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Preface

To address the societal problem of assessing the safety of hundreds of

thousands of chemicals, without resorting to extensive animal testing, a

paradigm shift was required in the way in which toxicity data were obtained.

Computational tools to predict toxicity have been available for over 50 years,

but there has previously been a reluctance to accept predictions from these

models, particularly for regulatory purposes, with lack of model transparency

often being identified as an issue. However, we are now in an era where

toxicologists and computational modellers work together much more closely to

resolve the problems posed in predictive toxicology, i.e. how to ensure the

safety of chemicals for man and the environment. The mutual benefits of

combining research efforts from diverse areas is now apparent and real

progress is being made in both model development and acceptance.

This is a rapidly expanding field and the past few years have seen an increase

in the numbers of publications in toxicology and the main toxicological

conferences now routinely include modelling. There is also an increasing trend

to see modelling at the heart of a toxicological study or project, e.g. to help

identify chemicals to test, or to rationalise the results. Computational

modelling has similarly benefitted from the input of toxicological expertise,

for example in the development of consistent ontologies for new databases and

the identification of key (modellable) steps within a toxicity pathway.

There are many well documented reasons for this shift in the way in which

models are developed and used, not least the pressures of having to find

solutions for European, and other, legislations e.g. REACH, the Cosmetics

Regulation and others. Ethical pressures, financial and logistical constraints

(not all the chemicals can be tested) as well as the adoption of 21st Century

Toxicology, with the ultimate goal of moving away from the old animal-based

paradigm of testing, have all played a role.
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This book addresses a specific area of computational toxicology that has

seen remarkable growth in the past five years, namely the grouping of

molecules – the so-called formation of categories – to allow for toxicity

prediction from read-across. The general grouping approach has been shown

to be transparent and easy to perform, making the process more accessible to

toxicologists and more amenable for use in regulatory submissions. Whilst

product development is not the primary aim of this technique, some of the
information will be useful for designing safer new products or replacing

existing toxic compounds with those that may be more benign. These new

developments mean that for certain scenarios, i.e. well characterised chemicals

and simpler endpoints, it could be argued that there is now little information

that could be gained from testing that is not easily predicted from read-across;

therefore obviating the need for in vivo testing for these compounds. For the

more challenging endpoints, the situation is different and more work is

required, not least identifying the key steps within the pathways, gathering and
modelling data. Recently there has been a drive to develop a framework for

organising the chemical and biological interactions that result in toxicity. This

has led to the development of the Adverse Outcome Pathway approach, an

important component of which is the identification of key steps that are

amenable to modelling, e.g. by using read-across.

This book provides the background to the process of grouping for the

purpose of read-across for toxicity prediction. It provides practical solutions

for those wishing to perform read-across and identifies where more research
and collaboration are needed and how this could be achieved. The concept of

using this information within an Adverse Outcome Pathway is also described

providing a framework for organising and using new information as it is

generated. In Europe, over the time period in which this book was being

written, (quite a long time as it turned out!) there have been several cycles of

REACH submissions and the Cosmetics Regulation has been implemented.

This has not only changed the way in which read-across for toxicity is

perceived and utilised, but has also resulted in useful guidance, case studies and
(often heated) debate on the subject. We have been fortunate that we have been

guided by much high quality work from industry, academics, various parts of

the European Commission, as well as the Organisation for Economic Co-

operation and Development (OECD), not forgetting the Non Governmental

Organisations. This book brings together the expertise developed recently in

this area, providing greater insight and details on the process and application

of read-across and its potential in developing Adverse Outcome Pathways. A

history of the science, recent developments, practical, technical guidance and a
philosophy for future developments are all presented.

Mark Cronin, Judith Madden and Steven Enoch

Liverpool John Moores University
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CHAPTER 1

An Introduction to Chemical
Grouping, Categories and
Read-Across to Predict Toxicity

M. T. D. CRONIN

School of Pharmacy and Chemistry, Liverpool John Moores University,

Byrom Street, Liverpool L3 3AF, England

E-mail: m.t.cronin@ljmu.ac.uk

1.1 Introduction – Ensuring the Safety of Exposure to
Chemicals

Modern society requires safe chemicals. However, nothing is without risk and

there is increasing pressure to identify hazardous chemicals and replace them

with those that are more benign. In order to ensure the well-being of their

population and the environment, governments enforce legislation to determine

the effects of chemicals and ensure that every day accidental or occupational

exposure will not cause harm. This is desirable for all substances that man

comes into contact with, or that may be released into the environment, whether

the substance is in foods, medicines, pesticides, fertilisers, or cosmetic

ingredients (amongst many other types of chemicals that are in use).

Different regulations are applicable to each type of chemical associated with

a particular use.

In order to determine the risk associated with the use of a chemical, a certain

amount of information is required. Firstly, a means of defining risk is a pre-

requisite. In this context, risk is a function of the intrinsic hazard of a chemical
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and the exposure. Considering hazard, this can be considered as the ability to

cause harm to a species, be that organisms that are deliberately exposed to the

chemical or a non-target (for instance, environmental) species. Exposure can

be simplistically considered as the quantity of a chemical to which the target

and non-target species are exposed.1

Within the current definition of risk, information is required regarding the

hazards of chemicals; this is provided by the science of toxicology. Assessing

the toxicity of chemicals involves determining what the harmful effects of a

chemical may be, i.e. toxicity to particular organs, effects to the skin, lethality,

tumour promotion and countless others. Assessment normally involves testing

for these effects and being able to use the test results in a manner that is

protective of man and the environment. The tests and the information they

provide need to be scientifically credible and satisfy the needs of the

manufacturer, government or regulatory agency that has to interpret them

and, ultimately, the user or consumer for whom safety must be assured. The

information must be reliable, trustworthy and protective, i.e. precautionary.

The need to determine the hazard of a chemical has resulted in the

toxicological testing of chemicals for a wide range of specific effects, e.g. the

ability to promote tumours. These effects can then be reported and interpreted

to identify hazard. The most accepted paradigm for the identification of the

majority of toxic effects has been the use of animal testing, through a series of

standardised assays. However, the use of animals to identify hazard has

received much criticism as being unethical, difficult to extrapolate results and

findings to humans, costly and not always capable of identifying subtle or

idiosyncratic toxicities.2 Therefore, for decades, alternatives to animal testing

have been sought. Amongst these are the so-called computational, or in silico,

models which attempt to draw conclusions regarding the toxicity of a chemical

from existing knowledge and/or its chemical structure. It is a selection of these

techniques, those involving grouping similar chemicals together and reading

across (or interpolating) activity, that form the focus of this volume.

With regard to exposure, a number of issues must be considered. The first is

how much of the material is the organism in question exposed to? Also of

importance is the time period over which the organism will be exposed, the

route and manner of administration, i.e. the formulation (that may affect

uptake). Consideration must also be given to whether local, i.e. at the site of

exposure (if applicable), or systemic effects are of concern. Assessment of

exposure therefore requires appreciation of uptake and bioavailability within

the organism. A key principle to remember is that if there is no exposure to a

chemical, or it is at a level below that which can cause harm (as defined by the

toxicological assessment), there will be no risk.

In silico or computational toxicity prediction methods cover a very wide

range of techniques and approaches, some of which are described in Sections

1.1.1 and 1.1.2. However, the main focus of this volume is to describe in detail

category formation and read-across.

2 Chapter 1
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1.1.1 In Silico Predictions of Toxicity – Grouping, Category
Formation and Read-Across

Similar objects tend to have similar properties. Applied to chemistry, this means

that for chemicals that can be classed as being similar to other chemicals, we can
understand and predict their properties without the need for testing. This

fundamental concept has been applied to the prediction of properties and

harmful effects of compounds for decades. Thus, being able to form groups of

similar compounds (also called categories) becomes a powerful approach. If a

compound belongs to a group of compounds with a well categorised toxicological

profile, it can be possible to interpolate its activity. These interpolations,

(predictions) of toxicity may, when utilised properly, provide hazard information

that can be used in the assessment procedure described above. The process of
prediction is termed ‘‘read-across’’ as it assumes that activities, toxicities or

properties can be read across between compounds within a category.

Two hypothetical examples of read-across are provided in Figures 1.1 and

1.2 — these use data obtained from the OECD QSAR Toolbox version 3.1 (see

Section 4.3 for more details). In the first example, Figure 1.1, a read-across

prediction of Salmonella typhimurium gene mutation is made for 2-(3-

ethylphenyl)oxirane. No mutagenicity data are available for this chemical.

However, S. typhimurium gene mutation data are available for four closely
related chemicals — termed analogues 1–4. These chemicals are considered

‘‘similar’’ as they all contain an aromatic ring, an epoxy group and limited

alkyl substitution. The epoxy group allows the chemical to act as a direct

acting electrophile by the SN2 mechanism.3 All the analogues to the target

chemical are positive in the S. typhimurium gene mutation assay, they share the

same structural features to the target, hence the read-across prediction for the

target is that it will also share the same mechanism and be positive in this

assay. This is therefore an example of a ‘‘qualitative’’ read-across.
The second hypothetical example is shown in Figure 1.2. This is a

quantitative read-across in that a prediction is made for the acute fish toxicity

of 3,4-dimethyl-1-pentanol. 96 hour LC50 values to the fathead minnow

(Pimephales promelas) were retrieved for six analogues. These analogues are

similar in that they are all simple saturated aliphatic molecules with a hydroxy

group. As such they are assumed to act by the same mechanism of action —

termed non-polar narcosis — and a good relationship is expected with the

logarithm of the octanol-water partition coefficient (log P).4 Figure 1.2
actually demonstrates the development of a local Quantitative Structure-

Activity Relationship (QSAR), the line of best fit between toxicity and log P

has the following equation:

Toxicity ~ 0:963 log P z 0:769 ð1Þ

Where:

Toxicity is the inverse logarithm of the 96 hour LC50 values to Pimephales

promelas (millimoles per litre).
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Equation (1) has very good statistical fit (the correlation coefficient is 0.99).

The target chemical has a log P value of 2.17, hence toxicity is calculated to be

2.86 (log units).

The purpose of these grouping and read-across techniques is described in

detail below (Section 1.2), the goal being to predict the effects of compounds

directly from chemical structure. The area of ‘‘predictive’’ toxicology,

including computational techniques, has seen rapid growth and development

Figure 1.1 An example of a hypothetical read-across for the mutagenicity of 2-(3-
ethylphenyl)oxirane from four analogues with experimental activity
retrieved from the OECD QSAR Toolbox.
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over several decades, fuelled by the desire to know more about the properties

of chemicals. The history of this area is described in Section 1.3. Read-across is

one of the most simplistic approaches to predict toxicity. There are several

other levels of computational techniques, increasing in complexity and

(probably) sophistication, all of which are well established, which can be

applied to predict toxicity and other endpoints; these are summarised in

Section 1.1.2.

It is true to say that read-across has grown in popularity due to the

realisation that other types of modelling are not likely to be predictive for some

sub-acute endpoints, especially those associated with repeat dose toxicity.

Some of the key phrases and concepts with regard to read-across are defined in
Table 1.1.5,6 Whilst read-across is simplistic and, in theory at least, easy to

apply, there are a number of drawbacks; such advantages and disadvantages of

these approaches are described in Section 1.5.

1.1.2 In Silico Predictions of Toxicity – (Quantitative) Structure-
Activity Relationships ((Q)SARs)

Read-across is a fundamental and empirical approach to predict activity.

There is also a wide variety of techniques where models have been developed

from larger groups of data, which use more detailed descriptors of molecules.

These techniques are broadly termed Quantitative Structure-Activity

Figure 1.2 An example of a hypothetical read-across for the fish acute toxicity of 3,4-
dimethyl-1-pentanol from six analogues with experimental toxicity values
retrieved from the OECD QSAR Toolbox.
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Table 1.1 Basic definitions and concepts for read-across. Please note that
more formal definitions may be available from the OECD5 and

ECHA.6

Term Definition

In Silico (or
Computational)
Toxicology

Computer-based methods to predict the toxicity or
other properties of a substance directly from its
structure.

Computational Chemistry Application of computational techniques to chemistry
to perform calculations on chemical structure.
Methods can range from relatively simple to high level
ab initio calculations.

Chemoinformatics Linkage between chemistry and informatics to store
chemical structures and related data, create
knowledge, mine data and develop models for
activities and properties.

Structural Alerts Fragments of a molecule (usually identified by human
experts or, occasionally, artificial intelligence)
associated with a particular activity. In the context of
this volume this implies fragments associated with
toxicity that are normally supported by mechanistic
interpretation.

Structure-Activity
Relationships (SARs)

The formation of qualitative relationships between
aspects of chemical structure (typically a functional
group or 2-D/3-D arrangement of functional groups)
and activity.

Chemical Grouping or
Category Formation

The grouping of similar chemicals together to form a
category.

Read-Across Interpolation of activities or properties within a group
or category of similar chemicals to make a prediction
of an activity from known data.

Similarity (of Chemicals) The degree of similarity between two or more objects.
In this volume it relates specifically to the similarity
between chemical structures. There are a variety of
means of assessing chemical similarity including
comparing molecules that contain the same functional
group(s) or physico-chemical properties or using
calculated measures of similarity.

Profiler In the context of this volume a profiler is a collection of
structural alerts that can be used to profile a chemical
in order to assist in grouping.

Analogues Analogues are structurally similar chemicals, normally
having the same functional group(s) and differing only
in carbon chain length (or another very simple
molecular property).

Regulatory Acceptance The process by which a read-across prediction can be
documented and presented to provide sufficient
evidence to allow for a regulatory decision to be made
about that chemical.
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Relationships (QSARs) and include aspects of statistical modelling. Good

overviews of the types of QSAR models widely used are available.7,8

Whilst this book focuses on category formation it is wrong to exclude it

from the other techniques of toxicity and property prediction, i.e. SARs,

QSARs and expert systems. Read-across can be considered to be a simplistic

form of QSAR analysis. Indeed, within a category simple QSARs may be

formed, should sufficient data be available. Some of the basic definitions

relevant to these quantitative approaches are provided in Table 1.2.

Table 1.1 (Continued)

Term Definition

Adverse Outcome Pathway
(AOP)

A broad framework to organise information from the
exposure of a chemical to adverse effects to an
organism, population or ecosystem. It is defined by
the molecular initiating events, a series of key events
and the adverse outcome. It includes mechanistic
information and allows chemistry (in terms of the
initiating event) to be linked directly to an adverse
effect.

Molecular Initiating Event
(MIE)

The starting point of a toxicity pathway and
incorporated into the Adverse Outcome Pathway
concept. The MIE describes the interaction between
the chemical and the biological system(s) that perturbs
the biochemical pathway.

Table 1.2 Basic Definitions and Concepts for QSAR and Expert Systems.

Term Definition

Quantitative Structure-
Activity Relationship
(QSAR)

A mathematical model that relates (usually statistically)
the activity or potency of a series of chemicals to
physico-chemical properties or descriptors of the
chemicals.

Expert System A general term relating to software that may automate
SAR or QSAR approaches, allowing for ease of use to
make predictions.

Molecular Modelling The computational modelling of molecules and their
interactions e.g. receptor–ligand binding to provide
graphical displays and provide the basis for
subsequent calculations.

Molecular Descriptors Measured or calculated structural or physico-chemical
properties of a molecule that may be related to
activity in a QSAR.
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1.2 Purpose of Category Formation and Read-Across

The grouping of similar objects together, forming patterns and attempting to

make a rational and reasoned interpretation is a sign of an intelligent and

numerate mind. The human brain has instinctive capabilities to understand the

relationship between objects and develop knowledge. For many years attempts

have been made to capture both the processes of knowledge gathering and the

knowledge. It is easier to recreate the knowledge than the process of achieving

it.

With regard to chemical structure, it is almost instinctive to begin to group

‘‘similar’’ molecules together. Medicinal chemists have for many years been

familiar with the concept of identifying similar molecules in terms of

pharmacological activity. More recently, development of this concept has

been necessitated by the global need to assess the properties and safety of new

and, more urgently, existing chemicals. Most significantly, these methods will

be used to identify similar chemicals with regard to toxicity. The purpose

therefore is to provide information for chemicals where it is missing. These

missing data, or data gaps, are most prevalent for existing industrial chemicals,

particularly those produced in low tonnage.

The purpose of forming categories and performing read-across extends to

the prediction of the effects of chemicals to humans and the environment. It

should not be overlooked that grouping and read-across may also be used to

predict other effect data, e.g. physico-chemical properties (log P) and many

others and properties relating to ADME (such as skin permeability).

The use of category formation and read-across as a technique is seeing

growth for a number of reasons, including the following:

N A realisation that many chemicals have missing toxicological and

physico-chemical data (data gaps) and that these may be crucial for

understanding the risk posed by chemicals.

N Chemicals legislation that has forced the need for rapid non-test methods

to assess chemical safety.

N Acceptance (or at least partial acceptance) in the past by regulatory

agencies of read-across to provide information for regulatory submis-

sions.

N The development of new software e.g. the OECD QSAR Toolbox as well

as easier access to toxicological databases and methods to assess and

determine the similarity of chemicals.

N Category formation and read-across is seen as a clear, simple and

transparent technique to make in silico predictions, thus increasing use by

allowing for ease of regulatory acceptance.

N Traditional (Q)SAR methods have often performed poorly for complex

toxicological endpoints e.g. repeat dose toxicity and reproductive effects

in humans, as well as chronic toxicity in environmental species. Even

fundamental properties such as water solubility have proved difficult to

8 Chapter 1
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predict. Read-across has been shown to provide a more reasonable

solution to these problems than (Q)SAR.

N Read-across can allow for predictions to be made with a small number of

data (even when there may only be one data point, should that be of high

quality and the category very robust).

1.3 History: From Structure-Activity to Grouping

It is almost impossible to provide a detailed history of the use of category

formation for toxicity prediction. The reason for this is that little of it is

documented in the public literature. However, it is certain that ad hoc grouping

and read-across has been undertaken for decades in areas such as medicinal
chemistry, toxicity and ADME property prediction. Often this was simply

termed structure-activity, or the development of structure-activity relationships.

Considering the literature available, what is certain is that there are only a

handful of publications (possibly fewer than twenty) dealing with read-across

for toxicity prediction prior to 2005 — see for instance the publications noted

in Table 1.3.3,9–95 It is also true that since then the number of publications

dealing with category formation and read-across is growing rapidly year-on-

year with no sign of a cessation of growth. There is no coincidence in these
dates or growth in interest.

Structure-activity has been a cornerstone of understanding and rationalising

the toxic effects of chemicals for the best part of a century. For instance, by the

1950s there was a clear appreciation of the relationship between carcinogenic

activity of molecules and their shape, structure and properties (cf. Lacassagne

et al.)96 with much fundamental work being performed several decades before

then. These early ventures into SAR were not captured electronically until

computational technology caught up with the science in the (late) 1980s and
early 1990s. Examples of computational methods for predicting toxicity

include: the DEREK system97 which later became DEREK for Windows and

more recently DEREK NEXUS, and the United States Environmental

Protection Agency’s (US EPA’s) ECOSAR98 and Oncologic systems.99 Other

good examples of the application of chemistry to explain toxicity were the

books by Dupuis and Benezra100 and Lien.101 The book by Dupuis and

Benezra100 was remarkably visionary and is often overlooked, it was probably

a decade before its contents were taken up again. Basically, the book sets out
the SAR behind skin sensitisation (in terms of protein reactivity) which is still

the basis of grouping in this area to this day. The other well known and still

used example of toxicological SAR from this era was the mutagenic

‘‘supermolecule’’ devised by Ashby and Tennant.102

The 1990s saw the growth in computational technology that allowed SAR

knowledge to become common in the workplace and eventually on the

desktop. At this time however, grouping and read-across (particularly for

regulatory purposes) were undertaken, but little recognised, at least in the
European Union. Interest in computational methods to predict toxicity grew
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following the adoption in 2001, by the European Commission, of a White

Paper setting out the strategy for a future Community Policy for Chemicals.103

The main objective of the new chemical strategy was to ensure a high level of

protection for human health and the environment. One of the consequences

was to require more information regarding the safety and potential harmful

effects of chemicals. In the absence of extant toxicological data, there appeared

to be few options to obtain such data other than testing or the use of

predictions from computational toxicology. Interestingly, as the legislation

progressed into regulation, use of all non-test data through the application of

Integrated Testing Strategies (ITS), as well as exposure-based waiving, also

came to the fore. With regard to computational testing, a group of

approximately 60 industry, regulatory and academic scientists met in

Setubal, near Lisbon, Portugal in March 2002 to set out the approaches for

what became the framework for the regulatory use and acceptance of

(Q)SARs.104 At the time of the Setubal Workshop, reviews of the regulatory

use of QSAR made little mention of the existing category formation and read-

across methods.105,106 Therefore, it can be concluded that the subsequent ten

years were the realisation of this approach and its routine application.

Key to the acceptance of predictions from (Q)SARs and read-across was the

definition of the ‘‘Setubal’’ Principles for the Validation of (Q)SARs (from the

Workshop), which later developed and transformed into the OECD Principles

for the Validation of (Q)SARs — which have now gained very broad

acceptance.107 The OECD Validation Principles are the subject of much debate

and considerable guidance concerning their application is available from the

Organisation for Economic Cooperation and Development (OECD), the

European Chemicals Agency (ECHA) as well as industry and other bodies.

They allow a user to document a prediction as evidence to support it, and

provide the regulatory agencies a framework to enable acceptance of a

prediction.

Another recommendation from the Setubal Workshop was the development

of what was originally termed a ‘‘Decision Support System’’. The concept for

this was a system to allow for databases and models to be brought together to

support risk assessment decisions. A work programme was put in place to

develop this tool, the emphasis being to develop software that would allow for

the grouping of chemicals and application of read-across. As such, the first

version of the OECD QSAR Application Toolbox was released in March 2008,

with later versions of the (renamed) OECD QSAR Toolbox subsequently

being released. The OECD QSAR Toolbox is described elsewhere (Section 4.3)

but was one of the key factors in the uptake and use of category formation and

read-across. There are many reasons for this, but they include the timing of its

release, the quality of the databases and profilers, its free availability and the

fact is is extremely well supported by documentation and training materials.

The incredible ‘‘success’’ of read-across, in terms of its uptake and use, was

illustrated by reports issued by ECHA relating to data submitted in 24,560

registration dossiers between 1st June 2008 and 28th February 2011. In
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particular, a report from ECHA108 details the use of alternatives to animal

testing in these dossiers. The surprising fact was that between 20–30% of

dossiers contained ‘‘read-across’’ estimates for all the toxicity endpoints

considered. The ECHA report and the information contained within were

analysed by Spielmann et al.109 and whilst the data require more analysis and

interpretation, it is clear that read-across had been widely attempted.

The recent uptake of read-across follows a number of other trends,
particularly the response to the European Union’s Cosmetic Regulation

banning animal testing on new cosmetics ingredients.110 Scientifically, new

ways of providing information on toxicity are required and are being

developed. For instance in the USA, an immense effort is being undertaken

under the auspices of the ‘‘Toxicology in the 21st Century’’ (Tox21) initiative

(http://epa.gov/ncct/Tox21/). This effort, combined with the use of Adverse

Outcome Pathways (AOPs — see Chapter 3) to organise information, may

provide the framework to identify and justify chemical categories. This
fundamental grounding of chemistry approaches to mechanisms and modes of

action of toxicity is one of the cornerstones of regulatory acceptance and

provides a means to develop robust categories.

1.4 The Process of Category Formation and Read-
Across

There are a number of distinct and definable steps to grouping chemicals and

making a read-across prediction. The general process of category formation

and read-across is summarised in Figure 1.3. More detail on this process is

given below and in the relevant chapters. At the outset some factors must be

appreciated, namely that implementation of the process requires expertise and
must be considered as a knowledge-based and subjective approach; the

prediction must be performed on a case-by-case basis taking account of the

chemical itself, its use and importantly the endpoint being modelled. The same

compound may quite feasibly be in different categories for different endpoints.

The following sections refer to Figure 1.3. The flow chart presented in

Figure 1.3 is inspired by and relies heavily on that published by the OECD5

and ECHA6, as well as work by other authors. In particular it replicates the

work flow represented by the OECD QSAR Toolbox – it should not be
considered as being entirely the current author’s own creation!

The following sections should be read in conjunction with Figure 1.3. There

are six ‘‘steps’’ to the flow chart represented by the solid numbered boxes at the

centre of the flow chart — these relate specifically to the work flow around

which the OECD QSAR Toolbox is developed (Figure 4.1).

1.4.1 Step 1 - Identification of the ‘‘Target’’ Chemical

The chemical substance for which the prediction is required is termed the

‘‘target’’ chemical. It is assumed for the purposes of this introduction that this
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is a single chemical substance. Predictions for mixtures are more complex, but

still achievable if the individual components are considered. At this point, it is

essential that the target structure is defined definitively, including recognising

and documenting stereochemistry and tautomers. It is normal for the structure

to be considered as a neutral molecule, with no salt. However, the possible

effects of ionisation may need to be borne in mind with regard to the

bioavailability of a substance.

Figure 1.3 Flow chart of the grouping and read-across process to predict toxicity.
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1.4.1.1 Identification of the Effect and/or Endpoint to Predict

The endpoint to be predicted for the target chemical needs to be identified.

This may appear to be a relatively trivial task, e.g. mutagenicity, but in reality

is dependent on the available data. Therefore, for mutagenicity, there may be

different relevant data from different assays e.g. Ames, Chromosomal

mutation etc. At this point, it is worth searching for existing data for the

target chemical. There are many possible databases of toxicological and other

information (e.g. eChemPortal). The existing data for the target chemical

should be evaluated and assessed for their utility, (Chapter 5 covers aspects of

finding and assessing data). Whilst it is obvious to state, should the existing

data be suitable for purpose, there is no requirement to undertake further

predictive or experimental studies.

1.4.2 Step 2 - Identification of Similar Chemicals to the Target

To form a group or category of similar chemicals, suitable criteria for assessing

similarity are required. Such criteria are discussed in Chapter 2. They can

range from a ‘‘chemist’s’’ viewpoint e.g. congeneric series, a ‘‘chemoinforma-

tician’s’’ viewpoint e.g. molecular similarity or a ‘‘toxicologist’s’’ viewpoint e.g.

chemicals with a similar mechanism or mode of action. Thus for the same

chemical, different groups or categories can be formed. The ‘‘best’’ or ‘‘most

appropriate’’ group will depend on the nature of the chemical, available data

for read-across and the endpoint to be modelled — please refer to Chapters 2

and 3.

Once an approach to assessing similarity has been established, chemicals

with similar structures can be identified. There are different approaches that

may be applied at this point. The most ‘‘liberal’’, and probably most favoured,

is to search inventories of chemical structures regardless of whether they are

associated with toxicity data. In this manner, the user may subsequently search

for data to obtain a ‘‘global’’ overview of the toxicological data landscape. In

certain circumstances, the searching of chemical structures may simply be

within a database. The ‘‘similar’’ structures, together with the target structure,

then form the initial grouping or category. If it is not possible to identify

similar structures at this point, then different approaches to estimating

similarity may be required.

1.4.3 Step 3 - Obtaining Toxicity Data for the Grouping or
Category

Once the target and similar structures have been identified, suitable data for

the structures should be retrieved and stored. At this point, the data will need

to be assessed for quality and suitability (see Chapter 5). If insufficient data, or

data of a low quality, are all that are available then read-across may not be
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possible. This may mean the use of different approaches to assess similarity or

the requirement to utilise different endpoints or effects.

1.4.4 Step 4 - Definition of the Category

Combining together the target chemical, its analogues and the data will allow

for the definition of the category. This will need to be examined for

consistency. At this point sub-categorisation may be required, which can have
the effect of reducing the number of chemicals within a category, but should

strengthen the definition of the category.

1.4.5 Step 5 - Prediction of Toxicity by Read-Across

Assuming that a robust category has been obtained for the target chemical (see

Chapter 6), which has been filled with suitable, high quality data, then read-

across may be performed to make a prediction. This may be as simple as an

interpolation of an activity or may require the bespoke development of a
QSAR relating activities to the properties of the molecule.

1.4.6 Step 6 - Documentation of the Prediction

Should the read-across prediction be required for regulatory purposes, for

instance, then it will need to be fully documented. This is a process by which

the whole category formation and read-across approach is recorded such that,

if required, it could be repeated to verify the prediction. In addition, this means

that the information on which the read-across prediction is based can be
assessed. All stages of the process shown in Figure 1.2 should be recorded. See

Chapter 7 for more details.

1.4.6.1 Accepting or Rejecting the Prediction

The final process of read-across is to accept or reject the prediction as fit for

purpose, and to attempt to determine the confidence associated with the

prediction. This is intended to assess the validity of the prediction. As such it

will depend on the context in which it is being used, the endpoint, the chemical
substance and many other factors. For more information see Chapter 7.

1.4.7 Applying the Flow Chart Depicted in Figure 1.3

It should immediately become obvious that whilst read-across is, at first sight,

a trivial activity, there are many complex steps. In theory, an experienced

toxicologist and/or chemist should be able to develop their own categories and

populate them with data manually. However, experience will inform the user

that for many endpoints, and especially for more complex chemistry,

computational techniques will be required, e.g. to assist in finding similar
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structures (using a variety of methods), storing the structures, identification of

data to populate the category, performing read-across (including development

of local QSARs) and recording the whole process with standardised

documentation. There are now a number of computational approaches and

software that can be used, these are described in Chapter 4.

To apply any predictive technique, and category formation and read-across

are no exception, then a degree of understanding and expertise is required. To

apply these techniques, whilst there are some excellent free tools available,

expertise is required in a number of key areas.

1.5 Advantages and Disadvantages of Category Formation and
Read-Across

Depending on with whom one discusses the issue, there are a variety of

advantages and disadvantages of using category formation and read-across to

fill data gaps for the prediction of toxicity and physico-chemical properties.

Patlewicz et al.88,89 discuss the use of read-across pragmatically; some of their

opinions form the basis of the following lists.

The main advantages of category formation and read-across include:

N It is relatively cheap and rapid, at least in comparison to in vivo toxicity

testing.

N It can form a valuable part of an Integrated Testing Strategy and can be

supported by other relevant non-test data e.g. from in vitro or molecular

biology testing.

N It is ethically defensible in terms of not requiring animal use.

N It promotes the philosophy of green chemistry through the efficient use

of resources.

N There are numerous free softwares and databases to support grouping

and read-across.

N There is considerable guidance and examples of case studies to assist the

user.

N It is usually strongly based around similar mechanisms and modes of

action, increasing the transparency of predictions.

N There is an increasing acceptance by regulators of predictions from read-

across.

N Category formation can benefit from the advances in 21st Century

Toxicology and Adverse Outcome Pathways.

N Category formation shows the limitations of existing data for making a

prediction.

N It is supported by all major stakeholders including industry, regulatory

and Non-Governmental Organisations.

N The development of the process of read-across and tools to achieve it

have received generous support and funding in the European Union,

North America and Japan.
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There are, however, a number of drawbacks and disadvantages. Many

specifically temper the advantages so may, at first consideration, appear

contradictory.

N It does require expert use, and hence the availability of trained experts.

N Creating a category and performing read-across is at best subjective.

Often different experts may reach different conclusions for the same

compound.

N It requires the selection of the correct means of grouping chemicals,

whether this may be based on a mechanistic, analogue or structural

similarity approach.

N It requires good quality toxicity (or other) data to make a prediction.

N Confidence in a read-across estimate is reliant on a number of factors

(e.g. robustness of the definition of the category, number of compounds

in the category etc) which may be difficult to quantify.

1.6 Uses of Read-Across and Category Formation -
Current Literature

Forming a group of chemicals and attempting read-across can, in theory, be

applied to any toxicity or other type of endpoint. The report by ECHA108

details its use to make predictions for all types of toxicities (although that does

not necessarily imply acceptance by ECHA). Reports in the literature are

centred around a smaller number of endpoints, typically those associated with

repeat-dose toxicity, skin sensitisation, developmental toxicity and mutageni-

city, with regard to human health and mammalian endpoints, and acute

toxicity with regard to environmental effects. Most studies have described

applications for organic chemicals (i.e. ‘‘classic’’ industrial chemicals, drugs

etc.), whilst a smaller number have described its use to make assessments for

metals and metal complexes. Further rationalisation of the use of read-across

for data gap filling, with an emphasis on REACH submission, is provided by

Patlewicz et al.89 Table 1.3 summarises the main endpoints to which read-

across has been applied at the time of writing. It is not likely to be a complete

list but gives a flavour of the main endpoints and types of compounds

considered.

1.7 Key Literature and Guidance for the Regulatory
Use of Read-Across

In addition to the literature cited in the previous section there is much freely

available guidance to the use of grouping and read-across (Patlewicz et al.).88,89

Some of the key documents are summarised in Table 1.4.5,6,110–116 It should be

noted that the most comprehensive of these documents112,113 were prepared

almost simultaneously with this book. This book has not attempted to
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replicate these publications but to supplement them with meaningful

information, not necessarily derived from an industry basis.

1.8 Aims of this Volume

This volume introduces the reader to a rapidly growing technique in the

computational, or in silico, prediction of toxicity, namely the creation of

Table 1.3 Summary of the recent literature describing grouping, category
formation and read-across to predict a variety of toxicity

endpoints.

