econometric models; and students on financial risk management master’s courses.
No other existing text on value at risk takes such a pedagogical and practical approach as
this, at the same time as covering the theory both rigorously and comprehensively. Several
theoretical results are new and each empirical application is unique.

Because I focus exclusively on market risk the most similar existing texts, at least in terms
of broad content, are Dowd (2005) and Danielsson (2007). However, Dowd’s book is mainly
on the theory of market VaR, with relatively little on its practical implementation for realistic
risk management problems, and Danielsson’s book is shorter and far less detailed or compre-
hensive. Market Risk Analysis, Volume IV: Value-at-Risk Models is written at a quantitative
level that is similar to Dowd (2005), Danielsson (2007) and Christoffersen (2003), higher than
that of Jorion (2006) and lower than that of McNeil et al. (2005). It is more advanced and com-
prehensive, than Butler (1999). In so far as I place an equal emphasis on theory and practical
implementation, this book could be compared with Holton (2003).

I would not be surprised if some readers react badly to the advanced level of understand-
ing required for this book. The discipline of market risk analysis has existed for nearly two
decades, but by publishing this book I am, in a sense, challenging the entire profession. In my
view, a market risk analyst should be able to understand everything I have written, and more.
If he cannot, he is simply not qualified for this seriously responsible job. On the other hand, an
analyst who gains this understanding can look forward to a stimulating and rewarding career,
as a return on the investment of substantial time and effort required to obtain a mastery of this
material.

OUTLINE OF VOLUME IV

Chapter 1, Value at Risk and Other Risk Metrics, introduces the risk metrics that are com-
monly used by fund managers, banks and corporations. A market risk metric is a single
number that captures the uncertainty in a portfolio’s P&L, or in its return, summarizing the
portfolio’s potential for deviations from a target or expected return. Whilst VaR has become
a universal risk metric used by banks and by non-financial corporations, fund managers have
traditionally used quite different metrics. As well as tracking error and its limitations for use
in active fund management, lower partial moments and VaR-based downside risk metrics such
as benchmark VaR and expected shortfall are introduced. But VaR has some undesirable prop-
erties. It is not a coherent risk metric, unless we make some simplifying assumptions about the
behaviour of the risk factors and the portfolio type. We explain why it is important to aggre-
gate and disaggregate risks in the bottom-up risk assessment paradigm that is prevalent today,
and introduce conditional, stand-alone, marginal and incremental VaR in a general mathemat-
ical framework. Empirical examples focus on the distinction between measuring VaR at the
portfolio level and at the risk factor level, and the reason why we obtain different results when
the same historical data are used in the three fundamental types of VaR model, i.e. parametric
linear, historical and Monte Carlo VaR models.
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Chapter 2, Parametric Linear VaR Models, is the longest chapter in the book. It covers
the theory of parametric VaR models for linear portfolios in a rigorous mathematical frame-
work, introducing several new results. We provide formulae for both VaR and expected tail
loss (ETL) – which is also sometimes called conditional VaR – based on the assumptions
that risk factor returns have a multivariate normal distribution, a Student t distribution and or
a mixture of normal and/or Student t distributions. We also show how to use exponentially
weighted moving average covariance matrices and how to scale VaR over different risk hori-
zons when portfolio returns are autocorrelated. Thirty examples and several long case studies
cover the aggregation and disaggregation of stand-alone and marginal VaR for large hedged
and unhedged international portfolios containing interest rate sensitive instruments, equities
and commodities, and each is supported with its own interactive Excel spreadsheet, usually
based on real financial data.

Chapter 3, Historical Simulation, provides a critical introduction to the standard approach
to measuring historical VaR and ETL. We address the need to measure historical VaR initially
at the daily risk horizon, and the challenging problem of scaling VaR to longer risk hori-
zons. Empirical examples motivate the need for volatility adjustment, and its extension to
filtered historical simulation based on a generalized autoregressive conditional heteroscedas-
ticity (GARCH) model. Again, numerous examples and case studies based on real financial
data cover the practical implementation of historical VaR and ETL estimation, and its aggre-
gation and disaggregation for portfolios containing interest rate sensitive instruments, equities
and commodities and with foreign currency exposures. We explain how to improve the preci-
sion of VaR and ETL estimates at extreme quantiles, comparing the pros and cons of kernel
fitting, Cornish – Fisher expansion, extreme value theory and fitting a Johnson SU distribu-
tion. Throughout this chapter we deal with linear portfolios, leaving the far more complex
problem of measuring historical VaR and ETL for option portfolios to Chapter 5.

Chapter 4, Monte Carlo VaR, begins by reviewing some basic concepts in Monte Carlo
simulation from univariate and multivariate distributions, including the generation of random
numbers and variance reduction. However, fewer than 20 pages are devoted to this, and readers
should not expect to cover the material in as much depth as textbooks that are exclusively con-
cerned with simulation. The main focus of this chapter is a subject that has hitherto received
little attention in the VaR literature: the need to provide a proper specification of the risk factor
returns model when measuring Monte Carlo VaR. First we focus on building realistic dynamic
models of individual risk factor returns, including volatility clustering and regime switching,
and then we cover multivariate models, from multivariate normal i.i.d. processes to models
with general parametric marginals with dependency captured by copulas. We also explain
how to reduce the number of risk factors using principal component analysis. All of the com-
plex models introduced are implemented in interactive Excel spreadsheets for a variety of real
portfolios.

Chapter 5, Value at Risk for Option Portfolios, opens with a summary of the Taylor expan-
sions that are used to map option portfolios to their main risk factors, and explains the likely
effect on VaR estimates due to the size and magnitude of the different Greeks of a portfolio:
specifically, these are termed delta, gamma, vega and theta effects. We take care to explain
why these effects can be very different depending on whether we are estimating static VaR,
which assumes the portfolio is not traded during the risk horizon, and dynamic VaR, where
the portfolio is rebalanced daily over the risk horizon to return the risk factor sensitivities to
their original level. Static VaR is suitable for estimating the risk of a single structured product
that is not intended to be dynamically rebalanced, and dynamic VaR is useful for assessing
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risk when traders are at their limits. The main focus of this chapter is the practical implemen-
tation of both historical and Monte Carlo VaR models for option portfolios, evaluated both
exactly and with risk factor mapping. Starting with simple, unhedged positions, the practical
examples become increasingly complex, including VaR estimates for option portfolios with
several underlyings and path-dependent claims.

Chapter 6, Risk Model Risk, covers the reasons why different VaR methodologies give
different results and the statistical methods used to assess the accuracy of VaR estimates.
There are many sources of error in VaR and ETL estimates. In equity and option portfo-
lios even the risk factor mapping can be a very significant source of model risk, and quite
different VaR estimates can result when we change the risk factors, or the data used to
estimate the risk factor sensitivities, or the statistical methodology used for factor sensitiv-
ity estimation. In all portfolios it is the specification of the risk factor returns model that
is the most significant source of model risk, and many empirical examples are provided to
support this. After deriving theoretical results on confidence intervals for VaR estimates,
the main focus of this chapter is on the VaR and ETL backtesting methodology. Starting
with the simple backtests suggested by banking regulators, we describe unconditional and
conditional coverage tests, regression-based backtests, ETL backtests based on standard-
ized exceedance residuals, bias statistics and distribution forecasts. Throughout this section
of the chapter, we illustrate the practical implementation of all these backtests in Excel
workbooks using two different VaR and ETL estimates for a simple position on the S&P
500 index.

Chapter 7, Scenario Analysis and Stress Testing, opens by challenging the validity of his-
torical data for estimating VaR and ETL, except over very short risk horizons. We maintain
that using historical data itself implies a subjective view (that history will repeat itself) and
that other beliefs or personal subjective views of senior management and the board of direc-
tors can and should be used in a mathematically coherent model of risk. Beginning with a
description of how different types of beliefs about future market behaviour can be incorpo-
rated into VaR and ETL estimation, we argue that the traditional stress-testing framework that
aims to quantify a ‘worst case’ loss is totally meaningless. So, whilst the standard stress test-
ing methods such as ‘factor push’ are both described and illustrated, we focus on a coherent
stress testing framework based on what I call ‘distribution scenarios’. The last section of the
chapter focuses on the use of historical or hypothetical stressed covariance matrices, stress
tests based on principal components and on GARCH volatility clustering, and endogenous
and exogenous liquidity adjustments to VaR.

Chapter 8, Capital Allocation, covers the application of VaR and ETL to regulatory and
economic capital allocation. Beginning with the basic differences between banking and trad-
ing book accounting, we cover the minimum market risk capital requirements for banks under
the 1996 Amendment to the first Basel Accord, describing and illustrating both the internal
models approach and the standardized rules. After the new Basel II Accord, in the wake of
the credit crunch that began in 2007, the Basel Committee suggested a new incremental risk
charge for credit spread and equity risks, applied to internal models that have specific risk
recognition. We provide empirical examples to illustrate how banks might choose to calculate
this new add-on to the capital charge. The second half of the chapter opens with a descrip-
tion of the measurement and applications of economic capital, having particular emphasis on
aggregation risk. We then introduce the most common types of risk adjusted performance
measures for economic capital allocation, and provide empirical examples in Excel on the
optimal allocation of economic capital under various constraints.
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ABOUT THE CD-ROM

This book emphasizes teaching through practical examples supported by transparent Excel
spreadsheets. Whenever it is possible to illustrate a model or a formula using a practical exam-
ple – however simple or complex – I do this using Excel. This volume alone contains 62 Excel
workbooks (each with several spreadsheets, some of which are fairly complex) covering all
the examples and figures in the text, and 16 case studies that implement VaR models in prac-
tice. These may be found on the accompanying CD-ROM. The data can be used by tutors or
researchers since they were obtained from free internet sources, and references for updating
are provided. Also the graphs and tables can be modified if required, and copied into lectures
notes based on this book. Within these spreadsheets readers may change any parameters of
the problem (the parameters are indicated in red) and see the new solution (the output is indi-
cated in blue). Rather than using VBA code, which will be obscure to many students, I have
encoded the formulae directly into the spreadsheet. Thus the reader need only click on a cell
to read the formula. The interactive spreadsheets are designed to offer tutors the possibility
to set, as exercises for their courses, an unlimited number of variations on the examples in
the text.

I hope you will find these examples and case studies useful. A great variety of problems
have been illustrated, from the simple estimation of VaR at the portfolio level using basic
forms of each VaR model, to advanced methodologies such as filtered historical simulation
with adjustments for volatility and correlation clustering, or Monte Carlo VaR using copulas
and non-normal marginals, applied at the risk factor level and disaggregated into stand-alone
and marginal VaR components due to different risk factor classes.
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IV.1
Value at Risk and Other Risk Metrics

IV.1.1 INTRODUCTION

A market risk metric is a measure of the uncertainty in the future value of a portfolio, i.e. a
measure of uncertainty in the portfolio’s return or profit and loss (P&L). Its fundamental
purpose is to summarize the potential for deviations from a target or expected value. To
determine the dispersion of a portfolio’s return or P&L we need to know about the potential
for individual asset prices to vary and about the dependency between movements of different
asset prices. Volatility and correlation are portfolio risk metrics but they are only sufficient
(in the sense that these metrics alone define the shape of a portfolio’s return or P&L dis-
tribution) when asset or risk factor returns have a multivariate normal distribution. When
these returns are not multivariate normal (or multivariate Student t) it is inappropriate and
misleading to use volatility and correlation to summarize uncertainty in the future value of a
portfolio.1

Statistical models of volatility and correlation, and more general models of statistical
dependency called copulas, are thoroughly discussed in Volume II of Market Risk Analysis.
The purpose of the present introductory chapter is to introduce other types of risk metric
that are commonly used by banks, corporate treasuries, portfolio management firms and other
financial practitioners.

Following the lead from both regulators and large international banks during the mid-1990s,
almost all financial institutions now use some form of value at risk (VaR) as a risk metric. This
almost universal adoption of VaR has sparked a rigorous debate. Many quants and academics
argue against the metric because it is not necessarily sub-additive,2 which contradicts the
principal of diversification and hence also the foundations of modern portfolio theory.
Moreover, there is a closely associated risk metric, the conditional VaR, or what I prefer to call
the expected tail loss (ETL) because the terminology is more descriptive, that is sub-additive.
And it is very simple to estimate ETL once the firm has developed a VaR model, so why not
use ETL instead of VaR? Readers are recommended the book by Szegö (2004) to learn more
about this debate.

The attractive features of VaR as a risk metric are as follows:

• It corresponds to an amount that could be lost with some chosen probability.
• It measures the risk of the risk factors as well as the risk factor sensitivities.
• It can be compared across different markets and different exposures.
• It is a universal metric that applies to all activities and to all types of risk.

1 See the remarks on correlation in particular, in Section II.3.3.2.
2 See Section IV.1.8.3.
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• It can be measured at any level, from an individual trade or portfolio, up to a single
enterprise-wide VaR measure covering all the risks in the firm as a whole.

• When aggregated (to find the total VaR of larger and larger portfolios) or disaggre-
gated (to isolate component risks corresponding to different types of risk factor) it takes
account of dependencies between the constituent assets or portfolios.

The purpose of this chapter is to introduce VaR in the context of other ‘traditional’ risk
metrics that have been commonly used in the finance industry. The assessment of VaR is
usually more complex than the assessment of these traditional risk metrics, because it depends
on the multivariate risk factor return distribution and on the dynamics of this distribution, as
well as on the risk factor mapping of the portfolio. We term the mathematical models that are
used to derive the risk metric, the risk model and the mathematical technique that is applied to
estimate the risk metrics from this model (e.g. using some type of simulation procedure) the
resolution method.

Although VaR and its related measures such as ETL and benchmark VaR have recently
been embraced almost universally, the evolution of risk assessment in the finance industry
has drawn on various traditional risk metrics that continue to be used alongside VaR. Broadly
speaking, some traditional risk metrics only measure sensitivity to a risk factor, ignoring the
risk of the factor itself. For instance, the beta of a stock portfolio or the delta and gamma of an
option portfolio are examples of price sensitivities. Other traditional risk metrics measure the
risk relative to a benchmark, and we shall be introducing some of these metrics here, including
the omega and kappa indices that are currently favoured by many fund managers.3

The outline of the chapter is as follows. Section IV.1.2 explains how and why risk assess-
ment in banking has evolved separately from risk assessment in portfolio management.
Section IV.1.3 introduces a number of downside risk metrics that are commonly used in port-
folio management. These are so called because they focus only on the risk of underperforming
a benchmark, ignoring the ‘risk’ of outperforming the benchmark.

The reminder of the chapter focuses on VaR and its associated risk metrics. We use the
whole of Section IV.1.4 to provide a thorough definition of market VaR. For instance, when
VaR is used to assess risks over a long horizon, as it often is in portfolio management, we
should adjust the risk metric for any difference between the expected return and the risk free
or benchmark return.4 However, a non-zero expected excess return has negligible effect when
the risk horizon for the VaR estimate is only a few days, as it usually is for banks, and so some
texts simply ignore this effect.

Section IV.1.5 lays some essential foundations for the rest of this book by stating some
of the basic principles of VaR measurement. These principles are illustrated with simple
numerical examples where the only aim is to measure the VaR

• at the portfolio level,5 and where
• the portfolio returns are independent and identically distributed (i.i.d.).

3 Contrary to popular belief, the tracking error risk metric does not perform this role, except for passive (index tracking) portfolios. I
have taken great care to clarify the reasons for this in Section II.1.6.
4 This is because a risk metric is usually measured in present value terms – see Section IV.1.5.4 for further details.
5 This means that we measure only one risk, for the portfolio as a whole, and we do not attribute the portfolio risk to different market
factors.



Value at Risk and Other Risk Metrics 3

Section IV.1.6 begins by stressing the importance of measuring VaR at the risk factor level:
without this we could not quantify the main sources of risk. This section also includes two
simple examples of measuring the systematic VaR, i.e. the VaR that is captured by the entire
risk factor mapping.6 We consider two examples: an equity portfolio that has been mapped to
a broad market index and a cash-flow portfolio that has been mapped to zero-coupon interest
rates at standard maturities.

Section IV.1.7 discusses the aggregation and disaggregation of VaR. One of the many
advantages of VaR is that is can be aggregated to measure the total VaR of larger and
larger portfolios, taking into account diversification effects arising from the imperfect depen-
dency between movements in different risk factors. Or, starting with total risk factor VaR,
i.e. systematic VaR, we can disaggregate this into stand-alone VaR components, each repre-
senting the risk arising from some specific risk factors.7 Since we take account of risk factor
dependence when we aggregate VaR, the total VaR is often less than the sum of the stand-
alone VaRs. That is, VaR is often sub-additive. But it does not have to be so, and this is one
of the main objections to using VaR as a risk metric. We conclude the section by introducing
marginal VaR (a component VaR that is adjusted for diversification, so that the sum of the
marginal VaRs is approximately equal to the total risk factor VaR) and incremental VaR (which
is the VaR associated with a single new trade).

Section IV.1.8 introduces risk metrics that are associated with VaR, including the condi-
tional VaR risk metric or expected tail loss. This is the average of the losses that exceed the
VaR. Whilst VaR represents the loss that we are fairly confident will not be exceeded, ETL
tells us how much we would expect to lose given that the VaR has been exceeded. We also
introduce benchmark VaR and its associated conditional metric, expected shortfall (ES). The
section concludes with a discussion on the properties of a coherent risk metric. ETL and ES
are coherent risk metrics, but when VaR and benchmark VaR are estimated using simulation
they are not coherent because they are not sub-additive.

Section IV.1.9 introduces the three fundamental types of resolution method that may be used
to estimate VaR, applying each method in only its most basic form, and to only a very simple
portfolio. After a brief overview of these approaches, which we call the normal linear VaR,
historical VaR and normal Monte Carlo VaR models, we present a case study on measuring
VaR for a simple position of $1000 per point on an equity index. Our purpose here is to
illustrate the fundamental differences between the models and the reasons why our estimates
of VaR can differ so much depending on the model used. Section IV.1.10 summarizes and
concludes.

Volume IV of the Market Risk Analysis series builds on the three previous volumes, and
even for this first chapter readers first require an understanding of:8

• quantiles and other basic concepts in statistics (Section I.3.2);
• the normal distribution family and the standard normal transformation (Section I.3.3.4);
• stochastic processes in discrete time (Section I.3.7.1);
• portfolio returns and log returns (Section I.1.4);
• aggregation of log returns and scaling of volatility under the i.i.d. assumption

(Section II.3.2.1);

6 So systematic VaR may also be called total risk factor VaR.
7 As its name suggests, ‘stand-alone equity VaR’ does not take account of the diversification benefits between equities and bonds, for
instance.
8 The most important sections from other volumes of Market Risk Analysis are listed after each topic.
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• the matrix representation of the expectation and variance of returns on a linear portfolio
(Section I.2.4);

• univariate normal Monte Carlo simulation and how it is performed in Excel
(Section I.5.7).

• risk factor mappings for portfolios of equities, bonds and options, i.e. the expression of
the portfolio P&L or return as a function of market factors that are common to many
portfolios (e.g. stock index returns, or changes in LIBOR rates) and which are called the
risk factors of the portfolio (Section III.5).

There is a fundamental distinction between linear and non-linear portfolios. A linear port-
folio is one whose return or P&L may be expressed as a linear function of the returns or P&L
on its constituent assets or risk factors. All portfolios except those with options or option-like
structures fall into the category of linear portfolios.

It is worth repeating here my usual message about the spreadsheets on the CD-ROM. Each
chapter has a folder which contains the data, figures, case studies and examples given in the
text. All the included data are freely downloadable from websites, to which references for
updating are given in the text. The vast majority of examples are set up in an interactive
fashion, so that the reader or tutor can change any parameter of the problem, shown in red,
and then view the output in blue. If the Excel data analysis tools or Solver are required, then
instructions are given in the text or the spreadsheet.

IV.1.2 AN OVERVIEW OF MARKET RISK ASSESSMENT

In general, the choice of risk metric, the relevant time horizon and the level of accuracy
required by the analyst depend very much on the application:

• A typical trader requires a detailed modelling of short-term risks with a high level of
accuracy.

• A risk manager working in a large organization will apply a risk factor mapping that
allows total portfolio risk to be decomposed into components that are meaningful to
senior management. Risk managers often require less detail in their risk models than
traders do. On the other hand, risk managers often want a very high level of confidence
in their results. This is particularly true when they want to demonstrate to a rating agency
that the company deserves a good credit rating.

• Senior managers that report to the board are primarily concerned with the efficient allo-
cation of capital on a global scale, so they will be looking at long-horizon risks, taking a
broad-brush approach to encompass only the most important risks.

The metrics used to assess market risks have evolved quite separately in banking, port-
folio management and large corporations. Since these professions have adopted different
approaches to market risk assessment we shall divide our discussion into these three broad
categories.

IV.1.2.1 Risk Measurement in Banks

The main business of banks is to accept risks (because they know, or should know, how to
manage them) in return for a premium paid by the client. For retail and commercial banks and
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for many functions in an investment bank, this is, traditionally, their main source of profit. For
instance, banks write options to make money on the premium and, when market making, to
make profits from the bid–ask spread. It is not their business, at least not their core business,
to seek profits through enhanced returns on investments: this is the role of portfolio manage-
ment. The asset management business within a large investment bank seeks superior returns
on investments, but the primary concern of banks is to manage their risks.

A very important decision about risk management for banks is whether to keep the risk
or to hedge at least part of it. To inform this decision the risk manager must first be able to
measure the risk. Often market risks are measured over the very short term, over which banks
could hedge their risks if they chose to, and over a short horizon is it standard to assume the
expected return on a financial asset is the risk free rate of return.9 So modelling the expected
return does not come into the picture at all. Rather, the risk is associated with the unexpected
return – a phrase which here means the deviation of the return about its expected value – and
the expected rate of return is usually assumed to be the risk free rate.

Rather than fully hedging all their risks, traders are usually required to manage their
positions so that their total risk stays within a limit. This limit can vary over time. Setting
appropriate risk limits for traders is an important aspect of risk control. When a market has
been highly volatile the risk limits in that market should be raised. For instance, in equity
markets rapid price falls would lead to high volatility and equity betas could become closer
to 1 if the stock’s market correlation increased. If a proprietary trader believes the market
will now start to rise he may want to buy into that market so his risk limits, based on either
volatility or portfolio beta, should be raised.10

Traditionally risk factor exposures were controlled by limiting risk factor sensitivities. For
instance, equity traders were limited by portfolio beta, options traders operated under limits
determined by the net value Greeks of their portfolio, and bond traders assessed and managed
risk using duration or convexity.11 However, two significant problems with this traditional
approach have been recognized for some time.

The first problem is the inability to compare different types of risks. One of the reasons why
sensitivities are usually represented in value terms is that value sensitivities can be summed
across similar types of positions. For instance, a value delta for one option portfolio can be
added to a value delta for another option portfolio;12 likewise the value duration for one bond
portfolio can be added to the value duration for another bond portfolio. But we cannot mix two
different types of sensitivities. The sum of a value beta, a value gamma and a value convexity
is some amount of money, but it does not correspond to anything meaningful. The risk factors
for equities, options and bonds are different, so we cannot add their sensitivities. Thus, whilst
value sensitivities allow risks to be aggregated within a given type of trading activity, they do
not aggregate across different trading units. The traditional sensitivity-based approach to risk
management is designed to work only within a single asset class.

The second problem with using risk factor sensitivities to set traders’ limits is that they
measure only part of the risk exposure. They ignore the risks due to the risk factors themselves.

9 We shall show that a different assumption would normally have negligible effect on the result, provided the risk horizon is only a
few days or weeks.
10 In this case the trader’s economic capital allocation should be increased, since it is based on a risk adjusted performance measure
that takes account of this positive expected return. See Section IV.8.3.
11 For more information on the options ‘Greeks’ see Section III.3.4, and for duration and convexity see Sections III.1.5.
12 These value sensitivities are also sometimes called ‘dollar’ sensitivities, even though they are measured in any currency. See
Chapter III.5 and Section III.5.5.2 in particular for further details.
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Traders cannot influence the risk of a risk factor, but they can monitor the risk factor volatility
and manage their systematic risk by adjusting their exposure to the risk factor.13

In view of these two substantial problems most large banks have replaced or augmented
the traditional approach. Many major banks now manage traders’ limits using VaR and its
associated risk metrics.

New banking regulations for market risk introduced in 1996 heralded a more ‘holistic’
approach to risk management. Risk is assessed at every level of the organization using a uni-
versal risk metric, such as VaR, i.e. a metric that applies to all types of exposures in any
activity; and it relates not only to market risks, but also to credit and operational risks. Market
VaR includes the risk arising from the risk factors as well as the factor sensitivities; it can
be aggregated across any exposures, taking account of the risk factor correlations (i.e. the
diversification effects) to provide an enterprise-wide risk assessment; and it allows risks to be
compared across different trading units.14 As a result most major banks have adopted VaR,
or a related measure such as conditional VaR, to assess the risks of their operations at every
level, from the level of the trader to the entire bank.

Banking risks are commonly measured in a so-called ‘bottom-up’ framework. That is, risks
are first identified at the individual position level; then, as positions are aggregated into port-
folios, we obtain a measure of portfolio risk from the individual risks of the various positions.
As portfolios are aggregated into larger and larger portfolios – first aggregating all the traders’
portfolios in a particular trading unit, then aggregating across all trading units in a particular
business line, then aggregating over all business lines in the bank – the risk manager in a bank
will aggregate the portfolio’s risks in a similar hierarchy. A further line of aggregation occurs
for banks with offices in different geographical locations.

IV.1.2.2 Risk Measurement in Portfolio Management

One of the reasons why risk assessment in banking has developed so rapidly is the impetus
provided by the new banking regulations during the 1990s. Banks are required by regulators
to measure their risks as accurately as possible, every day, and to hold capital in proportion
to these risks. But no such regulations have provided a catalyst for the development of good
risk management practices in the fund management industry. The fund manager does have a
responsibility to report risks accurately, but only to his clients. As a result, in the first few
years of this century major misconceptions about the nature of risk relative to a benchmark
still persisted amongst some major fund managers.

Until the 1990s most funds were ‘passive’, i.e. their remit was merely to track a benchmark.
During this time an almost universal approach to measuring risk relative to a benchmark
was adopted, and this was commonly called the tracking error. Most managers were not
allowed to sell short,15 for fear of incurring huge losses if one of the shares that was sold short
dramatically rose in price; clients used to limit mutual fund managers to long-only positions
on a relatively small investment universe.16

13 So if a particular risk factor has an unusually high volatility then a trader can reduce his exposure to that risk factor and increase his
exposure to a less volatile one.
14 Other advantages of VaR were listed in Section IV.1.1.
15 To sell short is to sell a stock that is not owned: shares are borrowed on the ‘repurchase’ (repo) market and returned when the short
sale is closed out with a corresponding purchase.
16 The investment universe is the set of all assets available to the fund manager.
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Then, during the 1990s actively managed funds with mandates to outperform a benchmark
became popular. So, unlike banking, in portfolio management risks are usually measured
relative to a benchmark set by the client. However, as portfolio managers moved away from
passive management towards the so-called alpha strategies that are commonly used today,
problems arose because the traditional control ranges which limited the extent to which the
portfolio could deviate from the benchmark were dropped and many large fund managers used
the tracking error as a risk metric instead. But tracking error is not an appropriate risk metric
for actively managed funds.17

Also, with the very rapid growth in hedge funds that employ diverse long-short strategies
on all types of investment universe, the risks that investors face have become very complex
because hedge fund portfolio returns are highly non-normal. Hence, more sophisticated risk
measurement tools have recently been developed. Today there is no universal risk metric
for the portfolio management industry but it is becoming more and more common to use
benchmark VaR and its associated risk metrics such as expected shortfall.

In portfolio management the risk model is often based on the expected returns model, which
itself can be highly developed. As a result the risk metrics and the performance metrics are
inextricably linked. By contrast, in banks the expected return, after accounting for the normal
cost of doing business, is most often set equal to the risk free rate.

Another major difference between risk assessment in banking and in portfolio management
is the risk horizon, i.e. the time period over which the risk is being forecast. Market risk in
banking is assessed, at least initially, over a very short horizon. Very often banking risks are
forecast at a daily frequency. Indeed, this is the reason why statistical estimates and forecasts
of volatilities, correlations and covariance matrices are usually constructed from daily data.
Forecasts of risks over a longer horizon are also required (e.g. 1-year forecasts are needed
for the computation of economic capital) but in banking these are often extrapolated from
the short-term forecasts. But market risk in portfolio management is normally forecast over a
much longer horizon, often 1 month or more. This is linked to the frequency of risk reports
that clients require, to data availability and to the fact that the risk model is commonly tied to
the returns model, which often forecasts asset returns over a 1-month horizon.

IV.1.2.3 Risk Measurement in Large Corporations

The motivation for good financial risk management practices in large corporations is the
potential for an increase in the value of the firm and hence the enhancement of value for
shareholders and bondholders. Also, large corporations have a credit rating that affects the
public value of their shares and bonds, and the rating agency requires the risk management
and capitalization of the firm to justify its credit rating. For these two reasons the boards and
senior managements of large corporations have been relatively quick to adopt the high risk
management standards that have been set by banks.

Unlike portfolio management, market risks for corporations are not usually measured
relative to a benchmark. Instead, risks are decomposed into:

• idiosyncratic or reducible risk which could be diversified away by holding a sufficiently
large and diversified portfolio; and

17 A long discussion of this point is given in Section II.1.6.
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• undiversifiable, systematic or irreducible risk, which is the risk that the firm is always
exposed to by choosing to invest in a particular asset class or to operate in a particular
market.

Like banks, the expected returns to various business lines in a major corporation are usu-
ally modelled separately from the risks. The expected return forecasts are typically based on
economic models for P&L predictions based on macroeconomic variables such as inflation,
interest rates and exchange rates. Like banks, corporations will account for the normal ‘cost’
of doing business, with any expected losses being provisioned for in the balance sheet. Hence,
from the point of view of the risk manager in a corporate treasury, the expected returns are
taken as exogenous to the risk model.

The financial risks taken by a large corporation are typically managed using economic cap-
ital. This is a risk adjusted performance measure which does not necessarily have anything
to do with ordinary capital.18 The risk part of the risk adjusted performance measure is very
commonly measured using a quantile risk metric such as VaR, or conditional VaR, to assess
the market, credit and ‘other’ risks of:

• individual positions;
• positions in a trading book;
• trading books in the ‘desk’;
• desks in a particular activity or ‘business unit’;
• business units in the firm.

That is, the risk assessment proceeds from the bottom up, just as it does in a bank. Risks
(and returns) are first assessed at the most elemental level, often instrument by instrument,
and according to risk type, i.e. separately for market, credit and other risks such as opera-
tional risks. Then, individual positions are progressively aggregated into portfolios of similar
instruments or activities, these are aggregated up to the business units, and then these are
aggregated across all business units in the firm. Then, usually only at the very end, VaR is
aggregated across the major types of risks to obtain a global representation of risks at the
company or group level.

Expected returns are also assessed at the business unit level, and often also at the level of
different types of activities within the business unit. The economic capital can thus be calcu-
lated at a fairly disaggregated level, and used for risk budgeting of the corporation’s activities.
To provide maximum shareholder value, the firm will seek to leverage those activities with
the best risk adjusted performance and decrease the real capital allocation to activities with
the worst risk adjusted performance, all else being equal.

The rating agency will assess the capitalization of the entire corporation. To justify its credit
rating the corporation must demonstrate that it has a suitably low probability of default during
the next year. As shown in Section IV.8.3.1, this probability is related to the total VaR of the
firm, i.e. the sum of the market, credit and operational VaR over all the firm’s activities. For
instance, the AA credit rating corresponds to a 0.03% default probability over a year. This
means that to obtain this credit rating the corporation may need to hold sufficient capital to
cover the 99.97% total VaR at a 1-year horizon.

18 Except at the firm-wide level – see Section IV.8.3 for further details.
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IV.1.3 DOWNSIDE AND QUANTILE RISK METRICS

In this section we introduce the downside risk metrics that are popular for portfolio manage-
ment. A downside risk metric is one that only focuses on those returns that fall short of a target
or threshold return. The target or threshold return can be the benchmark return (appropriate
for a passive fund) or some percentage above the benchmark return (appropriate for an active
fund). Downside risk metrics are now common in active risk management, and there are a
large number of possible risk metrics to choose from which are described below.

IV.1.3.1 Semi-Standard Deviation and Second Order Lower Partial Moment

The semi-standard deviation is the square root of the semi-variance, a concept introduced by
Markovitz (1959). Semi-variance is a measure of the dispersion of only those realizations on
a continuous random variable X that are less than the expectation of X.19 It is defined as

SV(X)= E
(
min(X − E(X),0)2

)
. (IV.1.1)

But since E(min(X − E(X),0)) �= 0,

E
(
min(X − E(X),0)2

) �= V(min(X − E(X),0)) .

Hence, the terms semi-variance and semi-standard deviation are misnomers, even though they
are in common use.

The ex post semi-standard deviation that is estimated from a sample {R1, . . . , RT} of T
returns is

σ̂semi =
√√√√T−1

T∑
t=1

min(Rt − R,0)2, (IV.1.2)

where R is the sample mean return. Like most risk metrics, including the other lower partial
moment metrics that we define in the next section, this is normally quoted in annualized terms.
A numerical example is provided below.

We can extend the operator (IV.1.1) to the case where a target or threshold return τ is used
in place of the expected return. We call this the lower partial moment (LPM) of order 2, or
second order lower partial moment, and denote it LPM2,τ. The following example illustrates
how an ex post estimate may be calculated.

EXAMPLE IV.1.1: SEMI-STANDARD DEVIATION AND SECOND ORDER LPM

A historical sample of 36 active returns on a portfolio is shown in Table IV.1.1. Calculate (a)
the semi-standard deviation and (b) the second order LPM relative to a threshold active return
of 2% per annum.

19 All lower partial moment metrics may also be defined for discrete random variables, but for our purpose X is regarded as continuous.
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Table IV.1.1 Active returns

Month Active return Month Active return

Jan-06 0.40% Jul-07 −1.15%
Feb-06 0.25% Aug-07 0.36%
Mar-06 0.27% Sep-07 0.26%
Apr-06 0.11% Oct-07 0.25%
May-06 −0.13% Nov-07 −0.21%
Jun-06 0.12% Dec-07 −0.27%
Jul-06 0.21% Jan-08 0.04%
Aug-06 0.05% Feb-08 −0.05%
Sep-06 −0.13% Mar-08 0.00%
Oct-06 −0.29% Apr-08 0.29%
Nov-06 −0.49% May-08 0.30%
Dec-06 −0.32% Jun-08 0.53%
Jan-07 0.07% Jul-08 0.41%
Feb-07 −0.22% Aug-08 −0.05%
Mar-07 −0.63% Sep-08 0.49%
Apr-07 0.03% Oct-08 0.41%
May-07 0.06% Nov-08 0.34%
Jun-07 −0.24% Dec-08 −3.00%

SOLUTION The spreadsheet for this example includes a column headed min(ARt − x,0)

where ARt is the active return at time t and where

(a) x is the sample mean active return (−0.03%) for the semi-standard deviation, and
(b) x = 0.165% for the LPM. Remember the active returns are monthly, so the target active

return of 2% per annum translates into a target of 0.165% per month.

Dividing the sum of the squared excess returns by 36, multiplying by 12 and taking the square
root gives the value in annualized terms: 1.81% for the semi-standard deviation and 2.05% for
the second order LPM.

IV.1.3.2 Other Lower Partial Moments

More generally LPMs of order k can be defined for any positive k. The LPM operator is:

LPMk,τ(X)= E
(|min(X − τ,0)|k

)1/k = E
(
max(τ− X,0)k

)1/k
, (IV.1.3)

where τ is some target or threshold return and k is positive, but need not be a whole number.20

For instance the LPM of order 1, which is also called the regret, is

LPM1,τ(X)= E(max(τ− X,0)) . (IV.1.4)

It follows immediately from (IV.1.4) that the regret operator is the expected pay-off to a put
option with strike equal to the target return τ. So, like any put option, it has the intuitive

20 We prefer the second notation in (IV.1.3), using the maximum function, because, being non-negative, we always obtain a positive
value in the calculations. Otherwise, we can use the minimum value as before, but we must take the absolute value of this before
operating with k.
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interpretation of an insurance cost.21 It is the cost of insuring the downside risk of a portfolio.
Like semi-standard deviation, regret is able to distinguish ‘good risk’ from ‘bad risk’.

As k increases, the kth order LPM places more weight on extremely poor returns. An ex
post estimate of an LPM based on a sample {R1, . . . , RT} of T returns is

est.LPMk,τ =
(

T−1

T∑
t=1

max(τ− Rt,0)k

)1/k

. (IV.1.5)

Note that LPM3,0 is sometimes called the semi-skewness and LPM4,0 is sometimes called the
semi-kurtosis.

EXAMPLE IV.1.2: LPM RISK METRICS

Calculate the kth order LPMs for k = 1, 2, 3, 4, 5, 10 and 20 based on the sample of active
returns in Example IV.1.1 and using (a) a threshold active return of 0%; and (b) a threshold
active return of 2% per annum.

SOLUTION The calculations are very similar to (b) in the previous example, except that this
time we use a power k of the series on max(τ− Rt,0) and take the kth root of the result. By
changing the threshold for different values of k in the spreadsheet the reader will see that
increasing the threshold increases the LPM, and for thresholds of 0% and 2% we obtain the
results shown in Table IV.1.2. For k ≥ 2, LPM measures also increase with k. However, this is
not a general rule, it is because of our particular sample: as the order increases the measures
put progressively higher weights on the very extreme active return of −3% in December 2008,
which increases the risk considerably. In general, the behaviour of the LPM metrics of various
orders as the threshold changes depends on the specific characteristics of the sample.

Table IV.1.2 LPM of various orders
relative to two different thresholds

k Threshold

0% 2%

1 2.06% 3.11%
2 1.84% 2.05%
3 2.09% 2.23%
4 2.28% 2.41%
5 2.41% 2.54%

10 2.69% 2.84%
20 2.84% 3.00%

IV.1.3.3 Quantile Risk Metrics

For any α between 0 and 1 the α quantile of the distribution of a continuous random variable
X is a real number xα such that22

P(X < xα)= α.

21 Recall that buying an out-of-the money put option on a share that you hold is like an insurance, since if the price of the share falls
the option allows you to sell the share at some guaranteed price (the strike).
22 As α → 0, xα → −∞ and as α → 1, xα → ∞. Quantiles were formally introduced in Chapter I.3. See Sections I.3.2.8 and I.3.5.1
in particular.
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If we know the distribution function F(x) of X then the quantile corresponding to any given
value of α may be calculated as

xα = F−1(α).

When a target return is an α quantile of the return distribution the probability of underper-
forming the target is α. For instance, if the 5% quantile of a return distribution is −3% then
we are 95% confident that the return will not be lower than −3%. So a quantile becomes a
downside risk metric when α is small, and very often we use standard values such as 0.1%,
1%, 5% or 10% for α.

In market risk, X is usually a return or P&L on an investment, and α is often assumed to
be small so that the α quantile corresponds to a loss that we are reasonably certain will not
be exceeded. The time horizon over which the potential for underperformance is measured is
implicit in the frequency of returns or P&L. For instance, it would be measured over a month
if X were a monthly return.

The next example considers a return that is assumed to be i.i.d. and normally distributed,
with mean μ and standard deviation σ. Then, for any α ∈ (0,1) applying the standard normal
transformation gives

P(X < xα)= P
(

X −μ

σ
<

xα −μ

σ

)
= P

(
Z <

xα −μ

σ

)
= α,

where Z is a standard normal variable. For instance, if a return is normally distributed with
mean 10% and standard deviation 25% then the probability of returning less than 5% is 42%,
because

P(X < 0.05)= P
(

X − 0.1

0.25
<

0.05 − 0.1

0.25

)
= P(Z <−0.2)= 0.42,

using the fact that −0.2 is the 42% quantile of the standard normal distribution.23

EXAMPLE IV.1.3: PROBABILITY OF UNDERPERFORMING A BENCHMARK

Consider a fund whose future active returns are normally distributed, with an expected active
return over the next year of 1% and a standard deviation about this expected active return
(i.e. tracking error) of 3%. What is the probability of underperforming the benchmark by 2%
or more over the next year?

SOLUTION The density function for the active return is X ∼ N(0.01,0.0009), as illustrated
in Figure IV.1.1. We need to find P(X <−0.02). This is24

P(X <−0.02)= P
(

X − 0.01

0.03
<

−0.02 − 0.01

0.03

)
= P(Z <−1)= 0.1587.

Hence, the probability that this fund underperforms the benchmark by 2% or more is 15.87%.
This can be also seen in Figure IV.1.1, as the area under the active return density function to
the left of the point −0.02.

23 We can find this using the command NORMSDIST (−0.2) in Excel.
24 In Excel, NORMSDIST (−1) = 0.1587.
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Figure IV.1.1 Probability of underperforming a benchmark by 2% or more

In the above example, we found the probability of underperforming the benchmark by know-
ing that −1 is the 15.87% quantile of the standard normal distribution. In the next section we
shall show that the quantile of a distribution of a random variable X is a risk metric that is
closely related to VaR. But, unlike LPMs, quantiles are not invariant to changes in the returns
that are greater than the target or threshold return. That is, the quantile is affected by ‘good
returns’ as well as ‘bad returns’. This is not necessarily a desirable property for a risk metric.

On the other hand, quantiles are easy to work with mathematically. In particular, if Y =
h(X), where h is a continuous function that always increases then, for every α, the α quantile
yα of Y is just

yα = h(xα), (IV.1.6)

where xα is the α quantile of X. For instance, if Y = ln(X) and the 5% quantile of X is 1 then
the 5% quantile of Y is 0, because ln(1)= 0.

IV.1.4 DEFINING VALUE AT RISK

Value at risk is a loss that we are fairly sure will not be exceeded if the current portfolio
is held over some period of time. In this section we shall assume that VaR is measured at
the portfolio level, without considering the mapping of portfolios to their risk factors. More
detailed calculations of VaR based on risk factor mappings are discussed later in this chapter
and throughout the subsequent chapters.

IV.1.4.1 Confidence Level and Risk Horizon

VaR has two basic parameters:

• the significance level α (or confidence level 1 − α);
• the risk horizon, denoted h, which is the period of time, traditionally measured in trading

days rather than calendar days, over which the VaR is measured.
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Often the significance level is set by an external body, such as a banking regulator. Under the
Basel II Accord, banks using internal VaR models to assess their market risk capital require-
ment should measure VaR at the 1% significance level, i.e. the 99% confidence level. A credit
rating agency may set a more stringent significance level, i.e. a higher confidence level (e.g. the
0.03% significance or 99.97% confidence level). In the absence of regulations or external
agencies, the significance/confidence level for the VaR will depend on the attitude to risk of
the user. The more conservative the user, the lower the value of α, i.e. the higher the confidence
level applied.

The risk horizon is the period over which we measure the potential loss. Different risks
are naturally assessed over different time periods, according to their liquidity.25 For instance,
under the Basel banking regulations the risk horizon for the VaR is 10 days. In the absence of
internal or external constraints (e.g. regulations) the risk horizon of VaR should refer to the
time period over which we expect to be exposed to the position. An exposure to a liquid asset
can usually be closed or fully hedged much faster than an exposure to an illiquid asset. And
the time it takes to offload the risk depends on the size of the exposure as well as the market
liquidity. Some of the most liquid positions are on major currencies and they can be closed or
hedged extremely rapidly – usually within hours, even in a crisis. On the other hand private
placements are highly illiquid:26 there is no quotation in a market and the only way to sell the
issue is to enter into private negotiations with another bank.

When the traders of liquid positions are operating under VaR limits they require real-time,
intra-day VaR estimates to assess the effect of any proposed trade on their current level of VaR.
The more liquid the risk, the shorter the time period over which the risk needs to be assessed,
i.e. the shorter the risk horizon for the VaR model. Liquid risks tend to evolve rapidly and
it would be difficult to represent the dynamics of these risks over the long term. Markets
also tend to lose liquidity during stressful and volatile periods, when there can be sustained
shortages of supply or demand for the financial instrument. Hence, the risk horizon should be
increased when measuring VaR in stressful market circumstances.

At the desk level a risk manager often assesses only the liquid market risks, initially at least
over a daily risk horizon. This will then be extended to a 10-day risk horizon when using an
internal VaR model to assess minimum risk capital for regulatory purposes, and to a longer
horizon (e.g. 1 year) for internal capital allocation purposes and for credit rating agencies.

The confidence level also depends on the application. For instance:

• VaR can be used to assess the probability of company insolvency, or the probability of
default on its obligations. This depends on the capitalization of the company and the risks
of all its positions over a horizon such as 6 months or 1 year. Credit rating agencies would
only award a top rating to those companies that can demonstrate a very small probability
of default, such as 0.03% over the next year for an AA rated company. So companies
aiming for AA rating would apply a confidence level of 99.97% for enterprise-wide VaR
over the next year.

• Regulators that review the regulatory capital of banks usually allow this capital to be
assessed using an internal VaR model, provided they have approved the model and that
certain qualitative requirements have also been met. In this case a 99% confidence level

25 However, to assess capital adequacy regulators and credit rating agencies tend to set a single risk horizon, such as 1 year, for
assessing all risks in the enterprise as a whole.
26 A private placement is when an investment bank underwrites a company’s bond issue and then buys the whole issue itself.
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must be applied in the VaR model to assess potential losses over a 2-week risk horizon,
i.e. a 1% 10-day VaR. This figure is then multiplied by a factor of between 3 and 4 to
obtain the market risk capital requirement.27

• When setting trading limits based on VaR, risk managers may take a lower confidence
level and a shorter risk horizon. For instance, the manager may allow traders to operate
under a 5% 1-day VaR limit. In this case he is 95% confident that traders will not exceed
the VaR overnight while their open positions are left unmanaged. By monitoring the
traders’ losses that exceed his VaR limit, further scrutiny could be given to traders who
exceed their limit too often. A higher confidence level than 95% or a longer risk horizon
than 1 day may give traders too much freedom.

IV.1.4.2 Discounted P&L

VaR assumes that current positions will remain static over the chosen risk horizon, and that we
only assess the uncertainty about the value of these positions at the end of the risk horizon.28

Assuming a portfolio remains static means that we are going to assess the uncertainty of the
unrealized or theoretical P&L, i.e. the P&L based on a static portfolio. However, the realized
or actual P&L accounts for the adjustment in positions as well as the costs of all the trades
that are made in practice.

To have meaning today, any portfolio value that might be realized h trading days into the
future requires discounting. That is, the P&L should be expressed in present value terms,
discounting it using a risk free rate, such as the London Inter Bank Offered Rate (LIBOR).29

Hence, in the following when we refer to ‘P&L’ we mean the discounted theoretical h-day
P&L, i.e. the P&L arising from the current portfolio, assumed to be static over the next h
trading days, when expressed in present value terms.

Let Pt denote the value of the portfolio and let Bht denote the price of a discount bond that
matures in h trading days, both prices being at the time t when the VaR is measured. The value
of the portfolio at some future time t + h, discounted to time t, is BhtPt+h and the discounted
theoretical P&L over a risk horizon of h trading days is therefore

Discounted h-day P&L = BhtPt+h − Pt. (IV.1.7)

Although we can observe the portfolio value and the value of the discount bond at time t,
the portfolio value at time t + h is uncertain, hence the discounted P&L (IV.1.7) is a random
variable. Measuring the distribution of this random variable is the first step towards calculating
the VaR of the portfolio.

IV.1.4.3 Mathematical Definition of VaR

We have given a verbal definition of VaR as the loss, in present value terms, due to market
movements, that we are reasonably confident will not be exceeded if the portfolio is held static
over a certain period of time. We cannot say anything for certain about a portfolio’s P&L
because it is a random variable, but we can associate a confidence level with any loss. For

27 See Sections IV.6.4.2 and IV.8.2.4 for further details.
28 See Section IV.1.5.2 for a full discussion of what is meant by a ‘static’ portfolio.
29 LIBOR has become the standard reference rate for discounting short term future cash flows between banks to present value terms.
See Section III.1.2.5 for further details.
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instance, a 5% daily VaR, which corresponds to a 95% level of confidence, is a loss level that
we anticipate experiencing with a frequency of 5%, when the current portfolio is held for 24
hours. Put another way, we are 95% confident that the VaR will not be exceeded when the
portfolio is held static over 1 day. Put yet another way, we anticipate that this portfolio will
lose the 5% VaR or more one day in every 20. Sometimes we quote results in terms of the
confidence level 1 − α instead of the significance level α. For instance, if

1% 1-day VaR = $2 million,

then we are 99% confident that we would lose no more than $2 million from holding the
portfolio for 1 day.

A loss is a negative return, in present value terms. In other words, a loss is a negative excess
return. If the portfolio is expected to return the risk free discount rate, i.e. if the expected
excess return is zero, then the α% VaR is the α quantile of the discounted P&L distribution.
For instance, the 1% VaR of a 1-day discounted P&L distribution is the loss, in present value
terms that would only be equalled or exceeded one day in 100. Similarly, a 5% VaR of a
weekly P&L distribution is the loss that would only be equalled or exceeded one week in 20.

Assuming the portfolio returns the risk free rate the discounted P&L has expectation zero.
The two VaR estimates depicted in Figure IV.1.2 assume this, and also that discounted P&L is
normally distributed. In the figure we assume daily P&L has a standard deviation of $4 million
and weekly P&L has a standard deviation of $9 million.
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Figure IV.1.2 Illustration of the VaR metric

In mathematical terms the 100α% h-day VaR is the loss amount (in present value terms)
that would be exceeded with only a small probability α when holding the portfolio static over
the next h days. Hence, to estimate the VaR at time t we need to find the α quantile xht,α of the
discounted h-day P&L distribution. That is, we must find xht,α such that
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P(BhtPt+h − Pt < xht,α)= α, (IV.1.8)

and then set VaRht,α =−xht,α. We write VaRht,α when we want to emphasize the time t at which
the VaR is estimated. However, in the following chapters we usually make explicit only the
dependence of the risk metric on the two basic parameters, i.e. h (the risk horizon) and α (the
significance level), and we drop the dependence on t.

When VaR is estimated from a P&L distribution it is expressed in value (e.g. dollar) terms.
However, we often prefer to analyse the return distribution rather than the P&L distribution.
P&L is measured in absolute terms, so if markets have been trending the P&Ls at different
moments in time are not comparable. For instance, a loss of e10,000 when the portfolio has
a value of e1 million has quite a different impact than a loss of e10,000 when the portfolio
has a value of e10 million. We like to build mathematical models of returns because they are
measured in relative terms and are therefore comparable over long periods of time, even when
price levels have trended and/or varied considerably. But when the portfolio contains long and
short positions, or when the risk factors themselves can take negative values, the concept of
a return does not make sense, since the portfolio could have zero value. In that case VaR is
measured directly from the distribution of P&L.

When VaR is estimated from a return distribution it is expressed as a percentage of the
portfolio’s current value. Since the current value of the portfolio is observable it is not a
random variable. So we can perform calculations on the return distribution and express VaR
as a percentage of the portfolio value and, if required, we can then convert the result to value
terms by multiplying the percentage VaR by the current portfolio value.30

In summary, if we define the discounted h-day return on a portfolio as the random variable

Xht = BhtPt+h − Pt

Pt
, (IV.1.9)

then we can find xht,α, the α quantile of its distribution, that is,

P(Xht < xht,α)= α, (IV.1.10)

and our current estimate of the 100α% h-day VaR at time t is:

VaRht,α =
{

−xht,α as a percentage of the portfolio value Pt,

−xht,αPt when expressed in value terms.
(IV.1.11)

IV.1.5 FOUNDATIONS OF VALUE-AT-RISK MEASUREMENT

In this section we derive a formula for VaR under the assumption that the returns on a linear
portfolio are i.i.d. and normally distributed. After illustrating this formula with a numerical
example we examine the assumption that the portfolio remains static over the risk horizon

30 A VaR model is based on forward looking returns. So when we use a risk model to estimate h-day VaR we are producing a forecast
of risk over the next h days. In much the same way as implied volatility is automatically defined as a forecast because it is based on
option prices, VaR is automatically defined as a forecast: it summarizes the risk that the future return on a portfolio will be different
from the risk free rate. But we shall refrain from using the terms ‘VaR estimate’ and ‘VaR forecast’ interchangeably, because we may
want our risk model to really forecast VaR, i.e. to produce a forecast of what VaR will be some time in the future.
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and show that this assumption determines the way we should scale the VaR over different risk
horizons. Then we explain how the VaR formula should be adjusted when the expected excess
return on the portfolio is non-zero. As the expected return deviates more from the risk free
rate this adjustment has a greater effect, and the size of the adjustment also increases with the
risk horizon. The adjustment can be important for risk horizons longer than a month or so.
But when the risk horizon is relatively short, any assumption that returns are not expected to
equal the risk free rate has only a very small impact on the VaR measure, and for this reason
it is often ignored.

IV.1.5.1 Normal Linear VaR Formula: Portfolio Level

Suppose we only seek to measure the VaR of a portfolio without attributing the VaR to dif-
ferent risk factors. We also make the simplifying assumption that the portfolio’s discounted
h-day returns are i.i.d. and normally distributed. For simplicity of notation we shall, in this
section, write the return as X, dropping the dependence on both time and risk horizon. Thus
we assume

X
i.i.d.∼ N(μ,σ2). (IV.1.12)

We will derive a formula for xα, the α quantile return, i.e. the return such that P(X < xα)=α.
Then the 100α% VaR, expressed as a percentage of the portfolio value, is minus this α quantile.
Using the standard normal transformation, we have

P(X < xα)= P
(

X −μ

σ
<

xα −μ

σ

)
= P

(
Z <

xα −μ

σ

)
, (IV.1.13)

where Z ∼ N(0,1). So if P(X < xα)= α, then

P
(

Z <
xα −μ

σ

)
= α.

But by definition, P(Z <�−1(α)) = α, so

xα −μ

σ
=�−1(α) (IV.1.14)

where � is the standard normal distribution function. For instance, �−1(0.01) = 2.3264.

But xα = −VaRα by definition, and �−1(α) = −�−1(1 − α) by the symmetry of the standard
normal distribution. Substituting these into (IV.1.14) yields an analytic formula for the VaR
for a portfolio with an i.i.d. normal return, i.e.

VaRα =�−1(1 − α)σ −μ.

If we want to be more precise about the risk horizon of our VaR estimate, we may write

VaRh,α =�−1(1 − α)σh −μh. (IV.1.15)

This is a simple formula for the 100α% h-day VaR, as a percentage of the portfolio value,
when the portfolio’s discounted returns are i.i.d. normally distributed with expectation μh and
standard deviation σh.
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To obtain the VaR in value terms, we simply multiply the percentage VaR by the current
value of the portfolio:

VaRht,α = (�−1(1 − α)σh −μh)Pt, (IV.1.16)

where Pt is the value of the portfolio at the time t when the VaR is measured. Note that
when we express VaR in value terms, VaR will depend on time, even under the normal i.i.d.
assumption using a constant mean and standard deviation for the portfolio return.

EXAMPLE IV.1.4: VAR WITH NORMALLY DISTRIBUTED RETURNS

What is the 10% VaR over a 1-year horizon of $2 million invested in a fund whose annual
returns in excess of the risk free rate are assumed to be normally distributed with mean 5%
and volatility 12%?

SOLUTION Let the random variable X denote the annual returns in excess of the risk free
rate, so we have

X ∼ N
(
0.05,0.122

)
.

We must find the 10% quantile of the discounted return distribution, i.e. that x such that
P(X<x)=0.1. So we apply the standard normal transformation to X, and then find x such that

P
(

Z <
x − 0.05

0.12

)
= 0.1.

From standard normal statistical tables or using NORMSINV(0.1) in Excel. We know that

P(Z <−1.2816)= 0.1.

Hence,

x − 0.05

0.12
=−1.2816 or x =−1.2816 × 0.12 + 0.05 =−0.1038.

Thus the 10% 1-year VaR is 10.38% of the portfolio value. With $2 million invested in the
portfolio the VaR is $2m × 0.1038 = $207,572. In other words, we are 90% confident that we
will lose no more than $207,572 from investing in this fund over the next year.

Since we have assumed returns are i.i.d., the formula (IV.1.15) for the normal VaR, expressed
as a percentage of the portfolio value, depends on the risk horizon h but it does not depend on
time. That is, under the i.i.d. normal assumption VaR is a constant percentage of the portfolio
value. However, to estimate VaR we need to use forecasts of σh and μh – forecasts that are
based on an i.i.d. model for returns – and in practice these forecasts will change over time
simply because the sample data change over time, or because our scenarios change over time.
Hence, even though the model predicts that VaR is a constant percentage of the portfolio value,
the estimated percentage will change over time, merely due to sample variations.

It is important to realize that all the problems with moving average models of volatility that
we have discussed in Chapter II.3 will carry over to the normal linear VaR model. Since the
returns are assumed to have a constant volatility, this should be estimated using an equally
weighted moving average, which gives an unbiased estimator of the returns variance. But
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equally weighted average volatility estimates suffer from ‘ghost features’. As a result, VaR
will remain high for exactly T periods following one large extreme return, where T is the
number of observations in the sample. Then it jumps down T periods later, even though
nothing happened recently. See Section II.3.7 for further details.

In Section IV.3.3.1 we show that the choice of T has a very significant impact on an
equally weighted VaR estimate – in fact, this choice has much more impact than the choice
between using a normal linear (analytic) VaR estimate as above, and an estimate based on
historical simulation. The larger T is, the less risk sensitive is the resulting VaR estimate,
i.e. the less responsive is the VaR estimate to changing market conditions. For this reason
many institutions use an exponentially weighted moving average (EWMA) methodology for
VaR estimation, e.g. using EWMA to estimate volatility in the normal linear VaR formula.
These estimates, if not the estimator, take account of volatility clustering so that EWMA
VaR estimates are more risk sensitive than equally weighted VaR estimates. For example, the
RiskMetricsTM methodology and supporting database allows analysts to choose between these
two approaches. See Section II.3.8 for further details.

IV.1.5.2 Static Portfolios

Market VaR measures the risk of the current portfolio over the risk horizon, and in order to
measure this we must hold the portfolio over the risk horizon. A portfolio may be specified at
the asset level by stating the value of the holdings in each risky asset. If we know the value of
the holdings then we can find the portfolio value and the weights on each asset. Alternatively,
we can specify the portfolio weights on each asset and the total value of the portfolio. If we
know these we can determine the holding in each asset.

Formally, consider a portfolio with (long or short) holdings {n1,n2, . . . ,nk} in k risky assets,
so ni is the number of units long (ni > 0) or short (ni < 0) in the ith asset, and denote the ith
asset price at time t by pit. Then the value of the holding in asset i at time t is is nipit, and the
portfolio value at time t is

Pt =
k∑

i=1

nipit.

We can define the portfolio weight on the ith asset at time t as

wit = nipit

Pt
.

In a long-only portfolio each ni > 0 and so Pt > 0. In this case, the weights in a fully funded
portfolio sum to one.

Note that even when the holdings are kept constant, i.e. the portfolio is not rebalanced,
the value of the holding in asset i changes whenever the price of that asset changes, and the
portfolio weight on every asset changes, whenever the price of one of the assets changes. So
when we assume the portfolio is static, does this mean that the portfolio holdings are kept
constant over the risk horizon, or that the portfolio weights are kept constant over the risk
horizon? We cannot assume both. Instead we assume either

• no rebalancing – the portfolio holdings in each asset are kept constant, so each time the
price of an asset changes, the value of our holding in that asset will change and hence all
the portfolio weights will change; or



Value at Risk and Other Risk Metrics 21

• rebalancing to constant weights – to keep the portfolio weights constant we must
rebalance all the holdings whenever the price of just one asset changes.

Similar comments apply when a portfolio return (or P&L) is represented by a risk factor
mapping. Most risk factor sensitivities depend on the price of the risk factor. For instance, the
delta and the gamma of an option depend on the underlying price, and the PV01 of a cash
flow depends on the level of the interest rate at that maturity. So when we say that a mapped
portfolio is held constant, if this means that the risk factor sensitivities are held constant then
we must rebalance the portfolio each time the price of a risk factor changes.

The risk analyst must specify his assumption about rebalancing the portfolio over the risk
horizon. We shall distinguish between the two cases described above as follows:

• Static VaR assumes that no trading takes place during the risk horizon, so the holdings
are kept constant, i.e. there is no rebalancing. Then the portfolio weights (or the risk
factor sensitivities) will not be constant: they will change each time the price of an asset
(or risk factor) changes. This assumption is used when we estimate VaR directly over the
risk horizon, without scaling up an estimate corresponding to a short risk horizon to an
estimate corresponding to a longer risk horizon. It does not lead to a tractable formula
for the scaling of VaR to different risk horizons, as the next subsection demonstrates.

• Dynamic VaR assumes the portfolio is continually rebalanced so that the portfolio
weights (or risk factor sensitivities, if VaR is estimated using a risk factor mapping)
are held constant over the risk horizon. This assumption implies that the same risks are
faced every trading day during the risk horizon, if we also assume that the asset (or risk
factor) returns are i.i.d., and it leads to a simple scaling rule for VaR.

IV.1.5.3 Scaling VaR

Frequently market VaR is measured over a short-term risk horizon such as 1 day and then
scaled up to represent VaR over a longer risk horizon. How should we scale a VaR that is
estimated over one risk horizon to a VaR that is measured over a different risk horizon? And
what assumptions need to be made for such a scaling?

The most tractable framework for scaling VaR is based on the assumption that the returns
are i.i.d. normally distributed and that the portfolio is rebalanced daily to keep the portfolio
weights constant. Similarly, if the VaR is based on a risk factor mapping, it is mathematically
tractable to assume the risk factor sensitivities are constant over the risk horizon, and that
the risk factor returns are i.i.d. and have a multivariate normal distribution. As a result the
returns on a linear portfolio will be i.i.d. normally distributed.31 So in the following we derive
a formula for scaling VaR from a 1-day horizon to an h-day horizon under this assumption.

For simplicity of notation, from here onward we shall drop the t from the VaR notation,
unless it is important to make explicit the time at which the VaR estimate is made. Also, in
this section we do not include the discounting of the returns (or, equivalently, the expression
of returns as excesses over the risk free rate) since this does not affect the scaling result, and it
only makes the notation more cumbersome. Hence, to derive formulae (IV.1.18) and (IV.1.21)
below we may, without loss of generality, assume the risk free rate is zero.

31 Note that this assumption is very unrealistic, even for linear portfolios but especially for portfolios containing options. Since options
prices are non-linear functions of the underlying price, if we assume the underlying returns are normally distributed (as is often
assumed in option theory) then the returns on a portfolio containing options cannot be normally distributed.
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Suppose we measure VaR over a 1-day horizon, and assume that the daily return is i.i.d.
normal. Then we have proved above that the 1-day VaR is given by

VaR1,α =�−1(1 − α)σ1 −μ1 (IV.1.17)

where μ1 and σ1 are the expectation and standard deviation of the normally distributed daily
returns. We now use a log approximation to the daily discounted return. To be more specific,
we let32

X1t ≈ Pt+1 − Pt

Pt
≈ ln

(
Pt+1

Pt

)
,

where Pt denotes the portfolio price at time t. We use this approximation because it is con-
venient, i.e. log returns are additive. That is, the h-day discounted log return is the sum of h
consecutive daily discounted log returns. Since the sum of normal variables is another normal
variable, the h-day discounted log returns are normally distributed with expectation μh = hμ1

and standard deviation σh =√
hσ1, as proved in Section II.3.2.1.

We now approximate the h-day log return with the ordinary h-day return, and deduce
that this is (approximately) normally distributed. Then the h-day VaR is given by the
approximation

VaRh,α ≈�−1(1 − α)
√

h σ1 − h μ1. (IV.1.18)

This approximation is reasonably good when h is small, but as h increases the approximation
of the h-day log return with the ordinary h-day return becomes increasingly inaccurate.

What happens if we drop the assumption of independence but retain the assumption that the
returns have identical normal distributions? In Section IV.2.2.2 we prove that if the daily log
return follows a first order autoregressive process with autocorrelation � then the expectation
of the h-day log return is μh = hμ1 (so autocorrelation does not affect the scaling of the mean)
but the standard deviation of the h-day log return is

σh =
√

h̃ σ1, (IV.1.19)

with

h̃ = h + 2�
(
1 − �)−2 (

(h − 1)(1 − �)− �(1 − �h−1)
)
. (IV.1.20)

Hence, in this case,

VaRh,α ≈�−1(1 − α)

√
h̃ σ1 − h μ1, (IV.1.21)

with h̃ defined by (IV.1.20).

EXAMPLE IV.1.5: SCALING NORMAL VAR WITH INDEPENDENT AND WITH AUTOCORRE-
LATED RETURNS

A portfolio has daily returns, discounted to today, that are normally and identically distributed
with expectation 0% and standard deviation 1.5%. Find the 1% 1-day VaR. Then find the
1% 10-day VaR under the assumption that the daily excess returns (a) are independent,

32 Here we use the forward looking return because VaR measures risk over a future horizon, not over the past.
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and (b) follow a first order autoregressive process with autocorrelation 0.25. Does positive
autocorrelation increase or decrease the VaR?

SOLUTION Using formula (IV.1.17), the 1% 1-day VaR is

VaR1,0.01 =�−1(0.99)× 0.015 = 0.034895,

i.e. 3.4895% of the portfolio value. Now we scale the VaR under the assumption of i.i.d.
normal returns. By (IV.1.18) the 1% 10-day VaR is approximately

√
10 times the 1% 1-day

VaR, because the discounted expected return is zero. So the 1% 10-day VaR is approximately

VaR10,0.01 =√
10 × 3.4895% = 11.0348%.

Finally, with h = 10 and � = 0.25 the scaling factor (IV.1.20) is not 10, but 15.778. So
under the assumption that returns have an autocorrelation of 0.25, the 1% 10-day VaR is
approximately

VaR10,0.01 =√
15.778 × 3.4895% = 13.8608%.

A positive autocorrelation in daily returns increases the standard deviation of h-day returns,
compared with that of independent returns. Hence, positive autocorrelation increases VaR,
and the longer the risk horizon the more the VaR will increase. On the other hand, a negative
autocorrelation in daily returns will decrease the VaR, especially over long time horizons.
Readers may verify this by changing the parameters in the spreadsheet for this example.

Scaling VaR when returns are not normally distributed is a complex question to answer, so we
shall address it later in this book. In particular, see Sections IV.2.8 and IV.3.2.3.

IV.1.5.4 Discounting and the Expected Return

We now examine the effect of discounting returns on VaR and ask two related questions:

• Over what time horizon does it become important to include any non-zero expected
excess return in the VaR calculation?

• If we fail to discount P&L in the VaR formula, i.e. if we do not express returns as excess
over the risk free rate, does this have a significant effect on the results?

Banking regulators often argue that the expected return on all portfolios should be equal
to the risk free rate of return. In this case the discounted expected P&L will be zero or, put
another way, the expected excess return will be zero. If we do assume that the expected excess
return is zero the normal linear VaR formula becomes even simpler, because the second term
is zero and the h-day VaR, expressed as a percentage of the current portfolio value, is just the
standard deviation of the h-day return, multiplied by the standard normal critical value at the
confidence level 1 − α.

The situation is different in portfolio management. When quoting risk adjusted performance
measures to their clients, fund managers often believe that they can provide returns greater
than the risk free rate by judicious asset allocation and stock selection. However, expectations
are highly subjective and could even be a source of argument between a fund manager and his
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client, or between a bank and its regulator. Corporate treasurers, on the other hand, are free to
assume any expected return they wish. They are not constrained by regulators or clients.

We now prove that when portfolios are expected to return a rate different from the risk free
rate this should be included as an adjustment to the VaR. This is obvious in the normal i.i.d.
framework described above, since the discounted mean return appears in the VaR formula.
But it is also true in general. To see why, consider the distribution of P&L at time t + h, as
seen from the current time t. This is the distribution of Pt+h − Et(Pt+h) where Et(Pt+h) is the
conditional expectation seen from time t of the portfolio value at time t + h. That is, it is
conditional on the information available up to time t.

Denote by yht,α the α quantile of this distribution, discounted to time t. That is,

P
(
Bht(Pt+h − Et(Pt+h))< yht,α

)= α, (IV.1.22)

where Bht is the value at time t of a discount bond maturing in h trading days. Now (IV.1.22)
may be rewritten as

P
(
BhtPt+h − Pt < yht,α + (BhtEt(Pt+h)− Pt)

) = α,

or as

P
(
BhtPt+h − Pt < yht,α − εht

) = α, (IV.1.23)

where εht = Pt − BhtEt(Pt+h) is the difference between the current portfolio price and its
expected future price, discounted at the risk free rate.33

Note that εht is only zero if the portfolio is expected to return the risk free rate, i.e. if
Et(Pt+h)= (Bht)

−1Pt. Otherwise, comparing (IV.1.23) with (IV.1.8), we have

xht,α = yht,α − εht ⇒ VaRht,α =−yht,α + εht. (IV.1.24)

Hence, the VaR is minus the α quantile of the discounted P&L distribution plus εht, if this is
not zero. When the expected return on the portfolio is greater than the risk free rate of return,
εht will be negative, resulting in a reduction in the portfolio VaR. The opposite is the case if
the portfolio is expected to return less than the risk free rate, and in this case the VaR will
increase.

The following example shows that this adjustment term εht, which we call the drift adjust-
ment to the VaR, can be substantial but only when VaR is measured over a risk horizon of
several months or more.

EXAMPLE IV.1.6: ADJUSTING VAR FOR NON-ZERO EXPECTED EXCESS RETURNS

Suppose that a portfolio’s return is normally distributed with mean 10% and standard deviation
20%, both expressed in annual terms. The risk free interest rate is 5% per annum. Calculate
the 1% VaR as a percentage of the portfolio value when the risk horizon is 1 week, 2 weeks, 1
month, 6 months and 12 months.

SOLUTION The calculations are set out in the spreadsheet and results are reported in
Table IV.1.3 below. As anticipated, the reduction in VaR arising from the positive expected

33 So if the portfolio price follows a martingale process, εht is zero.
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excess return increases with the risk horizon. Up to 1 month ahead, the effect of the expected
excess return is very small: it is less than 0.5% of the portfolio value. However, with a risk
horizon of one year (as may be used by hedge funds, for instance) the VaR can be reduced by
almost 5% of the portfolio value if we take account of an expected excess return of 5%.

Table IV.1.3 Normal VaR with drift adjustment

Risk horizon
(months)

0.25 0.5 1 3 6 12

Mean return 0.21% 0.42% 0.83% 2.50% 5% 10%
Volatility of return 3% 4% 6% 10% 14% 20%
Discount factor 0.99896 0.99792 0.99585 0.98765 0.97561 0.95238
Mean return∗ 0.10% 0.21% 0.41% 1.23% 2.44% 4.76%
Volatility of return∗ 2.88% 4.07% 5.75% 9.88% 13.80% 19.05%
Lower 1% quantile −0.06605 −0.09270 −0.12961 −0.21742 −0.29658 −0.39549
1% VaR∗∗ 6.71% 9.48% 13.38% 22.98% 32.10% 44.31%
1% VaR 6.60% 9.27% 12.96% 21.74% 29.66% 39.55%
Difference 0.10% 0.21% 0.41% 1.23% 2.44% 4.76%

Note: ∗ denotes that the quantities are discounted, and ∗∗ denotes that the VaR is based on a zero mean excess return.

Readers may use the spreadsheet to verify the following:

• Keep the mean return at 10% but change the volatility of the portfolio return. This has a
great effect on the values of the VaR estimates but it has no influence on the difference
shown in the last row; the only thing that affects the difference between the non-drift
adjusted VaR and the drift adjusted VaR is the expected excess return (and the portfolio
value, if the VaR is expressed in value terms).

• Keep the portfolio volatility at 20%, but change the expected return. This shows that
when the portfolio is expected to return x% above the risk free rate, the reduction in VaR
at the 1-year horizon is a little less than x% of the portfolio value.34

IV.1.6 RISK FACTOR VALUE AT RISK

In the previous section we described one simple model for measuring the VaR of a linear
portfolio at the portfolio level. We also obtained just one figure, for the total VaR of the
portfolio, but this is not where VaR measurement stops – if it were, this book would be con-
siderably shorter than it is. In practice, VaR measures are based on a risk factor mapping of
the portfolio, in which case the model provides an estimate of the systematic VaR, also called
the total risk factor VaR. The systematic VaR may itself be decomposed into the VaR due to
different types of risk factors. The specific VaR, also called residual VaR, measures the risk
that is not captured by the mapping.

A risk factor mapping entails the construction of a model that relates the portfolio return,
or P&L, to variations in its risk factors. For example, with an international equity portfolio

34 It can be shown that the reduction in 1-year VaR when we take account of an expected return that is different from the risk free rate
of return is approximately equal to (E(R)− Rf) × (1 − Rf), where E(R) is the expected return on the portfolio and Rf is the risk free
rate over the risk horizon of the VaR model.
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having positions on cash equity and index futures we would typically consider variations in
the following risk factors:

• major market spot equity indices (such as S&P 500, FTSE 100, CAC 40);
• spot foreign exchange (forex) rates (such as $/£, $/e);
• dividend yields in each major market;
• spot LIBOR rates of maturity equal to the maturity of the futures in the domestic and

foreign currencies (such as USD, GBP and EUR).

In the factor model, the coefficient parameters on the risk factor variations are called the
portfolio’s sensitivities to variations in the risk factors. For instance, the international equity
portfolio above has:

• a sensitivity that is called a beta with respect to each of the major stock indices;
• a sensitivity that is one with respect to each exchange rate;
• a sensitivity that is called a PV01 with respect to each interest rate, or each dividend

yield.35

The whole of Chapter III.5 was devoted to describing risk factor mappings and risk factor
sensitivities for different types of portfolios, and it is recommended that readers are familiar
with this, or similar material.

IV.1.6.1 Motivation

The process of risk attribution is the mapping of total risk factor VaR to component VaRs
corresponding to different types of risk factors. The reason why risk managers map portfolios
to their risk factors is that the analysis of the components of risk corresponding to different
risk factors provides an efficient framework for hedging these risks, and for capital allocation.
Risk factors are often common to several portfolios, for instance:

• Foreign exchange rates are common to all international portfolios, whether they contain
equities, commodities or bonds and other interest rate sensitive instruments. The
enterprise-wide exposures to forex rates are often managed centrally, so that these risks
can be netted across different portfolios. But a manager of an international equity or
bond portfolio will still want to know his forex risk, as measured by his forex VaR. So
will the risk manager and senior managers, since they need to know which activities are
the main contributors to each type of risk.

• Zero-coupon yield curves are common to any portfolio containing futures or forwards, as
well as to interest rate sensitive portfolios. And if the portfolio is international then yield
curves in different currencies are risk factors. Interest rate risk is the uncertainty about
the present value of future cash flows, and this changes as discount rates change from

35 Note that the PV01 is measured in value (e.g. dollar) terms but the first two sensitivities are measured in percentage terms; to
convert these into value terms we just multiply by the amount invested in each country, in domestic currency. Or, to convert the PV01
to percentage terms, divide it by the total amount invested in that portfolio which has exposure to that yield curve.
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day to day. Except for portfolios consisting entirely of interest rate sensitive instruments,
interest rate risk is often one of the smallest risks. The firm can use the VaR model to net
these risks when aggregating interest rate VaR across different activities.

Another reason why we base VaR on a risk factor mapping is that typical portfolios are too
large to measure VaR by mapping to all of its instruments. It is technically infeasible to analyse
the risk of most portfolios without the aid of risk factor mapping. For example, measuring VaR
at the level of each asset in a stock portfolio containing 1000 stocks requires modelling the
multivariate distribution of 1000 stock returns. Usually we try to summarize this distribution
using only the returns covariance matrix, but in this example we would still have to deal with
an enormous matrix.

Only a few portfolios are so small that they do not require risk factor mapping. For instance,
we do not really need to map a private investor’s portfolio that has cash positions in only a
few stocks, or any other small portfolio containing similar and straightforward positions. But
small, cash portfolios are not the business of financial institutions. Typically, the institution
will handle tens of thousands of complex positions with exposures to hundreds of different
risk factors. Hence, even measuring VaR at the risk factor level is a formidable challenge.

Another advantage of risk factor mapping is that it provides a convenient framework for the
daily work of a market risk manager. He requires many stress tests of current positions and an
overall assessment of whether capital is available to cover these risks. Stress tests are usually
conducted by changing risk factor values – firstly because this gives the risk manager further
insight into his risk attribution, and secondly because it would be impossible to investigate
different scenarios for each individual asset.

When we measure VaR on portfolios that are mapped to risk factors there are three
important sources of model risk in the VaR estimate:

• The choice of risk factor mapping is subjective. A different risk manager might choose
a different set of risk factors.

• The risk factor sensitivities may have estimation errors. For stock portfolios the risk
factor sensitivities, which are called risk factor betas, depend on a model, and their
estimation is subject to sampling error, as we have seen in Section II.1.2.

• The specific risk of the portfolio is ignored. By measuring VaR based on a risk factor
mapping, all we capture is the systematic VaR.

There are many other sources of model risk in a VaR model and a full discussion of this is
given in Chapter IV.6.

IV.1.6.2 Normal Linear Equity VaR

We now provide some very simple examples of the measurement of VaR based on a risk factor
mapping. In this subsection we consider the case of a cash equity portfolio with excess return
Y and we assume it has a single risk factor, such as a broad market index, with excess return X.
Then the factor model may be written

Yt = α̃ + βXt + εt, (IV.1.25)
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where α̃ and β are constant parameters and εt is the specific return.36 We suppose the risk
factor excess returns X are normally distributed, and that the expected excess return over the
next h days is μh with a standard deviation of σh. Then the portfolio’s excess returns due to
the movements in the index will also be normally distributed, with expectation α̃ + βμh and
standard deviation βσh.

Since the portfolio’s alpha is idiosyncratic to the portfolio, it does not enter the systematic
part of the risk; instead it enters the specific risk component of the VaR. Thus to measure
the systematic VaR of the portfolio, which is here called the equity VaR since the only risk
factor is an equity index, we assume the portfolio’s excess return are normally distributed with
expectation βμh and standard deviation βσh.

Now, using the same argument as in Section IV.1.5.1 when we derived the normal linear
VaR formula at the portfolio level, the normal linear systematic VaR of the portfolio is

Equity VaRh,α = β
(
�−1(1 − α)σh −μh

)
. (IV.1.26)

The following example illustrates a simple application of this formula for a two-stock portfolio
with one risk factor.

EXAMPLE IV.1.7: EQUITY VAR

A portfolio contains cash positions on two stocks: $1 million is invested in a stock with a beta
of 1.2 and $2 million is invested in a stock with a beta of 0.8 with respect to a broad market
index. If the excess returns on the index are i.i.d. and normally distributed with expectation
5% and volatility 20% per annum, what is the 1% 10-day VaR of the portfolio?

SOLUTION The net portfolio beta is measured in dollar terms as

β$ = $1m × 1.2 + $2m × 0.8 = $2.8m.

Note that using the dollar beta in (IV.1.26) gives the equity VaR in dollar terms, not as a
percentage of the portfolio value. The 10-day expected excess return on the risk factor is

μ10 = 0.05 × 10/250 = 0.2%,

and the 10-day standard deviation of the excess returns on the market index is

σ10 = 0.2 × (10/250)1/2 = 0.2/5 = 4%.

Hence, the 1% 10-day equity VaR is

Equity VaR10,0.01 = $2.8m × (2.32635 × 4% − 0.2%)= $254,951.

36 The only reason why we place a tilde ‘∼’ over α here is to avoid confusion with the α that denotes the significance level of the VaR
estimate.
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IV.1.6.3 Normal Linear Interest Rate VaR

This subsection introduces the interest rate VaR of bonds, swaps and loans portfolios that can
be represented as a series of cash flows. In Section III.5.2.1 we explained how to represent
an interest rate sensitive portfolio using an approximate linear risk factor model, called a
cash-flow map, the salient details of which are summarized below for convenience.37

The discounted P&L on the portfolio is the net change in present value of the entire cash
flow series, and the linear approximation derived in Section III.5.2.1 is

�PV ≈−
n∑

i=1

PV01i ×�Ri.

Alternatively, using the matrix algebra that was introduced in Chapter I.2, this may be written
in matrix form as

�PV ≈−θ′�r, (IV.1.27)

where

• θ = (PV011, . . . ,PV01n)
′ is the vector of risk factor sensitivities, that is, θ is a vector

whose ith element is the PV01 of the cash flow that is mapped to the ith vertex;38 and
• �r = (�R1, . . . ,�Rn)

′ is the vector of changes (measured in basis points) in interest
rates at the standard maturities (which are also called the vertices of the risk factor
mapping).

Since the PV01 is the present value of a basis point change, the change in the portfolio value
given by the risk factor representation (IV.1.27) is already measured in present value terms.

Suppose that �r has a multivariate normal distribution with mean μ and covariance matrix
�. Then, based on the linear mapping (IV.1.27), the discounted P&L also has a normal dis-
tribution with expectation −θ

′
μ and variance θ

′
�θ. It is particularly important to understand

the quadratic form θ
′
�θ for the variance, since this will be used many times in Chapter IV.2.39

The minus sign appears in the expectation because the PV01 measures the sensitivity to a one
basis point fall in interest rates. Thus, applying the normal linear VaR formula (IV.1.15), the
VaR of the cash flow is

VaRα =�−1(1 − α)
√

θ′�θ + θ′μ.

We often assume that the same interest rate risk factors are used for discounting, in which
case θ

′
μ, the expected change in portfolio value, is zero. We also measure the covariance

matrix over a specific h-day period. Thus, denoting the h-day interest rate covariance matrix
by �h, the formula for the normal linear 100α% h-day VaR for a cash flow becomes

Interest Rate VaRh,α =�−1(1 − α)
√

θ′�hθ. (IV.1.28)

37 The mapping procedure for creating the cash flows of different maturities to standard vertices is quite complex, and for this we refer
readers to Section III.5.3. This is a long section that covers different cash-flow mappings in detail.
38 See Section III.1.8 for the definition of PV01 and an approximation that is useful for calculating the PV01.
39 Readers who are not entirely comfortable with this should consult Section I.2.4.2 for further information.
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EXAMPLE IV.1.8: NORMAL VAR OF A SIMPLE CASH FLOW

Find the 1% 10-day VaR of a cash flow that is mapped to a 1-year and a 2-year vertex with
PV01 of $50 and $75, respectively. Assume the absolute changes in 1-year and 2-year interest
rates over the next 10 days have a multivariate normal distribution with expectation 0, corre-
lation 0.9 and with annual volatilities of 100 basis points for the change in the 1-year rate and
80 basis points for the change in the 2-year rate.

SOLUTION We use the formula (IV.1.28) with h = 10, α = 0.01, θ = (50, 75)′ and where
�10 is the 10-day covariance matrix of the risk factor changes, expressed in basis points. We
have the annual covariance matrix

�=
(

1002 0.9 × 100 × 80
0.9 × 100 × 80 802

)
.

So the 10-day matrix is

�10 = 10

250

(
1002 0.9 × 100 × 80

0.9 × 100 × 80 802

)
=

(
400 288
288 256

)
.

Hence,

θ′�10θ = (
50 75

)(
400 288
288 256

)(
50
75

)
= 4,600,000

and √
θ′�10θ= $2144.76.

The 1% 10-day VaR is therefore 2.32635 × $2144.76 = $4989.

IV.1.7 DECOMPOSITION OF VALUE AT RISK

This section explains how to aggregate VaR over different activities and disaggregate it into
components corresponding to different types of risk factors. The level of discussion is very
general and we do not provide any examples. However, numerous numerical and empiri-
cal examples are given in later chapters as we investigate each of the three VaR models in
greater depth.

The ability to aggregate and disaggregate VaR is an essential management tool. The aggre-
gation of VaR allows total risk to be assigned to different activities. Indeed, this is the
fundamental tool for the risk budgeting process, which is the allocation of economic capital to
activities, the allocation of (VaR-based) limits for traders, and the estimation of the size of the
regulatory capital requirement for market risk. Or they may call for further supervision of high
risk activities. The disaggregation of VaR helps a risk analyst to understand the main sources
of risk in a portfolio. Good risk managers use VaR decomposition to be better informed about
the risks that need to be hedged, about the limits that traders should be set, and about the risks
of potential trades or investments.
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IV.1.7.1 Systematic and Specific VaR

The total risk of a portfolio may be decomposed into systematic risk, i.e. the risk that is cap-
tured by mapping the portfolio to risk factors, and specific risk, i.e. the risk that is not captured
by the portfolio mapping. Some numerical and empirical illustrations of this type of VaR
disaggregation are provided in Sections IV.2.5.2–IV.2.5.4.

For an example of specific risk, consider portfolios of commodity futures which use spot
prices as risk factors. Here a specific risk arises due to fluctuations in carry costs, if these are
not captured by the portfolio mapping. Another example is when a factor model is used to map
an equity portfolio to its risk factors. Few factor models can provide perfect descriptions of
portfolio returns. There will be a model residual that may have high volatility, especially when
portfolios are not well diversified. In large diversified portfolios the specific returns on each
stock that are left to the model’s residuals tend to cancel each other out if the factor model
is well specified. But if inappropriate (or too few) risk factors are used in the factor model,
the specific risk of the portfolio can be large. In that case we can measure the specific risk by
saving the factor model residuals and applying the VaR model directly to these.

The total VaR includes both the systematic and the specific VaR components. To calculate
this directly we forget about the risk factor mapping and measure the VaR at the portfolio
level, i.e. using a univariate series of portfolio returns or P&L. In the simple normal linear
model this could be based on an assumed (or estimated) value for portfolio volatility; in the
historical VaR model we build an empirical distribution using a time series for the portfolio
returns or P&L; and in the Monte Carlo VaR model we simulate this distribution using a
parametric model for the portfolio’s P&L.

An alternative to the direct calculation of the total VaR is to assume the specific and sys-
tematic risks are approximately uncorrelated. Of course, this would only be the case when
the factor model is capturing most of the variation in the portfolio. Then, in the normal linear
model, the total VaR will be the square root of the sum of the systematic VaR squared and
the specific VaR squared.40 Just adding up the systematic and specific risks is not a good way
to estimate the total risk, because this assumes the systematic and specific risks are perfectly
correlated! Thus, the systematic risk should dominate the total risk, but this happens only if
it is much larger than the specific risk of the portfolio. The regulatory requirements for spe-
cific risk are that a specific risk ‘add-on’ must be applied to the systematic risk to obtain the
total risk, unless the risk model allows one to incorporate the specific risk into the total VaR
estimate.41

IV.1.7.2 Stand-alone VaR

We may also decompose the systematic risk of a portfolio into ‘stand-alone’ components that
correspond to fundamental risk factors. The aim is to disaggregate VaR into the risk associ-
ated with particular asset classes: equity VaR, interest rate VaR, forex VaR and commodity
VaR.42 This allows the forex and interest rate risks of all types of securities in international
portfolios to be individually assessed, and then combined and managed by separate desks. The
disaggregation of VaR into stand-alone components is important even for domestic portfolios.

40 However, no such simple rules apply to the VaR models that are based on simulation.
41 See Section IV.8.2.4 for further details.
42 Gold is usually included in forex VaR rather than commodity VaR.
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For instance, the systematic risk of commodity futures portfolios would be based on move-
ments in spot commodity prices, if we used these as the risk factors, but under such a mapping
portfolios also have interest rate and net carry cost VaR components.

The decomposition of systematic VaR into stand-alone components can be applied whatever
the assumptions made about the evolution of risk factors, and for any type of portfolio. Stand-
alone VaR is calculated by setting all the sensitivities to other risk factors to zero. The precise
computation depends on the VaR model used and further details are given throughout the
remaining chapters.43

Stand-alone VaR measures the risk of an asset class in isolation. It is stand-alone capital
that should be used to compare the performance of different trading activities. Assuming the
trading desks are managed separately, any diversification benefits should be excluded when
assessing their risks. No single desk should be rewarded or penalized for diversification in the
overall businesses. The correlation between different risk factors, e.g. the correlation between
equity returns and changes in interest rates, is taken into account only when we aggregate
stand-alone VaR estimates.

Stand-alone components of VaR do not ‘add up’, unless we assume that portfolios are linear
and everything is perfectly correlated. In the normal linear VaR model the total risk factor VaR
will be equal to the sum of the stand-alone component VaRs if and only if all the risk factors
are perfectly correlated. Otherwise, the total VaR will be less than the sum of the stand-alone
component VaRs, a property that is known as sub-additivity.44 This is because the VaR is
determined by the volatility of portfolio returns in the linear model, and variance (i.e. the
square of the volatility) obeys nice mathematical rules.

More generally, we use some type of simulation to resolve the risk model. Then VaR is
measured as a quantile and quantiles need not be sub-additive, as we shall demonstrate below.
But if the sum of the stand-alone component VaRs does exceed the total VaR, then stand-
alone capital is not appropriate for risk budgeting. Individual portfolios could be within their
risk limits yet the business overall could be in breach of limits. The reason why many large
economic capital driven organizations (mainly large banks and corporations) prefer to use con-
ditional VaR (expected tail loss) instead of VaR for risk budgeting purposes is that conditional
VaR is sub-additive, whatever the resolution method in the risk model.

IV.1.7.3 Marginal and Incremental VaR

An alternative way to disaggregate VaR is to decompose it into marginal VaR components.
Marginal VaR assigns a proportion of the total risk to each component, and hence provides
the risk manager with a description of the relative risk contributions from different factors
to the systematic risk of a diversified portfolio. Unlike stand-alone VaR, marginal VaR is
additive, by virtue of its definition as a proportion. In other words, the sum of the marginal
VaR components is the systematic VaR. For this reason, marginal VaR can be used to allocate
real capital which, being money, must add up.

43 For specific examples of VaR decomposition in the parametric linear framework see Examples IV.2.5 and IV.2.6 for interest rate
sensitive portfolios, Examples IV.2.14–IV.2.17 for equity portfolios and case study IV.2.7 for commodity portfolios. Historical VaR
decomposition is also covered in a series of case studies: in Section IV.3.5.3 for equity and forex VaR, Section IV.3.5.4 for interest
rate and forex VaR, and IV.3.5.5 for commodity VaR. We also derive the marginal VaR estimates in these examples and case studies.
44 A formal definition of sub-additivity is given later in the chapter.



Value at Risk and Other Risk Metrics 33

As its name suggests, marginal VaR is the sensitivity of VaR to the risk factor model
parameters, i.e. the sensitivity of VaR to the risk factor sensitivities θ = (θ1, . . . ,θn)

′.45 Note
that θ can usually be measured in either percentage or value terms, and this determines whether
VaR itself is measured in percentage or value terms.

We now derive an expression for the marginal VaR, by writing VaR as a function of these
parameters, and using some elementary calculus.46 That is, we assume that

VaR = f(θ)

for some unspecified but differentiable function f. The gradient vector of first partial
derivatives is

g(θ)= (
f1(θ), . . . , fn(θ)

)′
, (IV.1.29)

where

fi(θ)= ∂f(θ)
∂θi

for i = 1, . . . ,n.

Hence, a first order Taylor approximation to VaR is

f(θ) ≈ θ′g(θ)=
n∑

i=1

θifi(θ). (IV.1.30)

Each term θifi(θ) in the sum is called the ith marginal component VaR, or just the ith marginal
VaR for short.

When the portfolio is linear and the VaR is estimated from the normal linear VaR model then
the approximation in (IV.1.30) is exact. In this case the sum of the marginal VaRs is always
equal to the total risk factor VaR. But for other portfolios, and also when VaR is estimated
using simulation, the sum of the marginal VaRs is only approximately equal to the total risk
factor VaR.

The gradient vector (IV.1.29) can also be used to approximate the VaR impact of a small
trade. For instance, it can be used to assess the impact of a partial hedge on a trader’s VaR
limit. We use a first order Taylor approximation to the change in VaR for a small change in θ.
Suppose θ changes from θ0 to θ1. Then the associated change in VaR is

f(θ1)− f(θ0)≈ (θ1 − θ0)
′g(θ0). (IV.1.31)

This change in VaR is called the incremental VaR.

IV.1.8 RISK METRICS ASSOCIATED WITH VALUE AT RISK

Active portfolio managers are usually required to benchmark their risk as well as their returns.
During the last decade this task caused considerable confusion. Even the phrase ‘the risk of
returns relative to the benchmark’ is ambiguous, as discussed in Section II.1.6. This section

45 For portfolios that have not been mapped to risk factors, θ can represent the portfolio weights (for VaR in percentage terms) or
holdings (for VaR in nominal terms).
46 Functions of several variables and their derivatives are covered in Section I.1.5 and Taylor expansion is introduced in Section I.1.6.



34 Value-at-Risk Models

begins by introducing benchmark VaR, a metric that is suitable for measuring risk relative to
a benchmark.

Unless VaR is measured using a simple model, such as the normal linear model, it is not
sub-additive. That is, the sum of the stand-alone component VaRs may be greater than the total
VaR. In this case the whole concept of risk budgeting flies out of the window. Traders could
keep within risk limits for each portfolio but the total limit for the desk could be exceeded.
Desk managers could adhere to strict limits, but the total risk budget for the organization as a
whole could still be exceeded. Hence, for risk budgeting purposes most large economic capital
driven organizations use a risk metric that is associated with VaR, and which is sub-additive.
This is a conditional VaR metric that we call expected tail loss or, if measured relative to a
benchmark, expected shortfall. Conditional VaR satisfies all the properties for being a coherent
risk metric, in a sense that will presently be made precise.

IV.1.8.1 Benchmark VaR

When returns are measured relative to a benchmark we consider the active return, which
we assume is the difference between the portfolio return and the benchmark return.47 Then,
expressing VaR in percentage terms, the benchmark VaR is the α quantile of the h-day active
return distribution, discounted to today.

EXAMPLE IV.1.9: BENCHMARK VAR WITH NORMALLY DISTRIBUTED RETURNS

What is the 1% benchmark VaR over a 1-year horizon for $10 million invested in a fund with
an expected active return equal to the risk free interest rate and a tracking error of 3%?48

SOLUTION Since the expected active return is equal to the risk free rate, the discounted
active return has expectation zero. The tracking error is the standard deviation of the active
return. Hence, we apply the normal linear VaR formula (IV.1.15) with

h = 1year, α = 0.01, σ1year = 3% and μ1year = 0.

The standard normal critical value is �−1(0.99) = 2.3264, hence the 1% 1-year benchmark
VaR is

VaR1year,0.01 = 2.3264 × 0.03 = 6.98%.

Multiplying this by the portfolio value of $10 million gives the 1% benchmark VaR of
$697,904. Thus we are 99% confident that losses relative to the benchmark will not exceed
$697,904 when holding this portfolio over the next year.

Compared with tracking error, benchmark VaR has two main advantages. Firstly, it measures
the risk of underperforming the benchmark and not the ‘risk’ of outperforming it. Secondly,
the expected active return does affect the benchmark VaR, whereas tracking error says nothing
about the expected active return on the fund.49

47 See Section II.1.6.2 for the formal mathematical definition of active return.
48 The tracking error is the volatility of the active return.
49 For instance, the fund could be underperforming the benchmark by 5% every year and still have a zero tracking error! See
Section II.1.6 for an example.
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The expected active return has a linear effect on the benchmark VaR, and we demonstrate
this by reconsidering the previous example, this time allowing the expected active return to
be different from zero. Figure IV.1.3 shows that, keeping the tracking error constant at 3%,
the annual benchmark VaR decreases linearly as we increase the expected active return on the
fund, shown on the horizontal axis. As we increase this from −5% up to 5%, the corresponding
1% 1-year benchmark VaR decreases from almost $1.2 million to only $200,000.50
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Figure IV.1.3 Effect of expected active return on benchmark VaR

In short, when a portfolio is expected to outperform a benchmark then the risk of the portfolio
reduces if it is measured by benchmark VaR, but not if it is measured by the tracking error.
Similarly, when a portfolio is expected to underperform a benchmark then the risk of the
portfolio as measured by benchmark VaR increases. This is not a feature of the tracking error,
because that metric only measures the risk relative to the expected active return and is not
affected by the level of the expected active return.

IV.1.8.2 Conditional VaR: Expected Tail Loss and Expected Shortfall

VaR defines a level of loss that one is reasonably sure will not be exceeded. But VaR tells
us nothing about the extent of the losses that could be incurred in the event that the VaR is
exceeded. However, we obtain information about the average level of loss, given that the VaR
is exceeded, from the conditional VaR.

There are two conditional VaR measures, depending on whether we are measuring the VaR
relative to a benchmark or not. The 100α% h-day expected tail loss is the conditional VaR
defined as

ETLh,α =−E
(
Xh|Xh <−VaRh,α

) × P, (IV.1.32)

50 This very noticeable effect is because the VaR is measured over a 1-year horizon. As we have seen in Section IV.1.5.2, over horizons
of a month or less, the expected excess return has less effect on the VaR.
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where Xh denotes the discounted h-day return on the portfolio, VaRh,α is the 100α% h-day
VaR expressed as a percentage of the portfolio’s value and P is the current value of the
portfolio.

The 100α% h-day expected shortfall is the conditional benchmark VaR defined as

ESh,α =−E
(
X̃h|X̃h <−BVaRh,α

) × P, (IV.1.33)

where X̃h denotes the discounted h-day active return on the portfolio and BVaRh,α is the
100α% h-day benchmark VaR expressed as a percentage of the portfolio’s value.

The distinction between VaR, benchmark VaR, ETL and ES can be illustrated by consider-
ing 1000 P&Ls for a portfolio and for its benchmark and looking at (a) the absolute losses on
the portfolio, and (b) the relative losses, measured relative to a benchmark. Both losses are in
present value terms. Then:

• the 1% VaR is the 10th largest absolute loss;
• the 1% ETL is the average of the 10 largest absolute losses;
• the 1% benchmark VaR is the 10th largest relative loss;
• the 1% ES is the average of the 10 largest relative losses.

Their difference is further illustrated by the following example, which is based on an empirical
approach to VaR estimation which we shall later describe as historical simulation.

EXAMPLE IV.1.10: COMPARISON OF DIFFERENT VAR METRICS

The spreadsheet for this example contains a time series of daily values for the Dow Jones
Industrial Average (DJIA) index and for a (hypothetical) portfolio of stocks that closely tracks
the DJIA. The data in the spreadsheet are from 5 January 1998 to 31 December 2001 and at
the end of this period the portfolio value was $1,007,580, which is similar to a $100 per point
position on the DJIA index.

(a) Find the 1% 1-day VaR and the 1% 1-day ETL on the portfolio on 31 December 2001.
(b) Using the DJIA as benchmark, calculate the 1% 1-day benchmark VaR and expected

shortfall for the portfolio on 31 December 2001.

SOLUTION (a) There are exactly 1000 returns in the spreadsheet, so the 1% quantile is the
tenth largest negative return. This is the return of −3.549% on 15 October 1999, as shown on
the left-hand side of Table IV.1.4.51 The 1% daily VaR is minus this return, multiplied by the
current value of the portfolio and discounted by 1 day. But the risk free interest rate on 31
December 2001 was only approximately 4%, so the 1-day discount factor is almost one and
we have set it to one.52 Hence, we compute the portfolio VaR on 31 December 2001 as53

VaR1,0.01 = 3.549% × $1,007,580 = $35,764.

51 Here we have listed the ten largest negative returns in decreasing order of magnitude, including the dates when they occurred, but
the dates are just for interest.
52 The discount factor is about (1 − 0.04/365)−1 = 0.9998. Discounting gives a 1% daily VaR = $35,761, as opposed to $35,764
without discounting.
53 The spreadsheet shows that using the quantile function gives a different answer, not surprisingly given our observations about
the Excel quantile function in Section I.3.2.8. In Excel the assumption is that, while the observations are discrete, the returns are a
continuous random variable.
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This tells us that we are 99% confident of not losing more than $35,764 between 31 December
2001 and 1 January 2002.

The ETL is the average of the ten largest negative returns that are shown in the first columns
of Table IV.1.4, again multiplied by −1 and by the current portfolio value (ignoring the
discounting as before). That is,

ETL1,0.01 = Average {6.127%, . . . ,3.549%} × $1,007,580 = $45,505.

This tells us that if we do exceed the VaR, which we expect to happen with a probability
of 1%, on average we would lose $45,505 from our position. The conditional VaR is much
greater than the ordinary VaR, as is often the case.54

Table IV.1.4 The tail of the return distribution and of the active
return distribution

Date Return Date Active Return

31-Aug-98 −6.127% 29-Sep-00 −1.564%
17-Sep-01 −6.033% 27-Feb-98 −1.548%
14-Apr-00 −5.690% 02-Aug-99 −1.514%
20-Sep-01 −5.233% 10-Jul-98 −1.508%
12-Oct-00 −4.241% 30-Dec-98 −1.505%
12-Mar-01 −3.891% 11-Sep-98 −1.491%
14-Jan-99 −3.864% 16-Jun-99 −1.485%
14-Mar-01 −3.801% 12-Jan-01 −1.483%
07-Mar-00 −3.727% 06-Apr-01 −1.472%
15-Oct-99 −3.549% 01-May-98 −1.445%

(b) The benchmark VaR and ES are calculated using a similar process to that in (a), but this
time using the active returns relative to the DJIA benchmark rather than the returns on the
portfolio itself. The tenth largest negative active return was −1.445% on 1 May 1998, and this
and the other 9 largest negative active returns are shown on the right-hand side of Table IV.1.4.
Recalling that the value of the portfolio on 31 December 2001 was $1,007,580, we calculate
the benchmark VaR and the expected shortfall as:

BVaR1,0.01 = 1.445% × $1,007,580 = $14,557,

and

ES1,0.01 = Average {1.564%, . . . .,1.445%} × $1,007,580 = $15,129.

Hence, we are 99% confident of not losing more than $14,557 more than we would with a
$100 per point position on the DJIA, over a 1-day period. And if we do exceed this figure then
the expected loss, relative to the DJIA position, would be $15,129.

54 By definition, the conditional VaR can never be less than the VaR. The difference between the conditional VaR and the corresponding
VaR depends on the heaviness of the lower tail of the return distribution – the heavier this tail, the greater the difference.
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IV.1.8.3 Coherent Risk Metrics

A risk metric is a single number that is used to summarize the uncertainty in a distribution. For
instance, volatility is a risk metric that summarizes the dispersion over the whole range of a
distribution. Other risk metrics, such as the downside risk metrics introduced in Section IV.1.3,
only summarize the uncertainty over a restricted range for the random variable.

How do we choose an appropriate risk metric? In portfolio management we choose risk
metrics that have an associated risk adjusted performance measure that ranks investments in
accordance with a utility function – and hopefully, a utility function with desirable properties.
But in banking we tend to choose risk metrics that have certain ‘intuitive’ properties. For
instance, we prefer risk metrics that can aggregate risks in an way that accounts for the effects
of diversification.

What other intuitive properties should a ‘good’ risk metric possess? In Section I.6.5.2 we
introduce a property called weak stochastic dominance. Suppose one investment A dominates
another investment B in the sense that the probability of the return exceeding any fixed value is
never greater with investment B than it is with investment A. Any rational investor should rank
A above B. Yet some basic risk adjusted performance measures such as the Sharpe ratio (see
Sharpe, 1994) do not preserve this property, as have seen in Section I.6.5.2. We can construct
two investments A and B where the Sharpe ratio of A is less than that of B even though A
weakly stochastically dominates B.

Clearly, requiring a risk metric to preserve stochastic dominance is not a trivial property.
We shall now phrase this property as the first of several ‘axioms’ that should be satisfied by a
‘good’ risk metric. In the following we use the notation � to denote an arbitrary risk metric.55

Monotonicity

If A weakly stochastically dominates B then A should be judged as no more risky than B
according to our risk metric. We write this property mathematically as

�(A)≤ �(B) if A has weak stochastic dominance over B. (IV.1.34)

Sub-additivity

Furthermore, as mentioned above, we would like the risk metric to aggregate risks in an intu-
itive way, accounting for the effects of diversification. We should ensure that the risk of a
diversified portfolio is no greater than the corresponding weighted average of the risks of the
constituents. For this we need

�(A + B)≤ �(A)+ �(B). (IV.1.35)

Without sub-additivity there would be no incentive to hold portfolios. For instance, we could
find that the risk of holding two stocks with agent 1, who can then net the risk by taking into
account the correlation between the stock returns, is greater than the risk of holding stock
A with agent 1 and stock B with agent 2, with no netting of the two agents’ positions. As
remarked in the introduction to this section, without sub-additivity the risk metric cannot be
used for risk budgeting.

55 For instance, if � is a variance and A is a return X, then �(A) = V(X).
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Homogeneity

Note that a risk metric is simply a measure of uncertainty in a distribution; it says nothing at
all about the risk attitude of an investor. It is not a risk premium. For this reason some authors
believe that another intuitive axiom is that if we double our bet, then we double our risk. More
generally, for any positive constant k the homogeneity axiom requires

�(kA)= k�(A). (IV.1.36)

This axiom states that risk preference has nothing to do with the risk metric, or at least if users
are endowed with a utility function then they must be risk neutral. Risk aversion or risk loving
behaviour is, rather, inhomogeneity, in that the marginal utility of wealth typically depends on
the level of wealth. Of all the four axioms for a coherent risk metric, it is this axiom that states
that a risk metric is a measure of uncertainty, rather than of an agent’s perception of risk. For
this reason, several authors find the homogeneity axiom rather contentious and prefer to use
an axiom that can link the risk metric with risk attitude.

Risk free condition

Finally, we note that some risk metrics, such as VaR, may be measured in value terms (e.g. in
dollars or euros). Others, such as volatility of returns, are measured on a relative scale. It is
more convenient to represent risks on a value scale because then the capital that is at risk can
be offset by capital held in cash or a risk free asset.

For example, suppose that risk is measured in US dollars and that we have capital of $1
million of which 90% is invested in a risky portfolio A and 10% is held in a risk free asset.
Suppose further that the risk of our $0.9 million capital invested in A is $250,000 according
to our risk metric �. In other words, �(A)= $250,000. So we have capital at risk of $250,000
but risk free capital of $100,000. Then, according to the risk free axiom, the net capital at risk
should be $150,000. The intuition behind this is that we could use the $100,000 of risk free
capital to cover the risk on the risky asset.

More generally, suppose we divide our capital into an investment A and amount γ earning
the risk free return. Then the net capital at risk is

�(A + γ)= �(A)− γ. (IV.1.37)

Artzner et al. (1999) introduced the label coherent for any risk metric that satisfies the four
axioms above. They showed that lower partial moment risk metrics are coherent, and that
conditional VaR, i.e. expected shortfall and expected tail loss, are also coherent risk metrics.
But many common risk metrics are not coherent. For instance, any risk metric expressed in
relative terms, like volatility or tracking error, will not satisfy the risk free condition.

VaR is measured in value terms, but it is only coherent under special assumptions about the
distribution of returns. When returns are normally distributed VaR is a coherent risk metric,
because it behaves like the volatility of returns (converted into value terms). But more gener-
ally, VaR is not coherent because quantiles, unlike the variance operator, do not obey simple
rules such as sub-additivity unless the returns have an elliptical distribution. The next example
constructs a portfolio containing only two instruments for which VaR is not sub-additive.
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EXAMPLE IV.1.11: NON-SUB-ADDITIVITY OF VAR

Suppose we write the following two binary options: option A pays $10,000 if the monthly
return on the S&P 500 index is at least 20% and option B pays $10,000 if the monthly return
on gold is at least 20%. Both options are sold for $1000. We assume that the returns on the
S&P 500 and gold are independent and that each has a probability of 0.02532 of returning at
least 20%.56 Show that the sum of the 5% VaRs on each separate position is less than the 5%
VaR when the two options are taken together in a portfolio.

SOLUTION First consider each position separately: in each individual position there is only
a 2.532% chance that we pay out $10,000. Put another way, the P&L distribution is exactly

P(P&L =−9000) = 2.532% and P(P&L ≤ 1000) = 1.

This is depicted in Figure IV.1.4.
We cannot lose more than $9000, so this is the 1% VaR, i.e. P(P&L ≤−$9000)= 1%. And

indeed, $9000 is also the 2.5% VaR. But what is the 5% VaR, i.e. the amount X such that
P(P&L ≤ −X) = 5%? It is important to note that the P&L is truly discrete for this binary
option, it is not just a discrete approximation to a continuous random variable. Either we
make a profit of $1000 or we lose $9000. These are the only alternatives. It makes no sense to
interpolate between these outcomes, as if we could obtain a P&L between them. We know the
distribution function is exactly as shown Figure IV.1.4, so we can read off the 5% quantile: it
is +$1000. The sum of the two 5% VaRs is thus −$2000.

Now consider a portfolio containing both the options. The most we can lose is $18,000,
if both options are called. By the independence assumption, this will happen with probabil-
ity 0.025322 = 0.000642. We could also lose exactly $9000 if one option is called and the
other is not. The probability of this happening is 2 × 0.02532 × (1 − 0.02532) = 0.049358.

1,000–9,000

2.532%

5%

100%

Figure IV.1.4 P&L distribution for one binary option

56 Readers will see from the solution that the probability 0.02532 is chosen so that −$9000, is the 5% quantile of the portfolio P&L.
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2,000–18,000
0.0642%

5%

100%

–9,000

Figure IV.1.5 P&L distribution for a portfolio of two binary options

Hence, the probability that we lose $9000 or more is 4.9358% + 0.0642% = 5%. Hence, as
depicted in Figure IV.1.5, the 5% VaR of the portfolio is $9000. This is greater than −$2000,
i.e. the sum of the VaR on the two individual positions taken separately. Hence, the VaR is not
sub-additive.

IV.1.9 INTRODUCTION TO VALUE-AT-RISK MODELS

The material presented in this section, which provides essential background reading for the
remainder of the book, introduces the three basic types of VaR models:

• the normal linear VaR model, in which it is assumed that the distribution of risk factor
returns is multivariate normal and the portfolio is required to be linear;

• the historical simulation model, which uses a large quantity of historical data to estimate
VaR but makes minimal assumptions about the risk factor return distribution; and

• the Monte Carlo VaR model, which in its most basic form makes similar assumptions to
the normal linear VaR model.

It is easy to estimate VaR once we have the discounted return distribution, but constructing this
distribution can take considerable effort. The only differences between the three VaR models
are due to the manner in which this distribution is constructed. All three approaches may be
developed and generalized, as will be explained in the next three chapters. The Monte Carlo
framework is the most flexible of all, and may be used with a great diversity of risk factor
return distributions. And, like historical simulation, it also applies to option portfolios.

IV.1.9.1 Normal Linear VaR

A note on terminology is appropriate first. The risk factor (or asset) returns covariance matrix
is central to this approach and for this reason some people call this approach the covariance
VaR model. However, I find this terminology slightly ambiguous for two reasons. Firstly, in
its most basic form the Monte Carlo VaR model also uses the risk factor returns covariance
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matrix. Secondly, a parametric linear VaR model need not summarize the risk factor depen-
dency with a single covariance matrix. For instance, we could use several covariance matrices
in the normal or Student t mixture linear VaR model, as we shall see in the next chapter.

In fact, the parametric linear VaR models have been given many different names by many
different authors. Some refer to them as the analytic VaR models, but analytic expressions
for VaR may also be derived for non-linear portfolios. Other authors call normal linear VaR
the delta–normal VaR, but we do not actually need to assume that risk factors are normally
distributed for this approach and the use of the term ‘delta’ gives the impression that it always
refers to a linearization of the VaR for option portfolios.

The parametric linear VaR model is only applicable to a portfolio whose return or P&L is
a linear function of its risk factor returns or its asset returns. The most basic assumption in
the model is that risk factor returns are normally distributed, and that their joint distribution
is multivariate normal, so the covariance matrix of risk factor returns is all that is required
to capture the dependency between the risk factor returns. Under these assumptions it is pos-
sible to derive an explicit formula for the VaR, and we have already demonstrated this in
Sections IV.1.5.1, IV.1.6.2 and IV.1.6.3.

VaR is usually measured over a short risk horizon, and we have shown in Section IV.1.5.2
that it is a reasonable approximation to assume that the excess return on the portfolio is zero
over such an horizon. Then the normal linear VaR formula takes a very simple form. As a
percentage of the portfolio value, the 100α% normal linear VaR is simply minus the standard
normal α quantile, multiplied by the standard deviation of the portfolio returns over the risk
horizon. In a linear portfolio, this standard deviation may be represented as the square root of
a quadratic form that is based on the risk factor sensitivity vector and the risk factor covariance
matrix over the risk horizon.57

The next chapter is a very long chapter, completely devoted to discussing the parametric
linear VaR model. We shall see that it is not necessary to assume that risk factors returns
have a multivariate normal distribution in order to derive a formula for the VaR. It is also
possible to derive a formula when risk factor returns have a multivariate Student t distribution,
or when they have a mixture of normal or Student t distributions. However, in the mixture case
the formula gives VaR as an implicit rather than an explicit function, so a numerical method
needs to be applied to solve for the VaR.

Furthermore, it is not necessary to assume that each risk factor return follows an i.i.d. pro-
cess, although this is a standard assumption for scaling VaR over different risk horizons.
It is possible to find a simple scaling rule for linear VaR when the risk factor return are
autocorrelated, provided there is no time-varying volatility.58

IV.1.9.2 Historical Simulation

The historical VaR model assumes that all possible future variations have been experienced in
the past, and that the historically simulated distribution is identical to the returns distribution
over the forward looking risk horizon. Again, a note on terminology is in order. Some authors
call this model the non-parametric VaR model, but I do not like this nomenclature because
parametric distributions can be a useful addition to this framework when estimating VaR at

57 See Section I.2.4 for the derivation of this result.
58 We have already stated this rule, in the context of the normal linear model, in Section IV.1.5.3. Further details are given in
Section IV.2.2.2.
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very high quantiles. Having said this, the term ‘historical VaR’ is a little unfortunate, since
both of the other models can use historical data, if required. For instance, we may use a risk
factor return covariance matrix forecast that is based on historical data for the risk factors.

Historical scenarios on contemporaneous movements in risk factors are used to simulate
many possible portfolio values in h days’ time. For this, we need to apply the risk factor map-
ping (e.g. the factor model for equities, the cash-flow map for interest rate sensitive portfolios,
or the Taylor expansion for options) to each one of these contemporaneous simulated risk fac-
tor returns. We assume the risk factor sensitivities are held constant at their current levels, as
discussed in Section IV.1.5.2. Then the risk factor mapping changes each set of correlated risk
factor returns into one possible return for the portfolio over the risk horizon of the VaR model.
This h-day return is discounted to today, if necessary, using the h-day discount rate.59

Taking all the simulated discounted portfolio returns together, we can build an empirical
distribution of the h-day portfolio return or P&L. Then the 100α% h-day VaR is minus the
α quantile of the historically simulated distribution. If the distribution is of portfolio returns
then VaR is expressed as a percentage of the current portfolio value, and if the distribution is
of portfolio P&L VaR is expressed in value terms.

One such simulated P&L density is depicted in Figure IV.1.6. The lower 1% quantile of
the distribution is −0.04794 million dollars. This is calculated in the spreadsheet using linear
interpolation. Hence the 1% VaR based on this set of simulations is $47,940.
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Figure IV.1.6 Simulated P&L density showing 1% VaR

The main limitations of historical VaR stem from the constraints imposed by the sample
size. The number of data points used to construct the historical distribution is equal to the
number of observations on each risk factor return in the simulation. This number should be
as large as possible, otherwise there would be very few points in the lower tail of the distri-
bution and the VaR, especially at high confidence levels, would be imprecise. The historical
data should be sampled at the daily frequency and should span many years into the past.
This is because we need very many data points to estimate the quantiles of an empirical

59 But this is not necessary if the discounting is already accounted for in the risk factor sensitivity, as it is in PV01.
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distribution, especially those quantiles in the extreme lower tail (which are required for
VaR estimates at high confidence levels). Gathering such data can be a difficult and time-
consuming task. We should try not to use overlapping h-day returns in the model, for reasons
that will be clarified in Section IV.3.2.7. So even if we have many, many years of daily
data on each risk factor we can initially measure VaR at the daily risk horizon only. If we
require VaR over a longer horizon we need to scale up the daily VaR estimate somehow.
The problem is that scaling historical VaR estimates is very tricky. This is fully discussed in
Section IV.3.2.

On the other hand, one great advantage of historical VaR is that it makes few distributional
assumptions. No assumption is made about the parametric form of the risk factor return dis-
tribution, least of all multivariate normality. For instance, we do not need to assume that the
risk factor returns covariance matrix can capture all the complex dependencies between risk
factors. The only distributional assumption is that the multivariate distribution of the risk
factor returns over the risk horizon will be identical to the distribution in the past. Also, if we
scale the historical VaR to a longer risk horizon, we need to assume the risk factor returns
are i.i.d. They need not be normally distributed; as long as they have a ‘stable distribution’60

we can derive a scaling rule for historical VaR.
In summary, a major advantage of historical VaR is that it bases risk factor dependencies on

experienced risk factor returns and comovements between these, rather than on a parametric
model for their distribution. However, the model also suffers from a major drawback. Due to
sample size constraints historical VaR needs to be assessed initially at the daily horizon, and
then scaled up to longer horizons. The scaling of historical VaR from a daily to a longer risk
horizon requires a detailed investigation of the nature of the empirical return distribution. Usu-
ally it is not appropriate to apply the square-root-of-time scaling rule, as we do for normal i.i.d.
returns. Moreover, historical VaR has only limited applications to option portfolios because
any type of scaling will distort their gamma effects, as we shall demonstrate in Section IV.5.4.

IV.1.9.3 Monte Carlo Simulation

In its most basic form the Monte Carlo VaR model uses the same assumptions as the normal
linear VaR model, i.e. that the risk factor returns are i.i.d. with a multivariate normal dis-
tribution. In particular, it assumes that the covariance matrix is able to capture all possible
dependency between the risk factor returns. However, the Monte Carlo VaR model is
extremely flexible and many different assumptions about the multivariate distribution of risk
factor returns can be accommodated. For instance, we could use a copula to model the
dependence and specify any type of marginal risk factor return distributions that we like.61

In the i.i.d. multivariate normal Monte Carlo VaR model we simulate independent standard
normal vectors and these are transformed to correlated multivariate normal vectors using the
Cholesky decomposition of the risk factor returns covariance matrix.62 Then the portfolio
mapping is applied to each vector of simulated risk factor changes to obtain a simulated
portfolio value at the end of the risk horizon, one for each simulated vector of correlated risk

60 See Section I.3.3.11 for further details about stable distributions.
61 Copulas are dependence models that allow one to build any number of multivariate distributions from a given set of marginal
distributions. Chapter II.6 is completely devoted to introducing copulas, and provides many copulas, and copula simulations, in Excel.
62 The Cholesky matrix is introduced in Section I.2.5 and its role in generating correlated simulations is described, with Excel
examples, in Section I.5.7.
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factor returns. To reduce the sampling error we generate a very large number of simulations
and apply techniques to reduce the error variance.63

For example, if we use 100,000 simulations then we have 100,000 simulated portfolio
values at the risk horizon in h days’ time, and hence also 100,000 simulated returns on the port-
folio. These are expressed in present value terms and then the 100α% h-day VaR is obtained
as minus the lower α quantile of the discounted h-day portfolio return distribution.

Both the multivariate normality and the i.i.d. assumptions can be generalized, and we shall
discuss how this is done in Sections IV.4.3 and IV.4.4. Another essential difference between
the Monte Carlo VaR and parametric linear VaR models is that the Monte Carlo approach can
be applied to non-linear portfolios, and to option portfolios in particular.

Clearly the normal linear VaR and the normal Monte Carlo VaR models are very similar
because they make identical assumptions about risk factor distributions. The only difference
between the two models is that the evolution of the risk factors is simulated in the Monte
Carlo VaR model whereas it is obtained analytically in the normal linear VaR model. Thus
the normal linear VaR is precise, albeit based on an assumption that is unlikely to hold, whilst
the normal Monte Carlo VaR estimate is subject to simulation error. Thus, the normal Monte
Carlo VaR estimate should be similar to the normal linear VaR estimate. If it is different,
that can only be because an insufficient number of simulations were used. In fact, it is a
waste of time to apply normal Monte Carlo VaR to a linear portfolio, because this merely
introduces sampling errors that are not present in the normal linear VaR model. Nevertheless,
there is still a good reason for applying Monte Carlo VaR to a linear portfolio, and this is that
the Monte Carlo VaR can be based on virtually any multivariate distribution for risk factor
returns, whereas closed-form solutions for parametric linear VaR only exist for a few select
distributions.

IV.1.9.4 Case Study: VaR of the S&P 500 Index

The aim of this subsection is to illustrate the three standard VaR models, in their most basic
form, by applying them to measure the VaR of a very simple portfolio with a position of $1000
per point on the S&P 500 index. We use the case study to illustrate the different ways in which
the three models build the portfolio return distribution, and to give the reader some insight into
the reasons why different VaR models give different results. A more thorough discussion of
this topic is left until Chapter IV.6, after we have reviewed all three models in detail.

Daily historical data on the S&P 500 index from 3 January 2000 until 8 January 2008 are
downloaded from Yahoo! Finance.64 Using the same data set for each, we apply the three mod-
els to estimate the VaR of a position of $1000 per point on the index on 8 January 2008. Since
the index closed at 1390.19 on that day, the nominal value of our position is P = $1,390,190.

Normal Linear VaR

Here we assume a normal distribution for the portfolio’s daily returns, and we use the log
approximation since this is usually very accurate over a 1-day horizon. From the historical
price series in the spreadsheet we compute the daily log returns over the whole sample,

63 See Section IV.4.2.3 for an overview of these techniques.
64 The symbol for the S&P 500 index is ∧GSPC.
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and hence estimate the standard deviation σ of these returns as σ̂ = 1.116%.65 Under the
assumption that the log returns are i.i.d. we can use the square-root-of-time rule, setting the
h-day standard deviation σ̂h =√

hσ̂. For example, σ̂10 =√
10 × 1.116% = 3.53%.

For simplicity, and because it will not detract from the illustration, we assume that the
expected return on our position and the risk free rate are both zero, so that no discount-
ing or drift adjustment needs to be made to the returns before calculating the VaR. Hence,
we set

Normal Linear VaRh,α =�−1(1 − α)σ̂hP. (IV.1.38)

For example,

Normal Linear VaR10,0.1 = 2.32635 × 0.0353 × $1,390,190 = $114,168.

Historical VaR

The historical VaR estimate uses exactly the same historical daily log returns as above, but now
no parametric form is assumed for the log returns distribution. The α quantile is calculated on
the actual daily (log) returns that were realized over the sample.66 This is then multiplied by
−1 and by the nominal value of the portfolio, to convert the quantile into a 1-day VaR in
nominal terms. For comparison with the other models we also apply a square-root scaling law
to the historical 1-day VaR to obtain the h-day historical VaR, even though there may be no
theoretical justification for the use of this rule. Thus we multiply the 1-day historical VaR by√

h to obtain the h-day historical VaR.
For example, the 1% quantile of the empirical return distribution in our case study is

−2.959%, so the 1% 10-day historical VaR estimate is

Historical VaR10,0.1 =√
10 × 0.02959 × $1,390,190 = $130,666.

Monte Carlo VaR

For the Monte Carlo VaR we take the same standard deviation estimate σ̂h as that used in
the normal linear VaR model. Using the Excel command =NORMSINV(RAND())∗σ̂h, as
explained in Section I.5.7, we simulate a very large number of hypothetical h-day returns.
Only 5000 are set into the spreadsheet, but readers may increase the number of simulations by
filling down column D. Then we apply the Excel PERCENTILE function to find the α quan-
tile of their distribution. This is multiplied by the nominal value of the portfolio to convert the
quantile into a 100α% h-day VaR in nominal terms.

The Monte Carlo simulations are automatically repeated each time you change any data
in the spreadsheet, unless you turn the automatic calculation option to manual. To repeat the
simulations at any time just press F9. We use no variance reduction technique here, so unless
a very large number of simulations are used the result can change considerably each time.
Table IV.1.5 summarizes results for α = 1% and 5% and for h = 1 and 10. Of course, in
the spreadsheet readers will see a different value for Monte Carlo VaR than that shown in the

65 The caret ‘∧’ above the symbol denotes the sample estimate.
66 Using the Excel PERCENTILE function for expediency, if not accuracy! See Section I.3.2.8 for a critique of the Excel percentile
function.
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right-hand column of Table IV.1.5. Remember, the linear VaR gives the exact figure and the
Monte Carlo VaR is subject to simulation errors, but the variance of this error decreases as we
increase the number of simulations.67

Table IV.1.5 Comparison of estimates from different VaR models

Normal linear Historical Normal Monte Carlo

5% 1-day VaR $25,527 $25,579 $25,125
1% 1-day VaR $36,103 $41,130 $36,160
5% 10-day VaR $80,723 $80,887 $80,246
1% 10-day VaR $114,168 $130,066 $113,248

The difference between the normal linear and the historical VaR estimates is more apparent
at the 1% significance level. At the 5% level the two estimates are similar, but the historical
return distribution is leptokurtic. That is, it has heavier tails than the normal distribution, so the
VaR at extreme quantiles is greater when estimated using the historical simulation approach.
The square-root scaling rule may not appropriate for historical VaR, but even without this
potential error the 1% 1-day VaR estimates are already very different. The estimated VaR
is about 14% greater when based on historical simulation. Relative to the portfolio value of
$1,390,190, we have a 1% 1-day VaR of:

• 36,103/1,390,190 = 2.6% according to the normal linear VaR model, but
• 41,130/1,390,190 = 2.96% according to the historical VaR model.

The reason is that the normal linear VaR model assumes the returns have a normal distribution,
whereas the sample excess kurtosis of the daily log returns is 2.538. Such a high positive
excess kurtosis indicates that the empirical S&P 500 return distribution has heavy tails, so
the assumption of normality that is made in the linear and Monte Carlo VaR models is not
validated by the data.

IV.1.10 SUMMARY AND CONCLUSIONS

We opened this chapter by discussing the risk metrics that are commonly used by fund man-
agers, banks and corporations. In the fund management industry risk is commonly measured
in the context of a returns model, whereas in banking and corporate treasury the risk model is
usually separate from the returns model. Hence, quite different risk metrics were traditionally
used in these industries.

A market risk metric is a single number which measures the uncertainty in a portfolio’s
P&L, or in its return. Its fundamental purpose is to summarize the portfolio’s potential for
deviations from a target or expected return. A typical risk metric for passive fund management
is tracking error, which is the volatility of the active return. Unfortunately tracking error has
also been adopted by many active portfolio managers, even though it is not an appropriate
risk metric for actively managed funds. One of the reasons for this is that tracking error is

67 Further discussion of this point is given in Section IV.4.2.3.
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not a downside risk metric. Many downside risk metrics have been developed for active fund
managers and several of these have better properties than tracking error. Increasingly, portfolio
managers are adopting VaR-based downside risk metrics, such as benchmark VaR and expected
shortfall, because these metrics tell clients about the probability of losing money. Tracking
error is more difficult for clients to understand, particularly when it is linked to the (possibly
erroneous) assumption that the portfolio returns are normally distributed. VaR does not have
to assume that returns are normally distributed.

VaR is a quantile risk metric. But when returns are normal every quantile is just a multiple of
the standard deviation, so in this special case VaR obeys the same rules as a standard deviation.
Otherwise, VaR does not obey nice rules and it may not even be sub-additive.

VaR and its associated risk metrics have become the universal risk metrics in banking and
corporate treasury. The reason why large companies measure risks using a VaR model is that
these firms often have a management structure that is based on economic capital allocation.
Most major banks use VaR to measure both economic and regulatory capital. Economic capital
affects the bank’s credit rating, and is a primary tool for management. Regulatory capital is
determined by either standardized rules or an internal VaR model. We shall return to this topic
in the final chapter of this book.

There are many reasons why banks like to use VaR, which are listed in the introduction and
explained in this chapter. But VaR has some undesirable properties. It is not a coherent risk
metric, unless we make some simplifying assumptions about the behaviour of the risk factors
and the portfolio is a linear portfolio. However, the conditional VaR metric is always coherent,
so many banks use a conditional VaR such as expected tail loss in their internal economic
capital calculations.

In the bottom-up risk assessment paradigm that is prevalent today, risks are assessed first at
the individual position level, and then positions are progressively aggregated into larger and
larger portfolios. A portfolio can contain anything from a single instrument to all the positions
in the entire firm. At each stage of aggregation VaR is estimated and decomposed into the VaR
due to different classes of risk factors. This decomposition allows the VaR due to risk factors
in different asset classes to be identified, monitored and hedged efficiently. It also allows
capital to be allocated in accordance with a universal risk metric, used for all the activities in
the firm.

The disaggregation of VaR allows risk to be allocated to different activities and risk capital
to be allocated accordingly. VaR can be decomposed into systematic and specific components,
and systematic VaR can be further decomposed into stand-alone or marginal VaR components
belonging to different types of risk factors. Thus, taking all the positions in the entire bank,
we estimate stand-alone and/or marginal VaR for equity, interest rates, credit spreads, com-
modity groups, and forex. Stand-alone VaR is used in performance measures that determine
the internal allocation of economic capital. It measures the risk of an activity (e.g. proprietary
trading, or swaps) in isolation. It does not reduce the risk of any component by accounting
for any diversification benefits (e.g. between equities and interest rates). Marginal VaR can
be used to allocate real capital. It tells us the proportion of total risk stemming from different
activities and it accounts for diversification benefits between the components. Marginal VaR
can be extended to the concept of incremental VaR, i.e. the impact on the portfolio’s VaR of
adding a small new position to the portfolio.

Aggregation of VaR provides information about the total risk faced by a firm and the
adequacy of its total capital to cover risky positions given and adverse market move. Marginal
VaR is constructed in such as way that the sum of marginal VaRs is the total risk factor VaR.
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But stand-alone VaR estimates do not sum to the total risk factor VaR. Since stand-alone VaR
measures risk in isolation, the aggregation of stand-alone component VaRs takes account of
diversification.

We have defined several distinct steps to take when building a VaR model, and provided a
preliminary discussion on the choice available at each step. The model building process may
be summarized as follows:

1. Define the portfolio and identify its risk factors. Portfolios may be characterized by their
asset holdings, and long-only portfolios may be characterized by the portfolio weights.

2. Set the basic parameters for the model. The basic parameters of a VaR model are the
confidence level and the risk horizon, and a VaR estimate increases with both these
parameters. The choice of these parameters depends on the end use of the model. For
instance, trading limits may be set at 95% confidence and a horizon of 1 day, whereas
economic capital estimates may be based on 99.9% confidence with a risk horizon of
1 year.

3. Map the portfolio to its risk factors. This entails building a model for the portfolio return,
or P&L, as a function of the absolute or percentage returns to its risk factors. The risk
factor mapping process greatly facilities (a) the subsequent VaR computations, which
indeed in many cases would be impossible without a risk factor mapping; and (b) the
efficient firm-wide hedging of risks, as the fundamental risk factors can be isolated and
the exposures netted centrally.

4. Model the evolution of the risk factors over the risk horizon. It is here that the three
different VaR models adopt different approaches. Both the parametric linear VaR and
Monte Carlo VaR models assume we know a functional form for the multivariate
stochastic process generating the time series of risk factor returns. For instance, they
could assume that an independent, normally distributed process generates each risk
factor returns series. In that case the returns on each risk factor have no autocorrela-
tion or time-varying volatility, but the risk factor returns at any particular point in time
are assumed to be correlated with each other. The historical VaR model uses an empirical
risk factor return distribution, without assuming it takes any specific parametric form. It
is only based on the risk factor variations and dependencies that have been experienced
in a historical sample. Importantly, it does not rely on a covariance matrix to capture all
the risk factor variations and dependencies.

5. Revalue the portfolio for each realization of the risk factors. Here we typically assume
the risk factor sensitivities are held constant over a risk horizon of h days. But these
sensitivities depend on the risk factor values and the risk factor values change over the
risk horizon. Hence, there is an implicit assumption that the portfolio is rebalanced to
maintain constant risk factor sensitivities.

6. Build a distribution for the portfolio return or P&L. Which of these distributions is used
will depend on the risk factor mapping. In some cases (e.g. interest rates or long-short
portfolios) it is more natural to generate the P&L distribution, in others is it more natural
to use the return distribution. The h-day portfolio return or P&L must also be expressed
in present value terms. If the expected return on the portfolio is very different from
the discount rate, then the return distribution should be modified to account for this.
When VaR is measured over a long horizon such as a year, this adjustment may result
in a significant reduction in VaR. This is particularly important when VaR is used to
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assess the absolute risk of funds, which typically expect to return more than the risk
free rate and have risks that are measured over long horizons. However, when the risk
of funds is benchmarked, in which case the VaR is based on the active returns rather
than the ordinary returns on the fund, there may be little justification to suppose that
the expected active return will be any different from zero whatever the fund manager
tells you.

7. Calculate the VaR and ETL. The 100α% h-day VaR is (minus) the α quantile of the
discounted h-day distribution. If we build a P&L distribution, the VaR and ETL will be
measured in value terms and if we build a return distribution they will be expressed as
a percentage of the portfolio value. It is possible to obtain the quantiles using analytical
methods in parametric linear VaR models. Otherwise, the returns or P&L distribution
must be simulated, and the quantile is calculated using interpolation on the simulated
distribution. Often we assume that an i.i.d. process generates each risk factor return;
then we can measure the VaR initially over a 1-day horizon, and scale this up to a VaR
estimate for a longer risk horizon. Under some conditions we can use a square-root
scaling rule for VaR, for instance when the discounted portfolio returns are i.i.d. and
normally distributed with mean zero.

For a linear portfolio with i.i.d. normally distributed returns, the normal linear VaR should
be identical to the normal Monte Carlo VaR. But in the ensuing chapters we shall see that both
the parametric linear VaR model and the Monte Carlo VaR model may be generalized to make
other distributional assumptions. The Monte Carlo VaR model is particularly flexible in that
the returns may be assumed to have any parametric distribution that we care to specify.