Endpoint Compounds and References

Acute rodent toxicity Miscellaneous organic compounds;9,10 Non-reactive
compounds;11 Nickel12,13

Repeat dose (haemolytic
effects)

Ethylene glycol alkyl ethers14

Repeat dose Ferrochromium;15 nitrobenzenes16

Hepatotoxicity Miscellaneous organic compounds17

Teratogenicity Miscellaneous organic compounds18

Reproductive effects Phthalates19

DNA binding/mutagenicity Miscellaneous organic compounds3,20–22

In vivo micronucleus assay Miscellaneous organic compounds23

Skin sensitisation Miscellaneous organic compounds;24–28 Michael
acceptor electrophiles;29–32 Compounds acting as
aromatic nucleophilic substituents;33 Alpha, beta-
unsaturated carbonyls;34 Rosin-based substances;35

Phenyl glycidyl ethers;36 Osmolytic prodrugs;37

Benzoquinone38

Respiratory sensitisation Miscellaneous organic compounds39–41

Miscellaneous mammalian
effects

Long-chain aliphatic alcohols42–43

Acute environmental
toxicity

Miscellaneous organic compounds;44,45 SN2
electrophiles46

Chronic environmental
toxicity

Pharmaceuticals;47 Fragrances48

Reproductive effects in fish Dutasteride49

Environmental effects, fate
and properties

Long-chain aliphatic alcohols50

Various environmental
effects

Pharmaceuticals;51 Long-chain aliphatic alcohols;52

Veterinary products;53 Long-chain alcohols;54

Persistent transformation (degradation) products;55,56

Glycol ether alkoxy acids and 1,2,4-triazole
fungicides;57 Anionic surfactants58

General regulatory use and
guidance

There are a large number of papers that provide basic
information on developing categories of relevance for
regulatory use.59–89

Tools and approaches Toxmatch software;90,91 Atom-centred fragments to
define groups;92 PETROTOX software;93

Metabolomics as a tool for grouping;94 HESS95
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categories and read-across predictions for toxicity. This volume will outline the

process, methods and interpretation of results in this area. Specifically it informs

the reader how to obtain toxicity data and where to go to find them, as well as

how to determine the quality of such data. Techniques to find similar chemicals

are discussed, with a particular emphasis on the application of Adverse Outcome

Pathways (AOPs). Furthermore, it will demonstrate how these predictions can

be used to meet regulatory requirements. The aims of the book are supported by

a number of case studies and examples in this rapidly growing area.

1.9 Conclusions

Information on the harmful effects of chemicals to mankind and the

environment is required. This has traditionally been derived from animal tests

but there is an increasing desire, due to reasons of cost, ethics and regulatory

pressure, to move to non-animal alternatives. Key amongst the alternatives is

the application of in silico or computational approaches. The simplest of these

in silico approaches is the ability to group compounds together, or form a

category, and then read-across toxicity. There is a well-defined and flexible

process to undertake read-across supported by many case studies and key

guidance documents. There is likely to be increased use of grouping and read-

across to provide predictions which are acceptable for regulatory purposes,

especially for effects following repeated dose exposure.
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CHAPTER 2

Approaches for Grouping
Chemicals into Categories

S. J. ENOCH* AND D. W. ROBERTS

Liverpool John Moores University, School of Pharmacy and Chemistry,

Byrom Street, Liverpool, L3 3AF, England

*E-mail: s.j.enoch@ljmu.ac.uk

2.1 Introduction

Chemical category formation and subsequent read-across analysis have been

suggested as being essential if the objectives of REACH are going to be

achieved without the excessive use of animals.1–3 The use of chemical category

approaches is common in a number of regulatory environments outside of the

European Union, namely in the United States and Canada. According to the

Organisation for Economic Co-operation and Development (OECD) a

chemical category is defined as ‘a group of chemicals whose physicochemical

and toxicological properties are likely to be similar or follow a regular pattern

as a result of structural similarity, these structural similarities may create a

predictable pattern in any or all of the following parameters: physicochemical

properties, environmental fate and environmental effects, and human health

effects’.2 On a practical level this process involves treating a closely related (or

similar) group of chemicals as a category. Within the category toxicological

data will exist for some, but not all of the chemicals for the endpoints of

interest. Thus data gaps may exist for specific chemicals for each of the

endpoints of interest. It is important to realise that differing data gaps are
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likely to exist for differing chemicals within the category. It is for these data

gaps that read-across methods can be utilised to make predictions for the

missing toxicological and/or physicochemical data. To this end, the OECD in

conjunction with the European Chemicals Agency3 have funded the

development of the freely available OECD QSAR Toolbox for category

formation and read-across (www.qsartoolbox.org).

2.2 Methods of Defining Chemical Similarity Useful in
Category Formation

The fundamental requirement for the development of a category suitable for

predicting toxicological effects is the ability to group chemicals together

based on a common molecular initiating event. The molecular initiating

event (MIE) is the interaction between a chemical and the biological system

that results in the initiation of the biological cascade leading to an adverse

outcome.4 For example, the formation of a covalent bond between a protein

and an electrophilic chemical has been shown to be important in a number

of toxicological endpoints such as skin and respiratory sensitisation.5–9 It is

only when the chemicals within a category all act via the same mechanism

that read-across methods can be used to make predictions enabling

toxicological data gaps to be filled. Given the variety of toxicological

endpoints and the associated number of mechanisms of action no single

method for grouping chemicals exists which can be applied universally. This

is especially true if one considers that for some endpoints specific

mechanistic pathways remain unknown (consider the many and complex

biological pathways that can potentially be disrupted leading to reproduct-

ive abnormalities).10 In contrast, chemical categories suitable for predicting

physicochemical properties are usually based purely on structural similarity

as there is no equivalent event analogous to the MIE for these endpoints. In

general three approaches to category formation are possible: the mechanistic

approach based on knowledge of an MIE, the analogue approach and

chemoinformatics approaches. All three approaches can be used to create

categories for toxicological endpoints. In contrast, only the analogue and

chemoinformatic approaches are suitable for creating categories for

physicochemical data.

2.3 Analogue Based Category

The simplest method for chemical category formation involves identifying a

functional group within the target chemical and then selecting chemicals from

a database containing the same functional group. This is the analogue

approach to category formation and is typically used for simple chemicals such

as a series of aliphatic aldehydes. In this approach knowledge of the underlying
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mechanism is usually not known or does not exist (in the case of

physicochemical data). This approach involves identifying functional groups

and/or chemical elements that are present in the target chemical. Chemicals are

then selected from a database containing toxicological/physicochemical data

that contain only the same set of functional groups as category members.

Importantly, chemicals with additional functional groups not present in the

target chemical are excluded from the category. In some cases calculated

parameters such as hydrophobicity are used to provide an additional measure

of chemical similarity. This approach to category formation has been used

recently for a number of endpoints including developmental toxicity.11

Figure 2.1 illustrates the analogue approach for an aliphatic aldehyde target

chemical showing that only other aliphatic aldehydes are included in the

category (the aromatic aldehyde is excluded).

2.4 Common Mechanism of Action

Knowledge regarding the mechanism of action, especially relating to the

molecular initiating event is one of the most powerful and transparent ways in

which a chemical category can be formed. Category formation using

mechanistic knowledge relies on the definition of structural alerts that define

the key features of a molecule that are required in order for it to interact with a

biological system and initiate a toxicity pathway. In general, two types of

structural alerts have been developed in the literature for category formation

depending on the nature of the molecular initiating event:

N Structural alerts defining the molecular features related to the formation

of a covalent bond between a chemical and a biological macromolecule;

Figure 2.1 Analogue based category developed based on the presence of an aldehyde
functional group in the target chemical.
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N Structural alerts defining the molecular features related to the formation

of a non-covalent interaction between a chemical and a biological

macromolecule. This type of structural alert covers mechanisms such as

those mediated by an interaction with a biological receptor.

These mechanism-based structural alerts are used to define the chemical

similarity required for category formation. In practice this is achieved by

analysing the target chemical (for which a data gap exists) for the presence of

one or more structural alerts related to the relevant MIE. This is known as

‘profiling’ the target chemical. Assuming the target chemical contains a

structural alert relevant databases are then analysed for chemicals containing

the same structural alert (known as ‘profiling a database’). Chemicals within

the database that contain only the structural alert present in the target

chemical are then grouped into a mechanism-based category. The experimental

data for these analogues can then be used to make a prediction for the

endpoint of interest for the target chemical. Importantly, this approach cannot

be used if the target chemical does not contain a structural alert related to the

MIE of interest. In such cases alternative methods to define chemical similarity

can be used (such as 2D similarity).

The use of structural alerts to define fragments within a molecule associated

with a given MIE is well established, especially for cases where the MIE is

either covalent binding to DNA or a protein. Importantly, the presence or

absence of these structural alerts does not give any indication of toxicity. This

is because these types of structural alerts are related to a given MIE and not a

toxicity endpoint. For example, it is possible that chemical A contains a

structural alert related to covalent protein binding but does not cause toxicity.

In a traditional expert system this chemical might be considered as a false

positive in that it contains a structural alert but is not toxic. However, consider

the scenario in which a regulator wishes to fill a data gap for chemical A in

which the MIE is covalent protein binding. In this case the knowledge of the

organic chemistry leading to covalent protein binding can be used to create a

category of mechanistically related analogues. If inspection of the available

experimental data for the analogues showed them to be non-toxic then

chemical A would be predicted also to be non-toxic. Unlike a traditional expert

system in which the presence of an alert gives an indication of toxicity, in this

example knowledge of the MIE has been used to make a prediction about the

absence of toxicity. It is important to realise that the same structural alert

might be used to create a second category of chemicals for a different endpoint

for which covalent protein binding is also the MIE. In this category it is

entirely possible that for this second endpoint chemical A may be predicted to

be toxic. The explanation may be due to the relative levels of chemical

reactivity required to elicit a toxicological response for the two different

endpoints.

A similar argument can be made as to why the absence of a structural alert

designed for category formation cannot be used as an indicator for the absence

of toxicity. This is due to the fact that no matter how extensive a set of
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structural alerts are for a given MIE there will be areas of chemical space that

have not been analysed. These unexplored areas of chemical space may contain

new structural alerts. This coverage of chemical space problem applies to all

types of structural alerts regardless of the MIE (i.e. covalent versus non-

covalent) or application (structural alerts used in traditional expert systems or

used in category formation). This chemical space coverage problem can be

addressed by the development of experimental in-chemico assays that are used

in an attempt to define the area of chemical space applicable to a given MIE.

However, even this approach cannot guarantee complete coverage as there

may be chemicals not yet synthesised that could trigger a MIE.

2.4.1 Structural Alerts for Developing Categories for Endpoints
in Which Covalent Bond Formation is the Molecular
Initiating Event

A number of studies have shown how structural alerts related to covalent

binding to either proteins or DNA can be used to develop categories suitable

for filling data gaps, using read-across, for several toxicities relevant to human

health. The applicable set of structural alerts are given in parenthesis:

genotoxicity12 (covalent DNA binding), skin sensitisation13,14 and respiratory

sensitisation15 (both covalent protein binding). Two recent review articles have

outlined the mechanistic organic chemistry associated with the known

structural alerts for covalent bond formation with either a protein or

DNA.7,16 This documentation of the mechanistic chemistry allows categories

developed with these structural alerts to have a clear mechanistic rationale in

terms of the molecular initiating event. An example of such a structural alert is

shown in Figure 2.2. This alert relates to the ability of an aromatic amine to

undergo metabolic activation to form an electrophilic nitrenium ion. This

nitrenium ion is then capable of binding covalently to DNA.

Figure 2.2 Example structural alert for an aromatic amine and the associated
electrophilic reaction chemistry that explains the formation of a covalent
adduct with DNA (dR 5 deoxyribose chain).
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2.4.2 Structural Alerts for Developing Categories for Endpoints
in Which a Non-Covalent Interaction is the Molecular
Initiating Event

An area in which considerable research still needs to be carried out is that in

relation to the development and use of structural alerts for chemicals acting via

non-covalent mechanisms, especially receptor interactions. Currently, only a

single profiler of this type has been developed, enabling a category to be

constructed for chemicals capable of binding to the oestrogen receptor.17

Binding to the oestrogen receptor is an important molecular initiating event for

a number of toxicity endpoints including developmental toxicity.10 This

profiler uses 2D structural alerts bounded by molecular weight ranges to define

the characteristics of chemicals known to bind to the oestrogen receptor based

on the results of analysis of data from in vitro assays (Figure 2.3).

The approach of using 2D structural alerts to form categories for receptor

mediated effects is not without problems. In contrast to toxicity mediated via

the formation of a covalent bond (which can be easily rationalised in terms of

the presence or absence of a 2D fragment within a molecule), this type of

toxicity is dependent on the shape and electrostatics (including hydrogen

bonding potential) of the entire molecule. This is clearly a 3D effect and thus

using 2D structural alerts to define the types of chemicals able to bind to a

receptor has limitations. The major one being that two molecules may not

share a common 2D structural alert but might be similar in terms of their 3D

shape and electrostatics. Clearly, there is scope for the application of

pharmacophore methods that are able to deal with the definition of structural

alerts in 3D.

2.5 Chemoinformatics

Chemoinformatics based similarity measures have also been shown to be of use

in the development of chemical categories for a number of endpoints, including

Figure 2.3 Example of a structural alert taken from the oestrogen receptor binding
profiler (available in the OECD QSAR Toolbox).
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skin sensitisation and developmental toxicity.18,19 In addition, these methods

have been widely used in the drug discovery paradigm for locating similar

chemicals from large chemical inventories.20,21 This makes them very useful for

clustering large datasets in order to select representative chemicals from each

cluster for further analysis. The primary example of this approach in the

scientific literature makes use of a range so-called fingerprint methods. Such

methods involve encoding the structural information within a molecule as a bit

string in which each ‘bit’ indicates the presence (if the bit is set as a 1) or

absence (if the bit is set as 0) of a particular molecular feature. Encoding a

target chemical and all the chemicals in a database into such fingerprints

enables them to be compared using computational measures of similarity.

These measures enable the similarity between the target and each of the

chemicals in the database to be assigned an integer value between 0 and 1. The

closer the similarity value is to 1 the more similar the chemicals. A similarity

cut-off value is then chosen that determines whether a chemical in the database

is sufficiently similar to the target chemical for it to be considered as part of the

category. It has been suggested that this value should be 0.6 or above.22 The

concept of bit-strings and how they can be compared to one another using the

Tanimoto coefficient as the measure of similarity is summarised in Figure 2.4.

In order to assess how similar chemical A is to chemical B a similarity

coefficient can be used, for example the Tanimoto coefficient (although there

are numerous others, for an outline of common similarity metrics see Gillett

et al.21). The Tanimoto coefficient requires three values; the number of ‘bits’

set to 1 in both fingerprints (values ‘a’ and ‘b’ in Figure 2.4) and the number of

‘bits’ set to 1 that both strings have in common (value ‘c’ in Figure 2.4). In

terms of chemistry the ‘bits’ set to one represent the presence of functional

groups. Placing these values into the formula for the Tanimoto coefficient

results in a similarity value of 0.43 (the Tanimoto coefficient is as shown in

Figure 2.5).

This approach to category formation has been implemented in the Toxmatch

software (freely available from http://ihcp.jrc.ec.europa.eu/). This software has

been used to develop categories for skin sensitisation18 and teratogenicity22 (see

Chapter 4 for more information on tools for grouping).

Figure 2.4 Example fingerprint for two chemicals, A and B.

Figure 2.5 Similarity between the chemical fingerprints using the Tanimoto
coefficient.
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2.6 The Use of Experimental Data to Support the
Development of Profilers for Chemical Category
Formation

Inspection of the literature (and tools such as the OECD QSAR Toolbox)

shows there to be an abundance of in vivo toxicological data covering a wide

range of endpoints. However, analysing in vivo data in order to develop an in

silico profiler is fraught with difficulty due to the fact that biological systems

contain multiple, complex and competing mechanisms. In addition, in vivo

databases tend to be focussed on relatively small areas of chemical space and

thus important areas of chemistry related to potential molecular initiating

events may be absent from in silico profilers.

Despite these limitations in the use of in vivo data a number of studies have

demonstrated that mechanism based structural alerts can be defined for

certain endpoints such as skin sensitisation6,23–26, respiratory sensitisation8,15

and acute aquatic toxicity.27–31 These structural alerts have been used in the

development of in silico based profilers for these endpoints (and others) in

which the formation of a covalent adduct is the molecular initiating event.7 It

is important to realise that for these endpoints a single event, the formation

of a covalent adduct between a protein and an exogenous chemical,

dominates the biological pathway and hence toxicity. This is especially

evident in skin sensitisation13,24,26,32–38 and acute aquatic toxicity39–41

where chemicals with a common electrophilic mechanism can be well

modelled using molecular descriptors related to chemical reactivity (or

electrophilicity).

The use of in vitro data typically has an advantage over in vivo data in the

development of in silico based profilers as it tends to be focussed on a single, key

step in the biological pathway, usually the molecular initiating event. A recent

study used the wide variety of structural alerts derived from the Ames assay to

derive in silico profilers for chemicals able to form covalent adducts with

DNA.12,16,42 A number of historical and more recent research efforts have

utilised experimental chemistry to explore the structural domain of a given

molecular initiating event in a (relatively) simple and systematic manner.43–45

This type of approach recently has been given the term in chemico data to

distinguish it from in vitro and in vivo data.24,43 This approach has been most

widely used to support the development of structural alerts for covalent binding

to proteins.26,46,47 In addition, in chemico data also allows chemicals to be sub-

categorised by rate of the reaction between a model nucleophile and a chemical.

These type of data typically come from historical literature sources (for a

detailed review see Schwöbel et al.48) or in chemico assays.26,35,41,43,46,49–51

Several studies have shown how such potency information can be used to

rationalise the skin sensitisation potential of chemicals assigned to mechanism-

based categories.26,38
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2.7 Adverse Outcome Pathways

All in silico profilers discussed in this chapter are developed on the basis that

they are grouping chemicals together based on a common MIE. This is the key

initial interaction between a chemical and a biological system that initiates the

biological cascade that leads to a toxic outcome. For example, for a number of

endpoints the MIE is the formation of a covalent bond with a protein. If this

step does not occur then the chemical cannot initiate the biological cascade

that leads to toxicity. As outlined in Chapter 3 the biological cascade leading

to a toxic outcome has been defined as an adverse outcome pathway (AOP).4,52

A key advantage of developing an AOP for a given endpoint is that it enables

the definition of additional key events that may contribute to the toxic

outcome. If in vitro assays can be developed that can model these additional

key events then further in silico profilers could be developed. These sub-

profilers could be used after an initial profiler to enable the development of a

category containing chemicals that are as mechanistically similar as possible,

based on all of the key events in the AOP, not just the MIE. This approach

would be a clear advantage to the current category approach (as implemented

in tools such as the OECD QSAR Toolbox) in which only knowledge of the

molecular initiating event is used as the mechanistic basis for category

formation. This process of profiling and sub-profiling using a combination of a

MIE based profiler and several key event sub-profilers data is summarised in

Figure 2.6.

Figure 2.6 Scheme to illustrate the use of profilers and sub-profilers to develop
mechanistically similar categories using the AOP concept.
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The adverse outcome pathway approach to category formation is currently

in its infancy, with the current focus being on skin sensitisation and toxicity to

the liver. However, the concept of using an AOP to guide in vitro testing

enabling in silico profilers to be developed for category formation is of key

importance. The approach requires extensive work to identify AOPs for a wide

range of regulatory endpoints and then the development of additional in vitro

assays that can be used to investigate the key mechanistic steps. Finally, the

combination of existing in vivo data and new in vitro data can be used in

conjunction with one another to develop in silico tools to enable chemicals to

be grouped into mechanism-based categories. This approach has the advantage

in that the chemicals grouped into these categories are both chemically and

biologically similar. Clearly, much work is needed in order to develop the AOP

concept for other important regulatory endpoints.

2.8 Conclusions

The key step in the development of a category is in the definition of an

appropriate measure of similarity by which to group the chemicals. Three key

methods exist, these being; simple organic functional group based analogues,

mechanism-based similarity and chemoinformatic measures of similarity. All

three methods have been shown, in the literature, to be useful. However, the

most powerful of these methods is mechanism-based similarity in which an

understanding of (at least) the molecular initiating event is used to develop in

silico profilers able to group chemicals. Such methods require expert

knowledge in order to define structural alerts related to molecular initiating

events. This expert knowledge is derived from a combination of in vivo, in vitro

and in chemico data sources. Currently, in silico profilers are well developed in

which the formation of a covalent adduct with a biological macromolecule acts

as the molecular initiating event. In contrast, such profilers are less well

developed for molecular initiating events that are receptor mediated. Finally,

the concept of AOPs as a future direction for chemical category formation has

been outlined. This approach, whilst currently in its infancy, is a road map to

the development of in silico methods for grouping chemicals in terms of their

chemical and biological similarity.
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CHAPTER 3

Informing Chemical Categories
through the Development of
Adverse Outcome Pathways

K. R. PRZYBYLAK*a AND T. W. SCHULTZb

a Liverpool John Moores University, School of Pharmacy and Chemistry,

Byrom Street, Liverpool L3 3AF, England; b University of Tennessee, College

of Veterinary Medicine, 2407 River Drive, Knoxville, TN 37996, USA

*E-mail: k.r.przybylak@ljmu.ac.uk

3.1 Introduction

In general, chemical categories are formed based on chemical similarity or the

potential for a particular chemical-biological interaction at the molecular

level – referred to as a molecular initiating event (MIE) (see Chapter 2). For

regulatory purposes, it would be most useful to build a chemical category

based on the in vivo endpoint considered in the assessment. However, this can

be achieved only in cases where the in vivo endpoint is related directly

(sometimes called ‘‘hard wired’’) to the MIE. Therefore, it is essential to

develop a causal linkage between the interaction of a chemical with a

biomolecule at the molecular level and the subsequent biological effects at the

subcellular, cellular, tissue, organ, whole animal and population levels. To this

end, the concept of the Adverse Outcome Pathway (AOP) has been introduced

recently to provide such a mechanistically plausible and transparent link

between MIEs and the in vivo outcomes of regulatory interest.1,2 Moreover, the

AOP concept provides a useful structure within which existing knowledge from
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in vivo tests can be integrated with the results of other methods including:

molecular screening and omics assays; computationally-based predictions; as

well as advances in bioinformatics and systems biology. Such collated

information related to the pathway is then organised at different levels of

biological organisation and/or other seminal dimensions (e.g. species, gender,

life stage). In that form, the AOP is intended to inform chemical category

formation, particularly with the aim of filling data gaps by read-across.

The AOP concept is the continuation of the generally accepted and much

advocated pathway-based approaches, such as dose–response models,3,4

Mode-of-Action (MoA) framework5 and toxicity pathway concept.6 The

pathway approach is based on the idea that toxicity results from exposure to

the chemical and a molecular interaction with an initial key target such as a

protein or receptor in the organism. The goal of the pathway concept is to

improve transparency and efficiency, and decrease uncertainty in the decision

making process. As a pathway-based approach, an AOP is the sequential

progression of events from the MIE to the in vivo outcome of interest

(Figure 3.1). Generally, it refers to a broader set of pathways that would:

N proceed from the MIE, in which a chemical interacts with a biological

target (e.g. DNA binding, protein oxidation, or receptor/ligand

interaction etc.);

N continue on through a cascade of biological activities (e.g. gene

activation, altered cellular chemistry or tissue development etc.);

N ultimately culminate in an adverse effect of relevance to human health or

ecological risk assessment (e.g. mortality, disrupted reproduction, cancer,

extinction etc.).7

While AOPs may be depicted as linear frameworks (see Figure 3.1), toxicity

is multi-dimensional, therefore the pathway between a MIE and the apical

adverse effect can vary significantly. This is especially true for human health

endpoints, where effects are the result of multiple organ interactions (e.g., skin

sensitisation), multiple events (e.g., repeat dose toxicity), accumulation over

time (e.g., neural toxicity), or are related to a specific life stage of an organism

(e.g., developmental toxicity).

Figure 3.1 A schematic representation of an AOP illustrated with reference to a
number of pathways (adapted from Ankley et al.2).
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AOPs are typically represented as a sequence of key events, moving from

one key event to another. In such a form, the AOP can be applied as a

‘‘bottom-up’’ approach, whereby chemical and mechanistic information is

used to define MIEs that can inform chemical category formation and can then

be applied in hazard assessment. Conversely, an AOP can also be used in a

‘‘top-down’’ approach by taking the apical adverse outcomes produced by

well-studied compounds and establishing a MoA. This information can then

be used to develop chemical categories. The chemical categories developed

based on an AOP allow for the transition from a chemical-by-chemical

approach to a chemical-category approach and therefore reduce financial cost,

time and use of test animals. On the other hand, AOPs provide a consistent

structure for organising toxicological knowledge across levels of biological

organisation and can aid in identifying gaps in that knowledge and thus drive

the development of alternative testing methods to fill such gaps.2

The aim of this chapter, therefore, is to provide the basis for the rapidly

expanding field of AOP led analysis of toxicological data. This is achieved by

providing explanations and definitions of AOPs and specifically how they

inform the development of categories to allow for read-across. The

information that may be obtained from an AOP in terms of category is

illustrated by a case study.

3.2 The Structure of the AOP

The AOP concept describes events that occur following chemical exposure.

AOPs have to be developed bearing in mind that the chemical will induce

toxicity only when the exposure (of sufficiently high level and/or duration) will

exceed the adaptive response of an organism. The pathway begins with the

interaction of the chemical with a biomolecule, which is followed by sequential

perturbations at the cellular, tissue and organ-level that lead to the adverse

effect of interest. As such, the AOP consists of three main information blocks:

the MIE, intermediate events and the final or apical adverse effect. In any case,

a given apical endpoint will be associated with a finite set of possible MIEs.

Similarly, a given MIE will be associated with a finite set of possible apical

endpoints. However, each AOP will have only one MIE and one apical

endpoint, which could be related to an adverse effect at higher levels of

organisation.

3.2.1 Development of the AOP

The development of the AOP can be started from any of the three blocks,

depending on what knowledge is available at the beginning of the exercise.

Typically AOP development begins with either the MIE or the final adverse

effect of interest. The latter reflects the fact that an AOP is anchored at its

two ends by the chemical/biological interaction and outcome of interest

(Figure 3.2).

46 Chapter 3
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The MIE explains the nature of the chemical interaction with biological

(macro)molecules. This information allows for an initial description of the

molecular structure limitations for chemical category members acting in a

similar manner. The identification of the adverse effect relevant to the

assessment is another crucial aspect in the development of the AOP. It is

essential to define this adverse effect clearly, as it determines the most relevant

mechanistic information which helps to define the third block of the AOP —

the intermediate effects.

To develop the AOP, different types of data can be utilised, these include:

structural alerts that reflect the types of chemicals that can initiate a pathway

(discussed in Chapters 2 and 6); in chemico methods that measure the relative

reactivity or chemical-biological interactions; in vitro assays that confirm the

subsequent cellular responses (e.g. gene expression); and, ultimately, in vivo

tests that measure endpoints that are directly relevant to the adverse effect that

drives regulatory decision making.9 It has to be stressed that before data can be

used in the development of an AOP, there should be a framework for accepting

these data based on a set of quality criteria (see Chapter 5). Moreover, there

must be reassurance that the data upon which the AOP is based are derived

from carefully designed experiments using appropriate dose/exposure levels.

The data gathered can be used to identify key steps in the AOP and provide

scientific evidence to support the AOP.

The development of AOPs also requires multidisciplinary collaboration

involving experts in toxicology, chemistry and biology, all of whom may use

different terminology. This can lead to confusion among scientists and

organisations. Therefore a standardised set of terminology has been developed

to assist in the understanding of the AOP concept as well as its assessment,

recording and ultimate acceptance.7 Moreover, the use of a common ontology

also helps the application of the AOP concept in developing quantitative

structure–activity relationship (QSAR) models and chemical categories to

advance the use of predictive techniques in risk assessments. The Organisation

Figure 3.2 A schematic diagram for the development of an AOP starting at any of

the three main blocks of information (adapted from OECD).8
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for Economic Co-operation and Development (OECD) compiled terms related

to the AOP concept.8 As a result, 42 terms, the majority of which had multiple

definitions, have been collected from the literature.

3.2.1.1 Identification of the Adverse Effect

The identification of an adverse effect after xenobiotic exposure has been a

mainstay for assessing risk to inform risk management decisions.10 An adverse

effect can be defined based on different levels of biological organisation:

cellular/tissue, organ, organ system, individual, population or ecosystem.

Usually, the apical endpoint is associated with an in vivo response as indicated

in standard test guidelines. However, in certain cases, such as cell proliferation

or bioenergetics, the apical endpoint may be at a lower level of biological

organisation. Moreover, the adverse effects can cover long term health

endpoints as well as local effects. In the former case, the adverse effects are the

results of multiple events (e.g. repeat dose toxicity) or accumulation over time

(e.g. neural toxicity) or are related specifically to a particular life stage of the

organism (e.g. developmental toxicity). In the second scenario, MIEs are likely

to be closely aligned with the in vivo outcome (e.g. skin sensitisation, skin and

eye irritation). It is essential to clearly and precisely define the adverse effect as

one of the anchors of the AOP. This helps to define the mechanistic sequence

of events leading to this outcome.

3.2.1.2 Definition of the Molecular Initiating Event (MIE)

The MIE described as the chemical-induced perturbation of biological systems

at the molecular level represents the primary anchor of the AOP. Therefore, it

is very important to identify clearly the beginning of the cascade leading to the

specified adverse effect. Many MIEs have been defined in terms of covalent

binding to proteins and/or DNA (see Chapters 2 and 6).11 These types of MIEs

are based on the principles of organic chemistry (i.e. electrophile–nucleophile

reactivity). In contrast, MIEs may also be based on interactions which are

‘‘receptor binding’’, or binding to enzymes, these are often non-covalent and

more selective in nature.12 Understanding the MIE allows for the definition of

the properties of chemicals inducing the perturbation, such as bioavailability,

structural requirements (especially for receptor binding) and metabolic

transformation. For example, potential inducers of respiratory impairment

caused by the non-covalent perturbation of the inner mitochondrial membrane

are characterised as phenolic weak acid uncouplers, such as polyhalogen-

substituted (three or more), dinitro-substituted or polyhalogen- and mono-

nitro-substituted phenols with log P between 1.5 and 5.5 and a pKa value

between 3 and 6.7 Therefore, the understanding of the chemistry of potential

inducers helps to define the molecular structure limitations for chemical

category members acting via a similar mechanism.

48 Chapter 3
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3.2.1.3 Recognition of Key Events Leading to the Adverse Effect

The AOP must describe a pathway that has key events that are known to be

feasible in normal physiological and/or biochemical processes. Therefore, it is
crucial to understand the basis of normal physiology (e.g. reproductive

processes, nervous system function, liver functions etc.) before being able to

identify intermediate events that lead to an adverse effect. This will help in

recognising the complex networks of processes, at different levels of biological

organisation, which can be disrupted. The identified AOP must not contradict

any steps of normal biological processes. During the identification of key steps,

a review of the existing literature is required to find out as much information as

possible about a plausible mechanism and the intermediate steps leading to the
final adverse effect. This aspect is crucial for the development of the AOP. It

requires manual evaluation of the scientific literature to determine relevant

intermediate events and their usefulness as key events in developing the AOP.

Usually multiple intermediate events are identified. Therefore, the assembled

knowledge has to be filtered and selected to match the single AOP.

To be a key event, the intermediate step must be capable of being evaluated

experimentally. That is to say, the event must be able to be used in a hypothesis

which can then be tested. For instance, dendritic cell maturation observed
during skin sensitisation can be characterised by the expression of specific cell

surface markers, such as adhesion molecules, chemokines and cytokines, which

can be measured by assays such as the in vitro VITROSENS test.13 This assay,

using human CD34+ progenitor-derived dendritic cells (CD34-DC), is based

on the differential expression of the cAMP-responsive element modulator

(CREM) and monocyte chemotactic protein-1receptor (CCR2) which are able

to discriminate between skin sensitisers and non-sensitisers. This fact is of key

importance for category formation, as it allows for the testing of potential
category members to ensure that they follow the pathway described by the

AOP.

3.2.2 The Assessment of the AOP

During the development of an AOP, it is considered critical to be able to gauge

its reliability and robustness. This should be done by evaluating the

experimental support of the AOP. In such assessment, the qualitative and

quantitative understanding of the AOP has to be analysed. This means that
every key step should be clearly identified and documented with relevant

scientific evidence and its evaluation. For the quantitative understanding of an

AOP, the threshold and scale of the linkage between key events in the pathway

play important roles. Moreover, the assessment of the quantitative under-

standing of an AOP should determine the response-to-response relationships

required to scale in vitro effect(s) to in vivo outcomes. As the AOP is supported

by various data, it is vital to assess the Weight-of-Evidence (WoE) supporting

the AOP. It can be done by implementation of the Bradford Hill criteria, which
help to evaluate the relevance of the scientific evidence gathered to the
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hypothesised AOP.14 The aspects considered include concordance, strength

and consistency between the adverse effect, initiating event and key events,

biological plausibility, coherence and consistency of the experimental evidence,

as well as uncertainties, inconsistencies and data gaps.

The final step in the assessment of an AOP is a statement regarding the

confidence associated with it. Confidence in an AOP is increased by a more

comprehensive understanding of the nature of the interaction between the

chemical and the biological system, coupled with mechanistic understanding of

the biological response.

3.3 Harmonised Reporting and Recording of an AOP

Where possible the information collected should be used to present the whole

adverse pathway step-by-step. This means starting from the characterisation of

the route of exposure and chemical properties and the identification of the

molecular initiating event and site of action. After that, the responses at the

molecular, cellular/tissue, organ, organism and population/ecosystem levels

should be identified. The final stage depends on the level of biological

organisation of the adverse outcome. This information should be reported

systematically and in a transparent way to maintain consistency among the

developed AOPs. The existing AOPs’ documents show the lack of the

standardisation of procedures during the development and documentation

process.7,9,15–19 Analysis of these documents showed significant differences in

the documentation of the AOPs. Different levels of information are available

among these reports, however, for some of them, no clear assessment of the

AOP is made. Therefore, it is important to provide the framework for

consistent information gathering and organisation into an AOP. The template

should give an insight into which pieces of information are necessary to

identify an AOP and how to present them. It will also provide initial assistance

on how to undertake the assessment of an AOP in terms of its completeness

and relevance. Such a template has been recently proposed by the OECD;8 this

was developed based on the AOP already established for skin sensitisation

initiated by covalent binding to proteins.18,19 According to this guidance, every

key step has to be identified and supported by experimental evidence together

with an evaluation of the evidence. The summary should be presented in the

form of a table and a graphical diagram and finally a clear assessment of the

AOP has to be undertaken.

Once the AOPs are developed and assessed, they should be stored in a

publicly available repository to provide easy access to these documents. It is

important as AOPs are living documents that will be continually updated and

refined as more data are generated, analysed, and developed within the AOP

process. Wiki-based online environments such as Effectopedia20 or the World

Health Organization (WHO) MoA Tool21 can be used, not only as

repositories, but also they can assist in the development of AOPs to improve

the effectiveness of communication among experts from diverse areas of

50 Chapter 3
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science who may not naturally communicate with each other. This improved

interaction is critical to the kind of synthesis of knowledge about chemical

interactions, metabolism, systems biology and ecology needed for AOP

development.

3.4 Use and Benefits of an AOP

A well-identified AOP, with an accurately described sequence of events

through the different levels of biological organisation, provides valuable pieces

of mechanistic information which can be used for many purposes.22 The major

advantage of the AOP is the provision of the transparent causal linkage

between the MIE and the final in vivo outcome of interest. Moreover, the AOP

is designed to avoid mixing information from multiple mechanisms (i.e.

different molecular initiating events which can cause the same in vivo outcome

through different AOPs). Table 3.1 presents a list of existing AOPs together

with the associated chemically induced perturbations at the molecular level.

This is crucial information for the developing mechanistic profilers within the

OECD (Q)SAR Toolbox to improve the grouping methods.23 It helps to form

chemical categories based on toxicological behaviour that are especially useful

for the prediction of long term and chronic effects.

3.4.1 Developing Chemical Categories Supported by an AOP

The most likely and originally intended application of AOPs, even incomplete

ones, is to inform chemical grouping strategies or chemical category formation

and the development of structure-activity relationships (SARs). An important

Table 3.1 The AOP’s linkage between the in vivo outcome and MIE.

Endpoint MIE/Profiler

Skin sensitisation18,19 Protein binding
Aquatic toxicity/Non-polar narcosis2 Hydrophobic interaction with neuronal

membrane
Aquatic toxicity/Photoactivated

toxicity2
Reactive single oxygen formation

Aquatic toxicity/Aryl hydrocarbon
receptor2

Aryl hydrocarbon receptor binding

Reproductive toxicity2,7 Oestrogen receptor binding
Reproductive toxicity2 Aromatase inhibition
Neurotoxicity16 Kainate receptor binding
Repeat dose/Haemolytic anaemia24 Metabolic activation of nitrobenzenes

releasing Reactive Oxygen Species
Nephrotoxicity7 Metabolic activation of 4-aminophenols

binding to glutathione
Respiratory impairment/Weak Acid

Respiratory Uncouplers7
Non-covalent perturbation by weak acids

leading to loss of H+ gradient

Informing Chemical Categories through Adverse Outcome Pathways 51
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advantage of the AOP approach in chemical grouping is that it allows

categorisation of chemicals based on toxicological similarity. Considering not

only the initial interaction of a chemical at the molecular level, but also the

perturbations at higher biological levels, provides an opportunity to group

chemicals based on both intrinsic chemical and biological activity. Such

categorisation of chemicals based on both MIE and early key events gives

greater confidence that chemicals induce adverse effect via the same toxicity

mechanism.

For more effective use of AOPs in developing chemical categories, three

libraries of information should be collated and integrated (the examples given

in parentheses relate to skin sensitisation):

N a library of in vivo effects typically used in assessments (e.g. EC3 values in

the local lymph node assay);

N a library of molecular initiating events (e.g. protein binding reactivity);

N a library of intermediate events, typically data generated using in vitro

methods (e.g. dendritic cell surface biomarkers).

Each library can, in theory, be associated with a single, or multiple, chemical

domain(s). With regard to chemical categories, the chemical structure space

covered, or applicability domain, is reliant on the chemicals assessed for the

MIEs and the key events within the AOP.

Once an AOP is identified and understood for one compound, it becomes

possible to identify other chemicals that perturb elements of the AOP, using

relatively inexpensive and rapidly performed techniques, such as high

throughput screening (HTS), SAR, and microarrays. AOPs are likely to be

useful to predict the potential for less well studied chemicals to induce an

adverse outcome of interest. For example, if a chemical is shown to elicit a

particular MIE associated with a given AOP and subsequent key events, the

chemical may be predicted with some confidence to produce the same adverse

outcome, even if the definitive in vivo test has not been conducted. Moreover,

such application of an AOP in the formation of a chemical category and filling

of data gaps by read-across could drive more rational testing. Thousands of

chemicals could be assessed for their ability to elicit the MIE and perhaps one,

or a few, key events at the cellular level. Subsequently, hundreds of chemicals

could be assessed for key events relevant to higher levels of biological

organisation and in this manner only a few chemicals (maybe only tens) would

need to be assessed for the final in vivo adverse effect. In this way chemical

category formation and read-across could be informed by the thousands of

chemicals pre-screened for the MIE(s). Subsequently, the chemical category

could be refined and sub-categorised based on the information provided by the

chemicals screened for selected key events. Ultimately, the data gap could be

filled by read-across from the relevant chemicals assessed for the final in vivo

endpoint.

52 Chapter 3
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3.4.2 General Applications of AOP for Regulatory Purposes

From the regulatory point of view, an AOP can be used in a variety of

applications.22 These will depend on the type of decision to be made and what
level of uncertainty is acceptable for that assessment. These decisions can

include:

N priority setting for further testing;

N hazard identification;
N classification and labelling;

N risk assessment.

For the first two applications, a partial AOP, where not all key events are
known, can be used. In the case of complete risk assessment, a quantitative

AOP with dose–response information as well as absorption, distribution,

metabolism, and excretion (ADME) properties will be required.

A well-identified AOP, with an accurately described sequence of events

through the different levels of biological organisation, provides valuable pieces

of mechanistic information which can be used to inform the work bodies such

as the OECD Test Guideline Programme. Based on well identified and

scientifically proven key events, new in vitro, ex vivo and HTS assays that
detect direct chemical effects or responses at the cellular or higher levels of

biological organisation can be developed.7 In addition, an AOP, for any given

hazard endpoint, can be the basis for developing an integrated approach to

testing and assessment or an integrated testing strategy for that hazard

endpoint.

3.5 A Case Study: Developing a Chemical Category for
Short-Chained Carboxylic Acids Linked to
Developmental Toxicity

The following section outlines how to develop a chemical category for short-

chained carboxylic acids (SCCAs) through the development of the AOP for

developmental toxicity. To map out the AOP, firstly an overview of the process

of developmental toxicity is required. This is the first part of this section which

is given below. In order to illustrate how this can support the development of
categories, and hence read-across techniques, results from the testing of a

group of compounds known to cause developmental toxicity are presented.

3.5.1 Overview of Developmental Toxicity

The development of embryonic structures results from a well-orchestrated

series of complicated molecular, biochemical, and physical events that

eventually lead to what we recognise as a fully developed infant.25 These

events are highly conserved across vertebrates, especially mammals. While the

development of a structure begins with cell proliferation other events (e.g. cell

Informing Chemical Categories through Adverse Outcome Pathways 53
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differentiation and migration) are also critical. Early embryonic primordia are

acted upon by inductive forces. Such forces or signals promote cellular

differentiation, thereby providing the necessary anlagen (the clustering of

embryonic cells) for the development of the final embryonic structures. Many

of the inductive signals are secreted growth factors passed between cell

populations of interacting tissues.25

Ontogenetic development in humans and other vertebrates, whilst a

continuum, is often divided into a series of stages. Briefly, the pre-

differentiation period is associated with development from the single cell

zygote to the tri-layered (i.e., ectoderm, endoderm, and mesoderm) gastrula.

The early differentiation period of development is characterised by organogen-

esis (i.e., the development of the organ systems), while the advanced

differentiation period is the time of morphogenesis and histogenesis (i.e., the

development of body form and tissues). Fœtalgenesis and, in some species

including man, the early postnatal period is the time of initial growth and the

acquisition of full organ function, whilst the adult period can be considered the

remainder of life.

Manifestations in developmental toxicity include the types, degree, and

phenotypic incidences of abnormal development. Final manifestations of

developmental toxicity include: death, malformation, growth retardation, and

functional deficit. Life stage and manifestations of developmental toxicity are

linked. An early refractory period is associated with pre-differentiation; the

totipotency of cells (the so-called stem cells) present during cleavage and

blastulation and the pluropotency of the early germ layer maturation mean

one cell can readily replace another. The terminal juncture of gastrulation is

associated with the formation of third germ layer (i.e. mesoderm) and is

typically the most sensitive time in life. At this point in development, cells,

which were multi-potent become less so. For example, the development of the

nervous system and other ectodermal elements become separated from (but

influenced by) development of muscle, connective tissue and other mesodermal

elements. Subsequently, during histogenesis and organogenesis, and cellular

specialisation, potency decreases further so hepatocytes (liver) are not capable

of becoming pneumocytes (lung).

High susceptibility to malformation is associated with the period of

histogenesis and organogenesis. Interference with development during

organogenesis often leads to organ and system specific phenotypic effects.

For example, the nervous system, which is the first system to develop, is

susceptible early in organogenesis, while the urinary and reproductive systems,

which are the last systems to develop, are susceptible late in organogenesis. The

period of growth and function susceptibility is associated with the fœtal period

and early postnatal development. Interference with development at this period

typically results in growth retardation and organ-specific functional dis-

turbances including neural toxicity.

Major developmental effects also are life stage-dependent. For example,

death is the most common outcome associated with exposure during early

54 Chapter 3
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embryogenesis (up through gastrulation), malformation is associated with

exposure during organogenesis, and growth retardation and functional

deficiency is associated with exposure during fœtalgenesis.

One of the most critical of the signals between two opposing cell populations

involves epithelial–mesenchymal interactions. The mesenchymal cells influence

the epithelium, which can differentiate and secrete factors that subsequently

influence the mesenchyme. Such interactions continue until a target organ

develops with organ-specific cell populations.

3.5.2 Valproic and Other Short-Chained Carboxylic Acids as
Developmental Toxicants

It has long been know that a disproportionate number of known

developmental toxicants are weak acids. Among these weak acids is the well-

studied SCCA: 2-propylpentanoic acid known as valproic acid.25 In humans,

in utero exposure to valproic acid has been linked to neural, craniofacial,

cardiovascular and skeletal defects with the developing nervous system

appearing to be particularly sensitive.

Dose–response data are available for the effects of valproic acid from a variety

of in vivo, ex vivo and in vitro investigations. Except for reduced sensitivity of

rodents in vivo, all species show developmental and neurogenic effects. As an

example, valproic acid treatment in mice on day 8–9 of gestation causes failure

of the closure of the cranial end of the neural tube, spina bifida, and limb

abnormalities.26 In all embryo-based studies, once initiated, the adverse effects

of valproic acid exposure on early development cannot be reversed.

Valproic acid activates the Wnt/b-catenin signalling pathway resulting in

anti-proliferative and pro-differentiation effects on cell membranes, which

impairs embryonic development. The Wnt pathway helps regulate b-catenin

and cadherins in cells.27 Up-regulation of b–catenin and down-regulation of E-

cadherin in favour of N-cadherin during remodelling of cellular junctions leads

to abnormally high levels of N-cadherin and neural tube cells fail to migrate.

Specifically, valproic acid inhibits class I histone deacetyase.28 Histone

acetylation has been shown to be central to the regulation of gene expression

in eukaryotes.29 Histone acetylation is an epigenetic modification, which is

balanced by the action of histone acetyl transferase and histone deacetylase.

Histone deacetyases affect gene transcription and chromatin assembly by

altering histones at the post-transcriptional level.

The cell responses to histone deacetylase inhibitors are complex, but

generally an increase in the level of histone acetylation is associated with an

increase in gene expression, which act as cell proliferation agents involved in

the convergent extension (narrowing of a tissue in one axis and elongation in

another) during development. As a consequence, inhibition of histone

deacetylase impairs cell proliferation and differentiation. In very early

development, the central nervous system is the chief target of deacetylase

inhibitor-induced malformation.
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A review of the literature, especially the more inclusive studies of Phiel

et al.30 and the review of Wiltse,31 reveals that disruption of Wnt/b-catenin

signalling is provoked by the inhibition of histone deacetylase. As the seminal

event this inhibition can be regarded as the initial event of the mode of action

leading to the adverse outcome of developmental toxicity or teratogenicity,

especially for select SCCAs.

Based largely on evidence for valproic acid, a mode of action for chemicals

acting as histone deacetylase inhibitors leading to developmental toxicity in

humans is likely to take the following form:

1) The molecular site of action is the enzyme histone deacetylase.

2) The molecular initiating event is the inhibition of histone deacetylase,

which leads to deacetylation of core histones.

3) The biochemical pathway is the alteration of Wnt-dependent

transcription.

4) The first cellular level consequence is the accumulation of b-catenin,

which leads to a reduction in E-cadherin in favour of N-cadherin.

5) The second cellular-level consequence is increased cell adhesion and

concomitant reduced cell motility.

6) The target organ(s) or tissue(s) consequences depend on the

development stage of exposure.

7) The physiological/anatomical response(s) to the cellular effects is

prevention of convergent extension.

8) The embryonic response(s) to the biochemical, cellular, and physio-

logical/anatomical effects is exhibited as specific terta (e.g. failure of

the neural tube to elongate and close).

9) The overall effect on humans is embryo death and/or developmental

impairment.

The scientific literature contains much information in support of this

toxicity mechanism. Histone deacetylases control gene expression via the

regulation of transcription. Valproic acid has been demonstrated to be a

specific inhibitor of class I histone deacetylases.28 In HeLa cells engineered to

over-express the enzyme histone deacetylase, exposure to valproic acid resulted

in the release of acetyl groups from acetylated histones in a dose–response

relationship.30 In human embryonic kidney cells (strain 293T) transfected with

a luciferase bio-reporter system, exposure to valproic acid activated

transcription in a dose–response relationship.30 In mouse Neuro2A cells,

exposure to valproic acid resulted in b-catenin being accumulated. When the

Neuro2A cells were exposed to the protein synthesis inhibitor cycloheximide,

b-catenin degraded. These results indicate that valproic acid promotes b-

catenin synthesis but does not inhibit GSK-3b mediated degradation.

In vertebrate embryos, the neural crest is a provisional structure located

at the dorso-lateral surface of the neural tube and consists of strips of

ectodermal-derived cells. From these crests, cells become discontinuous,

migrate to other locations, and form, amongst other things, the primordial
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for the dorsal or sensory root ganglia, somatic spinal nerves, and sympathetic

ganglia of the autonomic nervous system with their visceral sympathetic

nerves. In culture, neural tube segments of chick embryos exposed to valproic

acid exhibit effects on the neural crest cells, which indicate interference with

cell differentiation.32 During normal development of neural crest cells,

adhesion molecules and adherens junctions are lost or altered, the cytoskeleton

is reorganised with the formation of cytoplasmic extensions, and the cells

become motile. Upon exposure to valproic acid, there is a reduction in the

number of neural crest cells, which become motile rather than cellular sheets

being formed. In these sheets, N-cadherin is found in the cell boundaries. In

contrast, in cells which remain independent and motile, N-cadherin is not

found. Correspondingly, in mice with abnormally high levels of N-cadherin,

cells fail to migrate from parts of the neural tube and spina bifida is observed.32

Valproic acid also disrupts early development of anterior structures of frog

embryos.33 Specifically, 88% of Xenopus laevis embryos exposed to 5 mM

valproic acid for 24 hours at the mid-blastula stage of development exhibited a

marked reduction in anterior structures and shortening of the anterior–

posterior axis in embryos.30 In Xenopus, dishevelled signalling via a planar cell

polarity cascade is necessary for convergent extension of the neural tube.34 The

axis-inducing activity, stability, and sub-cellular distribution of b-catenin in

Xenopus are regulated by the GSK-3b enzyme.35 The Wnt/b-catenin pathway

regulation of development of the central nervous system36 explains the

microcephaly in Xenopus.33

In cultured mouse embryos, valproic acid causes anterior neural tube

defects, shortening of the anterior–posterior body axis, growth retardation,

and failure of the embryo to rotate properly. In cultured rat embryos, it causes

a decrease in embryonic growth, induction of neural tube defects and irregular

somite formations and malformation in the fore- and mid-brain. Mechanistic

understanding of these in vitro findings is provided by Wang et al.37 who noted

that disruption of dishevelled signalling results in defects related to central

nervous system and stunting of the anterior–posterior axis.

Valproic acid is a known human teratogen.38,39 Early in vivo studies have

been reviewed by Di Carlos.40 Later oral and subcutaneous dosing studies of

pregnant mice and rats at 75 to 500 mg/kg valproic acid resulted in fœtuses

exhibiting anterior neural tube defects, somite defects, heart malformations

and spina bifida.41

3.5.3 AOP for Short-Chained Carboxylic Acids as
Developmental Toxicants to Organisms in Aquatic
Environments

From the mode of action and scientific literature noted above a number of key

events considered essential to histone deacetylase inhibition induced conver-

gent extension-related malformations can be identified and measured. These
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events and associated methods can form the basis of an AOP. Potential key

intermediate events include:

1) The release of acetyl groups as a measure of inhibition of histone

deacetylase.42

2) The accumulation of b-catenin as a measure of alteration of Wnt-

dependent.30,43

3) Cell adhesion and/or cell motility as a measure of cell maturation and

migration.32

4) Neural tube elongation and closing as a measure of convergent

extension in early embryos.30,33

3.5.4 A Case Study Using Carboxylic Acid Chemical Categories
to Evaluate Developmental Hazard to Species in Aquatic
Environments

Aldrich’s Flavors and Fragrance Catalog provides a list of carboxylic acids

that are of commercial interest.44 This list provides an excellent case study for

the application of AOP-based chemical categories and read-across to assess

developmental hazard to species developing in an aquatic environment.

Key intermediate event 4 in the AOP proposed above (Section 3.5.3) has

been used as the basis for experimental assessment of developmental toxicity

and structure-activity investigations with the frog Xenopus.30,33 Specifically,

this work focused on SCCAs of fewer than ten carbon atoms. Developmental

toxicants were described by the developmental hazard index (DHI) defined by

dividing 96-hr embryo mortality measured as the LC50 value by 96-hr embryo

malformation measured by the EC50.33 Xenopus 96-hr LC50, EC50 and DHI

data are presented in Table 3.2. Chemicals with small DHI elicit malforma-

tions at concentrations near those which cause death. Since cessation of

general cell functions near death can cause reduced embryo length and other

generic malformations including oedema and abnormal gut coiling, SCCAs

with low DHI values (DHI , 4.0) were not considered developmental hazards.

Conversely, SCCAs eliciting a DHI of . 8.0 were considered strong

developmental hazards. Acids with DHI values between 4.0 and 8.0, were

considered weak developmental hazards.

Additional WoE supporting key intermediate event 4 in the AOP is provided

from the ex vivo rat embryo data of Brown et al.45 Briefly, 9.5-day conceptuses

were exposed for 48 hours and, based on yolk-sac diameter, crown-rump

length, number of somite pairs and overall morphology, a potency index (PI)

from 1 (the most severe) to 6 (the least severe) was employed. Rat ex vivo PI

data are presented in Table 3.3. While the DHI and PI values are not directly

correlated there is the same general tread with both data sets. Structural alerts

developed from these data confirm that compounds containing at least four,

but fewer than six, carbon atoms in the chain with a tetrahedral a-carbon atom

bound to a free carboxylic-group, one or two alkyl groups, and a hydrogen
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atom are likely to be developmental toxicants (Figure 3.3). In addition, there

should be no double bond at the a- or b-carbon atoms and the alkyl groups

must be larger than a methyl group. These structural requirements are similar

to those described by Di Carlos and Narotsky et al. for teratogenesis in the

mouse.40,41 The major exception may be for the straight-chain SCCAs which

elicit malformation in vitro. However, these compounds are unlikely to

be teratogenic in vivo as they are predisposed to maternal metabolism via

Figure 3.3 Structural alert identified from experimental data for SCCAs.

Table 3.3 Rat ex vivo derived Potency Indices (PI) for 18 SCCAs.

ID Name SMILES MWt PI

Alkyl-Straight Chain Saturated
1 Acetic Acid O5C(O)CC 60.05 6
2 Propionic acid O5C(O)CCC 74.08 2
3 Butanoic acid O5C(O)CCCC 88.11 1
4 Pentanoic acid O5C(O)CCCCC 102.13 2
5 Hexanoic acid O5C(O)CCCCCC 116.16 3
6 Heptanoic acid O5C(O)CCCCCCC 130.19 3
7 Octanoic acid O5C(O)CCCCCCCC 144.21 4
Alkyl-Branched Chain Saturated
8 2-Methylpropionic acid O5C(O)C(C)C 88.11 4
9 2-Methylbutanoic acid O5C(O)C(CC)C 102.13 5
10 3-Methylbutanoic acid O5C(O)CC(C)C 102.13 2
11 2-Ethylbutanoic acid O5C(O)C(CC)CC 116.16 5
12 2-Methylpentanoic acid O5C(O)C(C)CCC 116.16 5
13 2-Propylpentanoic acid O5C(O)C(CCC)CCC 144.21 2
14 3-Methylpentanoic acid O5C(O)C(CCC)C 116.16 4
15 2-Methyhexanoic acid O5C(O)C(CCCC)C 130.19 5
16 2-Ethylhexanoic acid O5C(O)C(CCCC)CC 144.21 3
Alkyl-Straight Chain Unsaturated
17 trans-Pent-2-enoic acid O5C(O)C5CCC 100.12 6
18 4-Pentenoic acid O5C(O)CCC5C 100.12 2
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b-oxidation. As a result they are unlikely to persist long enough to cross the

placenta and accumulate in the embryo in utero.33,41,45

The 39 carboxylic acids considered in this case study are listed in Table 3.4.

Of these acids 28 have been evaluated for their DHI and 18 have been

evaluated for their PI. The data gaps for the untested acids were filled by read-

across based on those that had been tested, albeit with restrictions to sub-sets

categories of acids. The results in Table 3.4 reveal 27 of the 39 acids in the case

study inventory are ranked as non-developmental toxicants to aquatic species;

these are acids that are shorter than three carbons or greater than eight

carbons. Eight other acids are ranked as strong developmental hazards. These

acids are typically four to six carbons in size. Lastly, the remaining four acids

were ranked as weak developmental hazards.

Twelve untested acids, numbers 13, 14, 15, 23, 24, 25, 28, 29, 30, 31, 32 and

33 were all predicted to be non-developmental toxicants by read-across. In

these cases, good experimental evidence for key intermediate event 4 is

presented. Based on structural similarities, a category to fill the data gap for 9-

decenoic acid has been formed (Figure 3.4). All six category members (without

the target chemical) are longer (seven and more carbon atoms) straight chain

saturated acids with experimental data showing them to be non-developmental

toxicants, with the exception of the weak developmental toxicant — heptanoic

acid. Although the target chemical is unsaturated, the double bond is far from

the a and b carbons, and hence will not affect activity. The target acid,

therefore, has been predicted to be a non-developmental toxicant based on the

experimental results for the six acids. The read-across for acids 13, 14, 15, 30

and 31 has a higher uncertainty as it is based on extrapolation. The read-across

for acids 34, 35 and 36 also has a higher level of uncertainty as they are based

on a single analogue. Due to conflicting results, there is greater uncertainty

associated with the prediction of acid 20, 2-methylpentanoic acid; similarly,

there is less certainty in the prediction of acid 21, 3-methylpentanoic acid.

Confidence in a prediction of non-developmental toxicant would be

strengthened by the addition of some experimental data for the other key

events of the AOP. This reflects the reality that a false negative for non-toxic

predictions has greater consequence that a false negative prediction for a toxic

prediction.

Of greater concern are 4-methylpentanoic acid, 3-methyl-4-pentenoic acid,

acids 22 and 27, respectively. In both of these cases, there is experimental

evidence for highly similar analogues that suggest these two acids have

considerable developmental hazard to species that develop in an aquatic

environment. Clearly, further testing is needed to clarify the status of these

acids as developmental toxicants.

In the case study present, an AOP has been used to provide the transparent

mechanistic understanding as to why some carboxylic acids are developmental

hazards and others are not. We used pre-existing, non-standard developmental

toxicity studies to develop the AOP and ex vivo data and corresponding

structural alert to justify the read-across to untested analogue(s). In each
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scenario, the data used were for key event 4, the inhibition of neural tube

elongation and closing, which reflects convergent extension in early embryos.

Both data sets used in the WoE are causally linked to the initial upstream event

hypothesised as the inhibition of histone deacetylase. In principle, each data set

could be considered sufficient to characterise the developmental toxicity

hazard. However, by using them in tandem one can use WoE to address

uncertainty in the prediction.

Because of the nature of the available data, the assessments were limited to

simple carboxylic acids as developmental toxicants to organisms developing in

aquatic environments. However, this AOP, along with chemical categories,

read-across and WoE approaches could be adapted to assess endpoints

relevant to humans for selected carboxylic acids and related compounds.

Specifically, candidate chemicals could be assessed for release of acetyl groups

and/or accumulation of b-catenin. Subsequently, a subset of chemicals could

be assessed for cell adhesion and/or cell motility or convergent extension in

early embryos either tested ex vivo in mammalian embryos of using lower

vertebrates such as fish or amphibians. Finally, the data gap(s) could be filled

from a few chemicals (e.g. valproic acid, 2-ethylhexanoic acid) measured in vivo

with in utero exposed mammals for the apical adverse effect. Particular

attention will need to be paid to straight-chain SCCAs which elicit

malformation in vitro, but it is unlikely there would be teratogenicity in vivo.

Figure 3.4 Chemical category developed for the target chemical 9-decenoic acid
allowing for the prediction of developmental toxicity hazard.
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3.6 Conclusions

The AOP methodology is an approach which provides a framework to collect,

organise and evaluate relevant mechanistic data from the various levels of

biological complexity. In this context, an AOP is developed as a sequence of

key events starting from the chemical-biological interaction at the molecular

level through the cascade of biological intermediate events and ending on the in

vivo outcome. Using such organised knowledge in category formation enables

grouping of chemicals based on their chemical as well as biological properties.

The possibility to categorise chemicals based on their similarity in toxicological

behaviour is the most important advantage of the AOP approach in chemical

grouping. Compounds gathered in the same category will share not only an

MIE but also one or more key events resulting from that chemical-biological

interaction. Such a category will provide stronger confidence that all members

elicit the same final adverse effect. Therefore, the AOPs would allow for the

transition from a chemical-by-chemical approach to a chemical-category based

approach in the assessment of chemicals. The usage of an AOP developed for

one compound to assess toxicity for other similar chemicals is highly desirable

for risk assessment because it reduces cost, effort, time, and the use of test

animals.
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CHAPTER 4

Tools for Grouping Chemicals
and Forming Categories

J. C. MADDEN

School of Pharmacy and Chemistry, Liverpool John Moores University,

Byrom Street, Liverpool, L3 3AF, England
E-mail: j.madden@ljmu.ac.uk

4.1 Introduction

Advances in computational chemistry and high-throughput screening have

resulted in a vast amount of information becoming available on chemicals,

including data on chemical reactivity, structural, physico-chemical and

toxicological properties. However, there are still many data gaps that need

to be addressed, particularly with respect to the toxicological profile of

chemicals. Grouping methods allow knowledge concerning chemicals with

known properties to be used to infer information about those compounds for

which the properties are unknown; this is the process of read-across. This relies

upon compounds being organised into rationally-based, clearly identifiable

groups that share a particular, relevant property or properties. The rationale

for forming such groups must be fully transparent and justifiable if the

resulting read-across predictions are to be acceptable. Similarities in structure,

size, 3-dimensional shape, physico-chemical properties, presence of functional

groups or identified structural alerts, chemical reactivity, mechanism or mode

of action and biological activity are all potential criteria on which to form a

group. This chapter focuses on currently available tools that can be used for

grouping, including bespoke tools (such as the OECD QSAR Toolbox) and
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other tools, designed with broader applications, that can potentially be used to

identify similar compounds (such as Toxtree or ChemSpider).

4.2 Reasons for Grouping Compounds

The criteria on which a category may be built depend upon the information

available and the purpose of the grouping exercise; different scenarios may be

encountered, for example:

(i) When investigating compounds associated with a specific toxicological

endpoint (such as mutagenicity) it may be possible to group

compounds into categories based on relevant properties e.g. chemical

reactivity, presence of specific structural features etc. For example,

knowledge of mechanistic organic chemistry can be used to identify

groups of compounds that may be associated with a given toxicity.

Identifying the characteristics of compounds with similar activity

provides fundamental knowledge for the development of profilers that

can be used subsequently to identify other molecules with the same

characteristics and therefore potentially the same activity.

(ii) A second scenario involves the investigation of the potential toxicity of

a given target chemical, for which no toxicity data are available, by

using data from similar compounds. In this case the target chemical

can be assessed using existing profilers that are associated with a given

toxicity. Compounds, similar to the target chemical, but for which

toxicity data are available, are identified and used to form a category

from which the activity of the unknown is inferred i.e. the category is

formed for the purpose of read-across. Read-across may be performed

qualitatively (e.g. to give a prediction of active/inactive); semi-

quantitatively (e.g. inactive, weak, medium or high potency) or

quantitatively (e.g. predicting defined potency values).

(iii) The third scenario is one which is becoming increasingly relevant given

the current drive to obtain large amounts of information using high-

throughput screening (HTS) methods. Initiatives such as the ToxCast

and Tox21 programs (http://epa.gov/ncct/Tox21/) have, or are in the

process of, screening large numbers of compounds through hundreds

of high-throughput screens. This has resulted in a vast amount of

information (including in vitro and -omics data) being generated for

these compounds. Such volumes of information are difficult to analyse

using traditional methods; what is required is a method to rationalise

these high volume data to investigate how (mammalian) toxicity may

be elicited. Results from HTS can be used to group compounds into

categories based on their in vitro or -omics profiles. If toxicity data are

available for some chemicals within a given group this can be used to

provide insight into potential mechanisms of toxicity, or a toxicity

profile, for other members of the group.
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Of the three scenarios given above it is the second that is the focus here i.e.

grouping compounds together in a rational manner to obtain read-across

predictions for toxicity. In certain cases grouping may be carried out intuitively

by those with appropriate expertise, but there is also an array of software

applications that also may be applied. As discussed in Chapter 2, there are

different approaches that may be used for grouping chemicals:

(i) analogue approaches, where compounds may be grouped together

based on the presence of a particular functional group with a small

variation in structure e.g. carbon chain length;

(ii) mechanistic approaches, whereby compounds that may elicit the same

molecular initiating event are grouped together and;

(iii) chemoinformatics based approaches that rely on structural informa-

tion concerning the compounds of interest.

The aim of this chapter is to introduce different tools that are available to

group chemicals together based on different approaches identified. Within one

chapter it is only possible to give a brief overview of the capabilities and

potential application of these tools. Chapter 6 provides case studies as

examples of where some of the tools have been applied; in all cases references

are given where further information may be obtained.

4.3 The OECD QSAR Toolbox

One of the most important tools for grouping and read-across is the OECD

QSAR Toolbox, hereafter referred to in this chapter as the Toolbox. The

development of the Toolbox was co-ordinated by the Organisation for

Economic Co-operation and Development (OECD) and the work undertaken

in the Laboratory of Mathematical Chemistry at the University ‘‘Prof. Assen

Zlatarov’’, Bourgas, Bulgaria under the leadership of Professor Ovanes

Mekenyan. The software was developed in collaboration with the European

Chemicals Agency (ECHA). The Toolbox (for its history see Section 1.3) was

designed specifically for the purpose of category formation and read-across to

fill gaps in data needed for safety/hazard assessment of chemicals. It was

specifically developed to be used by the chemical industry and other

stakeholders to help with regulatory submissions where in silico tools were

employed for predicting toxicity. The first version of the Toolbox was

launched in March 2008; the most recent version (at time of writing) is version

3.1 which was released in January 2013. The Toolbox is freely downloadable,

along with detailed user guides and supporting information (http://www.

qsartoolbox.org). The software is promoted as providing (in certain cases) an

alternative to animal testing to provide (eco)toxicity hazard information

required for REACH submissions. Analogues of a target chemical can be

identified; data for these can be retrieved from databases within the Toolbox

and read-across or trend analysis can be used to fill the data gap. Other

applications of the Toolbox include the ability to categorise chemical
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inventories by mechanism or mode of action using the profilers available

within the software. Detailed reports are also generated by the software

providing the documentation necessary to support a given prediction.

4.3.1 The Workflow of the Toolbox

An overview of the information (e.g. databases) and applications (e.g.

description of profiling tools) available within the Toolbox are briefly

described below. The ‘‘Getting Started’’ guide for the Toolbox available at

http://oasis-lmc.org/products/software/toolbox/toolbox-support.aspx provides

further details and practical guidance on using the functionalities within the

Toolbox.1 Additional information, such as descriptions of the profilers, is

available as supporting information within the software itself.

The Toolbox is a bespoke tool for the grouping of compounds into rational,

chemically and/or mechanistically justifiable categories. These categories can

be built using structural or mechanistic features of chemicals that are relevant

to the toxicological endpoint being investigated. Further sub-categorisation

can then be performed as required using profilers, already defined within the

Toolbox, or user-defined profilers to ensure that the members of the category

fall within a clearly defined structural domain, representative of the target

chemical. Read-across can then performed from those members of the

category with known experimental data to those where data are lacking. A full

report on the process can be generated in-keeping with regulatory require-

ments. The software follows a clear workflow, which is designed to mimic the

manner in which an assessor would make a judgement on a chemical. The

workflow is shown in Figure 4.1 and described in more detail below.