An obvious problem with the historical VaR model is the severe constraints that are imposed
by sample size limitations. In their basic form the other two models only require a covariance
matrix, and this can be based on only very recent historical data – or indeed, it can be set
according to the personal views of the analyst, using no historical data at all. But in historical
VaR one has to re-create an artificial history for the portfolio, holding its current weights,
holdings or risk factor sensitivities constant over a very long historical period. Even when this
is possible, it is not necessarily desirable because the market conditions in the recent past and
the immediate future may have been very different from those experienced many years ago. As
its name suggests, the historical model assumes that the distribution of the portfolio returns
or P&L over the risk horizon is the same as the historical distribution. This makes it more
difficult to perform scenario analysis in the historical model, although we shall demonstrate
how to do this in Section IV.7.5.1.

A further distinguishing feature between the models is that a normal linear VaR esti-
mate can only be applied when the portfolio return is a linear function of its risk factor
returns. This restriction does not apply to the Monte Carlo VaR and historical VaR models,
although the application of historical VaR to option portfolios is fairly limited, as explained in
Section IV.5.4.

To summarize the main advantage of each approach:

• The normal linear VaR model is analytically tractable.
• Historical VaR makes no (possibly unrealistic) assumption about the parametric form of

the distribution of the risk factors.
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• The Monte Carlo VaR model is very flexible, and it can be applied to any type of position,
including non-linear, path-dependent portfolios.

To summarize the main limitations of each approach:

• The normal linear VaR model is restricted to linear portfolios and it can only be gener-
alized to a few simple parametric forms, such as a Student t or a mixture of normal or
Student t distributions.

• Historical VaR assumes that all possible future variation has been experienced in the
past. This imposes very stringent, often unrealistic, requirements on data.

• Monte Carlo VaR is computationally intensive and without sophisticated sampling
methods, simulation errors can be considerable.

The chapter concluded with a case study that highlights the similarities and the differences
between the three VaR models, using a simple position on the S&P 500 index as an illustration.
We used an i.i.d. normal assumption in the linear and Monte Carlo VaR models, so the two
VaR estimates should be identical for every significance level and risk horizon. However, even
with many thousand simulations and a very simple portfolio, the simulation errors in Monte
Carlo VaR were considerable. Also, there was a highly significant excess kurtosis in the S&P
return distribution, and for this reason the normal linear and Monte Carlo VaR estimates were
significantly lower than the historical VaR estimates at the 1% significance level. However, at
the 5% significance level, all three models gave similar results.





IV.2
Parametric Linear VaR Models

IV.2.1 INTRODUCTION

The parametric linear model calculates VaR and ETL using analytic formulae that are based
on an assumed parametric distribution for the risk factor returns, when the portfolio value is
a linear function of its underlying risk factors. Specifically, it applies to portfolios of cash,
futures and/or forward positions on commodities, bonds, loans, swaps, equities and foreign
exchange. The most basic assumption, discussed in the previous chapter, is that the returns
on the portfolio are independent and identically distributed with a normal distribution. Now
we extend this assumption so that we can decompose the portfolio VaR into VaR arising from
different groups of risk factors, assuming that the risk factor returns have a multivariate normal
distribution with a constant covariance matrix. We derive analytic formulae for the VaR and
ETL of a linear portfolio under this assumption and also when risk factor returns are assumed
to have a Student t distribution, or a mixture of normal or Student t distributions.

In bond portfolios, and indeed in any interest rate sensitive portfolio that is mapped to a
cash flow, the risk factors are the interest rates of different maturities that are used to both
determine and discount the cash flow. When discounting cash flows between banks we use a
term structure of LIBOR rates as risk factors. Additional risk factors may be introduced when
a counterparty has a credit rating below AA. For instance, the yield on a BBB-rated 10-year
bond depends on the appropriate spread over LIBOR, so we need to add the 10-year BBB-
rated credit spread to our risk factors. More generally, term structures of credit spreads of
different ratings may also appear in the market risk factors: when portfolios contain trans-
actions with several counterparties having different credit ratings, one credit spread term
structure is required for each different rating.

There is a non-linear relationship between the value of a bond or swaps portfolio and interest
rates. However, this non-linearity is already captured by the sensitivities to the risk factors,
which are in present value of basis point (PV01) terms. Hence, we can apply the parametric
linear VaR model by representing the portfolio as a cash flow, because the discount factor that
appears in the PV01 is a non-linear function of the interest rate.

We may also base parametric linear VaR and ETL estimates on an equity factor model,
provided it is linear, which is very often the case. Foreign exchange exposures are based on
a simple linear proportionality, and commodity portfolios can be mapped as cash flows on
term structures of constant maturity forwards or interest rates. Thus, the only portfolios to
which the parametric linear VaR method does not apply are portfolios containing options, or
portfolios containing instruments with option-like pay-offs. That is, whenever the portfolio’s
P&L function is a non-linear function of the risk factors, the model will not apply.

In the parametric linear VaR model, all co-dependencies between the risk factors are
assumed to be represented by correlations. We represent these correlations, together with the
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variance of each risk factor over some future risk horizon h, in an h-day covariance matrix.
It is this covariance matrix – and in mixture linear VaR models there may be more than one
covariance matrix – that really drives the model. To estimate the covariance matrix we employ
a moving average model.1 These models assume the risk factors are i.i.d. From this it follows
that the h-day covariance matrix is just h times the 1-day covariance matrix, a result that is
commonly referred to as the square-root-of-time rule.2

In the standard parametric linear VaR model we cannot forecast the covariance matrix using
a GARCH model.3 When a return is modelled with a GARCH process it is not i.i.d.; instead it
exhibits volatility clustering. As a result the square-root-of-time rule does not apply. However,
this is not the reason why we cannot use a GARCH process in the parametric linear VaR
model. The problem is that when a return follows a GARCH process we do not know the
exact price distribution h days from now. We know this distribution when the returns are i.i.d.,
because it is the same as the distribution we have estimated over a historical sample. But the
h-day log return in a GARCH model is the sum of h consecutive daily log returns and, due
to the volatility clustering it is the sum of non-i.i.d. variables. Thus far, we only know the
moments of the h-day log return distribution, albeit for a general GARCH process.4

The outline of this chapter is as follows. In Section IV.2.2 we introduce the basic concepts
for parametric linear VaR. Starting with VaR estimation at the portfolio level (i.e. we consider
the returns or P&L on a portfolio, without any risk factor mapping), we examine the properties
of the i.i.d. normal linear VaR model and then extend this assumption to the case where returns
are still normally distributed, but possibly autocorrelated. This assumption only affects the
way that we scale VaR estimates over different risk horizons; the formula for 1-day VaR
remains the same. An extension of the normal linear VaR formula for h-day VaR is derived
for the case where daily returns are autocorrelated, and this is illustrated with a numerical
example.

Then we consider the more general case, in which we assume the portfolio has been mapped
to its risk factors using an appropriate mapping methodology.5 We provide the mathematical
definitions, in the general context of the normal linear VaR model, of the different components
of the total VaR of a portfolio. The total VaR may be decomposed into systematic (or total risk
factor) VaR and specific (or residual) VaR, where the systematic VaR is the VaR that is captured
by the risk factor mapping. The systematic VaR may be further decomposed into stand-alone
VaR or marginal VaR components, depending on our purpose:

• Stand-alone VaR estimates are useful for estimating the risk of a particular activity in
isolation, without considering any netting or diversification effects that this activity may
have with other activities in the firm. Diversification effects are accounted for when
aggregating stand-alone VaRs to a total risk factor VaR. The ordinary sum of the stand-
alone VaRs is usually greater than the total risk factor VaR, and in the normal linear VaR
model it can never be less that the total risk factor VaR.

1 Full details of the estimation of equally and exponentially weighted moving average covariance matrices are given in Chapter II.3.
2 See Section II.3.2.1 for further details.
3 For further details on GARCH models see Chapter II.4.
4 Alexander et al. (2008) have derived analytic formulae for the first eight moments of the aggregated return distribution based on
asymmetric GARCH with a general error distribution. By fitting a parametric form to these moments Alexander et al. (2009) derive a
quasi-analytic VaR model.
5 Portfolio mapping for all types of financial instruments is fully described in Chapter III.5.
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• Marginal VaR estimates are useful for the allocation of real capital (as opposed to eco-
nomic capital) because the sum of all the marginal VaR estimates is equal to the total
risk factor VaR (and real capital must always add up).

The next five sections provide a large number of numerical and empirical examples, and
two detailed case studies, on the application of the normal linear model to the estimation of
total portfolio VaR. We focus on the decomposition of the systematic VaR into components
corresponding to different types of risk factor. Each section provides a detailed analysis of a
different type of asset class.

• Section IV.2.3 examines the VaR of interest rate sensitive portfolios. These portfolios are
represented as a sequence of cash flows that are mapped to standard maturities along a
term structure of interest rates. Their risk factors are the LIBOR curve and usually one
or more term structures of credit spreads. The risk factor sensitivities are the PV01s of
the mapped cash flows. Here we use numerical examples to show how to disaggregate
the total VaR into LIBOR VaR and credit spread VaR components.

• Section IV.2.4 presents the first case study of this chapter, on the estimation of VaR
for a portfolio of UK bonds. We demonstrate how to use principal component analysis
to reduce the dimension of the risk factors from 60 to only 3, and describe some risk
management applications of this technique.

• Section IV.2.5 examines the normal linear VaR for stock portfolios, from a small port-
folio with just a few positions on selected stocks, to a large international portfolio that
has been mapped to broad market risk factors. We focus on the decomposition of VaR
into systematic and specific factors, and the moving average methods that are used to
estimate the covariance matrix.

• Section IV.2.6 shows how to estimate the total VaR for an international stock portfolio,
how to decompose this into specific and systematic VaR, and how to disaggregate total
VaR into equity VaR, foreign exchange (forex) VaR and interest rate VaR components.
We use numerical and empirical examples to calculate stand-alone and marginal VaR
components for different types of risk factor, and to illustrate the sub-additivity property
of normal linear VaR when component VaRs are aggregated.

• Section IV.2.7 presents a case study on the normal linear VaR of a commodity futures
trading desk, using constant maturity futures as risk factors.

There are three other parametric linear VaR models that have analytic solutions for VaR.
These are the Student t, the normal mixture and the Student t mixture models. They are
introduced and illustrated in Sections IV.2.8 and IV.2.9. Of course, other parametric forms
are possible for return distributions but these do not lead to a simple analytic solution
and instead we must use Monte Carlo resolution methods. The formulae that we derive
in Section IV.2.8 are based on the assumption that returns are i.i.d. We describe a simple
technique to extend these formulae so that they assume autocorrelated returns. However,
to include volatility clustering we would normally use Monte Carlo simulation for the
resolution.6

6 See Section IV.4.3 for further details.
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Section IV.2.10 explains how exponentially weighted moving averages (EWMAs) are
applied in the parametric linear VaR model, with a particular emphasis on the advantages
and limitations of the RiskMetrics™ VaR methodology that was introduced by JP Morgan in
the 1990s. Section IV.2.11 derives analytic formulae for the expected tail loss associated with
different parametric linear VaR models. The formal derivation of each formula is then illus-
trated with numerical examples. Section IV.2.12 presents a case study on estimating the VaR
and ETL for an exposure to the iTraxx Europe 5-year credit spread index. The distribution
of daily changes in the iTraxx index has a significant negative skew and a very large excess
kurtosis and, of the alternatives considered here, we demonstrate that its highly non-normal
characteristics are best captured by a mixture linear VaR model. Section IV.2.13 concludes
by summarizing the main results in this long chapter. As usual there are numerous interactive
Excel spreadsheets on the CD-ROM to illustrate virtually all of the examples and all three
case studies.

IV.2.2 FOUNDATIONS OF NORMAL LINEAR VALUE AT RISK

This section introduces the normal linear VaR formula, first when VaR is measured at the port-
folio level and then when the systematic VaR is measured by mapping the portfolio to its risk
factors. We also discuss the rules for scaling normal linear VaR under both i.i.d. and autocorre-
lated returns. Then we derive the risk factor VaR, and its disaggregation into stand-alone VaR
components and into marginal VaR components. We focus on consequences of the normal
linear model’s assumptions for aggregating VaR. Finally, we derive the incremental VaR, i.e.
the impact on VaR of a small trade, in a linear portfolio with i.i.d. normally distributed returns.

IV.2.2.1 Understanding the Normal Linear VaR Formula

The formal definition of VaR was given in Section IV.1.4, and we summarize it here for
convenience. Let

Xht = BhtPt+h − Pt

Pt

be the discounted h-day return on a portfolio. Here Bht denotes the price of a discount bond
maturing in h trading days and Pt denotes the value of the portfolio at time t. Then the
100α% h-day VaR estimated at time t is

VaRht,α =
{−xht,α as a percentage of the portfolio value Pt

−xht,αPt when expressed in value terms
(IV.2.1)

where xht,α is the lower α quantile of the distribution of Xht, i.e. P(Xht < xht,α)= α.

Derivation of the Formula

The normal linear VaR formula was derived in Section IV.1.5.1. It is convenient to summarize
that derivation here, but readers should return to Section IV.1.5 if the following is too concise.
In the normal linear VaR model we assume the discounted h-day returns on the portfolio follow
independent normal distributions, i.e. Xht is i.i.d. and

Xht ∼ N(μht,σht
2). (IV.2.2)
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The parameters μht and σht are the forecasts made at time t of the portfolio’s expected return
over the next h days, discounted to today, and its standard deviation. Amongst other things,
these will depend on both the risk horizon and the point in time at which they are forecast.

Applying the standard normal transformation to (IV.2.2) gives7

P(Xht < xht,α)= P
(

Xht −μht

σht
<

xht,α −μht

σht

)
= P

(
Z <

xht,α −μht

σht

)
= α,

where Z is a standard normal variable. Thus

xht,α −μht

σht
=�−1(α), (IV.2.3)

where �−1(α) is the standard normal α quantile value, such as

�−1(0.01)=−2.32635, �−1(0.025) =−1.95996,

�−1(0.05)=−1.64485, �−1(0.1) =−1.28155.
(IV.2.4)

By the symmetry of the normal distribution function,

�−1(α) =−�−1(1 − α).

Hence, substituting the above and (IV.2.1) into (IV.2.3) gives the 100α% h-day parametric
linear VaR at time t, expressed as a percentage of the portfolio value, as

VaRht,α =�−1(1 − α)σht −μht. (IV.2.5)

To estimate normal linear VaR we require forecasts of the h-day discounted mean and stan-
dard deviation of the portfolio return, and to obtain these forecasts we can make up scenarios
for their values, scenarios that would normally be based on the portfolio’s risk factor mapping,
so that we can find separate scenario estimates for the different risk factor component VaRs.
Alternatively, we can base the forecasts for the mean and standard deviation of the portfolio
return on historical data for the assets or risk factors. This is useful, to compare with the results
based on the historical simulation model using identical data.

When using historical data, for a long-only portfolio we would create a constant weighted
historical return series based on the current allocations.8 Then we base our (ex-ante) forecasts
of the mean and standard deviation on the (ex-post) sample estimates of mean and variance.

For a long-short portfolio we use changes (P&L) on the risk factors and keep the holdings
constant rather than the portfolio weights constant. For a cash-flow map, we keep the PV01
vector constant, and use absolute changes in interest rates and credit spreads. In both cases
we produce a P&L series for the portfolio. Then the mean and standard deviation of the P&L
distribution, and hence also the VaR, are estimated directly in value terms.

7 We have applied the same transformation to both sides of the inequality in the square bracket, so the probability α remains unchanged.
8 A justification of the constant weights assumption was given in Section IV.1.5.3.
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Drift Adjustment

From the discussion in Section IV.1.5.2 we know that a non-zero discounted expected return
μht can be important. Fund managers, for instance, may sell their services on the basis of
expecting returns in excess of the discount rate. Figure IV.2.1 illustrates how a positive mean
discounted return will have the effect of reducing the VaR. We have drawn here a normally
distributed h-day discounted returns density at time t, with positive mean μht and where the
area under the curve to the left of the point μht − �−1(1 − α)σht is equal to α, by the definition
of VaR.

The h-day Discounted Returns Density

0

0.02

0.04

0.06

0.08

0.1

0.12

0µht − Φ−1(1−α)σht µht

VaRht,α

Figure IV.2.1 Illustration of normal linear VaR

In Section IV.1.5.2 we showed that it is only for long risk horizons and when a portfolio
is expected to return substantially more than the discount rate that the drift adjustment to
VaR, i.e. the second term in (IV.2.5), will have a significant effect on VaR. Hence, we often
assume the portfolio is expected to return the risk free rate so that μht, the present value of
the expected return, is zero. We shall assume this in the following, unless explicitly stated
otherwise.

Without the drift adjustment, the normal linear VaR formula is simply

VaRht,α =�−1(1 − α)σht.

Henceforth in this chapter we shall also drop the implicit dependence of the VaR estimate on
the time at which the estimate is made, and write simply

VaRh,α =�−1(1 − α)σh (IV.2.6)

for the 100α% h-day VaR estimate made at the current point in time, when the portfolio’s
expected return is the discount rate.
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Scaling VaR to Different Risk Horizons

When normal linear VaR estimates are based on daily returns to the portfolio, we obtain a
1-day VaR estimate using the daily mean μ1 and standard deviation σ1 in the VaR formula.
How can we scale this 1-day VaR estimate up to a 10-day VaR estimate, or more generally to
an h-day VaR estimate?

The normal linear VaR estimate assumes that the daily returns are i.i.d. We have to
approximate the returns by the log returns, as explained in Section IV.1.5.4, then

• the h-day mean is h× daily mean, μh = hμ1;
• the h-day variance is h× daily variance, σ2

h = hσ2
1.

In this case, it now follows directly from (IV.2.5) that

VaRh,α ≈�−1(1 − α)
√

hσ1 − h μ1

So, under the assumption of i.i.d. returns, it is only when the portfolio is expected to return
the discount rate, i.e. μ1 = 0, that

VaRh,α ≈√
h × VaR1,α. (IV.2.7)

Note that the scaling argument above applies to any base frequency for the VaR. For
instance, we could replace ‘day’ with ‘month’ above. Then the square-root-of-time scaling
rule will apply to scaling the 1-month VaR to longer horizons, but only if we assume the
monthly return on the portfolio is the risk free (discount) rate. For example, if this assump-
tion holds and the 1-month VaR is 10% of the portfolio value, then the 6-month VaR will
be

√
6 × 10% = 24.5% of the portfolio value. When returns are normal and i.i.d. and the

expected return on the portfolio is the risk free rate, we could also apply the square-root
law for scaling from longer to shorter horizons. For example, annual VaR = 25% ⇒ monthly
VaR = 25% × 12−1/2 = 7.22%.

However, the square-root scaling rule should be applied with caution. Following our dis-
cussion in Section IV.1.5.4, we know that even when the returns are i.i.d. the square-root
scaling rule is not very accurate, except for scaling over a few days, because we have to make
a log approximation to returns and this approximation is only accurate when the return is very
small.9 Moreover, it does not usually make sense to scale 1-day VaR to risk horizons longer
than a few days, because the risk horizon refers to the period over which we expect to be
able to liquidate (or completely hedge) the exposure. Typically portfolios are rebalanced very
frequently and the assumption that the portfolio weights or risk factor sensitivities remain
unchanged over more than a few days is questionable. Hence, to extrapolate a 1-day VaR to,
for instance, an annual VaR using a square-root scaling rule is meaningless.

How Large is VaR?

The assumption that portfolio returns are i.i.d. and normal is usually not justified in practice,
so the normal linear VaR model gives only a very crude estimate for VaR. However, this is

9 See Section I.1.4.4 for further explanation of this point.
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still very useful as a benchmark. It provides a sort of ‘plain vanilla’ VaR estimate for a linear
portfolio, against which to measure more sophisticated models.

Table IV.2.1 illustrates the normal linear VaR given by (IV.2.6) for different levels of volatil-
ity and some standard choices of significance level and risk horizon. All VaR estimates are
expressed as a percentage of the portfolio value. Each row corresponds to a different volatil-
ity, and these volatilities range from 5% to 100%. We only include risk horizons of 1 day and
10 days in the table, since the VaR for other risk horizons can easily be derived from these. In
fact, we only really need to display the 1-day VaR figures, because the corresponding 10-day
VaR is just

√
10 times the 1-day VaR under the i.i.d. normal assumption.

Table IV.2.1 Normal linear VaR for different volatilities, significance levels and risk horizons

α 0.1% 1% 5% 10%

h 10 1 10 1 10 1 10 1

5% 3.1% 1.0% 2.3% 0.7% 1.6% 0.5% 1.3% 0.4%
10% 6.2% 2.0% 4.7% 1.5% 3.3% 1.0% 2.6% 0.8%
15% 9.3% 2.9% 7.0% 2.2% 4.9% 1.6% 3.8% 1.2%
20% 12.4% 3.9% 9.3% 2.9% 6.6% 2.1% 5.1% 1.6%
25% 15.5% 4.9% 11.6% 3.7% 8.2% 2.6% 6.4% 2.0%
30% 18.5% 5.9% 14.0% 4.4% 9.9% 3.1% 7.7% 2.4%
40% 24.7% 7.8% 18.6% 5.9% 13.2% 4.2% 10.3% 3.2%
50% 30.9% 9.8% 23.3% 7.4% 16.4% 5.2% 12.8% 4.1%
75% 46.4% 14.7% 34.9% 11.0% 24.7% 7.8% 19.2% 6.1%

100% 61.8% 19.5% 46.5% 14.7% 32.9% 10.4% 25.6% 8.1%

In our empirical examples we shall very often calculate the 1% 10-day VaR, as this is
the risk estimate that is used for market risk regulatory capital calculations. Hence, from the
results in Table IV.2.1:

• in major currency portfolios that have recently had volatility in the region of 10%, we
would expect the 1% 10-day VaR estimate to be about 5% of the portfolio value;

• equity portfolios, with volatilities running at 40–60% at the time of writing, could have
1% 10-day VaR of about 25% of the portfolio value;

• credit spreads have been extremely volatile recently and so interest rate VaR is unusually
high at the moment, unless all counterparties have AA credit rating;

• energy portfolios, and many other commodity portfolios, tend to have the highest VaR.
With oil prices being highly volatile at the time of writing, the 1% 10-day VaR for energy
portfolios could be up to 40% of the portfolio value!

IV.2.2.2 Analytic Formula for Normal VaR when Returns are Autocorrelated

It is important to simplify models when they are applied to thousands of portfolios every day.
A very common simplification is that returns are not only normally distributed but also
generated by an i.i.d. process. But in most financial returns series this assumption is simply
not justified. Many funds, and hedge funds in particular, smooth their reported results, and
this introduces a positive autocorrelation in the reported returns. Even when returns are not
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autocorrelated, squared returns usually are, when they are measured at the daily or weekly
frequency. This is because of the volatility clustering effects that we see in most markets.

There are no simple formulae for scaling VaR when returns have volatility clustering.
Instead, we could apply a GARCH model to simulate daily returns over the risk horizon,
as explained in Sections IV.3.3.4 and IV.4.3. In this section we derive a formula for scaling
VaR under the assumption that the daily log returns rt are not i.i.d. but instead they follow a
first order autoregressive process where � is the autocorrelation, i.e. the correlation between
adjacent log returns.10

Write the h-period log return as the sum of h consecutive one-period log returns:

rht =
h−1∑
i=0

rt+i.

Assuming the log returns are identically distributed, although no longer independent, we can
set μ = E(rt+i) and σ2 = V(rt+i) for all i. Autocorrelation does not affect the scaling of the
expected h-period log return, since E(rht)=∑h−1

i=0 E(rt+i)=hμ. So the h-day expected log return
is the same as it is when the returns are i.i.d.

But autocorrelation does affect the scaling standard deviation. Under the first order
autoregressive model the variance of the h-period log return is

V(rht)=
h−1∑
i=0

V(rt+i)+ 2
∑

i�=j

Cov(rt+i, rt+j)= σ2

(
h + 2

h−1∑
i=1

(h − i)�i

)
.

Now we use the identity

n∑
i=1

(n − i + 1)xi = x
(1 − x)2

[n(1 − x)− x(1 − xn)], |x| < 1. (IV.2.8)

Setting x = � and n = h − 1 in (IV.2.8) gives

V(rht)= σ2

(
h + 2

�

(1 − �)2

[
(h − 1)(1 − �)− �(1 − �h−1)

])
. (IV.2.9)

This proves that when returns are autocorrelated with first order autocorrelation coefficient

� then the scaling factor for standard deviation is not
√

h but
√

h̃, where

h̃ = h + 2
�

(1 − �)2

[
(h − 1)(1 − �)− � (

1 − �h−1
)]

. (IV.2.10)

Hence, we should scale normal linear VaR as

VaRh,α =
√

h̃ �−1(1 − α)σ1 − h μ1. (IV.2.11)

10 This representation for a time series is introduced in Section I.3.7.
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Even a small autocorrelation has a considerable effect on the scaling of volatility and VaR.
The following example shows that this effect is much more significant than the effect of a
mean adjustment term when the portfolio is not expected to return the risk free rate. Thus for
the application of parametric linear VaR to hedge funds, or any other fund that smoothes its
returns, the autocorrelation adjustment is typically more important than an adjustment to the
VaR that accounts for a positive expected excess return.

EXAMPLE IV.2.1: ADJUSTING NORMAL LINEAR VAR FOR AUTOCORRELATION

Suppose a portfolio’s daily log returns are normally distributed with a standard deviation of
1% and a mean of 0.01% above the discount rate. Calculate (a) the portfolio volatility and
(b) the 1% 10-day normal linear VaR of the portfolio under the assumption of i.i.d. daily
log returns and under the assumption that daily log returns are autocorrelated with first order
autocorrelation �= 0.2.

SOLUTION Under the i.i.d. assumption and assuming 250 trading days per year, the annual
excess return is 0.01% × 250 = 2.5% and the volatility is

1% ×√250 = 15.81%.

The 1% 10-day VaR is

2.32635 × 0.01 ×√
10 − 10 × 0.0001 = 0.0726.

That is, the 1% 10-day VaR is 7.26% of the portfolio’s value.
But under the assumption that daily log returns have an autocorrelation of 0.2, the volatility

and the VaR will be greater. The adjustment factor, i.e. the second term on the right-hand side
of (IV.2.10) is calculated in the spreadsheet. It is 124.375 for h = 250, and 4.375 for h = 10.
Hence, the volatility is

1% ×√
374.375 = 19.35%,

and the 1% 10-day VaR is

2.32635 × 0.01 ×√
14.375 − 10 × 0.0001 = 0.0872.

That is, the 1% 10-day VaR is now 8.72% of the portfolio’s value.

Following this example, some general remarks are appropriate.

• Even this relatively small autocorrelation of 0.2 increases the 1% 10-day VaR by about
one-fifth, whereas the daily mean excess return of 0.01% (equivalent to an annual
expected return of 2.5% above the discount rate) only decreases the 1% 10-day VaR
by 0.1%.

• The higher the autocorrelation and the longer the risk horizon, the greater the effect that a
positive autocorrelation has on increasing the VaR. For higher autocorrelation and longer
risk horizons, the VaR could easily double when autocorrelation is taken into account.
And of course, negative autocorrelation decreases the VaR in a similar fashion.
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IV.2.2.3 Systematic Normal Linear VaR

For reasons that have been discussed in the previous chapter, it is almost always the case that
the risk manager will map each portfolio to a few well-chosen risk factors.11 The systematic
return or P&L on a portfolio is the part of the return that is explained by variations in the risk
factors. In a linear portfolio it may be represented as a weighted sum,

Y =
m∑

i=1

θiXi, (IV.2.12)

where Xi denotes the return or P&L on the ith risk factor and the coefficients θi denote the
portfolio’s sensitivity to the ith risk factor.12 If we use the risk factor returns on the right-hand
side of (IV.2.12) rather than their P&L, and the sensitivities are measured in percentage terms,
then Y is the systematic return; otherwise Y is the systematic P&L on the portfolio.13

To calculate the systematic normal linear VaR we need to know the expectation E(Yh) and
variance V(Yh) of the portfolio’s h-day systematic return or P&L. We can use the factor model
(IV.2.12) to express these in terms of the expectations, variances and covariances of the risk
factors. To see this, write the vector of expected excess returns on the risk factors as

μh = (
E(X1h), . . . ,E(Xmh)

)′
,

write the vector of current sensitivities to the m risk factors as θ= (θ1, . . . , θm)′ and denote the
m × m covariance matrix of the h-day risk factor returns by �h. Then the mean and variance
of the portfolio’s h-day systematic returns or P&L may be written in matrix form as14

E(Yh)= θ
′
μh, V(Yh)= θ

′
�hθ. (IV.2.13)

The normal linear VaR model assumes that risk factors have a multivariate normal
distribution; hence, the above mean and variance are all that is required to specify the
entire distribution. Substituting (IV.2.13) into (IV.2.5) gives the following formula for the
100α% h-day systematic VaR:

Systematic VaRh,α =�−1(1 − α)
√

θ′�hθ− θ′μh. (IV.2.14)

In many cases we assume that the expected systematic return is equal to the discount
rate, in which case the discounted mean P&L will be zero and (IV.2.14) takes a particularly
simple form:

Systematic VaRh,α =�−1(1 − α)
√

θ′�hθ. (IV.2.15)

11 Risk factor mapping models are specific to each asset class, and were explained in detail in Chapter III.5.
12 If the mapping has a constant term we set X1 = 1.
13 If the risk factor sensitivities are also measured in present value terms (as is the PV01, for instance) then the above P&L is also in
present value terms. Otherwise (IV.2.12) represents the undiscounted P&L. More specific details are given in Section III.5.2.7.
14 See Sections I.2.4 and IV.1.6.3, where the same matrix forms were applied specifically to cash flow portfolios.
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The above shows how the systematic normal linear VaR can be obtained straight from the
risk factor mapping. We only need to know the current:

• estimate of the risk factor sensitivities θ;
• forecast of the h-day risk factor returns covariance matrix �h.

Note that both these inputs can introduce significant errors into the VaR estimate, as will be
discussed in detail in Chapter IV.6.

A common assumption is that each of the risk factors follows an i.i.d. normal process. In
the absence of autocorrelation or conditional heteroscedasticity in the processes, the square-
root-of-time rule applies. In this case,

�h = h�1. (IV.2.16)

In other words, each element in the 1-day covariance matrix is multiplied by h. Thus, just as
for the total VaR in (IV.2.7), the h-day systematic VaR (IV.2.15) can be scaled up from the
1-day systematic VaR using a square-root scaling rule:

Systematic VaRh,α =√
h × Systematic VaR1,α.

Two simple numerical examples of normal linear systematic VaR have already been given in
Section IV.1.6. A large number of much more detailed examples and case studies on normal
linear systematic VaR for cash flows, stock portfolios, currency portfolios and portfolios of
commodities will be given in this chapter and later in the book.

IV.2.2.4 Stand-Alone Normal Linear VaR

In Section IV.1.7 we explained, in general non-technical terms, how systematic VaR may be
disaggregated into components consisting of either stand-alone VaR or marginal VaR, due to
different types of risk factor. The stand-alone VaR is the systematic VaR due to a specific type
of risk factor. So, depending on the type of risk factor, stand-alone VaR may be called equity
VaR, forex VaR, interest rate VaR, credit spread VaR or commodity VaR.

Due to the diversification effect between risk factor types, and using the summation rule for
the variance operator, in the normal linear model the sum of the stand-alone VaRs is greater
than or equal to the total systematic VaR, with equality only in the trivial case where all the risk
factors are perfectly correlated. However, in the next subsection we show how to transform
each stand-alone VaR into a corresponding marginal VaR, where the sum of the marginal
VaRs is equal to the total risk factor VaR.

In this subsection we specify the general methodology for calculating stand-alone VaRs
in the normal linear VaR model. Although the derivation of theoretical results is set in the
context of the normal linear VaR model, it is important to note that similar aggregation and
decomposition rules apply to the other parametric linear VaR models that we shall introduce
later in this chapter.

For the disaggregation of systematic VaR into different components we need to partition
the risk factor covariance matrix �h into sub-matrices corresponding to equity index, interest
rate, credit spread, forex and commodity risk factors. In the following we illustrate the decom-
position when there are just three risk factor types, and we shall assume these are the equity,
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interest rate and forex factors. Although we do not cover this explicitly here, other classes of
risk factor may of course be included.

Let the risk factor sensitivity vector θ, estimated at the time that the VaR is measured, be
partitioned as

θ= (θ
′
E,θ

′
R,θ

′
X)′, (IV.2.17)

where θE, θR and θX are column vectors of equity, interest rate and forex risk factor sensitiv-
ities. For simplicity we assume the interest rate exposure is to only one risk free yield curve,
but numerical examples of interest rate VaR when there are several yield curve risk factors
and the exposures are to lower credit grade entities are given in Section IV.2.3.

For ease of aggregation it is best if all three vectors θE, θR and θX are expressed in percent-
age terms, or all three are expressed in nominal terms. Table IV.2.2 explains how these vectors
are measured, and here we assume the numbers of equity, interest rate and forex risk factors
are nE, nR and nX respectively. We also use the notation:

• P to denote the value of the portfolio in domestic currency at the time the VaR is
measured;

• βi to denote the portfolio’s percentage beta with respect to the ith equity risk factor;
• PV01i to denote the portfolio’s PV01 with respect to the ith interest rate risk factor;
• Xi to denote the portfolio’s nominal exposure to the ith foreign currency in domestic

terms.

Table IV.2.2 Risk factor sensitivities

Percentage sensitivities Nominal sensitivities

Equity θE = (β1, . . . ,βnE
)′ θE = P(β1, . . . ,βnE

)′

Interest rate θR = P−1(PV011, . . . ,PV01nR )
′ θR = (PV011, . . . ,PV01nR )

′

Forex θX = (1, . . . ,1)′ θX = (X1, . . . , XnX )′

Now we partition the h-day covariance matrix �h into sub-matrices of equity risk factor return
covariances �Eh, interest rate risk factor return covariances �Rh and forex risk factor return
covariances �Xh and their cross-covariance matrices �ERh, �EXh and �RXh. Thus we write the
risk factor covariance matrix in the form

�h =
⎛
⎝�Eh �ERh �EXh

�′
ERh �Rh �RXh

�′
EXh �′

RXh �Xh

⎞
⎠ . (IV.2.18)

This partitioned matrix has off-diagonal blocks equal to the cross-covariances between differ-
ent types of risk factors. For instance, if there are five equity risk factors and four foreign
exchange risk factors, the 5 × 4 matrix �EXh contains the 20 pairwise h-day covariances
between equity and foreign exchange factors, with i,jth element equal to the covariance
between the ith equity risk factor and the jth forex risk factor.

Ignoring any mean adjustment, the systematic normal linear VaR is given by (IV.2.15) with
θ partitioned as in (IV.2.17) and with �h given by (IV.2.18). With this notation it is easy to
isolate the different risk factor VaRs.



66 Value-at-Risk Models

• Equity VaR, i.e. the risk due to equity risk factors alone:
Set θR = θX = 0 and (IV.2.15) yields

Equity VaRh,α =�−1(1 − α)

√
θ

′
E�EhθE. (IV.2.19)

• Interest rate VaR, i.e. the risk due to interest rate risk factors alone:
Set θE = θX = 0 and (IV.2.15) yields

Interest rate VaRh,α =�−1(1 − α)

√
θ

′
R�RhθR. (IV.2.20)

• Forex VaR, i.e. the risk due to forex risk factors alone:
Set θE = θR = 0 and (IV.2.15) yields

Forex VaRh,α =�−1(1 − α)

√
θ

′
X�XhθX. (IV.2.21)

Even if the cross-covariance matrices are all zero the total VaR would not be equal to the sum
of these three ‘stand-alone’ VaRs. The only aggregation rules we have are that the sum of the
stand-alone components equals the total systematic VaR if and only if the risk factors are all
perfectly correlated, and that the sum of the squared stand-alone VaRs is equal to the square
of the total VaR if the cross correlations between risk factors are all zero.15

IV.2.2.5 Marginal and Incremental Normal Linear VaR

In Section IV.1.7.3 we showed that the total systematic VaR is equal to the sum of the marginal
component VaRs, to a first order approximation. In the normal linear model the gradient vector
(IV.1.29) is obtained by differentiating (IV.2.15) with respect to each component in θ.

Using our partition of the covariance matrix as in (IV.2.18) above, and the risk factor
sensitivities vector θ partitioned as in (IV.2.17), the equity marginal VaR is given by the
approximation (IV.1.30) with θR = θX = 0, and so forth for the other component VaRs. That
is, we set the other risk factor sensitivities in θ to zero, compute the gradient vector and then
approximate the marginal VaR as

Marginal VaR ≈ θ
′g(θ). (IV.2.22)

In Section IV.1.7.3 we also showed how to use the gradient vector to assess the VaR impact
of a trade, i.e. to compute the incremental VaR. In the specific case of the normal linear VaR
model the incremental VaR is, to a first order approximation, given by

Incremental VaR ≈�θ
′g(θ), (IV.2.23)

where θ is the original risk factor sensitivity vector and �θ is the change in the risk factor
sensitivity vector as a result of the trade. Note that this approximation can lead to significant
errors if used on large trades. The approximation rests on a Taylor linearization of the paramet-
ric linear VaR, but the parametric linear VaR is actually a quadratic function of the sensitivity
vector.

15 This is a feature of parametric linear VaR and it would not be true if VaR was measured using simulation.
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To apply the general formulae (IV.2.22) and (IV.2.23) we must derive the gradient vector
g(θ) under the normal linear VaR model assumptions. The 100α% h-day normal linear sys-
tematic VaR is given by (IV.2.25). Differentiating this, using the chain rule, gives the gradient
vector of first partial derivatives, which in this case is

g(θ)=�−1(1 − α)(�hθ)(θ
′�hθ)

−1/2. (IV.2.24)

The gradient vector, which Garman (1996) calls the DelVaR vector, has elements equal to the
derivative of VaR with respect to each of the components in θ. Now using (IV.2.22) gives the
marginal VaR. A numerical illustration of the formula is given in Example IV.2.5 below.

Specific examples of the decomposition of normal linear VaR into stand-alone and marginal
VaR components, and of the calculation of incremental VaR, will be given below. For instance,
see Examples IV.2.4–IV.2.6 for cash flows and Examples IV.2.14–IV.2.16 for international
equity portfolios.

IV.2.3 NORMAL LINEAR VALUE AT RISK
FOR CASH-FLOW MAPS

This section analyses the normal linear VaR of a portfolio of bonds, loans or swaps, each of
which can be represented as a cash flow. The risk factors are one or more yield curves, i.e. sets
of fixed maturity interest rates of a given credit rating. Later in this section we shall decompose
each interest rate into a LIBOR rate plus a credit spread. In that case the risk factors are the
LIBOR curves and possibly also one or more term structures of credit spreads with different
credit ratings.

The excess return on the portfolio over the discount rate will be significantly different from
zero only when the portfolio has many exposures to low credit quality counterparties and
when the risk horizon is very long. Since the PV01 vector is expressed in present value terms,
and since there is no constant term in the risk factor mapping of a cash flow, the discounted
expected return on the portfolio is zero, so it is only the volatility of the portfolio P&L that
determines the VaR.

In this section all cash flows are assumed to have been mapped to standard maturity interest
rates in a present value and volatility invariant fashion. Since we have covered cash-flow
mapping in considerable detail in Section III.5.3, and furnished several numerical examples
there, we shall assume the reader is familiar with cash-flow mapping in the following. We
characterize a portfolio by its mapped cash flow at standard vertices, or by its PV01 sensitivity
vector directly.

IV.2.3.1 Normal Linear Interest Rate VaR

We begin by considering only the interest rate risk factors, without decomposing these into
LIBOR and credit spread components. In Section IV.1.6.3 we derived a formula for normal
linear interest rate VaR, repeated here for convenience:

Interest rate VaRh,α =�−1(1 − α)
√

θ′�hθ, (IV.2.25)

where θ= (PV011, . . . , PV01n)
′ is the vector of PV01 sensitivities to the various interest rates

that are chosen for the risk factors.
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A simple example of normal linear VaR for a cash-flow portfolio was given in Section
IV.1.6.3, and the first remark that we make here is that in that example the covariance matrix
was expressed in basis points. The reason for this is that the PV01 vector contains the risk
factor sensitivities to absolute, basis point changes in interest rates, and not to relative changes.

In highly developed markets, returns on fixed income portfolios are usually measured in
terms of changes, rather than relative terms. This is natural because the change in the interest
rate is the percentage return on the corresponding discount bond. Volatilities of changes in
interest rates are often of the order of 100 basis points. But in some countries, such as Brazil
or Turkey (at the time of writing), interest rates are extremely high and variable and their
volatilities are so high that they are commonly quoted in percentage terms. In this case care
should be taken to ensure that the PV01 sensitivities are also adjusted to relate to percentage
changes in interest rates or, when PV01 sensitivities relate to changes, the covariance matrix
of interest rates must be converted to basis point terms. The following example illustrates how
to do this, assuming the returns are normal and i.i.d.

EXAMPLE IV.2.2: CONVERTING A COVARIANCE MATRIX TO BASIS POINTS

Suppose two interest rates have a correlation of 0.9, that one interest rate is at 10% with a
volatility of 30% and the other is at 8% with a volatility of 25%. What is the daily covariance
matrix in basis point terms?

SOLUTION For the 10% rate with 30% volatility, the volatility is 0.1 × 0.3 = 300 basis
points; for the 8% rate with 25% volatility, the volatility is 0.08 × 0.25 = 200 basis points.
For the correlation of 0.9, the covariance is 0.9 × 300 × 200 = 54,000 in basis points squared.
Hence the annual covariance matrix is(

90,000 54,000
54,000 40,000

)

and, assuming 250 trading days per year, the daily covariance matrix is, in basis point terms

(
360 216
216 160

)
.

IV.2.3.2 Calculating PV01

Consider a cash flow CT at some fixed maturity T, measured in years, which we assume for
simplicity is an integer.16 The present value of the cash flow based on a discretely compounded
discount rate RT, expressed in annual terms, is

PV(CT,RT)= CT(1 + RT)−T. (IV.2.26)

Then, by definition,

PV01T = PV01(CT,RT)= PV(CT,RT − 0.01%)− PV(CT,RT). (IV.2.27)

16 See Section III.1.2.2 for details on discounting cash flows for a non-integer number of years.
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A useful and very accurate approximation to (IV.2.27) is derived in Section III.1.8.2. It is
repeated here for convenience:

PV01T ≈ TCT(1 + RT)−(T+1) × 10−4. (IV.2.28)

Again, this is valid when T is an integer number of years. Otherwise a small adjustment should
be made to the discount factor, as explained in Section III.1.8.2.

Because of the unwanted technical details when working with discretely compounded rates,
practitioners usually convert discretely compounded rates into their continuously compounded
equivalents for calculations. Using the continuously compounded rate rT that gives the same
present value as the discretely compounded rate, we have, for any maturity T, not necessarily
an integral number of years,

PV(CT,RT)= CTexp(−rTT). (IV.2.29)

Thus the PV01 approximation for any T may be written

PV01T ≈ TCTexp(−rTT)× 10−4. (IV.2.30)

See Section III.1.8.2 for further details and numerical examples.
The examples in the remainder of this section assume that a cash flow has been previously

mapped to the interest rate risk factors, and that the values of the mapped cash flows are not
discounted to present value terms. This is because the PV01 vector θ of risk factor sensitivities
themselves will convert the change in portfolio value at some time in the future into present
value terms.

We now consolidate the application of the normal linear VaR model to cash-flow portfolios
by considering a simple numerical example. We make the assumption that the interest rate
risk factors are the same as those used for discounting, so there is no drift adjustment term in
the VaR formula. We also assume that interest rate changes are generated by i.i.d. multivariate
normal processes, so that we can scale the normal linear VaR using the square-root-of-time
rule. In particular, the h-day covariance matrix is just h times the 1-day covariance matrix.

EXAMPLE IV.2.3: NORMAL LINEAR VAR FROM A MAPPED CASH FLOW

Consider a cash flow of $1 million in 1 year and of $1.5 million in 2 years’ time. Calculate
the volatility of the discounted P&L of the cash flows, given that:

• the 1-year interest rate is 4% and the 2-year interest rate is 5%;
• the volatility of the 1-year rate is 100 basis points, and the volatility of the 2-year rate is

75 basis points; and
• their correlation is 0.9.

Hence calculate the 5% 1-day and the 1% 10-day normal linear VaR.

SOLUTION In the spreadsheet we use (IV.2.27) to calculate the PV01 vector as

θ= (92.465,259.188)′.
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Then we calculate the covariance matrix in basis point terms from the volatilities and
correlation, as described above, yielding

�250 =
(

10,000 6,750
6,750 5,625

)
.

Now the volatility of discounted P&L is

√(
92.456 259.188

)(
10,000 6,750
6,750 5,625

)(
92.456

259.188

)
= $28,052.

To convert this into a 100α% h-day VaR figure we use the relevant standard normal critical
value from (IV.2.4) and the square-root-of-time rule. Assuming 250 risk days per year, the 5%
1-day VaR corresponding to the volatility of $28,052 is

1.64485 × 28,052/
√

250 = $2918.

Similarly, assuming the number of 10-trading-day periods per year is 25, the 1% 10-day VaR is

2.32635 × 28,052 /
√

25 = $13,052.

IV.2.3.3 Approximating Marginal and Incremental VaR

The gradient vector (IV.2.24) allows us to express, to a first order approximation, the incre-
mental effect on VaR resulting from each of the cash flows in a trade. Denote the change in
the PV01 cash-flow sensitivity vector as a result of a small trade by �θ. Each incremental
VaR corresponding to a cash flow at one specific maturity is an element of another vector
�θ ⊗ g(θ), where ⊗ denotes the column vector obtained as the element by element product
of two column vectors. The net incremental VaR of the new trade is given by the sum of
the separate components of this vector, i.e. by (IV.2.23). Using this in (IV.2.23) will give a
first order approximation to the change in VaR when any of the PV01 cash-flow sensitivities
change.

The following example illustrates how we can approximate the effect of a new trade on the
VaR by considering only the cash flow resulting from the proposed trade, thus avoiding the
need to revalue the VaR for the entire portfolio each time a new trade is considered.

EXAMPLE IV.2.4: INCREMENTAL VAR FOR A CASH FLOW

Consider a cash-flow map with the following sensitivity vector:

Year: 1 2 3
PV01($): 1000 1500 2000

Suppose the interest rates at maturities 1, 2 and 3 years have volatilities of 75 basis points, 60
basis points and 50 basis points and correlations of 0.95 (1yr, 2yr), 0.9 (1yr, 3yr), and 0.975
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(2yr, 3yr). Find the 1% 10-day normal linear VaR. Now assume that interest rates are 4%,
4.5% and 5% at the 1-year, 2-year and 3-year vertices and suppose that a trader considers
entering into a swap with the following cash flow:

Year: 1 2 3
Cash flow ($m) 3 −3 −0.25

What is the incremental VaR of the trade?

SOLUTION The 1-day risk factor covariance matrix, in basis point terms, is

�1 =
⎛
⎝22.5 17.1 13.5

17.1 14.4 11.7
13.5 11.7 10.0

⎞
⎠ .

For instance, the top left element 22.5 for the 1-day variance of the 1-year rate is obtained as
752/250 = 22.5. We are given

θ= (
1000 1500 2000

)′

and so

θ′�1θ= (
1000 1500 2000

)⎛⎝22.5 17.1 13.5
17.1 14.4 11.7
13.5 11.7 10.0

⎞
⎠

⎛
⎝1000

1500
2000

⎞
⎠= 270.4 × 106.

The square root of this, i.e. $16,443, is the 1-day standard deviation of the discounted P&L.
The 10-day standard deviation is obtained, using the square-root-of-time rule, as

σ10 = $16,443 ×√
10 = $52,000.

Hence the 1% 10-day normal linear VaR is

2.32635 × $52,000 = $120,970.

For a 10-day risk horizon,

�10θ = 10 ×
⎛
⎝22.5 17.1 13.5

17.1 14.4 11.7
13.5 11.7 10.0

⎞
⎠

⎛
⎝1000

1500
2000

⎞
⎠ =

⎛
⎝751,500

621,000
510,500

⎞
⎠ .

From above we have
√

θ
′
�10θ= $52,000. Hence the DelVaR vector is

g(θ)= 2.32635

52,000

⎛
⎝751,500

621,000
510,500

⎞
⎠ =

⎛
⎝33.6202

27.7820
22.8385

⎞
⎠ .
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Calculating the PV01 sensitivity vector of the swap’s cash flows, using (IV.2.27) gives

�θ =
⎛
⎝ 277.3935

−525.8534
− 61.7144

⎞
⎠ .

Hence, the components of the incremental VaR are

�θ⊗ g(θ)=
⎛
⎝ 277.3935

−525.8534
−61.7144

⎞
⎠ ⊗

⎛
⎝33.6202

27.7820
22.8385

⎞
⎠ =

⎛
⎝ 9,326

−14,609
−1,409

⎞
⎠ .

This shows that the positive cash flow at 1 year increases the VaR by approximately $9326
but both of the negative cash flows on the swap will decrease the VaR, by approximately
$14,609 and $1409 respectively. The total incremental VaR for the swap is the sum of these,
i.e. approximately −$6693. Hence, adding the swap would reduce the VaR of the portfolio.

Incremental VaR is based on a linear approximation to the VaR, which is a non-linear function
of the risk factor sensitivities, so it should only be applied to assess the effect of trades that are
small relative to the overall size of the portfolio. Also, in order to properly compare the incre-
mental VaR of several different trades, the cash flows from these trades need to be normalized.
Obviously, if trade A has double the magnitude of the cash flows of trade B, the incremental
VaR of trade A will be twice that of trade B. That is, we should normalize the trades, so that
the incremental VaRs per unit of cash flow are compared. There are several ways of doing this.
For instance, we could divide each PV01 by the sum of the absolute values of all PV01s in the
sensitivity vector of the trade, or we could divide each PV01 by the square root of the sum of
the squared PV01s. More details are given in Garman (1996).

IV.2.3.4 Disaggregating Normal Linear Interest Rate VaR

In this subsection we continue with simple numerical examples of normal linear interest rate
VaR to examine the case of an exposure to two yield curves. Such an exposure arises in
many circumstances: it can result from an international portfolio containing interest rate sen-
sitive securities; or from any type of foreign investment in forwards and futures;17 even in
international commodity portfolios, where we may prefer to use constant maturity futures as
risk factors, the forex risk is usually managed by hedging with forex forwards and these are
mapped to the spot forex rate. A forex forward mapping thus gives rise to an exposure to the
foreign LIBOR curve.

In equity and commodity portfolios the interest rate risk factors are usually much less
important than the equity or commodity risk factors and, for international portfolios, the forex
risk factors. Usually the equity, commodity, interest rate and forex risk exposures are managed
by separate desks. Hence, in the examples in this section we keep things simple by considering
only the interest rate part of the risk.

17 Following our discussion in Section III.5.2, we normally map an investment in equity forwards or futures to the spot price, using
the no arbitrage relationship between spot and futures, and thus the foreign discount curve becomes a set of risk factors.
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EXAMPLE IV.2.5: NORMAL LINEAR VAR FOR AN EXPOSURE TO TWO YIELD CURVES

In Table IV.2.3 we display the PV01 vectors, both in US dollars, for a portfolio with exposures
to the UK and US government yield curves. For simplicity we assume the portfolio has been
mapped to only the 1-year, 2-year and 3-year interest rates in each county, and the basis point
volatilities for these interest rates are given below each PV01. The correlation matrix of daily
interest rates is given in Table IV.2.4. Calculate the 1% 10-day normal linear interest rate VaR,
the stand-alone VaR due to the US and UK yield curve risk factors, and the marginal VaRs of
these risk factors.

Table IV.2.3 PV01 of cash flows and volatilities of UK and US interest rates

Interest Rate US UK

Maturity (years) 1 2 3 1 2 3

PV01($) 1000 −1500 2000 800 900 −750
Volatility (bps) 100 80 70 85 75 65

Table IV.2.4 Correlations between UK and US interest rates

US UK

1 2 3 1 2 3

1 1 0.95 0.90 0.70 0.67 0.62
US 2 0.95 1 0.97 0.65 0.75 0.75

3 0.90 0.97 1 0.60 0.79 0.80

1 0.70 0.65 0.60 1 0.98 0.95
UK 2 0.67 0.75 0.79 0.98 1 0.99

3 0.62 0.75 0.80 0.95 0.99 1

SOLUTION Using the information given in Tables IV.2.3 and IV.2.4, the annual covariance
matrix is written in partitioned form as

�=
(

�US �US-UK

�′
US-UK �UK

)
,

where

�US =
⎛
⎝1000 7600 6300

7600 6400 5432
6300 5432 4900

⎞
⎠,

�UK =
⎛
⎝ 7225 6247.5 5248.75

6247.5 5625 4826.25
5248.75 4826.25 4225

⎞
⎠,

�US−UK =
⎛
⎝5950 5025 4030

4420 4500 3900
3570 4147.5 3640

⎞
⎠.
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We also write the PV01 vector as

θ′ = (θ
′
US,θ

′
UK),

where

θ
′
US = (1000,−1500,2000), θ

′
UK = (800,900,−750).

Under the usual normal i.i.d. assumption, the 1% 10-day total risk factor VaR is then

�−1(0.99)
√

θ′�θ×√
10/250 = 2.32635 × 188,466 × 0.2 = $87,688.

For the stand-alone US interest rate VaR we simply use �US and θUS in place of � and
θ (and similarly, we use �UK and θUK for the UK interest rate VaR). The results, which are
calculated in the spreadsheet for this example, are:

1% 10-day US interest rate VaR = $54,673,

1% 10-day UK interest rate VaR = $40,931.

So the sum of the stand-alone VaRs is $95,604, which is considerably more than the total
interest rate VaR.

However, the marginal VaRs do add up to the total interest rate VaR. To calculate these we
first compute the DelVaR vector g(θ) using (IV.2.24). Working at the annual level,18 we have

g(θ)=
(

g(θUS)

g(θUK)

)
= (

(215.52,166.95,145.79)′, (171.90,160.60,133.73)′)′
.

Now we can recover the 1% annual total interest rate VaR as θ
′g(θ) and the two 1% annual

marginal VaRs as

1% annual US marginal VaR = θ
′
USg(θUS)= $256,673

⇒1% 10-day US marginal VaR = $256,673 × 0.2 = $51,335.

Similarly,

1% annual UK marginal VaR = θ
′
UKg(θUK)= $181,763

⇒1% 10-day US marginal VaR = $181,763 × 0.2 = $36,353.

The sum of the marginal VaRs is $87,688, which is identical to the total interest rate VaR.

18 Note that in the last example we worked at the 1-day level, but in the linear VaR model the order of applying the square-root-of-time
rule does not matter.
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IV.2.3.5 Normal Linear Credit Spread VaR

An exposure to curves with different credit ratings arises from a portfolio with investments in
company bonds, corporate loans or swaps, asset backed securities, collateralized debt obliga-
tions and non-bank loans such as mortgages. All exposures can be mapped as cash flows at
standard vertices, and for each vertex we represent the risk factors as the LIBOR rate of that
maturity and the various spreads over LIBOR for each credit rating.

We now explain how to decompose the linear VaR of an interest rate sensitive portfolio into
LIBOR and spread components, using continuous compounding (because the mathematics is
so much easier). In this case we may write an interest rate of a given credit rating as the sum
of the continuously compounded LIBOR rate and the continuously compounded credit spread
for that rating. That is, for maturity T and at time t,

rq(t,T)= r(t,T)+ sq(t,T), (IV.2.31)

where r(t, T) denotes the spot LIBOR rate with maturity T at time t, and rq(t, T) and sq(t, T)

respectively denote the interest rate and credit spread, both with credit rating q.
The VaR is calculated in exactly the same way as above, and the only difference is that

the variance of the interest rate rq(t, T) can, if we wish, be decomposed into three terms:
the variances of the LIBOR rate and the credit spread, and their covariance. This variance
decomposition is obtained by applying the variance operator to (IV.2.31):

V
(
rq(t,T)

) = V
(
r(t,T)

)+ V
(
sq(t,T)

) + 2Cov
(
r(t,T), sq(t,T)

)
. (IV.2.32)

We now explain how to decompose the total interest rate VaR into LIBOR VaR and credit
spread VaR, for a portfolio of a given credit rating, in the context of the normal linear model.
Dropping the time and maturity dependence for simplicity, we denote the set of interest rates
of credit rating q with different maturities by the vector rq, the LIBOR rates of these maturities
by r and the corresponding credit spreads by sq.

We account for the correlations between interest rates using the yield curve covariance
matrix, and now we partition this matrix into LIBOR and spread covariance matrices, and
their cross-covariance matrix, as

V(rq)=� =
(

�R �RS

�′
RS �S

)
. (IV.2.33)

If we want to make the risk horizon of the matrix explicit, then the covariance matrix
corresponding to h-day changes in interest rates is written as

V(rhq)=�h =
(

�hR �hRS

�′
hRS �hS

)
. (IV.2.34)

Suppose there are n LIBOR rate and n credit spread risk factors at the same maturities. The
four matrices in the partition on the right-hand side of (IV.2.34) are then n × n matrices and
� has dimension 2n × 2n. Now, what is the 2n × 1 risk factor sensitivity vector? The PV01
sensitivity to the change in interest rate of a given maturity is the change in the present value
of the cash flow for a one basis point fall in that interest rate. But since the interest rate is
the sum of the LIBOR rate and the credit spread, this one basis point fall could be in either the
LIBOR rate or the credit spread of that maturity. Thus, assuming the vertices of the risk factor
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mapping are the same for LIBOR and credit spreads, the PV01 is same for both LIBOR and
the credit spread. In other words, with the decomposition (IV.2.34) of the covariance matrix,
the corresponding PV01 is the vector with the PV01s at the n vertices in the LIBOR rate risk
factor set, and then these are repeated for the vertices in the credit spread risk factor set. Thus
θ= (θ

′
R, θ

′
S)

′ where in this case

θR = θS = (PV011, . . . ,PV01n)
′. (IV.2.35)

But due to the limitations of historical data, it usually the case that the maturities at which
credit spreads are recorded are a proper subset of the maturities in the LIBOR rate risk factor
set.19 So in general, θR �= θS because they do not even have the same dimension.

Now the total VaR due to LIBOR and spread is given by the usual formula,

Total systematic VaRh,α =�−1(1 − α)
√

θ′�hθ.

Setting θR =0 gives the stand-alone credit spread VaR, and setting θS =0 gives the stand-alone
LIBOR VaR. The marginal contributions to VaR and the incremental VaR of a new trade are
all calculated using the gradient vector in the usual way.

The extension of this decomposition to a portfolio containing exposures with several credit
ratings is straightforward. For example, with two credit ratings in the portfolio we decompose
the covariance matrix thus:

�h =
⎛
⎝�hR �hRS1 �hRS2

�′
hRS1 �hS1 �hS1S2

�′
hRS2 �′

hS1S2 �hS2

⎞
⎠ . (IV.2.36)

and the PV01 vector is written as the column vector

θ= (θ′
R,θ

′
S1 ,θ

′
S2)

′,

where θR is the PV01 of the combined exposure to the two different credit ratings, θS1 is the
PV01 of the exposure to the first credit rating, and θS2 is the PV01 of the exposure to the
second credit rating.

The following example illustrates the decomposition of interest rate VaR for a portfolio
with exposures to a single credit rating.

EXAMPLE IV.2.6: SPREAD AND LIBOR COMPONENTS OF NORMAL LINEAR VAR

A portfolio of A-rated corporate bonds and swaps has its cash flows mapped to vertices at
1 year, 2 years, 3 years, 4 years and 5 years. The volatilities of the LIBOR rates (in basis points
per annum) and PV01 vector of the portfolio are shown in Table IV.2.5. The correlations of
the LIBOR rates are shown in Table IV.2.6.

The 1-year and 5-year A-rated credit spreads are, like the LIBOR parameters, assumed to
have been estimated from a historical sample. Suppose the 1-year spread has volatility 80

19 In this case, there are three ways to approach the problem of disaggregating VaR into LIBOR and credit spread components. We
can use a different number of vertices for the LIBOR and credit spread mappings, in other words the credit spread and LIBOR risk
factors result from cash-flow mappings to vertices at different maturities, and consequently the PV01 vector for credit spreads will be
different from the PV01 vector for LIBOR. Alternatively, we can interpolate the volatilities and correlation of the credit spreads to
obtain volatilities and correlations at the same maturities for credit spreads as used for LIBOR, or we can reduce the LIBOR rate risk
factors to be at the same maturities as the credit spread risk factors.
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Table IV.2.5 PV01 of cash flows and volatilities of LIBOR rates

Maturity (years) 1 2 3 4 5

PV01 ($) 750 1000 500 250 500
Volatility (bps) 100 95 85 75 60

Table IV.2.6 Correlations between LIBOR rates

Correlations LIBOR

1yr 2yr 3yr 4yr 5yr

LIBOR 1yr 1 0.95 0.92 0.9 0.88
2yr 0.95 1 0.97 0.65 0.75
3yr 0.92 0.97 1 0.6 0.79
4yr 0.9 0.65 0.6 1 0.98
5yr 0.88 0.75 0.79 0.98 1

basis points per annum and the 5-year spread has volatility 70 basis points per annum, and
their correlation is 0.9. Suppose the cross correlations between these credit spreads and the
LIBOR rates of different maturities are as shown in Table IV.2.7. Estimate the 1% 10-day total
interest rate VaR and decompose the total VaR into the VaR due to LIBOR rate uncertainty,
and the VaR due to credit spread uncertainty. Then estimate the marginal VaR of the LIBOR
and credit spread components.

Table IV.2.7 Cross correlations between credit spreads and LIBOR rates

Correlations LIBOR

1yr 2yr 3yr 4yr 5yr

Credit spread 1yr −0.25 −0.20 −0.18 −0.15 −0.10
5yr −0.20 −0.21 −0.23 −0.24 −0.25

SOLUTION We shall employ a simple linear interpolation between variances and between
squared correlations to fill in the elements of the matrices �S and �RS.20 The full matrix � is
a 10 × 10 matrix, and the volatilities and correlations in this matrix are shown in Table IV.2.8.

The PV01 vector is

θ′ = (θ′
R,θ

′
S),

with

θ′
R = θ′

S = (750,1000,500,250,500)

This yields the 1% annual total risk factor VaR:

�−1(0.99)
√

θ′�θ= 2.32635 × $296,363 = $689,443.

20 Linear interpolation between correlations would lead to a singular correlation matrix. The interpolation method is ad hoc, hence a
(small) model risk is introduced with this approach.
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Table IV.2.8 Volatilities and correlations of LIBOR and credit spreads

Volatilities LIBOR Credit spreads

Maturity (years) 1 2 3 4 5 1 2 3 4 5

PV01 ($) 750 1000 500 250 500 750 1000 500 250 500

Volatility (bps) 100 95 85 75 60 80 77.62 75.17 72.63 70

Correlations 1 2 3 4 5 1 2 3 4 5

1 1 0.95 0.92 0.9 0.88 −0.25 −0.2385 −0.2264 −0.2136 −0.2
2 0.95 1 0.97 0.65 0.75 −0.2000 −0.2025 −0.2051 −0.2075 −0.2100

LIBOR 3 0.92 0.97 1 0.6 0.79 −0.1800 −0.1937 −0.2065 −0.2186 −0.2300
4 0.9 0.65 0.6 1 0.98 −0.1500 −0.1768 −0.2001 −0.2210 −0.2400
5 0.88 0.75 0.79 0.98 1 −0.1 −0.1521 −0.1904 −0.2222 −0.25

Credit
spreads

1 −0.25 −0.20 −0.18 −0.15 −0.10 1 0.9760 0.9513 0.9260 0.9
2 −0.2385 −0.2025 −0.1937 −0.1768 −0.1521 0.9760 1 0.9760 0.9513 0.9260
3 −0.2264 −0.2051 −0.2065 −0.2001 −0.1904 0.9513 0.9760 1 0.9760 0.9513
4 −0.2136 −0.2075 −0.2186 −0.2210 −0.2222 0.9260 0.9513 0.9760 1 0.9760
5 −0.20 −0.21 −0.23 −0.24 −0.25 0.9 0.9260 0.9513 0.9760 1

Multiplying this by
√

10 / 250 = 0.2 gives the 1% 10-day total risk factor VaR as
$137,889.

For the stand-alone LIBOR VaR we simply use �R and θR in place of � and θ (and sim-
ilarly, we use �S and θS for the credit spread VaR). The results, which are calculated in the
spreadsheet for this example, are:

1%10-day LIBOR VaR = $115,943,

1%10-day credit spread VaR = $104,301.

So the sum of the stand-alone VaRs is $220,224, which is much larger than the total VaR, due
to the negative correlation between interest rates and credit spreads.

As usual, the marginal VaRs sum to the total VaR. To calculate these we first compute the
annual gradient vector using the usual formula. This gives

g(θR)= (152.85,145.87,128.76,94.34,85.46)′, g(θS)= (105.88,103.16,98.38,92.68,86.61)′.

The 1% annual total VaR is θ
′
Rg(θR) + θ

′
Sg(θS) and this has already been calculated as

$689,443. The two 1% annual marginal VaRs are

1% annual marginal LIBOR VaR = θ′
Rg(θR)= $391,211

⇒1% 10-day marginal LIBOR VaR = $391,211 × 0.2 = $78,242

and

1% annual marginal credit VaR = θ′
Sg(θS)= $298,233

⇒1% 10-day marginal credit VaR = $298,233 × 0.2 = $59,647.

The sum of the marginal VaRs is identical to the total VaR.
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IV.2.4 CASE STUDY: PC VALUE AT RISK OF A UK FIXED
INCOME PORTFOLIO

The above example employed a cash-flow mapping to just five vertices, and included just one
credit rating. But in practice there could be 50 or 60 vertices, and several credit ratings. With
n vertices and k credit ratings there will be kn risk factors, so the risk factor correlation matrix
could have a very large dimension indeed. However, the risk factors are very highly correlated
and for this reason lend themselves to dimension reduction through the use of principal compo-
nent analysis (PCA).21 This section demonstrates how to apply PCA to reduce the dimension
of the risk factor space when estimating the VaR of interest rate sensitive portfolios so that
the new risk factors (i.e. the principal components) are uncorrelated variables that capture the
most commonly experienced moves in interest rates.

We consider a portfolio of UK bonds (and/or swaps) on 31 December 2007. We ignore the
credit spread risk and suppose that its cash flows have been mapped to the spot market rates at
intervals of one month using the volatility, present value and duration invariant cash-flow map
described in Section III.5.3. Then the PV01 of the mapped cash flow is computed as explained
in Section III.1.8 and the resulting PV01 vector is depicted in Figure IV.2.2.
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Figure IV.2.2 PV01 vector of a UK fixed income portfolio (£000)

Given the size of the PV01 sensitivities shown in Figure IV.2.2, with several exceeding
±£1000, there must be cash flows of ±£5 million or more at several maturities.22 Hence,
the portfolio could contain long positions on bonds with face value of around £1 billion, and
short positions on bonds with face value of around £1 billion or more. The present value of
the portfolio may be much less than £1 billion of course, because it has a rough balance of
positive and negative cash flows.

21 PCA is introduced in Section I.2.6 and fully discussed with numerous empirical examples in Chapter II.2.
22 For a quick ‘rule of thumb’, a cash flow of 1 million at N years has a PV01 of a bit less than N×T×100. So, for instance, the PV01
of £3000 at 4 years corresponds to a cash flow of approximately 3000/400 =£7.5 million. But this is a very crude approximation. See
Section IV.2.3.2 for a more precise approximation to the PV01.
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IV.2.4.1 Calculating the Volatility and VaR of the Portfolio

This section contains two examples, the first showing how to use the cash-flow map and the
second showing how to compute the volatility and VaR of the portfolio.

EXAMPLE IV.2.7: APPLYING A CASH-FLOW MAP TO INTEREST RATE SCENARIOS

Consider the portfolio of UK bonds and swaps with PV01 vector θ shown in Figure IV.2.2.
Find an approximation to the change in the portfolio’s value given that UK interest rates
change as follows:

(a) The UK yield curve moves upward with a parallel shift of 10 basis points at all
maturities.

(b) There is a tilt in the UK yield curve where the 1-month rate increases by 35 basis points,
the 2-month rate by 34 basis points, the 3-month rate by 33 basis points and so on up
to the 59-month rate decreasing by 23 basis points and the 60-month rate decreasing by
24 basis points.

SOLUTION In the spreadsheet for this example we apply the relationship (IV.1.25), i.e.

�PV ≈−θ′�r, (IV.2.37)

with the basis point changes in interest rates specified in (a) and (b) above. Hence:

(a) �r = (10, 10, . . . , 10)′ gives �PV = £9518; and
(b) �r = (35, 34, . . . , −23, −24)′ gives �PV = £396,478.

Since the portfolio has a balance of long and short exposures, its present value does not
change much when the yield curve shifts parallel, as is evident in case (a) above. But the port-
folio is much more exposed to a change in slope of the yield curve; Figure IV.2.2 shows that
the portfolio is predominately short in bonds with maturities up to 3 years but its positions
on bonds with maturities between 3 and 5 years are predominately long. Hence, the portfolio
will increase in value if the yield curve shifts up at the short end and down at the long end.
Indeed, under the scenario for interest rates in (b) above, the portfolio would make a profit of
£396,478.

In the next three examples, all of which are contained in the case study workbook, we use
an equally weighted covariance matrix �1 of the absolute daily changes in UK interest rates
based on data from 2 January 2007 until 31 December 2007.23 The covariance matrix has
dimension 60×60, so we do not show it here, although it can be seen in the Excel spreadsheet
accompanying the following example.

EXAMPLE IV.2.8: VAR OF UK FIXED INCOME PORTFOLIO

Use the 1-day covariance matrix �1 given in the spreadsheet to find the volatility of the dis-
counted P&L of the portfolio with PV01 vector θ shown in Figure IV.2.2. Assuming that
each interest rate change is i.i.d. normally distributed, calculate the 1% 10-day VaR on 31
December 2007.

23 The data can be downloaded from the Bank of England website, http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm.
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SOLUTION We first obtain the 1-day variance of the portfolio P&L as

Daily P&L variance = θ′�1θ= 575.945.

But θ was given in units of £1000. Hence to convert this figure to the P&L volatility we must
take the square root, multiply this by the square root of 250 (assuming there are 250 risk days
per year) and then also multiply by £1000. The result is

P&L volatility = £379,455.

Hence,

1% 10-day VaR = 2.32634 × 379,455 × 0.2 = £176,549.

IV.2.4.2 Combining Cash-Flow Mapping with PCA

Principal component analysis is a powerful tool for representing any highly correlated system.
In Chapter II.2 we explained how to apply PCA to a set of interest rates, and in Section II.2.3
we used the UK bonds that we are considering in this case study as an example. In this
section we shall combine a principal component representation with the PV01 vector shown
in Figure IV.2.2. In this way we obtain a set of sensitivities to a new set of interest rate risk
factors: the first three principal components of the UK yield curve.

The general expression for a principal component representation of the changes in interest
rates �rt at time t is

�rt ≈ W∗p∗
t , (IV.2.38)

where the factor weights matrix W∗ is the n × k matrix whose columns are the first k eigenvec-
tors of the covariance matrix of absolute changes in returns; n is the number of risk factors,
i.e. the dimension of the covariance matrix; and p∗

t is the k × 1 column vector of the first k
principal components at time t.

We use (IV.2.38) to derive the representation of our UK bond portfolio P&L in terms
of sensitivities β to just k orthogonal risk factors (i.e. the principal components) instead of
sensitivities to n highly correlated risk factors. Combining (IV.2.37) with (IV.2.38) gives

�PVt ≈ β′p∗
t , where β =−W∗′θ. (IV.2.39)

Hence, the new factor sensitivity vector is the k × 1 vector of constants obtained by taking
(minus) the product of the transpose of the component factor weights matrix, W∗′, which has
dimension k × n, and the n × 1 PV01 vector θ. This way the number of risk factors has been
reduced from n to k.

Now the interest rate VaR based on the principal component risk factors is

PC VaRh,α =�−1(1 − α)
√

β′D β (IV.2.40)

or, equivalently,

PC VaRh,α =�−1(1 − α)
√

θ′W∗DW∗′
θ, (IV.2.41)
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where D = diag(λ1, . . . ,λk) is the diagonal matrix of the first k eigenvalues of the h-day risk
factor covariance matrix �h. Note that if n = k (i.e. we only make the risk factors uncorrelated
and do not reduce the number of risk factors) then W∗ = W, i.e. the matrix of all n eigenvec-
tors, and WDW′ = �h. So unless we use PCA to reduce dimensions, the PC VaR estimate is
identical to the ordinary interest rate VaR estimate.

The approximation (IV.2.39) of portfolio P&L is now based on new risk factors, i.e. the first
k principal components. These are uncorrelated, whereas interest rate risk factors themselves
are highly correlated. Moreover, the new sensitivity vector β is just a k × 1 vector, whereas
the old PV01 sensitivity vector was an n × 1 vector, where n is much larger than k. In practice
it is typical for n to be around 50 or 60 and for k to be only 3 or 4. So there is a huge reduction
in dimension from basing VaR measurement on (IV.2.39) rather than using the ordinary risk
factor VaR. Yet, the loss of accuracy from using PC VaR as an approximation to the interest
rate VaR is negligible, particularly when it is set in the context of all the other sources of
model risk in the normal linear VaR model.

The next example shows how to derive the quantities in (IV.2.40) and applies this formula
to measure the PC VaR of our UK bond portfolio.

EXAMPLE IV.2.9: USING PRINCIPAL COMPONENTS AS RISK FACTORS

Suppose that the cash-flow representation of the bond portfolio whose PV01 vector is shown
in Figure IV.2.2 was taken on 31 December 2007. Also suppose that we base our daily interest
rate covariance matrix �1 on daily changes in the UK spot curve for maturities measured at
monthly intervals up to 5 years, using the data period from 2 January to 31 December 2007.24

Find a principal component representation based on �1 with three principal components, and
specify the diagonal matrix D that has their standard deviations along its diagonal. Then use
this principal component representation to calculate the UK bond portfolio’s sensitivities to
the three principal component risk factors.

SOLUTION A PCA on the 60 × 60 covariance matrix is given in the Excel workbook for
this case study. The first three eigenvalues are shown in Table IV.2.9, and we see that together
the first three components explain over 99% of the total variation in UK interest rates over the
past year. The first component alone accounts for 93.41% of the variation, so the rates were
extremely highly correlated along the yield curve during 2007.

Table IV.2.9 Eigenvalues of covariance matrix of UK spot rates – short end

1 2 3

Eigenvalues 856.82 45.30 9.15
Percentage variation explained 93.41% 4.94% 1.00%
Cumulative variation explained 93.41% 98.35% 99.35%

The first three eigenvectors belonging to these eigenvalues are plotted, as a function of
the maturity of the interest rate, in Figure IV.2.3. These have the usual ‘trend–tilt–curvature’

24 The Bank of England provides historical data on yield curves and many other financial variables such as exchange rates and option
implied volatilities on http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm. We have assumed the portfolio contains gilts
and have therefore used the government liability curve in this case study, but the commercial liability curve is also available for
download.
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Figure IV.2.3 Eigenvectors of covariance matrix of UK spot rates – short end

interpretation that we are accustomed to when PCA is applied to a highly correlated yield
curve, such as the Bank of England liability curves. However, as is usual for money market
rates which are frequently affected by manipulation from the central bank, the very short
term rates are less volatile than others, giving the eigenvectors a characteristic ‘dip’ at the
short end. For instance, if the first principal component increases but the other components
are unchanged, then the 1-month rate will hardly change, but the interest rates at maturities
greater than 2 years will all change by a similar amount, i.e. by approximately 15% of the
change in the first principal component.

The diagonal matrix of standard deviations of the principal components has elements equal
to the square root of the eigenvalues in Table IV.2.9, i.e.

D = diag
(√

856.82,
√

45.30,
√

9.15
)
. (IV.2.42)

Since by definition the first principal component has much the largest standard deviation, this
would be the main determinant of the VaR if the sensitivity to each PC were the same. We
estimate the PC sensitivity vector β using (IV.2.39), i.e. multiplying the matrix W∗ whose
columns contain the first three eigenvectors by the 60 × 1 vector of PV01 sensitivities shown
in Figure IV.2.2. In this way we obtain the new 3 × 1 sensitivity vector β for the principal
component factors shown in Table IV.2.10. In fact, the sensitivity to the first PC is the smallest
of the three.

Table IV.2.10 Net sensitivities on PC risk factors

Component P1 P2 P3

Beta £428 −£2975 £1041

Figure IV.2.4 shows the first principal component, which is obtained from the first eigen-
vector. Since it is based on a covariance matrix that is expressed in basis point terms, the
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Figure IV.2.4 First principal component of the UK spot rates – short end

principal component is also measured in basis points. The coefficient of £428 on P1 means that
a 100 basis point increase in the first principal component leads, approximately, to a £42,800
increase in the present value of the portfolio. From the first eigenvector in Figure IV.2.3 we
see that a 100 basis point increase in the first component would be approximately equivalent
to a yield curve movement that is up 15 basis points at maturities over 2 years, but up much
less at shorter maturities. Our portfolio has some very large positive cash flows at maturities
over 2 years so an upward shift of 15 basis points at the longer maturities, with less movement
at the short end, will induce a much larger gain in the portfolio than a parallel shift of 15
basis points. The eigenvalues given in Table IV.2.1 tell us that the first principal component
captured a very common type of movement in the yield curve. In fact, it accounts for 93.41%
of the variation experienced in the UK government yield curve during 2007. By contrast, the
exact parallel shift scenario that we used in Example IV.2.7 is not nearly as common.

EXAMPLE IV.2.10: COMPUTING THE PC VAR

Estimate the VaR of the portfolio based on the mapping to the first three principal compo-
nents, i.e. based on (IV.2.40), and compare this with the full evaluation interest rate VaR from
Example IV.2.8.

SOLUTION The spreadsheet for this example first gives the result of estimating the P&L
volatility using the β vector shown in Table IV.2.3 and the diagonal covariance matrix of the
principal components given by (IV.2.42). This gives

√
β′D β = £377,109.

Then we compute the 1% 10-day VaR from this volatility, by multiplying it by the critical
value �−1(0.99) = 2.32635 and by the scaling factor

√
10/250 = 0.2, giving the 1% 10-day

PC VaR as £175,457, compared with £176,549 under full evaluation. The PC approximation
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leads to only a very small error in VaR (of about 0.6%). The error is a result of taking only three
principal components, but this ignores only a small fraction of the variation in the risk factors.

IV.2.4.3 Advantages of Using PC Factors for Interest Rate VaR

In addition to the advantage of dimension reduction, the principal component risk factors
make it much easier to apply meaningful scenarios to interest rates. By changing just the first
principal component, for instance, we obtain the change in our portfolio’s value corresponding
to the most likely shift in the yield curve, given the historical data used in the PCA. This is not
usually a parallel shift in all yields, but it is approximately parallel at longer maturities, so for
a portfolio with a high duration this scenario gives a portfolio sensitivity that is similar to that
obtained via the standard duration approximation. But, since interest rates do not normally
shift exactly parallel all the time, using a change in the first principal component is more
representative of historical movements in yields than a parallel shift.

Moreover, the representation (IV.2.39) provides a more detailed analysis of our portfolio’s
responses than duration–convexity analysis. In addition to a roughly parallel shift, by changing
the second principal component we can find the change in portfolio value corresponding to a
specific tilt in the yield curve, i.e. the tilt that is most likely to occur, based on the historical
yield curve movements. On changing the third principal component we obtain our portfolio’s
response to a specific (most likely) change in the yield curve convexity, and so on if more than
three principal components are used in (IV.2.39).

Covariance matrix scenarios, which form the basis of many stress tests, are also very easy to
implement using PCA. For instance, suppose the original cash-flow mapping of the portfolio
is to 50 different maturities of interest rates. Then their covariance matrix is very large, i.e.
50 × 50. Performing stress tests on this matrix will not be a simple task. However, when using
the principal component representation (IV.2.39) of the portfolio’s P&L, stress tests need only
be performed on a k × k covariance matrix, where typically k = 3. PC-based stress tests also
take on a meaningful interpretation, i.e. stressing the most common changes in trend, tilt and
curvature of interest rates.

Finally, by choosing only the first few components in the representation we have cut down
the ‘noise’ in the data that we would prefer not to contaminate our risk measures. In highly
correlated yield movements there is very little ‘noise’ and for this reason a three-component
representation captures over 99% of the variations in our example. But in less highly corre-
lated yields, much of the idiosyncratic variation in yields may not be useful for risk analysis,
especially over the longer term. We saw a small reduction in the PC VaR estimate, compared
with the usual VaR estimate, and this is to be expected if some of the variation is ignored. But
with the yield curves in major currencies this reduction will be very small indeed. However,
other systems such as implied volatilities or equities have much more noise and in this case
the use of principal components could reduce VaR more significantly.

IV.2.5 NORMAL LINEAR VALUE AT RISK
FOR STOCK PORTFOLIOS

Starting with the simplest case of just a few cash stock positions, we shall consider many linear
equity portfolios in this section, including cash and futures positions with and without foreign
exchange risk. The systematic parametric linear VaR estimates of an equity portfolio are based
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on forecasts of expected returns and standard deviations of returns, taken in the context of
an equity factor model. Hence, this section draws on the material presented in Chapter II.1,
where we covered the different types of factor models that are used for mapping equity
portfolios.

IV.2.5.1 Cash Positions on a Few Stocks

In Section I.2.4 we showed how to compute the volatility of portfolio P&L, when the portfolio
is characterized by its holdings in each of n stocks and we are given the covariance matrix of
the stocks returns. Denote the n×1 vector of portfolio weights on each stock by w, where each
element of w is the holding in that stock divided by the total amount invested, i.e. the current
price of the portfolio P. Denote the n × n stock returns annual covariance matrix by V.25 Then
the portfolio return volatility is σ =√

w′Vw and the P&L volatility is Pσ.
In Section IV.2.2 we showed how to convert a portfolio volatility into a 100α% h-day normal

linear VaR estimate, for an arbitrary portfolio, under the assumption that the risk factor returns
are multivariate normal and i.i.d. with zero expected excess returns. We ignore the effect on
VaR of an expected return that is different from the discount rate, since this is very small
unless h is very large. Then, with h measured in days and assuming there are 250 trading days
per year, we have

VaRh,α =�−1(1 − α) σ

√
h
/

250 P. (IV.2.43)

More generally, and particularly when estimating the VaR for long term investments in
equity funds, we may wish to include the possibility that the portfolio grows at a rate different
from the discount rate over a long risk horizon. In this case we would include the drift
adjustment to the VaR, as explained in Sections IV.1.5.1 and IV.2.2.

In the general case, to apply the normal linear VaR formula (IV.2.43) we need to forecast,
over a risk horizon of h days, the standard deviation and mean of the portfolio returns. Let

• w denote the current vector of portfolio weights,
• E(xh) be the n × 1 vector of the stocks’ expected excess h-day returns, and
• Vh be the h-day covariance matrix of stock returns.

Then the 100α% h-day normal linear VaR of the portfolio, under the assumption that the risk
factor returns are multivariate normal and i.i.d. and expressed as a percentage of the portfolio
value P is

VaRh,α =�−1(1 − α)
√

w′Vhw − w′E(xh). (IV.2.44)

The application of this formula is illustrated in the following example.

EXAMPLE IV.2.11: VAR FOR CASH EQUITY POSITIONS

Calculate the 1% 10-day parametric linear VaR for a portfolio that has the characteristics
defined in Table IV.2.11, discounting using a risk free rate of 5%. How much is the VaR
reduced by the mean adjustment? Repeat your calculations for a risk horizon of 1 year.

25 Recall that we use the notation V for an asset covariance matrix and � for a risk factor covariance matrix.
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Table IV.2.11 Stock portfolio characteristics

Position Volatility Expected return Correlation

Stock 1 e4m 20% 10% Stock 1–Stock 2 0.8
Stock 2 −e5m 10% 2% Stock 1–Stock 3 0.5
Stock 3 e1m 15% 5% Stock 3–Stock 2 0.3

SOLUTION The calculations are performed in the accompanying spreadsheet, using the
10-day expected returns and the covariance matrix of 10-day returns displayed in
Table IV.2.12. This gives an expected P&L ofe14,000, a P&L standard deviation ofe117,898
and a 1% 10-day VaR of e259,765. But without the mean adjustment, i.e. without the
second term on the right-hand side of (IV.2.44), the 1% 10-day VaR is e273,738. Hence,
the mean adjustment reduces the VaR by about 5%. Over a 1-year risk horizon the 1% VaR is
e1,384,864 without the mean adjustment and e1,051,530 with the mean adjustment. Hence,
over 1 year the drift adjustment is very important, as it leads to a 24% reduction in VaR.

Table IV.2.12 Characteristics of 10-day returns

10-day return 10-day covariance matrix

Stock 1 0.004 0.0016 0.00064 0.0006
Stock 2 0.0008 0.00064 0.0004 0.00018
Stock 3 0.002 0.0006 0.00018 0.0009

Another way of looking at the results in the above example is to use Table IV.2.1, which tells
us that the 1% 10-day VaR is very approximately about 10% of the portfolio value, depending
of course on the portfolio volatility. So very approximately the VaR is about e100,000 per
e1 million invested. In the above example the discount factor over 10 days corresponding
to a 5% discount rate is 0.99805, and its effect is therefore about e(1 − 0.99805) million,
i.e. approximately e195 per e1 million invested. This is negligible compared with the VaR.
However, over a 1-year horizon the VaR is about 50% of the portfolio value, again depending
on the portfolio volatility. And the discount factor over 1 year corresponding to a 5% discount
rate is 0.95238. So its effect is about (1 − 0.95238) million euros, i.e. approximately e47,620
per e1 million invested, which is not insignificant compared with the VaR.

For simplicity, we shall often ignore discounting when VaR is measured over a short horizon
such as 10 days, just as we shall often ignore the mean return. It is only when VaR is measured
over a risk horizon of several weeks or months that the errors induced by ignoring the effects
of discounting and of a non-zero discounted mean return really affect the accuracy of the VaR
estimate. However, and we have stressed this before, such long term VaR estimates are only
meaningful to investors who hold positions constant over a long term risk horizon without
liquidating or hedging when market conditions are adverse.

IV.2.5.2 Systematic and Specific VaR for Domestic Stock Portfolios

In Section IV.1.7.1 we introduced, in general terms, the disaggregation of total VaR into sys-
tematic and specific components. Now we use the normal linear VaR model to provide some
numerical examples that illustrate this decomposition for stock portfolios.
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Portfolios that contain a large number of equities in the same currency are mapped to their
risk factors via a factor model. The set of risk factors may include broad stock market indices,
style indices such as value and growth indices of different capitalizations, or statistical factors
such as those obtained using PCA. When portfolio returns are represented by a factor model,
the systematic parametric linear VaR can be calculated using (IV.2.14) where:

• θ is the vector of stock betas with respect to each risk factor;26

• E(xh) is the vector of the risk factors’ expected h-day returns; and
• �h is the h-day covariance matrix of the risk factor returns.

For risk assessment (rather than returns forecasting, which is another use of the factor model)
the portfolio betas should be as risk sensitive as possible. Hence an exponentially weighted
moving average (EWMA) on recent daily data maybe preferred to ordinary least squares
(OLS) on weekly or monthly data over a long period. Note that if the betas are estimated
using EWMAs, a time series of beta estimates is obtained over the sample period but it is only
the last (today’s) forecast that we use in the calculation.

EXAMPLE IV.2.12: SYSTEMATIC VAR BASED ON AN EQUITY FACTOR MODEL

A linear model with two risk factors indicates that a stock portfolio has net betas of 0.8 and
1.2 with respect to these factors. The factors have volatility 15% and 20% respectively, and a
correlation of −0.5. If the portfolio is expected to return the risk free rate over the next month,
calculate the 5% 1-month systematic VaR on an investment of $20 million in the portfolio.

SOLUTION The risk factors’ monthly covariance matrix is

� =
(

0.00188 −0.0013
−0.0013 0.00333

)
,

so the portfolio variance due to the risk factors is

β′
�β = (

0.8 1.2
)(

0.00188 −0.0013
−0.0013 0.00333

)(
0.8
1.2

)
= 0.0036.

Hence the monthly standard deviation is
√

0.0036 = 0.06 and the systematic VaR is therefore

1.64485 × 0.06 × $20m = $1,973,824.

In Section II.1.2.5 we decomposed the total volatility of a stock portfolio into two portions,
that due to the risk factors (the systematic risk) and that due to the idiosyncratic volatility
(the specific or residual risk). Since the parametric linear VaR is a linear transformation of
the portfolio volatility, this decomposition carries over into a decomposition of total VaR into
systematic and specific VaR components.

26 If we use net value betas here, i.e. the net percentage betas multiplied by the nominal value of the portfolio, then VaR is estimated
in value terms; otherwise we estimate VaR as a percentage of the portfolio value.
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The relationship between the total VaR, systematic VaR and specific VaR is easily
explained using a simple factor model with only one risk factor, i.e. the market factor, as in
Section II.1.2.5. Write the model as

Yt = α + βXt + εt,

where Y is the return on the portfolio and X is the return on the market. Taking variances gives

V(Yt)= β2V(Xt)+ V(εt)+ 2βCov(Xt, εt), (IV.2.45)

or, in parameter notation,

σ2
Y = β2

σ2
X + σ2

ε + 2�βσXσε,

where � is the correlation between the market and the residual returns. This may be written in
the alternative form

σ2
Y = (βσX + σε)

2 − 2(1 − �)βσXσε. (IV.2.46)

The market volatility, i.e. the volatility due to the market risk factor, is βσX, so (IV.2.46)
may be expressed in words as

[total volatility]2 =[market volatility + residual volatility]2

− 2(1 − �)[market volatility]× [residual volatility].

But in the parametric linear VaR model, the VaR behaves just like volatility, assuming we
ignore any adjustment for a non-zero discounted mean return. Hence, an expression similar to
(IV.2.46) also holds with VaR in place of volatility:

[total VaR]2 =[systematic VaR + specific VaR]2

− 2(1 − �)[systematic VaR]× [specific VaR]. (IV.2.47)

Hence, the total VaR is equal to the sum of the systematic VaR and the specific VaR if and only
if �, the correlation between the return explained by the risk factors and the residual return,
is equal to 1. But, on the contrary, it is usually assumed that the factor model explains the
portfolio return so well that �= 0. Under this assumption the total VaR is the square root of
the sum of the squared systematic VaR and the squared specific VaR.

In the more general case, when � is not 0 but less than 1, the total VaR will be less than the
sum of the systematic VaR and the specific VaR. This property, which is an example of the sub-
additivity property of parametric linear VaR models, is a necessary property for the risk metric
to be coherent. It implies that the risk of investing in a portfolio is no greater than the risk
resulting from an equivalent sized investment in any single asset of that portfolio. It is related
to the portfolio diversification effect that was introduced and discussed in Section I.6.3.1.
There we showed that the volatility of a portfolio is never greater than the volatility of any
of its constituent assets, and that the volatility of a fully funded long-only portfolio decreases
with the asset returns correlations. Hence, to reduce risk (as measured by volatility), investors
have the incentive to hold a diversified portfolio, i.e. a portfolio with investments distributed
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over many assets that have as low a correlation as possible.27 The sub-additivity property of
parametric linear VaR amounts to exactly the same thing as portfolio diversification, but now
the portfolio risk is measured by its systematic and specific VaR and not its volatility.28

IV.2.5.3 Empirical Estimation of Specific VaR

The normal linear specific risk of an equity portfolio can be calculated in three different ways:

1. Save a time series of residuals from the factor model, and calculate the normal linear
specific VaR directly from the residual variance.

2. First calculate the normal linear total VaR using the variance of the portfolio return.29

Then calculate the systematic VaR using �−1(1 − α)
√

β′
�β and the specific VaR using

(IV.2.47), under the assumption that �= 0.
3. Use a standardized rule, such as setting specific risk = 8% of portfolio value (see

Section IV.8.2.5).

An advanced risk assessment system should have a database of historical prices on all stocks
and risk factors that enables the more precise estimation of specific VaR using method 1.
Based on these data, the factor betas and the risk factor covariance matrix, and hence also the
systematic VaR and (from the factor model residuals) the specific VaR, may all be estimated
in-house. Holding the current portfolio weights constant, historical data on stock returns may
be used to construct a current weighted returns series for the portfolio.30 Then the total VaR
may be estimated directly from the current weighted returns.31 An empirical illustration, for a
portfolio of stocks in the S&P 100 index, is provided in the next subsection.

However, method 2 is often used, even though it is based on the assumption that the specific
returns and the systematic returns are uncorrelated, which may not be warranted. This would
only be the case if the factor model were doing an excellent job of explaining the stock’s
returns, and the portfolio is well diversified, but often this is not the case.

EXAMPLE IV.2.13: DISAGGREGATION OF VAR INTO SYSTEMATIC VAR
AND SPECIFIC VAR

Suppose the volatility of the portfolio returns in Example IV.2.12 is 25%. Find the 1% 10-day
total VaR and the 1% 10-day specific VaR using the normal linear model, based on method 2
above.

SOLUTION Since the portfolio volatility is 25%,

Total VaR = 1.64485 × 0.25 × (1/
√

12)× $20m = $2,374,142.

The systematic VaR was found, in Example IV.2.12, to be $1,973,824. Hence, assuming a zero
correlation between the residual and the market returns, the specific VaR may be calculated

27 Alternatively, the diversification could be achieved with long-short positions on highly correlated assets.
28 However, it is important to note that only the parametric linear VaR model always has the sub-additivity property. When VaR is
estimated using historical or Monte Carlo simulation, VaR need not be sub-additive. See Section IV.1.8.3 for further discussion and
Example IV.1.11 for a numerical illustration.
29 Also use the mean excess returns, if they are significantly different from zero and the risk horizon is longer than a few months.
30 If the portfolio is long-short we keep the holding in each stock constant, rather than the portfolio weight, and use absolute rather
than relative returns.
31 This can be a time consuming and difficult exercise, e.g. when holding new issues.
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as the square root of the difference between the square of the total VaR and the square of the
systematic VaR, i.e.:

Specific VaR =
√

2,374,1422 − 1,973,8242 = $1,319,305.

Which of the three methods is used to estimate specific risk depends very much on the data
available. If the risk factor betas are obtained directly from a data provider then method 1
cannot be used. If the risk factor returns covariance matrix � is also obtained from a data
provider, or provided in-house, then we can calculate the systematic VaR but not the total
VaR, and in that case a standardized rule must be applied to estimate the specific risk.

IV.2.5.4 EWMA Estimates of Specific VaR

When ordinary least squares is used to estimate both the factor model betas and the covari-
ance matrix, on an identical sample, methods 1 and 2 above for estimating specific VaR will
produce identical results.32 However, OLS is not necessarily the best method to use. Indeed,
OLS estimates merely represent an average value over the time period covered by the sample
and will not reflect current market conditions. Risk managers often prefer to use more risk
sensitive estimates of factor model betas and the covariance matrix, such as those obtained
using the exponentially weighted moving average methodology. This approach for estimating
risk sensitive betas was introduced and illustrated in Section II.1.2.3, and full details of the
EWMA methodology were given in Section II.3.8.

We now show that when EWMA is applied to estimate portfolio betas we should use method
1 rather than method 2 (described in the previous subsection) to obtain the specific VaR. Using
EWMA estimates instead of OLS, these two methods no longer yield identical results; in fact,
method 2 could produce negative values for the specific VaR because the assumption that �=0
is not valid.

For simplicity we suppose the portfolio with returns Y has only one risk factor, with
returns X. Then the EWMA beta is estimated by dividing the EWMA covariance by the
EWMA variance with the same smoothing constant, i.e.

β̂t,λ = Covλ(Xt,Yt)

Vλ(Xt)
.

Having estimated beta, we obtain the residual returns series

εt = Yt − β̂t,λXt.

Then, using method 1, the normal linear specific VaR is estimated from the EWMA standard
deviation σε

t of these residuals, using the usual formula, i.e.33

Specific VaRht,α =�−1(1 − α)
√

h σε

t . (IV.2.48)

32 This follows from the analysis of variance in a regression model (see Section I.4.2.4).
33 This formula assumes the data are daily and that we ignore the discounted mean residuals, which anyway will be negligible unless
h is very large.
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This method will always gives a positive specific VaR that is less than the total VaR. To see
this, substitute EWMA variances in (IV.2.45) and rearrange, yielding

Vλ(εt)= Vλ(Yt)+ β̂
2

t,λVλ(Xt)− 2β̂t,λCovλ(Xt,Yt)

= Vλ(Yt)+ β̂t,λ

(
β̂t,λVλ(Xt)− 2Covλ(Xt,Yt)

)
= Vλ(Yt)− β̂t,λ(Covλ(Xt,Yt)).

But β̂t,λCovλ(Xt,Yt) > 0 so the specific VaR is always less than the total VaR, and because it
is a variance it is always positive.

Figure IV.2.5 illustrates the application of the EWMA methodology for estimating total,
systematic and specific VaR to a portfolio of stocks in the S&P 100 index. The 1% 10-day VaR
is here expressed as a percentage of the portfolio value and the smoothing constant used for
the figure is λ=0.95 (but this, as well as the portfolio weights and the VaR model parameters,
may be changed by the reader in the spreadsheet). Although the portfolio is fairly highly
correlated with the index most of the time, there are short intervals when the specific VaR is
greater than the systematic VaR, but never greater than total VaR.
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Figure IV.2.5 Systematic and specific VaR based on EWMA

In summary, both OLS and EWMA estimates for the factor model betas and the covari-
ance matrix allow VaR decomposition into systematic and specific VaR, but the EWMA
approach yields more risk sensitive estimates. It is inadvisable to mix methodologies, for
instance, by using OLS for the covariance matrix and EWMA for the factor model betas, and
when EWMA is used take care to follow the procedure outlined above. For consistency, all
variances, covariances and betas should be estimated using the same smoothing constant in the
EWMA.
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IV.2.6 SYSTEMATIC VALUE-AT-RISK DECOMPOSITION
FOR STOCK PORTFOLIOS

In Section IV.2.2 we explained how systematic VaR, i.e. total risk factor VaR, can be attributed
to different risk factors under the normal linear VaR model. This section illustrates this VaR
decomposition by considering several equity portfolios with different types of risk factor
exposures, showing how to decompose the systematic VaR into stand-alone and marginal
VaR components. Although we remain with the normal linear VaR model for our empirical
examples, the decomposition method applies equally well to other types of parametric linear
VaR model.

IV.2.6.1 Portfolios Exposed to One Foreign Currency

To purchase securities on foreign exchanges one has first to purchase the local currency.
Hence, portfolios with international equities have forex rates as risk factors where the nominal
factor sensitivity is equal to the amount invested in the currency. In this section we consider
a stock portfolio with exposure to just one foreign currency, to illustrate the VaR decom-
position into equity and forex components, assuming for simplicity that both domestic and
foreign interest rates are zero. As usual, the discounted expected return on the portfolio is also
assumed to be negligible over the risk horizon, so all we need to consider for the systematic
VaR calculations is the covariance matrix of the risk factors.

We first prove that in the parametric linear VaR model the systematic VaR is sub-additive.
That is, the total systematic VaR is never greater than the sum of the stand-alone component
VaRs. To prove this we begin by noting that log returns are additive, so the log return in
domestic currency on an exposure to a foreign equity market may be written as

Rh + Xh,

where Rh is the h-day log return on the portfolio in foreign currency and Xh is the h-day log
return on the domestic/foreign exchange rate.

Now consider the factor model representation of the equity log return in foreign currency,
i.e. set

Rh = βYh,

where Yh is the h-day log return on the foreign risk factor (e.g. the foreign market index). Then
the standard deviation σh of the h-day log return in domestic currency is the standard deviation
of βYh + Xh. That is,

σh =
√

β2
σ2

Yh + σ2
Xh + 2β�σYhσXh =

√(
β 1

)
�h

(
β
1

)
. (IV.2.49)

In the above, � denotes the quanto correlation between the foreign market index returns in
foreign currency terms and the exchange rate returns, and

�h =
(

σ2
Yh �σYhσXh

�σYhσXh σ2
Xh

)

is the h-day covariance matrix of these returns.
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Decomposition into stand-alone components

Knowing σh, we can compute

Systematic VaRh,α =�−1(1 − α)σh, (IV.2.50)

expressed as a percentage of portfolio value. The equity and forex components of the
systematic VaR are

Equity VaRh,α = β�−1(1 − α)σYh (IV.2.51)

and

FX VaRh,α =�−1(1 − α)σXh. (IV.2.52)

Rewriting (IV.2.49) as

σ2
h = (βσYh + σXh)

2 − 2β(1 − �)σYhσXh

and using the expressions for equity and forex VaR above gives an exact decomposition of
systematic VaR as

[Total systematic VaR]2 =[Equity VaR + Forex VaR]2

− 2(1 − �)[Equity VaR]× [Forex VaR].

Hence,

Total systematic VaR ≤ Equity VaR + Forex VaR, (IV.2.53)

with equality if and only if �= 1.
However, it is extremely unlikely that �= 1. Indeed, since quanto correlations can be small

and are often very difficult to forecast, the quanto correlation � might be assumed to be zero.
In that case the decomposition into stand-alone VaR components becomes

Total systematic VaR =
√

Equity VaR2 +Forex VaR2.

If the quanto correlation is large and negative it is possible that the systematic VaR is less than
both the stand-alone equity VaR and the forex VaR, as illustrated in Example IV.2.14.

Decomposition into marginal components

For the decomposition of total systematic VaR into marginal components we use the approx-
imation described in Section IV.2.2.4. In the case of the parametric linear VaR model the
gradient vector is given by

g(θ)= �−1(1 − α)�hθ√
θ′�hθ

, (IV.2.54)

where θ is the vector of risk factor sensitivities.
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Following our discussion in Section IV.2.2.3, the ith marginal component VaR is obtained
by multiplying the ith component of the gradient vector by the ith nominal sensitivity.
Note that

θ′g(θ)=�−1(1 − α)
√

θ
′
�hθ, (IV.2.55)

and so the total systematic VaR is the sum of the marginal VaR components. The next
numerical example illustrates this construction.

EXAMPLE IV.2.14: EQUITY AND FOREX VAR

A US investor buys $2 million of shares in a portfolio of UK (FTSE 100) stocks and the
portfolio beta is 1.5. Suppose the FTSE 100 and $/£ volatilities are 15% and 20% respec-
tively, and their correlation is 0.3. What is the 1% 10-day systematic VaR in US dollars?
Decompose the systematic VaR into (a) stand-alone and (b) marginal equity and forex
components.

SOLUTION Given the data, the 10-day risk factor covariance matrix has the following
elements:

• FTSE 100 variance 0.0225/25 = 0.0009;
• $/£ variance 0.04/25 = 0.0016;
• with a correlation of 0.3, the 10-day covariance is

(0.3 × 0.15 × 0.2)/25 = 0.00036.

The 10-day returns variance is thus

(
1.5 1

)(
9 3.6

3.6 16

)(
1.5

1

)
× 10−4 = 0.004705,

so the 10-day 1% systematic VaR is 2.32635×√
0.004705=15.9571% of the portfolio value.

Since the portfolio has $2 million invested in it, its 1% 10-day systematic VaR is 15.9571% of
$2,000,000, i.e. $319,142.

(a) Consider the stand-alone component VaRs:

Equity VaR = 2.32635 × (0.15/5)× 3,000,000 = 2.32635 × 90,000

= $209,371,

Forex VaR = 2.32635 × (0.2/5)× 2,000,000 = 2.32635 × 80,000

= $186,108.

Hence

Equity VaR + Forex VaR = $395,479,

which is greater than the total systematic VaR.
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(b) For the marginal VaRs we first compute the gradient vector. Since

�10θ =
(

9 3.6
3.6 16

)(
1.5

1

)
× 10−4 =

(
17.1
21.4

)
× 10−4,

the gradient vector is

�−1(0.99)�10θ√
θ′�10θ

= 2.32635√
0.004705

(
17.1
21.4

)
× 10−4 =

(
0.05800
0.07258

)
.

Hence the marginal VaRs are:

Equity marginal VaR = 3,000,000 × 0.05800 = $173,985,

Forex marginal VaR = 2,000,000 × 0.07258 = $145,157.

and the sum of these is $319,142, which is equal to the total VaR.
When marginal VaRs are expressed as a percentage of the total VaR they tell the investor

how much risk stems from each risk factor in a diversified portfolio. Hence

• 173,985/319,142 = 54.5% of the risk is associated with the equity exposure, and
• 145,157/319,142 = 45.5% of the risk is from the foreign exchange exposure.

When the quanto correlation is large and negative it may be that the total risk factor VaR is
less than either the equity VaR or the forex VaR, and in fact it can be less than both of them.
To illustrate this point we change the quanto correlation in the above example between −1
and +1, and this gives different figures for the total risk factor VaR shown by the grey line
in Figure IV.2.6. We see that when the quanto correlation is less than about −0.6, the total
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systematic VaR due to both equity and forex factors becomes less than both the equity VaR
and the forex VaR.

The general point to take away from this section is that the total systematic VaR is always
equal to the sum of the marginal VaRs, but it is almost always less than the sum of the stand-
alone VaRs, because stand-alone VaR measures the risk due to a factor in isolation and does
not account for any diversification effects. Indeed, the total systematic VaR could be less than
either, or both, of the stand-alone VaRs. It would only be equal to the sum of the stand-alone
VaRs if the risk factor correlations were all equal to 1, which is extremely unlikely.

IV.2.6.2 Portfolios Exposed to Several Foreign Currencies

We now consider stock portfolios with investments in several different countries, using a broad
market index as the single equity risk factor in each country. Following our general discussion
in Sections IV.2.2.3 and IV.2.2.4, it is convenient to partition the risk factors into equity and
foreign exchange factors. For the moment we retain the assumptions that both domestic and
foreign interest rates are zero (and that the discounted expected return on the portfolio is also
zero) so there are no interest rate risk factors.

Denote by θE and θX the vectors of equity and forex rate risk factor sensitivities. The stand-
alone VaR decomposition is based on the variance decomposition:

θ
′
�hθ = θE

′�EhθE + θX
′�XhθX + 2θE

′�EXhθX, (IV.2.56)

where θ = (θ
′
E,θ

′
X)′ and

�h =
(

�Eh �EXh

�′
EXh �Xh

)
(IV.2.57)

is the h-day risk factor covariance matrix, partitioned into equity and forex risk factors. Note
that the quanto correlation between equity returns and forex returns is often negative. If it is
both large and negative, the total systematic VaR can be less than either the equity VaR or the
forex VaR, or both, as we have seen (for the single risk factor case) in Example IV.2.14 above.

EXAMPLE IV.2.15: VAR FOR INTERNATIONAL EQUITY EXPOSURES

Consider a US dollar investment in a large international stock portfolio with the characteristics
shown in Table IV.2.13. Suppose that the correlation between all equity risk factors is 0.75, the
correlation between the two forex risk factors is 0.5, and the quanto correlations are each 0.2.

Table IV.2.13 Characteristics of an international equity portfolio

Index Local equity Forex

Nominal β Return Volatility Net dollar β Return Volatility Nominal

S&P 500 $2m 0.9 X1 20% $1.8m N/A
FTSE 100 $2m 1.1 X2 22% $2.2m X5 ($/£) 15% $2m
CAC 40 $3m 1.2 X3 25% $3.6m X6 ($/e) 10% $7m
DAX 30 $4m 1.3 X4 27% $5.2m
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Find the 1% 10-day systematic VaR of this portfolio and decompose this into (a) stand-alone
and (b) marginal equity and forex components.

SOLUTION In Table IV.2.13 the net dollar beta is the product of the percentage beta and the
nominal dollar exposure to the index. With these dollar betas, and the notation defined in the
table, we can write the systematic P&L, Y in US dollars as

Y = 1.8 X1 + 2.2 X2 + 3.6 X3 + 5.2 X4 + 2 X5 + 7 X6.

Given the data on risk factor volatilities and correlations, we construct the annual risk factor
covariance matrix � shown in Table IV.2.14, with the partition drawn as in (IV.2.57).

Table IV.2.14 Annual covariance matrix � of equity and forex risk factor returns

0.04 0.033 0.0375 0.0405 0.006 0.004
0.033 0.0484 0.04125 0.04455 0.0066 0.0044
0.0375 0.04125 0.0625 0.050625 0.0075 0.005
0.0405 0.04455 0.050625 0.0729 0.0081 0.0054

0.006 0.0066 0.0075 0.0081 0.0225 0.0075
0.004 0.0044 0.005 0.0054 0.0075 0.01

The total P&L annual variance due to all risk factors is given by θ
′
�θ, where � is as above

and θ = (1.8, 2.2, 3.6, 5.2, 2, 7)′. The value of θ
′
�θ is calculated in the Excel spreadsheet

and the result is 10.2679. To find the systematic normal linear VaR of this portfolio, we simply
take the square root of the P&L variance and use the square-root-of-time rule. Hence the 1%
10-day systematic VaR due to all risk factors is:

2.32635 ×√
10.2679 × 0.2 = 2.32635 × 3.2044 × 0.2 = $1.490889 million.

(a) We use (IV.2.56) to decompose the total P&L variance due to all risk factors into

• the variance due to the equity factors,

(
1.8 2.2 3.6 5.2

)
⎛
⎜⎜⎝

0.04 0.033 0.0375 0.0405
0.033 0.0484 0.04125 0.04455

0.0375 0.04125 0.0625 0.05063
0.0405 0.04455 0.05063 0.0729

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1.8
2.2
3.6
5.2

⎞
⎟⎟⎠ = 8.2187;

• the variance due to the forex factors,

(
2 7

)(
0.0225 0.0075
0.0075 0.01

)(
2
7

)
= 0.79;

• and the covariance due to the ‘quanto’ factors,

(
1.8 2.2 3.6 5.2

)
⎛
⎜⎜⎝

0.006 0.004
0.0066 0.0044
0.0075 0.005
0.0081 0.0054

⎞
⎟⎟⎠

(
2
7

)
= 0.6296.
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Taking the square root of the equity and forex variances, multiplying by the relevant critical
value of the standard normal distribution and diving by 5 (to convert the annual VaRs into
10-day VaRs), the decomposition of the 1% 10-day total systematic VaR is summarized in
Table IV.2.15.

Table IV.2.15 VaR decomposition for diversified
international stock portfolio

Equity VaR $1,333,847
FX VaR $413,541
Sum of stand-alone VaRs $1,747,388
Total systematic VaR $1,490,889

(b) To estimate the marginal VaRs we first compute the gradient vector, in annual terms. Since

� θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

0.04 0.033 0.0375 0.0405
0.033 0.0484 0.04125 0.04455

0.0375 0.04125 0.0625 0.05063
0.0405 0.04455 0.05063 0.0729

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.006 0.004
0.0066 0.0044
0.0075 0.005
0.0081 0.0054

⎞
⎟⎟⎠

(
0.006 0.0066 0.0075 0.0081
0.004 0.0044 0.005 0.0054

) (
0.0225 0.0075
0.0075 0.01

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1.8
2.2
3.6
5.2

2
7

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5302
0.5900
0.6965
0.7862
0.1919
0.1480

⎞
⎟⎟⎟⎟⎟⎟⎠
,

the annual gradient vector is

�−1(0.99)�θ√
θ′� θ

= 2.32635√
10.2679

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5302
0.5900
0.6965
0.7862
0.1919
0.1480

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3849
0.4284
0.5057
0.5708
0.1393
0.1074

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The marginal VaRs are, therefore,34

Equity marginal VaR = $(1.8 × 0.3849 + 2.2 × 0.4284 + 3.6 × 0.5057 + 5.2 × 0.5708)× 0.2

= $1,284,765

and

Forex marginal VaR = $(2 × 0.1394 + 7 × 0.1074)× 0.2 = $206,125.

As usual, the sum of these is equal to the total VaR. Hence, approximately

1,284,765

1,490,889
= 86%

34 The marginal VaRs may be further decomposed into marginal components due to each specific risk factor, as shown in the
spreadsheet for this example.
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of the risk, on a diversified basis, stems from the equity exposure and only

206,125

1,490,889
= 14%

of the risk arises from the forex exposure. Notice that the marginal forex VaR is less than half
of the stand-alone forex VaR; the forex exposure has this effect because the diversification
benefit is significant, due to the low quanto correlation.

IV.2.6.3 Interest Rate VaR of Equity Portfolios

Exposures to interest rates arise in equity portfolios that are hedged with futures or when the
foreign currency exposures that arise in international equity portfolios are transacted on the
forward currency market.35 Assuming that an investment of $N in a foreign equity index is
financed by taking a foreign currency forward position, there are equal and opposite exposures
of +$N and −$N to the foreign and domestic zero-coupon interest rates of maturity equal to
the maturity of the currency forward.

EXAMPLE IV.2.16: INTEREST RATE VAR FROM FOREX EXPOSURE

A US investor buys $2 million of sterling 10 days forward, when the 10-day Treasury bill rate
is 5% and the 10-day spot rate is 4.5% in the UK. If these interest rates have volatilities of 100
basis points for the Treasury bill and 80 basis points for the UK rate, and a correlation of 0.9,
calculate the 1% 10-day interest rate VaR.

SOLUTION The interest rate risk arises from the cash flows of $2 million on the UK interest
rate and −$2 million on the US interest rate. The PV01 vector is calculated in the spreadsheet
using the method described in Section III.1.8. First we compute the change in each discount
factor for a one basis point decrease in the corresponding interest rate and then we multiply
these changes by the exposures of $2 million and −$2 million, respectively. This gives the
PV01 vector θ = (5.47, −5.46)′ in US dollars. The annual covariance matrix of the interest
rates, in basis points, is

� =
(

6,400 7,200
7,200 10,000

)
.

Now using the usual formula (θ
′
�θ) for the variance and calculating the 1% 10-day VaR in

the usual way gives a grand total of $114 for the interest rate VaR.

This example shows that interest rate VaR on equity portfolios arising from foreign exchange
forward positions is very small indeed. Unless there are large interest rate differentials between
the domestic and foreign currencies and the forward date for the forex transaction is very
distant, the interest rate risks arising from this type of transaction are negligible compared
with the equity and forex risks.

35 Hedging with futures introduces a dividend risk in addition to interest rate risk and we shall deal with this separately in the next
section.



Parametric Linear VaR Models 101

IV.2.6.4 Hedging the Risks of International Equity Portfolios

Foreign investors wishing to accept risks only on equity markets can hedge the forex risk
by taking an equal and opposite position in the currency, so that the forex VaR is zero. For
instance, in Example IV.2.15 where the US investor has a long sterling exposure of $2 million
and a long exposure to the euro of $7 million, if the investor wants to hedge the forex risk
he should take a short position of $2 million on sterling and a short position of $7 million
on the euro. Then the net currency exposure is zero, so the forex VaR is zero. Thus the total
systematic VaR is equal to the equity VaR.

The forex hedges introduce a new systematic VaR due to the interest rate risk factors, but
we have seen from the previous example that the interest rate VaR is very small compared
with the equity VaR, and compared with the specific VaR of a stock portfolio. Nevertheless,
for the sake of completeness, the following example shows how to measure all the sources of
risk for a typical, hedged stock portfolio.

EXAMPLE IV.2.17: VAR FOR A HEDGED INTERNATIONAL STOCK PORTFOLIO

A European investor has $5 million invested a portfolio of volatile S&P 500 stocks, with an
S&P 500 market beta of 1.5. The volatilities of the S&P 500 and e/$ rate are 20% and 15%
respectively, and their correlation is −0.5.

(a) Find the 1% 1-day total systematic VaR and the VaR due to each risk factor.
(b) He now hedges the portfolio’s equity exposure by selling a 3-month future on the S&P

500 index and further hedges the currency exposure with a short position on US dol-
lars, 3 months forward. The 3-month US dollar and euro interest rates are 4% and 3.5%
respectively, and the dividend yield on the S&P 500 is 3%. The volatilities and correla-
tions of these risk factors are summarized in Table IV.2.16. Find the 1% 1-day VaR due
to each of the risk factors.

(c) If the portfolio volatility is 35%, calculate the hedged portfolio’s 1% 1-day specific VaR.

Table IV.2.16 Volatilities and correlations of risk factors

Volatilities Correlations

US 3-month interest rate 80bps US interest rate–euro interest rate 0.5
Euro 3-month interest rate 100bps US interest rate–dividend yield 0.3
S&P 500 dividend yield 20bps Euro interest rate–dividend yield 0

SOLUTION

(a) The initial VaR calculations, before hedging, are based on the same method as
Example IV.2.14 and the results are shown in Table IV.2.17.

Table IV.2.17 VaR decomposition into equity and forex factors

Total systematic VaR $191,129
Equity VaR $220,697
Forex VaR $110,348

(b) The equity and forex hedges introduce three new risk factors: the 3-month euro interest
rate, with an exposure of $5 million because he has sold $5 million 3 months forward
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against the euro; the S&P 500 dividend yield, with an exposure of $7.5 million because,
with a beta of 1.5, this is the amount he sells of the 3-month S&P 500 future for the
equity hedge; and the 3-month US interest rate with an exposure of −$5 million from
the forex hedge and an additional −$7.5 million from the equity hedge, making a total
exposure of −$12.5 million to the US interest rate.

We now calculate the sensitivities of these exposures. With a 4% (annual) 3-month
interest rate, the discount factor is (1.01)−1 = 0.9901 and, as shown in the spreadsheet,
the change in the discount factor for a one basis point decrease in the interest rate, i.e.
the δ01, is

δ013−month = 0.245 × 10−4.

Similarly the euro interest rates and the US dividend yield have δ01s that are calculated
in the spreadsheet to be 0.246 × 10−4.

The exposure to the US interest rate, the euro interest rate and the dividend yield
respectively is {−12.5, 5, 7.5} in millions of dollars. Hence, the PV01 vector in
dollars is36

θ = 0.25 × 100 × (−12.5, 5, 7.5)′ = (−306.35, 122.84, 184.72)′.

Given the risk factor volatilities and correlations in Table IV.2.16, the 1-day covariance
matrix of the risk factor returns is

�1 =
⎛
⎝25.6 16 1.92

16 40 0
1.92 0 1.6

⎞
⎠ .

For instance, 25.6 = 802/250, and so forth. Hence, the 1-day variance of the P&L is

θ
′
�1θ= 1,639,222.

So, after the hedges the 1% 1-day total systematic VaR is:

Total systematic VaR1,0.01 = 2.32635 ×√
1,639,222 = $2978.

The 1% 1-day VaR due to each risk factor is

2.32635 × |PV01i| × σ1,i,

where σ1,i is the 1-day standard deviation of the ith risk factor. Hence,

US interest rate VaR1,0.01 = 2.32635 × 306.35 × 80/
√

250 = $3606,

Euro interest rate VaR1,0.01 = 2.32635 × 122.84 × 100/
√

250 = $1807,

US dividend yield VaR1,0.01 = 2.32635 × 184.72 × 20/
√

250 = $544.

Note that the US interest rate VaR is larger than the total VaR, which is not unusual
when we have opposite positions in positively correlated risk factors.

36 The factor of 100 here arises because we multiply by $1,000,000 and by 1 basis point, i.e. 0.0001.
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(c) By far the largest residual VaR after the equity and forex hedge is going to arise from the
specific VaR, i.e. from the tracking error of this portfolio. This is because we are hedging
a portfolio that has a market beta of 1.5 with an index futures contract. Assuming the
residuals are uncorrelated with the futures, the specific variance, in annual terms, is

0.352 − 1.52 × 0.22 = 0.0325.

Hence, the 1% 1-day specific VaR is

Specific VaR1,0.01 = 2.32635 ×
√

0.0325

250
× $5,000,000 = $132,622.

IV.2.7 CASE STUDY: NORMAL LINEAR VALUE AT RISK
FOR COMMODITY FUTURES

In this section we calculate the normal linear VaR for two commodity futures trading desks,
one trading natural gas futures and the other trading silver futures. We shall calculate the
VaR for each desk, and then aggregate these into a total VaR covering both the desks. The
data used in this study are NYMEX futures on natural gas and silver with maturities up to 6
months. Each natural gas futures contract is for 10,000 million British thermal units and each
silver futures contract is for 5000 troy ounces.

The desks can take long or short positions on the futures according to their expectations
and we assume the traders have mapped their positions to constant maturity futures at 1, 2, 3,
4 and 5 months using the commodity futures mapping described in Section III.5.4.2.

Applying linear interpolation to daily data on the NYMEX traded futures prices, we first
construct a historical series of daily data on constant maturity futures from 3 January 2006 to
31 January 2007. We shall use these data to measure the VaR on 31 January 2007. The constant
maturity futures on the two commodities over the sample period are shown in Figures IV.2.7
and IV.2.8.
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Figure IV.2.7 Constant maturity futures prices, silver
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Figure IV.2.8 Constant maturity futures prices, natural gas

The natural gas futures prices have a very strong contango (upward sloping term structure)
during the summer of 2006. Like the spot price, near term futures prices were rather low in the
summer of 2006 because storage was almost full to capacity. The silver futures prices are much
closer to each other than the natural gas futures prices. The silver term structure is very flat
most of the time and there is no seasonality in the prices. Price jumps are quite common, due to
speculation, because silver is an investment asset as well as being used in industrial processes.

Table IV.2.18 shows the volatilities and correlations of each set of constant maturity futures
returns. These are calculated from the daily returns over the entire sample. Both are highly

Table IV.2.18 Volatilities and correlations of natural gas and silver futures

Gas

Correlations 1 month 2 month 3 month 4 month 5 month

1 month 1
2 month 0.910 1
3 month 0.914 0.9492 1
4 month 0.912 0.9276 0.960 1
5 month 0.888 0.9173 0.950 0.9639 1

Volatilities 58.70% 55.09% 49.82% 45.87% 41.85%

Silver

Correlations 1 month 2 month 3 month 4 month 5 month

1 month 1
2 month 0.939 1
3 month 0.942 0.918 1
4 month 0.880 0.863 0.960 1
5 month 0.799 0.840 0.892 0.935 1

Volatilities 44.13% 43.98% 42.78% 43.35% 40.46%
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correlated along their own term structures and natural gas futures returns are more volatile
than silver futures returns.

We now consider the positions taken on each trading desk on 31 January 2007. These are
shown in Table IV.2.19. First we show the price and number of units of each futures contract,
then the position values are calculated as the product of the number of contracts and the price
of the contract, multiplied by either 10,000 (the trading unit for natural gas futures) or 5000
(the trading unit for silver futures).

Table IV.2.19 Commodities trading desk positions on natural gas and silver

1 month 2 month 3 month 4 month 5 month

Price: gas futures 7.67 7.66 7.69 7.70 7.84
Price: silver futures 13.50 13.39 13.62 13.62 13.56
No contracts: gas −75 −30 −10 15 25
No contracts: silver 100 50 20 −50 −100
Position values: gas −$5,750,250 −$2,297,200 −$769,000 $1,155,000 $1,960,875
Position values: silver $6,748,000 $3,347,150 $1,362,100 −$3,405,250 −$6,777,721

The commodities trading desks are betting on an imminent fall in price for natural gas, since
it has short positions on the short maturities and long positions on longer maturities, and an
imminent rise in price for silver, taking long positions in shorter maturities and short positions
in longer maturities.

The 1% 10-day stand-alone VaR for each desk is calculated in the spreadsheet using the
formula

VaR10,0.01 =�−1(0.99)
√

θ′�1θ×√
10,

where θ is the position value vector given in the last rows of Table IV.2.19 and �1 is the 5 × 5
1-day covariance matrix of the constant maturity gas or silver futures daily returns. A similar
formula is applied to obtain the total VaR aggregated over both desks, now using the position
value vector in the last two rows of Table IV.2.19 combined, and the 10 × 10 1-day covariance
matrix of natural gas and silver futures daily returns. The marginal VaRs were calculated using
the methodology described in Section IV.2.2.4.37

The results are shown in Table IV.2.20. The marginal VaRs tell us that trading on gas futures
contributes 69% of the total risk and trading on silver futures contributes 31% of the total risk,
after adjusting for the diversification effects from the two activities.38

The stand-alone VaRs measure risk without accounting for diversification. Hence, the sum
of the two stand-alone VaRs is greater than the total VaR – this is because the natural gas
and silver futures have less than perfect correlation. If the correlation between natural gas and

37 We do not give full details of this calculation here, since several other numerical examples have already been provided and the
calculation is performed in the spreadsheet for this case study.
38 However, this does not imply that capital allocation should use these marginal VaRs in a risk adjusted performance measure. There
is no reason why either trading desk should be advantaged (or disadvantaged) by the fact that diversification across trading activities
reduces total risk. Indeed capital would normally be allocated using a risk adjusted performance measure based on the stand-alone
VaR for each desk.
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Table IV.2.20 1% 10-day VaR of commodity
futures desks

VaR Stand-alone Marginal

Gas $1,720,139 $1,394,727
Silver $1,180,168 $614,955
Total $2,009,682

silver futures changed, all else remaining the same, this would not affect the stand-alone VaRs.
But it would affect the total VaR and hence also the marginal VaRs.

IV.2.8 STUDENT t DISTRIBUTED LINEAR VALUE AT RISK

In this section we shall extend the analytic formula for normal linear VaR to the case where the
portfolio returns and the risk factor returns are assumed to have a Student t distribution. First,
to motivate this formula, Section IV.2.8.1 describes the effect that leptokurtosis has on a VaR
estimate. Then Section IV.2.8.2 derives a parametric linear VaR formula for the case where the
portfolio’s returns are generated by a Student t distribution, and extends this to systematic VaR
when the risk factor returns have a multivariate Student t distribution. Empirical examples are
provided in Section IV.2.8.3.

IV.2.8.1 Effect of Leptokurtosis and Skewness on VaR

A leptokurtic distribution is one whose density function has a higher peak and greater mass
in the tails than the normal density function of the same variance. In a symmetric unimodal
distribution, i.e. one whose density function has only one peak, leptokurtosis is indicated by a
positive excess kurtosis.39

Leptokurtosis is one of the basic ‘stylized facts’ emerging from examination of the
empirical distributions of financial asset returns. Also apparent is the skewness of return
densities, particularly for equity returns which often have a strong negative skew (heavier
lower tail). With leptokurtosis and negative skewness in risk factor return distributions the
normal linear VaR formula is likely to underestimate the VaR at high confidence levels. In
commodity returns a positive skew (heavier upper tails) is often seen, but for companies that
are short commodity futures, losses are made following price rises, and here the positive skew-
ness effect compounds the leptokurtosis effect on VaR. Again, the normal linear VaR formula
is likely to underestimate the VaR at high confidence levels.

Figure IV.2.9 illustrates the impact of leptokurtosis on the VaR estimate. Both of the density
functions shown in the figure are symmetric, but the density depicted by the black line is
leptokurtic, i.e. it has a higher peak and heavier tails than the ‘equivalent’ normal density (i.e.
the normal density with the same variance) which is shown in grey. For each density the
corresponding 1% and 5% VaR estimates are shown. We observe the following:

39 For an introduction to skewness and kurtosis, see Section I.3.2.7.
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Figure IV.2.9 Comparison of normal VaR and leptokurtic VaR

• For low significance levels (e.g. 5%), the normal assumption can overestimate VaR if the
return distribution is leptokurtic.

• For higher significance levels (e.g. 0.5%), the normal assumption can seriously underes-
timate VaR if the return distribution is leptokurtic.

• The significance level at which the VaR becomes greater under the leptokurtic distri-
bution depends on the extent of the excess kurtosis. If the excess kurtosis is large, the
leptokurtic VaR will exceed the normal VaR even at 10% significance levels. For an
empirical illustration of this, see Example IV.2.20.

As the confidence level of the VaR estimate increases (i.e. α becomes smaller) there
always comes a point at which the leptokurtic VaR exceeds the normal VaR. Referring to
Figure IV.2.9, and noting the ‘intermediate’ region where the leptokurtic density curve lies
below the equivalent normal density, the reason for this becomes clear. In the tails (and the
centre) the leptokurtic density function lies above the equivalent normal density function;
hence the leptokurtic VaR will be the greater figure for all significance levels above some
threshold. But in the intermediate region, the ordering may be reversed.

We know from Section I.3.3.7 that Student t distributions are leptokurtic. When significant
positive excess kurtosis is found in empirical financial return distributions, the Student t
distribution is likely to produce VaR estimates that are more representative of historical
behaviour than normal linear VaR. However, by the central limit theorem, the excess kurtosis
in financial returns decreases as the sampling interval increases. Thus, whilst daily returns
may have a large positive excess kurtosis, weekly returns have lower kurtosis and monthly
returns may even have excess kurtosis that is close to zero.

IV.2.8.2 Student t Linear VaR Formula

In this subsection we derive an analytic formula for the Student t VaR.40 It is useful when VaR
is estimated over a short risk horizon, as positive excess kurtosis can be pronounced over a

40 One of the first applications of the Student t distribution to VaR estimation was by Huisman et al. (1998).
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period of a few days or even weeks. But for risk horizons of a month or more, returns are
likely to be approximately normally distributed, by the central limit theorem.

The standard Student t distribution with ν degrees of freedom was introduced in
Section I.3.3.7. If a random variable T has a Student t distribution with ν degrees of freedom
we write T ∼ tν, and its density function is

fν(t) = (νπ)−1/2�
(ν

2

)−1

�

(
ν+ 1

2

)(
1 + ν−1t2

)−( ν+1
2 )

, (IV.2.58)

where the gamma function � is an extension of the factorial function to non-integer
values.41

The distribution has zero expectation and zero skewness. For ν > 2 the variance of a
Student t distributed variable is not 1, but

V(T)= ν(ν − 2)−1. (IV.2.59)

Its excess kurtosis 
 is finite for ν> 4, and is given by


 = 6(ν− 4)−1. (IV.2.60)

The Student t density has a lower peak than the standard normal density, and it converges to
the standard normal density as ν→∞. But the density is leptokurtic, since when we compare
it with the equivalent normal density, i.e. the one having the same variance as (IV.2.59), the
peak in the centre of the distribution is higher than the peak of the equivalent normal density,
and the tails are heavier.

The α quantile of the standard Student t distribution is denoted by t−1
ν (α). Since quantiles

translate under monotonic transformations,42 the α quantile of the standardized Student t dis-
tribution with ν degrees of freedom, i.e. the Student t distribution with mean 0 and variance 1,
is

√
ν−1(ν − 2)t−1

ν
(α). Let X denote the daily return on a portfolio and suppose it has standard

deviation σ and discounted mean μ. To apply a Student t linear VaR formula to the portfolio
we need to use the quantiles from a generalized Student t distribution, i.e. the distribution of
the random variable X =μ+ σT, where T is a standardized Student t random variable.

Note that the ordinary Student t quantiles satisfy

−t−1
ν

(α) = t−1
ν

(1 − α), (IV.2.61)

because the distribution is symmetric about a mean of zero. So, using the same argument that
we used in Section IV.2.2 to derive the normal linear VaR formula, it follows that

Student t VaRα,ν =√
ν−1(ν − 2) t−1

ν
(1 − α)σ −μ. (IV.2.62)

41 When x is an integer, �(x) = (x − 1)!. See Section I.3.4.8 for further details about the gamma function.
42 That is, if X has distribution F(x) and y = aX, a being a constant, then Y has α quantile yα = axα = aF−1(α).
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The Student t distribution is not a stable distribution,43 so the sum of i.i.d. Student t variables
is not another Student t variable. Indeed, by the central limit theorem the sum converges
to a normal variable as the number of terms in the sum increases. When h is small, a very
approximate formula for the 100α%h-day VaR, as a percentage of the portfolio value, is

Student t VaRh,α,ν =√
ν−1(ν − 2)h t−1

ν
(1 − α)σ − hμ. (IV.2.63)

But when h is more than about 10 days (or even less, if ν is relatively large) the normal linear
VaR formula should be sufficiently accurate.

The extension of (IV.2.63) to the systematic VaR for a linear portfolio that has been
mapped to m risk factors with sensitivities θ = (θ1, . . . , θm)′ is, assuming the risk factors have
a multivariate Student t distribution with ν degrees of freedom,

Systematic Student t VaRh,α =√
ν−1(ν − 2) t−1

ν
(1 − α)

√
θ′�hθ− θ′μh, (IV.2.64)

where �h denotes the m × m covariance matrix of the risk factor returns and μh denotes the
m × 1 vector of expected excess returns over the h-day risk horizon.

IV.2.8.3 Empirical Examples of Student t Linear VaR

The critical value t−1
ν

(1 − α) can be found in statistical tables or using the Excel function
TINV.44 The degrees of freedom parameter ν is estimated by fitting the distribution using
maximum likelihood estimation (MLE). Example I.3.17 and its accompanying spreadsheet
explain how to do this in practice. Alternatively, a quick approximation to ν may be obtained
using a simple ‘moment matching’ method called the method of moments, which entails equat-
ing the sample moments to population moments.45 We shall compare both methods in the
following example.

EXAMPLE IV.2.18: ESTIMATING STUDENT T LINEAR VAR AT THE PORTFOLIO LEVEL

Using the daily FTSE 100 data from 4 January 2005 to 7 April 2008 shown in Figure IV.2.10,
estimate the degrees of freedom parameter for a generalized Student t distribution represen-
tation of the daily returns, using (a) the method of moments and (b) MLE.46 Then compute
the 1% 1-day Student t VaR, as a percentage of portfolio value, using both estimates for the
degrees of freedom parameter.

SOLUTION The method of moments gives an estimate ν̂ = 6.07 for the degrees of freedom
parameter, but MLE gives ν̂ = 4.14.47 The resulting estimates of 1% 1-day VaR are 2.81%
for the method of moments estimate and 2.94% for the maximum likelihood estimate. Both
estimates are ignoring the possibility of non-zero skewness, because the Student t distribution
is symmetric. But in fact the sample skewness is −0.258. This is because of the large falls in
the FTSE 100 index that are evident from Figure IV.2.10.

43 See Section I.3.3.11.
44 See Section IV.4.2.4 (or Excel help) for details on how to apply the TINV function.
45 Note that the kurtosis is defined only for ν> 4, so we must assume this, to apply the method of moments.
46 Data were downloaded from Yahoo! Finance, symbol ∧FTSE.
47 Note that it is not necessary to use an integer value for the degrees of freedom in the Student t distribution.
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Figure IV.2.10 FTSE 100 index price

EXAMPLE IV.2.19: COMPARISON OF NORMAL AND STUDENT T LINEAR VAR

Using the maximum likelihood estimate of the degrees of freedom for the Student t represen-
tation of the FTSE 100 index returns from the previous example, compare the Student t linear
VaR with the normal linear VaR over a 1-day horizon, at the 0.1%, 1% and 10% significance
levels. Express your results as a percentage of the portfolio value.