Step (1) of Figure 4.1 is the input of the chemical(s) of interest into the

Toolbox. For a single chemical the input may be from a file or in the form of a

Chemical Abstracts Service (CAS) registry number, name, chemical identifier

(EC number or EINECS number) SMILES string, InChI, structure drawn

using the editor within the software, or selected from one of the program’s

resident chemical databases or inventories. Multiple chemicals can also be

entered as a batch using CAS numbers, SMILES strings or from files or

databases in SDF, MOL, MOL2, RDF and XYZ format. Having entered the

required structure into the program it is essential to check that it is the correct

structure as subsequent functions are based on specific characteristics of the

structure used. The Toolbox contains ‘‘quality checked’’ structures for over

300,000 chemicals ensuring the user has access to the ‘‘correct’’ structures for

read-across.

One of the advantages of the Toolbox is that as an international

collaborative project, many databases of toxicity and other data, as well as

inventories have been donated to the project. Table 4.1 lists the databases and

inventories present in version 3.1 of the Toolbox, however, it should be noted

that these are updated regularly.
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Step (2) is the profiling of the chemical(s) that has been entered. This is used

to identify relevant structural features, or potential mechanisms of action of

the chemical. There are five categories of profilers available within the

Toolbox, these are shown in Table 4.2. (Information concerning these profilers

was obtained from the supporting information within the software.)

Alternatively users may define their own profilers. If the user is interested in

a given endpoint that has a known associated mechanism, then the choice of

profiler may be obvious. For example, an initiating step in skin sensitisation is

the formation of a covalent bond between the chemical and a skin protein.2 If

skin sensitisation is the endpoint of interest then the chemical(s) can be profiled

using protein binding alerts. Similarly, genotoxicity can be elicited by a

covalent bond formation between a chemical and DNA, in this case using a

DNA binding profiler is appropriate.3 The profilers within the Toolbox have

been built using expert knowledge of chemical interactions; examples of using

these mechanistic profilers are given in Chapter 6. Chemicals can also be

profiled according to specific endpoints, for example profiling based on

structural alerts for mutagenicity or carcinogenicity. More general profilers are

also available such as affiliation with a known database, or presence of

particular chemical elements or organic functional groups.

It is also possible to obtain a metabolic profile for chemicals of interest.

Table 4.3 shows the metabolic profilers that are available. Once metabolites

have been identified for a given chemical the metabolites can then be profiled

using any of the profilers outlined in Table 4.2. This provides useful

Figure 4.1 Workflow of the OECD QSAR Toolbox.
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Table 4.1 Databases and inventories available in the OECD QSAR Toolbox
version 3.1.

Database Content

Aquatic ECETOC Experimental results for aquatic toxicity
Aquatic Japan MoE Experimental results on aquatic toxicity based on tests

performed within the Japanese Existing Chemicals
Programme

Aquatic OASIS Experimental results for aquatic toxicity gathered from
different sources

Aquatic US EPA
ECOTOX

A comprehensive database which provides information on
adverse effects of single chemical stressors to ecologically
relevant aquatic species

Bacterial mutagenicity
ISSSTY

ISSSTY database on Salmonella typhirmurium (AMES test)

Bioaccumulation
Environment Canada

Experimental results on bioaccumulation in aquatic
organisms

Bioaccumulation fish
CEFIC-LRI

Experimental results on bioaccumulation values in fish

Bioconcentration
NITE

Bioconcentration test data for existing chemicals under the
Japanese Chemical Substances Control Law conducted by
Ministry of Economy, Trade and Industry (METI)

Biodegradation in soil
OASIS

Experimental results for ready biodegradation in soil

Biodegradation NITE Biodegradation test data from METI
Biota-Sediment

Accumulation Factor
US EPA

BSAF is a dataset of approximately 20,000 biota-sediment
accumulation factors

Carcinogenicity
Potency Database
CPDB

Experimental results for long term animal cancer studies

Carcinogenicity and
Mutagenicity
ISSCAN

This database includes experimental results for genotoxicity
and carcinogenicity

Cell transformation
assay ISSCTA

Results of four in vitro cell transformation assays for
detection of chemical carcinogens

Chemical Reactivity
Colipa

Chemical reactivity data relating to cysteine and/or lysine
depletion and adduct formation

Dendritic cells
COLIPA

Results of CD54 and CD86 expression (biomarkers linked
to skin sensitisation)

Developmental toxicity
ILSI

NOEL and LOEL data for different species and routes of
administration including maternal and foetal effects

ECHA CHEM Information on chemicals manufactured or imported into
Europe, provided in registration dossiers submitted to the
European Chemicals Agency (ECHA). Level of
information available dependent on the chemical

ERBA OASIS Data on Estrogen Receptor Binding Affinity (ERBA)
expressed as relative binding affinities in comparison with
the estradiol affinity

Experimental pKa Experimental pKa values
Eye irritation

ECETOC
Experimental results for rabbit eye irritation
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Table 4.1 (Continued)

Database Content

Genotoxicity OASIS Experimental results for genotoxicity
GSH experimental

RC50
Includes empirical abiotic thiol reactivity data expressed as

the in chemico RC50 value for electrophiles
Hydrolysis rate

constant OASIS
Experimental data for neutral hydrolysis

kM database
Environment Canada

Estimated whole body in vivo metabolic transformation rate
constants (kM) values for fish determined using measured
laboratory bioconcentration factors and total elimination
rate constants

Micronucleus ISSMIC A curated database, containing critically-selected
information on chemical compounds tested with the in vivo
micronucleus mutagenicity assay in rodents

Micronucleus OASIS The micronucleus database consists of 577 chemicals having
in vivo bone marrow and peripheral blood MNT data

Munro non cancer
EFSA

No Observed Effect Level (NOEL) and Lowest Observed
Effect Level (LOEL) data from Munro dataset

Phys-Chem EPISUITE This database includes experimental results on physical
chemical properties as accessed from EPISUITE. This is
an extract from the PHYSPROP database maintained at
Syracuse Research Corporation

Repeated dose toxicity
HESS

Contains information on repeated dose toxicity of 289
industrial chemicals

Rodent inhalation
toxicity database

Experimental data from rat inhalation studies

Skin irritation Includes Primary Skin Irritation Indices from skin irritation
test from several sources

Skin sensitisation Includes experimental results for skin sensitisation donated
from various sources

Skin sensitisation
ECETOC

Includes experimental results on skin and respiratory
sensitisation

Terrestrial US EPA
ECOTOX

ECOTOX is a comprehensive database, which provides
information on adverse effects of single chemical stressors
to ecologically relevant terrestrial species

Toxicity Japan MHLW Ministry of Health Labour and Welfare Includes
experimental results from single dose toxicity tests and
mutagenicity tests performed under the Japanese Existing
Chemicals Programme

ToxRefDB US EPA Contains information on chronic developmental and
reproductive studies and studies on cancer for more than
300 pesticides

Yeast estrogen assay
database University
of Tennessee USA

Organic compounds binding to the estrogen receptor can
activate gene expression. Relative gene activation data
available for 213 chemicals

78 Chapter 4
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information, for example in cases where the metabolites are responsible for

eliciting a toxic effect rather than the parent chemical.

Profilers are continually being developed for the Toolbox and it is important

to identify the most appropriate profiler (or profilers) for a given investigation

based on knowledge of the endpoint of interest and, where possible, an

understanding of the underlying mechanisms. Examples of where specific

profilers have been chosen are given in case studies 1–4 in Chapter 6. It must be

emphasised that the decision of which profiler to use may be a subjective

choice and will require expertise not only in the use of the Toolbox but also in

(mechanistic) toxicology.

Step (3) is to gather data on the endpoint(s). Data gathering can be

performed on an individual, specific endpoint or on a range of endpoints

selected by the user. Data trees are used to classify the endpoint data into

increasingly specific categories. For example aquatic toxicity can be iteratively

sub-classified into all fish . specific fish . endpoint . specified time point etc.

Information can be gathered from the databases within the Toolbox. This

includes all of the databases listed in Table 4.1 in addition to the

‘‘RepDoseTox Fraunhofer ITEM’’ database which includes repeat dose

toxicity data for 615 chemicals in rats and mice. Alternatively the user can

upload information from their own databases. Hence, this step identifies

chemicals for which relevant endpoint data may be available. Once the

suitability of the chemicals has been assessed for inclusion in the category these

Inventory Content

AICS Australian Inventory of Chemical Substances: List of all
chemicals in use in Australia 1977–1990 and newly
assessed chemicals

Canada DSL Canada’s Domestic Substance List of chemicals
manufactured, imported into or used in Canada at a
commercial level

COSING European Commission Database with information on
cosmetic substances and ingredients

DSS-Tox Distributed Structure-Searchable Toxicity Database
Network from the US Environment Protection Agency

ECHA PR European Chemicals Agency Pre-Registered Substances List
EINECS European Inventory of Existing Chemical Substances
HPVC OECD OECD list of High Production Volume Chemicals
METI Japan Ministry of International Trade and Industry: Japanese

Existing and New Chemical Substances List
REACH ECB List of substances pre-registered under REACH

(responsibility has now moved from the European
Chemicals Bureau (ECB) to ECHA)

TSCA List of chemical substances manufactured or processed in
the US required under the Toxic Substances Control Act

US HPV Challenge
Program

List of High Production Volume Chemicals within the US

Table 4.1 (Continued)
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Table 4.2 Profilers available in the OECD QSAR Toolbox version 3.1.

Profiler Further information

Pre-defined Profilers
Database affiliation Affiliation with one or more of the databases indicated

in Table 4.1
Inventory affiliation Affiliation with one or more of the inventories indicated

in Table 4.1
OECD High Production

Volume (HPV)
Chemical Categorie

Developed in list of high production volume chemicals
(produced or imported at . 1,000 tonnes per year)

Substance type Identifies 5 substance types (i) discrete chemicals (ii)
dissociating chemicals (iii) mixtures (iv) polymers (v)
chemicals of no defined composition

US Environment
Protection Agency
(EPA) New Chemical
Categories

Reproduces the original categories of the ‘‘Toxic
Substances Control Act New Chemicals Program
NCP)/Chemical Categories’’ (certain categories are
excluded).

General Mechanistic Profilers
BioHC half-life

(Biowin)
Uses a fragment based approach to estimate quantitative

biodegradation half-lives for hydrocarbons
Biodeg primary

(Biowin 4)
Estimates time for primary biodegradation (i.e. to form

initial metabolite) in a typical aquatic environment
Biodeg probability

(Biowin 1)
A linear biodegradation probability calculated based on

fragment values which is converted into ranges of
‘‘biodegrades fast’’ or ‘‘does not biodegrade’’

Biodeg probability
(Biowin 2)

A non-linear biodegradation probability calculated based
on fragment values which is converted into ranges of
‘‘biodegrades fast’’ or ‘‘does not biodegrade’’

Biodeg probability
(Biowin 5)

Based on the Biowin 5 model in EPISUITE (property
prediction program from the US EPA) for assessing
biodegradability in the Japanese MITI biodegradation
test. Uses a fragment constant approach, converts
result into ‘‘Readily biodegradable’’ or ‘‘Not readily
biodegradable’’

Biodeg probability
(Biowin 6)

Similar to Biowin 5 above, but based on Biowin 6 in
EPISUITE

Biodeg probability
(Biowin 7)

Based on Biowin 7 in EPISUITE, estimates probability
of fast biodegradation under methanogenic anaerobic
conditions, predictive of degradation in typical
anaerobic digester. Indicates probability that
compound ‘‘biodegrades fast’’ or ‘‘does not biodegrade
fast’’

Biodeg ultimate
(Biowin 3)

Estimates time for complete biodegradation in a typical
aquatic environment

DNA binding by OASIS
v.1.1

Identifies structural requirements for mutagenicity, based
on the AMES mutagenicity models in the TIMES
system. Includes 49 categories relating to interaction
with DNA. Definition of the alerts justified by their
interaction mechanisms found in the literature
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Table 4.2 (Continued)

Profiler Further information

DNA binding by OECD Structural alerts for the binding of organic chemicals to
DNA. Includes 87 categories relating to 6 broad
organic chemistry mechanisms

DPRA cysteine peptide
depletion

Direct Peptide Reactivity Assay (DPRA) evaluates
ability of chemicals to react with proteins. Profiler
comprises 32 structural alerts derived from
experimental cysteine depletion values. Classifies
chemicals as low, moderate or highly reactive
depending on percentage cysteine depletion

DPRA lysine peptide
depletion

As above but based on lysine depletion – comprises 24
structural alerts. Classifies chemicals as low, moderate
or highly reactive or non-reactive

Estrogen receptor
binding

The profiler is based on structural and parametric rules
from the literature. Classifies chemicals as non-binders
or binders (weak/moderate/strong) depending on
molecular weight and structural characteristics;
includes 11 categories

Hydrolysis half-life
(Ka, pH 7) Hydrowin

Profiler based on HYDROWIN; estimates half-life
based on total acid-catalysed hydrolysis rate constant
at pH 7

Hydrolysis half-life
(Ka, pH 8) Hydrowin

Profiler based on HYDROWIN; estimates half-life
based on total acid-catalysed hydrolysis rate constant
at pH 8

Hydrolysis half-life
(Kb, pH 7) Hydrowin

Profiler based on HYDROWIN; estimates half-life
based on total base-catalysed hydrolysis rate constant
at pH 7

Hydrolysis half-life
(Kb, pH 8) Hydrowin

Profiler based on HYDROWIN; estimates half-life
based on total base-catalysed hydrolysis rate constant
at pH 8

Hydrolysis half-life
(pH 6.5–7.4)

Estimates half-lives of organic chemicals under neutral
or nearly neutral conditions, ambient or room
temperature and atmospheric pressure. Classifies as
very slow, slow, moderate, fast, very fast and extremely
fast

Ionization at pH 5 1 Calculates concentration of ionised species at pH 5 1
using ionisation of strongest acidic and basic sites only.
Requires pre-calculated pKa values therefore only
applicable to compounds within the Toolbox database

Ionization at pH 5 4 As above but for pH 5 4
Ionization at pH 5 7.4 As above but for pH 5 7.4
Ionization at pH 5 9 As above but for pH 5 9
Protein binding by

OASIS v1.1
Developed as part of the TIMES model for skin

sensitisation. Identifies structural alerts responsible for
eliciting effects as a result of protein binding, such as
skin sensitisation; includes 85 categories. The
mechanisms are developed using existing knowledge of
reaction mechanisms
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Table 4.2 (Continued)

Profiler Further information

Protein binding by
OECD

Direct acting structural alerts from literature compiled
within a mechanistic chemistry framework. Enables
category formation at the structural or mechanistic
alert level. Mechanistic alerts, derived from identifying
common reactivity sites on chemicals with a structural
alert. Includes 102 categories, 16 mechanistic alerts
relating to 52 structural alerts.

Protein binding potency Developed using reactivity data measuring covalent
binding with thiol group of glutathione. Includes 49
categories relating to the Michael acceptor mechanism
and 46 categories relating to the SN2 mechanism.
Classifies chemicals as extremely reactive, highly
reactive, moderately reactive, slightly reactive, suspect
and non-reactive

Superfragments Based on an algorithm developed by BioByte whereby
isolating carbons i.e. those which act as a high-
threshold barrier to the movement of electrons are
identified and the remaining fragments are denoted as
polar or ‘‘simple fragments’’. A superfragment consists
of a combination of simple fragments that are in such
close proximity that their solvation behaviour is
affected. It can be defined as the ‘‘largest
electronically-connected substructure’’

Toxic hazard
classification by Cramer
(original)

The Cramer classification scheme uses a decision tree
approach to make an estimation of a Threshold of
Toxicological Concern (TTC) using chemical structures
and estimated human intake. 33 structural rules are
used to classify the substances into one of three classes:
Class I ‘‘low toxicity’’ simple structures with known
metabolism. Class II ‘‘intermediate toxicity’’ structures
that are less innocuous than those in Class I do not
possess features suggestive of high toxicity. Class III
structures that do not indicate safety and may possess
high toxicity

Toxic hazard
classification by Cramer
(with extension)

Modified version of above

Ultimate Biodeg Classifies chemicals into persistence categories of (0–1
day, 1–10 days, 10–100 days and . 100 days) based on
a conversion of Biological Oxygen Demand data to
half-life data

Endpoint Specific Profilers
Acute aquatic toxicity

classification by
Verhaar

Uses structural information to classify organic
compounds into one of four classes for acute aquatic
toxicity: inert (baseline toxicity); less inert; reactive;
and specifically-acting chemicals

Acute aquatic toxicity
MOA by OASIS

Classifies chemicals according to acute aquatic toxicity
mode of action using structural information
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Table 4.2 (Continued)

Profiler Further information

Acute aquatic toxicity
classification by
ECOSAR

ECOSAR was developed by the US EPA and contains
structure-activity relationships (SARs) used to predict
the aquatic toxicity. The profiler in the Toolbox
mimics the structural definition of the classes within
ECOSAR enabling chemical classification but does not
estimate toxicity

Bioaccumulation
metabolism alerts

Estimates whole body primary biotransformation half-
lives and biotransformation rate constants for organic
chemicals in fish

Bioaccumulation
metabolism half-lives

Uses estimates of biotransformation rates to classify
chemicals with very slow, slow, moderate, fast, or very
fast biotransformation rates

Biodegradation
fragments (BIOWIN
MITI)

Uses structural alerts used by the MITI Biodegradation
Probability Models to estimate probability of rapid
aerobic and anaerobic biodegradation in the presence
of environmental microorganisms

Carcinogenicity (genotox
and non genotox) alerts
by ISS

Uses a decision tree to estimate carcinogenicity based on
55 structural alerts (35 mainly genotoxic
carcinogenicity alerts that were previously encoded
within the Toxtree software and 20 new alerts
predominantly non-genotoxic). Alerts are based on
molecular functional groups or substructures; includes
58 categories

DNA alerts for AMES,
MN and CA by OASIS
v1.1

Based on AMES mutagenicity models in TIMES system;
identifies requirements for mutagenicity incorporating
molecular flexibility and metabolic activation; includes
49 categories

Eye irritation/corrosion
exclusion rules by BfR

A rulebase for eye irritation and corrosion developed by
the German Federal Institute for Risk Assessment
(BfR) and collaborators that uses structural alerts and
physical-chemical exclusion criteria (lipid solubility,
octanol:water partition coefficient, aqueous solubility,
melting point and molecular weight) to determine
which chemicals do not show eye irritation or
corrosion potential; includes 31 categories.

Eye irritation/corrosion
inclusion rules by BfR

17 structural alerts (categories) are defined giving
inclusion rules for chemicals with potential for eye
irritation and corrosion

In vitro mutagenicity
(Ames test) alerts by
ISS

A decision tree approach based on the Toxtree software
using 30 structural alerts for mutagenicity based on
substructure or molecular functional groups

In vitro mutagenicity
(micronucleus) alerts by
ISS

Based on the ToxMic rulebase in Toxtree that uses 35
structural alerts associated with induction effects in the
micronucleus assay. Incorporates knowledge based on
mechanisms of toxicity and chemical structure

Keratinocyte gene
expression

22 categories developed based on the KeratinoSens assay
which identifies chemicals inducing expression of
luciferase reporter gene; detects electrophilic chemicals
giving classifications of very high, high, moderate and
low gene expression
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Table 4.2 (Continued)

Profiler Further information

Oncologic primary
classification

Uses molecular definitions to mimic structural criteria of
potential carcinogens, as indicated by US EPA’s
Oncologic software. Identifies 48 categories but does
not predict carcinogenicity

Protein binding alerts for
skin sensitisation by
OASIS v1.1

Developed as part of the TIMES model for skin
sensitisation. Identifies structural alerts responsible for
eliciting effects as a result of protein binding, such as
skin sensitisation; includes 85 categories

rtER expert system ver.1
USEPA

Identifies potential to bind to rainbow trout Estrogen
Receptor

Skin irritation/corrosion
exclusion rules by BfR

A rulebase for skin irritation and corrosion developed
by the German Federal Institute for Risk Assessment
(BfR) and collaborators that uses physical-chemical
exclusion criteria (lipid solubility, surface tension,
octanol:water partition coefficient, vapour pressure,
aqueous solubility, melting point and molecular
weight) to determine which chemicals do not show skin
irritation or corrosion potential; includes 35 categories

Skin irritation/corrosion
inclusion rules by BfR

40 structural alerts providing inclusion rules for
classifying chemicals likely to cause irritation and/or
corrosion of the skin

Empiric profilers
Chemical elements Organises chemical elements in the periodic table into 18

groups; includes 34 categories
Groups of elements Organises chemical elements in the periodic table into 9

categories
Lipinski rule OASIS Application of Lipinski ‘‘rule of five’’ developed to

ascertain the likelihood of a chemical possessing good
oral absorption properties (based on knowledge of
hydrogen bonding, molecular weight and octanol:water
partition coefficient

Organic functional
groupsa

Specific groups of atoms or bonds that define the
chemistry of a compound are identified. The profiler
can be used to identify structurally similar chemicals;
includes 484 categories

Organic functional
groups (US EPA)

This profiler is for identifying functional groups derived
from the fragment library of the US EPA’s KOWWIN
program within EPISUITE; includes 467 categories

Organic functional
groups (nested)

Profiler based on the organic functional groupsa profiler
above, however (nested) does not display functional
groups that are part of larger functional groups

Organic functional
groups Norbert Haider
(Checkmol)

Identifies the presence of 204 functional groups
recognised by the Checkmol program

Tautomers unstable Developed on available data and theoretical calculations
for tautomer forms in water and gas phase. Unstable
tautomeric forms presented as individual categories;
includes 158 categories
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endpoint data are employed in the read-across prediction. However, it is

essential to first establish which chemicals should be included in the final

category. Again, this process is subjective and requires expertise to make the

selection of chemicals.

Step (4) is the category definition step where chemicals are grouped together

according to given criteria. This can be performed in an iterative manner until

the user is confident that the category contains only true analogues of the

query chemical. Chemicals are grouped based on structural and/or mechanistic

similarity. If the mechanism of action is known then chemicals should be

grouped based on descriptors or structures related to that mechanism;

chemicals identified as being structurally dissimilar (either by visual inspection

by the user or by subsequent refinement of the category using additional sub-

categorisation criteria within the software) can later be excluded from the

category. If the mechanism of action is unknown then chemicals can be

grouped according to their structural features. Using profilers based on the

presence of specific organic functional groups ensures a defined structural

domain for the category. Once a category has been defined and populated with

sufficient structures and their associated (toxicological) data a read-across

prediction of activity for the unknown chemical can be made. Case studies 1–4

in Chapter 6 provide examples of the iterative process of sub-categorisation,

using the Toolbox, to ensure a well-defined, robust category is obtained.

Step (5) is to fill the data gap i.e. to provide an in silico prediction of activity

where no data are available for the target chemical. Prediction can be

performed using trend analysis (useful for quantitative predictions where a

large number of analogues are available), quantitative structure-activity

relationship (QSAR) models (where no suitable analogues are available) or

by read-across. For a read-across prediction, data that have been gathered on

analogues in the category are used to make a prediction of the activity of the

target chemical. Read-across is useful where quantitative predictions are

required that can be based on a small number of analogues in the category or

where a qualitative (or semi-quantitative) prediction is required (active,

inactive, weakly active etc). Case studies 1–4 in Chapter 6 provide examples of

categories formed and the read-across predictions made using the data

available for other chemicals in the category.

Step (6), the final stage in the workflow of the Toolbox, relates to reporting

of the prediction. For an in silico prediction to be acceptable, particularly in a

Table 4.2 (Continued)

Profiler Further information

Toxicological Profile
Repeated dose (HESS) Gives category boundaries expected to induce similar

toxicity for oral repeat dose based on data in Hazard
Evaluation Support System (HESS); includes 33
categories
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regulatory setting, a clear and justifiable rationale for the prediction must be

available. Within the Toolbox several options are available for recording all of

the steps and processes that were undertaken in making the prediction. These

include the QSAR Model Reporting Format (QMRF), the QSAR Toolbox

category report and the QSAR Toolbox prediction report. The reports are

customisable based on the user’s requirements and are an essential component

Table 4.3 Metabolic profilers available within the OECD QSAR Toolbox
version 3.1.

Documented Metabolism Further Information

Observed mammalian metabolism Metabolic information for 100 chemicals (630
studies) metabolised in different mammals

Observed microbial metabolism Information from 551 chemicals degraded by
microorganisms

Observed rat in vivo metabolism Metabolic information for 647 chemicals
metabolised in rodents (predominantly rats)

Observed rat liver S9 metabolism Metabolic pathway for 261 chemicals using
rodent (predominantly rat) liver microsomes
and S9 fractions

Simulated Metabolism
Autoxidation simulator Uses an autooxidation (AU) model for

spontaneous free radical oxidation of
chemicals at nearly neutral (pH 7–7.5) or
slightly alkaline pH (8–9)

Autoxidation simulator (alkaline
medium)

As above but pH 10.2–11.5

Dissociation simulation Module developed within Laboratory of
Mathematical Computing, Bourgas

Hydrolysis (acidic) simulator Predicts hydrolysis products of specific organic
chemicals at acidic pH, ambient or room
temperature and atmospheric pressure

Hydrolysis (basic) simulator Predicts hydrolysis products of specific organic
chemicals at basic pH, ambient or room
temperature and atmospheric pressure

Hydrolysis (neutral) simulator Predicts hydrolysis products of specific organic
chemicals at neutral or nearly neutral pH,
ambient or room temperature and
atmospheric pressure

Microbial metabolism simulator Implementation of the CATABOL simulator
for microbial metabolism using abiotic and
enzyme-mediated reactions in a structured
format

Rat liver S9 metabolism Simulator (transformation table) for 509
structurally generalised biotransformation
reactions characteristic of in vitro liver
microsome and S9 fractions

Skin metabolism simulator Estimates skin metabolism using a simplified
mammalian liver metabolism simulator
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of the documentation, as they may be required for submissions to regulatory

agencies (see Chapter 7).

The OECD QSAR Toolbox has been designed specifically for the purpose of

grouping chemicals into categories and making read-across predictions,

however there are other useful tools available for grouping chemicals or

providing information on chemical similarity and these are described below.

4.4 The Hazard Evaluation Support System (HESS)

Predicting repeat dose toxicity is one of the most challenging areas where in

silico tools are applied due to the complexity of processes involved in the whole

body system. There has been little success in applying traditional SAR or

QSAR methods to these endpoints, however, predictions using category-based

approaches that relate to mechanistic information are a more promising

approach. Sakuratani et al. discuss the use of ‘‘toxicological categories’’ within

HESS as a method to obtain read-across predictions for repeat dose toxicity.4

HESS is a bespoke tool for evaluating chemicals for repeat dose toxicity using

the category approach. HESS is freely available via the website of the National

Institute of Technology and Evaluation (NITE), Japan, (http://www.safe.nite.

go.jp/english/kasinn/qsar/hess-e.html) and is incorporated into the OECD

QSAR Toolbox (see Section 4.3).

Table 4.4 Toxicological categories and their associated effects following
repeat dose testing as identified in the HESS category library.4

Toxicological Effect Associated Categories

Haemolytic anaemia Azobenzenes; diphenyl disulphides; hydrazines;
oximes; nitrobenzenes; anilines; N-Alkyl-N9-
phenyl-p-phenylenediamine; ethyleneglycol
alkylethers; o/p-aminophenols

Thyrotoxicity Imidazole-2-thione derivatives
Neurotoxicity Acrylamides; organophosphates
Hepatotoxicity Aliphatic nitriles; hydroquinones; aromatic

hydrocarbons; nitrobenzenes; anilines;
halobenzenes; p-alkylphenols; halogenated
aliphatic compounds

Renal toxicity p-Aminophenols; halobenzenes
Lipidosis of adrenocortical cells Phenyl phosphates
Hepatobiliary toxicity 4,49-Methylenedianilines/benzidines
Alpha 2u-globulin nephropathy Aliphatic/alicyclic hydrocarbons
Mucous membrane irritation Aliphatic amines; phenols
Less susceptible Benzene or napthalene sulphonic acid
Testicular toxicity Ethylene glycol alkylethers; nitrobenzenes;

phthalate esters
Toxicity to urinary system Benzene sulphonamide
Mitochondrial dysfunction Nitrophenols/halophenols

Tools for Grouping Chemicals and Forming Categories 87

 1
4/

10
/2

01
3 

09
:1

9:
22

. 
Pu

bl
is

he
d 

on
 2

3 
Se

pt
em

be
r 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

44
00

-0
00

72
View Online

http://dx.doi.org/10.1039/9781849734400-00072


Development of the software involved analysis of repeat dose toxicity data

for 500 chemicals administered to male and female rats over a dosing period of

28–120 days. Data from the literature were used to identify classes of chemicals

that elicited similar toxicity effects. Boundaries for the categories were

ascertained by investigation of the chemical space associated with the category

members. The mechanism underlying the toxicity was described in a simplified

Adverse Outcome Pathway (AOP). AOPs, as discussed in Chapter 3, provide a

framework to link a molecular initiating event with a given biological response.

Analysis of the data led to 33 toxicological categories being identified

associated with 14 types of toxicity, summarised in Table 4.4.

HESS uses a similar workflow to the Toolbox (outlined above). It is

compatible with the Toolbox, which contains a profiler of 33 categories based

on the HESS tool which relates only to repeat dose toxicity data. HESS also

incorporates a database of raw data for repeat dose toxicity and metabolic

information.

Case study 5 in Chapter 6 details the use of the HESS tool for making a

read-across prediction.

4.5 Toxmatch

Read-across is based around the grouping of similar molecules. Molecules

cannot be classified as similar in an absolute sense, but they may be considered

‘‘similar’’ with respect to a given property. There are many possible methods to

determine the similarity of molecules and form groups based on that particular

measure of similarity. The Toxmatch program was commissioned by the

European Commission’s Joint Research Centre (JRC) and developed by

Ideaconsult, Sofia. Version 1.07 was released in 2009 and can be freely

downloaded, along with the User Manual (from which much of the

information below was obtained) and other supporting information, from

the JRC website (http://ihcp.jrc.ec.europa.eu/our_labs/computational_

toxicology/qsar_tools/toxmatch).5 Toxmatch is a flexible, open-source software

program that can be used to group chemicals together and predict activity or

classify new chemicals into an appropriate group based on similarity measures.

Training set data can be uploaded into Toxmatch in a range of formats

including CML, CSV, HIN, ICHI, INCHI, MDL MOL, MDL SDF, MOL2,

PDB, SMI, TXT and XYZ file types. Toxmatch can be used to generate a

small number of descriptors but a user can also upload descriptors, obtained

using alternative software, into the Toxmatch environment. The software uses

knowledge of the endpoint data (i.e. a supervised training technique) to classify

new chemicals and predict activity. There are six datasets for toxicity pre-

loaded into Toxmatch, these are: the DSSTox EPA Fathead Minnow Acute

Toxicity dataset; a bioconcentration factor (BCF) dataset; a skin sensitisation

dataset obtained using the mouse local lymph node (LLNA) assay; a skin

irritation and corrosion dataset; the Instituto Superiore di Sanita chemical

carcinogens (ISSCAN) database, which includes both rat and mouse
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carcinogenicity studies in addition to Ames test mutagenicity data. The pre-
loaded training sets have previously been categorised e.g. by mode of action as

defined in the Verhaar scheme. Alternatively, users can input their own

training set with relevant endpoint data from which new groups can be built.

Query chemicals can then be classified into an appropriate group for toxicity

prediction.

Toxmatch can be used to quantify the level of similarity between two

chemicals based on similarity in descriptor space (Euclidean distance,

Hodgkin-Richards index, Tanimoto index or cosine-like (Carbo) index) or
structural similarity (Tanimoto index, Hellinger distance, or Maximum

Common Substructure Similarity (MCSS)). Once the similarity index between

two compounds is established, a similarity index can be determined between an

individual chemical and a set of chemicals. This can be performed between a

representative chemical within the dataset and the query chemical. This

approach uses the Tanimoto distance (Fingerprints, kNN) method or the

Hellinger distance (atom environments, summary atom environment method)

method. Note that Chapter 2 discusses use of Tanimoto coefficients as a means

Table 4.5 Similarity measures available in Toxmatch (adapted from
Toxmatch User Manual).5

Similarity Measure* Description

Euclidean distance
(descriptors, kNN)

Average Euclidean distance between selected descriptors for
the query chemical and k most similar chemicals from the
dataset. More similar chemicals have lower Euclidean
distance

Hodgkin–Richards
index (descriptors,
kNN)

Average Hodgkin–Richards index between selected
descriptors for the query chemical and k most similar
chemicals from the dataset. More similar chemicals have
higher Hodgkin–Richards index

Cosine similarity
index (descriptors,
kNN)

Average Cosine index between selected descriptors for the
query chemical and k most similar chemicals from the
dataset. More similar chemicals have higher Cosine index

Tanimoto distance
(descriptors, kNN)

Average Tanimoto distance between selected descriptors for
the query chemical and k most similar chemicals from the
dataset. More similar chemicals have higher Tanimoto
index

Tanimoto distance
(Fingerprints, kNN)

1024 bit length hashed fingerprints can be generated based
on Daylight’s fingerprint theory. Calculates average
Tanimoto index between 1024 bit fingerprints of query
chemical and k most similar chemicals from dataset
consensus fingerprint. More similar chemicals have higher
Tanimoto index

Hellinger distance
(atom environments,
kNN)

Atom environments are regarded as fragments surrounding
each atom in a molecule up to a set level. Calculates
average Hellinger distance between atom environments of
query chemical and k most similar chemicals. More similar
chemicals have a higher index

*Note the nearest neighbours identified by each similarity measure will be different.
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to assess similarity as an example of chemometrics-based category formation.

Another approach is to determine the average similarity between the query

chemical and its k nearest neighbours (by default 10 nearest neighbours are

selected, but the user can specify an alternative number). Table 4.5 provides a

summary of the options for determining similarity between one chemical and a

set of chemicals within Toxmatch.

Toxmatch can use this similarity information to predict (read-across) the

activity of a query chemical, based on activity of other chemicals in the

category. The category comprises a number of nearest neighbours (as defined

by the user) and activity is based on a weighted average of the activity of these

nearest neighbours (where the most similar chemical has the highest

weighting). Alternatively Toxmatch can be used as a tool to group chemicals

together based on their calculated degree of similarity. A query chemical can

then be assigned to one of the groups based on its similarity to other members

of the group i.e. it will be assigned to the group that contains most of its k

nearest neighbours. Figure 4.2 shows a diagrammatic representation of a

Toxmatch prediction for activity based on similarity measure and k nearest

neighbours.

Figure 4.2 Measure of similarity between query chemical and its nearest neighbours
(adapted from Toxmatch User Manual).5 SL is the ‘‘Similarity Level’’
between the query chemical and its neighbours.
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Calculating the similarity of a query chemical to a training set is used to

predict activity or classify the query chemical, as outlined above. Calculating

similarity to a test set can be used to compare two datasets. Where possible

similarity should be assessed based on criteria relevant to the endpoint. Where

mechanistic knowledge is available this should be used to perform grouping;

where this is not available similarity based on relevant descriptors or structural

features can be used. Users can establish their own ‘‘cut-off’’ criteria i.e. above

what level of similarity between two (or more compounds) should they be

classed as truly similar?

Case study 6 in Chapter 6 describes the use of Toxmatch to form structural

categories from which predictions of toxicity (teratogenicity) were made.

Sections 4.3–4.5 above have described tools available to support category

formation and read-across that have been exemplified using the case studies in

this book. Subsequent sections in this chapter briefly describe other tools that

may assist with placing chemicals into rationally defined groups or identifying

‘‘similar’’ molecules.

4.6 Toxtree

The Toxtree software was commissioned by the JRC and developed by

Ideaconsult, Sofia. Version 2.5.1 is available via the Sourceforge open source

software site (http://sourceforge.net/projects/toxtree/files/) from here it can be

freely downloaded along with supporting information and a user manual.6

Toxtree was designed to estimate toxic hazard using a decision tree approach.

As indicated in Table 4.2, much of the knowledge from the decision tree

approach of Toxtree has been incorporated into existing profilers within the

Toolbox. The decision trees categorise chemicals based on specific (physico-)

chemical features and/or structural alerts. In this way chemicals within a

dataset of interest can be classified into different groups. Toxtree is currently

distributed with 14 plug-ins representing different toxicity endpoints: Cramer

rules (with extensions) for Threshold of Toxicological Concern; Verhaar

scheme (and modified Verhaar scheme) for aquatic mode of toxic action; skin

irritation prediction; eye irritation prediction; Benigni/Bossa rules for

mutagenicity and carcinogenicity; STructural Alerts for Reactivity in

Toxtree (START) biodegradation and persistence; structural alerts for

identification of Michael acceptors; structural alerts for skin sensitisation;

Kroes Threshold of Toxicological Concern Decision Tree; SMARTCYP

(cytochrome P450- mediated drug metabolism prediction); structural alerts for

the in vivo micronucleus assay in rodents; and structural alerts for functional

group identification. Users may modify the decision trees using their own

structural rules if required or devise new decision trees. Input of structures in

single or batch mode is similar to that for Toxmatch. Results for the

classification of the compound can be displayed in simple or verbose format. It

is possible to view the complete tree via which the decision for a classification

has been derived and a verbose explanation as to why the chemical has been
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placed into a particular class. A file containing a dataset of compounds can be

split into subsets based on the results of a chosen decision tree, in this way

compounds within a dataset can be separated into defined groups.

4.7 AMBIT

AMBIT was developed with funding from industry via a European Chemical

Industry Council Long Range Initiative (CEFIC-LRI), and is freely down-

loadable via the Sourceforge website (http://ambit.sourceforge.net/). It

comprises a relational database of compounds (including over 450,000

chemical structures and their identifiers), associated properties, QSAR models,

references and tables of data including pre-calculated fingerprints (that allow
substructure and similarity searching to be performed more rapidly). Similarity

searching of molecules based on Tanimoto coefficient values (see Chapter 2)

can be performed and substructure searches for similar molecules are also

possible. Jeliazkova et al. (2010) describe the use of a workflow utilising

AMBIT to identify analogues within a dataset. This is summarised as follows:7

(i) The starting set of structures are defined using CAS/EINECS
number, names, SMILES, MOL or SDF files or using a structure

editor

(ii) An analogue search is performed (by default hashed fingerprints are
compared by Tanimoto distance)

(iii) The results are displayed and the user can decide to restrict further
queries within the set of selected structures

(iv) Substructure search performed by user-defined fragments

(v) Results can be further filtered by compound profiles (e.g. by

experimental or calculated data e.g. octanol:water partition coef-

ficient)

(vi) Selected structures can be grouped into typical chemical classes or

clustered to identify groups of analogues.

4.8 Leadscope

Databases and data-mining tools are available from several software vendors.

One example is the toxicity database available, commercially, from Leadscope
(http://www.leadscope.com). This comprises 180,000 records with associated

data from over 400,000 toxicity studies. The types of toxicity data that may be

available for chemicals include; chronic and acute data; carcinogenicity,

reproductive and developmental toxicity, genetic toxicity, irritation etc.

Searches based on structures, sub-structures or similarity measures can be

used to identify potential analogues. There are also routines for creating

subsets of data to work within a defined region of chemical space. Large data

sets may be classified using mechanistically-driven structural classifiers and
datasets mined for compounds possessing particular structural alerts. In this
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way the software can be applied for the purpose of identifying compounds

sharing common features that may form the basis for grouping.

4.9 Vitic Nexus

This is a chemical database and information management system, released by

the not-for-profit organisation Lhasa Limited, Leeds. The Vitic Nexus

database holds data records for over 12,000 structures and is continually

expanding. There are options to include searches of in-house data or link
searches to external sources such as ToxNet or Google at the user’s discretion.

The database can be searched by entering structures via Marvin Sketch (which

is integrated into the program) or entering a molfile, SD file, SMARTS, InChI

or CAS registry number. Endpoint data can be obtained by entering a

structure and searching for information on exact matches. Alternatively, and

more appropriately for building a category, it is possible to search for

information on substructures or for compounds that are ‘‘similar’’ to the input

compound. Similarity can be set at a level between 0% and 100%. Having

completed a search a results gallery shows all of the compounds meeting the

initial criterion, from this the user can select which compounds to investigate

further. The results explorer details the endpoint data available for the

compounds selected. The advantage of the Vitic Nexus database is the detailed,

high quality, information that is available for each compound. Endpoint data

include experimental results reported within a toxicological ontology that

makes it possible to select a specific outcome e.g. clinical chemistry changes,

general toxicity, gross necroscopic findings, dose–response information etc.

This may be supplemented by experimental protocols, literature references and

supporting information from the studies. Chemicals of interest can be grouped

according to given criteria, such as those containing a given substructure or

similarity to a target. Detailed endpoint information, where available, can be

used to aid read-across predictions for toxicity.

4.10 ChemSpider

ChemSpider (http://www.chemspider.com), owned by the Royal Society of

Chemistry, is a freely available chemical database that currently holds

information on over 28 million compounds and their properties, collated

from over 400 data sources. Links to the original data sources are provided

enabling checking of data where necessary. More compounds and data are

continually added to this database and its use as a data resource is discussed

further in Chapter 5. The database can be searched by entering a chemical

structure or an identifier (systematic name, trivial name, InChI, SMILES

string or registry number). Searches can be performed to find compounds
exhibiting common properties such as the presence of specific elements within

a chemical, calculated properties (e.g. searches performed to identify

compounds within a given log P range) or Lasso similarity (ligand activity in
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surface similarity order) or finding compounds that are associated with a

particular data source.

Whilst it is possible to search for information on a given chemical, it is also

possible to search for chemicals related to a given target and so identify

potential members of a group. This can be performed by using the substructure

or similarity search features. It is possible to search for exact structures,

substructure or by similarity measures (e.g. Tanimoto, Tversky, Euclidean) at

a level of greater than or equal to 50%, 70%, 80%, 90%, 95% or 99% similarity.

Once similar compounds have been selected, the database can then be

investigated for the information held (endpoint data) on those chemicals. This

may help identify a potential group of structurally similar chemicals for which

toxicity data may be available.

4.11 ChemIDPlus (Advanced)

This is another freely available web-based resource (available at http://chem.

sis.nlm.nih.gov/chemidplus) containing records for over 390,000 chemicals

cited in the National Library of Medicine of the Unites States. Structures are

available for more than 300,000 chemicals and searches can be performed by

entering names, synonyms, CAS registry number, molecular formula,

structure, toxicity, physical properties etc. This resource enables searches to

be performed to identify similar structures to a given target molecule at

specified values for similarity (e.g. 50%, 60%, 70%, 80% or 90% similarity). It is

also possible to search for given substructures and compounds present as salts,

hydrates, mixtures, etc. as required. Available toxicity data for compounds of

interest can be retrieved and searches refined based on organism, route of

administration, toxicity elicited or physical properties; supporting references

are also provided.

4.12 Analog Identification Methodology (AIM)

The AIM software was developed by the US Environmental Protection

Agency as part of the Sustainable Futures Initiative and is freely downloadable

from the EPA website (http://www.epa.gov/opptintr/sf/tools/aim.htm). The

tool was designed such that analogues of a chemical of interest could be

identified and the software would indicate the publicly available sources from

where toxicity data for the analogues could be obtained (the data are not

contained within the software itself). Structure searching is performed using

CAS registry numbers, SMILES strings or (sub)structure searching. Structural

analysis is performed using 700 pre-defined atoms, groups and superfragments

and comparing these to a database of 86,000 chemicals for which toxicity data

are publicly available. The toxicity data for these analogues can then be used

for read-across. At time of writing the US EPA is collating comments on the

utility of this tool that may be considered for future updates of the software.
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4.13 Use of Computational Workflows in Read-Across

A flow diagram showing the overall process involved in building a category

and making a read-across prediction is given in Chapter 1, Figure 1.3. Whilst

the current chapter has covered some bespoke tools for making read-across

predictions following this process (e.g. OECD QSAR Toolbox) there are other

tools or combinations of resources that also may be useful as they offer a

more flexible, less prescriptive approach. An example is the development of

computational workflows; these allow information and processes from diverse

sources (e.g. different databases and software packages) to be fully integrated

into a single predictive tool. The design and application of the workflow is

entirely under the control of the developer or user. These workflows can be

shared amongst users to ensure consistency and to enable further development

of additional features. The user can decide which features to include or exclude

in their own data analysis. Pipeline Pilot from Accelrys (http://accelrys.com/

products/pipeline-pilot/) is a commercially available tool that enables such

workflows to be built and shared. Another particularly useful tool is the open-

source KNIME software (available from http://www.knime.org) which

provides flexible graphical workflows for automating data analysis including

accessing, transforming, processing, analysing and visualising data. Over 1,000

nodes are currently available; a network of users continually develop

additional nodes. For the purposes of read-across an example of a workflow

using KNIME is shown in Figure 4.3. This figure is based upon the workflow

presented in Figure 1.3, but demonstrates how a KNIME workflow could be

devised to assist in the process.

The benefit of such workflows is that they can not only ensure consistency

between users but also permit flexibility in developing workflows adapted to

particular needs. For example, users can incorporate their own profilers (e.g.

profilers based on chemotypes associated with a given toxicity) or can

incorporate databases of interest (such as in-house databases). The EU FP7

COSMOS project (http://www.cosmostox.eu/) is currently developing KNIME

workflows for read-across for the prediction of toxicity.8

4.14 Conclusions

Category formation and read-across are increasingly being recognised as

methods to provide reliable and justifiable predictions of toxicity that are

important to users within industry and by regulators. Several useful tools have

already been developed to assist in this process. This chapter has provided an

overview of some of the tools currently available, including those specifically

designed for this purpose, as well as other software and applications that could

be usefully employed. Of the tools described herein, the Toolbox is the most

directly applicable to making and documenting read-across predictions.

However, the Toolbox requires a degree of expertise to be used successfully.

In certain circumstances a less formalised and prescriptive method to find and
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identify groups of chemicals may be useful e.g. using tools such as Toxtree,

Toxmatch or AMBIT. Internet applications, such as ChemSpider (and to a

lesser extent ChemIDPlus Advanced), allow the vast resources available via the

internet to be investigated. For example substructure or similarity searching is

now possible amongst millions of known chemicals. The use of computational

workflows has also gained momentum recently and large numbers of nodes for

these workflows are now being developed and shared amongst practitioners.

As this area of science continues to develop, it is anticipated that a greater

number of tools will become readily accessible to users.

Figure 4.3 Developing a KNIME workflow for read-across including examples of
the freely available nodes that could be applied. The boxes on the left side
have been taken from Figure 1.3.
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CHAPTER 5

Sources of Chemical Information,
Toxicity Data and Assessment of
Their Quality

J. C. MADDEN

School of Pharmacy and Chemistry, Liverpool John Moores University,

Byrom Street, Liverpool, L3 3AF, England
E-mail: j.madden@ljmu.ac.uk

5.1 Introduction

Predicting human health effects or environmental toxicity of a compound

inherently relies upon the availability of high quality data relating to the

compound itself or to ‘‘similar’’ compounds, from which an inference can be

made. The data required will depend upon the endpoint of interest and the

nature of the query. Fundamentally, there are different types of data relating

to compounds that may be useful: chemical data that relate to the identity and
representation of the compound; descriptor data that relate to physico-

chemical, structural or other properties of the compound; and data relating to

its biological activity. For a given biological endpoint specific, quantitative

toxicological data may be needed (for example tumour promoting activity

relating to carcinogenicity) or qualitative indicators of activity or non-activity

in a given assay may be appropriate. In other cases in vitro or in chemico data

that are indicative of toxic potential may also be useful. These data can be used

to make a read-across prediction of activity from similar compounds (in a
given category) with known activity to those for which the endpoint data are

unknown. However, grouping a collection of molecules together to build such
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a category requires information on what makes the chemicals ‘‘similar’’. This

may use information on chemical structure, properties, similarity measures,

fingerprints, metabolic profile, chemical reactivity etc. In reality, any data that

allow chemicals to be grouped together in a rational manner can be useful for

category formation. Within the chemical universe there is an ever-expanding

knowledge base of properties of chemicals that can be explored and utilised.

Data available include physico-chemical properties, reactivity measures,

information regarding mechanism of action, in vitro and in vivo activity and

many more. This chapter will cover aspects of obtaining relevant data for

compounds of interest and how to assess the quality of those data in terms of

accuracy, reliability and fitness-for-purpose. Hence, the emphasis of this

chapter will be on where to find appropriate data and methods to assess data

quality. Selecting which compounds should be the subject of the search (i.e.

which compounds are considered as ‘‘similar’’ or belonging to a particular

category) relates to the approach by which the category is to be formed and is

the subject of Chapters 2 and 6.

5.2 Data Useful for Category Formation and Read-
Across

There is a wide range of data available that could potentially be used for

toxicity prediction using read-across. For predicting an adverse human health

effect of a compound, human in vivo toxicity data for other compounds within

the category would provide the most reliable information from which to make

a prediction. However, as apical endpoint data in humans are unavailable in

most instances, other data on the compounds within the category may also be

useful. The list below is intended to be indicative only of the range of data that

may be available and should not be considered to be an exhaustive list.

Potentially useful data include:

N apical in vivo data measured in other species (note route of administra-

tion and known inter-species differences need to be taken into account);

N organ level toxicity; histopathological findings from acute and repeated

dose tests;

N absorption, distribution, metabolism and excretion (ADME) data

including: permeability through biological membranes (e.g. Caco-2

permeability for oral absorption); skin flux measurements for dermal

absorption; metabolic fate data including the nature of the metabolites

formed and potential activity of the metabolites;

N in vitro activity (e.g. Ames tests for mutagenicity, microsomal stability

assays, cytotoxicity tests etc.);

N information on biological mechanism (or mode) of action;

N information on mechanisms of chemical reactivity;

N reactivity assay data using biological surrogates (e.g. peptide or

glutathione reactivity);
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N binding studies for biological macromolecules (e.g. oestrogen or

androgen receptor binding, DNA binding);

N environmental fate (including affinity for specific environmental

compartments);

N structural similarity (analogues, presence of specific functional groups,

size, shape, volume, molecular fingerprints);

N physico-chemical properties (e.g. logarithm of the octanol:water partition

coefficient, aqueous solubility, volatility).

Using skin sensitisation as an example, data from the human repeated insult

patch test may be most appropriate for category formation.1 If these were

unavailable, data from skin sensitisation tests in other species (e.g. the guinea-

pig maximisation test or the mouse local lymph node assay) could also be used

to make a prediction.2,3 For this particular endpoint, much is understood

regarding the underlying mechanisms of the process that has enabled specific in

vitro assays to be developed. Three such assays were evaluated by Colipa (the

cosmetics industry’s trade association, now known as Cosmetics Europe) and

have been submitted to ECVAM for prevalidation.4 These are the Direct

Peptide Reactivity Assay (DPRA), the Myeloid U937 Skin Sensitisation Test

(MUSST) and the human Cell Line Activation Test (hCLAT); results from

these assays may also be useful in modelling. The molecular initiating event in

this process involves binding of a chemical to a skin protein via an electrophilic

mechanism, hence chemical reactivity, measured using in chemico assays or

estimated using quantum chemical calculations can also be useful for forming

categories of compounds from which to make a prediction (such approaches

for skin sensitisation are discussed in Chapters 2 and 6). Categories may be

formed to help prioritise which chemicals should be selected for further toxicity

tests if the available information is insufficient.

It is important to note that more than one type of data may be available for

chemicals within a category i.e. different types of complementary data may be

available and these may provide greater confidence in weight-of-evidence

based predictions (see Section 7.3.1). The ToxCast program from the United

States Environmental Protection Agency (US EPA) is an example of how a

range of data can be combined to give an overall indication of toxic potential.

The program was designed to investigate if multi-dimensional analysis of

chemicals and their properties could be used to predict whole animal toxicity.

Types of information include: physico-chemical properties; activity predicted

using structure-activity relationships; biochemical properties from high

throughput screening (HTS) assays; cell-based phenotypic assays; genomic

analysis of cells in vitro; and responses in non-mammalian model organisms.5

In the first ‘‘proof-of-concept’’ phase of the ToxCast program (completed in

2009) more than 300 chemicals (primarily pesticides, for which a large amount

of traditional test data were available) were screened in over 235 HTS

bioassays. Phase II of the program, in conjunction with the Tox21 project

(http://epa.gov/ncct/Tox21/) is expanding the number of chemicals and assays

used. This will provide a vast database of information which can be used to
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predict the toxic potential of chemicals and enable prioritisation for further

testing. So-called ‘‘bioactivity signatures’’ or ‘‘toxicity signatures’’ elucidated

using the combined results of such assays are a promising resource for

information on chemicals within categories.

In addition, there are other measures of toxicity, that were not previously

considered amenable to traditional in silico approaches, that are now being

investigated for their potential use in category-based approaches. These

include the No Observed (Adverse) Effect Level (NO(A)EL) and Lowest

Observed Effect Level (LOEL). As these represent effects on the organism as a

whole and are not specific to a given organ or mechanism, generally they

cannot be modelled by statistical correlative approaches. However, there is

potential to use such information within a category-based approach for

toxicity prediction (see Section 6.2.5).

The information presented here indicates that there is a wide range of data

that may be useful in developing categories or providing further support for a

prediction of activity. There are many resources available from where such

data may be obtained such as those described below.

5.3 Sources of Data

The first step in populating any type of category with data is determining

which data exist. The amount and diversity of data available on chemical

compounds is increasing on a daily basis. This section provides a useful

starting point in searching for data but undoubtedly more resources will

become available and up-to-date searches for new resources should be

performed. Two key sources of information are in-house data and publicly

available data.

5.3.1 In-house Data Sources

In-house data are very useful for developing in silico models, but particularly

for developing datasets for read-across. This is because projects within a

company often develop compounds for a specific purpose (possibly based on a

lead compound) by investigation of a range of compounds that are classed as

‘‘similar’’. Hence it is possible to create a dataset from a pre-defined, relatively

narrow and relevant region of chemical space. Other advantages are that the

data are traceable, quality assurance can be readily checked, further

information on experimental procedures (e.g. confirmation of dosing regimen,

detailed protocols, vehicle or controls used, unusual observations etc) and

other such queries can be taken directly to those who generated the original

data. It may also be possible to request confirmatory assays to be performed

within an iterative design/test cycle. This enables the reliability of the models,

or methods used to generate the models, to be established increasing credibility

and acceptability of predictions.
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5.3.2 Public Data Sources

The scientific literature is an immense resource holding information on

millions of compound. However, searching for specific data can be an

extremely time-consuming process and in some cases it becomes necessary to

develop a database to organise the information into a usable format. Data may

be in the form of journal articles reporting results for compound(s) in a single

study or series of studies. Results for multiple compounds from a single study

may provide a complete data set where the information has been acquired on

compounds investigated at the same time in the same laboratory, so reducing

experimental variation in results. Journal articles are now frequently published

with supplementary information being available from the publisher or authors.

Subject to appropriate quality checks the supplementary information (e.g.

spreadsheets of structures with associated data) can provide ready-made data

sets for modelling. Compilations of results from diverse sources may be

available in journal articles, websites or within databases.

Non confidential regulatory submissions can also provide relevant data. The

European Chemicals Agency (ECHA) website (http://echa.europa.eu/) pro-

vides links to robust summaries of studies on chemicals. Similarly OECD

Existing Chemicals Screening Information Data Sets (SIDS dossiers;
available from http://www.inchem.org/pages/sids.html) are another source of

information.

There are also resources for ‘‘cleaned’’ data sets which have already

undergone certain quality control checks and therefore may be useful for

modelling, for example the web pages of the Chemoinformatics and QSAR

Society (http://www.qsar.org) provides links to a range of data sets, some

providing structural information along with activity data. In terms of quality

control, a ‘‘trust level’’ is indicated for the data sets. The website for the

Inchemicotox project (http://www.inchemicotox.org) similarly provides tox-

icity data sets along with an assessment of their quality. (Assessment of data

quality is discussed in more detail in Section 4.5). Cronin provides a list of well-

established data sets and their sources.6 These data sets can be searched to find

chemicals that are ‘‘similar’’ to those in the category being formed.

Whilst toxicity data are clearly relevant for developing predictive models,

other data from the literature can also be useful for building categories.

Schwöbel et al. published a comprehensive review of chemical reactivity data

obtained from literature spanning 80 years.7 The database provides an openly

available resource to assist in predicting reactive toxicity. It reports

information on toxic effects, which are brought about by reactive mechanisms

(particularly, those involving the formation of covalent bonds between

electrophilic substrates and biological nucleophiles (e.g. nucleic acids and

proteins). Such information is useful in forming chemically relevant categories,
informed by potential mechanism of interaction within the body. Kalgutkar

et al. provide a comprehensive review cataloguing all known bioactivation

pathways of functional groups or structural motifs commonly used in drug

design efforts.8 Such information on metabolic pathways or biochemical
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reactions can also provide important insight into potential biological

interactions for chemicals in a category.

Many international collaborative projects (former and on-going) have led to

the compilation and curation of large data sets that also may be useful for

populating categories. A major task within such projects is agreeing a strategy

to collate, check and accurately record available information. Consequently,

these are ever-expanding resources that can be usefully exploited by modellers

saving duplication of effort; some of these resources are detailed below. The

OECD QSAR Toolbox contains many databases donated by various

collaborative partners, these provide a vast resource of useful data (details

of which are given in Section 4.3).

Of the on-line freely available resources, ChemSpider and the Toxicity

Reference Database (ToxRefDB) are particularly noteworthy. ChemSpider

(http://www.chemspider.com) from the Royal Society of Chemistry, provides

an online database with records for over 28 million structures (at time of

writing), properties and associated information. This is continuously updated

with more data as they become available. Ensuring the accuracy of these

records is a major undertaking and this resource offers users the opportunity

to comment on records (for example errors or updates can be reported).

ChemSpider curators act upon such reports making corrections as necessary

and recording action taken in a curation update. This ensures a traceable

record of curated data and updates. ToxRefDB (http://www.epa.gov/ncct/

toxrefdb/), maintained by the US Environmental Protection Agency (US

EPA), is a publicly available collation of the results of thousands of in vivo

animal studies (covering approximately 30 years and $2 billion worth of tests).

Details of the study protocols are also available within ToxRefdb and searches

can be linked to other resources such as ACToR (see below) and the ToxCast

program. VITIC Nexus is another database (from the not-for-profit company

Lhasa Ltd, Leeds) which is currently under development and includes detailed

information on toxicity testing results, experimental protocols and supporting

information that can be searched using structures, substructures or similarity.

VITIC Nexus has the option to add in data from other sources, such as in-

house databases, and searches can be linked to external data sources such as

Google or the toxicology data network (ToxNet; developed by the US

National Library of Medicine) to enable multiple databases to be searched

simultaneously.

Other major resources are referred to as ‘‘global (meta)portals’’, such as

AcTOR (http://actor.epa.gov/actor/faces/ACToRHome.jsp) from the US EPA.

This houses all publicly available chemical toxicity data from over 1000

public sources. Similarly the Organisation for Economic Cooperation and

Development (OECD) has developed the e-Chemportal (http://www.

echemportal.org) providing publicly available information on physical and

chemical properties, toxicity, ecotoxicity, environmental fate and behaviour,

via links to a host of electronic resources. Commercial databases are another

useful resource although there is a cost associated with these.
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As the number of potential resources increases, technological advances are

needed in order to exploit the data fully. Recent technological innovations

have led to increased accessibility of data, for example ElementalDB is a

chemical substructure and similarity based searching application incorporating

the ChemBL 15 dataset and is now available as a Mobile Chemistry App for

iPhone and iPad devices (http://www.dotmatics.com/); future developments

will increase the number of databases searchable using such devices.

Developments in data and text mining are also helping to solve some of the

issues in finding relevant data from within the immense amount of information

available. For example, Fourches et al. used automated text mining, with

limited manual curation, to gather liver toxicity data, from MEDLINE

extracts, for 951 compounds.9 These data were subsequently used for

developing predictive models for liver toxicity, demonstrating a promising

approach for future data collation and modelling efforts.

The resources available are continually expanding, hence it is not possible to

comprehensively review these within one chapter, however, Table 5.1 provides

a summary of some potentially useful resources (note that this is not an

exhaustive list).

5.4 Strategies for Data Collection

When collecting data to populate a category, a pragmatic approach with a

clear rationale must be applied. Chemicals incorporated into the category (and

their associated data) must fit the specific profile of the category. One

approach is to begin searching for compounds using broad constraints to

obtain a larger data set. This data set is then iteratively pruned to produce

smaller, more selective sub-categories of true analogues (the process of sub-

categorisation). The term ‘‘analogues’’ is defined here as those compounds that

produce their effects by the same mechanism. Attempting read-across from a

large category containing too many chemicals may lead to inaccurate

predictions as other effects may come into play. For example a category built

on compounds containing a specific functional group may need to be further

restricted to compounds falling within a given molecular weight range. Larger

molecules may not reach the target site or their activity may be hindered due to

steric effects. Chapters 2 and 6 consider the approaches by which categories

may be formed and factors that should be taken into consideration when

building a category of the appropriate size. For grouping and read-across

approaches a smaller, more closely related group of compounds, for which

accurate data are available, is more useful than a larger and more diverse data

set. Whatever the source of the data and however many compounds are used to

populate the category, it is essential that the data are assessed for quality in

terms of accuracy, reliability and fitness-for-purpose.
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5.5 Data Quality Assessment

Read-across predictions may rely on data from a very small category or

number of compounds to fill a given data gap, for this reason it is imperative

that the data used are of high quality. There have been several publications

concerning assessment of data quality and fitness-for-purpose.12–15 This

section will summarise some of the key issues identified in this area and tools

that are available for assessing data quality.

5.5.1 Accurate Identification and Representation of Chemical
Structure

The first issue in collecting any data is to ensure that they are unambiguously

associated with the correct chemical — this is also vital for regulatory

consideration of predictions (see Section 7.5). This leads to the question of how

a given chemical may be identified. There are a range of potential identifiers

and ways in which a chemical structure can be represented; these include:

Pictorial representations: there are many ways to represent compounds

pictorially in 2 or 3 dimensions; whilst these are often the easiest for humans to

interpret they are less useful for storage and input into database search

engines.

Nomenclature: common/trivial names, systematic International Union of

Pure and Applied Chemistry (IUPAC) names; inventory or database names.

Unique identifiers: in-house identity codes from corporate studies; inventory

or database numbers (e.g. ChemSpider ID number; European INventory of

Existing Commercial chemical substances (EINECS) number); Chemical

Abstracts Service (CAS) registry number.

Line notation methods: Simplified Molecular Input Line Entry System

(SMILES) strings (including canonicalised SMILES); IUPAC International

Chemical Identifier (InChI) code; empirical formulae).

Coding constitutions: these incorporate atom types, coordinates, bond and

connectivity information (e.g. MDL molfiles) and may have the capacity to

include more information (e.g. structure data (SD) files) as well as the 3-D

conformation of a structure. These can be further hashed into strings of

characters (keys) useful for storage and database searching.

Each of the methods of representing a chemical has both advantages and

disadvantages as indicated in Table 5.2.

Common problems in the correct identification of chemicals include the use

of salt forms in place of parent compounds, isomers/tautomers not being

resolved, multiple names and multiple CAS registry numbers existing for an

individual compound etc. Most of the identifiers listed in Table 5.2 have been

available for decades, however, the IUPAC International Chemical Identifier

(InChI) was developed more recently as part of an IUPAC project from 2000–

2004; development is currently supported via the InChI Trust. InChI was

designed to provide an open and standardised format that could be used
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without restriction, a formalised version of IUPAC names that could be

interpreted (with experience) by humans and provide a format useful for

searching chemical databases and the internet. The chemical is described in

layers of information relating to atoms, bonds, connectivity, tautomeric forms,

isotopes, stereochemistry and charge (as appropriate to individual chemicals).

InChIKeys are a condensed version of InChI, comprising 27 characters.

They are not interpretable by humans but were designed to make it easier to
search for information on the internet. InChI are truly unique, with the

condensed InChIKey there is a theoretical, but statistically unlikely, possibility

of duplicate codes.

InChiKeys comprise the following format: 14 characters that are a hash of

the connectivity information of the InChI; hyphen; 9 characters that are a hash

of the remaining layers of the InChI; single character to identify the version of

InChI; hyphen; checksum character. An InChI Resolver is required to convert

back from the InChIKey to the original InChI.
Table 5.3 gives some of the identifiers possible for paracetamol, showing

which are interpretable (by humans) and which require conversion to a more

understandable format.

To ensure accuracy of chemical identity, how many identifiers are necessary?

Ideally a data set should provide a chemical name, CAS registry number and

structure, however few data sets provide all of this information. Commonly a

name and a SMILES string or a name and a structure are given. If there is any

Table 5.3 Representations for paracetamol.

Pictorial representation

Common/trivial names Paracetamol; acetaminophen;
N-(4-hydroxyphenyl) acetanilide;
N-(4-hydroxyphenyl) ethanamide;
4-acetamidophenol

IUPAC name N-(4-Hydroxyphenyl) acetamide
ChemSpider ID 1906
Drugbank ID DB00316
ChemBL ID CHEMBL112
EINECS number 203-157-5
CAS registry number 103-90-2
Deleted CAS registry numbers 719293-04-6; 8055-08-1
Chemical Formula C8H9NO2

SMILES string (from ChemIDplus
Advanced)

c1(ccc(cc1)O)NC(5O)C

Canonical SMILES (from ChemBL) CC(5O)Nc1ccc(O)cc1
InChI InChI51S/C8H9NO2/c1-6(10)9-7-2-4-

8(11)5-3-7/h2-5,11H,1H3,(H,9,10)
InChIKey RZVAJINKPMORJF-UHFFFAOYSA-N

112 Chapter 5
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lack of consistency e.g. the structure does not match the given name, then the

data cannot be used (unless the error has a readily identifiable cause) as there is

no confidence as to which is the correct structure. In some cases further

investigation e.g. the reference to original data sources to identify transcription

errors etc. may resolve the problem but correct identification of the chemical

associated with a given toxicity is of paramount importance. Certain

databases, such as ChemBL (https://www.ebi.ac.uk/chembl/) use data standar-

disation protocols to ensure accurate representation of chemical structures.

Once the correct identity of the chemical has been ascertained the quality of the

data that are associated with it can be assessed.

5.5.2 Quality Assessment of Computationally-Derived Chemical
Descriptors

In predicting toxicity, useful data can be derived from computational

investigation into the properties of the chemicals in question, including the

use of quantum chemistry and molecular orbital methods. Physico-chemical

descriptors, such as the logarithm of the octanol:water partition coefficient,

solubility, volatility etc. can be predicted using a range of software.16 Other

useful parameters relate to the steric or electronic properties of the compound

such as the electronegativity index, v, which indicates reactivity of a chemical.

When generating and recording data for computationally derived descriptors

data quality issues relate to accurate recording of procedures, such as would

allow another person to repeat the work. The identity of the chemical must be

assured (refer to Section 5.5.1 above), the structure must be entered into the

program accurately, e.g. misplacement of a substituent on a ring would result

in incorrect physico-chemical and structural descriptors being generated. The

version number of the program used, default settings, alterations or constraints

applied when using the program must be recorded. With the computational

chemistry software currently available it is possible to generate thousands of

descriptors for a given chemical. A robust system must be used for storing and

checking the data. All data and relevant metadata need to be stored in a

reliable, portable, system that can be integrated with other software packages

as required.