SOLUTION The spreadsheet for the previous example is extended to include the normal
linear VaR, and using the three different significance levels. The results are displayed in
Table IV.2.21.

Table IV.2.21 Normal and Student t linear VaR

Significance Level 0.1% 1% 10%

Student t VaR 5.64% 2.94% 1.20%
Normal VaR 3.39% 2.55% 1.41%

The 1-day Student t VaR is considerably greater than the normal VaR at the 0.1% signifi-
cance level, it is a little greater than the normal VaR at the 1% level, and at the 10% significance
level the normal VaR is greater than the Student t VaR. This is because the tails of the Student
t density have greater mass and the peak at the centre is higher than the normal density with
the same variance. Hence, for quantiles lying further toward the centre there may be less mass
in the tail of the Student t density than in the tail of the normal density.

The above examples show that the model risk arising from the assumption that returns are
normally distributed is very significant, especially when VaR is measured at high confidence
levels such as 99.9%. The Student t VaR model provides a more accurate representation of
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most financial asset returns, but a potentially significant source of model risk arises from
assuming the return distribution is symmetric. Although there are skewed versions of the
Student t distribution (see McNeil et al. (2005) and references therein), the non-linear trans-
formations that underpin these distributions remove the possibility of simple parametric linear
VaR formulae. By far the easiest way to extend the parametric linear VaR model to accommo-
date the skewness that is so often evident in financial asset returns is to use the mixture linear
VaR model, which is explained in the next section.

IV.2.9 LINEAR VALUE AT RISK WITH MIXTURE
DISTRIBUTIONS

In this section we show how mixtures of normal or Student t distributions can be used to esti-
mate VaR, capturing both leptokurtosis and skewness in return distributions. Section IV.2.9.1
provides a gentle introduction to the subject by summarizing the important features of sim-
ple mixtures of two distributions. Section IV.2.9.2 explains how to calculate VaR when the
portfolio return distribution is assumed to be a normal mixture or a Student t mixture dis-
tribution. In this case the parametric linear VaR is given by an analytic formula that does
not have an explicit solution, so we use numerical methods to find the mixture linear VaR.
Section IV.2.9.3 explains how mixture distribution parameters are estimated from historical
data and Section IV.2.9.4 provides empirical examples. Section IV.2.9.5 illustrates the poten-
tial for mixture VaR to be applied in a scenario VaR setting, when using little or no historical
data on a portfolio’s returns. Finally, Section IV.2.9.6 considers the case where the portfolio
is mapped to risk factors whose returns are generated by correlated i.i.d. normal mixture
processes with two multivariate normal components.

IV.2.9.1 Mixture Distributions

The mixture setting is designed to capture different market regimes. For instance, in a mixture
of two normal distributions, there are two regimes for returns: one where the return has mean
μ1 and variance σ2

1 and another where the return has mean μ2 and variance σ2
2. The other

parameter of the mixture is the probability π with which the first regime occurs, so the second
regime occurs with probability 1 −π.

The distribution function of a mixture distribution is a probability-weighted sum of the
component distribution functions. For instance, a mixture of just two normal distributions has
distribution function defined by

G(x)=π F(x;μ1,σ
2
1)+ (1 −π)F(x;μ2,σ

2
2), 0 <π< 1, (IV.2.65)

where F(x;μi, σ2
i ) denotes the normal distribution function with mean μi and variance σ2

i , for
i = 1, 2, and where π is the probability associated with the normal component with mean
μ1 and variance σ2

1. Differentiating (IV.2.65) gives the corresponding normal mixture density
function

g(x)=π f(x;μ1,σ
2
1)+ (1 −π)f(x;μ2,σ

2
2), 0 <π< 1, (IV.2.66)

where f(x;μi, σ2
i ) denotes the normal density function with mean μi and variance σ2

i , for
i = 1, 2. Full details about normal mixture distributions are given in Section I.3.3.6.
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We illustrate the basic properties of mixture distributions by considering a simple mixture
of two zero-mean normal components, i.e. where μ1 =μ2 = 0. In this case the variance of the
normal mixture distribution is

σ2 =πσ2
1 + (1 −π)σ2

2, (IV.2.67)

The skewness is zero and the kurtosis is


 = 3

(
πσ4

1 + (1 −π)σ4
2[

πσ2
1 + (1 −π)σ2

2

]2

)
. (IV.2.68)

For instance, Figure IV.2.11 shows four densities:

• three zero-mean normal densities with volatility 5%, 10% (shown in grey) and 7.906%
(shown as dotted line);

• a normal mixture density, shown in black, which is a mixture of the first two normal
densities with probability weight of 0.5 on each of the grey normal densities, and which
has volatility 7.906%.
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Figure IV.2.11 Comparison of a normal mixture with a normal density of the same variance

The variance of the mixture distribution is 0.5 × 52 + 0.5 × 102 = 62.5. Since 7.906 =√
62.5,

the mixture has the same variance as the dashed normal curve. However, it has a kurtosis of
4.87. In other words it has an excess kurtosis of 1.87, which is significantly greater than zero
(zero being the excess kurtosis of the equivalent (dashed) normal density in the figure).

Normal mixture distributions provide a simple means of capturing the empirically observed
skewness and excess kurtosis of financial asset returns. It is always the case that zero-mean
normal mixture densities have zero skewness but positive excess kurtosis: they have higher
peaks and heavier tails than normal densities with the same variance. Taking different means
in the component normal densities gives a positive or negative skew. See Figure I.3.14 for an
example.
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IV.2.9.2 Mixture Linear VaR Formula

When the excess return X on a linear portfolio has a normal distribution, the analytic formula
(IV.2.5) for normal linear VaR follows directly from the definition of VaR. But there is no
explicit formula for estimating VaR under the assumption that portfolio returns follow a mix-
ture density. However, using exactly the same type of argument as in Section IV.2.2.1, we can
derive an implicit formula that we can solve using a numerical algorithm.

For instance, suppose there are only two components in a mixture density for the portfolio’s
returns, and write

G(x)=π F1

(
x;μ1,σ

2
1

) + (1 −π)F2

(
x;μ2,σ

2
2

)
, 0 <π< 1, (IV.2.69)

where Fi(x;μi, σ2
i ) denotes the distribution function with mean μi and variance σ2

i , for i=1, 2,
and where π is the probability associated with the component with mean μ1 and variance σ2

1.
Note that F1 and F2 need not be both normal; one or both of them could be a Student t
distribution, in which case the degrees of freedom νi should be included in their list of
parameters.

We have

P(X < xα)= G(xα)=π F1

(
xα;μ1,σ

2
1

) + (1 −π)F2

(
xα;μ2,σ

2
2

)
, (IV.2.70)

and when P(X < xα) = α, then xα is the α quantile of the mixture distribution. Let Xi be the
random variable with distribution function Fi(x;μi, σ2

i ). Then

Fi

(
xα;μi,σ

2
i

)= P(Xi < xα)= P
(
σ−1

i (Xi −μi)< σ−1
i (xα −μi)

)
.

But

σ−1
i (Xi −μi)= Yi =

{
Z, if Fi is a normal distribution,

Ti, if Fi is a Student t distribution,

where Z is a standard normal variable and Ti is a standardized Student t variable with νi

degrees of freedom. Hence,

πP
(
Y1 <(xα −μ1)σ

−1
1

)+ (1 −π)P
(
Y2 <(xα −μ2)σ

−1
2

) = α. (IV.2.71)

But since Yi is a standardized Student t or normal variable, we know its quantiles. That is,
we know everything in the above identity except the mixture quantile, xα. Hence, the mixture
quantile can be ‘backed out’ from (IV.2.71) using an iterative approximation method such as
the Excel Goal Seek or Solver algorithms (see Section I.5.2.2). Finally, we find the mixture
VaR by setting VaRα =−xα.

For greater flexibility to fit the empirical return distribution we may also include more than
two component distributions in the mixture. The general formula for the mixture VaR, now
making the risk horizon h over which the returns are measured explicit, is therefore

n∑
i=1

πiP
(
Yi <(xh,α −μih)σ

−1
ih

)= α. (IV.2.72)

As before, backing out xh,α from the above gives VaRh,α =−xh,α.
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IV.2.9.3 Mixture Parameter Estimation

The 100α% h-day mixture VaR that is implicit in (IV.2.72) will be expressed as a percentage
of the portfolio value if μih and σih are the expectation and standard deviation of the compo-
nent returns, and it will be expressed in nominal terms if μih and σih are the expectation and
standard deviation of the component P&L. But how do we estimate these component means
and variances?

The estimation of the mixture parameters from historical data is best performed using the
EM algorithm, especially when the mixture is over more than two distributions. A description
of this algorithm and a case study illustrating its application to financial data are given
in Section I.5.4. Empirically, we often find that we can identify two significantly different
regimes: a regime that occurs most of the time and governs ordinary market circumstances,
and a second ‘high volatility’ regime that occurs with a low probability. In an equity portfolio
the low probability, high volatility regime is usually captured by a component with a large and
negative mean; in other words, this component usually corresponds to a crash market regime.

As the number of distributions in the mixture increases the probability weight on some of
these components can become extremely small. However, in finance it is seldom necessary to
use more than two or three components in the mixture, since financial asset return distributions
are seldom so irregular as to have multiple modes. When there are only a few components the
method of moments may be used estimate the parameters of a normal mixture distribution
in Excel. In this approach we equate the first few sample moments (one moment for each
parameter to be estimated) to the corresponding theoretical moments of the normal mixture
distribution.

The theoretical moments for normal mixture distributions are now stated for the general
case where there are m normal components with means and standard deviations μi and σi, for
i = 1,2, . . . , m. The vector of probability weights, i.e. the mixing law for the normal mixture,
is denoted by π = (π1, . . . ,πm) where

∑m
i=1 πi = 1. The non-central moments are

M1 = E[X] =
m∑

i=1

πiμi,

M2 = E
[
X2

]=
m∑

i=1

πi

(
σ2

i +μ2
i

)
,

M3 = E
[
X3

]=
m∑

i=1

πi

(
3μiσ

2
i +μ3

i

)
,

M4 = E
[
X4

]=
m∑

i=1

πi

(
3σ4

i + 6μ2
iσ

2
i +μ4

i

)
,

(IV.2.73)

and the mean, variance, skewness and kurtosis are

μ = E[X] = M1,

σ2 = E
[
(X −μ)2

] = M2 − M2
1,

τ = σ−3E
[
(X −μ)3

] = σ−3
(
M3 − 3M1M2 + 2M3

1

)
,


 = σ−4E
[
(X −μ)4

] = σ−4
(
M4 − 4M1M3 + 6M2

1M2 − 3M4
1

)
.

(IV.2.74)
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Hence, when the method of moments is applied to estimate the parameters of a normal mix-
ture distribution, we equate (μ, σ, τ, 
) to the first four sample moments (μ̂, σ̂, τ̂, 
̂) by
changing the parameters of the normal mixture distribution. An empirical example is given in
the next subsection.

IV.2.9.4 Examples of Mixture Linear VaR

In a case study in Section I.5.4.4 we applied the EM algorithm to fit a mixture of two nor-
mal distributions to the daily returns on the FTSE 100 index, and likewise for the S&P 500
index and the $/£ exchange rate. For convenience, Table IV.2.22 states the sample moments
and Table IV.2.23 states the normal mixture parameter estimates for each of these variables,
based on the EM algorithm. In both tables the means and standard deviations are quoted in
annualized terms, assuming the returns are i.i.d.

Table IV.2.22 Moments of the FTSE 100 and S&P 500 indices and of the $/£
forex rate

Variable Annualized Mean Volatility Skewness Excess Kurtosis

FTSE 100 4.62% 17.57% 0.0205 3.2570
S&P 500 7.35% 17.73% −0.0803 1.0525
FX rate 2.04% 7.99% −0.1514 2.6332

Table IV.2.23 Estimated parameters of normal mixture distributions (annualized)

Variable π μ1 μ2 σ1 σ2

FTSE 100 0.3622 −3.58% 9.28% 26.35% 5.48%
S&P 500 0.2752 −1.01% 10.52% 29.80% 7.84%
FX Rate 0.6150 1.94% 2.21% 9.68% 4.01%

In the next example we use these parameters to estimate the normal mixture VaR for a US
investor in the FTSE 100 and S&P 500 indices.

EXAMPLE IV.2.20: ESTIMATING NORMAL MIXTURE VAR FOR EQUITY AND FOREX

Use the parameters in Table IV.2.23 to estimate the 100α% 10-day normal mixture VaR for a
US investment in the FTSE 100 and S&P 500 indices. Report your results as a percentage of
the local currency exposure to each risk factor and compare them with the normal estimate of
VaR. Use significance levels of α = 10%, 5%, 1% and 0.1%.

SOLUTION For each of the three risk factors we use Solver or Goal Seek to back out the
normal mixture VaR from the formula (IV.2.71).48 The results are reported in Table IV.2.24,
where they are compared with the equivalent normal VaR. Compared with the normal VaR, the
normal mixture VaR is greater than the normal VaR at higher significance levels. As expected,
the extent to which it exceeds the normal VaR increases as we move to a greater confidence

48 The algorithm must be repeated whenever you change the significance level.
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Table IV.2.24 Comparison of normal mixture and normal VaR

VaR Model NM Normal NM Normal NM Normal NM Normal

Significance α = 0.1% α = 1% α = 5% α = 10%

FTSE 100 VaR 14.77% 10.67% 10.25% 7.99% 5.88% 5.60% 3.29% 4.32%
S&P 500 VaR 16.04% 10.66% 10.74% 7.96% 5.46% 5.54% 2.88% 4.25%
Forex VaR 5.62% 4.86% 4.06% 3.64% 2.63% 2.55% 1.86% 1.97%

level in the VaR estimate, and the difference is most pronounced in the S&P 500 since this
has the largest negative skewness of all three risk factors. In both VaR models the forex risk
is much the smallest, since the forex volatility is considerably lower than the volatility of the
equity risk factors.

The next example further investigates the effect that a large negative skewness has on the
normal mixture VaR estimate. It also illustrates the application of the method of moments to
the estimation of the normal mixture parameters.

EXAMPLE IV.2.21: COMPARISON OF NORMAL MIXTURE AND STUDENT T LINEAR VAR

Using the daily FTSE 100 index data from 4 January 2005 to 7 April 2008 shown in
Figure IV.2.10, apply the method of moments to estimate the parameters for a mixture of
two normal distributions representation of the daily returns. Then, using both the maximum
likelihood and the method of moments estimate of the degrees of freedom for the Student t
density representation of the FTSE 100 index returns from Example IV.2.18, compare the
Student t linear VaR with the normal mixture linear VaR over a 10-day horizon, at the
0.1%, 1% and 5% significance levels. Express your results as a percentage of the portfolio
value.

SOLUTION The sample moments that we want to match are shown in Table IV.2.25. The
sample is of daily log returns between January 2006 and April 2008.

Table IV.2.25 Sample moments of daily returns
on the FTSE 100 index

Moment Estimate

Mean 0.012%
Standard deviation 1.097%
Skewness −0.2577
Excess kurtosis 2.9049

The application of Solver to the problem of estimating the parameters of a mixture of two
normal distributions is highly problematic. Firstly, with five parameters there would be no
unique solution even if the system were linear – and the optimization problem here is highly
non-linear. Secondly, we require a better optimization algorithm (such as the EM algorithm)
than the simple Newton or conjugate gradient methods employed by Solver. So the user needs
to ‘nurse’ the optimization through stages, trying to equate each moment in turn. Without
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going into details, I was able to match the sample and population moments to five decimal
places and the resulting parameter estimates are shown in Table IV.2.26.49

Table IV.2.26 Normal mixture parameters for FTSE 100 returns

FTSE 100 π μ1 μ2 σ1 σ2

Daily
0.34003

−0.124% 0.082% 1.675% 0.602%
Annual −31.07% 20.52% 26.49% 9.52%

We now compare the results obtained using the normal mixture distribution with the
Student t VaR results from Examples IV.2.18 and IV.2.19. The 100α% 10-day VaR estimates
are displayed in Table IV.2.27, for different values of α. The Student t VaR estimates ignore
the large negative skewness of the FTSE 100 returns, and as a result they tend to underes-
timate the VaR. The only Student t VaR estimate that exceeds the normal mixture VaR is
the one based on the maximum likelihood estimate of the degrees of freedom, at the 0.1%
significance level.

Table IV.2.27 Comparison of normal and Student t linear VaR

Significance level 0.1% 1% 5%

Normal mixture VaR 15.95% 11.40% 7.01%
Student t VaR (MLE) 17.76% 8.07% 5.71%
Student t VaR (MM) 14.67% 8.81% 5.40%

The final example in this section illustrates the application of a mixture of Student t distri-
butions to the estimation of VaR, comparing the result with the normal mixture VaR. Note
that we require the standardized t distribution in (IV.2.71), and Excel only has the ordinary
Student t distribution function. Even this has some strange properties, so that in the example
we must set50

Standardized tν(x)=
{√

ν(ν − 2)−1 TDIST(−x,ν,1) , if x ≤ 0,

1 −√
ν(ν − 2)−1 TDIST(x,ν,1) , if x > 0.

EXAMPLE IV.2.22: COMPARISON OF NORMAL MIXTURE AND STUDENT T MIXTURE VAR

For α=0.1%, 1%, 5% and 10%, compute the 100α% 10-day VaR of a mixture of two distribu-
tions, the first with mean 0 and volatility 20% and the second with (annualized) mean −10%
and volatility 40%. The probability weight associated with the first distribution is 75% and the
daily returns are assumed to be i.i.d. Compare two cases: in the first case the two component
distributions are assumed to be normal, and in the second case the first component distribution
is a Student t distribution with 10 degrees of freedom and the second is a Student t distribution
with 5 degrees of freedom.

49 These parameters differ from those shown in Table IV.2.23 not only because the estimation algorithm is different; the historical data
period is also different. During the last six months of the data period for this example, the FTSE volatility increased as the index fell
consistently during the credit crisis, and this period is not included in the data for the previous example.
50 In general, if X has distribution F(x) and Y = aX, a being a constant, then y has distribution function a−1F(x).
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SOLUTION In each case the implicit formula (IV.2.71) is implemented in the spreadsheet,
based on the data in the question, and set up to back out the mixture VaR using Solver. Solver
is reapplied to obtain both VaR estimates each time we change the significance level (or if
we were to change any other parameter). The results, expressed as a percentage of the port-
folio value, are summarized in Table IV.2.28. Predictably, the Student t mixture VaR is the
greater at all significance levels, and the difference increases as we move to higher significance
levels.

Table IV.2.28 Comparison of mixture VaR estimates

α 0.1% 1% 5% 10%

Normal mixture VaR 21.61% 14.45% 8.60% 6.33%
Student t mixture VaR 36.70% 19.73% 10.78% 7.70%

EXAMPLE IV.2.23: MIXTURE VAR IN THE PRESENCE OF AUTOCORRELATED RETURNS

Recalculate the normal mixture and Student t mixture 1% 10-day VaR estimates from the
previous example when daily returns are assumed to have autocorrelation +0.25, and when
the are assumed to have autocorrelation −0.25.

SOLUTION The calculation proceeds as before, but instead of scaling daily returns by
√

10=
3.1623 for the 10-day standard deviation, we use the scale factor based on (IV.2.10). This is

√
10 + 2

0.25

0.752
[9 × 0.75 − 0.25(1 − 0.259)] = 3.97

when the autocorrelation is 0.25, and

√
10 − 2

0.25

1.252

[
9 × 1.25 + 0.25(1 − 0.259)

]= 2.51.

when the autocorrelation is −0.25. Using this scaling factor for the standard deviations in
(IV.2.71), and then applying Solver to back out the VaR, we obtain the results for 1% 10-day
VaR shown in Table IV.2.29.

Table IV.2.29 Effect of autocorrelation on mixture VaR

� −0.25 0 0.25

Normal mixture VaR 11.56% 14.45% 18.05%
Student t mixture VaR 15.76% 19.73% 24.68%

As when the distribution is normal, the effect of positive autocorrelation on non-normal para-
metric linear VaR will be to increase the VaR estimate, relative to the case where autocorrela-
tion is assumed to be zero; and the opposite is the case when there is negative autocorrelation.
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IV.2.9.5 Normal Mixture Risk Factor VaR

In applications of the parametric linear VaR model we use a cash-flow mapping to represent
interest rate sensitive portfolios, equity portfolios are represented by a linear factor model and
the log returns on commodity futures are a linear function of the log spot returns and the carry
cost. Then the variance of the systematic return (i.e. the return that is explained by the risk
factor mapping) is given by a quadratic form θ

′
�θ, where θ denotes the vector of sensitivities

to the risk factors and � denotes the risk factor returns covariance matrix. There is only one
covariance matrix and in the normal linear VaR model we assume that all risk factor returns
are normally distributed.

We now extend the normal linear risk factor VaR model to the mixture framework, in the
case where there are two risk factors and each marginal risk factor return distribution is a
mixture of two normal components. In this case the risk factor covariance structure may be
captured by four covariance matrices and the portfolio return distribution will be a mixture of
four normal components.

To see why this is the case, suppose we have two risk factors X1 and X2 with return densities
that have correlated normal mixture distributions. The marginal densities of the risk factors are

f1(x1)=π1f
(
x1;μ11,σ

2
11

)+ (1 −π1)f
(
x1;μ12,σ

2
12

)
,

f2(x2)=π2f
(
x2;μ21,σ

2
21

)+ (1 −π2)f
(
x2;μ22,σ

2
22

)
,

where f
(
x;μ,σ2

)
denotes the normal density function for a random variable X with mean μ

and variance σ2. Thus, we may assume that so that each risk factor representation has

• a ‘core’ normal density with weight 1 −πi in the mixture and with the lower volatility,
• a ‘tail’ normal density with weight πi in the mixture and a higher volatility.

Since each risk factor return density has two normal components, their joint density is a
bivariate normal mixture density of the form

f(x1, x2)=π1π2F(x1, x2;μ1,�1)+ (1 −π1)π2F(x1, x2;μ2,�2)

+π1(1 −π2)F(x1, x2;μ3,�3)+ (1 −π1)(1 −π2)F(x1, x2;μ4,�4),

where F(x1, x2;μ,�) is the bivariate normal density function with mean vector μ and
covariance matrix � and

μ1 =
(

μ11

μ21

)
, μ2 =

(
μ12

μ21

)
, μ3 =

(
μ11

μ22

)
, μ4 =

(
μ12

μ22

)
,

�1 =
(

σ2
11 �1σ11σ21

�1σ11σ21 σ2
21

)
, �2 =

(
σ2

12 �2σ12σ21

�2σ12σ21 σ2
21

)
,

�3 =
(

σ2
11 �3σ11σ22

�3σ11σ22 σ2
22

)
, �4 =

(
σ2

12 �4σ12σ22

�4σ12σ22 σ2
22

)
.
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The covariance matrix �1 represents the volatilities and correlation in the ‘tails’ of the two
distributions and �4 represents the volatilities and correlation in the ‘core’ of the two distri-
butions. The other two matrices �2 and �3 represent the volatilities and correlation when one
risk factor is in the ‘core’ of its distribution and the other is in the ‘tail’.

Then the portfolio return will have a normal mixture distribution with four normal
components and parameters given by the mixing law

π= (π1π2, (1 −π1)π2,π1(1 −π2), (1 −π1)(1 −π2))
′, (IV.2.75)

the component means {
θ′μ1,θ

′μ2,θ
′μ3,θ

′μ4

}
, (IV.2.76)

and the component variances

{
θ′�1θ,θ

′�2θ,θ
′�3θ,θ

′�4θ
}
, (IV.2.77)

where θ is the vector of sensitivities of the portfolio to the two risk factors. Hence, to estimate
the normal mixture VaR of the portfolio we apply Solver, or a similar numerical algorithm,
to (IV.2.72) when the number of normal components is four and the mixing law, means and
variances are given by (IV.2.75)–(IV.2.77).

As the number of risk factors increases, the number of components in the normal mix-
ture distribution for the portfolio return increases. However, since the component means are
different, the portfolio return may remain quite skewed and/or leptokurtic.

EXAMPLE IV.2.24: NORMAL MIXTURE VAR – RISK FACTOR LEVEL

A portfolio has two risk factors with percentage sensitivities to these risk factors of 0.8 and 1,
respectively. The risk factor returns have a bivariate normal mixture distribution with the mean
excess returns and volatilities shown in Table IV.2.30. Calculate the 1% 10-day VaR of the
portfolio.

Table IV.2.30 Normal mixture parameters for risk factors

NM parameters Risk factor 1 Risk factor 2 Correlations

π 0.02 0.03
Volatility 1 75% 65% �1 0.3
Volatility 2 15% 18% �2 0
Annual excess return 1 −300% −200% �3 0
Annual excess return 2 2% 2.5% �4 0.8

SOLUTION Using the data in Table IV.2.27 with the sensitivity vector θ = (0.8,1)′ we cal-
culate the means and variances of the four components in the normal mixture distribution of
the portfolio return, using (IV.2.76) and (IV.2.77) above. Then the 1% 10-day VaR of the port-
folio is calculated in the spreadsheet, using Excel Goal Seek (or Solver) to ‘back out’ the VaR
from the formula (IV.2.72), just as in the previous examples. The result is a 1% 10-day normal
mixture VaR that is 16.88% of the portfolio’s value.
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IV.2.10 EXPONENTIAL WEIGHTING WITH PARAMETRIC
LINEAR VALUE AT RISK

Until now, when historical volatility estimates have been used they have been based on the
the equally weighted unconditional variance estimate, which was introduced and illustrated in
Section II.3.4. For instance, denoting the portfolio return at time t by rt and assuming these
returns are i.i.d. with zero mean, the equally weighted sample variance based on the most
recent T returns is

σ̂2
t = T−1

T∑
k=1

r2
t−k. (IV.2.78)

If these returns are daily then our estimate at time t of the h-day standard deviation is σ̂t

√
h.51

A formula similar to (IV.2.78) but based on cross products rather than squared returns, yields
an equally weighted average covariance estimate. Dividing the covariance by the square root
of the product of the two variances gives the equally weighted correlation. Since the variance
and covariance of i.i.d. returns both scale with h, the correlation does not scale with the risk
horizon of the returns.

Whilst equally weighted averages are useful for estimating VaR over a long term risk hori-
zon, they have limited use for estimating VaR over a short term horizon. This is because they
provide an estimate of the unconditional parameter, and the estimate represents only the aver-
age value of the corresponding conditional parameter over the historical sample of returns.
For instance, if we use three years of data to estimate volatility, the equally weighted average
represents the average sample volatility over the last three years. This may be fine for long-
term VaR estimation, but short-term VaR estimates are supposed to reflect the current market
conditions, and not the average conditions of the past three years. For this we need a forecast
of the conditional volatility, which is time-varying, or at least we need a time-varying estimate
of volatility.52

This section explains how the exponentially weighted moving average methodology may
be used to provide more accurate short term VaR estimates than the standard equally weighted
method for parameter estimation. Throughout this section all risk factors are assumed to have
i.i.d. daily returns. Hence, in our empirical examples we use the square-root-of-time rule to
scale VaR over different risk horizons.

IV.2.10.1 Exponentially Weighted Moving Averages

This section summarizes the EWMA statistical methodology as it is applied to estimating
time series of volatilities and correlations. The EWMA methodology is described in full in
Section II.3.8.1, to which readers are referred for further information.

The EWMA formula for the variance estimate at time t of a time series of returns {rt} is
most easily expressed in a recursive form, as

σ̂2
t = (1 −λ)r2

t−1 +λσ̂2
t−1, t = 2, . . . ,T, (IV.2.79)

51 We often apply this square-root-of-time rule for scaling standard deviations of i.i.d. returns even when returns are not normally
distributed – for instance in the Student t linear VaR model. But in that case, as we have already remarked in Section IV.2.8.1, it is
only an approximation.
52 GARCH models have time-varying conditional volatility. EWMA models give time-varying estimates of the unconditional volatility.
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where λ denotes the smoothing constant, and 0 < λ < 1.53 The EWMA volatility is obtained
by annualizing (IV.2.79) and taking the square root. For instance, if {rt} denotes a series of
daily returns and there are 250 daily returns per year, then the EWMA volatility at time t is
σ̂t

√
250, where σ̂2

t is given by (IV.2.79).
Figure IV.2.12 depicts the EWMA volatility of the FTSE 100 index for two different values

of the smoothing constant. This shows that the smoothing constant captures the persistence of
variance from one time period to the next. The larger the value of λ, the smoother the resulting
time series of variance estimates. The effect that a non-zero market return at time t − 1 has
on the variance estimate at time t depends on 1 − λ, and the lower the value of λ the more
reactive the variance is to market events.
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Figure IV.2.12 EWMA volatility of the FTSE 100 for different smoothing constants

Another way of viewing an EWMA estimate of volatility is as an equally weighted volatility
estimate on exponentially weighted returns. That is, we multiply the return from n periods in
the past by λ(n−1)/2, for n = 1, . . . . , T where T is the sample size. Then the EWMA variance
estimate at time t is the equally weighted variance estimate based on the series λ(n−1)/2rt−n, n=
1, . . . ,T, but instead of dividing by T, we multiply by 1 −λ.54 Thus an alternative expression
to (IV.2.79), valid only as T → ∞, is

σ̂2
t = (1 −λ)(r2

t−1 +λr2
t−2 +λ2r2

t−3 +λ3r2
t−4 + . . .). (IV.2.80)

But since 0 < λ < 1, λk → 0 as k → ∞, and so as returns move further into the past they will
have less influence on the EWMA estimate (IV.2.80).

53 The starting value σ2
1 required for the recurrence may be set arbitrarily, or equal to r2

1, or set to some unconditional variance for the
returns.
54 Because 1 + λ + λ2 + λ3 + . . .= (1 − λ)−1.
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The EWMA covariance of two contemporaneous time series of returns {r1t} and {r2t} may
also be expressed in a recursive form, as

σ̂12t = (1 −λ)r1,t−1r2,t−1 +λσ̂12,t−1, t = 2, . . . ,T. (IV.2.81)

The EWMA correlation is obtained by computing three series based on the same value of
the smoothing constant, two EWMA variances that are estimated using (IV.2.79) for each
of the returns, and the EWMA covariance (IV.2.81). Then the covariance estimate at time t is
divided by the square root of the product of the variance estimates at time t, and the result is
the EWMA correlation estimate at time t.

As an example, we estimate the EWMA correlation between the NASDAQ 100 technology
and S&P 500 indices, using daily log returns based on closing index prices.55 The evolution
of the two indices is depicted in Figure IV.2.13, where the effects on the NASDAQ 100 of
the technology bubble at the turn of the century are clearly visible. Then, using daily log
returns on the closing prices, the spreadsheet for Figure IV.2.14 computes the EWMA index
volatilities for any value for the smoothing constant. For the graph shown here we have used
the RiskMetrics™ daily smoothing constant of 0.94.
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Figure IV.2.13 NASDAQ 100 and S&P 500 indices

Next we compute the daily EWMA covariance, using (IV.2.81) with the same value of λ,
i.e. 0.94, for the two volatilities shown in Figures IV.2.14. Dividing this covariance by the
square root of the product of the two daily variances gives the EWMA correlation. The result-
ing correlations are compared in Figure IV.2.15. In the spreadsheet for this figure readers may
like to change the value of the smoothing constant and see the smoothing effect on the EWMA
correlation as λ increases. Notice that, for any choice of λ, the average of the EWMA corre-
lations over the sample is approximately 82%, i.e. the same as the equally weighted average
correlation estimate over the entire sample.

55 Data were downloaded from Yahoo! Finance, symbols ∧GSPC and ∧NDX.
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Figure IV.2.14 EWMA volatilities of NASDAQ and S&P 500 indices
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Figure IV.2.15 EWMA correlations of NASDAQ and S&P 500 indices

IV.2.10.2 EWMA VaR at the Portfolio Level

The previous subsection demonstrated that EWMA volatilities and correlations are more
risk sensitive than equally weighted average estimates of the same parameters. That is, they
respond more rapidly to changing market circumstances, particularly for low values of the
smoothing constant λ. It is not easy to make equally weighted average parameter estimates risk
sensitive, because as the sample size over which the average is taken decreases, the estimates
become more seriously biased by ghost features of extreme market movements in the sample.56

56 A full discussion of the reason for these ghost features, and the effects of these features on equally weighted moving average
estimates, is given in Section II.3.7, and the interested reader is referred there for further information.
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In this section we present some empirical examples to illustrate the effect of using EWMA
on VaR estimation at the portfolio level, compared with VaR based on equally weighted esti-
mates of the portfolio volatility. The i.i.d. normal assumption is retained, and the portfolio
value is assumed to be a linear function of the prices of its assets or risk factors. Hence, the
EWMA daily VaR estimate may be scaled to longer horizons using the square-root-of-time
rule.57

Given an EWMA estimate σ̂t of the daily standard deviation of the portfolio return or P&L
at time t, when the VaR is measured, the normal linear EWMA estimate of the 100α% h-day
VaR is58

EWMA VARh,α,t =�−1(1 − α)σ̂t

√
h. (IV.2.82)

We illustrate the application of this formula in the next example.

EXAMPLE IV.2.25: EWMA NORMAL LINEAR VAR FOR FTSE 100

Use an EWMA volatility series to estimate the 100α% 10-day normal linear VaR for a position
on the FTSE 100 index on 18 April 2008. How does the choice of smoothing constant affect
the result?

SOLUTION We do not need a long period of historical data to compute the EWMA VaR.
The spreadsheet for this example uses data from January 2006 until 18 April 2008, i.e. 580
daily returns.59 The formula (IV.2.82) is implemented in the spreadsheet and the results are
displayed in Table IV.2.31. In the last column we show the equally weighted VaR estimate
over the whole sample of 580 observations, which is identical to the EWMA estimate with a
smoothing constant of 1.

Table IV.2.31 EWMA VaR for the FTSE 100 on 18 April 2008

Significance level Lambda

0.9 0.95 0.99 1

5% 7.42% 8.08% 7.81% 5.71%
1% 10.49% 11.43% 11.05% 8.07%
0.1% 13.93% 15.19% 14.86% 10.73%

As usual, all VaR estimates increase with the significance level. Also, at each significance
level, each of the EWMA volatility estimates are greater than the equally weighted VaR esti-
mate shown in the last column. This is because April 2008 was a fairly volatile period for the
FTSE 100, as the effects of the credit crunch were still taking their toll on the financial sector
of the UK economy. But the most interesting point to note about these results is that lower
values of lambda do not necessarily give higher or lower VaR estimates, just because they use
only very recent data. In fact, in our case the estimates based on λ = 0.95 are the greatest, at
each significance level. This is because the FTSE 100 index was also very volatile during the

57 However, we emphasize that it is not appropriate to scale an EWMA VaR to a time horizon longer than a month or so. The raison
d’être for EWMA estimation of portfolio volatility is to capture the current market conditions, not a long term average.
58 Since we do not apply EWMA VaR for long risk horizons, we can exclude the mean adjustment from the formula without much
loss of accuracy.
59 With λ = 0.94, the exponential weight on a return 580 days ago is 0.94290 = 0.000000016 and even with λ = 0.99 the exponential
weight on a return 580 days ago is only 0.99290 ≈ 0.05.
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latter half of 2007, and not just in the first quarter of 2008. Of the three values used for λ, it
seems that setting λ=0.95 maximizes the total weight put on these more volatile data. Results
for other values of λ and for different significance levels and risk horizons may be obtained
by changing the parameters in the spreadsheet.

IV.2.10.3 RiskMetrics™ VaR Methodology

When the systematic VaR of a large portfolio is disaggregated into stand-alone or marginal
component VaRs, we could base the systematic VaR on the normal linear VaR formula
(IV.2.15). For a short-term VaR estimate to be more risk sensitive, the covariance matrix in
this formula may be based on an EWMA covariance matrix, instead of using equally weighted
averages of squared returns and their cross products. However, unless we apply the orthogonal
EWMA methodology, which is described in Section II.3.8.7, the smoothing constant must be
the same for the variance and covariance estimates in the matrix. Otherwise the matrix need
not be positive semi-definite.60

The RiskMetrics group provides daily estimates of volatilities and correlations, summa-
rized in three very large covariance matrices, with risk factors that include most commodities,
government bonds, money markets, swaps, foreign exchange and equity indices for over 40
currencies. The three covariance matrices provided by the RiskMetrics group are as follows:61

1. Regulatory matrix. An equally weighted average matrix based on the last 250 days.
2. Daily matrix. An EWMA covariance matrix with λ= 0.94 for all elements.
3. Monthly matrix. An EWMA covariance matrix with λ = 0.97 for all elements and then

multiplied by 25.62

In addition, the group provides VaR software based on these data and a number of documents,
including a technical document, which describes its portfolio mapping procedures and the
VaR methodology.

In the next example we use a portfolio of US stocks in the S&P 500 and NASDAQ 100
indices to illustrate the application of the RiskMetrics methodology and the decomposition of
systematic VaR into stand-alone components.

EXAMPLE IV.2.26: COMPARISON OF RISKMETRICS™ REGULATORY AND EWMA VAR

Consider a large portfolio of US stocks having a percentage beta with respect to the S&P 500
index of 1.1 and a percentage beta with respect to the NASAQ 100 index of 0.85. Assume that
$3 million is invested in the S&P 500 stocks and $1 million is invested in the NASDAQ 100
stocks. Compare the 1% 10-day normal VaR of this portfolio on 18 April 2008, based on the
RiskMetrics regulatory matrix and based on the daily matrix, and in each case disaggregate
the VaR into S&P 500 and NASDAQ 100 stand-alone VaR.

SOLUTION We use the data shown in Figure IV.2.16, starting on 3 January 2006 and ending
on 18 April 2008.63 The NASDAQ 100 index is on the left-hand scale and the S&P index is
on the right-hand scale.

60 The reasons why correlation and covariance matrices must be positive definite are described in Section I.2.4.
61 The methodology used to construct these matrices is described in full and illustrated in Section II.3.8.6.
62 That is, using the square-root-of-time rule and assuming 25 days per month.
63 Since 0.97250 is less than 0.0005, 500 data points are adequate, and we have 576 daily returns.
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Figure IV.2.16 NASDAQ 100 and S&P 500 indices, 2006–2008

The EWMA variances and covariances are estimated as explained above, but we are not
interested in a time series of variances and covariances, only in the covariance matrix on 18
April 2006, because we are only estimating VaR on this day. The volatilities and correlation
estimated on 18 April 2006, based on an EWMA with λ = 0.94 and based on an equally
weighted average of the last 250 returns, are shown in Table IV.2.32, and the resulting annual
covariance matrices are shown in Table IV.2.33. Note that the US was still very much feel-
ing the effects of the credit crisis in April 2008 and so, being based on more recent data, the
EWMA volatilities and correlations are higher than the RiskMetrics regulatory estimates.

Table IV.2.32 Volatilities of and correlation between S&P 500 and NASAQ 100 indices

S&P 500 volatility NDX volatility Correlation

EWMA 22.81% 28.03% 94.91%
Regulatory 19.63% 22.89% 89.88%

Table IV.2.33 Annual covariance matrix based on Table IV.2.32

S&P 500 NDX

EWMA
S&P 500 0.05205 0.06069
NDX 0.06069 0.07857

Regulatory
S&P 500 0.03853 0.04038
NDX 0.04038 0.05239

The spreadsheet for this example implements the normal linear VaR formula (IV.2.15)
where �h is the h-day matrix that is derived from the relevant annual matrix in Table IV.2.33,
using the square-root-of-time rule, and θ is the vector of nominal portfolio betas, that is,
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($3.3m,$0.85m)′. We assume the excess return on each index is zero. Since θ is expressed in
value terms, the VaR will also be expressed in value terms.

The stand-alone VaRs are estimated using the individual volatilities shown in Table IV.2.32,
each scaled to a 10-day standard deviation using the square-root-of-time rule. Since both
volatility estimates are lower when based on an equally weighted average over the last 250
days, we expect the stand-alone VaRs to be lower when they are based on the regulatory
matrix. However, since the regulatory correlation estimate is also lower, the total systematic
VaR could be greater than or less than the corresponding EWMA estimate, depending on
the portfolio composition. The results for the portfolio given in the question are shown in
Table IV.2.34.64

Table IV.2.34 RiskMetrics VaR for US stock portfolio

Stand-alone VaR Systematic VaR

S&P 500 NDX Total

EWMA $350,284 $110,852 $456,833
Regulatory $301,377 $90,522 $384,789

In both cases the sum of the stand-alone VaRs exceeds the total systematic VaR, due to
the usual diversification effect in the total VaR. However, since the two risk factors have a
high correlation, this diversification effect is small. Both stand-alone VaRs, and the total VaR
estimate, are greater when based on the EWMA covariance matrix, because this captures
the current, more volatile market circumstances, whereas the regulatory covariance matrix is
based on an average over 1 year.

The Basel regulations that were introduced in 1996, specified that internal models which are
used to calculate the market risk capital requirements must use at least 250 days of historical
data. Hence the EWMA methodology, which effectively uses less than 250 days, due to the
exponential weighting of returns, has been disallowed. However, following the credit crisis,
in July 2008 the Basel Committee proposed extra capital charges for equity and credit spread
risks, precisely because the use of 250 days or more of historical data is now thought to pro-
duce VaR estimates that are insufficiently risk sensitive. It is unfortunate that the Committee
took so long to realise this fact. It is also unfortunate that the Committee believe that imposing
additional capital charges is the appropriate response to the credit and banking crises.

IV.2.11 EXPECTED TAIL LOSS (CONDITIONAL VAR)

Section IV.1.8.2 introduced expected tail loss, also called conditional VaR. The ETL is defined
by (IV.1.32) and its interpretation is the expected loss (in present value terms) given that
the loss exceeds the VaR. The ETL risk metric is more informative than VaR, because VaR
does not measure the extent of exceptional losses. VaR merely states a level of loss that we are
reasonably sure will not be exceeded: it tells us nothing about how much could be lost if VaR is
exceeded. However, ETL tells us how much we expect to lose, given than the VaR is exceeded.
Clearly ETL gives a fuller description of the risks of a portfolio than just reporting the VaR

64 Readers may change the portfolio composition in the spreadsheet and see the effect on the VaR.
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alone. Since ETL is also a coherent risk metric (see Section IV.1.8.3) ETL is sub-additive
even when VaR is not.65 This means that ETL is a better risk metric to use for regulatory and
economic capital allocation, a subject that we shall return to in Chapter 8.

We now present a mathematical description of ETL. Let X denote the discounted h-day
return, and set

VaRh,α =−xα,

where xα denotes the α quantile of the distribution of X, i.e. P(X < xα) = α. The definition of
ETL, when it is expressed as a percentage of the portfolio value, is

ETLα(X)=−E(X |X < xα ).

Since the ETL is a conditional expectation, it is obtained by dividing the probability weighted
average of the values of X that are less than xα by P(X < xα). But P(X < xα) = α so if X has
density function f(x) then

ETLα(X)=−α−1

xα∫
−∞

x f(x) dx. (IV.2.83)

In this section we derive formulae for ETL when VaR is estimated using the parametric
linear model, beginning with the normal linear model and then extending this to Student t
linear ETL, to normal mixture linear ETL and to Student t mixture ETL. We shall express the
ETL as a percentage of portfolio value throughout.

IV.2.11.1 ETL in the Normal Linear VaR Model

Let the random variable X denote a portfolio’s discounted h-day return. If X ∼ N(μh,σ
2
h) then

ETLh,α(X)= α−1ϕ
(
�−1(α)

)
σh −μh, (IV.2.84)

where ϕ and � denote the standard normal density and distribution functions. Hence, �−1(α)

is the α quantile of the standard normal distribution and ϕ(�−1(α)) is the height of the standard
normal density at this point.

To prove (IV.2.84) we first calculate the ETL of a standard normal variable Z. Since the
standard normal density function is

ϕ(z) = 1√
2π

exp
(− 1

2
z2

)
,

we have

ETLα(Z)=−α−1

�−1(α)∫
−∞

zϕ(z)dz =−
(√

2π α
)−1

�−1(α)∫
−∞

z exp
(− 1

2
z2

)
dz

= α−1

[
1√
2π

exp
(− 1

2
z2

)]�−1(α)

−∞
= α−1ϕ

(
�−1(α)

)
.

(IV.2.85)

65 When VaR is estimated using historical or Monte Carlo simulation, it need not be sub-additive.
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Now we use the standard normal transformation to write X in the form

X = Zσh +μh, Z ∼ N(0,1).

By the definition (IV.2.83) of ETL,66

ETLh,α(X)= ETLα(Z)σh −μh

and this proves (IV.2.84).

EXAMPLE IV.2.27: NORMAL ETL

Suppose a portfolio is expected to return the risk free rate with a volatility of 30%. Assuming
the returns are i.i.d., find the 1% 10-day parametric linear VaR and ETL as a percentage of the
portfolio’s value.

SOLUTION The 10-day standard deviation is 0.3 × √
10/250 = 0.3/5 = 0.06. So the 1%

10-day normal ETL is

ETL10,0.01(X10)= 0.01−1ϕ(Z0.01)× 0.06 = 0.06 ×ϕ(2.32635)= 15.99%.

That is, the 1% 10-day normal ETL is about 16% of the portfolio’s value. This should be
compared with the 1% 10-day normal linear VaR, which is only 13.96% of the portfolio’s
value. By definition, the ETL is always at least as great as the corresponding VaR, and often
it is much greater than the VaR.

IV.2.11.2 ETL in the Student t Linear VaR Model

Again let the random variable X denote a portfolio’s discounted h-day return. In this section
we show that if X has a Student t distribution with mean μh, standard deviation σh and ν

degrees of freedom then

ETLh,α,ν(X)= α−1(ν − 1)−1
(
ν− 2 + xα(ν)

2
)

fν(xα(ν))σh −μh, (IV.2.86)

where xα(ν) denotes the α quantile of the standardized Student t distribution (i.e. the one
with zero mean and unit variance) having ν degrees of freedom, and fν(xα(ν)) is the value
of its density function at that point. The standardized Student t density function is derived in
Section I.3.3.7 as

fν(x)= (
(ν − 2)π

)−1/2
�

(ν

2

)−1

�

(
ν+ 1

2

)(
1 + (ν − 2)−1x2

)−(1+ν)/2
. (IV.2.87)

The result (IV.2.86) follows if we can prove that the ETL in a standardized Student t
distribution with ν degrees of freedom is given by

ETLh,α,ν(T)= α−1(ν − 1)−1
(
ν− 2 + xα(ν)

2
)

fν

(
xα(ν)

)
, (IV.2.88)

66 Note that we subtract μ because of the minus sign in the definition of ETL.
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where T denotes a standardized Student t variable with ν degrees of freedom. By the definition
(IV.2.83) of ETL, we need to evaluate

xα(ν)∫
−∞

x fν(x) dx.

To shorten our notation, note that we may write (IV.2.87) more briefly as

fν(x)= A
(
1 + ax2

)b
,

where

A = (
(ν − 2)π

)−1/2
�(ν/2)−1�

(
(ν + 1)/2

)
, a = (

ν− 2
)−1

and b =−(1 + ν)/2.

Then,
xα(ν)∫

−∞

x fν(x) dx = A

xα(ν)∫
−∞

x(1 + ax2)b dx = A
2a

B∫
−∞

ybdy,

where we have set y = 1 + ax2 and B = 1 + (ν − 2)−1xα(ν)
2. Then

B∫
−∞

yb dy = Bb+1

b + 1
= 2B(1−ν)/2

1 − ν

and

A = fν

(
xα(ν)

)
B(1+ν)/2.

So
xα(ν)∫

−∞

x fν(x) dx = fν

(
xα(ν)

)
B(1+ν)/2

2(ν− 2)−1
× 2B(1−ν)/2

1 − ν
=−(ν − 1)−1(ν − 2)Bfν

(
xα(ν)

)
.

Now substituting in the above for B and using (IV.2.83) yields (IV.2.88).

EXAMPLE IV.2.28: STUDENT T DISTRIBUTED ETL

As in the previous example, suppose that a portfolio is expected to return the risk free rate
with a volatility of 30%, but now suppose that its returns are i.i.d. with a Student t distribution
with ν degrees of freedom. Find the 1% 10-day Student t VaR and ETL, as a percentage of the
portfolio’s value, for ν= 5, 10, 15, 20 and 25.

SOLUTION We base the calculations in the spreadsheet on (IV.2.63) for the VaR, and
(IV.2.88) for the ETL. Thus we calculate the standardized t ETL, and transform the stan-
dardized t ETL to obtain the ETL for our return distribution using (IV.2.86). The results are
summarized in Table IV.2.35 and, for comparison, the last column of this table reports the
normal VaR and ETL for the same portfolio, with the results obtained from the previous
example. For highly leptokurtic distributions (i.e. for low values for the degrees of freedom)
the ETL is far greater than the VaR. For instance, the ETL is almost twice as large as the VaR
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Table IV.2.35 VaR and ETL for Student t distributions

ν 5 10 15 20 25 ∞ (Normal)

VaR 15.64% 14.83% 14.54% 14.39% 14.30% 13.96%
ETL 30.26% 20.00% 18.12% 17.40% 17.03% 15.99%

under the t5 distribution. But as the degrees of freedom increase, the Student t distribution
converges to the normal distribution, so VaR and ETL converge toward to the normal VaR
and ETL.

IV.2.11.3 ETL in the Normal Mixture Linear VaR Model

First suppose that a portfolio’s discounted h-day return X has a normal mixture distribution
G0 with zero means in the components where

π= (π1, . . . ,πn)

is the mixing law and the component variances are σ2
h = (σ2

1h, . . . ,σ
2
nh). We set

xα = G−1
0 (α)

so that −xα is the 100α% h-day VaR under the zero-mean normal mixture. Write the density
function as

∑n
i=1 πifi(x), where each fi(x) is a zero-mean normal density with standard

deviation σih. Then, by extending the argument used in the normal case, we have

ETLh,α(X)=−α−1

n∑
i=1

πi

xα∫
−∞

xfi(x)dx.

Using an argument similar to that in (IV.2.85), it can be shown that
xα∫

−∞

x fi(x) dx =−σihϕ
(
σ−1

ih xα

)
,

where ϕ is the standard normal density function. Hence, we have

ETLh,α(X)= α−1

n∑
i=1

(
πiσihϕ(σ−1

ih xα)
)
.

Now suppose a portfolio’s discounted h-day is expected to return are represented by a mixture
of n normal distributions with distribution function G. That is, X ∼ NM(π,μh, σ2

h), where π

and σ2
h are defined above and the component means are μh = (μ1h, . . . ,μnh). Then the expected

value of the normal mixture is
∑n

i=1 πiμih and, again by extending the argument used in the
normal case, we have

ETLh,α(X)= α−1

n∑
i=1

(πiσihϕ(σ−1
ih xα))−

n∑
i=1

πiμih, (IV.2.89)

where −xα is the 100α% h-day VaR under the corresponding zero-mean normal mixture.
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EXAMPLE IV.2.29: NORMAL MIXTURE ETL

As in Examples IV.2.27 and IV.2.28, suppose that a portfolio is expected to return the risk free
rate with a volatility of 30%, but now suppose that its returns are i.i.d. with a normal mixture
distribution with discounted mean returns of zero, but with two normal components having
different volatilities: with probability 0.2 the volatility is 60% and with probability 0.8 the
volatility is 15%. Find the 1% 10-day normal mixture VaR and ETL as a percentage of the
portfolio’s value.

SOLUTION We remark that the volatility of the normal mixture is the same as that in the
previous two examples, since

√
0.2 × 0.62 + 0.8 × 0.152 = 30%.

Hence, we can compare the results with those in the previous examples for the normal and
Student t ETL. First the spreadsheet uses Excel Solver or Goal Seek optimizer to back out
the 1% 10-day normal mixture VaR using formula (IV.2.72). The normal mixture VaR is
19.74% of the portfolio’s value. This is significantly greater than the normal VaR found in
Example IV.2.27.

The normal mixture ETL is also much greater than the normal ETL derived in
Example IV.2.27. A volatility of 60% corresponds to a 10-day standard deviation of 0.12
and a volatility of 15% corresponds to a 10-day standard deviation of 0.03. Thus, applying
(IV.2.89), we have

ETLα(X)= 0.01−1

(
0.2 ×ϕ

(
−0.1974

0.12

)
× 0.12 + 0.8 ×ϕ

(
−0.1974

0.03

)
× 0.03

)
= 24.75%

So under the normal mixture distribution with an overall volatility of 30%, the 1% 10-day ETL
is nearly 25% of the portfolio value, compared with approximately 16% if the distribution
were normal with volatility 30%.

IV.2.11.4 ETL under a Mixture of Student t Distributions

It can be shown that when the return distribution is assumed to be a mixture of Student t
distributions with different means, variances and degrees of freedom as in Section IV.5.2.7,
then67

ETLh,α,ν(X)= α−1

n∑
i=1

(
πi(νi − 1)−1

(
νi − 2 + tiα(ν)

2
)

fνi(tiα(ν))σih

) −
n∑

i=1

πiμi, (IV.2.90)

where

tiα(ν) = xα(ν)ν
−1
i (νi − 2)σ−1

ih

and xα(ν) is minus the Student t mixture VaR. Here ν denotes the vector of degrees of freedom
for each component in the mixture. The next example illustrates the implementation of this
formula, and compares the results with those in the previous examples.

67 The details of this calculation are lengthy and are therefore omitted, but the arguments are similar to those used to derive the
Student t ETL and the normal mixture ETL in the previous subsections.
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EXAMPLE IV.2.30: STUDENT T MIXTURE ETL

As in Examples IV.2.27–IV.2.29, suppose that a portfolio is expected to return the risk free
rate with a volatility of 30%, but now suppose that its is expected to return are i.i.d. with a
Student t mixture distribution. Both Student t distributed components have a discounted mean
return of zero, but the two components have different volatilities and degrees of freedom: with
probability 0.2 the distribution has 5 degrees of freedom and a volatility of 45% and with
probability 0.8 the distribution has 10 degrees of freedom and volatility of 25%.68 Find the
100α% h-day VaR and ETL as a percentage of the portfolio’s value for α = 0.1% and 1% and
h=1 and 10. Compare your results with those obtained above, using a normal, normal mixture
and individual Student t distributions.

SOLUTION Table IV.2.36 compares the 100α% h-day VaR and ETL from all the distributions
considered in these examples, for the different values of α and h.69 The normal VaR and ETL
are the smallest, which is as expected, due to the high significance level of the VaR and the
leptokurtic nature of the other distributions. Comparing the normal mixture with the individual
Student t estimates, the normal mixture VaR exceeds both the Student t VaR estimates, but
the normal mixture ETL estimates lie between the two Student t ETL estimates. Although
greater than the ETL estimates based on 10 degrees of freedom, the normal mixture ETL is
substantially less than the Student t ETL with 5 degrees of freedom.70 The Student t mixture
VaR is less than the normal mixture VaR at the 1% level, but greater than the normal mixture
VaR at the 0.1% level, and the Student t mixture ETL is greater than the normal mixture ETL
at both the 1% and 0.1% levels.

Table IV.2.36 VaR and ETL for normal, Student t and mixture distributions

h = 1 Normal t10 t5 NM t Mixture

α = 1% VaR 4.41% 4.69% 4.95% 6.24% 6.05%
ETL 5.06% 6.33% 9.57% 7.83% 9.16%

α = 0.1% VaR 5.86% 7.03% 8.66% 9.78% 11.51%
ETL 6.39% 9.46% 17.48% 10.97% 23.92%

h = 10 Normal t10 t5 NM t Mixture

α = 1% VaR 13.96% 14.83% 15.64% 19.74% 19.15%
ETL 15.99% 20.00% 30.26% 24.75% 28.96%

α = 0.1% VaR 18.54% 22.24% 27.39% 30.91% 36.39%
ETL 20.20% 29.91% 55.28% 34.68% 75.62%

The above example shows that it is not only the excess kurtosis that determines the ETL: it
is also very much influenced by the tail behaviour. The tails of a normal mixture distribution

68 With this choice the square root of the probability weighted sum of the variances is 30%, so the overall volatility is similar to that in
the previous examples. Readers may like to change the volatilities in the spreadsheet to 60% and 15%, to compare the result with the
previous example (remembering to reapply Solver each time the parameters are changed). Clearly both VaR and ETL will be much
greater than even the normal mixture VaR and ETL, due to the leptokurtosis of the component distributions.
69 The results for the normal, individual Student t and normal mixtures are obtained using the spreadsheets from the previous examples,
and for the individual Student t VaR estimates we assume the volatility is 30%.
70 This happens even though the excess kurtosis in the Student t distribution with 5 degrees of freedom is 6, whereas that of the normal
mixture is 6.75.
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decline exponentially, but the tails of a Student t distribution decline more slowly than this.
Hence, when the two distributions have similar excess kurtosis, the normal mixture ETL will
be lower than the Student t ETL.

IV.2.12 CASE STUDY: CREDIT SPREAD PARAMETRIC LINEAR
VALUE AT RISK AND ETL

We end the chapter with a short case study on estimating VaR and ETL for a highly non-normal
and autocorrelated risk factor. The purpose of the study is to highlight the huge model risk that
arises from the choice of VaR model. That is, we show that very different VaR estimates can
be obtained even when we fix the same:

• broad methodology – i.e. the VaR estimates are based on different parametric linear
VaR models;

• sample data – we shall use the same sample for all estimates;
• risk factor model – we consider the VaR and ETL from an exposure to a single credit

spread risk factor.

IV.2.12.1 The iTraxx Europe Index

The risk factor we have chosen for this study is the iTraxx Europe 5-year index. In June
2004 the iBoxx and Trac-x credit default swap (CDS) indices merged to form the Dow Jones
iTraxx index family, which consists of the most liquid single-name credit default swaps in the
European and Asian markets. As well as representing an important risk factor for interest rate
sensitive portfolios, the iTraxx indices for maturities of 3, 5, 7 and 10 years are traded over the
counter (OTC), the 5- and 10-year maturities being the most liquid. Also, many major banks
have been entering OTC trades on iTraxx options during the last few years. Their clients
include hedge funds, proprietary trading desks, insurance companies, investment managers
and index CDS traders who use options for the risk management of their positions. In March
2007 Eurex, the world’s largest derivative exchange, launched exchange traded futures and
will soon introduce other credit derivative products on iTraxx indices.

The main Europe index series, which is shown in Figure IV.2.17, is an equally weighted
CDS spread, measured in basis points, and based on 125 single firm investment grade CDSs.
Every six months a new series for each of the iTraxx indices is introduced in which defaulted,
merged, sector changed or downgraded entities are replaced by the next most liquid ones. We
splice the older series together with the most recent series to produce the data shown in the
figure.

Figure IV.2.17 shows the iTraxx index’s evolution, and its daily changes between 21 June
2004 and 10 April 2008.71 The effects of the credit crunch that was precipitated by the sub-
prime mortgage crisis in the US in the latter half of 2007 are clearly visible. In June 2007
credit spreads were at a historical low, having been trending down for several years. However,
by mid-March 2008, with the onset of the crisis, the iTraxx Europe spread for investment

71 The index itself is depicted by the black line and is measured on the right-hand scale, while the grey line, measured on the left-hand
scale, represents the daily changes in the index. All units are basis points.
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Figure IV.2.17 iTraxx Europe 5-year index

grade CDSs rose from less than 3 basis points to an unprecedented high of over 140 basis
points. Then, by the beginning of April 2008, the index fell to less than 60 basis points.

Table IV.2.37 shows the sample statistics, with approximate standard errors, and the ratio
of the statistic to its standard error, based on all 970 data points. All statistics except the
mean appear to be highly significant, and in particular we have significant negative skewness,
positive excess kurtosis and positive autocorrelation.

Table IV.2.37 Sample statistics for iTraxx Europe 5-year index

Sample statistics Estimate Standard error Ratio

Mean 0.0242 0.0772 0.31
Standard deviation 2.4037 0.0012 1940
Skewness −1.4356 0.1926 –7.45
Excess kurtosis 36.9630 0.7706 47.97
Autocorrelation 0.1079 0.03192 3.38

The annualized volatility of the index depends on the assumption made about the dynamics.
Based on the i.i.d. assumption, it is

√
250 × 2.4037 = 38 basis points per annum.

But the autocorrelation of 0.1079 is positive and significant, and using the autocorrelation
adjusted scaling factor (IV.2.10) we obtain a higher volatility, of

√
298 × 2.4037 = 41.5 basis points per annum.

Thus we expect that when the sample autocorrelation is taken into account the VaR and ETL
estimates will be higher than when we assume the daily changes are i.i.d.
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IV.2.12.2 VaR Estimates

We shall estimate the VaR and ETL for a simple linear exposure, with a PV01 of e1000, to
the daily changes in the iTraxx Europe 5-year index. Using the PV01 approximation described
in Section IV.2.3.2, we see that this represents a cash flow at 5 years of approximately e2.5
million.

Different VaR and ETL estimates will be based on the normal, Student t and normal mixture
models that we have introduced in this chapter. Our focus is on the model risk arising from
the choice of risk factor distribution, so we shall base all the estimates on the same, objective
sample data. That is, we use all the data on iTraxx index changes shown in Figure IV.2.17.
There are 970 daily changes, covering almost 4 years.

When estimating the 1% 10-day VaR and ETL, we consider two assumptions about the
index dynamics: that daily changes are (a) i.i.d. and (b) autocorrelated. Thus, using exactly
the same data in each case, we obtain six different estimates of the parametric linear VaR
and six corresponding estimates of the ETL, over a risk horizon of 10 days and at the 99%
confidence level.

The estimation of the model parameters is based on the method of moments. For the Student
t degrees of freedom we follow Example IV.2.18, and for normal mixture parameters we use
the same methodology as that described in Section IV.2.8.3 and applied in Example IV.2.21.72

The method of moments estimate of the Student t degrees of freedom is 4.1623, which matches
the sample excess kurtosis of 36.963. But note that the skewness is assumed to be zero under
the Student t distribution.

The mixture distribution assumes only two components, one to represent the stable down-
ward trending regime which prevailed most of the time prior to the credit crisis, and another
to represent the volatile regime where credit spreads have the tendency to jump up rapidly and
jump down even more rapidly. The estimated parameters, quoted in basis points per annum,
are displayed in Table IV.2.38.73

Table IV.2.38 Normal mixture parameter estimates: iTraxx
Europe 5-year index

π μ1 μ2 σ1 σ2

0.06483 −308.92 27.86 142.47 10.36

The VaR and ETL estimates are obtained in the spreadsheet labelled ‘VaR and ETL’ in the
case study workbook, using the methodology described in Sections IV.2.2 and IV.2.8, and
the results are summarized in Table IV.2.39. The VaR estimates range from e17,683 for the
normal i.i.d. VaR model, to e43,784 for the normal mixture model with the autocorrelation
adjustment. Similarly, the ETL estimates range from e20,259 for the normal i.i.d. VaR model,
to e48,556 for the Student t model with the autocorrelation adjustment.

All the estimates are based on exactly the same data, but the assumptions made by the nor-
mal i.i.d. model are clearly not justified for the daily changes in the iTraxx index. The normal
i.i.d. VaR model ignores not only the autocorrelation, but also the large negative skewness

72 We do not consider the Student t mixture since the parameters for this distribution need to be estimated by the EM algorithm, which
is beyond the scope of Excel. See Section I.5.4.3 for further details.
73 We have used square-root-of-time scaling to quote these parameters in annual terms in the table.
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Table IV.2.39 VaR and ETL estimates for iTraxx
Europe 5-year index

VaR ETL

Normal
i.i.d. e17,683 e20,259
Autocorrelation e19,151 e21,941

Student t
i.i.d. e20,287 e44,814
Autocorrelation e21,991 e48,556

Normal mixture
i.i.d. e41,375 e43,876
Autocorrelation e43,784 e47,522

and the extremely high excess kurtosis (of almost 37 – see Table IV.2.37); instead both are
assumed to be zero.

The Student t model has a high ETL, like the normal mixture model, but the VaR estimates
based on the Student t distribution are much lower than those from the normal mixture. This
is because the large negative skewness, which is ignored by the Student t model and is only
captured by the normal mixture model, increases the VaR significantly.

The model that makes the most appropriate assumptions is the autocorrelated normal mix-
ture model. This is able to capture all the features of the data, and in particular, it captures
the two different regimes in credit spreads during the data period. Therefore the VaR and ETL
estimates based on this model are, amongst all the estimates reported in Table IV.2.39, the
most representative of the historical sample.

IV.2.13 SUMMARY AND CONCLUSIONS

The parametric linear VaR model is applicable to all portfolios except those containing
options, or any other instruments with non-linear price functions. If we assume the portfolio
returns have either a normal distribution or a Student t distribution it is possible to derive VaR
as an explicit solution to an analytic formula. It is also possible to back out the VaR from
a formula, using a simple numerical algorithm (such as Excel’s Goal Seek or Solver) under
the assumption that the portfolio return has a mixture of normal or Student t distributions.
All these formulae, and the corresponding ETL formulae, have been derived in this chapter,
and we have provided a very large number of numerical examples and empirical illustrations
based on different types of linear portfolios.

The analytic VaR formulae hold for any confidence level and over any risk horizon.
The general formulae contain an adjustment for the case where the portfolio is expected
to grow at a rate different from the discount rate, but this adjustment is very small except
for long risk horizons and when a portfolio has an expected return very different from the
discount rate.

We do not need to assume the returns are i.i.d. It is also possible to adjust the general para-
metric linear VaR formula to account for autocorrelation in log returns. When the daily log
returns are autocorrelated an adjustment needs to be made to the h-day standard deviation.
No adjustment is required for the discounted expected return, if this is included in the VaR
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estimate. With positive or negative autocorrelation the h-day standard deviation is no longer√
hσ, where σ is the standard deviation of daily log returns, but

√
h̃σ where h̃ > h for posi-

tively autocorrelated daily log returns and h̃<h for negatively autocorrelated daily log returns.
Hence positive or negative autocorrelation can result in a significant increase or decrease in
h-day VaR, even for short risk horizons.

When the portfolio has a discounted expected return of zero, parametric linear VaR behaves
like volatility and so its aggregation rule can be derived from the rule for the variance of a
sum. We first examined the disaggregation of the total VaR of a portfolio into a systematic
VaR component that is explained by the mapping to risk factors, and a specific VaR or residual
component. Our empirical examples here focused on the decomposition of the VaR for a stock
portfolio into the systematic VaR due to the market risk factors, and a residual VaR.

Further, systematic VaR can be decomposed in two different ways. The first is the decom-
position of systematic VaR into stand-alone VaR components that are due to each type of risk
factor. Thus we have equity VaR, interest rate VaR, credit spread VaR, forex VaR, commodity
VaR, and so forth. The stand-alone VaRs represent the risk taken by each individual trading
activity without allowing for any diversification effects from other trading activities in the
same firm. But when we measure VaR at an aggregate level, we take account of diversifica-
tion. Hence, the sum of the stand-alone VaRs is not equal to the total systematic VaR. In fact,
when VaR is measured by the parametric linear model, the sum of the stand-alone VaRs is
always greater than or equal to the total systematic VaR. That is, parametric linear VaR is sub-
additive. We have also shown how the total systematic VaR can be decomposed into marginal
VaR components which are additive. Thus marginal VaRs are useful for the allocation of real
capital which (unlike regulatory or economic capital) must be additive.

In the context of the normal linear VaR model we have derived simple formulae that may
be applied to estimate the stand-alone and marginal VaR, and the corresponding ETL, for any
given risk factor class. Another formula which, like marginal VaR, is based on the gradient
vector, is derived for the incremental VaR that measures the impact of a small trade on the
VaR of a given, large portfolio.

The normal linear VaR model can be extended to the case where the portfolio’s returns, or
the risk factor returns, have leptokurtic and skewed distributions. We have derived formulae for
Student t distributed VaR, for normal mixture VaR and for Student t mixture distributed VaR.
The mixture linear VaR models result in an implicit rather than an explicit formula for VaR.
They provide an ideal framework for scenario VaR in the presence of two or more possible
regimes, or states of the world. In Section IV.7.2 we shall illustrate this by considering the
credit spread 1-year VaR of a BBB bond under three scenarios, i.e. that it is downgraded,
upgraded, and that its rating remains the same by the end of the year.

The expected tail loss is the expected loss, in present value terms, given that VaR is exceeded.
It is also called the conditional VaR. ETL is more informative than VaR because it provides
information of the average or expected loss when the VaR is exceeded. We have derived gen-
eral formulae for the ETL under the assumption that a portfolio’s returns have normal, Student
t and mixtures of these distributions. Empirical examples show that the normal mixture ETL
and the Student t distributed ETL may be considerably greater than the normal ETL, when
returns have leptokurtic and skewed distributions.

The examples in this chapter have focused on portfolios represented by cash flows, inter-
national equity portfolios and commodity futures portfolios. In each case we assumed the
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portfolio has been mapped to a set of standard risk factors following the techniques described
in Chapter III.5. We have used these portfolios to:

• show that adjusting VaR and ETL for a non-zero discounted expected return only has a
significant effect when the risk horizon is very long and the discounted expected return
is very large;

• illustrate how to adjust VaR and ETL for autocorrelation in portfolio returns;
• estimate the systematic VaR and specific VaR for an equity portfolio using (a) equally

and (b) exponentially weighted estimates for the portfolio volatility and its market beta;
• decompose total systematic VaR into different stand-alone and marginal VaR compo-

nents, due to different classes of risk factors;
• aggregate stand-alone VaRs into the total risk factor VaR, in a sub-additive manner;
• measure the incremental VaR of adding a single swap to a large swaps portfolio;
• demonstrate how the different theoretical assumptions made by normal, Student t and

mixture VaR models affect the VaR and ETL estimates; and
• explain how EWMA covariance matrices may be applied in the context of the parametric

linear VaR model.

Our first case study was on a UK bond portfolio where the risk factors are fixed maturities
along a zero coupon yield curve. We explained how to use principal component analysis to
reduce the dimensions of the risk factor space: instead of 60 risk factors (constant maturity
interest rates) we used only three risk factors (the first three principal components), and the
approximation error was very small indeed. That is, the VaR was almost exactly the same
whether we used 60 or three risk factors. It can also be argued that the VaR based on only
three risk factors is the more accurate of the two, because the dimension reduction allows us
to ignore extraneous ‘noise’ in the data that should not affect the VaR estimate.

The second case study examined the risks facing a commodity futures trading business with
desks trading silver and natural gas. The study highlighted the very different characteristics
of these two commodities and disaggregated the total VaR of the trading activities into the
stand-alone and marginal VaRs due to trading in both natural gas and silver futures.

The last case study illustrated the application of different parametric linear models to esti-
mate both the VaR and the ETL for an exposure to the iTraxx Europe 5-year credit spread
index. The historical distribution of this risk factor is highly non-normal, with a large negative
skewness and an extremely high excess kurtosis, and its daily changes have a significant
positive autocorrelation. Hence, the normal i.i.d. model is totally inappropriate. The most rep-
resentative parametric linear VaR model is the normal mixture VaR model with autocorrelated
returns. This model provided 1% 10-day VaR and ETL estimates that are approximately 2.5
times the size of the normal i.i.d. VaR and ETL estimates! Clearly the use of a normal i.i.d.
model would seriously underestimate the risk of such an exposure.



IV.3
Historical Simulation

IV.3.1 INTRODUCTION

Historical simulation as a method for estimating VaR was introduced in a series of papers by
Boudoukh et al. (1998) and Barone-Adesi et al. (1998, 1999). A recent survey suggests that
about three-quarters of banks prefer to use historical simulation rather the parametric linear
or Monte Carlo VaR methodologies.1 Why should this be so – what are the advantages of
historical simulation over the other two approaches?

The main advantage is that historical VaR does not have to make an assumption about
the parametric form of the distribution of the risk factor returns. Although the other mod-
els can include skewed and heavy tailed risk factor returns, they must still fit a parametric
form for modelling the multivariate risk factor returns. And usually the dependencies between
risk factors in this multivariate distribution are assumed to be much simpler than they are in
reality.

For instance, the parametric linear model assumes that risk factor return dependencies are
linear and are fully captured by one or more correlation matrices. This is also commonly
assumed in Monte Carlo VaR, although here it is possible to assume more complex depen-
dency structures as explained in the next chapter. Also, the parametric linear VaR model is a
one-step model, based on the assumption that risk factor returns are i.i.d. There is no simple
way that path-dependent behaviour such as volatility clustering can be accounted for in this
framework. Monte Carlo VaR models can easily be adapted to include path dependency, as
we shall see in the next chapter. But still, they have to assume some idealized form for the risk
factor evolution. For instance, Monte Carlo VaR may assume that volatility and correlation
clustering are captured by a GARCH model.

Historical VaR does not need to make any such parametric assumption, and instead the
dynamic evolution and the dependencies of the risk factors are inferred directly from historical
observations. This allows the model to assess the risk of complex path-dependent products or
the risk of simple products, but still include the dynamic behaviour of risk factors in a natural
and realistic manner.

Historical VaR is also not limited to linear portfolios, as the parametric linear VaR model
is. So the advantages of historical simulation over the parametric linear model are very
clear. However, both historical and Monte Carlo VaR may be applied to any type of port-
folio. So, what are the advantages, if any, of the historical VAR model over Monte Carlo
VaR? In fact, let us rephrase this question: ‘Which model has the most substantial limita-
tions?’ The Monte Carlo VaR model suffers from the drawback of being highly dependent on
finding a suitably realistic risk factor returns model. Likewise, in the course of this chapter

1 In the research of Perignon and Smith (2006), of the 64.9% of firms that disclosed their methodology, 73% reported the use of
historical simulation.
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and Chapter IV.5 we shall show that if the historical VaR model is to be used then several
challenges must be addressed.2

Firstly, it is difficult to apply historical VaR to risk assessments with a horizon longer than
a few days. This is because data limitations are a major concern. To avoid unstable VaR esti-
mates when the model is re-estimated day after day, we require a considerable amount of
historical data. Even 4 years of daily historical data are insufficient for an acceptable degree
of accuracy unless we augment the historical model in some way.3 Overlapping data on h-day
returns could be used, but we shall show in Section IV.3.2.7 that this can seriously distort the
tail behaviour of the portfolio return distribution.

Hence, almost always, we base historical VaR estimation on the distribution of daily port-
folio returns (or P&L) and then scale the 1-day VaR estimate to an h-day horizon. But finding
an appropriate scaling rule for historical VaR is not easy, as we shall see in Section IV.3.2.
Also, scaling up the VaR for option portfolios in this way assumes the portfolio is rebalanced
daily over the risk horizon to return risk factor sensitivities to their value at the time the VaR
is measured. That is, we can measure what I call the dynamic VaR of an option portfolio, but
we shall see in Section IV.5.4 that the standard historical model is very difficult to apply to
static VaR estimation, i.e. the VaR estimate based on no trading over the risk horizon.

We should recall that a vital assumption in all VaR models is that the portfolio remains the
same over the risk horizon, in a sense that will be made more precise in Section IV.5.2.4. Since
the historical simulation model forecasts future returns using a large sample of historical data,
we have to recreate a historical ‘current’ returns series by holding the portfolio characteristics
constant. For instance, in cash equity portfolios the current portfolio weights on each stock
and the current stock betas are all held constant as we simulate ‘current’ portfolio returns for
the entire historical data period. Hence, an implicit assumption of historical VaR is that the
current portfolio, which is optimal now, would also have been the portfolio of choice during
every day of the historical sample.4 Thus a criticism of historical VaR that cannot always be
levelled at the other two approaches is that it is unrealistic to assume that we would have held
the current portfolio when market conditions were different from those prevalent today.

A difficulty that needs addressing when implementing the historical VaR model is that a
long data history will typically encompass several regimes in which the market risk factors
have different behaviour. For instance, during a market crash the equity risk factor volatili-
ties and correlations are usually much higher than they are during a stable market. If all the
historical data are treated equally, the VaR estimate will not reflect the market conditions that
are currently prevailing. In Section IV.3.3 we shall recommend a parametric volatility adjust-
ment to the data, to account for volatility clustering regimes in the framework of historical
simulation.

Given the substantial limitations, it is difficult to understand why so many banks favour
historical VaR over Monte Carlo VaR models. Maybe market risk analysts rely very heavily
on historical data, because (usually) it is available, and they draw some confidence from a

2 See also Pritsker (2006) for a critical review of the historical simulation approach to VaR estimation.
3 Such as by fitting a Johnson distribution to the first four moments of the simulated portfolio returns, or using one of the other
techniques described in Section IV.3.4.
4 Of course the parametric linear and Monte Carlo VaR models also assume that the portfolio (as represented by its asset weights or
risk factor sensitivities) is constant. But these models make no reference to a historical period. Both methods employ a covariance
matrix of asset weights or risk factor returns over the risk horizon, but how we forecast this matrix is a different problem. Yes, we may
use historical data to estimate the matrix, indeed this is the usual interpretation of the Basel Committee’s recommendations for data.
But we could base this matrix on just a year of daily data, or ‘make up’ a covariance matrix, i.e. use a subjective forecast for volatilities
and correlations of the risk factor returns. See Section IV.7.2 for further information on scenario VaR in the parametric linear model.
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belief that if a scenario has occurred in the past, it will reoccur within the risk horizon of the
model. But in my view their reliance on historical data is misplaced. Too often, when a crisis
occurs, it is a scenario that has not been experienced in the past.

In my view, the great advantage of Monte Carlo simulation is that is uses historical
data more intelligently than standard historical simulation does. After fitting a parametric
behavioural model (preferably with volatility clustering and non-normal conditional return
distributions) to historical data, the analyst can simulate many thousands of possible scenarios
that could occur with that model. They do not assume that the one, experienced scenario that
led to that model will also be the one, of all the consistent scenarios, that is actually real-
ized over the risk horizon. A distinct advantage of the filtered historical simulation approach
(which is described in Section IV.3.3.4) over standard historical simulation is that it combines
Monte Carlo simulation based on volatility clustering with the empirical non-normal return
distributions that have occurred in the past.

The aim of the present chapter is to explain how to use historical VaR to obtain realistic VaR
estimates. We focus on linear portfolios here, leaving the more complex (and thorny) problem
of the application of historical VaR to option portfolios to Chapter IV.5. We shall propose the
following, very general steps for the implementation of historical VaR for linear portfolios:

• Obtain a sufficiently long period of historical data.
• Adjust the simulated portfolio returns to reflect the current market conditions.
• Fit the empirical distribution of adjusted returns.
• Derive the VaR for the relevant significance level and risk horizon.

We now detail the structure of this chapter.
Section IV.3.2 focuses on the properties of standard historical VaR, focusing on the prob-

lems we encounter when scaling VaR from a 1-day to an h-day horizon. We describe how
the stable distribution assumption provides a method for estimating a scale exponent and we
explain how risk factor scale exponents can relate to a power law scaling of VaR for linear
portfolios. Then we estimate this exponent for major equity, foreign exchange and interest
rate risk factors. The case for non-linear portfolios is more difficult, because portfolio returns
need not be stable even when the risk factor returns are stable; also, even if it was considered
appropriate to scale equity, commodity, interest rate, and exchange rate risk factors with the
square root of time, this is definitely not appropriate for scaling volatility.

Section IV.3.3 concerns the preparation of the historical data set. It is motivated by a case
study which demonstrates that when VaR is estimated using equal weighing of historical
returns it is the choice of data, rather than the modelling approach, that really determines
the accuracy of a VaR estimate. We emphasize the need to adjust historical data so that they
more accurately reflect current market conditions, and for short-term VaR estimation we rec-
ommend a volatility adjustment of historical returns. The section ends with a description and
an illustration of filtered historical simulation, and a discussion of its advantages over standard
historical simulation.

Section IV.3.4 provides advice on estimating historical VaR at extreme quantiles when only
a few years of daily data are available. Non-parametric smoothing and parametric fitting of
the empirical distribution of (adjusted) portfolio returns can improve the precision of his-
torical VaR at the 99% and higher confidence levels. Non-parametric methods include the
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Epanechnikov kernel and the Gaussian kernel, and we also discuss several parametric meth-
ods including the Johnson SU distribution, the Cornish–Fisher expansion, and the generalized
Pareto and other extreme value distributions.

Up to this point we will have considered the measurement of VaR at the portfolio level.
Now we consider the historical systematic VaR, which is based on the risk factor mapping
of different linear portfolios. Section IV.3.5 describes the estimation of historical VaR when
portfolio returns are a linear function of either asset or risk factor returns. Several case studies
and examples of historical VaR modelling for cash flow, equity and commodity portfolios are
presented, and we describe how systematic historical VaR may be disaggregated into stand-
alone VaR and marginal VaR components.

Section IV.3.6 shows how to estimate the conditional VaR or expected tail loss in a historical
VaR model. We give analytic formulae for computing ETL when the historical returns are
fitted with a parametric form, and conclude with an example. The results confirm that fitting
a Johnson distribution to the moments of the empirical returns can be a useful technique
for estimating ETL (and VaR) at high levels of confidence. Section IV.3.7 summarizes and
concludes.

IV.3.2 PROPERTIES OF HISTORICAL VALUE AT RISK

This section provides a formal definition of historical VaR and summarizes the approach for
different types of portfolios. We then consider the constraints that this framework places on
the historical data and justify our reasons for basing historical VaR estimation on daily returns.
This leads to a discussion on a simple scaling rule for extending a 1-day historical VaR to a
historical VaR at longer risk horizons.

IV.3.2.1 Definition of Historical VaR

The 100α% h-day historical VaR, in value terms, is the α quantile of an empirical h-day
discounted P&L distribution. Or, when VaR is expressed as a percentage of the portfolio’s
value, the 100α% h-day historical VaR is the α quantile of an empirical h-day discounted return
distribution. The percentage VaR can be converted to VaR in value terms: we just multiply it
by the current portfolio value.

Historical VaR may be applied to both linear and non-linear portfolios. When a long-only
(or short-only) linear portfolio is not mapped to risk factors, a historical series of returns on the
portfolio is constructed by holding the current portfolio weights constant and applying these
to the asset returns to reconstruct a constant weighted portfolio returns series. An example is
given in Section IV.3.4.2.

But the concept of a ‘return’ does not apply to long-short portfolios, because they could
have a value of zero (see Section I.1.4.4). So in this case we generate the portfolio’s P&L
distribution directly, by keeping the current portfolio holdings constant, and calculate the
VaR in nominal terms at the outset. This approach is put into practice in the case study of
Section IV.3.5.6.

When a portfolio is mapped to risk factors, the risk factor sensitivities are assumed constant
at their current values and are applied to the historical risk factor returns to generate the portfo-
lio return distribution. Case studies to illustrate this approach are provided in Sections IV.3.4.1
and IV.3.6.3.
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IV.3.2.2 Sample Size and Data Frequency

For assessing the regulatory market risk capital requirement, the Basel Committee recommends
that a period of between 3 and 5 years of daily data be used in the historical simulation model.
But the sample size and the data frequency are not prescribed by any VaR model: essentially
these are matters of subjective choice.

Sample Size

If VaR estimates are to reflect only the current market conditions rather than an average over
a very long historical period, it seems natural to use only the most recent data. For instance,
if markets have behaved unusually during the past year, we may consider using only data
from the last 12 months. A relatively short data period may indeed be suitable for the linear
and Monte Carlo VaR models. The covariance matrix will then represent only recent market
circumstances. But the historical simulation VaR model requires much more than just esti-
mating the parameters of a parametric return distribution. It requires one to actually build the
distribution from historical data, and then to focus on the tail of this distribution. So, with
historical simulation, the sample size has a considerable influence on the precision of the
estimate.

Since VaR estimates at the 99% and higher confidence levels are the norm, it is important
to use a large number of historical returns.5 For a 1% VaR estimation, at least 2000 daily
observations on all the assets or risk factors in the portfolio should be used, corresponding
to at least 20 data points in the 1% tail. But even 2000 observations would not allow the
0.1% VaR to be estimated with acceptable accuracy. See Section IV.3.4 for a discussion on
improving the precision of historical VaR at very high confidence levels.

However, there are several practical problems with using a very large sample. First, collec-
tion of a data on all the instruments in the portfolio can be a formidable challenge. Suppose the
portfolio contains an asset that has only existed for one year: how does one obtain more than
one year of historical prices? Second, in the historical model the portfolio weights, or the risk
factor sensitivities if the model has a risk factor mapping, are assumed constant over the entire
historical data period. The longer the sample period the more questionable this assumption
becomes, because a long historical period is likely to cover several different market regimes
in which the market behaviour would be very different from today.

Data Frequency

The choice of sample size is linked to the choice of data frequency. It is easier to obtain
a large sample of high frequency data than of low frequency data. For instance, to obtain
500 observations on the empirical distribution we would require a 20-year sample if we used
10-day returns, a 10-year sample if we used weekly returns, a 2-year sample if we used daily
returns, and a sample covering only the last month or so if we used hourly returns.

For computing VaR-based trading limits it would be ideal if the data warehouse captured
intra-day prices on all the risk factors for all portfolios, but in most financial institutions today
this is computationally impractical. Since it is not appropriate to hold the current portfolio

5 For instance, if we were to base a 1% VaR on a sample size of 100, this is just the maximum loss over the sample. So it will remain
constant day after day and then, when the date corresponding to the current maximum loss falls out of the sample, the VaR estimate
will jump to another value.
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weights and sensitivities constant over the past 10 years or more, and since also the use of such
a long historical period is hardly likely to reflect the current circumstances, it is not appropriate
to base historical VaR models on weekly or monthly data. There are also insufficient data to
measure historical VaR at extreme quantiles using an empirical distribution based on weekly
or monthly returns.

Hence, the historical h-day VaR is either scaled up from a 1-day VaR estimate based
on historical data on the portfolio’s daily returns or P&L, or we might consider using
multi-step simulation. In the next subsection we consider the first of these solutions, leaving
our discussion of multi-step simulation to Sections IV.3.2.7 and IV.3.3.4.

IV.3.2.3 Power Law Scale Exponents

In this subsection we discuss how to estimate the 100α% h-day historical VaR as some power
of h times the 100α% 1-day historical VaR, assuming the 100α% 1-day historical VaR has
been computed (as the α quantile of the daily returns or P&L distribution).

In Section IV.1.5.4 we showed that the assumption that returns are normal and i.i.d. led to
a square-root-of-time rule for linear VaR estimates. For instance, to estimate the 10-day VaR
we take the square root of 10 times the 1-day VaR. The square-root-of-time rule applies to
linear VaR because it obeys the same rules as standard deviation, either approximately over
short risk horizons or over all horizons when the expected return is equal to the discount rate.
But in the historical model the VaR corresponds to a quantile of some unspecified empirical
distribution and quantiles do not obey a square-root-of-time rule, except when the returns are
i.i.d. and normally distributed.

Scaling rules for quantiles can only be derived by making certain assumptions about the
distribution. Suppose we have an i.i.d. process for a random variable X, but that X is not
necessarily normally distributed. Instead we just assume that X has a stable distribution.6

When a distribution is ξ-stable then the whole distribution, including the quantiles, scales as
h1/ξ. For instance, in a normal distribution ξ = 2 and we say that its scale exponent is 1

2
. More

generally, the scale exponent of a stable distribution is ξ−1. This exponent is used to scale the
whole distribution of returns, not just its standard deviation, and in VaR applications we use it
to scale the quantiles of the distribution.

Let xh,α denote the α quantile of the h-day discounted log returns. We seek ξ such that

xh,α = h1/ξx1,α. (IV.3.1)

In other words, taking logs of the above,

ξ= ln(h)
ln(xh,α)− ln(x1,α)

. (IV.3.2)

Hence ξ can be estimated as the slope of graph with ln(xh,α) − ln(x1,α) on the horizontal axis
and ln(h) on the vertical axis. If the distribution is stable the graph will be a straight line and
ξ will not depend on the choice of α. Nor should it vary much when different samples are
used, provided the sample contains sufficient data to estimate the quantiles accurately. When

6 The concept of a stable distribution was introduced in Section I.3.3.11.
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a constant scale exponent corresponding to (IV.3.1) exists, we say that the log return obeys a
power law scaling rule with exponent ξ−1.

IV.3.2.4 Case Study: Scale Exponents for Major Risk Factors

In this section we illustrate the estimation of (IV.3.2) for some major risk factors, and use the
estimates for different values of α to investigate whether their log returns are stable. First we
estimate the scale exponent using (IV.3.2), as a function of α, for the S&P 500 index. We base
our results on daily data over a very long period from 3 January 1950 until 10 March 2007
and then ask how sensitive the estimated scale exponent is to (a) the choice of quantile α, and
(b) the sample data.

The spreadsheet for Figure IV.3.1 aggregates daily log returns into h-day log returns for
values of h from 2 to 20, and for a fixed α computes the quantile of the h-day log returns, xh,α.
First ξ is estimated as the slope of the log-log plot of the holding period versus the quantile
ratio, as explained above. Figure IV.3.1 illustrates the graph for α = 5% where the quantiles
are based on the entire sample period. The scale exponent ξ−1 is the reciprocal of the slope of
the best fit line, which in Figure IV.3.1 is 0.50011. This indicates that a square-root scaling
rule for 5% quantiles of the S&P 500 index is indeed appropriate.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure IV.3.1 Log-log plot of holding period versus 5% quantile ratio: S&P 500 index

Table IV.3.1 Estimated values of scale exponent for S&P 500 index

α 0.1% 1% 5% 10%

1950–2007 0.4662 0.5186 0.5001 0.4853
1970–2007 0.5134 0.5074 0.4937 0.4639
1990–2007 0.4015 0.4596 0.4522 0.4268

However, there is some variation when different quantiles and different sample periods are
chosen. Table IV.3.1 records the reciprocal of the slope of the log-log plot for different values
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of α and when the quantiles are based on three different sample periods: from the beginning
of January 1950, 1970 and 1990 onward. Using data from 1990 onward the scale exponent for
the 10% and 0.1% quantiles is less than 0.5, although it should be noted that with little more
than 4000 data points, the 0.1% quantile may be measured imprecisely. Still, based on data
since 1990 only, it appears that the scale exponent for the 1% quantile of the S&P 500 index
is closer to 0.45 than to 0.5.

We also estimate the scale exponent for three other important risk factors, the $/£ exchange
rate and two US Treasury interest rates at 3 months and 10 years, using daily data since
January 1971. The relevant log-log plots are shown in Figures IV.3.2–IV.3.4, each time based
on α = 5% and the results for other quantiles are shown in Table IV.3.2.7 The $/£ exchange
rate has a lower estimated scale exponent than the interest rates and, again except for the 0.1%
and 10% quantiles, appears to be close to 0.5. So, like the S&P 500 index, the $/£ exchange
rate quantiles could be assumed to scale with the square root of time.
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Figure IV.3.2 Log-log plot of holding period versus quantile ratio: $/£ forex rate

Table IV.3.2 Estimated scale exponents for $/£ forex rate and US interest rates

α 0.10% 1% 5% 10%

$/£ 0.4543 0.4983 0.5298 0.5590
US 3m 0.5575 0.6065 0.5709 0.5795
US 10yr 0.5363 0.5651 0.5223 0.5591

The US interest rates show evidence of trending, since the estimated scale exponent is
greater than 0.5. Thus if mean reversion occurs, it does so over long periods and with a scale
exponent of 0.6, scaling the 1% 1-day VaR on the US 3-month Treasury bill rate over a 10-day
period implies an increase over the 1-day VaR of 100.6 rather than 100.5. In other words, the
1-day VaR of $1 million becomes $3.98 million over 10 days, rather than $3.16 million under
square-root scaling.

7 For the interest rates we use daily changes, because these are the risk factors in the PV01 mapping, and for the exchange rate we use
log returns.



Historical Simulation 149

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure IV.3.3 Log-log plot of holding period versus quantile ratio: US 3-month Treasury bills
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Figure IV.3.4 Log-log plot of holding period versus quantile ratio: US 10-year bond

In Tables IV.3.1 and IV.3.2 the estimated scale exponents were not identical when estimated
at different quantiles. Either the variation is due to sampling error, or the distributions are not
stable. In the next section we shall assume the variation is due to sampling error and use a
scale exponent of 0.5 for the S&P 500 and the $/£ exchange rate,8 0.55 for the US 10-year
bond and 0.575 for the US 3-month Treasury bill.

It is commonly assumed that volatility scales with the square root of time, but we now
show that this assumption may not be appropriate. Indeed, due to the rapid mean reversion
of volatility, we should apply a scale exponent that is significantly less than 0.5. Table IV.3.3
summarizes the scale exponent on the S&P 500 volatility index (Vix), the FTSE 100 volatility

8 Note that the same scale exponent would apply to the £/$ exchange rate, since the log returns on one rate are minus the log returns
on the other.



150 Value-at-Risk Models

index (Vftse) and the DAX 30 volatility index (Vdax) estimated using data since 1992.9 Scale
exponent values estimated at an extreme quantile are very imprecise, but near-linear log-log
plots are produced at the 5% quantile, and the spreadsheets accompanying this section imply
that at this quantile the appropriate scale exponents are estimated at the values displayed in
Table IV.3.3.

Table IV.3.3 Recommended scale exponents
for volatility indices

Index Scale exponent

Vix 0.355
Vftse 0.435
Vdax 0.425

IV.3.2.5 Scaling Historical VaR for Linear Portfolios

The returns on a linear portfolio are a weighted sum of returns on its assets or risk factors. If
the returns on the assets or risk factors are stable, the portfolio returns will only be stable if
all the assets or risk factors have the same scale exponents. In that case it makes no difference
whether we scale the asset or risk factor returns before applying the portfolio mapping, or
whether we apply the scaling to the portfolio returns directly. However, if the assets or risk
factors have different scale exponents, which would normally be the case then the portfolio
returns will not be stable.

To see this, consider the case of a portfolio, with weights w = (w1, . . . ,wn)
′ applied to n

assets, and with daily log returns at time t denoted by xt = (x1t, . . . , xnt)
′. The daily log return

on the portfolio at time t is then Y1t = w′xt. Now suppose the ith asset return is stable and has
scale exponent λi = ξ−1

i . Then, the h-day log return on the portfolio is

Yht = w′xt = w′(hλ1/2x1t, . . . , hλn/2xnt

) �= hλ/2Y1t

unless λ=λ1 = . . . =λn.
For instance, consider a portfolio for a UK investor with 50% invested in the S&P 500

index and 50% invested in the notional US 10-year bond. The S&P 500 and £/$ exchange rate
returns may scale with the square root of the holding period, but the scale exponent for the
US 10-year bond is approximately 0.55. Hence, the portfolio returns will not scale with the
square root of the holding period.

We could therefore consider using one of the following approximations for scaling
historical VaR, for a linear portfolio:

• Assume the assets or risk factor daily returns are stable, estimate their scale exponents,
take an average and use this to scale them to h-day returns. Then apply the portfolio
mapping to obtain the h-day portfolio returns.

• Alternatively, compute the portfolio daily returns, assume these are stable and estimate
the scale exponent, then scale the portfolio’s daily returns to h-day returns.

9 Unfortunately only a little volatility index data are currently available, the longest series being the Vix which starts in 1990.
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The first approach is the more approximate of the two, but it has distinct practical
advantages over the second approach. First, the analyst may store a set of estimated scale
exponents for the major risk factors, in which case there is no need to re-estimate a scale expo-
nent for each and every portfolio. Secondly, returns on major risk factors may be more likely
to have stable distributions than arbitrary portfolios. The advantage of the second approach is
that it should produce more accurate scaling rules, possibly with scale exponents depending
on the significance levels for VaR, but its disadvantage is that a very large historical sample of
portfolio returns is required if the scale exponents are to be measured accurately, particularly
for extreme quantiles.

IV.3.2.6 Errors from Square-Root Scaling of Historical VaR

Any deviation from square-root scaling is of particular interest for economic capital allocation,
where extreme quantiles such as 0.1% may be scaled over long horizons. Table IV.3.4 displays
the h-day VaR that is scaled up from the 1-day VaR of $1 million, for different risk horizons
h and for different values of the scale exponent. The square-root scaling rule gives the VaR
estimates in the centre column (shown in bold). For instance, with square-root scaling a 1-day
VaR of $1 million would scale to $100.5 million, i.e. $3.16 million over 10 days. The other
columns report the VaR based on other scale exponents, expressed as a percentage of this
figure. For instance, if the scale exponent were 0.6 instead of 0.5, the 1-day VaR would scale
to 1.259 × $3.16 million, i.e. $3.978 million over 10 days.

Table IV.3.4 Scaling 1-day VaR for different risk horizons and scale exponents

Scale exponent
Horizon (days)

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

2 87.1% 90.1% 93.3% 96.6% 1.41 103.5% 107.2% 111.0% 114.9%
5 72.5% 78.6% 85.1% 92.3% 2.24 108.4% 117.5% 127.3% 138.0%

10 63.1% 70.8% 79.4% 89.1% 3.16 112.2% 125.9% 141.3% 158.5%
30 50.6% 60.0% 71.2% 84.4% 5.48 118.5% 140.5% 166.6% 197.4%

100 39.8% 50.1% 63.1% 79.4% 10.00 125.9% 158.5% 199.5% 251.2%
250 33.1% 43.7% 57.6% 75.9% 15.81 131.8% 173.7% 228.9% 301.7%

If we applied a square-root scaling rule, when a power law scaling with a different exponent
is in fact appropriate, the errors could be very large indeed. When the scale exponent is greater
than 0.5 the square-root scaling law may substantially underestimate VaR and when it is
greater than 0.5 the square-root scaling law may substantially overestimate VaR, especially for
long term risk horizons. Given the scale exponents for major risk factors that were estimated in
Section IV.3.2.4, using a square-root scaling rule is about right for the VaR on US equities and
the £/$ exchange rate, but it would substantially underestimate the VaR on US interest rates.
And when volatility is a risk factor, square-root scaling of a positive vega exposure would lead
to a very considerable overestimation of VaR, because volatility mean-reverts rapidly.

IV.3.2.7 Overlapping Data and Multi-Step Historical Simulation

Historical scenarios capture the empirical dependencies between risk factors in a natural way,
just by sampling contemporaneous historical returns on each risk factor. Multi-step historical
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scenarios can also capture the dynamic behaviour in each risk factor, such as volatility cluster-
ing, just by simulating consecutive returns in the order they occurred historically. For a linear
portfolio, multi-step simulation consists of simulating an h-day log return by summing h con-
secutive daily log returns, and only then revaluing the portfolio. By contrast, for a portfolio of
path-dependent products, we would need to evaluate the portfolio on every consecutive day
over the risk horizon, which can be very time-consuming.

Unless we also apply a parametric model, as in the filtered historical simulation model
described in Section IV.3.3.4, multi-step historical simulation presents a problem if we use
overlapping samples, because this can distort the tail of the return distribution. To see why,
suppose we observe 1000 daily P&Ls that are normal and i.i.d. with zero mean. Suppose that,
by chance, these are all relatively small, i.e. of the order of a few thousand US dollars, except
for one day when there was a very large negative P&L of $1 million. Then $1 million is the
0.1% daily VaR. However, the 1% daily VaR is much smaller. Let us assume it is $10,000, so
that VaR1,0.1% is 100 times larger than VaR1,1%. What can we say about the 10-day VaR at these
significance levels?

Since the daily returns are normal and i.i.d. we may scale VaR using the square-root-of-
time rule. Thus, VaR10,0.1% will be 100 times larger than VaR10,1%. In other words, using the
square-root-of-time rule, the loss that is experienced once every 40 years is 100 times the loss
that is experienced once every 4 years.

Now consider the 10-day P&L on the same variable. When based on non-overlapping data
there are 100 observations, only one of which will be about $1 million. So the 1% 10-day VaR
is about $1 million, which is much larger than it would be using the square-root scaling rule.
And the 0.1% 10-day VaR cannot be measured because there are not enough data. However,
we might consider using overlapping 10-day P&Ls, so that we now have 1000 observations
and 10 of these will be approximately $1 million. Then the 1% 10-day VaR is again about $1
million, and now we can measure the 0.1% 10-day VaR – and it will also be about $1 million!
So, using overlapping data, the loss that is experienced once every 40 years is about the same
as the loss that is experienced once every 4 years. That is, the 0.1% 10-day VaR is about the
same as the 1% 10-day VaR. In short, using overlapping data in this way will distort the lower
tail of the P&L distribution, creating a tail that is too ‘blunt’ below a certain quantile, i.e. the
1% quantile in this exercise.

Thus, to apply multi-step historical simulation for estimating h-day VaR without distorting
the tails, one has to apply some type of filtering, such as method described in Section IV.3.3.4.
However, we do not necessarily need to apply multi-step simulation. Under certain assump-
tions about risk factor returns and the portfolio’s characteristics, we can scale up the daily VaR
to obtain an h-day VaR estimate, as described in the previous subsections.

IV.3.3 IMPROVING THE ACCURACY OF HISTORICAL
VALUE AT RISK

This section begins with a case study which demonstrates that the historical VaR based on an
equally weighted return distribution depends critically on the choice of sample size. In fact,
when data are equally weighted it is our choice of sample size, more than anything else, that
influences the VaR estimate. By showing how close the normal linear VaR and historical VaR
estimates are to each other, we show that the sample size is the most important determinant
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of the VaR estimate. The main learning point of this case study is that equal weighting of risk
factor returns is not advisable for any VaR model.

In the linear and Monte Carlo VaR models the risk factor returns data are summarized
in a covariance matrix, and instead of equally weighted returns this matrix can be con-
structed using an exponentially weighted moving average model. But, if not equal, what sort
of weighting of the data should we use in historical VaR? After the case study we describe
two different ways of weighting the risk factor returns data before the distribution of the port-
folio returns is constructed: exponential weighting of probabilities and volatility adjustment of
returns. Volatility adjustment motivates the use of filtered historical simulation, described in
Section IV.3.3.4.

IV.3.3.1 Case Study: Equally Weighted Historical and Linear VaR

For a given portfolio the historical and normal linear VaR estimates based on the same sample
are often much closer than two historical VaR estimates based on very different samples. We
demonstrate this with a case study of VaR estimation for a simple position on the S&P 500
index. Figure IV.3.5 shows the daily historical prices of the S&P 500 index (in black) and
its daily returns (in grey) between 31 December 1986 and 31 March 2008. The effects of the
Black Monday stock market crash in October 1987, the Russian crisis in August 1998, the
technology boom in the late 1990s and subsequent bubble burst in 2001 and 2002, and the US
sub-prime mortgage crisis are all evident.
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Figure IV.3.5 S&P 500 index and daily returns

In the case study we:

• apply both the normal linear and the historical VaR models to estimate VaR for a sin-
gle position on the S&P 500 index, using an equally weighted standard deviation in
the normal linear model and an equally weighted return distribution in the historical
simulation model;
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• compare time series of the two VaR estimates over a 1-day horizon at the 99% confidence
level;10

• compare time series of VaR estimates over a rolling data window based on a sample of
size T = 500 and of T = 2000 data points.

Hence, two time series of VaR estimates are computed, for each choice of T, using a quan-
tile estimated from the histogram of returns for the historical simulation model and an
equally weighted standard deviation for the normal linear VaR. All figures are expressed as a
percentage of the portfolio value.
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Figure IV.3.6 Time series of 1% historical VaR estimates, S&P 500

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

Ja
n-

80

Ja
n-

82

Ja
n-

84

Ja
n-

86

Ja
n-

88

Ja
n-

90

Ja
n-

92

Ja
n-

94

Ja
n-

96

Ja
n-

98

Ja
n-

00

Ja
n-

02

Ja
n-

04

Ja
n-

06

Ja
n-

08

N = 500

N = 2000

Figure IV.3.7 Time series of 1% normal linear VaR estimates, S&P 500

10 The relevant graphs for other significance levels may be generated in the spreadsheet for this case study.
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Figures IV.3.6 and IV.3.7 display the time series of 1-day 1% VaR estimates obtained
from each model, starting in December 1981 for T=500 and starting in December 1987
for T=2000. For each estimate we use the T most recent daily returns. The VaR based on
500 observations is, of course, more variable over time than the VaR based on 2000 obser-
vations, since we are weighting all the data equally. The ‘ghost effect’ of the 1987 global
crash is evident in both graphs, particularly so in the VaR based on 500 observations. Then,
exactly 500 days after the crash – and even though nothing particular happened on that day –
the VaR returned to more normal levels. Most of the time the historical VaR is dominated
by a few extreme returns, even when the sample contains 2000 observations, and when
one of these enters or leaves the data set the VaR can exhibit a discrete jump upward or
downward.11

Notice that the two different historical VaR estimates based on N = 500 and N = 2000 differ
by 1%–2% on average. The two normal linear VaR estimates have differences of a similar
magnitude, though slightly smaller in general. In fact, there is more similarity between the
normal and historical VaR estimates for a fixed sample size than there is between the historical
VaR estimates for different sample sizes! Figure IV.3.8 shows that the historical VaR tends to
be slightly greater than the normal linear VaR, and this is expected due to the excess kurtosis
in the S&P 500 daily return distribution.12 This figure shows that, on average, the historical
VaR is about 0.2% (of the portfolio value) greater than the normal linear VaR.13
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Figure IV.3.8 Time series of difference between historical VaR and normal linear VaR, S&P 500

11 This is particularly evident for the 0.1% VaR, as the reader can verify by changing the significance level in the historical VaR
spreadsheet of this case study workbook.
12 The opposite is the case at the 10% significance level, as you can see in the spreadsheet. As we have seen in the previous chapter
this is a feature of the leptokurtic nature of the returns.
13 By contrast, and to back up our observation that the historical and linear VaR estimates based on the same sample size are much
closer than two historical (or two linear) VaR estimates based on very different sample sizes, the average absolute difference between
the two historical VaR estimates shown in Figure IV.3.6 is 0.74%, and the average absolute difference between the two normal linear
VaR estimates shown in Figure IV.3.7 is 0.78%.



156 Value-at-Risk Models

The global equity crash of 1987 is a major stress event in the sample: the S&P 500 fell by 23%
in one day between 18 and 19 October 1987. This single return had a very significant impact
on the normal linear VaR estimate because the equally weighted volatility estimate (based on
the last 500 days) jumped up almost 7 percentage points, from 15.6% on 18 October to 22.5%
on 19 October. However, this single initial return of the global equity crash had much less
effect on the historical VaR: it was just another return in the lower tail and its huge magnitude
was not taken into account. So on 19 October 1987, the normal linear VaR rose more than
1% overnight, whilst the historical VaR rose by only 0.03% of the portfolio value. It was not
until we had experienced several days of large negative returns that the historical VaR ‘caught
up’ with the normal linear VaR. Hence in Figure IV.3.8 we see a short period in October 1987
when the normal linear VaR was about 0.6% (of the portfolio value) above the historical VaR
estimate. Then, exactly 500 days later, when the global crash data falls out of the sample, the
normal linear VaR jumps down as abruptly as it jumped up, whilst the historical VaR takes
a few days to decrease to normal levels. So in Figure IV.3.8, during October 1989, we see a
short period where the historical VaR is much greater than the normal linear VaR.

We conclude that when returns data are equally weighted it is the sample size, rather than
the VaR methodology, that has the most significant effect on the error in the VaR estimates.
Clearly, equal weighting of returns data causes problems in all VaR models. Any extreme
market movement will have the same effect on the VaR estimate, whether it happened years
ago or yesterday, provided that it still occurs during the sample period. Consequently the
VaR estimate will suffer from ‘ghost features’ in exactly the same way as equally weighted
volatility or correlation estimates. Most importantly, when data are equally weighted, the VaR
estimate will not be sufficiently risk sensitive, i.e it will not properly reflect the current market
conditions. For this reason both the parametric linear and historical VaR models should apply
some type of weighting to the returns data, after which ghost features are no longer so apparent
in the VaR estimates.

IV.3.3.2 Exponential Weighting of Return Distributions

A major problem with all equally weighted VaR estimates is that extreme market events can
influence the VaR estimate for a considerable period of time. In historical simulation, this
happens even if the events occurred long ago. With equal weighting, the ordering of obser-
vations is irrelevant. In Chapter II.3 we showed how this feature also presents a substantial
problem when equally weighted volatilities and correlations are used in short-term forecasts
of portfolio risk, and that this problem can be mediated by weighting the returns so that their
influence diminishes over time.

To this end, Section II.3.8 introduced the exponentially weighted moving average method-
ology. We applied EWMA covariance matrices in the normal linear VaR model in
Section IV.2.10. In Section IV.2.10.1 we showed that a EWMA covariance matrix may be
thought of as an equally weighted covariance matrix on exponentially weighted returns,
where each return is multiplied by the square root of the smoothing constant λ raised to
some power n, where n is the number of days since the observed return occurred. After
weighting the returns in this way, we apply equal weighting to estimate the variances and
covariances.

The historical VaR model can also be adapted so that it no longer weights data equally.
But instead of multiplying the portfolio returns by the square root of the smoothing constant
raised to some power, we assign an exponential weight to the probability of each return in its
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distribution.14 Fix a smoothing constant, denoted λ as usual, between 0 and 1. Then assign
the probability weight 1 −λ to the most recent observation on the return, the weight λ(1 −λ)

to the return preceding that, and then weights of λ2(1 − λ), λ3(1 − λ), λ4(1 − λ), . . . as the
observations move progressively further into the past. When the weights are assigned in this
way, the sum of the weights is 1, i.e. they are probability weights.

Figure IV.3.9 shows the weights that would be assigned to the return on each day leading
up to the time that the VaR is measured, for three different values of λ, i.e. 0.999, 0.99 and
0.9. The horizontal axis represents the number of days before the VaR is measured. The larger
the value of λ, the lower the weight on recent returns and the higher the weight assigned to
returns far in the past.

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 200 400 600 800 1000

λ = 0.99

λ = 0.995

λ = 0.999

Figure IV.3.9 Exponential probability weights on returns

Then we use these probability weights to find the cumulative probability associated with the
returns when they are put in increasing order of magnitude. That is, we order the returns, start-
ing at the smallest (probably large and negative) return, and record its associated probability
weight. To this we add the weight associated with the next smallest return, and so on until we
reach a cumulative probability of 100α%, the significance level for the VaR calculation. The
100α% historical VaR, as a percentage of the portfolio’s value, is then equal to minus the last
return that was taken into the sum. The risk horizon for the VaR (before scaling) is the holding
period of the returns, i.e. usually 1 day.

Figure IV.3.10 shows the cumulative probability assigned to the S&P 500 empirical return
distribution, based on the 1000 daily returns prior to 31 March 2008, the time when the VaR
is measured. We use the same data as for the case study in the previous section, starting on
6 April 2004. For a given λ, start reading upward from the lowest daily return of −3.53%
(which occurred on 27 February 2007) adding the exponentially weighted probability associ-
ated with each return as it is included. The α quantile return is the one that has a cumulative
probability of α associated with it.

14 The assigned weight is not the square root of the smoothing constant raised to some power. But we still call this approach
‘exponential weighting’ because the weights still decrease exponentially as the time since the return occurred increases.
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Figure IV.3.10 Exponentially weighted distribution functions, S&P 500 daily returns

The quantiles depend on the value chosen for the weighting constant λ. The 10% quantiles
are indicated on Figure IV.3.10 for λ=0.99 and 0.995.15 From these we see immediately
that the 10% VaR, which is minus the 10% quantile, is approximately 1.7% when λ = 0.99
and approximately 1.45% when λ=0.995. But when λ=0.999 the 10% VaR, not shown in
Figure IV.3.10, is approximately 3%. Hence, the VaR does not necessarily increase or decrease
with λ. It depends on when the largest returns occurred. If all the largest returns occurred a
long time before the VaR is estimated, then higher values of lambda would give a larger VaR
estimate. Otherwise, it is difficult to predict how the VaR at different quantiles will behave
as λ varies. The problem with this methodology is that the choice of λ (which has a very
significant effect on the VaR estimate) is entirely ad hoc.

IV.3.3.3 Volatility Adjustment

One problem with using data that span a very long historical period is that market
circumstances change over time. Equity markets go through periods of relatively stable,
upward-trending prices, periods of range bounded price behaviour, and periods where prices
fall rapidly and (often) rebound. Commodity futures markets may be exposed to bubbles,
seasonal price fluctuations and switching between backwardation and contango.16 Currency
market volatility comes in clusters and is influenced by government policy on intervention.
Fiscal policy also varies over the business cycle, so the term structures of interest rates and
the prices of interest rate sensitive instruments shift between different behavioural regimes. In
short, regime specific economic and behavioural mechanisms are a general feature of financial
markets.

Since historical simulation requires a very large sample, this section addresses the question
of how best to employ data, possibility from a long time ago when the market was in a different

15 Since the cumulative probability of 0.01 will almost certainly lie in between two observed returns, we can use linear interpolation
to estimate the 1% quantile return, as explained in Section I.5.3.1.
16 Backwardation is the term given to a downward sloping term structure of futures prices, and contango refers to an upward sloping
term structure.
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regime. As a simple example, consider an equity market that has been stable and trending for
one or two years, but previously experienced a long period of high volatility. We have little
option but to use a long historical sample period for the historical VaR estimate, but we would
like to adjust the returns from the volatile regime so that their volatility is lower. Otherwise
the current historical VaR estimate will be too high. Conversely, if markets are particularly
volatile at the moment but were previously stable for many years, an unweighted historical
estimate will tend to underestimate the current VaR, unless we scale up the volatility of the
returns from the previous, tranquil period.

We now consider a volatility weighting method for historical VaR that was suggested by
Duffie and Pan (1997) and Hull and White (1998). The methodology is designed to weight
returns in such a way that we adjust their volatility to the current volatility. To do this
we must obtain a time series of volatility estimates for the historical sample of portfolio
returns. The best way to generate these would be to use an appropriate asymmetric GARCH
model, as described in Section II.4.3, although a simple EWMA model may also be quite
effective.17

Denote the time series of unadjusted historical portfolio returns by {rt}T
t=1 and denote the

time series of the statistical (e.g. GARCH or EWMA) volatility of the returns by
{
σ̂t

}T

t=1
,

where T is the time at the end of the sample, when the VaR is estimated. Then the return at
every time t<T is multiplied by the volatility estimated at time T and divided by the volatility
estimated at time t. That is, the volatility adjusted returns series is

r̃t,T =
(

σ̂T

σ̂t

)
rt, (IV.3.3)

where T is fixed but t varies over the sample, i.e. {t = 1, . . . ,T}. A time-varying estimate
of the volatility of the series (IV.3.3), based on the same model that was used to obtain
σ̂t, should be constant and equal to σ̂T, i.e. the conditional volatility at the time the VaR is
estimated.18

EXAMPLE IV.3.1: VOLATILITY ADJUSTED VAR FOR THE S&P 500 INDEX

Use daily log returns on the S&P 500 index from 2 January 1995 to 31 March 2008 to estimate
symmetric and asymmetric GARCH volatilities. For each time series of volatility estimates,
plot the volatility adjusted returns that are obtained using (IV.3.3), where the fixed time T
is 31 March 2008, i.e. the date that the VaR is estimated. Then find the 100α% 1-day his-
torical VaR estimate, as a percentage of the portfolio value, based on both of the volatility
adjusted series. For α = 0.001, 0.01, 0.05 and 0.1 compare the results with the unadjusted
historical VaR.

17 Many of our illustrative examples will keep the volatility model as simple as possible, and focus instead on the general features
of historical VaR with and without any volatility adjustment. So we shall often use a simple EWMA volatility. However, EWMA
introduces yet another subjective choice to the VaR model, i.e. the smoothing constant. See Section II.3.8 for further details. In
practice readers should use GARCH volatility to adjust historical data because GARCH model parameters are estimated optimally
from the sample (as explained in Section II.4.2.2).
18 In the text we have called σ̂t the ‘volatility’ at time t, but really it is the standard deviation. However, we divide one volatility by
another in (IV.3.3). So the result is the same, whether or not we annualize the standard deviations to become volatilities. We do not
have to use σ̂T for the volatility that we are imposing on the transformed returns. For example, we could adjust the returns to have a
long term average volatility or – in scenario analysis – a hypothetical value for volatility.
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SOLUTION The GARCH estimates are obtained using the Excel spreadsheet.19 Table IV.3.5
displays the estimated parameters of the two GARCH models.20

Table IV.3.5 GARCH parameters for S&P 500 index

Parameter GARCH A-GARCH

ω 1.085473E-06 3.609464E-07
α 0.0791 0.0979
β 0.9143 0.8988
λ – 0.0038
α + β 0.9934 0.9967
Long term volatility 20.27% 36.47%
Log likelihood 13848.27 13887.96

There is a leverage effect in the A-GARCH model, which captures the asymmetric response
of volatility to rises and falls in the index. The index has many significant falls during the sam-
ple period, each one precipitating a higher volatility than a rise in the index of the same
magnitude. The symmetric GARCH volatility ignores this effect, and hence underestimates
the long term average index volatility over the sample. This is about 20% according to the
GARCH model, but over 36% according to the A-GARCH model.

Also, compared with the A-GARCH volatility the symmetric GARCH volatility shows less
reaction to market events (because α is smaller) but greater persistence following a market
shock (because β is greater). The log likelihood will always be higher in the asymmetric
GARCH model, since it has one extra parameter. Nevertheless it is still clear that capturing an
asymmetric volatility response greatly improves the fit to the sample data in this case.

The resulting GARCH volatility estimates are compared in Figure IV.3.11. This shows that
the index volatility varied considerably over the sample period, reaching highs of over 45%
during the Asian crisis in 1997, the Russian crisis in 1998 and after the burst of the technology
bubble. The years 2003–2006 were very stable, with index volatility often as low as 10% and
only occasionally exceeding 15%, but another period of market turbulence began in 2007,
precipitated by the credit crisis.

We now calculate the volatility adjusted returns that form the basis of the empirical dis-
tribution from which the historical VaR is computed as a quantile. Figure IV.3.12 illustrates
the A-GARCH volatility adjusted returns, and compares them with the unadjusted returns.
Before adjustment, volatility clustering in returns is evident from the change in magnitude of
the returns over the historical period. For instance, the returns during the years 2003–2006
were considerably smaller, on the whole, than the returns during 2002. But after adjustment
the returns have a constant volatility equal to the estimated A-GARCH volatility at the end of
the sample.

Now we estimate the 1% 1-day historical VaR for a position on the S&P 500 index
on 31 March 2008, based on the unadjusted returns and based on the volatility adjusted

19 See Examples II.4.1 and II.4.3 for further details. We emphasize again that the use of Excel to estimate GARCH parameters is not
recommended and we only use it here for methodological transparency.
20 I hope readers will not be confused by the use of α to denote both the significance level of the VaR estimate and the GARCH reaction
parameter in this example. Unfortunately both notations are absolutely standard, and it should be clear from the context which α we
are referring to. Note that the A-GARCH parameter λ is the leverage coefficient, and this is not the same as the EWMA parameter λ,
which denotes the smoothing constant. We continue to use these notations since both are standard.
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Figure IV.3.11 GARCH volatility estimates for the S&P 500 index
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Figure IV.3.12 Returns and A-GARCH volatility adjusted returns

returns (IV.3.3) with both the symmetric and the asymmetric GARCH volatilities. The results,
reported in Table IV.3.6, indicate a considerable underestimation of VaR when the returns are
not adjusted.21

The above example demonstrates how volatility adjustment compares favourably with the
exponential weighting method in the previous section. The main advantages of using a
GARCH model for volatility adjustment are as follows:

• We do not have to make a subjective choice of an exponential smoothing constant λ. The
parameters of the GARCH model may be estimated optimally from the sample data.

21 But if we were to estimate the VaR during a particularly tranquil period, the VaR would be overestimated without the volatility
adjustment.
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• We are able to use a very large sample for the return distribution. In the above example
we used 3355 returns, and an even larger sample would also be perfectly feasible.

Table IV.3.6 Historical VaR for S&P 500 on 31 March 2008

Quantile Unadjusted Volatility Adjusted

GARCH A-GARCH

0.10% 4.84% 7.50% 7.04%
1% 2.83% 4.18% 4.28%
5% 1.78% 2.69% 2.79%
10% 1.27% 2.11% 2.11%

Hence this type of volatility adjustment allows the VaR at very high quantiles to be estimated
reasonably accurately.

We end this subsection by investigating the effect of volatility adjustment on the scale
exponent that we might use to transform a 1-day historical VaR estimate into an h-day his-
torical VaR estimate. However, in the next subsection we shall describe a more sophisticated
method for computing h-day historical VaR, which uses a dynamic model, such as the GARCH
volatility adjustment models described above, and does not require the use of power law
scaling.

Recall that to estimate the values of the scale exponent shown in Table IV.3.1, over 50 years
of daily returns on the S&P 500 were used. We now scale these returns to have constant
volatility, using (IV.3.3), this time using a simple EWMA volatility instead of a GARCH
model. It does not matter which volatility level we scale the series to, the estimated scale
exponent remains unchanged.22 Table IV.3.7 reports the results, which are computed in an
Excel workbook in the case study folder for this subsection. They are calculated in a similar
way to the unadjusted scale exponents in Table IV.3.1, but now the results are presented using
different values for the smoothing constant rather than different sample sizes.

Table IV.3.7 Estimated values of scale exponent for volatility adjusted S&P 500

Smoothing constant Quantile

λ 0.1% 1% 5% 10%

0.98 0.4848 0.5402 0.5368 0.5192
0.95 0.4527 0.5236 0.5366 0.5250
0.9 0.3972 0.5057 0.5334 0.5335

In this subsection we have considered volatility adjustment at the portfolio level. That is,
we construct a returns series for the portfolio in the usual way, and then adjust this to have the

22 In the spreadsheet the returns are scaled to have a volatility of 10%, but this can be changed and the user will see that it has no effect
on the scale exponent.
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required volatility. Later in this chapter, in Section IV.3.5.2, we show how to volatility-adjust
individual risk factors for a portfolio, and we use a case study to compare the VaR based on
volatility adjustment at the risk factor level with the VaR based on portfolio level volatility
adjustment.

IV.3.3.4 Filtered Historical Simulation

Barone-Adesi et al. (1998, 1999) extend the idea of volatility adjustment to multi-step his-
torical simulation, using overlapping data in a way that does not create blunt tails for the
h-day portfolio return distribution. Their idea is to use a parametric dynamic model of returns
volatility, such as one of the GARCH models that were used in the previous subsection, to
simulate log returns on each day over the risk horizon.

For instance, suppose we have estimated a symmetric GARCH model on the historical log
returns rt, obtaining the estimated model

σ̂2
t+1 = ω̂ + α̂r2

t + β̂σ̂2
t . (IV.3.4)

The filtered historical simulation (FHS) model assumes that the GARCH innovations are
drawn from the standardized empirical return distribution. That is, we assume the standardized
innovations are

εt = rt

σ̂t
, (IV.3.5)

where rt is the historical log return and σ̂t is the estimated GARCH daily standard deviation at
time t.

To start the multi-step simulation we set σ̂0 to be equal to the estimated daily GARCH
standard deviation on the last day of the historical sample, when the VaR is estimated, and
also set r0 to be the log return on the portfolio from the previous day to that day. Then we
compute the GARCH daily variance on day 1 of the risk horizon as

σ̂2
1 = ω̂ + α̂ r̂2

0 + β̂σ̂2
0.

Now the simulated log return on the first day of the risk horizon is r̂1 = ε1σ̂1 where a value
for ε1 is simulated from our historical sample of standardized innovations (IV.3.5). This is
achieved using the statistical bootstrap, which is described in Section I.5.7.2. Thereupon we
iterate in the same way, on each day of the risk horizon setting

σ̂2
t+1 = ω̂ + α̂ r̂2

t + β̂ σ̂2
t , with r̂t = εtσ̂t for t = 1, . . . , h,

where εt is drawn independently of εt−1 in the bootstrap. Then the simulated log return over a
risk horizon of h days is the sum r̂1 + r̂2 + . . .+ r̂h. Repeating this for thousands of simulations
produces a simulated return distribution, and the 100α% h-day FHS VaR is obtained as minus
the α quantile of this distribution.

We do not need to use a symmetric GARCH model for the filtering. In fact, the next example
illustrates the FHS method using the historical data and the estimated A-GARCH model from
the previous example.
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EXAMPLE IV.3.2: FILTERED HISTORICAL SIMULATION VAR FOR THE S&P 500 INDEX

Use daily log returns on the S&P 500 index from 2 January 1995 to 31 March 2008 to esti-
mate the 100α% 10-day VaR using FHS based on an asymmetric GARCH model with the
parameters shown in Table IV.3.5. For α = 0.001, 0.01, 0.05 and 0.1 compare the results with
the asymmetric GARCH volatility adjusted historical VaR that is obtained by scaling up the
daily VaR estimates using a square-root scaling rule.

SOLUTION The starting values are taken from the results in Example IV.6.1: the A-GARCH
annual volatility on 31 March 2008, when the VaR is estimated, is 27.82% and the daily log
return on 31 March 2008 is 0.57%. Then each daily log return over the risk horizon is sim-
ulated by taking the current A-GARCH estimated standard deviation and multiplying this by
an independent random draw from the standardized empirical returns.23 The results from one
set of 5000 simulations are shown in the second column of Table IV.3.8. The third column,
headed ‘scaled volatility adjusted VaR’, is obtained by multiplying the results in the last col-
umn of Table IV.3.6 by

√
10. The results vary depending on the simulation, but we almost

always find that the FHS 10-day VaR is just slightly lower than the volatility adjusted VaR
based on square-root scaling up of the daily VAR for every quantile shown.

Table IV.3.8 Scaling VaR versus filtered historical simulation

Quantile Current volatility 10% volatility

FHS Scaled volatility
adjusted VaR

FHS Scaled volatility
adjusted VaR

0.10% 21.13% 22.25% 9.09% 8.00%
1% 12.79% 13.53% 5.44% 4.86%
5% 7.96% 8.84% 3.18% 3.18%
10% 5.70% 6.67% 2.29% 2.40%

Now suppose the current A-GARCH volatility were only 10% instead of 27.82%. Readers
can change the starting value in cell D3 of the spreadsheet to 0.6325%, i.e. the daily stan-
dard deviation corresponding to 10% volatility, and see the result. The results from one
set of 5000 filtered historical simulations are shown in the fourth column of Table IV.3.8
and the scaled up volatility adjusted VaR corresponding to 10% volatility is shown in the
last column. Now, more often than not, the FHS VaR is greater than the scaled volatility
adjusted daily VaR at the extreme quantiles but not, for instance, at the 10% quantile. Why is
this so?

Looking again at Figure IV.3.11, we can see that the average level of volatility over our
historical sample was below 20%. In fact, the average estimated A-GARCH volatility was
16.7% over the sample. So on 31 March 2008 the volatility was higher than average and in
the absence of an extreme return during the risk horizon it would revert toward the long term
average, as GARCH volatilities do, which in this case entails reverting downward. By contrast,
the 10% volatility is below average so it will start reverting upward toward 16.7% over the risk
horizon, in the absence of an extreme return during this period.

23 As with the Monte Carlo VaR spreadsheets, we have reduced the number of simulations in the simulation spreadsheets so that they
fit on the CD-ROM. Copy the spreadsheet to your hard disk first, then fill down columns E to AH of the spreadsheet, so that thousands
of simulations are used to compute the results.
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But there is no mean reversion in a square-root scaling of daily VaR. Indeed, this type of
scaling is theoretically incorrect when we use a GARCH model for volatility adjustment.24

It assumes the volatility remains constant over the risk horizon and does not mean-revert at
all. Square-root scaling corresponds to an i.i.d. normal assumption for returns, which certainly
does not hold in the FHS framework. Hence, when adjustment is made using a GARCH model,
the scaled volatility adjusted VaR will overestimate VaR when the current volatility is higher
than average, and underestimate VaR when volatility is lower than average.

IV.3.4 PRECISION OF HISTORICAL VALUE AT RISK AT
EXTREME QUANTILES

When using very large samples and measuring quantiles no more extreme than 1%, the volatil-
ity adjustment and filtering described in the previous section are the only techniques required.
For daily VaR you just need to estimate the required quantile from the distribution of the
volatility adjusted daily portfolio returns, as described in Section IV.3.3.3. And when VaR
is estimated over horizons longer than 1 day, apply the filtering according to your volatility
adjustment model, as described in Section IV.3.3.4.

But it may be necessary to compute historical VaR at very extreme quantiles when it is
impossible to obtain a very large sample of historical returns on all assets and risk factors.
For instance, economic capitalization at the 99.97% confidence level is a target for most firms
with a AA credit rating, but it is impossible to obtain reliable estimates of 0.03% VaR directly
from a historical distribution, even with a very large sample indeed.

To assess historical VaR at very extreme quantiles – and also at the usual quantiles when the
sample size is not very large – one needs to fit a continuous distribution to the empirical one,
using a form that captures the right type of decay in the tails. This section begins by explaining
how kernel fitting can be applied to the historical distribution without making any parametric
assumption about tail behaviour. We then consider a variety of parametric or semi-parametric
techniques that can be used to estimate historical VaR at extreme quantiles.

IV.3.4.1 Kernel Fitting

In Section I.3.3.12 we explained how to estimate a kernel to smooth an empirical distribu-
tion. Having chosen a form for the kernel function, the estimation algorithm fits the kernel by
optimizing the bandwidth, which is like the cell width in a histogram. Fitting a kernel to the
historical distribution of volatility adjusted returns allows even high quantiles to be estimated
from relatively small samples. The choice of kernel is not really important, as shown by Sil-
verman (1986), provided only that a reasonable one is chosen. For empirical applications of
kernel fitting to VaR estimation see Sheather and Marron (1990), Butler and Schachter (1998)
and Chen and Tang (2005).

To illustrate this we use Matlab to apply the Epanechnikov, Gaussian and lognormal kernels
to a distribution of volatility adjusted returns shown in Figure IV.3.13. This series is of daily

24 However, it is not necessarily theoretically incorrect when we use an EWMA model for volatility adjustment, because there is no
mean reversion in EWMA volatility forecasts. If there is a power law for scaling, as discussed in Example IV.6.1, then we can use this
law to scale up daily EWMA volatility adjusted VaR to longer horizons.
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Figure IV.3.13 EWMA adjusted daily returns on S&P 500

returns on the S&P 500 index, and the volatility adjustment has been made using a EWMA
volatility with smoothing constant 0.95. We fit a kernel to a sample size of 500, 1000, 2000 and
3000 returns. In each case the returns are standardized to have mean 0 and variance 1 before
fitting the kernel. Figure IV.3.14 compares the three kernel densities with the standard normal
density to give a visual representation of the skewness and excess kurtosis in the empirical
densities. Whilst the Gaussian and Epanechnikov kernels are almost identical, the lognormal
kernel fits the data very badly indeed.

Now without fitting a kernel, and for each fitted kernel, we estimate the 1-day VaR at 5%,
1%, 0.1% and 0.05% significance levels. The results are shown in Table IV.3.9 and, as usual,
they are expressed as a percentage of the portfolio value. Note that there are two sets of results
labelled ‘No kernel’: the first uses the Excel PERCENTILE function, which we know has
some peculiarities;25 and the second uses the Matlab quantile function which is more accurate
than that of Excel.26

As remarked above, the lognormal kernel provides a poor fit and so the results should not
be trusted. Whilst the VaR results for the Gaussian and Epanechnikov kernels are very similar
(they are identical in exactly one-half of the cases) those for the lognormal kernel are very
different and are very far from the quantiles that are calculated by Excel and Matlab. The
Matlab quantiles estimate the VaR fairly accurately; in fact, the results are similar to those
obtained using the Gaussian and Epanechnikov kernels. However, there is a marked difference
between these and the quantiles estimated using the Excel function.

Another feature of the results in Table IV.3.9 is that the VaR estimates are sample-specific.
The sample of the most recent 2000 returns clearly has heavier tails than the sample of the most
recent 3000 returns or the sample of the most recent 1000 returns, since the VaR estimates are
greatest when based on a sample size 2000.

25 The problems associated with the Excel PERCENTILE function are described in Section I.3.2.8.
26 Many thanks to my PhD student Joydeep Lahiri for providing the empirical results in this section.
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Figure IV.3.14 Kernels fitted to standardized historical returns

IV.3.4.2 Extreme Value Distributions

Kernel fitting is a way to smooth the empirical returns density whilst fitting the data as closely
as possible. A potential drawback with this approach is that the particular sample used may
not have tails as heavy as those of the population density. An alternative to kernel fitting is to
select a parametric distribution function that is known to have heavy tails, such as one of the
extreme value distributions. Then we fit this either to the entire return distribution or to only the
observations in some pre-defined lower tail. A generalized extreme value (GEV) distribution
can be fitted to the entire empirical portfolio return distribution, but the generalized Pareto
distribution (GPD) applies to only those returns above some pre-defined threshold u.

Another potential drawback with kernel fitting is that it does not lend itself to scenario
analysis in the same way as parametric distribution fitting. When a parametric form is fitted
to the returns it is possible to apply scenarios to the estimated parameters to see the effect
on VaR. For instance, having estimated the scale and tail index parameters of a GPD from
the historical returns over some threshold, alternative VaR estimates could be obtained by
changing the scale and tail index parameters.27 For instance, we might fit the GPD to only

27 This approach is advocated by Longin (2000, 2005), McNeil and Frey (2000), Aragones et al. (2001) and Gencay and Selcuk (2004).
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Table IV.3.9 Historical VaR based on kernel fitting

Significance Level

5% 1% 0.10% 0.05%

No kernel (Excel)

Sample size 500 0.95% 1.35% 1.69% 1.75%
1000 1.05% 1.52% 2.32% 2.43%
2000 1.09% 1.72% 2.91% 3.26%
3000 1.03% 1.66% 2.73% 3.08%

No kernel (Matlab)

Sample size 500 1.03% 1.47% 1.88% 1.88%
1000 1.04% 1.51% 2.42% 2.53%
2000 1.10% 1.73% 3.09% 3.65%
3000 1.03% 1.68% 2.82% 3.26%

Gaussian kernel

Sample size 500 1.04% 1.48% 1.92% 2.00%
1000 1.03% 1.58% 2.35% 2.46%
2000 1.06% 1.61% 2.98% 3.53%
3000 1.04% 1.59% 2.80% 3.21%

Epanechnikov kernel

Sample size 500 1.04% 1.52% 1.92% 2.00%
1000 1.09% 1.58% 2.40% 2.51%
2000 1.12% 1.67% 3.05% 3.53%
3000 1.04% 1.65% 2.80% 3.21%

Lognormal kernel

Sample size 500 0.82% 1.29% 1.66% 1.75%
1000 0.84% 1.30% 2.22% 2.33%
2000 0.92% 1.48% 2.76% 3.19%
3000 0.77% 1.46% 2.57% 2.99%

those returns in the lower 10% tail of the distribution. Provided that the historical sample is
sufficiently large (at least 2000 observations), there will be enough returns in the 10% tail to
obtain a reasonably accurate estimate of the GPD scale and tail index parameters, β and ξ.