5.5.3 Quality Assessment of Experimentally Derived Data

The term ‘‘data quality’’ can be considered an umbrella term which

encompasses many factors. Quality, in terms of correctness of chemical

identity and accuracy or reproducibility of computational descriptors of the

structure, has been discussed in Sections 5.5.1 and 5.5.2 above. When assessing

experimental data many more aspects that contribute to overall data quality

need to be considered. This has given rise to various definitions and schemes

used to describe data quality. Klimisch et al. devised a systematic approach to

evaluate toxicological data quality, which has become one of the most widely

Sources of Chemical Information, Toxicity Data and Assessment of Their Quality 113
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accepted methods of quality assessment, (discussed further in Section 5.5.4).17

The authors proposed three aspects contributing to overall data quality;

reliability, relevance and adequacy. These and other terms commonly used to

describe data quality are discussed below:

Reliability was defined by Klimisch et al. as ‘‘evaluating the inherent quality

of a test report or publication relating to preferably standardised methodology

and the way the experimental procedure and results are described to give

evidence of the clarity and plausibility of the findings.’’17

For a true assessment of data quality, ideally the experimental protocol

should be scrutinised to ensure the procedures were sufficiently robust to

provide reliable results. Consider the testing of a chemical in an in chemico or

an in vitro assay, factors that may impact on the reliability of the results

include:

N experience of the personnel/laboratory performing the test;

N adherence to guidelines (i.e. are there standardised protocols for the

assay and is any deviation from these clearly justified?; is Good

laboratory Practice (GLP) observed?);

N compound identity (i.e. parent or salt form used);

N compound purity;

N vehicle or solubilising agents used;

N susceptibility to oxidation, hydrolysis or other abiotic transformation;

N solubility in test media;

N volatility;

N statistical method used to analyse the results and the selection of positive

and negative controls (error ranges due to technical and/or organism

variability should be recorded, raw data made available where possible).

For in vivo assays many of the above are also relevant but there are

additional considerations, such as:

N confirmation of the dose administered and the route of administration;

N sample size (use of pooled data or individual data);

N environmental considerations (housing, feeding, water availability, etc.);

N potential biological transformation (metabolism) of compound, particu-

larly where the metabolite(s) may contribute to the toxic effect.

The above lists some sources of variability that may affect the outcome of an

in vivo assay, however there are many other influential factors discussed in

more detail by Nendza et al. and Madden et al.12,18 When collating toxicity

data it is frequently the case that data are collected from a wide range of

sources. This can lead to inter-laboratory variation in procedures leading to

variability in results. Detailed reporting of protocols can help to identify where

variability may have influenced the toxicity values reported. Data that are

evaluated as being less reliable can still be useful. For example, where several

‘‘low quality’’ studies have all shown the same result; the result from one of

114 Chapter 5
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these would not be reliable on its own but combined with the evidence from

other studies then weight-of-evidence would support the result.

Data reliability is inherent in the procedure i.e. it is independent of purpose

of the data, relevance and adequacy are however dependent on the intended

use of the data.

Relevance was defined by Klimisch et al. as ‘‘covering the extent to which

data and/or tests are appropriate for particular hazard identification or risk

characterisation.’’17 Another commonly used term is fitness-for-purpose i.e. are

the data suitable for the intended purpose? A great deal of toxicological data

have been generated over decades. Although not specifically generated for the

purpose of category formation or the building of in silico models, these data

can be assessed to determine their suitability for these purposes. In terms of

risk assessment, the EChA guidance (Chapter R.4) on evaluating relevance of

data for REACH, suggests consideration of the following:14

N Was the substance tested representative for the substance as being

registered?

N Has the appropriate species been chosen?

N Is the route of exposure relevant for the population?

N Were appropriate doses/concentrations tested?

N Were the critical parameters influencing the endpoint considered

adequately?

Human data are the most relevant, but data from other species can be useful

if its relevance to human toxicity can be established.

Adequacy: was defined by Klimisch et al. as ‘‘defining the usefulness of data

for hazard/risk assessment purposes.17 When there is more than one set of data

for each effect, the greatest weight is attached to the most reliable and

relevant.’’ Many individual measures of toxicity can be associated with a

particular toxic event within an organism. For example, measurements of

specific liver enzyme levels may be useful indicators for hepatotoxicity. Zweers

and Vermeire provide a list of factors, similar to those considered above, for

determining reliability and relevance.19 The authors conclude that expert

judgement is the most important factor in determining relevance and

adequacy. A clear rationale must be given when justifying the adequacy of

data for a given purpose.

Accuracy is a key term applicable to every step of data generation from

accuracy of experimental measurement to accurate and complete recording of

data. OECD GD 34 defines accuracy as ‘‘the closeness of agreement between

test method results and accepted reference values.15 It is a measure of test

method performance and one aspect of relevance. The term is often used

interchangeably with ‘‘concordance’’ to mean the proportion of correct

outcomes of a test method.’’ The accuracy of a measurement is inversely linked

to uncertainty. Uncertainty was defined by Nendza et al. as ‘‘the estimated

amount or percentage (margin of error) by which an observed or calculated

value obtained by a method may differ from the true value.12 Uncertainty

Sources of Chemical Information, Toxicity Data and Assessment of Their Quality 115
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depends on both accuracy and precision and is caused by either variability or

lack of knowledge.’’

Completeness is another aspect of quality; how many entries must be

recorded for a single compound (and its associated data) for the record to be

considered ‘‘complete’’? The answer to this depends entirely on the nature of

the investigation and there are vast possibilities for items that may be

considered important depending on the nature of the study (examples include

structure, name, CAS, InChI, SMILES, program version and settings, dose,

dose–response curve, endpoint toxicity value, timing of measurements, route of

administration, species, strain, sex, age, housing, bedding, cell-type, presence

of metabolising enzymes in in vitro systems, vehicle, solubilising agents etc.).

Each of these may induce variability in experimental results but in collecting

data a pragmatic approach should be adopted in terms of what is a complete

record and what is an acceptable level of information.18 Checklist approaches

have been proposed previously and initiatives such as the ARRIVE guidelines

(Animals in Research: Reporting In Vivo experiments) have been published

recently with the aim of standardising reporting of experimental work in future

publications.12,20 Completeness of data may have more formal connotations

for example what is considered ‘‘complete’’ information in terms of a REACH

submission for regulatory purposes. In these cases the data requirements must

be clearly stipulated. Fu et al. define a complete data source as one which

‘‘covers adequate data in both depth and breadth to meet the defined business

information demand.’’21

Reproducibility can be assessed between laboratories, or within the same

laboratory. Inter-laboratory reproducibility is defined in OECD GD 34 as ‘‘a

measure of the extent to which different qualified laboratories, using the same

protocol and testing the same substances, can produce qualitatively and

quantitatively similar results.15 It indicates the extent to which a test can be

successfully transferred between laboratories. Intra-laboratory repeatability is

the closeness of agreement between test results obtained within a single

laboratory when the procedure is performed on the same substance under

identical conditions within a given time period. Well-designed experiments

with a clear and detailed protocol should be able to generate highly

reproducible and repeatable results.

Validation is defined in OECD GD 34 as the process by which the reliability

and relevance of a particular approach, method, process or assessment is

established for a defined purpose. A valid test method is one with sufficient

relevance and reliability for a specific purpose and which is based on

scientifically sound principles. A test method is never valid in an absolute

sense, but only in relation to a defined purpose. The ‘‘Solna Principles’’,

developed at an OECD Workshop in 1996, agreed the following principles as

applied to the validation of new or updated test methods for hazard

assessment:15

(1) A rationale for the test method should be available. This should

include a clear statement of scientific need and regulatory purpose.

116 Chapter 5

 1
4/

10
/2

01
3 

09
:1

9:
26

. 
Pu

bl
is

he
d 

on
 2

3 
Se

pt
em

be
r 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

44
00

-0
00

98
View Online

http://dx.doi.org/10.1039/9781849734400-00098


(2) The relationship of the endpoint(s) determined by the test method to

the in vivo biological effect and to the toxicity of interest should be

addressed. The limitations of a method should be described, e.g.,

metabolic capability.

(3) A formal detailed protocol must be provided and should be readily

available in the public domain. It should be sufficiently detailed to

enable the user to adhere to it, and it should include data analysis and
decision criteria. Test methods and results should be available

preferably in an independent peer reviewed publication. In addition,

the result of the test should have been subjected to independent

scientific review.

(4) Intra-test variability, repeatability and reproducibility of the test

method within and amongst laboratories should have been demon-

strated. Data should be provided describing the level of inter- and

intra-laboratory variability and how these vary with time.

(5) The test method’s performance must have been demonstrated using a

series of reference chemicals preferably coded to exclude bias.

(6) The performance of test methods should have been evaluated in

relation to existing relevant toxicity data as well as information from

the relevant target species.

(7) All data supporting the assessment of the validity of the test methods

including the full data set collected in the validation study must be

available for review.

(8) Normally, these data should have been obtained in accordance with

the OECD Principles of Good Laboratory Practice (GLP).

5.5.4 Guidance and Tools for Data Quality Assessment

Assessing data quality is now recognised as a major factor in developing

high quality, predictions with greater acceptability. In this section quality

assessment schemes and available tools will be discussed.

The Klimisch scheme has become one of the most widely accepted schemes

for assessing data quality.17 The Klimisch scheme was devised for evaluating

quality of toxicological and ecotoxicological data but can also be applied to
other areas. Application of the scheme enables data to be placed in one of four

categories for reliability; these are (1) reliable without restriction (2) reliable

with restrictions (3) not reliable and (4) not assignable. These categories were

defined as shown in Table 5.4

The definitions for the categories given in Table 5.4 provide general

guidance on classifying data, however, more specific guidance is needed on

how to evaluate the available information in order to place data into one of

these four categories. Klimisch et al. list the factors that should be recorded

and evaluated for tests not carried out in accordance with international

guidelines. Consideration of these factors should aid the decision as to how to

categorise the data. In an attempt to formalise the consideration of these
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factors, and so make data evaluation more consistent between researchers, the

Toxicological data Reliability Assessment Tool (ToxRTool) was developed as

part of a project funded by the European Centre for the Validation of

Alternative Methods (ECVAM). The aim of the project was to provide a

transparent tool, for scientists routinely involved in data reliability assessment,

which would result in greater consistency in reliability scores for data. Details

of ToxRTool and its evaluation are given in Schneider et al.22 The tool

comprises two key spreadsheets (one for in vitro data and one for in vivo data).

The questions within the spreadsheets are based on issues that Klimisch et al.

recommended for consideration and are divided into five criteria groups.

Tables 5.5 and 5.6 show the questions posed for the assessment of in vivo data

and in vitro data respectively.

Answering yes to any question in the spreadsheet scores 1 point. Hence the

scores for the assessment of in vivo data range from 0 to 21 and for in vitro data

range from 0 to 18. The overall scores are converted into a Klimisch category

as shown in Table 5.7. Note that certain questions in Tables 5.5 and 5.6 are

annotated with a ‘‘*’’; these are referred to as ‘‘red’’ criteria questions. For

strict assessment of quality, failure to answer yes to any of these ‘‘red’’ (or

essential) criteria will automatically result in a Klimisch code of 3 (not reliable)

being assigned to the data. Within ToxRTool two outputs are possible: an

original score which discounts red criteria (i.e. answering no to one of the

Table 5.4 Definitions of the categories devised by Klimisch et al.17

Code Category

1 Reliable without restriction ‘‘Studies or data from the literature or reports
which were carried out or generated according to generally valid and/or
internationally accepted testing guidelines (preferably performed according
to GLP) or in which the test parameters documented are based on a
specific (national) testing guideline (preferably performed according to
GLP) or in which all parameters described are closely related/comparable
to a method.’’

2 Reliable with restrictions ‘‘Studies or data from the literature, reports (mostly
not performed according to GLP), in which the test parameters
documented do not totally comply with the specific testing guideline, but
are sufficient to accept the data or in which investigations are described
which cannot be subsumed under a testing guideline, but which are
nevertheless well documented and scientifically acceptable.’’

3 Not reliable ‘‘Studies or data from the literature/reports in which there were
interferences between the measuring system and the test substance or in
which organisms/test systems were used which are not relevant in relation
to the exposure (e.g., unphysiologic pathways of application) or which were
carried out or generated according to a method which is not acceptable, the
documentation of which is not sufficient for assessment and which is not
convincing for an expert judgment.’’

4 Not assignable ‘‘Studies or data from the literature, which do not give
sufficient experimental details and which are only listed in short abstracts
or secondary literature (books, reviews, etc.).’’

118 Chapter 5
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Table 5.5 ToxRTool questions posed for the assessment of in vivo data.22

No. Criteria Group I: Test substance identification Score

*1 Was the test substance identified?
2 Is the purity of the substance given?
3 Is information on the source/origin of the substance given?
4 Is all information on the nature and/or physico-chemical

properties of the test item given, which you deem
indispensable for judging the data?a

Criteria Group II: Test organism characterisation
*5 Is the species given?
6 Is the sex of the test organism given?
7 Is information given on the strain of test animals plus, if

considered necessary to judge the study, other
specifications?a

8 Is age or body weight of the test organisms at the start of the
study given?

9 For repeated dose toxicity studies only (give point for other
study types): Is information given on the housing or feeding
conditions?

Criteria Group III: Study design description
*10 Is the administration route given?
*11 Are doses administered or concentrations in application media

given?
*12 Are frequency and duration of exposure as well as time-points

of observations explained?
*13 Were negative (where required) and positive controls (where

required) included? (give point also, when absent but not
required)a

*14 Is the number of animals (in case of experimental human
studies: number of test persons) per group given?

15 Are sufficient details of the administration scheme given to
judge the study?a

16 For inhalation studies and repeated dose toxicity studies only
(give point for other study types): Were achieved
concentrations analytically verified or was stability of the
test substance otherwise ensured or made plausible?

Criteria Group IV: Study results documentation
17 Are the study endpoint(s) and their method(s) of

determination clearly described?
18 Is the description of the study results for all endpoints

investigated transparent and complete?
19 Are the statistical methods applied for data analysis given and

applied in a transparent manner? (give also point, if not
necessary/applicable)a

Criteria Group V: Plausibility of study design and results
*20 Is the study design chosen appropriate for obtaining the

substance-specific data aimed at?a

21 Are the quantitative study results reliable?a

aRefers to points in the spreadsheet where additional information is provided as supporting notes

to aid the user in making a decision.

*These questions are referred to as ‘‘red’’ or essential criteria (refer to text).

Sources of Chemical Information, Toxicity Data and Assessment of Their Quality 119

 1
4/

10
/2

01
3 

09
:1

9:
26

. 
Pu

bl
is

he
d 

on
 2

3 
Se

pt
em

be
r 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

44
00

-0
00

98
View Online

http://dx.doi.org/10.1039/9781849734400-00098


highlighted question will score 0 but will not automatically place the data into

category 3; and a revised score (in which red criteria are considered).

Using the ToxRTool automatically results in assignation to categories 1, 2

or 3. It is not possible for data to be classified into category 4 (not assignable)

using ToxRTool. The tool is freely downloadable from the JRC website (http://

ecvam.jrc.it; section ‘Publications’).

Table 5.6 ToxRTool questions posed for the assessment of in vitro data.22

No. Criteria Group I: Test substance identification Score

*1 Was the test substance identified?
2 Is the purity of the substance given?
3 Is information on the source/origin of the substance given?
4 Is all information on the nature and/or physico-chemical

properties of the test item given, which you deem
indispensable for judging the data?a

Criteria Group II: Test system characterisation
5 Is the test system described?
6 Is information given on the source/origin of the test system?
7 Are necessary information on test system properties, and on

conditions of cultivation and maintenance given?
Criteria Group III: Study design description

8 Is the method of administration given (see explanations for
details)?

*9 Are doses administered or concentrations in application media
given?

*10 Are frequency and duration of exposure as well as time-points
of observations explained?

*11 Were negative controls included? (give also point, if not
necessary)a

*12 Were positive controls included? (give also point, if not
necessary)a

13 Is the number of replicates (or complete repetitions of
experiment) given?

Criteria Group IV: Study results documentation
14 Are the study endpoint(s) and their method(s) of

determination clearly described?
15 Is the description of the study results for all endpoints

investigated transparent and complete?
16 Are the statistical methods for data analysis given and applied

in a transparent manner? (give also point, if not necessary/
applicable)a

Criteria Group V: Plausibility of study design and data
*17 Is the study design chosen appropriate for obtaining the

substance-specific data aimed at?a

18 Are the quantitative study results reliable?a

aRefers to points in the spreadsheet where additional information is provided as supporting notes

to aid the user in making a decision.

*These questions are referred to as ‘‘red’’ or essential criteria (refer to text).
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5.5.5 Alternative Assessment Schemes

Whilst the above provides a definitive, quantitative approach to data quality

assessment, more qualitative approaches may also be useful. Przybylak et al.

reviewed chemical and biological factors relevant to quality assessment and

proposed four criteria for consideration:

(1) availability of sufficient supporting information; data published in

study report or peer review paper; reasonably easy access to original

reference.

(2) consistency of study design; the compliance with internationally

accepted guidelines (e.g. OECD, US EPA).

(3) GLP; compliance with principles of GLP.

(4) identification of test material; correct chemical name, CAS number

and 2D/3D structure, information about purity and source, physico-

chemical characterisation, when required.

Each of these four criteria can give rise to additional queries. For example:

(1) The supporting information must not only be available, it also needs to be

correct and sufficiently detailed. Peer review papers may be available but

journals differ in their information requirements for published studies. This is

issue was addressed by Kilkenny et al. in proposing the ARRIVE guidelines

for the publication of experimental studies.20 The guidelines list 20 essential

pieces of information that should be reported for all studies). (2) Consistent

study design allows for easier comparison of results between laboratories,

reducing variability in results. Studies performed prior to guidelines being

published can also be useful. (3) Whilst modern studies are generally GLP

Table 5.7 Output of the ToxRTool in terms of Klimisch codes.

Score for
in vivo data

Score for
in vitro data

Associated
Klimisch Code Inference

18–21 15–18 1 - reliable without
restriction

Useful, check relevance for
intended purpose

13–17 11–14 2 - reliable with
restrictions

Potentially useful, check
relevance for intended purpose

,13 or not
all red
criteria
met

,11 or not
all red
criteria met

3 - not reliable Generally not to be used as a
key study, but depending on
the shortcomings of the study
it may still be useful in weight-
of-evidence approaches or as
supportive information

4 - not assignable (note
use of ToxRTool
cannot give a
classification of
Klimisch Code 4)

Generally not to be used as key
study, but depending on the
shortcomings of the study it
may still be useful in weight-
of-evidence approaches or as
supportive information.
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compliant, GLP refers to adherence to protocols and reporting, issues of lack

of sensitivity/relevance of the test are not identified by adherence to GLP.

Other data quality assessment schemes have been published for more

specific purposes, but are not discussed here. The reader is referred to the given

references for more information: (Tielemans et al. for the evaluation of

exposure data; Hobbs et al. for the evaluation of aquatic toxicity data; US

EPA for assessing adequacy of data for the High Production Volume

Challenge program.).23–25

5.5.6 Problems with Assessment

One key item in data quality assessment is whether assessment is carried out

for the data set as a whole or whether assessment is made for each individual

chemical. This issue of global versus chemical-specific assessment is discussed

in more detail by Przybylak et al.13 Within a data set generally considered to be

of high quality, there may be certain data points of low quality. This can arise

for example if the compound has low solubility in the vehicle or has a high

volatility and is used in an open test system. In such cases the true

concentration will be less than the nominal concentration giving a spurious

result for potency. In many modelling exercises it is not reasonably practicable

to assess each individual datum point for quality. However, for read-across,

where very few compounds may be present in the final category then this may

become possible. This gives higher confidence to the data in the category,

hence higher confidence in the prediction.

Schneider et al., in evaluating the ToxRTool, identified several problems in

trying to devise a unified approach to data quality assessment.22 As part of the

evaluation a panel of assessors were asked to quality assess data from the same

publications using the ToxRTool (and prototype versions). Problems arose

due to assessors interpreting information given in the publications differently,

failing to note important information that was provided in the publication and

interpreting the quality criteria differently. Some assessors adhered more

strictly to the guidelines and others had a more flexible approach. Such

differences of opinion are difficult to resolve given the different background,

experience and expectations of the assessors. In an attempt to increase

flexibility and transparency in assigning quality criteria scores to data, Yang et

al. developed an experimental fuzzy expert system, based on ToxRTool, for

assessing the quality of toxicological data.26

Agerstrand et al. compared four methods for evaluating reliability of nine

non-standard ecotoxicity data sets.27 Their findings showed that the different

methods gave different outcomes for the overall evaluation of quality for seven

of the nine datasets investigated. They concluded that methods to reduce

‘‘vagueness and elements of case-by-case interpretations’’ should be sought but

that expert judgement should remain a part of the evaluation process.

A problem of trying to implement standardised criteria for reporting data at

the present time, to make quality assessment of this data more consistent in
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future, is difficult. This is because it would require a pre-judgement of what

quality criteria would be dependent upon in the future.28 What determines

‘‘quality’’ in terms of fitness-for-purpose is dependent upon what the purpose

is. For example, data may be high quality for one purpose (sufficiently detailed

for ranking) but low quality for another purpose (not sufficiently accurate for

read-across). Hence it is difficult to give a particular quality rating to a data

set. One useful consideration is ‘‘corroborating evidence’’ i.e. have other

researchers assessed the quality of a data set for a given purpose. Fu et al.

discussed the potential for a repository of information concerning available

data sets.21 This could include what other researchers have used the data for,

how they assessed its quality and if there were any issues identified with the

data set as a whole or individual datum points within the data set. This could

provide useful information for subsequent modellers, preventing duplication of

effort in terms of performing a quality assessment and would provide a source

of information where problems have been identified.

Conflicting data present a real problem in any assessment of quality. Studies

that have been performed to a high standard can produce conflicting results,

such is the nature of biological systems in particular. In cases where conflicting

results have been identified then resolution is required before the data can be

used. This may require further, more detailed investigation into the studies to

identify potential sources of variation, for example in in vitro systems,

conflicting results may arise depending on whether or not metabolising

enzymes were incorporated in the systems. Where an obvious reason for

discrepancy cannot be found then weight-of-evidence may be used i.e.

confirmation is sought from other studies for the same compound. If the

conflict cannot be resolved then the data cannot be used. It is important to

note that a lack of supporting information, or lack of information leading to a

classification of not assignable in the Klimisch scheme, does not mean data are

low quality, it merely means information is not available on which to make a

judgement. If more information can be obtained on a study of interest then it

may become possible to assign the data to a category and so have confidence in

its use.

5.6 Conclusions

The importance of data quality assessment is to ascertain the suitability of the

data for a given purpose. In terms of read-across a range of data may be useful

and these need to be of high quality. Data relating to a range of characteristics

of chemicals may be relevant; these include physico-chemical, structural or

reactivity properties in addition to biological activity, or toxicity data. This

enables reliable predictions for compounds of unknown activity to be inferred

from other category members of known activity.

No data are ideal; there will always be a level of uncertainty associated with

them. What is important is that the sources of uncertainty can be identified

and communicated, such that the use of particular data is justifiable. Whilst

Sources of Chemical Information, Toxicity Data and Assessment of Their Quality 123

 1
4/

10
/2

01
3 

09
:1

9:
26

. 
Pu

bl
is

he
d 

on
 2

3 
Se

pt
em

be
r 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

44
00

-0
00

98
View Online

http://dx.doi.org/10.1039/9781849734400-00098


high quality data are preferable, lower quality data may also be useful if

combined with other data in a weight-of-evidence approach. Best use must be

made of available data, particularly where data for a given endpoint are scarce.
Should new data become available it should be used for confirmatory purposes

to increase confidence in predictions.

Several problems in data quality assessment have been identified in this

chapter showing that none of the current assessment schemes are ideal.

Irrespective of which scheme is used to assess quality, what is important is that

some form of quality assessment is performed that justifies use of the data and

so gives greater confidence to read-across predictions.
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CHAPTER 6

Category Formation Case
Studies

S. J. ENOCH*, K. R. PRZYBYLAK AND M. T. D. CRONIN

Liverpool John Moores University, School of Pharmacy and Chemistry,

Byrom Street, Liverpool, L3 3AF, England

*E-mail: s.j.enoch@ljmu.ac.uk

6.1 Introduction

The aim of this chapter is to outline a number of case studies for category

formation using freely available toxicological data. The information presented

is not intended as a guidance document or to be an exhaustive review of the

published literature. Instead, the chapter aims to outline examples of how

knowledge of the molecular initiating event, incorporated into profilers, can be

used to develop chemical categories. Thus, the main focus relates to the use of

the information contained within the OECD QSAR Toolbox (for more

information see Section 4.3). This tool is freely available, contains many

toxicological data and a variety of profilers. It is envisaged that information

relating to Adverse Outcome Pathways (refer to Chapter 3) will be

incorporated into it as the field advances. The chapter concludes with a case

study based on the use of structural similarity to form categories. This

approach, whilst less common, is still useful, especially for endpoints where

little or no mechanistic information exists with which to develop suitable

profilers.
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6.2 Mechanism-based Case Studies

The following section outlines how information related to the molecular

initiating event (MIE) can be used to group chemicals into categories allowing

data gaps to be filled using read-across. This mechanistic information has been

incorporated into the OECD QSAR Toolbox1 (version 3.1 at the time of

writing, refer to Section 4.3 for more information) and this section will outline

the use of profilers within the OECD QSAR Toolbox to develop chemical

categories suitable for data gap filling for a number of endpoints. The OECD

QSAR Toolbox enables chemical categories to be formed using in silico

profilers that consist of structural alerts. There are two types of profiler that

are used to develop categories; primary and secondary profilers.

The primary profilers are sub-divided into either mechanistic or endpoint

specific profilers. Mechanistic primary profilers contain structural alerts that

have been developed around the chemistry related to a specific molecular

initiating event (for example, covalent bond formation between a chemical and a

protein). The structural alerts within this type of profiler are not necessarily

supported by toxicological data. In contrast, the endpoint specific profilers

contain structural alerts that have been identified from analysis of toxicological

data. The mechanistic and endpoint-specific primary profilers are complement-

ary, with the ideal scenario being that a mechanistic profiler identifies a single

molecular initiating event that is supported by a structural alert identified by an

appropriate endpoint specific profiler. It is important to realise that the

mechanistic profilers offer a broad coverage of the chemical space related to a

molecular initiating event. In contrast, the endpoint specific profilers are focused

on a narrow area of chemical space for which toxicological data exist. This can

be considered in terms of a general Adverse Outcome Pathway (AOP) with the

mechanistic profilers relating to the molecular initiating event. The endpoint

specific profilers then help to focus the category towards the endpoint of interest

i.e. they help anchor the category with the aid of information derived from

toxicological data (see Chapter 3).

The secondary profilers contain structural alerts that enable simple features

to be identified in chemicals within a category. The two most useful secondary

profilers enable chemical elements and organic functional groups to be

identified. This type of profiling enables the structural domain of a category,

developed using the primary profilers, to be defined. This is important as

defining the structural domain in terms of the target chemical (the chemical

around which the category is being developed) helps to ensure confidence in

the resulting predictions.

6.2.1 Case Study One: Category Formation for Ames
Mutagenicity

This case study outlines the formation of a chemical category suitable for read-

across for mutagenicity as measured in the Ames assay. This assay uses a
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number of genetically engineered strains of Salmonella to detect chemicals

capable of causing damage to DNA by one of two molecular initiating events;

covalent adduct formation or intercalation with DNA.2 The case study

outlines category formation for chemicals capable of forming a covalent bond

with DNA using 3-methylaniline as the target chemical.

Step 1: Initial profiling using the primary profilers

Profiling the 3-methylaniline with the two mechanistic profilers related to

covalent bond formation with DNA (‘DNA binding by OECD’ and ‘DNA

binding by OASIS’) showed 3-methylaniline to contain a primary aromatic

amine moiety capable of an SN1 reaction via the formation of a nitrenium ion

(Figure 6.1). The mechanistic profiling results were supported by the
identification of an aromatic amine moiety by the endpoint specific profiler

(‘in vitro mutagenicity (Ames test) by ISS’). The complementary nature of the

results between the mechanistic profilers and endpoint specific profiler was

taken as an indication of confidence in the profiling results.

Step 2: Initial category formation and sub-categorisation using the primary

profilers

The initial profiling results were then used to retrieve mechanistic analogues
from the applicable databases within the OECD QSAR Toolbox. The relevant

databases that were searched were:

N Bacterial mutagenicity ISSSTY

N Genotoxicity OASIS

Profiling these databases with the ‘DNA binding by OECD’ profiler created

an initial category of 554 chemicals (including the target chemical). This

category required sub-categorisation in order to ensure that it contains only

analogues that act via the same mechanism as 3-methylaniline. Thus, the

following sub-categorisations were required:

N Sub-categorisation of the initial category of 554 chemicals using the ‘DNA

binding by OECD’ profiler (the profiler that was used to develop the initial

category). This sub-categorisation resulted in a category of 317 chemicals.

N Sub-categorisation of the category of 317 chemicals using the ‘DNA

binding by OASIS’ profiler. This sub-categorisation resulted in a

category of 293 chemicals.

Figure 6.1 Electrophilic mechanism for 3-methylaniline (dR 5 DNA chain).
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N Sub-categorisation of the category of 293 chemicals using the ‘in vitro

mutagenicity (Ames test) by ISS’ profiler. This sub-categorisation

resulted in a category of 234 chemicals.

Step 3: Empiric sub-categorisation using the secondary profilers

The chemical category defined in Step 2 using the primary profilers

contained a wide range of chemicals with differing functional groups compared

to those of the target chemical. Thus, it was necessary to define the structural

domain of the category in terms of the target chemical. This involved a series

of sub-categorisations using two of the empiric secondary profilers as follows:

N Sub-categorisation of the category of 234 chemicals using the ‘chemical

elements’ profiler. This sub-categorisation resulted in a category of 85

chemicals.

N Sub-categorisation of the category of 85 chemicals using the ‘organic

functional group’ profiler. This sub-categorisation in a final category of

10 unique chemicals (including the target chemical).

Step 4: Data-gap filling via read-across

The sub-categorisation carried out using the primary and secondary

profilers resulted in a category that had a well-defined mechanistic and

structural domain. This category was then used to fill the hypothetical data

gap for 3-methylaniline in the TA1537 strain of Salmonella in the presence of

the S9 liver fraction. Inspection of the category showed that only seven

chemicals had associated toxicological data (Table 6.1). These data were used

to make a read-across prediction that 3-methylaniline would be negative if

tested in the TA 1537 strain of Salmonella.

The results of the case study showed that the following approach can be

considered as a good method for the development of chemical categories for

mutagenicity.

N Profile the target chemical to identify a potential MIE using mechanistic

profilers related to covalent DNA binding and an endpoint specific

profiler related to mutagenicity. Confidence is gained in the profiling

results if the mechanistic and endpoint specific profilers are in agreement.

N Identify chemicals capable of eliciting the same MIE as the target

chemical, from suitable toxicological databases. This can be achieved

using the mechanistic profilers utilised in Step 1. The resulting category is

termed the initial category.

N Sub-categorise the initial category using the mechanistic profilers related

to covalent DNA binding. This will eliminate chemicals that contain

structural features related to additional covalent mechanisms of action.

A robust category should be developed around a single MIE.

N Sub-categorise the category using an appropriate endpoint specific

profiler related to mutagenicity. The resulting category has a well-defined

mechanistic domain.
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Table 6.1 Toxicological data for the seven chemicals assigned to the category
developed for the target chemical 3-methylaniline.

Name Structure
Ames mutagenicity
(TA1537)

3-Methylaniline (target
chemical)

Read-across prediction:
Negative

Aniline Negative

2-Methylaniline Negative

4-Methylaniline Negative

3,4-Dimethylaniline Negative
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N Sub-categorise using the secondary profilers in order to define the

structural domain.

6.2.2 Case Study Two: Category Formation for Skin
Sensitisation

This section outlines a case study for building a chemical category to predict

the skin sensitisation for the target chemical decanoyl chloride. A number of

previous studies have shown that one of the key MIEs for skin sensitisation is

covalent protein binding.3,4 Thus, mechanistic profilers related to this MIE

were used in this case study (‘protein binding by OECD’ and ‘protein binding

by OASIS’). Skin sensitisation data from the local lymph node assay or the

guinea pig maximisation test were utilised as available in the OECD QSAR

Toolbox. These data were qualitative giving an indication of skin sensitisation

potential only (and not potency).

Table 6.1 (Continued)

Name Structure
Ames mutagenicity
(TA1537)

2,4-Dimethylaniline Negative

2,5-Dimethylaniline Equivocal

3,5-Dimethylaniline Negative
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Step 1: Initial profiling using the primary profilers

Profiling decanoyl chloride using the two mechanistic profilers related to

covalent protein binding identified an acylation MIE relating to the presence

of the acyl chloride moiety (Figure 6.2). This MIE was supported by the

profiling results from the endpoint specific ‘protein binding for skin

sensitisation by OASIS’ profiler.

Step 2: Initial category formation and sub-categorisation using the primary

profilers

The initial profiling results were then used to retrieve mechanistic analogues

from the relevant applicable databases within the OECD QSAR Toolbox.

These were:

N Skin sensitisation

N Skin sensitisation ECETOC

Profiling these databases with the ‘protein binding by OECD’ profiler

created an initial category of eight chemicals (including the target chemical).

As in the previous case study this initial category required sub-categorisation.

The following analysis was carried out:

N Sub-categorisation of the initial category of eight chemicals using the

‘protein binding by OECD’ profiler (the profiler that was used to develop

the initial category). This created a category of seven chemicals.

N Sub-categorisation of the category of seven chemicals using the ‘protein

binding by OASIS’ profiler. This profiler did not identify any additional

chemicals to be removed.

N Sub-categorisation of the category of seven chemicals using the ‘protein

binding for skin sensitisation by OASIS’ profiler. As in the case of step 2

this sub-categorisation did not identify any additional analogues that

needed removing from the category.

Step 3: Empiric sub-categorisation using the secondary profilers

As in the previous case study it was necessary to define the structural

domain of the mechanistic category developed (in this case for skin

sensitisation) in Step 2. Thus, the following sub-categorisations were carried

out on the category of seven chemicals:

Figure 6.2 Acylation mechanism for decanoyl chloride.
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N Sub-categorisation of the category of seven chemicals using the chemical

elements profiler. This profiling showed each of the analogues in the

category to contain the same elements that were present in the target

chemical. Thus, no chemicals were removed by this sub-categorisation.