It can be shown that when a GPD is fitted to losses in excess of a threshold u there is a
simple analytic formula for the 100α% VaR,

VaRα = u + β
ξnξ

((
nu

1 − α

)ξ

− nξ

)
, (IV.3.6)

where n is the number of returns in the entire sample and nu is the number of returns less than
the threshold u. It is therefore simple to generate VaR estimates for different values of β and ξ.
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EXAMPLE IV.3.3: USING THE GPD TO ESTIMATE VAR AT EXTREME QUANTILES

Estimate the parameters of a GPD for the EWMA volatility adjusted daily returns on the
S&P 500 that were derived and analysed in Section IV.3.4.1. Base your results on the entire
sample of 14,264 returns and also on a sample of the 5000 most recent returns. In each case
set the volatility in the adjusted returns to be 10%.28 Use only the returns that are sampled
below a threshold of (a) 20%, (b) 10%, (c) 5% and (d) 1%. Hence, estimate the 1-day VaR
using (IV.3.6) and compare the results with the historical VaR that is estimated without fitting
a GPD. In each case use a risk horizon of 1 day and confidence levels of 99%, 99.9% and
99.95%, and express the VaR as a percentage of the portfolio value.

SOLUTION The returns are first normalized by subtracting the sample mean and dividing
by the standard deviation, so that they have mean 0 and variance 1. Then for each choice
of threshold, the GPD parameters are estimated using maximum likelihood in Matlab.29 The
results are reported in the two columns headed ‘GPD parameters’ in Table IV.3.10.

Table IV.3.10 Estimates of GPD parameters (Matlab)

Sample size 14,264 GPD parameters Confidence level for VaR

Threshold nu u ξ β 99% 99.9% 99.95%

1% 143 −2.5740 −0.3906 7.6815 1.69% 6.01% 7.27%
5% 713 −1.6097 −0.2425 4.4892 2.87% 6.43% 7.16%

10% 1426 −1.1960 −0.1870 3.3786 3.37% 6.10% 6.71%
20% 2853 −0.7203 −0.1289 2.2795 3.26% 5.30% 5.81%

Historical VaR (no GPD) 1.69% 3.00% 3.87%

Sample size 5000 GPD parameters Confidence level for VaR

Threshold nu u ξ β 99% 99.9% 99.95%

1% 50 −2.5292 −0.4036 8.2127 1.67% 6.52% 7.83%
5% 250 −1.5360 −0.2305 4.4352 2.94% 6.59% 7.37%

10% 500 −1.1708 −0.1776 3.3405 3.42% 6.22% 6.86%
20% 1000 −0.6930 −0.1194 2.2280 3.27% 5.36% 5.89%

Historical VaR (no GPD) 1.67% 3.36% 4.86%

Since our GPD parameters were estimated on the normalized returns, after we compute
the VaR using (IV.3.6) we must then de-normalize the VaR estimate, i.e. multiply it by the
standard deviation and subtract the mean. This gives the results shown in Table IV.3.10 under
the three columns headed ‘Confidence level for VaR’. The GPD results should be compared to
the historical VaR without fitting a GPD, i.e. the VaR that is estimated from a quantile of the
volatility adjusted return distribution. This is shown in the last row of each half of the table.

28 These data end on 31 December 2004, when the S&P500 index volatility was approximately 10%.
29 Many thanks again to Joydeep Lahiri for providing these results.
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The GPD VaR is greater than the volatility adjusted VaR that is obtained without the GPD
fit, and substantially so for extreme quantiles. For instance, at the 0.05% quantile and based
on the most recent 5000 returns, the GPD VaR based on a threshold of 10% is 6.86% of the
portfolio value, whereas the historical VaR without fitting the GPD is estimated to be only
4.86% of the portfolio value.

Notice how the historical VaR that is obtained without fitting the GPD is greatly influenced
by the sample size. Even after the volatility adjustment, 5000 returns are simply insufficient
to estimate VaR at the 99.95% confidence level with accuracy. At this level of confidence we
are looking for a loss event that has no more than 1 chance in 2000 of occurring.

The GPD VaR estimates are not greatly influenced by the sample size, but they are influ-
enced by the choice of threshold. A threshold of 10% or 20% is adequate, but for thresholds
of 5% and 1% there is insufficient data in the tail to fit the GPD parameters accurately starting
with a sample size of 5000.30

An important point to learn from this example is that although the GPD VaR estimates are
fairly robust to changes in sample size, they are not robust to the choice of threshold. This is
one of the disadvantages of using the GPD to estimate VaR, since the choice of threshold is
an important source of model risk. Advocates of GPD VaR argue that this technique allows
suitably heavy tails to be fitted to the data, and so it is possible to estimate historical VaR at
very high confidence levels such as 99.97%. Another convenient aspect of the approach is that
the expected tail loss (also called the conditional VaR) has a simple analytic form, which we
shall introduce in Section IV.3.7.2.

IV.3.4.3 Cornish–Fisher Approximation

The Cornish–Fisher expansion (Cornish and Fisher, 1937) is a semi-parametric technique that
estimates quantiles of non-normal distributions as a function of standard normal quantiles
and the sample skewness and excess kurtosis. In the context of historical VaR, this technique
allows extreme quantiles to be estimated from standard normal quantiles at high significance
levels, given only the first four moments of the portfolio return or P&L distribution.

The fourth order Cornish–Fisher approximation x̃α to the α quantile of an empirical
distribution with mean 0 and variance 1 is

x̃α ≈ zα + τ̂

6

(
z2
α
− 1

) + 	̂

24
zα

(
z2
α
− 3

)− τ̂2

36
zα

(
2z2

α
− 5

)
, (IV.3.7)

where zα = �−1(α) is the α quantile of a standard normal distribution, and τ̂ and 	̂ denote the
skewness and excess kurtosis of the empirical distribution. Then, if μ̂ and σ̂ denote the mean
and standard deviation of the same empirical distribution, this distribution has approximate α

quantile

xα = x̃ασ̂ + μ̂. (IV.3.8)

30 With a threshold of 1% and original sample size 5000, there are only 50 returns in the tail that we use to fit the GPD parameters. In
fact, the Matlab optimizer did not converge properly, so the results in the penultimate row of Table IV.3.10 are unreliable.
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EXAMPLE IV.3.4: CORNISH–FISHER APPROXIMATION

Find the Cornish–Fisher approximation to the 1% quantile of an empirical distribution with
the sample statistics shown in Table IV.3.11. Then use this approximation to estimate the 1%
10-dayVaR based on the empirical distribution, and compare this with the normal linear VaR.

Table IV.3.11 Sample statistics used for Cornish–Fisher
approximation

Annualized mean 5%
Annualized standard deviation 10%
Skewness −0.6
Excess kurtosis 3

SOLUTION The normal linear VaR estimate is

�−1(0.99)× 10% ×√
10/250 =�−1(0.99) × 2% = 4.65%.

To calculate the Cornish–Fisher VaR we first ignore the mean and standard deviation, and
apply the expansion (IV.3.7) to approximate the 1% quantile of the normalized distribution
having zero mean and unit variance.

Since z0.01 =�−1(0.01) = − 2.32635 we have z2
0.01 = 5.4119, so using (IV.3.7),31

x̃0.01 ≈−2.32635 − 0.1 × 4.4119 − 0.125 × 2.32635 × 2.4119 + .01 × 2.32635 × 5.8238

=−3.3334.

The mean and variance over the risk horizon are 0.2% and 2%, so (IV.3.8) becomes

x0.01 =−3.3334 × 0.02 + 0.002 =−0.0647.

Hence, based on the Cornish-Fisher expansion, the 1% 10-day VaR is 6.47% of the portfolio
value, compared with 4.65% for the normal linear VaR.

Figure IV.3.15 illustrates the error arising from a Cornish–Fisher VaR approximation when
the underlying return distribution is known to be a Student t distribution. We consider three
different degrees of freedom, i.e. 6, 10 and 50 degrees of freedom, to see how the leptokurtosis
in the population influences the fit of the Cornish–Fisher approximation to the true quantiles.
The horizontal axis is the significance level of the VaR – in other words, the quantile that we
are estimating with the Cornish–Fisher approximation.

The Student t VaR is given by (IV.2.62). This is the ‘true’ VaR because, for a given value of
the degrees of freedom parameter, the quantiles along the horizontal axis are exactly equal to
the Student t quantiles. Then, for each quantile, the error is defined as the difference between
the Cornish–Fisher VaR and the Student t VaR, divided by the Student t VaR.

31 Note that skewness and kurtosis are unaffected by the scaling and normalizing transforms.
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Figure IV.3.15 Error from Cornish–Fisher VaR approximation

With 50 degrees of freedom the population has very small excess kurtosis (of 0.13) and the
Cornish–Fisher approximation to the VaR is very close. In fact, the Cornish–Fisher approxi-
mation underestimates the true VaR by only about 2%. When the population has a Student t
VaR with 10 degrees of freedom, which has an excess kurtosis of 1, Cornish–Fisher also
underestimates the VaR, this time by approximately 10%. But the errors that arise when the
underlying distribution is very leptokurtic are huge. For instance, under the Student t distri-
bution with 6 degrees of freedom, which has an excess kurtosis of 3, the Cornish–Fisher VaR
considerably underestimates the VaR, except at extremely high confidence levels. We con-
clude that the Cornish–Fisher approximation is quick and easy but it is only accurate if the
portfolio returns are not too highly skewed or leptokurtic.

IV.3.4.4 Johnson Distributions

A random variable X has a Johnson SU distribution if(
X − ξ

λ

)
= sinh

(
Z − γ

δ

)
, (IV.3.9)

where Z is a standard normal variable and sinh is the hyperbolic sine function.32 The parameter
ξ determines the location of the distribution, λ determines the scale, γ the skewness and δ the
kurtosis. Having four parameters, this distribution is extremely flexible and is able to fit most
empirical densities very well, provided they are leptokurtic.

It follows from (IV.3.9) that each α quantile of X is related to the corresponding standard
normal quantile zα =�−1(α) as

xα =λ sinh

(
zα − γ

δ

)
+ ξ. (IV.3.10)

32 This is one of three translations of normal distributions introduced by Johnson (1954).
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Let X denote the h-day return on a portfolio. Then the 100α% h-day historical VaR of the
portfolio, expressed as a percentage of the portfolio value, is −xα.33 Hence, under the Johnson
SU distribution

VaRh,α =−λ sinh

(
zα − γ

δ

)
− ξ. (IV.3.11)

Thus, if we can fit a Johnson SU curve then we can use (IV.3.11) to estimate the VaR.
It is possible to fit the parameters of the Johnson SU distribution, knowing only the first

four moments of the portfolio returns, using a simple moment matching procedure. For the
examples in this chapter, this moment matching procedure has been implemented in Excel
using the following algorithm, developed by Tuenter (2001):

1. Set ω = exp
(
δ−2

)
.

2. Set

m =
(

4 + 2

[
ω2 −

(
	̂ + 6

ω2 + 2ω+ 3

)])1/2

− 2,

where 	̂ is the sample excess kurtosis.
3. Calculate the upper bound for ω:

ωupper =
(
−1 + (

2
(
	̂ + 2

))1/2
)1/2

.

4. Calculate the lower bound for ω:

ωlower = max(ω1,ω2) ,

where ω1 is the unique positive root of ω4 + 2ω3 + 3ω2 − 	̂− 6=0, and ω2 is the unique
positive root of (ω − 1) (ω + 2)

2 = τ̂2, where τ̂ is the sample skewness.
5. Find ω such that ωlower <ω <ωupper and

(ω − 1 − m)
(
ω + 2 + m

2

)2 = τ̂2.

6. Now the parameter estimates are:

δ̂ = (lnω)
−1/2

,

γ̂ = θ δ̂, where θ =−sign
(
τ̂
)

sinh−1

[(
(ω + 1) (ω − 1 − m)

2ωm

)1/2
]

,

λ̂ =
(

2σ̂2

(ω − 1) (ω cosh 2θ + 1)

)1/2

,

ξ̂ = μ̂ − sign
(
τ̂
) σ̂ (ω − m − 1)

1/2

(ω − 1)
,

where μ̂ and σ̂ are the mean and standard deviation of the portfolio returns.

33 And, as usual, if X denotes the portfolio’s P&L then −xα is the VaR in nominal terms.
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Note that there are three numerical optimizations involved: first in steps 3 and 4 of the algo-
rithm we use Goal Seek twice to find the upper and lower bound for ω, and then in step 5 we
apply Solver.34

EXAMPLE IV.3.5: JOHNSON SU VAR

Estimate the Johnson 1% 10-day VaR for a portfolio whose daily log returns are i.i.d. with
skewness −0.2 and excess kurtosis 4, assuming that the mean excess return is 2% per annum
and the portfolio’s volatility is 25%.

SOLUTION Figure IV.3.16 illustrates the spreadsheet that is used to implement Tuenter’s
algorithm. Hence, we calculate the 1% 10-day VaR of the portfolio as 13.68% of the port-
folio’s value, using a Johnson SU distribution to fit the sample moments. This should be

Figure IV.3.16 Tuenter’s algorithm for Johnson VaR

34 Note that the Solver constraints do not allow for strict inequality, hence we increase the lower bound and decrease the upper bound
by a very small amount.
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compared with 11.55% of the portfolio value, under the assumption that the portfolio returns
are normally distributed.

We know from the previous subsection that Cornish–Fisher VaR is not a good approximation
to VaR at extreme quantiles when the portfolio return distribution is very leptokurtic. Can
Johnson’s algorithm provide better approximations to the historical VaR at extreme quantiles
than Cornish–Fisher VaR? Figure IV.3.17 demonstrates that the answer is most definitely yes.
This figure shows the errors arising from the Johnson approximation to the same Student t
populations as those used in Figure IV.3.15, and they are much lower than those arising from
the Cornish–Fisher approximations in Figure IV.3.15.
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Figure IV.3.17 Error from Johnson VaR approximation

The error in the VaR estimate is virtually zero when the Johnson distribution is fitted to
the Student t distribution with 50 degrees of freedom (excess kurtosis 0.13) and the error
when it is fitted to the Student t VaR with 10 degrees of freedom is also negligible. Under the
Student t distribution with 6 degrees of freedom (excess kurtosis 3), the Johnson VaR slightly
underestimates the VaR at quantiles between 5% and 10% and slightly overestimates it at
quantiles between 0.001% and 5%.

IV.3.5 HISTORICAL VALUE AT RISK FOR LINEAR PORTFOLIOS

Until now we have been focusing on the general features of historical VaR, and the ways in
which the standard ‘vanilla’ historical simulation can be extended to improve the sample data
(e.g. via volatility adjustment) and the accuracy of historical VaR at high levels of confidence.
Throughout we have assumed that a risk factor mapping has already been applied to obtain
a historical sample of returns for the portfolio. We shall now focus on the use of risk factor
mapping in the context of historical VaR.

This section provides a sequence of five case studies that describe the estimation of
historical VaR for different types of portfolio. We consider bonds, loans and swaps port-
folios and any other interest rate sensitive portfolio that is represented by a sequence of
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cash flows, as well as stock and commodity portfolios. As in Chapter IV.2, we assume
that readers are already familiar with the portfolio mapping methodologies for each type
of portfolio.35 Our main focus will be on the link between the asset class and the structure
of the historical simulation model. For the sake of clarity, we shall not be as concerned
with the precision of the estimate as we were in the previous section. We do not attempt
to improve the accuracy of the VaR estimate by fitting a kernel or a parametric distribution,
or by using Cornish–Fisher or Johnson approximations, and we shall only use the simple
square-root-of-time scaling rule. However, in most of the case studies we shall examine
the effects of a volatility adjustment. Even so, in order not to detract from our main focus,
volatility adjustment is based on a simple EWMA model rather than a more sophisticated
GARCH model.36

We begin in Section IV.3.5.1 with a case study that demonstrates how historical simula-
tion is applied to an interest rate sensitive portfolio that is represented as a sequence of cash
flows. We compare the historical VaR estimate to that obtained using a parametric linear VaR
model on the same data. The case study in Section IV.3.5.2 considers a simple domestic stock
portfolio, estimating the historical VaR first without and then with a risk factor mapping.
We explain how to decompose the total historical VaR into systematic VaR due the risk fac-
tors and the residual or specific VaR. The case study in Section IV.3.5.3 examines a large
international portfolio of stocks and bonds, and explains the decomposition of total system-
atic VaR into equity, interest rate and forex stand-alone VaRs, and into the corresponding
marginal VaRs, all in the historical VaR framework. Section IV.3.5.4 estimates the interest
rate, forex and total historical VaR of an international bond position and the final case study
in Section IV.3.5.5 is on the decomposition of historical VaR for an energy trader in crack
spreads.

IV.3.5.1 Historical VaR for Cash Flows

This case study uses historical simulation to estimate the VaR of the UK bond portfolio
that was the subject of the case study in Section IV.2.4. As before, we assume that the
cash flows on the portfolio have been mapped to a set of standard maturity interest rates,
which are the UK spot interest rates at monthly maturities up to 5 years. So these are the
portfolio’s risk factors. The portfolio’s PV01 vector on 31 December 2007 was depicted in
Figure IV.2.2.

In this case study we shall estimate the historical VaR of the same portfolio, but now we
need a very large sample of data on the risk factors. We shall use daily data starting on 4
January 2000 and ending at the time the VaR is estimated, i.e. on 31 December 2007. Thus we
have 8 years of data on the interest rate risk factors, and these are illustrated in Figure IV.3.18.
From the figure it is clear that UK interest rates passed through several different regimes
during the sample period.

To find the historical VaR we must map the portfolio to its risk factors. Thus a historical
series of daily P&L on the portfolio is constructed by holding the PV01 vector of the portfolio

35 These are fully described in Chapter III.5.
36 The RiskMetrics™ smoothing constant λ=0.94 is used in the text, but readers may change this in the spreadsheets. From
Section IV.3.3.4 we know that a univariate GARCH model is likely to lead to more accurate results, but since the volatility adjustment
is not the focus of this section we use an EWMA volatility for simplicity.
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Figure IV.3.18 Bank of England short curve

constant.37 We apply this to each of the daily returns over the sample period using the risk
factor mapping

�PVt ≈−
60∑

i=1

PV01i ×�Rit, (IV.3.12)

which we already know may also be written in matrix form as

�PVt ≈−p′�rt (IV.3.13)

where p = (PV011, PV012, . . . , PV0160)
′ is the PV01 vector and �rt = (�R1t, �R2t, . . . ,

�R60t)
′ is the vector of daily interest rate changes at time t. The 100α% 1-day historical VaR

is minus the α quantile of the P&L distribution. For longer holding periods the historical VaR
is obtained using a square-root scaling rule.38

Such a large sample of daily data will allow the historical VaR to be estimated at fairly high
confidence levels with reasonable accuracy. But if a long historical sample is used, we know
from our discussions in Section IV.3.3.3 that a volatility adjustment should be applied to the
daily changes in interest rates before estimating the VaR. A simple EWMA volatility estimate
will be used, and the quickest and most effective way to do this is not on the risk factors,
but on the P&L of the portfolio. The EWMA volatility of the portfolio’s P&L is shown in
Figure IV.3.19.39

First suppose that we are estimating VaR at the end of the sample, i.e. on 31 December
2007. At this time UK interest rate volatility was greater than it had been since January 2004,
so a volatility adjustment will increase the dispersion of the return distribution. Figure IV.3.20

37 The spreadsheet for this case study allows the reader to change the PV01 vector and the start and end dates that define the historical
sample. The time of the VaR estimate refers to the end date and we assume the PV01 vector represents the portfolio at whichever time
the VaR is measured.
38 However, Table IV.3.2 suggests that a scale exponent slightly greater than 0.5 may be appropriate.
39 The smoothing constant is assumed to be 0.9 for this figure, but this may be changed by the reader in the spreadsheet within the
case study workbook. Recall that the choice of smoothing constant is entirely ad hoc.
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Figure IV.3.19 EWMA volatility of P&L on UK gilts portfolio
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Figure IV.3.20 Empirical distribution of UK gilts portfolio P&L on 31 December 2007

depicts the portfolio’s daily P&L distribution, before and after the volatility adjustment, based
on the entire sample.

The excess kurtosis in the unadjusted P&L is huge – it is approximately 45 – but after
volatility adjustment this is very significantly decreased. In fact, after volatility adjustment the
excess kurtosis over the entire sample is −0.2267, so the adjusted P&L distribution is very
slightly mesokurtic rather than leptokurtic. The volatility adjustment increases the small posi-
tive skewness from approximately 0.03 to approximately 0.07. Since negative excess kurtosis
and positive skewness both serve to reduce the VaR relative to the normal VaR, after volatility
adjustment we expect the historical VaR based on the entire sample to be very slightly less
than the normal VaR.
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Table IV.3.12 reports the 10-day historical VaR for the portfolio, with and without volatil-
ity adjustment, at the 1% and the 0.5% significance levels.40 This is compared with the
corresponding normal VaR, again with and without volatility adjustment.41

Table IV.3.12 Historical versus normal VaR for UK bond portfolio

1% 0.5%

Unadjusted Volatility adjusted Unadjusted Volatility adjusted

Historical VaR £193,585 £259,231 £227,359 £283,567
Normal VaR £198,579 £272,846 £219,651 £301,635

Table IV.3.12 is based on the entire sample from 5 January 2000 to 31 December 2007. But
in the spreadsheet for this case study the reader may change the sample used to estimate the
VaRs, including the time at which the VaR is measured, and by changing the PV01 vector the
reader can also change the portfolio.

IV.3.5.2 Total, Systematic and Specific VaR of a Stock Portfolio

The case study in this section considers the historical VaR for a simple portfolio consisting of
two stocks in the S&P 100 index, Apple Inc. and Citigroup Inc.42 First we measure the total
VaR using a long historical series of portfolio returns, based on a constant portfolio weights
assumption. Then we decompose the total VaR into a systematic VaR component, due to
movements in the S&P 100 index, and a specific VaR component, due to the idiosyncratic
movements of each stock price.

The total historical VaR of an equity portfolio is calculated from a distribution of ‘recon-
structed’ portfolio returns, in this case where the portfolio weights are held constant at their
current values. Denote the date on which the VaR is calculated by T and the date of each set of
returns on the stocks by t, for t=1, . . . ,T. On each date t in the historical sample the portfolio
return is calculated as

rt = w′
Txt, t = 1, . . . ,T, (IV.3.14)

where wT is the portfolio weights vector at time T (when the VaR is measured) and xt is the
vector of stock returns at time t.

Since the historical VaR will better reflect current market conditions when volatility
adjusted stock returns are used, the next example compares the historical VaR estimates with
and without volatility adjustment. However, the volatility adjustment may be computed in two
different ways:

(i) adjust the volatility of each stock return and then apply the portfolio weights, or
(ii) apply the weights to obtain the portfolio returns rt and then volatility-adjust these

returns.

40 However, even using the entire sample, only 10 or 12 observations lie in the 0.5% tail. Thus for the reasons explained in
Section IV.3.4, the 0.5% VaR results should be treated with caution.
41 In Section IV.2.4.1 we estimated the 1% 10-day normal linear VaR for this portfolio as £176,549, but this estimate was based only
on daily data during 2007.
42 Data were downloaded from Yahoo! Finance, symbols APPL and C.
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The complication with (i) is that an individual volatility adjustment of each stock return
would change their correlation, unless we apply the volatility adjustment in the context of
a multivariate system. For this, following Duffie and Pan (1997) we use the Cholesky matrix
of the covariance matrix of stock returns, in place of the square root of the variance of each
stock return, in the volatility adjustment (IV.3.3).

To be more specific, suppose there are k stock returns and a total of T observations on
each return in the historical sample. Denote the GARCH (or EWMA) covariance matrix
of the stock returns at time t by Vt and denote the Cholesky matrix of Vt by Qt. In other
words,

Vt(xt)= Vt = QtQ′
t.

Now set

x̃t = QTQ−1
t xt t = 1, . . . ,T. (IV.3.15)

Then

Vt

(
x̃t

)= Vt

(
QTQ−1

t xt

)= QTQ−1
t V(xt)

(
QTQ−1

t

)′ = QT

(
Q−1

t Qt

)(
Q′

tQ
′−1
t

)
Q′

T = QTQ′
T = VT.

Thus x̃t is a vector of stock returns at time t that is adjusted to have the constant covariance
matrix VT, for all t = 1, . . . , T.

The following example demonstrates the differences that will arise, depending on the
method of volatility adjustment.43 As in the previous subsection, so as not to make the illustra-
tion too complex, instead of using a GARCH model we shall use a simple EWMA volatility
adjustment for the daily VaR, with square-root scaling over a 10-day risk horizon.

EXAMPLE IV.3.6: VOLATILITY-ADJUSTING HISTORICAL VAR FOR A STOCK PORTFOLIO

You hold a portfolio on 21 April 2007 that has 30% invested in Citigroup Inc. stock and 70%
invested in Apple Inc. stock. Assuming the returns are i.i.d., use daily returns data from 2
January 2001 to 21 April 2008 on the closing prices of these stocks to estimate the 100α% 10-
day historical VaR, for α=0.001, 0.01, 0.05 and 0.1 and compare the results obtained before
and after volatility adjustment.

SOLUTION The evolution of the prices of the two stocks over the sample period is shown
in Figure IV.3.21. The Citigroup price is on the left-hand scale and the Apple price is on the
right-hand scale. Figure IV.3.22 shows the EWMA volatilities of each stock over the sample
period. For the volatility adjustment in this case study we shall employ the same value for
the smoothing constant in all the EWMA models that are applied, for both the estimation of
portfolio betas and volatility adjustment of returns series. This is an ad hoc choice, so let us fix
λ at the RiskMetrics™ value of 0.94.44 Whilst both stock price volatilities displayed significant
time variation over the sample period, and their volatility in April 2008 is high, both stocks

43 The spreadsheets for this example and for Example IV.3.7 are in the case study workbook. Note that it is easier to use row vectors
rather than column vectors for the stock returns, so in case (a) we apply (IV.3.15) in the form

x̃′
t = x′

t

(
QT Q−1

t

)′
.

44 The reader can change the smoothing constant values in the workbook for this case study. The only way we can estimate an
optimal value in an EWMA is to use maximum likelihood to estimate a normal symmetric integrated GARCH model, as explained in
Section II.4.2.
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Figure IV.3.21 Apple and Citigroup stock prices
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Figure IV.3.22 EWMA volatilities of Apple and Citigroup

also had high volatilities in the early part of the sample. Hence, it is unclear whether volatility
adjustment would reduce or increase the historical VaR estimates.

The unadjusted historical VaR is calculated using the Excel PERCENTILE function on the
portfolio returns series (IV.3.14), where wT = (0.3,0.7)′ and the returns vector xt is a 2×1 vec-
tor of the unadjusted daily returns on Citigroup and Apple stocks at time t. We shall consider
three ways to obtain the volatility adjusted portfolio returns:

(a) Estimate the EWMA covariance matrix of the two stock returns. Then we can adjust
each of the stock returns to have constant volatility using (IV.3.15), and then we
compute (IV.3.14) using the adjusted returns for xt.
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(b) Compute the portfolio’s returns in the usual way, then adjust these to have constant
volatility using (IV.3.3).

(c) Ignore the effect that volatility adjustment has on correlation and simply adjust each
stock return to have constant volatility using (IV.3.3), and then compute (IV.3.14) using
the volatility adjusted returns for xt.

Does the VaR change much, depending on the method used? Table IV.3.13 reports the results.

Table IV.3.13 Historical VaR with different volatility adjustments

Significance level 10% 5% 1% 0.1%

Unadjusted VaR 7.73% 10.47% 17.49% 29.26%
Method (a) 10.17% 13.41% 19.23% 25.55%
Method (b) 9.99% 13.11% 18.40% 25.43%
Method (c) 9.55% 12.29% 18.06% 25.21%

Clearly, some form of volatility adjustment is important. At low confidence levels
(e.g. 90%) the unadjusted VaR is lower than the adjusted VaRs, and the opposite is the case for
very high confidence levels (e.g. 99.9%). This implies that without the adjustment the histori-
cal return distribution is much more leptokurtic. But the method used to perform the volatility
adjustment makes only a small difference to the result. At every confidence level the greatest
VaR is obtained using method (a) and the lowest VaR is obtained using method (c), but the
results are similar.

Should we adjust the stock returns before computing the portfolio’s returns or adjust
the portfolio returns? The answer depends on computation time, if this is a constraint. For
instance, if we need to measure the VaR for many different portfolios in the same stock uni-
verse (or sharing the same risk factors) it may be more efficient to adjust each returns series
before the portfolios returns are formed, and the correct method to use is (a). That is, we
should use the entire covariance matrix to adjust the returns, rather than just the volatility of
each return separately. However, method (c) is quicker and easier than (a) and, although it is
approximate, the error it introduces is not large relative to the huge model risk that plagues
many VaR models.

When a portfolio is mapped to its risk factors we can decompose the total VaR of the port-
folio into the systematic VaR, due to changes in the risk factors, and the specific VaR which
is not captured by the risk factor mapping. We have done this before in the context of nor-
mal linear VaR. In that model the square of the total VaR is equal to the sum of the square
of the systematic VaR plus the square of the specific VaR. Unfortunately, there are no such
simple aggregation rules between total VaR, systematic VaR and specific VaR in either the
historical simulation or the Monte Carlo simulation VaR frameworks. Nevertheless we may
still decompose total VaR into systematic and specific components.

We aim to estimate the systematic and specific VaR of the Apple and Citigroup portfo-
lio, and to do this we must first estimate the portfolio betas with respect to an index; we
choose the S&P 100 index for illustration.45 To ensure that these are as risk sensitive as

45 Data were downloaded from Yahoo! Finance, symbol ∧OEX.
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possible, we estimate the betas using EWMA instead of ordinary least squares regression.
This method was described in full when we first introduced factor models for equity portfo-
lios in Section II.1.2, so we merely provide a spreadsheet in the case study that illustrates the
estimation of these betas, allowing the reader to change the smoothing constant. The S&P 100
betas corresponding to λ= 0.94 are shown in Figure IV.3.23.
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Figure IV.3.23 EWMA betas for Apple and Citigroup in S&P 100 index

The EWMA beta estimate varies over the sample period but it is only the current estimate
of the beta (i.e. the estimate in the last sample period, at time T) that is used to construct the
portfolio’s systematic returns. With a smoothing constant of 0.94, we obtain

βT = (1.5099,2.4312)
′ when T = 21 April 2008,

βT = (2.4256,1.0831)
′ when T = 30 October 2006,

(IV.3.16)

where the first element is the beta for Apple and the second is for Citigroup.46 Notice that
the beta of Citigroup rose considerably during the credit crisis at the end of the period. The
Citigroup beta was lower and less variable than the Apple beta in the earlier part of the sample,
but since the credit crunch in 2007 it has become the more risky of the two stocks.

Fixing the stock betas at their current values, we now compute the systematic part of the
portfolio return Ŷt using

Ŷt =
(
β′

TwT

)
Mt, t = 1, . . . ,T, (IV.3.17)

where wT represents the weights and βT is the beta vector at time T when the VaR is measured,
and Mt is the index return at time t. In the next example we use the weights wT = (0.3, 0.7)

′

as before, the market index is the S&P 100 and the betas are given by (IV.3.16).

46 This is assuming λ = 0.94, but readers can see in the spreadsheet for this figure that higher values of λ give lower values for both
betas.
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EXAMPLE IV.3.7: SYSTEMATIC AND SPECIFIC COMPONENTS OF HISTORICAL VAR

As in Example IV.3.6, suppose you hold a portfolio that has 30% invested in Citigroup Inc.
stock and 70% invested in Apple Inc. stock. Using the S&P 100 index as the risk factor,
decompose the total 1% 10-day VaR of your portfolio, with and without a EWMA volatility
adjustment, into systematic and specific components. Estimate the VaR on 21 April 2008 and
compare your results with the VaR that is estimated on 30 October 2006 for the same portfolio,
i.e. with 30% invested in Citigroup and 70% invested in Apple. In each case, use data starting
on 2 January 2001 and express the VaR as a percentage of the portfolio value.

SOLUTION We know from the previous example that our estimate of the total VaR of the
portfolio depends on whether we apply volatility adjustment and, if so, how this is performed.
The portfolio’s systematic returns are obtained using (IV.3.17). Figure IV.3.24 shows the
results before and after volatility adjustment. Figure IV.3.24(a) shows the returns adjusted
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Figure IV.3.24 Systematic returns before and after volatility adjustment for the volatility on (a) 30
October 2006 and (b) 21 April 2008
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for the relatively low volatility on 30 October 2006, and Figure IV.3.24(b) shows the returns
adjusted for the relatively high volatility on 21 April 2008.

The specific returns, which are the portfolio returns minus the systematic returns, are also
adjusted for volatility. Finally, we calculate the 1% 10-day historical VaR from the relevant
quantile of each distribution, obtaining the results shown in Table IV.3.14. For comparison,
we also include the normal linear VaR based on the same data. Results for other portfolio
weights, data periods, significance levels and risk horizons can be generated by changing the
dates and parameters in the spreadsheet for this example in the case study workbook.

Table IV.3.14 Total, systematic and specific VaR, US stock portfolio

Historical Normal

30 October 2006 Unadjusted Vol. adjusted Unadjusted Vol. adjusted

Total VaR 17.41% 5.84% 16.58% 6.32%
Systematic VaR 18.77% 5.98% 16.91% 6.34%
Specific VaR 15.11% 6.12% 14.17% 6.19%

21 April 2008 Unadjusted Vol. adjusted Unadjusted Vol. adjusted

Total VaR 17.49% 17.06% 16.31% 18.06%
Systematic VaR 16.79% 17.70% 14.76% 18.13%
Specific VaR 13.31% 17.60% 13.07% 17.65%

On 30 October 2006 the 1% 10-day total VaR of the portfolio was 17.41% of the portfolio
value before volatility adjustment but only 5.84% after adjusting for the low volatility lead-
ing up to this time. As Figure IV.3.25(a) shows, the extreme volatility of the portfolio during
2001–2003 means that the historical VaR will be much larger before the volatility adjustment.
The systematic VaR is greater than the total VaR of the portfolio, and even the specific VaR is
greater than the total VaR after the volatility adjustment.47 It is again evident that the volatility
adjustment decreases the excess kurtosis of the returns to such an extent that it becomes neg-
ative. We can see this from the fact that the normal linear VaR estimates are greater than the
historical VaR estimates after the volatility adjustment, but not before.

A different picture emerges on 21 April 2008 (for which the systematic returns are shown in
Figure IV.3.24(b)). The volatility at the time the VaR is measured was less than it was during
2001–2003 but higher than it was during 2004–2006, and so the volatility adjustment makes
little difference to the VaR estimate based on the period 2001–2008. Still, the volatility adjust-
ment alters the shape of the empirical distribution, slightly increasing the volatility but also
decreasing the excess kurtosis. Thus the normal VaR estimates still increase after the volatility
adjustment, and the historical systematic VaR, and the specific VaR again become greater than
the total VaR after the volatility adjustment.

IV.3.5.3 Equity and Forex VaR of an International Stock Portfolio

Because historical VaR is calculated as a quantile it does not obey simple aggregation rules,
such as the sub-additivity rule that applies to parametric linear VaR, whereby total linear VaR

47 This is true even for the normal linear VaR model, because the correlation between the market return and the specific return is large
and negative. When this correlation is negative it is quite possible for the total normal linear VaR to be less than both the systematic
VaR and the specific VaR, as can be seen from the formula (IV. 2.47).
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is never greater than the sum of the stand-alone linear VaRs. Normal and Student t VaR obeys
the same rules as the variance operator, but historical VaR obeys the same rules as quantiles,
and quantiles obey very few rules.

Quantiles translate under continuous monotonic increasing transformations. That is, if the
variable X has α quantile xα then, for any continuous monotonic increasing function f, f (X)

has α quantile f(xα).48 We call this the monotonic property of quantiles. Time aggregation of
quantiles is also possible, but only under the assumption that portfolio returns are stable.49

However, aggregation of historical VaR across positions is not the same as monotonic trans-
formation or time aggregation. No aggregation rules such as sub-additivity apply, but this
does not imply that we cannot decompose and aggregate historical VaR. Indeed, dependen-
cies between returns play a very important role in reducing risk via diversification, and an
attractive feature of the historical model is that we do not capture any dependency using a
correlation matrix; instead the dependencies are implicit in the historical data.

We now present a case study to illustrate the disaggregation of total systematic VaR into stand-
alone and marginal VaR components, when the VaR model is based on historical simulation.
Consider a UK investor holding a US and a UK stock portfolio on 21 April 2008. Suppose
70% of the total amount invested in pounds sterling is held in UK stocks and 30% is held
in US stocks. The US portfolio has a beta of 1.8 relative to the S&P 500 index and the UK
portfolio has a beta of 1.25 relative to the FTSE 100 index.

To assess the historical VaR for this portfolio we use daily log returns on the S&P 500
index, the FTSE 100 index and the £/$ exchange rate from 3 January 1996 to 21 April 2008.50

The indices themselves are shown in Figure IV.3.25, with the S&P 500 measured on the right-
hand scale and the FTSE 100 measured on the left-hand scale. The £/$ forex rate is shown in
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Figure IV.3.25 S&P 500 and FTSE 100 indices, 1996–2008

48 To prove this, simply note that α = P(X < xα) = P
(
f(X) < f(xα)

)
.

49 As shown in Section IV.3.2.
50 Stock index data were downloaded from Yahoo! Finance, symbols ∧GSPC and ∧FTSE, and the exchange rate data were obtained
from the Bank of England website, http://www.bankofengland.co.uk/statistics/about/index.htm.
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Figure IV.3.26. This illustrates the fairly steady decline in the US dollar from January 2001
until the end of the sample. Hence, anything the investor has gained from his exposure to US
stocks will be offset by losses on the currency position.
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Figure IV.3.26 £/$ forex rate, 1996–2008

The VaR will be measured at an interesting time in equity markets. After several years of
very low volatility stock markets in the US and the UK, volatility had risen following concerns
about the Chinese and US economies and then in the aftermath of the sub-prime mortgage
crisis, whose effects were still impacting stocks in the financial sector in April 2008. Since
we use the entire sample with over 3000 observations, we shall estimate volatility adjusted
historical VaR.51 Based on EWMA with λ = 0.94, the volatilities of the FTSE 100 and S&P
500 index and of the forex rate are depicted in Figure IV.3.27. By the end of the sample
equity volatilities had climbed to around 25%, but the £/$ exchange rate remained stable with
a volatility of approximately 10%.

We now explain the methodology that underpins the VaR disaggregation into equity and
forex components. The price in pounds sterling is the dollar price multiplied by the £/$
exchange rate; or, in symbols, P£

t = P$
t × X£/$

t . Hence, the log equity return and the log forex
return are additive. In other words, the log return on the US stock portfolio in pounds sterling
is the sum of the log return on the US stock portfolio in US dollars and the log return on the
£/$ rate:

ln
(
P£

t+1

/
P£

t

)= ln
(
P$

t+1

/
P$

t

)+ ln
(

X£/$
t+1

/
X£/$

t

)
.

Or, in alternative notation, r£
t = r$

t + r£/$
t . Hence, the risk of a US stock portfolio to a UK

investor has an equity component, which is based on the risk of the dollar returns on the
portfolio, and a forex component, which is based on the risk of the £/$ forex rate.

51 To keep the spreadsheet focused on VaR disaggregation rather than volatility adjustment, we use a simple approach where we adjust
the volatility of the equity and forex parts of the portfolio returns individually, rather than using the full covariance matrix adjustment
that was described in the previous subsection.
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Figure IV.3.27 Volatilities of UK and US stock markets and the £/$ exchange rate

We have 70% of our capital invested in the UK portfolio, with sterling price at time t
denoted by P£

1t, and 30% of our capital is invested in the US portfolio, with sterling price P£
2t.

In other words, the total portfolio has a sterling price

P£
t =ω1P£

1t +ω2P£
2t, (IV.3.18)

where ω1 = 0.7 and ω2 = 0.3. From (IV.3.18) is follows that now it is the percentage return,
not the log return, that is additive. This means that to disaggregate the total VaR into equity
and forex components we must assume the percentage return is approximately equal to the log
return. We know from Section I.1.4 that this approximation is accurate only when the return is
small, and this is another reason why it is standard to base historical VaR estimation on high
frequency (e.g. daily) data.

Let β1 denote the percentage beta of the UK portfolio with respect to the FTSE 100 at the
time the VaR is measured and let ω1 denote the proportion of total capital invested in the UK
portfolio. Similarly, let β2 denote the percentage beta of the US portfolio with respect to the
S&P 500 at the time the VaR is measured and let ω2 denote the proportion of total capital
invested in the portfolio US. Thus ω1 + ω2 = 1. In local currency, the daily log returns on the
UK and US portfolios are denoted by r£

1t and r£
2t, and the daily log returns on the two equity

indices are written y£
1t and y$

2t, so r∗
it = βiy

∗
it for i = 1, 2 and ∗ = £ or $. The £/$ forex log return

is denoted by r£/$
t as before.

Now, applying the log return approximation to the percentage return, we may write the
sterling return on our combined portfolio of US and UK stocks as

r£
t ≈ω1r£

1t +ω2r£
2t

=ω1r£
1t +ω2

(
r$

2t + r£/$
t

)
= (

ω1β1y£
1t +ω2β2y$

2t

)+ω2r£/$
t . (IV.3.19)
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On the right-hand side above we have two components to the portfolio return:

1. the net equity return, ω1β1y£
1t +ω2β2y$

2t;
2. the forex return, ω2r£/$

t .

The return on the total portfolio is the sum of these.
Using historical data for each of the series of log returns (i.e. on the FTSE 100 index,

the S&P 500 index and the £/$ exchange rate) we find the equity VaR and forex VaR from
the quantiles of the corresponding empirical return distributions. Each time series runs from
January 1996 until 21 April 2008. Adding the net equity return and forex return time series
together gives a time series for the net portfolio return, and the total risk factor VaR is obtained
from the quantile of this empirical distribution.

Table IV.3.15 presents the 100α% h-day risk factor VaR, disaggregated into equity and
forex components. It is expressed as a percentage of the total sterling value of the US and
UK portfolios and it is based on the entire sample of over 3000 observations.52 The forex
stand-alone VaR is relatively small and the total VaR is only slightly more than the equity
stand-alone VaR. Total risk factor VaR is less than the sum of the equity VaR and the forex
VaR, although this need not always be the case with historical VaR, since it is measured as a
quantile rather than a volatility. Since the portfolio’s volatility has previously been both higher
and lower than the volatility at the time the VaR is measured, the volatility adjustment makes
little difference to the VaR. However, by changing the start and end dates in the spreadsheet,
readers can see that this is not always the case.

Table IV.3.15 Decomposition of systematic VaR into equity and forex stand-alone components

h = 1 h = 10

Equity Forex Total Equity Forex Total

Unadjusted
α = 1% 3.80% 0.37% 3.86% 12.03% 1.16% 12.22%

Volatility Adjusted 4.29% 0.44% 4.37% 13.55% 1.38% 13.83%
Unadjusted α = 0.1% 6.15% 0.48% 6.34% 19.43% 1.52% 20.04%
Volatility Adjusted 5.46% 0.59% 5.48% 17.28% 1.87% 17.32%

We know from Section IV.1.7.3 that we measure the marginal VaR by estimating the gradi-
ent vector g (θ) of first partial derivatives of VaR with respect to the risk factor sensitivities. In
the parametric linear VaR framework there are analytic formulae that can be applied to obtain
the gradient vector, as for instance in Section IV.2.2.5. But in the historical VaR model there
are no such analytical formulae. So we estimate g (θ) using a first order finite difference, as
explained in Section I.5.5. That is, we make a small perturbation in each of the risk factor sen-
sitivities in turn, and compute the first partial derivative of the total VaR with respect to that
sensitivity by dividing the resulting change in the total VaR by the small perturbation.53 The
risk factor sensitivities, in percentage terms, are θ = (1,ω2)

′ on the equity and forex returns
respectively.

52 Results for α= 1% and 0.1% and for h = 1 and 10 days are shown here, but the reader may see other results by changing the values
of the VaR parameters in the spreadsheet labelled ‘VaR’ in the case study workbook. You may also change the sample over which the
VaR is measured, the relative weights on the UK and US portfolios and the portfolio betas.
53 If the sensitivity increment is too large the finite difference approximation to the gradient vector will not be accurate. We have set a
perturbation size of 0.1% for the results in Table IV.3.18.
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Having estimated the gradient vector, we multiply each component in the vector by its
risk factor sensitivity, before perturbation, to obtain the corresponding marginal VaR. For the
portfolio in this case study the results are displayed in Table IV.3.16. Based on the unadjusted
returns data from January 1996 to 21 April 2008, 92.29% of the total risk factor 1% 10-day
VaR is due to equity risk and only 7.71% is due to forex risk. At the 0.1% significance level
a slightly greater percentage of the VaR is due to equity risk. Note that when based on the
volatility adjusted returns (which we know usually have less kurtosis than unadjusted returns)
the contribution of forex risk to the total VaR is much smaller, and it can even be negative.

Table IV.3.16 Historical marginal VaR for international stock portfolio

Percentage contribution to
total 10-day VaR

Equity Forex

Unadjusted
α = 1% 92.29% 7.71%

Volatility adjusted 102.62% −2.62%
Unadjusted α = 0.1% 93.14% 6.86%
Volatility adjusted 99.68% 0.32%

IV.3.5.4 Interest Rate and Forex VaR of an International Bond Position

We now consider a case study where a UK bank buys £50 million nominal of an AA-rated
5-year US bond with an annual coupon of 4% on 21 April 2008. Since the bank needs to
purchase £50 million in US dollars to finance the purchase, the total return will also have a
currency component. So the risk factors are the US swap curve, which is AA-rated, and the
sterling–dollar exchange rate. We shall decompose the historical VaR into interest rate and
forex components.

Daily historical data on US swap rates from July 2000 until 21 April 2008 are shown in
Figure IV.3.28.54 The swap curve is upward sloping, except for two relatively flat periods
during 2001 and during 2006–2007, and short term rates varied more than longer terms rates
over the sample. The highest value for the 1-year swap rate was 7% at the beginning of the
sample and its lowest value was about 1%, in June 2006.

The interest rate VaR is based on a P&L distribution that can be estimated in two approx-
imately equivalent ways, either using the PV01 approximation to the bond P&L given by
(IV.3.12) or by revaluing the bond directly. For the first approach the PV01 vector for the
bond is calculated in the spreadsheet labelled VaR, using the approximation described in
Section IV.2.3.2, and this is the PV01 vector reported in the last row of Table IV.3.17. This
table also shows the price P of the bond per £100 nominal, and the number of units of £100
nominal that the bank purchases for £50 million cash, which is given by N = 50 × 106 × P−1.
Holding this PV01 vector constant, we apply (IV.3.12) with the historically observed time
series of basis point changes to swap rates. This gives a time series of P&L on the bond that
is shown in column H of the spreadsheet labelled ‘VaR’ in the case study workbook.

54 The data on swap rates were downloaded from http://www.federalreserve.gov/releases/h15/data.htm, the exchanges rates were
downloaded from http://www.bankofengland.co.uk/statistics/about/index.htm, and the S&P 500 index data were obtained from Yahoo!
Finance, symbol ∧GSPC.
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Figure IV.3.28 US swap rates

Table IV.3.17 Bond position

Bond characteristics Maturity (years) 1 2 3 4 5

Cash (£m) £50 Cash flow 4 4 4 4 104
Coupon 4% Swap curve on 21/04/08 2.93% 3.09% 3.34% 3.58% 3.78%
P 101.1398 PV of cash flow 3.89 3.76 3.62 3.48 86.39
N 494,365 PV01 (£) £187 £361 £520 £663 £20,576

Another way to derive a historical P&L distribution for a bond position is to apply the
historical daily basis point changes to the current swap curve, and then to revalue our cash
position keeping N constant. This gives the values in column I of the spreadsheet labelled
VaR. Then the historical P&L is obtained by taking each simulated value and deducting the
current value of £50 million. These P&L are shown in column J of the same spreadsheet. Note
that the two approaches give almost identical results.55

The total VaR is based on the US dollar P&L distribution, and the dollar price at any point
in time is the price in pounds multiplied by the $/£ exchange rate. The forex VaR is estimated
from the historical distribution of daily log returns on the $/£ exchange rate, and the P&L
distribution for the total VaR is obtained by converting the position value in column I into US
dollars, and then recalculating the P&L. To find the relevant exchange rate to apply for each
day, we apply the log return on the forex on that day to the current forex rate, i.e. the rate at
the time the VaR is measured. The resulting P&L is shown in column L.

In each case the VaR is minus the α quantile of the daily P&L distribution, and the 1-day
VaR estimates are multiplied by the square root of the risk horizon (in days) to estimate the
corresponding h-day VaR.56 The results for 1% 10-day VaR are given in the spreadsheet in
both pounds sterling and US dollars, and the sterling figures are displayed in Table IV.3.18.

55 For a simple bond such as this, both are fast and straightforward calculations, but the PV01 approximation would be preferable if
full revaluation of the portfolio is computationally burdensome.
56 We cannot calculate the total VaR using a PV01 approximation, e.g. by converting the PV01 vector into dollar terms. This is because
that way the P&L would be zero whenever interest rates do not change, even though there could be a loss on the currency position.
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Table IV.3.18 VaR decomposition for international bond position

Interest Rate VaR (PV01 approx.) £1,381,833
Interest Rate VaR (direct valuation) £1,374,072
Forex VaR £2,042,953
Total VaR £2,319,324

As already mentioned, it makes very little difference whether we estimate the interest rate
VaR using the PV01 approximation or the bond evaluation method. The forex VaR is greater
than the interest rate VaR, and the total VaR is less than the square root of the sum of the
squared component VaRs, which indicates a small or negative dependency between the £/$
rate and the swap rates.

IV.3.5.5 Case Study: Historical VaR for a Crack Spread Trader

In this subsection we consider a trader in crack spread futures. There are two crack spreads,
i.e. the difference between the heating oil futures price and the WTI crude oil futures price of
the same maturity, and the difference between the gasoline futures price and the WTI crude
oil futures price of the same maturity. NYMEX facilitates crack spread trading in its futures
markets by treating both legs of the trade as a single transaction. Each futures contract is for
1000 barrels, priced in US dollars per barrel.

Because spreads can have negative values, it makes no sense to compute percentage returns
on these risk factors, for the reasons explained in Section 1.5.5. Instead we compute the daily
P&L on the crack spread futures and compute the VaR directly in nominal terms. We shall
calculate the historical VaR of the entire portfolio, and then decompose the total VaR into the
VaR due to the heating oil crack spread and the VaR due to the unleaded gasoline crack spread.
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Figure IV.3.29 Three-month crack spread futures prices

Our risk factors are constant maturity futures on each spread for 1, 2, 3, 4, 5 and 6 months
ahead.57 The case study workbook contains over 20 years of daily data on these constant

57 These were derived from the prices of traded futures using linear interpolation.
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maturity futures, and the reader may use the spreadsheet labelled ‘VaR’ in this workbook
to estimate the historical VaR, with and without volatility adjustment, using any start and
end dates during this sample. The 3-month crack spread futures prices from 2 January 1996
to 1 August 2006, the day when the VaR is estimated, are shown in Figure IV.3.29. The
trader’s positions in crack spread futures, and their prices on 1 August 2006, are shown in
Table IV.3.19.58

Table IV.3.19 Crack spread book, 1 August 2006

Prices m1 m2 m3 m4 m5 m6

HO_WTI ($/barrel) 12.47 14.02 15.61 16.96 18.07 18.52
UL_WTI ($/barrel) 20.69 14.39 10.05 6.76 5.37 4.78

Positions m1 m2 m3 m4 m5 m6

No. Contracts HO_WTI 100 50 50 0 0 –250
No. Contracts UL_WTI –50 –100 0 0 150 100
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Figure IV.3.30 EWMA volatilities of heating oil crack spread futures P&L

Figures IV.3.30 and IV.3.31 show the volatilities of the crack spread futures P&L, calculated
as an exponentially weighted moving average of squared daily changes in the futures price
with a smoothing constant of 0.94.59 These graphs display terrific variability in spread futures
volatilities, so it is advisable to apply a volatility adjustment to the portfolio’s P&L, and we
shall use the EWMA volatilities shown in Figures IV.3.30 and IV.3.31 to derive a simple
volatility adjustment, as described in Section IV.3.3.3. Since volatility was relatively high on

58 Of course, there are no traded futures at exactly these maturities, but we assume the positions have been mapped to the standard
maturities as explained in Section III.5.4.
59 The volatilities of the 1-month crack spread futures are omitted because they are excessively volatile.
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Figure IV.3.31 EWMA volatilities of gasoline crack spread futures P&L

1 August 2006, the volatility adjusted VaR on 1 August 2006 is likely to be much greater than
the VaR based on unadjusted P&L.

In the case study workbook we hold the positions constant, at their values shown in
Table IV.3.19, and simulate a historical series for the P&L on each futures position. The P&L
series is simulated by multiplying the fixed number of contracts by the absolute change in
the value of the spread on each day in the historical sample, after the volatility adjustment
if this is used. Then we sum the P&L on each day due to (a) the six positions on heat-
ing oil crack spread futures of different maturities, and (b) the six positions on unleaded
gasoline crack spread futures of different maturities, and (c) the 12 positions over all the
futures. This gives three historical P&L series: one for the heating oil crack spread posi-
tions, another for the gasoline crack spread positions, and a third for the total positions.
The historical VaR is calculated by finding the quantile of the simulated P&L distribu-
tion and then multiplying this quantile by −1000, since each futures contract is for 1000
barrels.

The reader may change the positions, the VaR parameters and the period over which the VaR
is estimated in the spreadsheet labelled ‘VaR’. The 1% 10-day VaR results for the positions in
Table IV.3.19, with and without volatility adjustment, are given in Table IV.3.20. The volatility
adjustment increases the VaR very considerably, since the spreads were unusually volatile at
the time when the VaR is measured. The total VaR is much less than the sum of the two
stand-alone VaRs, but still greater than the square root of the sum of the squared stand-alone
VaRs, because there is a high positive correlation between the spreads.

Table IV.3.20 Total VaR and component VaRs for a crack spread trader

1% 10-day VaR HO_WTI UL_WTI Total

VaR (Unadjusted) $ $661,578 $673,036 $1,246,270
VaR (Volatility adjusted) $ $1,666,862 $1,391,788 $2,577,317
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IV.3.6 ESTIMATING EXPECTED TAIL LOSS IN THE
HISTORICAL VALUE-AT-RISK MODEL

Section IV.2.11 derived analytic formulae for expected tail loss in parametric linear VaR mod-
els. This was possible because the model makes an assumption about the functional form of
the return distribution. In the historical VaR model the ETL must be estimated directly, simply
by taking the average of all the losses in the tail below the VaR. The exception is when a
parametric distribution or approximation has been fitted to the historical distribution. In this
case it is sometimes possible to derive an analytic formula for ETL.

In this section we first present some analytic formulae for the ETL when the historical
distribution is fitted with a generalized Pareto distribution, a Johnson SU distribution and
when the VaR is estimated using a Cornish–Fisher expansion. We end with a case study that
compares the historical ETL estimates that are derived using these formulae with the historical
ETL that is estimated directly, as the average of the losses that exceed the VaR.

IV.3.6.1 Parametric Historical ETL

From formula (I.3.68) derived in Section I.3.3.10 for the mean excess loss in the generalized
Pareto distribution, it immediately follows that

ETLα= VaRα+β + ξVaRα

1 − ξ
, (IV.3.20)

where the parameters β and ξ are estimated by fitting a GPD to excess losses and VaRα is
given by (IV.3.6).

The other two ETL formulae are derived from the transformation of the random vari-
able into a standard normal variable. Using the fact that the standard normal 100α% ETL
is α−1ϕ(Zα),60 for a Johnson SU distribution we have

ETLα = λ̂ sinh

(
α−1ϕ(Zα)− γ̂

δ̂

)
+ ξ̂. (IV.3.21)

Finally, it follows from (IV.3.7) that the ETL under the Cornish–Fisher expansion is
approximated by

ETLα = f
(
α−1ϕ(Zα)

)
σ̂ − μ̂, (IV.3.22)

where

f(x)= x + τ̂

6

(
x2 − 1

)+ 	̂

24
x
(
x2 − 3

) − τ̂2

36
x
(
2x2 − 5

)
.

IV.3.6.2 Empirical Results on Historical ETL

We now present a case study that compares several estimates of the historical ETL. Using
volatility adjusted log returns on the S&P 500 from 4 January 1950 until 9 March 2007, a GPD

60 This is proved in Section IV.2.11.1.
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has been fitted to the excess returns over a threshold u, and the Cornish–Fisher expansion and
the Johnson SU distribution have been fitted to the first four moments of the empirical returns.
We compare the results from applying (IV.3.20)–(IV.3.22) with the results from the empirical
ETL, estimated as the average of the losses in excess of the VaR, and with the ETL under the
assumption that the returns are normally distributed.

There are over 14,000 returns in the sample, which allows for a comparison of results at very
high significance levels. Of course the Cornish–Fisher and Johnson ETL can be estimated
from a very much smaller sample, because they require only the first four moments of the
empirical return distribution. However, the GPD requires a considerable amount of data, since
it is fitted only to the excess losses over a certain threshold.

We set significance levels 1%, 0.1% and 0.05%, corresponding to confidence levels of 99%,
99.9% and 99.95% respectively, and the results from estimating the daily VaR using the dif-
ferent models are displayed in Table IV.3.21. As usual the VaR estimates are reported as a
percentage of the portfolio value at the time the VaR is estimated. The Johnson VaR estimates
are generally closer to the GPD estimates but they do not suffer the disadvantage of the GPD
VaR estimates, i.e. that they are sensitive to the choice of threshold. Moreover, as described
in Section IV.3.4.4, estimation of Johnson SU parameters is straightforward, using the algo-
rithm developed by Tuenter (2001). This algorithm is implemented in the spreadsheet for this
case study.

Table IV.3.21 Estimates of GPD parameters and historical VaR estimates

GPD parameter estimates Significance level

Threshold nu u ξ β 1% 0.1% 0.05%

1% 143 −2.574 −0.3906 7.6815 1.69% 6.01% 7.27%
5% 713 −1.6097 −0.2425 4.4892 2.87% 6.43% 7.16%
10% 1426 −1.1960 −0.1870 3.3786 3.37% 6.10% 6.71%
20% 2853 −0.7203 −0.1289 2.2795 3.26% 5.30% 5.81%

Johnson VaR 3.57% 5.10% 5.60%
Cornish–Fisher VaR 2.48% 5.06% 5.96%

Empirical VaR 1.69% 3.00% 3.87%
Normal VaR 1.52% 2.03% 2.16%

Table IV.3.22 compares the daily historical ETL estimates based on a normal approxima-
tion to the return distribution, the empirical distribution. Notice that those based on the GPD,
Johnson and Cornish–Fisher parametric fits. The empirical returns have an excess kurtosis of
4.93 and a very significant negative skewness. As a result the normal ETL estimates are far too
low, and all the non-normal parametric ETL estimates exceed the empirical ETL. Even when
the empirical ETL is based on 14,000 returns, the 0.1% ETL estimates are based on only 14
observations and the 0.05% ETL estimates are based on only 7 observations. Hence, they are
likely to be imprecise.

Tables IV.3.21 and IV.3.22 indicate that there is a considerable degree of model risk asso-
ciated with estimating VaR and ETL using historical simulation. There are very significant
differences between the results that are obtained using different enhancements to the simula-
tion model, particularly at very high confidence levels. So what advice, if any, can we glean
from these diverse results?
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Table IV.3.22 Comparison of ETL from parametric fits to historical return
distribution

GPD (Threshold) Significance level

1% 0.1% 0.05%

GPD (1%) 4.87% 7.98% 8.88%
GPD (5%) 4.70% 7.57% 8.16%
GPD (10%) 4.73% 7.02% 7.54%
GPD (20%) 4.22% 6.03% 6.48%
Johnson 3.47% 6.33% 7.31%
Cornish–Fisher 4.18% 5.81% 6.34%
Empirical 2.29% 4.48% 5.56%
Normal 1.74% 2.21% 2.33%

It is unlikely that risk analysts will be working with a sample having more than a few thou-
sand observations, and the smaller the sample, the greater the model risk arising from the
choice of parametric or semi-parametric method that is used to estimate the VaR and ETL. If
the analyst does have a very large sample and therefore considers the use of the GPD, it seems
better to use a relatively high threshold such as 20%, so that the tail contains a larger sample
of returns.

IV.3.6.3 Disaggregation of Historical ETL

Historical ETL can be aggregated and disaggregated just like historical VaR, so we may com-
pute stand-alone ETLs corresponding to different sub-portfolios. But, unlike historical VaR,
the ETLs are always sub-additive. We now illustrate the disaggregation methodology with an
extension of the case study in Section IV.3.5.3, where we disaggregated the total systematic
VaR for an international equity portfolio consisting of US and UK stocks into equity and forex
stand-alone components. In this case study we estimate the 100α% h-day historical ETL for
the same portfolio.

The results for the 1% 10-day historical VaR and ETL estimated on 21 April 2008, using
the same data as in Section IV.3.5.3, are displayed in Table IV.3.23. The upper part of the
table shows the 1% 10-day historical VaR based on both unadjusted and EWMA volatility
adjusted returns. These are identical to those reported in Table IV.3.15 for a significance level
of 1% and h=10. The lower part of the table displays the ETL estimates. These are estimated
directly, by averaging the returns that exceed the VaR.

Table IV.3.23 Stand-alone equity and forex ETL for an international stock
portfolio

VaR Equity Forex Total

VaR (Unadjusted) 12.03% 1.16% 12.22%
VaR (Adjusted) 13.55% 1.38% 13.83%

ETL Equity Forex Total

ETL (Unadjusted) 14.78% 1.33% 15.41%
ETL (Adjusted) 15.21% 1.57% 15.58%
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In this case it happens that the volatility adjustment has as little effect on the ETL as it has
on the VaR estimates. This is because the VaR is measured on 21 April 2008 at a time when the
volatility was not far from its historical average. However, readers may generate other results
by changing the start and end date for the calculations in the spreadsheet labelled ‘ETL’ in the
case study workbook, as well as the VaR parameters and the EWMA smoothing constant for
the volatility adjustment. When the end date is during one of the more volatile or tranquil years
the volatility adjustment would have a more significant effect. For instance, when the VaR is
measured on 21 April 2006, which was a particularly tranquil period for US and UK equities,
the volatility adjusted ETL at any significance level is much lower than the unadjusted ETL.
The effect of the volatility adjustment is also more pronounced at significance levels different
from 1%. Since the volatility adjusted returns have a small but negative excess kurtosis in this
case, the effect is to decrease the ETL at higher confidence levels (such as for α = 0.1%) and
increase the ETL at lower confidence levels (such as for α = 10%).

IV.3.7 SUMMARY AND CONCLUSIONS

Historical simulation is a very popular approach to VaR estimation because it makes no
parametric assumptions about the behaviour of risk factors. It only assumes that their future
behaviour will be similar to their historical behaviour. Most importantly, it makes no assump-
tion about the correlations, or more generally the dependencies, between the risk factors.
Standard historical VaR estimates are based only upon the multivariate distributions of the
assets or risk factors that are observed empirically, in a sample of historical returns. The
historical distribution of portfolio returns or P&L is constructed by keeping the portfolio’s
holdings, weights or risk factor sensitivities constant at their current value. Then the historical
VaR is calculated directly from the appropriate quantile of this distribution.

There are many challenges that must be overcome for a successful implementation of his-
torical VaR. One of the main problems is that, on the one hand, a large sample is required
to measure historical VaR at high confidence levels accurately, but on the other hand large
samples are likely to cover long historical periods where markets have been through regimes
that may be quite different from the current regime. In that case, the historical VaR estimate
may not be representative of the portfolio’s current market risk, unless the risk horizon is
extremely long.

If historical VaR estimates are required for a long term risk horizon, then it would be entirely
appropriate to use a long historical sample period covering many different regimes; it is an
advantage to have data that cover many possible scenarios – who knows what could happen
over the next year? However, unless funds are locked in (as is often the case for investing in
hedge funds), market VaR is a risk metric that is only relevant for relatively short term risk
horizons, because this horizon corresponds to the optimal liquidation or hedging period for
the portfolio. Then the different market characteristics experienced five or ten years ago can
bias the historical VaR estimate, so that it is not representative of the conditions that are likely
to prevail in markets over the next few days or weeks.

For this reason we strongly recommend that the reconstructed portfolio returns be adjusted
so that their conditional volatility is approximately constant over the entire sample period.
That is, we remove the volatility clustering from the historical portfolio returns, and impose
a constant volatility on the series, that is equal to the conditional volatility at the time that
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the VaR is estimated. In scenario analysis and stress testing, we could also adjust the constant
volatility so that it is equal to any prescribed value.

We can either adjust the individual risk factor (or asset) returns to have constant volatility,
provided we also change their conditional correlations, or adjust the reconstructed portfolio
returns or P&L to have constant volatility. The latter is often simpler since then only one
GARCH or EWMA model is required for volatility adjustment at the portfolio level. Volatility
adjustment can be extended to filtered historical simulation, and this methodology allows the
proper estimation of historical VaR over risk horizons that are longer than 1 day. That is, there
is no scaling of daily VaR estimates, using a square root or some other power law exponent.
Instead, we use multi-step simulation following a GARCH model.

A case study has demonstrated how critically important the sample size is to all VaR models,
not only historical VaR. We showed that VaR estimates from the different models based on
the same sample size and the same weighting of the data are relatively close, and much closer
than the VaR estimates from any one of the models when we change the historical sample size
by a considerable amount.

Volatility adjustment, and any subsequent filtering in multi-step simulations of returns over
the risk horizon, allows very large historical samples to be used, yet these samples still rep-
resent current market conditions. It is important to use very large samples when estimating
historical VaR and ETL at high levels of confidence, otherwise the quantile estimates will be
imprecise. Volatility adjustment makes the sample closer to being i.i.d., so that VaR estimates
become less sensitive to changes in sample size. So, at any level of confidence, the volatility
adjusted historical VaR estimates should be more robust, i.e. they should be less variable from
day to day, compared with unadjusted historical VaR estimates, especially those based on a
short sample period.

At extreme quantiles it is still difficult to estimate historical VaR and ETL, even when we
have several thousand observations in our sample. Certain non-parametric or parametric tech-
niques may be applied to improve the precision of the quantile estimate. For a non-parametric
fit we recommend the Epanechnikov kernel, although several other kernels would perform as
well. For a parametric fit, the Johnson SU distribution appears to have some advantages over
both the generalized Pareto distribution (GPD) and the Cornish–Fisher expansion. The GPD
VaR estimates are sensitive to the choice of threshold and the Cornish–Fisher estimates will
substantially overestimate VaR when data are very leptokurtic. However, the Johnson esti-
mates are robust to strong deviations from normality and do not depend on an arbitrary choice
of threshold.

When the historical distribution is fitted with a GPD or a Johnson SU distribution, or when
the VaR is estimated using a Cornish–Fisher expansion, it is possible to derive analytic for-
mulae for the conditional VaR, also called expected tail loss. The historical ETL estimates that
are derived using these formulae have been compared empirically with the historical ETL that
is estimated directly, as the average of the losses that exceed the VaR.

This chapter contains a large number of case studies on the estimation of historical VaR and
ETL for specific portfolios, including interest rate sensitive, equity, and commodity portfolios.
We have shown how to estimate the systematic VaR and specific VaR with historical simulation,
illustrating this with a portfolio of US stocks. We have also disaggregated systematic historical
VaR and ETL into stand-alone components. This is achieved by constructing sub-portfolios
that are sensitive to a given subset of risk factors, and then estimating the stand-alone VaR
from the quantiles of the return or P&L distribution of the relevant sub-portfolio. If required,
the volatility of each sub-portfolio can be adjusted to be constant at its current level. In several
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case studies we also considered positions in foreign currencies, and isolated the forex VaR
from the equity and interest rate VaR components.

Historical VaR may be disaggregated and aggregated, but it does not obey the same aggre-
gation rules as linear VaR. In particular, historical VaR need not be sub-additive. That is, it
is theoretically possible for the total systematic VaR to be greater than the sum of the stand-
alone VaR components. We have also demonstrated, again in the context of a case study, how
to estimate the historical marginal VaR. To calculate the marginal VaR, the gradient vector
must be estimated using finite differences, since there is no simple analytic formula for the
marginal VaR, as there is in the normal linear VAR model.

Time aggregation of historical VaR is also more complex than it is for normal linear VaR.
The normal linear model assumes that risk factor returns are i.i.d. and normally distributed,
and thus, under the assumption that the portfolio’s risk factor sensitivities are constant over the
next h days, we can scale a daily VaR estimate up to an h-day VaR estimate using a square-root
scaling rule. We call this the dynamic VaR estimate, because this type of scaling implicitly
assumes that the portfolio is dynamically rebalanced over the risk horizon, to maintain con-
stant risk factor sensitivities. Then, it is theoretically correct to aggregate historical VaR in this
framework, but only if we assume that the portfolio returns have a stable distribution.

However, the scale exponent for the aggregation need not be 0.5, as it is for the square-root-
of-time scaling of i.i.d. normal random variables. We have explained how the scale exponent
may be estimated from a large historical sample, if we assume it is drawn from a stable
distribution, and we have estimated the scale exponents corresponding to several major risk
factors, including equity indices, forex rates, interest rates and major volatility indices. Our
analysis indicates that, whilst distributions of equity and currency returns may scale with the
square root of time, distributions of interest rate changes are more ‘trendy’ and may require
a scale exponent greater than 0.5. Volatility, on the other hand, is rapidly mean-reverting and
hence should be scaled with an exponent less than 0.5. Since volatility is a main risk factor for
option portfolios, the time aggregation of historical VaR for dynamically rebalanced option
portfolios is quite complex, and we shall return to this in Section IV.5.4.



IV.4
Monte Carlo VaR

IV.4.1 INTRODUCTION

Monte Carlo simulation is an extremely flexible tool that has numerous applications to finance.
It is often used as a method of ‘last resort’ when analytic solutions do not exist, or when other
numerical methods fail. Its drawback has been the amount of time it takes to resolve a problem
accurately using simulation, but as computers become more powerful this disadvantage
becomes less relevant.

The purpose of this chapter is to provide a pedagogical introduction to Monte Carlo sim-
ulation with a specific focus on its applications to VaR estimation. There are two equally
important design aspects of Monte Carlo VaR: the sampling algorithm and the model to which
the algorithm is applied. Section IV.4.2 focuses on the first of these. It begins by explaining
how pseudo-random numbers are generated. Then we introduce the sampling techniques that
are based on low discrepancy sequences, which are commonly termed quasi Monte Carlo
methods. The section then explains how to transform random numbers into simulations from
a parametric distribution for risk factor returns, a process called structured Monte Carlo. Then
we describe the technique of multi-step Monte Carlo, which is important for accounting for
the dynamic properties of risk factor returns, such as volatility clustering.

The main aim of this chapter is to describe the different types of statistical models for risk
factor returns that are used to underpin the simulation algorithm. A huge variety of static
and dynamic models are available: static models are based on the assumption that each risk
factor return is an independent and identically distributed process, in which case we only need
to specify the multivariate unconditional distribution for the risk factor returns. But we can
use a dynamic model to introduce time series effects such as volatility clustering and mean
reversion. In this case we must specify how the multivariate conditional distributions for the
risk factor returns evolve over time.

Section IV.4.3 focuses on describing various parametric static and dynamic models that
are appropriate for different types of risk factor returns. As we know from previous chapters,
volatility clustering can be a very important feature to capture in the VaR estimate. So here
we apply exponentially weighted moving average and generalized autoregressive conditional
heteroscedasticity processes to model volatility clustering in a single risk factor returns series.
Later on, in Section IV.4.5.4, we give a practical example that illustrates the extension of this
framework to a multivariate setting.

Section IV.4.4 focuses on modelling the interdependence between different types of risk
factor returns. First we describe the standard multivariate normal and multivariate Student
t distributions for i.i.d. returns. But Monte Carlo simulation is so flexible that we can very
easily use copulas instead of correlation as the dependence metric. We end the section with
a case study on the use of non-linear regression in the context of bivariate Monte Carlo
simulation.
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Section IV.4.5 builds on the three previous sections to demonstrate how Monte Carlo
methods are used to estimate the VaR and expected tail loss of a portfolio, assuming it has
a linear mapping to its risk factors (Monte Carlo VaR for option portfolios is dealt with in the
next chapter). The section begins by outlining both static and dynamic (multi-step) algorithms
for estimating Monte Carlo VaR and ETL for a linear portfolio, based on a generic model for
the multivariate distribution of the risk factor returns.

Then we provide specific examples that are designed to emphasize different aspects of the
Monte Carlo algorithm and different features of the returns model. We begin by considering
cash-flow portfolios, firstly using different copulas to model credit spread changes and hence
to estimate the credit spread VaR, and secondly using Monte Carlo simulation on principal
component risk factors to estimate the interest rate VaR of a large portfolio of interest rate
sensitive securities. In the interest rate VaR example we focus on the efficiency gains from
dimension reduction and advanced sampling techniques, rather than on the specification of
the multivariate return distribution.

The next example illustrates the use of Monte Carlo with a multivariate normal mixture
distribution, using a stock portfolio to emphasize the advantages of this approach for scenario
analysis. Finally, we extend the volatility clustering simulation model that was introduced
earlier for a single risk factor, to a currency portfolio where forex log returns have a conditional
multivariate Student t distribution and their dynamics are governed by a multivariate GARCH
model. We use another empirical example to demonstrate that the VaR estimate is significantly
affected by non-normality in conditional return distributions and by volatility and correlation
clustering in risk factor returns, even over a relatively short risk horizon such as 10 days.
Section IV.4.6 summarizes and concludes.

Besides the technical tools for modelling VaR with Monte Carlo simulation, the main
message of this chapter is that we need to control two sources of model risk in Monte Carlo
VaR models: that stemming from simulation errors and that resulting from inappropriate
behavioural models for risk factor returns. There are many books about Monte Carlo tech-
niques that focus on methods for reducing simulation error, most notably the comprehensive
and classic text by Glasserman (2004). For this reason, I have provided only a short introduc-
tion to sampling methods and instead have devoted most of this chapter to the construction of
a statistical model for risk factor returns that provides an appropriate basis for Monte Carlo
VaR estimation.

There are many empirical examples for this chapter in Excel workbooks on the CD-ROM.
To reduce file size each workbook is saved using only 100 or 1000 simulations. Before use,
all the spreadsheets containing simulations and calculations on those simulations need to be
extended by the reader after copying the workbooks onto their hard drive. Just take the last
row of all the simulated vectors in each spreadsheet and fill down. I have turned the automatic
calculation of results to manual so that new simulations are not repeated each time the spread-
sheet is altered.1 Due to the size constraints in Excel (especially before Excel 2007) many
of our empirical results in the text are based on only 10,000 simulations. This is sufficient
to illustrate the important points of each example, but without additional variance reduction
there will be substantial sampling error in the results.

1 This is an Excel option, found in the Tools menu of Excel 2003 or in Excel 2007 under Options | Formulas from the Excel Office
button. Press F9 to repeat the calculations manually. Note that calculations are repeated on all open workbooks each time F9 is
pressed.
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IV.4.2 BASIC CONCEPTS

We begin this section by outlining some efficient algorithms for generating pseudo-random
numbers. Section I.5.7 provided only a very brief and basic introduction to this vast subject,
so this section develops the material in a little more depth. Then we move on to advanced sam-
pling techniques for improving the efficiency of Monte Carlo simulation. We describe the use
of low discrepancy sequences to cover the hypercube with the minimum number of simulations,
and two simple variance reduction methods, i.e. antithetic sampling and stratified sampling.

By necessity, our treatment in these three subsections is extremely selective, and readers
interested in commercial implementation of Monte Carlo VaR models are advised to consult
texts that are specifically devoted to Monte Carlo algorithms and the control of simulation
error. As mentioned in the previous section, I can particularly recommend the classic textbook
written by Glasserman (2004).

It may be relatively straightforward, if time-consuming, to reduce sampling error, but it is
not at all straightforward to select the appropriate behavioural model for risk factor returns in
a Monte Carlo VaR framework.2 So the next three sections will focus on the statistical aspects
of a Monte Carlo VaR model. This section of the chapter gives an introduction to univariate
and multivariate simulation and the subsequent estimation of Monte Carlo VaR, assuming that
we already know the appropriate risk factor returns model.

IV.4.2.1 Pseudo-Random Number Generation

Random number generation is the first step in a Monte Carlo simulation algorithm. Its aim is
to produce a sequence of numbers between 0 and 1 that are uniformly distributed, independent
and non-periodic. That is, each number in the unit interval (0, 1) is equally likely to occur in
the sequence, the ith number is independent of the jth number for all i �= j, and the sequence
does not repeat itself however long it becomes.

The only way to generate random numbers is to measure, without error, a physical pheno-
menon that is truly random. In practice computers generate pseudo-random numbers, which
should be impossible to distinguish from a set of realizations of truly independent standard
uniform random variables. These pseudo-random numbers are generated by an initial seed,
such as the time of the computer’s clock, and thereafter follow a deterministic sequence. In
Excel, the function RAND ( ) produces a pseudo-random number.3

A simple but common type of generator is a linear congruential generator. This takes the
form of an iteration that is based on the idea of congruence. For some fixed integer m, we say
that two integers x and y are congruent modulo m, written

x ≡ y mod (m),

if m divides x − y.4 To generate a linear congruential sequence we fix two positive integer
values m and c greater than 1, start the sequence with a positive integer seed x0 between 1 and
m − 1 and perform the iteration

xi+1 ≡ cxi mod (m), (IV.4.1)

2 Risk factor model selection requires very thorough backtesting, as described in Chapter IV.6, and this can entail months of research.
3 See http://support.microsoft.com/kb/828795 for more details about their random number generator.
4 For instance, 2 ≡ 5 mod(3).
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each time choosing the unique integer value for xi+1 in [1, m − 1]. Then, for each i set
ui = m−1xi, and the resulting sequence {u0,u1,u2, . . . ,uN} is our pseudo-random number
sequence where N is the number of simulations. The following example shows that m should
be a prime number.

EXAMPLE IV.4.1: LINEAR CONGRUENTIAL RANDOM NUMBER GENERATION

Generate a sequence of pseudo-random numbers using (IV.4.1) with m = 13, c = 2 and x0 = 1.
What happens if you use the same values of c and x0 but set m = 12?

SOLUTION With m = 13 the sequence for x is

{1,2,4,8,3,6,12,11,9,5,10,7,1,2,4,8,3,6,12,11,9,5,10,7, . . .} ,

where ‘. . .’ here means that the sequence continues to cycle through the same sub-sequence
{1,2,4,8,3,6,12,11,9,5,10,7}. Dividing the numbers in this subsequence by 13 gives a
sequence of 12 distinct pseudo-random numbers:

{0.0769,0.1538,0.3077,0.6154,0.2308,0.4615,0.9231,0.8462,0.6923,0.3846,0.7692,0.5385} .

Now change the value of m from 13 to 12 in the spreadsheet for this example. The sequence
of integers is {1,2,4,8,4,8,4,8, . . .}. Whereas the first sequence had full periodicity, i.e. the
full set of integers between 1 and m − 1 are visited in the repeating subsequence, the second
sequence has a periodicity of only 2. Hence setting m = 12, c = 2 is not a good choice for
generating a sequence of pseudo-random numbers.

All random number generators have a periodicity, i.e. at some point in the sequence the num-
bers start repeating themselves. But one of the reasons why linear congruential generators
are so popular is that they will have full periodicity if c is a primitive root of m.5 In practice,
m is chosen to be a very large prime number so that the sequence does not repeat itself too
soon and very many distinct random numbers can be simulated in the cycle. That is, long
sequences of pseudo-random numbers are easier to generate if we choose m to be a very large
prime number.

A Mersenne prime is a prime number of the form 2n −1, and many Mersenne primes are
known for very large values of n.6 For instance, one of the best generators, called the Mersenne
twister, sets m = 219,937 − 1. Since this m is prime, there will be 219,937 − 1 distinct pseudo-
random numbers in the associated linear congruential generator.

IV.4.2.2 Low Discrepancy Sequences

Most portfolios have several risk factors, and simulations of a portfolio’s P&L distribution are
based on simulations of the returns on these risk factors. For this, we require a sequence of
random numbers for each factor, and if there are k risk factors we need to generate k such

5 We call c a ‘primitive root’ of m if m − 1 is the smallest positive integer value of n such that cn ≡1 mod (m). In our example therefore,
212 ≡ 1 mod (13) and n = 12 is the lowest power n of 2 such that 13 divides 2n − 1.
6 Marin Mersenne (1588–1648) was a French philosopher, mathematician and music theorist. For more details, see http://en.wikipedia.
org/wiki/Mersenne.



Monte Carlo VaR 205

sequences. We label these {u1i, . . . ,uki}N
i=1 where, typically, the number of simulations N in

each sequence will be a very large number.7

For the ith simulation on the risk factor returns we start with a vector (u1i, . . . ,uki) of num-
bers with each uji ∈ (0,1). For instance, if k = 2, the ith simulation could be based on a vector
such as (0.643278,0.497123). This can be thought of as a point in the unit square, i.e. the
square with sides along the two axes from 0 to 1. The two elements represent the coordinates
of the point. If k = 3 the ith simulation is a point in the unit cube, and more generally the
vector (u1i, . . . ,uki) is a point in the k-dimensional unit hypercube.

We now motivate the concept of the discrepancy of a sequence with a simple numerical
example.

EXAMPLE IV.4.2: DISCREPANCY OF LINEAR CONGRUENTIAL GENERATORS

Generate a sequence of pseudo-random numbers using the linear congruential generator
(IV.4.1) with m = 127 and c = 3. Then plot the numbers (ui,ui+1), i = 1,2, . . . on the
two-dimensional unit cube.

SOLUTION The spreadsheet for this example is similar to that for the previous example. The
resulting plot of consecutive pseudo-random numbers, displayed in Figure IV.4.1, shows that
the points are not uniformly covering the cube. Instead they lie along three distinct lines.
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Figure IV.4.1 Consecutive pseudo-random numbers plotted as points in the unit cube

The feature illustrated in Figure IV.4.1 is not particular to our choice of m = 127 and c = 3,
and nor is it particular to a plot of two consecutive points. The same features are apparent

7 For instance, N = 100,000 or 1,000,000. Smaller values for N are usually acceptable only if some variance reduction technique is
applied, as we shall see presently.
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in all linear congruential generators, and are evident in n-dimensional plots of n consecutive
numbers for n>2. That is, the points generated by such generators will lie in proper subspaces
of the hypercube. This means that there can be large areas of the hypercube that contain no
points. But if the hypercube is not covered uniformly the final result of the Monte Carlo
simulation, which in our case is a VaR or ETL estimate, will not be robust. This is because
we would cover different areas of the hypercube each time we perform another set of N
simulations, starting with a different seed.

A low discrepancy sequence is a method for generating sequences of numbers that are not uni-
formly distributed random numbers at all; instead they are designed to cover the n-dimensional
hypercube uniformly. The name low discrepancy means that the deviations from a uniform
covering of the hypercube are minimal.8 In other words, the purpose of a low discrepancy
sequence is to cover the hypercube without gaps, using fewer simulations than are required
from a pseudo-random generator, for the same uniformity of coverage.

After an initial seed, the remaining numbers in the sequence follow a deterministic path.
Common examples of low discrepancy sequences are the Faure and Sobol sequences, both
of which are based on van der Corput sequences. The technical details on generating these
sequences are very well described in Glasserman (2004, Chapter 5).

IV.4.2.3 Variance Reduction

The computation time required for generating large numbers of pseudo- or quasi-random
numbers is minimal. However, this is only the first step in Monte Carlo simulation. The com-
putation time required by the application of the VaR model can be huge, for example if it
requires complex models for repricing non-linear instruments on each set of simulations. For
this reason we try to restrict the number of simulations to be as small as possible without
sacrificing the accuracy of the resulting VaR or ETL estimate.

To assess the trade-off between speed and accuracy we need a measure of the extent to
which the VaR or ETL estimates change each time the simulations are repeated. A common
measure of this sampling uncertainty is the variance of the simulation error.

• When simulating a quantity such as an expected value or VaR, here simply denoted X̃,
the simulation error is defined as X̂N − X̃, where X̂N denotes the estimator of X̃ based on
N simulations.

• If the estimator is unbiased, E(X̂N − X̃)= 0, in other words, E(X̂N)= X̃.
• Since X̃ is a constant, although it is unknown, the variance of the simulation error is

equal to V(X̂N).

If X̃ denotes an expected value, then X̂N =X is the sample mean based on N observations. Let
μ and σ denote the mean and standard deviation of the distribution of the underlying random
variable, X. By the central limit theorem, which is described in Section I.3.5.2, we know that
the random variable

8 Low discrepancy sequences are sometimes called quasi-random numbers. See Glasserman (2004, Section 5.1.1) for several formal
definitions of discrepancy.
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Y = X̂N −μ

σ/
√

N

has a distribution that converges to a standard normal distribution as N increases. In other
words, as N increases the distribution of X̂N converges to a normal distribution with expecta-
tion μ and variance N−1σ2. Thus, the variance of the simulation error is approximately equal
to N−1σ2 for large N.

Now suppose X̃ is an α quantile of an h-day portfolio return distribution. The asymptotic
distribution for the number of returns X(N,α) that are less than the α quantile is described
in Section II.8.4.1. From this we know that as N increases, the distribution of the proportion
of returns that are less than the α quantile, i.e. X̂N = N−1X(N,α), converges to a binomial
distribution with expectation α and variance N−1α(1 − α). Hence the variable

Y = X̂N − α√
N−1α(1 − α)

has a distribution that converges to a standard normal distribution as N increases. In other
words, the variance of the simulation error is approximately equal to N−1α(1 − α) for large N.

In both the cases above, the variance of the estimator decreases with N, that is, the accuracy
in our simulations increases as N increases. In other words, we should use as many simulations
as possible. But, as mentioned above, computation time can be a substantial constraint on the
size of N.

We now describe two sampling techniques that have the effect of decreasing the variance of
an estimator based on a given number of simulations. The simplest of these techniques, based
on antithetic variables, is illustrated in the next example.

EXAMPLE IV.4.3: ANTITHETIC VARIANCE REDUCTION

Suppose we wish to estimate the expected value of a standard uniform variable using just 20
simulations.

(a) Use the Excel random number generator to simulate 20 realizations {u1, . . . ,u20} on
independent standard uniform variables and repeat the simulations 10 times, each time
estimating the sample mean. Compute the sample standard deviation of the sample
means obtained from the 10 different simulations.

(b) Now repeat this process, but this time use the Excel random number generator to sim-
ulate only the first 12 random numbers {u1, . . . ,u12}. For the next 8 numbers simply
take 1 minus the first 8 of these 12 numbers. More generally, base your sample mean
estimates on the sample {ũ1, . . . , ũ20} where, for some n such that 10 ≤ n < 20, we set
ũi = ui for i = 1, . . . ,n, and ũi = 1 − ui−n for i = n + 1, . . . ,20.

For different values of n, compare the sample standard deviations obtained in case (a) and case
(b), and comment on your results.

SOLUTION In the spreadsheet for this example we use the Excel RAND( ) function to gen-
erate 20 pseudo-random numbers for part (a). Then, in each set of simulations, the first 12
realizations {u1, . . . ,u12} for (b) are identical to those in (a), but for the last 8 realizations
they are {1 − u1, . . . ,1 − u8}. Note that the last 8 realizations are still drawn from a standard
uniform distribution, but they are no longer independent of the first 8 realizations.
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With a sample size of only 20 the sampling variation over the 10 sets of simulations is
very large in both cases. Nevertheless, the standard deviation of the means in (b) is virtually
always considerably less than the standard deviation of the means (a). Readers can verify this
by pressing F9 to repeat the simulations many times.

More generally, the value for n can be anywhere between 10 and 20. If n = 10 we obtain the
maximum possible variance reduction, in fact in this case the sample mean estimates are all
identical, so their variance is zero. Thus the variance reduction decreases as n increases until,
when n = 20, there is no variance reduction at all.

We now provide a slightly more formal introduction to the concept of antithetic sampling of
standard uniform random variables, and explain why this technique can reduce the variance
of estimators when estimates are based on simulated samples. We shall again use an estimator
of a sample mean for illustration.

Denote by {X1, . . . ,XN} a sample of N i.i.d. random variables having distribution function
F. Now let

{
X∗

1, . . . ,X∗
N

}
denote another sample of N i.i.d. random variables, with the same

distribution function F, and having a constant correlation with the first sample:

Corr(Xi,X∗
i )= �, for i = 1, . . . ,N.

Finally, denote by {X1, . . . ,X2N} a set of 2N i.i.d. random variables with distribution
function F.

Consider the estimators of the sample mean based on a sample of size 2N using realizations
from (a) {X1, . . . ,X2N}, and (b)

{
X1, . . . ,XN,X∗

1, . . . ,X∗
N

}
. These are:

(a) X̂2N = 1

2N

(
2N∑
i=1

Xi

)
, and

(b) X̂∗
2N = 1

2N

(
N∑

i=1

Xi +
N∑

i=1

X∗
i

)
= 1

N

N∑
i=1

Yi where Yi = Xi + X∗
i

2
.

What is the variance of the estimator in each case? Suppose the distribution F has variance σ2.
Then in case (a),

V(X̂2N)= 2Nσ2

4N2
= σ2

2N
, (IV.4.2)

since the variables are independent. However, although the variables Yi, i = 1, . . . ,N are
independent their variance is not σ2, but

V(Yi)= V(Xi + X∗
i )

4
= 2σ2 + 2σ2�

4
= σ2(1 + �)

2
.

Hence, in case (b),

V(X̂∗
2N)= σ2(1 + �)

2N
. (IV.4.3)
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So the variance of the estimator in case (b) will be less than the variance of the estimator in
case (a) if and only if

σ2(1 + �)
2N

<
σ2

2N
,

that is, if and only if �< 0.
This shows that a necessary and sufficient condition for antithetic sampling to reduce the

variance of the estimator of a sample mean is that the antithetic variables have negative corre-
lation with the original variables. The antithetic pairs in Example IV.4.3 were chosen to have
correlation −1.9 Then, by (IV.4.3), the variance of the sample mean estimator is zero when we
use the same number of realizations on the antithetic variables as on the original variables.10

This is true for any linear estimator, not just for the sample mean.11

In Monte Carlo simulation we often require a non-linear estimator; for instance, we shall
be focusing on an estimator of a quantile. Nevertheless, there is considerable potential for the
use of antithetic pairs to reduce the variance of a Monte Carlo VaR estimate as well.

We now introduce an alternative method for variance reduction, which may be applied in
conjunction with antithetic sampling. The next example provides a simple illustration of the
principle of stratified sampling on the unit interval, after which we generalize this concept to
stratified sampling on the hypercube.

EXAMPLE IV.4.4: STRATIFIED SAMPLING FROM STANDARD UNIFORM DISTRIBUTIONS

Repeat the exercise from Example IV.4.3, but this time in case (b) set:

ũi = ui/4, i = 1, . . . ,5;
ũi = (ui + 1)/4, i = 6, . . . ,10;
ũi = (ui + 2)/4, i = 11, . . . ,15; and
ũi = (ui + 3)/4, i = 16, . . . ,20.

SOLUTION The solution is implemented in the spreadsheet. Note that our construction for
case (b) now generates random numbers in the intervals (0,0.25], (0.25,0.5], (0.5,0.75] and
(0.75,1) respectively. The reader can verify that the standard deviation of the sample means is
exactly 1

4
of the standard deviation of the mean in case (a).

The above example illustrates that by stratifying the sample space (0, 1) into n non-overlapping
subspaces of equal size, the standard deviation of a linear estimator becomes n−1 times the
standard deviation of the estimator based on a non-stratified sample. Another advantage is
that when n is large, stratified sampling can provide a more uniform coverage of the unit
interval than a standard unstratified sampling method.

9 In Section IV.4.2.5 we see that the antithetic sampling realization (u,1−u) on a standard uniform variable translates into a realization(
F−1(u),F−1(1 − u)

)
where F is the distribution function for our risk factor. But if F is symmetric then F−1(1 − u) = −F−1(u), so we

have a set of antithetic pairs
{
F−1(ui),−F−1(ui)

}N
i=1 that still have correlation −1.

10 This is why when we take n = 10 in Example IV.4.3, each set of simulations has a sample mean of exactly 0.5 and the standard
deviation of the sample means is zero.
11 A linear estimator is an estimator that is a linear function of the random variables.
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A simple way to generalize this concept to multiple dimensions is to use Latin hypercube
sampling. For instance, to generate a stratified sample on the two-dimensional unit cube
(i.e. the unit square) we can create nm simulations on pairs (u1,u2) in the unit square by:

(i) taking two independent stratified samples on (0, 1), in each case dividing the interval
into n non-overlapping equal length sub-intervals and taking a random sample size m
from each sub-interval; and

(ii) randomly permuting the first column and, independently, randomly permuting the
second column – i.e. we ‘shuffle up’ each sample of m random numbers separately.

EXAMPLE IV.4.5: LATIN HYPERCUBE SAMPLING

Generate two independent stratified samples of the unit interval with n = 6, and take a random
sample size m = 5 from each sub-interval. Plot the 30 points that are generated in this way in
the unit square. Now ‘shuffle’ each sample of 30 observations independently, and again plot
the 30 points.

SOLUTION In Figure IV.4.2 the ‘unshuffled’ stratified sample is plotted on the left and the
‘shuffled’ sample is plotted on the right. Clearly, step (ii) above is necessary otherwise all
the points would lie along the diagonal blocks within the unit square, as seen in the left-hand
figure. However, after shuffling the sample is uniformly distributed over the unit square.
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Figure IV.4.2 Effect of independently permuting stratified samples

Stratified sampling is a useful technique for generating initial values of a simulated process.
For instance, it can be used in one-step Monte Carlo for an h-day VaR, when we are simulating
the h-day risk factor returns directly. But it cannot be used to generate consecutive values along
a simulated path of an i.i.d. process, because the stratification introduces dependence into the
process.12 Hence, it should not be applied to each step in a multi-step Monte Carlo VaR model.

12 For instance, in the above example the first five simulations were all taken from the interval (0, 1/6].
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IV.4.2.4 Sampling from Univariate Distributions

Until this point we have focused on efficient methods for constructing random samples on
standard uniform distributions. Now we show how to transform a random sample from a
single standard uniform variable U into a random sample from a distribution of a random
variable X with a given continuous distribution function, F. Since the values of F lie between
0 and 1, given a random number u in (0, 1) we obtain the corresponding value of x by setting

x = F−1(u). (IV.4.4)

In other words, given a random number u, the corresponding simulation for X is the u quantile
of its distribution.

For example, Figure IV.4.3 illustrates this transformation in the case of a standard normal
distribution when the random number generated is 0.3.13 Note that given the sigmoid shape
of the distribution function a uniform series of random numbers will be converted into sim-
ulations where more observations occur around the expected value than in the tails of the
distribution.
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Figure IV.4.3 Simulating from a standard normal distribution

A sample from a standard normal distribution can be translated into a sample from any
other normal distribution using the inverse of the standard normal transformation.14 That is,
we obtain a simulation on a normal variable with mean μ and standard deviation σ using

x =�−1(u)σ +μ. (IV.4.5)

More generally, we can use the inverse distribution of any univariate distribution in
the transformation. For instance, in Excel we transform a standard uniform simulation u

13 In Excel, RAND( ) generates a standard uniform simulation and, for instance, NORMSINV(RAND( )) generates a simulation
�−1(u) from a standard normal variable.
14 See Section I.3.3.4 for the specification of the standard normal distribution.
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into a simulation on a standard Student t variable with ν degrees of freedom using the
command

t−1
ν

(u) =
{ −TINV(2u,ν), if u ≤ 1

2

TINV(2(1 − u),ν), if u > 1
2
.

(IV.4.6)

Note that the standard Student t distribution has mean zero and variance ν(ν − 2)−1, so to
transform the simulations t−1

ν (u) to simulations from a general Student t distribution with mean
μ and standard deviation σ, we use the transformation

x =√
ν−1(ν − 2)t−1(u)σ +μ. (IV.4.7)

Excel also provides inverse distribution functions for several other distributions.
Table IV.4.1 shows the command for generating simulations from each, where u = RAND().

Table IV.4.1 Excel commands for simulations

Distribution Command Parameters

Normal NORMINV(u, μ, σ) (μ, σ) mean and standard deviation parameters
Lognormal LOGINV(u, μ, σ) (μ, σ) parameters of normal distribution
Chi-squared CHIINV(u, ν) ν, degrees of freedom
F FINV(u, ν1, ν2) ν1, ν2 degrees of freedom
Gamma GAMMAINV(u, α, β) α and β shape and (inverse) scale parametersa

Beta BETAINV(u, α, β) α and β both shape parametersb

aThe gamma density function is f(x;α,β) = xα−1�(α)−1βα e−βx, x > 0, where �(α) is the gamma function.
bThe beta density function is f(x;α,β) = B(α,β)−1xα−1(1 − x)β−1,0 < x < 1, where B(α,β) is the beta function.

The variance reduction techniques that were described in the previous section can be trans-
lated into variance reduction for simulations based on other univariate distributions. For
instance, if X has a normal, Student t, or any other symmetric distribution F then

x = F−1(u) ⇔ −x = F−1(1 − u). (IV.4.8)

Hence antithetic sampling from a uniform distribution is equivalent to antithetic sampling
from any symmetric distribution.

Stratified samples on a standard uniform distribution also correspond to stratified samples
on any other distribution, because a distribution function is monotonic increasing. If the
sub-intervals used for the stratification have equal probabilities under the standard uniform
distribution, they will also have equal probabilities under a non-uniform distribution. For
example, if the equiprobable sub-intervals for uniform stratification are

(0, 0.25], (0.25, 0.5], (0.5, 0.75] and (0.75, 1)

then the equiprobable sub-intervals for standard normal stratification are

(−∞,�−1(0.25)
]
,
(
�−1(0.25),�−1(0.5)

]
,
(
�−1(0.5),�−1(0.75)

]
, and

(
�−1(0.75),∞)

.

However, the sub-intervals no longer have equal length.
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Figure IV.4.4 compares the histogram of a stratified sample from a lognormal distribution
with that based on an unstratified sample. The two empirical densities are based on the same
sample of 500 random numbers, but the density shown in black is based on a stratified sample
with 50 observations taken from 10 equiprobable sub-intervals of (0, 1). The mean and the
standard deviation of the lognormal variable were both set equal to 1. The density based on
the stratified sample should be closer to the theoretical distribution.
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Figure IV.4.4 Densities based on stratified and unstratified samples

IV.4.2.5 Sampling from Multivariate Distributions

Several chapters in Volumes I and II of the Market Risk Analysis series have explained how
to transform a random sample on several independent standard uniform variables U1, . . . ,Uk

into a random sample from a multivariate distribution of several, non-independent and non-
uniform random variables X1, . . . ,Xk.15 First we generate independent simulations on each
marginal distribution, then we impose the dependence structure using either the Cholesky
matrix of the correlation matrix,16 or for more general distributions, the copula. We shall not
repeat the theory here. The main focus of this chapter is to provide empirical examples and
case studies of Monte Carlo VaR where simulations are based on realistic risk factor returns
models.

IV.4.2.6 Introduction to Monte Carlo VaR

We know how to obtain variance reduced simulations on the returns to the risk factors of
a portfolio, or indeed on the returns to any dependent set of asset prices. But how do we

15 For instance, refer to Section I.5.7.5 for details on generating simulations from correlated normal or Student t distributed variables
and to Section II.6.7 for simulations on a multivariate distribution, with marginal distributions that may have different parametric
forms and where the dependence structure is represented by a copula.
16 In the case of the multivariate normal or Student t distributions, we could simulate realizations of standardized normal or t variables,
and then impose the variance as well as the correlation using the Cholesky matrix of the covariance matrix.
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compute the portfolio’s VaR and ETL?17 The process is completely analogous to the estima-
tion of VaR and ETL using historical simulation, only now we use Monte Carlo simulations
instead of historical simulations. That is, we simulate a distribution for the portfolio’s h-day
returns, or for its h-day P&L, and the 100α% h-day VaR estimate is estimated empirically
as −1 times the α quantile of this distribution.18 The ETL is estimated empirically, by taking
−1 times the average of the returns that are less than the VaR (or the losses that exceed
the VaR).

When we base the portfolio’s returns or P&L distribution on a portfolio mapping, each
vector of simulations on the risk factor returns is input to this mapping to obtain one simu-
lated portfolio return. Using a very large number N of simulated vectors on the risk factor
returns gives N simulated portfolio returns, from which we derive their distribution. On the
other hand, if we price the portfolio exactly, each vector of simulations on the risk factor or
asset returns is used to derive values for the risk factors themselves, and these are used in
the appropriate pricing model. Then the simulation of the portfolio’s P&L is the difference
between the simulated portfolio price and the current price of the portfolio.19 Again, N simu-
lations on vectors of risk factor returns give N points upon which to base the portfolio P&L
distribution.

In the next chapter we shall make a strong case that Monte Carlo simulation is the most
reliable method for estimating the VaR for option portfolios. Historical simulation is good
when the risk horizon is 1 day and the confidence level is not too high, but it is very difficult
to extend the model to longer risk horizons or higher confidence levels without introducing
model risk in some form or another. And analytic approximations to the VaR for an option
portfolio are usually too inaccurate to be of much use.

Monte Carlo simulation may also be applied to the VaR estimation of linear portfo-
lios. Here the main advantage of Monte Carlo over historical simulation is the absence of
restrictions on historical sample size. The calibration of the parametric distributions for risk
factor or asset returns can be based on very little historical data, indeed we could just use
scenario values for the parameters of the distributions. And if the parameters are calibrated
on only very recent history, the Monte Carlo VaR estimates will naturally reflect these market
circumstances.

The advantage of Monte Carlo VaR compared with parametric VaR estimates for linear port-
folios is the large number of alternative risk factor return distributions that can be assumed.
However, readers are warned that, if insufficient thought and effort have been invested in
choosing and developing the statistical model of risk factor returns, this can be the major
drawback of using Monte Carlo simulation to estimate VaR. It is important to apply sim-
ulations to a dynamic model of risk factor returns that captures path-dependent behaviour,
such as volatility clustering, as well as the essential non-normal features of their multivariate
conditional distributions. Without such a model, volatility adjusted historical simulation may
be the better alternative, except for static option portfolios.

The next two sections of this chapter develop the risk factor returns models that underpin the
Monte Carlo VaR estimate. Then, in Section IV.4.5 we illustrate these models with empirical
examples for different types of linear portfolios. Linear portfolios of interest rate sensitive

17 When these estimates are based on Monte Carlo simulations we call them ‘Monte Carlo VaR’ and ‘Monte Carlo ETL’ for short.
18 As usual, if the α quantile is of the return distribution, the VaR is expressed as a percentage of the portfolio’s value, and if the
α quantile is of the P&L distribution, the VaR is expressed in value terms.
19 This is for a long exposure to the portfolio – and for a short portfolio the simulated P&L is the current price minus the simulated
price.
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instruments, cash or futures positions on equities, currency forwards, and commodities are
all treated in slightly different ways. First, if risk factor sensitivities are in value rather than
percentage terms (e.g. for interest rate sensitive portfolios) we require absolute changes rather
than returns in the risk factor mapping. Second, the essential features of the risk factor returns
model differ according to the portfolio. For example, volatility clustering is more important
in credit spreads than in interest rates, and asymmetry is more important in equities than in
currencies.

IV.4.3 MODELLING DYNAMIC PROPERTIES IN RISK
FACTOR RETURNS

This section describes the empirical characteristics of a single time series for a financial asset
or risk factor and summarizes the econometric models that are commonly used to capture
these characteristics. Since this is a vast subject we assume the reader is already armed with
the relevant background knowledge. This can be found in Market Risk Analysis Volume II,
the most important parts being:

• EWMA and GARCH models and their application to Monte Carlo simulation (see
Chapters II.3 and II.4, and Section II.4.7 in particular);

• univariate time series models of stationary processes (see Chapter II.5, and Section II.5.2
in particular); and

• advanced econometric models (see Chapter II.7, and Section II.7.5 in particular).

When risk factor returns are assumed to be i.i.d., we simulate h-day returns on each risk factor,
and hence estimate VaR and ETL in one step. However, when the risk factors have dynamic
properties such as autocorrelation and volatility clustering, these properties will influence the
Monte Carlo VaR estimate. Hence we must consider simulations of time series on risk factor
returns, over the risk horizon. We begin with a general description of the multi-step framework
for simulating time series that capture the dynamic behaviour of financial returns. We then
introduce the concept of importance sampling as a useful means of decreasing computation
time without sacrificing too much accuracy. If there is one overriding feature of financial
returns that a dynamic model should necessarily capture, it is volatility clustering. To do this
properly requires a technical background in statistical models for time varying volatility, but
the exposition below is presented at a relatively low technical level. For equity, forex and
currency exposures the major market risk factors are prices, and mean reversion in prices is
weak, if it exists at all, at the daily level. But volatility is usually a rapidly mean-reverting
time series so we should try to include this feature in a multi-step Monte Carlo framework for
option portfolios. The last part of this section provides a gentle introduction to the inclusion of
volatility regime-switching behaviour in Monte Carlo models for long term VaR estimation.

IV.4.3.1 Multi-Step Monte Carlo

The previous section focused on efficient algorithms for generating a very large number N of
simulations on k variables. In the context of Monte Carlo VaR, these variables could represent
the h-day returns on the k risk factors for a portfolio. Each row vector of simulations on the
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risk factors gives one simulated value for the portfolio, via the portfolio mapping.20 Hence,
we obtain N simulated portfolio values.

Commonly we would use one-step Monte Carlo to simulate h-day risk factor returns
directly. But in many cases – such as estimating the VaR for a path-dependent option, or
for estimating the VaR of a linear portfolio without ignoring the dynamic features of daily
returns – it can be very important to capture the characteristics of daily returns in the sim-
ulation model. For this we need to use a multi-step Monte Carlo framework. For a linear
portfolio, with simulations at the daily frequency, this consists of simulating an h-day log
return by summing h consecutive daily log returns, and then just evaluating the portfolio once,
h days ahead. But for an option portfolio, and particularly one with path-dependent products,
we would evaluate the portfolio value on every consecutive day over the risk horizon.21

Multi-step Monte Carlo for a single risk factor is illustrated in Figure IV.4.5. Here we
assume that the number of risk factors k = 1 and the risk horizon is h = 10 days, and we
perform N = 5 simulations based on the assumption of i.i.d. lognormally distributed returns.
We use log returns to simulate the price of our portfolio on each day over the risk horizon,
starting from the current price, which we assume is 100, and ending in 10 days’ time with five
simulated prices. Hence, we simulate five paths for the daily log returns over the next 10 days.
This means that, when we are estimating the risk of an option portfolio, the simulated daily
log returns can be used to calculate the price tomorrow, the price in 2 days’ time, and so on up
to the risk horizon (of 10 days, in this case). It is these price paths that we depict in the figure.
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Figure IV.4.5 Multi-step Monte Carlo price paths

If the current price is 100, the simulated price in 10 days’ time based on one-step Monte
Carlo is 100 exp(r10), where r10 is a simulated 10-day log return. To take path dependence
such as volatility clustering into account, we should use multi-step Monte Carlo to simulate
each r10 as the sum of 10 consecutive daily log returns. If the log returns are i.i.d. this would
be a waste of time, unless we are pricing a path-dependent product. When returns are i.i.d.
the sum of 10 consecutive daily log returns should be the 10-day log return, so the result is

20 Or, if the simulations are on the asset returns, we obtain the portfolio return using constant portfolio weights.
21 Indeed, for path-dependent products we may also wish to simulate portfolio values at a higher frequency than daily.
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theoretically the same whether we use 50 simulations for five 10-step paths, or use just five
simulations on 10-day returns.22 And the latter is 10 times quicker. However, if returns are not
i.i.d. then multi-step Monte Carlo over h consecutive days will not give the same theoretical
results as one-step h-day Monte Carlo, even for linear portfolios.

Multi-step Monte Carlo requires considerable effort compared with the one-step case. For
instance, in Figure IV.4.5 we generated only five prices at the 10-day horizon but we needed
50 random numbers. In general, multi-step methods at the daily frequency over an h-day risk
horizon require h times more simulations than one-step methods. And it is not just the extra
simulations that take time: path-dependent products often require complex pricing models,
and these have to be implemented at each step along the path.

Importance sampling is a technique for focusing simulations on the most important path. For
instance, suppose we are using multi-step Monte Carlo to estimate the 10-day VaR of an up-
and-out call option where the underlying asset price has a strong positive trend and the current
price is not very far below its barrier. Then there is a reasonably high chance that within
10 days the underlying price will hit the barrier and knock out the option. If we simulated
50,000 10-day paths for this option – requiring 500,000 random numbers to be generated and
500,000 associated pricings for the barrier option – then perhaps about 20,000 of these paths
could result in a zero price for the option. In other words, we would have wasted about 40%
of the simulation time in generating paths for the underlying price that all lead to the same
price for the option, i.e. zero.

Suppose the underlying asset price has a strong negative trend, instead of a strong upward
trend, although the volatility remains unchanged.23 Then relatively few of the price paths
would result in a zero price for the up-and-out barrier option. As a result, our option
price, which is computed as the average over all simulated discounted pay-offs, would be
more accurate based on the same number of simulations. However, without modifying this
price in some way, it would also be wrong, because it is based on the wrong drift for the
process.

Importance sampling makes an artificial change to the drift in the price process, in order to
shift the price density to one where more of the paths lead to informative simulated prices for
the option. The only problem is that the average of such prices is not the option price we want.
It is a price that has been simulated in the wrong measure.24 However, we can derive the option
price in the original measure from the price that we have simulated under the new measure.
We just multiply each simulated option price by the ratio of the original underlying price
density to the ‘shifted’ underlying price density, both evaluated at the simulated underlying
price, before taking the average.25

In so far as it helps to price complex products, importance sampling based on a change of
measure is a very useful technique for simulating VaR for large portfolios with exotic, path-
dependent options. However, VaR is related to a quantile, not an expected value, so different

22 However, due to sampling variation, the two results are not the same, as demonstrated in the spreadsheet for Figure IV.4.5.
23 Thus the underlying price density is the same shape as before, but it has been shifted to the left because the drift has been
reduced.
24 This is because a change of drift in the price process is a change in the measure. An option price is a discounted expectation (which
is why we can obtain the simulated price as an average) and we use the subscript on the expectation operator to denote the measure
under which the expectation is taken. In this case we have two measures, the original price distribution P and the price distribution
Q which is used to estimate the price after changing the drift so that more of the paths avoid the barrier. See Section III.3.2.3 for
further details.
25 This ratio is called the likelihood ratio, or the Radon–Nykodym derivative of the two measures. Further details are given in
Section III.3.2.3.
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techniques are required for the application of importance sampling to VaR estimation. For
instance, Glasserman et al. (2000) apply importance sampling via an exponential twisting
technique to the delta – gamma representation of the P&L of an option portfolio.

IV.4.3.2 Volatility Clustering and Mean Reversion

One of the most important features of high frequency returns on equity, currency and com-
modity portfolios is that volatility tends to come in clusters. Certainly at the daily frequency,
but also when returns are sampled weekly if not monthly, large returns tend to follow large
returns of either sign. Whilst returns themselves may show little or no autocorrelation, there
is a strong positive autocorrelation in squared returns. We refer to this feature as generalized
autoregressive conditional heteroscedasticity because the conditional volatility varies over time,
as markets pass through periods with low and high volatility.

Chapter II.4 provided a comprehensive introduction to GARCH modelling, and to under-
stand the current subsection readers are also referred to Sections II.3.8, which introduced
exponentially weighted moving averages, a simple method for generating time varying esti-
mates of volatility. It is not easy to estimate GARCH models in Excel without special add-ins.
Nevertheless a number of spreadsheets that illustrated the use of Excel Solver to estimate
GARCH parameters were provided with Chapter II.4. So as not to obscure the important learn-
ing points here, the examples in this subsection will be illustrated with user-defined GARCH
parameters, or using a simple EWMA model. First, we illustrate the effect of volatility cluster-
ing on Monte Carlo VaR estimates using the simplest possible example, with EWMA volatility
at the portfolio level.

When based on multi-step Monte Carlo simulations, the EWMA variance estimate σ̂2
t at

time t is computed using the recurrence

σ̂2
t = (1 −λ)r2

t−1 +λσ̂2
t−1, (IV.4.9)

where λ is a constant called the smoothing constant, and rt−1 is the simulated log return in the
previous simulation. In the normal EWMA model for simulating log returns we set rt = σ̂tzt

where zt is a simulation from a standard normal variable and σ̂t is computed using (IV.4.9).
The next example shows that when EWMA is used to capture volatility clustering, the h-day

Monte Carlo VaR estimates can be considerably greater than the equivalent constant volatility
VaR estimates (even over short risk horizons) if the current return is relatively large.

EXAMPLE IV.4.6: MULTI-STEP MONTE CARLO WITH EWMA VOLATILITY

Compare the 10-day log returns that are obtained using multi-step Monte Carlo based on

(a) independent zero-mean normal log returns with a constant conditional volatility of
20%, and

(b) independent zero-mean normal log returns with a time-varying volatility estimate given
by a EWMA model. Assume that the current conditional volatility is 25%, the current
daily return is 1% and thereafter conditional volatilities are generated using EWMA
with daily smoothing constant 0.9.

How do the 10-day VaR estimates that are based on the two return distributions compare?
What happens if the current daily log return is 10%?
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SOLUTION We compute the 10-day log returns under each model using the same random
numbers. The 10 standard normal realizations used for daily log returns are shown in columns
B to K of the spreadsheet for this example. The log returns under the constant volatility model
(a) are simulated by multiplying each standard normal realization zi (i = 1, . . . , 10) by the
daily standard deviation, then these are summed to obtain the simulated 10-day log return
shown in column V.

The log returns under the EWMA model (b) are based on the model (IV.4.9) with λ = 0.9.
These are constructed in two interconnected parts. First we simulate the EWMA variance σ̂2

1,
using the model (IV.4.9) with r0 = 0.01 and σ̂0 = 0.25/

√
250. Then we multiply the same

standard normal realization z1 that was used to simulate the 1-day-ahead daily log return in
model (a) by σ̂1, to obtain r1, the 1-day-ahead daily log return in model (b). Then we use r2

1

and σ̂2
1 in (IV.4.9) to obtain σ̂2

2, and multiply the same standard normal realization z2 that was
used to simulate the 2-day-ahead daily log return in model (a) by σ̂2, to obtain r2, the 2-day-
ahead daily log return in model (b). This process is repeated up to the 10-day-ahead daily log
return and then the 10 log returns are summed to obtain the simulated 10-day log return shown
in column AQ.

Table IV.4.2 compares 10 simulated 10-day log returns that are generated using each model.
The first two columns are returns that are simulated using the current daily log return r0 =1%,
and these show that the return with EWMA volatility may be greater than or less than the con-
stant volatility return, depending on the simulation. The second two columns of simulations
set r0 = 10%, and with such a large daily shock, almost all the returns have greater magnitude,
whether positive or negative, when based on the volatility clustering model.

Table IV.4.2 Simulated returns based on constant and EWMA volatilities

Shock r0 = 1% r0 = 10%

Simulation Constant volatility EWMA volatility Constant volatility EWMA volatility

1 0.0820 0.0743 0.0441 0.1110
2 −0.0257 −0.0249 −0.0422 −0.1004
3 0.0117 0.0070 −0.0130 −0.0033
4 −0.1089 −0.1085 −0.0231 −0.0477
5 −0.0149 −0.0089 −0.1405 −0.3290
6 −0.0093 −0.0130 0.0332 0.0726
7 −0.0180 −0.0154 0.0312 0.0673
8 0.0146 0.0149 0.0200 0.0474
9 −0.0263 −0.0211 0.0993 0.2326

10 0.0008 −0.0124 0.0450 0.0968

After extending the simulations to a sufficiently large number, readers can use the spread-
sheet for this example to compare the 10-day VaR estimates that are based on the 10-day
return distributions generated by the two different volatility models. The first two rows of
Table IV.4.3 report the results for 0.1%, 1%, 5% and 10% VaR estimates, expressed as a per-
centage of the portfolio value, based on the same set of 10,000 random numbers. Repeating
the simulations shows that the P&L distribution becomes more leptokurtic when the simula-
tions include volatility clustering. The second two rows of the table report the results from the
same set of 10,000 random numbers – note these are different simulations from those used in
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the top part of the table – when the current daily log return is 10%. Notice that the constant
volatility model is not influenced by the size of the shock.26 But when volatility clustering
is included in the returns model, all the VaR estimates are considerably greater following a
shock of 10% than of 1%.

Table IV.4.3 Multi-step Monte Carlo VaR based on constant and EWMA volatilities

Shock Significance level 0.1% 1% 5% 10%

r0 = 1% Constant volatility 15.39% 15.30% 9.79% 7.25%
EWMA volatility 18.57% 15.11% 9.58% 7.57%

r0 = 10% Constant volatility 12.66% 11.55% 7.05% 5.99%
EWMA volatility 26.98% 26.63% 17.91% 12.56%

The above example demonstrates that introducing volatility clustering in the dynamic model
of portfolio returns produces heavier tails in the 10-day return distribution, and to capture this
effect we need to use multi-step Monte Carlo simulation.

However, the EWMA model takes no account of the asymmetric relationship between
returns and volatility. That is, the results in Example IV.4.5 would be similar to those pre-
sented here if the current daily returns were −1% and −10% respectively. EWMA ignores
the fact that the volatility of equity portfolio returns increases considerably following a large
negative return, but increases little, if at all, following a positive return of the same magnitude.
That is, there is no asymmetric volatility clustering in EWMA. It also assumes there is no
mean reversion in volatility.

To capture asymmetric volatility clustering and mean revision in volatility following a
shock, we can use an asymmetric GARCH model. The following example uses a similar
methodology to that explained in the previous example, but now the EWMA model (IV.4.9)
for the conditional variance of the returns is replaced by an A-GARCH model. This model
takes the form27

σ2
t =ω + α(εt−1 −λ)2 + βσ2

t−1, (IV.4.10)

where the parameter λ will be positive if the volatility increases more following a negative
return than it does following a positive return of the same magnitude.28 Here εt denotes
the unexpected return, which is commonly set equal to its deviation from a constant mean.
The EWMA model assumes this mean is zero, and we shall also assume this in the following
example, hence we assume εt = rt for all t.

26 In fact, because we used different simulations, and not nearly enough of them for good levels of accuracy, the constant volatility
model actually has a lower VaR estimate in the second part of the table.
27 Note that we do not use the caret ‘∧’ for the variance here, because the model conditional variances are time-varying in the GARCH
framework. In the EWMA framework the true conditional variance is constant, with only its estimates varying over time.
28 Not to be confused with the EWMA λ, which measures the persistence of volatility following a market shock (the GARCH param-
eter β plays this role); in the EWMA model 1 − λ captures the reaction of volatility to a market shock (the GARCH parameter α

plays this role). The GARCH parameter ω affects the unconditional (i.e. long term average) volatility of the GARCH model. Read-
ers should consult Section II.4.2.6 if they require further information on the association between GARCH and EWMA volatility
models.
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EXAMPLE IV.4.7: MULTI-STEP MONTE CARLO WITH ASYMMETRIC

GARCH VOLATILITY

Compare the multi-step VaR estimates that are obtained using

(a) a constant volatility model with volatility 25%, and
(b) an A-GARCH model (IV.4.10) with the parameters shown in Table IV.4.4 (note that the

unconditional volatility of this model is 25%).29

Table IV.4.4 A-GARCH model parameters

Parameter Value

ω 4 × 10−6

α 0.06
λ 0.01
β 0.9

Estimate the 10-day VaR at the 0.1%, 1%, 5% and 10% significance levels, following a pos-
itive return of 10% and following a negative return of 10%. Use the same set of standard
normal realizations to drive each model.

SOLUTION The spreadsheet for this example is very similar to the spreadsheet for the
previous example, the only difference being that we use an A-GARCH model instead of
EWMA. The 10-day VaR estimates based on one set of 10,000 simulations are displayed in
Table IV.4.5. The simulations for the constant volatility model are based on the same random
numbers as those used in Example IV.4.6.

Table IV.4.5 Multi-step Monte Carlo A-GARCH VaR with positive and negative
shocks

Significance level 0.1% 1% 5% 10%

Constant volatility 12.66% 11.55% 7.05% 5.99%
A-GARCH (+ve shock) 20.90% 19.65% 12.68% 9.26%
A-GARCH (−ve shock) 21.57% 19.88% 13.12% 9.14%

The VaR estimates based on constant volatility are identical those shown in Table IV.4.3,
since the same 10,000 standard normal simulations were used. But the A-GARCH VaR
estimates are considerably lower than the EWMA estimates in Table IV.4.3. This is because
the volatility should revert quite rapidly following such a large shock, and this does not happen
in the EWMA model. Instead, the EWMA model is highly reactive to the market because it
has a reaction coefficient of 0.1. By comparison the GARCH model has a reaction coefficient
of 0.06.

The asymmetric volatility response to positive and negative shocks is evident on comparing
the last two rows in Table IV.4.5. At high levels of confidence the A-GARCH VaR based on

29 The unconditional volatility is derived using the formula for the long term variance given in Section II.4.3.1.
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a negative shock is greater than the VaR based on the same model, but following a positive
shock of the same size. This asymmetric clustering effect is controlled by the λ parameter.
When it is zero there is no differential effect, and when it is negative the A-GARCH VaR
following a positive shock would be the greater. However, the asymmetric clustering effect is
minor compared with the volatility mean reversion effect that all GARCH models capture.

To see this mean reversion in action, Figure IV.4.6 shows two simulations of daily returns
over 10 days based on the same random numbers but using the EWMA (in grey) and the
A-GARCH model (in black).30 The asymmetric effect in the GARCH model is very small, in
fact in these simulations, noting the scale of the returns, the volatility is greater following a
very small positive first return (above) than following a large negative return (below). Both
graphs illustrate the pronounced mean reversion in the A-GARCH volatility model. The
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Figure IV.4.6 Simulated returns based on EWMA and GARCH following shock

30 For this model set the A-GARCH parameter λ to zero.
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EWMA model has volatility that remains higher for longer, because of the EWMA model’s
higher reaction coefficient.

I am often asked why we cannot use analytic volatility term structure forecasts, such as
those derived for various asymmetric GARCH models in Section II.4.3, to estimate VaR
with volatility clustering. That is, why can we not take the h-day GARCH volatility for the
portfolio, for which there is an analytic formula, and multiply this by the standard normal
critical value, just as we would to estimate VaR under the assumption of i.i.d. returns? There
are two reasons. First, the h-day returns are not normal or i.i.d., because their volatility is time
varying. Secondly, whilst these analytic formulae give us forecasts of h-day GARCH volatil-
ity, a forecast is only an expected value. Analytic GARCH volatility forecasts are based on the
assumption that the squared return on every day between now and the risk horizon is equal to
its expected value. The use of analytic forecasts therefore ignores a very considerable source
of uncertainty in the 10-day log return distribution.31 But the risk of the portfolio as measured
by the 10-day VaR – or indeed as measured by the standard deviation or any other dispersion
metric for 10-day returns – is a measure of the uncertainty of these returns. Therefore, the use
of analytic formulae for GARCH volatility term structures, which ignores the most important
part of this uncertainty, will tend to underestimate the VaR substantially.

To summarize, the advantage of using GARCH models in VaR estimates based on multi-
step Monte Carlo is that these models include a mean reversion effect in volatility. That is, if
the returns over the risk horizon were all equal to their expected value (which was assumed to
be zero above) then the volatility would converge to its long term average value. Whenever a
return is different from its expected value, GARCH volatility will react, but will also display
mean reversion. Mean reversion in equity prices or in forex rates is negligible, in commodity
prices it is questionable, and even in interest rates mean reversion tends to occur over a very
long cycle.32 But volatility is known to mean-revert relatively rapidly. Hence, volatility is a
risk factor for which a mean reversion effect is important when designing dynamic models of
market returns.

There are several papers on the ability of GARCH models to capture volatility clustering
in the VaR estimation literature. Mittnik and Paolella (2000) and Giot and Laurent (2003)
employ an asymmetric generalized t conditional distribution in the GARCH model; Venter
and de Jongh (2002) use the normal inverse Gaussian distribution and Angelidis et al. (2004)
apply the Student t EGARCH model. Both So and Yu (2006) and Alexander and Sheedy
(2008) find that the Student t GARCH model performs well in VaR estimation for major cur-
rency returns. GARCH Monte Carlo VaR models also have important applications to stress
testing portfolios, as we shall see in Chapter IV.7.

IV.4.3.3 Regime Switching Models

Our discussion of Monte Carlo simulation with GARCH models in Section II.4.7 made the
case that Markov switching GARCH is the only model that properly captures the type of
volatility clustering behaviour that we observe in most financial markets. In this section we
explain how this model provides a useful framework for deriving VaR estimates over a long
risk horizon, during which it is possible that volatility passes through different regimes. We

31 However, see Alexander et al. (2009) for a quasi-analytic form for the distribution of returns under GARCH processes. Having
derived analytic formulae for the first eight moments of the aggregated returns from a very general asymmetric GARCH process, we
fit a distribution to h-day returns. The resulting VaR estimates, which are very quick to compute, are very close to those based on
simulation.
32 See Section III.1.4.4 for further details and an empirical study.
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use a risk horizon of 250 days, although such long risk horizons are rare when we assess
market risks.

Figure IV.4.7 is based on the same Markov switching GARCH model as was used in
Section II.4.7.2. Each graph is generated from a different series of 250 simulated realizations
of a returns process with a regime switching volatility. Notice how different the two sim-
ulations are, even though they are based on the same GARCH model. The sum of the 250
consecutive log returns is 29.23% for the upper graph but −26.29% for the lower graph in
Figure IV.4.7. Also note that the initial return in the upper graph is quite large, and hence a
high volatility cluster appears immediately, whereas the initial return in the lower graph is
small and so the initial regime is one of low volatility. However, in this particular case it is the
path in the lower graph that experiences the most volatility, especially between days 50 and
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Figure IV.4.7 Log returns simulated under Markov switching GARCH
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150. The path in the upper graph has smaller bursts of volatility that are less extreme than in
the lower graph.

Each time we repeat the simulations the sum of the log returns can change considerably,
even though we do not change the model parameters. For example, I have repeated the
simulations ten times and obtained the following simulated values for the sum of the log
returns:

10.91%,18.93%,−1.55%,42.65%,−54.60%,32.67%,−35.68%,28.45%,5.08%,−14.46%.

We conclude that volatility clustering regimes introduce an additional source of uncertainty
into long term return distributions. This could significantly increase the long term VaR esti-
mate, depending on the volatility at the time is VaR is measured, compared with a constant
volatility VaR estimate. For instance, the VaR could be measured at a time when the market
was relatively tranquil, but there may still be a prolonged period of high volatility over the risk
horizon, as in the lower graph in Figure IV.4.7.

Unfortunately, without VBA code it is beyond the scope of Excel to simulate many thou-
sands of such annual returns, in order to estimate the Markov switching GARCH annual
VaR. And so we end the illustration here, leaving the development of the spreadsheet for
Figure IV.4.7 into a Markov switching GARCH model for long term VaR as an exercise for
the reader.

IV.4.4 MODELLING RISK FACTOR DEPENDENCE

The primary purpose of a risk model is to disaggregate portfolio risk into components corre-
sponding to different types of risk factors. That is why we use a portfolio mapping to derive the
portfolio returns or P&L, rather than modelling the returns or P&L distribution directly at the
portfolio level. All risk metrics, including VaR, should take account of portfolio diversification
effects when aggregating risks across different types of risk factors.

In the traditional view of portfolio theory, diversification effects arise when there is less
than perfect correlation between the assets or risk factors for a portfolio. More recently, we
have widened this to include any type of less-than-perfect dependence between risk factors,
where dependence in general is captured using a copula. In the elliptical copulas (i.e. normal
and Student t copulas) dependence is captured by a correlation matrix. But in other copulas,
different parameters govern dependence.

In this section we summarize the relevant material from Volumes I and II on statistical
models for dependence between risk factors and explain how they are implemented in a
Monte Carlo framework to simulate dependent vectors of risk factor returns. Several numerical
examples are provided, for which you will need to install the Matrix.xla Excel add-in.33

33 We use version 2.3 of this add-in, which is kindly provided free from http://digilander.libero.it/foxes by Leonardo Volpi of Foxes
team, Italy. To install this add-in to Excel 2003, in the Tools menu of Excel click ‘Add-ins’ then ‘Browse’. Find the location of
Matrix.xla on your machine, highlight the icon and click OK. Once added in, it remains on your menu of possible add-ins, and unless
you deselect it, it will be automatically loaded when you start Excel just like any other add-in. In Excel 2007 use the Excel Office
button to find the Excel options, and then browse the add-ins. Note that the software is not supported and, for Vista users, the Help
file requires the Windows Help program (WinHlp32.exe) for Windows Vista (as do all help files from earlier Microsoft operating
systems!).
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IV.4.4.1 Multivariate Distributions for i.i.d. Returns

Useful background reading for this section is the brief introduction to Monte Carlo simulation
of correlated variables in Section I.5.7, the material on multivariate elliptical distributions in
Section I.3.4, and Section II.6.7 on simulation with copulas.

We shall describe the process for estimating Monte Carlo VaR based on risk factor mapping,
but a similar algorithm applies to estimate Monte Carlo VaR using asset returns rather than risk
factor returns in the simulations. The only difference is that instead of applying the risk factor
sensitivities in the portfolio mapping to compute the portfolio return, we use the portfolio
weights.

We shall also assume that the portfolio mapping is based on returns rather than on changes
in the equity, currency and commodity risk factors, so that the mapping yields a portfolio
return. Hence, the VaR will be measured as a percentage of the portfolio value. But for inter-
est rate sensitive portfolios the risk factor mapping is normally based on changes in interest
rates, with the PV01 vector of sensitivities to these changes. Then the portfolio mapping
gives the portfolio P&L, not the portfolio return, corresponding to each vector of interest
rates changes.34

Multivariate Normal

The most basic algorithm for generating correlated simulations on k risk factor returns is
based on a k-dimensional, i.i.d. normal process. So the marginal distribution of the ith risk
factor’s return is N(μi, σ2

i ), for i = 1, . . . , k, and the risk factor correlations are represented
in a k×k matrix C. The algorithm begins with k independent simulations on standard uniform
variables, transforms these into independent standard normal simulations, and then uses the
Cholesky matrix of the risk factor returns covariance matrix to transform these into correlated
zero-mean simulations with the appropriate variance. Then the mean excess return is added to
each variable.

With the above notation the risk factor excess returns covariance matrix � may be written

� = DCD, (IV.4.11)

where D = diag(σ1, . . . ,σk). Its Cholesky matrix is a lower triangular k × k matrix Q such
that � = QQ′. We also write the expected returns in a vector, as μ = (μ1, . . . ,μk)

′. Then the
k × 1 multivariate normal vectors x are generated by simulating a k × 1 independent standard
normal vector z, and setting x = Qz +μ.

We simulate a very large number N of such vectors x and apply the portfolio mapping to
each simulation, thus producing N simulations on the portfolio returns. When the returns are
i.i.d. we use one-step rather than multi-step Monte Carlo, so the expectations vector μ and
standard deviation matrix D of the risk factor returns are h-day expected excess returns and
standard deviations. Then we simulate N h-day portfolio excess returns, find their empirical
distribution, find the α quantile of this distribution, multiply this by −1 and that is the h-day
VaR estimate. And the corresponding ETL is −1 times the average of the returns below the
α quantile.

34 The differences between portfolio mappings for different types of risk factors were discussed in detail in Chapter III.5 and, if not
already clear, this will be clarified in Section IV.4.5 when we provide specific examples for each different type of portfolio.
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EXAMPLE IV.4.8: MULTIVARIATE NORMAL MONTE CARLO VAR

A linear portfolio has five correlated risk factors, labelled A–E, which we assume have i.i.d.
normal returns. The annual expected excess returns on each risk factor, the risk factor volatili-
ties and the current risk factor sensitivities are displayed in Table IV.4.6. Below these the table
displays the risk factor returns correlation matrix. Use Monte Carlo simulation to estimate the
1% 10-day VaR of the portfolio.

Table IV.4.6 Risk factor returns, volatilities, sensitivities and correlations

Factor: A B C D E

Expected excess return 4.0% 5.0% 2.0% 0.0% −1.0%
Risk factor volatilities 20.0% 30.0% 15.0% 10.0% 40.0%
Risk factor sensitivities 0.75 0.5 0.25 0.1 −0.05

Correlation matrix A B C D E

A 1 0.75 0.5 −0.25 −0.05
B 0.75 1 0.25 0.35 −0.25
C 0.5 0.25 1 0.5 −0.5
D −0.25 0.35 0.5 1 0.05
E −0.05 −0.25 −0.5 0.05 1

SOLUTION Note that it is easier to represent the simulated vectors in the spreadsheet as row
vectors, although we used columns vectors (as usual) in the mathematical description of the
algorithm above. First the 10-day Cholesky matrix Q10 is calculated, and this is shown in cells
B17:F21 of the spreadsheet. Then we simulate five independent standard normal realizations
as a row vector z′, post-multiply this by the transpose of the 10-day Cholesky matrix and add
on the 10-day mean vector μ′

10. This gives x′
10 =z′Q′

10 +μ′
10, i.e. one simulation of a row vector

of correlated risk factor returns. Having simulated N such row vectors, we apply the linear risk
factor mapping to each one of these, using the sensitivities shown in Table IV.4.6, to obtain
N simulated portfolio 10-day returns. Finally, the 1% VaR is −1 times the 1% quantile of the
distribution of these returns, and with N = 10,000 simulations we obtain a Monte Carlo VaR
estimate of approximately 14% of the portfolio value.

Multivariate Student t

The above example illustrated the most basic risk factor mapping, i.e. a simple linear function,
and the most basic risk factor returns model, i.e. where the multivariate distribution is normal
and the risk factor returns are i.i.d. However, risk factor returns at the daily or weekly
frequency rarely have normal distributions. In particular, for estimating Monte Carlo VaR
over short risk horizons of up to a few weeks it is important to include leptokurtosis in the
risk factor return distributions. The easiest way to do this is to use a multivariate Student t
distribution, which has the distribution function specified in Section I.3.4.8. Note that there is
only one degrees of freedom parameter ν in this distribution, so the marginal distributions of
all risk factor returns are assumed to have the same excess kurtosis. But in the next subsection,
when we introduce copulas, we show how this assumption may be relaxed.
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The Monte Carlo VaR algorithm for i.i.d. multivariate Student t distributed risk factor
returns is very similar to the multivariate i.i.d. normal algorithm. The only difference is that
the vector z is replaced by a vector t containing simulations from a standardized multivariate
Student t distribution, i.e. the distribution with zero mean, unit variance marginals. Since
a Student t distributed variable with ν degrees of freedom parameter has mean zero but
variance ν(ν − 2)−1, we obtain t by multiplying independent standard Student t simulations
by

√
ν−1(ν − 2).

EXAMPLE IV.4.9: MULTIVARIATE STUDENT T MONTE CARLO VAR

Suppose the risk factors in the previous example have a multivariate Student t distribution
with 6 degrees of freedom, but otherwise the portfolio and the risk factors have the same
characteristics as those displayed in Table IV.4.6. Re-estimate the 1% 10-day VaR based on
this assumption.

SOLUTION The spreadsheet for this example is similar to that for Example IV.4.8, except
that now we use an extra set of five columns to produce the standardized uncorrelated simu-
lations, one set to simulate standard Student t distributed returns with 8 degrees of freedom,35

and a second set which transforms these to have unit variance. Otherwise the spreadsheet is
unchanged from the previous example. With 10,000 simulations we obtain a 1% 10-day Monte
Carlo VaR that is approximately 15% of the portfolio value.

Due to the leptokurtosis in the Student t distribution this is greater than the VaR estimate
based on normally distributed risk factor returns.36 The difference between the two VaR esti-
mates becomes more pronounced at more extreme quantiles, but at the 5% quantile there may
be little difference between the estimates, and at 10% the Student t VaR estimate may be less
than the normal VaR estimate.

Multivariate Normal Mixture

It is possible to apply Monte Carlo to many distributions – indeed, this is one of the main
advantages of Monte Carlo methods VaR. We now explain how to use Monte Carlo methods
when risk factor returns have a multivariate normal mixture distribution, i.e. each multivariate
normal in the mixture distribution has its own mean vector and covariance matrix. This is a
simple way to capture non-zero skewness as well as leptokurtosis in the risk factor returns.

By way of illustration, let us suppose we have only two multivariate normal distributions in
the mixture. In fact, this is often sufficient to capture the leptokurtosis and/or skewness that we
often observe in risk factor returns. Suppose one multivariate normal occurs with a low proba-
bility π, has mean vector μ1 and covariance matrix �1 and reflects ‘market crash’ conditions,
and the other, which occurs with probability 1 −π, has mean vector μ2 and covariance matrix
�2 and reflects ordinary market circumstances. The normal mixture distribution function on n
random variables x = (x1, . . . , xn)

′ may then be written

F(x)=π�(x; μ1,�1)+ (1 −π)�(x; μ2,�2), (IV.4.12)

where � is the multivariate normal distribution function.

35 Note that the cumbersome form of the TINV function in Excel requires a conditional statement in these simulations. See
Section I.3.5.3 for further details.
36 The excess kurtosis of each marginal is 6/(ν − 4) = 3 when ν = 6.
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Monte Carlo simulation on (IV.4.12) is performed in two stages. First we take a random
draw on a Bernoulli variable with success probability π. Then we sample from the first multi-
variate normal if the result is a ‘success’ and otherwise we sample from the second multivariate
normal. Equivalently, when we perform a very large number N of simulations, we apply μ1

and �1 to πN of the independent standard normal simulations and μ2 and �2 to (1 −π)N of
them. An empirical illustration of normal mixture Monte Carlo is given in Example IV.4.13
below.

Copulas

In the examples considered so far all the risk factor returns were assumed to have identical
marginal distributions. To allow for heterogeneous risk factor return distributions we must
model dependence using a copula distribution. Copulas are multivariate distributions with uni-
form marginals that may be used to construct a huge variety of risk factor return distributions.
The copula only models dependence; the marginal distribution of each of the risk factor returns
may be anything we like. For instance, one risk factor could have a Student t return distribu-
tion with 6 degrees of freedom, another could have a normal return distribution, another could
have a gamma distribution, and so on.

Normal (also called Gaussian) and Student t copulas capture dependency through a corre-
lation matrix, which is a limited measure of only linear association. But there are many other
copulas that capture more general dependency. One very attractive class of copulas, which
have very parsimonious parameterizations, are the Archimedean copulas. See Sections II.6.4.4,
II.6.5.4 and II.6.7.4 for further details.

Suppose the risk factor returns have some assumed marginal distributions, which need not
be identical, and that their dependency is modelled with a copula. The simulation algorithm
begins with simulations on independent uniform random variables. Then the inverse con-
ditional copula functions are applied to obtain realizations of dependent uniform variables.
Finally, the dependent uniform realizations are translated into simulations on the risk factor
returns by applying the relevant inverse marginal distribution function to each realization.

The elliptical copulas (i.e. normal and Student t copulas) have dependency structure that is
captured by a correlation matrix, and this makes simulation based on these copulas very easy,
with risk factors that may have a variety of marginal distributions. In the next example we
show how to estimate VaR based on simulated returns to five risk factors, each having different
Student t marginal distributions, but with a normal copula. Because the marginals already have
a variance different from one, for a normal or Student t copula we use the Cholesky matrix of
the correlation matrix, not of the covariance matrix, to impose the dependency structure.

EXAMPLE IV.4.10: MONTE CARLO VAR BASED ON COPULAS

Suppose the risk factors have the same expected excess returns and volatilities as in the two
previous examples and that their dependency is described by a normal copula with the same
correlation matrix. The portfolio’s risk factor sensitivities are also assumed to be the same as
in the previous examples. However, now suppose that each risk factor return has a different
univariate Student t marginal distribution. The degrees of freedom, in order of the five risk
factors are: 5, 4, 6, 10, and 5. Re-estimate the 1% 10-day VaR based on this assumption.

SOLUTION The result is only marginally less than that in the previous example: based on
10,000 simulations, the 1% 10-day VaR is approximately 14.75% of the portfolio value. The



230 Value-at-Risk Models

use of a normal copula rather than a Student t copula tends to decrease the VaR, but some of
the marginals have less leptokurtosis than in the previous example, which tends to increase
the VaR.

The purpose of the above example is not to discuss how the VaR behaves under different
behavioural assumptions for the risk factors; it is merely to illustrate the algorithm for esti-
mating VaR based on simulation from a normal copula with different marginals. The steps are
as follows:

1. Simulate independent standard uniform observations, one column for each risk factor.
2. Transform these into independent standard normal observations, using the inverse

standard normal distribution function.
3. Transform the independent standard normal observations into correlated multivariate

standard normal observations, using the Cholesky matrix of the correlation matrix.
4. Transform the correlated multivariate standard normal observations into simulations

from a normal copula, by applying the standard normal distribution function.
5. Transform the simulations from a normal copula into standard Student t observations

with normal copula, using the inverse distribution function for the Student t with the
required degrees of freedom. Note that the degrees of freedom can be different for each
marginal. Indeed, the marginals do not have to have Student t distributions, we have just
used these for illustration.

6. Use the required h-day mean and h-day standard deviation to transform the standard
Student t observations with normal copula into simulations on h-day risk factor returns,
with general Student t marginals, but still with dependency captured by a normal copula.

7. Apply the risk factor mapping and hence obtain simulated portfolio returns.
8. Estimate the α quantile of the simulated portfolio return distribution, and multiply this

by −1 to obtain the 100α% VaR. If required, estimate the 100α% ETL as −1 times the
average of the returns less than the α quantile.

Algorithms for simulation from bivariate distributions using various copulas are illustrated
in the workbook ‘Copula_Simulations_II.6.7.xls’ that accompanies Volume II. Also in that
workbook is an example on VaR estimation under various copulas, described in Section
II.6.8.1. Readers may wish to study that workbook and then change the spreadsheet for the
above example so that it uses a different copula and/or different marginals. For example, with
a Student t copula with ν degrees of freedom, the transformation at step 2 is performed using
the inverse Student t distribution with ν degrees of freedom, and then its distribution function
is applied at step 4. But for other copulas we would not use a correlation matrix at all. For
instance, for simulations under a Clayton copula the risk factor dependency is described by a
single parameter.

IV.4.4.2 Principal Component Analysis

Principal component analysis is a standard statistical tool for orthogonalizing risk factors and
for reducing dimensions of the risk factors. In other words, PCA is a technique for extracting a
few key, uncorrelated risk factors – which are called the principal components – from a larger
set of correlated risk factors. It works best when the original risk factors are highly corre-
lated, since then we need only a few principal components to represent the system. The first
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component will be the most important, and in a highly correlated system it usually represents
a common trend.

PCA works especially well when the risk factors are a highly correlated, ordered system
since then all the principal components and not just the first one will have an intuitive financial
meaning. This is why much of Chapter II.2 dealt with the principal component factor models
for term structures of interest rates, credit spreads, futures, forwards or volatilities. The input
to a PCA is either a covariance matrix or a correlation matrix. Then the principal components
are derived from the eigenvectors of this matrix, which are ordered so that the first eigenvector
belongs to the largest eigenvalue, and therefore the first component explains the most variation
in the system. In very highly correlated systems this component captures an almost parallel
shift in all variables, and more generally it is labelled the common trend component, because it
captures the most often experienced type of common movement in all risk factors. The second
eigenvector belongs to the second largest eigenvalue, and therefore the second component
explains the second most variation in the system. In ordered and highly correlated systems
such as a term structure this eigenvector captures an almost linear tilt in the variables, so it is
commonly labelled the tilt component. The third most important component usually comes
from an eigenvector that is an approximate quadratic function of the ordered variables, so it
has the interpretation of convexity or curvature. Similarly, higher order principal components
in ordered, highly correlated systems capture changes in risk factors that are cubic, quartic,
quintic and so forth.

The ability of PCA to reduce dimensions, combined with the use of orthogonal variables
for risk factors, makes this technique an extremely attractive option for Monte Carlo simula-
tion. In highly correlated term structures of interest rates, credit spreads and volatilities the
replacement of the original risk factors by just a few orthogonal risk factors introduces very
little error into the simulations, and increases the efficiency of the simulations enormously,
because it reduces the number of risk factors.

However, the application of PCA to Monte Carlo simulations of equity and currency risk
factors, or to portfolios with different types of commodity futures, is limited. Typically, these
systems are neither very highly correlated nor ordered. So a large number of principal compo-
nents would usually be required in the representation, to avoid introducing a substantial risk
model error. This means that there is less scope for computational efficiency gains.

Each volume of Market Risk Analysis has contained numerous empirical examples and
case studies on the application of PCA to different types of risk factors. Here are some
references to just a selection of these:

• equity indices – Section I.2.6.3;
• individual stocks – Section II.2.5.3;
• interest rate term structures – Section II.2.3;
• forward currency exposures – Section II.2.4.2;
• energy futures – III.2.6.3;
• implied volatility smiles – Section III.4.4.2;
• volatility term structures – Section III.5.7.

In this chapter we provide yet another illustration of the power of this technique. Exam-
ple IV.4.12 in Section IV.4.5.2 presents an empirical example on Monte Carlo interest rate
VaR based on principal component risk factors.
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IV.4.4.3 Behavioural Models

One of the reasons why copulas are used in multivariate simulations is that the dependency
between risk factor returns is not necessarily linear. When there are only a few risk factors, an
alternative to copulas is to model the risk factor returns relationship using non-linear regres-
sion. For example, suppose there are two risk factors whose returns X and Y have a quadratic
rather than a linear relationship, i.e.

Y = α + β1X + β2X2. (IV.4.13)

Since X and Y are stochastic the relationship will not be exact, so we add an error term on the
right-hand side of (IV.4.13). The error has zero mean and often we assume it is homoscedastic
(i.e. has constant standard deviation, which we denote σ) and normally distributed. These
are the standard assumptions for ordinary least squares regression (OLS).37 Then we use T
historical observations on the returns X and Y to estimate the model parameters α, β1, β2 and
σ using OLS on the regression:

Yt = α + β1Xt + β2X2
t + εt, t = 1, . . . ,T, εt ∼ N(0,σ2). (IV.4.14)

Other non-linear models are usually easy to estimate provided the right-hand side is only
a non-linear function of the variables and not of the parameters. For instance, we may
hypothesize a relationship of the form

Y = α + β1X + β2X−1 + β3 ln X. (IV.4.15)

Again the parameters may be estimated using OLS multiple regression, provided we make the
standard assumption about homoscedasticity of the error term. Or, if the risk factor return Y is
thought to be non-linearly related to two other risk factor returns, X1 and X2, their relationship
could be of the form

Y = α + β1X2
1 + β2 ln X2, (IV.4.16)

for example. Since this is linear in the parameters, we may estimate them using OLS.38

IV.4.4.4 Case Study: Modelling the Price – Volatility Relationship

Consider Figure IV.4.8, which depicts a scatter plot of the daily log returns on the S&P 500
index (horizontal scale) and Vix index (vertical scale). The negative dependence and lep-
tokurtosis are apparent and the grey curve is drawn through the scatter plot to highlight their
non-linear relationship. We shall capture the relationship between implied volatility and the
underlying price using a simple quadratic regression of daily log returns to the Vix index on
the S&P 500 log returns over the same sample period.

37 Since the model is linear in the parameters it may be regarded as a special case of multivariate regression. See Section I.4.4 for an
introduction. Note that the normality assumption is not required to use OLS, but it is necessary to make inference on the model, for
instance about the importance of each explanatory variable as given by the t-ratio. See Section I.4.2 for further details.
38 See Section II.7.4.1 for a numerical method for deriving least squares estimates when the model is a non-linear function of the
parameters, such as

Y = α + βX2
1 + β2 ln X2.
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Figure IV.4.8 Scatter plot of S&P 500 and Vix daily log returns

In the case study workbook we estimate a quadratic regression via the data analysis
tools in Excel. Using daily data from 2 January 2000 until 25 April 2008, the result is the
estimated model

Yt =−0.025
(−2.738)

% − 3.814
(−52.252)

Xt + 18.201
(5.918)

X2
t + εt, (IV.4.17)

where Y denotes the log return on the Vix, X denotes the log return on the S&P 500 index
and the error term has standard deviation equal to the standard error of the regression, which
is estimated to be 3.77%. The figures in parentheses denote the t statistics of the coefficients
above them, so both the S&P 500 returns and the squared returns are very highly significant.
This is to be expected, given the evident non-linearity in the scatter plot above.

However, no significant non-linearity is apparent in the weekly returns relationship. Using
weekly data from 2 January 2000 until 28 April 2008, the result is the estimated model

Yt =−0.036
(−0.092)

% − 3.611
(−22.260)

Xt − 0.274
(−0.088)

X2
t + εt, (IV.4.18)

where the estimated standard error of the regression is 7.54%. The quadratic term is no longer
significant, and so we conclude that non-linearities in the S&P500 – Vix relationship are only
important when simulations are at the daily frequency.

We can use the estimated model (IV.4.17) to simulate a daily log return Y on the Vix for
any simulated daily log return X on the S&P 500. Because of their non-linear relationship,
this is better than using a covariance matrix to capture their dependence. We shall return to
this model in Section IV.5.5.3, where we use it to estimate the VaR for an option portfolio.

IV.4.5 MONTE CARLO VALUE AT RISK FOR LINEAR
PORTFOLIOS

In Chapter IV.2 we showed how to extend the normal linear VaR formula to Student t and
normal mixture VaR, and how to use a scaling constant that reflects autocorrelation in returns.
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If we use one these models for the returns on the risk factors of a linear portfolio then there
is no point in applying Monte Carlo to estimate the VaR.39 The only difference between the
Monte Carlo and the parametric linear VaR estimates would be due to simulation error, and
it is the analytic formula that gives the correct result. The more simulations used, the more
accurate the Monte Carlo VaR estimate, and as the number of simulations used increases the
Monte Carlo VaR estimate converges to the parametric linear VaR estimate that is based on
the same distributional model for returns.

So what is the advantage of using Monte Carlo to estimate VaR for a linear portfolio, com-
pared with parametric linear VaR? The advantage is that the risk factor returns model is not
limited to the simple models that we considered in Chapter IV.2, i.e. multivariate normal,
Student t or mixture returns that are either i.i.d. or have a simple first order autoregressive
structure. As we have seen in the previous two sections, a great variety of conditional multi-
variate distributions may be used as a basis for simulation. We may also want to use multi-step
Monte Carlo simulations to introduce path dependence, either in an option’s pay-off or in the
volatility clustering behaviour of risk factor returns.

Compared with historical simulation, the advantage of using Monte Carlo to estimate VaR
for a linear portfolio is that we can generate as many h-day returns as we like.40 Whilst his-
torical VaR is a natural way to capture the complex behaviour in and between risk factor
returns it is, at least initially, limited to the 1-day horizon. This is because we simply do
not have enough relevant historical data to use non-overlapping h-day returns.41 But we can
extend the standard historical simulation model to filtered historical simulation (FHS) which
applies a statistical bootstrap on a parametric, dynamic model for return distributions, such
as a GARCH model. This filtering allows h-day return distributions to be generated from
overlapping samples and we can also increase the number of observations used for building
the h-day portfolio return distribution through the use of the bootstrap. But FHS is in fact a
hybrid method combining some attractive features of both historical and Monte Carlo VaR
models.42

What is the effect on VaR of using parametric but non-normal distributions for the risk
factors returns? We can use Monte Carlo VaR to answer this question, by comparing the
Monte Carlo VaR estimates based on simple risk factor returns models with those based on
more complex distributions. The result will depend on both the risk horizon and the type of
portfolio. For instance, one might expect the i.i.d. multivariate normal or Student t distribution
to be less appropriate for daily changes in credit spreads than it is for daily changes interest
rates. But over a monthly risk horizon many risk factors might well be assumed to have i.i.d.
multivariate normal or Student t distributions.

The purpose of this section is to illustrate the application of the risk factor returns models
that we introduced in Sections IV.4.3 and IV.4.4 to the estimation of Monte Carlo VaR and
ETL. We shall apply a different returns model to four different types of portfolios:

39 By contrast, Monte Carlo simulation is the only reliable method for estimating the VaR for an option portfolio over a risk horizon
of more than 1 day, as we demonstrate in the next chapter.
40 Computation time is not an issue with linear VaR in practice, since the linear mapping can be performed in a few microseconds.
41 We can try to scale a 1-day VaR using an approximate scale exponent, but this scaling can be a great source of model risk in
historical VaR estimates, especially in option portfolios. If we use overlapping h-day returns on the risk factors, this will distort the
tail behaviour of the return distributions, leading to significant error in the VaR estimates at extreme quantiles.
42 See Sections IV.3.2.3, IV.3.2.4 and IV.5.4 for further details about these three approaches to estimating h-day historical VaR.
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• elliptical copulas for credit spreads;
• principal component analysis for interest rates;
• multivariate normal mixture distributions for equities;
• volatility clustering for currencies.

Although we apply these different assumptions for Monte Carlo VaR in the framework of
a particular type of portfolio, this is primarily for the purpose of illustrating each technique
rather than a practical recommendation. For example, equity portfolios could benefit from
modelling volatility clustering, as well as capturing the asymmetry and leptokurtosis in the
conditional return distributions using multivariate normal mixture distributions.43

IV.4.5.1 Algorithms for VaR and ETL

The following summarizes the general one-step algorithm for estimating VaR and ETL when
the risk factor mapping expresses the portfolio return as a linear combination of risk factor
returns:

1. Simulate N independent 1 × k vectors of standard uniform observations, where k is the
number of risk factors and N is the number of simulations.

2. Use the i.i.d. risk factor returns model to transform these standard uniform observations
into simulations on h-day risk factor returns, as described in Section IV.4.4.

3. Apply the risk factor mapping to the simulations on h-day risk factor returns to produce
N simulated h-day returns on the portfolio, and discount these to today.

4. As a percentage of the portfolio value, the 100α% h-day VaR is −1 times the α quantile
of the h-day return distribution and the 100α% h-day ETL is −1 times the average of
all the h-day returns that are less than the α quantile. Multiplying these by the portfolio
value today gives the VaR and ETL in value terms.

Depending on the type of portfolio, we may simulate h-day changes in risk factor values at
step 2 instead of h-day returns. That is, we may take the simulated value of a risk factor in
h days’ time minus value of this risk factor today (i.e. the time when the VaR is measured).44

In addition, or alternatively, the risk factor mapping may produce N simulated h-day P&Ls
on the portfolio, discounted to today.45 In that case the VaR and ETL estimated at step 4 will
already be expressed in value terms.

To account for path dependence such as volatility clustering in risk factor returns, the
general algorithm above is modified for multi-step Monte Carlo as follows:

1. Simulate N independent 1 × k vectors of standard uniform observations, where k is the
number of risk factors and N is the number of simulations.

2. Use the conditional 1-day risk factor log returns model to transform these standard
uniform observations into simulations on 1-day risk factor log returns.

43 We do not provide an example on commodity portfolios in this section, but these would benefit from all the techniques that we
illustrate here. The construction of a non-normal conditional model with GARCH volatility clustering and principal component risk
factors, if the portfolio contains commodity forwards or futures of different maturities, is left as an exercise for experienced readers.
44 Or, if we are short the portfolio, the current value minus simulated value represents the P&L.
45 This is the case when the risk factor sensitivities are expressed in value rather than percentage terms.
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3. Return to step 1 and repeat h times, using the dynamic returns model to simulate each
subsequent risk factor log return, as described in Section IV.4.3.

4. For each risk factor and for each of the N simulated paths, sum the log returns to obtain
N simulated h-day log returns on each risk factor.

5. Apply the risk factor mapping to produce N simulated h-day returns on the portfolio,
and discount these to today.

6. As a percentage of the portfolio value, the 100α% h-day VaR is −1 times the α quantile
of the h-day return distribution and the 100α% h-day ETL is −1 times the average of
all the h-day returns that are less than the α quantile. Multiplying these by the portfolio
value today gives the VaR and ETL in value terms.

We now present some empirical implementations of these algorithms in the context of cash
flow, equity and currency portfolios.

IV.4.5.2 Cash-Flow Portfolios: Copula VaR and PC VaR

A cash flow is mapped to a vector of default-free interest rates r at fixed maturities, and to
a vector of credit spreads s, also at fixed maturities. As explained in Section IV.2.3, the risk
factor sensitivities are the PV01 of the mapped cash flows at each vertex, and the risk factors
are the absolute changes in these interest rates and credit spreads, expressed in basis point
terms. When an interest rate sensitive portfolio is represented as a cash flow the risk factor
mapping therefore takes the form

�PV ≈−(θ
′
r�r + θ

′
s�s), (IV.4.19)

where θr and θs are the PV01 vectors with respect to the interest rate and credit spread
risk factors, and �r and �s are the basis point changes in these risk factors.46 Since the
PV01 is already in present value terms the algorithms described in the previous subsection
provide N simulated values for the discounted P&L, from which we estimate the VaR
and ETL.

The next example illustrates the estimation of Monte Carlo credit spread VaR based on
elliptical copulas with different elliptical marginals. The parameters in the spreadsheet can
be changed to reflect suitable distributions for any type of risk factors, such as interest rates,
currencies, commodities or equities if so desired.

EXAMPLE IV.4.11: MONTE CARLO CREDIT SPREAD VAR

A portfolio of BBB-rated corporate bonds and swaps is mapped to vertices at 1 year, 2 years,
3 years, 4 years and 5 years. Table IV.4.7 shows the PV01 vector, along with the annual volatil-
ities and correlations of the credit spread risk factors.47 Compare the 10-day Monte Carlo VaR
of this portfolio at different significance levels based on the assumption that changes in credit
spreads have:

46 Recall that for cash-flow portfolios the non-linearity of the portfolio P&L is captured by the PV01 sensitivities, so the risk factor
mapping is a linear map with respect to interest rates and credit spreads.
47 The PV01 vector is based on an exposure of $1 million at each maturity.
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(a) a multivariate normal distribution;
(b) a normal copula and marginal Student t distributions having 5 degrees of freedom, and
(c) a multivariate Student t distribution with 5 degrees of freedom.

In case (b), readers may change the degrees of freedom to be different for each credit spread
in the spreadsheet.

Table IV.4.7 Volatilities and correlations of LIBOR and credit spreads

Maturity (years) Credit spreads

1 2 3 4 5

PV01 ($) $951 $1,810 $2,582 $3,275 $3,894
Volatility (bps) 100 90 80 70 60

Correlations 1 2 3 4 5

1 1 0.75 0.65 0.55 0.5
2 0.75 1 0.85 0.8 0.7
3 0.65 0.85 1 0.9 0.85
4 0.55 0.8 0.9 1 0.95
5 0.5 0.7 0.85 0.95 1

SOLUTION We adapt the spreadsheets for Examples IV.4.8, IV.4.9 and IV.4.10 for parts
(a), (b) and (c), respectively. We use the same 10,000 standard uniform simulations for each
distribution, and the results for one set of 10,000 simulations are shown in Table IV.4.8.

Table IV.4.8 Comparison of Monte Carlo VaR estimates for credit spreads

Significance level 0.1% 1.0% 5.0% 10.0%

(a) Normal $550,564 $505,273 $393,579 $279,299
(b) Normal copula, Student t marginals $775,170 $688,562 $437,189 $264,868
(c) Student t $990,768 $839,513 $584,871 $415,958

The results for (a) and (b) are similar at the 10% significance level, but as the confidence
level of the VaR increases the difference between the normal copula VaR with Student t
marginals and the normal VaR increases. This is due to the leptokurtosis in the Student t
marginal distributions. The multivariate Student t VaR estimates (c) are greater than those in
(b), readers may change the degrees of freedom to be different for each credit spread in the
spreadsheet, because they are based on the same Student t marginals but have a Student t
copula dependence, and the Student t copula has a greater tail dependency than the normal
copula.

In practice cash flows are mapped to a very large number of fixed maturity interest rates
and credit spreads. But interest rate risk factors are very highly correlated and so PCA can
be applied to reduce the dimension of the risk factor space. Moreover, the construction of
the principal components guarantees that they are uncorrelated, because they are generated by
orthogonal eigenvectors. Thus, their correlation matrix is diagonal, and its Cholesky decompo-
sition is also diagonal. The combination of dimension reduction and zero correlation reduces
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the complexity of the simulation algorithm considerably. Thus, using principal component
risk factors will speed up the calculation of Monte Carlo VaR, with little loss of accuracy.

For instance, in Examples IV.2.8 and IV.2.10 we estimated the normal linear VaR of a
cash flow characterized by the PV01 vector shown in Figure IV.2.2. We found that the 1%
10-day principal component VaR was £175,457, compared with £176,549 when calculated
on the interest rates directly. Hence, interest rate VaR based on PCA tends to be very accurate,
provided the interest rates of different maturities are highly correlated.48

When using principal components as risk factors, the mechanics of Monte Carlo VaR com-
putation are basically identical to those outlined in the previous section. The dimension of the
risk factor space is considerably reduced, which speeds up the computation. Also, with multi-
variate normal or Student t VaR, the steps are computationally simpler and therefore faster to
execute, because the covariance matrix of the risk factors is diagonal.49 In fact, the Cholesky
matrix is already known from the PCA. Because the variance of the ith component is the ith
eigenvalue, the Cholesky matrix is just a diagonal matrix with ith diagonal element equal to
the square root of the ith largest eigenvalue.

The next example demonstrates how to perform simulations on the first few principal com-
ponents alone, and then uses the results of each simulation in the PCA risk factor mapping
(IV.2.39) to compute the associated discounted P&L of the portfolio.

EXAMPLE IV.4.12: MONTE CARLO INTEREST RATE VAR WITH PCA

Recall the case study on estimating VaR for a UK bond portfolio, presented in Section IV.2.4.
In Example IV.2.10 the 1% 10-day normal linear VaR based on a three principal component
representation was estimated as £175,457. Now estimate the VaR based on this same PCA
representation, but use Monte Carlo simulation on the principal components. What is the
effect on the PC VaR of assuming that the principal components have a multivariate Student t
distribution with 6 degrees of freedom?

SOLUTION The first three eigenvalues of the daily covariance matrix were found in the case
study of Section IV.2.4 to be 856.82, 45.30 and 9.15. Hence the 10-day Cholesky matrix has
diagonal elements

√
856.82 × 10 = 92.56,

√
45.30 × 10 = 21.28 and

√
9.15 × 10 = 9.57,

as shown in Table IV.4.9. In the first row of this table we show the net PC sensitivities of the
bond portfolio. These were already calculated in the case study of Section IV.2.4, and they
are obtained by multiplying each PV01 by the corresponding element of the eigenvector that
defines the principal component.

The normal VaR spreadsheet in the workbook for this example estimates the multivariate
normal linear VaR using Monte Carlo simulation. Without simulation error, this should be
£175,457, i.e. the PC VaR based on the exact analytic solution.50 The t VaR spreadsheet esti-
mates the multivariate Student t linear VaR using Monte Carlo simulation. Based on 10,000
simulations this is approximately £185,000. Predictably, it is greater than the normal VaR,
since the Student t distribution with 6 degrees of freedom has an excess kurtosis of 3.

48 The number of principal components used will depend on the required degree of accuracy. For well-behaved yield curves three
components are often sufficient to capture 95% of the historical variations in interest rates, but the less well-behaved the yield curve,
the more components will be required.
49 Because the risk factors are the principal components and these are uncorrelated.
50 But since we have used only 10,000 unstructured simulations in this example, the result can vary considerably each time the
simulations are repeated.
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Table IV.4.9 PC sensitivities and the PC Cholesky matrix

PC sensitivities PC 1 PC 2 PC 3

£428.15 −£2,974.59 £1,041.21

92.56 0 0
Cholesky matrix 0 21.28 0

0 0 9.57

This illustrates the basic framework for Monte Carlo VaR calculations when the dimension of
the risk factor space is reduced by using principal components. For clarity, the above example
used only a simple i.i.d. model for the principal component factors, but it could easily be
extended, to include volatility clustering for the principal components. The point to note is
that it would take much longer to perform the simulations if we applied 100,000 or more
simulations to 60 highly correlated interest rates, instead of to three uncorrelated principal
components. And the error introduced by using principal component risk factors instead of
the interest rates themselves will still be very small compared with the simulation error.

IV.4.5.3 Equity Portfolios: ‘Crash’ Scenario VaR

In the following we use x = (X1, . . . ,Xk)
′ to denote a set of asset or risk factor returns for an

equity portfolio. When a long-only stock portfolio is not mapped to broad market indices or
other risk factors, the portfolio return Y may be written

Y = w′x, (IV.4.20)

where w is the vector of portfolio weights and here x denotes a vector of stock returns. If the
portfolio is mapped to a set of risk factors then the portfolio return may be written

Y = β′x, (IV.4.21)

where β is the vector of net risk factor betas, expressed as a percentage of the portfolio value
and here x denotes the risk factor returns.51

Now Monte Carlo VaR is based on the usual algorithm, using simulations of x. We shall
assume the portfolio is characterized by its current weights or betas, and that these are constant
over the risk horizon. This assumption implies that the portfolio is rebalanced each time a
stock price or risk factor changes. However, a long-short portfolio may have price zero, so
returns are difficult to define. In this case it is standard to represent the P&L, not the return,
as a linear sum. Here the coefficients will be the portfolio holdings and the risk factors are the
P&L on each stock, and we assume the holdings are kept constant over the risk horizon, i.e.
that the portfolio is not rebalanced.

This section demonstrates the flexibility of Monte Carlo simulation by applying it to the
measurement of scenario VaR for a simple equity portfolio. Of course, volatility clustering is
also an important feature of equity portfolios, and could easily be added by using EWMA or
GARCH covariance matrices in a multi-step simulation framework, as will be demonstrated

51 However, if β is expressed in value terms then β′x is the portfolio P&L.
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for currency portfolios in Example IV.4.14. However, here we want to focus on applying
the unconditional normal mixture returns model that was described in Section IV.4.4. This
framework is very useful for equity portfolios, because a mixture of two multivariate normal
distributions can capture the leptokurtosis and asymmetry that characterize equity markets.
We could use a mixture of three or more multivariate normal distributions, but two is often
sufficient.

The analyst is required to assign, subjectively, a probability π to a market crash during the
risk horizon. During such a crash he has a scenario for a negative excess return on each stock
in the portfolio, and we denote these returns by the vector μ1. The stock returns also become
much more volatile and highly correlated, and the analyst summarizes this by assuming some
covariance matrix �1 that he believes best reflects ‘market crash’ conditions. But with prob-
ability 1 − π ‘ordinary’ market conditions will prevail throughout the risk horizon, and these
conditions are captured by the expected excess return vector μ2 and covariance matrix �2.
Any of these parameters may, if the analyst wishes, be estimated using historical data.

We know from Section IV.4.4.1 that the risk factor return distribution will take the form

F(x)=π�(x; μ1,�1)+ (1 −π)�(x; μ2,�2).

Now given N independent standard normal simulations, we apply μ1 and �1 to πN of the
simulations and μ2 and �2 to the remaining (1 −π)N simulations. Hence, we obtain simula-
tions for the stock returns, or the risk factor returns, that are used in the estimation of Monte
Carlo VaR. This approach is illustrated in the next example.

EXAMPLE IV.4.13: MONTE CARLO VAR WITH NORMAL MIXTURE DISTRIBUTIONS

Suppose an equally weighted portfolio contains three stocks having the regime dependent
returns parameters shown in Table IV.4.10. Based on a normal mixture distribution for the
stocks’ returns with these parameters, compute the 100α% 10-day Monte Carlo VaR for
α = 5%, 1% and 0.1%. Compare these results with the multivariate normal Monte Carlo VaR
when the stocks have expected returns, volatilities and correlations equal to their expected
values under the two-regime distribution.

Table IV.4.10 Parameters of normal mixture distribution for three stocks

Crash market Ordinary market

Stock 1 Stock 2 Stock 3 Stock 1 Stock 2 Stock 3

Expected returns −100% −150% −200% 7% 12% 10%
Volatilities 90% 100% 125% 20% 30% 25%

Correlation matrix
1 0.95 0.93 1 0.5 0.75

0.95 1 0.98 0.5 1 0.25
0.93 0.98 1 0.75 0.25 1

Regime probability 0.01 0.99

SOLUTION We perform the Monte Carlo simulation in two stages. First we take a random
draw on a Bernoulli variable with success probability 1%. Then we sample from the first
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multivariate normal, representing the crash regime, if the result is a ‘success’ and otherwise
we sample from the ‘ordinary’ multivariate normal. For the comparison with a straightforward
multivariate normal VaR, we use the parameters shown in Table IV.4.11, i.e. the expected
values of the parameters under the regime distribution.

Table IV.4.11 Parameters of normal distribution for three stocks

Stock 1 Stock 2 Stock 3

Expected returns 5.93% 10.38% 0.97%

Volatilities 24.30% 35.37% 34.39%

1 0.5045 0.7518
Correlation matrix 0.5045 1 0.2573

0.7518 0.2573 1

Monte Carlo VaR estimates, expressed as a percentage of the portfolio value and based
on one set of 10,000 simulations, are displayed in Table IV.4.12. As expected, the higher
the confidence levels, the greater the difference between the normal mixture VaR and the
VaR based on a normal distribution, because the normal mixture VaR is based on a negatively
skewed and leptokurtic distribution. Because the probability of a crash is very small the normal
mixture distribution has extremely long thin tails. The effect is to reduce the VaR, compared
with the normal VaR, at the 5% and 1% quantiles but to increase it tremendously at the 0.1%
quantile.

Table IV.4.12 Comparison of normal and
normal mixture Monte Carlo scenario VaR

α Normal Mixture

5% 7.07% 1.00%
1% 10.61% 3.28%
0.1% 14.73% 55.98%

Since the VaR at extreme quantiles is significantly influenced by a very small probability of
a crash, the above example suggests that normal mixtures could be applied to stress testing
portfolios in a VaR framework. In fact, this is only one of many ways that VaR models can be
used for scenario analysis, as we shall see in Section IV.7.3.2.

IV.4.5.4 Currency Portfolios: VaR with Volatility Clustering

Currency portfolios have the simplest possible risk factor mapping. Given nominal exposures
n = (N1, . . . , Nk)

′ to k foreign exchange rates with returns x = (X1, . . . , Xk)
′, the portfolio

P&L is just n′x.52

Before implementing this risk factor mapping in the next example, we ask: what are the
important features to capture in multivariate forex return distributions? The unconditional

52 For instance, if k = 2, n = ($1m,$2m)′ and we simulate x = (5%, 1%)′ then the simulated P&L is $50,000 + $20,000 = $70,000.
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marginal distributions may be more symmetric than the return distributions for most other
financial assets, but they still have a high leptokurtosis. What features should we include in the
conditional marginals, and how should we model conditional and unconditional dependence
between forex returns?

In every financial market skewness and leptokurtosis in unconditional return distributions
have two main sources: they stem from occasional large jumps in prices, and from volatility
clustering. Large price jumps introduce skewness and leptokurtosis into the conditional dis-
tributions. But even when the conditional distributions are fairly close to normality, if they
have pronounced asymmetric volatility clustering, the unconditional distributions will still be
skewed and leptokurtic. The dependency between two financial asset returns also has condi-
tional and unconditional features. Asymmetric dependence may be captured using a copula.
But even when the dependency is symmetric and is captured by a correlation matrix, we should
still ensure that this is time-varying, so that correlation clustering can be modelled.

In the next example we show how to estimate Monte Carlo VaR for a portfolio of two US
dollar exchange rates. We shall capture both sources of leptokurtosis, by using multivariate
Student t conditional distributions and a symmetric multivariate GARCH model to capture
volatility and correlation clustering. This model entails a multi-step framework for the simu-
lations, as described in Section IV.4.3. To estimate VaR with volatility clustering we must set
a value for the current return on each forex rate, at the time that the VaR is measured. We shall
call this return the ‘shock’ for short.

Asymmetric GARCH models and skewed multivariate conditional distributions may be
appropriate, especially in equity markets, but our example examines forex portfolios, which
have less asymmetry than equity portfolios. Besides, we prefer to use a relatively simple
specification for the risk factor returns model because our main purpose is to illustrate the
framework as clearly as possible, without too many technicalities.

EXAMPLE IV.4.14: VAR WITH VOLATILITY AND CORRELATION CLUSTERING

A bank has $15 million exposure to forex 1 and $10 million exposure to forex 2. A simple
symmetric bivariate GARCH model of the daily log returns on the two forex rates is estimated
and the parameters are shown in Table IV.4.13. Use a multi-step Monte Carlo framework, with
volatility and correlation clustering based on this bivariate GARCH model, to estimate the 1%
10-day VaR of the portfolio following shocks of 1%, 3% and 5%, assuming there is the same
shock to each forex rate. In each case compare the results obtained when we assume the
conditional distributions are bivariate normal, with those obtained under the assumption that
the conditional distributions are bivariate Student t with 6 degrees of freedom. Also, use the
model with constant volatility and correlation as a benchmark for your results.

Table IV.4.13 Bivariate GARCH model parameters

GARCH parameters Variance 1 Variance 2 Covariance

ω 5.0E-07 7.0E-07 1.0E-05
α 0.085 0.05 0.06
β 0.905 0.94 0.7
Unconditional standard deviation

(covariance in last column)
0.71% 0.84% 4.2E-05

Unconditional volatility
(correlation in last column)

11.18% 13.23% 0.7043
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SOLUTION To fully understand the rather complex spreadsheet for this problem, readers are
advised to familiarize themselves with some other spreadsheets first: the multi-step simulation
model of Example IV.4.6, the correlated normal and Student t simulations of Examples IV.4.8
and IV.4.9, and the ‘Diag Vech’ spreadsheet in the GARCH_Simulations_II.4.xls workbook.

For each shock we shall compare results based on the same set of 10,000 standard uniform
simulations over 10 consecutive days. These simulations, one for each forex return, are shown
in the spreadsheet labelled ‘VaR’ in the workbook for this example. Then two further spread-
sheets have an identical structure, except for two sets of ten columns which contain standard
normal simulations in one spreadsheet and standardized Student t simulations in the other.
The algorithm in each spreadsheet is as follows:

1. Generate independent standard normal (or standardized Student t) returns for each day
and for each forex rate. (The simulations on the second forex rate will subsequently be
adjusted, as explained in step 4, to capture the conditional dependency.)

2. Use the GARCH parameters to simulate a path for each GARCH variance over the
10-day period, following the shock that we have assumed.

3. Also simulate the GARCH covariance over the 10-day period, and on each day divide
this by square root of the product of the GARCH variances to obtain the GARCH
correlation simulated on each day.

4. Use the GARCH correlation to adjust the return on forex 2 that was simulated at step
1, changing it so that instead of being independent of the simulation for forex 1, they
are correlated with the GARCH correlation. That is, if from step 1 we have independent
returns f1t and f2t simulated at time t, and if �t is the GARCH correlation simulated at
time t, then set

f̃2t = f2t

√
1 − �2

t + �tf1t. (IV.4.22)

Now f1t and f̃2t will have correlation �t.
5. Next, multiply f1t by the square root of the GARCH variance for forex 1 at time t,

and multiply f̃2t by the square root of the GARCH variance for forex 2 at time t. This
gives two paths for log returns over 10 days, one for each forex rate, which display both
volatility and correlation clustering.

6. Sum the log returns over each path to obtain a 10-day log return on each forex rate, and
then use the risk factor mapping described at the beginning of this section to obtain one
simulated 10-day P&L for the portfolio.

7. Repeat N times, and then the 100α% 10-day VaR estimate is −1 times the 100α%
quantile of the distribution based on the N simulated 10-day P&Ls.

We also simulate paths under the assumption that parameters are constant, at the unconditional
values shown in Table IV.4.13. As we have shown in Section IV.4.3, multi-step methods are
unnecessary in this case. However, we do this to provide a benchmark against which to inter-
pret our results, which for comparison are based on the same standard uniform simulations as
those used in the conditional model.

In the first row of Table IV.4.14 we show the results based on constant volatility and corre-
lation, and in the second row the results are based on the volatility and correlation clustering
that is defined by the bivariate GARCH model. For each shock (1%, 3% and 5%) we display
the result based on both normal and Student t marginal distributions for the forex returns, the
Student t distributions each having 6 degrees of freedom.
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Table IV.4.14 Comparison of normal GARCH and Student t GARCH VaR

Shock 1% 3% 5%

Distribution Normal Student t Normal Student t Normal Student t

Constant $1,306,577 $1,990,911 $1,354,720 $2,025,632 $1,311,185 $1,998,550
GARCH $1,359,349 $2,173,931 $1,648,965 $2,699,410 $2,062,642 $3,349,197

The GARCH VaR estimates are always greater than the estimates based on our benchmark
model with no volatility and correlation clustering. The bigger the shock, the greater the differ-
ence between the GARCH and the constant parameter VaR estimates. The difference is also
more pronounced when we assume the return distributions are Student t with 6 degrees of
freedom. We see that the VaR estimate could easily be doubled or halved, simply by changing
our assumptions about the risk factor returns model.

These conclusions are fairly obvious. We do not need to build a complex Excel workbook
to demonstrate them. But the aim of this above example, as with every example in this chapter,
is to provide readers with an Excel template for building advanced Monte Carlo VaR models.
Simple Monte Carlo models, such as those based on i.i.d. normal risk factor returns, are not
usually justified, at least for short term risk horizons. Mixture, Student t or copula models with
volatility clustering effects are generally thought to be more appropriate for short term VaR
estimation.

IV.4.6 SUMMARY AND CONCLUSIONS

The parametric linear VaR model is used when returns are assumed to have a multivariate
normal, Student t or normal mixture distribution. So why should we use Monte Carlo VaR
for a linear portfolio? The reason is that Monte Carlo VaR is much more flexible than linear
VaR. It can be applied with any assumed distribution for risk factor returns. We can also use
multi-step Monte Carlo to simulate time-varying risk factor volatilities and correlations, or to
account for path-dependent behaviour in options or in contingent cash flows.

Historical VaR has the distinct advantage that it does not need to impose a parametric model
on risk factor return distributions. Instead the empirical risk factor return distribution is nat-
urally embedded in the VaR estimate. In the next chapter we shall demonstrate that standard
historical simulations have limited application to estimating VaR for option portfolios, but
why should we use Monte Carlo VaR in preference to historical VaR for linear portfolios?
The reason is that, whatever the portfolio, the limited size of a historical sample places a
severe constraint on the accuracy of historical VaR estimates. Standard historical simulation
cannot be based on overlapping h-day returns, because this truncates the tail of the P&L dis-
tribution. For this reason many practitioners scale up the 1-day historical VaR to an h-day VaR
estimate, but this introduces a major model risk in VaR calculations, even for linear portfolios.
We can only increase the number of simulations by using a parametric statistical bootstrap, as
in filtered historical simulation. However, this is really a hybrid approach, a mixture between
historical and Monte Carlo simulation, because it is based on simulations from a parametric,
dynamic model for the returns process such as GARCH.
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The great advantage of Monte Carlo VaR is that historical data place no restrictions on
simulations. We can simulate as much data on risk factor returns as we like (and the more sim-
ulations used the more accurate the VaR estimate) since there are relatively few computational
time constraints with the powerful computers used today. With Monte Carlo methods, the
simulations do not necessarily have any basis in historical data. For instance, in scenario VaR
calculations the analyst could use his own personal views about the values of the parameters
of the risk factor returns model.

The first part of this chapter gave a brief survey of the sampling methods that form the basis
of a Monte Carlo VaR estimate. We provided examples of pseudo-random number generation
using linear congruential generators and introduced some basic advanced sampling methods
and variance reduction techniques, again with numerical examples in Excel. Because sampling
error can be controlled, the main source of model risk in Monte Carlo VaR models lies with
the specification of the statistical model for the risk factor returns. These models are used to
translate standard uniform simulations into risk factor returns simulations, and then the risk
factor mapping is used to translate these into simulations on the portfolio returns or P&L.
Finally, we derive the Monte Carlo VaR from a quantile of the simulated portfolio returns or
P&L distribution.

Much of this chapter is devoted to developing adequate statistical models for static and
dynamic risk factor returns, because this is a major source of model risk in Monte Carlo VaR
estimates. Yet it requires considerable skill to develop a suitable risk factor returns model,
even for a linear portfolio where we might feasibly assume that risk factor returns have i.i.d.
multivariate normal or i.i.d. multivariate Student t distributions. In that case we can use an
h-day covariance matrix to transform independent draws from a standard normal or standard-
ized Student t distribution into correlated h-day returns on the risk factors. We have also shown
how more complex returns models can be used to estimate Monte Carlo VaR. For instance, the
risk factors may have different marginal distributions and their dependency may be captured
by a copula.53 We also explained how to design multi-step Monte Carlo for linear portfolios
with risk factors that exhibit volatility and correlation clustering. All these features have been
illustrated, for teaching purposes, using Excel workbooks.

53 Experienced readers requiring further details are recommended to consult the path-breaking work of Patton (2008) in this area. Note
that Matlab code is available from Andrew Patton’s website. (http://www.economics.ox.ac.uk/members/andrew.patton/), and see the
copula toolbox in particular.





IV.5
Value at Risk for Option Portfolios

IV.5.1 INTRODUCTION

The previous chapters in this book have focused on two aspects of VaR modelling: the risk
characteristics of portfolios with different types of risk factors, and the modelling of the risk
factors. Until now we have only applied the models that we have developed to simple portfo-
lios where the portfolio mapping is a linear function of their risk factors. Now we extend the
analysis to discuss how to estimate VaR and expected tail loss for option portfolios.

The most important risk factors for an option are the change in price of the underlying
asset, the square of this price change and the change in the implied volatility. The squared
price change is necessary because an option price is non-linearly related to the underlying
price. This introduces an extra degree of complexity into the construction of a VaR model for
an option portfolio.

When VaR estimates for option portfolios are scaled over different risk horizons we are
making an implicit assumption that the portfolio is being dynamically rebalanced at the end of
each day, to keep its risk factor sensitivities constant. For this reason, we call such a VaR esti-
mate a dynamic VaR estimate. Then, even though the portfolio returns cannot be normal and
i.i.d., it is common practice to scale the daily VaR to longer risk horizons using a square-root
scaling rule. Indeed, it is admissible under banking regulations, although the Basel Committee
indicates that this practice may ultimately be disallowed.1 Dynamic VaR estimates are suitable
for actively traded portfolios, in particular for assessing the risk of a portfolio that is always
delta–gamma–vega neutral and for assessing the VaR when the portfolio is held at its risk
limits, if these limits are defined in terms of risk factor sensitivities. However the use of a
square-root scaling rule can be a significant source of model risk.

The alternative is to measure the VaR directly from the h-day P&L, without scaling up a
1-day VaR estimate to a longer risk horizon. In this case we are assuming the portfolio is
not traded during the risk horizon, and so we call such a VaR estimate a static VaR estimate.
Static VaR is suitable for estimating the risk of a single structured product that is not intended
to be dynamically rebalanced. In practice, assuming no rebalancing over the risk horizon is
not realistic for option portfolios. Option traders write options because they think they know
how to hedge their risks, and they believe they can make a profit after accounting for their
hedging costs, often rebalancing their hedged portfolio several times per day.

If the risk factor returns are normal and i.i.d. it makes no difference to a linear portfolio
whether we scale the daily VaR to longer risk horizons using the square-root scaling rule, or
measure the VaR directly from the h-day return or P&L distribution. That is, the static and
dynamic VaR estimates are the same. But this is not the case for option portfolios. Static VaR

1 BCBS (2006, p. 196) states that ‘Banks are expected to ultimately move towards the application of a full 10-day price shock to
options positions or positions that display option-like characteristics.’
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estimates have gamma, vega and theta effects that are much more pronounced than they are in
dynamic VaR, with the gamma effect being the greatest.

Our focus in this chapter will be on modelling the non-linear characteristics of portfolios,
rather than on the precision of the VaR methodology. Nevertheless, from the many empirical
examples given in this chapter we are able to draw some strong general conclusions about the
appropriate type of VaR model to apply to option portfolios.

Whilst analytic approximations to options VaR based on delta–gamma mapping may seem
attractive, the option portfolio P&L resulting from this approximation is highly skewed and
bimodal so it is very difficult capture with a parametric model. Moreover, accurate VaR esti-
mation requires a precise fit in the tails of this distribution, and even small discrepancies
between the parametric form and the empirical distribution can lead to large errors in the
analytic approximation to VaR.

We shall show that standard historical simulation is suitable for dynamic VaR estimation,
but there are problems with trying to use a non-parametric model for static VaR estimation.
Typically, the precision of a standard historical VaR estimate relies on using daily risk factor
returns in a very large number of simulations. From these we could estimate a 1-day VaR
non-parametrically and scale up this estimate to longer risk horizons, under the assumption
that the option portfolio has stable, i.i.d. returns. But this approach assumes that the portfolio
is rebalanced daily to return the risk factor sensitivities to their values at the time the VaR is
estimated, so it gives an estimate of dynamic VaR, not static VaR. For a static portfolio that is
not traded over the risk horizon we need to estimate the h-day VaR as a quantile of the h-day
P&L distribution. Standard historical simulation based on overlapping data will distort the tail
behaviour of the P&L distribution in such as way that VaR estimates at extreme quantiles can
be seriously underestimated. In fact, the only way that we can estimate the static h-day VaR
in the context of historical simulation is by introducing a parametric model for the conditional
distributions of the portfolio returns, such as a GARCH model.2

A strong conclusion that is drawn from this chapter is that the only viable method for
estimating the static VaR for option portfolios is parametric simulation, using either Monte
Carlo or the filtered historical simulation method of Barone-Adesi et al. (1998, 1999). Either
way, option portfolio VaR estimates must be based on a suitable risk factor returns model,
not only a non-normal multivariate distribution for risk factor returns but also a model that
captures the dynamic properties of risk factor returns. Our empirical examples demonstrate
how important it is to include volatility clustering effects in price risk factors. Mean reversion
in volatility risk factors is also of some importance, except over very short risk horizons.

Even if efficient Monte Carlo simulation algorithms are based on an appropriate model for
risk factor returns, there is another important source of error in VaR for an option portfolio.
This is the risk factor mapping. For a portfolio of options it is standard to base the risk factor
mapping on a Taylor expansion, where the risk factor sensitivities are given by the portfolio
Greeks. But a Taylor expansion is only a local approximation, meaning that it is only accurate
for small changes in risk factors. However, because VaR is a loss that we are fairly confi-
dent will not occur, to assess VaR we need to consider large movements in risk factors. Thus
the Greeks approximations only give a crude approximation to the VaR. In particular, these
approximations are of limited use when stress testing a portfolio because, in stress testing, risk
factors are set to very extreme values.

2 Section IV.3.3.4 explains how filtered historical simulation applies the statistical bootstrap to combine a parametric dynamic model
for portfolio returns with standard historical simulation.
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On the other hand, to estimate VaR for a large complex option portfolio without using a
risk factor mapping may take a considerable amount of time. The Greeks approximations
have the major advantage that they facilitate real-time VaR calculations, and these are neces-
sary when traders are operating under VaR limits. Typically, limits might be set at the 95%
confidence level, over a daily risk horizon. Real time VaR calculations could then be based on
delta–gamma–vega approximation in a Monte Carlo or historical dynamic VaR model.

The outline of this chapter is as follows. Section IV.5.2 discusses the characteristics that
differentiate option portfolios from linear portfolios, for the purposes of VaR measurement.
We briefly summarize the risk factor mappings for option portfolios and then provide a critical
review of the practice of scaling VaR for option portfolios from a daily risk horizon to longer
risk horizons.

Section IV.5.3 describes some simple analytic approximations to VaR estimates for option
portfolios. We focus on a large complex portfolio where exact evaluation is impractical, so
that a risk factor mapping must be applied. First we derive a simple delta–normal VaR approx-
imation that treats an option portfolio as if it were linear. Then a quasi-analytical method for
calculating the VaR, based on a delta–gamma mapping, is explained. The method relies on
fitting quantiles, or better still the whole P&L distribution, to the moments of a multi-factor
delta–gamma representation.

In Section IV.5.4 we explain how historical simulation could be applied to options and
option portfolios. The section begins with empirical examples of VaR when options are
revalued exactly, using the pricing model, starting with a standard European option but also
including an example based on an analytic approximation to the price of an option with a
path-dependent pay-off. Then we move on to option portfolios, first with exact repricing of
the options at the risk horizon and then when the portfolio P&L is mapped to risk factors.
Of particular interest is the study of historical VaR for a delta–gamma-hedged option port-
folio. Such a portfolio has minimal price risk only if it is continually rebalanced to maintain
delta–gamma neutrality. This section concludes with a case study on measuring the historical
dynamic VaR of a hedged energy options trading book.

Section IV.5.5 describes the application of Monte Carlo VaR to options and option port-
folios. The basic steps of Monte Carlo VaR for options are understood in the context of a
simple application: measuring the VaR and ETL of a standard European index option.3 The
core of the model is the simulation of two negatively correlated risk factors, i.e. the underlying
equity index price and its implied volatility. We use this example to demonstrate the difference
between static and dynamic VaR. That is, we measure the h-day VaR directly from an h-day
P&L distribution, which is the correct way to estimate the VaR of a static portfolio such as a
simple European option, and then we measure it from the simulated daily P&L distribution
and then scaling by the square root of h. The second method makes some strong assumptions
about portfolio rebalancing over the risk horizon, which are not appropriate for a fixed posi-
tion in a single option, and hence it ignores the crucial gamma, vega and theta effects that are
very important to capture in a VaR estimate for an option.

Thereafter Section IV.5.5 considers Monte Carlo VaR based on risk factor mapping of an
option portfolio. We explain how delta–gamma–vega mapping is used to revalue the option
at the risk horizon and then examine the Monte Carlo VaR model for portfolios of options on
several underlyings, applying a multivariate Taylor expansion for the mapping to risk factors.

3 This is the only subsection where we consider the ETL of an option portfolio. Once VaR has been estimated, obtaining the ETL
estimate is straightforward. See Sections IV.2.10 and IV.3.6 for further details.
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We conclude with a case study on the development of an appropriate risk factor returns model
for a large portfolio of energy options. Section IV.5.6 summarizes and concludes.

The material in this chapter assumes knowledge of the analytic, historical and Monte Carlo
VaR models described in previous chapters of this volume. Readers should also be familiar
with the option theory in Chapter III.3 and the option portfolio mapping methodologies
described in detail in Sections III.5.5 and III.5.6.

IV.5.2 RISK CHARACTERISTICS OF OPTION PORTFOLIOS

The value of an option is a non-linear function of its risk factors. Even if we ignore volatility
and other less important risk factors, the price of an option is always a non-linear function
of the underlying asset price S. This section begins by reviewing the essential details about
mapping option portfolios, then we discuss the implications of non-linear risk factor mapping
for VaR assessment.

IV.5.2.1 Gamma Effects

In Section III.5.5 we developed the simplest possible mapping of a single option to its price
risk factor, the delta–gamma approximation. This may be written:

P&L ≈ δ$R + 1
2

γ$R2, (IV.5.1)

where R =�S/S is the return on the underlying asset and δ$ and γ$ denote the value delta and
value gamma of the option.4 More precisely,

δ$ = δ × N × S × pv, (IV.5.2)

γ$ = γ × N × S2 × pv, (IV.5.3)

where N is the number of units of the underlying that the option contracts to trade and pv is
the point value of the option.

The P&L of a portfolio of options on the same underlying may also be represented by
(IV.5.1), but now δ$ and γ$ denote the net value delta and value gamma of the portfolio. For
all options on the same underlying we can simply add up the value deltas to find the net value
delta, and similarly the net value gamma is just the sum of the individual gammas.

When an option portfolio has several underlying price risk factors there are two alternative
approaches to price risk factor mapping. Either we use a simple approximation like (IV.5.1)
based on price beta mapping or we use a multivariate delta–gamma approximation. It is
also possible to combine both approaches. Below we extract the relevant formulae from
Section III.5.5 to summarize the possibilities.

The price beta mapping approach is described in Section III.5.5.5. It depends on represent-
ing each underlying price risk factor return Ri in terms of a single index risk factor return R.
From the model derivation we know that formula (IV.5.1) still applies, but now

4 These are also called dollar delta and dollar gamma by some authors. We use the value delta and value gamma because they are
additive across different options. Position Greeks are only additive when the portfolio contains options on only one underlying,
but value Greeks are additive for any option portfolio. For VaR assessment, we assume the returns are discounted, so that (IV.5.1)
represented the discounted P&L.
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δ$ =
n∑

i=1

δ$
i βi and γ$ =

n∑
i=1

γ$
i β2

i , (IV.5.4)

where δ$
i and γ$

i are the net value delta and gamma for each price risk factor and

βi =
Cov(Ri,R)

V(R)
. (IV.5.5)

Thus we perform a regression of each underlying return on an index return and use the
regression betas in (IV.5.4) to estimate the value delta and gamma.

In Section III.5.5.6 we developed an alternative mapping for portfolios with several under-
lying price risk factors. This is the multivariate delta–gamma approximation, which takes
the form

P&L ≈ δ
′
$R+ 1

2
R′�$R. (IV.5.6)

Here R = (R1, . . . ,Rn)
′ is the vector of the underlying asset’s discounted returns,

δ$ = (δ$
1, . . . , δ

$
n)

′, �$ = (γ$
ij), (IV.5.7)

δ$
i = PSi × Si × pvi, (IV.5.8)

γ$
ij = PSiSj × Si × Sj ×√

pvipvj (IV.5.9)

and

PSi =
∂P
∂Si

and PSiSj =
∂2P

∂Si∂Sj
, (IV.5.10)

where P is the price of the portfolio. The multivariate mapping is more complex but more accu-
rate than the price beta mapping approach. It is also possible to combine the two approaches
using more than one index risk factor in the beta mapping, thus reducing dimensions of the
multivariate delta–gamma approximation.

From our discussion in Section III.5.5.4 we know that a position with positive gamma (e.g.
a long position on a standard call or put) has a convex pay-off, so that losses are less and
profits are more than they would be under a corresponding linear position; and a position with
negative gamma (e.g. a short position on a standard call or put) has a concave pay-off, so
that losses are greater and profits are less than they would be under a corresponding linear
position. An option portfolio with positive delta and gamma (e.g. a long call) gains more from
an upward price move and loses less from a downward price move than a linear portfolio with
the same delta. But an option portfolio with positive delta and negative gamma (e.g. a short
put) will gain less from an upward price move and lose more from a downward price move
than a linear portfolio with the same delta.5 Thus positive gamma reduces the risk and negative
gamma increases the risk of an option portfolio, relative to the delta-equivalent exposure. This
is termed the gamma effect on the risk of an option portfolio.

5 Similarly, an option portfolio with negative delta and positive gamma (e.g. a long put) gains more from a downward price move
and loses less from an upward price move than a linear portfolio with the same delta. But an option portfolio with negative delta and
negative gamma (e.g. a short call) will gain less from a downward price move and lose more from an upward price move than a linear
portfolio with the same delta.
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IV.5.2.2 Delta and Vega Effects

The general expression for the delta–gamma–vega approximation to the P&L of a portfolio of
options, possibly on different underlyings, is

P&L ≈ δ
′
$R+ 1

2
R′�$R + ν′

$�σ. (IV.5.11)

where �σ is a vector of changes in implied volatilities, and the value delta and gamma are
defined in (IV.5.7), but how is the value vega vector ν$ calculated? Each option in the portfolio
has its own implied volatility as a risk factor. So in large portfolios it is necessary to reduce
the number of volatility risk factors. Typically this will be achieved by either vega bucketing
or volatility beta mapping.

Under volatility beta mapping, Section III.5.6.4 explains how to calculate the portfolio’s
position vega, νP, with respect to a reference volatility such as the 3-month at-the-money
(ATM) volatility or a volatility index. We use the formula

νP =
n∑

i=1

νi × βν

i × Ni, (IV.5.12)

where Ni denotes the number of units of the underlying that the ith option contracts to buy
or sell, νi denotes the vega of the ith option and βν

i is the volatility beta of the ith option.
This volatility beta may be estimated by regressing the ith option implied volatilities on the
reference volatility. Then, the portfolio’s value vega with respect to this reference volatility is
the sum of the position vegas multiplied by the point values of the options.

If the underlying price and volatility are negatively and symmetrically related, then the
vega effect reinforces the delta effect for a put and offsets the delta effect for a call. To see this,
first suppose the price falls dramatically, and so the volatility jumps up. Now consider these
positions:

• long call – the call price decreases due to the underlying price fall, but increases due to
volatility increasing, thus compensating the loss on the long position;

• short put – the put price increases due to the underlying price fall, so you make a loss
on the short position, and the put price increases due to volatility increasing and this
compounds the loss.

Now suppose the price increases, so the volatility decreases, and consider these positions:

• short call – the call price increases due to the underlying price increase, but the loss on
the short position is offset by a compensatory decrease in the call price due to volatility
decreasing;

• long put – the put price decreases due to the underlying price increase, and the loss
on the long position is compounded by a decrease in the put price due to volatility
decreasing.

The situation is summarized in Table IV.5.1, which shows that the delta–vega effects are most
prominent in put options.

However, in stock and equity index option portfolios, there is an asymmetric negative price–
volatility relationship. That is, volatility tends to increase considerably when there is a large
fall in the underlying price, but following a large rise in the underlying price of the same
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Table IV.5.1 Delta and vega effects (symmetric negative
price–volatility relationship)

Call Put

Long S ↓, δ> 0 ⇒ P ↓ S ↑, δ< 0 ⇒ P ↓
σ ↑,ν > 0 ⇒ P ↑ σ ↓,ν> 0 ⇒ P ↓

Short S ↑, δ< 0 ⇒ P ↓ S ↓, δ> 0 ⇒ P ↓
σ ↓,ν < 0 ⇒ P ↑ σ ↑,ν< 0 ⇒ P ↓

magnitude volatility tends to decrease only a little, if at all. Thus the vega effect on a long
put or short call is negligible. Therefore the most important vega effect to account for in VaR
estimation is on a short put, since here it augments the delta effect. By contrast, the vega effect
on a long call offsets the delta effect. The situation is summarized in Table IV.5.2, where we
see that short put positions have the most pronounced delta–vega effects.

Table IV.5.2 Delta and vega effects (asymmetric negative
price–volatility relationship)

Call Put

Long S ↓, δ > 0 ⇒ P ↓ S ↑, δ< 0 ⇒ P ↓
σ ↑,ν > 0 ⇒ P ↑ σ approx. flat

Short S ↑, δ < 0 ⇒ P ↓ S ↓, δ> 0 ⇒ P ↓
σ approx. flat σ ↑,ν< 0 ⇒ P ↓

Finally, suppose the underlying price and volatility are asymmetrically and positively
related, as they often are for commodity options. That is, volatility increases considerably
following a price rise, but does not decrease very much following a price fall of the same mag-
nitude. Then the vega effect reinforces the delta effect on a long put, offsets the delta effect
on a short call and is negligible for a long call or a short put. The situation is summarized in
Table IV.5.3, where it is now the long put positions that have the most pronounced delta–vega
effects.

Table IV.5.3 Delta and vega effects (asymmetric positive
price–volatility relationship)

Call Put

Long S ↓, δ > 0 ⇒ P ↓ S ↑, δ< 0 ⇒ P ↓
σ approx. flat σ ↑,ν> 0 ⇒ P ↓

Short S ↑, δ < 0 ⇒ P ↓ S ↓, δ> 0 ⇒ P ↓
σ ↑,ν < 0 ⇒ P ↑ σ approx. flat

IV.5.2.3 Theta and Rho Effects

Here we summarize the Taylor expansions that approximate the P&L of an option portfolio
when interest rate and time risk factors are included in the mapping.6 Later in this chapter we
shall use these approximations to estimate the VaR of option portfolios.

6 Again the material here is drawn from Chapter III.5 to which readers are referred for further explanation.
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The general expression for the delta–gamma–vega–theta–rho approximation to the P&L of
a portfolio of options, possibly on different underlyings, is

P&L ≈ θ$�t + δ
′
$R+ 1

2
R′�$R +π′

$�r + ν′
$�σ, (IV.5.13)

where the value delta and gamma are defined in (IV.5.7).7 The value theta θ$ is the sum of
each position theta multiplied by the point value of the option. Since option prices generally
decrease as they approach expiry, the maturity or theta effect is to increase the risk of long
positions, and decrease the risk of short positions.

The value rho vector π$ is calculated as the sum of each position rho multiplied by the
point value of the option. Note that there is a curve of interest rate risk factors r unless all the
options in the portfolio have the same maturity. But unless the underlying of the option is an
interest rate or bond, changes in interest rates only affect the discounting of future expected
pay-offs. Hence, the rho effect on portfolio risk that stems from changes in interest rates is
typically very small.

IV.5.2.4 Static and Dynamic VaR Estimates

Static VaR is calculated over an h-day risk horizon on the assumption that the current portfolio
is held over the next h days. Of course, when no trading takes place the risk factor sensitivities
are not constant during the risk horizon. In dynamic VaR we assume the risk factor sensitivities
are constant over the risk horizon. Then the portfolio must be rebalanced each time a risk
factor changes.

For portfolios containing very long-dated options, and a risk horizon of only a few days,
a constant risk factor sensitivities assumption is feasible even without rebalancing. Otherwise
the use of constant risk factor sensitivities over the risk horizon assumes that the portfolio
is rebalanced at the end of each day to return risk factor sensitivities to their values at the
beginning of the day. For instance, the portfolio may be rebalanced daily to be delta–gamma
neutral, or to keep the position Greeks at their limit values. When a trader operates under
limits on his net value delta, gamma, vega and possibly other Greeks, it is very informative to
estimate the VaR assuming the trader is at his limits.

The assumption we make about rebalancing affects the way we compute an h-day VaR,
for h > 1. We shall now explain exactly how our rebalancing assumption affects the option’s
VaR estimate, in the theoretical context of the delta–gamma approximation (IV.5.1) of the
portfolio’s P&L where the underlying log returns are assumed to be normal and i.i.d. The
delta–gamma mapping gives an approximate change in the portfolio value as a quadratic func-
tion of the underlying return, with coefficients determined by the value delta and value gamma
of the portfolio. Our assumption that the log returns on the underlying are normal and i.i.d.
implies that they scale in distribution with the square root of time. We now consider two
cases.

Static VaR

Denote by R the daily log return on the underlying price risk factor. Assuming this is i.i.d.
and normal, the h-day log return on the underlying price has the same distribution as the

7 Higher order Taylor approximations for the volatility risk may be used, such as the delta–gamma–vega–vanna–volga approximation.
However, this commonly has little effect on the VaR of the portfolio. See Example IV.5.5 for an empirical illustration.
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random variable h1/2R.8 Hence, the h-day P&L on the option portfolio, as represented by the
delta–gamma mapping, may be written

P&Lh ≈ δ$h1/2R) + 1
2
γ$hR2, (IV.5.14)

where δ$ and γ$ are the value delta and value gamma at the time that the VaR is measured.
Note that the presence of the gamma term in (IV.5.14) implies that the P&L will not scale

with the square root of h, hence

P&Lh �= h1/2P&L1 and VaRh,α �= h1/2VaR1,α. (IV.5.15)

We conclude that under the no rebalancing assumption it is not correct to compute the 1-day
portfolio VaR of an option portfolio and simply scale this to an h-day horizon, using a square-
root law or any other power scaling law. The correct procedure is to use the h-day risk factor
returns to derive the portfolio’s P&L distribution, and then derive the VaR.

The no rebalancing assumption has the advantage that the proper theta effect and gamma
effect are captured by the VaR estimate if the position is not traded during the risk horizon.
When revaluing the portfolio h days ahead, the time to expiry of each option is decreased
by h days. Option prices generally decrease as they approach expiry, so the theta effect is to
increase the VaR for long positions, and decrease the VaR for short positions. By contrast, the
gamma effect decreases the VaR for long positions, and increases the VaR for short positions
on standard options, as explained in Section IV.5.2.1.

It is easy to estimate static VaR using Monte Carlo simulations. This is because Monte
Carlo VaR models are flexible enough to generate h-day log returns Rh directly. One simply
obtains the structured Monte Carlo simulations using the assumed statistical model for h-day
risk factor returns. The 100α% h-day delta–gamma VaR, based on the Monte Carlo approach
then uses the approximation

P&Lh ≈ δ$Rh + 1
2
γ$R2

h. (IV.5.16)

However, there are two problems here. First, the Taylor approximation is only valid for small
changes in the underlying returns, and the potential size of these returns increases with h.
So is it inadvisable to apply Taylor expansion to estimate static VaR over long risk horizons.
A second problem is that to adopt the assumption of no rebalancing with standard historical
VaR calculations,9 we can only use overlapping data on the h-day risk factor returns, since non-
overlapping data of frequency equal to the risk horizon are not usually available in sufficient
quantity to estimate VaR accurately. But the use of overlapping data on risk factor returns
will truncate the tails of the P&L distributions, as discussed in Section IV.3.2.7. This will be
illustrated empirically in Section IV.5.4.

Dynamic VaR

Dynamic VaR assumes that the portfolio is rebalanced during the risk horizon to maintain
constant risk factor sensitivities. If simulations are at the daily frequency, it must be assumed
that the portfolio is rebalanced once a day over a period of h days, each time returning δ$ and
γ$ to the value delta and value gamma at the time that the VaR is estimated. This type of VaR

8 See Section I.3.3.11 for further details.
9 That is, in the absence of some parametric filtering based on a dynamic model for portfolio returns.
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estimate is used to estimate the VaR of a dynamically hedged portfolio, or to estimate the VaR
at a trader’s sensitivity-based limits.

Assume that the daily log returns on the risk factors are i.i.d. Then, under the constant risk
factor sensitivity assumption, the trader faces the same risk at the beginning of each day dur-
ing the risk horizon. In this case, the h-day P&L for the option portfolio is just the sum of h
independent and identical 1-day P&Ls. However, although i.i.d., the portfolio P&L distribu-
tion will not be normal even if the risk factor returns are, because the portfolio mapping is
a quadratic and not a linear transformation of a normal variable. Hence, it may not be very
accurate to scale the 1-day VaR to longer risk horizons using a square-root scaling rule. If
the P&L distribution is stable then a different power law scaling rule may be applied (see
Section IV.3.2) and then VaRh,α = h1/ξVaR1,α for some constant ξ, not necessarily equal to 2.

Although the P&L of an option portfolio is definitely not normally distributed, it is
sometimes assumed nevertheless that ξ= 2, and hence that

VaRh,α =√
h VaR1,α. (IV.5.17)

But this assumes the gamma, vega and theta effects on h-day P&L also scale with
√

h, which
is not the case. The theta effect is captured by the term θ�t in the Greeks approximation, so
when a 1-day horizon is scaled up to 10 days using (IV.5.17) the effect is

√
10 θ/365, whereas

based on a 10-day P&L it should be 10 θ/365. And even if the delta effect scales with
√

h,
the gamma effect should scale with h. The vega effect is more complex: if there is asymmetry
in the price–volatility relationship this is only likely to be apparent at the daily frequency, so
scaling up 1-day VaR by the square root of time could be augmenting or diminishing the VaR,
depending on the market, the type of option and the sign of our position.

The daily rebalancing assumption is approximate for two main reasons. First, the square-
root scaling rule may not be appropriate, if it is used. Whilst the P&L of an option might
conceivably have a stable distribution, it highly unlikely to be normal. Secondly, the daily
P&L distribution is estimated by decreasing the maturity of each option by only 1 day and
discounting the portfolio price by only 1 day, so scaling up a VaR that is estimated this way
diminishes the theta effect, i.e. that option prices tend to decrease as they approach expiry.
Daily rebalancing also diminishes the gamma effect, which can be considerable for short dated
options;10 and it distorts the vega effect, which can be considerable for long dated options.

Over one day the underlying price and volatility tend to move much less than they would
over a 10-day or longer risk horizon. Hence, when VaR is estimated over one day, and then
scaled up, the gamma, vega and theta effects will be too small. As a result, we expect the VaR
estimate for positive gamma positions (e.g. a long call or put option) to be greater when based
on daily rebalancing than it is when we estimate VaR from a directly computed h-day P&L
distribution. And the opposite is the case for positions with negative gamma.

We shall be comparing the static and dynamic VaR estimates in several empirical examples
and case studies in this chapter, to highlight the effect that the assumption we make about
rebalancing will have on the VaR estimate. And we shall specifically focus on this issue in
Examples IV.5.3 and IV.5.7, in the context of the historical VaR model. As explained above
the static VaR is more sensitive to the portfolio gamma, vega and theta than dynamic VaR.

10 For large price moves VaR tends to decrease for positions with positive gamma but increase for positions with negative gamma.
However, daily price variations are smaller than h-day price variations for h > 1, hence the gamma effect is diminished by the use of
dynamic VaR.
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Although they are the same at the daily horizon, the two assumptions can lead to totally
different VaR estimates when the risk horizon is more than a few days, and so it is important
to choose the assumption that is closest to the trading practice of the particular portfolio.

IV.5.3 ANALYTIC VALUE-AT-RISK APPROXIMATIONS

This section begins with a description of the mapping of option portfolios to the underlying
prices, interest rates, time – and indeed any risk factor except volatility. Mapping to volatility
risk factors is quite a challenge, and is covered in the next section. We then describe how
these mappings allow an analytic approximation to the VaR of an option portfolio. However,
for more complex risk factor mappings, and in particular those that include volatility as a risk
factor, we must estimate VaR using simulation.

IV.5.3.1 Delta Approximation and Delta–Normal VaR

For a portfolio of options on a single underlying the first order Taylor approximation to the
portfolio’s discounted P&L is

P&L ≈ δ$R, (IV.5.18)

where δ$ is the value delta of the portfolio and R is the discounted return on the underlying.
Since (IV.5.18) is a simple linear transformation the VaR based on (IV.5.18) is very easy

to calculate. For instance, suppose the discounted h-day returns on the underlying asset are
normally distributed with mean and standard deviation μh and σh. Thus

Rh ∼ N(μh,σ
2
h), (IV.5.19)

where Rh denotes the discounted h-day return on the underlying. By (IV.5.18) the approximate
distribution of the h-day P&L on the portfolio is

P&Lh ∼ N
(
δ$μh, (δ

$σh)
2
)
. (IV.5.20)

Option pricing theory is based on the assumption that the expected return on the underly-
ing asset is the risk free discount rate. To be consistent with this assumption we set μh = 0.
Now, from (IV.5.20) it follows that we can apply the normal linear VaR formula given in
Section IV.2.2.1 to approximate the 100α% h-day VaR of the option portfolio as

VaRh,α ≈ δ$ ×�−1(1 − α)σh, (IV.5.21)

where �−1(1 − α) is the 1 −α quantile of the standard normal distribution. In other words, the
portfolio has a VaR that is approximately δ$ times the VaR of the underlying asset.

More generally, we can apply a delta mapping to portfolios of options on several
underlyings. The mapping is

�P ≈
n∑

i=1

δP
i �Si = δ

′
P�S, (IV.5.22)
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where P is the portfolio price, δP = (δP
1, . . . , δ

P
n)

′ is the vector of net position deltas and �S =
(�S1, . . . ,�Sn)

′ is the vector of changes in the underlying prices. Equivalently,

P&L ≈
n∑

i=1

δ$
i Ri = δ

′
$r, (IV.5.23)

where δ$ = (δ$
1, . . . , δ

$
n)

′ is the vector of value deltas and r = (R1, . . . ,Rn)
′ is the vector of

returns on the underlying prices.
This is just a linear mapping based on risk factor returns that we might assume to have a

multivariate normal distribution. So, following the usual reasoning (see Section IV.1.6.3, for
instance) we have

VaRh,α ≈�−1(1 − α)

√
δ

′
$�hδ$, (IV.5.24)

where �h is the h-day covariance matrix of the discounted returns on the underlying asset.
We might also assume they have a multivariate Student t distribution, as explained in
Section IV.2.8, in which case (IV.5.24) would be modified to

VaRh,α ≈ t−1(1 − α)
√

ν−1(ν − 2)

√
δ

′
$�hδ$ (IV.5.25)

EXAMPLE IV.5.1: DELTA–NORMAL VAR

A portfolio of options on the FTSE 100, S&P 500 and DJ Eurostoxx 50 indices has the char-
acteristics shown in Table IV.5.4. The options are for £10 per point on the FTSE 100, $100
per point on the S&P 500 and e10 per point on the DJ Eurostoxx. Calculate the value deltas
in sterling terms and hence compute the delta–normal approximation to the 1% 10-day VaR
for a UK investor, under the assumption that exchange rates are constant.

Table IV.5.4 Characteristics of equity indices and their options

FTSE 100 S&P 500 DJ Eurostoxx 50

Net position delta 0.5 −0.2 0.6
Current index value 6000 1000 4000
GBP exchange rate 1 2 1.5
Volatility 15% 12% 18%
Correlations FTSE–S&P: 0.7 Stoxx–S&P: 0.5 Stoxx–FTSE: 0.6

SOLUTION The net value deltas in sterling terms are as follows:

FTSE 100: 0.5 × 10 × 6000 = £30,000;
S&P 500: −0.2 × 100/2 × 1000 =−£10,000;
Eurostoxx: 0.6 × 10/1.5 × 4000 = £16,000.
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The 10-day covariance matrix of the daily risk factor returns is

�10 = 10

250

⎛
⎝ 0.152 0.15 × 0.12 × 0.7 0.15 × 0.18 × 0.6

0.15 × 0.12 × 0.7 0.122 0.12 × 0.18 × 0.5
0.15 × 0.18 × 0.6 0.12 × 0.18 × 0.5 0.182

⎞
⎠

=
⎛
⎝0.9 0.504 0.648

0.504 0.576 0.432
0.648 0.432 1.296

⎞
⎠ × 10−3,

and so the 10-day variance of the portfolio P&L is

(
30 −10 16

)⎛
⎝0.9 0.504 0.648

0.504 0.576 0.432
0.648 0.432 1.296

⎞
⎠

⎛
⎝ 30

−10
16

⎞
⎠ × 103 = 1,380,816.

Using (IV.5.24) this gives a 1% 10-day VaR of 2.32635 ×√
1,380,816 =£2734.

Because the portfolio is assumed to be linear in the above example, we get the same answer
from static and dynamic VaR estimation. That is, we get the same answer whether we assume
that the portfolio is:

• rebalanced daily to maintain the current values of the net position deltas, in which case
we can multiply the 1-day VaR by

√
10 to get the 10-day VaR; or

• not traded during the 10-day period, in which case we base the VaR on the 10-day
covariance matrix.

This is true for a linear portfolio with i.i.d. normal returns, but when we include gamma effects
we obtain different results depending on the assumption about rebalancing.

Several extensions to the normal linear VaR have been described in Chapter IV.2 of this
volume. We can measure the VaR and the ETL of any portfolio with a linear risk factor map-
ping using a Student t distribution or a normal mixture distribution, for instance. All these
generalizations can be carried over to option portfolios when their risk factor mapping is the
basic delta map given by (IV.5.22). However, a linear risk factor mapping such as (IV.5.22) is
extremely inaccurate as an approximation for the P&L for an option portfolio. The values of
most option portfolios will be a highly non-linear function of the underlying asset prices. As
a result, the delta–normal VaR model should not be used, even for simple option portfolios.

IV.5.3.2 P&L Distributions for Option Portfolios

Figure IV.5.1 illustrates how the delta–gamma approximation translates the distribution of risk
factor changes into a distribution of price changes for the option portfolio. We assume there is
a single risk factor with return R. The distribution of R is assumed to be normal and its density
is shown by the black curve. The vertical axis represents the option portfolio P&L given by the
delta–gamma approximation (IV.5.1). The delta–gamma approximation is a quadratic function
of R that is indicated by the dashed curve, and the option portfolio P&L density that is derived
by applying this approximation to each value of R is shown by the grey curve drawn relative
to the vertical axis.
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P&L

R

Figure IV.5.1 The P&L distribution resulting from delta–gamma approximation

On the figure we have indicated the mean return, assumed positive, using a dot-dashed
vertical line. We also indicate, using a horizontal dot-dashed line, that the delta–gamma
approximation translates the mean return into a local maximum of the P&L density. Another
local maximum is obtained when the return is negative, and this time the maximum occurs at
a negative value for P&L.

The figure shows that even when we use a simple delta–gamma approximation to the portfo-
lio P&L, its distribution is highly non-normal. This is because the delta–gamma approximation
gives the P&L as a weighted sum of the return and the squared return, and if the returns are
normally distributed the squared returns have a chi-squared distribution. Also, the expecta-
tion of the squared return is not zero. Hence, the expected P&L is not zero even when the
expected return on the underlying is zero.11 The P&L distribution induced by the delta–gamma
approximation is therefore positively skewed, bimodal and may also be highly leptokurtic.

IV.5.3.3 Delta–Gamma VaR

We now derive an analytic approximation to the VaR of a portfolio of options on several
underlyings. To do this we need to fit a distribution with density function such as that shown
by the grey, skewed, bimodal curve in Figure IV.5.1.

Consider the h-day P&L given by the delta–gamma representation (IV.5.6), where the
returns on the underlying assets have a multivariate normal distribution with covariance
matrix �h. Of course the option portfolio P&L will not have a normal distribution, since it
includes sums of squared normal variables. But we can use (IV.5.6) to estimate the mean,
variance, skewness and kurtosis of the P&L distribution, assuming the approximation (IV.5.6)
is reasonably accurate.

The expectation of the right-hand side of (IV.5.6) is given by12

11 Since we have omitted the theta effect, a zero realized return would lead to a zero realized P&L; but a zero expected return does not
give a zero expected P&L.
12 Note that option pricing usually assumes each underlying assset is expected to return the risk free rate, i.e. that the expectation of
the discounted return is zero. Hence E(R) = 0. Also note that the gamma matrix is symmetric, so that it is equal to its transpose. If a
delta–gamma–theta approximation is used the theta term should be added to the trace here.
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E(P&L)=μ= 1
2

tr(�$�h), (IV.5.26)

where tr is the trace of a matrix, i.e. the sum of its diagonal elements. After some calcula-
tions, we derive the following expressions for the higher moments of the distribution of the
discounted P&L:

V(P&L)= σ2 = 1
2
tr

[
(�$�h)

2
] + δ

′
$�hδ$, (IV.5.27)

E
[
(P&L −μ)3

] =μ3 = tr
[
(�$�h)

3
]+ 3δ

′
$�$�h�$δ$, (IV.5.28)

E
[
(P&L −μ)4

]=μ4 = 3 tr
[
(�$�h)

4
]+ 12δ

′
$�$(�h�$)

2δ$ + 3σ2. (IV.5.29)

Hence, the skewness and kurtosis of the delta–gamma representation are

τ= tr
[
(�$�h)

3
]+ 3δ

′
$�$�h�$δ$

( 1
2

tr [(�$�h)2] + δ
′
$�hδ$)3/2

, (IV.5.30)


 = 3 tr
[
(�$�h)

4
]+ 12δ

′
$�$(�h�$)

2δ$ + 3σ2

( 1
2

tr [(�$�h)2] + δ
′
$�hδ$)2

. (IV.5.31)

Although the above expressions look complicated, they allow one to calculate the mean,
variance, skewness and kurtosis of the delta–gamma P&L distribution (IV.5.6) for an option
portfolio with many underlyings. If we know the price risk factor sensitivities δ$ and �$ that
characterize the portfolio, and the covariance matrix �h of h-day returns on the underlying
prices, then we can derive the moments of the P&L distribution.

Now suppose we have calculated the first four moments as explained above. How do we
estimate the VaR? One possibility is to apply a Cornish–Fisher expansion to approximate a
quantile from these moments using the methodology explained in Section IV.3.4.3. However,
we know from our empirical studies in Section IV.3.4 that for highly leptokurtic distributions
this is will not provide results that are as accurate as those derived by fitting a Johnson SU
distribution to the moments. The method is illustrated in the next example. It uses Tuenter’s
algorithm for fitting the Johnson SU distribution, as explained in Section IV.3.4.4.13

EXAMPLE IV.5.2: DELTA–GAMMA VAR WITH JOHNSON DISTRIBUTION

Consider a portfolio of options on bonds and on equities with a P&L that has the delta–gamma
approximation

P&L ≈ (1 5)

(
RE

RB

)
+ 1

2

(
RE RB

)(
25 −7.5

−7.5 125

)(
RE

RB

)
.

The units of measurement are millions of US dollars. Thus the net value delta is $1 million
with respect to the bond index and $5 million with respect to the equity index. The value
gamma matrix is also measured in millions of dollars. Suppose that the returns on the bond
and equity indices are normally distributed with volatilities of 30% and 20% and a correlation

13 The P&L, X, of an option portfolio when approximated with a delta–gamma representation often has a positive skewness as well
as a positive excess kurtosis. In this case, we fit a Johnson SU distribution to −X and compute the VaR from the upper tail of the
fitted distribution. Note that if the excess kurtosis is negative we cannot use the Johnson SU distribution, but other types of Johnson
distribution are available. See Mina and Ulmer (1999).
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of −0.25. Fit a Johnson distribution to the distribution of the portfolio P&L. Hence, estimate
the 1% 10-day VaR of the portfolio and compare your result with the delta–normal VaR based
on (IV.5.25).

SOLUTION We have

δ$ =
(

1
5

)
and �$ =

(
25 −7.5

−7.5 125

)
The 10-day covariance matrix of the risk factor returns is

�h = 10

250

(
0.09 −0.015

−0.015 0.04

)
=

(
36 −6
−6 16

)
× 10−4.

In the spreadsheet for this example we calculate the moments of the 10-day P&L distribu-
tion based on (IV.5.26)–(IV.5.31) and the results are: mean $0.150 million, standard deviation
$0.256 million, skewness 1.1913, and excess kurtosis 47.153. Since the excess kurtosis is posi-
tive, we can fit a Johnson SU distribution to these parameters using Tuenter’s algorithm.14 The
result is a delta–gamma 1% 10-day VaR of $261,024. The corresponding delta–normal VaR
is $451,096. Clearly, ignoring the gamma effect leads to considerable error when computing
VaR. The portfolio has a positive gamma, so we know from our discussion in Section IV.5.2.3
that the VaR will be considerably reduced when we take the gamma effect into account.

Because it is not bimodal the Johnson distribution that was applied in the above example is
not the best way to fit the first four moments of the option portfolio P&L distribution. We
have used it because it is practical, and because Section IV.3.4 demonstrated that if the P&L
distribution is very leptokurtic, as it is in the example, it is better than using a four moment
Cornish–Fisher expansion.15 However, the P&L distribution is bimodal and highly skewed as
well. The VaR at extreme quantiles is heavily influenced by the tail behaviour of the P&L
distribution, and it is difficult to capture this well with any analytic approximation.

IV.5.4 HISTORICAL VALUE AT RISK FOR OPTION PORTFOLIOS

This section presents several empirical examples on the computation of historical VaR
for option portfolios. We begin by studying the simplest possible portfolio: a position on
a standard European option on the S&P 500 index. The position requires revaluing for
every historical scenario of underlying price and volatility risk factor changes. This is easy
when we just apply the Black–Scholes–Merton formula to revalue the portfolio at the risk
horizon, but the portfolio revaluation can take considerable time for portfolios of exotic,
path-dependent options.

We shall also discuss how to apply historical VaR to the risk assessment of path-dependent
options, but since our focus is on the methodology rather than computational details, the
position considered will be a simple European look-back option. Although its pay-off is path-
dependent, under the constant volatility assumption we still have an analytic formula for its

14 But since the skewness is positive we fit the Johnson distribution to the distribution with a mean of −$0.150 million and a skewness
of −1.913 and estimate the VaR from the upper tail of this distribution.
15 A six-moment Cornish–Fisher expansion has been considered by some authors, but the tail behaviour of the distribution is still
unlikely to be well represented.
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price.16 If numerical methods have to be applied to price a large complex option portfolio this
will be very time-consuming. VaR with exact revaluation can usually be estimated overnight,
but for high frequency risk assessment purposes such portfolios are often better represented
by a risk factor mapping. Hence, another empirical example in this section illustrates the his-
torical VaR approach for a portfolio of options that have been mapped to their risk factors,
where all the options are on a single underlying. We then extend this to portfolios of options
on several underlyings and end the section with a case study on the historical VaR for a trading
book of energy options.

Various enhancements of standard historical simulation (e.g. to account for volatility adjust-
ment, or to apply parametric filtering based on a GARCH model) that improve its accuracy
have been described in Section IV.3.3. However, to include these in the empirical examples
of this section – which already require quite complex Excel workbooks – would obscure the
main purpose of this section. We therefore examine the application of standard historical sim-
ulation only, showing that it can usefully be applied to estimate the dynamic VaR of an option
portfolio, but it is not the best VaR model to use for static options positions, except when the
risk horizon is short.17

IV.5.4.1 VaR and ETL with Exact Revaluation

How does one calculate the historical VaR and ETL of an option that can be priced analyt-
ically? In this section we consider a very simple portfolio, i.e. a short position on a 30-day
European put on the S&P 500 index. These options are very actively traded on the CME.
Each option is for $250 per index point, i.e. the pay-off function is

$250 × max
(
ω(S − K),0

)
,

where ω is 1 for a call and −1 for a put and the strike K and S&P 500 index futures price S
are measured in index points.18

Data

The risk factors of this portfolio are the S&P 500 futures price, the option’s implied volatility,
and the 30-day US LIBOR rate. For convenience, and specifically to avoid concatenating a
very long series of 30-day index futures prices, we apply variations in the spot index price to
the current index futures price. This only induces a very tiny error in our calculations because
the basis risk between the S&P 500 spot index and its futures contract is negligible.19 Similarly,
we shall apply variations in the S&P 500 volatility index, i.e. the Vix index, to the current
implied volatility of the option. This assumes the option has a volatility beta of 1 with respect
to the Vix index.20 Finally, for the interest rate we use the 1-month LIBOR rate.21

16 Many exotic options such as Asians and barrier options also have analytic price approximations. See Section III.3.9.9 for the
look-back option pricing formula.
17 As already stated, this is because simulations cannot be based on overlapping h-day risk factor returns because the tail of the
portfolio return distribution will be truncated, leading to imprecision of VaR estimates at high levels of confidence.
18 The CBOE S&P 500 index options contract is for $100 per index point, but trading volume on this contract is minor compared to
the trading volume on the CME contract. European and American index options are priced on the index futures contract with the same
maturity as the option. See Section III.3.6 for further details.
19 See Alexander and Barbosa (2007).
20 Both index and index volatility data may be downloaded from Yahoo! Finance: symbols ∧GSPC and ∧VIX.
21 These data may be downloaded from the British Bankers’ Association website. See www.bba.org.uk.
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Daily data on these risk factors from 3 January 1990 until 27 April 2007 are displayed
in Figure IV.5.2. The Vix and LIBOR are measured on the left hand scale and the index is
measured on the right hand scale. The VaR will be measured on 27 April 2007, when the
index futures price stood at almost 1400 and the Vix was at almost 20%. The main influence
on the markets at this time, not just in the US but also in Europe and Asia, was the credit
crunch that was precipitated by the sub-prime mortgage crisis in the US during 2007. To ease
the credit squeeze, US interest rates had been cut considerably so that the 1-month LIBOR
rate stood at only 2.86% at this time.
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Figure IV.5.2 S&P 500 index price, Vix and 1-month US LIBOR, 1990–2008

Simulating Risk Factor Values

How should we simulate the risk factor values in the historical model? We know from our
discussion in Section IV.3.2 that we need to use daily or even higher frequency returns on the
risk factors so that we have enough data to measure VaR at the 99% or higher confidence level.
This means that for h > 1 we have a choice between the following approaches, each having its
own advantages and limitations.

(i) Estimate the VaR for a dynamically rebalanced position, and scale up the 1-day VaR
estimate. This assumes that we rebalance the position each day to keep the Greeks
constant.

(ii) Estimate the VaR for a static position using h-day simulations based on overlapping
samples.

(iii) First estimate a parametric model for the conditional distributions of the returns in
multi-step simulation, and then employ this model in the filtered historical simulation
model of Barone-Adesi et al. (1998, 1999).22

22 This approach is described in Section IV.3.3.4.
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The first two approaches have the advantage of simplicity but the disadvantage of inaccuracy.
In case (i) the error stems from an assumption that the position has stable, i.i.d. returns and
that we know the appropriate power law for scaling,23 and in case (ii) the error arises from the
distortion of the tail behaviour of the portfolio return distribution.24 The third approach is more
complex than the others, requiring the estimation of a GARCH model on the position’s daily
log returns and the application of the statistical bootstrap for simulation over the risk horizon.

We now ask how we should model the evolution of an option’s risk factor returns in the
framework of standard historical simulation. We shall answer this question in the context of
a 1-day VaR estimate. Given T historical daily returns (or changes) on a risk factor, the first
step in historical simulation is to derive the set,

{
X̃1t, X̃2t, . . . , X̃nt

}T

t=1
,

of 1-day-ahead risk factor prices. For i = 1, . . . ,n, each price X̃it is based on the current value
Xi of the risk factor when the VaR is measured and, under the assumption that the risk factor
Xi follows a geometric process, we set

X̃it = Xi exp(rit) (IV.5.32)

where rit = ln(Xit)− ln(Xi,t−1) is the daily log return on the risk factor, in the historical sample,
at time t. But under the assumption that the risk factor Xi follows an arithmetic process, we
use the daily changes xit = Xit − Xi,t−1 and simulate the risk factor prices as

X̃it = Xi + xit. (IV.5.33)

Should we use arithmetic or geometric stochastic processes to model the evolution of risk
factors? Since we have a European option that is priced using the Black–Scholes–Merton for-
mula, we should assume the underlying asset price follows a geometric Brownian motion.
Thus the log return on the underlying price is a normally distributed random variable, and
we should simulate prices using (IV.5.32). But what about the volatility and interest rate pro-
cesses? It is not entirely clear whether these are governed by arithmetic or geometric processes
in the real world. However, following our empirical results in Section II.5.3.6, I would advise
that we assume the real-world processes for interest rates and volatility are also geometric.
Hence, in all the case studies for this section we have used simulated interest rates and volatil-
ities that are also based on (IV.5.32). This also has the advantage that simulated volatilities
and interest rates cannot be negative.

Another reason to use log returns rather than absolute changes in risk factors is that over
a long historical period there could be significant trends in the risk factors. In that case, an
absolute change of 100 index points (or 100 basis points) ten years ago could have had quite
a different significance compared to a similar change today.

It is also convenient to use log returns since the sum of h consecutive log returns is the
h-day log return. Then, for a static VaR estimate, we use the h-day log return at time t, rhit to
simulate the ith risk factor price h days ahead as

23 Option portfolios have volatility as a major risk factor and so their returns are unlikely to scale by the square-root-of-time rule. See
Section IV.3.2.4 for a discussion of this point.
24 See Section IV.3.2.2 for an explanation why overlapping h-day returns produces a truncation of the tail.
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X̃it = Xi exp(rhit). (IV.5.34)

The result of the historical simulation of the underlying risk factors will be a set of 1-day
ahead or h-day ahead values for the risk factors. The time ordering implicit in these values
is not important, although it is important to couple the simulations of the values of different
risk factors, to retain the implicit correlation between them. However, the time ordering of
the returns that are used to generate these values can be important, to adjust for volatility
clustering. In that case, the simulated risk factor values are generated from the volatility-
adjusted returns.

Building the P&L Distribution and Estimating VaR

In the case of our simple S&P 500 option the risk factors are just the index futures price, the
option’s implied volatility, and the US LIBOR rate. In static VaR, the simulated values for the
risk factors are used to revalue the option at the risk horizon. If the risk horizon is h days, the
maturities of the simulated futures price, implied volatility and interest rate must be reduced
by h days.

By way of illustration, consider a single standard European option position, and denote the
price of the option at time t by25

ft = f(St,σt, r |K,T − t ).

Suppose the VaR is estimated at time t = 0. Then the forward looking discounted P&L from a
long position on the option in h trading days, i.e. in hc calendar days, is

P&L = (
exp(−rhc hc)fh − f0

)
pv (IV.5.35)

where f0 is the current value of the option, pv is the point value for the position and rhc is the
hc-day continuously compounded discount rate. We know everything on the right-hand side
of (IV.5.35) except for the option price fh in h trading days’ (i.e. in hc calendar days’) time.26

To simulate this, we apply the Black–Scholes–Merton pricing formula to a simulated pair
(Sh, σh) of values for the underlying price Sh and for the option’s implied volatility σh, in h
trading days’ time.

Taking each vector of simulated values of the risk factors in turn, we obtain the VaR estimate
as follows:27

• With no rebalancing (i.e. static VaR) we obtain many simulated h-day-ahead portfolio
values, from which we build an empirical distribution of the h-day portfolio P&L, and
discount this to today. The 100α% h-day VaR is minus the α quantile of this distribution.

25 Here the option strike is K and its maturity date is T, the underlying price is S and its implied volatility is σ. We know that the
discount rate r is such a minor risk factor that in the following we shall assume this is the same for all maturities.
26 In our empirical examples, to avoid counting calendar days for different assumptions about the risk horizon (measured in trading
days) we shall either assume the discount rate is zero or that hc =h. This introduces only a very small error in the VaR calculations, since
even ignoring the discount rate completely has a negligible effect on the VaR for option portfolios, as demonstrated in Example IV.5.5.
27 Since we are only considering one-step historical simulation here, the simulated risk factor prices, and hence also the simulated
portfolio P&L data, could be displayed in any order, provided only that the risk factor price series are ‘shuffled’ as one if the ordering
is changed. That is, the changes in price, volatility and interest rate on a given day must remain linked. The reason is that the connection
between price and volatility is incredibly important: an increase in volatility is far more likely to occur on a day when the price jumps
than on a day when the price remains constant.
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• With rebalancing to constant sensitivities (i.e. dynamic VaR) we obtain many simulated
1-day-ahead portfolio values, from which we build an empirical distribution of the daily
portfolio P&L, and discount this to today. The 100α% 1-day VaR is minus the α quantile
of this distribution. Then, to extrapolate this figure to an 100α% h-day VaR, we apply
the square-root-of-time or some other power law scaling rule.

The next example compares the application of standard historical simulation to static and
dynamic VaR estimates for a single option. Note that both approaches have errors: errors
in static historical VaR arise from the use of historical overlapping samples, and errors in
dynamic historical VAR arise from the use of a square-root scaling law. But these errors are
unlikely to affect our decision about whether to apply static or dynamic VaR measures in
the first place. This decision only depends on our assumptions about the position. If we are
estimating the VaR of a non-traded position we use should static VaR, and if we are estimating
the VaR of a trader’s limits, or of his current position (assuming it is rebalanced to maintain
constant risk factor sensitivities over the risk horizon) we should use dynamic VaR.

EXAMPLE IV.5.3: STATIC AND DYNAMIC HISTORICAL VAR FOR AN OPTION

Use standard historical simulation to estimate the 1% 10-day VaR for an unhedged position
on a standard European call or put on the S&P 500 index. Estimate both

• static VaR, using 10-day overlapping returns on the risk factors, and
• dynamic VaR, scaling up the daily VaR to a 10-day horizon using the square-root-of-

time rule.

Consider long and short positions on a 30-day call and a 30-day put, both with strike 1400.
The VaR is estimated on 25 April 2008 when the index is at 1400 and the index volatility is at
20%. For clarity, and since this will have very little effect on the result, assume the discount
rate is 0%.28 Use the same historical scenarios on the S&P 500 index and the Vix volatility
that were used in the previous example.

SOLUTION The spreadsheet for this example generates scenarios based on the daily log
returns on the S&P 500 and Vix between 3 January 1990 and 27 April 2007, as we have
described above. It prices the option using each of the simulated {price, volatility} scenarios.
Then it calculates the P&L as the difference between the discounted scenario price and the
current price of the option. This is the P&L for a long position, and the opposite difference
is the P&L for the short position. Multiplying the lower 1% quantile of the distribution of
these price changes by the index point value of $250 gives the 1% 1-day VaR of the unhedged
position as in Table IV.5.5.

Long positions. Since the options have only 30 days to maturity the long positions have
quite a large positive gamma; the gamma effect will decrease the static VaR considerably and
the application of a square-root scaling rule to 1-day VaR would underestimate this gamma

28 Readers can change this in the spreadsheet, but note that we maintain some simplifying assumptions, i.e. that the changes in the
relevant continuously compounded discount rate are identical to the changes in the discretely compounded 1-month discount rate and
that the number of trading days in the risk horizon is equal to the number of calendar days. The errors that these assumptions introduce
are very small.
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Table IV.5.5 1% 10-day VaR under different rebalancing assumptions

Position Rebalancing Call Put

Long Dynamic $10,518 $14,380
Static $7,112 $7,803

Short Dynamic $16,710 $20,407
Static $19,471 $18,709

effect considerably. This is why the 10-day dynamic VaR estimates for the long positions,
which are based on the square-root scaling rule, are considerably larger than the static VaR
estimates. However, since the simulations based on overlapping data can truncate the tails of
the P&L distribution, the static VaR estimates based on overlapping data may be too low at
high confidence levels (see the discussion following this example).

Why is the dynamic VaR for the long put so much larger than the dynamic VaR for the
long call? The reason is the vega effect. The option’s positive vega has the effect of offsetting
the VaR for a long call, but augmenting (or at least not offsetting) the VaR for a long put,
as explained in Section IV.5.2.2. The dynamic VaR is assumed to be based on a square-root
scaling rule, and this could understate or overstate the vega effect, depending on the option
and the risk factor characteristics. In stock index options dynamic VaR estimates tend to over-
state the vega effect. This is because the daily changes in volatility have a small, negative
autocorrelation and at the daily level there is a pronounced asymmetry in the index price–
volatility relationship which is not present in 10-day returns (see Section IV.4.4.4). For both
of these reasons, the square-root scaling rule tends overstate the vega risk of stock index
options.

Short positions. We already know from the previous example that short positions on
naked options are much more risky than long positions. This is why their VaR estimates in
Table IV.5.5 are much larger than the VaR estimates for the long positions. The short positions
have a large negative gamma, which should increase the static VaR, but in the dynamic VaR
estimates the portfolio is rebalanced to keep the gamma constant over the risk horizon, so the
gamma effect is diminished.

If the gamma effect were the only effect to consider we might suppose that the dynamic VaR
will be less than the static VaR, and this is certainly the case for the short call, but this is not
the case for the short put. Again, the reason lies with the vega effect, which we know from our
discussion in Section IV.5.2.2 will augment the VaR for the short put position. Since dynamic
VaR estimates overstate the vega effect in stock index options, the dynamic VaR estimate for
the short put position is larger than the static VaR estimate.

We know from our discussion in Section IV.3.2.7 that a potential problem with using over-
lapping data to estimate static VaR in the historical model is that the tail behaviour of the
risk factor returns can be distorted so that VaR estimates at extreme quantiles may be too
low. On the other hand, the use of a square-root scaling rule for dynamic VaR estimates also
introduces errors, because at least one of the risk factors (i.e. volatility) is unlikely to scale
with a square-root law.29 To illustrate these two sources of model risk, Table IV.5.6 shows
the VaR estimates for the previous example, but now based on the 10% and 0.1% significance

29 As demonstrated empirically in Section IV.3.2.4.



Value at Risk for Option Portfolios 269

levels. Because we have a daily sample size of about 5000, there are only 500 non-overlapping
10-day P&Ls. This means that we can estimate the 10% quantile (by taking the 50th largest
10-day loss), and the 0.2% quantile is the largest loss. But we cannot measure the 0.1% quan-
tile empirically, unless we use a statistical bootstrap, and the bootstrap merely increases the
number of observations by repeating them. It introduces no new information to the data. So
we only have an upper bound for the 0.1% quantile, i.e. the largest loss, which translates to a
lower bound for the 0.1% VaR.

Using overlapping samples will generate about 5000 observations, but there is no new infor-
mation in these data. Now it becomes possible to estimate the 0.1% quantile (as the 5th largest
10-day loss), but we would still underestimate the 0.1% quantile because the size of the 10-day
losses is limited by the largest loss in the sample.

Table IV.5.6 Comparison of 10% and 0.1% 10-day VaR under different
rebalancing assumptions

Position Assumption 10% 0.1%

Call Put Call Put

Long
√

10 Scaling $5,080 $7,216 $14,330 $19,714
Overlapping $4,922 $6,253 $7,793 $8,004

Short
√

10 Scaling $5,685 $7,607 $34,107 $36,027
Overlapping $6,094 $5,992 $34,349 $35,893

Looking at the results in Table IV.5.6, the 0.1% VaR estimates of long options exposures are
far too low when based on overlapping data. This is evident from the estimates of only $7793
for the call and $8004 for the put. These 0.1% VaR estimates are not very much greater than
the 10% VaR estimates! On the other hand, since we have a static position the VaR estimates
based on the square-root scaling rule are too high for the long positions, and too low for the
short positions, because they virtually ignore the gamma effects. They are also too high for
the put relative to the call, because they overstate the vega effect, as discussed above.

In summary, there is a considerable amount of model risk in standard historical simulation
when applying this methodology to measure static options VaR, even though there is no
parametric model to estimate.

EXAMPLE IV.5.4: HISTORICAL VAR AND ETL OF A DELTA-HEDGED OPTION

On 25 April 2008 you sell a European put on the S&P 500 index futures with strike 1400
and maturity 30 days. The index futures price is at 1398, the market price of the option is
32, its delta is −0.4991 and its implied volatility is 19.42%. Use the historical data shown in
Figure IV.5.2 to estimate the 1% 1-day VaR and ETL of the unhedged short put option position
and of the delta hedged portfolio. Then compare the results with those for a long position on
the put, and for both short and long positions on a call with the same strike and maturity, and
the same market price as the put.30

30 You will need to back-out the implied volatility for this call using Goal Seek or Solver, as shown in the spreadsheet. Readers can
change the spreadsheet to compute the VaR of other European call or put options. Just input the strike and maturity and read off the
VaR, but first follow the Goal Seek instructions to compute the correct implied volatility.
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SOLUTION Note that these options are on the futures rather than the index, although we
use the index to generate scenarios for the futures price as described earlier. So we price the
options on the futures using each of the {futures price, volatility, interest rate} simulations.31

Then the unhedged P&L is calculated as the difference between the simulated option price,
discounted by 1 day, and the current price of the option (i.e. 32). This is the P&L for a long
position, and the opposite difference is the P&L for the short position. Multiplying the lower
1% quantile of the distribution of these price changes by the index point value of $250 gives
the 1% 1-day VaR of the unhedged short put position as $6467. Clearly the VaR for naked
short options position is huge, and that is why traders must hedge the options that they write.

Now consider a delta hedge that is held for a period of 1 day, offsetting the short put position
by purchasing δ = −0.4980 (i.e. taking a short position) on the index futures.32 This time,
the discounted price changes on the hedged portfolio are calculated for each of the historical
scenarios. Multiplying the lower 1% quantile of the distribution of these price changes by the
index point value gives the 1% 1-day VaR of the hedged short put position as $1873. This not
small because we have not hedged the gamma or vega risk of the option.

For the ETL calculations we record the daily losses that exceed the 1% quantile of the daily
P&L distribution.33 Then the estimate of the daily ETL is the average of these excess losses,
i.e. $8413 for the naked short put position and $2818 for the delta-hedged portfolio. These
figures represent the expected loss given that the VaR is exceeded, so they provide some idea
of the potential for extreme losses on options positions.

Now we use the spreadsheet to estimate the 1% 1-day VaR and ETL for the long put, and for
a short and a long position on a call with the same strike and maturity, i.e. 1400 and 30 days,
a market price of 32 and an implied volatility of 20.67%.34 The results, which are displayed
in Table IV.5.7, show that the long positions have much less risk than the short positions. This
is because they have positive gamma. The gamma for 30-day near ATM options is relatively
large, and that is why there is so much difference between the risk from going long and short
these call and put options, even after delta-hedging.

Table IV.5.7 Comparison of VaR and ETL for long and short calls and puts

1% daily VaR and ETL Position Option VaR ETL

unhedged short put $6467 $8413
delta-hedged $1873 $2818
unhedged long put $4605 $5513
delta-hedged $909 $1078
unhedged short call $5132 $7341
delta-hedged $1916 $2848
unhedged long call $3249 $3828
delta-hedged $943 $1133

31 This time, use the historical data on the 1 month US Treasury bill as a proxy for movements in the 10-day continuously compounded
discount rate.
32 Of course we cannot sell a non-integer number of futures, but we shall not consider the consequent position risk here.
33 As before, the P&L is discounted by 1 day, although this has very little effect on the daily ETL.
34 When you change cell B14 of the spreadsheet labelled ‘VaR’ to a call option, do not forget to apply Goal Seek or Solver to compute
the correct implied volatility.
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The historical P&L distribution has a very large excess kurtosis.35A long position also has a
large positive skewness and a short position has a large negative skewness. The ETL increases
with kurtosis in the P&L distribution but decreases with positive skewness. Hence the ETL is
not very much greater than the VaR for a long position, but it is substantially greater than the
VaR for a short position, particularly for the delta-hedged short positions. The long positions
have an ETL that is approximately 20% greater than the VaR, whereas the delta-hedged short
positions have an ETL that is about 50% greater than the VaR.

This example illustrates the huge risks taken by option traders and the clear need for accu-
rate and active hedging. The 1% 1-day VaR of the unhedged short put is $6467, relative to a
position value of 32 × $250 = $7750, and at $8413 the 1% 1-day ETL exceeds the position
value. However, the delta-hedged short put has much lower VaR and ETL, and this is relative
to an initial position value of (32 + 0.4980 × 1398) × $250 = $182,062.

We have already mentioned, several times, that ignoring the discount rate as a risk factor would
have a negligible effect on the VaR. The next example justifies this statement empirically.

EXAMPLE IV.5.5: INTEREST RATE, PRICE AND VOLATILITY RISKS OF OPTIONS

Decompose the total historical VaR of the unhedged short put position in Example IV.5.4 into
the VaR due to uncertainty in the underlying price, uncertainty in volatility and uncertainty in
the discount rate. Then scale these figures up, using a square-root law, to estimate the dynamic
VaR over the life of the option.

SOLUTION From Example IV.5.4 the total 1% 1-day VaR of the unhedged short put is
$6467. To disaggregate this into stand-alone components we must create three separate histor-
ical simulations of the P&L where, instead of changing all three risk factors as in the previous
example, we change only one of them. Thus the price risk is measured by a quantile of the P&L
distribution generated by changing the underlying price but keeping volatility and discount
rate constant at their current levels. Similarly, the volatility risk is measured by a quantile of
the P&L distribution generated by changing the volatility but keeping price and discount rate
constant at their current levels. And the interest rate risk is measured by a quantile of the P&L
distribution generated by changing the discount rate but keeping price and volatility constant
at their current levels. The results for the 1% 1-day VaR decomposition of the unhedged short
put are shown in the first column of Table IV.5.8, and in the second column we have scaled
these figures up to a 30-day risk horizon, using a square-root rule.36

These results show that by far the most important risk factor for an option is the underlying
price. The volatility risk is substantial but still, the stand-alone price risk is almost four times
the stand-alone volatility risk. The only inconsequential risk is that due to uncertainty in the
discount rate.

35 The excess kurtosis is 5.11 for the unhedged put, 7.37 for the unhedged call, 17.51 for the hedged put and 15.88 for the hedged call.
This is the same for long and short positions. For long positions the skewness is 1.08 for the unhedged put, 1.45 for the unhedged call,
2.69 for the hedged put and 2.52 for the hedged call. For short positions, multiply the skewness by −1.
36 For simplicity, we also use 30 calendar days for the discounting.
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Table IV.5.8 Disaggregation of option VaR into price, volatility
and interest rate VaRs

Source of risk 1% daily VaR 1% 30-day VaR

Underling price $5,383 $29,484
Implied volatility $1,160 $6,354
Discount rate $0.63 $3.05
Sum of VaRs $6,544 $35,841

IV.5.4.2 Dynamically Hedged Option Portfolios

Typically option traders will hold portfolios that are delta–gamma–vega neutral. Of course,
as the underlying risk factors change, the hedges will have to be rebalanced. Rebalancing too
frequently will erode any profits from writing options because of the transactions costs. It is
therefore common to rebalance positions on a daily basis, to set the delta, gamma and vega
back to zero. But the trader still runs substantial risks; and these risks would not be detected
in daily VaR calculations based on delta–gamma–vega portfolio mapping, since the delta,
gamma and vega will always be zero when the VaR is measured.37

To assess such risks we consider a simple European option that is gamma and vega hedged
with other options on the same underlying and then delta hedged with the underlying, as
explained in Section III.3.4.6. We compute the 1-day VaR of the hedged portfolio based on
exact revaluation and then, assuming the portfolio is rebalanced to be delta–gamma–vega
neutral at the end of each day, the 10-day dynamic VaR is estimated as

√
10 times the

1-day VaR.

EXAMPLE IV.5.6: VAR AND ETL FOR A DELTA–GAMMA–VEGA HEDGED PORTFOLIO

A trader writes a standard 60-day European call on the S&P 500 index futures with strike 1400
when the current index futures is at 1398. The call has a price of 50 and an implied volatility
of 22.67%. To gamma–vega hedge he buys two other S&P 500 futures options: a 30-day put
with strike 1375 and a 90-day call with strike 1425. The 30-day put has price 30 and implied
volatility 25.58% and the 90-day call has price 55 and implied volatility 24.38%. Using the
same historical {price, volatility, interest rate} simulations that were used in Example IV.5.4,
estimate the 1% 10-day VaR and ETL of the delta–gamma–vega neutral portfolio assuming it
is rebalanced at the end of each day to return the delta, gamma and vega to zero. Assume the
discount rate is 2.75% at all maturities up to 90 days.

SOLUTION First, gamma–vega neutral positions are computed in the spreadsheet. Then the
position delta of the gamma–vega hedged portfolio is used to determine the delta hedge
position on the S&P 500 index. The resulting option positions and their risk factor sensitivities
are shown in Table IV.5.9.

For gamma–vega neutrality we have a position of 0.4843 on the 30-day put and 0.5472
on the 90-day call. The resulting position in all three options has a net delta of −0.5293
− 0.1858 + 0.2628 = −0.4523. We assume we can buy exactly this amount of the underlying
in the delta neutral hedge, so that there is no residual position risk.

37 Similarly, the delta-only approximation to the VaR of the delta-hedged portfolio in Example IV.5.4 would be zero. Yet with exact
re-valuation, the 1% 10-day VaR of the delta-hedged portfolio is $1,198.
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Table IV.5.9 Characteristics of European options on S&P 500 futures

Characteristics Option 1 Option 2 Option 3

Option price 50 30 55
Volatility 22.67% 25.58% 24.38%
Maturity (days) 60 30 90
Strike 1400 1375 1425
Call/put call put call
Position −1 0.4843 0.5472
Delta −0.5293 −0.1858 0.2628
Gamma −0.0031 0.0018 0.0013
Vega −2.2439 0.7400 1.5040

The spreadsheet revalues each option on every historical simulation, computes the dis-
counted total P&L on the gamma–vega neutral portfolio, and also computes the discounted
P&L on the delta–gamma–vega neutral portfolio that includes the short position on the S&P
500 index futures. Since we are assuming daily rebalancing to constant risk factor sensitivities,
the 10-day historical VaR for the delta–gamma–vega neutral portfolio is calculated as −√

10
times the lower 1% quantile of this P&L distribution, and the ETL is

√
10 times the average

of the losses that exceed the 1% quantile of the distribution.
The VaR is not zero: the 1% 10-day VaR is $871. And the 1% 10-day ETL is $968. We

conclude that even when traders rebalance daily to delta–gamma–vega neutral positions they
can run significant risks. This is because we have only hedged against small changes in the
price and volatility risk factors. A delta–gamma–vega hedged portfolio would have a much
smaller risk if it were rebalanced more frequently than once per day, but then the transactions
costs could erode any benefit from hedging.

Readers may verify that the result in the above example is not unusual. Changing the options in
the spreadsheet leads to similar results, i.e. the dynamic VaR for a delta–gamma–vega neutral
portfolio is not insignificantly different from zero. As already mentioned, this is because the
VaR estimate is based on exact revaluation: of course the dynamic VaR estimate would be zero
if we based it on a delta–gamma–vega mapping, because the portfolio is rebalanced daily to
set the delta, gamma and vega to zero.

IV.5.4.3 Greeks Approximation

The aim of this section is to illustrate the method for computing historical VaR when
options have been mapped to risk factors. For an option portfolio on a single underlying,
mapped to a single volatility risk factor, a delta-gamma–vega–theta representation allows us
to approximate the price of the portfolio h trading days (and hc calendar days) ahead as

fhc ≈ f0 + θP�t + δP�S + 1
2
γP(�S)2 + νP�σ, (IV.5.36)

where f0 is the price of the portfolio today, �t = hc/365, �S is the difference between an
underlying price in h trading days’ time, derived from a simulated daily log return on S, and
the price today, �σ is the difference between the simulated volatility in h trading days’ time
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and the volatility today, and θP, δP, γP and νP are the position Greeks of the portfolio. Now
the approximate discounted P&L on the portfolio may be written

[
exp(−rhc hc/365)fh − f0

] × pv

≈ [
exp(−rhc hc/365) (θP�t + δP�S + 1

2
γP(�S)2 + νP�σ)

] × pv, (IV.5.37)

where pv is the point value for options on this underlying.38

More detailed risk factor mappings could add other Greeks, such as rho (the sensitivity to
changes in interest rates) or higher order sensitivities like vanna and volga. But the minor
Greeks such as rho, vanna and volga usually have little effect on the portfolio VaR, as we
demonstrate in this section, so delta–gamma–vega–theta mapping is often sufficient.

When using standard historical simulation for options we are always faced with the choice
between, on the one hand, estimating static VaR and using overlapping data for �S and �σ,
and, on the other hand, estimating the dynamic VaR by basing (IV.5.37) on a risk horizon of 1
day and then scaling up the result to a risk horizon of h days. The following example illustrates
the effect of this decision, and also examines the accuracy of VaR estimates based on Greeks
approximations.

EXAMPLE IV.5.7: HISTORICAL VAR WITH GREEKS APPROXIMATION

Estimate the 1% 1-day and 10-day VaR of long and short positions on the put option in
Example IV.5.4, and for the 10-day VaR. Assume first that the position is rebalanced daily
to return the risk factor sensitivities to their values at the time the VaR is estimated, and
then that the position is held static. Compare the results for a long and a short position on
the put, based on delta-only, delta–gamma, delta–gamma–vega, delta–gamma–vega–theta and
delta–gamma–vega–theta–vanna–volga–rho approximations.

SOLUTION In the spreadsheet for this example, the dollar Greeks are held constant and
applied to the same historical {futures price, volatility, interest rate} simulations as in Exam-
ple IV.5.4.39 The results are displayed in the top half of Table IV.5.10. Note that the results
based on exact revaluation were already obtained in Table IV.5.5, Example IV.5.4.

The ‘delta only’ VaR is imprecise because it is a linear approximation to a highly non-linear
relationship. The delta only approximation behaves like a linear portfolio, and as we know
from previous chapters, the VaR can be greatly affected by non-constant volatility. The put
has a positive gamma and so the delta–gamma VaR for the long position is less than the VaR
based on the delta only approximation. But the opposite is the case for the short put position:
there were many large negative price changes in the S&P 500 futures during the historical
period, and the negative gamma increases the sensitivity of the option to such moves.

The delta–gamma–vega VaR figures include the portfolio’s price changes due to changes
in volatility. Changes in volatility have two effects on the portfolio’s VaR. One effect is that
the VaR increases due to the addition of another risk factor. If this were the only effect then

38 We have ignored a second term f0(exp(−rhc hc/365) − 1) on the right-hand side, since this is negligible unless h is very large, so it
will not affect the accuracy of the Greeks approximation.
39 For simplicity, in the static VaR calculations we assume hc/365≈ h/250 so that for the 10-day VaR, �t =0.4 instead of 0.3836. The
theta effect is so small here that this approximation leads to inconsequential errors.
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Table IV.5.10 Historical VaR with Greeks approximation

1% 1 day VaR Long Short

Delta only $4,943 $4,622
Delta–gamma $3,935 $5,504
Delta–gamma–vega $3,941 $5,519
Delta–gamma–vega–theta $3,941 $5,519
All Greeks $3,941 $5,519
Exact valuation $4,605 $6,467

1% 10 day VaR Dynamic portfolio Static portfolio

Long Short Long Short

Delta only $15,630 $14,618 $13,612 $12,719
Delta–gamma $12,443 $17,405 $6,015 $19,392
Delta–gamma–vega $12,462 $17,453 $6,023 $19,415
Delta–gamma–vega–theta $12,463 $17,452 $6,024 $19,414
All Greeks $12,463 $17,452 $6,024 $19,414
Exact valuation $14,561 $20,451 $7,826 $17,520

VaR would increase, whatever the sign of the portfolio vega. But there is a second effect that
is due to the correlation between the index price changes and the volatility changes, which
is negative in this case. The net effect of adding the volatility risk factor to the delta–gamma
representation is therefore indeterminate; it could increase or decrease the VaR.

It is clear from our results that once a delta–gamma–vega approximation is used, adding
further Greeks has little effect on the VaR. But the most striking thing about these results is
that the 1% VaR based on the Greeks approximation is considerably less than the VaR based
on exact revaluation. Why is this difference so large? The main reason is that the historical
VaR estimate is driven by some very large changes in the risk factors during the historical
period. Specifically, there were some large price rises and volatility falls which have affected
the long put, and some very large price falls and volatility rises which have affected the short
put. A Greeks approximation is only accurate for small changes in the risk factors.

Now consider the 10-day VaR figures in the lower part of Table IV.5.10. When we assume
daily rebalancing we approximate the 10-day VaR in the spreadsheet labelled ‘Dynamic VaR’
as the square root of 10 times the 1-day VaR. Under the no rebalancing assumption, we eval-
uate the 10-day VaR directly, in the spreadsheet labelled ‘Static VaR’, using overlapping data.
The delta–gamma VaR is again less than the delta only VaR, for a long position, and greater
than the delta only VaR for a short position. But now we can see that the gamma effect is much
larger in the static VaR estimate than it is in the dynamic VaR estimate. This is because the
dynamic VaR captures only a very small gamma effect, over a 1-day horizon only, and this is
much smaller than the gamma effect over an h-day horizon.

This example shows that if we try to estimate VaR for a static options position or portfolio,
by scaling up 1-day VaR estimates to a longer risk horizon, we will seriously underestimate
the gamma effect on VaR. We would also underestimate the theta effect and distort the vega
effect.40 Instead we should compute static VaR estimates, i.e. we should estimate VaR directly
from the h-day P&L distribution, without scaling up a short-term VaR estimate to a longer-
term risk horizon, and use exact revaluation if possible. However, the problem with using

40 The vega and theta effects are small for this particular option and risk horizon, but would not be small for long term ATM options
held over long risk horizons.
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standard historical simulation here is that the tails of the h-day P&L distribution become
truncated, so the VaR at extreme percentiles, and the ETL, are underestimated.

The exact revaluation of complex options without analytic expressions for the price requires
a significant computational effort. Hence, it is often necessary to use a Greeks approximation
to compute historical VaR. But the above example highlights a major problem with the appli-
cation of Greeks approximation in the estimation of historical VaR for an option portfolio.
Historical scenarios on daily changes in the risk factors are not always small changes; indeed,
it is precisely the large changes in the risk factors that influence the VaR estimates, especially
at extreme quantiles. Hence the application of standard historical simulation to obtain VaR
estimates based on Greeks approximations is prone to imprecision.

The next example shows how delta–gamma–vega approximation is applied to estimate the
VaR of a large portfolio containing options on several correlated underlyings. We consider an
options trading book held by a UK bank on 31 December 2006, containing standard European
options on UK, US and German stocks. The risk factors are the stock index futures and their
respective volatility indices. To avoid having to concatenate constant maturity futures time
series over a long historical period, we again infer the changes in the futures from the changes
in the spot index. Hence, we assume the basis risk is zero, which introduces a small error in
the calculation, but this is a very minor source of model risk in VaR models for portfolios of
options on major indices.

Figures IV.5.3 and IV.5.4 depict the historical data that will be used in the next example.
They are the daily index prices and the corresponding volatility indices, from 4 January 2000
until 31 December 2006 (a total of 1666 observations on each risk factor).41 Clearly we are
estimating the VaR during a relatively tranquil period, compared with the previous examples
which measured the VaR on 25 April 2008.
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Figure IV.5.3 FTSE 100, DAX 30 and S&P 500 indices

41 In Figure IV.5.3 the S&P index is measured on the right-hand scale and the FTSE 100 and DAX 30 indices are measured on the
left-hand scale. All data were downloaded from Yahoo! Finance except for the Vftse index, which was calculated from option prices
by my PhD student Stamatis Leontsinis.
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Figure IV.5.4 Vftse, Vdax and Vix volatility indices

The position delta and gamma of each sub-portfolio in UK, US and German stocks may be
calculated as described in Section IV.5.3.2. But the position vega is more difficult to estimate,
and we refer the interested reader to Section III.5.6 for further details. In the next example
we do not compute the position Greeks, and instead we start from the delta–gamma–vega
representation of each sub-portfolio.

EXAMPLE IV.5.8: HISTORICAL VAR FOR OPTIONS ON SEVERAL UNDERLYINGS

A portfolio contains various options on the FTSE 100, S&P 500 and DAX 30 futures. The
portfolio has not been fully hedged and the position delta, gamma for each sub-portfolio, its
position vega with respect to the relevant volatility index, and the point values of the index
futures options, are shown in Table IV.5.11. The mark-to-market value of the portfolio is £1
million. Based on the data shown in Figures IV.5.3 and IV.5.4, estimate the 1% 1-day historical
VaR of the portfolio on 31 December 2006. Assume that the forex rates are fixed at £/$ = 0.5
and e/$ = 0.75, and that the UK LIBOR curve is flat at 5%.42

Table IV.5.11 Position Greeks of large international stock option
portfolio

Position Greeks FTSE 100 S&P 500 DAX 30

Delta −0.5 −0.2 0.7
Gamma −0.005 −0.001 0.004
Vega −150 −100 200
Point value £10 $250 e5

SOLUTION First we compute the value delta, value gamma and value vega for each sub-
portfolio, expressing these in pounds sterling. Thus we multiply each position Greek by the

42 So that there is no forex risk and no interest rate risk on the portfolio. Note that these fixed values can be changed by the user.
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point value for each index and then by the relevant forex rate. The results are shown in
Table IV.5.12.

Table IV.5.12 Value Greeks of a large international stock option portfolio

Value Greeks FTSE S&P 500 DAX 30 Total

Delta −£31,104 −£35,458 £17,317 −£49,245
Gamma −£1,934,918 −£251,447 £652,790 −£1,533,574
Vega −£1,500 −£12,500 £750 −£13,250

Using the daily data on the equity index closing prices and their volatility indices shown,
in Figures IV.5.3 and IV.5.4, we estimate VaR by taking the daily returns on the price and
volatility risk factors to simulate a discounted daily P&L due to delta, delta–gamma and delta–
gamma–vega approximations. The results for the 1% 1-day VaR are shown in Table IV.5.13.43

Table IV.5.13 Historical VaR for a large
international stock option portfolio

1% 1-day VaR

Delta-only £1,493
Delta–gamma £2,281
Delta–gamma–vega £2,405

The net value gamma is large and negative, so adding the gamma effect increases the delta-
only VaR considerably. In the absence of any dependence between price and volatility, the
effect of adding the volatility risk factor is to increase VaR when vega is positive and to
decrease it when vega is negative. In our case the net vega is negative, so adding vega risk
would decrease the VaR if the price and volatility risk factors were independent. However, the
price and volatility have a negative relationship, and this offsets the decrease in VaR. In fact,
in our case the addition of vega risk gives a small increase in VaR.

IV.5.4.4 Historical VaR for Path-Dependent Options

The price of a path-dependent option at the risk horizon depends on the simulations of the risk
factors over the risk horizon. For instance, the price of a barrier option depends on whether
the underlying price has hit or crossed a barrier at any time before or at the risk horizon. This
means that to assess the risk of a path-dependent product, multi-step historical simulation must
be used, as described in Section IV.3.2.7.

In the following we shall use a look-back call for illustration. The price of a look-back call
depends on the minimum of the underlying price between inception and maturity. Its pay-off
is max(ST − m,0), where ST is the underlying price at maturity T, and the strike m is the
minimum underlying price achieved between the issue and the expiry of the option.

43 In the spreadsheet readers may scale up the daily VaR estimates to longer horizons using the square-root scaling rule, bearing in
mind that the theta, gamma and vega effects will be distorted if the position is in fact static. See Section IV.5.4.1, and Example IV.5.3
in particular.
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Under the assumption of geometric Brownian motion with constant volatility for the
dynamics of the underlying price S, the price at time t of a look-back call on a non-dividend-
paying asset is given in Section III.3.9.9. The option price is

exp
(−r(T − t)

)(
Ft�

(
d1t

) − mt�
(
d2t

)+λ−1
(
Ft�

(−d1t

) − mλ

t S1−λ

t �(−d3t)
))

, (IV.5.38)

where T is the expiry date of the option, Ft = St exp
(
r(T − t)

)
, mt is the current strike of the

option, i.e. the minimum price on the underlying achieved between the time of issue and time
t, r is the discount rate of maturity T − t,44 λ=2rσ−2, σ is the volatility in the underlying price
process, and

d1t = ln(Ft/mt)

σ
√

T − t
+ 1

2
σ
√

T − t, d2t = d1t − σ
√

T − t, and d3t = d1t −λσ
√

T − t.

EXAMPLE IV.5.9: HISTORICAL VAR FOR A PATH-DEPENDENT OPTION

Estimate the 1% 10-day historical VaR of a European look-back call on the S&P 500 index
with 90 days to expiry. Suppose the current strike of the call is 1375 and that the VaR is
estimated when the index price is 1400, the volatility is 20% and the 90-day US LIBOR rate
is 3%. Base your calculations on the same {price, volatility, interest rate} simulations that
were used in Example IV.5.4. How does the VaR for the look-back call compare with the VaR
for a standard call option on the S&P 500 index with the same maturity and strike 1375? Use
multi-step historical simulation on a static position in each case.

SOLUTION The current price of the look-back call is calculated using S = 1400, m = 1375,

σ = 20% and r = 3% in (IV.5.38), giving the current price of the call as 114.23. The option
is on the S&P 500 index so we assume its point value is $250, as it is for the CME options.
Hence, the current mark-to-market value of the option is $28,558.

We now use the historical simulations to price the look-back call in 10 days’ time. First we
calculate the strike of the look-back call as the minimum underlying price achieved between
the issue of the option and 10 days forward in time, decreasing the option’s maturity by 10 days
when we value it. Unless the underlying price drops below 1375 over the next 10 days, this
will remain at 1375. Note that we use 10 consecutive historical price, volatility and interest rate
changes when calculating this minimum price. In this way we capture the dynamic properties
of the historical scenarios, including any autocorrelated changes in prices, interest rates and
volatilities.

Then the 10-day discounted P&L on the option is calculated as the point value times the
difference between the discounted simulated option price and the current option price. Finally,
the 1% VaR is estimated as −1 times the 1% quantile of the distribution of discounted P&L.
The result is a 1% 10-day VaR of only $5249 for a long position and $17,633 for a short
position.

We now compare this with the VaR of a 90-day call on the S&P 500 index, with strike equal
to the current strike of the look-back call, i.e. 1375. Since the underlying is currently at 1400,
the call is deep in the money (ITM) and has a current price of 74.10. In the spreadsheet for this
example we use multi-step historical simulation over a 10-day risk horizon, finding that the
standard European call has a 1% 10-day VaR of $10,345 for a long position and $19,071 for

44 This also changes with time t but, like volatility, we assume it is constant for the derivation of the price formula.
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a short position. These are greater than the corresponding VaRs for the look-back call. This is
because the higher delta and the lower gamma of the standard call both augment its VaR.