N Sub-categorisation of the category of seven chemicals using the organic

functional group profiler. This analysis resulted in a final category of

four chemicals (three analogues and the target chemical).

Step 4: Data-gap filling via read-across

The sub-categorisation carried out using the primary and secondary

profilers resulted in a category that had a well-defined mechanistic and

structural domain suitable for read-across. Analysis of the toxicological data

suggested that decanoyl chloride is likely to be a skin sensitiser if tested in vivo

(Table 6.2).

The results of the case study showed that the following approach can be

considered as a good method for the development of chemical categories for

skin sensitisation.

Table 6.2 Toxicological data for the four chemicals assigned to the category

developed for the target chemical decanoyl chloride.

Name Structure Skinsensitisation

Decanoyl chloride (target
chemical)

Read-across prediction:
Positive

Nonanoyl chloride Positive

Hexadecanoyl chloride Positive

Octadecanoyl chloride Positive
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N Profile the target chemical to identify a potential MIE using mechanistic

profilers related to covalent protein binding and an endpoint specific

profiler related to skin sensitisation. Confidence is gained in the profiling

results if the mechanistic and endpoint specific profilers are in agreement.

N Identify chemicals capable of eliciting the same MIE as the target

chemical from suitable toxicological databases. This can be achieved

using the mechanistic profilers utilised in Step 1. The resulting category is

termed the initial category.

N Sub-categorise the initial category using the mechanistic profilers related

to covalent protein binding. This will eliminate chemicals that contain

structural features related to additional covalent mechanisms of action.

A robust category should be developed around a single MIE.

N Sub-categorise the category using an appropriate endpoint specific

profiler related to skin sensitisation. The resulting category has a well-

defined mechanistic domain.

N Sub-categorise using the secondary profilers in order to define the

structural domain.

6.2.3 Case Study Three: Category Formation for Aquatic
Toxicity

The third case study outlines the formation of a chemical category for aquatic

toxicity, specifically the 96 hour Pimephales promelas assay. Previous research

has shown there to be several mechanisms of action for aquatic toxicity, the

most common being hydrophobicity dependent narcosis (where hydrophobi-

city is measured as the logarithm of the octanol:water partition coefficient, log

P).5 In addition, a smaller, but still significant, number of chemicals elicit their

toxicity via the formation of a covalent bond with proteins.6 This case study

outlines category formation for chemicals capable of forming such a covalent

bond with proteins using cyclohexanecarbaldehyde as the target chemical.

Step 1: Initial profiling using the primary profilers

The profiling results from the two mechanistic profilers (‘protein binding by

OECD’ and ‘protein binding by OASIS’) for cyclohexanecarbaldehyde

suggested the potential for covalent adduct formation via a Schiff base

mechanism (Figure 6.3). This was supported by the results from two of the

three endpoint specific aquatic toxicity profilers (‘aquatic toxicity classification

by ECOSAR’ and ‘acute aquatic toxicity MOA by OASIS’) that identified the

presence of the aldehyde moiety as a key structural feature associated with

aquatic toxicity. The third endpoint specific profiler (‘acute aquatic toxicity

classification by Verhaar’) also showed this chemical to be potentially reactive

towards proteins.
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Step 2: Initial category formation and sub-categorisation using the primary

profilers

The initial profiling results were then used to retrieve mechanistic analogues

from the relevant applicable databases within the OECD QSAR Toolbox.

These were:

N Aquatic ECETOC

N Aquatic Japan MoE

N Aquatic OASIS

N Aquatic US-EPA ECOTOX

Searching the four applicable databases resulted in the development of an

initial category of 120 chemicals (119 analogues and the target chemical). The

following sub-categorisations were then required to ensure the category

contained analogues acting via a single mechanism of action:

N Sub-categorisation of the initial category of 120 chemicals using ‘protein

binding by OECD’ profiler (the profiler that was used to develop the initial

category). This sub-categorisation resulted in a category of 75 chemicals.

N Sub-categorisation of the category of 75 chemicals using the ‘protein

binding by OASIS’ profiler. This sub-categorisation resulted in a

category of 75 chemicals.

N Sub-categorisation of the category of 75 chemicals using the ‘aquatic

toxicity classification by ECOSAR’ profiler. This sub-categorisation

resulted in a category of 46 chemicals.

N Sub-categorisation of the category of 46 chemicals using the ‘acute

aquatic toxicity MOA by OASIS’ profiler. This sub-categorisation

resulted in a category of 44 chemicals.

N Sub-categorisation of the category of 44 chemicals using the ‘acute

aquatic toxicity classification by Verhaar’ profiler. This sub-categorisa-

tion resulted in a category of 35 chemicals (34 analogues and the target

chemical).

Step 3: Empiric sub-categorisation using the secondary profilers

As in the previous case studies it was necessary to define the structural

domain of the mechanistic category developed in Step 2. Thus, the following

sub-categorisations were carried out on the category of 35 chemicals:

Figure 6.3 Schiff base formation mechanism for cyclohexanecarbaldehyde.
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N Sub-categorisation of the category of 35 chemicals using the ‘organic

functional group’ profiler. This sub-categorisation resulted in a category

of 16 chemicals.

N Sub-categorisation of the category of 16 chemicals using the ‘chemical

elements’ profiler. This sub-categorisation resulted in a category of 16

chemicals (15 analogues and the target chemical).

Step 4: Data-gap filling via read-across

The sub-categorisation performed using the primary and secondary profilers

resulted in a category with a well-defined mechanistic and structural domain.

Analysis of the toxicological data suggested that cyclohexanecarbaldehyde

would have an LC50 value equal to 17.5 mgL21 when tested in the 96 hour

Pimephales promelas assay (Table 6.3).

The results of the case study showed that the following approach can be

considered as a good method for the development of chemical categories for

acute aquatic toxicity.

N Profile the target chemical using the two mechanistic profilers relevant to

covalent protein binding and the three endpoint specific profilers for

aquatic toxicity. Confidence in the profiling results is gained if one (or

both) of the mechanistic profilers are supported by the results from the

endpoint specific profilers.

N Define the initial chemical category by profiling the four databases,

relevant to acute aquatic toxicity, using the one of the mechanistic

profilers related to covalent protein binding.

N Sub-categorisation using the mechanistic profilers related to covalent

protein binding. This sub-categorisation eliminates chemicals that

contain structural alerts related to alternative mechanisms of action.

N Sub-categorisation using the endpoint specific profilers relevant to acute

aquatic toxicity. These profilers identify known structural alerts related

to aquatic toxicological data.

N Sub-categorisation using the secondary profilers in order to define the

structural domain. One should use a combination of the empiric profilers

(it is recommended to use the ‘organic functional group’ and ‘chemical

elements’ profilers in the majority of cases) to restrict the structural

domain of the category so that it is similar to that of the target chemical.

6.2.4 Case Study Four: Category Formation for Oestrogen
Receptor Binding

This case study relates to read-across predictions for oestrogen receptor binding.

This is one of many key effects that may be related to endocrine disruption.

Historically, there have been many Quantitative Structure-Activity Relationships

for the prediction of oestrogen receptor binding,7–9 but fewer attempts to develop

categories for either oestrogen binding or endocrine disruption. There is an
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Table 6.3 Read-across prediction made for the Pimephales promelas 96 hr
LC50 endpoint for cyclohexanecarbaldehyde.

Name Structure LC50 (mgL21) log P

Cyclohexanecarbaldehyde
(target chemical)

Read-across
prediction: 17.5

2.10

2-Methylbutanal 9.9 1.23

2-Methylpentanal 18.6 1.73

Hexanal 17.8 1.80

Heptanal 12.0 2.29

2-Ethylhexanal 30.1 2.71
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important distinction to make here between category formation and read-across

for a receptor mediated effect and those for covalent interactions e.g. DNA or

protein binding or relative unspecific effects such as narcosis. Covalent

interactions can be defined in terms of molecular fragments associated with

reactivity; these are an ideal basis for defining a category. Receptor mediated

effects require different approaches to grouping and currently in the OECD

QSAR Toolbox are represented by 2D properties relating to the presence or

absence of molecular features and properties. The development of technologies for

3D receptor mediated effects is an area that clearly requires further development.

This particular case study outlines how to build a category for an

alkylphenol, 4-(2,2-dimethylpentyl)phenol, shown in Figure 6.4. Anecdotally

alkylphenols are known to bind to the oestrogen receptor10, although there

appear to be no data for this particular chemical. The relative oestrogen

receptor binding affinity (ERBA) was predicted by read-across using two

profilers, namely those for Estrogen Receptor Binding (a general mechanistic

profiler) and the rainbow trout oestrogen receptor binding (rtER) expert

system from the US EPA. The ERBA profiler is based on structural and

parametric rules. The ERBA classifies chemicals as a binder or a non-binder

on the basis of molecular weight and structural characteristics. Specifically for

binders, chemicals are classified as very strong, strong, moderate or weak

binders on the basis of structural characteristics (e.g. rings, hydroxy groups)

and molecular weight. The application of the ERBA binder has been evaluated

by Mombelli.11 The rtER Expert System is based on a number of structural

rules and physico-chemical properties that can not only provide predictions,

but also allow for grouping. It is the grouping aspects that have been utilised in

this case study. Both profilers are strongly linked to the AOP for oestrogen

receptor binding as published by Ankley et al.12

The two profilers will be considered separately in this case study, this is

different to case studies 1–3 where information from different profilers was

used to help sub-categorise the grouping. The reason for this is that the rtER

Expert System is a predictive tool that allows for category formation on the

basis of a decision (incorporating physico-chemical properties) rather than a

solely mechanistic profiler. Both profilers were supplemented with information

from the ‘‘organic functional group’’ empiric profiler.

Step 1: Initial profiling using the primary (ERBA) profiler

4-(2,2-dimethylpentyl)phenol was profiled using the ERBA (general

mechanistic) profiler. As would be expected, the target molecule was associated

with binding to the oestrogen receptor and, specifically, was profiled as being a

moderate binder due to the hydroxy group on the ring. This profile is

associated with compounds of molecular weight between 170 and 200 Da and a

non-impaired –OH group (i.e. a primary hydroxy group) attached to a 5 or 6-

membered carbon ring. Such compounds are commonly associated with

binding into site A of the oestrogen receptor binding pocket.13 In addition,

functional groups were identified with the organic functional groups profiler.
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Step 2: Initial category formation and sub-categorisation using the primary

(ERBA) profiler

The ERBA profiler categorised 4-(2,2-dimethylpentyl)phenol as a moderate

binder due to the hydroxy group on the ring. Information was sought for

compounds in the same category from the OECD QSAR Toolbox. The

relevant databases searched were:

N Estrogen Receptor Binding Affinity OASIS

N Yeast estrogen assay database, University of Tennessee-Knoxville (USA)

Profiling these databases with the ‘Estrogen Receptor Binding Affinity’

profiler created an initial category of 53 chemicals (52 analogues plus the target
chemical). In theory this category could be utilised as it is because it is well-

defined and all compounds would be expected to act by the same mechanism.

Step 3: Empiric sub-categorisation using the secondary profilers

Visual inspection of the compounds in the category suggested that further

sub-categorisation is required due to the presence of halogen atoms and other

rings on molecules. Thus, the following sub-categorisation was undertaken to
ensure the structural homogeneity of the category:

N Sub-categorisation of the category of 53 chemicals using the organic

functional groups profiler. This showed four functional groups as being

present in the target molecule, namely aryl (ring), benzyl, phenol and
precursors of quinoid compounds. There is obvious overlap between all

function groups and compounds for inclusion in the final category were

selected on the basis of containing all four functional groups. This sub-

categorisation resulted in a category of ten chemicals (nine analogues and

the target). The sub-category appears robust both from a mechanistic and a

structural point of view and no further sub-categorisation was undertaken.

Step 4: Data-gap filling via read-across

The category formed from the ERBA and organic functional group profilers

revealed ten compounds, including the target. All analogues had oestrogen

receptor binding data. Table 6.4 shows that structure of the target chemical

and the five closest analogues according to the analysis with log P, also shown

are the ER binding assay results. Read-across using these five data gives a

relative oestrogen binding affinity of 0.0087%.

The OECD QSAR Toolbox contains an additional profiler suitable for
developing chemical categories for toxicity mediated by oestrogen receptor

binding. This is the rtER expert system profiler and was used as follows to

develop a second category:

Step 1: Initial profiling using the primary (rtER Expert System) profiler

4-(2,2-dimethylpentyl)phenol was also profiled using the rtER (endpoint

specific) profiler. The compound is profiled as being an ‘‘alkylphenol’’. The

rules to establish this are that it contains a carbon atom, a ring with a phenol
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fragment and an alkyl substituent, also log P is greater than 1.3, and it does not

infringe on any special rules. A training set (with measured rainbow trout

oestrogen receptor binding data) is provided in the Toolbox, this comprises 21

alkylphenols, the majority of which could be considered direct analogues of the

target compound. In addition, functional groups were identified with the

organic functional groups profiler.

Step 2: Initial category formation and sub-categorisation using the primary

(rtER) profiler

The rtER profiler categorised 4-(2,2-dimethylpentyl)phenol as an alkylphe-

nol. Information was sought for compounds in the same category from the

OECD QSAR Toolbox. The relevant databases searched were:

N Estrogen Receptor Binding Affinity OASIS

N Yeast oestrogen assay database, University of Tennessee-Knoxville (USA)

Profiling these databases with the rtER profiler created an initial category of

36 chemicals (35 analogues plus the target chemical). Again, this should be a

very well-defined category of chemicals acting by the same mechanism of

action. Thus, in theory, it would be possible to use this category as it is.

Step 3: Empiric sub-categorisation using the secondary profilers

Visual investigation of the compounds in the group indicated that this is a

very well defined category; specifically all compounds contain a phenolic group

and an alkyl substituent. In order to thoroughly ensure the structural

homogeneity of the category, the following sub-categorisation was undertaken:

N Sub-categorisation of the category of 36 chemicals using the organic

functional groups profiler. This showed four functional groups as being

present in the target molecule, namely aryl (ring), benzyl, phenol and

precursors of quinoid compounds. This sub-categorisation resulted in a

category of 22 chemicals (21 analogues and the target). The sub-category

appeared robust both from a mechanistic and structural point of view

and no further sub-categorisation was undertaken.

Step 4: Data-gap filling via read-across

The category formed from the rtER and organic function group profilers

provided a category of 22 compounds, including the target. All analogues had

oestrogen receptor binding data. Table 6.4 shows the structure of the target

chemical and the five closest analogues according to the analysis with log P;

also shown are the ER binding assay results. It is reassuring, although of no

surprise, that four of the five closest analogues are common between the two

profilers. Naturally, therefore, the read-across using the five data from the

rtER profiler gives a relative oestrogen binding affinity, very similar to that for

the ERBA profiler, of 0.0093%.

The following outline can be considered a good general approach for the

development of chemical categories for oestrogen receptor binding.
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N Profile the target chemical with either, or preferably both, of the profilers

ERBA and rtER.

N If the compound is classified as a potential oestrogen receptor binder,

analyse the categories obtained. If the category is robust from a

structural perspective then no more sub-categorisation may be required

— in this case proceed directly to read-across. If the compound is

classified as a non-binder, then go to Step 4.
N For compounds that may bind to the oestrogen receptor, sub-

categorisation may be required on the basis of organic functional groups

to ensure a structurally robust category.

N For compounds categorised as non-binders, further analysis may or

may not be warranted. Grouping may be required on the basis of

structural similarity and/or organic functional groups to elicit read-

across. However, read-across may be difficult in terms of finding

suitable data as the most testing has been directed to those structures
likely to have, or be similar to those that have, the capability of

binding to the oestrogen receptor.

6.2.5 Case Study Five: Category Formation for Repeated Dose
Toxicity

This case study describes some of the excellent work of Sakuratani and co-

workers from the National Institute of Technology and Evaluation (NITE),

Tokyo, Japan and the application of the Hazard Evaluation Support System

(HESS) for making these predictions. The HESS system is now included as

part of the OECD QSAR Toolbox, or is available as a stand-alone download

(http://www.safe.nite.go.jp/english/kasinn/qsar/hess-e.html). Both systems are

currently available free of charge, although it is suggested that the user may
wish to use the version in the OECD QSAR Toolbox as it provides more

comprehensive databases and access to other profilers.

This particular case study on the repeated dose toxicity of nitrobenzenes

describes and summarises the work published by Sakuratani et al.14 Reference

is also made to the findings and methodology of Sakuratani et al.15 on

repeated dose toxicity of anilines and Yamada et al.16 with regard to predicting

the repeated-dose hepatotoxicity of allyl esters. The work described in this case

study, presented first by Sakuratani et al.,17 utilises the HESS tool.14,18

The aim of the original study by Sakuratani et al.17 was to demonstrate how

a category could be developed for nitrobenzenes to allow for read-across of

repeated dose toxicity. Specifically, nitrobenzenes are known to produce toxic

responses through the action of their metabolites which are anilines. This

knowledge is sufficient to form the basis of a mechanistically derived category,

noting also that Sakuratani et al.15 derived a separate category for anilines.

It should be noted that there is a key difference in this case study as

compared to the previous case studies. The previous case studies used profilers
to group chemicals and derive categories. The example provided by Sakuratani
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et al.17 assumes prior knowledge of a possible grouping i.e. the nitrobenzenes

are linked by common metabolites. This provides an excellent starting place

for grouping. Evidence is provided to support this mechanistic basis with

reference to a simplified Adverse Outcome Pathway (AOP) for haemolytic

anaemia induced by the nitrobenzenes (following metabolism to the aniline).

The AOP is summarised in Figure 6.4 and is supported by evidence from the

literature.19–22

This case study can be repeated using the profilers and data available in the

HESS system, which are available in the OECD QSAR Toolbox. The HESS

system (termed ‘‘repeated dose (HESS)’’) in the Toolbox (ver 3.1) comprises 33

pre-defined categories that are known to be related to repeated dose oral

toxicity. These comprised structural classes for common industrial chemicals.

There are three profilers for nitrobenzenes in the HESS system, being related

to different effects: haemolytic anaemia with methemoglobinemia; heptatoxi-

city; and testicular toxicity. The HESS system ranks the profilers in terms of

reliability from A (most well-known, supported by experimental evidence and

hence reliable) to C (least well-known). For the nitrobenzenes, haemolytic

anaemia is ranked A, whereas heptatoxicity and testicular toxicity are ranked

C. Therefore, the profiler for haemolytic anaemia was utilised, not least as it is

supported by the AOP for this effect.

Steps 1–3: Initial profiling, category formation and sub-categorisation.

The first three steps of the categorisation process will be described together

for the example of the repeated dose toxicity of nitrobenzenes. The

information given here summarises that provided by Sakuratani et al.17 The

initial profiling is implicit in the definition of the category, i.e. that these

Figure 6.4 Summary of the Adverse Outcome Pathway for haemolytic anaemia
induced by the nitrobenzenes.
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compounds are nitrobenzenes. According to Sakuratani et al.17 and the

profiler in the HESS system the structural boundaries for this category

(defined with reference to the AOP) are shown in Figure 6.5.

Searching of the HESS and other databases for this specific category

identified 25 repeated dose toxicity reports for 24 different nitrobenzenes. The

compounds and results are shown in Table 6.5. For the results for the Lowest

Observed Effect Level (LOEL), not all are shown in Table 6.5 but are available

in more detail in Sakuratani et al.17 Thorough investigation of the LOEL

values does confirm that it is liver effects and haemolytic anaemia in particular

that have the lowest LOEL of all organ level toxicities (other values are not

shown in Table 6.5). For many of the test results, there is further evidence that

for the induction of haemolytic anaemia from the reported production of Met-

Hgb and the binding of Hgb.20-22 This, along with the evidence provided by the

AOP, provides robust evidence in support of this category.

The category was further assessed in terms of sub-categorisation based on

biological data and the test results. Such an approach is not standard, but

helps to build a picture of the category and its properties which will be useful

for read-across. Thus, for 1-chloro-2,4-dinitrobenzene, haemolytic anaemia

was not observed; however, investigation of the original data showed that the

maximum administration dose was low (0.15 mmol/kg per day) and it was

unclear if haemolytic anaemia could be induced at higher doses. Conversely,

nitrobenzenes substituted with a hydroxyl or acid group (the twelve latter

compounds in Table 6.5) were seldom associated with haemolytic anaemia at

low doses in repeated dose tests. This is explained with regard to their polarity

and thus low hydrophobicity which prevents them from being distributed

significantly into hepatocytes or erythrocytes. Thus, the nitrobenzene category

defined by Figure 6.5 can be further defined in terms of hydrophobicity.

Step 4: Data-gap filling via read-across

Sakuratani et al.17 state that within the category defined by Figure 6.5,

nitrobenzenes assessed under similar repeated dose test conditions can be

assumed to be capable of haemolytic anaemia. Thus, within the boundaries of

Figure 6.5 Structural boundaries of nitrobenzene category for haemolytic anaemia
induced by the AOP shown in Figure 6.4.
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this category, read-across can be performed, in this case it is the mean and 95%

confidence interval of the LOEL for haemolytic anaemia for the compounds

(the first thirteen compounds listed in Table 6.5), this value being 0.39

¡0.35 mmol/kg per day. Further assessment of these compounds enabled

definition of this category to be developed for nitrobenzenes as denoted by

Figure 6.5. Chemicals within this category were found to have log P values

between 1.8–3.1 and molecular weights between 123 and 203 gmol21.

The results of the case study showed that the following approach can be consi-

dered a good method for the use of chemical categories for repeated dose toxicity.

N Profile the target chemical using the tools such as the HESS repeated

dose profiler. Should this reveal that the target chemical belongs to a

category then this should give greater confidence.

N If the target cannot be profiled using the HESS Profiler: use the

functional group profilers available in the OECD QSAR Toolbox to

categorise the chemical. Sub-categorisation may be required; this may

need to be performed in relation to the available toxicity data.

N Search the available toxicity data for repeated dose effects. At this point

expert analysis will be required to interpret the LO(A)EL values to

determine if there is consistency across organ level effects. If such

consistency can be found, does it relate to a recognisable mechanism or

mode of action or, preferably, an AOP. The data in the category should

be investigated for structural and physico-chemical trends to support the

read-across and category definition.

Some issues specific to predicting repeated dose toxicity through read-across

must be kept in mind.

- Repeated dose effects are some of the most complex to predict from a

category and read-across approach. Care and expertise are required at all

stages of the analysis. The user must be aware that attempting to predict a

LO(A)EL value is difficult. The success summarised above and reported by

Sakuratani et al.17 is due to the strength and mechanistic robustness of the

category.

- The HESS tool provides an ideal starting point for category formation. It is

hoped that the categories available within it will be expanded and further

molecular initiating events identified. If a target compound falls outside of

these profilers, others such as functional group and similarity may be used with

caution.

6.3 Similarity-based Case Studies

The above section outlined the use of mechanism based profilers to group

chemicals into categories suitable for read-across. These methods work well if

sufficient knowledge exists of potential MIEs and this information has been

encoded into structural alerts. However, for a number of endpoints such

information regarding potential MIEs does not exist or remains to be
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elucidated. In these cases alternative chemoinformatic-based methods using

2D similarity methods can be useful for grouping chemicals. The flow chart

shows (Figure 6.6) how 2D similarity can be used to build a chemical category.

Such analysis can be carried out using tools such as Toxmatch.23

6.3.1 Case Study Six: Category Formation for Teratogenicity

A recent study outlined the use of chemical similarity to develop chemical

categories for teratogenicity using data from the US FDA.24 The study

involved the development of categories for a series of target chemicals by

identifying similar chemicals from a teratogenicity database. The database

contained chemicals that had been previously classified into one of five

teratogenicity classes as a result of analysis by the US FDA (A, B, C, D and X,

where D and X are of significant concern).25 The category formation analysis
was carried out using the 2D-similarity metrics in the freely available

Toxmatch software23, (see Chapter 4). The results showed that this type of

analysis produced robust categories in which chemicals identified as being

similar to the target chemical, and thus part of the category, were in the same

teratogenicity class. For example, three chemicals were identified as being

sufficiently similar to ethynodiol diacetate (Figure 6.7). These chemicals were

then used to make a read-across prediction that ethynodiol diacetate should be

assigned to teratogenicity class D using a weight of evidence approach (or class

Figure 6.6 Flow chart for using 2D chemical similarity to form a category
reproduced from Enoch et al.24
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X taking a worst case scenario). The authors of the study highlighted that

inspection of the actual FDA classification for ethynodiol diacetate showed it

to have been previously assigned to class D.

The results of the case study showed that the following approach can be

considered a good method for the use of chemical similarity for the formation

of chemical categories for endpoints for which detailed knowledge of potential

MIEs is currently limited:

N Identify an endpoint for which no information regarding potential MIEs

exists and for which a data-gap exists for a target chemical.

N Encode the target chemical and the chemicals in a suitable database

containing toxicological data as suitable bit-strings (see Chapter 2). This

can be achieved using freely available software such as Toxmatch.

N Measure the similarity between the target chemical and the chemicals in

the database using a suitable measurement of chemical similarity and cut-

off (the Tanimoto coefficient coupled with a cut-off of 0.6 has been

shown to be useful in forming robust categories).

N Visually inspect the chemicals identified as being ‘similar’ in step 3.

Remove any obviously dissimilar chemicals from the category.

Figure 6.7 Chemical category developed using Toxmatch for the target chemical
ethynodiol diacetate allowing for the prediction of teratogenicity
(similarity measures as shown on the arrows, US FDA teratogenicity
class shown in parenthesis).
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6.4 Conclusions

This chapter has outlined category formation case studies for a number of

different toxicological endpoints. It has highlighted that one of the most

important methods for category formation is based around mechanistic

knowledge of the molecular initiating event. The examples outlined show that

the mechanistic knowledge encoded as profilers leads to robust and

transparent categories within which a read-across prediction can be made.

Finally, the chapter has also demonstrated that for toxicological endpoints for

which mechanistic information is lacking chemical similarity can be used to

form categories.
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CHAPTER 7

Evaluation of Categories and
Read-Across for Toxicity
Prediction Allowing for
Regulatory Acceptance

M. T. D. CRONIN

School of Pharmacy and Chemistry, Liverpool John Moores University,

Byrom Street, Liverpool L3 3AF, England

E-mail: m.t.cronin@ljmu.ac.uk

7.1 Introduction

The successful use of predictive methods requires assessment of the validity of

the model, in this case the category formation and read-across strategies, and
whether the prediction for a particular compound is valid. This two stage

process requires a framework to evaluate the model and the prediction. This

process is required to allow for consideration of predictions for possible

regulatory use, for instance, as part of REACH dossiers. The prediction must

also be documented adequately to ensure that appropriate and sufficient

evidence is presented to those who may review the prediction.

To understand the evaluation process, the key stages to obtaining a valid

read-across prediction for toxicity, or any other endpoint, must be understood.

Broadly speaking, these are:

N The development of a robust and justifiable category that is relevant to

the endpoint being predicted.
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N Confidence that the target chemical belongs to the category i.e. is within

the domain of the category.

N The possibility of performing read-across i.e. there is sufficient

information to support the prediction.

In order to implement these criteria, practical solutions are required that are

achievable, not only for the modeller and user of the model, but also of value

to those utilising the prediction both from industry and regulatory agencies.

When the practitioner comes to perform their modelling, at the forefront of

their mind should be the successful execution of the model and its evaluation.

This should be part of the planning process and considered both before the

modelling is undertaken and during the prediction process. It is a mistake to

not make this an integral part of the prediction and to add it on at the end.

Some of the issues that the practitioner should consider are:

N What confidence is there in the category, is it relevant to the target chemical

and data? Obviously confidence should be as high as possible and the

category and its members need to be designed and selected to achieve this.

N How can the level of confidence in the category, data and read-across

prediction be demonstrated and proven? The design of the category

should ensure that documentation can be provided and there is sufficient

evidence, e.g. a mechanistic basis, to support it. This means that

appropriate tools must be utilised and the whole modelling and

prediction process recorded and documented.

N Determination that any prediction from read-across is demonstrably valid.

At this point it must become obvious to the reader and practitioner that each

step is subjective and requires expert use and opinion. The information below,

in addition to that provided in the guidance documents (see Table 1.4) and the

excellent overview from Patlewicz et al.1 is intended to provide practictioners

instruction on how to assign confidence and determine the validity of a

prediction. Please note that the purpose here is not to ‘‘validate’’ a category or

QSAR. This chapter aims to outline the process of ‘‘good modelling’’ to allow

for the evaluation of a prediction and, where possible, regulatory acceptance.

7.2 Assigning Confidence to the Robustness of a
Category

One of the first tasks that must be undertaken to evaluate a read-across

prediction is to determine the robustness of the category. Robustness implies

that the category is transparent, interpretable and defensible. As defined in

Chapter 2, a category is a group of ‘‘similar’’ chemicals. Thus it is logical to

assume a robust category will comprise chemicals that are demonstrably

similar. Therefore, the strength and security afforded by the analogue

approach should become immediately obvious, i.e. a group of compounds

with strong structural similarity or varying in only the length of a carbon

156 Chapter 7
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chain. Furthermore, groupings of compounds made using structural similarity

algorithms will, within reason, be robust — although experience shows that

care must be taken in using these approaches. It will be more difficult to assign

confidence to categories based on mechanistic or endpoint profilers. This is

because the compounds in the category may not necessarily be structural

analogues. At this point, the category will need to be justified with evidence

that all compounds have the capability to act by the same mechanism. Tools

such as the OECD QSAR Toolbox (see Section 4.3) provide such evidence,

linking chemistry to toxicology. If other approaches are undertaken, then an

equivalent level of detail and knowledge will be required.

Given that a group of similar chemicals has been selected, the second

criterion that will determine confidence will be the number of compounds in

the category. This may seem a trivial point to address but there are a number

of issues that need to be considered:

N Grouping tools, such as the OECD QSAR Toolbox, select chemical

structures for grouping on the basis that they are similar, rather than

identifying those with toxicity data that may be useful for read-across. Thus

an initial group or category formed in the Toolbox may contain hundreds,

if not thousands, of structures. This does not necessarily indicate that this is

a robust group, rather that the boundaries (or definition) of the cluster

maybe too broad and hence sub-categorisation may be required.

N The presence of compounds or structures in a category does not

necessarily imply the availability of toxicity data from which to obtain a

read-across prediction. Hence, even the largest category (see previous

point) may be unusable for prediction if there are no or too few data, or

data of insufficient quality.

N Depending on the use of the prediction, more evidence may be required for

the regulatory acceptance of a negative prediction. This implies that there

must be strong evidence of structural or mechanistic similarity and a

‘‘significant’’ number of compounds in the category with negative results.

Therefore there is always likely to be a balance between the size of the group

or category, the degree of similarity of structures with regard to the endpoint

being modelled and the number of available data. No hard and fast rules can

be developed for this, indeed it may be entirely feasible to perform a read-

across from a single compound e.g. for a positive read-across prediction for a

close structural and mechanistic analogue for an endpoint such as

mutagenicity. Thus, the subjectivity of this approach must be appreciated.

7.3 Assigning Confidence to the Read-Across Prediction

There are no firm or well defined rules for assessing the quality of a read-across

prediction and/or assigning confidence to it. Indeed, a rigid framework to

assess read-across predictions is not desirable as it may be too restrictive.1,2

There is, however, good guidance and comment provided by Patlewicz et al.1
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and in more detail by ECETOC.3 Forthcoming case studies, such as those

proposed within the Read-Across Assessment Framework (RAAF) from the

European Chemicals Agency (ECHA) will assist in providing knowledge and

insight on how to provide evidence to substantiate read-across predictions.4-6

High confidence will be assigned to a read-across prediction when there is

strong proof it is valid. Therefore, assuming the category is robust and

membership is assured, the read-across will be reliant on the similarity of the

target chemical to the other chemicals in the category and the quality and

number of data. Some guidance suggests that data for at least ten compounds

must be available for a category to be significant.4 However, this may be an

unrealistic goal and pragmatism will dictate how many data will be used i.e. in

most cases it would be better to have fewer data for a structurally and/or

mechanistically similar group of compounds than extending the category with

less confidence in category membership, simply in an attempt to increase

numbers. It is also inevitable that, at least initially, higher confidence will be

given to structural analogues rather than mechanistically developed categories.

For a well developed read-across prediction it would be expected that the

toxicity data are consistent. Thus for a categoric toxicity endpoint (i.e. toxic or

non-toxic, mutagenicity being an example) all compounds in the category have

the same result i.e. either toxic or non-toxic. Of course, the category approach

implicitly allows for contradictory data, but there will need to be a rational

explanation for these inconsistencies. Examples of reasons why similar

compounds may demonstrate different activities include metabolism, struc-

tural mitigating factors (e.g. steric hindrance around a reactive functional

group), solubility, bioavailability or impurities (see below). For continuous

toxicity data (i.e. potency values such as acute LD50), predictable trends would

be expected with descriptors relevant to activity. Some relationships between

potency and molecular properties or descriptors can, of course, form the basis

of local QSARs. Thus, consistency in the data within a category, accepting

rationally explained exceptions will raise the confidence associated with a read-

across prediction.