The advantage of using historical scenarios to estimate the VaR of path-dependent options
is that they capture the observed behaviour of the markets. Relying only on the empirical
dependence between the risk factors is a clear advantage over using covariance matrices,
and historical simulations also provide a natural model for autocorrelation in risk factors (in
their returns and/or their squared returns) which can be an important effect to include when
assessing the risks of path-dependent options. In the above example we used consecutive his-
torical scenarios, that capture volatility clustering and autocorrelation in price and interest rate
changes in an entirely natural way. This has the advantage of requiring no parametric model
to capture price and volatility dynamics, but also the disadvantage that VaR at high confidence
levels would be underestimated if the sample size is not sufficiently large. When VaR and
ETL must be assessed at extreme quantiles and the historical sample size is not very large,
then it would be better to use a parametric model such as a GARCH model for the evolution
of returns over the risk horizon. That is, instead of standard historical simulation in a multi-
step framework based on overlapping samples, the filtered historical simulation method that
was described in Section IV.3.3.4 would be preferred.

IV.5.4.5 Case Study: Historical VaR for an Energy Options Trading Book

The case study in this section calculates the historical VaR of a portfolio of options on crude
oil futures, using an exposure that represents the commodity options trading desk of a large
bank, where there is at least some delta hedging with the underlying futures. In our case the
risk factors will be the prices of futures with monthly maturities from 1 month to 6 months,
and their ATM implied volatilities. The VaR of the trading book will be calculated on 1 August
2006 using daily closing prices from 2 January 1996 until that date, and the risk factor prices
in US dollars per barrel are illustrated in Figures IV.5.5 and IV.5.6.
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Figure IV.5.5 NYMEX WTI crude oil futures prices
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Figure IV.5.6 NYMEX WTI at-the-money volatilities

Risk Factors

Since the Iraq war in 2003 the prices of crude oil have been tremendously volatile, from
around $25 per barrel at the time of the war, rising to a high of almost $150 per barrel in June
2008 then falling back to less than $100 per barrel at the time of writing. The volatility of
the futures options has fluctuated within the region of 25–60%, with peaks after the terrorist
attacks in the US in September 2001 and at the outbreak of the Iraq war. Interesting features
of the ATM volatility series are their huge daily variations and the many spikes in volatility;
in fact the 1-month ATM volatility has so many spikes that we have omitted it from the graph.
These features are apparent in many energy options.

The Portfolio

We shall examine the risk taken by a trader in crude oil options of different maturities. We
assume he rebalances his portfolio to keep a net delta, gamma and vega of zero, but he has
permission to trade within his portfolio up to the limits shown in Table IV.5.14. These limits
reflect the belief that oil prices will fall over the next few months, since the value delta up
to 3 months ahead is negative. We shall assume the portfolio is rebalanced daily over the
risk horizon, to return the value Greeks to their limit values. Even though the net value delta,

Table IV.5.14 Limits on value Greeks of the crude oil option portfolio

Futures Value delta ($000) Value gamma ($000) Volatilities Value vega ($000)

m1 −100 −300 ATM m1 −20
m2 −50 200 ATM m2 20
m3 −200 −700 ATM m3 −80
m4 150 300 ATM m4 10
m5 90 100 ATM m5 20
m6 110 400 ATM m6 50
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gamma and vega of the portfolio are all zero, the portfolio may still run substantial risks from
any non-parallel movements in the futures and volatility term structures. The futures price risk
factors are very highly correlated with each other, as are the implied volatility risk factors, but
they are not perfectly correlated, and so some movements will be non-parallel shifts.

To keep the analysis simple we are ignoring the cross-gamma effects, i.e. we assume the
sensitivities to the second order products of returns on futures of different maturities are zero,
so we have specified only a vector for the value gamma, rather than a matrix.

Historical VaR

The calculation of the historical VaR is based on a multivariate delta–gamma–vega represen-
tation with six price and six volatility risk factors. Figure IV.5.6 shows that even though the
option’s volatilities were lower than average at the time VaR is measured, it is quite possible
that the volatilities could jump above 40% or more, over a reasonably short time horizon.
Hence, we make no volatility adjustment to the portfolio P&L series.

Since we have a dynamically rebalanced portfolio, the 1% 10-day VaR is approximated as
minus the lower 1% quantile of the P&L distribution, multiplied by the square root of 10.45

The results are shown in Table IV.5.15. Whilst the gamma risk appears to be relatively small,
quite a different picture might emerge if we assumed a static portfolio over a 10-day horizon.
The vega risk is substantial. In commodity option portfolios the price–volatility correlation
is usually positive. Hence, the addition of the volatility risk factors increases the VaR. In this
case it appears to increase the VaR substantially, because the portfolio is only hedged against
parallel movements in the volatility term structure, and crude oil volatility term structures
often tilt or change convexity. We shall return to this case study in Section IV.5.5.8, when we
explain the use of Monte Carlo simulation to estimate the VaR of the same portfolio.

Table IV.5.15 Historical VaR of the crude oil
option portfolio

Delta only $14,103
Delta–gamma $14,547
Delta–gamma–vega $17,940

IV.5.5 MONTE CARLO VALUE AT RISK FOR OPTION
PORTFOLIOS

The main purpose of this section is to demonstrate how the repricing algorithm for an option,
or an option portfolio, is applied to Monte Carlo simulations. Monte Carlo has the major
advantage of generating many thousands of forward looking returns on the risk factors; there
are no limitations on sample size as there are with standard historical simulation. To avoid
complexity, many of our examples in this section will use an i.i.d. multivariate normal risk

45 And to reduce complexity we ignore the discounting, since this has only a minor effect on the VaR over a 10-day period.
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factor log returns assumption. However, very often this distributional assumption is not appro-
priate, and we know from the previous chapter that many other conditional and unconditional
risk factor return distributions could be applied instead. We do need to build a model for risk
factor return distributions that accurately represents their empirical behaviour. So another aim
of this section is to quantify the impact of the risk factor returns model on the Monte Carlo
VaR estimate, and to compare this source of model risk with other sources of error, such as
the error induced by the risk factor mapping.

Although options are priced in the risk neutral world, where the futures price is a martin-
gale and therefore has zero expected return, VaR is an assessment of risk in the real world.
Therefore, we need not assume that the expected return on a futures price is a martingale, or
that a spot price returns the risk free rate. In particular, we need not assume that the standard
deviation of the underlying returns simulations is derived from the implied volatility of the
option, since the option typically has a different maturity than the risk horizon for the VaR. It
is the process volatility over the risk horizon that we must use in the Monte Carlo simulations
for the underlying price. The implied volatility is therefore treated like any other stochastic
risk factor, having its own expected return and volatility. Simulations for the underlying price
and volatility must also take account of their dependence. For instance, an equity index option
price and volatility might be assumed to have an asymmetric negative dependence.

This section adopts an approach that is very similar to that in the previous section, where
we first explain the VaR methodology and then derive practical, general results in the context
of increasingly complex but realistic examples. The CD-ROM is not large enough to contain
many thousands of correlated simulations on all the risk factors for every example. Hence,
I have set each workbook to have only 100 simulations. After copying the workbook for
each example, readers should extend the number of simulations by filling down the last
row of the simulations, and all calculations based on these, in all the spreadsheets of the
workbook.46

IV.5.5.1 Monte Carlo VaR and ETL with Exact Revaluation

We first explain the steps involved with the computation of Monte Carlo VaR and ETL for a
single-asset option assuming that the price and volatility risk factors are i.i.d. with multivariate
normal distributions:

1. State the covariance matrix of the h-day risk factor returns. For instance, for a single
option there are two main risk factors: the underlying price and its implied volatility.
Their covariance matrix has three distinct elements: two h-day variances of the under-
lying and the implied volatility, and the covariance term, which depends on the
price–volatility correlation.47

2. Simulate a very large number N of uncorrelated pairs of standard normal draws. As
described in the previous chapter, we take kN random numbers, where k is the number

46 For your convenience I have also switched from automatic to manual calculations. With manual calculations just press F9 to repeat
the simulations.
47 We could also include the discount rate, but this is a very minor risk factor. We shall keep the discount rate as a risk factor for
our first empirical example in this section, but since the simulation error is so large, there seems no point in increasing the size and
complexity of the subsequent workbooks by keeping the discount rate risk as a risk factor. Hence we shall assume this is constant
from Example IV.5.10 onward.
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of risk factors, transform them into independent simulations from a standard normal
distribution and arrange these into columns in Excel.

3. Use the expected returns and the Cholesky matrix to transform these columns into corre-
lated simulations on the underlying price Sh and volatility σh in h trading days’ time, with
the targeted expected returns, volatilities and correlation. First compute the Cholseky
matrix of the h-day covariance matrix.48 Then pre-multiply each pair of uncorrelated
simulations by this Cholesky matrix. Also, in the simulated data, use the discounted
expected returns on the risk factor, if these are assumed to be non-zero.49

4. Apply each simulated return to the current values of the risk factors. For instance, con-
sider a simple option having only two risk factors, the underlying price and the implied
volatility, with current values S̄ and σ̄. We shall simulate N pairs {Sh, σh} at this stage.
We often assume that the simulated returns rSh and rσh on the underlying price and the
implied volatility are log returns, so that

Sh = S̄ exp(rSh) and σh = σ̄ exp(rσh).

5. Apply the option pricing model to each set of simulated risk factor values and hence sim-
ulate a discounted P&L distribution for the option. For instance, with a simple European
option apply the Black–Scholes–Merton formula to each pair {Sh, σh}. This gives N
possible h-trading-day-ahead option prices fh. The discounted P&L is then

ω
(
exp(−rhc hc)fh − f0

)
pv,

where f0 is the current value of the option, ω = 1 for a long position and −1 for a short
position, hc is the number of calendar days corresponding to h trading days and rhc is
the hc-day continuously compounded discount rate. We now have N possible discounted
P&L values from which we build the empirical distribution.

6. Obtain the 100α% h-day VaR and ETL. The 100α% h-day VaR is −1 times the lower α

quantile of the distribution of discounted P&L and the 100α% h-day ETL is the average
of all the losses that exceed –VaR.

The following example estimates the Monte Carlo VaR of the same European option on
the S&P 500 index futures that was considered in the previous examples. In the workbook
for this example the reader should follow through the calculation of each of the six steps
above.50

EXAMPLE IV.5.10: MONTE CARLO VAR FOR A STANDARD EUROPEAN OPTION

On 25 April 2008 you sell a European put on the S&P 500 index with strike 1400 and maturity
30 days. The index futures price is at 1398, the market price of the option is 32, and its implied

48 This requires the Excel add-in ‘Matrix.xla’.
49 As already mentioned, although options are priced in the risk neutral measure we assess risk in the physical or real-world measure.
Hence, the drift used in the simulations should be the real-world expected return. We could assume that the underlying price returns
the risk free rate, but we need not do so in the real world. Also, the implied volatility may be assumed to have an expected return of
zero. But our assumption about expected returns usually makes very little difference, since market VaR is typically measured (at least
initially) over short risk horizons.
50 In the spreadsheet the uncorrelated simulations are row vectors, so we post-multiply the row vector by the transpose of the Cholesky
matrix, which is equivalent to step 3.
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volatility is 19.42%.51 Assume that the expected return on the risk factors over the next 10
days is zero, except for the futures price which we expect to have the risk free rate of return.52

Estimate the 1% 10-day Monte Carlo VaR for this static position using the following risk
factor returns covariance matrices:

(a) the historical, equally weighted average covariance matrix for the price–volatility
process that is estimated using the data shown in Figure IV.5.2;

(b) the option’s implied volatility for the futures price volatility, an interest rate volatility
of 15% and a volatility of volatility of 50%, a price–volatility correlation of −0.7, and
the other risk factor correlations are zero.

How do the results compare with each other, and with the historical 1% 10-day VaR of the
same option?

SOLUTION

(a) Using exactly the same data as in Example IV.5.4 allows some comparison between the
historical simulation VaR and the multivariate normal Monte Carlo VaR for a simple
option. Hence, we shall keep the discount rate as a risk factor, as we did in Exam-
ple IV.5.4. This also serves to illustrate the Monte Carlo algorithm when there are
more than two underlying risk factors, but otherwise we know from Example IV.5.5
that there is little point in assuming that the discount rate is stochastic, except perhaps
for measuring VaR for very long term options over a risk horizon of many months, in
currencies where interest rates are high.

So, the first step is to compute the risk factor covariance matrix using the historical
data shown in Figure IV.5.2. This is calculated in the spreadsheet for that figure and the
results are shown in Table IV.5.16.

Table IV.5.16 Historical volatilities and correlations for risk factors of S&P
500 option

Volatilities

Discount rate S&P 500 Vix

17.37% 15.90% 91.45%

Correlations

Discount rate–S&P 500 Discount rate–Vix S&P 500–Vix

−1.61% 1.28% −68.33%

When simulations are based on the historical covariance matrix, the 1% 10-day VaR
is about $18,000 based on N = 10,000 possible future values for the option. From
Example IV.5.3, the 1% 10-day historical VaR of the short put based on a square-root

51 To compute the VaR of other European call or put options copy the option price and volatility calculations to a different spreadsheet.
Even when calculations are set to manual the simulations will be repeated when you apply Solver or Goal Seek to derive the new
implied volatility. I recommend you to calculate the implied volatility in another workbook, and close any workbooks that are using
Monte Carlo simulation before doing so.
52 VaR is estimated in the real-world measure, not the risk neutral measure in which of course a futures price would be a martingale.
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scaling rule is $20,407. There are two reasons why this is larger than the Monte
Carlo VaR.

• The first reason is that Monte Carlo VaR assumes the risk factors have a multi-
variate normal distribution, whereas the risk factor returns are highly skewed and
leptokurtic. The multivariate normality assumption is a significant source of model
risk in this case.

• The second reason is that the historical VaR in this example uses a square-root
scaling rule, which distorts the gamma and vega effects. In this case both of these
effects would decrease the VaR, if they were properly accounted for.

Recall that, when the 1% 10-day historical VaR is based on overlapping data, the gamma
and vega effects are not distorted, but then the distorted tails of the P&L distribution
depress the historical VaR estimate. The 1% 10-day historical static VaR estimate (pre-
viously calculated in Example IV.5.3) is $18,709. This is still greater than the Monte
Carlo VaR estimate, because in this example Monte Carlo VaR assumes the risk factors
are i.i.d. normal.

(b) We now use the option implied data to obtain the h-day covariance matrix.53 This gives
a 1% 10-day VaR of the written put option of around $23,500 based on N = 10,000
possible future values for the option. This is much greater than in case (a) because
we are using the implied volatility in the simulations of the major risk factor, i.e. the
underlying futures prices, and this implied volatility happened to be very high at the
time when the VaR was measured. However, since VaR estimates are based on a real-
world risk factor return distribution, there is no particular reason why we should use
the implied volatility for the process volatility in the simulations, especially since the
option’s maturity is not the same as the risk horizon.

Recall from Table IV.5.2 that the VaR from a long option position, call or put, was very much
less than the VaR from a short position on the same option. In the workbook for the above
example, change the position to ‘long’ instead of ‘short’. Also change the option to a call with
price 32, and therefore with implied volatility 20.67%. Based on the historical covariance
matrix, the 1% 10-day VaR from buying the put option is about $7950 and that from buying
the call is about $7300. Comparison with Table IV.5.16 shows that these results are similar to
the historical VaR results based on overlapping data, but they are very far from the historical
VaR estimates based on a square-root scaling rule.54

The main learning point from this example is that only Monte Carlo simulation can capture
the proper theta, gamma and vega effects on VaR for static option portfolios, because we can
estimate the h-day Monte Carlo VaR directly from a simulated h-day P&L distribution. The
overriding problem with applying standard historical simulation to static option portfolios is
that we need to use overlapping samples (otherwise we do not have enough data) and, as a
result, the historical model will underestimate VaR at high confidence levels.

53 Thus the 10-day variance of the futures price is σ2/25 where σ is the option’s implied volatility, the 10-day variance of the implied
volatility is ξ2/25 where ξ is the assumed volatility of volatility, the price–volatility covariance is �σξ/25 where � is the assumed
price–volatility correlation, etc.
54 In fact, the historical VAR estimates based on overlapping data are slightly less than the Monte Carlo estimates. The i.i.d. normal
assumption may lead one to suppose that the Monte Carlo VaR estimates will be less than the historical VaR estimates, but the use
of overlapping data truncates the tails of the historical h-day risk factor return distribution. This truncation can lead to a significant
underestimation of the historical static VaR for option portfolios over long risk horizons and at very high confidence levels.
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IV.5.5.2 Risk Factor Models for Simulating Options VaR

Monte Carlo simulation of risk factor returns requires assuming some parametric form for
their joint distribution. In the simplest case the risk factor dynamics are assumed to be gov-
erned by an i.i.d. multivariate normal process. Multivariate Student t simulations, which still
rely on a covariance matrix to capture the highly non-linear price–volatility relationship, could
also be used. And, in more general Monte Carlo frameworks, the risk factor returns could
have a joint distribution with different marginals and with risk factor dependency represented
by a copula. Also, multi-step Monte Carlo techniques could be applied to simulate realistic
dynamic features such as volatility clustering in risk factors.55

How important are all these ‘bells and whistles’ for Monte Carlo VaR models applied to
option portfolios? It is an established empirical fact that most risk factor returns have highly
non-normal, dynamic joint distributions – when returns are measured at a high frequency. But
as the frequency of the returns diminishes, the distributions move closer to i.i.d. multivariate
normality. In some markets, when risk factor returns are simulated over a 10-day horizon or
longer, multivariate normality may not be such an unreasonable assumption to make.

The remainder of this section studies the importance of formulating an appropriate model
for the risk factor return distribution, and the importance of theta, gamma and vega effects for
different types of portfolio. Using a series of examples based on the same S&P 500 futures
options studied in the previous examples of this chapter, we shall verify the following:

• It is important to capture non-normality in the distribution of risk factor returns, but only
when risk factor returns have a horizon of no more than a few days.

• It is also important to capture the correct gamma and vega effects in static VaR.
• Asymmetric relationships between risk factors can be important for dynamic VaR

estimates.
• Multi-step Monte Carlo VaR estimates should be based on a risk factor model with

volatility clustering.

If any of the above features are lacking from the model that underpins Monte Carlo
simulations, a substantial model risk will be introduced. However,

• the theta effect is important only when the static VaR is estimated over a very long risk
horizon;

• it seems unimportant to capture non-linearity in the price–volatility relationship even for
a daily risk horizon.

IV.5.5.3 Capturing Non-normality and Non-linearity

In this subsection we consider the effect of using a multivariate Student t distribution in Monte
Carlo VaR. We also examine the effect on VaR of introducing non-linearity into the price–
volatility relationship. Potentially, both of these effects will be important, even for a simple
portfolio of vanilla options.

To use a multivariate Student t distribution for risk factor returns we simply use standard-
ized Student t simulations rather standard normal simulations at step 2 of the Monte Carlo

55 See Sections IV.4.3.1 and IV.4.4.1.
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simulation algorithm. The risk factor returns dependency is still modelled using a correlation
matrix. However, such dependency is linear and we know that price and volatility usually
have an asymmetric, non-linear relationship. To capture this in the VaR estimate it is possible
to derive simulations on the volatility risk factor via an estimated price–volatility model. That
is, instead of using the Cholesky matrix to simulate correlated returns on two risk factors,
we just take each simulated return on the underlying asset, and use an assumed or empirical
non-linear relationship between price and implied volatility to infer the corresponding change
in the implied volatility.

It is important to recognize that the extent of non-normality and non-linearity will depend
on the frequency for the simulations (e.g. whether simulations are on daily or weekly returns).
For instance, if we wish to measure dynamic VaR we should base simulations on the behaviour
of the risk factor returns over a short interval such as 1 day. At this frequency the price and
volatility returns could be highly non-normal and have a non-linear relationship. But if we
wish to measure static VaR over a horizon of a couple of weeks or longer, the risk factor returns
are likely to have distributions that are close to normality and an almost linear price–volatility
relationship.

For example, consider two samples on S&P 500 index returns and the Vix between 2 Jan-
uary 2000 and 25 April 2008, one with daily and the other with weekly frequency.56 The
sample excess kurtosis of the S&P 500 daily log return was 2.42 and that of the S&P 500
weekly log return was 3.12. There is a highly significant leptokurtosis in both samples,57 so
it seems appropriate to model either daily or weekly log returns on the S&P 500 index price
using a Student t distribution.58 On the other hand, we saw in Section IV.4.4.4 that a non-
linear price–volatility relationship is only a feature of these data at the daily frequency, not at
the weekly frequency.

One of our aims is to investigate the importance of capturing a non-linear price–volatility
relationship in the VaR estimate, so we shall keep the model as simple as possible. Based on
the results in Section IV.4.4.4, in the next two examples we shall apply the relationship

Yt =−4Xt + 18X2
t + εt (IV.5.39)

to each of the simulated log returns Xt on the S&P 500 index, and hence simulate a corre-
sponding value for Yt, the log return on the Vix. Also based on the results in Section IV.4.4.4,
we assume the error has standard deviation 3.75% at the daily frequency, and standard devia-
tion 7.5% at the weekly frequency. Now we can investigate the effect on VaR when we remove
the non-linearity from the price–volatility relationship, by removing the quadratic term from
(IV.5.39).59

EXAMPLE IV.5.11: NON-LINEAR, NON-NORMAL MONTE CARLO VAR

Consider the same European option positions on the S&P 500 index futures as in our previous
examples. That is, the call and the put have strike 1400 and maturity 30 days on 25 April
2008. The index futures price is at 1398, the market price of both options is 32, so the put

56 Data downloaded from Yahoo! Finance, symbol ∧GSPC and ∧VIX.
57 The approximate standard errors for skewness and excess kurtosis are 6n−1/2 for the skewness and 24n−1/2 for the excess kurtosis,
where n is the sample size.
58 Based on a sample excess kurtosis of 2.42, the method of moments estimate of the degrees of freedom in a Student t distribution
for S&P 500 daily log returns is 6.48. Similarly, the weekly return distribution has degrees of freedom parameter 5.92, for an excess
kurtosis of 3.12. For simplicity, we shall assume the degree of freedom parameter is 6 for both daily and weekly log returns.
59 For simplicity we assume the error process is normally distributed in each case.
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implied volatility is 19.42% and the call implied volatility is 20.67%. Estimate the 1% daily
VaR of long and short positions on the put option, and on the call option. Base your results
on the non-linear model (IV.5.39) of daily log returns and then, to investigate the effect of
non-linearity (i.e. an asymmetric price–volatility relationship) on the VaR estimates, drop the
quadratic term from the relationship. Also, to investigate the effect of non-normality, compare
the results from using price simulations from a Student t distribution with 6 degrees of freedom
with those from assuming a normal distribution for daily returns on the S&P 500.

SOLUTION In the spreadsheet labelled ‘Daily P&L Simulations’, we simulate 1-day-ahead
futures prices using a normal distribution for the S&P 500 daily log returns. Then we use the
model (IV.5.39) to derive the corresponding log return on the Vix, and hence simulate 1-day-
ahead call and put implied volatilities. Then the prices of the call and the put are computed
for each set of simulated risk factors, and hence the daily P&L distribution is simulated. The
1% daily VaR for a long position is estimated as −1 times the 1% quantile of the daily P&L
distribution, and the 1% daily VaR for a short position is the 99% quantile of the daily P&L
distribution.60

We then change the model (IV.5.39) to remove the quadratic term, thus assuming a sym-
metric linear price–volatility relationship, and proceed as before. Finally, we repeat both
the above, but now we assume a Student t distribution with 6 degrees of freedom for the
S&P 500 returns.61 Table IV.5.17 displays some results, based on two different sets of 5,000
simulations.62

Table IV.5.17 Effect of non-linearity and non-normality on 1% daily Monte Carlo VAR

Assumptions Position Simulation 1 Simulation 2

Put Call Put Call

(a) Long $4,450 $3,147 $4,458 $3,071
Short $6,461 $4,599 $6,136 $4,667

(b) Long $4,557 $3,232 $4,658 $3,155
Short $6,464 $4,626 $5,982 $4,655

(c) Long $5,400 $3,678 $5,444 $3,635
Short $8,484 $6,741 $8,354 $6,821

(d) Long $5,794 $3,936 $5,565 $3,918
Short $8,601 $6,798 $8,756 $6,451

(a) Non-linear daily model, normal S&P 500 returns
(b) Linear daily model, normal S&P 500 returns
(c) Non-linear daily model, Student t distributed S&P 500 returns
(d) Linear daily model, Student t distributed S&P 500 returns.

It is to be expected that the VaR estimates based on a normal distribution for the S&P
returns are less than the corresponding VaR estimates based on a Student t distribution having
6 degrees of freedom. For a long position the VaR estimates based on a Student t distribu-
tion are about 20% greater than the normal VaR estimates, and for a short position they are

60 Because the P&L for a short position is minus the P&L for a long position.
61 To generate results for the assumption that the returns are normally distributed, just set the degrees of freedom parameter in the
‘Risk Factor Simulations’ spreadsheet to about 200. Remember to press F9 to recalculate, when the automatic calculation option is
turned off.
62 Of course, with only 5000 simulations there is a considerable sampling error in these results, but the workbook is already very large.
Readers may like to increase the number of simulations when they have loaded the workbook on to their hard disk.
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about 40% greater than the corresponding normal VaR estimates. This validates the assertion
made in the previous section, i.e. that it is very important that the Monte Carlo VaR model
captures any leptokurtosis in the underlying returns, particularly for positions with negative
gamma.

Compared with the non-normality effect, the effect of using a non-linear price–volatility
relationship for VaR estimation is insignificant. The non-linear model (IV.5.39) induces an
asymmetric negative price–volatility relationship, so compared with the symmetric negative
relationship in the linear model the VaR estimates based on the non-linear model should be
slightly less for a long position and slightly more for a short position. Whilst the results in
Table IV.5.17 do show these features, the differences between the non-linear and linear model
VaR estimates are so small that they are well within the simulation error.

IV.5.5.4 Capturing Gamma, Vega and Theta Effects

It is not necessary to assume daily rebalancing with Monte Carlo VaR. Indeed, we did not
make this assumption in Example IV.5.10 precisely because it does not capture the proper
gamma, vega and theta effects for a static option position. Usually, by far the most important
effect to capture is the delta effect, but this assumes a linear relationship between the option
portfolio’s P&L and that of the underlying. Introducing gamma, vega and theta effects allows
one to build a better representation of the option portfolio’s P&L distribution.

We already know the following:

• For standard options, the gamma effect decreases the VaR of a long position, and
increases the VaR of a short position, and if the gamma is large (e.g. for short dated
ATM options) this is the most important effect to capture, over any risk horizon.

• The vega effect depends on the price–volatility correlation. In equity markets, where
there is a strong negative relationship between price and volatility (which we believe is
also asymmetric but only at a high frequency) the main effect of vega risk is to increase
the VaR for a short put position and indeed for any position with positive delta and
negative vega, as explained in Section IV.5.2.2.

• The theta effect increases the VaR of a long position, and decreases the VaR of a short
position, but this is only important when VaR is measured over a long risk horizon.

The next example compares these three different effects.

EXAMPLE IV.5.12: GAMMA, VEGA AND THETA EFFECTS IN SHORT TERM VAR

Continue the previous example, but this time compute the 1% 5-day VaR for a long and a short
position on the call and the put. Compare your results based on the usual alternatives for the
rebalancing of the position over the risk horizon, i.e. use

(a) the daily rebalancing assumption, where the weekly dynamic VaR is the daily VaR
multiplied by the square root of 5; and

(b) the no-rebalancing assumption, where the static VaR is estimated from the P&L
distribution that is derived from weekly returns on the risk factors.

In both cases assume the returns on the S&P index have a Student t distribution with 6 degrees
of freedom.
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SOLUTION The results are summarized in Table IV.5.18. Comparing the results in
(a) with (c), and (b) with (d), we see that it does not matter much whether we use a linear
or a non-linear price–volatility relationship. In either case we find that the static VaR is con-
siderably lower than the dynamic VaR, for a long position in either the put or the call. This
observation implies that the gamma effect dominates the theta effect for a long position. For
the short positions, the gamma effect also dominates the theta effect. This is obvious for the
short call, since its static VaR is greater than its dynamic VaR. But the VaR for the short put is
also heavily influenced by the vega effect, and with a non-linear daily model the vega effect is
distorted by the square-root scaling. That is, the daily rebalancing assumption is overstating
the vega effect for this position, especially when based on the non-linear model, so the short
put VaR estimates in cases (a) and (c) are too high.

Table IV.5.18 Student t Monte Carlo VAR with and without daily rebalancing

Assumptions Position Simulation 1 Simulation 2

Put Call Put Call

(a) Long $10,807 $7,569 $11,417 $7,553
Short $15,360 $11,852 $15,504 $12,402

(b) Long $7,517 $5,686 $7,618 $5,779
Short $15,260 $13,347 $14,878 $14,293

(c) Long $11,027 $7,138 $10,669 $7,169
Short $15,185 $12,085 $14,328 $11,782

(d) Long $7,598 $5,681 $7,475 $5,668
Short $14,718 $13,616 $13,711 $13,113

(a) Dynamic VaR: daily rebalancing over risk horizon, linear daily model,
(b) Static VaR: no rebalancing over risk horizon, linear weekly model
(c) Dynamic VaR: daily rebalancing over risk horizon, non-linear daily model
(d) Static VaR: no rebalancing over risk horizon, non-linear weekly model.

In the above example the options had a large gamma, because they were near ATM and rela-
tively short-dated, and the theta effect was small because we considered only a very short risk
horizon. Hence, the gamma effect dominated the VaR. The final example in this subsection
demonstrates that the trade-off between gamma, vega and theta effects is quite different when
we estimate the VaR for long dated options over a long risk horizon. Again we shall isolate
the influence of each effect by comparing the VaR estimates under the assumptions of daily
rebalancing over the risk horizon, where the VaR estimate virtually ignores theta and gamma
effects and distorts the vega effects for static positions, and the VaR estimate under the static,
no rebalancing assumption.

EXAMPLE IV.5.13: THETA EFFECTS IN LONG-TERM VAR

Consider a standard European option on the S&P 500 futures with 500 calendar days to matu-
rity, a strike of 1400, and where both put and call implied volatilities are 20%. The futures
price is currently at 1398, and the 1-year LIBOR rate is 3%. The put price is 126.062 and the
call price is 124.143. Using the historical covariance matrix of Example IV.5.10, compare the
1% 250-day VaR estimates for long and short positions on the call and the put in turn, that
are obtained by
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(a) estimating the static VaR from the 250-day P&L distribution directly, and
(b) estimating the dynamic VaR from the daily P&L distribution and scaling this by the

square root of 250.

SOLUTION The results are computed in the spreadsheet for this example, and the VaR esti-
mates based on one set of 10,000 simulations are displayed in Table IV.5.19. In case (a) the
1% 250-day VaR is much greater for a long position than it is for a short position. Hence, the
theta effect, which increases the VaR for long positions on standard calls and puts, dominates
the gamma effect, which decreases the VaR for long positions and increases the VaR for short
positions on standard calls and puts. In case (b) both theta and gamma effects are minimal,
because the VaR is measured over a 1-day horizon before scaling to a 250-day risk horizon.
Here there is some evidence of a small gamma effect, but the main influence on the VaR is
the delta effect. That is, when the VaR of an option is measured over a daily horizon and
then scaled to a longer horizon, it behaves almost like the VaR of a linear position on the
underlying, and this is why the estimates for case (b) are so much greater than they are for
case (a).

Table IV.5.19 Long-term VaR estimates for static and dynamic portfolios

(a) Static (b) Dynamic

Put Call Put Call

Long $26,440 $14,291 $300,757 $147,188
Short $9,537 $8,287 $389,456 $201,961

The above example illustrates that the scaling of a daily VaR for an option portfolio to a long-
term VaR produces VaR estimates that are very high indeed. If the VaR relates to a position
that is truly static, so there is no trading on the option portfolio over the risk horizon, the
practice of scaling short-term VaR estimates up to longer-term estimates would very seriously
overestimate the risk. We re-iterate that, due to data limitations, dynamic VaR estimation is
usually the only alternative that is available with the standard historical VaR model. It is only
with Monte Carlo simulation, or a hybrid method based on filtered historical simulation, that
we can obtain realistic estimates of VaR for a static position over a long-term risk horizon.

IV.5.5.5 Path Dependency

Our next two examples investigate whether volatility clustering and autocorrelation effects
in risk factor returns are important to include in the Monte Carlo simulation model. In
Section IV.5.4.4, Example IV.5.9, we investigated the use of consecutive historical returns
to estimate VaR for an option with path-dependent pay-off. There we noted that an advantage
of using historical simulation based on h consecutive risk factor returns is that it captures,
in a simple and natural way, the complex dependencies between risk factor returns, and the
autoregressive behaviour in risk factor returns (and volatility clustering in particular). But it is
possible that this entirely non-parametric approach may lead to underestimation of static VaR
at very high confidence levels over long risk horizons, due to historical sample size limitations.

Monte Carlo simulation is not limited in sample size, and there are no problems caused by
overlap between any two simulated series of consecutive returns. Our next example illustrates
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the effect on VaR of moving from one-step to multi-step Monte Carlo simulations over the
risk horizon. We do not introduce the effect of volatility clustering and autocorrelation in the
multi-step simulations until Example IV.5.15.

EXAMPLE IV.5.14: ONE-STEP VERSUS MULTI-STEP MONTE CARLO VAR

Estimate the 1% 10-day Monte Carlo VaR of a European call on the S&P 500 index with 90
days to expiry. Suppose that the current strike of the call is 1375 and that the VaR is estimated
when the index price is 1400, the implied volatility is 20% and the 90-day US LIBOR rate is
currently at 3%. Hence, the current market price of the call is 74.1. Estimate the VaR of both
long and short positions on this option, based on a discounted 10-day P&L distribution that is
obtained:

(a) in one step, i.e. by applying the 10-day covariance matrix of the risk factor returns to
Monte Carlo simulations of 10-day log returns;

(b) in multi-steps, by applying the 1-day covariance matrix of the risk factor returns to
Monte Carlo simulations of 1-day log returns, summing the 1-day log returns along a
path to obtain a 10-day log return.

Base your covariance matrix on the same historical data that were used in Example IV.5.9,
which is the matrix shown in Table IV.5.22. In each case use the 10-day log returns to simulate
values of the risk factors in 10 days’ time, hence revalue the option, and simulate a P&L
by taking the difference between the discounted value of the simulated option price and the
current option price.

SOLUTION The workbook for this example is a modification of the workbook for Example
IV.5.9. When Monte Carlo simulations are performed in one step, we obtain VaR estimates
of approximately $9800 for the long call and $19,000 for the short call position. When
multi-step simulations are used the Monte Carlo VaR changes only marginally, as readers
can see in the spreadsheet.63 The VaR is slightly less than when based on one step of normal
simulations, and this makes sense since normal h-day log returns can be consistent with
non-normal daily returns.64 Forcing multi-step Monte Carlo to use normal daily returns could
therefore understate the VaR.

The next example extends the above analysis to include volatility clustering and mean-
reversion in volatility in the multi-step Monte Carlo VaR model.65 Recall that Example IV.4.7
generated Monte Carlo simulations on a price risk factor whose volatility is modelled using an
asymmetric GARCH process. This captures mean reversion and asymmetric volatility cluster-
ing in volatility, and the first of these effects is particularly important. We now implement a
symmetric bivariate GARCH process to generate correlated price and volatility simulations,
and subsequently we re-estimate the VaR of the option considered in the previous example.66

63 Excel may have size problems extending all simulations in all spreadsheets so I recommend that only 5000 simulations are used in
this spreadsheet. Notice that our estimates are quite close to the historical VaR estimates that were based on multi-step simulation in
Example IV.5.9. Those estimates were approximately $10,300 for the long call and $19,000 for the short call position.
64 Even when they are skewed and leptokurtic, if we sum h consecutive daily log returns we obtain an h-day log return that has an
approximately normal distribution. Provided only that they are i.i.d., the central limit theorem holds, as explained in Section I.3.5.2.
Normality ‘kicks in’ very quickly so, for example for h=10, a normal approximation for the log return distributions is often appropriate
even though daily log returns may be far from normal.
65 Mean-reversion in underlying prices is often negligible, so we shall ignore this.
66 Following Example IV.4.7, readers should find it relatively straightforward to extend Example IV.5.1.5 to an asymmetric bivariate
GARCH process if required.
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EXAMPLE IV.5.15: GARCH MONTE CARLO VAR FOR OPTIONS

Estimate the 1% 10-day Monte Carlo VaR of a European call on the S&P 500 index with 90
days to expiry. As in Example IV.5.14, the current strike of the call is 1375 and the VaR is
estimated when the index price is 1400 and the implied volatility is 20%. However, here we
assume that the 90-day US LIBOR rate is constant.67 Estimate the VaR of both long and short
positions on this option, based on a discounted 10-day P&L distribution that is obtained
using multi-step Monte Carlo with a bivariate GARCH model. Assume a constant price–
volatility correlation of −0.8 and use the conditional variance equation parameters shown in
Table IV.5.20. Compare the result with the simulations based on i.i.d. price and implied
volatility log returns, with the same unconditional volatilities as those given in the last row of
the table.

Table IV.5.20 Bivariate GARCH model parameters

Parameter Price variance Implied volatility variance

ω 3.6E-06 5.0E-05
α 0.06 0.25
β 0.9 0.7
Unconditional volatility 15% 50%

SOLUTION The first spreadsheet in the workbook for this example generates two sets of
random numbers to use for the price and the implied volatility simulations. The second spread-
sheet simulates 10-day correlated returns for price and for volatility, based first on the i.i.d.
assumption and then on the GARCH volatility models. For comparison, these simulations uti-
lize the same two sets of random numbers. The third spreadsheet prices the option and derives
the 10-day discounted P&L under each of the models. The parameters and results are shown
in the spreadsheet labelled ‘VaR’. In this spreadsheet readers may change the size of the shock
to the current price return and see the effect on the GARCH VaR. The results based on one set
of 10,000 simulations are summarized in Table IV.5.21.

Table IV.5.21 Monte Carlo VaR for option based on constant volatility and GARCH

Volatility model No shock 5% shock

Constant GARCH Constant GARCH

VaR (long) $10,194 $10,380 $10,225 $14,137
VaR (short) $17,572 $18,066 $17,265 $32,186

Even without a shock to the current underlying return the GARCH VaR is marginally
greater than the constant volatility VaR, as expected since we have more uncertainty in the
model when volatility clusters. As the size of the shock increases so does the difference
between the GARCH VaR and the constant volatility VaR. As expected, the VaR of the short
call is the most affected by volatility clustering. The same comment applies for a short put
option, as readers can see by changing the option type in the spreadsheet.

67 This assumption helps to simplify the workbook, and it make little difference to the results because stochastic discount rates have
only a very small effect on 10-day VaR.
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Having discussed the importance of path-dependent behaviour in price and volatility risk
factor returns, we now explain how Monte Carlo simulations are used to price path-dependent
products. We shall illustrate the approach by estimating the Monte Carlo VaR of the same
look-back call option that was considered in Example IV.5.9. For comparison we use a risk
factor covariance matrix based on the same daily historical data as was previously used to
estimate the historical VaR for this option.

EXAMPLE IV.5.16: MONTE CARLO VAR FOR A PATH-DEPENDENT OPTION

In Example IV.5.9 we estimated the historical VaR of a 90-day look-back call. The result was
a 1% 10-day VaR of $5249 for a long position and $17,633 for a short position. Estimate the
1% 10-day Monte Carlo VaR of the same option under the assumption that the risk factor
returns are i.i.d. and multivariate normal. Base your covariance matrix on same historical data
that were used in Example IV.5.9, which is the matrix shown in Table IV.5.22.

Table IV.5.22 Risk factor covariance matrix (×104)

Discount rate S&P 500 index Vix volatility

Discount rate 1.2067 −0.0177 0.0812
S&P 500 index −0.0177 1.0109 −3.9729
Vix volatility 0.0812 −3.9729 33.4431

SOLUTION The general method for evaluating VaR for a path-dependent option, and the
look-back call pricing formula, are given in Section IV.5.4.4. This example is similar to Exam-
ple IV.5.9, with one important difference: the underlying price, volatility and interest rates
that are used to revalue the option are not taken from consecutive days in a historical data set.
Instead they are obtained using correlated Monte Carlo simulations.68 Even though simula-
tions are only over one day, we may still include a trend in each variable in the simulations,
and we shall do this to ensure that we are matching the features of the historical data as closely
as possible. Hence, the average daily log return on each risk factor over the historical period is
added to each simulated log return. However, readers can verify, by setting them to zero, that
these trends have very little effect on the result.

Each revaluation requires the simulation of daily values for all the risk factors over the next
10 days. Only this way can we find the minimum underlying price that is used to value the
look-back call 10 days ahead. There is a size limit on the number of such simulations one can
perform in Excel. With 5000 simulations of price, volatility and interest rate paths, the 1%
10-day VaR for this option is approximately $6,700 if long and $11,500 if short.

Thus the Monte Carlo VaR estimate of the long position on the look-back call option is
higher than the historical VaR, and the opposite is the case for a short position. This is because
the historical VaR captures the empirical relationship between price and volatility, which may
be non-linear and not i.i.d., whereas our Monte Carlo simulations are using a simple correla-
tion to model their relationship. In the historical data, a long call benefits from the additional

68 Here we are using correlated i.i.d. simulations simply because the workbook would become too complex if we used a bivariate
GARCH process for volatility clustering, as in the previous example.
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effect of a volatility increase following an underlying price fall, so the Monte Carlo VaR of a
long look-back call will be greater than its historical VaR. And a short call does not benefit
from the offsetting effect of a volatility decrease following an underlying price rise in the
historical data, so its Monte Carlo VaR will be lower than its historical VaR.

IV.5.5.6 Option Portfolios with a Single Underlying

To assess the risk of a portfolio of options, we could value each option exactly for every simu-
lation of the risk factors. However, for large portfolios of exotic and path dependent products
on several underlyings, this takes considerable computation time, especially if we wish to
decompose the VaR into stand-alone components due to the underlying price and volatility
market factors. For this reason a Taylor approximation to the portfolio P&L is commonly used.

In this subsection we illustrate the direct estimation of Monte Carlo VaR, with and without
a risk factor mapping based on a Taylor approximation, when all the options are on the same
underlying. In this case the same simulations for the underlying price can be applied to all
options, but each option will still have its own implied volatility risk factor. Without a portfolio
mapping, the high correlation between the implied volatilities of different options needs to be
taken into account in the VaR estimate.

The following example illustrates the direct estimation of Monte Carlo VaR, without
risk factor mapping, using an extremely simple portfolio containing two standard European
options.

EXAMPLE IV.5.17: MONTE CARLO VAR OF STRANGLE: EXACT REVALUATION

A speculator takes a short strangle position on S&P 500 index futures options with maturity
60 days.69 That is, he sells two 60-day options, an ITM call and an ITM put. Suppose that the
call has strike 1350 and implied volatility 25%, and that the put has strike 1450 and implied
volatility 20%. The 60-day US LIBOR rate is 5%, the futures price is currently at 1400 and
risk factor volatilities and correlations are shown in Table IV.5.23. Estimate the 1% 10-day
VaR of the short strangle position.

Table IV.5.23 Risk factor volatilities and correlations

Volatilities

S&P 500 futures 1350 implied volatility 1450 implied volatility

20% 60% 50%

Correlations

S&P 500 futures 1350 implied
volatility

1450 implied
volatility

S&P 500 futures 1 −0.75 −0.7
1350 implied volatility −0.75 1 0.95
1450 implied volatility −0.7 0.95 1

69 See Section III.3.5 for a description of the strangle and other options strategies.
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SOLUTION In this example there are three major risk factors: the underlying price and two
implied volatilities. Hence, the covariance and Cholesky matrices are 3 × 3 matrices. For
each triple of simulated values for {price, 1350 implied volatility, 1450 implied volatility}
we calculate the discounted P&L on the strangle position by adding the discounted P&L on
the call to that of the put. Since we have a short strangle position, each P&L is estimated by
taking the simulated option value from the current value of the option. All prices are, as usual,
calculated using the Black–Scholes–Merton formula and the current values are 83.42 for the
call and 23.67 for the put.

Based on 10,000 simulations the 1% 10-day VaR estimate for the short strangle position is
about $20,000. Of course, because of its strong negative gamma, a short strangle has much
greater VaR than a long strangle: the 1% 10-day VaR of the corresponding long strangle is
about $4500.

When a portfolio contains many options there are a very large number of risk factors, even
when all the options are on the same underlying. A portfolio with n options has n + 1 major
risk factors – the underlying price and n different implied volatilities – excluding the minor
risk factors such as discount rates and dividends. We also know that when VaR is estimated
over long risk horizons it is important to include maturity effects.

To apply Monte Carlo VaR with risk factor mapping we follow steps 1–6 of the algorithm
outlined in Section IV.5.5.1, but at step 5 we revalue the position using the risk factor mapping
rather than the option pricing model. For instance, under a delta–gamma–vega–theta appro-
ximation the (undiscounted) price of a single option in h trading days’ time is simulated as

fh ≈ f0 + θ�t + δ�S + 1
2
γ(�S)2 + ν�σ, (IV.5.40)

where �S is the difference between the simulated underlying price (derived from a simu-
lated h-day log return on S) and the price today, �σ is the difference between the option’s
implied volatility (derived from a simulated h-day log return on σ) and the volatility today,
and δ, γ, ν and θ are the option’s delta, gamma, vega and theta. Having revalued the
portfolio approximately, we obtain an approximate discounted P&L which is, as before, given
by (IV.5.37).

We can extend this to an approximation where there is more than one option in the port-
folio, if all the options’ implied volatilities are vega-mapped to a single reference implied
volatility, σ. Then we simply use the net position delta, gamma, vega and theta in (IV.5.40).
More generally, there may be several position vegas and implied volatility risk factors in the
vega mapping, and correspondingly there will be several vega terms in the expression for the
discounted P&L.

One of the advantages of Monte Carlo VaR is that we do not require a long data history.
Multivariate normal or Student t Monte Carlo VaR only requires the risk factor returns covari-
ance matrix and this could be estimated using daily returns over the past six months or even
less. In fact, it need not be estimated from historical data at all. Nevertheless, in the next
example we use the risk factor returns covariance matrix derived from the risk factor volatili-
ties and correlations in Table IV.5.16, which are based on over 18 years of data. This is only
because we want to compare the results from the next example with those obtained for the
same portfolio using historical VaR, in Example IV.5.7. The portfolio is very simple: in fact
we have just a single option on the S&P 500 index and we measure the Monte Carlo VaR
based on different Taylor expansions for the change in portfolio value. The underlying risk
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factors are the S&P 500 index price, the Vix implied volatility index and the risk free interest
rate of maturity equal to that of the option.

EXAMPLE IV.5.18: MONTE CARLO VAR WITH DELTA–GAMMA–VEGA MAPPING

Consider a European put on the S&P 500 index with strike 1400 and maturity 30 days. The
index futures price is at 1398, the market price of the option is 32, its delta is −0.4980 and its
implied volatility is 19.42%.70 Use the covariance matrix derived from Table IV.5.16 to esti-
mate the 1% 10-day Monte Carlo VaR and ETL of the option under the assumption that the risk
factor log returns are i.i.d. with a multivariate normal distribution. Base the P&L on delta-only,
delta–gamma, delta–gamma–vega and delta–gamma–vega–theta approximations and compare
results with the historical VaR results for the same option, shown in Table IV.5.10.

SOLUTION There are three risk factors, the price, the volatility and the discount rate. By
contrast with historical VaR, Monte Carlo VaR only uses the covariance matrix of the returns;
all the other information in the returns is disregarded. Moreover, we shall assume that the risk
factors have a multivariate lognormal distribution, so we use correlated normal simulations
for the log returns on the risk factors. As well as the 10-day static VaR (derived directly from
the 10-day log returns, simulated using the 10-day covariance matrix) we shall simulate daily
log returns using the 1-day risk factor covariance matrix, and multiply the daily VaR estimate
by the square root of 10 to obtain a 10-day dynamic VaR estimate.71

The only difference between the VaR estimates in this example and those in Example IV.5.7
is that the correlated risk factor changes used in the Taylor expansion are generated by Monte
Carlo simulation, as explained above, rather than being based on historical data. The workbook
has two spreadsheets for P&L calculations, one for daily P&L and the other for h-day P&L.
Table IV.5.24 displays the results based on 10,000 simulations. The P&L simulations are based
on various Greeks approximations, shown in the first column of this table, and taking the
appropriate quantile of the simulated P&L distributions gives the Monte Carlo VaR estimates
in the columns headed (a) and (b). For comparison, in columns (c) and (d) we include the
historical VaR results from Table IV.5.10.

Table IV.5.24 Comparison of Monte Carlo and historical VaR

1% 10-day VaR Monte Carlo Historical

(a) Dynamic (b) Static (c) Dynamic (d) Static

Long Short Long Short Long Short Long Short

Delta only $12,643 $13,216 $11,998 $13,930 $15,630 $14,618 $13,612 $12,719
Delta–gamma $10,577 $15,474 $6,067 $21,868 $12,443 $17,405 $6,015 $19,492
Delta–gamma–

vega
$10,577 $15,456 $6,045 $21,853 $12,462 $17,453 $6,023 $19,415

Delta–gamma–
vega–theta

$10,578 $15,455 $6,045 $21,852 $12,463 $17,452 $6,024 $19,414

70 To compute the VaR of other European call or put options copy the option price and volatility calculations to a different spreadsheet.
Even when calculations are set to manual, simulations will be repeated when you apply Solver or Goal Seek to derive the new implied
volatility, and it will take a very long time unless you use another workbook!
71 That is, the position is first assumed to be held static, and then assumed to be rebalanced daily to return the risk factor sensitivities
to their values at the time the VaR is measured.
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For reasons already explained, the gamma effect is much larger in the static VaR estimates
than in the dynamic VaR estimates. Comparing the first two results in column (b), the 1%
10-day VaR of a long position on the put is virtually halved when the gamma effect is included,
and the corresponding VaR for a short position is increased by approximately 50% when we
include the gamma effect from a static position. Comparing columns (a) and (c), the dynamic
Monte Carlo VaR estimates (i.e. those that assume rebalancing over the risk horizon) are less
than the corresponding historical VaR estimates; this is because the empirical P&L distribution
is heavy-tailed. Comparing columns (b) and (d), the static Monte Carlo VaR estimates can be
greater than or less than the historical static VaR estimates. However, we know the historical
VaR based on overlapping data in column (d) is likely to underestimate the risk of both long
and short positions at high confidence levels, because the tail behaviour is distorted. Without
this distortion the Monte Carlo estimates, being based on i.i.d. normal risk factors, would no
doubt be less than the historical VaR estimates.

The most important feature of this example is the difference between the static and dynamic
VaR results. It provides yet another illustration that, whilst this may be acceptable for linear
portfolios, for option portfolios we cannot just scale up a 1-day VaR to an h-day VaR, using
the square-root-of-time rule or some other power law for scaling, unless it is appropriate to
assume the portfolio is rebalanced daily to keep its risk factor sensitivities constant over the
risk horizon. For static positions we need to simulate h-day risk factor returns, and the only
way we can do this without using overlapping data is to use Monte Carlo methods.

IV.5.5.7 Option Portfolios with Several Underlyings

The major risk factors of a portfolio containing options on n underlying assets are the asset
prices {S1, . . . ,Sn}. There are also many implied volatility risk factors that are important, and
these need mapping to a reduced set of implied volatility risk factors. In the simplest form of
vega mapping we would assume the implied volatilities of all the options on Si are mapped to a
single volatility risk factor σi, so that there are only n volatility risk factors, which we denote by
{σ1, . . . ,σn}.72 Using only these risk factors, a multivariate delta – gamma–vega approximation
of the form (IV.5.6) may be used to approximate the P&L of an option portfolio resulting from
small changes in all the risk factors. As usual, we shall illustrate the method with an empirical
example.

EXAMPLE IV.5.19: MONTE CARLO VAR WITH MULTIVARIATE DELTA–GAMMA MAPPING

Consider a portfolio of options on bonds and on equities with a P&L that has the delta–gamma
approximation

P&L ≈ (
1 5

)(
RE

RB

)
+ 1

2

(
RE RB

)(
25 −7.5

−7.5 125

)(
RE

RB

)
.

The units of measurement are millions of dollars. Thus the net value delta is $1 million with
respect to the bond index and $5 million with respect to the equity index. The value gamma
matrix is also measured in millions of dollars. Suppose that the returns on the bond and equity
indices are normally distributed with volatilities of 30% and 20% and a correlation of −0.25.

72 Of course, many other methods of vega mapping are possible (see Section III.5.5.2 for further details) and we adopt this simple
mapping here only because our purpose is to illustrate the Monte Carlo VaR methodology, not the pros and cons of different vega
mappings.
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Estimate the 1% 10-day VaR of the static portfolio using Monte Carlo simulation based on a
delta–gamma mapping, assuming zero discounting. How does your result compare with the
Monte Carlo VaR based on a delta-only mapping?

SOLUTION The 10-day risk factor covariance matrix has the Cholesky decomposition shown
in the spreadsheet, and this is applied to simulate correlated returns on bonds and equities.
Then, for each pair of simulations, the delta–gamma approximation (IV.5.6) is applied; dis-
counting this gives the delta–gamma approximation to the portfolio’s 10-day P&L; then taking
the 1% quantile of this distribution gives the 1% 10-day delta–gamma VaR as −1 times this
quantile. Dropping the three second order terms in the delta–gamma approximation gives the
corresponding VaR estimate based on delta approximation only. Averaging results over several
sets of 10,000 simulations, we obtain a 1% 10-day delta-only VaR estimate that is very close
to $450,000. But when based on delta–gamma approximation, the 1% 10-day VaR estimate
falls to approximately $130,000.

We can compare our results with those obtained in Example IV.5.2, where we used a
Johnson SU distribution to estimate the 1% 10-day VaR of this same portfolio. We found
that the delta-only VaR was $451,096, which is very close to the Monte Carlo result, but the
delta–gamma VaR was $261,024. Since gamma effects give rise to a highly non-normal P&L
distribution for the portfolio (as seen in Figure IV.5.1), our results show that the Johnson dis-
tribution does not capture as much of a gamma effect as the Monte Carlo approach. The VaR
at extreme quantiles such as 1% is very much influenced by the tail behaviour of the P&L
distribution, and it is not easy to capture this with an analytic approximation.

Finally, we illustrate the use of a multivariate delta–gamma–vega approximation to estimate
the VaR of an option portfolio using Monte Carlo simulation. The Taylor approximation is of
the form

�P ≈ δ
′
$�R + 1

2
�R′�$�R + ν′

$�σ, (IV.5.42)

where the risk factor sensitivities are measured in value terms, R is the vector of returns on the
underlying assets and σ is a vector of volatility risk factors. Taking a portfolio that we have
already considered (in Example IV.5.8) the last example of this chapter uses a multivariate
delta–gamma–vega approximation to compare the Monte Carlo VaR with the historical VaR.
We shall make the following assumptions:

• Exchange rates are constant and we ignore discounting.
• The risk factor returns have a multivariate normal distribution.
• Their covariance matrix is based on the same historical data as that used in

Example IV.5.7.

EXAMPLE IV.5.20: MONTE CARLO VAR WITH MULTIVARIATE DELTA–GAMMA–VEGA

MAPPING

A portfolio contains various options on the FTSE 100, S&P 500 and DAX 30 futures. The
portfolio has not been hedged and the position delta, the gamma for each sub-portfolio, its
position vega with respect to the relevant volatility index, and the point values of the index
futures options, were shown in Table IV.5.11. The mark-to-market value of the portfolio is £1
million. Assume that the forex rates are fixed at £/$ = 0.5 and e/$ = 0.75, and that the UK
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LIBOR curve is flat at 5%.73 The volatilities and correlations of the risk factor returns, derived
from the data shown in Figures IV.5.3 and IV.5.4, are given in Table IV.5.25.74 Estimate the
10-day Monte Carlo VaR of the static portfolio.

Table IV.5.25 Risk factor volatilities and correlations

FTSE 100 S&P 500 DAX 30 Vftse Vix Vdax

FTSE 100 18.35% 0.474 0.754 −0.720 −0.388 −0.630
S&P 500 0.474 18.24% 0.612 −0.383 −0.737 −0.465
DAX 30 0.754 0.612 26.43% −0.603 −0.461 −0.727
Vftse −0.720 −0.383 −0.603 92.80% 0.686 0.954
Vix −0.388 −0.737 −0.461 0.686 84.90% 0.545
Vdax −0.630 −0.465 −0.727 0.954 0.545 71.75%

SOLUTION The workbook for this example is very similar to the workbook for Example
IV.5.8, except that we have used Monte Carlo simulation instead of historical simulation to
generate the 10-day returns on the price risk factors and the changes in the volatility risk
factors. Table IV.5.26 compares the results, averaged over several sets of 10,000 simulations,
with the historical 1% 10-day VaR results based on Example IV.5.8.75

Table IV.5.26 Monte Carlo versus historical VaR for a large international stock
option portfolio

1% 10-day VaR Monte Carlo static VaR Historical dynamic VaR

Delta-only £3,480 £4,723
Delta–gamma £7,850 £7,213
Delta–gamma–vega £7,590 £7,606

With only a delta approximation, the Monte Carlo VaR is smaller than the historical VaR.
This is because the model assumes that risk factor returns have a multivariate normal distribu-
tion, whereas their empirical distributions are in fact highly leptokurtic. But when the gamma
effects are included the Monte Carlo VaR is greater than the historical VaR. This is because
the historical VaR is dynamic, so it underestimates gamma effects, and in our case the gamma
effect will increase the VaR because the net value gamma of the portfolio is negative.

In general the inclusion of volatility as a second risk factor would decrease the VaR of
this portfolio, because the net vega of the portfolio is negative. However, the negative price–
volatility correlation offsets this decrease. With a strong negative correlation between the price
and volatility risk factors, such as is apparent mainly in daily data, the VaR could increase
when vega effects are added. Indeed, we see this in the historical VaR estimates. By contrast,
the inclusion of vega effects marginally reduces the Monte Carlo VaR, compared with the
delta–gamma approximation. Well, we already know that correlation is too crude a statistical
tool for capturing the empirical characteristics of the price–volatility relationship!

73 But as usual, these can be changed in the spreadsheet.
74 In this table volatilities are along the diagonal and correlations are on the off-diagonals.
75 The historical VaR estimates are

√
10 times the figures displayed in Table IV.5.13.



302 Value-at-Risk Models

IV.5.5.8 Case Study: Monte Carlo VaR for an Energy Options Trading Book

In Section IV.5.4.5 we estimated the historical VaR of a portfolio of options on crude oil
futures on 1 August 2006, using daily closing prices from 2 January 1996 until that date. This
section calculates the Monte Carlo VaR of the same portfolio, using the same historical data
to compute the risk factor model parameters. When specifying the risk factor returns model,
a series of workbooks explain how we move from a basic i.i.d. multivariate normal risk factor
return distribution to one that includes the features that are known to be exhibited by empirical
risk factor returns.

The portfolio was characterized by its delta, gamma and vega limits, shown in Table IV.5.14.
For comparison, we shall estimate both static and dynamic Monte Carlo VaR estimates, over
a 10-day horizon. The dynamic VaR measures the risk if the trader stays at his limits, whereas
the static VaR assumes the positions are left unmanaged for a 10-day period.

Twelve-Dimensional Multivariate Normal Distribution

Table IV.5.27 shows the correlations between daily returns on the futures (below the diagonal)
and between daily changes in volatility (above the diagonal, shaded). The returns correlations
are extremely high, and they decrease as the maturity gap increases, just as in any highly
correlated term structure. The correlations between the implied volatility risk factor returns
are lower than the correlations between the price risk factor returns, although they do increase
with the options’ maturities.

Table IV.5.27 Risk factor correlations

m1 m2 m3 m4 m5 m6

m1 1.000 0.549 0.487 0.449 0.389 0.387

m2 0.962 1.000 0.889 0.820 0.751 0.708

m3 0.945 0.994 1.000 0.847 0.778 0.734

m4 0.931 0.986 0.997 1.000 0.760 0.731

m5 0.918 0.976 0.991 0.998 1.000 0.710

m6 0.906 0.966 0.983 0.994 0.999 1.000

The full 12 × 12 covariance matrix of price returns and volatility changes may be used
to simulate values for the option portfolio; to these we apply a delta–gamma–vega mapping,
and from the simulated P&L distribution we estimate the portfolio VaR. Unlike historical
simulation, we are not constrained to assume the portfolio is rebalanced to constant risk factor
sensitivities over the risk horizon. We may assume this, for instance if we want to estimate
the VaR of the portfolio if the trader stayed at the limits shown in Table IV.5.14. Alternatively,
we can examine the risk of an unmanaged ‘static’ portfolio, keeping the holdings constant
over the risk horizon, and in that case we would simulate h-day risk factor changes to obtain a
distribution for h-day P&L.

In workbook (a) the spreadsheet labelled ‘Static’ uses the Cholesky matrix of the h-day
covariance matrix to simulate multivariate normal risk factor changes and then applies the
risk factor mapping for the h-day P&L; and the spreadsheet labelled ‘Dynamic’ uses the same
random numbers but applies the Cholesky matrix of the 1-day covariance matrix to obtain the
daily P&L distribution. Then the results are shown, along with the (adjustable) holdings for
the portfolio, in the sheet labelled ‘VaR’. Some results for a 1% 10-day VaR based on 10,000
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simulations are shown in Table IV.5.28, and the results from the historical VaR case study in
Section IV.5.4.5 are also shown for comparison.

Table IV.5.28 Monte Carlo VaR of the crude oil option portfolio

1% 10-day VaR Historical
(dynamic)

Monte Carlo
(dynamic)

Monte Carlo
(static)

Delta only $14,103 $12,775 $12,775
Delta–gamma $14,547 $13,585 $15,638
Delta–gamma–vega $17,940 $15,652 $17,263

The delta-equivalent Monte Carlo VaR is the same under the rebalancing (dynamic) or no
rebalancing (static) assumptions, because the delta-only VaR assumes the portfolio is linear.
The historical VaR figures in the first column may be compared with the Monte Carlo VaR
estimates for a dynamic portfolio. Due to the normality assumption, the Monte Carlo model
underestimates the delta-equivalent VaR, relative to the historical VaR.

The size of the gamma effect is about the same in both of the dynamic models, but much
larger in the static model, for reasons we have discussed many times in this chapter. The
influence of the vega effect is more difficult to predict. In this case it is large according to
the historical model, but smaller in the Monte Carlo models, again because these assume
multivariate normality when other distributions for volatility changes would be a better choice.
The static Monte Carlo model predicts the smallest vega effect of all, but since this also has
the largest gamma effect the delta–gamma–vega Monte Carlo static VaR estimate lies between
the VaR estimates from the two dynamic models.

The i.i.d. multivariate normal Monte Carlo model cannot represent many important empiri-
cal characteristics of the market, and so it should be improved to allow non-normal risk factor
returns. For example, the multivariate Student t, mixture or copula distributions for underly-
ing returns would be a better choice than a multivariate normal. The risk factor returns model
should also be extended to allow for volatility clustering, as we know this has an important
influence on results in markets such as this.

In practice, it is not easy to use better statistical models for the risk factor returns of such
large portfolios, because the price and volatility risk factors are so numerous. A typical energy
options portfolio will have many different future prices as underlyings, and each underlying
will have a whole surface of associated implied volatility risk factors. Hence, using advanced
dynamic statistical models for risk factor return distributions in the simulations can become
complex and time-consuming. How much accuracy would be lost if we applied standard tech-
niques such as principal component analysis and vega mapping to reduce the dimension of the
risk factor space? This would achieve a very effective reduction in dimensionality if the trader
is trading right across the term structure, but how accurate will the results be?

Principal Component Analysis

The high correlations between crude oil futures returns indicate that little accuracy would be
lost by using PCA to reduce the dimension of the price risk factor space. We now show that
the VaR computations may be simplified, with very little loss of accuracy, by simulating the
values for two or three principal component factors rather than the entire term structure of
futures prices. Additionally, using PCA has the advantage of identifying the main sources of
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risk. That is, we can decompose the VaR into components corresponding to trends, tilts and
convexity changes in the term structure of futures prices.

The results of applying PCA to the 10-day historical covariance matrix are obtained in
workbook (b) and are displayed in Tables IV.5.29 and IV.2.30. Since the eigenvalues scale
with h, the eigenvalues of the daily covariance matrix are one-tenth of the values shown in
Table IV.2.29. This eigenvalue analysis shows that the first principal component alone explains
over 97% of the total variation in the futures prices over the historical period. One might be
tempted to represent the futures price returns using only one component, i.e. to assume the
returns are perfectly correlated along the term structure. Alternatively, using two principal
components in our delta–gamma representation does not assume the returns are perfectly cor-
related in our simulations, which is more realistic, and hardly any accuracy will be lost because
the two components together explain 99.58% of the historical variation in the system. We shall
report results using first one and then two components in the representation.

Table IV.5.29 Eigenvalues of 10-day historical covariance matrix for crude oil futures

Order 1 2 3 4 5 6

Eigenvalue 0.0218453 0.0005635 7.92941E-05 1.11954E-05 1.9019E-06 4.2446E-07
Variation 97.08% 2.50% 0.35% 0.05% 0.01% 0.00%

The normalized eigenvectors that generate the first two components are shown in
Table IV.5.30.76 Note that the first eigenvector, which captures the common trend in the futures
term structure, is not a parallel shift.

Table IV.5.30 Normalized eigenvectors
for first two eigenvalues in Table IV.5.29

w1 w2

0.48457 0.80597
0.44399 0.05473
0.40981 −0.14720
0.38441 −0.26294
0.36371 −0.33402
0.34651 −0.38084

The eigenvectors are used to compute the net value delta and gamma of the portfolio with
respect to the first two principal components. The net value deltas are given by77

δ$
P1

=
6∑

i=1

δ$
i wi1 and δ$

P2
=

6∑
i=1

δ$
i wi2, (IV.5.43)

76 We use eigenvectors that are normalized to have unit length, i.e. the sum of the squared elements of each eigenvector is one. Note
that these eigenvectors are invariant under scaling the covariance matrix. Also, the diagonal matrix of eigenvalues � is recovered
using the spectral decomposition, i.e. � = W′�W, as demonstrated in the spreadsheet labelled ‘PCA’. This is important, since these
eigenvalues are the variances of the principal components in the simulations, and without such normalization the futures returns that
are implicit in the simulations will not have the correct variance.
77 This is mathematically the same as mapping deltas and gammas under price beta mapping. See Sections IV.5.2.1 and III.5.5.5 for
further details.
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where δ$
i is the value delta on the i-month futures, shown in Table IV.5.14, and wij is the ith

element of the jth eigenvector shown in Table IV.5.30.
Even though the value gammas in Table IV.5.14 ignored the cross-gamma effects, so we

only had a vector rather than a matrix of value gammas with respect to the futures prices, we
cannot ignore cross-gamma effects in the principal component representation. The net value
gammas with respect to the first two components and their cross-gamma are given by

γ$
P2

1
=

6∑
i=1

γ$
i w2

i1
, γ$

P2
2
=

6∑
i=1

γ$
i w2

i2 and γ$
P1P2

=
6∑

i=1

γ$
i wi1wi2, (IV.5.44)

where γ$
i is the value gamma on the i-month futures, shown in Table IV.5.14.

Given these formulae, we can now calculate the net value deltas and gammas corresponding
to the two principal components as

δ$
P1

=−$24,107, δ$
P2

=−$165,290,

γ$
P2

1
=−$42,991, γ$

P2
2
=−$119,531 and γ$

P1P2
=−$165,336.

This shows that although the portfolio has a net value delta of zero and a net value gamma of
zero, the portfolio is not immune to the most likely movements in the futures term structure.
The most common movement, i.e. the common trend, is represented by the first eigenvector,
and this is not a parallel shift. The large exposures to the second component, a tilt, reflects the
fact that these movements, which ensure the futures prices are less than perfectly correlated,
explain less than 3% of the historical movements.

The advantages of using PCA in Monte Carlo simulations are the identification of the key
risks in a portfolio, the reduction in dimension of the risk factor space and the use of orthog-
onal risk factors. It is simple to translate the deltas and gammas with respect to the futures
price changes into deltas and gammas with respect to the principal components, and it is
straightforward to simulate values for two orthogonal components, with variances given by
the first two eigenvalues shown in Table IV.5.29.78 Then we just apply the delta-only or delta–
gamma mapping to the principal components, with the value delta and gamma shown above,
to simulate the portfolio P&L distribution.

Table IV.5.31 reports the 1% 10-day VaR based on independent normal, and then indepen-
dent Student t, simulations of the principal component risk factors. For comparison, a common
set of random numbers is used to generate the results, which are based first on the net delta and
then on the net delta-gamma representation of the portfolio. First we assume daily rebalancing
to the limit values, and so we can compare our results with the centre column of Table IV.5.28,
i.e. $12,775 for the delta-only VaR and $13,585 for the delta–gamma VaR. Then we assume
the portfolio is static, so we can compare our results with those shown in the last column of
Table IV.5.28, i.e. the same delta-only VaR but $15,638 for the delta–gamma VaR.

The first two columns of Table IV.5.31 report the 1% 10-day VaR of the portfolio when
the futures prices are assumed to be perfectly correlated, and represented by the common
trend component with eigenvector w1 in Table IV.5.30. The second two columns present the
same results but modified with the addition of a second component. Comparison with our
earlier results shows that the delta-only VaR is substantially underestimated unless we use

78 In general, we could of course use more than two principal components if this is needed for an acceptable degree of accuracy.
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Table IV.5.31 Monte Carlo PC VaR for the portfolio of crude oil options

Dynamic 1 component 2 components

Distribution Normal Student t Normal Student t

Delta only $8,241 $9,061 $12,400 $12,881
Delta–gamma $9,035 $10,021 $12,846 $14,051

Static 1 component 2 components

Distribution Normal Student t Normal Student t

Delta only $8,512 $9,533 $12,362 $13,105
Delta–gamma $11,192 $12,894 $14,144 $16,759

both components. Only then are they capturing the essential features of dynamic and static
VaR estimates. And, as expected, the use of a leptokurtic distribution for the principal com-
ponents increases the VaR. The results shown in Table IV.5.31 are for 6 degrees of freedom in
the Student t distribution. The further enhancement of the simulations for two principal com-
ponents, for instance to include volatility clustering, is left as an exercise to the experienced
reader.

Vega Mapping

We now turn to the problem of the volatility risk factors. Should we reduce the dimension of
this risk factor space, and if so how? The original mapping of vega to ATM implied volatilities
is already introducing a considerable model risk. What sort of additional modelling errors
might be introduced by using only one or two volatility risk factors in total?

We already know that PCA on volatilities is unlikely to work as well as it does for the price
risk factors, because the ATM implied volatilities are not as highly correlated as the prices.
Readers could try applying PCA to the volatilities, but if we aim to reduce dimensions in
this way (as we did for the price risk factors) there will be large approximation errors. So
to illustrate a different type of mapping now – which could also have been applied to the
price risk factors, as explained in Section III.5.5.5, though perhaps with less success than
the principal component mapping – we shall use a volatility beta mapping, as explained in
Section III.5.6.4.

An ad hoc choice of the 3-month volatility as the reference volatility is made. Although it
may be advisable to use volatility betas relative to this reference volatility that are more risk
sensitive than OLS estimates, we can quickly look at the performance of the simple volatility
OLS beta estimators

β̂i =
est.Cov(�σi,�σ3)

est.V(�σ3)
, (IV.5.45)

where �σi denotes the i-month ATM volatility. If these perform badly relative to the historical
model, it may not be worth the effort trying to refine this approach with more sensitive beta
estimates. The volatility beta estimates based on the entire historical sample are shown in
Table IV.5.32. The differing sizes of these betas reflects the lack of correlation in the behaviour
of the implied volatilities.
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Table IV.5.32 Volatility beta estimates relative to
3-month volatility

m1 m2 m3 m4 m5 m6

2.177 0.996 1.000 0.568 0.468 0.357

Given these volatility beta estimates, the net value vega of the portfolio relative to the
3-month reference volatility is given by

ν=
6∑

i=1

ν$
i β̂i, (IV.5.46)

where ν$
i denotes the value vega of the portfolio relative to the i-month volatility, shown in the

last column of Table IV.5.14. Workbook (c) for this case study calculates the net vega for the
portfolio as −$70,700.

Then we use the sample standard deviation of the 3-month implied volatility to simulate
normally distributed changes in the reference volatility risk factor, and apply the vega adjust-
ment based on these changes and the net value vega. It then proceeds in a similar fashion to
workbook (a), which contains the 12-dimensional multivariate normal risk factor model, but
replaces the volatility part of the model by the volatility beta mapping. The 1% 10-day VaR
results are shown in Table IV.5.33.

Table IV.5.33 Influence of vega mapping on VaR for a portfolio of crude oil
options

(a) (b) (c) (d)

Delta only $12,841 $12,841 $12,841 $12,841
Delta–gamma $13,624 $13,624 $15,775 $15,775
Delta–gamma–vega $15,484 $14,506 $17,119 $16,412

(a) Twelve-dimensional multivariate normal i.i.d. returns, dynamic portfolio
(b) Six-dimensional multivariate normal i.i.d. price returns, vega mapping, dynamic portfolio
(c) Twelve-dimensional multivariate normal i.i.d. returns, static portfolio
(d) Six-dimensional multivariate normal i.i.d. price returns, vega mapping, static portfolio.

For both static and dynamic portfolios, the application of the vega mapping underestimates
the vega effect. This is to be expected, since we have reduced the uncertainty in the model by
reducing the number of volatility risk factors. It may be worth investigating whether the use
of a more risk sensitive volatility beta vector would improve the accuracy of these results.

IV.5.6 SUMMARY AND CONCLUSIONS

Option portfolios range from small baskets of vanilla options on the same underlying asset to
very large collections of complex products on many underlying assets. Usually option portfo-
lios that are held by banks are managed to be delta neutral. It is the banks’ business to accept
risks, for instance by writing options, because they know how to hedge them. Banks need to
assess the risks they are taking before and after hedging. But the numerous empirical examples
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in this chapter have shown that it is all too easy for risk managers to produce highly inaccurate
measurements of the risks that face option traders. Even the accurate estimation of VaR for a
simple basket of vanilla options on a single underlying is a difficult task that must be properly
designed, as we have taken care to demonstrate in this chapter. Readers should not underesti-
mate the very significant investment of resources necessary to implement a VaR model that is
capable of producing accurate estimates for the all options positions in a large bank.

This chapter has addressed the problem of measuring the risk of option portfolios using
both direct valuation and risk factor mapping. We know that risk factor mapping of any type
of portfolio provides a useful method to allocate portfolio risk to different sources and to
hedge these risks. And for option portfolios there is another reason to use risk factor mapping:
it reduces the computation time taken for VaR calculations of complex portfolios. However,
risk factor mapping of option portfolios is far less accurate than risk factor mapping of other
portfolios. There are two main reasons for this. Firstly, it is based on Taylor approximation.
But this is only accurate for small changes in the risk factors, and VaR is a loss in the lower tail
of the portfolio return distribution, so large changes in risk factors are required to estimate it.
Secondly, typical option portfolios have a huge number of risk factors. The underlying price
and the implied volatility are the main risk factors for each individual option but, even if all the
options are on the same underlying, we have a whole volatility surface as risk factors. Hence,
we must use techniques to reduce the number of volatility risk factors, and this introduces
further inaccuracies into the Taylor approximation.

Positive gamma reduces VaR and negative gamma increases VaR, relative to the delta-
only VaR. We call this the gamma effect. To be more precise, when the net value gamma
is positive the portfolio’s VaR based on a delta–gamma approximation is less than its VaR
based on a delta approximation, irrespective of the sign of delta. The opposite is the case
when the net value gamma is negative. Similarly, adding a volatility risk factor increases
VaR if the net value vega is positive, and reduces VaR if the value vega is negative. But
the vega effect is more complex, because the net effect of adding vega risk to the mapping
depends on the price–volatility correlation as well as the sign of vega. For instance, when
the net position vega is positive and the price–volatility correlation is also positive (e.g. in
commodity options) the delta–gamma–vega VaR will exceed the delta–gamma VaR. But when
the net position vega is positive and the price–volatility correlation is negative (e.g. in equity
options) there are two effects of opposite sign so the delta–gamma–vega VaR may be greater
than or less than the delta–gamma VaR. Finally, since option prices generally decrease as the
option approaches expiry, the maturity effect increases the risk of long positions and decreases
the risk of short positions. However, this theta effect only has a significant influence on VaR
for long-term option portfolios when risk is assessed over a risk horizon of a few weeks
or more.

It is possible to approximate the VaR of an option portfolio analytically, but these approx-
imations are not very accurate. The simplest (and least accurate) of these is the delta–normal
VaR, which is a normal linear VaR model. Here a normal distribution for the underlying asset
returns translates into a normal distribution for the delta approximation to the option port-
folio’s P&L. The delta–gamma approximation is not linear, so a normal distribution for the
underlying asset returns does not translate into a normal distribution for the delta–gamma
approximation to the option portfolio’s P&L. In fact the P&L distribution resulting from the
delta–gamma approximation is often bimodal, and highly positively skewed and leptokurtic.
The moments of the distribution can be computed directly from the delta and gamma of the
portfolio, knowing only the covariance matrix of the underlying asset returns. We showed how
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to fit a Johnson distribution to the moments and hence estimate the VaR. However, by com-
paring the result with the Monte Carlo VaR based on delta–gamma approximation, we find
that the analytic approximation is not able to capture the tail behaviour that is so important for
VaR estimation.

Most of the text in this chapter has focused on the historical VaR and Monte Carlo VaR
models as applied to individual options and option portfolios. We have illustrated each point
in an empirical example or case study, and the CD-ROM contains almost 30 interactive work-
books for this chapter alone. To reduce the size of the workbooks containing Monte Carlo
simulations, readers will need to fill down all simulations and calculations after copying the
file to the hard drive. Also, for clarity, no enhancements for advanced sampling and variance
reduction have been applied. Our purpose in the Monte Carlo section of this chapter is to
identify the effects that different choices of risk factor model are likely to have on our VaR
estimates, rather than on the accuracy of our simulation results.

We have been very careful to state the assumptions about rebalancing that are implicit
in the way we scale the VaR for an option portfolio. There are two alternatives. First, we
could compute the dynamic VaR, i.e. the VaR of a dynamically rebalanced portfolio which is
traded at the end of each day over the risk horizon, to return the risk factor sensitivities to
their original values at the time the VaR is estimated. For example, this type of assumption
is relevant if we wish to estimate the VaR of a portfolio that was at its trading limits. Then,
if the risk factor returns are i.i.d., the same risk is faced every day during the risk horizon. In
this case we can compute 1-day VaR, and scale this to an approximate h-day VaR using the
square-root-of-time rule or some other power scaling rule.

The other alternative, applicable when we have a fixed position such as a single structured
product, is to assume the portfolio is not traded during the risk horizon. We call this the static
VaR. Then the correct way to estimate an h-day VaR is to use h-day risk factor returns in
the simulation. We have shown, using many numerical examples, that scaling up a daily VaR
estimate to a longer risk horizon would seriously distort the theta, gamma and vega effects if
the portfolio is not traded during the risk horizon.

The dynamic and static VaR estimates are the same for a linear portfolio when the risk factor
returns are i.i.d., but they are not the same for an option portfolio. For this reason, we must
be very clear about what type of VaR estimate we require – static or dynamic. This choice
depends on the trading environment, and on the purpose of the VaR estimation.

Standard historical simulation is suited to dynamic VaR estimation, but its application to
static VaR estimation is limited. The problem with historical simulation is the sample size con-
straint: there are insufficient historical data to obtain accurate estimates of extreme quantiles,
which is exactly what we need for VaR estimation. So if a standard historical VaR model is
applied to an option portfolio we must either assume we have a dynamic portfolio that is rebal-
anced daily over the risk horizon, to keep its risk factor sensitivities constant, and therefore
scale up the daily VaR using some power law; or, for a static portfolio, we must use over-
lapping h-day returns on the risk factors in the simulation. However, the use of overlapping
data distorts the tail behaviour in the risk factor return distribution. For these reasons standard
historical VaR is not recommended for static VaR estimation for option portfolios. The model
needs to be augmented using a parametric model of volatility clustering, as in the filtered
historical simulation model of Barone-Adesi et al. (1998, 1999).

For dynamic VaR estimation standard historical simulation has one distinct advantage over
Monte Carlo simulation, and this is that it captures the empirical dynamic properties and
non-linear dependence between risk factors in a simple and very natural fashion. There is
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no need to build a complex dynamic model for risk factor returns, as there is with Monte
Carlo simulation. However, we know from the previous chapter that Monte Carlo simulation
is flexible enough to be adapted to many multivariate distributions, and to include dynamic
properties such as volatility clustering and mean reversion in risk factor returns. We have
demonstrated empirically that volatility clustering in price risk factors is a very important
effect to capture for accurate VaR estimates of option portfolios.

Monte Carlo VaR is also applicable to both dynamic and static portfolios, and therefore
provides a means to compare the impact that our portfolio rebalancing assumption has on
the VaR estimates. Static portfolios have more pronounced gamma, vega and theta effects.
However, capturing these effects with a Greeks approximation to the portfolio P&L should be
done with caution, since the risk factor changes over the risk horizon could be too large to be
compatible with a local approximation.

This chapter has contained a sequence of progressively more sophisticated empirical exam-
ples. We have computed VaR using analytic approximations, historical simulation and Monte
Carlo simulation for a standard European option, an option with path-dependent pay-off, a
hedged portfolio, general portfolios of options on the same underlying asset and, finally, port-
folios of options on several underlying assets. We have demonstrated that the risk of unhedged
short options positions is very much greater than the risk of unhedged long options positions,
and that even delta-gamma-vega hedged portfolios could have a fairly large VaR when they
are not continually rebalanced. Moreover, some hedged portfolios are only hedged against cer-
tain types of movements in risk factors. For instance, the net value Greeks of our portfolio of
crude oil options were all zero. But this only hedges the portfolio against parallel movements
in the term structures of crude oil futures prices and implied volatilities, whereas non-parallel
movements are actually very common. Thus a portfolio can run some very significant risks
even when it appears to be fully hedged.

A certain degree of estimation risk, linked to sample size limitations, is usually unavoidable
in historical VaR model. But estimation risk in Monte Carlo VaR is something that we can
do our best to eliminate because simulation errors can be controlled by advanced sampling
techniques. So the main source of model risk in Monte Carlo VaR stems from an inappropriate
model of the risk factor returns. The chapter ends with a detailed case study that demonstrates
the effect that different risk model enhancements are likely to have on the Monte Carlo VaR
estimates for an energy option portfolio. The multivariate i.i.d. normal model has been used as
a benchmark against which to measure the loss of accuracy induced by reducing the dimension
of the underlying price and implied volatility risk factor space.



IV.6
Risk Model Risk

IV.6.1 INTRODUCTION

Portfolio risk is a measure of the uncertainty in the distribution of portfolio returns, and a risk
model is a statistical model for generating such a distribution. A risk model actually contains
three types of statistical models, for the

(i) portfolio’s risk factor mapping,
(ii) multivariate distribution of risk factor returns, and

(iii) resolution method.

The choice of resolution method depends on the risk metric that we apply to the risk model.
In this chapter we shall be focusing on VaR models, so the choice of resolution method is
between using different analytic, historical or Monte Carlo VaR models.

The choices made in each of (i)–(iii) above are interlinked. For instance, if the risk factor
mapping is a linear model of risk factor returns and these returns are assumed to be i.i.d.
multivariate normal, then the resolution method for estimating VaR is analytic. This is because
historical simulation uses an empirical distribution, not an i.i.d. normal one, and under the
i.i.d. normal assumption there is no point in using Monte Carlo simulation because it only
introduces sampling error into the exact solution, which may be obtained using an analytic
formula.

Of course, the distribution of portfolio returns has an expected value, and if the risk model is
also used to forecast this expected value then we could call the model a returns model as well.
What we call the model depends on the context. For instance, fund managers normally call
their model a returns model, or an alpha model, because the primary purpose is to provide a
given level of performance. But most clients also require some limit on risk, and fund man-
agers should take care to assess risk in the same statistical model as they assess expected
returns, i.e. using their alpha model.

What about banks? Banks accept risks from their clients because they are supposed to
know how to hedge them. Since the main business of banks is risk rather than returns, a risk
manager in banking will call his model for generating portfolio return distributions a risk
model. Banks account for profits and losses in their balance sheets and they use expected
returns (or expected P&L) in risk adjusted performance measures. But those figures are only
for accounting and capital allocation purposes. Banks often use risk models that are quite
different from the models used to compute the expected returns (or P&L) on their balance
sheets. More often than not their risk model assumes that all activities earn the risk free rate,
even though their balance sheets and their economic capital estimates may use different figures
for expected returns.
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It is important to specify the expectation in the risk model. For instance, volatility is one,
very common, risk metric that represents the extent to which the realized return can deviate
from the expectation of the risk model distribution. Of course, it says nothing at all about
deviations from any other expected return, and the market risk analyst must be careful to
specify the expected return that this volatility relates to. Suppose the expected return is fixed
by some external target. Unless the target happens to be the expected value of the risk model
distribution, the risk model volatility says nothing at all about whether this target will be
outperformed or underperformed. One cannot just assume the expected return is equal to the
target without changing the risk model. Unless the model is changed to constrain the expected
return to be the target – and this will also change the volatility in the model – the model is not
appropriate for measuring risk relative to the target.1 But this chapter is not about expected
returns, and it is not until Chapter IV.8 that we shall be concerned with the interplay between
risk and expected return. Here we focus on the accuracy of risk models, and we begin by
putting the questions we ask about this into two categories:

1. Model risk. Which models should we use for the risk factor mapping, for modelling the
evolution of the risk factor returns and for the resolution of the model to a single measure
of risk? How do the three sub-models’ statistical assumptions affect the accuracy of the
risk model’s risk forecasts?

2. Estimation risk. Given the assumptions of the risk model, how should we estimate the
model parameters, and how do these estimates affect the accuracy of our risk measures?

Notice that we call the second type of model risk ‘estimation risk’ rather than sampling error.
Estimation risk includes sampling error, i.e. the variation in parameter estimates due to differ-
ences in sample data. But it may also be that more than one estimation method is consistent
with the risk model assumptions, and this is a different source of estimation risk. For instance,
if the risk factor returns are assumed to be multivariate normal then we could apply either
equally or exponentially weighted moving averages to estimate the risk factor returns covari-
ance matrix.2 Different estimation methods will give different parameter estimates, based on
the same assumptions and given the same sample data.

To answer the questions about model risk and estimation risk above we need a methodology
for testing the accuracy of a risk model. In the industry we call such a methodology a backtest.
In academia we call it an out-of-sample diagnostic (or performance) analysis. Since the term
‘backtest’ is shorter, we shall use that term in this chapter. Several academic studies report
the results of backtesting VaR models. Notably, Berkowitz and O’Brien (2002) and Berkowitz
et al. (2006) suggest that the VaR models used by banks are not sufficiently risk-sensitive to
generate the short-term VaR estimates they need.3 And the results of Alexander and Sheedy
(2008) suggest that risk models based on constant parameter assumptions cannot forecast
short-term risk accurately, even at the portfolio level. Both volatility clustering in portfolio
returns and heavy-tailed conditional return distributions are required for accurate VaR and
ETL forecasts at high confidence levels and over short-term horizons.

1 See Chapter II.1 for a thorough discussion of expected returns models, and their relationship with the risk metric.
2 Or, if an asymmetric GARCH model is assumed, we could choose an E-GARCH or an A-GARCH parameterization in an asymmetric
conditional multivariate normal framework.
3 Typically, the horizons are 1 day for regulatory backtests, up to about 3 days for stress testing (or more, in illiquid markets), and 10
days for regulatory capital calculations.
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The outline of this chapter is as follows. Section IV.6.2 clarifies the different sources of
risk model risk and estimation risk. Section IV.6.3 derives some simple confidence intervals
for VaR. Section IV.6.4 presents the core, technical part of this chapter. We first describe
the general methodology for backtesting and then discuss the simple backtests required by
regulators. Then we describe a more sophisticated and informative type of backtest based
on the Kupiec (1995) test for coverage and the Christoffersen (1998) test for conditional
coverage. Thereafter we cover backtests based on regression, which may provide a means
of identifying why the VaR model fails the backtest, if it does. We describe a method
for backtesting ETL due to McNeil and Frey (2000) and the application of bias statistics
in the normal linear VaR framework. We also discuss backtests that examine the accu-
racy of the entire portfolio return distribution. As usual, Excel examples are provided to
illustrate how each test is implemented, and we end the section by describing the results
of some extensive backtests performed by Alexander and Sheedy (2008). Section IV.6.5
concludes.

IV.6.2 SOURCES OF RISK MODEL RISK

This section introduces the main sources of model risk and estimation risk in risk models,
explaining how the two risks interact. For instance, if the risk factor returns are assumed to be
multivariate normal i.i.d., in which case the model parameters are the means and the covari-
ance matrix of these returns, then the estimation of the covariance matrix cannot be based
on a GARCH model; it can only be based on a moving average model, because returns are
not i.i.d. in GARCH models. So in this case estimation risk depends on the choice between
three alternatives: an equally weighted covariance matrix, an exponentially weighted moving
average with the same smoothing constant for all risk factors, or an orthogonal EWMA covari-
ance matrix estimate. Further to this choice, the choice of sample data and, in the case of the
EWMA matrices the smoothing constant, also influences sampling error, which is a part of
estimation risk.

Sampling error in statistical models has been studied for many generations and estimated
standard errors of estimators that we commonly use are well known. Almost always, in
an unconditional (i.i.d.) framework, the larger the estimation sample size the greater the
in-sample accuracy of the estimator. But this does not necessarily imply that we should use
as large a sample as possible for VaR and ETL estimation. Apart from the fact that backtests
are out-of-sample tests, we might encounter problems if the risk model is an unconditional
model, because backtests are usually performed using short-term, time-varying forecasts. So
there is no guarantee that larger estimation sample sizes will perform better in backtests.
Indeed, the opposite is likely to be the case, because the VaR and ETL would become less risk
sensitive.

In this section we shall examine the decisions that must be made at each step of the risk
model design, from the models used for risk factor mapping, risk factor returns and VaR
resolution to the choice of sample data and estimation methodology. We already know from
previous chapters that portfolio risk may be assessed at the portfolio level, the risk factor level
or even at the asset level. Each approach has its own advantages and limitations, which are
summarized in Table IV.6.1. This section assumes that portfolio risk is assessed at the risk
factor level, as it will be whenever the model is used for risk attribution, and we focus on the
model risk that is introduced by the use of a risk factor mapping.
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Table IV.6.1 Advantages and limitations of different levels of risk assessment

Level Portfolio Risk factor Asset

Advantages Simplicity;
Assesses total risk
directly

Allows risk attribution Assesses total risk directly

Limitations No risk attribution Only assesses systematic risk; No risk attribution;
Additional model risk introduced
by risk factor mapping

Not practical for very large
portfolios

IV.6.2.1 Risk Factor Mapping

The main focus of academic research and industry development has been on the specification
of the risk factor returns model, with much less attention paid to the model risk arising from
the risk factor mapping itself. However, the type of risk factor mapping that is applied, and the
method and data used to compute factor sensitivity estimates, could each have a considerable
impact on the VaR and ETL estimates.4

Effect of Vertex Choice on Interest Rate VaR

Suppose a portfolio is represented as a sequence of cash flows.5 Given a set of vertices for
the risk factor mapping, we know that we should map the cash flows to these vertices in
a present value, PV01 and volatility invariant fashion. Following the method explained in
Section III.5.3.4, we can do this by mapping each cash flow to three vertices. We now ask
which fixed set of vertices should be chosen for the risk factor mapping. For instance, should
we use vertices at monthly or 3-monthly intervals? And does this choice matter – how much
does it influence the VaR estimate?

EXAMPLE IV.6.1: MODEL RISK ARISING FROM CASH-FLOW MAP

Estimate the 1% annual VaR of a cash flow with a present value of $1 million in 250 calendar
days, when it is mapped in a present value, PV01 and volatility invariant fashion to three
vertices, and these vertices are:6

(a) 8 months, 9 months and 10 months;
(b) 6 months, 9 months and 12 months.

The correlation matrix of continuously compounded discount rates at monthly maturities, and
their volatilities (in basis points per annum), are shown in Table IV.6.2. In each case base your
calculations on the assumption that the changes in discount rates are i.i.d. with a multivariate
normal distribution.

SOLUTION In each case we map the cash flow to the three vertices using the methodology
explained in Section III.5.3.4 and illustrated in Example III.5.3. That is, first we use linear

4 For instance, in an equity factor model we could use one broad market risk factor, or several fundamental factors, or statistical factors
etc. Different factor models will give different VaR estimates.
5 This includes any interest rate sensitive portfolio, and any portfolio with forward exposures to currencies, equities or commodities.
But currency, equity and commodity portfolio also have a spot price as a risk factor. See Section III.5.2 if any clarification is required.
6 Using a 30/360 day-count convention.
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Table IV.6.2 Discount rate volatilities and correlations

Correlation m6 m7 m8 m9 m10 m11 m12

m6 1 0.993 0.977 0.954 0.928 0.900 0.873
m7 0.993 1 0.995 0.981 0.963 0.941 0.918
m8 0.977 0.995 1 0.996 0.985 0.969 0.952
m9 0.954 0.981 0.996 1 0.997 0.988 0.975
m10 0.928 0.963 0.985 0.997 1 0.997 0.990
m11 0.900 0.941 0.969 0.988 0.997 1 0.998
m12 0.873 0.918 0.952 0.975 0.990 0.998 1
Volatility 33 34.5 35.75 37.25 38.75 40 41.5

interpolation on variances to estimate the volatility of the 250-day discount rate, and also cal-
culate the covariance matrix corresponding to the volatilities and correlation. Then we apply
the Excel Solver to compute the cash-flow mapping, and the result is shown in the columns
headed cash-flow PV in Table IV.6.3. Next, we compute the PV01 vector of the mapped cash
flow, as described in Section IV.2.3.2, and the results are shown in the columns headed PV01.7

Finally, we use the PV01 vector to calculate the 1% annual normal linear VaR, using the usual
formula (IV.2.25). The results for the 1% annual VaR are $5856.56 in case (a) and $5871.18
in case (b).

Table IV.6.3 Computing the cash-flow map and estimating PV01

Case (a) Case (b)

Days Cash-flow PV PV01 Days Cash-flow PV PV01

240 $517,310 $34.49 180 $132,129 $6.61
270 $632,047 $47.40 270 $957,964 $71.85
300 −$149,357 −$12.45 360 −$90,093 −$9.01

The above example shows that the choice of vertices for the cash-flow map makes little dif-
ference to a normal linear VaR estimate, even over an annual horizon. The 1% annual VaR
of a cash flow with present value $1 million is 0.5856% of the portfolio value when mapped
to monthly vertices, or 0.5871% of the portfolio value when mapped to quarterly vertices.
Readers can verify, using the spreadsheet for the above example, that even when interest rates
are more volatile and have lower correlation than in the above example, the influence of our
choice of vertices in the risk factor mapping on the interest rate VaR is minor.

The reason for this is that if the VaR is proportional to the portfolio volatility, as it is in the
normal linear VaR model, the choice of the three vertices to map to should not influence the
result because the VaR should be invariant under the mapping.8 However, if we had used a VaR
resolution method based on historical simulation then the difference between the two results
could have been greater. Typically there are thousands of cash flows, and then the precision
of the historical VaR estimate could be significantly affected by the choice of vertices for the

7 Since the mapped cash flow is already in present value terms, we simply multiply the cash-flow present value by its maturity in years
and then by 10−4. This gives an accurate approximation to the PV01, using (IV.2.29).
8 The small difference between the VaR estimates in this example was due to rounding errors.
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cash-flow map. But this choice is far less crucial than other choices that the market risk analyst
faces. For example, the choice of multivariate distribution to use for the interest rate changes,
and the decision to assume they are i.i.d. or otherwise, would have a much more significant
influence on the VaR estimate than the choice of vertices in the cash flow map.

Effect of Sample Size and Beta Estimation Methodology on Equity VaR

Now suppose we have spot exposures in a stock portfolio. There may be little or no flexibility
regarding the choice of market risk factors. For instance, a hedge fund market risk analyst may
be estimating portfolio risk in the context of a pre-defined returns model with many factors.
By contrast, a market risk analyst in a large bank will probably, for the sake of parsimony,
be using a single broad market index for each country. Sometimes there is a choice to be
made between two or more broad market indices, but usually these indices would be highly
correlated and so the choice of index is a relatively minor source of model risk. Thus, in the
case of an equity portfolio held by a bank, the main sources of risk factor model risk are the
sample data and the methodology that are used to estimate the market betas. The estimation of
a market beta in the single index model is the subject of Section II.1.2. There we compare the
ordinary least squares (OLS) and exponentially weighted moving average (EWMA) methods,
illustrating the huge differences that can arise between the two estimates.9

Whilst fund managers are likely to base capital allocation on a returns model that uses many
risk factors, with OLS estimates for risk factor betas, market risk analysts require fewer risk
factors but more risk sensitive estimates for their betas. Risk managers may choose between:

• the fund manager’s OLS beta estimates, which are typically based on weekly or monthly
data over a sample period covering several years;

• OLS betas based on daily data over a smaller sample, under the belief that these are more
risk sensitive than the fund manager’s betas;10 or

• EWMA or GARCH time-varying beta estimates.

We shall now illustrate the effect of this choice on the VaR estimate, in the context of a very
simple portfolio.

EXAMPLE IV.6.2: MODEL RISK ARISING FROM EQUITY BETA ESTIMATION

On 30 May 2008, estimate the 1% 10-day systematic VaR of a position currently worth £4
million on Halifax Bank of Scotland (HBOS) PLC, using the FTSE 100 index as the market
factor.11 Compare your results when both the beta estimate and the index volatility estimate
are based on:

(a) OLS estimation using weekly data since 31 December 2001;
(b) OLS estimation using weekly data since 28 December 2006

9 We could also estimate betas using a bivariate GARCH model, as described in Section II.4.8.4. Typically, there is less difference
between the GARCH and the EWMA beta estimates than between these and the OLS estimates.
10 But when OLS beta estimates are rolled over time they exhibit ‘ghost features’ which introduce a serious bias to the estimate. The
reason is that OLS assumes the returns on a financial asset are i.i.d. when they are not. So when a volatility cluster appears, the effect
of this cluster does not diminish over time. Instead it persists for exactly T periods after the cluster, where T is the sample size. This
is explained in detail in Section II.3.7.
11 The price of HBOS stock on that day was £4, so 1 million shares are held. Data were downloaded from Yahoo! Finance, symbols
HBOS and ∧FTSE.
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(c) OLS estimation using daily data since 31 December 2001;
(d) OLS estimation using daily data since 28 December 2006;
(e) EWMA estimation using weekly data with a smoothing constant of 0.95;
(f) EWMA estimation using weekly data with a smoothing constant of 0.9;
(g) EWMA estimation using daily data with a smoothing constant of 0.95;
(h) EWMA estimation using daily data with a smoothing constant of 0.9.

In each case base your calculations on the assumption that the returns on the stock and the
index are i.i.d. with a bivariate normal distribution.

SOLUTION The stock and the index prices since 31 December 2001 are shown in
Figure IV.6.1.12 The effects of the credit crunch on the stock price are very evident here: its
price tumbled from a high of nearly £12 per share in January 2007 to only £4 per share by the
end of May 2008. The stock returns volatility was clearly much higher at the end of the sam-
ple than it had been, on average, over the sample period, and this will be particularly reflected
in the EWMA volatility estimate (h), which has a low value for the smoothing constant. The
stock’s index beta will currently also be much lower according this EWMA estimate because
the correlation between the stock and index returns, which was fairly high during the years
2002–2006, had become very low indeed by the end of the sample.
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Figure IV.6.1 HBOS stock price and FTSE 100 index

We shall estimate the VaR using the usual normal linear formula, expressing VaR as a
percentage of the portfolio value. That is, the 100α% h-day VaR estimate is given by

VaRh,α =�−1(1 − α) β̂σ̂
√

h/250

12 Note that the stock price, shown on the right-hand scale, is given in pence.
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where β̂ is the beta estimate for HBOS relative to the FTSE 100 index and σ̂ is the esti-
mate of the index volatility. In each of the cases (a)–(h) we use a different estimate for β̂ and
for σ̂. These and the resulting 1% 10-day VaR estimates, in percentage and nominal terms, are
displayed in Table IV.6.4.13

Table IV.6.4 OLS and EWMA beta, index volatility and VaR for HBOS stock.

(a) (b) (c) (d) (e) (f) (g) (h)

Beta 1.169 1.266 1.221 1.269 1.747 1.914 1.102 0.672
Index vol. 14.02% 14.13% 17.75% 17.18% 16.51% 16.49% 17.36% 15.11%
VaR(%) 7.63% 8.32% 10.09% 10.14% 13.42% 14.68% 8.90% 4.72%
VaR(£) £305,127 £332,949 £403,409 £405,785 £536,851 £587,358 £356,098 £188,796

Considering the OLS estimates (a)–(d) first, we find that the betas are fairly similar whether
they are based on weekly or daily data over either estimation period, but the index volatility
estimates are much higher when based on daily data. As a result, the VaR estimates are greater
when based on daily data. This is expected because, unless the returns are really i.i.d. as we
have assumed, the volatility clustering effects are likely to be more pronounced in daily data.
However, when there is volatility clustering it is not correct to scale VaR using the square-
root-of-time rule. Instead we should use a GARCH model, which has a mean reversion in
volatility, and the square-root-of-time rule does not apply.

For the VaR there is much less variation between the four different OLS estimates (a)–(d)
than there is between the four different EWMA estimates (e)–(h). These range from 4.72%
to 14.68% of the portfolio value, i.e. from £188,796 to £587,358! In this case the choice
between weekly and daily data has a great effect on the VaR estimate, and so does the choice
of smoothing constant in the EWMA. It is the product of the volatility and the beta that we
use in the VaR so the daily data could lead to either a higher or a lower value for VaR than the
weekly data.14 In this case, it turns out that the daily data give the lower VaR estimates.

The above example illustrates some important points:

• When short-term VaR estimates are scaled to longer risk horizons using the square-root-
of-time rule, a large model risk is introduced.15 Although we should base daily VaR
estimates on daily data, weekly data may provide more accurate VaR estimates over a
5-day or longer risk horizon.

• When the EWMA methodology is applied the choice of smoothing constant has a very
significant effect on the VaR estimate. The problem with EWMA is that this choice is
ad hoc.16

13 The VaR in nominal terms is the percentage VaR estimate multiplied by the portfolio value of £4 million.
14 Again the index volatilities are higher when based on daily data but the beta estimates are much lower. Because of the crash in the
stock price just before the VaR is estimated, the lower value of 0.9 used in (h) produces the highest volatility estimate. But the because
of the higher index volatility and also because the daily stock returns have a lower correlation with the index returns, the daily beta
estimates are much lower than those based on weekly data.
15 See also Table IV.3.4 in Section IV.3.2.6, which shows the errors of square-root scaling under different scale exponents and over
different risk horizons.
16 And this is the reason why it is better to use a GARCH model, at least when the model is based on daily data, because the GARCH
parameters may be estimated using maximum likelihood estimation. See Section II.4.2.2 for further details.



Risk Model Risk 319

• Calculating equity VaR by mapping to major indices is fraught with difficulties. The
mapping methodology (e.g. the OLS or EWMA) and the choice of parameters (e.g.
estimation period, or smoothing constant) may have an enormous influence on the result.
Completely counterintuitive results could be obtained, such as the result shown in col-
umn (h) above. More generally, a high risk portfolio could be uncorrelated with the
market, in which case it would have a very small beta. Thus its systematic VaR could be
very low indeed.

A few months later, during September 2008, HBOS became insolvent. In this light, even the
largest VaR estimate in the example above would seem too conservative. However, market
risk capital is not for holding against this type of loss. It is only for covering everyday losses,
usually in a balanced portfolio of shares. To quantify losses that arise from stress events such
as the insolvency of a major bank, stress VaR analysis should be used.

IV.6.2.2 Risk Factor or Asset Returns Model

Much of our discussion in previous chapters has concerned the specification of the risk factor
or asset returns model, i.e. the way that we model the evolution of the risk factors (or assets)
over the risk horizon. The analyst faces several choices here and the most important of these
are now reviewed.

1. Should we assume the returns are i.i.d. or should we capture volatility clustering and/or
autocorrelation in returns?
This choice influences both the VaR estimate itself and the way that we scale VaR over dif-
ferent risk horizons, if this is done. Numerous examples and case studies in the previous four
chapters have discussed the impact of volatility clustering and autocorrelated returns on VaR.17

In each case the importance of including volatility clustering effects in VaR estimates over risk
horizons longer than a few days was clear. And, for a linear portfolio, we showed that even
a small degree of autocorrelation in returns can have a significant impact on the scaling of
short-term VaR to long-term risk horizons.

2. Should the distribution be parametric or historical?
At the daily frequency the historical distribution captures all the features of returns that we
know to be important such as volatility clustering, skewness and leptokurtosis. It does this
entirely naturally, i.e. without the complexity of fitting a parametric form. But to estimate
VaR over a horizon longer than 1 day we need an h-day distribution for portfolio returns, and
for reasons explained in previous chapters it is difficult to obtain an h-day historical distribu-
tion using overlapping data in the estimation sample. The exception is when we use filtered
historical simulation (FHS), where the volatility adjusted historical distribution is augmented
with a parametric dynamic model such as GARCH. An alternative to historical simulation is

17 In particular, for the effect of autocorrelation on scaling parametric linear VaR, see Examples IV.2.1, IV.2.23 and the case study on
credit spread VaR in Section IV.2.12. And, for the influence of volatility clustering effects on historical VaR estimates, see Exam-
ple IV.3.1 and all five case studies in Section IV.3.5. These case studies deal with cash flows, a small stock portfolio, a large
international stock portfolio, an international fixed income portfolio and a portfolio of crack spreads. Finally, for the effect of volatility
clustering in Monte Carlo VaR estimates, see Example IV.4.6 and, for the comparison of i.i.d. versus GARCH returns on a forex
portfolio, see Example IV.4.14.
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to find a suitable parameterization of the conditional distributions of the risk factor returns and
to model these in a dynamic framework.

The advantages and limitations of both the parametric and the empirical (historical)
approaches to building a statistical model for risk factor returns have been discussed ear-
lier in this text. In Chapter IV.3 we described the influence of this choice on VaR estimates
for a linear portfolio and in Chapter IV.5 we examined option portfolios, comparing Monte
Carlo with historical VaR estimates.18 It is unlikely that the h-day risk factor return distribu-
tions based on historical data without filtering will provide VaR estimates that are as accurate
as those based on appropriate parametric representations of the conditional risk factor return
distributions. FHS may be more or less accurate than Student t EWMA VaR, but we cannot
draw any conclusion without backtesting the performance of different models, as described
later in this chapter.

3. If parametric, should the risk factor return distribution be normal, Student t, mixture or some
other form (e.g. based on a copula)?
Our empirical exercises and studies have demonstrated, convincingly, that daily returns are
usually neither i.i.d. nor normally distributed.19 Typically, both daily and weekly returns
exhibit skewed and leptokurtic features. When volatility clustering is included and the model
has a conditional framework, as in GARCH, it is possible for unconditional distributions to
be skewed and leptokurtic even when conditional distributions are normal. But when skew-
ness and leptokurtosis in portfolio returns are very pronounced even conditional distributions
should be non-normal. Hence, for a daily VaR estimate to be truly representative of the stylized
empirical features mentioned above, non-normal conditional distributions should be incorpo-
rated in the risk model at this stage.

What about VaR estimates over a horizon of a month or more? If daily log returns are i.i.d.
then their aggregate, monthly log return has an almost normal distribution, by the central limit
theorem. And if daily log returns exhibit volatility clustering their aggregates still (eventually)
converge to a normal variable, even though the central limit theorem does not apply.20 Thus
the decision about parametric form for the risk factor return distributions depends on the risk
horizon. For example, whilst non-normal conditional models for risk factor return distribu-
tions are important for short-term VaR estimates, they are not especially useful for long-term
VaR estimates. For long-term risk factor return distributions we may be fine using the multi-
variate normal i.i.d. assumption. Again, a complete answer can only be given after backtesting
the models that are being considered.

4. How should the parameters of the risk factor returns model be estimated?
Even once we have fixed the distributional assumptions in parametric VaR estimates, the
method used to estimate parameters can have a large impact on the VaR estimates. For

18 Comparisons of parametric and historical VaR estimates for linear portfolios are discussed in Section IV.3.1 and empirical results
are presented in the case studies of Sections IV.3.5.1 (for cash flows) and IV.3.5.2 (for a stock portfolio). For the comparison of
historical VaR and parametric (Monte Carlo) VaR for option portfolios, see Example IV.5.18 for S&P 500 options, Example IV.5.20
for an international equity index option portfolio, and the case studies in Sections IV.5.4.5 and IV.5.5.8 for an energy option portfolio.
19 Numerous exercises and case studies in Chapter IV.2 have addressed this question, by examining the VaR for a linear portfolio
under different parametric assumptions. We also asked a similar question in the context of Monte Carlo VaR models in Chapter IV.4.
Normal, Student t, and normal or Student t mixture i.i.d. VaR estimates for a linear portfolio are compared in Examples IV.2.19,
IV.2.21 and IV.2.22. The case study of Section IV.2.12 also compares the effect of different parametric assumptions on credit spread
VaR. Finally, the comparison of i.i.d. normal, Student t and copula-based Monte Carlo VaR estimates is presented in Examples IV.4.8–
IV.4.11.
20 See Alexander et al. (2008) for the proof.
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instance, the RiskMetrics™ VaR estimates given in Example IV.2.26 are all based on the same
i.i.d. normal assumption for risk factor returns, with an ad hoc value chosen for the smoothing
constant. But the estimated VaR can differ enormously, depending on the sample data and
the methodology used to estimate the risk factor returns model parameters. On changing the
assumptions made here, a VaR or ETL estimate could very easily be doubled or halved! And
we have seen that if the estimates are based on historical data, the sample size used to estimate
the model parameters has a very significant impact on the VaR estimate. So, as well as back-
testing the risk factor returns model, we also have to backtest the sample size, and/or anything
else which determines the values that are chosen for the model parameters.

In summary, the four previous chapters have informed readers about the consequences of their
decisions about the choices outlined above. Using numerous empirical examples and case
studies to illustrate each choice, it has been possible to draw some general conclusions. For
convenience, these conclusions are summarized below.

• If returns are autocorrelated, this affects the way that we scale the VaR estimate to
longer horizons. Positive autocorrelation increases the VaR, and negative autocorrelation
decreases the VaR.

• Incorporating volatility clustering makes the VaR estimate more risk sensitive. It will
increase the VaR estimate if the market is currently more volatile than usual, and decrease
the VaR estimate if the market is currently less volatile than usual.

• Parametric models for returns may produce VaR estimates that are less than or greater
than the VaR estimates based on empirical return distributions. Often the empirical VaR
estimates are greater than normal VaR estimates based on the same historical data, but
this depends on the estimation sample and on the confidence level at which VaR is
estimated.

• When the functional form of parametric distribution has leptokurtosis and negative skew-
ness, the VaR at high confidence levels will be greater than the normal VaR. However,
the opposite is the case at lower confidence levels.

• The data and methodology that are applied to estimate the parameters of the risk factor
mapping and the returns model parameters can have a huge effect on the VaR estimate.
However, it is not easy to know a priori how this choice will affect a particular VaR
estimate.

When building a VaR model a market risk analyst enters a labyrinth where the path resulting
from each choice leads to further choices, and each path branches into several paths. The
outcome from each path is difficult to predict and outcomes resulting from quite different
paths could be similar, or very different indeed. Given the myriad decisions facing the market
risk analyst about the risk factor or asset return distributional assumptions, and given that the
choices made play such an important role in the estimation of VaR and ETL, it is helpful to
offer some guidance.

First, an analyst should choose distributional assumptions, including the assumptions about
parameter values, that reflect his beliefs about the evolution of risk factor returns over the risk
horizon. These assumptions need not be unique; indeed, the analyst may hold a distribution of
beliefs over several different scenarios. In particular, these assumptions need not be based on
the empirical distributions observed in the past, unless historical simulation is used to resolve
the model. But it is sensible to base assumptions for short-term VaR estimates on current
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market conditions. For instance, at the time of writing, in the wake of the credit crisis, it
is hardly feasible that equity markets and credit spreads will return to their previous levels of
volatility within a short risk horizon. So the parameter estimates for short-term VaR estimation
should take the current market conditions into account, even when subjective values are used
rather than estimating model parameters from historical data.

Secondly, the analyst should build his model on sound principles, based on all the infor-
mation that he believes is relevant to the evolution of the risk factors over the risk horizon.
Nevertheless, building a model that – in the analyst’s view – properly represents the returns
process is not necessarily the same thing as building an accurate model. So the third point of
guidance is to recognize that by far the most important aspect of building a risk model is the
backtesting of this model.

The main purpose of this chapter is to explain how to perform backtests. Backtests need to
be run using several alternative model assumptions. These assumptions concern the evolution
of risk factor return distributions and the estimation of factor model parameters. The backtest
results will tell the analyst how accurate the VaR and ETL estimates are for each of the models
he is considering, using out-of-sample performance analysis that embodies the way that the
model is actually used.

The model construction is based on many decisions, as we have explained above. And each
choice facing the analyst should be backtested. Thus an analyst must invest much thought,
time and effort into comparing how different model specifications perform in out-of-sample
diagnostic tests. Backtests should be based on an estimation sample that is rolled over a long
historical period. Additionally, the backtest data may include hypothetical scenarios that are
designed to evaluate model performance during stressful markets.

IV.6.2.3 VaR Resolution Method

If historical VaR estimates at extreme quantiles are required there are several ways in which
semi-parametric or parametric methods can be applied to fit the lower tails of the empirical
portfolio returns or P&L distribution.21 Or, if we require historical VaR estimates over a risk
horizon longer than a few days, then filtering the evolution of returns over the risk horizon has
a very significant impact on the VaR estimates. And if Monte Carlo VaR estimation is used,
there are several advanced sampling and variance reduction techniques that could be applied
to reduce the sampling error.22

The only way to decide which VaR resolution method best suits the positions that the analyst
must consider is to invest considerable time and effort in backtesting different approaches.
Such research is likely to take months or years, but it is one of the most interesting parts
of the analyst’s job. Given the turmoil that has hit many markets during the year preceding
the publication of this book, senior managers may be predisposed to allocate resources in
this direction. Distributions that are approximated using Cornish–Fisher expansion may offer
significant improvement on backtesting results for a standard historical VaR model. Adding
filtering to simulate 3-day risk factor returns may have little impact on the quality of the 3-day
backtest results. We do not know how much value is added by refining the VaR resolution
method unless we do the backtests. However, sophisticated resolution methods may be less
important to senior management than applying other types of refinements to enterprise-wide

21 These are described in Section IV.3.4.
22 See Section IV.4.2.2 and IV.4.2.3 for further details.
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risk models. The implementation of an enterprise-wide VaR model that is capable of netting
the risks of a large corporation is a huge undertaking, and aggregation risk in enterprise-wide
risk estimates is by far the most important aspect of enterprise-wide risk model risk.23 Indeed,
a market risk analyst may be well advised to accept a simple kernel fit and a simple EWMA
filtering if he is using historical VaR, so that he can focus resources on the major challenge of
aggregating different market risks across the firm.

IV.6.2.4 Scaling

Market risk analysts are also faced with a decision regarding the holding period of the VaR
and ETL estimates. Should we estimate VaR and ETL directly over every risk horizon that is
applied? The alternative is to estimate them over a short risk horizon and then scale them up,
somehow, to obtain the VaR and ETL over a longer risk horizon. But how should this scaling
be done? The answer depends on the type of portfolio (whether linear, or containing options)
and the resolution method.

In the normal linear VaR model it is straightforward to implement either of these alterna-
tives. In fact, if the risk factor returns are multivariate normal and i.i.d. and the expected excess
return is zero, scaling will produce identical results to estimation directly over an h-day hori-
zon. This is because we can scale either the covariance matrix or the final VaR estimate using
the square-root-of-time rule. The exception is when the portfolio is not assumed to return the
risk free rate. In that case, VaR does not scale with the square root of time, even when returns
are i.i.d., and we should estimate the normal linear VaR directly over the risk horizon. And
when the portfolio is assumed to return the risk free rate, as is usually the case in banks, but
the portfolio returns are positively (negatively) autocorrelated, we should scale up short-term
VaR to be greater than (less then) the VaR that is implied by a square-root scaling rule.

In the historical VaR model without filtering, the use of overlapping data truncates the tail of
the portfolio return distribution, so that ETL (and VaR at extreme quantiles) can be seriously
underestimated. So unless we add some parametric filtering for modelling dynamic portfolio
returns over the h-day horizon we are initially forced to estimate VaR and ETL at the daily
level. As explained in Section IV.3.2, it may be possible to uncover a power law scaling rule,
to extend the daily VaR to longer horizons, but this can only be applied to linear portfolios,
or to estimate the dynamic VaR of option portfolios.24 If there is no power law or if it is not
the square root of time, using a square-root-of-time rule can lead to a very serious error in
long-term VaR estimates.

In the Monte Carlo VaR model we can either estimate VaR directly over the risk horizon or,
under certain assumptions, scale up a short-term VaR estimate to a longer horizon. If the risk
factor returns are multivariate normal i.i.d. the two approaches only give the same result for a
linear portfolio.25 For option portfolios the two approaches to estimating long-term VaR yield
different results. The approach that is used will depend on the portfolio’s valuation (i.e. Taylor
approximation versus full valuation) and the rebalancing assumption for the portfolio over the
risk horizon.26

23 See Section IV.8.3.3 for further details.
24 Dynamic VaR is based on the assumption that the portfolio is rebalanced daily to keep its risk factor sensitivities constant.
25 But in this case it is more accurate to use an analytic formula, if available.
26 If Taylor approximation is used, do not overlook the huge model risk that is introduced by using h-day changes in risk factors, when
even daily changes can be too large for low-order Taylor approximations to be accurate. See Section IV.5.2.4 for further details.
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IV.6.3 ESTIMATION RISK

Even in the context of a single risk factor returns model and a single VaR resolution method,
VaR estimates can vary enormously according to our choice of sample data and our choice
of estimation methodology. For example, the resolution method may be a standard histori-
cal simulation, in which case the risk factor return distribution will be a simulated empirical
distribution, but VaR estimates can be very sensitive to the sample size, i.e. the number of
historical simulations used. In fact, the case study in Section IV.3.3.1 showed that the sample
size is a much more important determinant of the VaR estimate than the resolution method.

For another example, under the normal i.i.d. assumption for returns, a risk factor covariance
matrix might be estimated using an equally weighted average of the previous T daily returns,
the estimation sample size T being chosen fairly arbitrarily. Or we may use an exponentially
weighted moving average with some ad hoc value for the smoothing constant λ. In both these
cases we can estimate the standard error of the estimator.27 It is useful to extend these standard
errors to an approximate standard error for a VaR estimate. These standard errors could indi-
cate, for example, whether there is a statistically significant difference between two different
VaR estimates. Alternatively, they can be used to obtain an approximate confidence interval
for a VaR estimate. That is what we do in this section: we derive approximate confidence
intervals for VaR estimates, based on both analytic and simulation VaR resolution methods.

IV.6.3.1 Distribution of VaR Estimators in Parametric Linear Models

If the portfolio is expected to return the risk free rate, the VaR estimate in the normal or Student
t linear model behaves like volatility. For a fixed significance level α and a fixed risk horizon
of h days, the 100α% h-day VaR estimate is a constant times the portfolio volatility. If this
volatility is estimated using an equally weighted average of squared returns based on a sample
of size T, or if it is estimated using EWMA with a given λ, we can derive the confidence
interval for VaR from the known confidence interval for volatility, as described below.

Normally Distributed Portfolio Returns

The assumption that portfolio returns are i.i.d. normal leads to the formula

VaRh,α =�−1(1 − α)σ
√

h (IV.6.1)

where σ is the standard deviation of the portfolio’s daily returns. For simplicity, we assume
the portfolio is expected to return the risk free rate.

Since the quantile �−1(1 − α) of the standard normal distribution and the square root of the
holding period

√
h are both constant, we may use the standard error of the standard deviation

estimator to derive a standard error for the VaR estimate. In Section II.3.5.3 it is proved that
the standard error of the equally weighted standard deviation estimator σ̂, when it is based on
a sample of size T, is approximated by

est.s.e.
(
σ̂
) ≈ σ̂√

2T
. (IV.6.2)

27 This is described in Section II.3.5.3 and II.3.8.5.
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Hence, in this case the standard error of the VaR estimator at the portfolio level is
approximately equal to

est.s.e.
(
VaRh,α

)≈�−1(1 − α) σ̂

√
h

2T
= VaRh,α√

2T
. (IV.6.3)

In Section II.3.8.5 it is proved that the standard error of the EWMA standard deviation
estimator σ̂, when it is based on a smoothing constant λ, is approximated by

est.s.e.
(
σ̂
)≈ σ̂

√
1 −λ

2 (1 +λ)
(IV.6.4)

Hence, the standard error of the VaR estimator at the portfolio level is approximately equal to

est.s.e.
(
VaRh,α

)≈�−1 (1 − α) σ̂

√
h (1 −λ)

2 (1 +λ)
= VaRh,α

√
1 −λ

2 (1 +λ)
. (IV.6.5)

EXAMPLE IV.6.3: CONFIDENCE INTERVALS FOR NORMAL LINEAR VAR

Portfolio returns are assumed to be i.i.d. and normally distributed. When the portfolio volatil-
ity is estimated as 20%, estimate the 100α% h-day normal linear VaR and its approximate
standard error for different values of α and h,

(a) an equally weighted model with a sample size 100, and
(b) EWMA with a smoothing constant of 0.94.

How do your results change for different sample sizes in (a) and for different smoothing
constants in (b)?

SOLUTION The VaR estimates based on (IV.6.1) and their standard errors based first on
(IV.6.3) with T=100, and then on (IV.6.5) with λ=0.94, are calculated in the spreadsheet for
different values of α and h, and the results are displayed in Table IV.6.5. The VaR estimates
and their standard errors increase with both the risk horizon and the confidence level. For our
choice of parameters, i.e. T = 100 and λ = 0.94, the EWMA VaR estimates are less precise
than the equally weighted estimates, since their standard errors are always greater.

How do these standard errors behave as the sample size changes in the equally weighted
model, or as the smoothing constant changes in the EWMA model? Figure IV.6.2 depicts
the 1% 10-day normal linear VaR estimate (by the horizontal black line at 9.31%) and two-
standard-error bounds, based on the equally weighted estimate (IV.6.3) for different values
of T. Figure IV.6.3 depicts the same VaR estimate of 9.31% and two-standard-error bounds
based on the EWMA estimate (IV.6.5) for different values of λ. Both graphs are based on
the assumption that returns are i.i.d. and the portfolio volatility is 20%. The standard errors
decrease as the sample size increases in the equally weighted model, and decrease as the
smoothing constant increases in the EWMA model.

The equally weighted variance estimate is a sum of i.i.d. variables,28 so by the central limit
theorem its distribution converges to a normal distribution. But the VaR estimate behaves

28 Since the returns are assumed to be i.i.d., so are their squares.
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Table IV.6.5 Normal linear VaR estimates and approximate standard errors

h α

0.10% 1% 5% 10%

1 VaR 3.91% 2.94% 2.08% 1.62%
s.e.(T = 100) 0.28% 0.21% 0.15% 0.11%
s.e.(λ = 0.94) 0.49% 0.37% 0.26% 0.20%

3 VaR 6.77% 5.10% 3.60% 2.81%
s.e.(T = 100) 0.48% 0.36% 0.25% 0.20%
s.e.(λ = 0.94) 0.84% 0.63% 0.45% 0.35%

5 VaR 8.74% 6.58% 4.65% 3.62%
s.e.(T = 100) 0.62% 0.47% 0.33% 0.26%
s.e.(λ = 0.94) 1.09% 0.82% 0.58% 0.45%

10 VaR 12.36% 9.31% 6.58% 5.13%
s.e.(T = 100) 0.87% 0.66% 0.47% 0.36%
s.e.(λ = 0.94) 1.54% 1.16% 0.82% 0.64%

25 VaR 19.54% 14.71% 10.40% 8.11%
s.e.(T = 100) 1.38% 1.04% 0.74% 0.57%
s.e.(λ = 0.94) 2.43% 1.83% 1.29% 1.01%

100 VaR 39.09% 29.43% 20.81% 16.21%
s.e.(T = 100) 2.76% 2.08% 1.47% 1.15%
s.e.(λ = 0.94) 4.86% 3.66% 2.59% 2.02%

250 VaR 61.80% 46.53% 32.90% 25.63%
s.e.(T = 100) 4.37% 3.29% 2.33% 1.81%
s.e.(λ = 0.94) 7.69% 5.79% 4.09% 3.19%

Note: Estimates are based on a sample size of 100 and a normal population with mean zero and volatility 20%.
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Figure IV.6.2 1% 10-day VaR with two-standard-error bounds versus sample size

like the square root of the variance.29 In fact, the standard errors shown in these figures are
approximated using Taylor expansion, as in Section II.3.5.3, without knowing the functional
form of the volatility estimator.

29 The distribution of the volatility estimator is not the square root of the distribution of the variance estimator, so we cannot just use
the square root of the standard errors of the variance estimator as the standard errors of the volatility estimator.
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Figure IV.6.3 1% 10-day VaR with two-standard-error bounds versus EWMA λ

Student t Distributed Portfolio Returns

From our discussion in Section IV.2.8.2 we know that the one-period VaR estimate based on
an assumed i.i.d. Student t distribution for portfolio returns, with ν degrees of freedom, is

Student t VaRα,ν =√
ν−1 (ν− 2) t−1

ν (1 − α)σ, (IV.6.6)

where σ is the standard deviation of the portfolio’s daily returns and the portfolio is expected
to return the risk free rate. When h is relatively small the errors from square-root scaling on
a Student t distribution are not too large, so a very approximate formula for the 100α% h-day
VaR,30 as a proportion of the portfolio value, is

Student t VaRh,α,ν =√
ν−1 (ν− 2) h t−1

ν (1 − α)σ. (IV.6.7)

When h is more than about 10 days (or more, if ν is relatively small) the normal linear VaR
formula should be applied, because the sum of h i.i.d. Student t distributed returns will have
an approximately normal distribution, by the central limit theorem.

In the linear VaR model the leptokurtosis of a Student t distribution usually increases the
1% VaR estimate and its estimated standard errors, relative to a normal distribution assump-
tion. Figure IV.6.4 compares the 1% 10-day VaR estimate, and the two-standard-error bounds,
based on normal returns and based on Student t returns with 6 degrees of freedom.31 As in
the previous figures the sample size is shown on the horizontal axis, and we suppose that the
portfolio volatility is 20%, but this – and the degrees of freedom and other parameters – can
be changed in the spreadsheet. As expected, the confidence intervals become wider under the
Student t assumption, but the main effect of the leptokurtosis that is introduced by the Student t

30 Approximate because the Student t distribution is not stable.
31 Here if we assume that the degrees of freedom parameter is imposed rather than estimated from the portfolio returns. When the
degrees of freedom parameter is estimated from the portfolio returns, another sampling error is introduced, so the confidence interval
becomes even wider.
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Figure IV.6.4 1% 10-day VaR with two-standard-error bounds – Student t versus normal

distribution is to increase the 1% VaR estimate itself, from 9.31% 10.26%. This is depicted by
the horizontal grey line in the figure, and the two-standard-error bounds on the student t VaR
are depicted by the lines with circle markers.

When linear VaR estimates are based on a multivariate elliptical (i.e. normal or Student t)
i.i.d. model for risk factor returns, estimation risk arises from the covariance matrix estimator
which, as we know from Chapter II.3, can be equally weighted or exponentially weighted. In
the case of equities, another important source of estimation risk arises from the model used to
estimate the factor betas. The risk factor return distribution parameters, and the factor betas
are not necessarily based on the same model, or even on the same sample. And even when they
are, it is quite complex to estimate the standard error of a quadratic form: the VaR estimator
is a non-linear estimator and so its variance does not obey simple rules.

IV.6.3.2 Distribution of VaR Estimators in Simulation Models

Rather than derive an approximate formula for the multivariate elliptical linear VaR estimates,
we might consider using an approximate standard error for a quantile estimator directly, as
explained below. But these standard errors are much less precise than those considered in the
previous subsection. That is because those derived from the variance estimator, whilst still
approximate, utilize the normality (or Student t) assumption for the portfolio returns, whilst
the standard errors for quantile estimators use no information about the return distribution
(other than that it be continuous) and – so that we can derive a relatively simple form for the
standard error of a quantile estimator – they employ a very crude assumption that the density
is constant in the relevant region of the tail.

When VaR estimation is based on historical or Monte Carlo simulation, sampling error can
be a major cause of estimation risk. Even in the standard historical model (i.e. the model with
no parametric or semi-parametric volatility adjustment or filtering of returns) sampling error
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can introduce considerable uncertainty into the VaR estimate. Sampling error is usually much
easier to control in the Monte Carlo VaR model but, unlike standard historical simulation, the
Monte Carlo approach is also prone to estimation risk stemming from inaccuracy in parameter
estimates.

For instance, using a normal i.i.d. model for portfolio returns in Monte Carlo VaR, we
have a sampling variation which depends on the number of Monte Carlo simulations, and
we also have a standard error of the VaR estimate arising from the volatility estimator, as
described in the previous subsection. Variance reduction techniques – and using a very large
number of simulations – can reduce sampling variation substantially, so the parameter esti-
mation risk and the more general model risk arising from the choice of parametric form tend
to dominate the standard error of the Monte Carlo VaR estimate. Quite the opposite is the
case for the standard historical simulation VaR model. Here there are no parameters to esti-
mate so the historical sample size has everything to do with the efficiency of the quantile
estimator.

As a proportion of the portfolio value, VaRh,α is −1 times the α quantile of an h-day portfolio
return distribution. So standard errors for historical VaR may be derived from an approximate
distribution for the estimator of an α quantile, based on a random sample size T.

Let us denote the α quantile estimator based on a random sample size T by q (T,α). First we
derive the distribution of the number of observations less than the α quantile, denoted X(T,α).
Then we translate this into a distribution for p(T,α) = T−1X(T,α), the proportion of returns
less than the α quantile. Finally. we derive the distribution of q(T,α)= F−1

(
p (T,α)

)
, where F

denotes the distribution function of the portfolio returns, using an approximation.
Since the sample is random, X(T,α) has a binomial distribution with parameters T and α.

Hence, its expectation and variance are Tα and Tα (1 −α), respectively.32 But as T →∞ and
when α is fixed, a special case of the central limit theorem tells us that the binomial distribution
converges to a normal distribution,

X(T,α) − Tα√
Tα(1 − α)

→ N(0,1) .

Dividing both the numerator and the denominator of this statistic by T, we have

p(T,α) − α√
T−1α(1 − α)

→ N (0,1) . (IV.6.8)

We have already used this result to derive approximate confidence intervals for quantiles,
and a numerical example to demonstrate this is given in Section II.8.4.1. But here we want
to derive an approximate standard error for the quantile in large samples. So, on noting that
p(T,α)= F

(
q(T,α)

)
, we first write (IV.6.8) as

F
(
q(T,α)

) asy∼N
(
α,T−1α(1 − α)

)
. (IV.6.9)

Following Kendall (1940), we now assume that F is approximately linear ‘in the material
range of the sampling distribution’. That is, we use the local approximation

F
(
q(T,α)

) ≈ q(T,α) f
(
q(T,α)

)
32 See Section I.3.3.1.
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where f
(
q(T,α)

)
is the density function at q(T,α). In other words, the density function is

assumed to be flat in the region of the tail that we are considering. Substituting this in (IV.6.9)
gives an approximate distribution for q(T,α) as

q(T,α)
asy∼N

(
f
(
q(T,α)

)−1
α, f

(
q(T,α)

)−2
T−1α(1 − α)

)
. (IV.6.10)

In particular, an approximate standard error for the quantile estimator q(T,α) is given by

s.e.
(
q(T,α)

)≈ f
(
q(T,α)

)−1 √
T−1α(1 − α). (IV.6.11)

Since the 100α% VaR is −q(T,α), it has the same standard error as q(T,α).
The formula just derived requires knowledge of the portfolio return distribution, and in

particular of its density function f. Then it may be applied to estimate approximate standard
errors for historical VaR estimates. However, these standard errors are based on a very strong
assumption about the shape of the tail of the distribution, i.e. that it is locally flat. So the stan-
dard errors (IV.6.11) are very approximate indeed. To demonstrate this, the following example
compares standard errors that are estimated using (IV.6.11) with those based on (IV.6.3) in the
case where the density function in (IV.6.11) is known to be normal.

EXAMPLE IV.6.4: CONFIDENCE INTERVALS FOR QUANTILES

Given a random sample of size 1000 from a normal distribution with known mean zero and
volatility 20%, derive the approximate standard errors (IV.6.11) for 100α% h-day VaR, for
different values of α and h. How does the result change with the random sample size? Compare
these standard errors with the estimated standard errors (IV.6.3) that are based on sampling
error in equally weighted volatility estimators.

SOLUTION When the distribution is known to be normal with mean zero and volatility σ,
the quantile estimate q(T,α) is given by the Excel function NORMINV(α,0,σ), and this is
independent of the sample size T. The first factor on the right-hand side of (IV.6.11), i.e.
f
(
q(T,α)

)−1
, is given by the Excel function

= 1/NORMDIST(NORMINV(α,0,σ),0,σ, false)),

and the dependence of the estimated standard error on sample size only enters through the
second factor

√
T−1α(1 − α) in (IV.6.11).

In the spreadsheet we compute (IV.6.11) for different values of α and h and with a sample
size of 1000. Results are summarized in Table IV.6.6, which is similar to Table IV.6.5 except
that, for comparison with the quantile-based standard errors, the sample size for the equally
weighted volatility-based standard errors is 1000 rather than 100. As a result, the estimated
standard errors based on σ are much smaller than those in Table IV.6.5.