A further aspect that must be addressed to assess the confidence that may be

associated with a read-across prediction is that of impurities. ECETOC

provide good guidance here.3 For instance, impurities . 0.1% must be

identified for CMR, PBT and R50/R53 (very toxic to aquatic organisms; may

cause long-term adverse effects in the aquatic environment) endpoints and

. 1% for other endpoints. The impurities must be identified and characterised

fully. One possibility is that these will be structurally similar to the target

chemical (thus read-across could itself be applied to the impurity), but QSARs

(or other read-across) may be required to assess the potential hazard of

impurities.
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7.3.1 Weight of Evidence to Support a Prediction

It is inevitable that weight of evidence (WoE) from all sources of information

will help support and provide evidence for a read-across prediction. There is no

defined framework for using WoE to support a prediction, although much

useful guidance is provided by Patlewicz et al.1 and ECETOC.3 Thus, to support

a read-across prediction, evidence can be brought in not only from the category

but also other sources. For instance, for a read-across prediction of acute fish

toxicity for a given species, further evidence could be provided from non-target

species (i.e. other fish species) and also extrapolation from species from different

taxa.7 Likewise, evidence that a compound may be acting as a non-polar

narcotic could be drawn from the lack of protein reactivity (assessed either in

silico or in chemico).8 Other examples include using evidence from ‘‘related’’

endpoints. For instance, skin sensitisation and mutagenicity may be brought

about by the same covalent interactions, thus (in certain circumstances) a

positive mutagenicity assay may be indicative evidence of skin sensitisation.9

One key area which should become more important to support WoE is the use of

alternative non-test data to support a prediction. The use of in vitro test assay

results is well established, but the future brings with it the possibility of routinely

using molecular biology data to support category formation, membership and

read-across.10 An excellent example of how data from a Metabolomics database

(MetaMap1Tox) can inform grouping for toxicity prediction is provided by van

Ravenzwaay et al.11 Section 4.2 provides more information on use of high

throughput screening and -omics data to support category formation.

7.4 Reporting of Predictions

In order to gain acceptance for a prediction of toxicity or a physico-chemical

property, the method of prediction and the prediction itself must be properly

documented. This implies that:

N the method(s) by which the prediction is made are adequately described;

N the method(s) and data considered are available and transparent;

N the prediction could be repeated (if required);

N the prediction is adequately justified.

The concept of documentation of a QSAR is well established — the so-called

QSAR Model Reporting Format (QMRF) was developed based around the

OECD Principles for the Validation of (Q)SARs.12 Tools are now freely

available to create QMRFs.13,14 Many aspects of the QMRF can be applied to

reporting categories e.g. the endpoint, data considered, mechanistic interpret-

ability etc., however, the basic premise of a ‘‘model’’ to describe is not

applicable in this case. It is certainly more difficult to describe a ‘‘read-across’’

objectively and almost impossible to place any statistical analysis on the read-

across — therefore an assessment of statistical fit and predictivity of a read-

across prediction is rarely seen.
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In order to provide a format to report the information from a category for

read-across, following various consultations the OECD proposed the types of

information that would be required to describe a category adequately.15 This

was slightly adapted in the ECHA Guidance4 and still provides a very useful

starting point for the documentation of categories. The requirements for the

reporting format are summarised in Table 7.1.

7.4.1 Tools for Category Description and Prediction

The OECD QSAR Toolbox includes the full capability of producing a ‘‘QSAR

Toolbox Category Report’’ (Chemical Category Reporting Format, CCRF) in

addition to a ‘‘QSAR Toolbox Prediction Report’’ (QTPR). These are detailed

in Step 6 of Section 4.3. The reporting capabilities are a very efficient means of

collating together the process by which a category was formed in the Toolbox,

the data and the prediction. The reports are editable which will be important

for regulatory use. It should be noted that it is unlikely that a standard report

from the Toolbox will be acceptable for regulatory use if it is simply submitted

without further thought and consideration. In other words, the report will

form a valuable part of the information requirement needed to complete the

reporting format outlined in Table 7.1, however, it will require further expert

input to provide strong and robust evidence to justify the category and the

read-across prediction obtained from it. Currently, the OECD QSAR Toolbox

is the only tool known to these authors that provides such a comprehensive

reporting format with supporting information. However, it is likely other such

tools will become available in the future as the value of this approach is more

widely recognised.

7.5 Regulatory Use of Predictions

The regulatory use of categories and read-across to fill data gaps is one of the

main goals of this approach. The aim here is to gain acceptance of the

prediction and thus reduce, or replace, the reliance on testing. There are a

number of potential uses of read-across for regulatory purposes, these include:

N prioritisation for further testing;

N classification and Labelling (C&L);

N risk assessment.

The requirements for regulatory acceptance become more stringent from

prioritisation to C&L and ultimately risk assessment. In addition, the

requirements will depend on the endpoint being predicted in addition to

whether a prediction of a chemical being positive is ‘‘more easily acceptable’’

than a negative prediction.

In order for predictions of toxicity from read-across to be acceptable for

regulatory purposes, a number of criteria must be fulfilled. To gain acceptance

of a read-across, two basic criteria are required:
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Table 7.1 Information required for reporting formats for analogue and
category evaluation (adapted from OECD13 and ECHA4).

Section of
Reporting Format

Summary of OECD15 and ECHA4

Information and Guidance (adapted
from the original documents). Notes and Interpretation

1. Category
definition and
description of the
members of the
category

1.1.a. Category
hypothesis

A description of the type of
structure a chemical must have to
be included in the category must
be given. A brief hypothesis for
the formation of the category: the
hypothetical relational features of
the category i.e. the chemical
similarities (analogies), purported
mechanisms and trends in
properties and/or activities that
are thought to collectively
generate an association between
the members. All functional
groups of the category members
need to be identified. If there is a
mechanistic reasoning to the
category, describe the foreseen
mode of action for each category
member and if relevant describe
the influence of the mode of
administration (oral, dermal,
inhalation).

This is a basic description
of the category. It is vital
that the information is
provided to assess and
confirm whether the
target chemical belongs
to that particular
category. According to
the OECD and ECHA
definition, this requires
very thorough description
and analysis. Tools such
as the OECD QSAR
Toolbox will provide
such information,
particularly with regard
to chemistry and
toxicology. It is
inevitable that there will
be overlap between the
description of a category
and the definition of its
applicability domain.

1.1.b. Applicability
domain (AD) of
the category

The applicability domain (AD) of
the category is described by the
inclusion and/or exclusion rules
that identify the ranges of values
within which reliable estimations
can be made for category
members. The borders of the
category, and for which chemicals
the category does not hold,
should be indicated clearly. For
example, the range of log P
values or carbon chain lengths
over which the category is
applicable.

The definition of AD
normally extends the
definition of the
category. This may now
become quantitative in
that it could include
descriptors such as log P.
The target chemical must
fall within the stated AD
of the category to ensure
that it is valid.
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Table 7.1 (Continued)

Section of
Reporting Format

Summary of OECD15 and ECHA4

Information and Guidance (adapted
from the original documents). Notes and Interpretation

1.1 c. List of
endpoints covered

The (toxicity or property)
endpoints for which the category
approach is applied should be
listed. It should also be noted if,
for some endpoints, the category
approach can only be applied to
a subset of the members of the
category (subcategories).

This criterion appeared
only in the OECD
Guidance but is still
relevant. Categories are
sometimes (but not
always) endpoint specific
and this needs to be
identified.

1.2. Category
members

All members of the category
should be described as
comprehensively as possible. This
should include unique identifiers
including (but not limited to)
CAS numbers, names and
chemical structures.

The structures within the
category should be noted.
All structures should be
recorded unambiguously
identifying relevant
isomerism if required.
This process will
implicitly assist in the
description of the
category and definition
of its AD. It will help
determine whether the
target chemical is within
the category. Tools such
as the OECD QSAR
Toolbox will perform this
task for the user.

1.3. Purity/
impurities

The purity/impurity profiles for
each member of the category,
including their likely impact on
the endpoint(s) to be predicted
should be provided. Any
potential influence of these
impurities on physico-chemical
parameters, fate and
(eco)toxicology, and hence on the
read-across, should be identified.

Impurities are often not
stated with regard to
summaries of test results,
therefore this will be one
of the more difficult
items to define and may
require considerable
effort and expertise. It
should also be
remembered that
potential impurities of
the target substance must
be identified and their
potential impact
considered.
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Table 7.1 (Continued)

Section of
Reporting Format

Summary of OECD15 and ECHA4

Information and Guidance (adapted
from the original documents). Notes and Interpretation

2. Category
justification

The category should be justified
based on available experimental
data (including appropriate
physico-chemical data and
additional test results generated
for the assessment of the
category). These test results
should be summarised to show
how they verify that the category
is robust. This should include an
indication of the trend(s) for each
endpoint. The data should also
show that functional groups not
common to all the (sub)category
members do not affect the
anticipated toxicity. The available
experimental results in the data
matrix reported under 3) below
should support the justification
for the read-across.

This is a further
description of the
category but it should be
more intuitive and
interpretative in that it
requires expert opinion
to support the
robustness, or otherwise,
of the category. The
effort required to justify
a category should not be
underestimated.

3. Data matrix A matrix of data should be
included that includes the
members of the category
associated with each endpoint. It
should be constructed with the
category members arranged in a
suitable order (e.g. according to
molecular weight). For example,
the ordering of the members
should reflect a trend or
progression within the category.
In each cell in the data matrix,
the study result type should be
indicated in the first line, e.g.:
experimental result, experimental
study planned (if applicable for
e.g. REACH) read-across from
supporting substance (structural
analogue or surrogate) trend
analysis (Q)SAR. If experimental
results are available, the key
study results should be shown in
the data matrix.

The data matrix is at the
heart of the reporting of
the category and read-
across. It is probably the
first item that will be
considered. It should be
reported clearly, logically
and unambiguously. The
distinction between data
should be identified i.e.
those which are
experimentally
determined (and the
reference for them),
predictions etc. Tools
such as the OECD
QSAR Toolbox will
provide this information.
However, it may be the
responsibility of the user
to order the information
correctly, annotate it
succinctly etc.
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N there is a full description of the ‘‘target’’ substance including its identity

and purity;

N there is justification of the read-across including supporting information.

The first criterion is often overlooked, but is vital. Whilst it may seem

obvious, the nature of the target substance i.e. the exact structure to which it

relates, must be defined. The structure can be recorded through IUPAC

nomenclature, SMILES or InChI strings, a drawing of the chemical structure

etc. All areas of isomerism and the possibilities of stereoisomers or tautomers

must be defined and the relative proportions stated. If the compound is

formulated as a salt, or with other substances or co-solvents, then they must be

defined. The reason for this careful definition is to ensure that the read-across

is justifiable in terms of the applicability domain of the category.

The second criterion, the justification of the read-across, is a process of

careful and expert documentation of the category and read-across. It requires

evidence as defined in Section 7.4 and Table 7.1. This may be a laborious

process but it is vital to demonstrate the robustness of the prediction and the

reason for its acceptability.

Since 2010 much has been written about the use of read-across to provide

predictions for REACH (see Table 1.3 and references contained therein as well

as the recent publications from Patlewicz.).1,2 This has involved various

stakeholder initiatives providing the link between registrants (industry),

academia, NGOs and ECHA. At the time of writing, such negotiations and

discussions are on-going but the ultimate aim is to develop a Read-Across

Assessment Framework (RAAF). One of the aims of the RAAF is to provide

case studies demonstrating and illustrating good practice in category

formation and read-across and, preferably, how to provide supporting

evidence and document the prediction such that it may be acceptable for

regulatory use. With regard to REACH, the onus is clearly on the submitter of

the dossier to provide the information in a suitable format, with appropriate

Table 7.1 (Continued)

Section of
Reporting Format

Summary of OECD15 and ECHA4

Information and Guidance (adapted
from the original documents). Notes and Interpretation

4. Conclusion(s) Conclusions for endpoint
considered for Classification and
Labelling (C&L), PBT/vPvB and
dose descriptor for the regulatory
purposes of REACH can be
provided.

This section is in the
ECHA Guidance only. It
provides for the
possibility of making an
overall conclusion with
regard to the category
and read-across relevant
to a regulatory decision
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clarity and supported by sufficient evidence to allow regulatory agencies to

accept such a prediction.

7.6 Training and Education

The premise of read-across is simple: if one molecule is similar to another then
it can be assumed to have a similar activity. However, to use this principle

successfully to make predictions, considerable expertise and training of non-

experts is required. At the heart of in silico approaches is a realisation that this

is a multidisciplinary methodology requiring knowledge, if not expertise, in

toxicology, chemistry and possibly statistics and regulatory processes.

Therefore, no one single person will enter this subject with all of the

appropriate skills. The areas where training and education are required include

the following (all of which are covered in this volume as well as the Guidance
noted in Table 1.4);

N chemical nomenclature;

N interpretation and understanding of relevant toxicity data;

N assignment of quality to toxicity (and other) data;

N chemoinformatics tools and processes for toxicity prediction;

N tools for category formation and read-across including the process of

forming a chemical category and obtaining robust and reliable toxicity data;

N reporting of read-across predictions including provision of evidence and

interpretation of the relevant literature.

Currently there are excellent training materials available to support the use
of the OECD QSAR Toolbox. These are available from http://www.oecd.org/

env/ehs/risk-assessment/theoecdqsartoolbox.htm#Guidance_Documents_and_

Training_Materials_for_Using_the_Toolbox. This includes valuable step-by-

step guides and tutorials in all aspects of using the Toolbox. These will lead the

user through all steps of preparing a category, performing a read-across and

preparing the documentation. The training materials will not, of course,

provide immediate expertise in toxicology or chemoinformatics, but they allow

a scientifically-educated novice user to make a prediction and attempt to
justify it.

7.7 Conclusions

Careful consideration must be given to read-across predictions of toxicity. In

order for read-across to be acceptable for regulatory purposes the category and

method to create it must be documented, and evidence provided to

demonstrate the confidence in the read-across. There is increasing guidance

available to support the definition, description and evaluation of both the

categories and the read-across, although no fixed framework can be applied —

it must be on a case-by-case basis and related to the endpoint. There are a
number of criteria that can be considered to determine confidence, e.g. the
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strength and mechanistic relevance of the category, the numbers of analogues,

quality of the toxicity data and further information from Weight of Evidence
etc. These are all subjective and require expert opinion. When the level of

confidence in a read-across has been evaluated it must be documented in a

suitable reporting format. Considerable guidance and training materials are

available to assist the practitioner.
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CHAPTER 8

The State of the Art and Future
Directions of Category
Formation and Read-Across for
Toxicity Prediction

M. T. D. CRONIN

School of Pharmacy and Chemistry, Liverpool John Moores University,

Byrom Street, Liverpool L3 3AF, England

E-mail: m.t.cronin@ljmu.ac.uk

8.1 Introduction

Read-across is the most simplistic of concepts, in that it allows an inference to

be made about the properties of one object based on its similarities to another.

However, the implementation of read-across for the prediction of complex

phenomena, such as toxic effects, requires much greater insight. This book has

brought together existing knowledge in the area of category formation and
read-across. To summarise, it should now be obvious to the user that to

undertake category formation to achieve read-across a number of issues must

be addressed:

N the ability to ‘‘profile’’ a chemical for relevant structural, physico-chemical,

mechanistic or metabolic information that may assist or inform a grouping.

N the ability to find chemical structures which are similar, in terms of the

profiling, to the target structure.

N the ability to successfully read-across or interpolate activity.
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N to interpret, find evidence to support and document the read-across to

allow third parties to use, or be able to accept, a prediction based upon it.

There are an increasing number of useful techniques and approaches that

allow these activities to be undertaken. However, the issues listed above

become increasingly subjective, requiring more expertise, on progressing from

profiling a chemical to finding evidence to substantiate a read-across

prediction. The aim of this final chapter is to review the current state of the

art of grouping, category formation and read-across and look to the future to

describe what will be required in the short, medium and long term to increase

the acceptance of read-across predictions.

8.2 Current State of the Art

Category formation to allow for read-across of toxicity is a rapidly developing

area that has come a long way in the past decade. The following summarises

the current status of the science through the discussion of the state of the art.

8.2.1 High Quality Tools Available to Assist the User

The area of read-across currently has a number of freely and commercially

available computational tools to assist the user in grouping compounds and

making read-across assessments. Such tools are described in Chapter 4 and key

amongst these has been the development of the OECD QSAR Toolbox. The

freely available OECD QSAR Toolbox provides access to high quality structures,

profilers and databases. It allows the user to undertake read-across and trend

analysis, as well as to develop simple QSAR models and provide reports to the

user. The Toolbox is not the only piece of software that is available. Grouping

and, to a lesser extent, Read-Across can be performed in other freely available

tools e.g. Toxmatch and Toxtree. In addition, Chapter 4 notes a number of other

freely available and commercial packages that are useful for grouping, and hence

could assist in read-across. Thus, there are a number of high quality tools to assist

the practitioner, at the current time there is little need to develop new tools for

grouping and read-across — the focus should be on maintenance and further

development (even simplification) of the existing approaches.

8.2.2 Understanding of the Processes of Grouping and
Read-Across

The well documented1-3 growth in the use of grouping and read-across is only

one example of the increased confidence practitioners have in the science

underpinning these approaches. Another example is the interest in Adverse

Outcome Pathways (AOPs) (see Chapter 3) development and their mutual

and inseparable interactions with category formation.4 The increase in use is

not only driven by necessity, i.e. due to the requirements of the REACH
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Regulation, but also demonstrates an increasing understanding of the methods

and approaches used to perform read-across. This is, no doubt, also a result of

the apparent simplicity of read-across (it is worth noting that the reality is

often somewhat different) and the availability of freely available tools such as

the OECD QSAR Toolbox. The Toolbox in particular has received attention

since its development was instigated by the OECD, with the financial backing

of ECHA, and thus is perceived as already having regulatory acceptance.

8.2.3 Growth in Toxicological Databases to Support Read-Across

Readily accessible, accurate and high quality toxicity data are fundamental to

read-across. However, even five years ago it was probably not possible to dream

how many freely available data for read-across would now be accessible. The

current data sources and means of assessing quality are described in Chapter 5,

with it being clear that there is a considerable body of toxicological evidence and

data available to the practitioner. These data are growing steadily as information

from regulatory sources e.g. from REACH submission dossiers, freedom of

information etc. is combined with automated data mining strategies. There are

even the first signs that the immense data resources held by industry may be

unlocked — albeit slowly and carefully.5 At the other end of the spectrum more

molecular biology data are becoming available, which will ultimately help

support read-across predictions. Thus, whilst there are still insufficient data to

allow for read-across predictions for all compounds for every endpoint of interest,

the philosophy and motivation of data collection and retrieval is well established

and supported by appropriate technology to ensure free and rapid access.

8.2.4 Status of Profilers for Category Formation

The OECD QSAR Toolbox provides a series of profilers to assist in the

grouping of compounds into categories. As stated in Chapter 2 and detailed in

Section 4.3 they can be defined as being mechanistic (i.e. potentially applicable

across diverse endpoints) or endpoint specific. In addition, there are a

variety of opportunities to create groupings of analogues through the use and

combination of functional group-based or empirical profilers. The HESS

system has identified the usefulness of developing ‘‘toxicological profilers’’

assisting in the creation of categories associated with specific toxicities.6

Further development of other such toxicological profilers is anticipated. Other

software such as Toxmatch allows chemicals to be grouped into categories

using chemoinformatics techniques such as calculated molecular similarity.

Thus, the overall picture is that for some adverse effects there is good coverage

with mechanistic and/or endpoint specific profilers. Where these are not

available, functional groups and/or molecular similarity may be used to create

groups of analogues, but for regulatory use these may require further

investigation, evidence and justification. Table 8.1 lists endpoints and provides

some comment on the relative requirement for further development.
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Table 8.1 Current status of the existing profilers for grouping and category
formation and the requirements for their future development.

Endpoint

Current State of the Art with
General Mechanistic and
Endpoint Specific Profilers

Comments and Future Needs
for Development

Mutagenicity and
Carcinogenicity

Good coverage through a
number of profilers,
especially for genotoxic
mechanisms

Profilers are little developed
for non-genotoxic
mechanisms of action

Repeated Dose
Toxicity

Reasonable coverage is
provided by the HESS
profiler

Further development of
organ level profilers is
required

Reproductive/
Developmental
Toxicity

Profilers are available for
oestrogen receptor binding

Further development of
profilers for reproductive
and developmental toxicity
is required

Skin Sensitisation Good coverage through
profilers relating to protein
binding

Further development of
profilers for skin
sensitisation is not a high
priority

Eye Irritation and
Corrosion

Good coverage through
endpoint specific profilers

Further development of
profilers for eye irritation is
not a high priority

Skin Irritation and
Corrosion

Good coverage through
endpoint specific profilers

Further development of
profilers for skin irritation
is not a high priority

Acute Aquatic
Toxicity

Many profilers and good
coverage available, especially
for fish acute toxicity

Further development of
profilers for acute aquatic
toxicity is not a high priority,
but more guidance may be
required on how to use the
different types of profilers

Chronic Aquatic
Toxicity

No specific profilers other than
those provided by ECOSAR,
however, some profilers for
acute aquatic toxicity may in
certain circumstances be
appropriate for use

Development of profilers for
chronic toxicity is
recommended

Endocrine
Disruption

Profilers available for
oestrogen receptor binding

Profilers are not currently
available for e.g. androgen,
thyroid receptors

Other toxicity
endpoints

Few or no endpoint specific
profilers are currently
available for other toxicity
endpoints. However, some
general mechanistic profilers
may be useful for other
endpoints e.g. the protein
binding profilers will be at
least partly useful for
grouping for respiratory
sensitisation.

There are many areas where
profilers are required

State of the Art and Future Directions of Category Formation and Read-Across 171

 1
4/

10
/2

01
3 

09
:1

9:
41

. 
Pu

bl
is

he
d 

on
 2

3 
Se

pt
em

be
r 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

44
00

-0
01

68
View Online

http://dx.doi.org/10.1039/9781849734400-00168


8.2.5 Prediction and Profiling of Metabolism

Metabolism and degradation are key events in toxicity and hence must be

appropriately modelled when applying read-across. The prediction of

metabolism is important for a number of reasons in read-across:

N Metabolites may be responsible for observed toxicity and the grouping

may need to be developed around the metabolite, as opposed to the

parent compound. Some profilers in the OECD QSAR Toolbox do not

implicitly account for the action of important potential metabolites,

whereas others do include this information. An example of this is the

formation of reactive quinone compounds from poly-hydroxylated

aromatic compounds.7 This is illustrated in Table 8.2, the parent

molecule (1,4-dihydroxybenzene) is not profiled as a protein binder

(whilst it identified with the potential to bind to DNA by one profiler),

however the predicted metabolite (benzoquinone)8 is profiled as being a

binder to DNA and protein. Such ambiguities are little understood and

not easily appreciated with regard to the Toolbox and this is clearly an

area for further work and clarification.

N Grouping on common metabolites is an established method of category

formation.9 Currently there are relatively few examples of how this can

be undertaken, but clearly it provides a useful and mechanistically valid

means to group compounds.

Table 8.2 The profiling of hydroquinone and its predicted metabolite

benzoquinone illustrating the need to profile metabolites.

OECD QSAR Toolbox
(ver 3.1) Profiler (see
Table 4.2 for more
information and definition)

Parent (Target)
Compound

Predicted Metabolite from the
Rat Liver S9 Metabolism
Simulator (from the OECD
QSAR Toolbox ver3.1)8

Structure

Name 1,4-Dihydroxybenzene
(hydroquinone)

Benzoquinone

DNA Binding by OASIS No binding Binding by Michael Addition,
Radical mechanism

DNA Binding by OECD Binding following P450
mediated activation
to a quinone

Binding by Michael Addition

Protein Binding by
OASIS

No binding Binding by Michael Addition

Protein Binding by
OECD

No binding Binding by Michael Addition
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Currently, metabolic simulators are available in the OECD QSAR Toolbox,

other freely available metabolic simulators include MetaPrint2D and

SMARTCyp. There is also a variety of other commercial software to predict

metabolism.10 Current methods for metabolism prediction are known to have

variable performance, mainly due to the fact they have been developed from

data for pharmaceuticals, regardless, they should provide useful insight into

the most obvious metabolites.11 It is incorrect, however, to consider the

metabolic profilers in the OECD QSAR Toolbox as a predictive platform; it is

more appropriate to consider that they perform reasonably well to predict

metabolites for category formation.

8.2.6 Training and Education

The rise in demand for in silico predictions of toxicity, e.g. to complete REACH

dossiers, has meant that many more toxicologists and risk assessors have had

to utilise category formation and read-across approaches. Many of these

practitioners were previously unaccustomed to using these predictive technolo-

gies. This has inevitably meant that demand for predictions has out-stripped the

available expertise. This is not to say that there is poor science being undertaken,

but that issues such as evaluation of predictions for regulatory use (Chapter 7)

have occasionally been poorly addressed.1,2 On the positive side, there is much

training material and other resources to help inform scientists new to this area.

For example, there are a number of guidance documents from the OECD relating

to the use of the OECD QSAR Toolbox and the initial case study from ECHA has

recently been published.12,13 These documents will inevitably help the user

develop robust categories with which to make read-across predictions. Guidance

documents are summarised in Table 1.4. In addition, it is likely that more case

studies will be made available as part of the Read-Across Assessment Framework.

8.3 The Future for Category Formation and
Read-Across

There is no doubt that category formation and read-across are established

techniques for toxicity prediction. There are clear processes for their

implementation and evidence that they will be acceptable for regulatory

purposes.1,2 There is no sign that the interest in this technique will abate.

However, the category formation and read-across paradigms are not perfect

and the following section identifies the areas where there is likely, and needs, to

be significant development in the short, medium and long term.

8.3.1 Upkeep and Maintenance of Current Tools

The OECD QSAR Toolbox is an excellent tool for category formation and

read-across and is a credit to the foresight of the OECD and developers at the
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Laboratory of Mathematical Chemistry. Development of the Toolbox (Phases

2 and 3 were completed in 2012), the minimal need is to maintain the Toolbox

in its current format — this is assured in the short term at least. In the long

term further development may be required, not only to update profilers and

databases, but also to respond to other legislative and user needs as well as

exploiting future software developments. The Toolbox is only one piece of

software, all other software and databases must similarly be updated and

maintained to keep the impetus already created in this area.

8.3.2 Development of New Profilers

There is a clear need to continue the development of profilers for endpoints that

are not yet well characterised. Table 8.1 summarises some of the main toxicity

endpoints; it is clear that much effort is required in the development of profilers

for chronic toxicity e.g. repeated dose and reproductive effects. It is true to say

that many of the ‘‘easy’’ profilers have been developed, e.g. for covalent

interactions with DNA and proteins, well known mechanisms of mammalian

toxicity and models of non-mammalian toxicity e.g. fish acute toxicity.

Therefore there is likely to be a much slower development of new profilers

than already seen. Key areas will be in organ level toxicity and will be linked

closely to the development of Adverse Outcome Pathways (see Chapter 3).

New profilers, and new ways of profiling will be required for receptor

mediated interactions or molecular initiating events. Currently there is only

one comprehensive profiler for a receptor mediated effect — the oestrogen

receptor binding profiler in the OECD QSAR Toolbox. The new generation of

profilers will not only have to address the 3-dimensional aspects of the receptor

(the current profilers only include 2-dimensional properties), but also

pharmacophore properties. Given the wealth of techniques in drug design

for these types of endpoints,14 there should be good possibilities to develop the

next generation of profilers to address receptor mediated effects.

8.3.3 Incorporation of Toxicokinetic Information

Toxicokinetic data, particularly on metabolism and uptake, can help support a

read-across prediction and support the robustness of a category.2,9,15 One

suggestion is to routinely obtain further information from any future in vivo

studies, such as concentrations in vivo, possible metabolic routes etc.15 The

usefulness of this information to support categories derived from a common

metabolite should be clear, however toxicokinetic information will also

support predictions of the absence of toxicity where low bioavailability may be

a useful indicator. It is clearly not possible to obtain in vivo toxicokinetic data

for all chemicals, so greater use of in vitro assays and in silico predictions of

relevant parameters is recommended.

174 Chapter 8

 1
4/

10
/2

01
3 

09
:1

9:
41

. 
Pu

bl
is

he
d 

on
 2

3 
Se

pt
em

be
r 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
18

49
73

44
00

-0
01

68
View Online

http://dx.doi.org/10.1039/9781849734400-00168


8.3.4 Using the Adverse Outcome Pathway (AOP) Concept to
Support Category Formation

As stated in the previous section, the AOP concept is becoming, or has the

potential to become, central to the development of profilers for many organ

level toxicities. AOPs will support the development of new categories; similarly

the use of AOPs to link chemistry to a biological framework can assist in the

investigation of hypotheses (for example using appropriate in vitro assays)

relating to mechanisms of action. This cyclical process of chemistry informing

intelligent testing using non-animal species relating to key events in an AOP

has real potential to support the development of categories (described in detail

in Section 3.4.1). There must be a realisation from experimental biologists that

AOPs can support their compound selection. This will strengthen all aspects of

alternatives for toxicity testing. For instance, categories supported by evidence

from AOPs are, in turn, likely to be more palatable for regulatory acceptance.

Therefore, linking these concepts and exploiting the knowledge of both

chemists and toxicologists will be of real benefit for all parties.

8.3.5 Global Co-ordination of the Development of Adverse
Outcome Pathways

In order to support the development of AOPs leading to category formation,

co-ordination of these activities at a global level is required. This will ensure

that effort is placed into AOPs that are relevant to on-going research activities

and needs, avoiding duplication of effort. Currently AOP development is

loosely co-ordinated through the OECD. This is one (of several) appropriate

forums which can assist in proper review and evaluation of the AOPs.

8.3.6 Better Use of New Toxicological Data and Information
Sources

There is a need to mine and use data more efficiently. This will become

increasingly important in the future as data continue to be generated at an ever-

increasing rate. There are already huge data resources from molecular biology

and other initiatives such as ToxCast.16 At this time we are seeing analysis of one

of the most significant toxicogenomics databases, TG-GATEs, (Genomics-

Assisted Toxicity Evaluation System developed by the Toxicogenomics Project

in Japan).17 The first issue will be the development of techniques to gain

meaningful information from such data and relate this to mechanisms of action,

hence to inform AOPs. In order to support the successful development of AOPs

the hard work e.g. literature searching, needs to be supported and informed by

these new sources of knowledge.
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8.3.7 Data Quality Assessment

One of the fundamental principles of read-across is the availability of data on

which to base the prediction. As noted in this chapter, there is increasing access

to data from various sources. However, simply utilising these data blindly, or

without consideration of their suitability, fails to address the need to assess the

‘‘quality’’ of the data. Methods to assess data quality are described in Chapter

5, however the current paradigm is largely based around the criteria published

by Klimisch et al.18 Whilst this provides a simple score for data reliability

(and is very widely used) — there are acknowledged difficulties with the

interpretation and application of the scheme.19 In particular, it relies on the

availability of documentation relating to Good Laboratory Practice (GLP)

studies and status. Therefore, there is a need to review the requirements for

data quality assessment for read-across and how this could be achieved. This

requires a thorough understanding of what data quality and reliability are and

how they influence predictive models. As such, new measures to provide and

interpret information relating to the quality of toxicity data are needed, as

discussed by Yang et al.20

8.3.8 Confidence in Predictions

In order for a prediction from read-across to be accepted, the confidence

associated with the prediction must be known (see Chapter 7). Assigning

confidence is a very subjective process, open to interpretation; better methods

to achieve this and produce realistic and reliable estimates of confidence are

required. This will not be an easy task! It will require consultation with

software developers, modellers, toxicologists and users of the models in

industry and regulatory agencies. At this point it may be useful for those

developing methods to assign confidence to look beyond their normal areas to

bring in other relevant knowledge e.g. from psychology, marketing, etc. —

areas where subjective levels of confidence in an observation can be interpreted

in a more objective manner.

8.3.9 Acceptance of Predictions for Regulatory Purposes

As described in Chapter 7, and noted by Patlewicz et al.,1,2 one of the key

stumbling blocks of the use of read-across is regulatory acceptance. It is highly

desirable and certain in the (very) short term further guidance and case studies

is being, and will be, provided by ECHA.12,13 This is to be commended, as is

the uptake of this guidance within the modelling community from both

developers and users i.e. new profilers must be designed to maximise the

possibility of regulatory acceptance. The logical next step is the global

harmonisation of regulatory acceptance of read-across predictions and the

framework to achieve this. This is achievable through the involvement of the

OECD and other organisations at the global level.
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8.3.10 Education and Training

There will be an on-going need for capacity building of trained experts to

develop and use read-across methods, such training needs for toxicologists

were reviewed by Lapenna et al.21 As stated above, and in Chapter 7, there are

many excellent training materials in the use of e.g. the OECD QSAR Toolbox,

as well as courses to learn how to use the software. A further requirement is an

overall strategy or framework to co-ordinate training in the broader areas of

toxicology, data quality assessment, computational chemistry, regulatory
acceptance etc. This is another area where global coordination would be

beneficial.

8.4 Conclusions

Read-across as a predictive technique for chemical toxicity was little known, if

at all, a decade ago. It is now a rapidly maturing technology, thanks in no

small part to the accessibility of freely available software and databases. This

should be a key point for future developments — uptake will be much more

rapid with high quality, freely available tools. There are many areas where

read-across needs to improve, such as the profilers and grouping for human

health effects and the implementation of the technology for easy and effective

regulatory use. The future is potentially bright for grouping, category
formation and read-across. However, development of the area needs to be

supported, not only by the science, but also by the uptake of the approaches by

industry and the regulatory agencies. Imagination and courage are needed to

take up and develop this new paradigm in hazard and risk assessment.
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applications 53
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future 176
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Relationships 10–11
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relevance of data 114, 115
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reproducibility of data 116

reproductive toxicity 51
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risk

assessment 160
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receptor) expert system 139,
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skin metabolism 86

skin sensitisation
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multidimensional pathways 45
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target chemical identification 11–13,
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Tennant, R.W. 9
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terminology 47–8, 108–13, 164
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top-down approaches 46
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toxicity data see data
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Toxmatch program 36, 88–91, 151
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transformation of cells 77

two-dimensional structural alerts 35,
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United States
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ACToR database 103, 107

BLOWIN1 exposure assessment

tool 80, 83

DSSTox database 107

ECOSAR program/system 9,

135, 136

ECOTOX aquatic toxicity
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rtER expert system 139, 140, 143

teratogenicity 150, 151

validation of data 10, 116–17, 155–66

valproic acid 55–7

variation sources in data 114
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weak acids 48, 55–7
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approaches 49–50, 66, 123,
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Wnt/b-catenin signalling pathway 55,
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WOMBAT/WOMBAT-PK database

107
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aquatic toxicity 137

estrogen receptor binding 139–40,
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repeated dose toxicity 145–6, 149

skin sensitisation 133–5
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