Figure IV.6.5 depicts the estimated standard error of the 1% 10-day VaR estimate based on
(a) the equally weighted volatility estimator for σ and (b) the quantile estimator. As in the
example above, we assume the population is normal with mean zero and volatility 20%, so
the VaR estimate is 9.31% of the portfolio value. The figure shows the effect that sample
size has on the standard error of the VaR estimate. For small samples, the precision of the
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Table IV.6.6 VaR standard errors based on volatility and based on quantile

h α

0.10% 1% 5% 10%

1 VaR 3.91% 2.94% 2.08% 1.62%
s.e.(based on σ) 0.09% 0.07% 0.05% 0.04%
s.e.(based on quantile) 0.38% 0.15% 0.08% 0.07%

3 VaR 6.77% 5.10% 3.60% 2.81%
s.e.(based on σ) 0.15% 0.11% 0.08% 0.06%
s.e.(based on quantile) 0.65% 0.26% 0.15% 0.12%

5 VaR 8.74% 6.58% 4.65% 3.62%
s.e.(based on σ) 0.20% 0.15% 0.10% 0.08%
s.e.(based on quantile) 0.84% 0.33% 0.19% 0.15%

10 VaR 12.36% 9.31% 6.58% 5.13%
s.e.(based on σ) 0.28% 0.21% 0.15% 0.11%
s.e.(based on quantile) 1.19% 0.47% 0.27% 0.22%

25 VaR 19.54% 14.71% 10.40% 8.11%
s.e.(based on σ) 0.44% 0.33% 0.23% 0.18%
s.e.(based on quantile) 1.88% 0.75% 0.42% 0.34%

100 VaR 39.09% 29.43% 20.81% 16.21%
s.e.(based on σ) 0.87% 0.66% 0.47% 0.36%
s.e.(based on quantile) 3.75% 1.49% 0.85% 0.68%

250 VaR 61.80% 46.53% 32.90% 25.63%
s.e.(based on σ) 1.38% 1.04% 0.74% 0.57%
s.e.(based on quantile) 5.94% 2.36% 1.34% 1.08%

Note: Estimates are based on a sample size 1000 and a normal population with mean zero and volatility 20%.
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Figure IV.6.5 Standard errors of 1% 10-day VaR estimate
Note: This graph assumes portfolio returns are normal with volatility of 20%.
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quantile estimates is very low. For every sample size, the quantile-based standard error is
approximately twice the size of the volatility-based standard errors.33

IV.6.4 MODEL VALIDATION

This section presents a series of increasingly complex approaches to VaR model validation
through out-of-sample forecast evaluation techniques that are commonly termed backtests.
Failure of a backtest indicates VaR model misspecification and/or large estimation errors, and
regression-based backtests may also help diagnose the cause of a model failure.

IV.6.4.1 Backtesting Methodology

A backtest takes a fixed portfolio, which we shall call the candidate portfolio, and uses this
portfolio to assess the accuracy of a VaR model. The term ‘candidate portfolio’ is used to
denote a portfolio that represents a typical exposure to the underlying risk factors. If the port-
folio is expressed in terms of holdings in certain assets or instruments, we assume the weights
or the holdings are fixed for the entire backtest.34 More usual is to express the portfolio in
terms of a risk factor mapping, in which case – for a dynamic VaR estimate – we assume the
risk factor sensitivities are constant throughout the backtest.

The result of a backtest depends on the portfolio composition, as well as on the evolution of
the risk factors and the assumptions made about risk factor return distributions when building
the model. Thus, it is possible for the same VaR model to pass a backtest for portfolio A, but
fail a backtest for portfolio B, even when the portfolios have identical underlying risk factors.

We should perform a backtest using a very long period of historical data on the asset or risk
factor values. Otherwise the test will lack the power to reject inaccurate VaR models. And
because we need to base the test on a very large non-overlapping sample, backtests are usually
performed at the daily frequency. So in the following we shall assume we have a large sample
of daily returns on all the relevant risk factors. The entire data period will often encompass
many years. For instance, more than 10 years of daily data are needed to backtest ETL, as
described later in this section. The longer the backtest period, the more powerful the results
will be.

First, assuming the VaR estimate will be based on historical data,35 we fix an estimation
period which defines the sample used to estimate the VaR model parameters. We tend to
use much shorter estimation periods for parametric linear VaR models and Monte Carlo VaR
models than we do for historical simulation VaR models. And in the parametric models, the
estimation period also tends to increase with the risk horizon. This is because smaller sam-
ples yield VaR estimates that are more risk sensitive, i.e. that respond more to changes in the
current market conditions.

Then we employ a rolling window approach as follows. The estimation sample is rolled over
almost the entire data period, keeping the estimation period constant, starting at the beginning

33 This depends on the significance level of the VaR but not on the sample size. For a 1% VaR estimate, the quantile-based standard
error is 2.28 times as large as the volatility-based standard error; but for a 0.1% VaR, this multiple increases to 4.3.
34 If it is a long-only (or short-only) portfolio, we could keep either the portfolio weights or the portfolio holdings constant; otherwise
we keep the holdings constant. Note that keeping the weights constant assumes dynamic rebalancing over the risk horizon (i.e. dynamic
VaR) whereas keeping the holdings constant produces a static VaR estimate.
35 This is always the case for the historical simulation model. It may also be the case for parametric linear and Monte Carlo VaR
models, where historical data are used to estimate the parameters of the risk factor returns distribution.
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of the data period. We fix the length of the risk horizon, and the test sample starts at the
end of the estimation sample. If the risk horizon is h days, we roll the estimation and test
periods forward h days, and we keep rolling the estimation and test samples over the entire
data period until the test sample ends on the last day of our data period. In this way, we do not
use overlapping data in the test sample.

Figure IV.6.6 illustrates the rolling window approach: the bold line at the bottom indicates
the whole sample covering the entire historical data period. The estimation and test samples
are shown in black and grey, respectively; during the backtest these are rolled progressively,
h days at a time, until the entire sample is exhausted.

Figure IV.6.6 Rolling windows with estimation and test samples

For example, consider a sample with 10,000 daily observations where the estimation sample
size is 1000 days and the risk horizon is 10 days. The backtest proceeds as follows. Use the
estimation sample to estimate the 10-day VaR on the 1000th day, at the required confidence
level. This is the VaR for the 10-day return from the 1000th to the 1010th observation. Then,
assuming the VaR is expressed as a percentage of the portfolio value, we observe the realized
return over this 10-day test period, and record both the VaR and the realized return.36 Then
we roll the window forward 10 days and repeat the above, until the end of the entire sample.
The result of this procedure will be two time series covering the sample from the 1010th until
the 10,000th observation, i.e. covering all the consecutive rolling test periods. One series is
the 10-day VaR and the other is (what econometricians call) the 10-day ‘realized’ return or
P&L on the portfolio. The backtest is based on these two series.

Figure IV.6.7 depicts two such series that will form the basis of most of the backtests that are
illustrated in this section.37 The backtest sample, which is constructed from all the consecutive
test periods, is from January 2000 until December 2007. For simplicity there will be 2000
observations in many of the backtests, and we shall base the tests on the 1% daily VaR. So we
expect the VaR to be exceeded 20 times (in other words, the expected number of exceedances
is 20). Exceedances occur when the portfolio loses more than the VaR that was predicted at
the start of the risk horizon.38 We have depicted the series −1 times the VaR prediction in
the figure so that the exceedances are obvious when the grey P&L line crosses the black VaR
line; for instance, an exceedance already occurs on the very first day of the backtest sample.

36 Here we are using the term ‘realized return’ in the econometric rather than the accountancy sense. However, if the VaR is expressed
in value terms, so we need to observe the P&L over this 10-day test period, to say we record the ‘realized P&L’ is rather confusing. For
clarification, see Section IV.6.4.2, where we emphasize the distinction between realized P&L and unrealized P&L. An econometrician
does not make this distinction, and in fact realized return or P&L for an econometrician is hypothetical, unrealized return or P&L for
an accountant!
37 In the spreadsheet for this figure readers will see that the VaR is for a $100 per point position on the S&P 500 index, and the estimate
is based on the normal linear model using 250 daily log returns to estimate the standard deviation.
38 Other terms used instead of ‘exceedance’ are ‘violation’ and ‘hit’.
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Figure IV.6.7 1% daily VaR and daily P&L

In total the VaR is exceed 33 times, not 20 times, in this figure. By changing the parameters
in the spreadsheet readers will see that the 5% daily VaR is exceeded 105 times instead of
100 times.39 It appears that our VaR estimates may be too low because a higher VaR would
give fewer exceedances. How can we use this information to construct a statistical test of the
hypothesis that the VaR estimates provide accurate forecasts?

Most backtests on daily VaR are based on the assumption that the daily returns or P&L are
generated by an i.i.d. Bernoulli process. A Bernoulli variable may take only two values, which
could be labelled 1 and 0, or ‘success’ and ‘failure’. In our context, we would call ‘success’
an exceedance of the VaR by the return or P&L, and further assign this the value 1. Thus we
may define an indicator function Iα,t on the time series of daily returns or P&L relative to the
100α% daily VaR by

Iα,t+1 =
{

1, if Yt+1 <−VaR1,α,t,

0, otherwise.
(IV.6.12)

Here Yt+1 is the ‘realized’ daily return or P&L on the portfolio from time t, when the VaR
estimate is made, to time t + 1.40

If the VaR model is accurate and
{
Iα,t

}
follows an i.i.d. Bernoulli process, the probability

of ‘success’ at any time t is α. Thus the expected number of successes in a test sample with
n observations is nα. Denote the number of successes by the random variable Xn,α. From
Section I.3.3.1 we know that our assumptions imply that Xn,α has a binomial distribution with
parameters n and α. Thus

E
(
Xn,α

)= nα, (IV.6.13)

39 We keep the number of observations in the backtests constant at 2000, whatever the risk horizon, so for a 1% VaR the expected
number of exceedances is always 20, but for a 5% VaR we expect 100 exceedances.
40 If VaR is expressed in value terms our series {Yt} is a series of P&L, and if VaR is expressed as a percentage of portfolio value our
series {Yt} is a series of portfolio returns.
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and the variance is

V
(
Xn,α

)= nα(1 − α) . (IV.6.14)

The standard error of the estimate,
√

nα(1 − α), provides a measure of uncertainty around
the expected value. Due to sampling error we are unlikely to obtain exactly the expected
number of exceedances in a backtest; instead we should consider a confidence interval around
the expected value within which it is very likely that the observed number of exceedances
will fall. When n is very large the distribution of Xn,α is approximately normal, so a two-sided
95% confidence interval for Xn,α under the null hypothesis that the VaR model is accurate is
approximately (

nα− 1.96
√

nα(1 − α),nα+ 1.96
√

nα(1 − α)
)

. (IV.6.15)

For instance, if n = 2000 and α = 1% the standard error is
√

20 × 0.99 = 4.4497. So, based
on (IV.6.15), a 95% confidence interval for the number of exceedances is approximately
(11.28, 28.72). The observed value of 33 exceedances for the 1% daily VaR in Figure IV.6.7
lies outside this interval, so obtaining such a value is likely to lead to a rejection of the null
hypothesis, but this depends on the particular backtest that we employ. The rest of this section
describes different backtest statistics, most of which are based on the exceedances that have
been described above.

IV.6.4.2 Guidelines for Backtesting from Banking Regulators

Section IV.8.2.4 describes the use of VaR models for estimating regulatory market risk cap-
ital and, in particular, the use of a multiplier to convert VaR estimates into the minimum
market risk capital requirement. Banking supervisors will only allow internal models to be
used for regulatory capital calculation if they provide satisfactory results in backtests. The
1996 Amendment to the 1998 Basel Accord contains a detailed description of the backtests
that supervisors will review and models that fail them will either be disallowed for use in
regulatory capital calculations, or be subject to the highest multiplier value of 4.

Regulators recommend a very simple type of backtest, which is based on a 1% daily
VaR estimate and which covers a period of only 250 days. Hence, the expected number of
exceedances is 2.5 and the standard error of the number of exceedances, i.e. the square root
of (IV.6.14), is

√
2.5 × 0.99 = 1.5732. Regulators wish to guard against VaR models whose

estimates are too low. Since they are very conservative they will only consider that models
having 4 exceptions or less as sufficiently accurate. These so-called green zone models have a
multiplier of 3. If there are between 5 and 9 exceptions, the model is yellow zone, which means
it is admissible for regulatory capital calculations but the multiplier is increased as shown in
Table IV.6.7. A red zone model means there are 10 or more exceptions. Then the multiplier
takes its maximum of value 4, or the VaR model is disallowed.

When regulatory capital is calculated using an internal VaR model it is based on 1% 10-day
VaR. So why do regulators ask for backtests of daily VaR? It would be difficult to perform
a backtest on 250 non-overlapping 10-day returns, since the data would need to span at least
10 years for the backtest to have sufficient accuracy. Is it possible to derive a simple table
such as Table IV.6.7 using overlapping data in certain backtests, i.e. to roll the estimation
and test periods forward by only one day even when the risk horizon is longer than one day?
Then we could not use our standard assumption that exceedances follow an i.i.d. Bernoulli
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Table IV.6.7 Basel zones for VaR models

Number of exceedances Multiplier for capital calculation

4 or less 3
5 3.4
6 3.5
7 3.65
8 3.75
9 3.85
10 or more 4

process. Exceedances would be positively autocorrelated (for instance, one extremely large
daily loss would impact on ten consecutive 10-day returns) and so, whilst the expected number
of exceedances would remain unchanged from (IV.6.13), the variance would no longer be
equal to (IV.6.14). In fact, it would be much greater than (IV.6.14) because the exceedances
are positively autocorrelated, so the confidence interval (IV.6.15) would become considerably
wider and the backtest would have even lower power that it does already.

Nevertheless, in practice 10-day VaR estimates are based on overlapping samples, since we
estimate 1% 10-day VaR every day. So we have allowed readers to use most of the spread-
sheets for this chapter to examine the pattern of exceedances based on overlapping data. Daily
clustering of exceptional losses that exceed the VaR is much more likely when both the VaR
estimate and the P&L are based on a 10-day risk horizon. By examining series such as these
10-day returns based on overlapping samples, banks could gauge the likelihood that their min-
imum regulatory capital may be exceeded on every day during one week, for instance. Formal
backtests are difficult to derive theoretically for overlapping estimation samples, but at least
banks would be examining the 10-day VaR estimates that they actually use for their risk capital
calculations.

Most regulators allow banks to base regulatory capital on daily VaR estimates and then
scale these estimate up using a square-root-of-time rule. But this rule is only valid for linear
portfolios with i.i.d. normally distributed returns, and since most portfolios have non-normally
distributed returns that are not i.i.d., the use of square-root scaling is a very common source
of model risk. If regulators changed the number exceedances in green, yellow and red zones
to correspond to autocorrelated 10-day VaR estimates, resulting from overlapping estimation
samples, then banks would have the incentive to increase the accuracy of 10-day VaR estimates
by scaling their daily VaR appropriately, or by estimating 10-day VaR directly without scaling
up the daily VaR at all. Another feature of regulatory backtests that is not easy to understand
is why they require only 250 days in the backtest. With such a small sample the power of
the test to reject a false hypothesis is very low indeed. So, all in all, it is highly likely that an
inaccurate VaR model will pass the regulatory backtest.

VaR estimates are based on one of two theoretical assumptions about trading on the port-
folio. Either the portfolio is assumed to be rebalanced over the risk horizon to keep its asset
weights or risk factor sensitivities constant, or it is assumed that the portfolio is held static
so that no trading takes place and the holdings are constant. The assumption made here
influences the VaR estimate for option portfolios over risk horizons longer than 1 day. But
both assumptions lack realism. In practice, portfolios are actively managed at the trader’s
discretion, and the actual or realized P&L on the portfolio is not equal to the hypothetical,
unrealized P&L, i.e. the P&L on which the VaR estimate is based. In accountancy terminology



Risk Model Risk 337

the unrealized P&L is the mark-to-market P&L, whereas the realized P&L includes all the
P&L from intraday trading and is based on prices that are actually traded. Realized P&L
may also include fee income, any use of the bank’s reserves and funding costs. With these
additional items we call it actual P&L and without these it is called cleaned P&L. To avoid
confusion, we shall call the hypothetical, unrealized P&L the theoretical P&L.

Many banking regulators (for instance, in the UK) require two types of backtests, both of
which are based on the simple methodology described above. Their tests must be based on
both realized (actual or cleaned) P&L and on theoretical P&L. Backtests based on theoretical
P&L are testing the VaR model assumptions. However, those based on realized 1-day P&L
are not testing how the model will perform in practice, as a means of estimating regulatory
capital, unless the scaling of 1-day VaR to 10-day VaR is accurate.

IV.6.4.3 Coverage Tests

Unconditional coverage tests, introduced by Kupiec (1995), are also based on the number of
exceedances, i.e. the number of times the portfolio loses more than the previous day’s VaR
estimate in the backtest. They may be regarded as a more sophisticated and flexible version
of the banking regulators’ backtesting rules described above. The idea was both formalized
and generalized by Christoffersen (1998) to include tests on the independence of exceedances
(i.e. whether exceedances come in clusters) and conditional coverage tests (which combine
unconditional coverage and independence into one test). Section II.8.4.2 described these tests
in the context of any model for forecasting either or both tails, or indeed any interval of a
distribution. In this subsection we discuss their application to VaR models, which specifically
forecast the lower tail of a portfolio returns or P&L distribution.

An unconditional coverage test is a test of the null hypothesis that the indicator function
(IV.6.12), which is assumed to follow an i.i.d. Bernoulli process, has a constant ‘success’
probability equal to the significance level of the VaR, α. The test statistic is a likelihood ratio
statistic given by (II.8.17) and repeated here for convenience. It is

LRuc = πn1
exp

(
1 −πexp

)n0

π
n1

obs (1 −πobs)
n0

, (IV.6.16)

where πexp is the expected proportion of exceedances, πobs is the observed proportion of
exceedances, n1 is the observed number of exceedances and n0 = n − n1 where n is the sam-
ple size of the backtest. So n0 is the number of returns with indicator 0 (we can call these
returns the ‘good’ returns). Note that πexp =α and πobs = n1/n. The asymptotic distribution of
−2 ln LRuc is chi-squared with one degree of freedom.

EXAMPLE IV.6.5: UNCONDITIONAL COVERAGE TEST

Perform an unconditional coverage test on the 1% daily VaR for a $100 per point position on
the S&P 500 index, where the backtest is based on 2000 observations from January 2000 to
December 2007, as in Figure IV.6.7.

SOLUTION We have 33 exceedances based on sample of size 2000. Hence

n = 2000,n0 = 1967,n1 = 33,πexp = 0.01, and πobs = 33/2000 = 0.0165. (IV.6.17)
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It is better to compute the log of the likelihood ratio statistic directly, rather than computing
(IV.6.16) and afterwards taking the log, because in this way the rounding errors are reduced.
Hence, we use the parameter values (IV.6.17) to calculate

ln(LRuc) = n1 ln
(
πexp

)+ n0 ln
(
1 −πexp

) − n1 ln(πobs)− n0 ln(1 −πobs) ,

obtaining the value −3.5684. Hence −2 ln LRuc = 7.1367. The 1% critical value of a chi-
squared distribution with one degree of freedom is 6.6349. So we reject, at the 1% significance
level, the null hypothesis that the VaR model is accurate in the sense that the total number of
exceedances is close to the expected number.

Using the spreadsheet for Example IV.6.5 we can plot the indicator function (IV.6.12) for the
case α = 1% and h = 1. This is shown in Figure IV.6.8. It is clear from this figure that the
exceedances come in clusters. There are no exceedances at all in 2003 and 2004, but plenty
during 2007. In fact, during the last six months of the backtest there are 12 exceedances,
shown in the inset to the figure, although the expected number is less than 2.
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Figure IV.6.8 Indicator of exceedances

Clustering of exceedances indicates that the VaR model is not sufficiently responsive to
changing market circumstances. In the case in point, the last six months of the backtest
marked the beginning of the credit crisis. But the normal linear VaR estimates here were
based on an equally weighted average of the last 250 squared log returns, so this model does
not account for the volatility clustering that we know is prevalent in many markets. Even if the
model passes the unconditional coverage test, i.e. when the observed number of exceedances
is near the expected number, we could still reject the VaR model if the exceedances are not
independent.

A test for independence of exceedances is based on the formalization of the notion that when
exceedances are not independent the probability of an exceedance tomorrow, given there has
been an exceedance today, is no longer equal to α. As before, let n1 be the observed number
of exceedances and n0 = n − n1 be the number of ‘good’ returns. Further, define nij to be the
number of returns with indicator value i followed by indicator value j, i.e. n00 is the number
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of times a good return is followed by another good return, n01 the number of times a good
return is followed by an exceedance, n10 the number of times an exceedance is followed by a
good return, and n11 the number of times an exceedance is followed by another exceedance.
So n1 = n11 + n01 and n0 = n10 + n00. Also let

π01 = n01

n00 + n01

and π11 = n11

n10 + n11

, (IV.6.18)

i.e. π01 is the proportion of exceedances, given that the last return was a ‘good’ return, and π11

is the proportion of exceedances, given that the last return was an exceedance. Now we can
state the independence test statistic, derived by Christoffersen (1998), as

LRind = π
n1

obs (1 −πobs)
n0

π
n01

01 (1 −π01)
n00 π

n11

11 (1 −π11)
n10

. (IV.6.19)

The asymptotic distribution of −2 ln LRind is chi-squared with one degree of freedom.

EXAMPLE IV.6.6: INDEPENDENCE TEST

Perform the independence test for the data of the previous example.

SOLUTION In addition to the results in (IV.6.17) we have only two sets of two consecutive
exceedances. The rest are isolated, if only separated by a few days in many cases, as is evident
from Figure IV.6.8. Hence,

n11 = 2,n00 = 1936,n01 = n10 = 31.

Using these values in (IV.6.18) and in (IV.6.19) gives ln(LRind) = −1.2134, so −2 ln LRuc =
2.4268. The 10% critical value of a chi-squared distribution with one degree of freedom is
2.7055. Hence, we cannot even reject the null hypothesis that the exceedances are independent
at 10%.

Why is the independence test unable to detect the clustering in exceedances that is clearly
evident from Figure IV.6.8? The problem is that in the above example we often have a day (or
two or three) with no exceedance coming between two exceedances, and the Christoffersen
independence test only works if exceedances are actually consecutive. That is because the test
is based on a first order Markov chain only, and to detect the type of clustering we have in this
example it would have to be extended to a higher order Markov chain, to allow more than first
order dependence.

A combined test, for both unconditional coverage and independence, is the conditional
coverage statistic given by

LRcc = πn1
exp

(
1 −πexp

)n0

π
n01

01 (1 −π01)
n00 π

n11

11 (1 −π11)
n10

. (IV.6.20)

The asymptotic distribution of −2 ln LRcc is chi-squared with two degrees of freedom. On
comparing the three test statistics it is clear that LRcc = LRuc × LRind, i.e.

−2 ln LRcc =−2 ln LRuc − 2 ln LRind.
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For instance, in the above examples we have

−2 ln LRcc = 6.6349 + 2.4268 = 9.0617.

The 5% critical value of the chi-squared distribution with 2 degrees of freedom is 5.9915 and
the 1% critical value is 9.2103. Hence we reject the null hypothesis at 5% but not (quite)
at 1%.

IV.6.4.4 Backtests Based on Regression

In our empirical examples of the previous subsection, where we were backtesting a normal
linear VaR model for a simple position on the S&P 500 index, the results suggested that the
clustering of exceedances could be linked to market volatility. This would be the case when
a VaR model is not accounting adequately for the volatility clustering in a portfolio’s returns.
Indeed, such a link is clear from Figure IV.6.9, which shows the indicator of exceedances
alongside the Vix (the S&P 500 implied volatility index) over the same period as the backtest.
Exceedances are more common when there is a large daily change in the implied volatility,
especially when volatility jumps upward after a long period of low volatility. This observation
explains why we have so many exceedances during the recent credit crisis, and provides an
understanding of how to improve the VaR model. This observation also suggests a backtest
based on a regression model that takes the indicator function as the dependent variable and, in
this case, the daily change in the Vix as the explanatory variable.

If past information can be used to predict exceedances, the VaR model is not utilizing all
the information available in the market. More generally, if we believe that the VaR model is
misspecified because it is not utilizing information linked to lagged values of one or more
variables, which we summarize in the vector x = (X1, . . . ,Xk), then a backtest could be based
on a regression model of the form

It = β0 + β1X1,t−1 + . . . + βkXk,t−1 + εt. (IV.6.21)
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Figure IV.6.9 Relation between exceedances and implied volatility
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Taking the conditional expectation of this yields

P(It = 1 |xt−1 )= β0 + β1X1,t−1 + . . . + βkXk,t−1, (IV.6.22)

since

E(It|xt−1)= 1 × P(It = 1|xt−1)+ 0 × P(It = 0|xt−1)= P(It = 1|xt−1). (IV.6.23)

But if the model is well specified, then P(It = 1|xt−1) = α. Hence, the backtest is based on the
null hypothesis

H0 : β0 = α, β1 = . . . = βk = 0. (IV.6.24)

This can be tested by estimating the parameters using OLS, and then using one of the
hypothesis tests described in Section I.4.4.8.

We now illustrate this approach to backtesting using a standard F test of the composite
hypothesis (IV.6.24), based on the statistic (I.4.48), repeated here for convenience:

p−1(RSSR − RSSU)

ν−1RSSU
∼ Fp,ν, (IV.6.25)

where p is the number of restrictions and ν is the sample size less the number of variables in
the regression including the constant. The regression model is estimated twice, first with no
restrictions, giving the unrestricted residual sum of squares RSSU, and then after imposing the
restrictions in the null hypothesis, to obtain the restricted residual sum of squares RSSR.

EXAMPLE IV.6.7: REGRESSION-BASED BACKTEST

For our S&P 500 normal linear model for 1% daily VaR, implement a backtest using the
statistic (IV.6.25) and based on a model of the form

It = β0 + β1�Vixt−1 + εt. (IV.6.26)

SOLUTION In the spreadsheet for this example we first estimate (IV.6.26) using OLS, giving
RSSU = 32.4317. Then we take the sum of the squared deviations of the indicator function
from α, where α is set to 1% in this case, giving RSSR =32.5409. We have p=2 and ν=1998,
and substituting these values into (IV.6.25) gives a value for the F statistic of 3.3637. The 5%
critical value for the F distribution is 3.0002 and the 1% critical value is 4.6158. So we reject
the null hypothesis

H0 : β0 = α, β1 = 0, (IV.6.27)

at 5%, but only just.
However, the rejection of the null in this case is because β0 �= α and not because β1 �= 0.

We can verify this using a simple t test for the two hypotheses H0 : β0 = α and H0 : β1 = 0
separately.41 For H0 : β0 = α versus H1 : β0 �= α we obtain a t ratio of 2.2817, whereas the 5%
critical value is 1.9612 and the 1% critical value is 2.5783. So we can reject the null hypothesis

41 See Section I.4.2.5 for further details.
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at 5% but not at 1%. But for H0 : β1 = 0 versus the two-sided alternative, we obtain a t ratio of
only 1.2109, so we cannot even reject this hypothesis at 10%.42

Given the features observed in Figure IV.6.9, why does the regression model indicate no
significant relationship between the exceedances and the lagged changes in the Vix? Because
the large increases in the Vix index are recorded on the actual day that the VaR is exceeded,
not on the day before. In fact, the contemporaneous correlation between the indicator variable
and daily changes in the Vix is approximately 0.4, and a regression model (IV.6.26) with
current changes in the Vix instead of lagged changes indicates a very strong relationship
between the two variables. The t statistic for H0 : β1 = 0 versus the two-sided alternative
gives a t ratio of 19.2358, so we can reject this hypothesis at the very highest significance
level.

Note that the regression-based backtest must be based on lagged values of explanatory
variables, because the test is derived by taking the conditional expectation of the indicator
assuming the values of the explanatory variables are known. So the fact that current changes
in Vix can explain the exceedances is of no value for the backtest in the above example. How-
ever, this observation does help to identify the cause of the failure of the backtest, and it helps
to determine ways in which the model could be improved. In our example above it may well
be that accounting for volatility clustering will improve the model’s VaR forecasts. The next
example investigates this possibility.

EXAMPLE IV.6.8: COVERAGE TESTS WITH VOLATILITY CLUSTERING

Repeat the coverage tests on the 1% daily VaR for the $100 per point position on the S&P 500
index, this time replacing the equally weighted volatility estimate by the RiskMetrics™ daily
volatility estimate.

SOLUTION The RiskMetrics™ daily volatility estimate is an EWMA estimate with a smooth-
ing constant of 0.94.43 For the S&P 500 index and for the period of the backtest, this is shown
in Figure IV.6.10. The spreadsheet for this example repeats the unconditional coverage test,
the independence test and the conditional coverage test as before, but now using 1% daily
VaR estimates based on the normal linear model with the RiskMetrics™ EWMA volatility.
The VaR estimates in the earlier examples used an equally weighted volatility based on the
past 250 daily returns, and there were 33 exceedances of the VaR, with two consecutive pairs.
The unconditional coverage statistic was 7.1367 and we rejected the null hypothesis of a
well-specified model at 1%. With the RiskMetrics™ EWMA volatility there are now only 30
exceedances, so the unconditional coverage statistic takes a lower value of 4.3785; as a result
we can only reject the null at 5%.

Moreover, the independence test is irrelevant because there are no consecutive exceedances.
However, the exceedances are still clustered. Readers will be able to see from the spread-
sheet that there are no exceedances at all between April 2002 and April 2004 and that,
again, exceedances are clustered around periods of high volatility. We conclude that the
RiskMetrics™ daily VaR estimates can improve the forecasting properties of basic VaR
models, but the methodology may still be too simple to properly capture volatility clustering.44

42 The 10% critical value is 1.6456.
43 See Section II.3.8 for an introduction to EWMA and Section II.3.8.3 for a description of RiskMetrics.
44 Also, the EWMA methodology may be disallowed by regulators, for reasons that will be explained in Section IV.8.2.3.
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Figure IV.6.10 RiskMetrics™ daily volatility of S&P 500 index

In fact, there is a considerable academic literature that examines coverage tests and other
backtests on different types of VaR models and the consensus of this applied research is that
non-normal GARCH models are much better than other parametric models (such as EWMA)
for forecasting volatility and VaR.45

Table IV.6.8 sets out the coverage test results for backtesting the RiskMetrics™ daily VaR
for our position on the S&P 500, for different values of the VaR significance level α. Below the
table we display the relevant critical values for the test statistics shown in the last three rows
of the main table. The results indicate that the model becomes less accurate as α decreases,
i.e. as we try to forecast VaR at higher confidence levels. The failure of the unconditional
coverage tests for high confidence levels indicates that a normal distribution does not capture
the tail behaviour of the S&P 500 returns adequately. A possible improvement, which is left
to the reader to investigate, is the use of a leptokurtic (and possibly also skewed) conditional
distribution to generate the VaR estimates.

Table IV.6.8 Coverage tests on RiskMetrics™ VaR of S&P 500 index

α 0.1% 1% 5%

Expected no. of exceedances 2 20 100
Observed no. of exceedances 8 30 107
No. of consecutive exceedances 0 0 9
Unconditional coverage 10.1987 4.3785 0.5048
Independence 0 0 1.8136
Conditional coverage 10.1987 4.3785 2.3184

Chi-squared critical values:

Degrees of freedom 1% 5% 10%

1 6.63 3.84 2.71
2 9.21 5.99 4.61

45 For instance, see Berkowitz and O’Brien (2002), Berkowitz et al. (2006) and Alexander and Sheedy (2008)
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Another feature of the RiskMetrics™ daily VaR estimates is that they never fail the indepen-
dence test, even though visual examination of the exceedances shows that they are clustered,
and related to the index volatility. In general, there are too few exceedances during tranquil
markets when volatility is low, and too many when volatility is high. Also, we find that
although two exceedances are not consecutive they are often separated by only one or two
days.46

IV.6.4.5 Backtesting ETL Forecasts

Section IV.1.8.2 defines the expected tail loss as the expected loss given that the loss exceeds
the VaR. There, and in Section IV.2.11 where we derived some analytic formulae for ETL in
the context of an i.i.d. risk model, the notation we used expressed the expectation as condi-
tional on the loss exceeding the VaR, but it was not conditional on time. However, we need
to use a slightly more elaborate notation now that we are concerned with backtesting. We
must consider the VaR and ETL that are estimated at time t and are used to forecast the tail
of the distribution of the return from time t to time t + 1. So in this subsection we use the
following notation for the 100α% daily ETL, measured at time t, and used to forecast returns
1 day ahead:

ETL1,α,t =−Et

(
Yt+1|Yt+1 <−VaR1,α,t

)
, (IV.6.28)

where VaR1,α,t is the 100α% daily VaR that is estimated at time t. If Yt+1 denotes the real-
ized daily return on the portfolio from time t to time t + 1, both the VaR and the ETL are
expressed as a proportion of the portfolio’s value; if Yt+1 denotes the theoretical daily P&L on
the portfolio from time t to time t + 1, both the VaR and the ETL are expressed in value terms.

McNeil and Frey (2000) develop a methodology for backtesting ETL that is based on a time
series of standardized exceedance residuals, defined as

εt+1 =
⎧⎨
⎩

−Yt+1 − ETL1,α,t

σ̂t
, if Yt+1 <−VaR1,α,t,

0, otherwise.
(IV.6.29)

Here, as in the next subsection, σ̂t is the forecast of the standard deviation of the daily return
(or P&L) from time t to time t + 1, so σ̂t is the 1-day forecast that is made at time t.

The test is based on the observation that, if the process dynamics are correct and ETL is an
unbiased estimate of the expectation in the tail below the VaR, the standardized exceedance
residuals should behave as a sample from an i.i.d. zero mean process. The null hypothesis is
that εt has zero mean, against the alternative that the mean is positive, since it is a positive
mean that suggests that the ETL is too low, and underestimation of the ETL is what we want
to guard against. So the test statistic is

t = ε̄

est.s.e. (ε̄)
, (IV.6.30)

46 Readers can see from the indicator function in the spreadsheet that runs of 5 or more exceedances of 10-day VaR estimates are
found around the time of the September 2001 terrorist attack on the World Trade Center, in May 2006 and again February 2007.
During these periods the minimum regulatory capital based on the RiskMetrics VaR model would have been exceeded on every day
during one week. Recall that whilst readers will see coverage test results for risk horizons longer than 1 day in these spreadsheets, the
coverage tests are not valid because the assumption that exceedances are i.i.d. cannot be justified.
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here denoted t because it looks like a standard t ratio, where ε̄ denotes the sample mean of
the standardized exceedance residuals. But (IV.6.30) does not have a standard distribution.
Instead, we must estimate its distribution using a bootstrap simulation such as that described
in Section II.8.2.3.

A sample size problem arises, because we only use the observations corresponding to
exceedances in the test, simply throwing away the rest of the original sample. For instance,
if we are backtesting a 1% 1-day ETL using an original sample size for the backtest of 5000
daily observations, we expect to have only 50 data points on which to calculate (IV.6.30). To
alleviate this problem, at least somewhat, in the following example we use daily data on the
S&P 500 from 3 January 1950 until 31 December 2007. So the original sample has 14,470
observations and our backtest sample has 14,220 observations. Thus the ETL backtest should
be based on approximately 150 observations.47

EXAMPLE IV.6.9: BACKTESTING ETL

Find the standardized exceedance residuals (SER) for the normal linear VaR models of the
S&P 500 position considered in this section, using (a) the RiskMetrics™ regulatory model,
which is based on an equally weighted variance estimate based on 250 days, and (b) the
RiskMetrics™ daily model, which is based on the EWMA variance with a smoothing constant
of 0.94. Hence, calculate the statistic (IV.6.30) and comment on the results.

SOLUTION The ETL is calculated using the formula derived in Section IV.2.11.1. Note that
in the time series for εt we only use those dates for which the VaR is exceeded, and the other
observations are simply excluded. The expected number of exceedances is 142.2 in both cases.
However, there are 248 exceedances in case (a) and 270 exceedances in case (b). Clearly the
models are underestimating VaR.

Table IV.6.9 summarizes the results, including the values of the ETL backtest t statistic
(IV.6.30). Do not be fooled by the low values of the test statistic in this table, because although
(IV.6.30) looks like a t statistic its critical values are much lower than the usual critical values
of the Student t distribution. Indeed, if we had used the bootstrap to simulate the critical
values (which we do not in this example, since it is too onerous in Excel without using
VBA) we would almost certainly find that the null hypothesis would be rejected at a very
high significance level in both cases.

Examination of the exceedance residuals shows that they are many small positive and neg-
ative residuals and a few very large positive ones. That is, the observed loss is usually a
little more or less than the ETL, but occasionally very much larger. This is evident from
Figures IV.6.11 and IV.6.12, which plot the standardized exceedance residuals for each case.

IV.6.4.6 Bias Statistics for Normal Linear VaR

In the normal linear VaR model the VaR is proportional to the standard deviation of the port-
folio return. Hence, we can assess the accuracy of the VaR model by assessing the accuracy
of the standard deviation or variance forecast. Let Yt+1 denote the daily return on the portfolio
that is realized from time t to time t + 1. Denote by σ̂t the forecast, made at time t, of the

47 The spreadsheet is so large that this example has its own workbook.
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Table IV.6.9 Exceedances and t ratio on standardized exceedance residuals

(a) (b)

No. of exceedances 248 270
Mean SER 0.5029 0.4096
StDev SER 1.2357 1.2352
t 0.4070 0.3316
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Figure IV.6.11 Standardized exceedance residuals from RiskMetrics™ regulatory VaR
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Figure IV.6.12 Standardized exceedance residuals from RiskMetrics™ daily VaR
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standard deviation of the daily return from time t to time t + 1. Then the standardized return
at time t + 1 is defined as

Zt+1 = σ̂−1
t Yt+1. (IV.6.31)

Thus, if the returns are i.i.d. with standard deviation σ and the risk model forecasts σ

accurately, then the standard deviation of the time series {Zt} should be unity.
Following Connor (2000), we define the bias statistic, b, to be the standard deviation of

{Zt}. So the null hypothesis that the risk model forecasts σ (and hence also the normal linear
VaR) accurately is

H0 : b = 1. (IV.6.32)

The alternative can be two-sided or one-sided. For instance, the alternative hypothesis

H1 : b < 1 (IV.6.33)

corresponds to the case where the model is under-predicting the normal linear VaR, which is
usually the hypothesis of interest.

Returns are assumed to be i.i.d. and normally distributed in the normal linear VaR model.
So in this case we can base the test statistic for (IV.6.32) on the assumption that {Zt} is an i.i.d.
standard normal series. Then, when the backtest is based on a sample of size T, the estimated
standard error of b is approximately equal to (2T)−1/2, as shown in Section II.3.5.3. However,
b is not normally distributed so we cannot base the test on a sort of t ratio such as

√
2T(b̂ − 1),

where b̂ denotes the estimated standard deviation of {Zt} over the backtest sample. This is
because this ratio does not have a standard distribution such as the Student t.

In fact, we only know that if we assume the portfolio returns series is an i.i.d. normal process
then Tb2 ∼χ2

T. The mean and variance of a chi-squared distribution with T degrees of freedom
are T and 2T, respectively. Hence, by the central limit theorem,

Tb2 − T√
2T

asy∼N(0,1).

In other words, when the backtest sample size is very large,

b2 approx.∼ N

(
1,

√
2

T

)
. (IV.6.34)

From this, using the same type of Taylor expansion argument that was used in Section II.3.5.3
to derive the standard error of a volatility estimator from the standard error of a variance
estimator, we can derive a normal approximation for the distribution of the bias statistic that
is valid only for large backtest sample sizes, and on i.i.d. normal portfolio returns:

b
approx.∼ N

(
1,

√
1

2T

)
. (IV.6.35)

Very approximate confidence intervals for the bias statistic can therefore be based on normal
standard error bounds. For instance, an approximate 95% confidence interval for b when T is
large is
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1 − 1.96/

√
2T,1 + 1.96/

√
2T

)
. (IV.6.36)

If we obtain a value b̂ that lies below this interval the model may be under-predicting VaR,
and if b̂ lies above this interval it could indicate that the model over-predicts VaR.

EXAMPLE IV.6.10: BIAS TEST ON NORMAL LINEAR VAR

Find an approximate 95% confidence interval for the bias of each of the two volatility esti-
mators that have been used in this section. That is, using (a) the RiskMetrics™ regulatory VaR
model and (b) the RiskMetrics™ daily VaR model. Use a 1-day risk horizon and base your
results on the sample of S&P 500 prices from 4 January 1999 to 31 December 2007.

SOLUTION Rather than restricting the backtest sample size to 2000, which was convenient
when discussing coverage statistics, now we shall use the maximum number of observa-
tions in the backtest, i.e. 2011. With T = 2011 we have

√
2T = √

4022 = 63.4192. Hence
the approximate 95% confidence interval (IV.6.36) is

(1 − 1.96/63.4192,1 + 1.96/63.4192)= (0.9691,1.0309).

For each case, the spreadsheet computes the standardized returns and their standard deviation,
which is the bias statistic b̂. We obtain a value of 1.0364 for the equally weighted estimator
(a) and a value of 1.0515 for the EWMA estimator (b). Thus our conclusion should be that,
if the assumptions of the test are valid, then both of the RiskMetrics™ volatility estimators
overestimate S&P 500 volatility and hence will also overestimate the VaR, for every value of
the significance level α. Moreover, it appears from this result that the EWMA VaR estimator
is the more biased of the two.

However, these conclusions are in stark contrast to the conclusions drawn from the coverage
tests, where there were too many exceedances, indicating that the VaR was underestimated
rather than overestimated. Readers are urged to exercise extreme caution when using bias
statistics. The above example illustrates how false conclusions could be drawn if the analyst
does not pay sufficient attention to the model assumptions. S&P 500 returns are not generated
by a normal i.i.d. process, as assumed for the bias statistics, so the results are simply not valid.
In fact, it makes no sense to use the bias statistic in this setting.

Before considering the use of a bias statistic, analysts should test their sample of portfolio
returns for normality and for i.i.d. behaviour, as explained in Chapter I.4.48 The conclusions
that one draws from the above example are completely counterintuitive precisely because the
assumptions underlying the bias test are not valid for our portfolio.

IV.6.4.7 Distribution Forecasts

A VaR estimate is just one quantile of an entire distribution that is forecast over an h-day
risk horizon. Hence, an assessment of the accuracy of the entire distribution, instead of just
one of its quantiles, is a more extensive test of the risk model. In this subsection we ask:
what is probability of obtaining any of the out-of-sample returns resulting from the backtest,

48 A simple way to test for independence is to test for autocorrelation in the returns, and also for autocorrelation in the squared returns
and higher powers of returns. These tests are described in Section I.4.5.3. If one of these tests is rejected (and often squared returns
are found to be autocorrelated, due to volatility clustering) then the returns cannot be independent. However, acceptance of these tests
does not imply independence. Similarly, rejecting a test for heteroscedasticity (see Section I.4.5.4) does not imply the distributions are
identical. Finally, see Section I.4.3.5 for the Jarque–Bera normality test.
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according to our risk model? In other words, we assess the quality of the entire distribution
forecast, rather than focusing exclusively on the tails.

Let us denote the forecasted distribution function by Ft. The subscript t is there to remind
us that the forecast of the forward-looking h-day return or P&L is made at time t. Set

pht = Ft(Yt+h) , (IV.6.37)

where Yt+h denotes the realized return or P&L on the portfolio between time t and time
t + h in the backtest. Assuming that the backtest is based on non-overlapping data, our null
hypothesis is

H0 : pht ∼ i.i.d. U [0,1] (IV.6.38)

where U [0,1] denotes the standard uniform distribution.49 In other words, our null hypothesis
is that the probabilities pht should be a sequence of random numbers. Put another way, our risk
model should not be able to predict the probability of the realized return.

Why does testing the hypothesis (IV.6.38) constitute a backtest? Suppose our risk model
systematically underestimates the tail risk. Then there will be more realized returns in the tail
than are predicted by the model. As a result, the backtest will generate too many values for
pht that are near 0 or near 1. Likewise too many values will lie near the centre also, due to
the higher peak of a leptokurtic density. In other words, the empirical density of the return
probabilities would have a ‘W’ shape instead of being flat, as it should be according to the
standard uniform distribution.

A test of (IV.6.38) is therefore a test on the proximity of our empirical distribution to a
theoretical distribution, which in our case is standard uniform. However, tests on the standard
uniform distribution are not as straightforward as tests on the standard normal distribution, so
we transform pht to a variable that has a standard normal distribution under the null hypothesis.
To do this, we set

Zht =�−1
(
pht

)
, (IV.6.39)

where � denotes the standard normal distribution function. The null hypothesis may now be
written

H0 : Zht ∼ i.i.d. N(0,1) (IV.6.40)

and a very simple alternative is

H1 : Zht ∼ i.i.d. N
(
μh,σ

2
h

)
, μh �= 0,σh �= 1. (IV.6.41)

A parametric test statistic may now be based on a likelihood ratio statistic of the form

−2lnLR =−2ln

(
L0

L1

)
∼χ2

2,

where the likelihood function under the null hypothesis, L0 is the product of the standard
normal density functions based on the realized returns, and the likelihood function under the
alternative hypothesis, L1 is the product of the normal density functions with mean μh and

49 See Section I.3.3.3.
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standard deviation σh based on the realized returns. If the backtest sample size is T then, using
the log likelihood of the normal distribution,50 it can be shown that

−2lnLR =
T∑

t=1

z2
ht −

T∑
t=1

(
zht − μ̂h

σ̂h

)2

− Tlnσ̂2
h, (IV.6.42)

where μ̂h and σ̂h denote the sample mean and standard deviation of Zht.

EXAMPLE IV.6.11: LIKELIHOOD RATIO BACKTEST OF NORMAL RISK MODELS

Perform a likelihood ratio test on the normal linear risk model using each of the two volatility
estimators that have been used in this section, i.e. (a) the RiskMetrics™ regulatory VaR model
and using (b) the RiskMetrics™ daily VaR model. Use a daily risk horizon and base your
results on the sample of S&P 500 prices from 4 January 1999 to 31 December 2007.

SOLUTION For each risk model we first compute the time series Z1t, in this example denoted
just Zt for convenience, using (IV.6.37) and (IV.6.39). The backtest sample size is T = 2011
and the sample means and standard deviations of these series are given in the spreadsheet.
They are summarized in the first two rows of Table IV.6.10. The third row shows the value of
the test statistic (IV.6.42) in each case, which should be compared with the critical value of a
chi-squared variable with 2 degrees of freedom. The 5% critical value is 5.9915 and the 1%
critical value is 9.2103. Hence, we do not reject the null hypothesis at 5% in case (a) but we
reject the null hypothesis at 1% in case (b).

This leads to the conclusion that the RiskMetrics™ regulatory model provides better 1-day-
ahead distributions for portfolio returns than the RiskMetrics™ EWMA daily model, which is
again rather counterintuitive. However, the inadequacy of both risk models for the S&P 500 is
clearly evident from a histogram of the probabilities p1t, which is shown in Figure IV.6.13 for
each of the models. We see that, rather than being flat, both histograms have the ‘W’ shape
one would expect if the normal risk model were systematically underestimating the tails and
the centre.

We can conclude that the use of an i.i.d. alternative, as in this example, is too simple. Instead
we could consider a more complex, non-i.i.d. alternative. In the next example we consider an
alternative where the variance in the alternative hypothesis (IV.6.41) is time-varying.51

Table IV.6.10 Results of likelihood ratio test

(a) (b)

Mean 0.0066 −0.0024
Stdev 1.0364 1.0504
−2 ln LR 5.2691 9.9668

50 See Example I.3.16.
51 An alternative with a time-varying mean is considered by Christoffersen (2003, pp. 192–193).
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Figure IV.6.13 Empirical frequencies of the return probabilities

EXAMPLE IV.6.12: A DYNAMIC DISTRIBUTION BACKTEST

Repeat the likelihood ratio test for the two risk models of the previous example, but in this
case use an alternative hypothesis of the form

H1 : Zt ∼ N
(
μ,σ2

t

)
, μ �= 0. (IV.6.43)

Base the time-varying variance in the alternative hypothesis on a simple EWMA model with
smoothing constant 0.94 in both case (a) and case (b).

SOLUTION With this alternative the value of the test statistic (IV.6.42) changes considerably.
In fact we now obtain values for −2 ln LR that far exceed the critical values. They are 480.37
in case (a) and 248.87 in case (b). With the time-varying volatility alternative we always
reject the null at the very highest confidence level, for any reasonable choice of the EWMA
smoothing constant. As the smoothing constant increases from 0.94 to 1 we converge to the
result for the i.i.d. alternative that was obtained in the previous example.

Figure IV.6.14 shows the EWMA standard deviation of the realized return probabilities
under each of the risk models, when the smoothing constant is 0.94.52 It is clear from this
figure that neither VaR model is accurate, because the realized return probabilities show signs
of non-i.i.d. behaviour.

IV.6.4.8 Some Backtesting Results

Alexander and Sheedy (2008) provide extensive backtests of simple linear exposures to dif-
ferent currency pairs, using eight risk models that are popular in the industry. Our backtesting
methodology is designed for VaR models that are used for stress testing, so the paper assesses

52 This is still rather simplistic, because of course the test results will depend on this ad hoc choice. In fact, the reader can change
the smoothing constant value in cell R2 and see the effect on the test statistic. A better alternative would use a GARCH model. Then
the GARCH model parameters would be estimated optimally in the usual way (see Section II.4.2.2) and the degrees of freedom for
the test statistic would increase by the number of parameters in the GARCH model.
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Figure IV.6.14 EWMA standard deviation of the realized return probabilities

the accuracy of extreme quantile forecasts over short risk horizons. The results provide
strong support for VaR models with both volatility clustering and non-normal conditional
distributions for portfolio returns.

The models that are tested specify the following distributions for the portfolio returns:

(a) unconditional normal;
(b) unconditional Student t;
(c) historical, using the Epanechnikov kernel for smoothing the distribution;53

(d) unconditional mixture of two normal distributions;54

(e) symmetric normal GARCH;
(f) symmetric Student t GARCH;
(g) filtered historical simulation, with symmetric GARCH;
(h) normal mixture with volatility clustering.

Models (e)–(h) are the extension of the first four models to include volatility clustering. To
extend models (a) and (b) we use a symmetric GARCH process with innovations drawn from
the specified distribution in each case. To extend the standard historical simulation (c) to its
filtered counterpart (g) we standardize the returns with a filtering based on the symmetric
GARCH process and simulate using the methodology described in Section IV.3.3.4. For the
normal mixture with volatility clustering the historical returns are standardized, as in case (g),
but a mixture of two normal distributions is fitted to the standardized returns.

The eight risk models were applied to long and short positions on three currency pairs:
the British pound in terms of US dollars (GBP/USD), the US dollar in terms of Japanese
yen (USD/JPY) and the Australian dollar in terms of US dollars (AUD/USD). A range of
possible estimation sample sizes of between 250 and 2000 daily log returns were used for each
model. Approximately 6000 estimates of VaR and ETL were obtained for a 1-day horizon, and
around 2000 non-overlapping estimates of VaR and ETL for a 3-day horizon. We considered

53 See Section IV.3.4.1.
54 This is fitted using the EM algorithm – see Section I.5.4.3.
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confidence levels of 99%, 99.5% and 99.9%. Each time the VaR and ETL were estimated they
were based on revised estimates using the most recent estimation window.

Then the coverage tests that are described in Section IV.6.4.3, and the ETL tests described
in Section IV.6.4.5, were applied. Our results confirmed that large estimation sample sizes
(say, 2000 days) performed better than small estimation sample sizes (say, 250 days), espe-
cially for historical simulation and also for all four of the volatility clustering models. Our
results for the normal and normal GARCH models showed that the assumption of normality
cannot be justified, particularly when estimating ETL. Including volatility clustering using
the GARCH process improved the performance of the normal linear VaR model, but even
then the ETL consistently understated the true potential for losses beyond the VaR. Our ETL
results for the normal mixture model were also disappointing, even with volatility clustering.
However, the Student t GARCH model produced ETL test results that were the best of all the
risk models considered in our study. In fact, our results indicated that the Student t GARCH
model may even be too conservative, since no exceedances were recorded at all for two of the
portfolios.

For each portfolio and at each significance level the two top performing models were the
Student t GARCH model and the historical simulation with GARCH filtering. This suggested
that the distribution of major currency returns could be adequately described by a single heavy-
tailed distribution, in combination with a GARCH model. In other words, occasional large
shocks are observed from time to time, which are then followed by further large price move-
ments, which is consistent with volatility clustering. Very often we found that if we did not
adjust for volatility clustering the model failed the independence test, i.e. the P&L would
exceed the VaR on several days in succession. We also concluded that it is important to cap-
ture non-normality in the conditional return distributions, at least for portfolios of these major
currencies.

IV.6.5 SUMMARY AND CONCLUSIONS

This chapter deals with the accuracy of risk models: the sources of risk model risk and the
methods for testing risk model accuracy. Building a risk model, and specifically a VaR model,
actually involves three distinct types of statistical analysis: firstly, we need the specification
and estimation of a factor model for mapping the portfolio to its risk factors; secondly, we need
a design for modelling the evolution of the risk factors, including the methods for estimating
parameters if the risk factor returns model contains parametric elements; and thirdly, we need
a method for resolving the model, either analytically or using some type of historical or Monte
Carlo simulation.

The market risk analyst faces numerous decisions concerning the theoretical specifications
of the factor model for portfolio mapping and the risk factor returns model. These decisions
focus on the choice of sample data and statistical methods used to estimate the model parame-
ters. The choices made about the theoretical model specification affect the model risk, and the
parameter estimation data and methods affect the estimation risk.

We have shown that the factor model risk, i.e. the model risk associated with the portfolio
mapping, is relatively small for interest rate sensitive portfolios that are mapped as cash flows,
but it is relatively large for stock portfolios. And, for any type of portfolio, the model risk
arising from the specification of the risk factor returns model is huge. The analyst needs to
make many choices here: the returns might be assumed to be i.i.d. or otherwise; the distribution
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could be parametric or empirical; and if parametric, the analyst must choose between several
possible functional forms. It is not very realistic to assume risk factor returns are i.i.d., and
this assumption can induce very large errors in VaR estimates. For instance, the VaR could be
seriously underestimated if the risk factor returns were positively correlated, especially over a
long risk horizon.

For short-term risk horizons the most important effect to include in the risk factor returns
model is volatility clustering. This makes the VaR estimate more risk sensitive, increasing the
VaR if the market is currently more volatile than usual, and decreasing the VaR estimate if the
market is currently less volatile than usual. There is a considerable body of empirical research
which demonstrates that volatility clustering also makes short-term VaR and ETL estimates
more accurate.

Next the analyst must choose between an empirical and a parametric model for the evo-
lution of risk factor returns – or a combination of the two. There is little doubt that using
the empirical distribution without any adjustment for volatility clustering, as in standard his-
torical simulation, produces VaR estimates that are quite inaccurate. Accuracy is increased
considerably if one augments the empirical distribution with parametric volatility clustering
behaviour – as in the filtered historical simulation model. Empirical studies have shown that it
is also important to allow for non-normal conditional distributions in a parametric risk factor
model specification. Otherwise both VaR and ETL can be underestimated, especially at high
confidence levels and over short-term risk horizons.

As the risk horizon increases to several months or more, it becomes less important to include
volatility clustering and non-normal effects. Over long horizons an important source of model
risk stems from the inappropriate scaling of short-term VaR estimates to represent VaR over
long horizons. Often analysts simply measure market VaR at the daily horizon and scale up
this estimate to longer risk horizons using a square-root scaling law. But this law is only
applicable if all exposures are linear and all risk factors are i.i.d. and normally distributed.
Since these conditions are rarely met in practice, the model risk for long-term VaR and ETL
estimates that are scaled up in this fashion is huge. Moreover, it is very difficult to test the
accuracy of these estimates, since most backtesting methodologies are designed for use with
daily or weekly historical data and can therefore only test the accuracy of short-term VaR
and ETL.

Estimation risk stems from two decisions: about the sample data and about the methodology
applied to estimate the model parameters. There is some evidence that – assuming the model
accounts properly for volatility clustering – larger samples lead to more accurate short-term
VaR and ETL estimates. This is because a large part of estimation risk is sampling error. By
considering the sampling error of a volatility estimator, and then of a quantile estimator, we
have derived confidence intervals for VaR. Those based on the standard error of the volatility
estimator are much tighter than those for quantile estimators, but they are only valid in the
parametric linear VaR model with elliptical i.i.d. risk factor returns.

By far the most important aspect of building a risk model is the backtesting of this model.
So the main, technical focus of this chapter was to present a variety of statistical tests that
can be used to backtest VaR or ETL. After explaining the general backtesting methodology
underpinning these tests, we presented a critical discussion of the Basel recommendations
for backtesting. Then we presented empirical examples of the various backtests that we have
described, on a normal linear VaR model applied to a simple position on the S&P 500 index.
The index volatility was estimated using two different methods: one in which variance is
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set to an equally weighted average of the past 250 squared returns (the RiskMetrics™ reg-
ulatory model); and another with a exponentially weighted moving average variance based
on a smoothing constant of 0.94 (the RiskMetrics™ daily EWMA model). These two mod-
els were backtested using unconditional coverage, independence and conditional coverage
criteria, using regression-based backtests and using backtests for ETL. We also examined the
bias statistics for these VaR models, and discussed various means of evaluating the entire
distribution that is forecast by the risk model, rather than merely focusing on the lower tail.

All the empirical examples on backtesting in this chapter were performed at the port-
folio level. So we have not illustrated one of the most important sources of model risk,
i.e. aggregation risk. This is the risk arising from the inappropriate aggregation of component
risks into a total risk. Aggregation risk affects the accuracy of VaR and ETL at every level
of the organization. It seems from the use of an inaccurate correlation matrix (or, indeed, the
inappropriate use of correlation as a dependency metric) and from the application of simple
rules to aggregate VaR and ETL estimates from different lines of business to a total risk esti-
mate for the entire firm. The implementation of an enterprise-wide risk model that is capable
of netting the risks of a large organization accurately is a huge undertaking, and aggregation
risk in enterprise-wide risk management is much the most important aspect of enterprise-
wide risk model risk. The plethora of parametric and non-parametric models for the evolution
of risk factor returns may seem confusing but, in the final analysis, a market risk analyst
would be well advised to accept a simple but ‘good enough’ fit for the VaR models applied to
different types of portfolios so that he can focus resources on the major challenge of aggre-
gating different market risks across the entire firm. We shall discuss this is more detail in
Section IV.8.3.3.





IV.7
Scenario Analysis and Stress Testing

IV.7.1 INTRODUCTION

Previous chapters have focused on VaR estimates that are based on historical asset or risk
factor returns. Believing these data capture the market circumstances that are assumed to pre-
vail over the risk horizon, we then obtain a distribution of the returns (or P&L) on a portfolio
and estimate the VaR and ETL at the required confidence level over the risk horizon. Whilst
such a belief may seem fairly tenuous over risk horizons that are longer than a few months,
experience proves that in the absence of a shock, such as the terrorist attacks on the US in
2001, market behaviour and characteristics are unlikely to alter completely over a risk horizon
of a few days or weeks. It is therefore reasonable to base short-term VaR and ETL estima-
tion on historical data, provided it is adjusted to reflect current market conditions, but as the
risk horizon increases the case for using other beliefs than ‘history will repeat itself’ becomes
stronger.

A main focus of this chapter is to describe the application of a particular type of belief,
which is called a stress scenario, to risk models. Stress testing is a risk management tool for
quantifying the size of potential losses under stress events, and for quantifying the scenarios
under which such losses might occur. A traditional definition of a stress event is an exceptional
but credible event in the market to which the portfolio is exposed. Then, in a stress test one
subjects the risk factor returns to shocks, i.e. extreme but plausible movements in risk factors.

But how can we define the terms ‘credible’ or ‘plausible’, or similar terms such as ‘rea-
sonable’, ‘rational’, ‘realistic’ etc., except in terms of probabilities? People tend to use such
verbal descriptors because it is more difficult to phrase beliefs in terms of probability distribu-
tions. One of the main aims of this chapter is to help risk analysts to develop the mathematical
framework for scenario analysis, and in particular the means to represent beliefs as prob-
ability distributions rather than using vague linguistic terminology. We shall, of course, be
covering the traditional approach to stress testing in which stress scenarios are usually based
on a worst case loss. However, the concept of a worst case loss is not only imprecise, it is
mathematically meaningless. Indeed, there is no such thing as a ‘worst case’ loss other than
losing the entire value of the investment.1 In summary, to attempt to derive a ‘worst case’
loss resulting from a ‘realistic’ scenario is to apply a mathematically meaningless quantity
to an imprecise construction. So, rather than waste much time on this, after describing the
traditional approaches we introduce mathematically meaningful frameworks for stress testing,
with illustrative examples that are supported by simple Excel spreadsheets.

Scenario analysis and stress testing actually pre-date VaR modelling. The first commer-
cial application of stress testing was by the Chicago Mercantile Exchange (CME) during the

1 Or, for a short position, losing so much that the firm becomes insolvent.
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1980s. The CME requires margins of 3–4 times what could be lost in a single day, as do
most futures exchanges. In the early 1980s these margins were contract-specific and so some
contracts such as calendar spreads (which trade a long and a short futures, with different
maturities, on the same underlying) had zero margins. In 1988 the CME adopted the Standard
Portfolio Analysis of Risk� (SPAN)2 system in which daily margin requirements are based
on a set of standard stress scenarios including not only parallel shift but also tilts in the yield
curve.3 This system has since been adopted by many exchanges.

The purpose of this chapter is to explain how risk models may be applied to scenario data
and how the analyst can formalize his beliefs about the behaviour of the market over a risk
horizon in a mathematically coherent framework. A complete formalization of beliefs pro-
vides a multivariate distribution of risk factor returns, to which one can apply the mapping of
any portfolio and hence derive a scenario-based returns (or P&L) distribution for the portfolio
over the risk horizon. The main applications of this scenario-based distribution are the same
as the usual applications of return or P&L distributions that are based on historical data, i.e. to
risk assessment and optimal portfolio selection.

We shall distinguish between single case scenarios that provide just one value for the vector
of risk factor returns, as in the SPAN system, and distribution scenarios that prescribe an entire
multivariate distribution of risk factor returns. We shall also distinguish between historical
scenarios and hypothetical scenarios. A single hypothetical parallel shift of 100 basis points
on a yield curve is an example of a single case hypothetical scenario. It aims to provide an
‘extreme but plausible’ value for the vector of risk factor returns, and the analyst can use the
portfolio mapping to derive a ‘worst case’ loss resulting from this scenario. But he cannot
assign a probability to this loss. A simple example of a hypothetical distribution scenario
is that changes in yields are perfectly correlated and normally distributed, and they all have
mean 100 basis points and standard deviation 50 basis points.4 Distribution scenarios provide
a mathematically coherent framework for scenario analysis and stress testing. That is, because
they specify an entire multivariate distribution rather than just a single vector of risk factor
changes, probabilities may be assigned to different levels of loss.

Given the tremendous number of historical and hypothetical scenarios that are possible, the
analyst needs to have some tool that restricts the number of scenarios that are explored. Often
he will perform a preliminary sensitivity analysis that examines the loss profile of a portfolio
as a function of possible values for all of its risk factors. This helps him to distinguish between
the main risk drivers and the minor risk factors for his portfolio, so he can focus his scenarios
on movements in the factors that are most likely to affect his portfolio adversely. It may be the
case, especially in option portfolios that have highly non-linear loss profiles, that it is a small
movement rather than a large movement in a major risk factor that incurs the largest losses.

The outline of this chapter is as follows. Section IV.7.2 provides a classification of the
scenarios that we usually consider in market risk analysis. We also comment on the process
of constructing hypothetical scenarios that are consistent with the views of the analyst and of
senior management. Section IV.7.3 explains how to apply distribution scenarios in a risk model

2 See http://www.cme.com/span/ for details.
3 A parallel shift in a yield curve will leave the value of a one-for-one calendar spread unchanged, but a tilt in the yield curve affect its
value. For example, if the short rate increases but the long rate decreases, then a spread position that is long the short-maturity futures
and short the long-maturity futures will increase in value.
4 Or, the correlations could be less than one and the standard deviation could be different for yields of different maturities, as indeed
could the mean. Neither is it necessary to assume changes in yields have a multivariate normal distribution: for instance, a multivariate
Student t distribution, a normal mixture distribution or a general distribution based on a copula may be preferred.
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framework, to derive a scenario VaR and ETL. We consider a number of increasingly complex
scenarios that are based on both parametric and non-parametric return distributions and take
care to distinguish between the different use of information in scenario VaR and Bayesian VaR.

Section IV.7.4 introduces the traditional approach to stress testing portfolios, in which a
‘worst case’ loss is derived by applying the portfolio mapping to a set of possible stress scenar-
ios, taking the maximum loss over all scenarios considered. We review the Basel Committee’s
recommendations for stress testing and provide an overview of the traditional approach based
on worst case scenarios.

Section IV.7.5 presents a coherent framework for stress testing, illustrated with many empir-
ical examples. We begin by focusing on stressed covariance matrices and how they are used in
the three broad types of VaR models, including historical simulation, to derive stressed VaR
and ETL estimates. Then we explain how to derive hypothetical stressed covariance matrices,
ensuring that they are positive semi-definite. Section IV.7.5.3, on the use of principal compo-
nent analysis in stress tests, highlights their facility to reduce the complexity of the stress test
at the same time as focusing attention on the types of market movements that are most likely
to occur. Section IV.7.5.4 describes how to estimate liquidity-adjusted VaR, differentiating
between exogenous and endogenous liquidity effects. We end this chapter by explaining how
to incorporate volatility clustering effects, which can have a significant impact on stress VaR
and ETL when the position is held for several days.

IV.7.2 SCENARIOS ON FINANCIAL RISK FACTORS

Historical data on financial assets and market risk factors are relatively easy to obtain,
compared with credit risk factors (e.g. default intensities) and especially compared with oper-
ational risk factors (e.g. the loss associated with low probability events such as major internal
fraud). Market risk analysts can usually obtain many years of daily historical data for their
analysis, but this is not always the case. For instance, when estimating the equity risk of a
portfolio containing unlisted stocks or the credit spread risk of a portfolio of junk bonds, a
market risk analyst typically has little or no historical data at his disposal. Nevertheless, so
much of the documented analysis of market risk is based on historical data, that analysts may
not know how to proceed when they have little or no ‘hard’ data available. By contrast, oper-
ational risk analysts are used to having virtually no history of experienced large losses in their
firm. As a result operational risk analysts have developed methods based on their own personal
views – in other words, based on hypothetical scenarios on risk factors.

Market risk analysis has developed in an environment where, typically, a wealth of historical
data on market risk factor returns is available. For this reason risk analysts tend to rely on
historical data for quantifying market risks far more than they do for operational risks, or
even for credit risks. But there is a real danger in such reliance because excessive losses
due to market risk factors are often incurred as a result of a scenario that is not captured
by the historical data set. For instance, the Russian bond default in 1998, the bursting of the
technology bubble in 2000, the credit crunch in 2007 and the banking crisis in 2008 all induced
behaviour in risk factor returns that had no historical precedent at the time they occurred.

In my opinion the quantity of historical data that is commonly available for market risk
analysis has hampered the progress of this subject. Market risk managers may be lulled into a
false sense of security, believing that the availability of historical data increases the accuracy
of their risk estimates. But risk is a forward looking measure of uncertainty, and it may be
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based on any distribution for risk factor returns, not only a historical one. In this text we have,
until now, been estimating the parameters of these distributions using purely historical data.
But this is in itself a subjective view – i.e. that history will repeat itself! So now we extend
our analysis to encompass other subjective views, which could be entirely personal to the risk
analyst and need not have any foundation in historical events at all.

At the time of writing the majority of financial institutions apply very simple stress tests
and scenarios, using only the portfolio mapping part of the risk model to derive ‘worst case’
losses without associating any probability with these losses. The aim of this section is to
help market risk analysts to think ‘out of the box’; to use their entire risk model – not just
the portfolio mapping – to report on the extent of losses that could be incurred when the
unexpected happens; and to do all of this within a mathematically coherent framework.

IV.7.2.1 Broad Categorization of Scenarios

We shall categorize scenarios on the risk factors of a given portfolio using two dimensions:
first, the type of changes that we consider in risk factors; and second, the data that are used to
derive these changes. Within the first dimension we consider two separate cases:

• Single case scenarios. These scenarios are for a single vector of the risk factor returns,
such as a shift of a given magnitude in a yield curve, or a single value for the return
on each major stock index. With a single case scenario we can apply the risk factor
mapping model to the scenario and hence obtain a single profit or loss for our portfolio
resulting from the scenario. Single case scenarios include the worst case scenarios that
are applied in the traditional approach to stress testing, the base case scenarios that are
used in decision analysis to capture the event that current market conditions continue to
prevail over the risk horizon, and any scenario between these two extremes.

• Distribution scenarios. In a distribution scenario our beliefs are encapsulated by a con-
tinuous, multivariate distribution of risk factor returns. Applying the risk factor mapping
model to such a scenario yields an entire distribution of portfolio returns or P&L. Thus,
a distribution scenario allows the estimation of a scenario VaR and ETL of our portfo-
lio.5 We shall also be extending simple distribution scenarios to compound distribution
scenarios, where our beliefs are encapsulated by a discrete distribution over scenario
distributions.

Regarding the data that are used, we also consider two separate cases:

• Historical scenarios. These concern a repeat of a historical event such as the global equity
crash of 1987 or the banking crisis of 2008. By saving the market data from this period
we can apply them to the current portfolio mapping or, better, to the entire risk model
since this allows us to derive a coherent scenario analysis for our portfolio.

• Hypothetical scenarios. These can involve any changes in any risk factors and they need
not have any historical precedent. For instance, a single case scenario when the vector of
risk factor returns is a term structure of AA credit spreads could be that the curve shifts
upwards by 50 basis points at all maturities.

5 Given a distribution of portfolio returns or P&L we can of course obtain any quantile of this distribution and hence estimate the VaR
and/or corresponding ETL.
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Hence, there are four broad scenario categories that institutions could consider and these are
summarized, along with simple illustrative examples for the iTraxx credit spread index, in
Table IV.7.1.

Table IV.7.1 Scenario categorization, with illustration using the iTraxx index

Data Type of risk factor change

Single Case Distribution

Historical An upward jump in
the index of 50 bps
over a 1-month
horizon.∗

A normal distribution for daily changes in
the index with a mean of −1.236 bps and a
standard deviation of 9.011 bps.∗∗

Hypothetical A downward jump in
the index of 100 bps
over a 10-day period.

A normal distribution for weekly changes
in the index with a mean of −10 bps and a
standard deviation of 50 bps.

∗ The index was at 91 bps on 15 February, and by 13 March it had risen to a historical high of 141 bps.
∗∗ This is the high volatility component of a mixture of two normal distributions that was fitted to the iTraxx daily

changes using data from June 2004 to March 2008. See the case study in Section IV.2.12.

IV.7.2.2 Historical Scenarios

Both single case and distribution scenarios can be based on historical events. By storing the
market data that were recorded at the time of a specific event, we could apply either a worst
case scenario (e.g. based on the total drawdown that was experienced on major risk factors
over a specified time horizon) or a distribution scenario (based on an experienced distribution
of risk factor returns over a specified time horizon).

Common examples of historical scenarios include: the 1987 global equity crash; the 1992
European Exchange Rate Mechanism crisis; the 1994 and 2003 bond market sell-offs; the
1997 Asian property crisis; the 1998 Russian debt default and the ensuing falls in equities
induced by the threat of insolvency of the Long Term Capital Management hedge fund; the
burst of the technology stock bubble that started in 2000 and lasted several years; the terrorist
attacks on the US in 2001; the credit crunch of 2007 and the banking crisis of 2008. The
following example illustrates how historical data from one of these crisis periods can be used
to formulate both a worst case scenario and a distribution scenario.

EXAMPLE IV.7.1: HISTORICAL WORST CASE AND DISTRIBUTION SCENARIOS

Use historical data on daily closing prices of the FTSE 100 index during the period of the
1987 global equity crash to estimate the worst case daily return and worst case monthly return
corresponding to this scenario. Also estimate the first four sample moments of daily returns
over this period and hence estimate the 100α% daily VaR for a linear exposure to the FTSE
index, comparing the results obtained for α = 0.1, 0.01 and 0.001 using a Cornish–Fisher
expansion with those based on a normal distribution assumption.

SOLUTION Daily closing prices on the FTSE index were downloaded from Yahoo! Finance
for the period from 13 October to 20 November 1987.6 The maximum loss over 1 day, which

6 The symbol is ∧FTSE.
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occurred between 19 and 20 October, was 12.22% of the portfolio value, and over the entire
data period the loss on a linear exposure to the index was 30.5%. Both these figures could
be used as worst case scenarios but over different time horizons, i.e. 1 day and 30 days. For
instance, if we have an exposure of £10 million to the FTSE index, then the worst case daily
loss according to this scenario is approximately £1.222 million and the worst case monthly
loss is approximately £3.05 million.

For the distribution scenario we need to estimate the sample moments of daily returns. The
results are: mean = −1.21%, standard deviation = 3.94%, skewness = −0.3202 and excess
kurtosis =1.6139. The distribution scenario allows us to compute the VaR of a linear exposure
to the FTSE index, with different degrees of confidence, conditional on the occurrence of this
historical scenario. Using the same calculations as were used in Example IV.3.4 to estimate
the daily VaR based on a Cornish–Fisher expansion, we obtain the results shown in the col-
umn headed ‘CF VaR’ in Table IV.7.2. The last column shows the normal VaR estimates that
assume the skewness and excess kurtosis are both zero. Due to the strong negative skewness
and positive excess kurtosis in the sample, the CF VaR is greater than the normal VaR and the
difference between the CF VaR and the normal VaR increases as we move to higher confidence
levels.

Table IV.7.2 VaR estimates based on historical scenarios

α Confidence CF VaR Normal VaR

0.1 90% 6.0% 5.0%
0.01 99% 12.6% 9.2%
0.001 99.9% 20.4% 12.2%

We might conclude from this example that if there was a repeat of the global stock market
crash of 1987 starting tomorrow and if we did nothing to hedge our position for 24 hours, we
could be 90% confident that we would not lose more than 6.0% of the portfolio’s value and
99% confident that we would not lose more than 12.6% of the portfolio’s value over a 24-hour
period.7 It is a very simple example, but it already demonstrates how distribution scenarios
can provide more information than worst case loss scenarios, because we can associate a
probability with each given level of loss.

IV.7.2.3 Hypothetical Scenarios

The advantage of using historical scenarios is that they are certainly credible, having actually
been experienced in the past. The limitation is that they are restricted to losses that have actu-
ally occurred. Hence, most institutions also apply hypothetical scenarios in their risk analysis.
To give the reader a sense of the hypothetical single case scenarios that financial institutions
may be using, the following worst case scenarios were recommended by the Derivatives Policy
Group in 1995:8

7 Notice that a normal assumption would lead to a much more conservative conclusion.
8 The Derivatives Policy Group was comprised of principals representing CS First Boston, Goldman Sachs, Morgan Stanley, Merrill
Lynch, Salomon Brothers, and Lehman Brothers. It was organized to respond to public policy issues raised by the over-the-counter
derivatives activities of unregulated broker-dealers and futures commission merchants, including the need to gain information on the
risk profile of professional intermediaries and the quality of their internal controls.
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• a parallel shift in a yield curve of ±100 basis points;
• a linear tilt in a yield curve of ±25 basis points;9

• a parallel change in credit spreads of ±20 basis points;
• a stock index return of ±10%;
• a return of ±6% on a major currency pair, or of ±20% for a minor currency against

another currency;
• a relative change in volatility of ±20%.

If the portfolio has a non-linear pay-off it is quite possible that the maximum loss will
not occur at one of the extremes, such as a stock index return of +10% (for a short posi-
tion) or −10% (for a long position). Hence, more recently regulators of financial institutions
require them to run scenarios that are specific to their portfolios individual characteristics.
Further details on the new regulations for stress testing in banking institutions are given in
Section IV.7.4.1.

Hypothetical scenarios such as those defined above may be applied individually or simul-
taneously. If simultaneously, they may or may not respect the codependence between risk
factors. For instance, no such dependency is respected in the factor push stress testing method-
ology that is described in Section IV.7.4.3. On the other hand, the analyst may feel that the
simultaneous scenario of a 10% fall in a stock index and a 20% relative fall in its volatility is
so improbable that it will not be considered.

More complex single case hypothetical scenarios can be designed that respect a sequence
of events on the different risk factors of a portfolio that, in the analyst’s view, is plausible.
For example, suppose that a US bank announces that it must write off $20 billion of tier
one capital due to defaults on loans and credit derivatives. Here is an example of a single
case scenario encompassing the behaviour of US credit spreads, US money market rates,
dollar exchange rates, global equity prices and stock volatility over the week following this
announcement:

• US credit spreads in the US banking sector increase by 80 basis points.
• Other credit spreads on investment grade US companies increase by between 50 and 200

basis points, depending on their credit rating.10

• To compensate for higher spreads, the Federal Reserve cuts base rates by 25 basis points.
As a result money market rates decrease by between 25 and 50 basis points, depending
on maturity.11

• Funds flow out of the dollar into other major currencies, against which the dollar
depreciates by 5%.

• The Dow Jones and S&P 500 stock indices fall 10% on fears about the US economy,
and some other major stock markets that are highly correlated with the US markets
follow suit.

• The volatility of US stocks (and of other highly correlated stock markets) increases by
20%, relative to its value before the announcement.

9 That is, the shortest rate moves up (or down) by 25 bps and the longest rate moves down (or up) by 25 bps, and the movements in
other rates are determined by linear interpolation.
10 For instance, AA spreads increase by 50 basis points and B-rated spreads increase by 200 basis points.
11 For example, 50 basis points for overnight rates and 25 basis points for the annual rate.
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This way the analyst can think through the repercussions of his hypothetical event on the
behaviour of all the relevant risk factors. It is also possible to associate a time scale with the
risk factor changes, as we have done above. However, what we cannot do with single case
scenarios is associate a probability with the sequence of events. For this we need to construct
a distribution scenario.

We now explain how to design a mathematically coherent hypothetical distribution scenario
for a vector of risk factors of the portfolio. First we state the steps to be followed and then we
provide an illustrative example.

1. State the hypothetical scenario event in a much detail as possible. For instance, the sce-
nario event could be that Georgia joins NATO, Russia invades Georgia and NATO troops
defend Georgia.

2. Identify the risk drivers. Often there will be a single risk factor that drives the scenario,
for instance a fall in the S&P 500 index or rises in the values of the US dollar and gold.

3. Specify conditional scenarios on the main risk driver. That is, specify a distribution that
represents your beliefs about the possible values of the main risk driver resulting from
the scenario event. Note that the conditional scenarios can be a set of distributions, each
referring to a different time horizon. For instance, when specifying conditional scenarios
on the government yield curve in Singapore, conditional on an unpegging of their cur-
rency from the US dollar, the analyst may specify the distribution of interest rate changes
over the next week, the next month, the next three months and so on.

4. Conditional on each possible value for the main risk driver, specify scenarios on other
risk factors of the portfolio. For instance, suppose the scenario event is that, as a result of
the credit crisis, a major US bank becomes insolvent. Given the nervousness in the mar-
ket at the time of writing, credit spreads on AA bonds could rise to 150 basis points
within a month.12 Conditional on this, what could happen to the secondary drivers,
i.e. interest rates and equities prices? Perhaps it is more likely that the government will
bring down interest rates than raise them, and it is also more likely that equity prices
would fall. So, conditional on a 150 basis points rise in AA spreads over the next month
we have a distribution of interest rate changes and another distribution of equity returns
over the next month. These distributions refer to the same time horizon as the change in
the main risk driver that they are conditional upon.

EXAMPLE IV.7.2: HYPOTHETICAL DISTRIBUTION SCENARIO: BANK INSOLVENCY

One of the major US banks announces that it must write off $10 billion of tier one capital due
to defaults on loans and credit derivatives. Formulate your hypothetical distribution for credit
spreads and US interest rates.

SOLUTION The main risk driver of this scenario is a credit spread index for the banking
sector in the US. Figure IV.7.1 depicts my personal view about the possible changes in this
index over the next week.13

Now, conditional on each of the possible changes in the credit spread index I must formulate
a view on the possible weekly change in interest rates. Figures IV.7.2 and IV.7.3 depict two dis-
tributions for interest rate changes, each conditional on a different level for the credit spread.

12 They almost reached this level at the beginning of the credit crisis and so it is plausible that they could do so again.
13 This is a Student t distribution with 6 degrees of freedom, a mean of 40 bps and a standard deviation of 15 bps.
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Figure IV.7.1 A personal view on credit spread change during the week after a major banking crisis
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Figure IV.7.2 Distribution of interest rate changes conditional on a 20 basis point fall in the credit
spread
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Figure IV.7.3 Distribution of interest rate changes conditional on a 40 basis point rise in the credit
spread
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My view assumes that there is a negative correlation between interest rates and credit spread
changes, and that my uncertainty surrounding interest rate changes is directly proportional
to the absolute change in spread. For instance, conditional on the credit spread increasing by
40 basis points, my beliefs about the interest rate are captured by the distribution shown in
Figure IV.7.3, which has a lower mean and a higher standard deviation (i.e. more uncertainty)
than my subjective distribution conditional on the spread decreasing by 20 basis points, which
is shown in Figure IV.7.2.

IV.7.2.4 Distribution Scenario Design

The encoding of subjective beliefs into probability distributions has been studied by many
cognitive psychologists and by the Stanford Research Institute (SRI) in particular.14 A number
of cognitive biases are known to be present, one of which is that most people have a tendency
to be overconfident about uncertain outcomes.

For instance, consider the following experiment that was conducted by SRI researchers dur-
ing the 1970s. A subject is asked to estimate a quantity which is known but about which they
personally are uncertain.15 Ask the subject first to state a value they believe is the most likely
value for this quantity: this is the median. Then ask them to state an interval within which they
are sufficiently sure the quantity lies – sufficiently sure to place a double-or-nothing bet on
being correct. This is the interquartile range. Then, by associating ranges with other bets, elicit
responses for 90%, 95% and 99% confidence intervals for the value of the quantity in question.
Finally, reveal the true value, and mark the quantile where it lies in the subject’s distribution.
Repeat this for a large number of different uncertain quantities and for a large number of
different subjects. If the subjects were encoding their beliefs accurately we should find that
10% of the marks fall outside the subject’s 90% confidence intervals, 5% fall outside the 95%
intervals and 1% fall outside the 99% confidence intervals. However, the empirical results
from SRI established that these intervals were far too narrow. For instance, approximately
15% of marks fell outside the 99% confidence intervals.

This type of bias is particularly relevant for analysts who wish to encode a senior manager’s
beliefs into a quantifiable scenario distribution that is to be used for stress testing, since the
effect of the bias is to reduce the probability in the tails. In other words, people have the
tendency to assign a lower probability to a stress scenario than they should. Spetzler and
Staël von Holstein (1977) describe a general methodology for encoding a subject’s probability
distribution about an uncertain quantity using a series of simple questions. The methodology
is designed to deal with a variety of cognitive biases, such as the tendency towards overcon-
fidence that most subjects exhibit in their responses. Armed with such a methodology, how
could it then be applied to formulate distribution scenarios for stress testing?

The first distribution to encode should relate to the main risk driver of the scenario, such
as changes in the credit spread or the oil price. Then encode the distributions for related
risk factors conditional on different values for the main risk driver. For instance, conditional
on the BBB-rated credit spread increasing by 100 basis points or more, encode the subjective
distribution of the change in the base interest rate. Let X denote the change in the credit spread
and Y denote the change in the interest rate, both in basis points. From the first encoding we
obtain P(X ≥ 100) and from the second we obtain P(Y ≤ y |X ≥ 100 ) for different values of y,

14 Interested readers are recommended the excellent paper by Spetzler and Staël von Holstein (1977).
15 Such as the height of Nelson’s Column in Trafalgar Square, London.
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e.g. for y =−50. Then the joint probability of credit spreads increasing by 100 basis points or
more and the interest rate decreasing by 50 basis points or more is P(Y ≤−50 and X ≥ 100)=
P(Y ≤ −50 |X ≥ 100 )P(X ≥ 100).

The sequential encoding of conditional distributions aims to assign a probability to any vec-
tor of risk factor returns, and to a vector corresponding to extreme returns in particular. Then,
substituting this vector into the portfolio mapping, we obtain a worst case loss with a specified
subjective probability. However, the method described above is very subjective, and depends
heavily on the analyst’s ability to encode complex beliefs into quantifiable distributions. There
are more tangible ways in which one can associate a probability with a loss that is incurred
under a stress scenario, some of which are described in the next section.

IV.7.3 SCENARIO VALUE AT RISK AND EXPECTED TAIL LOSS

In this section we describe how to apply VaR models to either historical or hypothetical distri-
bution scenarios, focusing on the latter case. We begin by considering the simplest, normally
distributed scenarios for risk factors and then explain how these scenarios have a natural exten-
sion to a compound distribution scenario using the normal mixture framework. Then we explain
how to derive scenario VaR and ETL using a more general non-parametric framework for
compound distribution scenarios. Finally, we describe how ‘hard’ data based on the historical
evolution of risk factors may be combined with ‘soft’ data based on the analyst’s personal
views in a Bayesian VaR analysis.

IV.7.3.1 Normal Distribution Scenarios

The normal linear VaR formula (IV.2.5) depends on two parameters of the portfolio’s h-day
discounted return distribution, its expected value μh and its standard deviation σh, which until
now have been estimated from historical data on the portfolio returns.16 It is important to note
that the standard deviation represents the uncertainty about the expected value, i.e. the dis-
persion of the discounted return distribution about its centre. It does not represent uncertainty
about any other value. Thus, to apply the formula (IV.2.5) to a scenario VaR estimate, the
analyst should express his views about the discounted expected return on the portfolio using
his point forecast of the discounted expectation and his uncertainty about this forecast, in the
form of a standard deviation.

We now present some numerical examples that show how to estimate a normal distribution
scenario VaR and ETL based on increasingly complex, but plausible scenarios.

EXAMPLE IV.7.3: SCENARIO BASED VAR FOR UNLISTED SECURITIES

You hold a large stake in an unlisted company. Based on analysts’ forecasts you believe that
over the next month the asset value will grow by 2% in excess of the risk free rate. But you
are fairly uncertain about this forecast: in fact, you think there is a 25% chance that it will in
fact grow by 3% less than the risk free rate. Using a normal distribution scenario, estimate the

16 When the risk horizon h is small we usually assume the expected value is zero, i.e. that the portfolio is expected to return the
discount rate. It is only when the risk horizon exceeds several months that the discounted expectation has a significant effect on the
VaR estimate.
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10% 1-month scenario VaR and ETL, expressing both as a percentage of your investment in
the company.

SOLUTION Suppose X denotes the return on the company’s asset value over the next month.
Your discounted expected return over 1 month is 2% and we can express your uncertainty
forecast as

P(X <−0.03)= 0.25.

Applying the standard normal transformation gives

P
(

Z <
−0.03 − 0.02

σ

)
= 0.25, Z = X − 0.02

σ
,

where Z is a standard normal variable. Thus

−0.05

σ
=�−1(0.25)=−0.6745 ⇒ σ = 0.05

0.6745
= 7.413%.

We now apply the normal linear VaR formula to obtain the VaR estimate

�−1(0.9)× 0.07413 − 0.02 = 7.5%.

The 10% 1-month normal scenario VaR estimate is 7.5%, so we are 90% sure that you will
lose no more than 7.5% of your investment over the next month.

Next, applying the formula (IV.2.84) for the normal ETL, we obtain

0.1−1ϕ
(
�−1(0.1)

) × 0.07413 − 0.2 = 11.01%.

Thus, if you do lose more than 7.5% of your investment you should expect to lose about 11%
of your money over the next month.

EXAMPLE IV.7.4: SCENARIO INTEREST RATE AND CREDIT SPREAD VAR

A bank has an exposure of $0.25 billion to 5-year BBB-rated interest rates in the US. The
interest rate is currently 6.5%. Over the next 3 months you expect that BBB-rated 5-year credit
spreads will increase by 50 basis points and that 5-year LIBOR rates will fall by 75 basis
points. You express your uncertainty about these expected values using a bivariate normal
distribution scenario with the following parameters:

5-year LIBOR volatility = 100 bps
5-year spread volatility = 125 bps
LIBOR–spread correlation =−0.25.

Estimate the 0.1% scenario VaR over the next 3 months that is due to changes in interest rates
and credit spreads.
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SOLUTION We shall use the normal linear VaR formula (IV.2.14), i.e.

VaRh,α =�−1(1 − α)
√

θ
′
�hθ− θ

′
μh, (IV.7.1)

where θ denotes the 2 × 1 vector of the exposure’s PV01 to LIBOR rates and credit spreads
and �h and μh are defined below, for a risk horizon of 3 months. Using the approximation
(IV.2.27), we obtain the PV01 of a $5 billion exposure at 5 years over a 3-month risk horizon
when the interest rate is 6.5% as

PV01 ≈ $5 × 109 × 0.25 × (1.065)−6 × 10−4 ≈ $85,667.

Thus the sensitivity vector to LIBOR and credit spread changes is θ
′ = (85,667 85,667)′.

The expected changes in LIBOR and spread over the next 3 months are summarized in the
vector

μ3mths =
(−75

50

)
.

The covariance matrix that expresses your uncertainty about this expectation is17

�3mths = 1
4

(
1002 −0.25 × 100 × 125

−0.25 × 100 × 125 1252

)
=

(
2500 −781.25
−781.25 3906.25

)
.

Now substituting these values into the VaR formula with α = 0.001 gives the 0.1% 3-month
VaR as $20,566,112. This is 8.23% of the exposure. Thus, according to our scenario we are
99.9% confident that the bank will not lose more than 8.23% of the exposure due to changes
in credit spreads and interest rates over the next 3 months.

EXAMPLE IV.7.5: SCENARIO BASED VAR FOR COMMODITY FUTURES

An oil company produces 10 million barrels of crude oil per month. Figure IV.7.4 depicts,
by the black line, the current term structure of crude oil prices for the 1- to 12-month futures
contracts. The dotted line in the figure shows the company’s expectation for the term structure
of futures prices one week from now. The current prices and the expected changes in the prices
are given in Table IV.7.3.

Suppose the company’s uncertainty about the percentage returns at each maturity is repre-
sented by a standard deviation equal to the absolute value of the expected percentage return.
For instance, the standard deviation of the 1-month futures is∣∣∣∣ −2

110

∣∣∣∣ = 1.82%.

We also assume the correlation between the returns on i-month futures and j-month futures is
0.96|i−j|.

17 Note that the factor of 1
4 here expresses the fact that we have a 3-month covariance matrix, not an annual one.



370 Value-at-Risk Models

97.5

100

102.5

105

107.5

110

112.5

1 2 3 4 5 6 7 8 9 10 11 12

Figure IV.7.4 Term structure of crude oil futures now and in one week

Table IV.7.3 Prices for crude oil futures ($/barrel)

Maturity
(months)

1 2 3 4 5 6 7 8 9 10 11 12

Current price 110 108.5 107.2 106 105 104 103.1 102.4 101.7 101 100.4 100
Expected

change
–2 –1.67 –1.5 –1.34 –1.17 −1 −0.81 −0.67 −0.52 −0.35 −0.16 0

Table IV.7.4 Expected weekly returns, standard deviations and correlations

σ5 =−μ5 1 2 3 4 5 6 7 8 9 10 11 12

1.82% 1 1.000 0.960 0.922 0.885 0.849 0.815 0.783 0.751 0.721 0.693 0.665 0.638
1.54% 2 0.960 1.000 0.960 0.922 0.885 0.849 0.815 0.783 0.751 0.721 0.693 0.665
1.40% 3 0.922 0.960 1.000 0.960 0.922 0.885 0.849 0.815 0.783 0.751 0.721 0.693
1.26% 4 0.885 0.922 0.960 1.000 0.960 0.922 0.885 0.849 0.815 0.783 0.751 0.721
1.11% 5 0.849 0.885 0.922 0.960 1.000 0.960 0.922 0.885 0.849 0.815 0.783 0.751
0.96% 6 0.815 0.849 0.885 0.922 0.960 1.000 0.960 0.922 0.885 0.849 0.815 0.783
0.79% 7 0.783 0.815 0.849 0.885 0.922 0.960 1.000 0.960 0.922 0.885 0.849 0.815
0.65% 8 0.751 0.783 0.815 0.849 0.885 0.922 0.960 1.000 0.960 0.922 0.885 0.849
0.51% 9 0.721 0.751 0.783 0.815 0.849 0.885 0.922 0.960 1.000 0.960 0.922 0.885
0.35% 10 0.693 0.721 0.751 0.783 0.815 0.849 0.885 0.922 0.960 1.000 0.960 0.922
0.16% 11 0.665 0.693 0.721 0.751 0.783 0.815 0.849 0.885 0.922 0.960 1.000 0.960
0.00% 12 0.638 0.665 0.693 0.721 0.751 0.783 0.815 0.849 0.885 0.922 0.960 1.000

The first column of Table IV.7.4 shows the assumed vector of standard deviations of the
returns over the next week (which is set equal to the absolute value of the expected return)
at different maturities. The rest of the table displays their assumed correlation matrix. Based
on these hypothetical data, use a multivariate normal distribution scenario to estimate the
1% 10-day scenario VaR of this exposure (ignoring discounting, for simplicity). What is
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the difference between this result and the result based on a scenario where the expected
futures price change is zero for all maturities, but where the uncertainty is still specified by
Table IV.7.4?

SOLUTION The expected weekly return μ5 is given by −1 times the first column of
Table IV.7.4 and the weekly covariance matrix �5 is obtained using the usual matrix product
DCD where D is the diagonal matrix of weekly standard deviations given in the first column
of Table IV.7.4. Here C is the correlation matrix shown in the remaining part of the table. The
weekly covariance matrix is computed in the spreadsheet for this example. Since Table IV.7.4
refers to weekly returns, for a 10-day VaR we multiply both the expected weekly return and
the weekly covariance matrix by 2.

Now we apply formula (IV.7.1) where θ denotes the vector of the nominal exposures to each
futures contract, which is calculated by multiplying the current price of each futures contract
by 10 million, this being the number of barrels produced each month. In the spreadsheet we
calculate the VaR with and without the expected return term, obtaining a 1% 10-day VaR of
$347 million when we ignore the expected loss in revenues, and $607 million including the
expected loss in revenues.

A couple of comments are required about the practical aspects of the above example. First,
we have ignored the oil company’s production costs. If they are significantly less than the
current price of oil then they will be making a large profit, and do not need to hold any
capital against expected losses, or against their uncertainty about expected losses. Second,
even when production costs are large and profits are jeopardized by an expected price fall,
most large corporations employ historical accounting, not mark-to-market accounting, for their
production. So their corporate treasury will not necessarily use VaR as a risk metric.18

IV.7.3.2 Compound Distribution Scenario VaR

Compound distribution scenarios lend themselves to situations where the analyst believes
there is more than one possible distribution scenario for the evolution of his portfolio value,
and when he has a subjective estimate of the probability of each distribution scenario. In this
subsection we illustrate a simple compound distribution scenario based on a normal mixture
distribution. A mixture of two normal distributions can be used to represent beliefs about a
market crash, when the probability of a crash during the risk horizon is specified. Two numer-
ical examples illustrate the application to credible scenarios on equities and credit spreads.
Then we define a general theoretical framework in which the component distributions in the
scenario are not constrained to be normal.

The application of normal mixture scenarios to long-term VaR has more mathematical (as
well as economic and financial) meaning than the blind extrapolation of short term market
risks to very long horizons, based on totally unjustified statistical assumptions. We should
question the standard practice of estimating VaR over a short risk horizon and then scaling
the estimate to a longer horizon under the assumption that the portfolio returns are i.i.d. The
i.i.d. assumption is seldom justified, and it introduces a considerable model risk in long-term
VaR estimates. In this section we demonstrate how the analyst could use his knowledge of
financial markets and economic policy to formulate a subjective view on the long-term return
distribution, and hence obtain an appropriate VaR estimate, in the normal mixture framework.

18 The historical and mark-to-market accounting frameworks are explained, briefly, in Section IV.8.2.2.
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EXAMPLE IV.7.6: SCENARIO VAR WITH A SMALL PROBABILITY OF A MARKET CRASH

A portfolio has shown a steady positive return in excess of the risk free rate of 3% per
annum with a volatility of 25%. The portfolio manager believes there is a small chance,
say 1 in 100, that the market will crash during the next 10 days, in which case he believes
that the expected portfolio excess return over a 10-day period will be −10% with an annual
volatility around this of 100%. What is the 100α% 10-day normal mixture VaR and how
does it compare with the VaR under the assumption of that no crash can possibly occur?
Compute the answer as a percentage of the portfolio value, and for α = 0.05, 0.01, 0.005
and 0.001.

SOLUTION To answer this we use the implicit formula for the mixture VaR that is derived
in Section IV.2.9.2 with two 2-component normal densities and where:

π is the probability of regime 1 (i.e. 0.01),
μ1,10 is the 10-day excess return in regime 1 (i.e. −0.1),
σ1,10 is the 10-day excess return standard deviation in regime 1 (i.e. 0.2),
μ2,10 is the 10-day excess return in regime 2 (i.e. 0.03/25 = 0.0012), and
σ2,10 is the 10-day standard deviation in regime 2 (i.e. 0.25/

√
25 = 0.05)

Using the Excel spreadsheet for this example with Solver (or Goal Seek) applied each time
we change the significance level, we obtain the normal mixture VaR figures in the first row of
Table IV.7.5.

Table IV.7.5 Normal mixture VaR versus normal VaR

Significance level 10% 5% 1% 0.5% 0.1%

Normal mixture VaR 6.43% 8.35% 12.57% 15.26% 35.64%
Normal VaR 1 6.97% 8.95% 12.67% 14.03% 16.84%
Normal VaR 2 6.29% 8.10% 11.51% 12.76% 15.33%

The two set of figures corresponding to normal VaR, shown in the last two rows of
Table IV.7.5, are calculated using a single value for the discounted returns standard devia-
tion and expected value over the holding period. The ‘normal VaR 2’ figures are computed
using the second (i.e. ‘ordinary market circumstances’) distribution of excess returns. That is,
we ignore the possibility of a market crash in the ‘ordinary’ normal VaR and use the expected
value of 0.0012 and standard deviation of 0.05. For the ‘normal VaR 1’ figures shown in the
table we apply the normal linear VaR using a density that has the same mean and standard
deviation as the normal mixture density. By (IV.2.73) the standard deviation is the square
root of

π
(
σ2

1,10 +μ2
1,10

)+ (1 −π)
(
σ2

2,10 +μ2
2,10

) − (
πμ1,10 + (1 −π)μ2,10

)2
,

and the mean is πμ1,10 + (1 −π)μ2,10. These adjust the ‘ordinary’ market mean and standard
deviation to take account of the possibility of a crash, but after this the VaR is computed using
a normal assumption for portfolio returns.

From the results in Table IV.7.5 it is clear that ignoring the possibility of a crash can seri-
ously underestimate the VaR at high confidence levels. The normal mixture VaR estimates
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are based on a distribution with extremely high excess kurtosis, because the probability of a
market crash is very small. Hence it is only at the very high confidence of 99.5% and 99.8%
that the normal mixture scenario VaR exceeds the normal VaR estimates. Even if one were
always to assume a normal distribution, comparing the normal VaR 2 results (which exclude
the manager’s beliefs about the crash entirely) with the normal VaR 1 results, the latter is
larger especially at the high confidence levels.

Readers may use the spreadsheet for the above example to compute the scenario VaR during
periods of intense volatility, such as October 2008, when the analyst’s view on the crash prob-
ability may be considerably greater than 1% and, if the market recovers, the expected daily
excess return could be considerably greater than 0.12%.

To demonstrate how flexible normal mixture scenario VaR is, the next example considers
the case where a risk analyst estimates the annual VaR of a 5-year BBB-rated bond at the
99.9% confidence level. The VaR estimate is based on his personal beliefs about the possible
values of the bond’s credit spread one year from now, which are summarized in a distribution
that is derived from a mixture of three normal distributions with different means and variances.
The density function for this distribution is shown in Figure IV.7.5.19
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Figure IV.7.5 Personal view on credit spread of bond, one year from now

EXAMPLE IV.7.7: CREDIT SPREAD NORMAL MIXTURE SCENARIO VAR

You have invested several million dollars in a 5-year BBB-rated zero coupon bond. The PV01
of your exposure at 5 years is $1000 and the current credit spread on this bond is 100 basis
points. You believe that, 1 year from now, there are only three possibilities. The bond will
either be upgraded to an A rating, downgraded to a BB rating, or remain in the same credit
rating, and your subjective probabilities for the occurrence of these three scenarios are 0.3,
0.3 and 0.4, respectively. Your beliefs about the change in the credit spread, in basis points

19 Readers may change the parameters of the normal mixture distribution in the spreadsheet until they are satisfied that the distribution
represents their own beliefs about the credit spread on a BBB-rated bond in 1 year’s time. Since mixtures with three normal components
are very flexible, a great variety of shapes may be obtained.
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and over an annual horizon, are summarized in Table IV.7.6. Assuming that your uncertainty
about each of the three component scenarios is captured by a normal distribution, the resulting
mixture distribution is depicted in Figure IV.7.5. Use this personal view to estimate the 0.1%
annual VaR and ETL for your exposure to this bond.

Table IV.7.6 Analyst’s beliefs about credit spreads

Downgrade Upgrade Rating unchanged

Probability 0.3 0.3 0.4
Expected change in spread 60 –30 0
Volatility of change in spread 50 15 20

SOLUTION In the spreadsheet for this example we use the Solver to back out the VaR from
the normal mixture VaR formula derived in Section IV.2.9.2 with three component normal
densities. The result is an estimate of 0.1% annual VaR equal to $78,942. The reader may
change the personal view and/or the VaR parameters and recalculate the VaR, but note that a
suitable starting value in cell B10 is sometimes needed for Solver to converge.

Compound distribution scenarios that involve Student t distributions can be dealt with in the
simple framework illustrated by the two previous examples, simply by replacing one or more
of the normal components in the mixture VaR formula (IV.2.72) by Student t distributions
with specified degrees of freedom.20

We now explain a general simulation method for simulating scenario VaR and ETL using
component distribution scenarios that need not be Student t or normally distributed. Suppose
beliefs are captured by a compound distribution scenario, similar to the normal mixture sce-
narios described in the examples above, but now we allow the distribution function for each
scenario to be any distribution we like. For instance, one or more components could be non-
parametric distributions based on empirical observations on risk-factor returns drawn from
different historical periods. Or we could use one or more empirical distribution components
plus one or more parametric distribution components with parameters that are assigned sub-
jectively according to our views about the return distribution in the case that this scenario
pertains. We also require a subjective estimate for the mixing law of the compound distri-
bution, i.e. a probability vector whose components correspond to our subjective probability
assigned to each scenario.21

For simplicity we shall henceforth assume that there are only two components in the com-
pound distribution scenario, since the extension to more than two (but still a finite number
of) components is straightforward to extrapolate from this description. Thus we represent the
mixing law by a vector (π, 1 −π) with 0<π<1, and we denote the two component distribu-
tion functions G(x) and H(x) where x is the return on our portfolio.22 The compound scenario
is represented by the distribution

F(x)=πG(x)+ (1 −π)H(x). (IV.7.2)

20 See the numerical examples provided in Section IV.2.9.4 for further illustration.
21 For example, in Example IV.7.7 the probability vector representing the mixing law was (0.3, 0.3, 0.4).
22 More generally, we could replace x by a vector of risk factor returns x, and use multivariate distribution functions for G(x) and H(x).
Then at the second simulation stage we must apply a multivariate method – see Section IV.4.4.1 for further details.
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The VaR and ETL corresponding to this scenario are then estimated using the following two-
step simulation algorithm:

1. Draw a random number u from a standard uniform distribution: if u < π then select the
distribution G(x), otherwise select H(x).

2. Simulate a return from the selected distribution using the standard (historical or Monte
Carlo) approach.

3. Return to step 1 and repeat thousands of times to obtain an empirical, simulated return
distribution.

This way we simulate from the compound return distribution (IV.7.2) that represents our
beliefs, and thereafter we can estimate the VaR and ETL from the simulated return distribution
in the usual manner.

IV.7.3.3 Bayesian VaR

The classical or ‘frequentist’ approach to statistics focuses on the question: what is the proba-
bility of the data, given the model parameters? This probability is measured by the likelihood
function of the data, which is introduced in Section I.3.6.1. The functional form and the param-
eters of the distribution are assumed to be fixed, although unknown, but the point to emphasize
is that classical statisticians assume that at any point in time there is one true value for each
model parameter. Hence, they only make probabilistic statements about the likelihood of the
sample data, given that the assumed distribution is the true distribution.

Bayesian statistics, on the other hand, focuses on our uncertainty about model parameters.23

There may be a true value for each parameter at any point in time, but we shall never know for
sure what it is. Bayesians represent the possibilities for true values of a parameter by a proba-
bility distribution. In this way probabilistic statements can be made about model parameters,
thus turning the classical question around, to ask: what is the probability of the parameters,
given the data?

The Bayesian process of statistical estimation is one of continuously revising and refining
our subjective beliefs about the state of the world as more data become available. It can be
considered as an extension of, rather than an alternative to, classical inference: indeed, some
of the best classical estimators may be regarded as restricted forms of Bayesian estimator.24

Bayesian estimators are based on a combination of prior beliefs and sample information. The
idea is to express uncertainty about the true value of a model parameter with a prior distribu-
tion on the parameter that describes one’s beliefs about this true value. Beliefs, i.e. personal
views, can be entirely subjective, but more ‘objective’ information may be added to these prior
beliefs when it becomes available, in the form of the likelihood of an observed sample of data.
The likelihood function is used to update the prior distribution to a posterior distribution using
Bayes’ rule.

23 The Bayesian approach is named after Rev. Thomas Bayes, whose ‘Essay Towards Solving a Problem in the Doctrine of Chances’
was published posthumously in the Philosophical Transactions of the Royal Society of London in 1764.
24 Bayesian estimates of parameters are usually based on an assumed loss function (e.g. a quadratic loss function) and it is only for
certain types of loss function that we recover the classical estimates as a special case of Bayesian estimates. For instance, the maximum
likelihood estimator of a parameter is a Bayesian estimator with a non-informative prior (i.e. the prior distribution is uniform) and a
zero–one loss function (i.e. the loss is zero if the estimator has no error, and one for any other value). Thus the maximum likelihood
estimator – the jewel in the crown or classical statistics – is the most basic of all Bayesian estimators, because it is based on no prior
information and a very crude loss function.
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Bayes’ rule, the cornerstone of Bayesian analysis, is based on the theorem of condi-
tional probability which is described in Section I.3.2.2. There we stated Bayes’ rule for two
probabilistic events A and B as

P(A|B )= P(B |A )P(A)

P(B)
. (IV.7.3)

When Bayes’ rule is applied to distributions about model parameters we let A be the
parameters and B be the data, and Bayes’ rule is usually written as25

P(parameters
∣∣data)= kP(data

∣∣parameters)P(parameters).

We identify P(parameters) with the prior density, often based entirely on a subjective view
about the possible values for each parameter, and P(data

∣∣parameters) with the sample like-
lihood which, for Bayesian VaR analysis, will usually be based on historical data. Then
P(parameters

∣∣data) is the posterior density on possible parameter values, which takes account
of the extra information we have obtained by observing the sample data.

Hence Bayes’ rule may be written26

Posterior density ∝ Likelihood × Prior density. (IV.7.4)

Note that the posterior will be normal if both the likelihood and the prior are normal, because
the product of two normal density functions is another normal density function. In fact, if
the sample distribution is N(μ1,σ

2
1) and the prior distribution is N(μ2,σ

2
2) then the posterior

distribution is N(μ,σ2) with

μ=
(

σ2

σ2
1

)
μ1 +

(
σ2

σ2
2

)
μ2,

σ2 =
((

1

σ2
1

)
+

(
1

σ2
1

))−1

.

(IV.7.5)

To prove this, write the product of the two normal density functions as

C1 exp

(
− 1

2

[(
x −μ1

σ1

)2

+
(

x −μ1

σ1

)2
])

,

where C1 is a constant (i.e. it does not depend on x). Now, after some algebra it may be shown
that the term in square brackets above may be written in the form[

x −μ

σ

]2

+ C2,

with μ and σ given by (IV.7.5) and where C2 is another constant. We can ignore the constants,
because we will normalize the posterior density after multiplying the two density functions
representing the likelihood and the prior, as explained above.

25 The unconditional probability of the data P(B) is regarded as a scaling constant, k, whose value is set to ensure that the distribution
on the left-hand side is normalized (so that its sum or integral is one).
26 The symbol ∝ denotes ‘is proportional to’.
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When formulating prior distribution scenarios one should always use a prior that reflects all
the information, views and opinions that one has a priori – no more, no less. This is crucial for
rational descriptions and decision making. Note that if there is no prior information, then the
prior beliefs are that all possible values of parameters are equally likely. In this case the prior
distribution is just the uniform distribution. Then the posterior density is just the same as the
sample likelihood, so the Bayesian VaR and ETL estimates will be identical to the standard
VaR and ETL estimates.

EXAMPLE IV.7.8: COMPARISON OF BAYESIAN VAR AND SCENARIO VAR

Consider two ways of forming a personal view about the portfolio’s annual return distribution:

(a) Analyst A believes that there is a 1 in 10 chance that some major political event will
occur during the next year, in which case the portfolio’s expected return over the next
year will be −10%, with a volatility of 30%.

(b) Analyst B has the prior belief, in the absence of any historical information on the
portfolio’s performance, that the portfolio will return −10% over the next year, with
a volatility of 30%.

Now both analysts observe some ‘objective’ sample data on the portfolio’s returns. These have
mean zero and volatility 20%. Assuming both the objective data and the personal views have
distributions that are normal, combine the beliefs with the objective data to estimate the 5%
and the 1% annual VaR expressing the result as a percentage of the portfolio value.

SOLUTION The difference between case (a) and case (b) is subtle. In case (a), which cor-
responds to a normal mixture scenario, we have more information about the probability with
which each scenario will occur than we do in case (b), which represents the Bayesian view.
The view of analyst A is that there is a 90% chance that the objective sample represents the
return distribution and a 10% chance that some adverse political event will occur. But this
information is not used for the Bayesian view. That is, case (a) uses a weighted sum of normal
densities, which is not another normal density, but case (b) takes the product of the densities,
which is another normal density. We now describe the distribution of returns in each case and
estimate the VaR.

Analyst A

The analyst’s view is represented by a normal mixture distribution with parameters

π= 0.9, μ1 = 0, σ1 = 20%, μ2 =−10%, σ2 = 30%.

This is depicted by the grey curve in Figure IV.7.6. Using Solver to back out the VaR in the
usual way, we obtain: 5% VaR = 36.37%, 1% VaR = 54.27%.

Analyst B

We find the posterior density by multiplying together two normal density functions: the like-
lihood has mean zero and standard deviation 0.2 and the prior has mean −0.1 and standard
deviation 0.3. Hence, by (IV.7.5) the posterior distribution is a normal distribution with
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σ =
((

1

0.22

)
+

(
1

0.32

))−1/2

= 16.64%,

μ =
(

σ2

0.22

)
× 0 −

(
σ2

0.32

)
× 0.1 =−3.08%.

Using these in the normal linear VaR gives the result: 5% VaR = 30.45%, 1% VaR = 41.79%.
The Bayesian posterior density corresponding to analyst B is depicted by the normal black

curve in Figure IV.7.6.27 Notice that the normal mixture scenario corresponding to analyst
A has a heavier lower tail than the Bayesian posterior distribution, so the normal mixture
scenario VaR at high confidence levels could be much greater than the Bayesian VaR.
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Figure IV.7.6 Comparison of normal posterior with normal mixture

IV.7.4 INTRODUCTION TO STRESS TESTING

Since the 1990s regulators of financial institutions have been encouraging risk managers to
look beyond the standard risk metrics such as volatility and VaR, and to think for themselves
about circumstances that could generate extreme losses. Mechanically reapplying the same
risk metric to the same risk model each day, where the only difference is that the portfolio
sensitivities and the corresponding data for the risk factors have been updated, is like playing
the same score on a pianola, day after day.28

If estimating VaR is like playing a pianola then stress testing is like performing on a concert
grand. Over the course of the last decade the design, structure and implementation of risk
models have all evolved considerably, and what was state-of-the-art 10 years ago now seems

27 Notice that the posterior distribution has a volatility that is less than both the historical and the prior’s volatility. This will always be
the case when the likelihood and the prior are both normal. The rationale that justifies this result is that additional information should
reduce one’s uncertainty. However, when the likelihood and prior are not both normal, the uncertainty in the posterior distribution
need not be less than in both the likelihood and the prior.
28 A pianola is a mechanical piano (see www.pianola.org).
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simplistic in the extreme. Today, in most major financial institutions, advances in theoretical
financial risk analysis, computational power and database design have combined to produce
sophisticated models for measuring market risk. Regulators lay down few prescriptive rules
for stress testing, leaving analysts a fairly free choice of what to ‘play’ on their risk model.
But all too often they only play some variation on Chopsticks.29

If the risk analysts are musicians then the senior managers and board members that are
responsible for the overall solvency of the firm are the conductors. It is the task of the most
senior members of the firm to define the stress scenarios that are used, and to formulate
dynamic contingency plans under each scenario, just as it is the conductor’s task to direct
the musicians in the orchestra. At the time of writing the majority of conductors are directing
some version of Chopsticks where the score (not that Chopsticks really requires a score) is a
‘worst case’ scenario (not that this actually means anything).

The challenge facing the profession today is that many senior managers and board members
are unaware how to direct analysts to produce meaningful results. With the new professional
standards that we have been setting since the 1990s, risk analysts should now be sufficiently
well trained; it is the senior managers who all too often fail to understand the risk model
properly. Yet, to assess risks in a coherent mathematical framework, they must learn to conduct
a score that is a little more complex than Chopsticks.

Well, one can take analogies only so far, so – although I could easily continue because I feel
in need of some light relief, having worked so long on these books – let me now summarize
my views and close by focusing on an important learning point. After nearly two decades
of rapid development, market risk management systems and the analysts that work with them
have evolved to an extent that meaningful stress tests can be performed. But in order to do this,
analysts must first ask senior managers the right questions, and senior managers must learn to
understand these questions. ‘What is the worst case scenario’ is not the right sort of question,
because an analyst cannot apply his risk model to such a scenario; he can only apply the
portfolio mapping. And, in this case, the result is meaningless because there is no probability
associated with a ‘worst case’ loss. Instead the analyst needs to design a simple set of questions
that aim to encode the senior manager’s beliefs about changes in major risk factors into a
distribution scenario. Given this distribution the analyst can use his entire risk model – not
only the portfolio mapping – to apply meaningful and coherent stress tests corresponding to
each such scenario.

IV.7.4.1 Regulatory Guidelines

The internal calculations for market risk capital are based on 1% 10-day VaR estimates that
are derived using historical data, but these calculations cannot reveal the extreme losses that
could be incurred in unexpected exceptional circumstances. Since the end of 1997, financial
institutions using internal VaR models to assess capital adequacy have been required to imple-
ment stress testing. The 1996 Market Risk Amendment to the 1988 Basel Accord specified
that a bank wishing to use an internal model for market risk capital must have in place a rig-
orous and comprehensive stress testing program designed to identify events or influences that
could have a significant impact on the bank’s capitalization. Stress scenarios need to cover a

29 Chopsticks is the name given to extremely simple piano pieces that can be played with two fingers, acting like chopsticks (see
http://en.wikipedia.org/wiki/Chopsticks_(music)).
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range of factors that can create extraordinary losses in trading positions. The results of stress
tests should be routinely communicated to senior management, and periodically to directors.

Consequently, for the past 10 years banks have been considering low probability events on
all major risk factors – without assigning any numerical value for this probability – and from
these events they have been deriving extreme scenarios for the risk factors that, when input to a
portfolio mapping, produce a so-called ‘worst case’ loss. Regulators require that banks do this
for both linear and non-linear exposures and that they provide a qualitative as well as a quan-
titative analysis in their stress testing reports to supervisors. The quantitative report describes
‘plausible’ stress scenarios that could have a significant impact on their particular exposures
in numerical terms, and evaluates the total loss incurred by the bank under such scenarios.
The qualitative report evaluates the bank’s capacity to absorb losses of this magnitude and
identifies the bank’s strategy for reducing risk and conserving capital under a stress scenario.

More recently regulators have emphasized the importance of stress test results for deter-
mining capital adequacy in banks, by requiring that a bank’s minimum regulatory capital
for market risk covers the losses that are quantified in stress tests. Specifically, the Basel II
Accord, which was adopted in the EU countries in January 2007 and in the US in January
2008,30 states that ‘A bank must ensure that it has sufficient capital to meet the minimum cap-
ital requirements set out in the Market Risk Amendment and to cover the results of its stress
testing required by that amendment.’ Moreover, in addition to the stress tests recommended
in the Basel I Amendment, banks must consider stress tests relating to a number of specific
scenarios, including illiquidity,31 concentrated positions, gapping of prices,32 one-way markets
and default events.

The results of stress tests help regulators to assess the capital adequacy of a particular
institution, and in particular they are supposed to give regulators an idea – however crude – of
the likelihood of insolvency over some future time horizon.33 Banking supervisors will want
to see:

• a document describing the stress testing methodologies used;
• the results of a portfolio sensitivity analysis that aims to identify the key risk factors for

each of the major lines of business;34 and
• full details of the largest losses that were recorded during the reporting period – how they

were incurred and whether the loss exceeded the VaR estimate at the time of the loss.

The main effect of the Basel II Accord on market risk capital is that supervisors can impose
an additional capital charge under Pillar 2 if they deem it appropriate.35 Hence, if they are
concerned that the bank has insufficient capital to cover its stress testing results, the regulatory
risk capital requirement could be increased.

30 Simple methods only: However, advanced credit and operational risk models were adopted in the UK in January 2008.
31 They specifically mention deep out-of-the-money options positions. Also the exogenous and endogenous aspects of liquidity should
be considered. See Section IV.7.5.4 for further details.
32 That is, a very large difference between yesterday’s closing price and today’s opening price.
33 In fact most credit rating agencies such as Standard and Poor’s, Moody’s and Fitch also require firms to provide stress testing results
that support their claims about capital adequacy.
34 This analysis should be designed around the bank’s current trading positions and also take account of current market circumstances.
For instance, at the time of writing, volatile oil prices and credit spreads are the two main risk drivers that could be affecting the
solvency of a bank.
35 The three ‘pillars’ of the new Basel Accord are: Pillar 1, capital requirements; Pillar 2, enhanced supervision; and Pillar 3, public
disclosure and market discipline (see Section IV.8.2.3 for further details).
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IV.7.4.2 Systemic Risk

Systemic risk is the risk that the insolvency of a few large firms spreads throughout the sector,
and possibly into other sectors of the economy. Local regulators can gain some idea of the
extent to which mass insolvency could affect their sector of the global banking system by
aggregating the stress test results, usually based on standard stress scenarios, over all banks
under their supervision.

The three main factors that contribute to systemic risk are the similarities of risk assessment
and risk management procedures, collateral shortages and illiquid markets. We discuss each
of these in turn.

The regulations governing financial institutions actually encourage institutions to assess
and manage risk in a similar fashion. Under Pillar 3 of the new Accord banks must declare
the methods used to assess risks and their Pillar 1 regulatory capital requirements. The public
disclosure of risk capital based on a standard methodology (i.e. usually a VaR model) cou-
pled with the rapid dissemination of information that is facilitated by technological advances
(e.g. via electronic trading platforms) can precipitate a sequence of rapid responses to an
adverse event that culminates in institutions displaying herd behaviour, where traders have
virtually simultaneous, similar responses. Market participants attempt to ‘beat the herd’ by
trading first, shocks are augmented because short term volatility increases, and a one-way
market may ensue.

Many financial institutions hold sufficient collateral to cover only ‘normal’ contingencies
and long term average liquidity demands. But a stress event can create a collateral shortage
that is contagious. Suppose counterparty A defaults on counterparty B because it lacks col-
lateral. Counterparty B must absorb a large fraction of the loss and, as a result, may now
have difficulty meeting its own obligations, so it may default on counterparty C, and so the
contagion spreads.

A market’s liquidity is reflected by the size of the bid–ask spread (exogenous liquidity)
and the market depth (i.e. the ability to do large trades with little price effect, which is an
endogenous form of liquidity). In the event of a crisis, exogenous illiquidity can spill over
from one market to another, because an increase in one market’s bid–ask spread can increase
demand in another market. For instance, traders may be using a market for hedging because
it is the cheapest of several alternative markets to trade in, but if spreads widen in that market
then traders will seek to use another market for hedging. A sudden increase in demand in this
second market could then decrease its liquidity; in other words, a reduction in liquidity in one
market may affect liquidity in other markets.

IV.7.4.3 Stress Tests Based on Worst Case Loss

A ‘worst case’ loss purports to quantify the tails of the distribution of losses beyond the
threshold (typically 99%) used in VaR analysis. It is derived from a set of simplistic extreme
scenarios on the risk factor returns. Each extreme scenario is a vector of risk factor returns
and the worst case loss is the maximum loss that is recorded over all the identified scenarios.
But since a worst case loss is not based on a distribution of risk factor returns the result is a
loss to which we cannot assign a probability, so the output is impossible to interpret in any
meaningful way. Nevertheless, this approach to stress testing remains popular at the time of
writing, mainly because it is easy to understand and cheap to implement. To derive a ‘worst
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case’ loss one only has to substitute some extreme value for each risk factor return in the
portfolio mapping, and the portfolio mapping is the only part of the risk model that is used.

The application of worst case scenarios to stress tests may be based on hypothetical or his-
torical events. A common hypothetical event is a six sigma event, meaning a loss that is at least
six standard deviations from the expectation of a distribution.36 Simply put, if the historical (or
hypothetical) P&L standard deviation is σ̂ dollars, then the worst case loss is 6σ̂ dollars. More
generally, suppose we are stress-testing a portfolio that has k risk factors whose returns are
denoted X1, . . . ,Xk and whose P&L is denoted f(X1, . . . ,Xk). Given an estimated or hypothe-
sized value for the means μ̂i and the standard deviations σ̂i, i = 1, . . . ,k, the six sigma loss is
defined as f(μ̂1 ± 6σ̂1, . . . , μ̂k ± 6σ̂k), where the + or − is chosen independently for each risk
factor in order to maximize the loss.

This is an example of the factor push methodology for stress testing, in which each risk
factor is ‘pushed’ by a certain amount, in a direction that will incur the greatest loss, without
respecting any assumption about the risk factor correlations. More generally, a factor push
method generates a P&L of the form

f(μ̂1 + a1σ̂1, . . . , μ̂k + akσ̂k)

where the integers a1, . . . , ak can be positive or negative. This method is commonly used by
traders for assessing the risks of their own positions, but since it takes no account of risk
factor correlations the factor push methodology has limited application to firm-wide solvency
assessment.

EXAMPLE IV.7.9: A FACTOR PUSH STRESS TEST

A UK bank has invested £5 million in a US equity index. Assuming the $/£ exchange rate is
currently 2, with a volatility of 10%, and the equity risk factor volatility is 25%, find the six
sigma daily return in each risk factor and hence estimate the worst case loss to the UK investor
over a daily horizon.

SOLUTION The daily standard deviation of the forex rate is σ̂1 = 0.1
/√

250 = 0.00632 and
that of the equity index is σ̂2 = 0.25

/√
250 = 0.01581. The six sigma daily return is six times

these, i.e. 3.79% for the forex rate, 9.49% for the equity index.37 The original value of the
position, based on a forex rate of 2, is $10 million. With a positively stressed equity return
of 9.49% the new position value is 10 × exp(0.0949) = $10,995,141, and with a positively
stressed forex return the new exchange rate is 2 × exp(0.0379) = 2.077. Hence the stressed
value of the new position is $10,995,141/2.077 = £5,292,861. So, under this scenario, the
position would make profit of £292,861.

Table IV.7.7 Six sigma losses

Sign on forex return 1 −1 1 −1
Sign on equity return 1 1 −1 −1
Stressed value £5,292,861 £5,710,197 £4,378,132 £4,723,343
P&L £292,861 £710,197 –£621,868 –£276,657

36 The six sigma methodology was originally developed as a set of practices designed to improve manufacturing processes and
eliminate defects. See http://en.wikipedia.org/wiki/Six_Sigma for more information.
37 Note that the latter is the dollar return, not the return in pounds sterling, and we assume that all returns are log returns.
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The P&L corresponding to the four possible directions of the changes in the two risk
factor returns is displayed in the last row of Table IV.7.7. From this it is clear that the
worst case loss of £621,868 occurs when the exchange rate appreciates and the equity index
falls.

The factor push approach does not respect correlations between risk factors and, although
these may indeed change during stressful periods, there are some correlations that must always
be respected if the market is to be arbitrage free. For instance, it is impossible for interest
rates along a yield curve to move independently by any amount and in any direction without
creating arbitrage opportunities using calendar spreads.

A more sophisticated method for estimating worst case loss, developed by Studer and
Lüthi (1997), uses a trust region in risk factor returns space to derive a worst case loss
that respects correlations between risk factors. Denote the risk factor covariance matrix by
� and the risk factor returns vector by x = (X1, . . . ,Xk)

′. If the risk factor returns have a
multivariate normal distribution then the regions defined by x′�−1x = c for some constant
c are concentric ellipsoids. For instance, if k = 2 then the ellipsoid curves are ordinary
two-dimensional ellipses. They correspond to the level sets of the bivariate normal den-
sity function. By requiring x′�−1x ≤ c for some constant c, we are therefore requiring that
the risk factor returns lie in a confidence region that is determined by c. This region is
called a ‘trust’ region because the smaller the value of c the smaller the possible range
for risk factors returns about their expected value, and therefore the more likely they are
to occur.

The matrix � may be specified according to historical returns behaviour, or by a stressed
covariance matrix such as those described in Section IV.7.5. Either way we can derive a
constrained maximum loss as the solution to the following optimization problem:

min
x

f(x) such that x′�−1x ≤ c, (IV.7.6)

where f(x) is the P&L for the portfolio, according to the portfolio mapping f.

EXAMPLE IV.7.10: WORST CASE LOSS IN SPECIFIED TRUST REGION

A UK bank holds £5 million in S&P 500 futures and £5 million in FTSE 100 futures and the
$/£ exchange rate is 2. The two equity indices each have a volatility of 25% and the forex rate
has a volatility of 10%. The correlation between the forex rate and S&P 500 dollar returns
is 0.25, the correlation between the forex rate and the FTSE 100 index is −0.15, and the
correlation between the local currency returns on the equity indices is 0.5. Use these data
to set up the optimization problem (IV.7.6) for trust levels c = 0.05, 0.1 and 0.25, each time
recording the vector of optimally stressed risk factor returns and the corresponding worst case
loss on the portfolio.

SOLUTION The optimization problem is set up in the spreadsheet for this example, using
the Solver settings shown there. Readers are free to change the covariance matrix and/or the
trust level, but must remember to reapply Solver each time. The results are summarized in
Table IV.7.8. The first three rows show the optimized returns on each of the risk factors and
the last row shows the worst case loss under these risk factor returns. As c increases the
optimized vector of risk factor returns may be less likely to occur. In other words, as the worst
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Table IV.7.8 Results of worst case loss optimization

c 0.05 0.1 0.25

USD/GBP return −0.382% −0.540% −0.855%
FTSE100 return 4.969% 7.029% 11.116%
S&P 500 return 4.460% 6.305% 9.967%
Worst case loss £502,768 £718,359 £1,159,302

case loss shown in the table increases from £502,768 to £1,159,302 it may also become less
likely under a multivariate normal distribution for the returns.38

IV.7.5 A COHERENT FRAMEWORK FOR STRESS TESTING

The most straightforward method of encoding stress scenarios for distributions of risk factor
returns is to assume that the functional form of the risk factor return distributions remains the
same in stressful markets.39 For instance, if the risk factor returns have a multivariate Student t
distribution with 8 degrees of freedom in ‘normal’ market circumstances, then we assume that
they still have a multivariate Student t distribution with 8 degrees of freedom during stressful
periods; the only change is to the mean and covariance parameters of this distribution.

This section will illustrate the use of a stressed covariance matrix to calculate VaR and ETL
corresponding to stressful scenarios.40 This way, a stress test is derived from the entire risk
model, not only the portfolio mapping, and so we can quote the result of a stress test as a
probabilistic statement. Note that we should stress not only the covariance matrix but also the
expected risk factor returns in the stress test. The vector of expected returns can contain many
extreme values that impact the portfolio with substantial losses, so accounting for the expected
return could have a significant effect on the stressed VaR and ETL even over a very short time
horizon.

One of the methods that regulators recommend for constructing stressed covariance matri-
ces is to ‘make up’ a hypothetical covariance matrix. But in so doing there is no guarantee that
the matrix will in fact represent a covariance matrix, because when correlations are altered
in an arbitrary fashion the matrix need not be positive semi-definite. We discuss this problem
in Section IV.7.5.2, and explain how to find the ‘nearest’ covariance matrix to the one that is
specified in our hypothetical example. Section IV.7.5.3 addresses the problem of dimension in
the context of stress testing. Stress tests commonly involve changing a very large number of
risk factors, many of which are often highly correlated. We already know how to use principal
component analysis to reduce the dimension of the risk factor space, and this subsection illus-
trates the application of stress tests to principal components of a large number of correlated
risk factors. Section IV.7.5.4 explains how to model liquidity effects in stress tests, distin-
guishing between exogenous effects where illiquidity is reflected in an increase in the bid–ask
spread, and endogenous effects which include the impact of the quantity traded on the mid price

38 It is also possible – though complex – to associate a probability with a worst case loss that is derived using this method by computing
the value of the multivariate normal distribution function at x, when x′�−1x = c. See Studer and Lüthi (1997).
39 However, Berkowitz (1999) has argued that the distribution of an asset or risk factor during periods of market stress is very different
from its usual distribution.
40 The Basel Committee recommends the use of both hypothetical stressed covariance matrices, and those derived from historical
crisis periods.
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in the market. We explain how to model the gradual liquidation of a position – or the gradual
hedging – over a period of several days, and how to incorporate this into a liquidity-adjusted
estimate in the stressed VaR calculation. Finally, we discuss volatility clustering, which has
a significant influence on VaR and ETL even in ‘normal’ market circumstances. In stressful
markets this effect becomes even more pronounced, as we demonstrate in Section IV.7.5.5.

IV.7.5.1 VaR Based on Stressed Covariance Matrices

The 1996 Amendment to the Basel Accord recommended that banking regulators require
stress tests to be performed using stressed risk factor covariance matrices. Such matrices could
be obtained using historical data on daily risk factor returns from a crisis period in the past.
The crisis period should cover the period where there is a concentration of extreme returns.
For instance, the next example computes a simple covariance matrix for the FTSE 100 and
S&P 500 indices using data from around the period of the global stock market crash.

EXAMPLE IV.7.11: COVARIANCE MATRIX FROM GLOBAL EQUITY CRASH OF 1987

Use daily prices on the FTSE 100 and S&P 500 indices from just before and after the global
stock market crash in October 1987 to derive a historical covariance matrix for these two risk
factors. Use this matrix, and the other sample moments from the same period, to estimate
the 0.1% daily equity VaR of a portfolio with equal amounts invested in the two indices, and
discuss your results.

SOLUTION Data from 13 October to 20 November 1987 were downloaded from Yahoo!
Finance.41 Figure IV.7.7 shows that the FTSE index fell on most of the days from 13 October
until 10 November.42 Based on the 20 observations from 13 October to 10 November, the
sample moments are displayed in Table IV.7.9.

220

230

240

250

260

270

280

290

300

310

320

13
-O

ct

15
-O

ct

17
-O

ct

19
-O

ct

21
-O

ct

23
-O

ct

25
-O

ct

27
-O

ct

29
-O

ct

31
-O

ct

2-
N

ov

4-
N

ov

6-
N

ov

8-
N

ov

10
-N

ov

12
-N

ov

14
-N

ov

16
-N

ov

18
-N

ov

20
-N

ov

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

S&P 500

FTSE 100

Figure IV.7.7 S&P 500 and FTSE 100 indices during global crash of 1987

41 Codes ∧FTSE and ∧GSPC. Note that the closing prices are not contemporaneous, as the UK market closes 4.5 hours before the US
market, and hence the correlation is likely to be underestimated.
42 The S&P index is on the left-hand scale and the FTSE 100 index is on the right-hand scale.
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Table IV.7.9 Sample moments of S&P 500 and
FTSE 100 index returns during global crash period

FTSE 100 S&P 500

Daily mean –1.90% –1.18%
Annualized mean –474% –294%
Daily std. dev. 4.28% 6.03%
Volatility 68% 95%
Skewness –0.05 –1.56
Excess kurtosis 1.43 5.00
Correlation 0.47

The covariance matrix based on these data, expressed in annual terms, is

(
0.68 0

0 0.95

)(
1 0.47

0.47 1

)(
0.68 0

0 0.95

)
=

(
0.46 0.30
0.30 0.91

)
.

It is clear from the high negative sample skewness and positive sample excess kurtosis that a
normal distribution assumption is not appropriate. We shall consider instead the Student t VaR
formula (IV.2.63), using the negative mean returns to pick up the negative skewness. First, just
for comparison, we shall use the above matrix in the normal linear formula.

The portfolio weights vector is (0.5 0.5)′ and the mean return vector is (−0.0190
− 0.0118)′.43 Thus the 0.1% daily normal equity VaR, expressed as a percentage of the
portfolio value, is

�−1(0.999)

√(
0.5 0.5

)(
0.46 0.30
0.30 0.91

)(
0.5
0.5

)
−

(−0.0190
−0.0118

)
= 15.27%.

Note that ignoring the mean adjustment gives a result that is only 13.73% of the portfolio
value, so the adjustment is important even over a 1-day horizon.

Now we use a simple method of moments to estimate the degrees of freedom for a Student
t distribution of each return. Using (IV.2.60), we can set ν = 6�̂−1 + 4 where �̂ is the sample
excess kurtosis. Solving this gives a degrees of freedom parameter of 8.2 for the FTSE 100
index and 5.2 for the S&P 500 index. We could then use a normal copula for the multivariate
return distribution, but this would require simulation, and to keep this illustration simple we
prefer a closed-form VaR formula. We therefore use (IV.2.63) where ν is the average of the
two degrees of freedom, i.e. 6.7.44

Based on this approximation, the 0.1% daily Student t equity VaR, expressed as a
percentage of the portfolio value, is estimated as

43 We can ignore discounting with no real loss of accuracy since the risk horizon is only 1 day.
44 This is, of course, a crude approximation. But then the functional form we have chosen is fairly arbitrary anyway, since the Student
t distribution is symmetric. On the plus side, (IV.2.63) is just as easy to compute as the normal linear VaR, and at least it is a more
accurate reflection of the data than a normal distribution.
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t−1
ν

(0.999)

√
4.7

6.7
×

√(
0.5 0.5

)(
0.46 0.30
0.30 0.91

)(
0.5
0.5

)
−

(−0.0190
−0.0118

)
= 20.92%.

This time ignoring the mean adjustment gives a result of 19.38%. Either way, our VaR esti-
mate at the 99.9% confidence level would be very seriously underestimated if we ignored the
leptokurtosis in returns during market crises and tried to estimate a stressed VaR based on a
normal distribution. Still, we have not accounted properly for the strong negative skewness in
equity returns at the time of a crash – this could be captured using a Cornish–Fisher approx-
imation or a normal mixture VaR formula – but these extensions are left to the interested
reader.

Normal or Student t Monte Carlo VaR models are also based on a covariance matrix, so using a
stressed covariance matrix with these models produces a stressed VaR estimate – and these are
applicable to non-linear portfolios. We may also use a stressed covariance matrix to estimate
historical VaR. Using an idea that was introduced by Duffie and Pan (1997), we can change the
covariance structure of the historical data on risk factor returns to reflect the covariances dur-
ing the crisis period. The idea is simply an extension of the volatility adjustment of historical
returns, already described in the case study of Section IV.3.5.2.

Suppose there are k risk factors and T observations on each factor in the historical sample.
Denote the T × k matrix of historical risk factor returns by R, denote their covariance matrix
by V and denote the Cholesky matrix of V by Q. So

V(R)= V = QQ′.

Now take a stressed covariance matrix for these risk factor returns, denote this by V∗ and
denote the Cholesky matrix of V∗ by Q∗. So

V∗ = Q∗Q∗′.

Now set R∗ = R(Q∗Q−1)′. Then

V(R∗) = V
(
R(Q∗Q−1)′) = Q∗Q−1V(R)Q′−1Q∗′

= Q∗Q−1QQ′Q′−1Q∗′ = Q∗Q∗′ = V∗.
(IV.7.7)

Thus R∗ is a stress-adjusted set of historical returns, i.e. returns that are adjusted to have the
stressed covariance matrix V∗.

After adjusting the historical returns as above, i.e. so that their covariance structure is that of
the stressed market throughout, we apply the portfolio mapping to the standard historical sim-
ulation model to derive a stressed portfolio return distribution. Then we estimate the stressed
historical VaR as an extreme quantile of this distribution.

EXAMPLE IV.7.12: STRESSED HISTORICAL VAR

Use daily historical returns on the FTSE 100 and S&P 500 indices from 3 January 1996 to 21
April 2008 to estimate the 0.1% daily historical equity VaR for a portfolio with equal amounts
invested in the two indices, where the returns are adjusted to have the stressed covariance
matrix that was derived in the previous example.
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SOLUTION The spreadsheet first derives the covariance matrix based on daily returns over
the whole historical period. This is

V =
(

1.277 0.591
0.591 1.272

)
× 10−4.

For the stressed covariance matrix use the daily covariance matrix from the 1987 stock market
crash, derived in the previous example, i.e.

V∗ =
(

18.351 12.116
12.116 36.372

)
× 10−4.

Clearly both volatilities and the correlation are far higher during the period of the global stock
market crash in 1987. Now we adjust the historical returns using a transformation that is based
on historical and stressed Cholesky matrices, which are

Q =
(

1.130 0
0.523 0.999

)
× 10−2 and Q∗ =

(
4.294 0
2.828 5.327

)
× 10−2.

The transformation matrix is given by

Q∗Q−1 =
(

3.7911 0
0.0363 5.3297

)
,

and post-multiplying the transpose of this matrix by the returns gives the stress-adjusted
returns. The historical stressed equity VaR is minus the 0.1% quantile of this return distri-
bution, which is calculated in the spreadsheet as 19.63% of the portfolio value. This should
be compared with the ordinary historical 0.1% daily equity VaR on 21 April 2008, which is
just 4.32%.

IV.7.5.2 Generating Hypothetical Covariance Matrices

Stressed covariance matrices may also be based on hypothetical scenarios for the risk factor
volatilities and correlations. In fact, the Basel Committee recommended this in their stress
testing guidelines of the 1996 Market Risk Amendment. For instance, we could assume that
the volatility of a risk factor is five times the current level of volatility. Provided volatilities
are positive, the stressed covariance matrix will be positive semi-definite if and only if its
associated correlation matrix is positive semi-definite.45 Risk factor correlations tend to be
augmented during crisis periods, so we could likewise assume that a risk factor correlation
increases by 50% of its current level. However, although we are free to change volatilities to
any positive quantity that we like, we are not free to change correlations. In doing so we could
be specifying a matrix which is not positive semi-definite and which therefore cannot, in fact,
be a correlation matrix.

Nevertheless risk analysts and portfolio analysts find it very useful to ‘make up’ correla-
tion matrices to represent their own personal views on the market behaviour over the risk or

45 For the proof of this see Section I.2.4.3.
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investment horizon. So we need to check hypothetical ‘correlation’ matrices to test whether
they are positive semi-definite.46 If not, we need to transform a matrix into another matrix that
is positive semi-definite and that is, in some sense, as ‘close’ as possible to the hypothesized
matrix.

There are several measures of ‘closeness’ that can be applied to two matrices. Any such
measure is defined using a matrix norm, which is a generalization of the concept of ‘length’
for a vector.47 Perhaps the most popular matrix norm is the Frobenius norm which, for a real
matrix A, is defined as

‖A‖ =√
tr(A′A), (IV.7.8)

where ‘tr’ denotes the trace operator (i.e. the sum of the diagonal elements of a square matrix).
For our purposes we have two square symmetric matrices, C and C̃ where C is the hypoth-
esized matrix (and which we suppose is not a correlation matrix because it is not positive
semi-definite) and C̃ is the closest correlation matrix to C. In other words, C̃ is a symmetric,
positive semi-definite matrix such that the matrix

A = C − C̃

has the smallest possible matrix norm. Moreover, both C and C̃ must have 1s along the
diagonal, and off-diagonal elements that are less than or equal to 1 in absolute value.

To find C̃ we have to perform an optimization. This takes the form of minimizing (IV.7.8) or
some other matrix norm, with A=C− C̃, and subject to the constraints that A has zero diago-
nal elements and C̃ has off-diagonal elements that are less than or equal to 1 in absolute value.

EXAMPLE IV.7.13: FINDING THE ‘NEAREST’ CORRELATION MATRIX

Suppose an analyst hypothesizes that the returns on four risk factors have the ‘correlation’
matrix

C =

⎛
⎜⎜⎝

1 0.8 −0.4 −0.2
0.8 1 −0.3 0.5

−0.4 −0.3 1 0.5
−0.2 0.5 0.5 1

⎞
⎟⎟⎠ .

Show that this is not in fact a correlation matrix, because it is not positive semi-definite. Then
use the Frobenius norm to find the nearest correlation matrix to the hypothesized matrix.

SOLUTION First we use the determinant test for positive definiteness described in
Section I.2.2.8. That is, we find the matrices of the successive principal minors, i.e. of the
2 × 2 and 3 × 3 matrices with diagonal elements along the main diagonal, and the determinant
of the matrix itself. These are 0.36, 0.302 and −0.1284. Not all of these are non-negative, so
the matrix is not positive semi-definite.

Next we apply Solver to find the nearest positive semi-definite matrix, subject to the con-
straints on the elements described above. We shall impose a non-trivial lower bound for the
determinant test on the result; otherwise the optimization is likely to return a matrix that has

46 We can check a matrix for positive semi-definiteness either by finding its eigenvalues and checking that none of these are negative,
or by checking that all its principal minors have positive or zero determinant. See Sections I.2.2.8 and I.2.3.7.
47 See http://en.wikipedia.org/wiki/Matrix_norm.
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a zero determinant, so it will only be positive semi-definite. In this example we have required
that all principal minors be greater than or equal to 0.01.48 The result of the optimization is
the positive definite matrix

C̃ =

⎛
⎜⎜⎝

1 0.7539 −0.4146 −0.1661
0.7539 1 −0.2795 0.4541

−0.4146 −0.2795 1 0.4842
−0.1661 0.4541 0.4842 1

⎞
⎟⎟⎠ .

IV.7.5.3 Stress Tests Based on Principal Component Analysis

Regulators recommend that portfolios are stress-tested for parallel and tilt movements in term
structures. For instance, the Derivatives Policy Group recommended that yield curves be sub-
ject to a parallel shift of 100 basis points in either direction, and also to a linear tilt of 25
basis points. In the light of the recent credit crisis, their recommendation that credit spreads
be subject to a parallel shift of 20 basis points along the maturity curve may seem rather too
mild to be classed as a stress scenario. This is so often the case – after the event!

The problem with simple scenarios such as parallel shifts is not so much the magnitude of
the shock – after all, it is simple to make this as large we like – but whether in fact parallel
shifts and linear tilts in a term structure of interest rates are truly capturing the weak spots of
the portfolio. Indeed, portfolios may be hedged against parallel movements,49 and in this case
stress tests against parallel moves in interest rates of all maturities will not produce extreme
losses for a ‘worst case’ scenario.

Here again we have an example where the term ‘worst case’ loss is totally inappropriate.
Not only because ‘worst case’ is a logical misnomer whenever it is used, but because by far the
most common type of movement in a highly correlated yield curve is the movement captured
by the first principal component. Typically this is not a parallel shift, and because it is the
most commonly occurring type of movement (given the historical data used in the analysis) it
is this movement that a trader should really be hedging against.50 If the portfolio has only been
hedged against a parallel shift, stress testing with a parallel shift will not produce an extreme
loss; but stressing the first principal component could produce a significant loss. In short,
principal component analysis is not only a very useful tool for hedging, it is an ideal method
for generating more realistic ‘shocked’ term structures than parallel shifts and linear tilts.

Principal component analysis also reduces the complexity of a stress test. Typically a
three-component representation is all that we need to capture about 99% of the historical
variation of yield curves, or credit spread curves, or term structures of futures or forwards,
or even volatilities of different maturities. Hence, there is a large dimension reduction and
this greatly simplifies the stress test. Principal component analysis produces a small number
of new, uncorrelated risk factors. Because they are uncorrelated there is no need to consider
their dependency in the stress test. Thus, instead of stress-testing the simultaneous, correlated
movements of, say, 60 correlated risk factors we can stress test separately the movements
of 3 uncorrelated ones! That is, each stress test can be performed by shocking just one of

48 Without this, the resulting matrix has determinant 2.75 × 10−8.
49 For instance, bond portfolios are commonly ‘immunized’ against parallel movements – see Section III.1.5.6 for further details.
50 For details on how to do this, see Section II.2.4.4.
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these components to an extreme value, such as a six standard deviation move, in either direc-
tion. Or, we could change all the components simultaneously, by different positive or negative
amounts.

In Section II.2.4.6 we presented an empirical example of a stress test of a UK bond port-
folio that was based on principal component analysis. The first component corresponded to a
roughly parallel shift in interest rates longer than 18 months’ maturity, but with considerably
less movement in the money market rates. The intuition that this type of movement is the
most commonly occurring type of variation in UK interest rates rests on the observation that
short rates are tied to monetary policy targets, and were less variable than long rates over the
historical period considered.

In this example the portfolio incurred the worst loss, amongst all the scenarios considered,
when the first principal component experienced a six sigma downward movement, but not all
linear portfolios will experience worst case losses as a result of a large movement in the first
principal component (i.e. a roughly parallel shift). It depends on the hedging strategy for the
portfolio, as demonstrated by the following example.

EXAMPLE IV.7.14: PRINCIPAL COMPONENT STRESS TESTS

Consider the bond portfolio in Example IV.2.9. In that example we derived a three principal
component factor model representation for the P&L of this portfolio, i.e.

P&L = £428P1 − £2795P2 + £1041P3.

We know from Table IV.2.9 that this representation captures over 99% of the historical vari-
ation in the portfolio. The standard deviations of the first three principal components were
calculated in that example as:

σ1 =√
856.82 = 29.27, σ2 =√

45.30 = 6.73, and σ3 =√
9.15 = 3.02.

Find the maximum loss incurred from uncorrelated six sigma adverse changes in each of the
principal components separately.51

SOLUTION Denote by βi the portfolio’s sensitivity to the ith component so, for example,
β1 = £428. Set Pi = −6βiσi for i = 1, 2 and 3 separately, and hence obtain the worst case loss
corresponding to a six sigma change in each component. The results are a loss of £75,169 for
the six sigma move in the first component, £112,871 for the second component and £18,894
for the third component. Thus the portfolio is more exposed to an unusual tilt in the curve than
it is to a shift or a change in convexity.

However, our results in Example IV.2.9 showed that movements in the first component
accounted for over 93% of the historical variation in the yield curve, whereas the second
component only accounted for about 5% of the movements. In this example the loss incurred
through an extreme change in the first principal component is less than the loss resulting from
an extreme change in the second component, but the first type of loss is far more likely to
occur, if we assume the historical data to be representative of the future.

51 Note that the first component is not a parallel shift, as we can see from Figure IV.2.3.
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To summarize, the use of principal component analysis for worst case loss calculations
provides:

• a reduction in the complexity of stress tests through the use of a few, uncorrelated risk
factors that can be stressed separately;

• stress tests against the scenarios that are most likely to occur, according to historical
experience; and

• an indication of the relative likelihood, according to historical experience, of the losses
that we compute.

IV.7.5.4 Modelling Liquidity Risk

There are two types of liquidity risk:

• Market liquidity risk is the risk associated with an inability to perform market transac-
tions at the current mark-to-market value. Market liquidity is commonly measured by
an exogenous factor, i.e. the relative size of the bid–ask spread, and by and endogenous
factor, i.e. market impact. Market impact relates to market depth, i.e. the ability to trade
a substantial amount without seriously impacting the mid price.

• Funding liquidity risk refers to the inability to raise funds or collateral to meet
obligations.

Funding illiquidity is a prime risk driver of default risk, but not of market risk. Hence this
section focuses only on market liquidity risk, and in particular on methods that incorporate
exogenous and endogenous illiquidity effects into stressed VaR calculations.

Standard VaR analysis assumes that all trades are at the mid market price. It ignores the
increase in the bid–ask spread and the reduction in market depth that so often occurs at the
time of a stress event. However, traders attempting to close out or hedge large positions in
stressful market conditions may find that they cannot transact efficiently, resulting in exposure
to adverse market conditions for longer periods and additional losses resulting from wider
spreads.

Liquidity varies between markets and over time, as illustrated by Borio (2000), and in
many markets it decreases as market volatility increases, as observed by Bangia et al. (2002).
These authors also propose a methodology for estimating a liquidity-adjusted VaR that cap-
tures exogenous liquidity effects via an ‘add-on’ to the changes in mid price that we usually
model in a stress test, where the size of the add-on depends on the size of the bid–ask spread.
They assume that extreme market events are perfectly correlated with extreme liquidity events
because this simplifies the analysis considerably, and it is also fairly realistic.

Define the relative bid–ask spread by

S = PA − PB

PM
, (IV.7.9)

where PA, PB and PM are the ask, bid and mid prices respectively, and PM = 1
2
(PA + PB). We

assume that S is a random variable and thence define the cost of exogenous liquidity, Cα,t at
the α quantile at time t by

Cα,t = 1
2

x1−α,tPM,t, (IV.7.10)
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where PM,t denotes the current mid price and x1−α,t denotes the 1 − α quantile of the spread
distribution. The motivation for this definition is that standard VaR calculations assume trans-
actions are at the mid price, but on average we expect the ask price to be 1

2
μS above this price,

and the bid price to be 1
2
μS below it, where μS denotes the expected value of the spread. The

definition (IV.7.10) thus adjusts the transaction price to be at the 1 − α quantile of the spread
distribution, where α corresponds to the quantile of the VaR estimate. Then the liquidity-
adjusted 100α% VaR (or ETL) is the standard VaR (or ETL) plus the cost of exogenous
liquidity. The next example illustrates the calculation under the assumption that the spread
is lognormally distributed.

EXAMPLE IV.7.15: STRESSED VAR WITH EXOGENOUS ILLIQUIDITY

Suppose an investor has equal amounts invested in FTSE 100 and S&P 500 index futures.
Assume that spreads are perfectly correlated in these markets and that in each market the rel-
ative bid–ask spread is lognormally distributed. Suppose that historical observations on the
relative spread during stressful markets indicate that the mean and standard deviation of the
spread in each market are given by52

μS&P = 0.0123%, σS&P = 0.0162%, μFTSE = 0.0203% and σFTSE = 0.0267%.

Estimate the cost of liquidity for this position at the 99.9% confidence level, and compare your
result with the historical stressed VaR that was estimated in Example IV.7.12.

SOLUTION In the spreadsheet for this example we apply the Excel LOGINV function to
estimate the 99.9% quantile of the lognormal spread distribution for each pair of mean and
standard deviation parameters. The result is 0.1645% for the S&P 500 and 0.2713% for the
FTSE 100 index. Since our position has equal amounts invested in each futures market, the
cost of liquidity expressed as a percentage of the portfolio mid price is

1
4
(0.1645 + 0.2713)% = 0.109%.

This is negligible compared with the 0.1% stressed VaR of the portfolio, which was estimated
to be 19.64% of the portfolio value in Example IV.7.12.

The above example demonstrates that this type of exogenous liquidity adjustment to stressed
VaR is of negligible importance in the world’s main futures markets. Bangia et al. (2002)
also report that no significant liquidity adjustment is necessary for major currency markets.
Readers are free to change the parameters used in the previous example to reflect the behaviour
of bid–ask spreads in less liquid markets.

There are two drawbacks to the methodology just described. First, it takes no account of
endogenous liquidity, i.e. the relationship between the price that is realized and the size or
quantity of the transaction relative to the normal lot size in the market. Secondly, it is not

52 These values are very small, reflecting the fact that FTSE 100 and S&P 500 futures are major markets that tend to remain highly
liquid even in stressful circumstances. Note that the parameters of a lognormal distribution are the mean and standard deviation of the
corresponding normal distribution, i.e. the mean and standard deviation of the log spread in this case. The figures here for the spread
mean and standard deviation are actually derived from choosing suitable values for the mean and standard deviation of the log spread.
See (I.3.40) and (I.3.41) for the formulae used in the spreadsheet to relate the mean and standard deviation of the log spread to the
corresponding parameters for the spread.
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easy to assess the appropriate value of the quantile of a spread distribution in stressful market
conditions because, typically, only a few empirical observations are available.

Angelidis et al. (2004) suggest a method that accounts for the market impact of trades that
are larger than normal. For instance, for quantities in excess of the normal market lot size N
we could assume a linear or quadratic increasing function for the expected size of the spread
as a function of the quantity transacted. Specifically, we could assume that the expected value
of the relative spread μS is related to the quantity q that is traded as

μS =
{

S, if q ≤ N,

S + g(q − N), if q > N.
(IV.7.11)

Here g denotes some increasing linear or quadratic function such that g(0) = 0. For instance,
if g is linear then

g(x)= k(x), k > 0. (IV.7.12)

Estimation of the value of k could be based on dealers’ quotations during a crisis in the past,
or on the subjective judgement of experienced traders.

EXAMPLE IV.7.16: STRESSED VAR WITH ENDOGENOUS LIQUIDITY

An illiquid stock has a bid–ask spread that is assumed to follow a lognormal distribution. The
mean relative spread is 0.4% and its standard deviation is 0.2%. Find the cost of liquidity
adjustment that should be made to the VaR at the 99.9% confidence level. Now assume the
normal lot size is 1000 and that we need to make a transaction of 50,000 shares. Assume
the quantity impact on the mean relative spread is given by (IV.7.11) where g is given by
(IV.7.12) with k = 10−7. Find a revised estimate of the cost-of-liquidity adjustment to be made
to the VaR.

SOLUTION In the spreadsheet we use Solver to back out the appropriate mean and stan-
dard deviation of the log spread, since these are the parameters used in the Excel LOGINV
function. Thereafter the first case is a straightforward repeat of the calculations used in the pre-
vious example, and we obtain a cost-of-liquidity adjustment of 0.2684% to the 99.9% VaR,
expressed as a percentage of the investment value.

The second part of the calculation assumes the mean relative spread is only 0.4% when
1000 shares are transacted. Since we are trading 50 times this amount, we use the function
(IV.7.12) with k = 10−7 and q − N = 49,000 to obtain an adjustment to the mean spread of
0.49%. Hence, with this quantity adjustment the new mean relative spread is 0.89%. Leav-
ing the standard deviation unchanged and repeating the calculation gives a cost-of-liquidity
adjustment of 0.7276% of the portfolio value.

It is clear from the above examples that spread adjustment has a relatively small impact on the
stressed VaR, except in highly illiquid markets. However, spread size is not the most impor-
tant variable that is adversely affected by the quantity traded; the main liquidity effect arises
from movements in the mid price itself as it comes under pressure in a one-way market. For
instance, in liquid stock markets the daily average trading volume (DATV) is approximately
0.5% of the market capitalization of the stock. So to effect a sale of, say, 1% of the market
cap the dealer will divide the order into normal size lots and execute each order over a period
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of time.53 But if he does this too quickly, for example over the course of only one day, there
comes a point when a downward price pressure is exerted on the mid price. Thus both bid and
ask prices could trend upward during a buyers market, or downward during a seller’s market.

It may be necessary to introduce gradual liquidation of a period over several days. For
example, one might assume that a large position is divided into three parts, each a multiple of
the standard lot size Q, and then traded on successive days. Then, denoting the quantity traded
on day t by qt, the mid-price at time t may be adjusted by assuming a linear price impact
relationship of the form

PM(qt)= P̃M × (
1 +ωk(qt − Q)

)
, (IV.7.13)

where P̃M is the mid price just before the trade occurs, ω=+1 for a purchase order and ω=−1
for a sell order, and the constant k is set relative to the standard lot size, for instance using the
judgement of experienced traders. Setting k = c/Q for some constant c, and setting qt = mtQ,
rearrangement of (IV.7.13) gives an alternative expression for the price impact relationship as

PM(qt)− P̃M

P̃M

= ω c(mt − 1), (IV.7.14)

where the left-hand side is the percentage return due to the price impact of the trade. To
account for the price impact effect, the absolute value of this return should be added to the VaR
that is estimated without accounting for the quantity impact, assuming the VaR is expressed
as a percentage of the portfolio value.

EXAMPLE IV.7.17: ADJUSTING VAR FOR PRICE-QUANTITY IMPACT

Suppose daily log returns, based on the mid price of an illiquid asset, are i.i.d. and normally
distributed with volatility 30%. We have to sell 50% of the DATV, which itself is equal to
1000 standard lots. Assume the quantity impact on the mid price is given by (IV.7.14) with
c = 5 × 10−5. Calculate the price impact of the quantity traded when it is traded on one day,
and when it is traded in parcels of 100 times the standard lot size on each of five successive
days. In each case show how we should adjust the 1% VaR to account for the expected price
depreciation resulting from the unusual size of our position. Is it better to liquidate the position
immediately, or to spread the liquidation uniformly over 5 days? How does your conclusion
change if the quantity impact coefficient increases to c = 2 × 10−4?

SOLUTION We must sell 500 standard lots, and with c = 5 × 10−5 and ω = −1 the price
impact on the return (IV.7.14) is

PM(qt)− P̃M

P̃M

= −5 × 10−5 (500 − 1)=−2.495%,

assuming the sale is made on one day. The 1% daily VaR is given by the usual normal linear
VaR formula, so if we ignore the price-quantity impact we have

1% VaR =�−1(0.99)× 0.3/
√

250 = 4.414%.

53 The normal lot size is 100 for US stocks and 1000 for UK stocks, since the price per share of US stocks tends to be higher than it
is in the UK. Normal lot sizes for currencies are usually in units of $1000. Transactions at multiples of $1000 usually have smaller
spreads than transactions at intermediate amounts.
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Adding the absolute value of the return created by the price-quantity impact, the total 1% VaR,
including the price-quantity impact, is 6.909%.

Now consider the case where we divide the sale into five lots of 100, traded over five suc-
cessive days. Although the price impact is less on each day, the position remains open for 5
days instead of 1, and so we must compute a 5-day VaR instead of a 1-day VaR. On each day
the price-quantity impact induces a negative return of only

−5 × 10−5(100 − 1)= 0.495%

instead of 2.495%, but we must account for the gradual stepping down of the exposure over
the five successive days.

On the first day we have 1% daily VaR of 4.414% and an add-on for the price impact of 100
lot sizes traded of 0.495%, so the total daily VaR is 4.909%. On the second day the 1% daily
VaR is (4/5) × 4.414% = 3.531% and the add-on for the price impact is (4/5) × 0.495% =
0.396% so the total daily VaR on the second day is 3.927%. On the third, fourth and fifth day
we continue to step down the exposure uniformly, until on the last day the 1% daily VaR is
(1/5) × 4.414% = 0.883% and the add-on for the price impact is (1/5) × 0.495% = 0.099%,
so the total daily VaR on the last day is only 0.982% of the original value of our position.

To find the total VaR we need to aggregate the daily VaRs obtained above in accordance
with our risk model. Since this assumes the returns are normal and i.i.d., returns are additive.
So the total price-quantity impact is just the sum of the add-ons due to the negative returns
given by the price-impact function. The VaR in this model is a constant multiple of volatility,
but it is variance not volatility that is additive in our risk model. So to find the total VaR,
unadjusted for the price impact, we take the square root of the sum of the squared daily VaRs.
The results are set out in Table IV.7.10, where the aggregates in the last row are obtained as
the square root of the sum of the squares for the unadjusted VaR, and as a simple sum for the
add-ons that account for the price quantity impact. Thus the total 1% VaR, including the price-
quantity impact, which is now measured over a 5-day horizon, is 6.547%+1.485%=8.032%.
Since this is greater than 6.909%, we conclude that the quantity impact is low enough for it to
be preferable to liquidate the position immediately.

Table IV.7.10 Adjusting VaR for uniform liquidation

Unadjusted VaR Add-on

1 4.414% 0.495%
2 3.531% 0.396%
3 2.648% 0.297%
4 1.766% 0.198%
5 0.883% 0.099%
Aggregate 6.547% 1.485%

Readers may change the constant c in the spreadsheet to alter the cost of liquidation, and
will see that when the price impact of large trades is great, it pays to liquidate more slowly.
For instance, if we change cell B5 to c=2 × 10−4 the price-quantity impact is very significant.
If the entire job is executed in one day the effect on the return is –9.98% and so the daily VaR
corresponding to immediate liquidation jumps up to 14.394%. However, gradual liquidation
over a 5-day period yields a total 5-day VaR of 12.487%, so in this case it pays to liquidate
the position more slowly.
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IV.7.5.5 Incorporating Volatility Clustering

In the previous subsection the model of gradual liquidation assumed the returns were normal
and i.i.d. This assumption led to a simple analysis but it is not very realistic. In this subsection
we explain how to incorporate volatility clustering into stressed VaR calculations when the
exposure is hedged or liquidated gradually, over a horizon of several days. The importance of
volatility clustering effects for stressed VaR calculations cannot be understated. For example,
in an extensive empirical analysis of VaR-based stress tests in which many different frame-
works for estimating VaR are compared, Alexander and Sheedy (2008) show that it is only the
risk models that incorporate volatility clustering that are able to provide accurate predictions
of VaR at extreme quantiles in stressful currency markets.

Here we shall illustrate the methodology in the framework of two VaR models: the filtered
historical simulation (FHS) model that was introduced in Section IV.3.3.4 and the Monte Carlo
VaR model with volatility clustering, introduced in Section IV.4.3.2. Both frameworks utilize
a simple volatility clustering model for the conditional return distribution, and this effect is
incorporated into our VaR calculations. An illustration of the FHS approach was given in
Example IV.3.2, and applications of volatility clustering models to multi-step Monte Carlo
were provided in Examples IV.4.6 and IV.4.7.

In Example IV.3.2 we estimated 10-day VaR at various quantiles and performed a simple
scenario analysis based on shocking the current volatility. But for a stress test based on FHS we
should shock both the current volatility and the current return. For example, we might assume
that both are shocked to six times their normal value, and that the return is negative for a long
exposure or positive for a short exposure. The following example extends Example IV.3.2 in
this manner.

EXAMPLE IV.7.18: USING FHS FOR STRESS TESTING

The asymmetric GARCH model with parameters given in Table IV.3.5 is the model for S&P
500 returns that was estimated in Example IV.3.1. Use this model to estimate the 0.1% 10-day
VaR following a shock to the daily return of −10% and a simultaneous shock to volatility, so
that it is 60% in annual terms. Apply the FHS approach, bootstrapping the sample of returns
that was used to estimate the GARCH model, and assume the exposure is liquidated uniformly
over a 10-day period.

SOLUTION The spreadsheet for this example is an adaptation of the FHS spreadsheet for
Example IV.3.2. We use the same asymmetric GARCH model as in that spreadsheet and the
only differences are that (a) we now use shocked values for the returns and volatility, and (b)
we step down the exposure so that the total return is a weighted sum of the returns over the
next 10 days.54

The shock to the daily return is −10% and the shock to the daily standard deviation is
0.6/

√
250 = 3.79%. Based on 10,000 simulations we obtain a 0.1% 10-day stressed VaR of

approximately 35% of the portfolio value.55 This more than double the 0.1% VaR estimate in
Example IV.3.2, which was computed under ‘normal’ market circumstances.

54 The formula used in cell AH2 accounts for uniform liquidation over a 10-day period.
55 As usual, readers should extend the number of simulations by filling down, after copying the spreadsheet from the CD-ROM to
their hard disk. But due to the limitations of Excel we are not able to simulate very many 10-day returns for the empirical distribution
that forms the basis of our stressed VaR estimation; that is why our results are based on only 5000 simulations.
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Finally we illustrate the use of multi-step Monte Carlo to incorporate volatility clustering into
stress tests. In fact, Example IV.4.7 already performed a simple stress test by shocking the
daily return to be ±10%. We used the example to show that, because the GARCH model is
asymmetric, the losses following a negative shock to the return are greater than those following
a positive shock.56 In the next example we shock the current volatility as well as the current
return.

EXAMPLE IV.7.19: USING GARCH WITH MONTE CARLO FOR STRESS TESTING

Use the asymmetric GARCH model of the previous example to estimate the 100α% 10-day
VaR following a shock to the daily return of −10% and a simultaneous shock to volatility, so
that it is currently 60% per annum. Again assume the exposure is liquidated uniformly over a
10-day period, but this time apply conditional normal Monte Carlo simulation for the returns.

SOLUTION We use α = 0.001, 0.01, 0.05 and 0.1 in the spreadsheet and the results are
calculated based on 10,000 simulations. One set of simulations gives the results shown in
Table IV.7.11. Notice that the 0.1% 10-day stressed VaR is 32.49%, which is less than
that of the previous example, even though both examples use the same GARCH model.
This is because here we have used standard normal simulations for the returns rather than
bootstrapping them from an empirical and leptokurtic return distribution.

Table IV.7.11 Stressed VaR at different confidence levels based on
Monte Carlo GARCH

α 0.001 0.01 0.05 0.1
VaR 32.49% 23.20% 15.71% 11.90%

IV.7.6 SUMMARY AND CONCLUSIONS

Historical data on major market risk factors are usually easily available. As a result, market
risk analysts have developed a tendency to rely on these data when forecasting the market
risk of a portfolio, even over a long risk horizon. In doing so the analyst is implicitly adopt-
ing a subjective view that history will repeat itself. However, when the risk horizon is more
than a few days, there is much to be said for using an alternative subjective view that is not
necessarily tied rigidly to historical experience. In my view there is far too much reliance on
historical data when computing VaR, and analysts should develop the confidence to use their
own personal views as well. In any case, this becomes essential when there are little or no
historical data available. Any critics of the subjective nature of the methodology we have pro-
posed in this chapter should bear in mind that, so far, each new financial crisis entails events,
and precipitates market behaviour, for which we no historical precedent.

Scenarios can be categorized by the type of data that are used to construct them, and by the
mathematical quantity that the scenario concerns. The data can be based on either historical
experience or hypothetical views. The mathematical quantity in the scenario can be a single

56 This depends on the sign of the asymmetric coefficient λ, which was positive in this case. But if λ were negative then the losses
following a positive shock to the return would be greater than those following a negative shock
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vector of risk factor returns (as it is in ‘worst case’ scenarios) or one or more parameters of the
risk factor return distribution (as it is in the covariance matrices that regulators recommended
for use in stress testing). One may also apply empirical risk factor return distribution scenarios,
without specifying a parametric form, such as those that were experienced during stress events
in the past. When a scenario is on a single vector of risk factor returns, we apply the portfolio
mapping to derive the portfolio’s P&L associated with the scenario, and we ignore the rest of
the risk model. It is only when scenarios concern the distribution of risk factor returns that we
can use the risk model in the stress test, and it is only when we use the risk model that can we
associate a probability with the resulting P&L.

Financial institutions and regulators regard stress testing as an essential complement to
the VaR and ETL calculations that are based on ‘normal’ market circumstances. There is no
single standard approach to stress testing, and the methodology that is chosen often depends
on the context in which the results will be used. But stress testing, as it is practised by many
institutions today, is an art without a proper mathematical foundation. Stress scenarios are
chosen to result in a so-called ‘worst case’ loss, but there is nothing to guarantee that the
loss that is calculated will not be exceeded, and no statement of the probability that this loss
will occur.

The main focus of this chapter has been to develop a coherent framework for stress testing,
in the context of the risk model that is used for standard VaR and ETL calculations. Personal
views of the analysts may be used to forecast the market VaR of a portfolio in both ‘ordinary’
and stressful market conditions. We have focused on some empirical examples that incorpo-
rate the use of scenarios for portfolio returns over a long horizon, and have contrasted the
differing ways that subjective information is used in scenario VaR and in Bayesian VaR. We
have described the impact of scenarios for returns on stressed VaR. We have also shown how
to obtain the correlation matrix that is ‘closest’ to a hypothesized matrix that cannot be a cor-
relation matrix because it is not positive semi-definite. We have advocated the use of principal
component analysis for stress testing on a highly correlated set of risk factors such as a yield
curve, or credit spreads of different maturities. We have also explained how to adjust VaR and
ETL by adding on a cost of liquidity adjustment that accounts for exogenous liquidity effects on
the bid–ask spread in illiquid markets, and endogenous liquidity effects on the price impact of
trading quantities that are large, relative to the DATV. The cost of endogenous liquidity effects
is usually much greater than the cost of exogenous effects, except in highly illiquid markets,
and we have demonstrated how a trader’s liquidation or hedging strategy can be tailored to the
size of the liquidation costs. The chapter ends with a description of the use of both FHS and
standard Monte Carlo simulation to incorporate volatility clustering effects into a stress test,
when positions are liquidated or hedged only gradually over a period of several days, so as to
minimize the liquidity costs.





IV.8
Capital Allocation

IV.8.1 INTRODUCTION

The senior management and board of directors of a financial institution have an important
role, which is to ensure that capitalization is sufficient to cover the risks that are being taken.
Their duty is to the shareholders and, in banking, also to the regulators. Thus, a major task
facing the risk manager in a bank or financial firm is to assess the level of risk relative to the
capitalization, at various activity levels and within each line of business. Also, the value of
the firm is reflected by its credit rating, which is linked to the probability of default over a
long time horizon. Thus, good risk management should encompass a rigorous stress testing
programme that is designed to increase the probability that the firm remains solvent over this
time horizon.

The solvency of banks is particularly important for the stability of the financial system.
Governments, central banks and the Basel Committee have a strong interest in systemic risk,
where insolvency in one sector of an economy can lead to a national – if not global – economic
crisis. Thus the global recession following the stock market crash of 1987 prompted a revision
of banking regulations and, in the mid 1990s, new minimum requirements for the regulatory
risk capital owned by banks were imposed on all banks in the G10 countries, and these were
later adopted by most of the developed countries in the world.

The computation of regulatory capital for various activities in each line of business is an
important task for the risk managers in a bank. But, unlike economic capital, when estimating
the legal minimum level of capitalization required for the bank as security against its market
risk exposures, the manager is not free to use the risk models, risk metrics and data that
he deems most appropriate. He may even use no risk model at all, and merely apply the
standardized rules that are set by the regulators. Alternatively, he could use an internal risk
model to estimate risk capital, provided it is validated by the regulator and provided that
the risk management structure in the bank satisfies certain qualitative criteria. However, the
internal model must conform to some fairly strict quantitative criteria. In most countries it can
be one of two broad types, either a scenario model or a VaR model;1 and regulatory capital is
based on an aggregate maximum loss if the scenario model is used or the 1% 10-day VaR if
the value-at-risk approach is used.

By contrast, the computation of economic capital can be based on any internal risk model,
any risk metric and any data. The only proviso is that the methodology is acceptable to the
board of directors. An economic capital model could be based on any assumptions about risk
factor evolution over the risk horizon and the data that are used could be purely historical,

1 Most major banks would adopt a VaR model, but some regulators allow scenario models to be used by smaller banks.
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purely hypothetical (e.g. as in hypothetical stressed VaR) or a combination of the two. The
risk manager is also free to recommend whatever risk metric or metrics he believes to be
appropriate, and apply these to the economic capital model. In fact, for economic capital
estimation many large banks use ETL rather than VaR, and they may also use at least some
data from historical or hypothetical market crises.

At the elemental level, economic capital does not need to correspond to real capital. It is
a risk measure, such as VaR or ETL, at a fairly high confidence level and assessed over a
fairly long horizon. The confidence level 1 − α and risk horizon h are linked to the solvency
condition, whereby the total economic capital for the firm as a whole can be interpreted as
the minimum level of capitalization required so that the probability of insolvency over a risk
horizon h is no greater than α. But capital reserves do not have to match economic capital
in the same way that they must match minimum regulatory capital. In fact, many institutions
carry a much higher level of capital than they need to justify their credit rating, as a signal of
confidence to their investors and their counterparties.

In a large organization it is usual to assess risks first at a fairly elemental level, then
progressively aggregate positions into larger and larger portfolios. This is because different
individuals assess market risks for different reasons. Starting at the most granular level, each
trader is concerned with the accurate assessment of the risk of every instrument in his book,
the risk of portfolios of similar instruments and, finally, the risk of the book as a whole.
Both he and the head of the desk should be monitoring these risks, and limits will be placed
on the total risks that each trader can take. The head of desk will be monitoring portfolios
consisting of each single book, up to a portfolio that contains all the instruments in all
his trading books. Then the risk manager at the head of the business unit has the job of
ensuring that the market risks taken by the head of each desk in the business unit remains
within reasonable limits, as he monitors the total market risk taken by the unit as a whole.
Finally, the global head of market risk examines the market risks of each business unit and
the total market risk at the company or group level, and reports these to the board of direc-
tors. Thus a ‘portfolio’ can be anything from a single instrument to all the positions in the
entire firm.

In other words, we first assess the risk of individual instruments, then of portfolios of similar
instruments, and then we aggregate the risks in a (hopefully) intelligent manner to obtain the
risk for progressively larger and larger portfolios containing different aggregate positions. At
some stage, often at the business unit level, the total market risk is aggregated with the total
credit risk and the total operational risk, to produce a combined estimate for the total risk of the
business unit. Finally, the business unit risks are aggregated to obtain a firm-wide estimate of
risk against which the total capitalization of the firm may be assessed. This so-called ‘bottom-
up’ approach is the most common risk assessment paradigm.

By contrast, the process of economic capital allocation takes a ‘top-down’ approach. Having
assessed the total, firm-wide risk and made a judgement on the required level of total economic
capital for the firm, this capital is then assigned to different business units, and to different
activities within each unit. Finally, economic capital is assigned to the desk level and pos-
sibly even to the level of the trader. The greater the economic capital assigned, the greater
the risks that can be taken, and the freer the desk or trader becomes. Hence, the increase or
withdrawal of an economic capital allowance becomes a useful tool whereby senior managers
can control different activities in the organization. Nowadays most large organizations have
a management structure that is driven by economic capital, because it is a tool that allows
the risks of all the different activities in the firm to be compared on a standard scale, and
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because it can be aggregated for the purpose of ‘bottom-up’ firm-wide risk capital estimation
and disaggregated for ‘top-down’ capital allocation, in a mathematically coherent framework.

One of the major disadvantages of the ‘bottom-up’ approach to risk assessment is that most
risk analysts use a simple dependency metric, i.e. correlation, for the aggregation of risks,
as if all dependencies were linear and normal. Aggregation risk is the model risk that arises
through inappropriate assumptions on risk factor dependencies when assessing portfolio risk,
and this is the major source of model risk in firm-wide risk capital assessment. The ‘bottom-up’
paradigm also assumes that we know the current value of all our positions precisely. Yet only
a limited number of positions can be marked to market. These include the liquid exchange
traded contracts and some over-the-counter (OTC) contracts, if quoted by the brokers. Many
other positions will need to be valued by marking to model, and this introduces a pricing model
risk, as opposed to risk model risk, that can be very significant indeed.

The remainder of this chapter is structured as follows. Section IV.8.2 deals with the esti-
mation of the minimum market risk capital requirements for banks. Here we describe the
Basel regulations, which were broadly defined in the 1996 Market Risk Amendment and later
refined with the new Basel II Accord; we summarize the differences between the accounting
frameworks that are used in the banking and trading books (typically, market risks are only
assessed on the trading book); we describe the regulatory framework for estimating minimum
capital requirements for market risks, using both internal models and the standardized rules
that the Basel Committee recommends for adoption into national regulations; and then we
describe the ‘add-ons’ to the general market risk capital charge that account for specific risks,
and the incremental risk charge that the Basel Committee has recently recommended for banks
that use internal models with specific risk recognition.

Section IV.8.3 introduces economic capital: the methods used to assess it and the optimal
allocation of economic capital as a risk management tool. We show that the aggregate eco-
nomic capital for a firm, defined as the minimum level of capitalization that the firm should
aim for in order to achieve a high probability of remaining solvent over some future time
horizon, is a risk metric which corresponds to a quantile, like VaR. But, unlike regulatory
capital for banks, firms are free to choose whatever metric they like for economic capital, pro-
vided it is acceptable to shareholders. The risk-adjusted performance of each activity in the
firm may be assessed by combining forecasts of expected profits and losses with a measure
of economic capital for this activity. Finally, we show how to achieve an efficient allocation
of economic capital to different activities, by optimizing the firm-wide risk-adjusted perfor-
mance, focusing on the maximization of risk adjusted return on capital (RAROC) which is
one of the performance measures that is most commonly applied in the industry today.

IV.8.2 MINIMUM MARKET RISK CAPITAL REQUIREMENTS
FOR BANKS

This section focuses on the 1996 Market Risk Amendment to the 1988 Basel Accord,
and the modifications to market risk capital requirements under the new Basel II Accord.
Section IV.8.2.1 describes the history of the Basel Committee and its regulatory initiatives;
Section IV.8.2.2 defines the banking and trading books and provides an overview of the
accountancy frameworks used in each; Section IV.8.2.3 describes the regulatory framework
for controlling market risk in the banking system, which is based on three ‘pillars’ of regula-
tion. Thereafter we focus on the Pillar 1 capital charge, explaining how the general, specific
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and incremental market risk charges are calculated using an internal model, or using a set of
standardized rules defined by the Basel Committee.

IV.8.2.1 Basel Accords

In 1974 the central bank governors of the G10 countries created a forum to debate and coordi-
nate best practices for risk management and banking supervision. The Bank for International
Settlements (BIS), located in Basel, offered its premises and facilities for meetings and a
permanent secretariat, hence the name Basel Committee on Banking Supervision (BCBS or
‘the Committee’).2 The Committee now has about 30 workgroups and task forces addressing
various issues affecting banks and their supervisors, focusing on broad standards and state-
ments of best practice. The recommendations put forward in the two Basel Accords are now
almost universally adopted into national legislation. However, whilst the Committee has great
influence, it has no legal power.

The defining initiative of the Committee was the 1988 Basel Accord which was imple-
mented in the G10 countries in 1992. Prior to this, banking supervisors were content with
requiring disclosure of exposures (mostly foreign exchange and interest rate) and setting
some limits on concentrations of risks (large exposure limits, and country risks). Adequacy
of capital was a topic of discussion between supervisors and banks, but there were no strict
requirements. The main contribution of the 1988 Basel Accord was to set core principles
for adequate supervision and minimum capital standards. At the same time, regulatory con-
vergence and coordination were sought across countries as well as between banking and
securities’ businesses.

For the first time, the 1998 Basel Accord set quantitative minimum capital requirements for
banks based on the level of credit risk in their assets. The Accord, and its subsequent 1996
Amendment for Market Risk in the Trading Book,3 has been progressively adopted into legal
regulations by over 100 countries, so that the Accord has now become the global standard for
evaluating banking risk. An important initiative in the 1996 Amendment was a long techni-
cal appendix that responded to the industry calls for the use of internal models, rather than
standardized rules, to assess market risk capital.

Extensive revisions to the assessment of credit risks and the introduction of a capital charge
to cover operational risks were the main features of the new Basel II Accord in 2005.4 Devel-
opments in credit derivatives and the rapid growth in the markets for credit default swaps
and collateralized debt obligations in particular, meant that sophisticated credit mitigation
techniques were no longer recognized efficiently under the old Accord. And because of the
increasing complexity of financial markets there was greater need for transparency of accounts
and risk disclosures. But, in contrast to the 1996 Amendment, the initiative for a new Accord
was driven by regulators, not by the industry. Industry consultation on Basel II took almost 6
years and many contentions remain even now, after its implementation in major countries.

The primary objectives of the old accord were safety and market stability. In addition to
maintaining these prime objectives, the Basel II Accord aims to harmonize banking regu-
lations among countries and to foster better risk management in an evolutionary approach,
starting with simple rules for all banks but providing incentives in the form of reduced capital

2 See the Bank’s website, www.bis.org for further details about the BIS and the BCBS. In particular, for more detailed information on
the structure and activities of the BCBS, see http://www.bis.org/bcbs/
3 See BCBS (1996). This was implemented in the G10 countries in January 1998.
4 See BCBS (2005). A compilation of this paper and some key previous publications by the Basel Committee may also be found in
BCBS (2006).
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requirements for banks with more sophisticated risk management. The new regulations should
not affect global capital requirements, but they do introduce greater risk discrimination, and
this will lead to a redistribution of capital among financial firms.

The market risk capital requirements under Basel II are largely unchanged from the 1996
Amendment, except for the definition of the trading book as positions in financial instruments
and commodities held either with trading intent or to hedge other elements of the trading
book.5 And now, under the new Accord, exceptional market risks should be monitored in
the banking book. For example, the Basel Committee have recommended that interest rate
exposure be stress-tested by assuming a 200 basis point parallel shift in the zero coupon curve.
However, any additional capital charges for market risks in the banking book are left to the
discretion of national supervisors.

IV.8.2.2 Banking and Trading Book Accounting

In the current spectrum of accounting standards, banks currently apply these forms of
accounting:

• In historical (also called accrual or cost) accounting, cash flows are recorded as they
occur, and assets are held at cost. This form of accounting does not reflect the current
value of a business. Therefore, for prudence, it is accompanied by a ‘reserves and provi-
sioning’ policy that is designed to cover future potential losses, in which provisions (but
not reserves) are limited, to avoid manipulation of profit and tax avoidance.

• Fair value accounting is reserved for positions that have a visible value in a liquid market
(positions that can be marked to market) or that have a value which can be objectively
and accurately estimated (positions that can be marked to model).

Cost accounting is easier to understand than fair value accounting, being based on observed
cash flows rather than complex marking-to-model calculations. And there is less subjectivity
in cost accounting than there is in fair value accounting. The only subjective elements of
the cost accounting framework are in the reserves and provisions that are made. Since these
reserves and provisions are to cover expected losses, not worst case losses, the accent of cost
accounting will be on a conservative valuation of assets and liabilities, based on their historical
cost. But cost accounting is backward looking, so it is not an appropriate starting point for the
evaluation of risk. It does not assess variations in economic value about its fair (i.e. expected)
value. In fact, it does not even assess the fair economic value of a business.

In fair value accounting the accent is on ‘true and fair’ assessment of asset values, although
the interpretation of these concepts is somewhat subjective.6 As a result, fair value accounting
is more subjective than cost accounting. At the same time, being based on market (or model)
prices of financial instruments, it is also less consistent across different countries and busi-
nesses (e.g. banks, securities firms and insurance companies) than cost accounting. However,
it is forward looking, since market prices provide a signal about traders’ expectations. The
disadvantages of fair value accounting are that it can be complex, costly and unreliable. For

5 Trading intent may be evidenced by a clearly documented trading strategy that is approved by senior management, and/or by clearly
defined policies and procedures for the active management of the position.
6 The Financial Accounting Standards Board in the US defines fair value as ‘the amount at which an asset could be bought or sold in
a current transaction between willing parties, that is, other than being forced into liquidation’. Therefore, the assessment of fair value
is straightforward if quoted market prices exist. If they do not, the instrument can be marked to model, but not without introducing
pricing model risk.
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instance, it would be very difficult to reach a consensus on the expected losses due to coun-
terparty default in illiquid markets. Nevertheless, it is in fair value rather than cost accounting
that we find the appropriate foundation for risk evaluation.

The trading book contains on and off balance sheet positions that are held with the intent of
deriving short term profits. This implies that they are liquid enough to be closed down rapidly
and can be easily valued by marking to market. Derivative instruments such as futures, swaps
and options are off balance sheet instruments that are marked in the trading book. The banking
book contains all transactions that cannot be valued easily or are held for the long term with
no trading intent. They are usually accounted for on an accrual basis with adequate reserves
and provisions for potential losses, but marking to market is permitted where safe. Thus the
distinction between the two books is based on an accounting issue, i.e. that of valuing liquid
versus illiquid assets. Banks normally use fair value accounting in the trading book and cost
accounting for most of the positions in the banking book.

Reporting standards for basic accounts (or supplementary risk disclosures) play a critical
role in risk evaluation and capital allocation. These are essential for the evaluation of perfor-
mance, the disclosure of risks and the enforcement of market as well as supervisory discipline.
Accounting standards need to be global, to facilitate comparisons across nations and busi-
nesses. International accounting standards also save costs and facilitate access to international
capital markets. However, despite the extensive work that has been carried out by the Inter-
national Accounting Standards Committee (IASC) since its creation in 1974, progress is slow
because of differences in national traditions and legal systems.

Like the BCBS, the standards developed by the IASC have no legal power until accepted
and enacted by national authorities. In 2000 the Securities and Exchange Commission (SEC)
in the US adopted the FAS 133 standards in which derivatives are recorded in the trading book
at fair value.7 Since January 2005 the EU has required quoted companies to produce accounts
according to the much more comprehensive IAS 39 standards.8

IV.8.2.3 Regulatory Framework for Market Risk

The Basel II Accord reaffirmed the three pillars of regulation that were defined in the first
Accord:

• Pillar 1 – minimum capital standards. This sets the minimum level of eligible capital that
banks must hold as insurance against risk.

• Pillar 2 – supervisory review. This sets out the recommendations for inspection and the
reporting requirements for banks.

• Pillar 3 – public disclosure and market discipline. This aims to support the supervisor by
enhancing market scrutiny by competitors, clients and shareholders.

The three pillars are seen as equally important. They are also complementary. For exam-
ple, the flexibility to use internal models for calculating risk capital in Pillar 1 means greater
responsibility for the supervisor to inspect and approve these models under Pillar 2.

7 Financial Accounting Standards (FAS) Board Statement No. 133, Accounting for Derivative Instruments and Hedging Activities.
Available from www.fasb.org/derivatives.
8 International Accounting Standards 39: Financial Instruments: Recognition and Measurement.
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The central concept in the Pillar 1 capital requirement is a solvency ratio, called the Cooke
ratio, which is defined as the ratio of eligible capital to the total capital charge, both of which
are defined below. The minimum solvency ratio is the minimum value for the Cooke ratio that
is set by the national regulator, and for well-managed banks with at least an A credit rating
it is at least 8%. National supervisors are entitled to set higher ratios for poor-quality or less
well-managed banks, and to set different minimum solvency ratios for the trading and banking
books within a bank.

The numerator in the solvency ratio, eligible capital, consists of three tiers, defined in
decreasing order of reliability for capital reserves:

• Tier 1 (core capital) consists of paid up share capital plus audited retained P&L on
investing this capital;

• Tier 2 (supplementary capital) consists of undisclosed reserves, revaluation reserves, gen-
eral provisions, hybrid instruments and subordinated debt with maturity at issue of at
least 5 years;

• Tier 3 (sub-supplementary capital) consists of subordinated debt with maturity at issue
of 2–5 years.9

For eligibility under Tier 2 or Tier 3 capital, instruments must be free from any restrictive
covenants on their tradability, or they must be able to be hedged completely. Tier 2 capital
must also be less than Tier 1 capital.

The denominator in the solvency ratio, the risk weighted assets, is the sum of risk measures
for market, credit and operational risks. The market risk capital charge (MRC) applies to all on
and off balance sheet positions in a trading book.10 The MRC is defined as the sum of a general
risk charge (GRC), plus a specific risk charge (SRC) or an incremental risk charge (IRC):

MRC = GRC +{SRC or IRC} . (IV.8.1)

The specific or incremental risk components of the MRC may be applied to both equity
and interest rate exposures under the Basel recommendations, but they do not apply to
commodities or currencies.

Subject to certain qualitative requirements on its risk management procedures and quantita-
tive requirements on the structure of the risk model, set out below, banks may use an internal
risk model to estimate the MRC.11 The qualitative criteria that must be satisfied for use of an
internal model to assess MRC include:

• independence between risk control and business trading, with risk managers reporting
directly to the senior management of the bank;

• a regular backtesting programme, as well as initial and ongoing validation of the
internal model;

• involvement of the board of directors and senior management in the risk control process,
to which they must be committed;

• use tests whereby the internal model is closely integrated into daily risk management,
including its use in conjunction with trading and exposure limits;

9 Tier 3 capital is not counted in the assessment of the credit risk capital requirement.
10 The risk measure for market risk is 12.5 times the market risk capital charge evaluated directly. Market risks for non-traded positions
in a banking book are largely ignored, except possibly as a small additional charge under Pillar 2.
11 These criteria are stated in more detail in BCBS (2005).
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• a routine and rigorous programme for stress testing, with results being regularly reviewed
by senior management, and dynamic contingency plans must be in place;

• documentation for the technical framework of the risk model, and for internal policies,
controls and procedures for operating the model;

• the regular internal auditing of the risk model, to assess the above.

Regulators pay particular attention to the possibility of large losses, that is, to the negative tail
of a return distribution. Consequently, they focus on VaR to determine the minimum level of
regulatory capital. The quantitative criteria recommended by the Basel Committee for the use
of internal models are as follows:

• The 1% 10-day VaR must be estimated on a daily basis. For linear portfolios this may be
computed as

√
10 times the 1% 1-day VaR.

• The historical sample must be at least 1 year (or, for banks that use a weighting scheme
or other methods, the weighted average time lag of the individual observations must be
at least 6 months). Also data must be updated at least every 3 months or when there has
been a sharp change in prices.12

• No particular type of model is prescribed. So banks are free to use models based, for
example, on covariance matrices, historical simulations, or Monte Carlo simulations.
Discretion may be exercised to recognize empirical correlations within and across broad
risk categories, including implied volatilities in each risk factor category, provided that
the supervisory authority is satisfied that a bank’s system for measuring correlations is
‘sound and implemented with integrity’.

• Models must capture the risks associated with option portfolios accurately using a
10-day price shock, corresponding to static rather than dynamic options VaR;13 they must
also capture option portfolios’ non-linear price characteristics (i.e. gamma risk) and the
volatility of underlying rates or prices (i.e. vega risk).14

IV.8.2.4 Internal Models

For banks that use an internal VaR model to estimate the MRC the general risk charge is
calculated as k times the average of the 1% 10-day VaR over last 60 days, or yesterday’s VaR
on the current portfolio, if this is greater:

GRCt = max

(
k

60

60∑
i=1

VaR10,0.01,t−i,VaR10,0.01,t−1

)
. (IV.8.2)

The multiplier k takes a value between 3 and 4 depending on the model’s backtesting results.
If backtests reveal statistical inaccuracies in the VaR estimates, k takes a higher value or the
VaR model may be disallowed.15

12 Supervisors may also require a bank to use a shorter historical period if this is justified by a significant upsurge in price volatility.
13 For evaluating market risks of option portfolios banks are ultimately expected to move towards the application of a full 10-day price
change. But in the interim, they may adjust their capital measure through other methods, e.g. via periodic simulations or by stress
testing.
14 Banks with relatively large and/or complex option portfolios should measure the volatilities of options positions broken down by
different maturities. This requires a form of vega bucketing or, preferably, volatility beta mapping, as described in Section III.5.6.
15 See Section IV.6.4.2 for further details on the way that supervisors set the value for k. If the model is disallowed the MRC must be
calculated using the standardized rules.
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It is easy to show that a multiplier of between 3 and 4 produces a much higher (i.e. far
more conservative) risk measure than a 99.9% annual VaR. For example, even when k takes
its lowest value 3 and the returns are normal and i.i.d., we have

3 × 1% 10-day VaR = 3 × 2.32635σ = 6.979σ.

Hence, the GRC is approximately 7σ away from the expected portfolio return. The probability
of a return that is less than this, in a 10-day period during which the portfolio is static, can
be found using standard normal tables: it is approximately 1.5 × 10−12. Hence, it is extremely
unlikely that the GRC would be exceeded over a 10-day horizon.

But what about exceeding the GRC over an annual horizon – how likely is this? We should
not just extrapolate the GRC to an annual horizon using the square-root-of-time rule, i.e. by
multiplying it by

√
25 = 5, because the portfolio is likely to be rebalanced, except in cases of

extreme illiquidity. If the portfolio is rebalanced every 10 days then it is reasonable to assume
the 10-day returns are i.i.d., and in this case the probability of not exceeding 3×1% 10-day
VaR over an annual horizon is

(
1 – 1.5 × 10−12

)25
. So the probability of exceeding a level of

loss that is set at 3 × 1% 10-day VaR, over 250 days, is

1 − (
1 − 1.5 × 10−12

)25 = 3.7 × 10−11.

Clearly, this is much more stringent than using a 99.9% confidence level over a 250-day
horizon.

In a steady market the GRC will be dominated by k times the average VaR and, as we
have just demonstrated, it is unlikely that losses would exceed the capital requirement in this
case. The averaging process also smoothes out sharp variations in MRC and reduces the pro-
cyclical tendency for capital requirements. However, if there is a sharp increase in the bank’s
aggregated market risk, the average VaR term in (IV.8.2) is replaced by yesterday’s VaR,
that is, the VaR estimate does not increase enough when the portfolio make a large loss. This
increases the risk sensitivity of the MRC. Problems will arise, however, if the risk model that is
used to estimate VaR is insufficiently risk-sensitive, that is, the VaR estimate does not increase
enough when the portfolio make a large loss. This is one reason why regulators require the
VaR model to pass certain quantitative backtesting requirements.

EXAMPLE IV.8.1: CALCULATING GRC FOR A LONG-ONLY POSITION USING VAR

In Example II.1.2 we considered a portfolio of two US stocks, American Express (AXP) and
Cisco (CSCO) in the S&P 100 index. Using daily data from 3 January 2000 to 31 Decem-
ber 2007, we estimated the stock’s betas and the specific volatility of the portfolio. Estimate
the GRC for the same portfolio, which is continually rebalanced to have 60% invested in
American Express and the rest in Cisco. Assume the GRC multiplier k = 3 and use the normal
linear model based on 250 daily returns to estimate the portfolio beta and the 1% 10-day VaR.

SOLUTION We estimate the 1% 10-day VaR using the normal linear VaR formula

VaR10,0.01,t =
√

10 ×�−1(0.99) × βt × σt,

where βt and σt are the portfolio beta and the standard deviation of the S&P 100 index returns
respectively, both based on equal weighting over the last 250 observations. Then we apply
the GRC formula (IV.8.2). This result of rolling this calculation over the sample period is the
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series shown by the black line in Figure IV.8.1, measured on the left-hand scale. The S&P 100
index volatility is also shown on the left-hand scale and the pro-cyclical tendency of the GRC,
to move with the market volatility, is clear.
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Figure IV.8.1 GRC for the US stock portfolio and S&P 100 volatility

The portfolio beta, shown on the right-hand scale, is always greater than 1. Hence, this is a
‘high risk’ portfolio, and this explains why the GRC is so large. Around 50% of the portfolio
value would need to be held as the general risk capital charge in the early part of the period,
but during 2004–2006 it reduced to less than 20% of the portfolio value. It rose again at the
end of the data period due to the credit crunch, which had a serious impact on US stock market
volatility.

In some jurisdictions banks may be allowed to use another approach to compute the GRC
using an internal model.16 This is the scenario analysis approach to estimating GRC, in which
exposures in each division of the trading book are subjected to hypothetical changes to major
risk factors, as if the position has a risk factor sensitivity of 1.17 The extent of the hypothetical
change depends on the type of risk factors. For instance, equity indices are subjected to a
maximum of ±8% changes in price and ±25% relative changes in volatility.18 Within these
limits a two-dimensional ‘grid’ of possible price and volatility changes is drawn, and the P&L
of the book as a whole is calculated at several points within this grid. The aim is to quantify the
maximum loss that could be made and, for non-linear exposures, the maximum loss may occur
at an interior point, not necessarily at one of the extremes. For each type of risk and within
each geographical zone, the maximum loss is recorded for each book, and these losses are

16 For example, the Financial Services Authority in the UK may allow scenario-based internal models to be used by some banks.
17 In this approach, and in the standardized rules approach, a capital charge is assessed, initially, for each part of the trading book (e.g.
UK equities, US bonds, currencies and gold, etc.).
18 The scenario method is basically an extension of the standardized rules that are described in the next subsection, since the maximum
changes for the risk factors as well as the duration or maturity banding of interest rate exposures are defined in a similar way.
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then summed over all books covering different risk types and geographical zones, to produce
the market GRC for the bank. Small ‘boutique’ banks that have just a few large exposures
may find that this approach produces lower GRC estimates than would be obtained under the
standardized rules, and which may be easier to estimate than VaR-based GRC.

IV.8.2.5 Standardized Rules

An alternative to using internal models to estimate capital requirements is to apply a ‘building
block’ approach, in which separate charges for equity, currency, commodity and interest rate
exposures are estimated and then summed across the four categories of risk.19 In the stan-
dardized approach the MRC is based on instrument-specific rules. For equity exposures the
GRC is 8% of the exposure (long or short, with netting allowed within a book) summed over
all books. Then there is an additional specific risk charge (SRC) for equity risk because, in
the risk factor mapping of a stock portfolio’s returns, idiosyncratic risk could be significant.
This risk cannot be overlooked, except when all equity books contain large, well-diversified
portfolios. The SRC for equities is calculated, without netting long and short exposures in the
same book, as a percentage of nominal exposure. The SRC is 8%, unless the portfolio is both
liquid and well diversified, in which case the charge is 4%. Then the SRC is summed over all
books to obtain the total SRC for equity risk.

The SRC add-on may apply to internal models are well as the standardized rules. Banks
using internal VaR models to calculate the GRC for equities may already be capturing specific
risk when the only significant risks are those due to the risk factors that they are using in the
risk model. If a bank’s internal model has gained specific risk model recognition (i.e. if the
bank can convince the supervisor that the model is capturing specific risk adequately), then
it is exempt from the SRC. Otherwise it must add on the SRC that is calculated according to
these standardized rules.

For example, the GRC for the portfolio in Example IV.8.1, when based on the standardized
rules, is 8% of the portfolio value. To this we must add a specific risk charge of 8%, because
the portfolio is not well diversified. So, the MRC under the standardized rules will be 16%
of the portfolio value. But the internal model produced a GRC of more than 16% throughout
the data period considered. Moreover, it is unlikely that this model would gain specific risk
recognition, so the bank would still need to add on an SRC of 8%.20 Hence, the use of an
internal model in this simple example would lead to a much higher VaR estimate than the
application of the standardized rules.

The standardized rules for currencies and gold require the nominal amount (or net present
value) of the net position in each foreign currency and in gold to be converted at spot rates
into the reporting currency. The overall net open position is measured by aggregating the sum
of the net short positions or the sum of the net long positions in currencies, whichever is the
greater; plus the net position (long or short) in gold, regardless of sign. Then the GRC is 8%
of the overall net open position. There is no specific risk charge for currencies and gold, so
MRC ≡ GRC.

19 Gold is included in currency risk, not commodity risk.
20 It is difficult to obtain specific risk recognition with such a simple model and such a small portfolio. Indeed, in the spreadsheet for
Example IV.8.1 we also calculate the GRC based on the portfolio returns – i.e. without using a portfolio mapping – and find that it is
considerably greater than the GRC based on the portfolio beta mapping, especially during the early part of the sample.
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The standardized rules for interest rates are more complex.21 For general interest rate risk
due to discount curve movements, exposures within each currency are banded into duration
or maturity bands. The bands are then grouped into three zones, according to the duration or
maturity of the band. In each band the exposures (long and short) are weighted by a series of
factors that depend on the zone.22 Then ‘vertical and horizontal disallowances’ are calculated.
First, we net long and short exposures within each band and find the matched amount and
an excess amount. The excesses are then matched within the zone, giving a second matched
amount, the vertical disallowance, and an excess. These excesses are matched across different
zones, giving the horizontal disallowance, and a final net unmatched amount. Thus the GRC is
the sum of these components:23

(i) a small percentage of the matched positions in each zone;
(ii) a larger percentage of matched positions across different zones;

(iii) the net (long or short) position in the whole trading book.

Separate maturity ladders are used for each currency and capital charges are calculated for
each currency separately, and then summed with no offsetting between positions of opposite
sign, to obtain the total GRC for interest rate risk.

The reason for an additional specific charge for interest rate risk is that a single discount
curve for the risk factors of an interest rate sensitive portfolio ignores the risk due to changes
in credit spreads. The SRC for interest rate exposures depends on the credit rating of the issuer.
For example, the SRC for a government security varies from 0% (for a government with at
least an AA– rating) to 12% (for a government with a rating below B–). Banks using internal
VaR models to calculate the GRC may already be using credit spread curves as risk factors,
in which case the model may have gained specific risk recognition, and then it is exempt from
the SRC. Otherwise it must add on the SRC that is calculated according to the standardized
rules. Full details are given in BCBS (2005).

The standardized approach for commodity risk entails a maturity ladder with position
matching that is similar to that used for interest rate exposures. The percentages used to calcu-
late the GRC depend on maturity, except when a simplified method is used. In the simplified
method the GRC for directional risk is 15% of the net position, long or short, in each commod-
ity. Added to this is an additional capital charge equivalent to 3% of the bank’s gross position
(i.e. long plus short) in that particular commodity, to cover basis risk. There is no specific risk
charge for commodities, so MRC ≡ GRC.

IV.8.2.6 Incremental Risk Charge

After the credit crunch that began in 2007 a new requirement for banks using internal models,
for holding capital against default risk, was proposed by the Committee, and this is incremental
to any default risk already captured. Regulators are concerned that the VaR framework ignores
important differences in the underlying liquidity of trading book positions, and that it may not
fully reflect large but infrequent daily losses, or losses that occur as a result of large cumulative
price movements over periods of several weeks or months. Also, following the Committee’s

21 Readers are referred to BCBS (1996) or its amended version, BCBS (2005), for complete details and numerical examples.
22 And on coupon, if the maturity band approach is used.
23 An additional charge is required for positions in options, where appropriate.
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recommendations, many banks are using VaR models with equal weighting of about 250 days
of historical data. Now the Committee is concerned that this approach yields insufficient capi-
tal to be held against trading positions following periods of relative calm in financial markets.

In July 2008 the Basel Committee introduced an incremental risk charge, which applies to
default risk in the trading book, in response to the increasing credit risk exposure in banks’
trading books where the illiquidity of certain products is not reflected in standard VaR esti-
mates.24 The IRC represents an estimate of the trading book’s overall exposure to systematic
and specific default, credit migration, credit spread and equity price risks over a 1-year horizon
at a 99.9% confidence level, taking into account the liquidity horizons of positions.25

Current proposals are that the IRC must capture all material risks affecting prices of IRC
covered positions that are attributable to IRC market risk factors, irrespective of whether
they are already incorporated into a bank’s 1% 10-day VaR estimate. For example, the IRC
would capture price risks associated with movements in broad indices of stock prices and
market credit spreads even though typically such price risks are already captured in a bank’s
VaR calculations.26

The Committee expects banks to develop their own models for calculating the IRC, and
broad guidelines for these models are provided in BCBS (2008). Note that banks are now
required to meet these guidelines in order to receive specific risk model recognition. For port-
folios or products for which banks have already received specific risk model recognition under
the 1996 Market Risk Amendment, banks are required to implement the IRC in January 2010.
For banks without specific risk model recognition, and in particular for banks that apply the
standardized rules, the current rules for calculating capital charges remain unchanged.

The guidelines set out in BCBS (2008) require that banks pay particular attention to the
appropriate liquidity horizon in their IRC models. This represents the time required to sell
the position or to hedge all risks related to the IRC market factors in a stressful market. The
minimum liquidity horizon has a floor equal to:

• 1 month for equities traded on a recognized exchange, and for exposures to broad equity
market indices, and benchmark interest rate spreads traded in liquid markets;

• 1 year for re-securitizations; and
• 3 months for all other IRC covered positions.

Alternatively, if this is greater, the liquidity horizon is set to be consistent with the bank’s
actual experience. Thus, the size of the IRC will depend very much on the liquidity of the
exposure.

We now discuss how large the IRC might be for a specific, highly liquid portfolio. Most
banks actively hedge their portfolios and so Example IV.8.1, which was used to demonstrate
the methods that may be used to calculate MRC, is not very realistic in practice. The next
example is also very simple, but it is more relevant than the previous one because we examine
a liquid, hedged portfolio. If the portfolio is exactly hedged all the time, and the bank has

24 This encompasses all positions subject to the 1996 Market Risk Amendment, regardless of their perceived liquidity, except those
positions whose valuations depend solely on commodity prices, foreign exchange rates, or the term structure of default-free interest
rates. So it includes debt securities, equities, securitizations of commercial and consumer products, structured credit products as well
as derivatives on such instruments. Full details are given in BCBS (2008).
25 This is similar to the credit and operational risk capital charges.
26 A bank’s IRC model should normally incorporate credit default and migration risks for positions subject to credit risk and, by
January 2010, must incorporate all remaining price risks for credit positions (that are unrelated to defaults or credit migrations) as
well as all price risks for equity positions. At the time of writing the Committee has not determined whether to allow a bank’s IRC to
be adjusted for double-counting of risks that are already included in the 10-day VaR capital calculation.
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specific risk model recognition, then the internal models-based GRC should be zero, and the
MRC will simply be equal to the IRC. However, we shall assume that the hedge is rebalanced
only once per day, so the portfolio’s daily P&L is non-zero. Also, we shall assume there is a
position risk in the hedged portfolio which depends on the size of the exposure.27

Normally, banks are not allowed to buy each other’s shares, because this would allow them
to increase their capitalization without using any capital. Two banks could merely swap shares,
without any money changing hands. However, small amounts of another bank’s shares may be
held for market making purposes, when a bank’s brokerage business needs to fulfil the orders
from its clients, and so forth.

EXAMPLE IV.8.2: COMPARISON OF INTERNAL AND STANDARDIZED MRC FOR A

HEDGED POSITION

A bank holds 10,000 shares in Barclays and each day it rebalances the short position in Lloyds
TSB shares needed to match, as closely as possible, the value of the Barclays shares. It can
only trade Lloyds TSB shares in units of 100. What is the MRC associated with this hedged
portfolio, according to the standardized rules and based on an internal model?

SOLUTION We shall use daily data from 3 January 2005 until 14 November 2008 to answer
this question.28 Over this period, the prices (in pence) of the two shares are shown in Figure
IV.8.2. The effect of the banking crisis in 2008 is clear, as both share prices tumbled from
about £5 per share to less than £2 per share, even though these banks were cash-rich retail
banks that fared much better than many other banks during the crisis.
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Figure IV.8.2 Price of Barclays and Lloyds TSB shares (in pence)

27 Position risk arises when it is not possible to take a position with size equal to the size of an optimal contract. For instance, it is not
possible to buy or sell a non-integer number of shares.
28 Data downloaded from Yahoo! Finance, codes BARC.L and LLOY.L.
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The hedge is rebalanced once each day, and we shall ignore transactions costs. So the market
risk on the hedged portfolio arises from the daily P&L, as the previous day’s portfolio is
marked to market before rebalancing. There is also a small position risk, since we can only
trade shares in units of 100. The standard deviation of the hedged portfolio’s P&L determines
the VaR.

Each day we use the past 250 observations on daily P&L to calculate its standard deviation.
Then the normal linear VaR is calculated by applying the usual formula and we use (IV.8.2)
to estimate the GRC. The standardized rules require holding 8% of the hedged portfolio value
for the GRC plus 8% of the gross exposure (long and short, no netting) for the SRC. Hence
the SRC is the main component of the standardized rules-based MRC (as can be seen by com-
paring the size of the figures in columns N and P in the spreadsheet). Rolling the calculation
of capital charges daily over the entire sample gives the black line labelled GRC (Internal) and
the grey line labelled MRC (Standardized) in Figure IV.8.3.
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Figure IV.8.3 Internal GRC and standardized MRC for hedged portfolio

If the internal model does not have specific risk recognition, then the specific risk charge
would be added to the internal model-based GRC to obtain the MRC. And if it does have
specific risk recognition, then the Basel Committee are now recommending that a new, incre-
mental risk charge should be added to the internal model-based GRC to obtain the MRC.
Either way, the use of an internal VaR model will lead to a charge that is far greater than it
would be under the standardized rules. As can be seen in Figure IV.8.3, the GRC (internal) is
already greater than the standardized rules-based MRC. In fact, although the two were fairly
close at the beginning of the sample, by November 2008 the GRC (internal) was about 8 times
large than the MRC (standardized).

The Basel Committee have proposed the IRC because they believe that internal models
with specific risk recognition could induce a bank to hold relatively little risk capital against
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hedged portfolios. However, the above example demonstrates that the capital charges based
on internal models may be substantially greater than those based on the standardized rules,
for hedged portfolios as well as for unhedged portfolios. Therefore, if the proposed IRC is
adopted into national regulations, then some banks may have the incentive to revert to the
standardized rules for calculating MRC, if they are allowed to do so.

IV.8.3 ECONOMIC CAPITAL ALLOCATION

Innovation and progress in financial risk management have been driven by the regulators but
led by the industry, and risk professionals in the industry have always questioned the methods
that regulators propose for estimating regulatory risk capital. The standardized rules approach
is extremely crude and imprecise, and even the internal models that most large banks use for
calculating regulatory risk capital are based on questionable assumptions. For example, using
a square-root scaling rule for assessing VaR of linear exposures assumes that daily returns on
portfolios are normal and i.i.d., but we know this is very unlikely from observing historical
samples. Another very imprecise practice is to adopt a value for the GRC multiplier that
depends on only a single year of backtesting results. Moreover, it is extremely unlikely that
the GRC will be exceeded over a 1-year horizon.29 And there are many other ways in which
the regulatory rules are being questioned by industry practitioners.

Financial firms are bound by fewer modelling constraints when they assess their internal
risk capital, i.e. their economic capital (EC). There may be an external demand, from rating
agencies, who use EC as one indicator of the firm’s solvency, and it is not uncommon
for a rating agency to place some requirements on a firm’s economic capital measurement
methodology. An internal constraint is that senior managers should adopt an EC measurement
approach that is in line with shareholders’ personal views.30 Other than this, financial firms
are free to use any methodology they wish to arrive at a figure that they choose to label the
‘economic capital’ associated with an activity; the only provisions being that it is acceptable
to the shareholders and the rating agencies used by the firm.

IV.8.3.1 Measurement of Economic Capital

Economic capital is the name that is usually given to a particular risk metric, estimated accord-
ing to internal methods. The aggregate EC for the entire firm, which is derived by accounting
for the firm’s diversification of activities, reflects the desirable level of capital the firm would
like to hold for insurance against its risks. However, the components of EC that are allocated
to individual activities need not refer to real capital at all. Real capital should add up, but
EC is a risk metric and its aggregation should account for the correlation between different
components.

Definitions of economic capital vary across firms; EC estimates are generally based on a
quantification of extreme losses, and although the assessment methods are free from regulatory
constraints, they tend to ape the Basel methodology. Thus, whereas some firms base EC on
stress testing alone, others use risk metrics such as VaR or ETL at extreme quantiles, or a
mixture of VaR and ‘worst case’ losses.

29 Even when k = 3 the probability of exceeding the GRC over 1 year is less than 10−10. See our comments in Section IV.8.2.4.
30 For instance, if stress scenarios are used to determine economic capital then these scenarios should confirm to shareholder’s beliefs.
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We now use a simple, stylized framework to show that aggregate EC corresponds to a
minimum level of capitalization for a firm, defining the firm’s capitalization as its net asset
value, i.e. the asset value minus the value of all the liabilities of the firm. The firm’s aggregate
EC can be thought of the current net asset value such that there is a high probability that the
asset value remains positive for one year. In other words, the EC is the current net asset value
which guarantees (at some confidence level) that the firm remains technically solvent over a
one year horizon.

Having defined the basic framework, we now introduce some notation. The current value of
the firm’s assets is known and denoted by A0, and the annual return on assets RA is uncertain.
Hence, 1 year from now, the asset value is AT = A0 (1 + RA) and the α quantile of the asset
value distribution is AT,α = A0

(
1 + RA,α

)
, where RA,α denotes the α quantile of the asset return

distribution. The current liabilities, or debt is denoted D0 and we assume there is a constant
annual rate of debt financing, RD. Hence, the value of the debt, including the financing cost,
1 year from now is DT = D0(1 + RD).

To find the minimum level of capitalization we ask what is the minimum level of debt,
D∗

0, such that the probability that the firm is insolvent 1 year from now is very small. More
precisely:

Find D∗
T = D∗

0 (1 + RD) such that P
(
AT < D∗

T

)= α and where α is small.31

The important observation here is that, by definition,

D∗
T = AT,α. (IV.8.3)

Then, since AT,α = A0

(
1 + RA,α

)
,

D∗
0(1 + RD)= A0

(
1 + RA,α

)
.

In other words, if the current level of debt is no greater than

D∗
0 = A0

(
1 + RA,α

)
(1 + RD)

−1
,

then the capitalization is at least

A0 − D∗
0 = A0

(
1 − (

1 + RA,α

)
(1 + RD)

−1
)
, (IV.8.4)

and consequently there is a high probability, of 1 −α, that the firm remains solvent by the end
of the year.

Expression (IV.8.4) defines the EC as the minimum level of capital that must be assigned to
the firm to meet the solvency condition, i.e.

EC = A0 − D∗
0. (IV.8.5)

31 Since α is the probability of default over 1 year, firms set α according to their target credit rating. For instance, for a AAA rated firm
a typical value for α would be 0.03%.
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We now observe that

E(AT)= A0(1 + E(RA)) and AT,α = D∗
T = D∗

0(1 + RD) .

Hence, with definition (IV.8.5), EC is the present value of E(AT)−AT,α, where the expected
asset value, E(AT) is discounted at rate E(RA) and the value of the debt AT,α is discounted
at rate RD. This shows that EC, defined as the minimum requirement of real capital, or net
asset value, for the firm to remain solvent over a period of time, is a risk metric. EC is the
present value of the difference between the expected asset value 1 year from now and the
α quantile of the future asset value distribution, AT,α. The expectation refers to the assets of
the firm, and the α quantile AT,α represents the liabilities side of the firm’s balance sheet: it
corresponds to the maximum level of liabilities so that the probability of insolvency in one
year is no greater than 1 − α. Note that, when discounting the EC risk metric to present
value terms, the assets and liabilities in the definition of EC are discounted at different
rates.

Figure IV.8.4 depicts the relationship between EC, the expected asset value and the max-
imum value of the liabilities such that the firm remains solvent with probability 1 − α after
one year. The grey curve represents the asset value distribution 1 year from now, and the EC
is the distance between the current asset value, A0 and the maximum present value of the
liabilities, D∗

0.

E(AT)D*
T = AT,α

D*
0 = AT, α(1 + RD)−1 A0 = E(AT)(1 + E(RA))−1

Discounting

Liabilities Assets

EC = A0 – D*
0

Figure IV.8.4 Relationship between economic capital and capitalization

EXAMPLE IV.8.3: MRC AND ECONOMIC CAPITAL

A firm has a current asset value of £50 million and the annual return on assets is normally
distributed with mean 5%, and volatility 10%. The total liabilities of the firm are £40 million
and debt is financed at a rate of 3% per annum. Find the probability that the firm becomes
insolvent 1 year from now. How low should the firm’s current liabilities be to ensure there is
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no more than 1 chance in 1000 that the firm becomes insolvent at the end of the year? Derive
the EC corresponding to this level of liabilities.

SOLUTION Since the expected asset return is 5% the expected asset value in 1 year is

E(AT) = £50m × 1.05 = £52.5m.

And, since the standard deviation of the asset return is 10%, the standard deviation of AT is

SD(AT) = £50m × 0.1 = £5m.

The value of the liabilities in 1 year is

DT = £40m × 1.03 = £41.2m.

Since AT is normally distributed, we can use Excel to look up the probability that AT < DT

using the NORMSDIST function.32 That is, we find

P(X < 41.2)given that X ∼ N(52.5,25) .

In other words, applying the standard normal transformation, we seek

P
(

Z <
41.2 − 52.5

5

)
= P(Z <−2.26)where Z ∼ N(0,1) .

The result is NORMSDIST(−2.26)=1.19%. This is the probability that the firm goes
bankrupt by the end of the year.

Now we compute the EC in two equivalent ways. First, we use the Excel Solver to find the
value of the current debt that would lead to a probability of bankruptcy of only 0.1%. The
Solver settings are shown in the spreadsheet, and the result is £35,969,746. With this level
of debt the firm’s net asset value would be £14,030,254 and this is the minimum level of
capitalization required to ensure the solvency condition, i.e. the EC.

Secondly, we calculate the EC (in non-discounted terms first of all) as the difference
between the expected asset value and the 0.1% quantile of the asset value distribution.
That is,

non-discounted EC = £52,500,000 − £37,048,838 = £15,451,162.

Then we discount each term using the appropriate rate, i.e. using the return on assets for the
expected return and using the debt financing rate for the quantile, since the quantile is the
value of the debt 1 year from now, by definition. Hence,

EC = £52,500,000 × 1.05−1 − £37,048,838 × 1.03−1 = £14,030,254

as before.

32 In fact, in the spreadsheet we use the NORMDIST function, so we do not need to apply the standard normal transformation.
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Many firms base EC measures on risk metrics such as VaR or ETL at extreme quantiles,
although they are free to choose whatever metric they like (unlike regulatory capital for banks).
The most important criteria for an EC measurement approach are that it:

(i) refers to an appropriate risk horizon,
(ii) is based on coherent mathematical assumptions, and

(iii) utilizes intelligent risk aggregation methods.

A minimal requirement for aggregating risks is that they are based on a common horizon.
EC is often defined with reference to risks over a 1-year risk horizon and with reference to a
quantile that is consistent with the target credit rating of the firm. For instance, the quantile
could be 0.03% for an AA-rated firm, or 0.10% for an A-rated firm. Whilst credit and opera-
tional risks are often assessed over a 1-year horizon, market risks are typically assessed over
a much shorter term. Thus, to aggregate market risks with credit and operational risks, market
risk measures will need extending to a longer risk horizon.

In contrast to credit and operational risks, market risks are typically highly liquid, so it
makes no sense to extend a daily VaR to a 1-year horizon using a scaling rule such as the
square root of time over the full 250-day period. In adverse market circumstances most expo-
sures can be hedged or closed out easily, typically within a period of no more than a few
weeks, and the scaling horizon should refer only to the time period during which there is an
exposure. For instance, a gradual stepping down of the exposure could be made, at a rate that
depends on the liquidity in the market.33

Another important criterion is that the EC model be based on coherent mathematical
assumptions. Unfortunately, many models fall far short on this criterion. EC models tend to
focus on measuring the risks that are relatively easy to quantify, ignoring the risks that are
difficult to measure. Furthermore, totally different mathematical assumptions and accounting
frameworks are applied to measure market, credit and operational risks. Because of this it
is impossible to aggregate the three main risk types in a proper mathematical framework.
Even within a given risk type – and we are concerned here with market risk – the bottom-up
approach to EC measurement tends to apply a single figure such as VaR at an early stage in
the aggregation, forgetting about the underlying distribution of which the VaR is the quantile.
Distribution aggregation is relatively straightforward, given some assumptions on the depen-
dency between risks; but if we forget about the distributions and simply summarize the risk
with a single figure such as VaR, then it is not at all straightforward to aggregate risk estimates
in a mathematically coherent way.

The ‘intelligent aggregation’ criterion is extremely important because EC measurement is
usually approached within the ‘bottom-up’ paradigm. That is, a detailed model of individual
positions or activities is applied at the portfolio level, and then for a particular activity, and
then for an entire line of business, and so on. At each stage the EC measure is progressively
aggregated into EC measures for larger and larger portfolios, until we arrive at an EC mea-
sure for the entire firm. Simply summing the component risk capital estimates ignores the
diversification of the firm’s activities and will lead to a gross overestimate of the total EC.
The aggregation of market, credit and operational EC (which can be done at any level, from a
single portfolio to the entire firm) also needs to be performed in an intelligent manner, taking
account of diversification effects and avoiding double-counting of risks.

33 Then a scaled market VaR could be set, for example, following the liquidity adjusted VaR framework that was introduced in
Section IV.7.5.4.
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IV.8.3.2 Banking Applications of Economic Capital

However it is measured, EC is primarily a tool for risk budgeting. That is, its main purpose is
to set a limit on the risks that can be taken by each of the risky activities in a firm, by placing
an upper limit on the EC itself or by increasing the cost of risk capital and allowing the line
managers to determine their own maximum EC. Decisions about risk budgeting are typically
based on the maximization of a risk adjusted performance measure (RAPM). EC is commonly
used as the denominator in a RAPM, and in this case the optimal allocation of risk capital to
cover various risky activities can be determined by maximizing the value of this RAPM. That
is what we mean by economic capital allocation, and we shall describe this process in more
detail below.

A bank (normally) has easy access to funding; essentially, it only requires capital as a
buffer against risk. The risk management structure in most major banks is economic capital
driven because they use risk capital, as measured by EC, rather than real capital as the prime
risk management tool. This is because many of the higher-risk activities within a bank –
and derivatives trading in particular – do not require a significant amount of real capital for
funding their activities, because they are highly leveraged. But, precisely because they are
highly leveraged, there is considerable uncertainty about the returns on these activities, so
they do need a significant amount of risk capital. Hence, in the process of risk budgeting,
funding costs may be negligible, but we can still associate a cost of risk capital with every
activity.

Rating agencies assess the credit quality of debt issues, usually with maturities of several
years, and by extrapolation they assess the long term credit-worthiness of firms. The capital-
ization of a bank is one of the many important factors that will affect their credit rating. Banks
wish to hold sufficient EC because they care about their credit rating: it gives an important
signal to their customers, and their debt holders. The main customers in a retail or commer-
cial bank are the depositors and mortgage holders, and for an investment bank the customers
include the counterparties to OTC transactions. All these customers must have confidence in
the solvency of the bank. Indeed, without this confidence the bank could fail.

Here is a recent example where lack of counterparty and investor confidence precipitated
the bankruptcy of a UK retail bank, Northern Rock, whose prime business was mortgage
lending. To finance its loans the bank borrowed short term funds in the inter-bank market
and then periodically securitized its mortgages to repay its borrowings. With the onset of the
banking crisis in 2008, credit spreads soared and the higher costs in the inter-bank loan market
led to considerable uncertainty about the credit quality of all counterparties. Northern Rock
in particular found it difficult to secure short-term funds in the inter-bank market because,
like several other retail banks in the UK, it depended very heavily on securitization – issuing
mortgage backed securities (MBS) and collateralized debt obligations (CDO) – rather than
funding through depositors. When the MBS and CDO markets dried up Northern Rock found
it could not raise funds, either on the inter-bank market (where LIBOR rates had jumped
to more than 200 basis points above base rates) or by securitizing its mortgages. Since no
private banks would deal with Northern Rock, they sought help from the Bank of England.
This request became public knowledge, and signalled a crisis to the bank’s depositors who
then withdrew their funds. Due to European regulations on subsidization the Bank of England
could not provide special loan facilities. Currently an administrator has been appointment by
the government and Northern Rock has effectively been nationalized.
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IV.8.3.3 Aggregation Risk

Since the components of risk capital that are assigned to different activities need not refer to
real capital, risk capital need not be aggregated by simply summing its components. Indeed,
this ignores the effects of diversifying into activities whose returns are not perfectly cor-
related. Aggregation risk is a form of risk model risk that stems from the aggregation of
component risk capital into a total risk capital measure. It refers, in particular, to an inappro-
priate assumption about the dependencies between two or more risks when aggregating risk
capital.

A very basic example of aggregation risk arises in an assessment of portfolio volatility,
when we assume an incorrect value for the correlation between the returns on the constituent
assets. More generally, whenever we make an inappropriate assumption about dependencies
between the different components of total risk, we have aggregation risk. Aggregation risk
can be huge; indeed, it is likely to be by far the most important source of model risk in any
firm-wide risk assessment system. We now provide some simple but illustrative examples that
support this assertion.

EXAMPLE IV.8.4: AGGREGATION OF ECONOMIC CAPITAL

A firm measures EC for market risk using a 4-week VaR at the 99.9% confidence level.34 The
firm undertakes two different activities, labelled A and B, with $25 million dollars invested in
each activity. Suppose that the joint distribution of the returns to the two activities, in excess
of financing costs at the risk free rate, is a bivariate normal distribution, with volatilities 25%
and 40% and with correlation 0.2. Suppose also that the annual expected excess return is 5%
for activity A and 10% for activity B. Estimate the EC for each activity. Now aggregate these
EC estimates according to the risk model. How different would your result be if you simply
added the two EC estimates?

SOLUTION The mathematical problem is conceptually identical to the risk aggregation prob-
lems in a multivariate normal setting that we considered in Chapter IV.2. There are small
differences due to the time horizon and the use of non-zero excess returns in the EC estimates,
which are also based on VaR estimates at a very low quantile. But the general framework for
the solution is identical to that used in previous examples.35

The EC estimates are obtained using the normal linear VaR formula with a mean adjust-
ment, due to the non-zero expected excess returns on these activities. That is, if X denotes the
returns over the risk horizon of the EC estimate,

X ∼ N
(
μ,σ2

) ⇒ EC = VaRα =�−1(1 − α)σ −μ. (IV.8.6)

In our example, we have set α = 0.1% and a risk horizon of 4 weeks. Hence, for activity A,

ECA = 0.5 ×
(

�−1(0.999) × 0.25 ×
√

4

52
− 0.05 × 4

52

)
= 10.52%,

34 This is consistent with the 99.9% confidence level that the Basel Committee have adopted as standard, and is also consistent with a
1-year horizon if we assume that 1 month is enough time to liquidate or hedge any positions in any adverse circumstances.
35 For instance, see Example IV.2.14 which refers to the aggregation of equity risk with forex risk in the normal linear VaR model.
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and for activity B,

ECB = 0.5 ×
(

�−1(0.999)× 0.4 ×
√

4

52
− 0.1 × 4

52

)
= 16.76%.

Note that the initial multiplication by 0.5 arises because we have expressed the resulting EC
as a percentage of the total sum invested in the two activities, i.e. as a percentage of the
firm value.

To estimate the aggregate EC for the firm as a whole we find the weighted sum of the returns
to the two activities and use the correlation between the returns to derive the overall volatility
of the firm’s returns. Thus in (IV.8.6) we use the values

μ= 0.5 × 0.05 + 0.5 × 0.1 = 7.5%

and

σ =√
0.52 × 0.252 + 0.52 × 0.42 + 2 × 0.2 × 0.5 × 0.5 × 0.25 × 0.4 = 25.62%.

Hence,

Aggregate EC =�−1(0.999) × 0.2562 ×
√

4

52
− 0.075 × 4

52
= 21.38%.

The results for each activity and for the firm as a whole are summarized in Table IV.8.1.
Here we express the EC first as a percentage of the firm value of $50 million, and then in
nominal terms.

Table IV.8.1 Aggregation of economic capital

ECA 10.52% $5,260,573
ECB 16.76% $8,378,455
ECA + ECB 27.28% $13,639,027
Aggregate EC 21.38% $10,689,561

The risk capital that is allocated to cover the risks of both activities is 21.38% of the
total sum invested, i.e. $10,689,561. Of the £50 million invested 10.52%, i.e. $5,260,573,
is required to cover the risks of activity A and 16.76%, i.e. $8,378,455, is required to cover
the risks of activity B. Since the correlation is less than 1 the aggregate EC is less than the sum
of the two EC estimates. Because of the diversification effect from spreading the investment
equally over two different activities, we can hold considerably less risk capital than 27.28%,
i.e. $13,639,027, and still cover both the risks.

Correlation is a very important determinant of the aggregate EC: the lower the correlation,
the lower the aggregate EC. During stressful markets equity volatilities and correlations tend
to increase. The assumed correlation has no effect on the individual EC estimates, but it has a
significant effect on the aggregate EC, and it is this effect that we associate with aggregation
risk. We now continue the previous example by supposing the correlation between returns of
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the two activities is different from 0.2, and then we compare the aggregate EC obtained using
different correlations. This illustrates the extent to which our assumption about correlation
affects the EC allocated to the two activities.

EXAMPLE IV.8.5: SIMPLE ILLUSTRATION OF AGGREGATION RISK

Suppose that the correlation between returns of the two activities in Example IV.8.4 is 0.6
rather than 0.2. By how much does the aggregate EC in that example underestimate the total
EC that should be allocated to the two activities?

SOLUTION By changing the value for the correlation in cell B8 of the spreadsheet to 0.6 we
estimate an aggregate EC of 24.5% of the total sum invested, i.e. $12,251,314. This is 14.6%
greater than the aggregate EC estimate derived under the assumption that the returns on the
activities have a correlation of 0.2.

Figure IV.8.5 illustrates how the aggregate EC estimate depends on the assumed value for the
correlation, keeping the volatilities and expected excess returns of the two activities fixed. The
assumed value for the correlation is shown on the horizontal axis, and the resulting aggregate
EC estimate is depicted by the grey curve, expressed on the vertical axis as a proportion of the
total capital invested in the two activities. The straight lines show the individual EC estimates
and their sum, which do not depend on correlation.
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Figure IV.8.5 Effect of correlation on aggregate EC

The figure shows how important correlation is for determining the aggregate EC. The diver-
sification that arises from investing in two activities increases as their correlation decreases,
and so the aggregate EC decreases. At the two extremes we would have to allocate 27.28%
of our capital to cover both risks if the returns on the two activities were perfectly correlated,
compared with only 5.85% of our capital if the returns were perfectly negatively correlated.

IV.8.3.4 Risk Adjusted Performance Measures

A business may be considered as a collection of investments in risky activities, with a common
set of constraints and funded from a common pool of resources. Not all risks are undesirable.
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Some risks are expected to be well rewarded because they have substantial diversification
properties that can reduce the overall risk of the business. Efficient EC management does
not necessarily reduce all risks; its aim is to achieve the best mix of business activities. But
what do we mean by ‘best’? And how certain are we that this ‘best mix’ of activities will be
achieved? These are the questions that we try to answer with the theory of optimal capital
allocation.

A standard objective for optimal capital allocation is to achieve the best risk adjusted per-
formance or the best reward to risk ratio. To define ‘performance’ or ‘rewards’ we require a
comprehensive description of the good and the bad consequences of an allocation; typically
there are many attributes to consider, such as profit, reputation, agreements with competi-
tors and so forth, and the consequences are realized over a period of time. In this general
framework the risk associated with an allocation refers to our uncertainty about the results,
and which is the ‘best’ allocation depends on a criterion that associates some performance
measure with each probability distribution of results. To simplify this problem, we assume
that all the results of an investment are represented by the distribution of its return, and that
an investor always prefers a larger returns to a smaller one. That is, the return scale satisfies
what economists call the principle of non-satiation, i.e. ‘the more the better’. This still leaves a
wide choice, and there is no ‘best’ choice of performance measure, only choices more or less
well suited to a decision situation.36

In general a risk adjusted performance measure (RAPM) is a ratio of expected reward to
a risk measure. It is designed to choose the best mix of risky activities under restrictive
circumstances, such as when a risk free asset is available, or to judge the relative attractive-
ness of various risky activities.37 But a RAPM cannot indicate how much should be invested
in the best portfolio of risky activities; in general it can only be used to rank various activities.
RAPMs have been designed to suit different risk types (e.g. those with symmetric, skewed,
or heavy tailed return distributions) and to suit different contexts (e.g. total, systematic, or
specific risks). Given the limitations of the ordinary Sharpe ratio and in view of the non-normal
characteristics of many financial return distributions, many RAPMs have been designed in an
ad hoc manner to focus only on downside risks.38

The RAPMs that are commonly applied in the context of optimal EC allocation, are com-
monly based on the risk measures VaR or ETL. The inputs to the firm’s RAPM (i.e. expected
returns, risks and correlations) are forecasts, and so they cannot be predicted with certainty.
Past performance may give a useful indication of future performance in a stable environment,
but may be unreliable if the allocation of resources is changed dramatically or if circumstances
(e.g. competition, technology, regulation) evolve.

A simple example is the return on risk adjusted capital (RORAC), usually defined as the
ratio of the expected net profit of an activity to the EC associated with that activity. When EC
is defined as a percentage of the investment,

36 Nevertheless, some of the performance measures described in Chapter I.6 are difficult to justify theoretically because they cannot
be linked directly to a utility function, or because the implied utility function has strange characteristics.
37 For instance, in Section I.6.5 we introduced the concept of the Sharpe ratio, which is a RAPM that is linked to the capital asset
pricing model (CAPM) and which is relevant when there is the possibility of unlimited risk free lending and borrowing. It is defined as
the ratio of the expected return in excess of the risk free rate to the standard deviation of the return distribution. Thus, when an investor
uses the Sharpe ratio, his preferences are entirely determined by the knowledge of the expected return and the standard deviation of
the return. However, even the standard Sharpe ratio, along with other RAPMs that are derived in the CAPM framework, does not
satisfy the basic axiom of weak stochastic dominance. Yet no rational investor would prefer a investment that is weakly stochastically
dominated by another.
38 These include the Sortino ratio and the kappa and omega indices that were introduced in Section I.6.5.6.
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RORAC = E(R)

EC
, (IV.8.7)

where E(R) is the expected return on an activity in excess of funding and operating costs and
after tax. Alternatively, as in the example below, when EC is defined in nominal terms,

RORAC = E(P&L)

EC
, (IV.8.8)

where E(P&L) is the expected profit (or loss) after accounting for funding and operating costs
and after tax.

EXAMPLE IV.8.6: CALCULATING RORAC

A firm has an asset value of £130 million with expected return of 5%, and a debt value of £98
million with cost of debt of 3%. It pays a tax on net profits of 40% and its total EC over a
1-year horizon is £15 million. Calculate the firm’s RORAC.

SOLUTION The expected profit on the firm’s assets less the funding cost is 130 × 0.05 −
98×0.03=£3.56 million. After paying 40% tax on this, the expected after-tax profit is £2.136
million. The RORAC is the expected after-tax profit per unit of risk:

RORAC = 2.136/15 = 14.24%.

EXAMPLE IV.8.7: AGGREGATING RORAC

Calculate the RORAC for each of the activities defined in Example IV.8.4, and the total
RORAC on the two activities. Assume that funding is available at the risk free rate and there
is a 40% tax on profits. As in Example IV.8.4, assume the EC is based on a 4-week VaR at
a 99.9% confidence level, and derive the aggregate RORAC as a function of the correlation
between the returns on the two activities.

SOLUTION Half of the firm’s capital is invested in each activity, and the EC estimates that
were derived in Example IV.8.4 were expressed as a percentage of the firm’s total capitaliza-
tion. So that the expected excess return that appears in the numerator of the RORAC is the
excess return on the total capital, we multiply the expected excess return on each activity by
0.5. Hence, the RORAC for activity A, whose expected excess return is 5%, is

RORACA = 0.05 × 0.5 × 0.6

0.1052
= 14.26%,

and similarly, since activity B has expected excess return 10%,

RORACB = 0.10 × 0.5 × 0.6

0.1676
= 17.90%.

The total expected excess return after tax is

(0.05 × 0.5 + 0.1 × 0.5) × 0.6 = 4.5%,
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which is independent of the correlation between the two activities. But the aggregate volatility,
and hence also the aggregate EC and the aggregate RORAC, depends on the correlation, i.e. it
depends on the diversification that the firm achieves with its mix of activities.

Table IV.8.2 displays the aggregate volatility, EC and RORAC for correlation values
between −0.5 and +0.5. The EC increases with the volatility of the net returns which itself
increases as diversification effects decrease. Hence, as correlation increases, diversification
effects decrease and the aggregate EC increases. Since the numerator of the RORAC is
unaffected by correlation, the RORAC increases as the aggregate EC decreases, i.e. as the
correlation decreases.

Table IV.8.2 Aggregate RORAC as a function of correlation

Correlation

−0.5 −0.25 0 0.25 0.5

Aggregate volatility 17.50% 20.77% 23.58% 26.10% 28.39%
Aggregate EC 14.65% 17.80% 20.21% 22.37% 24.34%
Aggregate RORAC 30.71% 25.28% 22.26% 20.12% 18.49%

Risk adjusted performance measurement began in the late 1970s when Bankers Trust,
prompted by the growing role of trading and the development of new financial instruments,
introduced the risk adjusted return on capital (RAROC) as its preferred performance metric.
This metric has now been adopted by many major banks (e.g. Deutsche Bank, ING and CIBC)
and insurance companies (e.g. Swiss Re) to price and rank the profitability of deals, for EC
allocation and even for compensation schemes.

A general definition of RAROC is the ratio of risk adjusted expected net income after tax
to EC. But, just as there are numerous ways to define EC, so there are numerous ways to
define risk adjusted expected net income. Many banking activities – trading in derivatives
in particular – require very little real capital for their operation. However, they do require
risk capital to insure against potential losses. Hence, a simple risk adjustment to expected
net income after tax is to subtract the cost of risk capital that is allocated to that activity. For
instance, we could define39

RAROC = E(P&L)− k × EC
EC

, (IV.8.9)

where k is some multiplier, called the cost of capital coefficient.
Equation (IV.8.9) may be applied to obtain an aggregate RAROC for the entire firm, and

it may be applied to individual activities or mixes of activities in the firm. At the level of the
firm, the EC term in (IV.8.9) is the aggregate EC of the firm and, as shown in Section IV.8.3.1,

39 The precise definition of RAROC is determined by senior managers in consultation with the shareholders and the board. Although
RAROC is the most common RAPM used in banking, numerous other performance metrics are used in the financial industry. Some
of these are defined relative to assets rather than capital, for instance Matten (2000) lists return on assets (ROA), risk adjusted return
on assets (RAROA) and return on risk adjusted assets (RORAA).The ROA and a related performance metric, the return on accounting
capital (ROC), are not often used because they ignore the relative risk of different activities; RORAA, like RORAC, applies a risk
adjustment to the denominator only; only RAROC and its related measure, RORAA, apply an risk adjustment to both the numerator
and the denominator of the RAPM.
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this should be greater than or equal to the minimum level of capitalization for the firm required
to meet the solvency condition. When aggregate EC is equal to the minimum level of capi-
talization for the firm, the cost of capital coefficient k is equal to the real funding cost for the
firm. For instance, we might assume that k is the risk free rate plus some margin.

In general, it is not optimal for a firm to favour or reward activities with the largest RAROC.
It is the incremental contribution of an activity to total EC that is important. Assigning different
values for k, the cost of capital coefficient, to different activities is just an artifice, to achieve
the maximum global RAROC without forcing each business line to consider its incremental
contribution to global risk.

When we apply the RAROC formula to an individual activity, such as a trading desk in
a bank, then the EC term in (IV.8.9) need not refer to real capital at all. In this case, the
cost of capital coefficient k is set by senior management. In general, the value of k for each
activity should increase with the total demand for capital within the firm, relative to the total
capitalization of the firm. If the total demand for real or risk capital is high relative to the
capitalization of the firm, the cost of capital coefficient k would increase for all activities.
But if senior managers wish to reward an activity – perhaps because it is particularly well
managed or because it provides a good source of diversification – they may encourage it
to grow by reducing its cost of capital. The ability to assign different values for the cost of
capital coefficient to different activities is a management tool that can be used to alter the mix
of activities in the firm over a period of time.

We also need to distinguish between funded and unfunded activities. In funded activities,
such as trading securities, real capital is allocated to the activity in addition to economic (risk)
capital. Then the financing cost of the real capital should be included in the expected P&L
before accounting for tax. Alternatively, if funded activities are not operating as separate bud-
getary units, in which case no financing costs are accounted for in the expected P&L, the
adjustment term in the numerator of (IV.8.9) could be set at some multiple k of the total
capital, i.e. the funding capital plus the risk capital, that is allocated to the activity.

We illustrate the application of (IV.8.9) by continuing the previous example, to estimate the
firm’s aggregate RAROC as a function of both the correlation between the activities and the
cost of capital coefficient k, which is assumed to take values between 0 and 25%. The results
are shown in Table IV.8.3. Like the firm’s RORAC, the total RAROC decreases as the opportu-
nity for diversification in the firm’s mix of activities decreases (i.e. as the returns correlation of
the activities increases). But now, the cost of risk capital also affects the performance measure.
As the cost of capital increases, the RAROC declines. When the cost of capital is high and
there is low diversification in the firm’s activities, the RAROC even becomes negative.

Table IV.8.3 Effect of cost of capital and correlation on aggregate RAROC

k
Correlation

−0.5 −0.25 0 0.25 0.5

0 30.71% 25.28% 22.26% 20.12% 18.49%
5% 25.71% 20.28% 17.26% 15.12% 13.49%

10% 20.71% 15.28% 12.26% 10.12% 8.49%
15% 15.71% 10.28% 7.26% 5.12% 3.49%
20% 10.71% 5.28% 2.26% 0.12% −1.51%
25% 5.71% 0.28% −2.74% −4.88% −6.51%
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The next example distinguishes between two types of activities in an investment bank: a
highly leveraged activity that requires no real capital for financing (other than operating costs),
even though the notional size of the business is huge; and a funded activity that requires
funding of the full notional size. In each case the expected P&L term in the numerator of
RAROC is the expected revenue from the activity, less expected losses, less any funding and
operating costs, and this total is adjusted to be after tax.

EXAMPLE IV.8.8: COMPARING RAROC FOR SWAPS AND BONDS

A UK bank has an interest rate swaps desk with a notional size of £100 billion. The profit
margin built into each deal is 3 basis points, the annual operating costs are 1 basis point
and the EC is 5 basis points. The same bank has a corporate bond desk that buys bonds and
finances these transactions through loans from depositors, loans on the inter-bank market and
securitization of low grade bonds. The notional size of the bond portfolio is £10 billion, the
expected revenue from the portfolio over the next year is 10%, the expected losses due to
defaults are 3%, the financing cost is 6%, the operating cost is 10 basis points and the EC
allocated to this portfolio is 3% of the notional. Assuming that the bank pays a profits tax of
30% and charges each desk a 15% cost of risk capital, calculate the RAROC for each desk,
before and after tax.

SOLUTION For the swaps desk we have:

Profit margin £30 million
Operating costs £10 million
Net expected profit £20 million
Economic capital £50 million

So before tax,

RAROC = 20 − 0.15 × 50

50
= 25%,

and after tax,

RAROC = 0.70 × 20 − 0.15 × 50

50
= 13%.

For the bond desk we have:

Expected revenue £1 billion
Expected losses due to default: £300 million
Financing costs £600 million
Operating costs £10 million
Net expected profit £90 million
Economic capital £300 million

So before tax,

RAROC = 90 − 0.15 × 300

300
= 15%,
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and after tax,

RAROC = 0.70 × 90 − 0.15 × 300

300
= 6%.

In this example the results are actually independent of the notional size of each business,
because the expected profits, losses, costs and tax are all defined as proportional to size. The
reason why we have set up this example to include a figure for the notional size of each
business is that we shall be using this example in the next subsection to illustrate how the
bank may prefer to alter the relative size of each business, to optimize the aggregate RAROC.

IV.8.3.5 Optimal Allocation of Economic Capital

Since the portfolio theory of Markowitz (1959) modern finance theory has attempted to
explain the balance between risks and returns in securities markets. In Chapter I.6 we
explained how this balance affects the optimal allocation of scarce resources to risky invest-
ments, taking account of portfolio diversification effects through the correlation of the returns
on different investments. There we adopted the perspective of a global asset manager who
evaluates the performance of different portfolios of a set of risky assets, and hence decides how
to allocate his capital in an optimal manner, according to his utility function. But, as noted in
Section I.6.1, another main application of optimal capital allocation theory is to the allocation
of EC in a financial institution. This is the perspective that we adopt in the present section.

In fund management investors are free to select assets according to their expected returns,
volatilities and correlations. A risk free asset is usually available, at least for investment. An
optimal investment strategy can therefore be designed in three steps:40

1. Construct the opportunity set of all investment opportunities and determine its efficient
frontier in risk–return space.

2. Determine the tangency portfolio which yields the maximum Sharpe ratio, or by
maximizing another RAPM that is consistent with the CAPM.

3. Construct the optimal portfolio as the combination of the tangency portfolio and the risk
free asset that maximizes expected utility, or the certain equivalent of the portfolio.

An optimal EC allocation strategy follows a similar design, since it is based on a very sim-
ilar mathematical framework. In business, shareholders switch their investments to maximize
some RAPM, such as RAROC. Hence, senior managers should adopt a similar objective.
A critical element in the consistent application of a RAPM is that one should compare bundles
of business units, or activity mixtures, to investigate the ideal mix for the firm. Thus, the
optimum notional capital allocation to a business unit depends on its correlation with other
business units as well as on its own profile of risk and return. This is a problem equivalent to
the selection of an optimal portfolio of securities, but with additional constraints. The three
steps to follow in an optimal capital allocation strategy are as follows:

1. Assess the EC of all activities, for instance within each line of business.
2. Aggregate the EC across activities, taking into account their dependencies.

40 See Section I.6.3 for further details.
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3. Change the capital allocated to different activities, or the cost of risk capital charged to
the activity, to maximize the RAPM, taking account of any risk capital constraints.

In the last step, after solving the allocation problem for the complete business, subject to a
constraint on the total EC, one can either budget EC or set a cost for EC for each business
unit. In the latter case the internal costs for risk capital will depend on correlations between
businesses.

EXAMPLE IV.8.9: MAXIMIZING RAROC FOR OPTIMAL CAPITAL ALLOCATION

Suppose a firm measures EC for market risk using a 4-week VaR at the 99.9% confidence level,
and that the firm has $1 billion to invest in two diversified activities, A and B. Assume the joint
distribution of the two returns in excess of the risk free rate is a bivariate normal distribution,
having volatilities 30% and 50% and correlation −0.25. The expected excess annual return is
5% for activity A and 12% for activity B and there is no tax. The firm charges a cost of capital
of 10% to each activity, and the overall cost of economic capital is 6%. First, assuming that
equal amounts are invested in each activity, calculate the RAROC for each activity and the
aggregate RAROC. Now find the optimal allocations to the two activities that will maximize
the aggregate RAROC.

SOLUTION When exactly half the capital is invested in each activity we have, using (IV.8.6)
with α = 0.1% and a risk horizon of 4 weeks,

ECA = 0.5 ×
(

�−1(0.999)× 0.30 ×
√

4

52
− 0.05 × 4

52

)
= 12.66%.

Hence, for activity A,

RAROCA = 0.05 × 0.5 − 0.1 × 0.1266

0.1266
= 9.74%.

And, for activity B,

ECB = 0.5 ×
(

�−1(0.999) × 0.50 ×
√

4

52
− 0.12 × 4

52

)
= 20.97%,

and

RAROCB = 0.12 × 0.5 − 0.1 × 0.2097

0.2097
= 18.62%.

The multiplication by 0.5 arises because we have expressed the result as a percentage of the
total sum invested in the two activities.

To estimate the aggregate EC we use (IV.8.6) with the values

μ= 0.5 × 0.05 + 0.5 × 0.12 = 8.5%

and

σ =√
0.52 × 0.32 + 0.52 × 0.52 + 2 × 0.2 × 0.5 × 0.5 × 0.3 × 0.5 = 25.74%.
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Hence,

Aggregate EC =�−1(0.999) × 0.2574 ×
√

4

52
− 0.085 × 4

52
= 21.41%

and

Aggregate RAROC = 0.085 − 0.06 × 0.2141

0.2141
= 33.71%.

In nominal terms, we have an aggregate risk capital of 21.41% of $1 billion, i.e. $214,065,036.
The component risks are 12.66% of $1 billion, i.e. $126,638,358, for activity A and 20.97%
of $1 billion, i.e. $209,653,674, for activity B.

We now ask whether we could change the proportions invested in each activity to increase
the aggregate RAROC. The optimization problem is set up in the spreadsheet, using the
Solver, and we find that we could increase the aggregate RAROC to 34.33% if we invested
$572,872,462 in activity A and $427,127,538 in activity B, instead of investing of $0.5 billion
in each activity. With this optimal mix of activities we would increase the allocation of EC for
activity A to $145,095,256 and decrease the EC allocation to activity B to $179,097,715. We
would also have a lower aggregated EC: it is reduced from $214,065,036 to $198,108,377.

The final example illustrates how to implement a constraint on the optimal allocation of EC
where the aggregate EC must be equal to a bank’s minimum regulatory capital.

EXAMPLE IV.8.10: CONSTRAINED ECONOMIC CAPITAL ALLOCATION

Consider again the interest rate swaps and corporate bond desks of a UK bank in
Example IV.8.8. Calculate the:

(i) aggregate EC when the two desks have a returns correlation of 0.5, assuming that equal
amounts are invested in each activity;

(ii) aggregate RAROC when the bank pays a 6% cost for financing, and the cost of overall
EC is also 6%;

(iii) optimal EC allocation to the two desks when the aggregate EC is equal to minimum
regulatory capital covering these activities, and this is £80 billion.

SOLUTION Using our results from Example IV.8.8, on the swaps desk we have an expected
net return after tax of £14 million, with an EC of £50 million, and on the corporate bond desk
an expected net return after tax of £63 million, with an EC of £300 million.

(i) The aggregate EC is calculated using the formula

EC =
√

EC2
1 + EC2

2 + 2�EC1EC2, (IV.8.10)

where EC1 and EC2 are the EC of each desk and � is the returns correlation. Using the results
from Example IV.8.8, we have

EC =√
502 + 3002 + 50 × 300 = £327,871,926.
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(ii) The aggregate RAROC is thus

RAROC = 77,000,000 − 0.06 × 327,871,926

327,871,926
= 17.48%

(iii) The above results may be seen in the spreadsheet by changing cell C3 to 100 and cell
G3 to 10. The constrained optimum aggregate RAROC is found by changing the notional
size of each desk to maximize the RAROC, subject to the constraint that the aggregate EC is
£80 million. The EC of the bond desk alone is £300 million, which far exceeds the minimum
risk capital required. Hence a constrained optimization of RAROC will reduce the size of the
corporate bond trading desk quite substantially. Using the Solver, just as we did in the previous
example, but now adding the EC constraint, we find that we should increase the notional on the
swaps desk to £128,102,523,043 and decrease the notional on the corporate bond desk from
£10 billion to only £854,016,820. The new EC allocations are now £64,051,262 for the swaps
desk and just £25,620,505 for the bond desk and, taking account of the correlation between the
two activities, the aggregate EC is exactly £80 million. With these new allocations, the overall
RAROC of the two desks would be increased to 23.14% and the bank would be holding no
more than the minimum risk capital required by the regulators.

In the above examples the firm implements the optimum RAROC by changing the allocation
of EC to each activity. Alternatively, a firm could adjust the cost of capital rather than change
the EC allocation and let the line managers determine their own EC subject to a lower limit
on the RAROC of their business. This allows more freedom for the internal risk management
in each activity.

Optimal capital allocation may recommend a very significant change in EC allocations,
especially when subject to minimum regulatory capital constraints. But it is difficult to alter
the business mix rapidly. Instead, hedging could be considered as an intermediate step. We
also need to understand how the performance of an activity and its correlation with others will
change with a significant redistribution of the sizes of various activities. In reality we may only
know the marginal change in profitability for a relatively small change in size, and have very
little idea about the effect of scale on correlations. For all these reasons the determination of an
optimal EC allocation in practice is an iterative process giving, at each step, only a direction
for improvement rather than leading in one step to a realistic optimum.

IV.8.4 SUMMARY AND CONCLUSIONS

This chapter has described how regulators, senior managers and the board of directors may
use VaR, ETL and/or stress scenarios to estimate the minimum level of a firm’s capitaliza-
tion that ensures a high probability of solvency over a fixed time horizon. Regulators have
required a minimum level of capitalization for banks to cover market risks since the 1990s.
Consequently, developments in the assessment of risk capital have been driven by banking
regulators, who themselves have been led by the Basel Committee. However, more than a
decade before minimum regulatory risk capital requirements were enforced, the banking sys-
tem had already adopted a framework for risk management that is based on the optimization of
an enterprise-wide risk adjusted performance metric. Nowadays virtually all the major banks
have risk management systems that are driven by an allocation of internal risk capital – called
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economic capital – which is based on an optimization of risk adjusted performance. In this way,
over a period of time, senior managers and the board of directors may alter the preferred mix
of business units within the bank.

The minimum requirements for market risk capital that are prescribed by regulators are
based on a minimum solvency ratio, i.e. a minimum value for the Cooke ratio of eligible capital
to a minimum risk capital requirement. There are strict rules for the methods used to assess the
minimum risk capital requirement. For capital covering market risks a bank can either adopt
the standardized rules approach, which prescribes rather onerous capital requirements, at least
for hedged positions, or an internal models approach where minimum market risk capital is
usually assessed using a 1% 10-day VaR measure, aggregated over all the lines of business in
the bank. But risk capital does not add up like real capital. Indeed, the whole point is to account
for the less-than-perfect correlation between activities so that the aggregate risk capital is less
than the sum of the components.

In addition to a general risk capital charge, the Basel Committee has recently recommended
that banks which use internal models that have specific risk recognition, so that they are
exempt from the specific risk charges in the standardized rules, should increase their risk cap-
ital charge by adding an incremental risk charge to cover equity and credit spread risk. At the
time of writing the incremental risk charge has not yet been adopted in national regulations:
it is a recent innovation of the Basel Committee, suggested in response to the credit crisis that
began in 2007, more than a year after the new Basel Accord. However, a capital charge that is
calculated using internal models is likely to favour banks that are better able to net their expo-
sures. Hence the current rules for internal models and the proposed incremental risk charge
may favour the large banks that are dominating the industry. In view of the greater systemic
risk posed by failures of very large banks, a better alternative may be to require capital charges
to be directly proportional to the bank’s size.

A financial institution is free to use any method it wishes for the assessment of EC, provided
it is acceptable to the shareholders and, if the firm’s issues have credit ratings, the rating
agencies. The aggregate EC for the entire firm reflects the desirable level of capital the firm
would like to hold for insurance against its risks. It is important for the firm to hold a level
of EC that is sufficient to justify its credit rating. And achieving a satisfactory level of total
capitalization is particularly important for banks, since inadequate capitalization can adversely
affect the confidence of both investors and counterparties, as was the case during the banking
crisis in October 2008.

When EC is allocated to different activities within the firm, it need not refer to real capital
at all; it merely corresponds to a risk metric. Many activities such as derivatives trading
do not require much real capital for funding their activities, because they are very highly
leveraged, but they do require a capital buffer to cover their risks. Hence risk budgeting is a
process of economic capital allocation rather than the allocation of real capital to fund different
activities.

Shareholders switch their investments to maximize a risk adjusted performance measure, so
senior managers should do likewise. The most prevalent risk adjusted performance measure
that is used in financial risk management today is the risk adjusted return on capital (RAROC).
This is the ratio of risk adjusted expected net income after tax to EC. Since EC appears in the
denominator of RAROC, the maximization of aggregate RAROC (or a similar risk adjusted
performance metric) for the entire firm or for various mixes of business activities allows man-
agers to set limits on the EC, and therefore also limit the risks that can be taken at every
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level of the firm. In this way, senior managers and the board of directors use EC allocation to
influence the mix of business activities undertaken by the firm.

But it is difficult to forecast EC, since it typically depends on the volatilities and correlations
of business activities over a long time horizon. It is also difficult to forecast future net income,
which appears in the numerator of the risk adjusted performance metric. Moreover, when the
aggregate risk adjusted performance metric for a bank is maximized subject to the constraint
that it is greater than or equal to the bank’s minimum regulatory capital, the preferred mix of
business activities may require a very significant change in the size of some operations. Thus,
economic capital allocation in practice is a process that takes time, in which only gradual steps
towards improving risk adjusted performance should be taken at any point.
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Mean reversion 201, 218–23, 248
Mersenne prime 204
Mesokurtosis 178
Method of moments 109, 114
Minimum capital requirement 419–20

Minimum solvency ratio 407, 434
Mixing law 114
Mixture distributions 111–12
Mixture linear VaR 113, 115–18
Mixture parameter estimation 114–15
MLE (Maximum likelihood estimation) 109
Model risk 135, 202, 312, 316–17, 354, 403
Model validation 332–53

backtesting guidelines 335–7
backtesting methodology 332–5
bias statistics 345–8
coverage tests 337–40
distribution forecasts 348–51
ETL forecasts 345
regression 340–4

Monotonic transformation 38, 186
Monte Carlo credit spread VaR 236–8
Monte Carlo interest rate VaR 238–9
Monte Carlo simulations

path dependency 292–6
static VaR 255

Monte Carlo VaR 3, 44–5, 46–7, 51, 141,
201–2, 214–15, 245, 309

behavioural models 232
copulas 229–30
delta–gamma–vega mapping 298–9
energy options 302–7
exact revaluation 283–6
linear portfolios 233–44
low discrepancy sequences 204–6
multivariate delta–gamma mapping 299–300
multivariate delta–gamma–vega mapping

300–1
multivariate distribution 213
multivariate normal 227–8
multivariate student t 228–9
non-linear, non-normal 289–90
option portfolios 282–307
path-dependent option 295–6
PCA 305
pseudo-random number generation 203–4
regime switching models 223–5
short strangle position 296–8
univariate distributions 211–13
variance reduction 206–10
volatility clustering 218–23

Mortgage backed securities (MBS) 421
Moving average models 54
MRC (Market risk capital charge) 407, 414–16
Multi-step historical simulation 278
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Multi-step Monte Carlo 201, 215–18, 244, 293
asymmetric GARCH volatility 221–3
EWMA volatility 218–20

Multivariate delta–gamma approximation
250, 251

Multivariate delta–gamma–vega approximation
300

Multivariate distribution 213, 226–30
Multivariate normal distribution 1, 53, 226, 228
Multivariate normal mixture distribution

202, 235
Multivariate student t 227–8, 287

N

Natural gas futures VaR 104
Net asset value 417
Non-linearity in risk factor dependence

287–90
Non-normality in risk factors 287–90
Normal copula 229
Normal distribution 42, 56, 138, 227, 320,

367–71
Normal linear VaR 3, 41–2, 45–6, 51, 56–67

bias statistics 345–8
cash-flow maps 67–78
commodity futures 103–6
confidence intervals 325–8
credit spread 75–8, 135–8
equity 27–8, 85–103
ETL 129–30
formula 18–20, 56–60
interest rate 29–30, 67–8, 72–4
stock portfolios 85–92

Normal mixture ETL 133
Normal mixture risk factor VaR 119–20
Normal mixture scenario VaR 373–5
Normal mixture VaR 115–16
Northern Rock 421
NYMEX futures 103

O

Off balance sheet instruments 406
OLS (Ordinary least squares) 316
Operational risk factors 359
Option portfolios 307

delta effect 252–3
dynamically hedged 272–3
gamma effect 250–1
historical VaR 263–82
Monte Carlo VaR 282–307

P&L 260
rho effect 253–4
risk factors 250–7, 308
theta effect 253–4
VaR 247–308
vega effect 252–3

Option price 217
Option pricing theory 257
Ordinary least squares (OLS) 316
OTC trades 135, 403
Out-of-sample diagnostic analysis 312
Over-the-counter (OTC) trades 135, 403
Overlapping data 151–2, 323, 336

P

Parametric linear VaR 53–140, 121–8,
324–9

Parametric simulation 248
Pareto distribution 144, 167, 199
Path dependency 292–6
Path-dependent options 278–80
PCA (Principal component analysis) 55, 79,

81–5, 140, 230–1
crude oil futures 304–6
interest rates 235
stress tests 359, 390–2, 399

Portfolio management
diversification 89–90
risk adjusted performance measures 23–4
risk measurement 6–7
VaR 20–1, 48

Portfolio sensitivity analysis 380
Portfolio theory 430
Posterior distribution 375–8
Power law scale exponents 143, 146–7
Present value of basis point (PV01), see PV01
Price beta mapping 250–1
Price process 217
Price-quantity impact 395–6
Price risk 271
Price sensitivities 2
Price-volatility relationship 232, 233,

253, 295
Pricing model 403
Primitive roots 204
Principal component analysis (PCA) 55, 79,

81–5, 140, 230–1
crude oil futures 304–6
interest rates 235
stress tests 359, 390–2, 399
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Principal component risk factors 202
Principal component stress tests 391–2
Prior density 376
Prior distribution 375
Probability 364, 375, 379, 399
Probability distributions 366–7
Probability weights 157
Profit and loss (P&L)

actual 336–7
cleaned 337
discounted 15, 29
funded activities 428
option portfolios 259–60
Taylor expansions 255
uncertainty 1
VaR estimation 13–20

Pseudo-random numbers 201, 203–4
Public disclosure 406
PV01 (Present value of basis point) 29, 53, 55,

57, 63, 65, 68–83, 100, 102, 176–7, 179

Q

Quantile risk metrics 11–13, 48
Quantiles 32, 165, 186

confidence levels 330–2
Quanto correlation 93
Quasi Monte Carlo methods 201

R

RAPM (Risk adjusted performance measure)
421, 424–30, 431

RAROC (Risk adjusted return on capital) 427,
430–1, 434

RORAC (Return on risk adjusted capital)
425–9

Rating agencies 421
Realized P&L 336–7
Real-time VaR calculations 249
Rebalancing assumption 3, 20, 150, 254–7
Reference volatility 252
Regression 340–4
Regulatory capital 401, 403–16
Regulatory matrix 126
Resolution methods 2, 311, 322–3
Return on risk adjusted capital (RORAC) 425–9
Reward to risk ratio 425
Rho effects 253–4
Risk adjusted performance measure (RAPM)

421, 424–30, 431

Risk adjusted return on capital (RAROC) 427,
430–1, 434

Risk aggregation 420, 422–4
Risk attribution 26
Risk budgeting 8, 421
Risk drivers 358, 364
Risk factor dependence 225–33
Risk factor mapping 26, 27, 43, 49, 182, 311,

314–19
Risk factor models 225–34, 287, 319–22
Risk factors 26, 202

dynamic 152, 215–25
iTraxx Europe index 135–6
multivariate distribution 311
option portfolios 250–7, 297
orthogonalizing 230–1
principal components as 79, 81–5, 140,

230–1
scale exponents 147–50
trust region 383
volatility as 252, 280–2, 287–307

Risk factor sensitivities 21, 300
see also Equity beta, PV01, Greeks

Risk factor volatility 6
Risk free condition 39
Risk horizon 7, 13–15, 420
Risk limits 5
Risk metrics 1, 38, 47–8

ETL defined 36, 345
downside 9–13
VaR defined 13–17
Quantiles 11–13

RiskMetrics™ 126–8, 344
Risk–return space 430
Rolling windows 332–3

S

S&P 500 153, 186, 385
EWMA 123
filtered historical simulation VaR

163–5
GARCH parameters 160
historical VaR 154
moments 115
normal linear VaR 155
RiskMetrics™ VaR and ETL 343–7
VaR comparison 45–7
volatility adjusted VaR 159–62, 166
volatility index 149, 288–9, 300

Sample likelihood 376
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Sample size 145, 155–6, 316
Sampling error 312, 313

estimation risk 329, 355
Sampling methods 203–11, 245
Scale exponent 143, 146, 200

major risk factors 147–50
Scaling VaR

different risk horizons 323–4, 357
Scenario analysis 357–78, 410
Scenario VaR 367–78, 399
Semi-standard deviation 9–10
Semi-variance 9
Sensitivity analysis 358
SER (Standardized exceedance residuals)

345, 346
Sharpe ratio 430
Shocks 357
Short strangle position 296–7
Significance level 13
Silver futures VaR 105
Simulation errors 202, 206
Single case scenarios 358, 360
Six sigma event 382
Skewness 111–17, 137, 166, 242
Sobol sequences 206
Solvency condition 419
Solvency ratio 407
SPAN (Standard Portfolio Analysis of

Risk) 358
Specific risk charge (SRC) 407,

411, 434
Specific VaR 27, 31, 48, 54

empirical estimation 90–1
EWMA 91–2
historical simulation of 199
stock portfolio 87–90, 179–84
volatility adjustment of 182

Square-root-of-time rule 54, 146, 152
SRC (Specific risk charge) 407, 411, 434
Stable distribution 146
Stand-alone VaR 32–3, 48, 54, 56,

139, 199
bond positions 190–2
commodity futures 103–6, 199
normal linear 64–6
stock portfolios 93–100, 185–90
see also – credit spread VaR,

commodity VaR
equity VaR, forex VaR, interest rate VaR

Standardized exceedance residuals (SER)
345, 346

Standardized MRC 414–16
Standardized rules 411–12, 434
Standard normal density function 129
Standard normal distribution function 18
Standard Portfolio Analysis of Risk

(SPAN) 358
Standard uniform distribution 209–10
Static portfolio 20–1
Static VaR 21, 247, 254–7,

267–8, 309
Statistical bootstrap 163
Stock portfolios

historical VaR 179–89
normal linear VaR 55, 85, 103
systematic VaR 88–90, 93–103, 179–85

Stratified sampling 209, 212
Stressed covariance matrices 384, 385–8
Stressed VaR 387–8, 393–4
Stress event 357
Stress scenario 357
Stress testing 27, 85, 357, 378–84,

390–2, 399
bias 366
factor push 363, 382–3
FHS 397–8
GARCH model 398
regulatory guidelines 379–81, 408
systemic risk 381
volatility clustering 397–9
worst case loss 381–4

Structured Monte Carlo 201
Student t copulas 229
Student t distributed ETL 131
Student t distributed portfolio returns 327–8
Student t distribution 53, 106, 138
Student t linear VaR 108–9
Student t mixture ETL 134
Sub-additivity 32, 39, 55
Sub-prime mortgage crisis xxx–xxxv, 264
Sub-supplementary capital 407
Supervisory review 406
Supplementary capital 407
Systematic return 63
Systematic risk 31
Systematic VaR 31–2, 48, 54

decomposition 93–103
domestic stock portfolios 87–90
equity factor model 88–90
historical simulation 179–92
normal linear 63–4
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T

Tangency portfolio 430
Target return 10
Taylor approximation 308
Taylor expansions 248, 255
Theoretical P&L 337
Theta effect 254, 255, 256,

290–2, 308
Threshold return 9
Tilt component 231
Time aggregation 186, 200
Total capital charge 407
Total VaR 31
Tracking error 6, 35, 48
Trading book 406
Trust region 383
Tuenter’s algorithm 261, 262

U

UK bonds 79, 140, 176
Uncertainty 39, 359
Unconditional coverage tests 337,

338–9
Unconditional distributions 201
Undiversifiable risk 8
Unexpected return 5, 220
Unfunded activities 428
Unit interval 209
Unlisted securities 367
Unrealized P&L 15, 337

V

Value at risk (VaR) 1, 2, 48, 59–60, 137–8,
324–32, 333, 350

aggregation 63–6, 182–6
confidence level 13, 169
decomposition 30–3, 93–100, 189–92
defining 13–17
disaggregation 72–5, 90–1, 187
discounting, effect on 23
equally weighted averages 121
gamma effects 250–2, 308
mathematical definition 15–17
resolution method 322–3

risk attribution 26
risk factor mapping 26
risk horizon 13
risk metrics associated with VaR 33–41
scaling 21–3
significance level 13

Van der Corput sequences 206
Variance reduction 206–10, 245
Variance of simulation error 206
VaR, see Value at risk
Vega effect 252–3, 256, 268, 290–1
Vega mapping 299, 306–7
Vertex choice 314–16
Vertical disallowance 412
Volatility 1, 20, 80–1, 245, 312

adjustment 153, 158–63, 179, 182, 199
annualized 136
conditional 121
EWMA estimates 122
historical 121
mapping 252, 307
mean reversion 220
price relationship 232–3, 253, 295
risk factors 271, 306, 319
weighting 159

Volatility clustering 54, 141, 165, 201, 354, 399
coverage tests 342–4
GARCH models 54, 61, 159, 162–5, 218–25,

242–4, 294–5
Monte Carlo simulations 218–23
path dependency 292–6
stress testing 397–8

Volatility indices 150, 185–9, 252, 288–90
Volatility surface 308
Volatility term structures 231

W

Weak stochastic dominance 38
Worst case loss 357, 380, 381–4
Worst case scenarios 360, 361–2, 390

Z

Zero-coupon yield curves 26, 67–85, 140,
176–9, 236–9


